WorldWideScience

Sample records for level oxidant stress

  1. Decreased total antioxidant levels and increased oxidative stress in ...

    African Journals Online (AJOL)

    Background: Chronic hyperglycaemia in diabetes mellitus leads to increased lipid peroxidation in the body, followed by the development of chronic complications due to oxidative stress. Objective: The aim of this study was to compare total antioxidant (TAO) levels and oxidative stress in type 2 diabetes mellitus (T2DM) ...

  2. RAGE polymorphisms and oxidative stress levels in Hashimoto's thyroiditis.

    Science.gov (United States)

    Giannakou, Maria; Saltiki, Katerina; Mantzou, Emily; Loukari, Eleni; Philippou, Georgios; Terzidis, Konstantinos; Lili, Kiriaki; Stavrianos, Charalampos; Kyprianou, Miltiades; Alevizaki, Maria

    2017-05-01

    Polymorphisms of the receptor for advanced glycation end products (RAGE) gene have been studied in various autoimmune disorders, but not in Hashimoto's thyroiditis. Also, increased oxidative stress has been described in patients with Hashimoto's thyroiditis. The aim of this study was to investigate the possible role of two common RAGE polymorphisms (-429T>C, -374T>A) in Hashimoto's thyroiditis; in parallel, we studied oxidative stress levels. A total of 300 consecutive euthyroid women were examined and classified into three groups: Hashimoto's thyroiditis with treatment (n = 96), Hashimoto's thyroiditis without treatment (n = 109) and controls (n = 95). For a rough evaluation of oxidative stress, total lipid peroxide levels in serum were measured. The -429T>C AluI and -374T>A MfeI polymorphisms of RAGE were studied in genomic DNA. Significant association of the RAGE system with Hashimoto's thyroiditis was found only with regard to the prevalence of the -429T>C, but not with -374T>A polymorphism. The levels of oxidative stress were significantly elevated in Hashimoto's thyroiditis patients under treatment. Further analysis demonstrated that an oxidative stress cut-off value of 590 μmol/L is associated with an increased risk of progression of Hashimoto's thyroiditis from euthyroidism to hypothyroidism; this risk is further increased in carriers of the RAGE -429T>C polymorphism. Our findings indicate that both examined risk factors may be implicated in the occurrence of Hashimoto's thyroiditis, but this covers only a fraction of the pathophysiology of the disease. © 2017 Stichting European Society for Clinical Investigation Journal Foundation.

  3. Oxidative stress reduces levels of dysbindin-1A via its PEST domain.

    Science.gov (United States)

    Yap, Mei-Yi Alicia; Lo, Yew-Long; Talbot, Konrad; Ong, Wei-Yi

    2014-12-01

    Oxidative stress resulting from the generation of reactive oxygen species has been proposed as an etiological factor in schizophrenia. The present study tests the hypothesis that oxidative stress can affect levels of dysbindin-1A, encoded by Dtnbp1, a genetic risk factor for schizophrenia, via its PEST domain. In vitro studies on SH-SY5Y cells indicate that oxidative stress triggers proteasomal degradation of dysbindin-1A, and that this requires interactions with its PEST domain, which may be a TRIM32 target. We specifically found (a) that oxidative stress induced in SH-SY5Y cells by 500 µM hydrogen peroxide reduced levels of full-length dysbindin-1, but did not reduce levels of that protein lacking its PEST domain and (b) that levels of full-length dysbindin-1, but not dysbindin-1 lacking its PEST domain, were higher in cells treated with the proteasome inhibitor MG132. Oxidative stress thus emerges as the first known cellular factor regulating dysbindin-1 isoforms with PEST domains. These findings are consistent with the previously noted fact that phosphorylation of PEST domains often marks proteins for proteasomal degradation, and raises the possibility that treatments reducing oxidative stress in the brain, especially during development, may lower schizophrenia risk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Endogenous ROS levels in C. elegans under exogenous stress support revision of oxidative stress theory of life-history tradeoffs.

    Science.gov (United States)

    Smith, Samson W; Latta, Leigh C; Denver, Dee R; Estes, Suzanne

    2014-07-24

    The oxidative stress theory of life-history tradeoffs states that oxidative stress caused by damaging free radicals directly underpins tradeoffs between reproduction and longevity by altering the allocation of energetic resources between these tasks. We test this theory by characterizing the effects of exogenous oxidative insult and its interaction with thermal stress and diet quality on a suite of life-history traits and correlations in Caenorhabditis elegans nematodes. We also quantify demographic aging rates and endogenous reactive oxygen species (ROS) levels in live animals. Our findings indicate a tradeoff between investment in reproduction and antioxidant defense (somatic maintenance) consistent with theoretical predictions, but correlations between standard life-history traits yield little evidence that oxidative stress generates strict tradeoffs. Increasing oxidative insult, however, shows a strong tendency to uncouple positive phenotypic correlations and, in particular, to reduce the correlation between reproduction and lifespan. We also found that mild oxidative insult results in lower levels of endogenous ROS accompanied by hormetic changes in lifespan, demographic aging, and reproduction that disappear in combined-stress treatments--consistent with the oxidative stress theory of aging. Our findings demonstrate that oxidative stress is a direct contributor to life-history trait variation and that traditional tradeoffs are not necessary to invoke oxidative stress as a mediator of relationships between life-history traits, supporting previous calls for revisions to theory.

  5. Association between oxidative stress index and serum lipid levels in healthy young adults

    International Nuclear Information System (INIS)

    Turkdogan, K.E.

    2014-01-01

    Objectives: To investigate the relationship between lipid levels and oxidative stress index in healthy young adults. Methods: The study was camed out at the Department of Emergency Service, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey, between January 2011 and July 2012. A total of 100 healthy adult volunteers were enrolled in the study. Venous blood samples (10 ml) were collected from all individuals, and serum lipid parameters, total antioxidant capacity and total oxidative levels were studied. SPSS 15 was used for statistical analysis. Results: Overall, there were 84 (84%) males and 16 (16%) females. The mean age of the male population was 30+-3 years, while that of the females was 31+-3 years. Overall age ranged from 25 to 35 years. A statistically significant correlation was found between the oxidative stress index and serum cholesterol (p<0.001; r=0.596), triglyceride (p<0.001; r=0.476) and low-density lipoprotein levels (p<0.001; r=0.318). However, no significant correlation was found between oxidative stress index and serum high-density lipoprotein levels (p=0.564; r=0.058). Conclusion: The results showed that even at an early age, there is a direct linear correlation between oxidative stress and serum lipid levels. (author)

  6. Are PTH levels related to oxidative stress and inflammation in chronic kidney disease patients on hemodialysis?

    Directory of Open Access Journals (Sweden)

    Marcel Jaqueto

    Full Text Available Abstract Introduction: Patients at end stage renal disease have higher levels of inflammation and oxidative stress than the general population. Many factors contribute to these issues, and the parathyroid hormone (PTH is also implicated. Objective: The study was conducted in order to assess the relationship between PTH levels and inflammation and oxidative stress in hemodialysis patients. Methods: Cross-sectional study with patients of two hemodialysis facilities in Londrina, Brazil. Patients with other conditions known to generate oxidative stress and inflammation were excluded. Blood levels of PTH and biochemical parameters of inflammation (interleukins 1 and 6, tumor necrosis factor-alpha and oxidative stress (total plasma antioxidant capacity, malonic dialdehyde, lipid hydroperoxidation, advanced oxidation protein products, quantification of nitric oxide metabolites, and 8-isoprostane were measured before a dialysis session. Then, we made correlation analyses between PTH levels - either as the continuous variable or categorized into tertiles-, and inflammatory and oxidative stress biomarkers. Results: PTH did not show any correlation with the tested inflammation and oxidative stress parameters, nor as continuous variable neither as categorical variable. Conclusion: In this descriptive study, the results suggest that the inflammation and oxidative stress of hemodialysis patients probably arise from mechanisms other than secondary hyperparathyroidism.

  7. Decreased total antioxidant levels and increased oxidative stress in ...

    African Journals Online (AJOL)

    21–25 ... Decreased total antioxidant levels and increased oxidative stress in South ... antioxidant-rich diet and lifestyle changes in T2DM patients would help to avert the .... glycation of proteins and the formation of advanced glycosylation.

  8. Oxidized low density lipoprotein increases RANKL level in human vascular cells. Involvement of oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Mazière, Cécile, E-mail: maziere.cecile@chu-amiens.fr [Biochemistry Laboratory, South Hospital University, René Laennec Avenue, Amiens 80000 (France); Salle, Valéry [Internal Medicine, North Hospital University, Place Victor Pauchet, Amiens 80000 (France); INSERM U1088 (EA 4292), SFR CAP-Santé (FED 4231), University of Picardie – Jules Verne (France); Gomila, Cathy; Mazière, Jean-Claude [Biochemistry Laboratory, South Hospital University, René Laennec Avenue, Amiens 80000 (France)

    2013-10-18

    Highlights: •Oxidized LDL enhances RANKL level in human smooth muscle cells. •The effect of OxLDL is mediated by the transcription factor NFAT. •UVA, H{sub 2}O{sub 2} and buthionine sulfoximine also increase RANKL level. •All these effects are observed in human fibroblasts and endothelial cells. -- Abstract: Receptor Activator of NFκB Ligand (RANKL) and its decoy receptor osteoprotegerin (OPG) have been shown to play a role not only in bone remodeling but also in inflammation, arterial calcification and atherosclerotic plaque rupture. In human smooth muscle cells, Cu{sup 2+}-oxidized LDL (CuLDL) 10–50 μg/ml increased reactive oxygen species (ROS) and RANKL level in a dose-dependent manner, whereas OPG level was not affected. The lipid extract of CuLDL reproduced the effects of the whole particle. Vivit, an inhibitor of the transcription factor NFAT, reduced the CuLDL-induced increase in RANKL, whereas PKA and NFκB inhibitors were ineffective. LDL oxidized by myeloperoxidase (MPO-LDL), or other pro-oxidant conditions such as ultraviolet A (UVA) irradiation, incubation with H{sub 2}O{sub 2} or with buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis{sub ,} also induced an oxidative stress and enhanced RANKL level. The increase in RANKL in pro-oxidant conditions was also observed in fibroblasts and endothelial cells. Since RANKL is involved in myocardial inflammation, vascular calcification and plaque rupture, this study highlights a new mechanism whereby OxLDL might, by generation of an oxidative stress, exert a deleterious effect on different cell types of the arterial wall.

  9. Oxidative stress and neurological disorders in relation to blood lead levels in children.

    Science.gov (United States)

    Ahamed, M; Fareed, Mohd; Kumar, A; Siddiqui, W A; Siddiqui, M K J

    2008-01-01

    Oxidative stress plays a pivotal role in the pathogenesis of neurological disorders. Free radical generation appears to be the mode of lead toxicity. We evaluated the effects of blood lead levels on oxidative stress parameters in children suffering from neurological disorders. Thirty children (aged 3-12 years) with neurological disorders (cerebral palsy [n = 12], seizures [n = 11], and encephalopathy [n = 7]) were recruited in the study group. Sixty healthy children (aged 3-12 years) from similar socio-economic environments and not suffering from any chronic disease were taken as the controls. Blood lead levels and oxidant/antioxidant status were determined. Mean blood lead level was significantly higher while delta-aminolevulinic acid dehydratase (delta-ALAD) activity, a biomarker for lead exposure, was significantly lower in the study group as compared to the control group (P children with neurological disorders. Lead-induced oxidative stress as an underlying mechanism for neurological diseases in children warranted further investigation.

  10. Does oxidative stress shorten telomeres?

    NARCIS (Netherlands)

    Boonekamp, Jelle J.; Bauch, Christina; Mulder, Ellis; Verhulst, Simon

    Oxidative stress shortens telomeres in cell culture, but whether oxidative stress explains variation in telomere shortening in vivo at physiological oxidative stress levels is not well known. We therefore tested for correlations between six oxidative stress markers and telomere attrition in nestling

  11. Long-term vegetarians have low oxidative stress, body fat, and cholesterol levels.

    Science.gov (United States)

    Kim, Mi Kyung; Cho, Sang Woon; Park, Yoo Kyoung

    2012-04-01

    Excessive oxidative stress and abnormal blood lipids may cause chronic diseases. This risk can be reduced by consuming an antioxidant- and fiber-rich vegetarian diet. We compared biomarkers of oxidative stress, antioxidant capacity, and lipid profiles of sex- and age-matched long-term vegetarians and omnivores in Korea. Forty-five vegetarians (23 men and 22 women; mean age, 49.5 ± 5.3 years), who had maintained a vegetarian diet for a minimum of 15 years, and 30 omnivores (15 men and 15 women; mean age, 48.9 ± 3.6 years) participated in this study. Their 1-day, 24-h recall, and 2-day dietary records were analyzed. Oxidative stress was measured by the levels of diacron reactive oxygen metabolites (d-ROM). Antioxidant status was determined by the biological antioxidant potential (BAP) and levels of endogenous antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase. We observed that vegetarians had a significantly lower body fat percentage (21.6 ± 6.4%) than that of omnivores (25.4 ± 4.6%; P vegetarians than those in omnivores (331.82 ± 77.96 and 375.80 ± 67.26 Carratelli units; P vegetarians and omnivores were 173.73 ± 31.42 mg/dL and 193.17 ± 37.89 mg/dL, respectively (P vegetarians and omnivores, respectively, indicating that vegetarians had significantly lower lipid levels. Thus, oxidative stress, body fat, and cholesterol levels were lower in long-term vegetarians than those in omnivores.

  12. Metformin induces oxidative stress in white adipocytes and raises uncoupling protein 2 levels.

    Science.gov (United States)

    Anedda, Andrea; Rial, Eduardo; González-Barroso, M Mar

    2008-10-01

    Metformin is a drug widely used to treat type 2 diabetes. It enhances insulin sensitivity by improving glucose utilization in tissues like liver or muscle. Metformin inhibits respiration, and the decrease in cellular energy activates the AMP-activated protein kinase that in turn switches on catabolic pathways. Moreover, metformin increases lipolysis and beta-oxidation in white adipose tissue, thereby reducing the triglyceride stores. The uncoupling proteins (UCPs) are transporters that lower the efficiency of mitochondrial oxidative phosphorylation. UCP2 is thought to protect against oxidative stress although, alternatively, it could play an energy dissipation role. The aim of this work was to analyse the involvement of UCP2 on the effects of metformin in white adipocytes. We studied the effect of this drug in differentiating 3T3-L1 adipocytes and found that metformin causes oxidative stress since it increases the levels of reactive oxygen species (ROS) and lowers the aconitase activity. Variations in UCP2 protein levels parallel those of ROS. Metformin also increases lipolysis in these cells although only when the levels of ROS and UCP2 have decreased. Hence, UCP2 does not appear to be needed to facilitate fatty acid oxidation. Furthermore, treatment of C57BL/6 mice with metformin also augmented the levels of UCP2 in epididymal white adipose tissue. We conclude that metformin treatment leads to the overexpression of UCP2 in adipocytes to minimize the oxidative stress that is probably due to the inhibition of respiration caused by the drug.

  13. Financial strain is associated with increased oxidative stress levels: the Women's Health and Aging Studies.

    Science.gov (United States)

    Palta, Priya; Szanton, Sarah L; Semba, Richard D; Thorpe, Roland J; Varadhan, Ravi; Fried, Linda P

    2015-01-01

    Elevated oxidative stress levels may be one mechanism contributing to poor health outcomes. Financial strain and oxidative stress are each predictors of morbidity and mortality, but little research has investigated their relationship. Community-dwelling older adults (n = 728) from the Women's Health and Aging Studies I and II were included in this cross-sectional analysis. Financial strain was ascertained as an ordinal response to: "At the end of the month, do you have more than enough money left over, just enough, or not enough?" Oxidative stress was measured using serum protein carbonyl concentrations. Linear regression was used to quantify the relationship between financial strain and oxidative stress. Participants who reported high financial strain exhibited 13.4% higher protein carbonyl concentrations compared to individuals who reported low financial strain (p = 0.002). High financial strain may be associated with increased oxidative stress, suggesting that oxidative stress could mediate associations between financial strain and poor health. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Local and systemic oxidative stress and glucocorticoid receptor levels in chronic obstructive pulmonary disease patients

    Science.gov (United States)

    Zeng, Mian; Li, Yue; Jiang, Yujie; Lu, Guifang; Huang, Xiaomei; Guan, Kaipan

    2013-01-01

    BACKGROUND: Previous studies have indicated that oxidative stress plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). OBJECTIVES: To study local and systemic oxidative stress status in COPD patients, and to clarify the relationship between local and systemic oxidative stress. METHODS: Lipid peroxide malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD) and GSH peroxidase (GSH-PX) levels in induced sputum and plasma, as well as glucocorticoid receptor (GR) levels in peripheral blood leukocytes were examined in 43 acute exacerbation of COPD patients (group A), 35 patients with stable COPD (group B) and 28 healthy controls (14 smokers [group C]; 14 nonsmokers [group D]). RESULTS: MDA levels in induced sputum and plasma decreased progressively in groups A to D, with significant differences between any two groups (P<0.001). GSH, SOD and GSH-PX levels in both induced sputum and plasma increased progressively in groups A to D, with significant differences between any two groups (P<0.001). GR levels in peripheral blood leukocytes decreased progressively in groups D to A (all comparisons P<0.001). Pearson analysis revealed strong correlations between MDA, GSH, SOD and GSH-PX levels in plasma and induced sputum. The activity of SOD in plasma and sputum were both positively correlated with GR levels (partial correlation coefficients 0.522 and 0.574, respectively [P<0.001]). CONCLUSIONS: Oxidative stress levels were elevated in COPD patients. There was a correlation between local and systemic oxidative status in COPD, and between decreased SOD activity and decreased GR levels in COPD patients. PMID:23457673

  15. Plasma oxidative stress level of IgA nephropathy in children and the effect of early intervention with angiotensin-converting enzyme inhibitors.

    Science.gov (United States)

    Pei, Yuxin; Xu, Yuanyuan; Ruan, Jingwei; Rong, Liping; Jiang, Mengjie; Mo, Ying; Jiang, Xiaoyun

    2016-01-01

    The purpose of this study was to investigate the change of the plasma oxidative stress level in children with IgA nephropathy (IgAN) and analyze its relativity to the clinical and pathological classification. To discuss the early effects of angiotensin-converting enzyme inhibitors (ACEIs) on the plasma oxidative stress level in children with IgA nephropathy. Thirty-eight children with IgAN were divided into groups according to their clinical features, pathologic grades, and treatments. Twenty healthy children were included in the control group. The plasma level of advanced oxidation protein products (AOPPs), malonaldehyde (MDA), and superoxide dismutase (SOD) were detected. The plasma level of oxidative stress was significantly increased in the IgAN group, including a higher plasma level of AOPP and MDA and a lower plasma level of SOD. After treatment, the plasma level of oxidative stress was significantly decreased in the ACEI group. The children with IgAN had an increase in the plasma level of oxidative stress, expressed as an increased plasma level of AOPP and MDA and a decreased plasma level of SOD. Oxidative stress was associated with the progression of IgAN in children. Early treatment with ACEI therapy can significantly reduce the plasma level of oxidative stress in children with IgAN. © The Author(s) 2016.

  16. Good stress, bad stress and oxidative stress: insights from anticipatory cortisol reactivity.

    Science.gov (United States)

    Aschbacher, Kirstin; O'Donovan, Aoife; Wolkowitz, Owen M; Dhabhar, Firdaus S; Su, Yali; Epel, Elissa

    2013-09-01

    exposure, moderate (compared to low) levels of perceived stress were associated with reduced levels of oxidative damage. Hence, this study supports the emerging model that chronic stress exposure promotes oxidative damage through frequent and sustained activation of the hypothalamic-pituitary-adrenal axis. It also supports the less studied model of 'eustress' - that manageable levels of life stress may enhance psychobiological resilience to oxidative damage. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Transgenic tobacco plants having a higher level of methionine are more sensitive to oxidative stress.

    Science.gov (United States)

    Hacham, Yael; Matityahu, Ifat; Amir, Rachel

    2017-07-01

    Methionine is an essential amino acid the low level of which limits the nutritional quality of plants. We formerly produced transgenic tobacco (Nicotiana tabacum) plants overexpressing CYSTATHIONE γ-SYNTHASE (CGS) (FA plants), methionine's main regulatory enzyme. These plants accumulate significantly higher levels of methionine compared with wild-type (WT) plants. The aim of this study was to gain more knowledge about the effect of higher methionine content on the metabolic profile of vegetative tissue and on the morphological and physiological phenotypes. FA plants exhibit slightly reduced growth, and metabolic profiling analysis shows that they have higher contents of stress-related metabolites. Despite this, FA plants were more sensitive to short- and long-term oxidative stresses. In addition, compared with WT plants and transgenic plants expressing an empty vector, the primary metabolic profile of FA was altered less during oxidative stress. Based on morphological and metabolic phenotypes, we strongly proposed that FA plants having higher levels of methionine suffer from stress under non-stress conditions. This might be one of the reasons for their lesser ability to cope with oxidative stress when it appeared. The observation that their metabolic profiling is much less responsive to stress compared with control plants indicates that the delta changes in metabolite contents between non-stress and stress conditions is important for enabling the plants to cope with stress conditions. © 2017 Scandinavian Plant Physiology Society.

  18. Study of Foeniculum vulgare (Fennel Seed Extract Effects on Serum Level of Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Sadeghpour Nahid

    2015-04-01

    Full Text Available Objective: The Foeniculum vulgare (FVE, known as fennel, has a long history of herbal uses as both food and medicine. The seed of this plant has been used to promote menstruation, alleviate the symptoms of female climacteric, and increase the number of ovarian follicles. The aim of this study was to evaluate the fennel extract effects on serum level of oxidative stress in female mice. Materials and Methods: Totally, 28 virgin female albino mice were divided into four groups (n = 7. Groups 1 and 2 (experimental groups were administered FVE at 100 and at a concentration of 100 and 200 mg/kg for 5 days, interaperitoneally. Group 3 (negative control received ethanol and Group 4 (positive control received normal saline. Animals were scarified at 6th day, sera were collected and the level of oxidative stress was determination of using total antioxidant status kit. Results: Data analysis revealed that there is a significant difference in the mean level of serum oxidative stress between four different groups. P value in experimental groups compared to the control group was (P < 0.0001. Conclusion: Fennel extract can decrease the serum level of oxidative factors in female mice; it can be introduced as a novel medicine for treatment of infertility

  19. Serum Antioxidative Enzymes Levels and Oxidative Stress Products in Age-Related Cataract Patients

    Directory of Open Access Journals (Sweden)

    Dong Chang

    2013-01-01

    Full Text Available Purpose. To investigate the activity of antioxidative enzymes and the products of oxidative stress in patients with age-related cataracts and compare the findings with those in healthy control subjects. Method. Sixty patients with age-related cataract and sixty healthy controls of matched age and gender were included in this study. Serum samples were obtained to detect the antioxidative enzymes of superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GSH-Px, and oxidation degradation products of malondialdehyde (MDA, 4-hydroxynonenal (4-HNE, conjugated diene (CD, advanced oxidation protein products (AOPP, protein carbonyl (PC, and 8-hydroxydeoxyguanosine (8-OHdG. Results. Serum SOD, GSH-Px, and CAT activities in cataract group were significantly decreased as compared to the control subjects (P<0.05. The levels of MDA, 4-HNE, and CD in cataract patients were significantly higher than those in the control subjects (P<0.05, P<0.01. Cataract patients had higher levels of 8-OHdG, AOPP, and PC with respect to the comparative group of normal subjects (P<0.01. And there was no statistical significance in concentration of antioxidative enzymes and oxidative stress products in patients with different subtype cataract. Conclusions. Oxidative stress is an important risk factor in the development of age-related cataract, and augmentation of the antioxidant defence systems may be of benefit to prevent or delay cataractogenesis.

  20. Oxidative stress and decreased thiol level in patients with migraine: cross-sectional study.

    Science.gov (United States)

    Eren, Yasemin; Dirik, Ebru; Neşelioğlu, Salim; Erel, Özcan

    2015-12-01

    Although migraine is a neurological disorder known since long, its physiopathology remains unclear. Recent studies suggest that migraine is associated with oxidative stress; however, they report divergent results. The aim of the present study was to evaluate total antioxidant status (TAS), total oxidant status (TOS), oxidative stress index (OSI), and serum thiol level in migraine patients with or without aura. The study group consisted of 141 migraine patients. The control group included 70 healthy subjects. TAS, TOS, OSI were evaluated using a method developed by Erel. Serum thiol level was measured using the Hu method. No difference was found in TAS, TOS, OSI between the patients and controls. The level of thiol was significantly lower in patients than in controls. Negative correlations were detected between thiol level and Migraine Disability Assessment score in patients. Although TAS, TOS, and OSI were similar to those of the control group, serum thiol level, an important marker of antioxidant capacity, was significantly lower in migraines compared with controls, and caused more serious disability. Novel treatment approaches may be developed based on these data, and compounds containing thiol, such as alpha lipoic acid and N-acetyl cysteine, may be used in prophylaxis.

  1. Evaluation of the melatonin and oxidative stress markers level in serum of fertile and infertile women

    Directory of Open Access Journals (Sweden)

    Sara Soleimani Rad

    2015-07-01

    Full Text Available Background: Infertility is defined as the inability to achieve the pregnancy within a year of unprotected intercourse. Infertility is a complex issue and different factors such as stress oxidative can be involved in this problem. So, any attempt to neutralize oxidative stress would be helpful in the treatment of infertility. Melatonin is a known scavenger of free radicals. Objective: The aim of our study was to evaluate the level of melatonin and its correlation with oxidative biomarkers in fertile and infertile women. Materials and Methods: The participants including fertile and infertile women were divided into two groups of 30 people. Blood sampling was performed and sera were collected. The level of Malondialdehyde (MDA, total antioxidant capacity (TAC and melatonin were detected. Data were analyzed using T-test and their correlation was assessed using Spearman test. Results: Serum melatonin from fertile women was higher than infertile women but the difference was not significant (p= 0.46. MDA level in fertile women was significantly lower than infertile women (p<0.001 and the level of TAC in fertile women was significantly higher than infertile women (p<0.001. Spearman test revealed a significant and direct correlation between melatonin and TAC in fertile and infertile women and a significant but reverse correlation between melatonin and MDA in infertile and fertile women. Conclusion: Differences in the level of oxidative stress biomarkers in fertile and infertile individuals have been reported. This study revealed a significant correlation between melatonin and oxidative stress biomarkers, concluding that melatonin level could be involved in infertility.

  2. Oxidative stress adaptation with acute, chronic, and repeated stress.

    Science.gov (United States)

    Pickering, Andrew M; Vojtovich, Lesya; Tower, John; A Davies, Kelvin J

    2013-02-01

    Oxidative stress adaptation, or hormesis, is an important mechanism by which cells and organisms respond to, and cope with, environmental and physiological shifts in the level of oxidative stress. Most studies of oxidative stress adaption have been limited to adaptation induced by acute stress. In contrast, many if not most environmental and physiological stresses are either repeated or chronic. In this study we find that both cultured mammalian cells and the fruit fly Drosophila melanogaster are capable of adapting to chronic or repeated stress by upregulating protective systems, such as their proteasomal proteolytic capacity to remove oxidized proteins. Repeated stress adaptation resulted in significant extension of adaptive responses. Repeated stresses must occur at sufficiently long intervals, however (12-h or more for MEF cells and 7 days or more for flies), for adaptation to be successful, and the levels of both repeated and chronic stress must be lower than is optimal for adaptation to acute stress. Regrettably, regimens of adaptation to both repeated and chronic stress that were successful for short-term survival in Drosophila nevertheless also caused significant reductions in life span for the flies. Thus, although both repeated and chronic stress can be tolerated, they may result in a shorter life. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Oxidative stress and psychological functioning among medical students

    Directory of Open Access Journals (Sweden)

    Rani Srivastava

    2014-01-01

    Full Text Available Background: Oxidative stress has gained attention recently in behavioral medicine and has been reported to be associated with various psychological disturbances and their prognoses. Objectives: Study aims to evaluate the oxidative stress (malonylaldehyde (MDA levels and its relation with psychological factors (dimensions of personality, levels of anxiety, stress, and depression among medical/paramedical students of 1 st and 3 rd year. Materials and Methods: A total of 150 students; 75 from 1 st year (2010-2011 and75 from 3 rd year (2009-2010; of medical and paramedical background were assessed on level of MDA (oxidative stress and personality variables, that is, level of anxiety, stress, and depression. These psychological variables were correlated with the level of their oxidative stress. Results: Findings revealed that both groups are influenced by oxidative stress and their psychological variables are also compatible in order to confirm their vulnerabilities to stress. Conclusions: Stress in 3 rd year students was significantly higher and it was noted that it adversely affects the psychological parameters. Hence, special attention on mental health aspect in these students may be given.

  4. Classifying oxidative stress by F2-isoprostane levels across human diseases: A meta-analysis.

    Science.gov (United States)

    van 't Erve, Thomas J; Kadiiska, Maria B; London, Stephanie J; Mason, Ronald P

    2017-08-01

    The notion that oxidative stress plays a role in virtually every human disease and environmental exposure has become ingrained in everyday knowledge. However, mounting evidence regarding the lack of specificity of biomarkers traditionally used as indicators of oxidative stress in human disease and exposures now necessitates re-evaluation. To prioritize these re-evaluations, published literature was comprehensively analyzed in a meta-analysis to quantitatively classify the levels of systemic oxidative damage across human disease and in response to environmental exposures. In this meta-analysis, the F 2 -isoprostane, 8-iso-PGF 2α , was specifically chosen as the representative marker of oxidative damage. To combine published values across measurement methods and specimens, the standardized mean differences (Hedges' g) in 8-iso-PGF 2α levels between affected and control populations were calculated. The meta-analysis resulted in a classification of oxidative damage levels as measured by 8-iso-PGF 2α across 50 human health outcomes and exposures from 242 distinct publications. Relatively small increases in 8-iso-PGF 2α levels (ganalysis of published data. This analysis provides knowledge on the true involvement of oxidative damage across human health outcomes as well as utilizes past research to prioritize those conditions requiring further scrutiny on the mechanisms of biomarker generation. Copyright © 2017. Published by Elsevier B.V.

  5. [THE POSSIBILITY OF APPLICATION OF COLORIMETRY TECHNIQUE OF DETECTION OF LEVELS OF OXIDATIVE STRESS AND ANTIOXIDANT CAPACITY OF SERUM].

    Science.gov (United States)

    Sapojnikova, M A; Strakhova, L A; Blinova, T V; Makarov, I A; Rakhmanov, R S; Umniagina, I A

    2015-11-01

    The analysis was implemented concerning indicators of oxidative status and antioxidant capacity of serum. The indicators were received by colorimetry technique based on detection of peroxides in blood serum in examined patients of different categories: healthy persons aged from 17 to 20 years and from 30 to 60 years and patients with bronchopulmonary pathology. The low level of oxidative stress and high antioxidant capacity of serum were established in individuals ofyounger age. With increasing of age, degree of expression of oxidative stress augmented and level of antioxidant defense lowered. Almost all patients with bronchopulmonary pathology had high level of oxidative stress and low level of antioxidant defense. The analysis of quantitative data of examined indicators their conformity with health condition was established

  6. Oxidative stress and myeloperoxidase levels in saliva of patients with recurrent aphthous stomatitis.

    Science.gov (United States)

    Cağlayan, F; Miloglu, O; Altun, O; Erel, O; Yilmaz, A B

    2008-11-01

    Recurrent aphthous stomatitis (RAS) is the most common oral ulcerative condition affecting 5-25% of the general population. The aim of this study was to evaluate the oxidative stress parameters in saliva of patients with RAS and to investigate the relationship among these parameters in either group. The study involved 50 patients with RAS of whom 24 were male and 26 were female, and 25 healthy controls of whom 13 were male and 12 were female. There was no statistically significant difference in the salivary total antioxidant capacity, total oxidant status, oxidative stress index levels, and myeloperoxidase activity between patients with RAS and those in the control group. The results show that reactive oxygen species may not play a role in the etiology of RAS.

  7. Mercury levels assessment and its relationship with oxidative stress biomarkers in children from three localities in Yucatan, Mexico.

    Science.gov (United States)

    Rangel-Méndez, Jorge A; Arcega-Cabrera, Flor E; Fargher, Lane F; Moo-Puc, Rosa E

    2016-02-01

    Mercury (Hg) is a global pollutant that is released into the environment from geologic and anthropogenic sources. Once it enters an organism, it generates several toxicity mechanisms and oxidative stress has been proposed as the main one. Metal susceptibility is greater in children, which is a result of their physiology and behavior. In Yucatan, Mexico, burning of unregulated garbage dumps and household trash, ingestion of top marine predators, and pottery manufacturing are among the conditions that could promote Hg exposure. However, for Yucatan, there are no published studies that report Hg levels and associated oxidative stress status in children. Therefore, this study aimed to assess Hg levels in blood and urine and oxidative stress biomarkers levels in a sample of 107 healthy children from three localities in Yucatan, Mexico, as well as investigate the relationship between these parameters. Hg was detected in 11 (10.28%) of blood samples and 38 (35.51%) of urine samples collected from the participating children. Fourteen subjects showed Hg above recommended levels. The oxidative stress biomarkers were slightly elevated in comparison with other studies and were statistically different between the sampling sites. No linear correlation between Hg levels and oxidative stress biomarkers was found. Nevertheless, exploratory univariate and multivariate analysis showed non-linear relations among the measured variables. Globally, the study provides, for the first time, information regarding Hg levels and their relationship with oxidative stress biomarkers in a juvenile population from Mexico's southeast (Yucatan) region. In agreement with worldwide concern about Hg, this study should stimulate studies on metal monitoring in humans (especially children) among scientists working in Mexico, the establishment of polices for its regulation, and the reduction of human health risks. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Increased levels of thioredoxin in patients with abdominal aortic aneurysms (AAAs). A potential link of oxidative stress with AAA evolution

    DEFF Research Database (Denmark)

    Martinez-Pinna, R; Lindholt, Jes S.; Blanco-Colio, L M

    2010-01-01

    Oxidative stress is a main mechanism involved in vascular pathologies. Increased thioredoxin (TRX) levels have been observed in several oxidative stress-associated cardiovascular diseases. We aim to test the potential role of TRX as a biomarker of oxidative stress in abdominal aortic aneurysm (AAA)....

  9. Nutrigenetics and modulation of oxidative stress.

    Science.gov (United States)

    Da Costa, Laura A; Badawi, Alaa; El-Sohemy, Ahmed

    2012-01-01

    Oxidative stress develops as a result of an imbalance between the production and accumulation of reactive species and the body's ability to manage them using exogenous and endogenous antioxidants. Exogenous antioxidants obtained from the diet, including vitamin C, vitamin E, and carotenoids, have important roles in preventing and reducing oxidative stress. Individual genetic variation affecting proteins involved in the uptake, utilization and metabolism of these antioxidants may alter their serum levels, exposure to target cells and subsequent contribution to the extent of oxidative stress. Endogenous antioxidants include the antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase, paraoxanase, and glutathione S-transferase. These enzymes metabolize reactive species and their by-products, reducing oxidative stress. Variation in the genes coding these enzymes may impact their enzymatic antioxidant activity and, thus, the levels of reactive species, oxidative stress, and risk of disease development. Oxidative stress may contribute to the development of chronic disease, including osteoporosis, type 2 diabetes, neurodegenerative diseases, cardiovascular disease, and cancer. Indeed, polymorphisms in most of the genes that code for antioxidant enzymes have been associated with several types of cancer, although inconsistent findings between studies have been reported. These inconsistencies may, in part, be explained by interactions with the environment, such as modification by diet. In this review, we highlight some of the recent studies in the field of nutrigenetics, which have examined interactions between diet, genetic variation in antioxidant enzymes, and oxidative stress. Copyright © 2012 S. Karger AG, Basel.

  10. Is the Oxidative Stress Really a Disease?

    Directory of Open Access Journals (Sweden)

    Fogarasi Erzsébet

    2016-03-01

    Full Text Available Oxidative stress is an imbalance between free radicals or other reactive species and the antioxidant activity of the organism. Oxidative stress can induce several illnesses such as cardiovascular disease, neurodegenerative disorders, diabetes, cancer, Alzheimer and Parkinson. The biomarkers of oxidative stress are used to test oxidative injury of biomolecules. The indicators of lipid peroxidation (malondialdehyde, 4-hydroxy- 2-nonenal, 2-propenal, isoprostanes, of protein oxidation (carbonylated proteins, tyrosine derivatives, of oxidative damage of DNA, and other biomarkers (glutathione level, metallothioneins, myeloperoxidase activity are the most used oxidative stress markers. Diseases caused by oxidative stress can be prevented with antioxidants. In human body are several enzymes with antioxidant capacity (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and spin traps. Antioxidants are synthetized in the organism (glutathione or arrive in the body by nutrition (ascorbic acid, vitamin E, carotenoids, flavonoids, resveratrol, xanthones. Different therapeutic strategies to reduce oxidative stress with the use of synthetic molecules such as nitrone-based antioxidants (phenyl-α-tert-butyl-nitrone (PBN, 2,4-disulphophenyl- N-tert-butylnitrone (NXY-059, stilbazulenyl nitrone (STAZN, which scavenge a wide variety of free radical species, increase endogenous antioxidant levels and inhibits free radical generation are also tested in animal models.

  11. Mini-review: Biofilm responses to oxidative stress.

    Science.gov (United States)

    Gambino, Michela; Cappitelli, Francesca

    2016-01-01

    Biofilms constitute the predominant microbial style of life in natural and engineered ecosystems. Facing harsh environmental conditions, microorganisms accumulate reactive oxygen species (ROS), potentially encountering a dangerous condition called oxidative stress. While high levels of oxidative stress are toxic, low levels act as a cue, triggering bacteria to activate effective scavenging mechanisms or to shift metabolic pathways. Although a complex and fragmentary picture results from current knowledge of the pathways activated in response to oxidative stress, three main responses are shown to be central: the existence of common regulators, the production of extracellular polymeric substances, and biofilm heterogeneity. An investigation into the mechanisms activated by biofilms in response to different oxidative stress levels could have important consequences from ecological and economic points of view, and could be exploited to propose alternative strategies to control microbial virulence and deterioration.

  12. Ketosis in buffalo (Bubalus bubalis): clinical findings and the associated oxidative stress level.

    Science.gov (United States)

    Youssef, Mohamed A; El-Khodery, Sabry Ahmed; El-deeb, Wael M; Abou El-Amaiem, Waleed E E

    2010-12-01

    As little is known about the oxidant/antioxidant status in buffalo with ketosis, the present study was delineated to assess the oxidative stress level associated with clinical ketosis in water buffalo. A total of 91 parturient buffalo at smallholder farms were studied (61 suspected to be ketotic and 30 healthy). Clinical and biochemical investigations were carried out for each buffalo. Based on clinical findings and the level of beta-hydroxybutyrate (BHB), buffalo were allocated into ketotic (42), subclinical cases (19). Clinically, there was an association between clinical ketosis and anorexia (pketosis compared with subclinical and control cases, there was a significant increase (pketosis.

  13. Vitamin E levels in preeclampsia placenta tissue and its correlation with oxidative stress injury and apoptosis

    Directory of Open Access Journals (Sweden)

    Jun Li

    2017-04-01

    Full Text Available Objective: To study the vitamin E levels in preeclampsia placenta tissue and its correlation with oxidative stress injury and apoptosis. Methods: A total of 60 pregnant women with preeclampsia who received treatment and gave birth in our hospital between July 2012 and January 2016 were collected and divided into mild preeclampsia group (n=41 and severe preeclampsia group (n=19 according to the disease severity; 38 normal pregnant women who received pregnancy test and gave birth in our hospital during the same period were selected as healthy control group. The placental tissue samples of three groups of research subjects were retained, high performance liquid chromatograph-mass spectrometry was used to detect VitE levels in tissue grinding fluid, automatic biochemical analyzer was used to detect the levels of oxidative stress injury indexes, and fluorescence quantitative PCR method was used to detect the mRNA expression of apoptosis molecules. Results: VitE, SOD and CAT levels in grinding fluid of severe preeclampsia group were lower than those of mild preeclampsia group and healthy control group while ROS and AOPP levels were higher than those of mild preeclampsia group and healthy control group; Fas, caspase and Apaf-1 mRNA expression were higher than those of mild preeclampsia group and healthy control group while anti-apoptotic molecules Bcl-2, Bcl-xl, Mcl-2 and p57kip2 mRNA expression were lower than those of mild preeclampsia group and healthy control group. Spearman correlation analysis showed that VitE level in the preeclampsia placenta tissue was directly correlated with oxidative stress injury and cell apoptosis. Conclusion: VitE deficiency is the direct factor that results in oxidative stress and cell apoptosis in patients with preeclampsia, and the VitE supplementation in time is expected to become the auxiliary treatment means for patients with preeclampsia.

  14. Oxidative Stress in BPH.

    Science.gov (United States)

    Savas, M; Verit, A; Ciftci, H; Yeni, E; Aktan, E; Topal, U; Erel, O

    2009-01-01

    In the present study, we investigated the relationship between potency of oxidative stress and BPH and this may assist to contribute to the realistic explanation of the ethiopathogenesis of BPH. Seventy four newly diagnosed men with BPH (mean age: 54+/-11.2), who had not undergone any previous treatment for BPH, and 62 healthy volunteers (mean age: 55+/-14) were enrolled in the present study. To determine the antioxidative status of plasma, total antioxidant capacity (TAC) was calculated, and to determine the oxidative status of plasma (TOS) total peroxide levels were measured. The ratio of TAC to total peroxide was accepted as an indicator of oxidative stress (OSI). Data are presented as mean SD +/- unless specified. Student t-test and correlation analyses were used to evaluate the statistical significance differences in the median values recorded for all parameters between BPH and control group. Plasma TAC TOS were found in patients and controls (1.70 +/- 0.32, 1.68 +/- 0.19 micromol Trolox Equiv./L), (12.48 +/- 1.98, 12.40 +/- 1.14 micromol / L) respectively. OSI was calculated as 7.57 +/- 1.91, 7.48 +/- 1.33, respectively. Plasma TAC, TOS and OSI levels were not found to be significantly difference between patients and control subjects (p>0.05, p>0.05, p>0.05). The present study has shown that there were not relationship between potency of oxidative stress and BPH. Further well designed studies should be planned to find out whether the oxidative stress-related parameters play role in BPH as an interesting pathology in regard of the etiopathogenesis.

  15. Oxidative stress

    Directory of Open Access Journals (Sweden)

    Osredkar Joško

    2012-05-01

    Full Text Available The human organism is exposed to the influence of various forms of stress, either physical, psychological or chemical, which all have in common that they may adversely affect our body. A certain amount of stress is always present and somehow directs, promotes or inhibits the functioning of the human body. Unfortunately, we are now too many and too often exposed to excessive stress, which certainly has adverse consequences. This is especially true for a particular type of stress, called oxidative stress. All aerobic organisms are exposed to this type of stress because they produce energy by using oxygen. For this type of stress you could say that it is rather imperceptibly involved in our lives, as it becomes apparent only at the outbreak of certain diseases. Today we are well aware of the adverse impact of radicals, whose surplus is the main cause of oxidative stress. However, the key problem remains the detection of oxidative stress, which would allow us to undertake timely action and prevent outbreak of many diseases of our time. There are many factors that promote oxidative stress, among them are certainly a fast lifestyle and environmental pollution. The increase in oxidative stress can also trigger intense physical activity that is directly associated with an increased oxygen consumption and the resulting formation of free radicals. Considering generally positive attitude to physical activity, this fact may seem at first glance contradictory, but the finding has been confimed by several studies in active athletes. Training of a top athlete daily demands great physical effort, which is also reflected in the oxidative state of the organism. However, it should be noted that the top athletes in comparison with normal individuals have a different defense system, which can counteract the negative effects of oxidative stress. Quite the opposite is true for irregular or excessive physical activity to which the body is not adapted.

  16. Oxidative stress negatively affects human sperm mitochondrial respiration.

    Science.gov (United States)

    Ferramosca, Alessandra; Pinto Provenzano, Sara; Montagna, Daniela Domenica; Coppola, Lamberto; Zara, Vincenzo

    2013-07-01

    To correlate the level of oxidative stress in serum and seminal fluid and the level of sperm deoxyribonucleic acid (DNA) fragmentation with sperm mitochondrial respiratory efficiency. Sperm mitochondrial respiratory activity was evaluated with a polarographic assay of oxygen consumption carried out in hypotonically treated sperm cells. A possible relationship between sperm mitochondrial respiratory efficiency, the level of oxidative stress, and the level of sperm DNA fragmentation was investigated. Sperm motility was positively correlated with mitochondrial respiration but negatively correlated with oxidative stress and DNA fragmentation. Interestingly, sperm mitochondrial respiratory activity was negatively affected by oxidative stress and DNA fragmentation. Our data indicate that sperm mitochondrial respiration is decreased in patients with high levels of reactive oxygen species by an uncoupling between electron transport and adenosine triphosphate synthesis. This reduction in mitochondrial functionality might be 1 of the reasons responsible for the decrease in spermatozoa motility. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Coagulation and oxidative stress plasmatic levels in a type 2 diabetes population.

    Science.gov (United States)

    Barillari, Giovanni; Fabbro, Elisabetta; Pasca, Samantha; Bigotto, Enrico

    2009-06-01

    Type 2 diabetes mellitus (DM2) is a metabolic disorder characterized by relative insulin deficiency, insulin resistance and hyperglycemia. DM2 improperly managed can cause severe complications such as renal failure, blindness or arterial disease. In addition to serious complications due to DM2, in the past 20 years, several studies have demonstrated the association between DM2, insulin resistance and prothrombotic risk. In our study, we wanted to evaluate the correlation between coagulation factor levels, oxidative plasmatic levels and DM2. We considered 20 DM2 patients (65% women and 35% men), 40-65 years of age, who had a BMI between 25 and 40 kg/m2 and followed a diet with or without oral antidiabetic treatment and 20 controls, blood donors, 15 men (75%) and five women (25%), who had a BMI between 25 and 40 kg/m2 and their age was between 40 and 65 years. Plasmatic levels of oxidative stress markers (tumor necrosis factor-alpha, nitrotyrosine, oxidized low-density lipoprotein) and coagulation markers (factors VII, VIII, IX, XI, XII, antithrombin III and fibrinogen) of both populations were analyzed following statistic criteria. The analyzed data of this study related to oxidative stress and coagulation factors proved that the differences observed between diabetic patients and controls were not statistically significant (P statistically significant (P < 0.01). In patients with DM2, factor VIII increased from 79 to 103%, factor IX from 88 to 103%, factor XII from 87 to 105% and finally, antithrombin III from 81 to 103%. Different results between literature and our study could be due to fact that the patients considered were in the early stage of diabetes when endothelial damage is absent and vascular complications are not clinically expressed. In this study, it is still shown that DM2 is a multifactor disease and its physiopathologic mechanisms are not completely known today.

  18. Does dietary iodine regulate oxidative stress and adiponectin levels in human breast milk?

    Science.gov (United States)

    Gutiérrez-Repiso, Carolina; Velasco, Inés; Garcia-Escobar, Eva; Garcia-Serrano, Sara; Rodríguez-Pacheco, Francisca; Linares, Francisca; Ruiz de Adana, Maria Soledad; Rubio-Martin, Elehazara; Garrido-Sanchez, Lourdes; Cobos-Bravo, Juan Francisco; Priego-Puga, Tatiana; Rojo-Martinez, Gemma; Soriguer, Federico; García-Fuentes, Eduardo

    2014-02-10

    Little is known about the association between iodine and human milk composition. In this study, we investigated the association between iodine and different markers of oxidative stress and obesity-related hormones in human breast milk. This work is composed of two cross-sectional studies (in lactating women and in the general population), one prospective and one in vitro. In the cross-sectional study in lactating women, the breast milk iodine correlated negatively with superoxide dismutase (SOD), catalase, and glutathione peroxidase (GSH-Px) activities, and with adiponectin levels. An in vitro culture of human adipocytes with 1 μM potassium iodide (KI, dose similar to the human breast milk iodine concentration) produced a significant decrease in adiponectin, GSH-Px, SOD1, and SOD2 mRNA expression. However, after 2 months of treatment with KI in the prospective study, a positive correlation was found between 24-h urinary iodine and serum adiponectin. Our observations lead to the hypothesis that iodine may be a factor directly involved in the regulation of oxidative stress and adiponectin levels in human breast milk.

  19. Early life low-level cadmium exposure is positively associated with increased oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Kippler, Maria [Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm (Sweden); Bakhtiar Hossain, Mohammad [International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka 1212 (Bangladesh); Department of Laboratory Medicine, Section of Occupational and Environmental Medicine, Lund University, Lund (Sweden); Lindh, Christian [International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka 1212 (Bangladesh); Moore, Sophie E. [MRC Keneba, MRC Laboratories (Gambia); Kabir, Iqbal [Department of Laboratory Medicine, Section of Occupational and Environmental Medicine, Lund University, Lund (Sweden); Vahter, Marie [Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm (Sweden); Broberg, Karin, E-mail: karin.broberg_palmgren@med.lu.se [International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka 1212 (Bangladesh)

    2012-01-15

    Environmental exposure to cadmium (Cd) is known to induce oxidative stress, a state of imbalance between the production of reactive oxygen species (ROS) and the ability to detoxify them, in adults. However, data are lacking on potential effects in early-life. We evaluated urinary concentrations of 8-oxo-7,8-dihydro-2 Prime -deoxyguanosine (8-oxodG), a recognized marker of oxidative DNA damage, in relation to Cd exposure in 96 predominantly breast-fed infants (11-17 weeks of age) in rural Bangladesh. Urinary 8-oxodG was measured using liquid chromatography tandem mass spectrometry and Cd in urine and breast milk by inductively coupled plasma mass spectrometry. Median concentration of 8-oxodG was 3.9 nmol/L, urinary Cd 0.30 {mu}g/L, and breast-milk Cd 0.13 {mu}g/L. In linear regression analyses, urinary 8-oxodG was positively associated with Cd in both urine (p=0.00067) and breast milk (p=0.0021), and negatively associated with body weight (kg; p=0.0041). Adjustment for age, body weight, socio-economic status, urinary arsenic, as well as magnesium, calcium, and copper in breast milk did not change the association between Cd exposure and urinary 8-oxodG. These findings suggest that early-life low-level exposure to Cd via breast milk induces oxidative stress. Further studies are warranted to elucidate whether this oxidative stress is associated with impaired child health and development.

  20. Early life low-level cadmium exposure is positively associated with increased oxidative stress

    International Nuclear Information System (INIS)

    Kippler, Maria; Bakhtiar Hossain, Mohammad; Lindh, Christian; Moore, Sophie E.; Kabir, Iqbal; Vahter, Marie; Broberg, Karin

    2012-01-01

    Environmental exposure to cadmium (Cd) is known to induce oxidative stress, a state of imbalance between the production of reactive oxygen species (ROS) and the ability to detoxify them, in adults. However, data are lacking on potential effects in early-life. We evaluated urinary concentrations of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG), a recognized marker of oxidative DNA damage, in relation to Cd exposure in 96 predominantly breast-fed infants (11–17 weeks of age) in rural Bangladesh. Urinary 8-oxodG was measured using liquid chromatography tandem mass spectrometry and Cd in urine and breast milk by inductively coupled plasma mass spectrometry. Median concentration of 8-oxodG was 3.9 nmol/L, urinary Cd 0.30 μg/L, and breast-milk Cd 0.13 μg/L. In linear regression analyses, urinary 8-oxodG was positively associated with Cd in both urine (p=0.00067) and breast milk (p=0.0021), and negatively associated with body weight (kg; p=0.0041). Adjustment for age, body weight, socio-economic status, urinary arsenic, as well as magnesium, calcium, and copper in breast milk did not change the association between Cd exposure and urinary 8-oxodG. These findings suggest that early-life low-level exposure to Cd via breast milk induces oxidative stress. Further studies are warranted to elucidate whether this oxidative stress is associated with impaired child health and development.

  1. Increased levels of oxidative stress markers in the peritoneal fluid of women with endometriosis.

    Science.gov (United States)

    Polak, Grzegorz; Wertel, Iwona; Barczyński, Bartłomiej; Kwaśniewski, Wojciech; Bednarek, Wiesława; Kotarski, Jan

    2013-06-01

    To evaluate 8-hydroxy-2-deoxyguanosine (8-OHdG) and 8-isoprostane levels in the peritoneal fluid (PF) of women with endometriosis. One hundred and ten women with laparoscopically and histopathologically confirmed endometriosis and, as reference groups, 119 patients with simple serous (n=78) and dermoid (n=41) ovarian cysts were studied. Peritoneal fluid 8-OHdG and 8-isoprostane concentrations were evaluated by enzyme-linked immunosorbent assays. 8-OHdG and 8-isoprostane levels in peritoneal fluid were significantly higher in patients with endometriosis compared with the reference groups. Higher PF 8-OHdG and 8-isoprostane concentrations were observed in patients with advanced stages of endometriosis. A statistically significant positive correlation was found between 8-OHdG and 8-isoprostane levels in peritoneal fluid. Endometriosis induces greater oxidative stress and frequent DNA mutations in peritoneal fluid than nonendometriotic ovarian cysts. The most severe oxidative stress occurs in the peritoneal cavity of women with more advanced stages of the disease. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Oxidative Stress, Prooxidants, and Antioxidants: The Interplay

    Directory of Open Access Journals (Sweden)

    Anu Rahal

    2014-01-01

    Full Text Available Oxidative stress is a normal phenomenon in the body. Under normal conditions, the physiologically important intracellular levels of reactive oxygen species (ROS are maintained at low levels by various enzyme systems participating in the in vivo redox homeostasis. Therefore, oxidative stress can also be viewed as an imbalance between the prooxidants and antioxidants in the body. For the last two decades, oxidative stress has been one of the most burning topics among the biological researchers all over the world. Several reasons can be assigned to justify its importance: knowledge about reactive oxygen and nitrogen species production and metabolism; identification of biomarkers for oxidative damage; evidence relating manifestation of chronic and some acute health problems to oxidative stress; identification of various dietary antioxidants present in plant foods as bioactive molecules; and so on. This review discusses the importance of oxidative stress in the body growth and development as well as proteomic and genomic evidences of its relationship with disease development, incidence of malignancies and autoimmune disorders, increased susceptibility to bacterial, viral, and parasitic diseases, and an interplay with prooxidants and antioxidants for maintaining a sound health, which would be helpful in enhancing the knowledge of any biochemist, pathophysiologist, or medical personnel regarding this important issue.

  3. Deteriorations of pulmonary function, elevated carbon monoxide levels and increased oxidative stress amongst water-pipe smokers

    Directory of Open Access Journals (Sweden)

    Funda Karaduman Yalcin

    2017-10-01

    Full Text Available Objectives: A water pipe (hookah is a tobacco smoking tool which is thought to be more harmless than a cigarette, and there are no adequate studies about its hazards to health. Water-pipe smoking is threatening health of the youth in the world today. The objective of this study has been to investigate the carbon monoxide (CO levels in breath, examine the changes in pulmonary function tests (PFT and to assess the change of the oxidative stress parameters in blood after smoking a water pipe. Material and Methods: This study is a cross-sectional analytical study that has included 50 volunteers who smoke a water pipe and the control group of 50 volunteers who smoke neither a cigarette nor a water pipe. Carbon monoxide levels were measured in the breath and pulmonary function tests (PFTs were performed before and after smoking a water pipe. Blood samples were taken from either the volunteer control group or water-pipe smokers group after smoking a water pipe for the purpose of evaluation of the parameters of oxidative stress. Results: Carbon monoxide values were measured to be 8.08±7.4 ppm and 28.08±16.5 ppm before and after smoking a water pipe, respectively. This increment was found statistically significant. There were also significant reductions in PFTs after smoking a water pipe. Total oxidative status (TOS, total antioxidant status (TAS and oxidative stress index (OSI were found prominently higher after smoking a water pipe for the group of water-pipe smokers than for the control group. Conclusions: This study has shown that water-pipe smoking leads to deterioration in pulmonary function and increases oxidative stress. To the best of our knowledge this study is the only one that has shown the effect of water-pipe smoking on oxidative stress. More studies must be planned to show the side effects of water-pipe habit and protective policies should be planned especially for young people in Europe. Int J Occup Med Environ Health 2017;30(5:731

  4. Serum Levels of Oxidative Stress Markers in Patients with Type 2 Diabetes Mellitus and Non-alcoholic Steatohepatitis

    Directory of Open Access Journals (Sweden)

    Casoinic F.

    2016-12-01

    Full Text Available Introduction. Oxidative stress is one of the key mechanisms responsible for disease progression in non-alcoholic fatty liver disease. The aim of this study was to evaluate the serum levels of oxidative stress markers in patients with type 2 diabetes mellitus (DMT2 and non-alcoholic steatohepatitis (NASH and test their relationships with clinical and biochemical patient characteristics, compared to patients with DMT2 without non-alcoholic fatty liver disease (NAFLD, and controls.

  5. Relationship between hyposalivation and oxidative stress in aging mice.

    Science.gov (United States)

    Yamauchi, Yoshitaka; Matsuno, Tomonori; Omata, Kazuhiko; Satoh, Tazuko

    2017-07-01

    The increase in oxidative stress that accompanies aging has been implicated in the abnormal advance of aging and in the onset of various systemic diseases. However, the details of what effects the increase in oxidative stress that accompanies aging has on saliva secretion are not known. In this study, naturally aging mice were used to examine the stimulated whole saliva flow rate, saliva and serum oxidative stress, antioxidant level, submandibular gland H-E staining, and immunofluorescence staining to investigate the effect of aging on the volume of saliva secretion and the relationship with oxidative stress, as well as the effect of aging on the structure of salivary gland tissue. The stimulated whole saliva flow rate decreased significantly with age. Also, oxidative stress increased significantly with age. Antioxidant levels, however, decreased significantly with age. Structural changes of the submandibular gland accompanying aging included atrophy of parenchyma cells and fatty degeneration and fibrosis of stroma, and the submandibular gland weight ratio decreased. These results suggest that oxidative stress increases with age, not just systemically but also locally in the submandibular gland, and that oxidative stress causes changes in the structure of the salivary gland and is involved in hyposalivation.

  6. Time series analysis of blood oxidative stress value in irradiated rats

    International Nuclear Information System (INIS)

    Kaneko, Takashi; Goto, Jun; Nomiya, Takuma; Nemoto, Kenji

    2011-01-01

    Indirect effect of ionizing-radiation causes free radicals and reactive oxgen species (ROS). These ROS interact with DNA or other organella, and cause oxidative damage to nucleic acids, membrane lipoprotein, mitchondria and others. The purpose of this study is to evaluate oxidative damage by irradiation using d-ROMs test. Electron beam was irradiated to the thigh of Wistar strain female rats, and reactive oxygen metabolites in the blood from these rats were measured and analysed. From the results, 2 Gy group shows significantly higher oxidative stress level than those of 0 Gy group especially in day 3 after irradiation. This oxidative stress definitely seemed to be caused by exposure to ionizing-radiation. In contrast, the group of 30 Gy-irradiation showed no significant increase of oxidative stress level. It was thought that oxidative stress caused by radiation was neutralized by expression of stress-induced antioxidant enzymes. These data resulted that d-ROMs test is useful for measuring oxidative stress levels of irradiated mammalian animals. (author)

  7. Oxidative Stress in Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Varsha Shukla

    2011-01-01

    Full Text Available It has been demonstrated that oxidative stress has a ubiquitous role in neurodegenerative diseases. Major source of oxidative stress due to reactive oxygen species (ROS is related to mitochondria as an endogenous source. Although there is ample evidence from tissues of patients with neurodegenerative disorders of morphological, biochemical, and molecular abnormalities in mitochondria, it is still not very clear whether the oxidative stress itself contributes to the onset of neurodegeneration or it is part of the neurodegenerative process as secondary manifestation. This paper begins with an overview of how oxidative stress occurs, discussing various oxidants and antioxidants, and role of oxidative stress in diseases in general. It highlights the role of oxidative stress in neurodegenerative diseases like Alzheimer's, Parkinson's, and Huntington's diseases and amyotrophic lateral sclerosis. The last part of the paper describes the role of oxidative stress causing deregulation of cyclin-dependent kinase 5 (Cdk5 hyperactivity associated with neurodegeneration.

  8. Oxidative stress in elite athletes training at moderate altitude and at sea level.

    Science.gov (United States)

    León-López, Josefa; Calderón-Soto, Carmen; Pérez-Sánchez, Matías; Feriche, Belén; Iglesias, Xavier; Chaverri, Diego; Rodréguez, Ferran A

    2018-03-24

    Using a controlled parallel group longitudinal trial design, we investigated the effects of different training interventions on the prooxidant/antioxidant status of elite athletes: living and training at moderate altitude for 3 (Hi-Hi3) and 4 weeks (Hi-Hi), and for 4 weeks too, living high and training high and low (Hi-HiLo) and living and training at sea level (Lo-Lo). From 61 swimmers, 54 completed the study. Nitrites, carbonyls, and lipid peroxidation (LPO) levels were assessed in plasma. Enzymatic antioxidants glutathione peroxidase (GPx) and glutathione reductase (GRd), and non-enzymatic antioxidants total glutathione (GST), reduced glutathione (GSH) and oxidized glutathione (GSSG) were analysed in the erythrocyte fraction. At the end of the intervention, nitrites levels were similar in all altitude groups but higher than in the Lo-Lo controls (P = .02). Hi-HiLo had greater GPx activity than Hi-Hi and Hi-Hi3 during most of the intervention (P ≤ .001). GRd activity was higher in Lo-Lo than in Hi-Hi at the end of the training camp (P ≤ .001). All groups showed increased levels of LPO, except Lo-Lo, and carbonyls at the end of the study (P ≤ .001). Training at altitude for 3 or 4 weeks drives oxidative stress leading to cellular damage mainly by worsening the antioxidant capacities. The GSSG/GSH ratio appears to be related to perceived exertion and fatigue. The stronger antioxidant defence showed by the Hi-HiLo group suggests an inverse relationship between redox alterations and performance. Further studies are required to investigate the role of oxidative stress in acclimatization, performance, and health.

  9. Oxidative stress in hepatitis C infected end-stage renal disease subjects.

    Science.gov (United States)

    Horoz, Mehmet; Bolukbas, Cengiz; Bolukbas, Filiz F; Aslan, Mehmet; Koylu, Ahmet O; Selek, Sahbettin; Erel, Ozcan

    2006-07-14

    Both uremia and hepatitis C infection is associated with increased oxidative stress. In the present study, we aimed to find out whether hepatitis C infection has any impact on oxidative stress in hemodialysis subjects. Sixteen hepatitis C (+) hemodialysis subjects, 24 hepatitis C negative hemodialysis subjects and 24 healthy subjects were included. Total antioxidant capacity, total peroxide level and oxidative stress index were determined in all subjects. Total antioxidant capacity was significantly higher in controls than hemodialysis subjects with or without hepatitis C infection (all p total peroxide level and oxidative stress index were significantly lower (all p total antioxidant capacity compared to hepatitis C (+) hemodialysis subjects (all p Total peroxide level and oxidative stress index was comparable between hemodialysis subjects with or without hepatitis C infection (p > 0.05/3). Oxidative stress is increased in both hepatitis C (+) and hepatitis C (-) hemodialysis subjects. However, hepatitis C infection seems to not cause any additional increase in oxidative stress in hemodialysis subjects and it may be partly due to protective effect of dialysis treatment on hepatitis C infection.

  10. Oxidative Stress in Patients With Nongenital Warts

    Directory of Open Access Journals (Sweden)

    Sezai Sasmaz

    2005-01-01

    Full Text Available Comparison of oxidative stress status between subjects with or without warts is absent in the literature. In this study, we evaluated 31 consecutive patients with warts (15 female, 16 male and 36 control cases with no evidence of disease to determine the effects of oxidative stress in patients with warts. The patients were classified according to the wart type, duration, number, and location of lesions. We measured the indicators of oxidative stress such as catalase (CAT, glucose-6-phosphate dehydrogenase (G6PD, superoxide dismutase (SOD, and malondialdehyde (MDA in the venous blood by spectrophotometry. There was a statistically significant increase in levels of CAT, G6PD, SOD activities and MDA in the patients with warts compared to the control group (P<.05. However, we could not define a statistically significant correlation between these increased enzyme activities and MDA levels and the type, the duration, the number, and the location of lesions. We determined possible suppression of T cells during oxidative stress that might have a negative effect on the prognosis of the disease. Therefore, we propose an argument for the appropriateness to give priority to immunomodulatory treatment alternatives instead of destructive methods in patients with demonstrated oxidative stress.

  11. Staphylococcal response to oxidative stress

    Directory of Open Access Journals (Sweden)

    Rosmarie eGaupp

    2012-03-01

    Full Text Available Staphylococci are a versatile genus of bacteria that are capable of causing acute and chronic infections in diverse host species. The success of staphylococci as pathogens is due in part to their ability to mitigate endogenous and exogenous oxidative and nitrosative stress. Endogenous oxidative stress is a consequence of life in an aerobic environment; whereas, exogenous oxidative and nitrosative stress are often due to the bacteria’s interaction with host immune systems. To overcome the deleterious effects of oxidative and nitrosative stress, staphylococci have evolved protection, detoxification, and repair mechanisms that are controlled by a network of regulators. In this review, we summarize the cellular targets of oxidative stress, the mechanisms by which staphylococci sense oxidative stress and damage, oxidative stress protection and repair mechanisms, and regulation of the oxidative stress response. When possible, special attention is given to how the oxidative stress defense mechanisms help staphylococci control oxidative stress in the host.

  12. Serum Levels of Oxidative Stress Markers in Patients with Type 2 Diabetes Mellitus and Non-alcoholic Steatohepatitis.

    Science.gov (United States)

    Casoinic, F; Sampelean, D; Buzoianu, Anca D; Hancu, N; Baston, Dorina

    2016-12-01

    Oxidative stress is one of the key mechanisms responsible for disease progression in non-alcoholic fatty liver disease. The aim of this study was to evaluate the serum levels of oxidative stress markers in patients with type 2 diabetes mellitus (DMT2) and non-alcoholic steatohepatitis (NASH) and test their relationships with clinical and biochemical patient characteristics, compared to patients with DMT2 without non-alcoholic fatty liver disease (NAFLD), and controls. In all, 60 consecutive patients with DMT2 and NASH, 55 with DMT2 without NAFLD, and 50 age-and-gender-matched healthy subjects participated in the study. The serum levels of protein carbonyls and 8-isoprostane were determined by ELISA methods, while the serum levels of malondialdehyde (MDA) were detected by means of the spectrophotometric method. Clinical, demographic, and laboratory parameters were examined for all the subjects included in the study. Multivariate logistic regression was used to test the independent predictive factors in the relationships investigated here. Patients with DMT2 and NASH displayed significantly higher serum levels of protein carbonyls (1.112 ± 0.42 nmol/dL), MDA (6.181 ± 1.81 ng/mL), and 8-isoprostane (338.6 ± 98.5 pg/mL) compared to patients with DMT2 without NAFLD, and controls. Results of multivariate logistic regression analyses indicate that in patients with DMT2 and NASH, the serum levels of oxidative stress markers were independently and positively associated with: HbA1c, duration of diabetes, the UKPDS cardiovascular risk score (for protein carbonyls); age, LDL-cholesterol (for 8-isoprostane); and triglycerides serum levels (for MDA). Our findings indicate that the process of oxidative stress tends to increase in patients with DMT2 and NASH, compared to patients with DMT2 without NAFLD, and controls. This evidence suggests that an antioxidant therapy might prove useful in the treatment of patients with DMT2 and NASH.

  13. Oxidative stress parameters in localized scleroderma patients.

    Science.gov (United States)

    Kilinc, F; Sener, S; Akbaş, A; Metin, A; Kirbaş, S; Neselioglu, S; Erel, O

    2016-11-01

    Localized scleroderma (LS) (morphea) is a chronic, inflammatory skin disease with unknown cause that progresses with sclerosis in the skin and/or subcutaneous tissues. Its pathogenesis is not completely understood. Oxidative stress is suggested to have a role in the pathogenesis of localized scleroderma. We have aimed to determine the relationship of morphea lesions with oxidative stress. The total oxidant capacity (TOC), total antioxidant capacity (TAC), paroxonase (PON) and arylesterase (ARES) activity parameters of PON 1 enzyme levels in the serum were investigated in 13 LS patients (generalized and plaque type) and 13 healthy controls. TOC values of the patient group were found higher than the TOC values of the control group (p < 0.01). ARES values of the patient group was found to be higher than the control group (p < 0.0001). OSI was significantly higher in the patient group when compared to the control (p < 0.005). Oxidative stress seems to be effective in the pathogenesis. ARES levels have increased in morphea patients regarding to the oxidative stress and its reduction. Further controlled studies are required in wider series.

  14. Comparisons of the oxidative stress biomarkers levels in gestational diabetes mellitus (GDM) and non-GDM among Thai population: cohort study.

    Science.gov (United States)

    Rueangdetnarong, Hathairat; Sekararithi, Rattanaporn; Jaiwongkam, Thidarat; Kumfu, Sirinart; Chattipakorn, Nipon; Tongsong, Theera; Jatavan, Phudit

    2018-05-01

    The primary objective of this study was to compare the levels of oxidative stress biomarkers between pregnancies with gestational diabetes mellitus (GDM) and normoglycemic pregnancies. A prospective study was conducted on pregnant women at average risk for GDM. The participants were screened for GDM with glucose challenge test and confirmed by 100 g, 3-h oral glucose tolerance test and categorized into the control (non-GDM) and GDM groups. Maternal blood was collected from all participants at gestational age (GA) 24-28 weeks and early labor and fetal cord blood was collected for measurements of 8 Isoprostane (8Isop) (oxidative stress marker), TNF-α (inflammatory marker) and IL-10 (anti-inflammatory marker) and were followed up for maternal and neonatal outcomes. A total of 62 women, 30 in GDM and 32 in control group, met the inclusion criteria. At 24-28 weeks of gestation, maternal serum 8Isop and TNF-α levels were significantly higher in GDM group ( P  = 0.032 and P  = 0.047), in spite of good glycemic control. At early labor, maternal 8Isop levels were significantly higher in GDM ( P  = 0.001). The biomarkers in the cord blood as well as maternal and neonatal outcomes in both groups were not significantly different. GDM is significantly associated with inflammatory process when compared to normal pregnancy, as indicated by higher oxidative stress and apoptosis markers. However, such levels were not correlated with the pregnancy outcomes. An increase in oxidative stress could not be prevented by good glycemic control. Cord blood biomarker levels in pregnancy with GDM were not changed, suggesting that the placenta could be the barrier for the oxidative stress and cytokines. © 2018 The authors.

  15. [Effect of occupational stress on oxidation/antioxidant capacity in nurses].

    Science.gov (United States)

    Cao, Lili; Tian, Honger; Zhang, Qingdong; Zhu, Xinyun; Zhan, Yongguo; Su, Jingguo; Xu, Tian; Zhu, Huabin; Liu, Ling

    2014-02-01

    To investigate the effect of occupational stress on the oxidation/antioxidant capacity in nurses. A total of 131 nurses were included as study subjects. The occupational health information collection system (based on the Internet of things) was used for measurement of occupational stress. Levels of hydroxyl free radicals and antioxidant enzymes were determined. The serum level of superoxide dismutase (SOD) was the highest in nurses under the age of 30 and the lowest in those over 45 (P occupational stress factors for SOD. Job hazards were negative occupational stress factors for POD. Psychological satisfaction was negative occupational stress reaction for hydroxyl free radicals. Calmness was positive occupational stress reaction for SOD, and daily stress was a negative one. The positive occupational stress reactions for GSH-Px were psychological satisfaction and job satisfaction, and daily stress was negative reaction. Nurses with higher occupational stress have stronger oxidation and weaker antioxidant capacity, which intensifies oxidant-antioxidant imbalance and leads to oxidative stress damage.

  16. Oxidative stress markers imbalance in late-life depression.

    Science.gov (United States)

    Diniz, Breno S; Mendes-Silva, Ana Paula; Silva, Lucelia Barroso; Bertola, Laiss; Vieira, Monica Costa; Ferreira, Jessica Diniz; Nicolau, Mariana; Bristot, Giovana; da Rosa, Eduarda Dias; Teixeira, Antonio L; Kapczinski, Flavio

    2018-03-20

    Oxidative stress has been implicated in the pathophysiology of mood disorders in young adults. However, there is few data to support its role in the elderly. The primary aim of this study was to evaluate whether subjects with late-life depression (LLD) presented with changes in oxidative stress response in comparison with the non-depressed control group. We then explored how oxidative stress markers associated with specific features of LLD, in particular cognitive performance and age of onset of major depressive disorder in these individuals. We included a convenience sample of 124 individuals, 77 with LLD and 47 non-depressed subjects (Controls). We measure the plasma levels of 6 oxidative stress markers: thiobarbituric acid reactive substances (TBARS), protein carbonil content (PCC), free 8-isoprostane, glutathione peroxidase (GPx) activity, glutathione reductase (GR) activity, and glutathione S-transferase (GST) activity. We found that participants with LLD had significantly higher free 8-isoprostane levels (p = 0.003) and lower glutathione peroxidase activity (p = 0.006) compared to controls. Free 8-isoprostane levels were also significantly correlated with worse scores in the initiation/perseverance (r = -0.24, p = 0.01), conceptualization (r = -0.22, p = 0.02) sub-scores, and the total scores (r = -0.21, p = 0.04) on the DRS. Our study provides robust evidence of the imbalance between oxidative stress damage, in particular lipid peroxidation, and anti-oxidative defenses as a mechanism related to LLD, and cognitive impairment in this population. Interventions aiming to reduce oxidative stress damage can have a potential neuroprotective effect for LLD subjects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    Science.gov (United States)

    Bhattacharya, Sharmila; Hosamani, Ravikumar

    2015-01-01

    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.

  18. Acute effects of low-level laser therapy (660 nm) on oxidative stress levels in diabetic rats with skin wounds.

    Science.gov (United States)

    Denadai, Amanda Silveira; Aydos, Ricardo Dutra; Silva, Iandara Schettert; Olmedo, Larissa; de Senna Cardoso, Bruno Mendonça; da Silva, Baldomero Antonio Kato; de Carvalho, Paulo de Tarso Camillo

    2017-09-01

    Laser therapy influences oxidative stress parameters such as the activity of antioxidant enzymes and the production of reactive oxygen species. To analyze the effects of low-level laser therapy on oxidative stress in diabetics rats with skin wounds. Thirty-six animals were divided into 4 groups: NDNI: non-diabetic rats with cutaneous wounds that not received laser therapy; NDI: non-diabetic rats with cutaneous wounds that received laser therapy; DNI: diabetic rats with skin wounds who did not undergo laser therapy; DI: rats with diabetes insipidus and cutaneous wounds and received laser therapy. The animals were treated with LLLT (660 nm, 100 mW, 6 J/cm, spot size 0.028 cm). On the day of killing the animals, tissue-wrapped cutaneous wounds were collected and immediately frozen, centrifuged, and stored to analyze malondialdehyde (MDA) levels. Significant difference was observed within the groups of MDA levels (ANOVA, p = 0.0001). Tukey's post-hoc test showed significantly lower values of MDA in irradiated tissues, both in diabetic and non-diabetic rats. ANOVA of the diabetic group revealed a significant difference (p < 0.01) when all groups, except NDI and DI, were compared. LLLT was effective in decreasing MDA levels in acute surgical wounds in diabetic rats.

  19. Oxidative stress induces senescence in human mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Brandl, Anita [Department of Anesthesiology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Meyer, Matthias; Bechmann, Volker [Department of Trauma Surgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Nerlich, Michael [Department of Anesthesiology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Angele, Peter, E-mail: Peter.Angele@klinik.uni-regensburg.de [Department of Trauma Surgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany)

    2011-07-01

    Mesenchymal stem cells (MSCs) contribute to tissue repair in vivo and form an attractive cell source for tissue engineering. Their regenerative potential is impaired by cellular senescence. The effects of oxidative stress on MSCs are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of MSCs, subject to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by rtPCR. Sub-lethal doses of oxidative stress reduced proliferation rates and induced senescent-morphological features and senescence-associated {beta}-galactosidase positivity. Prolonged low dose treatment with hydrogen peroxide had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. Following acute oxidant insult p21 was up-regulated prior to returning to initial levels. TRF1 was significantly reduced, TRF2 showed a slight up-regulation. SIRT1 and XRCC5 were up-regulated after oxidant insult and expression levels increased in aging cells. Compared to fibroblasts and chondrocytes, MSCs showed an increased tolerance to oxidative stress regarding proliferation, telomere biology and gene expression with an impaired stress tolerance in aged cells.

  20. Serum oxidized low-density lipoprotein level as a marker of oxidative stress in patients undergoing hyperbaric oxygen therapy.

    Science.gov (United States)

    Keskin, Kudret; Kilci, Hakan; Aksan, Gökhan; Çetinkal, Gökhan; Yıldız, Süleyman Sezai; Kocaman Türk, Füsun; Bingöl, Gülsüm

    2017-09-01

    Oxidative stress (OS) is involved in the pathogenesis of atherosclerosis. Hyperbaric oxygen therapy (HBOT), in which 100% oxygen is inhaled under hyperbaric pressure, may create OS. Therefore, the aim of this research was to measure the serum oxidized low-density lipoprotein (oxLDL) level in patients undergoing HBOT. Twenty-nine patients who underwent HBOT to treat various diseases were enrolled in this study. The serum oxLDL level was measured at the beginning of the first and after the 10th therapy session. There was no significant difference between the oxLDL level of patients before and after HBOT (4.96±0.1 vs. 4.94±0.1 U/mL; p=0.36). HBOT seems to be safe in terms of oxLDL production up to 10 sessions. However, further large-scale studies investigating longer duration of HBOT treatment are required to understand the role of OS.

  1. Simvastatin and oxidative stress in humans

    DEFF Research Database (Denmark)

    Rasmussen, Sanne Tofte; Andersen, Jon Thor Trærup; Nielsen, Torben Kjær

    2016-01-01

    in mitochondrial respiratory complexes I and II and might thereby reduce the formation of reactive oxygen species, which have been implicated in the pathogenesis of arteriosclerosis. Therefore, we hypothesized that simvastatin may reduce oxidative stress in humans in vivo. We conducted a randomized, double......-blinded, placebo-controlled study in which subjects were treated with either 40 mg of simvastatin or placebo for 14 days. The endpoints were six biomarkers for oxidative stress, which represent intracellular oxidative stress to nucleic acids, lipid peroxidation and plasma antioxidants, that were measured in urine.......1% in the placebo group for DNA oxidation and 7.3% in the simvastatin group compared to 3.4% in the placebo group. The differences in biomarkers related to plasma were not statistically significant between the treatments groups, with the exception of total vitamin E levels, which, as expected, were reduced...

  2. Clinical Perspective of Oxidative Stress in Sporadic ALS

    Science.gov (United States)

    D’Amico, Emanuele; Factor-Litvak, Pam; Santella, Regina M.; Mitsumoto, Hiroshi

    2013-01-01

    Sporadic amyotrophic lateral sclerosis (sALS) is one of the most devastating neurological diseases; most patients die within 3 to 4 years after symptom onset. Oxidative stress is a disturbance in the pro-oxidative/anti-oxidative balance favoring the pro-oxidative state. Autopsy and laboratory studies in ALS indicate that oxidative stress plays a major role in motor neuron degeneration and astrocyte dysfunction. Oxidative stress biomarkers in cerebrospinal fluid, plasma, and urine, are elevated, suggesting that abnormal oxidative stress is generated outside of the central nervous system. Our review indicates that agricultural chemicals, heavy metals, military service, professional sports, excessive physical exertion, chronic head trauma, and certain foods might be modestly associated with ALS risk, with a stronger association between risk and smoking. At the cellular level, these factors are all involved in generating oxidative stress. Experimental studies indicate that a combination of insults that induce modest oxidative stress can exert additive deleterious effects on motor neurons, suggesting multiple exposures in real-world environments are important. As the disease progresses, nutritional deficiency, cachexia, psychological stress, and impending respiratory failure may further increase oxidative stress. Moreover, accumulating evidence suggests that ALS is possibly a systemic disease. Laboratory, pathologic, and epidemiologic evidence clearly support the hypothesis that oxidative stress is central in the pathogenic process, particularly in genetically susceptive individuals. If we are to improve ALS treatment, well-designed biochemical and genetic epidemiological studies, combined with a multidisciplinary research approach, are needed and will provide knowledge crucial to our understanding of ALS etiology, pathophysiology, and prognosis. PMID:23797033

  3. A Different Approach to Assess Oxidative Stress in Dengue Hemorrhagic Fever Patients Through The Calculation of Oxidative Stress Index

    Directory of Open Access Journals (Sweden)

    Edi Hartoyo

    2017-09-01

    Full Text Available The objectives of this study were to determine the involvement of Oxidative Stress (OS in the pathogenesis of dengue hemorrhagic fever (DHF through the analysis of oxidative stress Index (OSI. The levels of malondialdehyde (MDA, superoxide dismutase (SOD and catalase (CAT activity, and OSI were measured in 61 child dengue patients and (aged 6 months–18 years with three different stages of DHF, i.e stage I, II, and III. The results show that the levels of MDA, SOD and CAT activity, and OSI significantly different between the group. The all parameters that investigated in this present study seems higher MDA level and OSI in the higher grade of DHF, except for SOD and CAT activity. From this result, it can be concluded that oxidative stress pathways might be involved in the pathomechanism of DHF and OSI might be used as a biomarker for OS and the severity in DHF patients.

  4. Pathogenesis of Chronic Hyperglycemia: From Reductive Stress to Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Liang-Jun Yan

    2014-01-01

    Full Text Available Chronic overnutrition creates chronic hyperglycemia that can gradually induce insulin resistance and insulin secretion impairment. These disorders, if not intervened, will eventually be followed by appearance of frank diabetes. The mechanisms of this chronic pathogenic process are complex but have been suggested to involve production of reactive oxygen species (ROS and oxidative stress. In this review, I highlight evidence that reductive stress imposed by overflux of NADH through the mitochondrial electron transport chain is the source of oxidative stress, which is based on establishments that more NADH recycling by mitochondrial complex I leads to more electron leakage and thus more ROS production. The elevated levels of both NADH and ROS can inhibit and inactivate glyceraldehyde 3-phosphate dehydrogenase (GAPDH, respectively, resulting in blockage of the glycolytic pathway and accumulation of glycerol 3-phospate and its prior metabolites along the pathway. This accumulation then initiates all those alternative glucose metabolic pathways such as the polyol pathway and the advanced glycation pathways that otherwise are minor and insignificant under euglycemic conditions. Importantly, all these alternative pathways lead to ROS production, thus aggravating cellular oxidative stress. Therefore, reductive stress followed by oxidative stress comprises a major mechanism of hyperglycemia-induced metabolic syndrome.

  5. A study of oxidative stress in paucibacillary and multibacillary leprosy

    Directory of Open Access Journals (Sweden)

    Jyothi P

    2008-01-01

    Full Text Available Background: The study and assessment of oxidative stress plays a significant role in the arena of leprosy treatment. Once the presence of oxidative stress is proved, antioxidant supplements can be provided to reduce tissue injury and deformity. Aim: To study oxidative stress in paucibacillary (PB and multibacillary (MB leprosy and to compare it with that in a control group. Methods: Fifty-eight untreated leprosy patients (23 PB and 35 MB cases were studied and compared with 58 healthy controls. Superoxide dismutase (SOD level as a measure of antioxidant status; malondialdehyde (MDA level, an indicator of lipid peroxidation; and MDA/SOD ratio, an index of oxidative stress were estimated in the serum. Results: The SOD level was decreased in leprosy patients, especially in MB leprosy. The MDA level was increased in PB and MB leprosy. The MDA/SOD ratio was significantly elevated in MB patients. There was a steady increase in this ratio along the spectrum from tuberculoid to lepromatous leprosy (LL. Conclusion: There is increased oxidative stress in MB leprosy, especially in LL. This warrants antioxidant supplements to prevent tissue injury.

  6. Betel Leaf Extract (Piper betle L.) Antihyperuricemia Effect Decreases Oxidative Stress by Reducing the Level of MDA and Increase Blood SOD Levels of Hyperuricemia Wistar Rats (Rattus norvegicus)

    OpenAIRE

    I Made Sumarya; Nyoman Adiputra; Putra Manuaba; Dewa Sukrama

    2016-01-01

    Background: Betel leaf extracts (Piper betle L.) antioxidant activity and enzyme inhibitors of XO. Hyperuricemia cause oxidative stress by increasing the formation of reactive oxygen species (ROS) cause lipid peroxidation and oxygenation of low-density lipoprotein cholesterol (LDLc). Objective: The aim of this research was to determine the betel leaf extract as an anti hyperuricemia that can lower the blood uric acid levels and oxidative stress by lowering the levels of MDA and increase the S...

  7. Oxidative and nitrosative stress markers in bus drivers.

    Science.gov (United States)

    Rossner, Pavel; Svecova, Vlasta; Milcova, Alena; Lnenickova, Zdena; Solansky, Ivo; Santella, Regina M; Sram, Radim J

    2007-04-01

    Exposure to ambient air pollution is associated with many diseases. Oxidative and nitrosative stress are believed to be two of the major sources of particulate matter (PM)-mediated adverse health effects. PM in ambient air arises from industry, local heating, and vehicle emissions and poses a serious problem mainly in large cities. In the present study we analyzed the level of oxidative and nitrosative stress among 50 bus drivers from Prague, Czech Republic, and 50 matching controls. We assessed simultaneously the levels of 15-F(2t)-isoprostane (15-F(2t)-IsoP) and 8-oxodeoxyguanosine (8-oxodG) in urine and protein carbonyl groups and 3-nitrotyrosine (NT) in blood plasma. For the analysis of all four markers we used ELISA techniques. We observed significantly increased levels of oxidative and nitrosative stress markers in bus drivers. The median levels (min, max) of individual markers in bus drivers versus controls were as follows: 8-oxodG: 7.79 (2.64-12.34)nmol/mmol versus 6.12 (0.70-11.38)nmol/mmol creatinine (p<0.01); 15-F(2t)-IsoP: 0.81 (0.38-1.55)nmol/mmol versus 0.68 (0.39-1.79)nmol/mmol creatinine (p<0.01); carbonyl levels: 14.1 (11.8-19.0)nmol/ml versus 12.9 (9.8-16.6)nmol/ml plasma (p<0.001); NT: 694 (471-3228)nmol/l versus 537 (268-13833)nmol/l plasma (p<0.001). 15-F(2t)-IsoP levels correlated with vitamin E (R=0.23, p<0.05), vitamin C (R=-0.33, p<0.01) and cotinine (R=0.47, p<0.001) levels. Vitamin E levels also positively correlated with 8-oxodG (R=0.27, p=0.01) and protein carbonyl levels (R=0.32, p<0.001). Both oxidative and nitrosative stress markers positively correlated with PM2.5 and PM10 exposure. In conclusion, our study indicates that exposure to PM2.5 and PM10 results in increased oxidative and nitrosative stress.

  8. Oxidative Stress in BPH

    Directory of Open Access Journals (Sweden)

    Murat Savas

    2009-01-01

    The present study has shown that there were not relationship between potency of oxidative stress and BPH. Further well designed studies should be planned to find out whether the oxidative stress-related parameters play role in BPH as an interesting pathology in regard of the etiopathogenesis. Keywords: benign prostatic hyperplasia, oxidative stress, prostate

  9. Assessment of oxidative stress parameters of brain-derived neurotrophic factor heterozygous mice in acute stress model

    Directory of Open Access Journals (Sweden)

    Gulay Hacioglu

    2016-04-01

    Full Text Available Objective(s: Exposing to stress may be associated with increased production of reactive oxygen species (ROS. Therefore, high level of oxidative stress may eventually give rise to accumulation of oxidative damage and development of numerous neurodegenerative diseases. It has been presented that brain-derived neurotrophic factor (BDNF supports neurons against various neurodegenerative conditions. Lately, there has been growing evidence that changes in the cerebral neurotrophic support and especially in the BDNF expression and its engagement with ROS might be important in various disorders and neurodegenerative diseases. Hence, we aimed to investigate protective effects of BDNF against stress-induced oxidative damage. Materials and Methods: Five- to six-month-old male wild-type and BDNF knock-down mice were used in this study. Activities of catalase (CAT and superoxide dismutase (SOD enzymes, and the amount of malondialdehyde (MDA were assessed in the cerebral homogenates of studied groups in response to acute restraint stress. Results: Exposing to acute physiological stress led to significant elevation in the markers of oxidative stress in the cerebral cortexes of experimental groups. Conclusion: As BDNF-deficient mice were observed to be more susceptible to stress-induced oxidative damage, it can be suggested that there is a direct interplay between oxidative stress indicators and BDNF levels in the brain.

  10. Oxidative Stress and Periodontal Disease in Obesity.

    Science.gov (United States)

    Dursun, Erhan; Akalin, Ferda Alev; Genc, Tolga; Cinar, Nese; Erel, Ozcan; Yildiz, Bulent Okan

    2016-03-01

    Periodontal disease is a chronic inflammatory disease of the jaws and is more prevalent in obesity. Local and systemic oxidative stress may be an early link between periodontal disease and obesity. The primary aim of this study was to detect whether increased periodontal disease susceptibility in obese individuals is associated with local and systemic oxidative stress. Accordingly; we analyzed periodontal status and systemic (serum) and local (gingival crevicular fluid [GCF]) oxidative status markers in young obese women in comparison with age-matched lean women.Twenty obese and 20 lean women participated. Periodontal condition was determined by clinical periodontal indices including probing depth, clinical attachment level, gingival index, gingival bleeding index, and plaque index. Anthropometric, hormonal, and metabolic measurements were also performed. Blood and GCF sampling was performed at the same time after an overnight fasting. Serum and GCF total antioxidant capacity (TAOC), and total oxidant status (TOS) levels were determined, and oxidative stress index (OSI) was calculated.Clinical periodontal analyses showed higher gingival index and gingival bleeding index in the obese group (P = 0.001 for both) with no significant difference in probing depth, clinical attachment level, and plaque index between the obese and the lean women. Oxidant status analyses revealed lower GCF and serum TAOC, and higher GCF and serum OSI values in the obese women (P < 0.05 for all). GCF TOS was higher in the obese women (P < 0.05), whereas there was a nonsignificant trend for higher serum TOS in obese women (P = 0.074). GCF TAOC values showed a negative correlation with body mass index, whereas GCF OSI was positively correlated with fasting insulin and low-density lipoprotein-cholesterol levels (P < 0.05 for all). Clinical periodontal indices showed significant correlations with body mass index, insulin, and lipid levels, and also oxidant status markers

  11. Effects of low-level exposure to xenobiotics present in paints on oxidative stress in workers.

    Science.gov (United States)

    Moro, Angela M; Charão, Mariele; Brucker, Natália; Bulcão, Rachel; Freitas, Fernando; Guerreiro, Gilian; Baierle, Marília; Nascimento, Sabrina; Waechter, Fernanda; Hirakata, Vânia; Linden, Rafael; Thiesen, Flávia V; Garcia, Solange Cristina

    2010-09-15

    Paints are composed of an extensive variety of hazardous substances, such as organic solvents and heavy metals. Biomonitoring is an essential tool for assessing the risk to occupational health. Thus, this study analyzed the levels of biomarkers of exposure for toluene, xylene, styrene, ethylbenzene, and lead, as well as the oxidative stress biomarker alterations in painters of an industry. Lipid peroxidation biomarker (MDA), delta-aminolevulinate dehydratase (ALA-D), nonprotein thyol groups, superoxide dismutase and catalase (CAT) were analyzed in exposed and nonexposed subjects. We estimated which of the paint constituents have the greatest influence on the changes in the biomarkers of oxidative stress in this case of co-exposure. The results demonstrated that despite the fact that all the biomarkers of exposure were below the biological exposure limits, the MDA levels and antioxidant enzyme activities were increased, while nonprotein thyol groups and ALA-D levels were decreased in painters when compared with nonexposed subjects. After statistic test, toluene could be suggested as the principal factor responsible for increased lipid peroxidation and inhibition of ALA-D enzyme; however, further studies on the inhibition of ALA-D enzyme by toluene are necessary. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Myeloperoxidase enzyme levels and oxidative stress in bipolar ...

    African Journals Online (AJOL)

    USER

    2010-05-31

    May 31, 2010 ... Patients with BD had significantly higher mean hsCRP levels than healthy controls. However .... MPO is a critical component of the oxidative activity of ..... nervous system vulnerability to oxidative stres (Sorce and. Krause ...

  13. Oxidative stress status in congenital hypogonadism: an appraisal.

    Science.gov (United States)

    Haymana, C; Aydoğdu, A; Soykut, B; Erdem, O; Ibrahimov, T; Dinc, M; Meric, C; Basaran, Y; Sonmez, A; Azal, O

    2017-07-01

    Patients with hypogonadism are at increased risk of cardiac and metabolic diseases. However, the pathogenesis of increased cardiometabolic risk in patients with hypogonadism is not clear. Oxidative stress plays an important role in the pathogenesis of cardiometabolic diseases. This study aimed to investigate possible differences in oxidative stress conditions between patients with hypogonadism and healthy controls. In this study, 38 male patients with congenital hypogonadotropic hypogonadism (CHH) (mean age: 21.7 ± 1.6 years) and 44 healthy male controls (mean age: 22.3 ± 1.4 years) with almost equal body mass index were enrolled. The demographic parameters, follicle-stimulating hormone (FSH), luteinizing hormone (LH), total and free testosterone, homeostatic model assessment of insulin resistance (HOMA-IR) and oxidative stress parameters, such as superoxide dismutase, catalase (CAT), glutathione peroxidase (GPx) and malondialdehyde (MDA), were compared between both groups. Compared to the healthy controls, triglycerides (p = .02), insulin levels, HOMA-IR values, CAT activities and MDA levels (p treatment-naïve patients with congenital hypogonadism had an increased status of oxidative stress.

  14. OXIDATIVE STRESS AND VASCULAR DAMAGE IN HYPOXIA PROCESSES. MALONDIALDEHYDE (MDA AS BIOMARKER FOR OXIDATIVE DAMAGE

    Directory of Open Access Journals (Sweden)

    Muñiz P

    2014-05-01

    Full Text Available Changes in the levels oxidative stress biomarkers are related with different diseases such as ischemia/reperfusion, cardiovascular, renal, aging, etc. One of these biomarkers is the malondialdehyde (MDA generated as resulted of the process of lipid peroxidation. This biomarker is increased under conditions of the oxidative stress. Their levels, have been frequently used to measure plasma oxidative damage to lipids by their atherogenic potential. Its half-life high and their reactivity allows it to act both inside and outside of cells and interaction with proteins and DNA involve their role in different pathophysiological processes. This paper presents an analysis of the use of MDA as a biomarker of oxidative stress and its implications associated pathologies such as cardiovascular diseases ago.

  15. Oxidative stress and the effect of parasites on a carotenoid-based ornament.

    Science.gov (United States)

    Mougeot, F; Martínez-Padilla, J; Blount, J D; Pérez-Rodríguez, L; Webster, L M I; Piertney, S B

    2010-02-01

    Oxidative stress, the physiological condition whereby the production of reactive oxygen and nitrogen species overwhelms the capacity of antioxidant defences, causes damage to key bio-molecules. It has been implicated in many diseases, and is proposed as a reliable currency in the trade-off between individual health and ornamentation. Whether oxidative stress mediates the expression of carotenoid-based signals, which are among the commonest signals of many birds, fish and reptiles, remains controversial. In the present study, we explored interactions between parasites, oxidative stress and the carotenoid-based ornamentation of red grouse Lagopus lagopus scoticus. We tested whether removing nematode parasites influenced both oxidative balance (levels of oxidative damage and circulating antioxidant defences) and carotenoid-based ornamentation. At the treatment group level, parasite purging enhanced the size and colouration of ornaments but did not significantly affect circulating carotenoids, antioxidant defences or oxidative damage. However, relative changes in these traits among individuals indicated that males with a greater number of parasites prior to treatment (parasite purging) showed a greater increase in the levels of circulating carotenoids and antioxidants, and a greater decrease in oxidative damage, than those with initially fewer parasites. At the individual level, a greater increase in carotenoid pigmentation was associated with a greater reduction in oxidative damage. Therefore, an individual's ability to express a carotenoid-based ornament appeared to be linked to its current oxidative balance and susceptibility to oxidative stress. Our experimental results suggest that oxidative stress can mediate the impact of parasites on carotenoid-based signals, and we discuss possible mechanisms linking carotenoid-based ornaments to oxidative stress.

  16. Chemometrics models for assessment of oxidative stress risk in chrome-electroplating workers.

    Science.gov (United States)

    Zendehdel, Rezvan; Shetab-Boushehri, Seyed Vahid; Azari, Mansoor R; Hosseini, Vajihe; Mohammadi, Hamidreza

    2015-04-01

    Oxidative stress is the main cause of hexavalant chromium-induced damage in chrome electroplating workers. The main goal of this study is toxicity analysis and the possibility of toxicity risk categorizing in the chrome electroplating workers based on oxidative stress parameters as prognostic variables. We assessed blood chromium levels and biomarkers of oxidative stress such as lipid peroxidation, thiol (SH) groups and antioxidant capacity of plasma. Data were subjected to principle component analysis (PCA) and artificial neuronal network (ANN) to obtain oxidative stress pattern for chrome electroplating workers. Blood chromium levels increased from 4.42 ppb to 10.6 ppb. Induction of oxidative stress was observed by increased in lipid peroxidation (22.38 ± 10.47 μM versus 14.74 ± 4.82 μM, p chrome electroplaters. The result showed multivariate modeling can be interpreted as the induced biochemical toxicity in the workers exposed to hexavalent chromium. Different occupation groups were assessed on the basis of risk level of oxidative stress which could further justify proceeding engineering control measures.

  17. Oxidative and Anti-Oxidative Stress Markers in Chronic Glaucoma: A Systematic Review and Meta-Analysis

    Science.gov (United States)

    Benoist d’Azy, Cédric; Pereira, Bruno; Chiambaretta, Frédéric

    2016-01-01

    Chronic glaucoma is a multifactorial disease among which oxidative stress may play a major pathophysiological role. We conducted a systematic review and meta-analysis to evaluate the levels of oxidative and antioxidative stress markers in chronic glaucoma compared with a control group. The PubMed, Cochrane Library, Embase and Science Direct databases were searched for studies reporting oxidative and antioxidative stress markers in chronic glaucoma and in healthy controls using the following keywords: “oxidative stress” or “oxidant stress” or “nitrative stress” or “oxidative damage” or “nitrative damage” or “antioxidative stress” or “antioxidant stress” or “antinitrative stress” and “glaucoma”. We stratified our meta-analysis on the type of biomarkers, the type of glaucoma, and the origin of the sample (serum or aqueous humor). We included 22 case-control studies with a total of 2913 patients: 1614 with glaucoma and 1319 healthy controls. We included 12 studies in the meta-analysis on oxidative stress markers and 19 on antioxidative stress markers. We demonstrated an overall increase in oxidative stress markers in glaucoma (effect size = 1.64; 95%CI 1.20–2.09), ranging from an effect size of 1.29 in serum (95%CI 0.84–1.74) to 2.62 in aqueous humor (95%CI 1.60–3.65). Despite a decrease in antioxidative stress marker in serum (effect size = –0.41; 95%CI –0.72 to –0.11), some increased in aqueous humor (superoxide dismutase, effect size = 3.53; 95%CI 1.20–5.85 and glutathione peroxidase, effect size = 6.60; 95%CI 3.88–9.31). The differences in the serum levels of oxidative stress markers between glaucoma patients and controls were significantly higher in primary open angle glaucoma vs primary angle closed glaucoma (effect size = 12.7; 95%CI 8.78–16.6, P stress increased in glaucoma, both in serum and aqueous humor. Malonyldialdehyde seemed the best biomarkers of oxidative stress in serum. The increase of some

  18. Mitochondrial oxidative stress causes hyperphosphorylation of tau.

    Directory of Open Access Journals (Sweden)

    Simon Melov

    2007-06-01

    Full Text Available Age-related neurodegenerative disease has been mechanistically linked with mitochondrial dysfunction via damage from reactive oxygen species produced within the cell. We determined whether increased mitochondrial oxidative stress could modulate or regulate two of the key neurochemical hallmarks of Alzheimer's disease (AD: tau phosphorylation, and beta-amyloid deposition. Mice lacking superoxide dismutase 2 (SOD2 die within the first week of life, and develop a complex heterogeneous phenotype arising from mitochondrial dysfunction and oxidative stress. Treatment of these mice with catalytic antioxidants increases their lifespan and rescues the peripheral phenotypes, while uncovering central nervous system pathology. We examined sod2 null mice differentially treated with high and low doses of a catalytic antioxidant and observed striking elevations in the levels of tau phosphorylation (at Ser-396 and other phospho-epitopes of tau in the low-dose antioxidant treated mice at AD-associated residues. This hyperphosphorylation of tau was prevented with an increased dose of the antioxidant, previously reported to be sufficient to prevent neuropathology. We then genetically combined a well-characterized mouse model of AD (Tg2576 with heterozygous sod2 knockout mice to study the interactions between mitochondrial oxidative stress and cerebral Ass load. We found that mitochondrial SOD2 deficiency exacerbates amyloid burden and significantly reduces metal levels in the brain, while increasing levels of Ser-396 phosphorylated tau. These findings mechanistically link mitochondrial oxidative stress with the pathological features of AD.

  19. Adiponectin, leptin and oxidative stress in preeclampsia in Egyptian ...

    African Journals Online (AJOL)

    Adiponectin and Leptin are closely related adipokines that are associated with the oxidative stresses and endothelial dysfunction and proposed to participate in preeclampsia (PE) pathogenesis. This study is to determine changes in serum levels of adiponectin, leptin and oxidative stress in PE women in order to speculate a ...

  20. Oxidative stress tolerance of early stage diabetic endothelial progenitor cell

    Directory of Open Access Journals (Sweden)

    Dewi Sukmawati

    2015-06-01

    Conclusions: Primitive BM-EPCs showed vasculogenic dysfunction in early diabetes. However the oxidative stress is not denoted as the major initiating factor of its cause. Our results suggest that primitive BM-KSL cell has the ability to compensate oxidative stress levels in early diabetes by increasing the expression of anti-oxidative enzymes.

  1. Oxidative Stress-Related Mechanisms and Antioxidant Therapy in Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Cheng Li

    2017-01-01

    Full Text Available Diabetic retinopathy (DR is one of the most common microvascular complications of diabetes and is the leading cause of blindness in young adults. Oxidative stress has been implicated as a critical cause of DR. Metabolic abnormalities induced by high-glucose levels are involved in the development of DR and appear to be influenced by oxidative stress. The imbalance between reactive oxygen species (ROS production and the antioxidant defense system activates several oxidative stress-related mechanisms that promote the pathogenesis of DR. The damage caused by oxidative stress persists for a considerable time, even after the blood glucose concentration has returned to a normal level. Animal experiments have proved that the use of antioxidants is a beneficial therapeutic strategy for the treatment of DR, but more data are required from clinical trials. The aims of this review are to highlight the improvements to our understanding of the oxidative stress-related mechanisms underlying the development of DR and provide a summary of the main antioxidant therapy strategies used to treat the disease.

  2. ROLE OF TAURINE ON THE LEVEL OF SOME ESSENTIAL ELEMENTS AND OXIDATIVE STRESS IN DIFFERENT TISSUES OF RATS EXPOSED TO GAMMA RADIATION

    International Nuclear Information System (INIS)

    ANIS, L.M.

    2008-01-01

    Whole body exposure to ionizing radiation induces the formation of reactive oxygen species (ROS) in the different tissues provoking oxidative damage and organ dysfunction. The present study was designed to determine the possible protective effect of taurine against gamma radiation-induced disorders in iron (Fe), copper (Cu), zinc (Zn) and magnesium (Mg) in parallel to radiation-induced oxidative stress in liver, spleen and heart tissues. Irradiated rats were whole body exposed to 6.5 Gy gamma radiations. Taurine treated irradiated rats received 250 mg taurine/kg body weight/day for 10 successive days before irradiation. Animals were sacrificed on 1 st , 7 th and 14 th days after irradiation. The results obtained demonstrated significant increases in Fe, Cu, Zn and Mg levels in the liver. Significant increases of Fe and Cu and significant decrease of Zn and non-significant changes in Mg were observed in the spleen. Heart tissues showed significant decrease in the level of iron and non-significant changes in the levels of Cu, Zn and Mg. Alterations in the levels of essential elements were associated with oxidative stress. Significant decreases of SOD and CAT activities along with significant increase of TBARS levels were recorded in the different tissues after irradiation. Taurine administration pre-irradiation has significantly attenuated the radiation-induced oxidative stress and alteration in the levels of essential elements. It could be concluded that taurine might protect from oxidative damage induced by gamma irradiation

  3. Oxidative stress in MeHg-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Farina, Marcelo, E-mail: farina@ccb.ufsc.br [Departamento de Bioquimica, Centro de Ciencias Biologicas, Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil); Aschner, Michael [Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN (United States); Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN (United States); Rocha, Joao B.T., E-mail: jbtrocha@yahoo.com.br [Departamento de Quimica, Centro de Ciencias Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil)

    2011-11-15

    Methylmercury (MeHg) is an environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. Although the molecular mechanisms mediating MeHg-induced neurotoxicity are not completely understood, several lines of evidence indicate that oxidative stress represents a critical event related to the neurotoxic effects elicited by this toxicant. The objective of this review is to summarize and discuss data from experimental and epidemiological studies that have been important in clarifying the molecular events which mediate MeHg-induced oxidative damage and, consequently, toxicity. Although unanswered questions remain, the electrophilic properties of MeHg and its ability to oxidize thiols have been reported to play decisive roles to the oxidative consequences observed after MeHg exposure. However, a close examination of the relationship between low levels of MeHg necessary to induce oxidative stress and the high amounts of sulfhydryl-containing antioxidants in mammalian cells (e.g., glutathione) have led to the hypothesis that nucleophilic groups with extremely high affinities for MeHg (e.g., selenols) might represent primary targets in MeHg-induced oxidative stress. Indeed, the inhibition of antioxidant selenoproteins during MeHg poisoning in experimental animals has corroborated this hypothesis. The levels of different reactive species (superoxide anion, hydrogen peroxide and nitric oxide) have been reported to be increased in MeHg-exposed systems, and the mechanisms concerning these increments seem to involve a complex sequence of cascading molecular events, such as mitochondrial dysfunction, excitotoxicity, intracellular calcium dyshomeostasis and decreased antioxidant capacity. This review also discusses potential therapeutic strategies to counteract MeHg-induced toxicity and oxidative stress, emphasizing the use of organic selenocompounds, which generally present higher affinity for MeHg when compared to the classically

  4. Chronic unpredictable stress deteriorates the chemopreventive efficacy of pomegranate through oxidative stress pathway.

    Science.gov (United States)

    Hasan, Shirin; Suhail, Nida; Bilal, Nayeem; Ashraf, Ghulam Md; Zaidi, Syed Kashif; AlNohair, Sultan; Banu, Naheed

    2016-05-01

    Chronic unpredictable stress (CUS) can influence the risk and progression of cancer through increased oxidative stress. Pomegranate is known to protect carcinogenesis through its anti-oxidative properties. This study is carried out to examine whether CUS affects the chemopreventive potential of pomegranate through oxidative stress pathway. Role of CUS on early stages of 7, 12 dimethyl benz(a) anthracene (DMBA) induced carcinogenesis, and its pre-exposure effect on chemopreventive efficacy of pomegranate juice (PJ) was examined in terms of in vivo antioxidant and biochemical parameters in Swiss albino rats. Rats were divided in various groups and were subjected to CUS paradigm, DMBA administration (65 mg/kg body weight, single dose), and PJ treatment. Exposure to stress (alone) and DMBA (alone) led to increased oxidative stress by significantly decreasing the antioxidant enzymes activities and altering the glutathione (GSH), malondialdehyde (MDA), glutamate oxaloacetate transaminase (GOT), and glutamate pyruvate transaminase (GPT) levels. A significant increase in DNA damage demonstrated by comet assay was seen in the liver cells. Stress exposure to DMBA-treated rats further increased the oxidative stress and disturbed the biochemical parameters as compared to DMBA (alone)-treated rats. Chemoprevention with PJ in DMBA (alone)-treated rats restored the altered parameters. However, in the pre-stress DMBA-treated rats, the overall antioxidant potential of PJ was significantly diminished. Our results indicate that chronic stress not only increases the severity of carcinogenesis but also diminishes the anti-oxidative efficacy of PJ. In a broader perspective, special emphasis should be given to stress management and healthy diet during cancer chemoprevention.

  5. Wet-cupping removes oxidants and decreases oxidative stress.

    Science.gov (United States)

    Tagil, Suleyman Murat; Celik, Huseyin Tugrul; Ciftci, Sefa; Kazanci, Fatmanur Hacievliyagil; Arslan, Muzeyyen; Erdamar, Nazan; Kesik, Yunus; Erdamar, Husamettin; Dane, Senol

    2014-12-01

    Wet-cupping therapy is one of the oldest known medical techniques. Although it is widely used in various conditions such as acute\\chronic inflammation, infectious diseases, and immune system disorders, its mechanism of action is not fully known. In this study, we investigated the oxidative status as the first step to elucidate possible mechanisms of action of wet cupping. Wet cupping therapy is implemented to 31 healthy volunteers. Venous blood samples and Wet cupping blood samples were taken concurrently. Serum nitricoxide, malondialdehyde levels and activity of superoxide dismutase and myeloperoxidase were measured spectrophotometrically. Wet cupping blood had higher activity of myeloperoxidase, lower activity of superoxide dismutase, higher levels of malondialdehyde and nitricoxide compared to the venous blood. Wet cupping removes oxidants and decreases oxidative stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Oxidative stress and plasma lipoproteins in cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Maia, Fernanda Maria Machado; Santos, Emanuelly Barbosa; Reis, Germana Elias [Universidade Estadual do Ceará, Fortaleza, CE (Brazil)

    2014-07-01

    To evaluate the relation between oxidative stress and lipid profile in patients with different types of cancer. This was an observational cross-sectional. A total of 58 subjects were evaluated, 33 males, divided into two groups of 29 patients each: Group 1, patients with cancer of the digestive tract and accessory organs; Group 2 patients with other types of cancers, all admitted to a public hospital. The plasma levels (lipoproteins and total cholesterol, HDL, and triglycerides, for example) were analyzed by enzymatic kits, and oxidative stress based on thiobarbituric acid-reactive substances, by assessing the formation of malondialdehyde. In general the levels of malondialdehyde of patients were high (5.00μM) as compared to 3.31μM for healthy individuals. The median values of lipids exhibited normal triacylglycerol (138.78±89.88mg/dL), desirable total cholesterol values (163.04±172.38mg/dL), borderline high LDL (151.30±178.25mg/dL) and low HDL (31.70±22.74mg/dL). Median HDL levels in Group 1 were lower (31.32mg/dL) than the cancer patients in Group 2 (43.67mg/dL) (p=0.038). Group 1 also showed higher levels of oxidative stress (p=0.027). The lipid profile of patients with cancer was not favorable, which seems to have contributed to higher lipid peroxidation rate, generating a significant oxidative stress.

  7. Inhibiting mitochondrial β-oxidation selectively reduces levels of nonenzymatic oxidative polyunsaturated fatty acid metabolites in the brain.

    Science.gov (United States)

    Chen, Chuck T; Trépanier, Marc-Olivier; Hopperton, Kathryn E; Domenichiello, Anthony F; Masoodi, Mojgan; Bazinet, Richard P

    2014-03-01

    Schönfeld and Reiser recently hypothesized that fatty acid β-oxidation is a source of oxidative stress in the brain. To test this hypothesis, we inhibited brain mitochondrial β-oxidation with methyl palmoxirate (MEP) and measured oxidative polyunsaturated fatty acid (PUFA) metabolites in the rat brain. Upon MEP treatment, levels of several nonenzymatic auto-oxidative PUFA metabolites were reduced with few effects on enzymatically derived metabolites. Our finding confirms the hypothesis that reduced fatty acid β-oxidation decreases oxidative stress in the brain and β-oxidation inhibitors may be a novel therapeutic approach for brain disorders associated with oxidative stress.

  8. Betel Leaf Extract (Piper betle L. Antihyperuricemia Effect Decreases Oxidative Stress by Reducing the Level of MDA and Increase Blood SOD Levels of Hyperuricemia Wistar Rats (Rattus norvegicus

    Directory of Open Access Journals (Sweden)

    I Made Sumarya

    2016-06-01

    Full Text Available Background: Betel leaf extracts (Piper betle L. antioxidant activity and enzyme inhibitors of XO. Hyperuricemia cause oxidative stress by increasing the formation of reactive oxygen species (ROS cause lipid peroxidation and oxygenation of low-density lipoprotein cholesterol (LDLc. Objective: The aim of this research was to determine the betel leaf extract as an anti hyperuricemia that can lower the blood uric acid levels and oxidative stress by lowering the levels of MDA and increase the SOD of hyperuricemia of the rat’s blood. Method: Experimental research was conducted with the design of The Randomized Post Test Only Control Group Design, on normal Wistar rats (Rattus norvegicus, administered with oxonic potassium (hyperuricemia and the hyperuricemia rats either given betel leaf extract and allopurinol. After the experiment of uric acid levels, MDA and SOD in rat blood determined. Results: The results showed that the betel leaf extract significantly (p <0.05 lower uric acid levels, MDA and increase levels of SOD in rat blood. There is a positive correlation between the levels of uric acid with MDA levels and a negative correlation, although not significantly with SOD (p >0.05. Conclusion: It can be concluded that the betel leaf extract as an anti-hyperuricemia can lower the uric acid levels and decreases oxidative stress by lowering the levels of MDA and increasing the SOD.

  9. Hypertension and physical exercise: The role of oxidative stress.

    Science.gov (United States)

    Korsager Larsen, Monica; Matchkov, Vladimir V

    2016-01-01

    Oxidative stress is associated with the pathogenesis of hypertension. Decreased bioavailability of nitric oxide (NO) is one of the mechanisms involved in the pathogenesis. It has been suggested that physical exercise could be a potential non-pharmacological strategy in treatment of hypertension because of its beneficial effects on oxidative stress and endothelial function. The aim of this review is to investigate the effect of oxidative stress in relation to hypertension and physical exercise, including the role of NO in the pathogenesis of hypertension. Endothelial dysfunction and decreased NO levels have been found to have the adverse effects in the correlation between oxidative stress and hypertension. Most of the previous studies found that aerobic exercise significantly decreased blood pressure and oxidative stress in hypertensive subjects, but the intense aerobic exercise can also injure endothelial cells. Isometric exercise decreases normally only systolic blood pressure. An alternative exercise, Tai chi significantly decreases blood pressure and oxidative stress in normotensive elderly, but the effect in hypertensive subjects has not yet been studied. Physical exercise and especially aerobic training can be suggested as an effective intervention in the prevention and treatment of hypertension and cardiovascular disease via reduction in oxidative stress. Copyright © 2016 The Lithuanian University of Health Sciences. Production and hosting by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  10. Oxidative stress and pathology in muscular dystrophies: focus on protein thiol oxidation and dysferlinopathies.

    Science.gov (United States)

    Terrill, Jessica R; Radley-Crabb, Hannah G; Iwasaki, Tomohito; Lemckert, Frances A; Arthur, Peter G; Grounds, Miranda D

    2013-09-01

    The muscular dystrophies comprise more than 30 clinical disorders that are characterized by progressive skeletal muscle wasting and degeneration. Although the genetic basis for many of these disorders has been identified, the exact mechanism for pathogenesis generally remains unknown. It is considered that disturbed levels of reactive oxygen species (ROS) contribute to the pathology of many muscular dystrophies. Reactive oxygen species and oxidative stress may cause cellular damage by directly and irreversibly damaging macromolecules such as proteins, membrane lipids and DNA; another major cellular consequence of reactive oxygen species is the reversible modification of protein thiol side chains that may affect many aspects of molecular function. Irreversible oxidative damage of protein and lipids has been widely studied in Duchenne muscular dystrophy, and we have recently identified increased protein thiol oxidation in dystrophic muscles of the mdx mouse model for Duchenne muscular dystrophy. This review evaluates the role of elevated oxidative stress in Duchenne muscular dystrophy and other forms of muscular dystrophies, and presents new data that show significantly increased protein thiol oxidation and high levels of lipofuscin (a measure of cumulative oxidative damage) in dysferlin-deficient muscles of A/J mice at various ages. The significance of this elevated oxidative stress and high levels of reversible thiol oxidation, but minimal myofibre necrosis, is discussed in the context of the disease mechanism for dysferlinopathies, and compared with the situation for dystrophin-deficient mdx mice. © 2013 The Authors Journal compilation © 2013 FEBS.

  11. Association between prenatal psychological stress and oxidative stress during pregnancy.

    Science.gov (United States)

    Eick, Stephanie M; Barrett, Emily S; van 't Erve, Thomas J; Nguyen, Ruby H N; Bush, Nicole R; Milne, Ginger; Swan, Shanna H; Ferguson, Kelly K

    2018-03-30

    Prenatal psychological stress during pregnancy has been associated with adverse reproductive outcomes. A growing animal literature supports an association between psychological stress and oxidative stress. We assessed this relationship in pregnant women, hypothesising that psychological stress is associated with higher concentrations of oxidative stress biomarkers during pregnancy. Psychosocial status and stressful life events (SLE) were self-reported. 8-iso-prostaglandin F 2α (8-iso-PGF 2α ) was measured as a biomarker of oxidative stress in urine samples at median 32 weeks' gestation. We examined SLEs individually (ever vs never) and in summary (any vs none) and psychosocial status as measured by individual subscales and in summary (poor vs good). Linear models estimated associations between these parameters and urinary 8-iso-PGF 2α concentrations after adjusting for covariates. The geometric mean of 8-iso-PGF 2α was significantly higher among pregnant women who were non-White, smokers, had less than a college education, higher pre-pregnancy BMI and were unmarried. Having ever had a death in the family (n = 39) during pregnancy was associated with a 22.9% increase in 8-iso-PGF 2α in unadjusted models (95% confidence interval [CI] 1.50, 48.8). Poor psychosocial status was associated with a 13.1% (95% CI 2.43, 25.0) greater mean 8-iso-PGF 2α in unadjusted analyses. Associations were attenuated, but remained suggestive, after covariate adjustment. These data suggest that 8-iso-PGF 2α is elevated in pregnant women with who are at a sociodemographic disadvantage and who have higher psychological stress in pregnancy. Previous studies have observed that 8-iso-PGF 2α levels are associated with adverse birth outcomes, oxidative stress could be a mediator in these relationships. © 2018 John Wiley & Sons Ltd.

  12. Relationships between Psychosocial Difficulties and Oxidative Stress Biomarkers in Women Subject to Intimate Partner Violence.

    Science.gov (United States)

    Kim, Jae Yop; Lee, Ji Hyeon; Song, Hyang Joo; Kim, Dong Goo; Yim, Yeong Shin

    2017-02-01

    Women subject to violence by their intimate partners often experience a range of psychosocial problems such as depression, excessive alcohol use, and stressful life events that, in turn, lead to health issues. This study examined psychosocial difficulties and oxidative stress levels in abused and non-abused Korean women and analyzed the relationship between psychosocial outcomes and oxidative stress levels. Markers were determined in 16 women (seven abused, nine non-abused). The two groups of women (abused and non-abused) were compared with respect to scores in depression, alcohol use, life stress events, and oxidative stress biomarkers using the Mann-Whitney U test. Correlations between depression, alcohol use, life stress events, and oxidative stress biomarkers were tested by the Spearman rank correlation coefficient. The abused women had significantly higher levels of oxidative stress markers and significantly lower levels of antioxidants than the non-abused women. Life stress events and oxidative biomarker levels were significantly correlated. These findings have implications for both social services providers and medical personnel when assessing abused women to ensure that they receive the most appropriate service. © 2016 National Association of Social Workers.

  13. The relationship between leptin level and oxidative status parameters in hemodialysis patients.

    Science.gov (United States)

    Horoz, Mehmet; Aslan, Mehmet; Koylu, Ahmet O; Bolukbas, Cengiz; Bolukbas, Filiz F; Selek, Sahbettin; Erel, Ozcan

    2009-01-01

    Both serum leptin level and oxidative stress are increased in hemodialysis (HD) patients. In the present study, we aimed to investigate whether there is association between oxidative status and leptin level in HD patients. Thirty-five HD patients and 25 healthy controls were enrolled in the present study. Serum leptin level, total peroxide (TP) level, total antioxidant capacity (TAC), and oxidative stress index (OSI) were determined. Serum leptin level, TP level, and OSI were significantly higher in HD patients than controls (all P < 0.001) while TAC was lower (P < 0.001). In HD patients, serum leptin level was significantly correlated with TP level and OSI (r = 0.372, P < 0.001 and r = 0.409, P < 0.001, respectively). The correlation of serum leptin level with TP level and OSI remained statistically significant after adjusting for age, gender, and body-fat percentage (r = 0.446, P < 0.001 and r = 0.463, P < 0.001, respectively). Hyperleptinemia seems to be associated with increased oxidative stress in HD patients, and this association may provide better understanding about the disorders related to either elevated serum leptin levels and/or increased oxidative stress in HD patients.

  14. Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea

    Directory of Open Access Journals (Sweden)

    Parvaiz eAhmad

    2016-03-01

    Full Text Available This work was designed to evaluate whether external application of nitric oxide (NO in the form of its donor S-nitroso-N-acetylpenicillamine (SNAP could mitigate the deleterious effects of NaCl stress on chickpea (Cicer arietinum L. plants. SNAP (50 μM was applied to chickpea plants grown under non-saline and saline conditions (50 and 100 mM NaCl. Salt stress negatively affected growth and biomass yield, leaf relative water content (LRWC and chlorophyll content of chickpea plants. High salinity increased electrolyte leakage, carotenoid content and the levels of osmolytes (proline, glycine betaine, soluble proteins and soluble sugars, hydrogen peroxide (H2O2 and malondialdehyde (MDA, as well as the activities of antioxidant enzymes, such as superoxide dismutase (SOD, catalase (CAT, ascorbate peroxidase (APX, and glutathione reductase (GR in chickpea plants. Expression of the representative SOD, CAT and APX genes examined was also up-regulated in chickpea plants by salt stress. On the other hand, exogenous application of NO to salinized plants enhanced the growth parameters, LRWC, photosynthetic pigment production and levels of osmolytes, as well as the activities of examined antioxidant enzymes which is correlated with up-regulation of the examined SOD, CAT and APX genes, in comparison with plants treated with NaCl only. Furthermore, electrolyte leakage, H2O2 and MDA contents showed decline in salt-stressed plants supplemented with NO as compared with those in NaCl-treated plants alone. Thus, the exogenous application of NO protected chickpea plants against salt-induced oxidative damage by enhancing the biosynthesis of antioxidant enzymes, thereby improving plant growth under saline stress. Taken together, our results demonstrate that NO has capability to mitigate the adverse effects of high salinity on chickpea plants by improving LRWC, photosynthetic pigment biosyntheses, osmolyte accumulation and antioxidative defense system.

  15. Sardine protein diet increases plasma glucagon-like peptide-1 levels and prevents tissue oxidative stress in rats fed a high-fructose diet.

    Science.gov (United States)

    Madani, Zohra; Sener, Abdullah; Malaisse, Willy J; Dalila, Ait Yahia

    2015-11-01

    The current study investigated whether sardine protein mitigates the adverse effects of fructose on plasma glucagon‑like peptide-1 (GLP-1) and oxidative stress in rats. Rats were fed casein (C) or sardine protein (S) with or without high‑fructose (HF) for 2 months. Plasma glucose, insulin, GLP‑1, lipid and protein oxidation and antioxidant enzymes were assayed. HF rats developed obesity, hyperglycemia, hyperinsulinemia, insulin resistance and oxidative stress despite reduced energy and food intakes. High plasma creatinine and uric acid levels, in addition to albuminuria were observed in the HF groups. The S‑HF diet reduced plasma glucose, insulin, creatinine, uric acid and homeostasis model assessment‑insulin resistance index levels, however increased GLP‑1 levels compared with the C‑HF diet. Hydroperoxides were reduced in the liver, kidney, heart and muscle of S‑HF fed rats compared with C‑HF fed rats. A reduction in liver, kidney and heart carbonyls was observed in S‑HF fed rats compared with C‑HF fed rats. Reduced levels of nitric oxide (NO) were detected in the liver, kidney and heart of the S‑HF fed rats compared with C‑HF fed rats. The S diet compared with the C diet reduced levels of liver hydroperoxides, heart carbonyls and kidney NO. The S‑HF diet compared with the C‑HF diet increased the levels of liver and kidney superoxide dismutase, liver and muscle catalase, liver, heart and muscle glutathione peroxidase and liver ascorbic acid. The S diet prevented and reversed insulin resistance and oxidative stress, and may have benefits in patients with metabolic syndrome.

  16. Nrf2 Inhibits Periodontal Ligament Stem Cell Apoptosis under Excessive Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Yanli Liu

    2017-05-01

    Full Text Available The present study aimed to analyze novel mechanisms underlying Nrf2-mediated anti-apoptosis in periodontal ligament stem cells (PDLSCs in the periodontitis oxidative microenvironment. We created an oxidative stress model with H2O2-treated PDLSCs. We used real-time PCR, Western blotting, TUNEL staining, fluorogenic assay and transfer genetics to confirm the degree of oxidative stress and apoptosis as well as the function of nuclear factor-erythroid 2-related factor 2 (Nrf2. We demonstrated that with upregulated levels of reactive oxygen species (ROS and malondialdehyde (MDA, the effect of oxidative stress was obvious under H2O2 treatment. Oxidative molecules were altered after the H2O2 exposure, whereby the signaling of Nrf2 was activated with an increase in its downstream effectors, heme oxygenase-1 (HO-1, NAD(PH:quinone oxidoreductase 1 (NQO1 and γ-glutamyl cysteine synthetase (γ-GCS. Additionally, the apoptosis levels gradually increased with oxidative stress by the upregulation of caspase-9, caspase-3, Bax and c-Fos levels in addition to the downregulation of Bcl-2. However, there was no alterations in levels of caspase-8. The enhanced antioxidant effect could not mitigate the occurrence of apoptosis. Furthermore, Nrf2 overexpression effectively improved the anti-oxidative levels and increased cell proliferation. At the same time, overexpression effectively restrained TUNEL staining and decreased the molecular levels of caspase-9, caspase-3, Bax and c-Fos, but not that of caspase-8. In contrast, silencing the expression of Nrf2 levels had the opposite effect. Collectively, Nrf2 alleviates PDLSCs via its effects on regulating oxidative stress and anti-intrinsic apoptosis by the activation of oxidative enzymes.

  17. Plasma oxidative stress and total thiol levels in Crimean-Congo hemorrhagic fever.

    Science.gov (United States)

    Karadag-Oncel, Eda; Erel, Ozcan; Ozsurekci, Yasemin; Caglayik, Dilek Yagci; Kaya, Ali; Gozel, Mustafa Gokhan; Icagasioglu, Fusun Dilara; Engin, Aynur; Korukluoglu, Gulay; Uyar, Yavuz; Elaldi, Nazif; Ceyhan, Mehmet

    2014-01-01

    In this study, we investigated the pro- and antioxidant status of patients with a pathogenesis of Crimean-Congo hemorrhagic fever (CCHF) in terms of their role in its pathogenesis. During the study period, 34 children and 41 adults were diagnosed with CCHF. The control group consisted of healthy age- and gender-matched children and adults. Serum levels of the total antioxidant capacity (TAC), total oxidant status (TOS), oxidative stress index (OSI), and plasma total thiol (TTL) were evaluated and compared between groups. The difference in mean TAC values between CCHF patients and healthy controls was not statistically significant (P > 0.05). Mean TOS, OSI, and TTL values were significantly lower in CCHF patients than in healthy controls (P 0.05). Our results suggest that TTL may play a more important role in CCHF pathogenesis than the other parameters investigated. The mean TOS and OSI values were higher in the control group than in CCHF patients.

  18. BRCA1 and Oxidative Stress

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Yong Weon; Kang, Hyo Jin [Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057 (United States); Bae, Insoo, E-mail: ib42@georgetown.edu [Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057 (United States); Department of Radiation Medicine, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057 (United States)

    2014-04-03

    The breast cancer susceptibility gene 1 (BRCA1) has been well established as a tumor suppressor and functions primarily by maintaining genome integrity. Genome stability is compromised when cells are exposed to oxidative stress. Increasing evidence suggests that BRCA1 regulates oxidative stress and this may be another mechanism in preventing carcinogenesis in normal cells. Oxidative stress caused by reactive oxygen species (ROS) is implicated in carcinogenesis and is used strategically to treat human cancer. Thus, it is essential to understand the function of BRCA1 in oxidative stress regulation. In this review, we briefly summarize BRCA1’s many binding partners and mechanisms, and discuss data supporting the function of BRCA1 in oxidative stress regulation. Finally, we consider its significance in prevention and/or treatment of BRCA1-related cancers.

  19. Oxidative stress in hepatitis C infected end-stage renal disease subjects

    OpenAIRE

    Koylu Ahmet O; Aslan Mehmet; Bolukbas Filiz F; Bolukbas Cengiz; Horoz Mehmet; Selek Sahbettin; Erel Ozcan

    2006-01-01

    Abstract Background Both uremia and hepatitis C infection is associated with increased oxidative stress. In the present study, we aimed to find out whether hepatitis C infection has any impact on oxidative stress in hemodialysis subjects. Methods Sixteen hepatitis C (+) hemodialysis subjects, 24 hepatitis C negative hemodialysis subjects and 24 healthy subjects were included. Total antioxidant capacity, total peroxide level and oxidative stress index were determined in all subjects. Results T...

  20. Rutin improves spatial memory in Alzheimer's disease transgenic mice by reducing Aβ oligomer level and attenuating oxidative stress and neuroinflammation.

    Science.gov (United States)

    Xu, Peng-Xin; Wang, Shao-Wei; Yu, Xiao-Lin; Su, Ya-Jing; Wang, Teng; Zhou, Wei-Wei; Zhang, He; Wang, Yu-Jiong; Liu, Rui-Tian

    2014-05-01

    Alzheimer's disease (AD) is a progressive, neurodegenerative disease characterized by extracellular β-amyloid (Aβ) plaques and intracellular neurofibrillary tangles in the brain. Aβ aggregation is closely associated with neurotoxicity, oxidative stress, and neuronal inflammation. The soluble Aβ oligomers are believed to be the most neurotoxic form among all forms of Aβ aggregates. We have previously reported a polyphenol compound rutin that could inhibit Aβ aggregation and cytotoxicity, attenuate oxidative stress, and decrease the production of nitric oxide and proinflammatory cytokines in vitro. In the current study, we investigated the effect of rutin on APPswe/PS1dE9 transgenic mice. Results demonstrated that orally administered rutin significantly attenuated memory deficits in AD transgenic mice, decreased oligomeric Aβ level, increased super oxide dismutase (SOD) activity and glutathione (GSH)/glutathione disulfide (GSSG) ratio, reduced GSSG and malondialdehyde (MDA) levels, downregulated microgliosis and astrocytosis, and decreased interleukin (IL)-1β and IL-6 levels in the brain. These results indicated that rutin is a promising agent for AD treatment because of its antioxidant, anti-inflammatory, and reducing Aβ oligomer activities. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Oxidative stress markers at birth: Analyses of a neonatal population.

    Science.gov (United States)

    Giuffrè, Mario; Rizzo, Manfredi; Scaturro, Giusy; Pitruzzella, Alessandro; Marino Gammazza, Antonella; Cappello, Francesco; Corsello, Giovanni; Li Volti, Giovanni

    2015-01-01

    In order to further understand neonatal stress and, thus, control it efficaciously, there is a need for more information on the manifestations of stress at the molecular level in the newborn, with particular regard to oxidants, and anti-oxidant and anti-stress mechanisms, including mitochondrial heat shock protein-chaperones such as Hsp60. We investigated patterns of anti-oxidants, biomarkers of oxidative stress, and Hsp60 levels in sera from newborns and found significant associations between glutathione (GSH) levels and gestational age, delivery modality, and lipid hydroperoxydes (LOOH) level. LOOH levels and spontaneous (vaginal) delivery were independently associated with increased GSH levels when these were above the median. Hsp60 and LOOH levels were positively correlated whereas Hsp60 and GSH levels were inversely correlated in spontaneously delivered newborns; in contrast, Hsp60 and GSH levels were positively correlated in newborns delivered by cesarea. Our results point to new directions in the search for definite patterns of GSH, LOOH, and Hsp60 in the newborn's serum that might have functional and diagnostic significance and that could help in the monitoring of newborn health during and after delivery. In addition, the data provide a starting basis for investigating the precise roles and interplay of GSH and Hsp60 in the maintenance of an optimal redox balance at birth to cope with the stress inherent to delivery, and also for investigating the predictive value of any given pattern of GSH, LOOH, and Hsp60 at birth with regard to health status and risk of disease in adult life. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. Oxidative stress in organophosphate poisoning: role of standard antidotal therapy.

    Science.gov (United States)

    Vanova, Nela; Pejchal, Jaroslav; Herman, David; Dlabkova, Alzbeta; Jun, Daniel

    2018-08-01

    Despite the main mechanism of organophosphate (OP) toxicity through inhibition of acetylcholinesterase (AChE) being well known over the years, some chronic adverse health effects indicate the involvement of additional pathways. Oxidative stress is among the most intensively studied. Overstimulation of cholinergic and glutamatergic nervous system is followed by intensified generation of reactive species and oxidative damage in many tissues. In this review, the role of oxidative stress in pathophysiology of OP poisoning and the influence of commonly used medical interventions on its levels are discussed. Current standardized therapy of OP intoxications comprises live-saving administration of the anticholinergic drug atropine accompanied by oxime AChE reactivator and diazepam. The capability of these antidotes to ameliorate OP-induced oxidative stress varies between both therapeutic groups and individual medications within the drug class. Regarding oxidative stress, atropine does not seem to have a significant effect on oxidative stress parameters in OP poisoning. In a case of AChE reactivators, pro-oxidative and antioxidative properties could be found. It is assumed that the ability of oximes to trigger oxidative stress is rather associated with their chemical structure than reactivation efficacy. The data indicating the potency of diazepam in preventing OP-induced oxidative stress are not available. Based on current knowledge on the mechanism of OP-mediated oxidative stress, alternative approaches (including antioxidants or multifunctional drugs) in therapy of OP poisoning are under consideration. Copyright © 2018 John Wiley & Sons, Ltd.

  3. The Effects of Isoflavone Supplementation Plus Combined Exercise on Lipid Levels, and Inflammatory and Oxidative Stress Markers in Postmenopausal Women

    Directory of Open Access Journals (Sweden)

    Jéssica S. Giolo

    2018-03-01

    Full Text Available This study tested the effect of isoflavone supplementation in addition to combined exercise training on plasma lipid levels, inflammatory markers and oxidative stress in postmenopausal women. Thirty-two healthy and non-obese postmenopausal women without hormone therapy were randomly assigned to exercise + placebo (PLA; n = 15 or exercise + isoflavone supplementation (ISO; n = 17 groups. They performed 30 sessions of combined exercises (aerobic plus resistance over ten weeks and consumed 100 mg of isoflavone supplementation or placebo. Blood samples were collected after an overnight fast to analyze the lipid profile, interleukin-6 (IL-6, interleukin-8 (IL-8, superoxide dismutase (SOD, total antioxidant capacity (FRAP, and thiobarbituric acid reactive substances (TBARS, before and after ten weeks of the intervention. There were no differences in the changes (pre vs. post between groups for any of the inflammatory markers, oxidative stress markers or lipid profile variables. However, interleukin-8 was different between pre- and post-tests (p < 0.001 in both groups (Δ = 7.61 and 5.61 pg/mL as were cholesterol levels (p < 0.05, with no interaction between groups. The combination of isoflavone supplementation and exercise training did not alter oxidative stress markers in postmenopausal women, but exercise training alone may increase IL-8 and decrease total cholesterol levels.

  4. Oxidative stress status in elite athletes engaged in different sport disciplines.

    Science.gov (United States)

    Hadžović-Džuvo, Almira; Valjevac, Amina; Lepara, Orhan; Pjanić, Samra; Hadžimuratović, Adnan; Mekić, Amel

    2014-05-01

    Exercise training may increase production of free radicals and reactive oxygen species in different ways. The training type and intensity may influence free radicals production, which leads to differences in oxidative stress status between athletes, but the results of the previous studies are incosistent. The aim of our study was to estimate oxidative stress status in elite athletes engaged in different sport disciplines. The study included 39 male highly skilled professional competitors with international experience (2 Olympic players): 12 wrestlers, 14 soccer players and 13 basketball players in whom we determined the levels of advanced oxidation protein products (AOPP) and malondialdehyde (MDA), as markers of oxidative stress and the total antioxidative capacity (ImAnOX) using commercially available assay kits. The mean AOPP concentration was not significantly different between soccer players, wrestler and basketball players (60.0 ± 23.0 vs. 68.5 ± 30.8 and 80.72 ± 29.1 μmol/L respectively). Mean ImAnOX concentration was not different between soccer players (344.8 ± 35.6 μmol/L), wrestlers (342.5 ± 36.2 μmol/L) and basketball players (347.95 ± 31.3 μmol/L). Mean MDA concentration was significantly higher in basketball players (1912.1 ± 667.7 ng/mL) compared to soccer players (1060.1 ± 391.0 ng/mL, p=0.003). In spite of this fact, oxidative stress markers levels were increased compared to referral values provided by the manufacturer. Type of sports (soccer, wrestler or basketball) have no impact on the levels of oxidative stress markers. Elite sports engagement is a potent stimulus of oxidative stress that leads to the large recruitment of antioxidative defense. Oxidative stress status monitoring followed by appropriate use of antioxidants is recommended as a part of training regime.

  5. Oxidative stress status in elite athletes engaged in different sport disciplines

    Directory of Open Access Journals (Sweden)

    Almira Hadžović - Džuvo

    2014-05-01

    Full Text Available Exercise training may increase production of free radicals and reactive oxygen species in different ways. The training type and intensity may influence free radicals production, which leads to differences in oxidative stress status between athletes, but the results of the previous studies are incosistent. The aim of our study was to estimate oxidative stress status in elite athletes engaged in different sport disciplines. The study included 39 male highly skilled professional competitors with international experience (2 Olympic players: 12 wrestlers, 14 soccer players and 13 basketball players in whom we determined the levels of advanced oxidation protein products (AOPP and malondialdehyde (MDA, as markers of oxidative stress and the total antioxidative capacity (ImAnOX using commercially available assay kits. The mean AOPP concentration was not significantly different between soccer players, wrestler and basketball players (60.0 ± 23.0 vs. 68.5 ± 30.8 and 80.72 ± 29.1 μmol/L respectively. Mean ImAnOX concentration was not different between soccer players (344.8 ± 35.6 μmol/L, wrestlers (342.5 ± 36.2 μmol/L and basketball players (347.95 ± 31.3 μmol/L. Mean MDA concentration was significantly higher in basketball players (1912.1 ± 667.7 ng/mL compared to soccer players (1060.1 ± 391.0 ng/mL, p=0.003. In spite of this fact, oxidative stress markers levels were increased compared to referral values provided by the manufacturer. Type of sports (soccer, wrestler or basketball have no impact on the levels of oxidative stress markers. Elite sports engagement is a potent stimulus of oxidative stress that leads to the large recruitment of antioxidative defense. Oxidative stress status monitoring followed by appropriate use of antioxidants is recommended as a part of training regime.

  6. Oxidative DNA damage and oxidative stress in lead-exposed workers.

    Science.gov (United States)

    Dobrakowski, M; Pawlas, N; Kasperczyk, A; Kozłowska, A; Olewińska, E; Machoń-Grecka, A; Kasperczyk, S

    2017-07-01

    There are many discrepancies among the results of studies on the genotoxicity of lead. The aim of the study was to explore lead-induced DNA damage, including oxidative damage, in relation to oxidative stress intensity parameters and the antioxidant defense system in human leukocytes. The study population consisted of 100 male workers exposed to lead. According to the blood lead (PbB) levels, they were divided into the following three subgroups: a group with PbB of 20-35 μg/dL (low exposure to lead (LE) group), a group with a PbB of 35-50 µg/dL (medium exposure to lead (ME) group), and a group with a PbB of >50 μg/dL (high exposure to lead (HE) group). The control group consisted of 42 healthy males environmentally exposed to lead (PbB lead exposure induces DNA damage, including oxidative damage, in human leukocytes. The increase in DNA damage was accompanied by an elevated intensity of oxidative stress.

  7. Oxidative Metabolism Genes Are Not Responsive to Oxidative Stress in Rodent Beta Cell Lines

    Directory of Open Access Journals (Sweden)

    Faer Morrison

    2012-01-01

    Full Text Available Altered expression of oxidative metabolism genes has been described in the skeletal muscle of individuals with type 2 diabetes. Pancreatic beta cells contain low levels of antioxidant enzymes and are particularly susceptible to oxidative stress. In this study, we explored the effect of hyperglycemia-induced oxidative stress on a panel of oxidative metabolism genes in a rodent beta cell line. We exposed INS-1 rodent beta cells to low (5.6 mmol/L, ambient (11 mmol/L, and high (28 mmol/L glucose conditions for 48 hours. Increases in oxidative stress were measured using the fluorescent probe dihydrorhodamine 123. We then measured the expression levels of a panel of 90 oxidative metabolism genes by real-time PCR. Elevated reactive oxygen species (ROS production was evident in INS-1 cells after 48 hours (P<0.05. TLDA analysis revealed a significant (P<0.05 upregulation of 16 of the 90 genes under hyperglycemic conditions, although these expression differences did not reflect differences in ROS. We conclude that although altered glycemia may influence the expression of some oxidative metabolism genes, this effect is probably not mediated by increased ROS production. The alterations to the expression of oxidative metabolism genes previously observed in human diabetic skeletal muscle do not appear to be mirrored in rodent pancreatic beta cells.

  8. Oxidative stress and maternal obesity: feto-placental unit interaction.

    Science.gov (United States)

    Malti, N; Merzouk, H; Merzouk, S A; Loukidi, B; Karaouzene, N; Malti, A; Narce, M

    2014-06-01

    To determine oxidative stress markers in maternal obesity during pregnancy and to evaluate feto-placental unit interaction, especially predictors of fetal metabolic alterations. 40 obese pregnant women (prepregnancy BMI > 30 kg/m²) were compared to 50 control pregnant women. Maternal, cord blood and placenta samples were collected at delivery. Biochemical parameters (total cholesterol and triglycerides) and oxidative stress markers (malondialdehyde, carbonyl proteins, superoxide anion expressed as reduced Nitroblue Tetrazolium, nitric oxide expressed as nitrite, reduced glutathione, catalase, superoxide dismutase) were assayed by biochemical methods. Maternal, fetal and placental triglyceride levels were increased in obese group compared to control. Maternal malondialdehyde, carbonyl proteins, nitric oxide and superoxide anion levels were high while reduced glutathione concentrations and superoxide dismutase activity were low in obesity. In the placenta and in newborns of these obese mothers, variations of redox balance were also observed indicating high oxidative stress. Maternal and placental interaction constituted a strong predictor of fetal redox variations in obese pregnancies. Maternal obesity compromised placental metabolism and antioxidant status which strongly impacted fetal redox balance. Oxidative stress may be one of the key downstream mediators that initiate programming of the offspring. Maternal obesity is associated with metabolic alterations and dysregulation of redox balance in the mother-placenta - fetus unit. These perturbations could lead to maternal and fetal complications and should be carefully considered. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Accelerated aging in schizophrenia patients: the potential role of oxidative stress.

    Science.gov (United States)

    Okusaga, Olaoluwa O

    2014-08-01

    Several lines of evidence suggest that schizophrenia, a severe mental illness characterized by delusions, hallucinations and thought disorder is associated with accelerated aging. The free radical (oxidative stress) theory of aging assumes that aging occurs as a result of damage to cell constituents and connective tissues by free radicals arising from oxygen-associated reactions. Schizophrenia has been associated with oxidative stress and chronic inflammation, both of which also appear to reciprocally induce each other in a positive feedback manner. The buildup of damaged macromolecules due to increased oxidative stress and failure of protein repair and maintenance systems is an indicator of aging both at the cellular and organismal level. When compared with age-matched healthy controls, schizophrenia patients have higher levels of markers of oxidative cellular damage such as protein carbonyls, products of lipid peroxidation and DNA hydroxylation. Potential confounders such as antipsychotic medication, smoking, socio-economic status and unhealthy lifestyle make it impossible to solely attribute the earlier onset of aging-related changes or oxidative stress to having a diagnosis of schizophrenia. Regardless of whether oxidative stress can be attributed solely to a diagnosis of schizophrenia or whether it is due to other factors associated with schizophrenia, the available evidence is in support of increased oxidative stress-induced cellular damage of macromolecules which may play a role in the phenomenon of accelerated aging presumed to be associated with schizophrenia.

  10. Evaluation of oxidative stress in hunting dogs during exercise.

    Science.gov (United States)

    Pasquini, A; Luchetti, E; Cardini, G

    2010-08-01

    Exercise has been shown to increase the production of reactive oxygen species (ROS) to a point that can exceed antioxidant defenses, to cause oxidative stress. The aim of our trials was to evaluate oxidative stress and recovery times in trained dogs during two different hunting exercises, with reactive oxygen metabolites-derivatives (d-ROMs) and biological antioxidant potential (BAP) tests. A group of nine privately owned Italian hounds were included. A 20-min aerobic exercise and a 4-h aerobic exercise, after 30 days of rest, were performed by the dogs. Our results show an oxidative stress after exercise due to both the high concentration of oxidants (d-ROMs) and the low level of antioxidant power (BAP). Besides, the recovery time is faster after the 4-h aerobic exercise than the 20-min aerobic exercise. Oxidative stress monitoring during dogs exercise could become an interesting aid to establish ideal adaptation to training. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Resveratrol Ameliorates Experimental Alcoholic Liver Disease by Modulating Oxidative Stress

    Directory of Open Access Journals (Sweden)

    He Peiyuan

    2017-01-01

    Full Text Available The aim of this study was to investigate the hepatoprotective effects of resveratrol in alcoholic liver disease (ALD. Alcohol was administered to healthy female rats starting from 6% (v/v and gradually increased to 20% (v/v by the fifth week. After 16 weeks of intervention, liver enzymes (aspartate aminotransferase [AST] and alanine aminotransferase [ALT] were analyzed using a chemistry analyzer, while hepatic antioxidant enzymes, oxidative stress markers, and caspase 3 activity were assessed using ELISA kits. Furthermore, hepatic CYP2E1 protein levels and mRNA levels of antioxidant and inflammation-related genes were determined using western blotting and RT-PCR, respectively. The results showed that resveratrol significantly attenuated alcohol-induced elevation of liver enzymes and improved hepatic antioxidant enzymes. Resveratrol also attenuated alcohol-induced CYP2E1 increase, oxidative stress, and apoptosis (caspase 3 activity. Moreover, genes associated with oxidative stress and inflammation were regulated by resveratrol supplementation. Taken together, the results suggested that resveratrol alleviated ALD through regulation of oxidative stress, apoptosis, and inflammation, which was mediated at the transcriptional level. The data suggests that resveratrol is a promising natural therapeutic agent against chronic ALD.

  12. Oxidative Stress as Estimated by Gamma-Glutamyl Transferase Levels Amplifies the Alkaline Phosphatase-Dependent Risk for Mortality in ESKD Patients on Dialysis

    Directory of Open Access Journals (Sweden)

    Claudia Torino

    2016-01-01

    Full Text Available Alkaline phosphatase (Alk-Phos is a powerful predictor of death in patients with end-stage kidney disease (ESKD and oxidative stress is a strong inducer of Alk-Phos in various tissues. We tested the hypothesis that oxidative stress, as estimated by a robust marker of systemic oxidative stress like γ-Glutamyl-Transpeptidase (GGT levels, may interact with Alk-Phos in the high risk of death in a cohort of 993 ESKD patients maintained on chronic dialysis. In fully adjusted analyses the HR for mortality associated with Alk-Phos (50 IU/L increase was progressively higher across GGT quintiles, being minimal in patients in the first quintile (HR: 0.89, 95% CI: 0.77–1.03 and highest in the GGT fifth quintile (HR: 1.13, 95% CI: 1.03–1.2 (P for the effect modification = 0.02. These findings were fully confirmed in sensitivity analyses excluding patients with preexisting liver disease, excessive alcohol intake, or altered liver disease biomarkers. GGT amplifies the risk of death associated with high Alk-Phos levels in ESKD patients. This observation is compatible with the hypothesis that oxidative stress is a strong modifier of the adverse biological effects of high Alk-Phos in this population.

  13. Oxidative stress and apoptotic events during thermal stress in the symbiotic sea anemone, Anemonia viridis.

    Science.gov (United States)

    Richier, Sophie; Sabourault, Cécile; Courtiade, Juliette; Zucchini, Nathalie; Allemand, Denis; Furla, Paola

    2006-09-01

    Symbiosis between cnidarian and photosynthetic protists is widely distributed over temperate and tropical seas. These symbioses can periodically breakdown, a phenomenon known as cnidarian bleaching. This event can be irreversible for some associations subjected to acute and/or prolonged environmental disturbances, and leads to the death of the animal host. During bleaching, oxidative stress has been described previously as acting at molecular level and apoptosis is suggested to be one of the mechanisms involved. We focused our study on the role of apoptosis in bleaching via oxidative stress in the association between the sea anemone Anemonia viridis and the dinoflagellates Symbiodinium species. Characterization of caspase-like enzymes were conducted at the biochemical and molecular level to confirm the presence of a caspase-dependent apoptotic phenomenon in the cnidarian host. We provide evidence of oxidative stress followed by induction of caspase-like activity in animal host cells after an elevated temperature stress, suggesting the concomitant action of these components in bleaching.

  14. The naked mole-rat response to oxidative stress: just deal with it.

    Science.gov (United States)

    Lewis, Kaitlyn N; Andziak, Blazej; Yang, Ting; Buffenstein, Rochelle

    2013-10-20

    The oxidative stress theory of aging has been the most widely accepted theory of aging providing insights into why we age and die for over 50 years, despite mounting evidence from a multitude of species indicating that there is no direct relationship between reactive oxygen species (ROS) and longevity. Here we explore how different species, including the longest lived rodent, the naked mole-rat, have defied the most predominant aging theory. In the case of extremely long-lived naked mole-rat, levels of ROS production are found to be similar to mice, antioxidant defenses unexceptional, and even under constitutive conditions, naked mole-rats combine a pro-oxidant intracellular milieu with high, steady state levels of oxidative damage. Clearly, naked mole-rats can tolerate this level of oxidative stress and must have mechanisms in place to prevent its translation into potentially lethal diseases. In addition to the naked mole-rat, other species from across the phylogenetic spectrum and even certain mouse strains do not support this theory. Moreover, overexpressing or knocking down antioxidant levels alters levels of oxidative damage and even cancer incidence, but does not modulate lifespan. Perhaps, it is not oxidative stress that modulates healthspan and longevity, but other cytoprotective mechanisms that allow animals to deal with high levels of oxidative damage and stress, and nevertheless live long, relatively healthy lifespans. Studying these mechanisms in uniquely long-lived species, like the naked mole-rat, may help us tease out the key contributors to aging and longevity.

  15. Oxidative stress and the high altitude environment

    Directory of Open Access Journals (Sweden)

    Jakub Krzeszowiak

    2013-03-01

    Full Text Available In the recent years there has been considerable interest in mountain sports, including mountaineering, owing to the general availability of climbing clothing and equipment as well trainings and professional literature. This raised a new question for the environmental and mountain medicine: Is mountaineering harmful to health? Potential hazards include the conditions existing in the alpine environment, i.e. lower atmospheric pressure leading to the development of hypobaric hypoxia, extreme physical effort, increased UV radiation, lack of access to fresh food, and mental stress. A reasonable measure of harmfulness of these factors is to determine the increase in the level of oxidative stress. Alpine environment can stimulate the antioxidant enzyme system but under specific circumstances it may exceed its capabilities with simultaneous consumption of low-molecular antioxidants resulting in increased generation of reactive oxygen species (ROS. This situation is referred to as oxidative stress. Rapid and uncontrolled proliferation of reactive oxygen species leads to a number of adverse changes, resulting in the above-average damage to the lipid structures of cell membranes (peroxidation, proteins (denaturation, and nucleic acids. Such situation within the human body cannot take place without resultant systemic consequences. This explains the malaise of people returning from high altitude and a marked decrease in their physical fitness. In addition, a theory is put forward that the increase in the level of oxidative stress is one of the factors responsible for the onset of acute mountain sickness (AMS. However, such statement requires further investigation because the currently available literature is inconclusive. This article presents the causes and effects of development of oxidative stress in the high mountains.

  16. Exercise training attenuates sympathetic activation and oxidative stress in diet-induced obesity.

    Science.gov (United States)

    Li, G; Liu, J-Y; Zhang, H-X; Li, Q; Zhang, S-W

    2015-01-01

    It is known that excessive sympathetic activity and oxidative stress are enhanced in obesity. This study aimed to clarify whether exercise training (ET) attenuates sympathetic activation and oxidative stress in obesity. The obesity was induced by high-fat diet (HFD) for 12 weeks. Male Sprague-Dawley rats were assigned to four groups: regular diet (RD) plus sedentary (RD-S), RD plus ET (RD-ET), HFD plus sedentary (HFD-S), and HFD plus ET (HFD-ET). The rats in RD-ET and HFD-ET groups were trained on a motorized treadmill for 60 min/day, five days/week for 8 weeks. The sympathetic activity was evaluated by the plasma norepinephrine (NE) level. The superoxide anion, malondialdehyde and F2-isoprostanes levels in serum and muscles were measured to evaluate oxidative stress. The ET prevented the increases in the body weight, arterial pressure and white adipose tissue mass in HFD rats. The NE level in plasma and oxidative stress related parameters got lower in HFD-ET group compared with HFD-S group. We have found decreased mRNA and protein levels of toll-like receptor (TLR)-2 and TLR-4 by ET in HFD rats. These findings suggest that ET may be effective for attenuating sympathetic activation and oxidative stress in diet-induced obesity.

  17. Assessment of oxidative stress markers in recurrent pregnancy loss: a prospective study.

    Science.gov (United States)

    Yiyenoğlu, Özgür Bilgin; Uğur, Mete Gürol; Özcan, Hüseyin Çağlayan; Can, Günay; Öztürk, Ebru; Balat, Özcan; Erel, Özcan

    2014-06-01

    To determine the levels of oxidative stress markers in recurrent pregnancy loss using a novel automated method. 30 pregnant women in their first trimester with a history of recurrent pregnancy loss (RPL) and 30 healthy pregnant women were enrolled in this prospective controlled study. Total antioxidant capacity (TAC), total oxidant level (TOL) and oxidative stress index (OSI) in maternal serum were measured using the more recently designated Erel method. We observed statistically significant increased TOL and OSI levels in patient group (p = 0.032, p = 0.007, respectively). We also demonstrated statistically significant decreased TAC in pregnant women who had a history of RPL (p = 0.013). Our results support the concept that oxidative stress plays a central role in the etiopathogenesis of RPL. Further studies to evaluate the predictive role of TAC, TOL, OSI levels using Erel method are needed.

  18. Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage.

    Science.gov (United States)

    Li-Byarlay, Hongmei; Huang, Ming Hua; Simone-Finstrom, Michael; Strand, Micheline K; Tarpy, David R; Rueppell, Olav

    2016-10-01

    Oxidative stress can lead to premature aging symptoms and cause acute mortality at higher doses in a range of organisms. Oxidative stress resistance and longevity are mechanistically and phenotypically linked; considerable variation in oxidative stress resistance exists among and within species and typically covaries with life expectancy. However, it is unclear whether stress-resistant, long-lived individuals avoid, repair, or tolerate molecular damage to survive longer than others. The honey bee (Apis mellifera L.) is an emerging model system that is well-suited to address this question. Furthermore, this species is the most economically important pollinator, whose health may be compromised by pesticide exposure, including oxidative stressors. Here, we develop a protocol for inducing oxidative stress in honey bee males (drones) via Paraquat injection. After injection, individuals from different colony sources were kept in common social conditions to monitor their survival compared to saline-injected controls. Oxidative stress was measured in susceptible and resistant individuals. Paraquat drastically reduced survival but individuals varied in their resistance to treatment within and among colony sources. Longer-lived individuals exhibited higher levels of lipid peroxidation than individuals dying early. In contrast, the level of protein carbonylation was not significantly different between the two groups. This first study of oxidative stress in male honey bees suggests that survival of an acute oxidative stressor is due to tolerance, not prevention or repair, of oxidative damage to lipids. It also demonstrates colony differences in oxidative stress resistance that might be useful for breeding stress-resistant honey bees. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. High altitude induced anorexia: effect of changes in leptin and oxidative stress levels.

    Science.gov (United States)

    Vats, Praveen; Singh, Vijay Kumar; Singh, Som Nath; Singh, Shashi Bala

    2007-01-01

    High altitude (HA) exposure usually leads to a significant weight loss in non-acclimatized humans. Anorexia is believed to be the main cause of this body weight loss. Appetite regulatory peptides, i.e. leptin and neuropeptide Y play a key role in food intake and energy homeostasis. Recent studies suggests increased oxidative stress during HA exposure. In present study effect of HA exposure on levels of leptin and NPY was evaluated along with N-acetyl cysteine (NAC) and vitamin E supplementation in relation to food intake and body weight changes. The study was conducted on 30 healthy male volunteers (age 19-29 years). Subjects were divided randomly into three groups of 10 each. Group 1 (placebo) supplemented with 400 mg of calcium gluconate, group 2 and 3 were supplemented with 400 mg of NAC and 400 mg vitamin E, respectively per day. The study was conducted at low altitude (320 m, Phase I), at HA 3600 m (Phase II) and at an altitude of 4580 m (Phase III). On HA exposure significant reduction in plasma leptin levels was observed in all the groups on day 2 (Phase II) along with decrease in food intake and reduction in body weight. Statistically significant increase in blood malondialdehyde (MDA) levels was seen in all the groups on HA exposure (Phase II, Day 2), but the maximum increase was in case of placebo group (65.1%) on day 2 (Phase II) in comparison to low altitude values. The decrease in energy intake was almost same in all the groups indicating that antioxidant supplementation did not provide any protection against HA anorexia. From the study, it may be concluded that leptin and oxidative stress possibly are not the key players for HA anorexia.

  20. Effect of low glycemic index food and postprandial exercise on blood glucose level, oxidative stress and antioxidant capacity.

    Science.gov (United States)

    Kasuya, Noriaki; Ohta, Shoichiro; Takanami, Yoshikazu; Kawai, Yukari; Inoue, Yutaka; Murata, Isamu; Kanamoto, Ikuo

    2015-04-01

    Low glycemic index (GI) food and postprandial exercise are non-drug therapies for improving postprandial hyperglycemia. The present randomized, crossover study investigated the effect of low GI food combined with postprandial exercise on postprandial blood glucose level, oxidative stress and antioxidant capacity. A total of 13 healthy subjects were each used in four experiments: i) rice only (control), ii) salad prior to rice (LGI), iii) exercise following rice (EX) and iv) salad prior to rice and exercise following rice (MIX). The blood glucose level, oxidative stress and antioxidant capacity were then measured. At 60 min after the meal, the blood glucose level was observed to be increased in the MIX group compared with that in the LGI group. Furthermore, at 180 min, the antioxidant capacity was found to be reduced in the MIX group compared with those of the LGI and EX groups. These findings suggest that low GI food combined with postprandial exercise does not improve postprandial hyperglycemia. It may be necessary to establish optimal timing and intensity when combining low GI food with postprandial exercise to improve postprandial hyperglycemia.

  1. Relationships between inflammation, adiponectin, and oxidative stress in metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    Shu-Ju Chen

    Full Text Available Metabolic syndrome (MS represents a cluster of physiological and anthropometric abnormalities. The purpose of this study was to investigate the relationships between the levels of inflammation, adiponectin, and oxidative stress in subjects with MS. The inclusion criteria for MS, according to the Taiwan Bureau of Health Promotion, Department of Health, were applied to the case group (n = 72. The control group (n = 105 comprised healthy individuals with normal blood biochemical values. The levels of inflammatory markers [high sensitivity C-reactive protein (hs-CRP and interleukin-6 (IL-6, adiponectin, an oxidative stress marker (malondialdehyde, and antioxidant enzymes activities [catalase (CAT, superoxide dismutase (SOD, and glutathione peroxidase (GPx] were measured. Subjects with MS had significantly higher concentrations of inflammatory markers and lower adiponectin level, and lower antioxidant enzymes activities than the control subjects. The levels of inflammatory markers and adiponectin were significantly correlated with the components of MS. The level of hs-CRP was significantly correlated with the oxidative stress marker. The IL-6 level was significantly correlated with the SOD and GPx activities, and the adiponectin level was significantly correlated with the GPx activity. A higher level of hs-CRP (≥1.00 mg/L, or IL-6 (≥1.50 pg/mL or a lower level of adiponectin (<7.90 µg/mL were associated with a significantly greater risk of MS. In conclusion, subjects suffering from MS may have a higher inflammation status and a higher level of oxidative stress. A higher inflammation status was significantly correlated with decreases in the levels of antioxidant enzymes and adiponectin and an increase in the risk of MS.

  2. Association of Oxidative Stress with Psychiatric Disorders.

    Science.gov (United States)

    Hassan, Waseem; Noreen, Hamsa; Castro-Gomes, Vitor; Mohammadzai, Imdadullah; da Rocha, Joao Batista Teixeira; Landeira-Fernandez, J

    2016-01-01

    When concentrations of both reactive oxygen species and reactive nitrogen species exceed the antioxidative capability of an organism, the cells undergo oxidative impairment. Impairments in membrane integrity and lipid and protein oxidation, protein mutilation, DNA damage, and neuronal dysfunction are some of the fundamental consequences of oxidative stress. The purpose of this work was to review the associations between oxidative stress and psychological disorders. The search terms were the following: "oxidative stress and affective disorders," "free radicals and neurodegenerative disorders," "oxidative stress and psychological disorders," "oxidative stress, free radicals, and psychiatric disorders," and "association of oxidative stress." These search terms were used in conjunction with each of the diagnostic categories of the American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders and World Health Organization's International Statistical Classification of Diseases and Related Health Problems. Genetic, pharmacological, biochemical, and preclinical therapeutic studies, case reports, and clinical trials were selected to explore the molecular aspects of psychological disorders that are associated with oxidative stress. We identified a broad spectrum of 83 degenerative syndromes and psychiatric disorders that were associated with oxidative stress. The multi-dimensional information identified herein supports the role of oxidative stress in various psychiatric disorders. We discuss the results from the perspective of developing novel therapeutic interventions.

  3. Biologically Synthesized Gold Nanoparticles Ameliorate Cold and Heat Stress-Induced Oxidative Stress in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Xi-Feng Zhang

    2016-06-01

    Full Text Available Due to their unique physical, chemical, and optical properties, gold nanoparticles (AuNPs have recently attracted much interest in the field of nanomedicine, especially in the areas of cancer diagnosis and photothermal therapy. Because of the enormous potential of these nanoparticles, various physical, chemical, and biological methods have been adopted for their synthesis. Synthetic antioxidants are dangerous to human health. Thus, the search for effective, nontoxic natural compounds with effective antioxidative properties is essential. Although AuNPs have been studied for use in various biological applications, exploration of AuNPs as antioxidants capable of inhibiting oxidative stress induced by heat and cold stress is still warranted. Therefore, one goal of our study was to produce biocompatible AuNPs using biological methods that are simple, nontoxic, biocompatible, and environmentally friendly. Next, we aimed to assess the antioxidative effect of AuNPs against oxidative stress induced by cold and heat in Escherichia coli, which is a suitable model for stress responses involving AuNPs. The response of aerobically grown E. coli cells to cold and heat stress was found to be similar to the oxidative stress response. Upon exposure to cold and heat stress, the viability and metabolic activity of E. coli was significantly reduced compared to the control. In addition, levels of reactive oxygen species (ROS and malondialdehyde (MDA and leakage of proteins and sugars were significantly elevated, and the levels of lactate dehydrogenase activity (LDH and adenosine triphosphate (ATP significantly lowered compared to in the control. Concomitantly, AuNPs ameliorated cold and heat-induced oxidative stress responses by increasing the expression of antioxidants, including glutathione (GSH, glutathione S-transferase (GST, super oxide dismutase (SOD, and catalase (CAT. These consistent physiology and biochemical data suggest that AuNPs can ameliorate cold and

  4. [Evaluation of the treatment with D-chiro-inositol on levels of oxidative stress in PCOS patients].

    Science.gov (United States)

    De Leo, V; La Marca, A; Cappelli, V; Stendardi, A; Focarelli, R; Musacchio, M C; Piomboni, P

    2012-12-01

    Recent studies on the pathophysiology of infertility have shown that oxidative stress (OS) can be one of the causal factors. The OS is, by definition, an imbalance between the production of reactive oxygen species (ROS) and antioxidant defense systems. It seems that oxidative stress plays an important role in almost all phases of human reproduction. In fact, ROS are involved in the modulation of a large spectrum of reproductive functions such as oocyte maturation, ovarian steroidogenesis, corpus luteum functions and are involved in the processes of fertilization, embryo development and pregnancy, but also in some diseases that cause infertility. Polycystic ovary syndrome (PCOS) has recently been associated with increased oxidative stress, often put in relation to the syndrome's typical metabolic disorder. Inositol is an intracellular mediator of insulin, currently much used as a therapeutic agent in PCOS. While its main action takes place via insulin sensitization, little is known about the possible effects of other disorders, such as oxidative stress, associated with PCOS. The purpose of this study was therefore to assess the effect of D-chiro-inositol on the state of oxidative stress in the follicular fluid of women with PCOS. Follicular fluids were obtained from women who have turned to the Center for Diagnosis and Treatment of Sterility of Obstetrics and Gynecology of the University Hospital of Siena and Modena diagnosed with PCOS. The women were treated with D-chiro-inositol (500 mg x 2 per day) for 3 months before being subjected to cycles of in vitro fertilization (IVF). The state of oxidative stress was measured by marking of free thiol groups of proteins in the follicular fluid with 3-(N-Maleimidopropionyl)-biocytin. In our study we obtained a lesser presence of free thiol protein groups equal to 77.8% in the follicular fluid of women with PCOS not treated with D-chiro-inositolo, compared to patients who instead have carried out such treatment. These

  5. Hepatic Antioxidant, Oxidative Stress And Histopathological ...

    African Journals Online (AJOL)

    Hepatic Antioxidant, Oxidative Stress And Histopathological Changes Induced By Nicotine In A Gender Based Study In Adult Rats. ... Antioxidant status was assessed in liver by measuring the levels of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione-S-transferase (GST) and ...

  6. Increased oxidative stress in infants exposed to passive smoking.

    Science.gov (United States)

    Aycicek, Ali; Erel, Ozcan; Kocyigit, Abdurrahim

    2005-12-01

    The purpose of this study was to assess the effect of passive cigarette smoking on the oxidative and anti-oxidative status of plasma in infants. Eighty-four infants aged 6-28 weeks were divided into two groups: the study group included infants who had been exposed to passive smoking via at least five cigarettes per day for at least the past 6 weeks at home, while the control group included infants who had never been exposed to passive smoking. The antioxidative status of plasma was assessed by the measurement of individual antioxidant components: vitamin C, albumin, bilirubin, uric acid, thiol contents and total antioxidant capacity (TAC 1 and TAC 2). Oxidative status was assessed by the determination of total peroxide levels and the oxidative stress index (OSI 1 and OSI 2). Plasma vitamin C, thiol concentration and TAC 1 and TAC 2 levels were significantly lower, whereas plasma total peroxide levels and OSI 1 and OSI 2 were significantly higher, in passive smoking infants than in the controls (Pantioxidant defence system in infants, and exposes them to potent oxidative stress.

  7. Protective effects of carnosol against oxidative stress induced brain damage by chronic stress in rats.

    Science.gov (United States)

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Borji, Abasalt; Samini, Mohammad; Farkhondeh, Tahereh

    2017-05-04

    Oxidative stress through chronic stress destroys the brain function. There are many documents have shown that carnosol may have a therapeutic effect versus free radical induced diseases. The current research focused the protective effect of carnosol against the brain injury induced by the restraint stress. The restraint stress induced by keeping animals in restrainers for 21 consecutive days. Thereafter, the rats were injected carnosol or vehicle for 21 consecutive days. At the end of experiment, all the rats were subjected to his open field test and forced swimming test. Afterwards, the rats were sacrificed for measuring their oxidative stress parameters. To measure the modifications in the biochemical aspects after the experiment, the activities of malondialdehyde (MDA), reduced glutathione (GSH), as well as superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CAT) were evaluated in the whole brain. Our data showed that the animals received chronic stress had a raised immobility time versus the non-stressed animals (p < 0.01). Furthermore, chronic stress diminished the number of crossing in the animals that were subjected to the chronic stress versus the non-stressed rats (p < 0.01). Carnosol ameliorated this alteration versus the non-treated rats (p < 0.05). In the vehicle treated rats that submitted to the stress, the level of MDA levels was significantly increased (P < 0.001), and the levels of GSH and antioxidant enzymes were significantly decreased versus the non-stressed animals (P < 0.001). Carnosol treatment reduced the modifications in the stressed animals as compared with the control groups (P < 0.001). All of these carnosol effects were nearly similar to those observed with fluoxetine. The current research shows that the protective effects of carnosol may be accompanied with enhanced antioxidant defenses and decreased oxidative injury.

  8. Dietary antioxidents and oxidative stress in predialysis chronic kidney disease patients.

    Science.gov (United States)

    L Gupta, Krishan; Sahni, Nancy

    2012-10-01

    Dietary antioxidants are important in protecting against human diseases. Oxidative stress, a non- traditional risk factors of cardio-vascular disease is far more prevalent in chronic kidney disease (CKD) patients than in normal subjects. Directory of Open Access Journals (DOAJ), Google Scholar, Pubmed (NLM), LISTA (EBSCO) and Web of Science have been searched. Oxidative stress could be a consequence of an increase in reactive oxygen species as well as a decrease in antioxidant defenses. Among the important factors that can be involved in triggering oxidative stress is insufficient dietary intake of antioxidants. Malnourished CKD patients are reported to have more oxidative stress than well nourished ones. Moving beyond the importance of assessment of dietary protein and energy in pre dialysis CKD patients to the assessment of dietary antioxidants is of utmost importance to help combat enhanced oxidative stress levels in such patients.

  9. Oxidative stress in hepatitis C infected end-stage renal disease subjects

    Directory of Open Access Journals (Sweden)

    Koylu Ahmet O

    2006-07-01

    Full Text Available Abstract Background Both uremia and hepatitis C infection is associated with increased oxidative stress. In the present study, we aimed to find out whether hepatitis C infection has any impact on oxidative stress in hemodialysis subjects. Methods Sixteen hepatitis C (+ hemodialysis subjects, 24 hepatitis C negative hemodialysis subjects and 24 healthy subjects were included. Total antioxidant capacity, total peroxide level and oxidative stress index were determined in all subjects. Results Total antioxidant capacity was significantly higher in controls than hemodialysis subjects with or without hepatitis C infection (all p 0.05/3. Conclusion Oxidative stress is increased in both hepatitis C (+ and hepatitis C (- hemodialysis subjects. However, hepatitis C infection seems to not cause any additional increase in oxidative stress in hemodialysis subjects and it may be partly due to protective effect of dialysis treatment on hepatitis C infection.

  10. Study on the serum oxidative stress status in silicosis patients | He ...

    African Journals Online (AJOL)

    To determine whether oxidative-stress damage play an important role in the mechanism of silicosis, the oxidative stress parameters were investigated in silicosis patients and controls group. 128 silicosis patients and 130 healthy controls were included. The serum superoxide dismutase (SOD) activity and the levels of ...

  11. The Effects of Oxidative Stress in Urinary Tract Infection

    Directory of Open Access Journals (Sweden)

    Ergul Belge Kurutas

    2005-01-01

    Full Text Available We aimed to determine the effects of oxidative stress in urinary tract infection (UTI. One hundred sixty-four urine samples obtained from patients with the prediagnosis of acute UTI admitted to the Faculty of Medicine, Kahramanmaras Sutcu Imam University, were included in this study. Urine cultures were performed according to standard techniques. Urinary isolates were identified by using API ID 32E. The catalase and superoxide dismutase activity and the lipid peroxidation levels known as oxidative stress markers were measured in all urine samples. Thirty-six pathogen microorganisms were identified in positive urine cultures. These microorganisms were as follows: 23 (63.8% E coli, 5 (13.8% P mirabilis, 4 (11.1% K pneumoniae, 2 (5.5% Candida spp, 1 (2.7% S saprophyticus, and 1 (2.7% P aeruginosa. It was observed that lipid peroxidation levels were increased while catalase and superoxide dismutase activities were decreased in positive urine cultures, compared to negative cultures. We conclude that urinary tract infection causes oxidative stress, increases lipid peroxidation level, and leads to insufficiency of antioxidant enzymes.

  12. The p66(Shc adaptor protein controls oxidative stress response in early bovine embryos.

    Directory of Open Access Journals (Sweden)

    Dean H Betts

    Full Text Available The in vitro production of mammalian embryos suffers from high frequencies of developmental failure due to excessive levels of permanent embryo arrest and apoptosis caused by oxidative stress. The p66Shc stress adaptor protein controls oxidative stress response of somatic cells by regulating intracellular ROS levels through multiple pathways, including mitochondrial ROS generation and the repression of antioxidant gene expression. We have previously demonstrated a strong relationship with elevated p66Shc levels, reduced antioxidant levels and greater intracellular ROS generation with the high incidence of permanent cell cycle arrest of 2-4 cell embryos cultured under high oxygen tensions or after oxidant treatment. The main objective of this study was to establish a functional role for p66Shc in regulating the oxidative stress response during early embryo development. Using RNA interference in bovine zygotes we show that p66Shc knockdown embryos exhibited increased MnSOD levels, reduced intracellular ROS and DNA damage that resulted in a greater propensity for development to the blastocyst stage. P66Shc knockdown embryos were stress resistant exhibiting significantly reduced intracellular ROS levels, DNA damage, permanent 2-4 cell embryo arrest and diminished apoptosis frequencies after oxidant treatment. The results of this study demonstrate that p66Shc controls the oxidative stress response in early mammalian embryos. Small molecule inhibition of p66Shc may be a viable clinical therapy to increase the developmental potential of in vitro produced mammalian embryos.

  13. Oxidative stress

    Directory of Open Access Journals (Sweden)

    Stevanović Jelka

    2012-01-01

    Full Text Available The unceasing need for oxygen is in contradiction to the fact that it is in fact toxic to mammals. Namely, its monovalent reduction can have as a consequence the production of short-living, chemically very active free radicals and certain non-radical agents (nitrogen-oxide, superoxide-anion-radicals, hydroxyl radicals, peroxyl radicals, singlet oxygen, peroxynitrite, hydrogen peroxide, hypochlorous acid, and others. There is no doubt that they have numerous positive roles, but when their production is stepped up to such an extent that the organism cannot eliminate them with its antioxidants (superoxide-dismutase, glutathione-peroxidase, catalase, transferrin, ceruloplasmin, reduced glutathion, and others, a series of disorders is developed that are jointly called „oxidative stress.“ The reactive oxygen species which characterize oxidative stress are capable of attacking all main classes of biological macromolecules, actually proteins, DNA and RNA molecules, and in particular lipids. The free radicals influence lipid peroxidation in cellular membranes, oxidative damage to DNA and RNA molecules, the development of genetic mutations, fragmentation, and the altered function of various protein molecules. All of this results in the following consequences: disrupted permeability of cellular membranes, disrupted cellular signalization and ion homeostasis, reduced or loss of function of damaged proteins, and similar. That is why the free radicals that are released during oxidative stress are considered pathogenic agents of numerous diseases and ageing. The type of damage that will occur, and when it will take place, depends on the nature of the free radicals, their site of action and their source. [Projekat Ministarstva nauke Republike Srbije, br. 173034, br. 175061 i br. 31085

  14. Comparative evaluation of stress levels before, during, and after periodontal surgical procedures with and without nitrous oxide-oxygen inhalation sedation

    Directory of Open Access Journals (Sweden)

    Gurkirat Sandhu

    2017-01-01

    Full Text Available Context: Periodontal surgical procedures produce varying degree of stress in all patients. Nitrous oxide-oxygen inhalation sedation is very effective for adult patients with mild-to-moderate anxiety due to dental procedures and needle phobia. Aim: The present study was designed to perform periodontal surgical procedures under nitrous oxide-oxygen inhalation sedation and assess whether this technique actually reduces stress physiologically, in comparison to local anesthesia alone (LA during lengthy periodontal surgical procedures. Settings and Design: This was a randomized, split-mouth, cross-over study. Materials and Methods: A total of 16 patients were selected for this randomized, split-mouth, cross-over study. One surgical session (SS was performed under local anesthesia aided by nitrous oxide-oxygen inhalation sedation, and the other SS was performed on the contralateral quadrant under LA. For each session, blood samples to measure and evaluate serum cortisol levels were obtained, and vital parameters including blood pressure, heart rate, respiratory rate, and arterial blood oxygen saturation were monitored before, during, and after periodontal surgical procedures. Statistical Analysis Used: Paired t-test and repeated measure ANOVA. Results: The findings of the present study revealed a statistically significant decrease in serum cortisol levels, blood pressure and pulse rate and a statistically significant increase in respiratory rate and arterial blood oxygen saturation during periodontal surgical procedures under nitrous oxide inhalation sedation. Conclusion: Nitrous oxide-oxygen inhalation sedation for periodontal surgical procedures is capable of reducing stress physiologically, in comparison to LA during lengthy periodontal surgical procedures.

  15. Soft-food diet induces oxidative stress in the rat brain.

    Science.gov (United States)

    Yoshino, Fumihiko; Yoshida, Ayaka; Hori, Norio; Ono, Yumie; Kimoto, Katsuhiko; Onozuka, Minoru; Lee, Masaichi Chang-il

    2012-02-02

    Decreased dopamine (DA) release in the hippocampus may be caused by dysfunctional mastication, although the mechanisms involved remain unclear. The present study examined the effects of soft- and hard-food diets on oxidative stress in the brain, and the relationship between these effects and hippocampal DA levels. The present study showed that DA release in the hippocampus was decreased in rats fed a soft-food diet. Electron spin resonance studies using the nitroxyl spin probe 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl directly demonstrated a high level of oxidative stress in the rat brain due to soft-food diet feeding. In addition, we confirmed that DA directly react with reactive oxygen species such as hydroxyl radical and superoxide. These observations suggest that soft-food diet feeding enhances oxidative stress, which leads to oxidation and a decrease in the release of DA in the hippocampus of rats. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. Oxidative stress in birds along a NOx and urbanisation gradient: An interspecific approach.

    Science.gov (United States)

    Salmón, Pablo; Stroh, Emilie; Herrera-Dueñas, Amparo; von Post, Maria; Isaksson, Caroline

    2018-05-01

    Urbanisation is regarded as one of the most threatening global issues for wildlife, however, measuring its impact is not always straight forward. Oxidative stress physiology has been suggested to be a useful biomarker of health and therefore, a potentially important indicator of the impact that urban environmental stressors, especially air pollution, can have on wildlife. For example, nitrogen oxides (NO x ), released during incomplete combustion of fossil fuels, are highly potent pro-oxidants, thus predicted to affect either the protective antioxidants and/or cause oxidative damage to bio-molecules. To date, epidemiological modelling of the predicted association between oxidative stress and NO x exposure has not been performed in wild animals. Here, we address this short-coming, by investigating multiple oxidative stress markers in four common passerine bird species, the blue tit (Cyanistes caeruleus), great tit (Parus major), house sparrow (Passer domesticus) and tree sparrow (Passer montanus), living along a gradient of NO x and urbanisation levels in southern Sweden. First of all, the results revealed that long- and medium-term (one month and one week, respectively) NO x levels were highly correlated with the level of urbanisation. This confirms that the commonly used urbanisation index is a reliable proxy for urban air pollution. Furthermore, in accordance to our prediction, individuals exposed to higher long- and medium-term NO x levels/urbanisation had higher plasma antioxidant capacity. However, only tree sparrows showed higher oxidative damage (protein carbonyls) in relation to NO x levels and this association was absent with urbanisation. Lipid peroxidation, glutathione and superoxide dismutase levels did not co-vary with NO x /urbanisation. Given that most oxidative stress biomarkers showed strong species-specificity, independent of variation in NO x /urbanisation, the present study highlights the need to study variation in oxidative stress across

  17. Genotoxicity and oxidative stress in chromium-exposed tannery workers in North India.

    Science.gov (United States)

    Ambreen, Khushboo; Khan, Faizan Haider; Bhadauria, Smrati; Kumar, Sudhir

    2014-06-01

    Trivalent chromium (Cr) is an environmental contaminant, which is extensively used in tanning industries throughout the world and causes various forms of health hazards in tannery workers. Therefore, a cross-sectional study design was used to evaluate the DNA damage and oxidative stress condition in tannery workers exposed to Cr in North India. The study population comprised 100 male tanners in the exposed group and 100 healthy males (no history of Cr exposure) in the comparable control group. Baseline characteristics including age, smoking, alcohol consumption habits and duration of exposure were recorded via interviewing the subjects. Blood Cr level (measured by atomic absorption spectrophotometry), DNA damage (measured by comet assay) and oxidative stress parameters (malondialdehyde (MDA), glutathione (GSH) and superoxide dismutase (SOD)) were estimated in both the groups. As a result of statistical analysis, exposed group showed significantly higher level of Cr (p  0.05) on DNA damage and oxidative stress parameters in both the groups. In simple and multiple correlation analysis, DNA damage and oxidative stress parameters showed significant correlation with Cr level and duration of exposure in exposed group. The findings of the present study revealed that chronic occupational exposure to trivalent Cr may cause DNA damage and oxidative stress in tannery workers. © The Author(s) 2012.

  18. The effect of oxidative stress on the progression of Hashimoto's thyroiditis.

    Science.gov (United States)

    Ates, Ihsan; Arikan, Mehmet Fettah; Altay, Mustafa; Yilmaz, Fatma Meric; Yilmaz, Nisbet; Berker, Dilek; Guler, Serdar

    2017-11-29

    We aimed to investigate the effects of oxidative stress in the pathogenesis and progression of Hashimoto's thyroiditis (HT). Forty euthyroid and 40 subclinical hypothyroid patients older than 18 years and not yet had received treatment were enrolled in the study. In the 9 months follow-up, 14 of the HT patients developed overt hypothyroidism. The mean total oxidant status (TOS) and oxidative stress index (OSI) were higher in patients who developed overt hypothyroidism than those who did not (p  .05). Multivariable Cox regression model showed thyroid stimulating hormone level (HR = 1.348, p OSI ratio (HR = 2.349, p OSI level, being over 2.96 with 92.9% sensitivity and 62.5% specificity, predicts the risk of hypothyroidism. Oxidative stress may be an effective risk factor in the development of overt hypothyroidism in HT.

  19. Passive smoking reduces and vitamin C increases exercise-induced oxidative stress: does this make passive smoking an anti-oxidant and vitamin C a pro-oxidant stimulus?

    Science.gov (United States)

    Theodorou, Anastasios A; Paschalis, Vassilis; Kyparos, Antonios; Panayiotou, George; Nikolaidis, Michalis G

    2014-11-07

    The current interpretative framework states that, for a certain experimental treatment (usually a chemical substance) to be classified as "anti-oxidant", it must possess the property of reducing (or even nullifying) exercise-induced oxidative stress. The aim of the study was to compare side by side, in the same experimental setup, redox biomarkers responses to an identical acute eccentric exercise session, before and after chronic passive smoking (considered a pro-oxidant stimulus) or vitamin C supplementation (considered an anti-oxidant stimulus). Twenty men were randomly assigned into either passive smoking or vitamin C group. All participants performed two acute eccentric exercise sessions, one before and one after either exposure to passive smoking or vitamin C supplementation for 12 days. Vitamin C, oxidant biomarkers (F2-isoprostanes and protein carbonyls) and the non-enzymatic antioxidant (glutathione) were measured, before and after passive smoking, vitamin C supplementation or exercise. It was found that chronic exposure to passive smoking increased the level of F2-isoprostanes and decreased the level of glutathione at rest, resulting in minimal increase or absence of oxidative stress after exercise. Conversely, chronic supplementation with vitamin C decreased the level of F2-isoprostanes and increased the level of glutathione at rest, resulting in marked exercise-induced oxidative stress. Contrary to the current scientific consensus, our results show that, when a pro-oxidant stimulus is chronically delivered, it is more likely that oxidative stress induced by subsequent exercise is decreased and not increased. Reversely, it is more likely to find greater exercise-induced oxidative stress after previous exposure to an anti-oxidant stimulus. We believe that the proposed framework will be a useful tool to reach more pragmatic explanations of redox biology phenomena. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. The relationship between potency of oxidative stress and severity of dilated cardiomyopathy.

    Science.gov (United States)

    Demirbag, Recep; Yilmaz, Remzi; Erel, Ozcan; Gultekin, Unal; Asci, Durmus; Elbasan, Zafer

    2005-08-01

    It has been suggested that oxidative stress may have a role in the etiopathogenesis of congestive heart failure. To investigate and compare the oxidative-antioxidative status and oxidative stress index (OSI) of patients with idiopathic dilated cardiomyopathy (IDC) with those of healthy volunteers, and to determine the relationship between total antioxidant capacity (TAC) and ejection fraction (EF). Twenty-eight patients with IDC and 24 control subjects were enrolled in the study. Antioxidative status was evaluated by measuring the TAC and the vitamin C and thiol levels in the plasma. Oxidative status was evaluated by measuring the total peroxide level. The per cent ratio of TAC to total peroxide level was accepted as the OSI. EF was measured using Simpson's method. TAC and vitamin C and thiol levels of plasma were found to be significantly lower in patients with IDC than in control subjects (P total peroxide levels and OSIs were significantly higher in patients with IDC than in control subjects (P = 0.002 and P = 0.002, respectively). An important positive correlation was found between TAC and EF (r = 0.772; P total peroxide levels in patients. Oxidants are increased and antioxidants are decreased in patients with IDC; as a result, the oxidative-antioxidative balance is shifted to the oxidative side. There is a significant correlation between the potency of oxidative stress and the severity of IDC. It is believed that supplementation of antioxidants in the treatment of IDC may be helpful to these patients.

  1. Oxidative Stress Induces Senescence in Cultured RPE Cells.

    Science.gov (United States)

    Aryan, Nona; Betts-Obregon, Brandi S; Perry, George; Tsin, Andrew T

    2016-01-01

    The aim of this research is to determine whether oxidative stress induces cellular senescence in human retinal pigment epithelial cells. Cultured ARPE19 cells were subjected to different concentrations of hydrogen peroxide to induce oxidative stress. Cells were seeded into 24-well plates with hydrogen peroxide added to cell medium and incubated at 37°C + 5% CO2 for a 90-minute period [at 0, 300, 400 and 800 micromolar (MCM) hydrogen peroxide]. The number of viable ARPE19 cells were recorded using the Trypan Blue Dye Exclusion Method and cell senescence was measured by positive staining for senescence-associated beta-galactosidase (SA-beta-Gal) protein. Without hydrogen peroxide treatment, the number of viable ARPE19 cells increased significantly from 50,000 cells/well to 197,000 within 72 hours. Treatment with hydrogen peroxide reduced this level of cell proliferation significantly (to 52,167 cells at 400 MCM; to 49,263 cells at 800 MCM). Meanwhile, cells with a high level of positive senescence-indicator SA-Beta-Gal-positive staining was induced by hydrogen peroxide treatment (from a baseline level of 12% to 80% at 400 MCM and at 800 MCM). Our data suggests that oxidative stress from hydrogen peroxide treatment inhibited ARPE19 cell proliferation and induced cellular senescence.

  2. MicroRNA-122 is involved in oxidative stress in isoniazid-induced liver injury in mice.

    Science.gov (United States)

    Song, L; Zhang, Z R; Zhang, J L; Zhu, X B; He, L; Shi, Z; Gao, L; Li, Y; Hu, B; Feng, F M

    2015-10-27

    Many studies have shown that the pathogenesis of liver injury includes oxidative stress. MicroRNA-122 may be a marker for the early diagnosis of drug-induced liver injury. However, the relationship between microRNA-122 and oxidative stress in anti-tuberculosis drug-induced liver injury remains unknown. We measured changes in tissue microRNA-122 levels and indices of oxidative stress during liver injury in mice after administration of isoniazid, a first-line anti-tuberculosis drug. We quantified microRNA-122 expression and indices of oxidative stress at 7 time points, including 1, 3, and 5 days and 1, 2, 3, and 4 weeks. The tissue microRNA-122 levels and oxidative stress significantly changed at 3 and 5 days, suggesting that isoniazid-induced liver injury reduces oxidative stress and microRNA-122 expression compared to in the control group (P microRNA-122, began to change at 5 days (P microRNA-122 profile may affect oxidative stress by regulating mitochondrial ribosome protein S11 gene during isoniazid-induced liver injury, which may contribute to the response mechanisms of microRNA-122 and oxidative stress.

  3. Oxidative stress and antioxidant status in primary bone and soft tissue sarcoma

    International Nuclear Information System (INIS)

    Nathan, Fatima M; Singh, Vivek A; Dhanoa, Amreeta; Palanisamy, Uma D

    2011-01-01

    Oxidative stress is characterised by an increased level of reactive oxygen species (ROS) that disrupts the intracellular reduction-oxidation (redox) balance and has been implicated in various diseases including cancer. Malignant tumors of connective tissue or sarcomas account for approximately 1% of all cancer diagnoses in adults and around 15% of paediatric malignancies per annum. There exists no information on the alterations of oxidant/antioxidant status of sarcoma patients in literature. This study was aimed to determine the levels of oxidative stress and antioxidant defence in patients with primary bone and soft tissue sarcoma and to investigate if there exists any significant differences in these levels between both the sarcomas. The study cohort consisted of 94 subjects; 20 soft tissue sarcoma, 27 primary bone sarcoma and 47 healthy controls. Malondialdehyde (MDA) and protein carbonyls were determined to assess their oxidative stress levels while antioxidant status was evaluated using catalase (CAT), superoxide dismutase (SOD), thiols and trolox equivalent antioxidant capacity (TEAC). Sarcoma patients showed significant increase in plasma and urinary MDA and serum protein carbonyl levels (p < 0.05) while significant decreases were noted in TEAC, thiols, CAT and SOD levels (p < 0.05). No significant difference in oxidative damage was noted between both the sarcomas (p > 0.05). In conclusion, an increase in oxidative stress and decrease in antioxidant status is observed in both primary bone and soft tissue sarcomas with a similar extent of damage. This study offers the basis for further work on whether the manipulation of redox balance in patients with sarcoma represents a useful approach in the design of future therapies for bone disease

  4. Chronic mitochondrial uncoupling treatment prevents acute cold-induced oxidative stress in birds.

    Science.gov (United States)

    Stier, Antoine; Massemin, Sylvie; Criscuolo, François

    2014-12-01

    Endotherms have evolved two major types of thermogenesis that allow them to actively produce heat in response to cold exposure, either through muscular activity (i.e. shivering thermogenesis) or through futile electro-chemical cycles (i.e. non-shivering thermogenesis). Amongst the latter, mitochondrial uncoupling is of key importance because it is suggested to drive heat production at a low cost in terms of oxidative stress. While this has been experimentally shown in mammals, the oxidative stress consequences of cold exposure and mitochondrial uncoupling are clearly less understood in the other class of endotherms, the birds. We compared metabolic and oxidative stress responses of zebra finches chronically treated with or without a chemical mitochondrial uncoupler (2,4-dinitrophenol: DNP), undergoing an acute (24 h) and a chronic (4 weeks) cold exposure (12 °C). We predicted that control birds should present at least a transient elevation of oxidative stress levels in response to cold exposure. This oxidative stress cost should be more pronounced in control birds than in DNP-treated birds, due to their lower basal uncoupling state. Despite similar increase in metabolism, control birds presented elevated levels of DNA oxidative damage in response to acute (but not chronic) cold exposure, while DNP-treated birds did not. Plasma antioxidant capacity decreased overall in response to chronic cold exposure. These results show that acute cold exposure increases oxidative stress in birds. However, uncoupling mitochondrial functioning appears as a putative compensatory mechanism preventing cold-induced oxidative stress. This result confirms previous observations in mice and underlines non-shivering thermogenesis as a putative key mechanism for endotherms in mounting a response to cold at a low oxidative cost.

  5. Correlation between the serum and tissue levels of oxidative stress markers and the extent of inflammation in acute appendicitis

    Science.gov (United States)

    Dumlu, Ersin Gürkan; Tokaç, Mehmet; Bozkurt, Birkan; Yildirim, Murat Baki; Ergin, Merve; Yalçin, Abdussamed; Kiliç, Mehmet

    2014-01-01

    OBJECTIVES: To determine the serum and tissue levels of markers of impaired oxidative metabolism and correlate these levels with the histopathology and Alvarado score of acute appendicitis patients. METHOD: Sixty-five acute appendicitis patients (mean age, 31.4±12.06 years; male/female, 30/35) and 30 healthy control subjects were studied. The Alvarado score was recorded. Serum samples were obtained before surgery and 12 hours postoperatively to examine the total antioxidant status, total oxidant status, paraoxonase, stimulated paraoxonase, arylesterase, catalase, myeloperoxidase, ceruloplasmin, oxidative stress markers (advanced oxidized protein products and total thiol level) and ischemia-modified albumin. Surgical specimens were also evaluated. RESULTS: The diagnoses were acute appendicitis (n = 37), perforated appendicitis (n = 8), phlegmonous appendicitis (n = 12), perforated+phlegmonous appendicitis (n = 4), or no appendicitis (n = 4). The Alvarado score of the acute appendicitis group was significantly lower than that of the perforated+phlegmonous appendicitis group (p = 0.004). The serum total antioxidant status, total thiol level, advanced oxidized protein products, total oxidant status, catalase, arylesterase, and ischemia-modified albumin levels were significantly different between the acute appendicitis and control groups. There was no correlation between the pathological extent of acute appendicitis and the tissue levels of the markers; additionally, there was no correlation between the tissue and serum levels of any of the parameters. CONCLUSIONS: The imbalance of oxidant/antioxidant systems plays a role in the pathogenesis acute appendicitis. The Alvarado score can successfully predict the presence and extent of acute appendicitis. PMID:25518019

  6. Is the Level of Nitric Oxide in the Dental Follicular Tissues of Impacted Third Molars With a History of Recurrent Pericoronitis a True Marker of Oxidative Stress?

    Science.gov (United States)

    Hendek, Meltem Karsiyaka; Şenses, Fatma; Kisa, Üçler; Aksoy, Nurkan; Tekin, Umut

    2017-10-01

    Nitric oxide (NO) is an indicator of oxidative stress in several tissues. Its role in dental follicular (DF) tissues of impacted third molars with a history of recurrent pericoronitis is not well elucidated. The present study compared NO levels between inflamed and noninflamed DF tissues of impacted third molars with a history of recurrent pericoronitis. A cross-sectional study was designed. The study sample included inflamed DF tissues (test group) with certain local inflammatory symptoms, such as pain, tenderness, swelling, and erythema and noninflamed DF tissues (control group) without local inflammatory symptoms of impacted mandibular third molars. Each patient contributed only 1 specimen to the samples. All tissues samples were biochemically investigated for NO levels as an indicator of oxidative stress. The primary predictor variable was inflammatory status; secondary predictor variables were age and gender. The primary outcome variable was NO level. Descriptive and comparative analyses were conducted. The test group consisted of 57 patients (28 men, 29 women; mean age, 23.28 ± 5.16 yr) and the control group consisted of 57 patients (30 men, 27 women; mean age, 23.02 ± 5.42 yr). No relevant intergroup differences were noted for demographic findings such as age and gender. NO levels were significantly higher in inflamed DF tissues of impacted third molars than in noninflamed DF tissues (P stress and the necessity to remove impacted mandibular third molars with a history of recurrent pericoronitis. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  7. Clinical Relevance of Biomarkers of Oxidative Stress

    DEFF Research Database (Denmark)

    Frijhoff, Jeroen; Winyard, Paul G; Zarkovic, Neven

    2015-01-01

    SIGNIFICANCE: Oxidative stress is considered to be an important component of various diseases. A vast number of methods have been developed and used in virtually all diseases to measure the extent and nature of oxidative stress, ranging from oxidation of DNA to proteins, lipids, and free amino ac....... The vast diversity in oxidative stress between diseases and conditions has to be taken into account when selecting the most appropriate biomarker.......SIGNIFICANCE: Oxidative stress is considered to be an important component of various diseases. A vast number of methods have been developed and used in virtually all diseases to measure the extent and nature of oxidative stress, ranging from oxidation of DNA to proteins, lipids, and free amino...... acids. RECENT ADVANCES: An increased understanding of the biology behind diseases and redox biology has led to more specific and sensitive tools to measure oxidative stress markers, which are very diverse and sometimes very low in abundance. CRITICAL ISSUES: The literature is very heterogeneous...

  8. Exercise-Induced Oxidative Stress Responses in the Pediatric Population

    Directory of Open Access Journals (Sweden)

    Alexandra Avloniti

    2017-01-01

    Full Text Available Adults demonstrate an upregulation of their pro- and anti-oxidant mechanisms in response to acute exercise while systematic exercise training enhances their antioxidant capacity, thereby leading to a reduced generation of free radicals both at rest and in response to exercise stress. However, less information exists regarding oxidative stress responses and the underlying mechanisms in the pediatric population. Evidence suggests that exercise-induced redox perturbations may be valuable in order to monitor exercise-induced inflammatory responses and as such training overload in children and adolescents as well as monitor optimal growth and development. The purpose of this review was to provide an update on oxidative stress responses to acute and chronic exercise in youth. It has been documented that acute exercise induces age-specific transient alterations in both oxidant and antioxidant markers in children and adolescents. However, these responses seem to be affected by factors such as training phase, training load, fitness level, mode of exercise etc. In relation to chronic adaptation, the role of training on oxidative stress adaptation has not been adequately investigated. The two studies performed so far indicate that children and adolescents exhibit positive adaptations of their antioxidant system, as adults do. More studies are needed in order to shed light on oxidative stress and antioxidant responses, following acute exercise and training adaptations in youth. Available evidence suggests that small amounts of oxidative stress may be necessary for growth whereas the transition to adolescence from childhood may promote maturation of pro- and anti-oxidant mechanisms. Available evidence also suggests that obesity may negatively affect basal and exercise-related antioxidant responses in the peripubertal period during pre- and early-puberty.

  9. Oxidative Stress ‑a Phenotypic Hallmark of Fanconi Anemia and ...

    African Journals Online (AJOL)

    Keywords: Down syndrome, Oxidative DNA damage, Oxidative stress. Access this ... higher MDA levels (P < 0.01) and non significantly lower total antioxidant .... in their study that carotenoids and carotenoid-rich foods can influence DNA ...

  10. Oxidative Stress in Cystinosis Patients

    Directory of Open Access Journals (Sweden)

    Maria Helena Vaisbich

    2011-09-01

    Full Text Available Background/Aims: Nephropathic cystinosis (NC is a severe systemic disease and cysteamine improves its prognosis. Lysosomal cystine accumulation is the hallmark of cystinosis and is regarded as the primary defect due to mutations in the CTNS gene. However, there is great evidence that cystine accumulation itself is not responsible for all abnormalities observed in NC. Studies have demonstrated altered ATP metabolism, increased apoptosis, and cell oxidation. An increased number of autophagosomes and autophagic vacuoles have been observed in cystinotic fibroblasts and renal epithelial cells, suggesting that altered autophagy plays a role in NC, leading to increased production of reactive oxygen species. Therefore, cystinosis patients can be more susceptible to oxidative stress (OS and it can contribute to the progression of the renal disease. Our goal was to evaluate a marker of OS (serum TBARS in NC children, and to compare the results with those observed in healthy controls and correlated with renal function parameters. Methods: The study included patients aged under 18 years, with good adherence to the treatment and out of renal replacement therapy. The following parameters were evaluated: serum creatinine, BUN, creatinine clearance estimated by stature and serum TBARS levels. Results: We selected 20 patients aged 8.0 ±3.6 years and observed serum TBARS levels of 4.03 ±1.02 nmol/ml. Serum TBARS levels in the 43 healthy controls, aged 7.4 ±1.1 years, were 1.60 ±0.04 nmol/ml. There was a significant difference between the plasma TBARS levels among the 2 groups (p Conclusion: An increased level of serum TBARS in patients with NC was observed and this abnormality was not correlated with the renal function status degree. This is the first report that shows increased oxidative stress in serum of NC patients.

  11. Astragaloside IV attenuates experimental autoimmune encephalomyelitis of mice by counteracting oxidative stress at multiple levels.

    Directory of Open Access Journals (Sweden)

    Yixin He

    Full Text Available Multiple sclerosis (MS is a chronic autoimmune neuroinflammatory disease found mostly in young adults in the western world. Oxidative stress induced neuronal apoptosis plays an important role in the pathogenesis of MS. In current study, astragaloside IV (ASI, a natural saponin molecule isolated from Astragalus membranceus, given at 20 mg/kg daily attenuated the severity of experimental autoimmune encephalomyelitis (EAE in mice significantly. Further studies disclosed that ASI treatment inhibited the increase of ROS and pro-inflammatory cytokine levels, down-regulation of SOD and GSH-Px activities, and elevation of iNOS, p53 and phosphorylated tau in central nervous system (CNS as well as the leakage of BBB of EAE mice. Meanwhile, the decreased ratio of Bcl-2/Bax was reversed by ASI. Moreover, ASI regulated T-cell differentiation and infiltration into CNS. In neuroblast SH-SY5Y cells, ASI dose-dependently reduced cellular ROS level and phosphorylation of tau in response to hydrogen peroxide challenge by modulation of Bcl-2/Bax ratio. ASI also inhibited activation of microglia both in vivo and in vitro. iNOS up-regulation induced by IFNγ stimulation was abolished by ASI dose-dependently in BV-2 cells. In summary, ASI prevented the severity of EAE progression possibly by counterbalancing oxidative stress and its effects via reduction of cellular ROS level, enhancement of antioxidant defense system, increase of anti-apoptotic and anti-inflammatory pathways, as well as modulation of T-cell differentiation and infiltration into CNS. The study suggested ASI may be effective for clinical therapy/prevention of MS.

  12. Astragaloside IV attenuates experimental autoimmune encephalomyelitis of mice by counteracting oxidative stress at multiple levels.

    Science.gov (United States)

    He, Yixin; Du, Min; Gao, Yan; Liu, Hongshuai; Wang, Hongwei; Wu, Xiaojun; Wang, Zhengtao

    2013-01-01

    Multiple sclerosis (MS) is a chronic autoimmune neuroinflammatory disease found mostly in young adults in the western world. Oxidative stress induced neuronal apoptosis plays an important role in the pathogenesis of MS. In current study, astragaloside IV (ASI), a natural saponin molecule isolated from Astragalus membranceus, given at 20 mg/kg daily attenuated the severity of experimental autoimmune encephalomyelitis (EAE) in mice significantly. Further studies disclosed that ASI treatment inhibited the increase of ROS and pro-inflammatory cytokine levels, down-regulation of SOD and GSH-Px activities, and elevation of iNOS, p53 and phosphorylated tau in central nervous system (CNS) as well as the leakage of BBB of EAE mice. Meanwhile, the decreased ratio of Bcl-2/Bax was reversed by ASI. Moreover, ASI regulated T-cell differentiation and infiltration into CNS. In neuroblast SH-SY5Y cells, ASI dose-dependently reduced cellular ROS level and phosphorylation of tau in response to hydrogen peroxide challenge by modulation of Bcl-2/Bax ratio. ASI also inhibited activation of microglia both in vivo and in vitro. iNOS up-regulation induced by IFNγ stimulation was abolished by ASI dose-dependently in BV-2 cells. In summary, ASI prevented the severity of EAE progression possibly by counterbalancing oxidative stress and its effects via reduction of cellular ROS level, enhancement of antioxidant defense system, increase of anti-apoptotic and anti-inflammatory pathways, as well as modulation of T-cell differentiation and infiltration into CNS. The study suggested ASI may be effective for clinical therapy/prevention of MS.

  13. Role of Oxidative Stress in Epigenetic Modification in Endometriosis.

    Science.gov (United States)

    Ito, Fuminori; Yamada, Yuki; Shigemitsu, Aiko; Akinishi, Mika; Kaniwa, Hiroko; Miyake, Ryuta; Yamanaka, Shoichiro; Kobayashi, Hiroshi

    2017-11-01

    Aberrant DNA methylation and histone modification are associated with an increased risk of reproductive disorders such as endometriosis. However, a cause-effect relationship between epigenetic mechanisms and endometriosis development has not been fully determined. This review provides current information based on oxidative stress in epigenetic modification in endometriosis. This article reviews the English-language literature on epigenetics, DNA methylation, histone modification, and oxidative stress associated with endometriosis in an effort to identify epigenetic modification that causes a predisposition to endometriosis. Oxidative stress, secondary to the influx of hemoglobin, heme, and iron during retrograde menstruation, is involved in the expression of CpG demethylases, ten-eleven translocation, and jumonji (JMJ). Ten-eleven translocation and JMJ recognize a wide range of endogenous DNA methyltransferases (DNMTs). The increased expression levels of DNMTs may be involved in the subsequent downregulation of the decidualization-related genes. This review supports the hypothesis that there are at least 2 distinct phases of epigenetic modification in endometriosis: the initial wave of iron-induced oxidative stress would be followed by the second big wave of epigenetic modulation of endometriosis susceptibility genes. We summarize the recent advances in our understanding of the underlying epigenetic mechanisms focusing on oxidative stress in endometriosis.

  14. Effects of Uric Acid on Exercise-induced Oxidative Stress

    OpenAIRE

    平井, 富弘

    2001-01-01

    We studied effects of uric acid on exercise― induced oxidative stress in humans based on a hypothesis that uric acid acts as an antioxidant to prevent from exercise―induced oxidative stress. Relation between uric acid level in plasma and increase of thiobarbituric acid reactive substance (TBARS)after the cycle ergometer exercise was examined. Thiobarbituricacid reactive substance in plasma increased after the ergometer exercise. High uric acid in plasma did not result in low increase of TBARS...

  15. Piracetam improves mitochondrial dysfunction following oxidative stress

    Science.gov (United States)

    Keil, Uta; Scherping, Isabel; Hauptmann, Susanne; Schuessel, Katin; Eckert, Anne; Müller, Walter E

    2005-01-01

    Mitochondrial dysfunction including decrease of mitochondrial membrane potential and reduced ATP production represents a common final pathway of many conditions associated with oxidative stress, for example, hypoxia, hypoglycemia, and aging. Since the cognition-improving effects of the standard nootropic piracetam are usually more pronounced under such pathological conditions and young healthy animals usually benefit little by piracetam, the effect of piracetam on mitochondrial dysfunction following oxidative stress was investigated using PC12 cells and dissociated brain cells of animals treated with piracetam. Piracetam treatment at concentrations between 100 and 1000 μM improved mitochondrial membrane potential and ATP production of PC12 cells following oxidative stress induced by sodium nitroprusside (SNP) and serum deprivation. Under conditions of mild serum deprivation, piracetam (500 μM) induced a nearly complete recovery of mitochondrial membrane potential and ATP levels. Piracetam also reduced caspase 9 activity after SNP treatment. Piracetam treatment (100–500 mg kg−1 daily) of mice was also associated with improved mitochondrial function in dissociated brain cells. Significant improvement was mainly seen in aged animals and only less in young animals. Moreover, the same treatment reduced antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, and glutathione reductase) in aged mouse brain only, which are elevated as an adaptive response to the increased oxidative stress with aging. In conclusion, therapeutically relevant in vitro and in vivo concentrations of piracetam are able to improve mitochondrial dysfunction associated with oxidative stress and/or aging. Mitochondrial stabilization and protection might be an important mechanism to explain many of piracetam's beneficial effects in elderly patients. PMID:16284628

  16. Associations of weight stigma with cortisol and oxidative stress independent of adiposity.

    Science.gov (United States)

    Tomiyama, A Janet; Epel, Elissa S; McClatchey, Trissa M; Poelke, Gina; Kemeny, Margaret E; McCoy, Shannon K; Daubenmier, Jennifer

    2014-08-01

    Weight discrimination is associated with increased risk of obesity. The mechanism of this relationship is unknown, but being overweight is a highly stigmatized condition and may be a source of chronic stress that contributes to the development and pathophysiology of obesity. The objective of this study was to test whether weight stigma is associated with physiological risk factors linked to stress and obesity, including hypercortisolism and oxidative stress, independent of adiposity. We examined the frequency of experiencing situations involving weight stigma and consciousness of weight stigma in relation to hypothalamic--pituitary--adrenal axis activity and oxidative stress (F₂-isoprostanes) in 45 healthy overweight to obese women. Independent of abdominal fat, weight stigma was significantly related to measures of cortisol (including salivary measures of cortisol awakening response and serum morning levels) as well as higher levels of oxidative stress. Perceived stress mediated the relationship between weight stigma consciousness and the cortisol awakening response. These preliminary findings show that weight stigma is associated with greater biochemical stress, independent of level of adiposity. It is possible that weight stigma may contribute to poor health underlying some forms of obesity.

  17. Oxygen and oxidative stress in the perinatal period

    Directory of Open Access Journals (Sweden)

    Isabel Torres-Cuevas

    2017-08-01

    Full Text Available Fetal life evolves in a hypoxic environment. Changes in the oxygen content in utero caused by conditions such as pre-eclampsia or type I diabetes or by oxygen supplementation to the mother lead to increased free radical production and correlate with perinatal outcomes.In the fetal-to-neonatal transition asphyxia is characterized by intermittent periods of hypoxia ischemia that may evolve to hypoxic ischemic encephalopathy associated with neurocognitive, motor, and neurosensorial impairment. Free radicals generated upon reoxygenation may notably increase brain damage. Hence, clinical trials have shown that the use of 100% oxygen given with positive pressure in the airways of the newborn infant during resuscitation causes more oxidative stress than using air, and increases mortality.Preterm infants are endowed with an immature lung and antioxidant system. Clinical stabilization of preterm infants after birth frequently requires positive pressure ventilation with a gas admixture that contains oxygen to achieve a normal heart rate and arterial oxygen saturation. In randomized controlled trials the use high oxygen concentrations (90% to 100% has caused more oxidative stress and clinical complications that the use of lower oxygen concentrations (30–60%. A correlation between the amount of oxygen received during resuscitation and the level of biomarkers of oxidative stress and clinical outcomes was established. Thus, based on clinical outcomes and analytical results of oxidative stress biomarkers relevant changes were introduced in the resuscitation policies. However, it should be underscored that analysis of oxidative stress biomarkers in biofluids has only been used in experimental and clinical research but not in clinical routine. The complexity of the technical procedures, lack of automation, and cost of these determinations have hindered the routine use of biomarkers in the clinical setting. Overcoming these technical and economical difficulties

  18. Lymphocyte DNA damage and oxidative stress in patients with iron deficiency anemia.

    Science.gov (United States)

    Aslan, Mehmet; Horoz, Mehmet; Kocyigit, Abdurrahim; Ozgonül, Saadet; Celik, Hakim; Celik, Metin; Erel, Ozcan

    2006-10-10

    Oxidant stress has been shown to play an important role in the pathogenesis of iron deficiency anemia. The aim of this study was to investigate the association between lymphocyte DNA damage, total antioxidant capacity and the degree of anemia in patients with iron deficiency anemia. Twenty-two female with iron deficiency anemia and 22 healthy females were enrolled in the study. Peripheral DNA damage was assessed using alkaline comet assay and plasma total antioxidant capacity was determined using an automated measurement method. Lymphocyte DNA damage of patients with iron deficiency anemia was significantly higher than controls (ptotal antioxidant capacity was significantly lower (ptotal antioxidant capacity and hemoglobin levels (r=0.706, ptotal antioxidant capacity and hemoglobin levels were negatively correlated with DNA damage (r=-0.330, p<0.05 and r=-0.323, p<0.05, respectively). In conclusion, both oxidative stress and DNA damage are increased in IDA patients. Increased oxidative stress seems as an important factor that inducing DNA damage in those IDA patients. The relationships of oxidative stress and DNA damage with the severity of anemia suggest that both oxidative stress and DNA damage may, in part, have a role in the pathogenesis of IDA.

  19. Oxidative stress associated with exercise, psychological stress and life-style factors

    DEFF Research Database (Denmark)

    Møller, P; Wallin, H; Knudsen, Lisbeth E.

    1996-01-01

    generation. Here, we review the effect of alcohol, air pollution, cigarette smoke, diet, exercise, non-ionizing radiation (UV and microwaves) and psychological stress on the development of oxidative stress. Regular exercise and carbohydrate-rich diets seem to increase the resistance against oxidative stress....... Air pollution, alcohol, cigarette smoke, non-ionizing radiation and psychological stress seem to increase oxidative stress. Alcohol in lower doses may act as an antioxidant on low density lipoproteins and thereby have an anti-atherosclerotic property....

  20. From Oxidative Stress Damage to Pathways, Networks, and Autophagy via MicroRNAs

    Directory of Open Access Journals (Sweden)

    Nikolai Engedal

    2018-01-01

    Full Text Available Oxidative stress can alter the expression level of many microRNAs (miRNAs, but how these changes are integrated and related to oxidative stress responses is poorly understood. In this article, we addressed this question by using in silico tools. We reviewed the literature for miRNAs whose expression is altered upon oxidative stress damage and used them in combination with various databases and software to predict common gene targets of oxidative stress-modulated miRNAs and affected pathways. Furthermore, we identified miRNAs that simultaneously target the predicted oxidative stress-modulated miRNA gene targets. This generated a list of novel candidate miRNAs potentially involved in oxidative stress responses. By literature search and grouping of pathways and cellular responses, we could classify these candidate miRNAs and their targets into a larger scheme related to oxidative stress responses. To further exemplify the potential of our approach in free radical research, we used our explorative tools in combination with ingenuity pathway analysis to successfully identify new candidate miRNAs involved in the ubiquitination process, a master regulator of cellular responses to oxidative stress and proteostasis. Lastly, we demonstrate that our approach may also be useful to identify novel candidate connections between oxidative stress-related miRNAs and autophagy. In summary, our results indicate novel and important aspects with regard to the integrated biological roles of oxidative stress-modulated miRNAs and demonstrate how this type of in silico approach can be useful as a starting point to generate hypotheses and guide further research on the interrelation between miRNA-based gene regulation, oxidative stress signaling pathways, and autophagy.

  1. Nutrients and Oxidative Stress: Friend or Foe?

    Directory of Open Access Journals (Sweden)

    Bee Ling Tan

    2018-01-01

    Full Text Available There are different types of nutritionally mediated oxidative stress sources that trigger inflammation. Much information indicates that high intakes of macronutrients can promote oxidative stress and subsequently contribute to inflammation via nuclear factor-kappa B- (NF-κB- mediated cell signaling pathways. Dietary carbohydrates, animal-based proteins, and fats are important to highlight here because they may contribute to the long-term consequences of nutritionally mediated inflammation. Oxidative stress is a central player of metabolic ailments associated with high-carbohydrate and animal-based protein diets and excessive fat consumption. Obesity has become an epidemic and represents the major risk factor for several chronic diseases, including diabetes, cardiovascular disease (CVD, and cancer. However, the molecular mechanisms of nutritionally mediated oxidative stress are complex and poorly understood. Therefore, this review aimed to explore how dietary choices exacerbate or dampen the oxidative stress and inflammation. We also discussed the implications of oxidative stress in the adipocyte and glucose metabolism and obesity-associated noncommunicable diseases (NCDs. Taken together, a better understanding of the role of oxidative stress in obesity and the development of obesity-related NCDs would provide a useful approach. This is because oxidative stress can be mediated by both extrinsic and intrinsic factors, hence providing a plausible means for the prevention of metabolic disorders.

  2. Nutrients and Oxidative Stress: Friend or Foe?

    Science.gov (United States)

    Tan, Bee Ling; Norhaizan, Mohd Esa; Liew, Winnie-Pui-Pui

    2018-01-01

    There are different types of nutritionally mediated oxidative stress sources that trigger inflammation. Much information indicates that high intakes of macronutrients can promote oxidative stress and subsequently contribute to inflammation via nuclear factor-kappa B- (NF- κ B-) mediated cell signaling pathways. Dietary carbohydrates, animal-based proteins, and fats are important to highlight here because they may contribute to the long-term consequences of nutritionally mediated inflammation. Oxidative stress is a central player of metabolic ailments associated with high-carbohydrate and animal-based protein diets and excessive fat consumption. Obesity has become an epidemic and represents the major risk factor for several chronic diseases, including diabetes, cardiovascular disease (CVD), and cancer. However, the molecular mechanisms of nutritionally mediated oxidative stress are complex and poorly understood. Therefore, this review aimed to explore how dietary choices exacerbate or dampen the oxidative stress and inflammation. We also discussed the implications of oxidative stress in the adipocyte and glucose metabolism and obesity-associated noncommunicable diseases (NCDs). Taken together, a better understanding of the role of oxidative stress in obesity and the development of obesity-related NCDs would provide a useful approach. This is because oxidative stress can be mediated by both extrinsic and intrinsic factors, hence providing a plausible means for the prevention of metabolic disorders.

  3. IMPACT OF GLYCEMIC CONTROL ON OXIDATIVE STRESS AND ANTIOXIDANT STATUS IN DIABETIC NEUROPATHY

    Directory of Open Access Journals (Sweden)

    Shilpashree

    2015-01-01

    Full Text Available INTRODUCTION: Oxidative stress due to enhanced free - radical generation and/or a decrease in antioxidant defense mechanisms has been implicated in the pathogenesis of diabetic neuropathy. This study was conducted to study the impact of glycemic control on oxidative stress and antioxidant balance in diab etic neuropathy. METHOD S : fifty patients with diabetic neuropathy and fifty age matched healthy controls were included in the study. Glycosylated hemoglobin (HbA1c was estimated to assess the severity of diabetes and the glycemic control. Serum malondiaal dehyde (MDA levels were assessed as a marker of lipid peroxidation and hence oxidative stress. Superoxide Dismutase (SOD levels were assessed for antioxidant status. RESULTS: Significant positive correlation was found between serum MDA levels and hba1c ( r = 0.276, p < 0.0001 in patients with diabetic neuropathy. There was statistically significant reduction in the Glutathione peroxidase levels. Further, SOD levels were inversely correlated with HbA1c (r= - 0.603, p<0.0001 levels. CONCLUSION AND SUMMARY: oxidative stress is greatly increased in patients suffering from diabetic neuropathy and is inversely related to glycemic control. This may be due to depressed antioxidant enzyme levels and may also be responsible for further depletion of antioxidant enzym e GPx. This worsens the oxidative stress and creates a vicious cycle of imbalance of free radical generation and deficit of antioxidant status in these patients which may lead to nervous system damage causing diabetic neuropathy. A good glycemic control is essential for prevention of diabetic neuropathy.

  4. Effect of edaravone on T lymphocyte subsets and oxidative stress level in patients with cardiogenic cerebral embolism

    Directory of Open Access Journals (Sweden)

    Li Guo

    2016-07-01

    Full Text Available Objective: To explore the effect of edaravone on T lymphocyte subsets and oxidative stress level in patients with cardiogenic cerebral embolism. Methods: A total of 100 patients with cardiogenic cerebral embolism who were admitted in our hospital from June, 2013 to June, 2015 were included in the study and randomized into the observation group and the control group. The patients in the observation group were given edaravone, while the patients in the control group were given the conventional treatments. CD4, CD8, GSH-Px, and ROS levels, the occurrence of adverse reactions, and the clinical efficacy after treatment in the two groups were observed and compared. Results: The comparison of CD4 and CD8 levels before treatment between the two groups was not statistically significant (P>0.05. After treatment, CD4 level was significantly elevated, while CD8 level was significantly reduced when compared with before treatment (P0.05. After treatment, GSH-Px level was significantly elevated, while ROS level was significantly reduced when compared with before treatment (P<0.05. The improvement of GSH-Px and ROS levels after treatment in the observation group was significantly superior to that in the control group (P<0.05. The occurrence rate of adverse reactions in the observation group was significantly lower than that in the control group, while the treatment effective rate was significantly higher than that in the control group (P<0.05. Conclusions: Edaravone in the treatment of cardiogenic cerebral embolism can effectively correct the imbalance of T lymphocyte subsets, and reduce the oxidative stress level, with less adverse reactions and significant therapeutic effect.

  5. Increased oxidative stress and its relation with collagen metabolism in knee osteoarthritis.

    Science.gov (United States)

    Altindag, Ozlem; Erel, Ozcan; Aksoy, Nurten; Selek, Sahabettin; Celik, Hakim; Karaoglanoglu, Mustafa

    2007-02-01

    The purpose of this study was to determine serum oxidative/antioxidative status in patients with knee osteoarthritis and its relation with prolidase activity, which plays an important role in collagen metabolism. Serum antioxidative status was evaluated by measuring total antioxidant capacity (TAC), thiol level and catalase enzyme activity in patients with osteoarthritis and in healthy controls. Serum oxidative status was evaluated by measuring total peroxide (TP) and lipid hydroperoxide. Oxidative stress index (OSI) was calculated. Prolidase enzyme activity was measured to investigate the collagen metabolism. Serum TAC, thiol level, catalase activity and prolidase activity were significantly lower in patients than in controls (P antioxidant parameters decreased in patients with osteoarthritis; therefore, these patients may be exposed to a potent oxidative stress. Decreased collagen metabolism may be related with oxidative stress, which has a role in the ethiopathogenesis and/or in the progression of the disease.

  6. Effects of ethanol on CYP2E1 levels and related oxidative stress using a standard balanced diet.

    Science.gov (United States)

    Azzalis, Ligia A; Fonseca, Fernando L A; Simon, Karin A; Schindler, Fernanda; Giavarotti, Leandro; Monteiro, Hugo P; Videla, Luis A; Junqueira, Virgínia B C

    2012-07-01

    Expression of cytochrome P4502E1 (CYP2E1) is very much influenced by nutritional factors, especially carbohydrate consumption, and various results concerning the expression of CYP2E1 were obtained with a low-carbohydrate diet. This study describes the effects of ethanol treatment on CYP2E1 levels and its relationship with oxidative stress using a balanced standard diet to avoid low or high carbohydrate consumption. Rats were fed for 1, 2, 3, or 4 weeks a commercial diet plus an ethanol-sucrose solution. The results have shown that ethanol administration was associated with CYP2E1 induction and stabilization without related oxidative stress. Our findings suggest that experimental models with a low-carbohydrate/high-fat diet produce some undesirable CYP2E1 changes that are not present when a balanced standard diet is given.

  7. Oxidative stress participates in age-related changes in rat lumbar intervertebral discs.

    Science.gov (United States)

    Hou, Gang; Lu, Huading; Chen, Mingjuan; Yao, Hui; Zhao, Huiqing

    2014-01-01

    Aging is a major factor associated with lumber intervertebral disc degeneration, and oxidative stress is known to play an essential role in the pathogenesis of many age-related diseases. In this study, we investigated oxidative stress in intervertebral discs of Wistar rats in three different age groups: youth, adult, and geriatric. Age-related intervertebral disc changes were examined by histological analysis. In addition, oxidative stress was evaluated by assessing nitric oxide (NO), superoxide dismutase (SOD), malondialdehyde (MDA), and advanced oxidation protein products (AOPPs). Intervertebral disc, but not serum, NO concentrations significantly differed between the three groups. Serum and intervertebral disc SOD activity gradually decreased with age. Furthermore, both serum and intervertebral disc MDA and AOPP levels gradually increased with age. Our studies suggest that oxidative stress is associated with age-related intervertebral disc changes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. [Role of green tea in oxidative stress prevention].

    Science.gov (United States)

    Metro, D; Muraca, U; Manasseri, L

    2006-01-01

    Oxidative stress is a condition caused by an increase of Reactive Oxygen Species (ROS) or by a shortage of the mechanisms of cellular protection and antioxidant defence. ROS have a potential oxidative effect towards various cellular macromolecules: proteins, nucleic acids, proteoglycans, lipids, with consequent damages in several cellular districts and promotion of the ageing process of the organism. However, some substances are able to prevent and/or reduce the damages caused by ROS; therefore, they are defined antioxidant. The present research studied, in a group of subjects, the antioxidant effects of the green tea, that was administered with fruit and vegetables in a strictly controlled diet. 50 subjects were selected and requested to daily consume 2-3 fruit portions (especially pineapple), 3-5 portions of vegetables (especially tomato) and 2-3 glasses of green tea for about 2 months to integrate the controlled basic diet. Some indicators of the oxidative stress were measured in the plasma before and after the integration period. The integration of a basic diet with supplements of fruit, vegetables and green tea turned out to be able in increasing both plasmatic total antioxidant capacity and endogenous antioxidant levels and to reduce the lipid peroxidation of the membranes, suggesting a reduction of the oxidative stress. These data suggest that an adequate supplement of antioxidants can prevent oxidative stress and correlated pathologies.

  9. Blockade of Drp1 rescues oxidative stress-induced osteoblast dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Xueqi; Huang, Shengbin; Yu, Qing [Department of Pharmacology and Toxicology and Higuchi Bioscience Center, University of Kansas, Lawrence, KS, 66047 (United States); State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 (China); Yu, Haiyang [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 (China); Yan, Shirley ShiDu, E-mail: shidu@ku.edu [Department of Pharmacology and Toxicology and Higuchi Bioscience Center, University of Kansas, Lawrence, KS, 66047 (United States)

    2015-12-25

    Osteoblast dysfunction, induced by oxidative stress, plays a critical role in the pathophysiology of osteoporosis. However, the underlying mechanisms remain unclarified. Imbalance of mitochondrial dynamics has been closely linked to oxidative stress. Here, we reveal an unexplored role of dynamic related protein 1(Drp1), the major regulator in mitochondrial fission, in the oxidative stress-induced osteoblast injury model. We demonstrate that levels of phosphorylation and expression of Drp1 significantly increased under oxidative stress. Blockade of Drp1, through pharmaceutical inhibitor or gene knockdown, significantly protected against H{sub 2}O{sub 2}-induced osteoblast dysfunction, as shown by increased cell viability, improved cellular alkaline phosphatase (ALP) activity and mineralization and restored mitochondrial function. The protective effects of blocking Drp1 in H{sub 2}O{sub 2}-induced osteoblast dysfunction were evidenced by increased mitochondrial function and suppressed production of reactive oxygen species (ROS). These findings provide new insights into the role of the Drp1-dependent mitochondrial pathway in the pathology of osteoporosis, indicating that the Drp1 pathway may be targetable for the development of new therapeutic approaches in the prevention and the treatment of osteoporosis. - Highlights: • Oxidative stress is an early pathological event in osteoporosis. • Imbalance of mitochondrial dynamics are linked to oxidative stress in osteoporosis. • The role of the Drp1-dependent mitochondrial pathway in osteoporosis.

  10. extract attenuates MPTP-induced oxidative stress and behavioral

    African Journals Online (AJOL)

    on oxidative stress levels were assessed by estimating enzyme status, including superoxide dismutase. (SOD), catalase ... in both non-human primates and mice models. [12,13]. ..... Polyphenol composition and antioxidant activity of cumin.

  11. Oxidative stress and partial migration in brown trout (Salmo trutta)

    DEFF Research Database (Denmark)

    Birnie-Gauvin, Kim; Peiman, K. S.; Larsen, Martin Hage

    2017-01-01

    of oxidative status in migration biology, particularly in fish. Semi-anadromous brown trout (Salmo trutta, Linnaeus 1758) exhibit partial migration, where some individuals smoltify and migrate to sea, and others become stream residents, providing us with an excellent model to investigate the link between...... oxidative stress and migration. Using the brown trout, we obtained blood samples from juveniles from a coastal stream in Denmark in the fall prior to peak seaward migration which occurs in the spring, and assayed for antioxidant capacity (oxygen radical absorbance capacity) and oxidative stress levels...

  12. Quercetin prevents chronic unpredictable stress induced behavioral dysfunction in mice by alleviating hippocampal oxidative and inflammatory stress.

    Science.gov (United States)

    Mehta, Vineet; Parashar, Arun; Udayabanu, Malairaman

    2017-03-15

    It is now evident that chronic stress is associated with anxiety, depression and cognitive dysfunction and very few studies have focused on identifying possible methods to prevent these stress-induced disorders. Previously, we identified abundance of quercetin in Urtica dioica extract, which efficiently attenuated stress related complications. Therefore, current study was designed to investigate the effect of quercetin on chronic unpredicted stress (CUS) induced behavioral dysfunction, oxidative stress and neuroinflammation in the mouse hippocampus. Animals were subjected to unpredicted stress for 21days, during which 30mg/kg quercetin was orally administered to them. Effect of CUS and quercetin treatment on animal behavior was assessed between day 22-26. Afterward, the hippocampus was processed to evaluate neuronal damage, oxidative and inflammatory stress. Results revealed that stressed animals were highly anxious (Elevated Plus Maze and Open Field), showed depressive-like behavior (sucrose preference task), performed poorly in short-term and long-term associative memory task (passive avoidance step-through task) and displayed reduced locomotion (open field). Quercetin alleviated behavioral dysfunction in chronically stressed animals. Compared to CUS, quercetin treatment significantly reduced anxiety, attenuated depression, improved cognitive dysfunction and normalized locomotor activity. Further, CUS elevated the levels of oxidative stress markers (TBARS, nitric oxide), lowered antioxidants (total thiol, catalase), enhanced expression of pro-inflammatory cytokines (IL-6, TNF-α, IL-1β and COX-2) in the hippocampus and damaged hippocampal neurons. Quercetin treatment significantly lowered oxidative and inflammatory stress and prevented neural damage. In conclusion, quercetin can efficiently prevent stress induced neurological complications by rescuing brain from oxidative and inflammatory stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. A potential biomarker for fatigue: Oxidative stress and anti-oxidative activity.

    Science.gov (United States)

    Fukuda, Sanae; Nojima, Junzo; Motoki, Yukari; Yamaguti, Kouzi; Nakatomi, Yasuhito; Okawa, Naoko; Fujiwara, Kazumi; Watanabe, Yasuyoshi; Kuratsune, Hirohiko

    2016-07-01

    We sought to determine whether oxidative stress and anti-oxidative activity could act as biomarkers that discriminate patients with chronic fatigue syndrome (CFS) from healthy volunteers at acute and sub-acute fatigue and resting conditions. We calculated the oxidative stress index (OSI) from reactive oxygen metabolites-derived compounds (d-ROMs) and the biological antioxidant potential (BAP). We determined changes in d-ROMs, BAP, and OSI in acute and sub-acute fatigue in two healthy groups, and compared their values at rest between patients with CFS (diagnosed by Fukuda 1994 criteria) and another group of healthy controls. Following acute fatigue in healthy controls, d-ROMs and OSI increased, and BAP decreased. Although d-ROMs and OSI were significantly higher after sub-acute fatigue, BAP did not decrease. Resting condition yielded higher d-ROMs, higher OSI, and lower BAP in patients with CFS than in healthy volunteers, but lower d-ROMs and OSI when compared with sub-acute controls. BAP values did not significantly differ between patients with CFS and controls in the sub-acute condition. However, values were significantly higher than in the resting condition for controls. Thus, measured of oxidative stress (d-ROMS) and anti-oxidative activity (BAP) might be useful for discriminating acute, sub-acute, and resting fatigue in healthy people from patients with CFS, or for evaluating fatigue levels in healthy people. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Photobiomodulation Therapy Decreases Oxidative Stress in the Lung Tissue after Formaldehyde Exposure: Role of Oxidant/Antioxidant Enzymes

    Directory of Open Access Journals (Sweden)

    Rodrigo Silva Macedo

    2016-01-01

    Full Text Available Formaldehyde is ubiquitous pollutant that induces oxidative stress in the lung. Several lung diseases have been associated with oxidative stress and their control is necessary. Photobiomodulation therapy (PBMT has been highlighted as a promissory treatment, but its mechanisms need to be better investigated. Our objective was to evaluate the effects of PBMT on the oxidative stress generated by FA exposure. Male Wistar rats were submitted to FA exposure of 1% or vehicle (3 days and treated or not with PBMT (1 and 5 h after each FA exposure. Rats treated only with laser were used as control. Twenty-four hours after the last FA exposure, we analyzed the effects of PBMT on the generation of nitrites and hydrogen peroxide, oxidative burst, glutathione reductase, peroxidase, S-transferase enzyme activities, the gene expression of nitric oxide, cyclooxygenase, superoxide dismutase, the catalase enzyme, and heme oxygenase-1. PBMT reduced the generation of nitrites and hydrogen peroxide and increased oxidative burst in the lung cells. A decreased level of oxidant enzymes was observed which were concomitantly related to an increased level of antioxidants. This study provides new information about the antioxidant mechanisms of PBMT in the lung and might constitute an important tool for lung disease treatment.

  15. Relationship between mitochondrial dysfunction, oxidative stress and diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Song Yue

    2014-12-01

    Full Text Available As one of the serious complications of diabetes, diabetic retinopathy(DRhas become a main eye disease which causes blindness. The occurrence and development of DR is related to many factors. The pathogenesis is complicated, and the mechanism has not been clear. Early data suggest that the occurrence and development of DR has relations with many factors such as blood sugar level, diabetes duration and the environment. Among the factors, mitochondrial dysfunction and oxidative stress is the important mechanisms of DR and has become research focus in recent years. Consequences of mitochondrial dysfunction within cells include elevation of the rate of reactive oxygen species(ROSproduction due to damage of electron transport chain proteins, mitochondrial DNA(mtDNAdamage, and loss of metabolic capacity. Clear understanding on the mechanism of mitochondrial functional change under high sugar level and oxidative stress response in the occurrence and development of DR is of great significance on prevention and cure of DR. In this article, the development of mitochondrial metabolism and oxidative stress of DR is reviewed.

  16. Relationship of peripheral blood TLRs and Tespa1 expression levels with cytokines and oxidative stress in patients with chronic urticarial

    Directory of Open Access Journals (Sweden)

    Yun Xu

    2017-05-01

    Full Text Available Objective: To study the relationship of peripheral blood TLRs and Tespa1 expression levels with cytokines and oxidative stress in patients with chronic urticaria. Methods: A total of 68 patients who were diagnosed with chronic urticaria and treated in Songzi People’s Hospital clinic between June 2014 and April 2017 were selected as the CU group of the research, and 80 healthy volunteers who received physical examination were selected as the control group. TLR2, TLR7 and Tespa1 mRNA expression in peripheral blood mononuclear cells as well as the levels of Th1/Th2 cytokines and oxidative stress indexes in serum were detected. Results: TLR2 and TLR7 mRNA expression in peripheral blood mononuclear cells of CU group were significantly higher than those of control group while Tespa1 mRNA expression was significantly lower than that of control group. Serum IFN-γ, IL-2, TNF-α, T-AOC, SOD and GSH-Px levels of CU group were significantly lower than those of control group, negatively correlated with peripheral blood TLR2 and TLR7 mRNA expression, and positively correlated with Tespa1 mRNA expression; serum IL-4, IL-5, IL-10, IL-31 and MDA levels were significantly higher than those of control group, positively correlated with peripheral blood TLR2 and TLR7 mRNA expression, and negatively correlated with Tespa1 mRNA expression. Conclusions: The changes in peripheral blood TLR2, TLR7 and Tespa1 expression in patients with chronic urticaria can cause the changes in Th1/Th2 immune response and the activation of oxidative stress.

  17. Moderate altitude but not additional endurance training increases markers of oxidative stress in exhaled breath condensate.

    Science.gov (United States)

    Heinicke, Ilmar; Boehler, Annette; Rechsteiner, Thomas; Bogdanova, Anna; Jelkmann, Wolfgang; Hofer, Markus; Rawlings, Pablo; Araneda, Oscar F; Behn, Claus; Gassmann, Max; Heinicke, Katja

    2009-07-01

    Oxidative stress occurs at altitude, and physical exertion might enhance this stress. In the present study, we investigated the combined effects of exercise and moderate altitude on redox balance in ten endurance exercising biathletes, and five sedentary volunteers during a 6-week-stay at 2,800 m. As a marker for oxidative stress, hydrogen peroxide (H(2)O(2)) was analyzed by the biosensor measuring system Ecocheck, and 8-iso prostaglandin F2alpha (8-iso PGF2alpha) was determined by enzyme immunoassay in exhaled breath condensate (EBC). To determine the whole blood antioxidative capacity, we measured reduced glutathione (GSH) enzymatically using Ellman's reagent. Exercising athletes and sedentary volunteers showed increased levels of oxidative markers at moderate altitude, contrary to our expectations; there was no difference between both groups. Therefore, all subjects' data were pooled to examine the oxidative stress response exclusively due to altitude exposure. H(2)O(2) levels increased at altitude and remained elevated for 3 days after returning to sea level (p altitude, but declined immediately after returning to sea level (p altitude resulted in elevated GSH levels (p altitude (p altitude for up to 6 weeks increases markers of oxidative stress in EBC independent of additional endurance training. Notably, this oxidative stress is still detectable 3 days upon return to sea level.

  18. 8-oxo-7,8-dihydroguanine level - the DNA oxidative stress marker - recognized by fluorescence image analysis in sporadic uterine adenocarcinomas in women.

    Science.gov (United States)

    Postawski, Krzysztof; Przadka-Rabaniuk, Dorota; Piersiak, Tomasz

    2013-01-01

    In the case of carcinogenesis in human endometrium no information exists on tissue concentration of 8-oxo-7,8-dihydroguanine, the DNA oxidative stress marker This was the main reason to undertake the investigation of this DNA modification in human uterine estrogen-dependent tissue cancers. In order to estimate the level of oxidative damage, 8-oxo-7,8-dihydroguanine was determined directly in cells of tissue microscope slides using OxyDNA Assay Kit, Fluorometric. Cells were investigated under confocal microscope. Images of individual cells were captured by computer-interfaced digital photography and analyzed for fluorescence intensities (continuous inverted 8-bit gray-scale = 0 [black]-255 [white]). Fluorescence scores were calculated for each of 13 normal endometrial samples and 31 uterine adenocarcinoma specimens. Finally the level of the oxidative stress marker was also analyzed according to histological and clinical features of the neoplasms. The obtained data revealed that: 8-oxo-7,8-dihydroguanine levels were higher in uterine adenocarcinomas than in normal endometrial samples (48,32 vs. 38,64; p<0,001); in contrast to normal endometrium there was no correlation between age and DNA oxidative modification content in uterine cancer; highest mean fluorescence intensity was recognized in G2 endometrial adenocarcinomas; level of 8-oxo-7,8-dihydroguanine does not depend on Body Mass Index (BMI) and cancer uterine wall infiltration or tumor FIGO stage. Our study indicates that accumulation of the oxidized DNA base may contribute to the development of endometrial neoplasia, however oxidative DNA damage does not seem to increase with tumor progression.

  19. Intracerebral Hemorrhage, Oxidative Stress, and Antioxidant Therapy

    Directory of Open Access Journals (Sweden)

    Xiaochun Duan

    2016-01-01

    Full Text Available Hemorrhagic stroke is a common and severe neurological disorder and is associated with high rates of mortality and morbidity, especially for intracerebral hemorrhage (ICH. Increasing evidence demonstrates that oxidative stress responses participate in the pathophysiological processes of secondary brain injury (SBI following ICH. The mechanisms involved in interoperable systems include endoplasmic reticulum (ER stress, neuronal apoptosis and necrosis, inflammation, and autophagy. In this review, we summarized some promising advances in the field of oxidative stress and ICH, including contained animal and human investigations. We also discussed the role of oxidative stress, systemic oxidative stress responses, and some research of potential therapeutic options aimed at reducing oxidative stress to protect the neuronal function after ICH, focusing on the challenges of translation between preclinical and clinical studies, and potential post-ICH antioxidative therapeutic approaches.

  20. Intracerebral Hemorrhage, Oxidative Stress, and Antioxidant Therapy

    Science.gov (United States)

    Duan, Xiaochun; Wen, Zunjia; Shen, Haitao; Shen, Meifen

    2016-01-01

    Hemorrhagic stroke is a common and severe neurological disorder and is associated with high rates of mortality and morbidity, especially for intracerebral hemorrhage (ICH). Increasing evidence demonstrates that oxidative stress responses participate in the pathophysiological processes of secondary brain injury (SBI) following ICH. The mechanisms involved in interoperable systems include endoplasmic reticulum (ER) stress, neuronal apoptosis and necrosis, inflammation, and autophagy. In this review, we summarized some promising advances in the field of oxidative stress and ICH, including contained animal and human investigations. We also discussed the role of oxidative stress, systemic oxidative stress responses, and some research of potential therapeutic options aimed at reducing oxidative stress to protect the neuronal function after ICH, focusing on the challenges of translation between preclinical and clinical studies, and potential post-ICH antioxidative therapeutic approaches. PMID:27190572

  1. Interferon-gamma regulates oxidative stress during experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Espejo, Carmen; Penkowa, Milena; Sáez-Torres, Irene

    2002-01-01

    disease eliciting secretion of proinflammatory cytokines like IFN-gamma or TNF-alpha, and it has been suggested that cytokine-induced oxidative stress could have a role in EAE neuropathology. However, the individual roles of these and other cytokines in the pathogenesis of the disease are still uncertain....... Here we analyze the role of IFN-gamma during EAE by using both IFN-gamma receptor-knockout (IFN-gamma R(-/-)) and wild-type mice, both strains immunized with peptide 40-55 from rat myelin oligodendrocyte glycoprotein. The levels of oxidative stress were determined through the analysis...... of immunoreactivity for inducible NO synthase, nitrotyrosine, and malondialdehyde, as well as through the expression of the tissue-protective antioxidant factors metallothionein I+II (MT-I+II). We also examined the number of cells undergoing apoptosis as judged by using the TUNEL technique. The levels of oxidative...

  2. Gingival crevicular fluid and plasma oxidative stress markers and TGM-2 levels in chronic periodontitis.

    Science.gov (United States)

    Becerik, Sema; Öztürk, Veli Özgen; Celec, Peter; Kamodyova, Natalia; Atilla, Gül; Emingil, Gülnur

    2017-11-01

    This study was aimed to evaluate the gingival crevicular fluid (GCF) and plasma transglutaminase-2 (TGM-2), total antioxidant capacity (TAC), total oxidant status (TOS), ferric reducing antioxidant power (FRAP) and thiobarbituric acid reactive substances (TBARS) in patients with chronic periodontal disease. Twenty patients with chronic periodontitis (CP), 20 patients with gingivitis and 20 healthy subjects were enrolled in the study. Clinical periodontal parameters including probing depth, clinical attachment level, plaque index and papillary bleeding index were recorded. GCF and plasma levels of TGM-2, TAC, TOS, TBARS and FRAP were analyzed. GCF TGM-2 was significantly lower in CP group than in gingivitis patients (P=0.006). GCF FRAP in CP and gingivitis groups was significantly lower than in healthy subjects (P0.05). GCF TGM-2 level was positively correlated with GCF TAC and negatively correlated with CAL. Decreased FRAP in GCF and plasma indicating lower antioxidant status of CP patients might suggest the role of oxidative stress in periodontitis. GCF TGM-2 data might suggest that TGM2 is associated with stabilization of the extracellular matrix and wound healing in periodontium rather than gingival inflammation. Copyright © 2017. Published by Elsevier Ltd.

  3. A STUDY OF OXIDATIVE STRESS IN DIABETES

    Directory of Open Access Journals (Sweden)

    Babu Rao

    2015-06-01

    Full Text Available Non - enzymatic free radical mediated oxidation of biological molecules, membranes and tissues is associated with a variety of pathological events such as cancer, aging and diabetes mellitus . [1] Increased oxidative stress is seen in both types of diabetes me llitus namely type 1 and type 2, irrespective of duration, complications and treatment. In diabetes mellitus, oxidative stress seems primarily due to both an increased plasma free radical concentration and a sharp decline in antioxidant defences . [1] Among the causes of enhanced free radical production, hyperglycemia and hyper insulinemia seem to play a major role , [2,3] Hyperglycemia is the more easily modifiable factor among the two and good glycemic control can reduce the oxidative stress. Controversy pers ists regarding the other possible mechanisms of increased oxidative stress in diabetes and whether oxidative stress normalizes with adequate metabolic control alone. The role of oxidative stress and diabetic complications has been extensively investigated. Oxidative stress has been suggested to be involved in the genesis of both macro and micro angiopathy [4,5] Prospective trials are now underway addressing the controversial issues of possible role of pharmacological antioxidants in preventing or at least de laying the onset of diabetic complications.

  4. Investigation on oxidative stress of nitric oxide synthase interacting protein from Clonorchis sinensis.

    Science.gov (United States)

    Bian, Meng; Xu, Qingxia; Xu, Yanquan; Li, Shan; Wang, Xiaoyun; Sheng, Jiahe; Wu, Zhongdao; Huang, Yan; Yu, Xinbing

    2016-01-01

    Numerous evidences indicate that excretory-secretory products (ESPs) from liver flukes trigger the generation of free radicals that are associated with the initial pathophysiological responses in host cells. In this study, we first constructed a Clonorchis sinensis (C. sinensis, Cs)-infected BALB/c mouse model and examined relative results respectively at 3, 5, 7, and 9 weeks postinfection (p.i.). Quantitative reverse transcription (RT)-PCR indicated that the transcriptional level of both endothelial nitric oxide synthase (eNOS) and superoxide dismutase (SOD) gradually decreased with lastingness of infection, while the transcriptional level of inducible NOS (iNOS) significantly increased. The level of malondialdehyde (MDA) in sera of infected mouse significantly increased versus the healthy control group. These results showed that the liver of C. sinensis-infected mouse was in a state with elevated levels of oxidation stress. Previously, C. sinensis NOS interacting protein coding gene (named CsNOSIP) has been isolated and recombinant CsNOSIP (rCsNOSIP) has been expressed in Escherichia coli, which has been confirmed to be a component present in CsESPs and confirmed to play important roles in immune regulation of the host. In the present paper, we investigated the effects of rCsNOSIP on the lipopolysaccharide (LPS)-induced activated RAW264.7, a murine macrophage cell line. We found that endotoxin-free rCsNOSIP significantly promoted the levels of nitric oxide (NO) and reactive oxygen species (ROS) after pretreated with rCsNOSIP, while the level of SOD decreased. Furthermore, rCsNOSIP could also increase the level of lipid peroxidation MDA. Taken together, these results suggested that CsNOSIP was a key molecule which was involved in the production of nitric oxide (NO) and its reactive intermediates, and played an important role in oxidative stress during C. sinensis infection.

  5. Periodontitis and increase in circulating oxidative stress

    Directory of Open Access Journals (Sweden)

    Takaaki Tomofuji

    2009-05-01

    Full Text Available Reactive oxygen species (ROS are products of normal cellular metabolism. However, excessive production of ROS oxidizes DNA, lipids and proteins, inducing tissue damage. Studies have shown that periodontitis induces excessive ROS production in periodontal tissue. When periodontitis develops, ROS produced in the periodontal lesion diffuse into the blood stream, resulting in the oxidation of blood molecules (circulating oxidative stress. Such oxidation may be detrimental to systemic health. For instance, previous animal studies suggested that experimental periodontitis induces oxidative damage of the liver and descending aorta by increasing circulating oxidative stress. In addition, it has been revealed that clinical parameters in chronic periodontitis patients showed a significant improvement 2 months after periodontal treatment, which was accompanied by a significant reduction of reactive oxygen metabolites in plasma. Improvement of periodontitis by periodontal treatment could reduce the occurrence of circulating oxidative stress. Furthermore, recent studies indicate that the increase in circulating oxidative stress following diabetes mellitus and inappropriate nutrition damages periodontal tissues. In such cases, therapeutic approaches to systemic oxidative stress might be necessary to improve periodontal health.

  6. Oxidative stress in resuscitation and in ventilation of newborns.

    Science.gov (United States)

    Gitto, E; Pellegrino, S; D'Arrigo, S; Barberi, I; Reiter, R J

    2009-12-01

    The lungs of newborns are especially prone to oxidative damage induced by both reactive oxygen and reactive nitrogen species. Yet, these infants are often 1) exposed to high oxygen concentrations, 2) have infections or inflammation, 3) have reduced antioxidant defense, and 4) have high free iron levels which enhance toxic radical generation. Oxidative stress has been postulated to be implicated in several newborn conditions with the phrase "oxygen radical diseases of neonatology" having been coined. There is, however, reason to believe that oxidative stress is increased more when resuscitation is performed with pure oxygen compared with ambient air and that the most effective ventilatory strategy is the avoidance of mechanical ventilation with the use of nasopharyngeal continuous positive airway pressure whenever possible. Multiple ventilation strategies have been attempted to reduce injury and improve outcomes in newborn infants. In this review, the authors summarise the scientific evidence concerning oxidative stress as it relates to resuscitation in the delivery room and to the various modalities of ventilation.

  7. 4-Phenylbutyrate Benefits Traumatic Hemorrhagic Shock in Rats by Attenuating Oxidative Stress, Not by Attenuating Endoplasmic Reticulum Stress.

    Science.gov (United States)

    Yang, Guangming; Peng, Xiaoyong; Hu, Yi; Lan, Dan; Wu, Yue; Li, Tao; Liu, Liangming

    2016-07-01

    Vascular dysfunction such as vascular hyporeactivity following severe trauma and shock is a major cause of death in injured patients. Oxidative stress and endoplasmic reticulum stress play an important role in vascular dysfunction. The objective of the present study was to determine whether or not 4-phenylbutyrate can improve vascular dysfunction and elicit antishock effects by inhibiting oxidative and endoplasmic reticulum stress. Prospective, randomized, controlled laboratory experiment. State key laboratory of trauma, burns, and combined injury. Five hundred and fifty-two Sprague-Dawley rats. Rats were anesthetized, and a model of traumatic hemorrhagic shock was established by left femur fracture and hemorrhage. The effects of 4-phenylbutyrate (5, 20, 50, 100, 200, and 300 mg/kg) on vascular reactivity, animal survival, hemodynamics, and vital organ function in traumatic hemorrhagic shock rats and cultured vascular smooth muscle cells, and the relationship to oxidative stress and endoplasmic reticulum stress was observed. Lower doses of 4-phenylbutyrate significantly improved the vascular function, stabilized the hemodynamics, and increased the tissue blood flow and vital organ function in traumatic hemorrhagic shock rats, and markedly improved the survival outcomes. Among all dosages observed in the present study, 20 mg/kg of 4-phenylbutyrate had the best effect. Further results indicated that 4-phenylbutyrate significantly inhibited the oxidative stress, decreased shock-induced oxidative stress index such as the production of reactive oxygen species, increased the antioxidant enzyme levels such as superoxide dismutase, catalase, and glutathione, and improved the mitochondrial function by inhibiting the opening of the mitochondrial permeability transition pore in rat artery and vascular smooth muscle cells. In contrast, 4-phenylbutyrate did not affect the changes of endoplasmic reticulum stress markers following traumatic hemorrhagic shock. Furthermore, 4

  8. Oxidative stress and the ageing endocrine system.

    Science.gov (United States)

    Vitale, Giovanni; Salvioli, Stefano; Franceschi, Claudio

    2013-04-01

    Ageing is a process characterized by a progressive decline in cellular function, organismal fitness and increased risk of age-related diseases and death. Several hundred theories have attempted to explain this phenomenon. One of the most popular is the 'oxidative stress theory', originally termed the 'free radical theory'. The endocrine system seems to have a role in the modulation of oxidative stress; however, much less is known about the role that oxidative stress might have in the ageing of the endocrine system and the induction of age-related endocrine diseases. This Review outlines the interactions between hormones and oxidative metabolism and the potential effects of oxidative stress on ageing of endocrine organs. Many different mechanisms that link oxidative stress and ageing are discussed, all of which converge on the induction or regulation of inflammation. All these mechanisms, including cell senescence, mitochondrial dysfunction and microRNA dysregulation, as well as inflammation itself, could be targets of future studies aimed at clarifying the effects of oxidative stress on ageing of endocrine glands.

  9. Anti-oxidative effects of Rooibos tea (Aspalathus linearis on immobilization-induced oxidative stress in rat brain.

    Directory of Open Access Journals (Sweden)

    In-Sun Hong

    Full Text Available Exposure to chronic psychological stress may be related to increased reactive oxygen species (ROS or free radicals, and thus, long-term exposure to high levels of oxidative stress may cause the accumulation of oxidative damage and eventually lead to many neurodegenerative diseases. Compared with other organs, the brain appears especially susceptible to excessive oxidative stress due to its high demand for oxygen. In the case of excessive ROS production, endogenous defense mechanisms against ROS may not be sufficient to suppress ROS-associated oxidative damage. Dietary antioxidants have been shown to protect neurons against a variety of experimental neurodegenerative conditions. In particular, Rooibos tea might be a good source of antioxidants due to its larger proportion of polyphenolic compounds. An optimal animal model for stress should show the features of a stress response and should be able to mimic natural stress progression. However, most animal models of stress, such as cold-restraint, electric foot shock, and burn shock, usually involve physical abuse in addition to the psychological aspects of stress. Animals subjected to chronic restraint or immobilization are widely believed to be a convenient and reliable model to mimic psychological stress. Therefore, in the present study, we propose that immobilization-induced oxidative stress was significantly attenuated by treatment with Rooibos tea. This conclusion is demonstrated by Rooibos tea's ability to (i reverse the increase in stress-related metabolites (5-HIAA and FFA, (ii prevent lipid peroxidation (LPO, (iii restore stress-induced protein degradation (PD, (iv regulate glutathione metabolism (GSH and GSH/GSSG ratio, and (v modulate changes in the activities of antioxidant enzymes (SOD and CAT.

  10. Protective effects of gallic acid against spinal cord injury-induced oxidative stress.

    Science.gov (United States)

    Yang, Yong Hong; Wang, Zao; Zheng, Jie; Wang, Ran

    2015-08-01

    The present study aimed to investigate the role of gallic acid in oxidative stress induced during spinal cord injury (SCI). In order to measure oxidative stress, the levels of lipid peroxide, protein carbonyl, reactive oxygen species and nitrates/nitrites were determined. In addition, the antioxidant status during SCI injury and the protective role of gallic acid were investigated by determining glutathione levels as well as the activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione-S-transferase. Adenosine triphophatase (ATPase) enzyme activities were determined to evaluate the role of gallic acid in SCI-induced deregulation of the activity of enzymes involved in ion homeostasis. The levels of inflammatory markers such as nuclear factor (NF)-κB and cycloxygenase (COX)-2 were determined by western blot analysis. Treatment with gallic acid was observed to significantly mitigate SCI-induced oxidative stress and the inflammatory response by reducing the oxidative stress, decreasing the expression of NF-κB and COX-2 as well as increasing the antioxidant status of cells. In addition, gallic acid modulated the activity of ATPase enzymes. Thus the present study indicated that gallic acid may have a role as a potent antioxidant and anti-inflammatory agent against SCI.

  11. Oxidative stress and antioxidant activity in orbital fibroadipose tissue in Graves' ophthalmopathy.

    Science.gov (United States)

    Hondur, Ahmet; Konuk, Onur; Dincel, Aylin Sepici; Bilgihan, Ayse; Unal, Mehmet; Hasanreisoglu, Berati

    2008-05-01

    To investigate the oxidative stress and antioxidant activity in the orbit in Graves' ophthalmopathy (GO). Orbital fibroadipose tissue samples were obtained from 13 cases during orbital fat decompression surgery. All cases demonstrated features of moderate or severe GO according to the European Group on Graves' Orbitopathy classification. The disease activity was evaluated with the Clinical Activity Score, and the clinical features of GO were evaluated with the Ophthalmopathy Index. Orbital fibroadipose tissue samples of 8 patients without any thyroid or autoimmune disease were studied as controls. In the tissue samples, lipid hydroperoxide level was examined to determine the level of oxidative stress; glutathione level to determine antioxidant level; superoxide dismutase, glutathione reductase, and glutathione peroxidase activities to determine antioxidant activity. Lipid hydroperoxide level and all three antioxidant enzyme activities were found to be significantly elevated, while glutathione level significantly diminished in tissue samples from GO cases compared to controls (p < 0.05). Glutathione levels in tissue samples of GO cases showed negative correlation with Ophthalmopathy Index (r = -0.59, p < 0.05). The antioxidant activity in the orbit is enhanced in GO. However, the oxidative stress appears to be severe enough to deplete the tissue antioxidants and leads to oxidative tissue damage. This study may support the possible value of antioxidant treatment in GO.

  12. Acute and sub-lethal exposure to copper oxide nanoparticles causes oxidative stress and teratogenicity in zebrafish embryos.

    Science.gov (United States)

    Ganesan, Santhanamari; Anaimalai Thirumurthi, Naveenkumar; Raghunath, Azhwar; Vijayakumar, Savitha; Perumal, Ekambaram

    2016-04-01

    Nano-copper oxides are a versatile inorganic material. As a result of their versatility, the immense applications and usage end up in the environment causing a concern for the lifespan of various beings. The ambiguities surround globally on the toxic effects of copper oxide nanoparticles (CuO-NPs). Hence, the present study endeavored to study the sub-lethal acute exposure effects on the developing zebrafish embryos. The 48 hpf LC50 value was about 64 ppm. Therefore, we have chosen the sub-lethal dose of 40 and 60 ppm for the study. Accumulation of CuO-NPs was evidenced from the SEM-EDS and AAS analyzes. The alterations in the AChE and Na(+)/K(+)-ATPase activities disrupted the development process. An increment in the levels of oxidants with a concomitant decrease in the antioxidant enzymes confirmed the induction of oxidative stress. Oxidative stress triggered apoptosis in the exposed embryos. Developmental anomalies were observed with CuO-NPs exposure in addition to oxidative stress in the developing embryos. Decreased heart rate and hatching delay hindered the normal developmental processes. Our work has offered valuable data on the connection between oxidative stress and teratogenicity leading to lethality caused by CuO-NPs. A further molecular mechanism unraveling the uncharted connection between oxidative stress and teratogenicity will aid in the safe use of CuO-NPs. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Exacerbation of oxidative stress during sickle vaso-occlusive crisis is associated with decreased anti-band 3 autoantibodies rate and increased red blood cell-derived microparticle level: a prospective study.

    Science.gov (United States)

    Hierso, Régine; Lemonne, Nathalie; Villaescusa, Rinaldo; Lalanne-Mistrih, Marie-Laure; Charlot, Keyne; Etienne-Julan, Maryse; Tressières, Benoit; Lamarre, Yann; Tarer, Vanessa; Garnier, Yohann; Hernandez, Ada Arce; Ferracci, Serge; Connes, Philippe; Romana, Marc; Hardy-Dessources, Marie-Dominique

    2017-03-01

    Painful vaso-occlusive crisis, a hallmark of sickle cell anaemia, results from complex, incompletely understood mechanisms. Red blood cell (RBC) damage caused by continuous endogenous and exogenous oxidative stress may precipitate the occurrence of vaso-occlusive crises. In order to gain insight into the relevance of oxidative stress in vaso-occlusive crisis occurrence, we prospectively compared the expression levels of various oxidative markers in 32 adults with sickle cell anaemia during vaso-occlusive crisis and steady-state conditions. Compared to steady-state condition, plasma levels of free haem, advanced oxidation protein products and myeloperoxidase, RBC caspase-3 activity, as well as the concentrations of total, neutrophil- and RBC-derived microparticles were increased during vaso-occlusive crises, whereas the reduced glutathione content was decreased in RBCs. In addition, natural anti-band 3 autoantibodies levels decreased during crisis and were negatively correlated with the rise in plasma advanced oxidation protein products and RBC caspase-3 activity. These data showed an exacerbation of the oxidative stress during vaso-occlusive crises in sickle cell anaemia patients and strongly suggest that the higher concentration of harmful circulating RBC-derived microparticles and the reduced anti-band 3 autoantibodies levels may be both related to the recruitment of oxidized band 3 into membrane aggregates. © 2016 John Wiley & Sons Ltd.

  14. Increased oxidative stress in patients with familial Mediterranean ...

    African Journals Online (AJOL)

    0.05) comparing to HC group. However, there were no statistically significant differences between the groups in terms of antioxidant vitamin levels. Conclusions: Our study demonstrated increased oxidative stress in patients with FMF during AP.

  15. Muscle Aging and Oxidative Stress in Wild-Caught Shrews

    Science.gov (United States)

    Hindle, Allyson G.; Lawler, John M.; Campbell, Kevin L.; Horning, Markus

    2010-01-01

    Red-toothed shrews (Soricidae, subfamily Soricinae) are an intriguing model system to examine the free radical theory of aging in wild mammals, given their short (<18 month) lifespan and high mass-specific metabolic rates. As muscle performance underlies both foraging ability and predator avoidance, any age-related decline should be detrimental to fitness and survival. Muscle samples of water shrews (Sorex palustris) and sympatrically distributed short-tailed shrews (Blarina brevicauda) were therefore assessed for oxidative stress markers, protective antioxidant enzymes and apoptosis. Activity levels of catalase and glutathione peroxidase increased with age in both species. Similarly, Cu,Zn-superoxide dismutase isoform content was elevated significantly in older animals of both species (increases of 60% in the water shrew, 25% in the short-tailed shrew). Only one oxidative stress marker (lipid peroxidation) was age-elevated; the others were stable or declined (4-hydroxynonenal adducts and dihydroethidium oxidation). Glutathione peroxidase activity was significantly higher in the short-tailed shrew, while catalase activity was 2× higher in water shrews. Oxidative stress indicators were on average higher in short-tailed shrews. Apoptosis occurred in <1% of myocytes examined, and did not increase with age. Within the constraints of the sample size we found evidence of protection against elevated oxidative stress in wild-caught shrews. PMID:20109576

  16. Oxidative stress homeostasis in grapevine (Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Luisa C Carvalho

    2015-03-01

    Full Text Available Plants can maintain growth and reproductive success by sensing changes in the environment and reacting through mechanisms at molecular, cellular, physiological and developmental levels. Each stress condition prompts a unique response although some overlap between the reactions to abiotic stress (drought, heat, cold, salt or high light and to biotic stress (pathogens does occur. A common feature in the response to all stresses is the onset of oxidative stress, through the production of reactive oxygen species (ROS. As hydrogen peroxide and superoxide are involved in stress signaling, a tight control in ROS homeostasis requires a delicate balance of systems involved in their generation and degradation. If the plant lacks the capacity to generate scavenging potential, this can ultimately lead to death. In grapevine, antioxidant homeostasis can be considered at whole plant levels and during the development cycle. The most striking example lies in berries and their derivatives, such as wine, with nutraceutical properties associated with their antioxidant capacity. Antioxidant homeostasis is tightly regulated in leaves, assuring a positive balance between photosynthesis and respiration, explaining the tolerance of many grapevine varieties to extreme environments.In this review we will focus on antioxidant metabolites, antioxidant enzymes, transcriptional regulation and cross-talk with hormones prompted by abiotic stress conditions. We will also discuss three situations that require specific homeostasis balance: biotic stress, the oxidative burst in berries at veraison and in vitro systems. The genetic plasticity of the antioxidant homeostasis response put in evidence by the different levels of tolerance to stress presented by grapevine varieties will be addressed. The gathered information is relevant to foster varietal adaptation to impending climate changes, to assist breeders in choosing the more adapted varieties and to suitable viticulture

  17. A meta-analysis of biomarkers related to oxidative stress and nitric oxide pathway in migraine.

    Science.gov (United States)

    Neri, Monica; Frustaci, Alessandra; Milic, Mirta; Valdiglesias, Vanessa; Fini, Massimo; Bonassi, Stefano; Barbanti, Piero

    2015-09-01

    Oxidative and nitrosative stress are considered key events in the still unclear pathophysiology of migraine. Studies comparing the level of biomarkers related to nitric oxide (NO) pathway/oxidative stress in the blood/urine of migraineurs vs. unaffected controls were extracted from the PubMed database. Summary estimates of mean ratios (MR) were carried out whenever a minimum of three papers were available. Nineteen studies were included in the meta-analyses, accounting for more than 1000 patients and controls, and compared with existing literature. Most studies measuring superoxide dismutase (SOD) showed lower activity in cases, although the meta-analysis in erythrocytes gave null results. On the contrary, plasma levels of thiobarbituric acid reactive substances (TBARS), an aspecific biomarker of oxidative damage, showed a meta-MR of 2.20 (95% CI: 1.65-2.93). As for NOs, no significant results were found in plasma, serum and urine. However, higher levels were shown during attacks, in patients with aura, and an effect of diet was found. The analysis of glutathione precursor homocysteine and asymmetric dimethylarginine (ADMA), an NO synthase inhibitor, gave inconclusive results. The role of the oxidative pathway in migraine is still uncertain. Interesting evidence emerged for TBARS and SOD, and concerning the possible role of diet in the control of NOx levels. © International Headache Society 2015.

  18. Cocoa Phenolic Extract Protects Pancreatic Beta Cells against Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Laura Bravo

    2013-07-01

    Full Text Available Diabetes mellitus is associated with reductions in glutathione, supporting the critical role of oxidative stress in its pathogenesis. Antioxidant food components such as flavonoids have a protective role against oxidative stress-induced degenerative and age-related diseases. Flavonoids constitute an important part of the human diet; they can be found in most plant foods, including green tea, grapes or cocoa and possess multiple biological activities. This study investigates the chemo-protective effect of a cocoa phenolic extract (CPE containing mainly flavonoids against oxidative stress induced by tert-butylhydroperoxide (t-BOOH on Ins-1E pancreatic beta cells. Cell viability and oxidative status were evaluated. Ins-1E cells treatment with 5–20 μg/mL CPE for 20 h evoked no cell damage and did not alter ROS production. Addition of 50 μM t-BOOH for 2 h increased ROS and carbonyl groups content and decreased reduced glutathione level. Pre-treatment of cells with CPE significantly prevented the t-BOOH-induced ROS and carbonyl groups and returned antioxidant defences to adequate levels. Thus, Ins-1E cells treated with CPE showed a remarkable recovery of cell viability damaged by t-BOOH, indicating that integrity of surviving machineries in the CPE-treated cells was notably protected against the oxidative insult.

  19. Oxidative stress in hypothyroid patients and the role of antioxidant supplementation

    Directory of Open Access Journals (Sweden)

    Sumit Kumar Chakrabarti

    2016-01-01

    Full Text Available Context: The available data concerning oxidant stress and antioxidant capacity in hypothyroidism are scanty and inconclusive. While some authors suggest that tissues may be protected from oxidant damage because of a hypometabolic state in hypothyroidism, others report increased oxidative stress in hypothyroidism. Selenium acts as a cofactor for the thyroid hormone (TH deiodinases that activate and then deactivate various THs and their metabolites. Selenium may inhibit thyroid autoimmunity. Aims: The study was designed, first, to study the impact of oxidative stress in patients of primary hypothyroidism due to autoimmune thyroiditis, by estimation of serum malondialdehyde (MDA as a biomarker of oxidative stress. Second, to study the change in MDA level pre- and post-L-thyroxine treatment. Finally, to look into the possible role of selenium supplementation on oxidative stress in autoimmune hypothyroidism. Subjects and Methods: Patients attending endocrine outpatient department (OPD services of IPGMER and SSKM hospital were considered for the study. Sixty treatment-naive adult patients (age > 18 years with hypothyroidism were included in the study. The patients were divided into two groups, each comprised thirty patients. One group was treated with L-thyroxine and placebo (Group A. The other group received L-thyroxine replacement along with selenium (100 mcg twice a day as antioxidant supplementation (Group B. The patients were blinded about selenium and placebo. The study duration for both groups was 6 months. The starting dose of L-thyroxine was 1.6 mcg/kg body weight free thyroxine (FT4, and thyroid-stimulating hormone (TSH was repeated after 12 weeks. L-thyroxine dose adjustments were done if needed. MDA was assessed at the beginning and at the end of the study, i.e., after 6 months of treatment. The control cohort was composed of thirty healthy adults. Only overt hypothyroidism (OH cases were included in the study. Statistical Analysis Used

  20. Assessment of DNA damage and oxidative stress induced by radiation in Eisenia fetida

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Tae Ho; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Nili, Mohammad [Dawnesh Radiation Research Institute, Barcelona (Spain)

    2012-04-15

    Exposure of eukaryotic cells to ionizing radiation results in the immediate formation of free radicals and the occurrence of oxidative cell damage. Recently International Commission on Radiological Protection (ICRP) requires the effect data of ionizing radiation on non-human biota for the radiological protection of the environment. Based on their radioecological properties and their important role in the soil ecosystem, earthworms have been identified by the ICRP as one of the reference animals and plants (RAPs) to be used in environmental radiation protection. The investigation shows that oxidative stress is closely related to the exposed dose of radiation in the environment. To evaluate oxidative stress by ionizing radiation in the earthworm, we performed several experiments. The comet assay is known as a measurement which is one of the best techniques in assessing the DNA damage by oxidative stress. The SOD is a key enzyme in protecting cells against oxidative stress. An increase in the level of antioxidant enzyme such as SOD indicated that the exposure to radiation caused stress responses. Glutathione oxidation is considered as a maker for detection of reactive oxygen species (ROS). The GSSG levels increased progressively with increased exposure dose of ionizing radiation, which suggested a dose-dependent ROS generation.

  1. The shared role of oxidative stress and inflammation in major depressive disorder and nicotine dependence.

    Science.gov (United States)

    Nunes, Sandra Odebrecht Vargas; Vargas, Heber Odebrecht; Prado, Eduardo; Barbosa, Decio Sabbatini; de Melo, Luiz Picoli; Moylan, Steven; Dodd, Seetal; Berk, Michael

    2013-09-01

    Nicotine dependence is common in people with mood disorders; however the operative pathways are not well understood. This paper reviews the contribution of inflammation and oxidative stress pathways to the co-association of depressive disorder and nicotine dependence, including increased levels of pro-inflammatory cytokines, increased acute phase proteins, decreased levels of antioxidants and increased oxidative stress. These could be some of the potential pathophysiological mechanisms involved in neuroprogression. The shared inflammatory and oxidative stress pathways by which smoking may increase the risk for development of depressive disorders are in part mediated by increased levels of pro-inflammatory cytokines, diverse neurotransmitter systems, activation the hypothalamic-pituitary-adrenal (HPA) axis, microglial activation, increased production of oxidative stress and decreased levels of antioxidants. Depressive disorder and nicotine dependence are additionally linked imbalance between neuroprotective and neurodegenerative metabolites in the kynurenine pathway that contribute to neuroprogression. These pathways provide a mechanistic framework for understanding the interaction between nicotine dependence and depressive disorder. Copyright © 2013. Published by Elsevier Ltd.

  2. Oxidative stress and repetitive element methylation changes in artisanal gold miners occupationally exposed to mercury

    Directory of Open Access Journals (Sweden)

    Diana M. Narváez

    2017-09-01

    Full Text Available Mercury (Hg exposure is a public health concern due to its persistence in the environment and its high toxicity. Such toxicity has been associated with the generation of oxidative stress in occupationally exposed subjects, such as artisanal gold miners. In this study, we characterize occupational exposure to Hg by measuring blood, urine and hair levels, and investigate oxidative stress and DNA methylation associated with gold mining. To do this, samples from 53 miners and 36 controls were assessed. We show higher levels of oxidative stress marker 8-OHdG in the miners. Differences in LINE1 and Alu(Yb8 DNA methylation between gold miners and control group are present in peripheral blood leukocytes. LINE1 methylation is positively correlated with 8-OHdG levels, while XRCC1 and LINE1 methylation are positively correlated with Hg levels. These results suggest an effect of Hg on oxidative stress and DNA methylation in gold miners that may have an impact on miners’ health.

  3. Serum oxidative-anti-oxidative stress balance is dysregulated in patients with hepatitis C virus-related hepatocellular carcinoma.

    Science.gov (United States)

    Nishimura, Mamoru; Takaki, Akinobu; Tamaki, Naofumi; Maruyama, Takayuki; Onishi, Hideki; Kobayashi, Sayo; Nouso, Kazuhiro; Yasunaka, Tetsuya; Koike, Kazuko; Hagihara, Hiroaki; Kuwaki, Kenji; Nakamura, Shinichiro; Ikeda, Fusao; Iwasaki, Yoshiaki; Tomofuji, Takaaki; Morita, Manabu; Yamamoto, Kazuhide

    2013-10-01

    Oxidative stress is associated with progression of chronic liver disease (CLD). This association is best established in chronic hepatitis C. However, the anti-oxidative state is not well characterized. The objective of the present study was to investigate the balance of oxidative and anti-oxidative stress in CLD patients. We recruited a study population of 208 patients, including healthy volunteers (HV; n = 15), patients with hepatitis B virus (HBV)-related CLD without or with hepatocellular carcinoma (HBV-non-HCC, n = 25, and HBV-HCC, n = 50, respectively), and patients with hepatitis C virus (HCV)-related CLD without or with HCC (HCV-non-HCC, n = 49, and HCV-HCC, n = 69, respectively). Serum levels of reactive oxygen metabolites (ROM) and anti-oxidative markers (OXY-adsorbent test; OXY) were determined, and the balance of these values was used as the oxidative index. Correlations among ROM, OXY, oxidative index and clinical characteristics were investigated. Patients with CLD exhibited elevated ROM and oxidative index compared to HV. Among patients with CLD, HCV positive status correlated with increased ROM. In CLD, HCV-HCC patients exhibited the highest ROM levels. Among HCV-related CLD patients, lower OXY correlated with HCC positive status, but was recovered by eradication of HCC. In HCV-HCC, lower OXY correlated with high PT-INR. HCV positive CLD patients displayed higher oxidative stress and HCV-HCC patients displayed lower anti-oxidative state. Anti-oxidative state depression was associated with liver reservoir-related data in HCV-HCC and could be reversed with HCC eradication. © 2012 The Japan Society of Hepatology.

  4. Oxidative stress and male reproductive health

    Directory of Open Access Journals (Sweden)

    Robert J Aitken

    2014-02-01

    Full Text Available One of the major causes of defective sperm function is oxidative stress, which not only disrupts the integrity of sperm DNA but also limits the fertilizing potential of these cells as a result of collateral damage to proteins and lipids in the sperm plasma membrane. The origins of such oxidative stress appear to involve the sperm mitochondria, which have a tendency to generate high levels of superoxide anion as a prelude to entering the intrinsic apoptotic cascade. Unfortunately, these cells have very little capacity to respond to such an attack because they only possess the first enzyme in the base excision repair (BER pathway, 8-oxoguanine glycosylase 1 (OGG1. The latter successfully creates an abasic site, but the spermatozoa cannot process the oxidative lesion further because they lack the downstream proteins (APE1, XRCC1 needed to complete the repair process. It is the responsibility of the oocyte to continue the BER pathway prior to initiation of S-phase of the first mitotic division. If a mistake is made by the oocyte at this stage of development, a mutation will be created that will be represented in every cell in the body. Such mechanisms may explain the increase in childhood cancers and other diseases observed in the offspring of males who have suffered oxidative stress in their germ line as a consequence of age, environmental or lifestyle factors. The high prevalence of oxidative DNA damage in the spermatozoa of male infertility patients may have implications for the health of children conceivedin vitro and serves as a driver for current research into the origins of free radical generation in the germ line.

  5. Oxidative Stress and Antioxidant System in Periodontitis

    Science.gov (United States)

    Wang, Yue; Andrukhov, Oleh; Rausch-Fan, Xiaohui

    2017-01-01

    Periodontitis is a common inflammatory disease, which is initiated by bacterial infection and subsequently progressed by aberrant host response. It can result in the destruction of teeth supporting tissues and have an influence on systemic health. When periodontitis occurs, reactive oxygen species, which are overproduced mostly by hyperactive neutrophils, could not be balanced by antioxidant defense system and cause tissues damage. This is characterized by increased metabolites of lipid peroxidation, DNA damage and protein damage. Local and systemic activities of antioxidants can also be influenced by periodontitis. Total antioxidant capacity, total oxidant status and oxidative stress index have been used to evaluate the oxidative stress associated with periodontitis. Studies have confirmed that inflammatory response in periodontitis is associated with an increased local and systemic oxidative stress and compromised antioxidant capacity. Our review focuses on increased oxidative stress in periodontal disease, specifically, on the relationship between the local and systemic biomarkers of oxidative stress and periodontitis and their association with the pathogenesis of periodontitis. Also, the relationship between periodontitis and systemic inflammation, and the effects of periodontal therapy on oxidative stress parameters will be discussed. PMID:29180965

  6. Circulating biologically active oxidized phospholipids show on-going and increased oxidative stress in older male mice

    Directory of Open Access Journals (Sweden)

    Jinbo Liu

    2013-01-01

    Significance: Oxidatively modified phospholipids are increased in the circulation during common, mild oxidant stresses of aging, or in male compared to female animals. Turnover of these biologically active phospholipids by rapid transport into liver and kidney is unchanged, so circulating levels reflect continuously increased production.

  7. Age-dependent oxidative stress-induced DNA damage in Down's lymphocytes

    International Nuclear Information System (INIS)

    Zana, Marianna; Szecsenyi, Anita; Czibula, Agnes; Bjelik, Annamaria; Juhasz, Anna; Rimanoczy, Agnes; Szabo, Krisztina; Vetro, Agnes; Szucs, Peter; Varkonyi, Agnes; Pakaski, Magdolna; Boda, Krisztina; Rasko, Istvan; Janka, Zoltan; Kalman, Janos

    2006-01-01

    The aim of the present study was to investigate the oxidative status of lymphocytes from children (n = 7) and adults (n = 18) with Down's syndrome (DS). The basal oxidative condition, the vulnerability to in vitro hydrogen peroxide exposure, and the repair capacity were measured by means of the damage-specific alkaline comet assay. Significantly and age-independently elevated numbers of single strand breaks and oxidized bases (pyrimidines and purines) were found in the nuclear DNA of the lymphocytes in the DS group in the basal condition. These results may support the role of an increased level of endogenous oxidative stress in DS and are similar to those previously demonstrated in Alzheimer's disease. In the in vitro oxidative stress-induced state, a markedly higher extent of DNA damage was observed in DS children as compared with age- and gender-matched healthy controls, suggesting that young trisomic lymphocytes are more sensitive to oxidative stress than normal ones. However, the repair ability itself was not found to be deteriorated in either DS children or DS adults

  8. Obesity promotes oxidative stress and exacerbates blood-brain barrier disruption after high-intensity exercise

    Directory of Open Access Journals (Sweden)

    Hee-Tae Roh

    2017-06-01

    Conclusion: Our study suggests that episodic vigorous exercise can increase oxidative stress and blood neurotrophic factor levels and induce disruption of the BBB. Moreover, high levels of neurotrophic factor in the blood after exercise in the obese group may be due to BBB disruption, and it is assumed that oxidative stress was the main cause of this BBB disruption.

  9. Role of macrophages in age-related oxidative stress and lipofuscin accumulation in mice.

    Science.gov (United States)

    Vida, Carmen; de Toda, Irene Martínez; Cruces, Julia; Garrido, Antonio; Gonzalez-Sanchez, Mónica; De la Fuente, Mónica

    2017-08-01

    The age-related changes in the immune functions (immunosenescence) may be mediated by an increase of oxidative stress and damage affecting leukocytes. Although the "oxidation-inflammation" theory of aging proposes that phagocytes are the main immune cells contributing to "oxi-inflamm-aging", this idea has not been corroborated. The aim of this work was to characterize the age-related changes in several parameters of oxidative stress and immune function, as well as in lipofuscin accumulation ("a hallmark of aging"), in both total peritoneal leukocyte population and isolated peritoneal macrophages. Adult, mature, old and long-lived mice (7, 13, 18 and 30 months of age, respectively) were used. The xanthine oxidase (XO) activity-expression, basal levels of superoxide anion and ROS, catalase activity, oxidized (GSSG) and reduced (GSH) glutathione content and lipofuscin levels, as well as both phagocytosis and digestion capacity were evaluated. The results showed an age-related increase of oxidative stress and lipofuscin accumulation in murine peritoneal leukocytes, but especially in macrophages. Macrophages from old mice showed lower antioxidant defenses (catalase activity and GSH levels), higher oxidizing compounds (XO activity/expression and superoxide, ROS and GSSG levels) and lipofuscin levels, together with an impaired macrophage functions, in comparison to adults. In contrast, long-lived mice showed in their peritoneal leukocytes, and especially in macrophages, a well-preserved redox state and maintenance of their immune functions, all which could account for their high longevity. Interestingly, macrophages showed higher XO activity and lipofuscin accumulation than lymphocytes in all the ages analyzed. Our results support that macrophages play a central role in the chronic oxidative stress associated with aging, and the fact that phagocytes are key cells contributing to immunosenescence and "oxi-inflamm-aging". Moreover, the determination of oxidative stress and

  10. The effect of obstructive sleep apnea on DNA damage and oxidative stress.

    Science.gov (United States)

    Kang, Il Gyu; Jung, Joo Hyun; Kim, Seon Tae

    2013-06-01

    Obstructive sleep apnea syndrome (OSAS) is associated with repeated hypoxia and re-oxygenation. This characteristic of OSAS may cause oxidative stress and DNA damage. However, the link of OSAS with oxidative stress and DNA damage is still controversial. In the current study, we investigated whether OSAS causes DNA damage using alkaline single-cell gel electrophoresis (comet assay) and measuring oxidative stress by monitoring serum malondialdehyde (MDA) levels. From March 2009 to August 2010, 51 patients who underwent polysomnography (PSG) during the night were enrolled in this study. We obtained serum from the patients at 6 AM. DNA damage and oxidative stress were evaluated using a comet assay and measuring serum MDA, respectively. We divided the patients into two groups according to the existence of comets appearing in the comet assay. Group 1 included 44 patients with negative assay results and group 2 consisted of seven patients with positive comet assay findings. We compared the age, gender proportion, PSG data (respiratory disturbance index [RDI], lowest O2 saturation level, and arousal index [AI]), time of disease onset, smoking habits, and serum MDA levels between the two groups. The average age and gender proportion of the two groups were not statistically different (P>0.05). The average of RDI for group 1 was 30.4±18.4 and 8.0±7.7 (P0.05). No relationship between positive comet assay results and OSAS severity was identified. Results of the current study showed that OSAS was not associated with DNA damage as measured by comet assays or oxidative stress according to serum MDA levels.

  11. Serum prolidase enzyme activity in obese subjects and its relationship with oxidative stress markers.

    Science.gov (United States)

    Aslan, Mehmet; Duzenli, Ufuk; Esen, Ramazan; Soyoral, Yasemin Usul

    2017-10-01

    The relationship between increased serum enzyme activity of prolidase and increased rate of collagen turnover in the arterial wall has been asserted in previous studies. Collagen reflects much of the strength to the connective tissue involved in the arterial wall. Atherosclerosis is very common vessel disease and oxidative stress plays a pivotal role in the etiopathogenesis. Our objective was to examine the serum enzyme activity of prolidase and its possible relationships with oxidative stress parameters in obese subjects. Our present study was conducted 27 obese subjects and 26 age-matched healthy control subjects. The serum enzyme activity of prolidase in all study population was evaluated spectrophotometrically. Oxidative stress levels in obese subjects were analyzed with total antioxidant capacity (TAC) and total oxidant status (TOS) as well as oxidative stress index (OSI). Obese subjects have higher serum TOS and OSI indicators as well as prolidase activity than those in control subjects (for all; pstress levels in obese subjects. The significantly correlation between increased oxidative stress and increased prolidase activity may play a pivotal role in etiopathogenesis of atherosclerotic cardiovascular diseases in obese subjects. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Sex-Specificity of Oxidative Stress in Newborns Leading to a Personalized Antioxidant Nutritive Strategy.

    Science.gov (United States)

    Lavoie, Jean-Claude; Tremblay, André

    2018-03-27

    Oxidative stress is a critical process that triggers several diseases observed in premature infants. Growing recognition of the detriment of oxidative stress in newborns warrants the use of an antioxidant strategy that is likely to be nutritional in order to restore redox homeostasis. It appears essential to have a personalized approach that will take into account the age of gestation at birth and the sex of the infant. However, the link between sex and oxidative stress remains unclear. The aim of this study was to find a common denominator explaining the discrepancy between studies related to sex-specific effects of oxidative stress. Results highlight a specificity of sex in the levels of oxidative stress markers linked to the metabolism of glutathione, as measured in the intracellular compartments. Levels of all sex-dependent oxidative stress markers are greater and markers associated to a better antioxidant defense are lower in boys compared to girls during the neonatal period. This sex-specific discrepancy is likely to be related to estrogen metabolism, which is more active in baby-girls and promotes the activation of glutathione metabolism. our observations suggest that nutritive antioxidant strategies need to target glutathione metabolism and, therefore, should be personalized considering, among others, the sex specificity.

  13. Sex-Specificity of Oxidative Stress in Newborns Leading to a Personalized Antioxidant Nutritive Strategy

    Directory of Open Access Journals (Sweden)

    Jean-Claude Lavoie

    2018-03-01

    Full Text Available Oxidative stress is a critical process that triggers several diseases observed in premature infants. Growing recognition of the detriment of oxidative stress in newborns warrants the use of an antioxidant strategy that is likely to be nutritional in order to restore redox homeostasis. It appears essential to have a personalized approach that will take into account the age of gestation at birth and the sex of the infant. However, the link between sex and oxidative stress remains unclear. The aim of this study was to find a common denominator explaining the discrepancy between studies related to sex-specific effects of oxidative stress. Results highlight a specificity of sex in the levels of oxidative stress markers linked to the metabolism of glutathione, as measured in the intracellular compartments. Levels of all sex-dependent oxidative stress markers are greater and markers associated to a better antioxidant defense are lower in boys compared to girls during the neonatal period. This sex-specific discrepancy is likely to be related to estrogen metabolism, which is more active in baby-girls and promotes the activation of glutathione metabolism. Conclusion: our observations suggest that nutritive antioxidant strategies need to target glutathione metabolism and, therefore, should be personalized considering, among others, the sex specificity.

  14. Lack of effect of sleep apnea on oxidative stress in obstructive sleep apnea syndrome (OSAS patients.

    Directory of Open Access Journals (Sweden)

    M Simiakakis

    Full Text Available PURPOSE: The aim of this study was to evaluate markers of systemic oxidative stress and antioxidant capacity in subjects with and without OSAS in order to investigate the most important factors that determine the oxidant-antioxidant status. METHODS: A total of 66 subjects referred to our Sleep laboratory were examined by full polysomnography. Oxidative stress and antioxidant activity were assessed by measurement of the derivatives of reactive oxygen metabolites (d-ROMs and the biological antioxidant capacity (BAP in blood samples taken in the morning after the sleep study. Known risk factors for oxidative stress, such as age, sex, obesity, smoking, hypelipidemia, and hypertension, were investigated as possible confounding factors. RESULTS: 42 patients with OSAS (Apnea-Hypopnea index >15 events/hour were compared with 24 controls (AHI<5. The levels of d-ROMS were significantly higher (p = 0.005 in the control group but the levels of antioxidant capacity were significantly lower (p = 0.004 in OSAS patients. The most important factors predicting the variance of oxidative stress were obesity, smoking habit, and sex. Parameters of sleep apnea severity were not associated with oxidative stress. Minimal oxygen desaturation and smoking habit were the most important predicting factors of BAP levels. CONCLUSION: Obesity, smoking, and sex are the most important determinants of oxidative stress in OSAS subjects. Sleep apnea might enhance oxidative stress by the reduction of antioxidant capacity of blood due to nocturnal hypoxia.

  15. Oxidative stress and nitrosative stress are involved in different stages of proteolytic pulmonary emphysema.

    Science.gov (United States)

    Lanzetti, Manuella; da Costa, Cristiane Aguiar; Nesi, Renata Tiscoski; Barroso, Marina Valente; Martins, Vanessa; Victoni, Tatiana; Lagente, Vincent; Pires, Karla Maria Pereira; e Silva, Patrícia Machado Rodrigues; Resende, Angela Castro; Porto, Luis Cristóvão; Benjamim, Cláudia Farias; Valença, Samuel Santos

    2012-12-01

    Our aim was to investigate the role of oxidative stress in elastase-induced pulmonary emphysema. C57BL/6 mice were subjected to pancreatic porcine elastase (PPE) instillation (0.05 or 0.5 U per mouse, i.t.) to induce pulmonary emphysema. Lungs were collected on days 7, 14, and 21 after PPE instillation. The control group was sham injected. Also, mice treated with 1% aminoguanidine (AMG) and inducible NO synthase (iNOS) knockout mice received 0.5 U PPE (i.t.), and lungs were analyzed 21 days after. We performed bronchoalveolar lavage, biochemical analyses of oxidative stress, and lung stereology and morphometry assays. Emphysema was observed histologically at 21 days after 0.5 U PPE treatment; tissues from these mice exhibited increased alveolar linear intercept and air-space volume density in comparison with the control group. TNF-α was elevated at 7 and 14 days after 0.5 U PPE treatment, concomitant with a reduction in the IL-10 levels at the same time points. Myeloperoxidase was elevated in all groups treated with 0.5 U PPE. Oxidative stress was observed during early stages of emphysema, with increased nitrite levels and malondialdehyde and superoxide dismutase activity at 7 days after 0.5 U PPE treatment. Glutathione peroxidase activity was increased in all groups treated with 0.5 U PPE. The emphysema was attenuated when iNOS was inhibited using 1% AMG and in iNOS knockout mice. Furthermore, proteolytic stimulation by PPE enhanced the expression of nitrotyrosine and iNOS, whereas the PPE+AMG group showed low expression of iNOS and nitrotyrosine. PPE stimulus also induced endothelial (e) NOS expression, whereas AMG reduced eNOS. Our results suggest that the oxidative and nitrosative stress pathways are triggered by nitric oxide production via iNOS expression in pulmonary emphysema. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Increased levels of the oxidative stress biomarker 8-iso-prostaglandin F2α in wastewater associated with tobacco use

    DEFF Research Database (Denmark)

    Ryu, Yeonsuk; Gracia-Lor, Emma; Bade, Richard

    2016-01-01

    oxidative stress at a community level. In this work, 8-iso-prostaglandin F2α (8-iso-PGF2α) was analysed in raw 24 h-composite wastewater samples collected from 4 Norwegian and 7 other European cities in 2014 and 2015. Using the same samples, biomarkers of alcohol (ethyl sulfate) and tobacco (trans-3...

  17. Less Stress : Oxidative stress and glutathione kinetics in preterm infants

    NARCIS (Netherlands)

    D. Rook (Denise)

    2013-01-01

    textabstractDue to immature antioxidant defenses, preterm infants are at susceptible to oxidative stress, which is associated with bronchopulmonary dysplasia, retinopathy of prematurity and periventricular leukomalacia. The general aim of this thesis was to study oxidative stress in preterm infants

  18. Oxygen and oxidative stress in the perinatal period.

    Science.gov (United States)

    Torres-Cuevas, Isabel; Parra-Llorca, Anna; Sánchez-Illana, Angel; Nuñez-Ramiro, Antonio; Kuligowski, Julia; Cháfer-Pericás, Consuelo; Cernada, María; Escobar, Justo; Vento, Máximo

    2017-08-01

    Fetal life evolves in a hypoxic environment. Changes in the oxygen content in utero caused by conditions such as pre-eclampsia or type I diabetes or by oxygen supplementation to the mother lead to increased free radical production and correlate with perinatal outcomes. In the fetal-to-neonatal transition asphyxia is characterized by intermittent periods of hypoxia ischemia that may evolve to hypoxic ischemic encephalopathy associated with neurocognitive, motor, and neurosensorial impairment. Free radicals generated upon reoxygenation may notably increase brain damage. Hence, clinical trials have shown that the use of 100% oxygen given with positive pressure in the airways of the newborn infant during resuscitation causes more oxidative stress than using air, and increases mortality. Preterm infants are endowed with an immature lung and antioxidant system. Clinical stabilization of preterm infants after birth frequently requires positive pressure ventilation with a gas admixture that contains oxygen to achieve a normal heart rate and arterial oxygen saturation. In randomized controlled trials the use high oxygen concentrations (90% to 100%) has caused more oxidative stress and clinical complications that the use of lower oxygen concentrations (30-60%). A correlation between the amount of oxygen received during resuscitation and the level of biomarkers of oxidative stress and clinical outcomes was established. Thus, based on clinical outcomes and analytical results of oxidative stress biomarkers relevant changes were introduced in the resuscitation policies. However, it should be underscored that analysis of oxidative stress biomarkers in biofluids has only been used in experimental and clinical research but not in clinical routine. The complexity of the technical procedures, lack of automation, and cost of these determinations have hindered the routine use of biomarkers in the clinical setting. Overcoming these technical and economical difficulties constitutes a

  19. Increased levels of advanced glycation end products positively correlate with iron overload and oxidative stress markers in patients with β-thalassemia major.

    Science.gov (United States)

    Mirlohi, Maryam Sadat; Yaghooti, Hamid; Shirali, Saeed; Aminasnafi, Ali; Olapour, Samaneh

    2018-04-01

    The impaired biosynthesis of the β-globin chain in β-thalassemia leads to the accumulation of unpaired alpha globin chains, failure in hemoglobin formation, and iron overload due to frequent blood transfusion. Iron excess causes oxidative stress and massive tissue injuries. Advanced glycation end products (AGEs) are harmful agents, and their production accelerates in oxidative conditions. This study was conducted on 45 patients with major β-thalassemia who received frequent blood transfusions and chelation therapy and were compared to 40 healthy subjects. Metabolic parameters including glycemic and iron indices, hepatic and renal functions tests, oxidative stress markers, and AGEs (carboxymethyl-lysine and pentosidine) levels were measured. All parameters were significantly increased in β-thalassemia compared to the control except for glutathione levels. Blood glucose, iron, serum ferritin, non-transferrin-bound iron (NTBI), MDA, soluble form of low-density lipoprotein receptor, glutathione peroxidase, total reactive oxygen species (ROS), and AGE levels were significantly higher in the β-thalassemia patients. Iron and ferritin showed a significant positive correlation with pentosidine (P overload in β-thalassemia major patients and highlight the enhanced formation of AGEs, which may play an important role in the pathogenesis of β-thalassemia major.

  20. Oxidative Stress Parameters in Saliva and Its Association with Periodontal Disease and Types of Bacteria.

    Science.gov (United States)

    Almerich-Silla, Jose Manuel; Montiel-Company, Jose María; Pastor, Sara; Serrano, Felipe; Puig-Silla, Miriam; Dasí, Francisco

    2015-01-01

    To determine the association between oxidative stress parameters with periodontal disease, bleeding, and the presence of different periodontal bacteria. A cross-sectional study in a sample of eighty-six patients, divided into three groups depending on their periodontal status. Thirty-three with chronic periodontitis, sixteen with gingivitis, and thirty-seven with periodontal healthy as control. Oxidative stress biomarkers (8-OHdG and MDA), total antioxidant capacity (TAOC), and the activity of two antioxidant enzymes (GPx and SOD) were determined in saliva. Subgingival plaque samples were obtained from the deepest periodontal pocket and PCR was used to determine the presence of the 6 fimA genotypes of Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Tannerella forsythia, and Treponema denticola. Periodontal disease was found to be associated with increased oxidative stress parameter levels. These levels rose according to the number and type of different periodontal bacteria found in the periodontal pockets. The presence of different types of periodontal bacteria is predictive independent variables in linear regresion models of oxidative stress parameters as dependent variable, above all 8-OHdG. Oxidative stress parameter levels are correlated with the presence of different types of bacteria. Determination of these levels and periodontal bacteria could be a potent tool for controlling periodontal disease development.

  1. Ischemia-modified albümin and malondialdehyde levels in patients with overt and subclinical hyperthyroidism: effects of treatment on oxidative stress.

    Science.gov (United States)

    Erem, Cihangir; Suleyman, Akile Karacin; Civan, Nadim; Mentese, Ahmet; Nuhoglu, İrfan; Uzun, Aysegul; Ersoz, Halil Onder; Deger, Orhan

    2015-01-01

    The main purpose of this study was to evaluate the levels of ischemia-modified albumin (IMA) and malondialdehyde (MDA) in patients with OHyper and SHyper, to assess the effects of antithyroid drug (ATD) therapy on the oxidative stress (OS) parameters. Forty-five untreated patients with overt hyperthyroidism (OHyper), 20 untreated patients with subclinical hyperthyroidism (SHyper) and 30 age-and sex-matched healthy controls were prospectively included in the study. Biochemical and hormonal parameters were evaluated in all patients before and after treatment. Compared with the control subjects, the levels of MDA, glucose and TG were significantly increased in patients with SHyper (p<0.05), whereas LDL-C levels were significantly decreased (p<0.01). Patients with OHyper showed significantly elevated MDA and glucose levels (p<0.001) and significantly decreased LDL-C and HDL-C levels compared with the controls (p<0.01). In patients with Graves' disease, serum TSH levels were inversely correlated with plasma MDA levels (r: -0.42, p<0.05). Plasma MDA levels significantly decreased and levels of TC, LDL-C and HDL-C significantly increased in the groups of OHyper and SHyper after treatment. Serum IMA levels did not significantly change at baseline and with the therapy in all subjects. In conclusion, increased MDA levels in both patient groups represent increased lipid peroxidation which might play an important role in the pathogenesis of the atherosclerosis in these patients. Increased oxidative stress in patients with SHyper and OHyper could be improved by ATD therapy. Also, MDA can be used as a reliable marker of OS and oxidative damage, while IMA is considered to be inappropriate.

  2. Isoprostanes and Neuroprostanes as Biomarkers of Oxidative Stress in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Elżbieta Miller

    2014-01-01

    Full Text Available Accumulating data shows that oxidative stress plays a crucial role in neurodegenerative disorders. The literature data indicate that in vivo or postmortem cerebrospinal fluid and brain tissue levels of F2-isoprostanes (F2-IsoPs especially F4-neuroprotanes (F4-NPs are significantly increased in some neurodegenerative diseases: multiple sclerosis, Alzheimer's disease, Huntington's disease, and Creutzfeldt-Jakob disease. Central nervous system is the most metabolically active organ of the body characterized by high requirement for oxygen and relatively low antioxidative activity, what makes neurons and glia highly susceptible to destruction by reactive oxygen/nitrogen species and neurodegeneration. The discovery of F2-IsoPs and F4-NPs as markers of lipid peroxidation caused by the free radicals has opened up new areas of investigation regarding the role of oxidative stress in the pathogenesis of human neurodegenerative diseases. This review focuses on the relationship between F2-IsoPs and F4-NPs as biomarkers of oxidative stress and neurodegenerative diseases. We summarize the knowledge of these novel biomarkers of oxidative stress and the advantages of monitoring their formation to better define the involvement of oxidative stress in neurological diseases.

  3. Finite element modelling of the oxidation kinetics of Zircaloy-4 with a controlled metal-oxide interface and the influence of growth stress

    International Nuclear Information System (INIS)

    Zumpicchiat, Guillaume; Pascal, Serge; Tupin, Marc; Berdin-Méric, Clotilde

    2015-01-01

    Highlights: We developed two finite element models of zirconium-based alloy oxidation using the CEA Cast3M code to simulate the oxidation kinetics of Zircaloy-4: the diffuse interface model and the sharp interface model. We also studied the effect of stresses on the oxidation kinetics. The main results are: • Both models lead to parabolic oxidation kinetics in agreement with the Wagner’s theory. • The modellings enable to calculate the stress distribution in the oxide as well as in the metal. • A strong effect of the hydrostatic stress on the oxidation kinetics has been evidenced. • The stress gradient effect changes the parabolic kinetics into a sub-parabolic law closer to the experimental kinetics because of the stress gradient itself, but also because of the growth stress increase with the oxide thickness. - Abstract: Experimentally, zirconium-based alloys oxidation kinetics is sub-parabolic, by contrast with the Wagner theory which predicts a parabolic kinetics. Two finite element models have been developed to simulate this phenomenon: the diffuse interface model and the sharp interface model. Both simulate parabolic oxidation kinetics. The growth stress effects on oxygen diffusion are studied to try to explain the gap between theory and experience. Taking into account the influence of the hydrostatic stress and its gradient into the oxygen flux expression, sub-parabolic oxidation kinetics have been simulated. The sub-parabolic behaviour of the oxidation kinetics can be explained by a non-uniform compressive stress level into the oxide layer.

  4. Glucose-6-phosphate dehydrogenase protects Escherichia coli from tellurite-mediated oxidative stress.

    Directory of Open Access Journals (Sweden)

    Juan M Sandoval

    Full Text Available The tellurium oxyanion tellurite induces oxidative stress in most microorganisms. In Escherichia coli, tellurite exposure results in high levels of oxidized proteins and membrane lipid peroxides, inactivation of oxidation-sensitive enzymes and reduced glutathione content. In this work, we show that tellurite-exposed E. coli exhibits transcriptional activation of the zwf gene, encoding glucose 6-phosphate dehydrogenase (G6PDH, which in turn results in augmented synthesis of reduced nicotinamide adenine dinucleotide phosphate (NADPH. Increased zwf transcription under tellurite stress results mainly from reactive oxygen species (ROS generation and not from a depletion of cellular glutathione. In addition, the observed increase of G6PDH activity was paralleled by accumulation of glucose-6-phosphate (G6P, suggesting a metabolic flux shift toward the pentose phosphate shunt. Upon zwf overexpression, bacterial cells also show increased levels of antioxidant molecules (NADPH, GSH, better-protected oxidation-sensitive enzymes and decreased amounts of oxidized proteins and membrane lipids. These results suggest that by increasing NADPH content, G6PDH plays an important role in E. coli survival under tellurite stress.

  5. Testosterone depletion increases the susceptibility of brain tissue to oxidative damage in a restraint stress mouse model.

    Science.gov (United States)

    Son, Seung-Wan; Lee, Jin-Seok; Kim, Hyeong-Geug; Kim, Dong-Woon; Ahn, Yo-Chan; Son, Chang-Gue

    2016-01-01

    Among sex hormones, estrogen is particularly well known to act as neuroprotective agent. Unlike estrogen, testosterone has not been well investigated in regard to its effects on the brain, especially under psychological stress. To investigate the role of testosterone in oxidative brain injuries under psychological stress, we adapted an orchiectomy and restraint stress model. BALB/c mice were subjected to either an orchiectomy or sham operation. After allowing 15 days for recovery, mice were re-divided into four groups according to exposure of restraint stress: sham, sham plus stress, orchiectomy, and orchiectomy plus stress. Serum testosterone was undetectable in orchiectomized groups and restraint-induced stress significantly reduced testosterone levels in sham plus stress group. The serum levels of corticosterone and adrenaline were notably elevated by restraint stress, and these elevated hormones were markedly augmented by orchiectomy. Two oxidative stressors and biomarkers for lipid and protein peroxidation were significantly increased in the cerebral cortex and hippocampus by restraint stress, while the reverse pattern was observed in antioxidant enzymes. These results were supported by histopathological findings, with 4-hydroxynonenal staining for oxidative injury and Fluoro-Jade B staining showing the degenerating neurons. The aforementioned patterns of oxidative injury were accelerated by orchiectomy. These findings strongly suggest the conclusion that testosterone exerts a protective effect against oxidative brain damage, especially under stressed conditions. Unlike estrogen, the effects of testosterone on the brain have not been thoroughly investigated. In order to investigate the role of testosterone in oxidative brain injuries under psychological stress, we adapted an orchiectomy and restraint stress model. Orchiectomy markedly augmented the restraint stress-induced elevation of serum corticosterone and adrenaline levels as well as oxidative alterations

  6. Effects of Kombucha on oxidative stress induced nephrotoxicity in rats.

    Science.gov (United States)

    Gharib, Ola Ali

    2009-11-27

    Trichloroethylene (TCE) may induce oxidative stress which generates free radicals and alters antioxidants or oxygen-free radical scavenging enzymes. Twenty male albino rats were divided into four groups: (1) the control group treated with vehicle, (2) Kombucha (KT)-treated group, (3) TCE-treated group and (4) KT/TCE-treated group. Kidney lipid peroxidation, glutathione content, nitric oxide (NO) and total blood free radical concentrations were evaluated. Serum urea, creatinine level, gamma-glutamyl transferase (GGT) and lactate dehydrogenase (LDH) activities were also measured. TCE administration increased the malondiahyde (MDA) and NO contents in kidney, urea and creatinine concentrations in serum, total free radical level in blood and GGT and LDH activities in serum, whereas it decreased the glutathione (GSH) level in kidney homogenate. KT administration significantly improved lipid peroxidation and oxidative stress induced by TCE. The present study indicates that Kombucha may repair damage caused by environmental pollutants such as TCE and may be beneficial to patient suffering from renal impairment.

  7. Tolerance of spermatogonia to oxidative stress is due to high levels of Zn and Cu/Zn superoxide dismutase.

    Directory of Open Access Journals (Sweden)

    Fritzie T Celino

    Full Text Available BACKGROUND: Spermatogonia are highly tolerant to reactive oxygen species (ROS attack while advanced-stage germ cells such as spermatozoa are much more susceptible, but the precise reason for this variation in ROS tolerance remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: Using the Japanese eel testicular culture system that enables a complete spermatogenesis in vitro, we report that advanced-stage germ cells undergo intense apoptosis and exhibit strong signal for 8-hydroxy-2'-deoxyguanosine, an oxidative DNA damage marker, upon exposure to hypoxanthine-generated ROS while spermatogonia remain unaltered. Activity assay of antioxidant enzyme, superoxide dismutase (SOD and Western blot analysis using an anti-Copper/Zinc (Cu/Zn SOD antibody showed a high SOD activity and Cu/Zn SOD protein concentration during early spermatogenesis. Immunohistochemistry showed a strong expression for Cu/Zn SOD in spermatogonia but weak expression in advanced-stage germ cells. Zn deficiency reduced activity of the recombinant eel Cu/Zn SOD protein. Cu/Zn SOD siRNA decreased Cu/Zn SOD expression in spermatogonia and led to increased oxidative damage. CONCLUSIONS/SIGNIFICANCE: These data indicate that the presence of high levels of Cu/Zn SOD and Zn render spermatogonia resistant to ROS, and consequently protected from oxidative stress. These findings provide the biochemical basis for the high tolerance of spermatogonia to oxidative stress.

  8. N-Acetylcysteine protects against trichloroethene-mediated autoimmunity by attenuating oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gangduo; Wang, Jianling; Ma, Huaxian; Ansari, G.A.S.; Khan, M. Firoze, E-mail: mfkhan@utmb.edu

    2013-11-15

    Exposure to trichloroethene (TCE), a ubiquitous environmental contaminant, is known to induce autoimmunity both in humans and animal models. However, mechanisms underlying TCE-mediated autoimmunity remain largely unknown. Previous studies from our laboratory in MRL +/+ mice suggest that oxidative stress may contribute to TCE-induced autoimmune response. The current study was undertaken to further assess the role of oxidative stress in TCE-induced autoimmunity by supplementing with an antioxidant N-acetylcysteine (NAC). Groups of female MRL +/+ mice were given TCE, NAC or TCE + NAC for 6 weeks (TCE, 10 mmol/kg, i.p., every 4th day; NAC, 250 mg/kg/day through drinking water). TCE exposure led to significant increases in serum levels of anti-nuclear, anti-dsDNA and anti-Sm antibodies. TCE exposure also led to significant induction of anti-malondiadelhyde (MDA)- and anti-hydroxynonenal (HNE)-protein adduct antibodies which were associated with increased ANA in the sera along with increased MDA-/HNE-protein adducts in the livers and kidneys, and increases in protein oxidation (carbonylation) in the sera, livers and kidneys, suggesting an overall increase in oxidative stress. Moreover, TCE exposure also resulted in increased release of IL-17 from splenocytes and increases in IL-17 mRNA expression. Remarkably, NAC supplementation attenuated not only the TCE-induced oxidative stress, IL-17 release and mRNA expression, but also the markers of autoimmunity, as evident from decreased levels of ANA, anti-dsDNA and anti-Sm antibodies in the sera. These results provide further support to a role of oxidative stress in TCE-induced autoimmune response. Attenuation of TCE-induced autoimmunity in mice by NAC provides an approach for preventive and/or therapeutic strategies. - Highlights: • TCE led to increased autoantibodies, supporting its potential to induce autoimmunity. • TCE exposure led to increases in lipid perioxidation and protein carbonyls. • TCE exposure resulted in

  9. N-Acetylcysteine protects against trichloroethene-mediated autoimmunity by attenuating oxidative stress

    International Nuclear Information System (INIS)

    Wang, Gangduo; Wang, Jianling; Ma, Huaxian; Ansari, G.A.S.; Khan, M. Firoze

    2013-01-01

    Exposure to trichloroethene (TCE), a ubiquitous environmental contaminant, is known to induce autoimmunity both in humans and animal models. However, mechanisms underlying TCE-mediated autoimmunity remain largely unknown. Previous studies from our laboratory in MRL +/+ mice suggest that oxidative stress may contribute to TCE-induced autoimmune response. The current study was undertaken to further assess the role of oxidative stress in TCE-induced autoimmunity by supplementing with an antioxidant N-acetylcysteine (NAC). Groups of female MRL +/+ mice were given TCE, NAC or TCE + NAC for 6 weeks (TCE, 10 mmol/kg, i.p., every 4th day; NAC, 250 mg/kg/day through drinking water). TCE exposure led to significant increases in serum levels of anti-nuclear, anti-dsDNA and anti-Sm antibodies. TCE exposure also led to significant induction of anti-malondiadelhyde (MDA)- and anti-hydroxynonenal (HNE)-protein adduct antibodies which were associated with increased ANA in the sera along with increased MDA-/HNE-protein adducts in the livers and kidneys, and increases in protein oxidation (carbonylation) in the sera, livers and kidneys, suggesting an overall increase in oxidative stress. Moreover, TCE exposure also resulted in increased release of IL-17 from splenocytes and increases in IL-17 mRNA expression. Remarkably, NAC supplementation attenuated not only the TCE-induced oxidative stress, IL-17 release and mRNA expression, but also the markers of autoimmunity, as evident from decreased levels of ANA, anti-dsDNA and anti-Sm antibodies in the sera. These results provide further support to a role of oxidative stress in TCE-induced autoimmune response. Attenuation of TCE-induced autoimmunity in mice by NAC provides an approach for preventive and/or therapeutic strategies. - Highlights: • TCE led to increased autoantibodies, supporting its potential to induce autoimmunity. • TCE exposure led to increases in lipid perioxidation and protein carbonyls. • TCE exposure resulted in

  10. Chronic Oxidative Stress, Mitochondrial Dysfunction, Nrf2 Activation and Inflammation in the Hippocampus Accompany Heightened Systemic Inflammation and Oxidative Stress in an Animal Model of Gulf War Illness

    Science.gov (United States)

    Shetty, Geetha A.; Hattiangady, Bharathi; Upadhya, Dinesh; Bates, Adrian; Attaluri, Sahithi; Shuai, Bing; Kodali, Maheedhar; Shetty, Ashok K.

    2017-01-01

    Memory and mood dysfunction are the key symptoms of Gulf war illness (GWI), a lingering multi-symptom ailment afflicting >200,000 veterans who served in the Persian Gulf War-1. Research probing the source of the disease has demonstrated that concomitant exposures to anti-nerve gas agent pyridostigmine bromide (PB), pesticides, and war-related stress are among the chief causes of GWI. Indeed, exposures to GWI-related chemicals (GWIR-Cs) and mild stress in animal models cause memory and mood impairments alongside reduced neurogenesis and chronic low-level inflammation in the hippocampus. In the current study, we examined whether exposure to GWIR-Cs and stress causes chronic changes in the expression of genes related to increased oxidative stress, mitochondrial dysfunction, and inflammation in the hippocampus. We also investigated whether GWI is linked with chronically increased activation of Nrf2 (a master regulator of antioxidant response) in the hippocampus, and inflammation and enhanced oxidative stress at the systemic level. Adult male rats were exposed daily to low-doses of PB and pesticides (DEET and permethrin), in combination with 5 min of restraint stress for 4 weeks. Analysis of the hippocampus performed 6 months after the exposure revealed increased expression of many genes related to oxidative stress response and/or antioxidant activity (Hmox1, Sepp1, and Srxn1), reactive oxygen species metabolism (Fmo2, Sod2, and Ucp2) and oxygen transport (Ift172 and Slc38a1). Furthermore, multiple genes relevant to mitochondrial respiration (Atp6a1, Cox6a1, Cox7a2L, Ndufs7, Ndufv1, Lhpp, Slc25a10, and Ucp1) and neuroinflammation (Nfkb1, Bcl6, Csf2, IL6, Mapk1, Mapk3, Ngf, N-pac, and Prkaca) were up-regulated, alongside 73–88% reduction in the expression of anti-inflammatory genes IL4 and IL10, and nuclear translocation and increased expression of Nrf2 protein. These hippocampal changes were associated with elevated levels of pro-inflammatory cytokines and chemokines

  11. Chronic Oxidative Stress, Mitochondrial Dysfunction, Nrf2 Activation and Inflammation in the Hippocampus Accompany Heightened Systemic Inflammation and Oxidative Stress in an Animal Model of Gulf War Illness.

    Science.gov (United States)

    Shetty, Geetha A; Hattiangady, Bharathi; Upadhya, Dinesh; Bates, Adrian; Attaluri, Sahithi; Shuai, Bing; Kodali, Maheedhar; Shetty, Ashok K

    2017-01-01

    Memory and mood dysfunction are the key symptoms of Gulf war illness (GWI), a lingering multi-symptom ailment afflicting >200,000 veterans who served in the Persian Gulf War-1. Research probing the source of the disease has demonstrated that concomitant exposures to anti-nerve gas agent pyridostigmine bromide (PB), pesticides, and war-related stress are among the chief causes of GWI. Indeed, exposures to GWI-related chemicals (GWIR-Cs) and mild stress in animal models cause memory and mood impairments alongside reduced neurogenesis and chronic low-level inflammation in the hippocampus. In the current study, we examined whether exposure to GWIR-Cs and stress causes chronic changes in the expression of genes related to increased oxidative stress, mitochondrial dysfunction, and inflammation in the hippocampus. We also investigated whether GWI is linked with chronically increased activation of Nrf2 (a master regulator of antioxidant response) in the hippocampus, and inflammation and enhanced oxidative stress at the systemic level. Adult male rats were exposed daily to low-doses of PB and pesticides (DEET and permethrin), in combination with 5 min of restraint stress for 4 weeks. Analysis of the hippocampus performed 6 months after the exposure revealed increased expression of many genes related to oxidative stress response and/or antioxidant activity ( Hmox1, Sepp1 , and Srxn1 ), reactive oxygen species metabolism ( Fmo2, Sod2 , and Ucp2 ) and oxygen transport ( Ift172 and Slc38a1 ). Furthermore, multiple genes relevant to mitochondrial respiration ( Atp6a1, Cox6a1, Cox7a2L, Ndufs7, Ndufv1, Lhpp, Slc25a10 , and Ucp1 ) and neuroinflammation ( Nfkb1, Bcl6, Csf2, IL6, Mapk1, Mapk3, Ngf, N-pac , and Prkaca ) were up-regulated, alongside 73-88% reduction in the expression of anti-inflammatory genes IL4 and IL10 , and nuclear translocation and increased expression of Nrf2 protein. These hippocampal changes were associated with elevated levels of pro-inflammatory cytokines

  12. Degradation of Ultra-Thin Gate Oxide NMOSFETs under CVDT and SHE Stresses

    International Nuclear Information System (INIS)

    Shi-Gang, Hu; Yan-Rong, Cao; Yue, Hao; Xiao-Hua, Ma; Chi, Chen; Xiao-Feng, Wu; Qing-Jun, Zhou

    2008-01-01

    Degradation of device under substrate hot-electron (SHE) and constant voltage direct-tunnelling (CVDT) stresses are studied using NMOSFET with 1.4-nm gate oxides. The degradation of device parameters and the degradation of the stress induced leakage current (SILC) under these two stresses are reported. The emphasis of this paper is on SILC and breakdown of ultra-thin-gate-oxide under these two stresses. SILC increases with stress time and several soft breakdown events occur during direct-tunnelling (DT) stress. During SHE stress, SILC firstly decreases with stress time and suddenly jumps to a high level, and no soft breakdown event is observed. For DT injection, the positive hole trapped in the oxide and hole direct-tunnelling play important roles in the breakdown. For SHE injection, it is because injected hot electrons accelerate the formation of defects and these defects formed by hot electrons induce breakdown. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  13. Neuromodulatory Effects of Hesperidin in Mitigating Oxidative Stress in Streptozotocin Induced Diabetes

    Directory of Open Access Journals (Sweden)

    Mohammad Ashafaq

    2014-01-01

    Full Text Available Oxidative stress has been implicated in pathogenesis of streptozotocin- (STZ- induced diabetes mellitus and its complication in central nervous system (CNS. Recent studies have provided insights on antioxidants and their emergence as potential therapeutic and nutraceutical. The present study examined the hypothesis that hesperidin (HP ameliorates oxidative stress and may be a limiting factor in the extent of CNS complication following diabetes. To test this hypothesis rats were divided into four groups: control, diabetic, diabetic-HP treated, and vehicle for HP treatment group. Diabetes mellitus was induced by a single injection of STZ (65 mg/kg body weight. Three days after STZ injection, HP was given (50 mg/kg b.wt. orally once daily for four weeks. The results of the present investigation suggest that the significant elevated levels of oxidative stress markers were observed in STZ-treated animals, whereas significant depletion in the activity of nonenzymatic antioxidants and enzymatic antioxidants was witnessed in diabetic rat brain. Neurotoxicity biomarker activity was also altered significantly. HP treatment significantly attenuated the altered levels of oxidative stress and neurotoxicity biomarkers. Our results demonstrate that HP exhibits potent antioxidant and neuroprotective effects on the brain tissue against the diabetic oxidative damage in STZ-induced rodent model.

  14. Nitro-oxidative stress, VEGF and MMP-9 in patients with cirrhotic and non-cirrhotic portal hypertension.

    Science.gov (United States)

    Muti, Leon Adrian; Pârvu, Alina Elena; Crăciun, Alexandra M; Miron, Nicolae; Acalovschi, Monica

    2015-01-01

    Nitro-oxidative stress may have pathophysiological consequences. The study aimed to assess the nitro-oxidative stress, the vascular growth factor, and metalloproteinase-9 levels in patients with noncirrohic and cirrhotic portal hypertension. Patients with noncirrhotic portal hypertension (n=50) and cirrhotic portal hypertension (n=50) from the 3rd Medical Clinic in Cluj-Napoca Romania were prospectively enrolled between October 2004 and October 2006. A control group of healthy volunteers (n=50) was also evaluated. Nitro-oxidative stress was assessed by measuring serum concentration of nitrites and nitrate, 3-nitrotyrosine, total oxidative status, total antioxidant reactivity, and oxidative stress index. Serum vascular growth factor and matrix metalloproteinase-9 were also determined. Serum nitrites and nitrate levels significantly increased in both noncirrhotic (pportal hypertension (p=0.057). 3-nitrotyrosine also increased in noncirrhotic (p=0.001) and cirrhotic portal hypertension patients (p=0.014). Total oxidative status showed a significant increase in noncirrhotic (pportal hypertension (pportal hypertension (pportal hypertension a significant systemic nitro-oxidative stress was found, correlated with an increase of VEGF. MMP-9 decreased in noncirrhotic portal hypertension.

  15. A Nucleocytoplasmic Shuttling Protein in Oxidative Stress Tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Ow, David W.; Song, Wen

    2003-03-26

    Plants for effective extraction of toxic metals and radionuclides must tolerate oxidative stress. To identify genes that enhance oxidative stress tolerance, an S. pombe cDNA expression plasmid library was screened for the ability to yield hypertolerant colonies. Here, we report on the properties of one gene that confers hypertolerance to cadmium and oxidizing chemicals. This gene appears to be conserved in other organisms as homologous genes are found in human, mouse, fruitfly and Arabidopsis. The fruitfly and Arabidopsis genes likewise enhance oxidative stress tolerance in fission yeast. During oxidative stress, the amount of mRNA does not change, but protein fusions to GFP relocate from the cytoplasm to the nucleus. The same pattern is observed with the Arabidopsis homologue-GFP fusion protein. This behavior suggests a signaling role in oxidative stress tolerance and these conserved proteins may be targets for engineering stress tolerant plants for phytoremediation.

  16. Effect of N-acetylcysteine treatment on oxidative stress and inflammation after severe burn.

    Science.gov (United States)

    Csontos, C; Rezman, B; Foldi, V; Bogar, L; Drenkovics, L; Röth, E; Weber, G; Lantos, J

    2012-05-01

    Oxidative stress and inflammation generate edema in burns. The aim of our study was to assess effect of N-acetylcysteine (NAC) on oxidative stress, inflammation, fluid requirement, multiple organ dysfunction (MOD) score and vasoactive drug requirement. In this study 15 patients were on standard therapy, whereas for other 15 patients NAC was supplemented. Blood samples were taken on admission and on the next five consecutive mornings. Levels of malondialdehyde, protein sulfhydril (PSH) groups, reduced gluthation (GSH), activity of myeloperoxidase, catalase and superoxide dismutase enzymes and induced free radical generating capacity were measured as well as concentrations of TNF-α, IL-6, IL-8, and IL-10. MOD score, use of vasopressor agents and fluid utilisation were recorded daily. NAC treatment increased GSH level on days 4-5 (ptreatment is associated with a diminished oxidative stress reflected in preserved antioxidant levels, lower inflammation mirrored in lower interleukin levels and less vasopressor requirement. Copyright © 2011 Elsevier Ltd and ISBI. All rights reserved.

  17. Intermittent fasting decreases oxidative stress parameters in Wistar rats (Rattus norvegicus)

    OpenAIRE

    Titis Nurmasitoh; Shindy Yudha Utami; Endah Kusumawardani; Abdulhalim Ahmad Najmuddin; Ika Fidianingsih

    2018-01-01

    Background Chronic and degenerative diseases are closely related to modern lifestyles that tend to be deficient in physical activity but excessive in food intake. One method used to overcome this problem is dietary restriction through intermittent fasting. Intermittent fasting decreases the risk of chronic and degenerative diseases, e.g. by lowering oxidative stress. Oxidative stress can be determined from the malondialdehyde (MDA) levels and lipid profile in the blood. The present study a...

  18. Are metallothioneins equally good biomarkers of metal and oxidative stress?

    Science.gov (United States)

    Figueira, Etelvina; Branco, Diana; Antunes, Sara C; Gonçalves, Fernando; Freitas, Rosa

    2012-10-01

    Several researchers investigated the induction of metallothioneins (MTs) in the presence of metals, namely Cadmium (Cd). Fewer studies observed the induction of MTs due to oxidizing agents, and literature comparing the sensitivity of MTs to different stressors is even more scarce or even nonexistent. The role of MTs in metal and oxidative stress and thus their use as a stress biomarker, remains to be clearly elucidated. To better understand the role of MTs as a biomarker in Cerastoderma edule, a bivalve widely used as bioindicator, a laboratory assay was conducted aiming to assess the sensitivity of MTs to metal and oxidative stressors. For this purpose, Cd was used to induce metal stress, whereas hydrogen peroxide (H2O2), being an oxidizing compound, was used to impose oxidative stress. Results showed that induction of MTs occurred at very different levels in metal and oxidative stress. In the presence of the oxidizing agent (H2O2), MTs only increased significantly when the degree of oxidative stress was very high, and mortality rates were higher than 50 percent. On the contrary, C. edule survived to all Cd concentrations used and significant MTs increases, compared to the control, were observed in all Cd exposures. The present work also revealed that the number of ions and the metal bound to MTs varied with the exposure conditions. In the absence of disturbance, MTs bound most (60-70 percent) of the essential metals (Zn and Cu) in solution. In stressful situations, such as the exposure to Cd and H2O2, MTs did not bind to Cu and bound less to Zn. When organisms were exposed to Cd, the total number of ions bound per MT molecule did not change, compared to control. However the sort of ions bound per MT molecule differed; part of the Zn and all Cu ions where displaced by Cd ions. For organisms exposed to H2O2, each MT molecule bound less than half of the ions compared to control and Cd conditions, which indicates a partial oxidation of thiol groups in the cysteine

  19. Hepatic oxidative stress, genotoxicity and vascular dysfunction in lean or obese zucker rats

    DEFF Research Database (Denmark)

    Løhr, Mille; Folkmann, Janne Kjærsgaard; Sheykhzade, Majid

    2015-01-01

    Metabolic syndrome is associated with increased risk of cardiovascular disease, which could be related to oxidative stress. Here, we investigated the associations between hepatic oxidative stress and vascular function in pressurized mesenteric arteries from lean and obese Zucker rats at 14, 24 an......-generated DNA damage despite substantial hepatic steatosis.......Metabolic syndrome is associated with increased risk of cardiovascular disease, which could be related to oxidative stress. Here, we investigated the associations between hepatic oxidative stress and vascular function in pressurized mesenteric arteries from lean and obese Zucker rats at 14, 24...... and 37 weeks of age. Obese Zucker rats had more hepatic fat accumulation than their lean counterparts. Nevertheless, the obese rats had unaltered age-related level of hepatic oxidatively damaged DNA in terms of formamidopyrimidine DNA glycosylase (FPG) or human oxoguanine DNA glycosylase (hOGG1...

  20. Impact of Oxidative Stress in Fetal Programming

    OpenAIRE

    Thompson, Loren P.; Al-Hasan, Yazan

    2012-01-01

    Intrauterine stress induces increased risk of adult disease through fetal programming mechanisms. Oxidative stress can be generated by several conditions, such as, prenatal hypoxia, maternal under- and overnutrition, and excessive glucocorticoid exposure. The role of oxidant molecules as signaling factors in fetal programming via epigenetic mechanisms is discussed. By linking oxidative stress with dysregulation of specific target genes, we may be able to develop therapeutic strategies that pr...

  1. Oxidative stress in normal hematopoietic stem cells and leukemia.

    Science.gov (United States)

    Samimi, Azin; Kalantari, Heybatullah; Lorestani, Marzieh Zeinvand; Shirzad, Reza; Saki, Najmaldin

    2018-04-01

    Leukemia is developed following the abnormal proliferation of immature hematopoietic cells in the blood when hematopoietic stem cells lose the ability to turn into mature cells at different stages of maturation and differentiation. Leukemia initiating cells are specifically dependent upon the suppression of oxidative stress in the hypoglycemic bone marrow (BM) environment to be able to start their activities. Relevant literature was identified by a PubMed search (2000-2017) of English-language literature using the terms 'oxidative stress,' 'reactive oxygen species,' 'hematopoietic stem cell,' and 'leukemia.' The generation and degradation of free radicals is a main component of the metabolism in aerobic organisms. A certain level of ROS is required for proper cellular function, but values outside this range will result in oxidative stress (OS). Long-term overactivity of reactive oxygen species (ROS) has harmful effects on the function of cells and their vital macromolecules, including the transformation of proteins into autoantigens and increased degradation of protein/DNA, which eventually leads to the change in pathways involved in the development of cancer and several other disorders. According to the metabolic disorders of cancer, the relationship between OS changes, the viability of cancer cells, and their response to chemotherapeutic agents affecting this pathway are undeniable. Recently, studies have been conducted to determine the effect of herbal agents and cancer chemotherapy drugs on oxidative stress pathways. By emphasizing the role of oxidative stress on stem cells in the incidence of leukemia, this paper attempts to state and summarize this subject. © 2018 APMIS. Published by John Wiley & Sons Ltd.

  2. Oxidative stress in primary glomerular diseases

    DEFF Research Database (Denmark)

    Markan, Suchita; Kohli, Harbir Singh; Sud, Kamal

    2008-01-01

    To evaluate the status of oxidative stress in patients with different primary glomerular diseases (PGD) which have differential predisposition to renal failure.......To evaluate the status of oxidative stress in patients with different primary glomerular diseases (PGD) which have differential predisposition to renal failure....

  3. Neuroprotective effects of sildenafil against oxidative stress and memory dysfunction in mice exposed to noise stress.

    Science.gov (United States)

    Sikandaner, Hu Erxidan; Park, So Young; Kim, Min Jung; Park, Shi Nae; Yang, Dong Won

    2017-02-15

    Noise exposure has been well characterized as an environmental stressor, and is known to have auditory and non-auditory effects. Phosphodiesterase 5 (PDE5) inhibitors affect memory and hippocampus plasticity through various signaling cascades which are regulated by cGMP. In this study, we investigated the effects of sildenafil on memory deficiency, neuroprotection and oxidative stress in mice caused by chronic noise exposure. Mice were exposed to noise for 4h every day up to 14days at 110dB SPL of noise level. Sildenafil (15mg/kg) was orally administered 30min before noise exposure for 14days. Behavioral assessments were performed using novel object recognition (NOR) test and radial arm maze (RAM) test. Higher levels of memory dysfunction and oxidative stress were observed in noise alone-induced mice compared to control group. Interestingly, sildenafil administration increased memory performance, decreased oxidative stress, and increased neuroprotection in the hippocampus region of noise alone-induced mice likely through affecting memory related pathways such as cGMP/PKG/CREB and p25/CDK5, and induction of free radical scavengers such as SOD1, SOD2, SOD3, Prdx5, and catalase in the brain of stressed mice. Copyright © 2016. Published by Elsevier B.V.

  4. Cobalamin Protection against Oxidative Stress in the Acidophilic Iron-oxidizing Bacterium Leptospirillum group II CF-1

    Directory of Open Access Journals (Sweden)

    Gloria Paz Levicán

    2016-05-01

    Full Text Available Members of the genus Leptospirillum are aerobic iron-oxidizing bacteria belonging to the phylum Nitrospira. They are important members of microbial communities that catalyze the biomining of sulfidic ores, thereby solubilizing metal ions. These microorganisms live under extremely acidic and metal-loaded environments and thus must tolerate high concentrations of reactive oxygen species. Cobalamin (vitamin B12 is a cobalt-containing tetrapyrrole cofactor involved in intramolecular rearrangement reactions and has recently been suggested to be an intracellular antioxidant. In this work, we investigated the effect of the exogenous addition of cobalamin on oxidative stress parameters in Leptospirillum group II strain CF-1. Our results revealed that the external supplementation of cobalamin reduces the levels of intracellular reactive oxygen species and the damage to biomolecules, and also stimulates the growth and survival of cells exposed to oxidative stress exerted by ferric ion, hydrogen peroxide, chromate and diamide. Furthermore, exposure of strain CF-1 to oxidative stress elicitors resulted in the transcriptional activation of the cbiA gene encoding CbiA of the cobalamin biosynthetic pathway. Altogether, these data suggest that cobalamin plays an important role in redox protection of Leptospirillum strain CF-1, supporting survival of this microorganism under extremely oxidative environmental conditions. Understanding the mechanisms underlying the protective effect of cobalamin against oxidative stress may help to develop strategies to make biomining processes more effective.

  5. Molecular basis for arsenic-Induced alteration in nitric oxide production and oxidative stress: implication of endothelial dysfunction

    International Nuclear Information System (INIS)

    Kumagai, Yoshito; Pi Jingbo

    2004-01-01

    Accumulated epidemiological studies have suggested that prolonged exposure of humans to arsenic in drinking water is associated with vascular diseases. The exact mechanism of how this occurs currently unknown. Nitric oxide (NO), formed by endothelial NO synthase (eNOS), plays a crucial role in the vascular system. Decreased availability of biologically active NO in the endothelium is implicated in the pathophysiology of several vascular diseases and inhibition of eNOS by arsenic is one of the proposed mechanism s for arsenic-induced vascular diseases. In addition, during exposure to arsenic, overproduction of reactive oxygen species (ROS) can occur, resulting in oxidative stress, which is another major risk factor for vascular dysfunction. The molecular basis for decreased NO levels and increased oxidative stress during arsenic exposure is poorly understood. In this article, evidence for arsenic-mediated alteration in NO production and oxidative stress is reviewed. The results of a cross-sectional study in an endemic area of chronic arsenic poisoning and experimental animal studies to elucidate a potential mechanism for the impairment of NO formation and oxidative stress caused by prolonged exposure to arsenate in the drinking water are also reviewed

  6. Toward an understanding of mechanism of aging-induced oxidative stress in human mesenchymal stem cells.

    Science.gov (United States)

    Benameur, Laila; Charif, Naceur; Li, Yueying; Stoltz, Jean-François; de Isla, Natalia

    2015-01-01

    Under physiological conditions, there is a production of limited range of free radicals. However, when the cellular antioxidant defence systems, overwhelm and fail to reverse back the free radicals to their normal basal levels, there is a creation of a condition of redox disequilibrium termed "oxidative stress", which is implicated in a very wide spectrum of genetic, metabolic, and cellular responses. The excess of free radicals can, cause unfavourable molecular alterations to biomolecules through oxidation of lipids, proteins, RNA and DNA, that can in turn lead to mutagenesis, carcinogenesis, and aging. Mesenchymal stem cells (MSCs) have been proven to be a promising source of cells for regenerative medicine, and to be useful in the treatment of pathologies in which tissue damage is linked to oxidative stress. Moreover, MSCs appeared to efficiently manage oxidative stress and to be more resistant to oxidative insult than normal somatic cells, making them an interesting and testable model for the role of oxidative stress in the aging process. In addition, aging is accompanied by a progressive decline in stem cell function, resulting in less effective tissue homeostasis and repair. Also, there is an obvious link between intracellular reactive oxygen species levels and cellular senescence. To date, few studies have investigated the promotion of aging by oxidative stress on human MSCs, and the mechanism by which oxidative stress induce stem cell aging is poorly understood. In this context, the aim of this review is to gain insight the current knowledge about the molecular mechanisms of aging-induced oxidative stress in human MSCs.

  7. Effect of Cadmium Stress on Non-enzymatic Antioxidant and Nitric Oxide Levels in Two Varieties of Maize (Zea mays).

    Science.gov (United States)

    Akinyemi, Ayodele Jacob; Faboya, Oluwabamise Lekan; Olayide, Israel; Faboya, Opeyemi Ayodeji; Ijabadeniyi, Tosin

    2017-06-01

    Cadmium (Cd) is one of the most toxic heavy metals that inhibit physiological processes of plants. Hence, the present study sought to investigate the effect of cadmium-contaminated seeds from two varieties of maize (Zea mays) on non-enzymatic antioxidant and nitric oxide levels. Seeds of yellow and white maize were exposed to different concentrations of Cd (0, 1, 3 and 5 ppm) for two weeks. The results from this study revealed that both varieties of maize bio-accumulate Cd in leaves in a dose-dependent manner. In addition, Cd exposure caused a significant (p < 0.05) decrease in total phenolic, GSH and nitric oxide (NO) levels at the highest concentration tested when compared with control. Therefore, the observed decrease in NO and endogenous antioxidant status by Cd treatment in maize plants could suggest some possible mechanism of action for Cd-induced oxidative stress and counteracting effect of the plants against Cd toxicity.

  8. Menopause as risk factor for oxidative stress.

    Science.gov (United States)

    Sánchez-Rodríguez, Martha A; Zacarías-Flores, Mariano; Arronte-Rosales, Alicia; Correa-Muñoz, Elsa; Mendoza-Núñez, Víctor Manuel

    2012-03-01

    The aim of this study was to determine the influence of menopause (hypoestrogenism) as a risk factor for oxidative stress. We carried out a cross-sectional study with 187 perimenopausal women from Mexico City, including 94 premenopausal (mean ± SD age, 44.9 ± 4.0 y; estrogen, 95.8 ± 65.7 pg/mL; follicle-stimulating hormone, 13.6 ± 16.9 mIU/mL) and 93 postmenopausal (mean ± SD age, 52.5 ± 3.3 y; estrogen, 12.8 ± 6.8 pg/mL; follicle-stimulating hormone, 51.4 ± 26.9 mIU/mL) women. We measured lipoperoxides using a thiobarbituric acid-reacting substance assay, erythrocyte superoxide dismutase and glutathione peroxidase activities, and the total antioxidant status with the Randox kit. An alternative cutoff value for lipoperoxide level of 0.320 μmol/L or higher was defined on the basis of the 90th percentile of young healthy participants. All women answered the Menopause Rating Scale, the Athens Insomnia Scale, and a structured questionnaire about pro-oxidant factors, that is, smoking, consumption of caffeinated and alcoholic beverages, and physical activity. Finally, we measured weight and height and calculated body mass index. The lipoperoxide levels were significantly higher in the postmenopausal group than in the premenopausal group (0.357 ± 0.05 vs 0.331 ± 0.05 μmol/L, P = 0.001). Using logistic regression to control pro-oxidant variables, we found that menopause was the main risk factor for oxidative stress (odds ratio, 2.62; 95% CI, 1.35-5.11; P menopause rating score, insomnia score, and lipoperoxides, and this relationship was most evident in the postmenopausal group (menopause scale, r = 0.327 [P = 0.001]; insomnia scale, r = 0.209 [P < 0.05]). Our findings suggest that the depletion of estrogen in postmenopause could cause oxidative stress in addition to the known symptoms.

  9. The relationship between oxidative stress, smoking and the clinical severity of psoriasis.

    Science.gov (United States)

    Emre, S; Metin, A; Demirseren, D D; Kilic, S; Isikoglu, S; Erel, O

    2013-03-01

    Recent studies suggested that increased oxidant products and decreased antioxidant system functions may be involved in the pathogenesis of psoriasis. In this study, we investigated total oxidative status, Paraoxonase (PON)1/arylesterase enzyme activities and severity of the disease in smoker and non-smoker psoriatic patients. Fifty-four patients with plaque type psoriasis (28 smokers and 26 non-smokers) and 62 healthy volunteers (16 smokers and 46 non-smokers) were enrolled in the study. Serum total oxidant status (TOS), total antioxidant capacity (TAC) and arylesterase levels were measured, and oxidative stress index (OSI) was calculated in all participants. Psoriasis Area and Severity Index scores were significantly higher in smoker patients than in non-smoker patients (P = 0.014). Both smoker and non-smoker patients had significantly increased TOS levels and OSI values and decreased TAC levels than healthy subjects (all P values = 0.000). The TAC and TOS levels, OSI values and arylesterase activities were similar between smoker and non-smoker patients. The levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL) and high-density lipoprotein (HDL) were not significantly different between smoker and non-smoker psoriasis patients. When compared with non-smoking controls, only smoking psoriasis patients had significantly higher TG (P = 0.005), lower HDL (P = 0.022) and lower arylesterase levels (P = 0.015). There were no significant correlations with Psoriasis Area and Severity Index (PASI) scores and TAC, TOS, OSI, TG, TC, HDL and LDL levels in all psoriasis patients. Oxidative stress is increased in psoriasis patients regardless of their smoking status. The decreased arylesterase activity in smoker psoriasis patients suggested that smoking may be a considerable risk factor that increases the severity of psoriasis by increasing oxidative stress in these patients. © 2012 The Authors. Journal of the European Academy of Dermatology and

  10. AGE-INDEPENDENT, GREY-MATTER-LOCALIZED, BRAIN ENHANCED OXIDATIVE STRESS IN MALE FISCHER 344 RATS,1,2

    Science.gov (United States)

    While studies showed that aging is accompanied by increased exposure of the brain to oxidative stress, others have not detected any age-correlated differences in levels of markers of oxidative stress. Use of conventional markers of oxidative damage in vivo, which may be formed ex...

  11. Depression and oxidative stress: results from a meta-analysis of observational studies.

    Science.gov (United States)

    Palta, Priya; Samuel, Laura J; Miller, Edgar R; Szanton, Sarah L

    2014-01-01

    To perform a systematic review and meta-analysis that quantitatively tests and summarizes the hypothesis that depression results in elevated oxidative stress and lower antioxidant levels. We performed a meta-analysis of studies that reported an association between depression and oxidative stress and/or antioxidant status markers. PubMed and EMBASE databases were searched for articles published from January 1980 through December 2012. A random-effects model, weighted by inverse variance, was performed to pool standard deviation (Cohen's d) effect size estimates across studies for oxidative stress and antioxidant status measures, separately. Twenty-three studies with 4980 participants were included in the meta-analysis. Depression was most commonly measured using the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria. A Cohen's d effect size of 0.55 (95% confidence interval = 0.47-0.63) was found for the association between depression and oxidative stress, indicating a roughly 0.55 of 1-standard-deviation increase in oxidative stress among individuals with depression compared with those without depression. The results of the studies displayed significant heterogeneity (I(2) = 80.0%, p < .001). A statistically significant effect was also observed for the association between depression and antioxidant status markers (Cohen's d = -0.24, 95% confidence interval = -0.33 to -0.15). This meta-analysis observed an association between depression and oxidative stress and antioxidant status across many different studies. Differences in measures of depression and markers of oxidative stress and antioxidant status markers could account for the observed heterogeneity. These findings suggest that well-established associations between depression and poor heath outcomes may be mediated by high oxidative stress.

  12. Effect of aerobic exercise intervention on DDT degradation and oxidative stress in rats.

    Science.gov (United States)

    Li, Kefeng; Zhu, Xiaohua; Wang, Yuzhan; Zheng, Shuqian; Dong, Guijun

    2017-03-01

    Dichlorodiphenyltrichloroethane (DDT) reportedly causes extensively acute or chronic effects to human health. Exercise can generate positive stress. We evaluated the effect of aerobic exercise on DDT degradation and oxidative stress. Male Wistar rats were randomly assigned into control (C), DDT without exercise training (D), and DDT plus exercise training (DE) groups. The rats were treated as follows: DDT exposure to D and DE groups at the first 2 weeks; aerobic exercise treatment only to the DE group from the 1st day until the rats are killed. DDT levels in excrements, muscle, liver, serum, and hearts were analyzed. Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) levels were determined. Aerobic exercise accelerated the degradation of DDT primarily to DDE due to better oxygen availability and aerobic condition and promoted the degradation of DDT. Cumulative oxidative damage of DDT and exercise led to significant decrease of SOD level. Exercise resulted in consistent increase in SOD activity. Aerobic exercise enhanced activities of CAT and GSH-Px and promoted MDA scavenging. Results suggested that exercise can accelerate adaptive responses to oxidative stress and activate antioxidant enzymes activities. Exercise can also facilitate the reduction of DDT-induced oxidative damage and promoted DDT degradation. This study strongly implicated the positive effect of exercise training on DDT-induced liver oxidative stress.

  13. Effects of stress on the oxide layer thickness and post-oxidation creep strain of zircaloy-4

    International Nuclear Information System (INIS)

    Lim, Sang Ho; Yoon, Young Ku

    1986-01-01

    Effects of compressive stress generated in the oxide layer and its subsequent relief on oxidation rate and post-oxidation creep characteristics of zircaloy-4 were investigated by oxidation studies in steam with and without applied tensile stress and by creep testing at 700 deg C in high purity argon. The thickness of oxide layer increased with the magnitude of tensile stress applied during oxidation at 650 deg C in steam whereas similar phenomenon was not observed during oxidation at 800 deg C. Zircaloy-4 specimens oxidized at 600 deg C in steam without applied stress exhibited higher creep strain than that shown by unoxidized specimens when creep-tested in argon. Zircaloy-4 specimens oxidized at 600 deg C steam under the applied stress of 8.53MPa and oxidized at 800 deg C under the applied stress of 0 and 8.53MPa exhibited lower strain than that shown by unoxidized specimen. The above experimental results were accounted for on the basis of interactions among applied stress during oxidation, compressive stress generated in the oxide layer and elasticity of zircaloy-4 matrix. (Author)

  14. The influence of hydroxyurea on oxidative stress in sickle cell anemia

    Directory of Open Access Journals (Sweden)

    Lidiane de Souza Torres

    2012-01-01

    Full Text Available OBJECTIVE: The oxidative stress in 20 sickle cell anemia patients taking hydroxyurea and 13 sickle cell anemia patients who did not take hydroxyurea was compared with a control group of 96 individuals without any hemoglobinopathy. METHODS: Oxidative stress was assessed by thiobarbituric acid reactive species production, the Trolox-equivalent antioxidant capacity and plasma glutathione levels. RESULTS: Thiobarbituric acid reactive species values were higher in patients without specific medication, followed by patients taking hydroxyurea and the Control Group (p < 0.0001. The antioxidant capacity was higher in patients taking hydroxyurea and lower in the Control Group (p = 0.0002 for Trolox-equivalent antioxidant capacity and p < 0.0292 for plasma glutathione. Thiobarbituric acid reactive species levels were correlated with higher hemoglobin S levels (r = 0.55; p = 0.0040 and lower hemoglobin F concentrations(r = -0.52; p = 0.0067. On the other hand, plasma glutathione levels were negatively correlated with hemoglobin S levels (r = -0.49; p = 0.0111 and positively associated with hemoglobin F values (r = 0.56; p = 0.0031. CONCLUSION: Sickle cell anemia patients have high oxidative stress and, conversely, increased antioxidant activity. The increase in hemoglobin F levels provided by hydroxyurea and its antioxidant action may explain the reduction in lipid peroxidation and increased antioxidant defenses in these individuals.

  15. Retinol, β-carotene and oxidative stress in systemic inflammatory response syndrome

    Directory of Open Access Journals (Sweden)

    Carla Nogueira

    2015-04-01

    Full Text Available Objective: patients suffering systemic inflammatory response syndrome (SIRS constitute a group susceptible to elevated levels of oxidative stress. This study’s aim is to evaluate the state of oxidative stress and levels of serum retinol and β-carotene in these patients. Methods: forty-six patients were divided into 2 groups: those those without diet (G1; n=18 and those with enteral nutritional support (G2; n=28. Serum levels of retinol and total carotenoids were measured. C-reactive protein (CRP levels and Apache scores were also calculated. Oxidative stress was estimated by measuring thiobarbituric acid reactive substance (TBARS levels. Results: the patients’ median age was 66.9 (SD=19.3 years. Lower concentrations of retinol and carotenoids were found in 68.6 and 66.7% of G1, respectively. In G2, despite average vitamin A levels being 8078 + 4035, retinol and β-carotene were considered insufficient (31.2 and 33.4%, respectively. No difference was noted between the 2 groups, according to the variables studied, with the exception being PCR and β-carotene (p=0.002; p=0.01. Conclusion: the data presented in this study supports the need to establish/revise clinical practices in treating SIRS patients, in light of this micronutrient’s role in the immune system and antioxidant defense without it interfering with its toxicity.

  16. Effect of oxidative stress induced by intracranial iron overload on central pain after spinal cord injury.

    Science.gov (United States)

    Meng, Fan Xing; Hou, Jing Ming; Sun, Tian Sheng

    2017-02-08

    Central pain (CP) is a common clinical problem in patients with spinal cord injury (SCI). Recent studies found the pathogenesis of CP was related to the remodeling of the brain. We investigate the roles of iron overload and subsequent oxidative stress in the remodeling of the brain after SCI. We established a rat model of central pain after SCI. Rats were divided randomly into four groups: SCI, sham operation, SCI plus deferoxamine (DFX) intervention, and SCI plus nitric oxide synthase (NOS) inhibitor treatment. Pain behavior was observed and thermal pain threshold was measured regularly, and brain levels of iron, transferrin receptor 1 (TfR1), ferritin (Fn), and lactoferrin (Lf), were detected in the different groups 12 weeks after establishment of the model. Rats demonstrated self-biting behavior after SCI. Furthermore, the latent period of thermal pain was reduced and iron levels in the hind limb sensory area, hippocampus, and thalamus increased after SCI. Iron-regulatory protein (IRP) 1 levels increased in the hind limb sensory area, while Fn levels decreased. TfR1 mRNA levels were also increased and oxidative stress was activated. Oxidative stress could be inhibited by ferric iron chelators and NOS inhibitors. SCI may cause intracranial iron overload through the NOS-iron-responsive element/IRP pathway, resulting in central pain mediated by the oxidative stress response. Iron chelators and oxidative stress inhibitors can effectively relieve SCI-associated central pain.

  17. Association of oxidative stress with arsenic methylation in chronic arsenic-exposed children and adults

    International Nuclear Information System (INIS)

    Xu Yuanyuan; Wang Yi; Zheng Quanmei; Li Xin; Li Bing; Jin Yaping; Sun Xiance; Sun Guifan

    2008-01-01

    Though oxidative stress is recognized as an important pathogenic mechanism of arsenic, and arsenic methylation capacity is suggested to be highly involved in arsenic-related diseases, the association of arsenic methylation capacity with arsenic-induced oxidative stress remains unclear. To explore oxidative stress and its association with arsenic methylation, cross-sectional studies were conducted among 208 high and 59 low arsenic-exposed subjects. Levels of urinary arsenic species [inorganic arsenic (iAs), monomethylated arsenic (MMA) and dimethylated arsenic (DMA)] were determined by hydride generation atomic absorption spectrometry. Proportions of urinary arsenic species, the first methylation ratio (FMR) and the secondary methylation ratio (SMR) were used as indicators for arsenic methylation capacity. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentrations were analyzed by enzyme-linked immunosorbent assay kits. Reduced glutathione (GSH) levels and superoxide dismutase (SOD) activity in whole blood were determined to reflect anti-oxidative status. The high arsenic-exposed children and adults were significantly increased in urinary 8-OHdG concentrations but decreased in blood GSH levels compared with the low exposed children and adults. In multiple linear regression models, blood GSH levels and urinary 8-OHdG concentrations of arsenic-exposed children and adults showed strong associations with the levels of urinary arsenic species. Arsenic-exposed subjects in the lower and the upper quartiles of proportions of urinary arsenic species, FMR or SMR were significantly different in urinary 8-OHdG, blood GSH and SOD. The associations of arsenic methylation capacity with 8-OHdG, GSH and SOD were also observed in multivariate regression analyses. These results may provide linkage between arsenic methylation capacity and oxidative stress in humans and suggest that adverse health effects induced by arsenic are related to arsenic methylation through oxidative stress

  18. Low-level lasers affect Escherichia coli cultures in hyperosmotic stress

    Science.gov (United States)

    Pinheiro, C. C.; Barboza, L. L.; Paoli, F.; Fonseca, A. S.

    2015-08-01

    Physical characteristics and practical properties have made lasers of interest for biomedical applications. Effects of low-level lasers on biological tissues could occur or be measurable depending on cell type, presence of a pathologic process or whether the cells are in an adverse environment. The objective of this work was to evaluate the survival, morphology and filamentation of E. coli cells proficient and deficient in the repair of oxidative DNA lesions exposed low-level red and infrared lasers submitted to hyperosmotic stress. Wild type and endonuclease VIII deficient E. coli cells in exponential and stationary growth phase were exposed to red and infrared lasers and submitted to hyperosmotic stress. Cell viability, filamentation phenotype and cell morphology were evaluated. Cell viability was not significantly altered but previous laser exposure induced filamentation and an altered area of stressed cells depending on physiologic condition and presence of the DNA repair. Results suggest that previous exposure to low-level red and infrared lasers could not affect viability but induced morphologic changes in cells submitted to hyperosmotic stress depending on physiologic conditions and repair of oxidative DNA lesions.

  19. Gaucher disease: plasmalogen levels in relation to primary lipid abnormalities and oxidative stress.

    Science.gov (United States)

    Moraitou, Marina; Dimitriou, Evangelia; Dekker, Nick; Monopolis, Ioannis; Aerts, Johannes; Michelakakis, Helen

    2014-01-01

    Plasmalogens represent a unique class of phospholipids. Reduced red blood cell plasmalogen levels in Gaucher disease patients were reported, correlating to total disease burden. The relation between plasmalogen abnormalities in Gaucher disease patients and primary glycosphingolipid abnormalities, malonyldialdehyde levels, an indicator of lipid peroxidation, and the total antioxidant status was further investigated. Significant reduction of C16:0 and C18:0 plasmalogens in red blood cells of Gaucher disease patients was confirmed. In parallel, a significant increase in the glucosylceramide/ceramide ratio in red blood cell membranes, as well as an average 200-fold increase in plasma glucosylsphingosine levels was observed. Red blood cell malonyldialdehyde levels were significantly increased in patients, whereas their total antioxidant status was significantly reduced. A negative correlation between plasmalogen species and glucosylceramide, ceramide, glucosylceramide/ceramide ratio, glucosylsphingosine and malonyldialdehyde, significant for the C16:0 species and all the above parameters with the exception of malonyldialdehyde levels, was found along with a positive non-significant correlation with the total antioxidant status. Our results indicate that increased lipid peroxidation and reduced total antioxidant status exist in Gaucher disease patients. They demonstrate a clear link between plasmalogen levels and the primary glycolipid abnormalities characterizing the disorder and an association with the increased oxidative stress observed in Gaucher disease patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Renal Oxidative Stress Induced by Long-Term Hyperuricemia Alters Mitochondrial Function and Maintains Systemic Hypertension

    Directory of Open Access Journals (Sweden)

    Magdalena Cristóbal-García

    2015-01-01

    Full Text Available We addressed if oxidative stress in the renal cortex plays a role in the induction of hypertension and mitochondrial alterations in hyperuricemia. A second objective was to evaluate whether the long-term treatment with the antioxidant Tempol prevents renal oxidative stress, mitochondrial alterations, and systemic hypertension in this model. Long-term (11-12 weeks and short-term (3 weeks effects of oxonic acid induced hyperuricemia were studied in rats (OA, 750 mg/kg BW, OA+Allopurinol (AP, 150 mg/L drinking water, OA+Tempol (T, 15 mg/kg BW, or vehicle. Systolic blood pressure, renal blood flow, and vascular resistance were measured. Tubular damage (urine N-acetyl-β-D-glucosaminidase and oxidative stress markers (lipid and protein oxidation along with ATP levels were determined in kidney tissue. Oxygen consumption, aconitase activity, and uric acid were evaluated in isolated mitochondria from renal cortex. Short-term hyperuricemia resulted in hypertension without demonstrable renal oxidative stress or mitochondrial dysfunction. Long-term hyperuricemia induced hypertension, renal vasoconstriction, tubular damage, renal cortex oxidative stress, and mitochondrial dysfunction and decreased ATP levels. Treatments with Tempol and allopurinol prevented these alterations. Renal oxidative stress induced by hyperuricemia promoted mitochondrial functional disturbances and decreased ATP content, which represent an additional pathogenic mechanism induced by chronic hyperuricemia. Hyperuricemia-related hypertension occurs before these changes are evident.

  1. Increased oxidative stress associated with the severity of the liver disease in various forms of hepatitis B virus infection

    Directory of Open Access Journals (Sweden)

    Aslan Mehmet

    2005-10-01

    Full Text Available Abstract Background Oxidative stress can be defined as an increase in oxidants and/or a decrease in antioxidant capacity. There is limited information about the oxidative status in subjects with hepatitis B virus infection. We aimed to evaluate the oxidative status in patients with various clinical forms of chronic hepatitis B infection. Methods Seventy-six patients with hepatitis B virus infection, in whom 33 with chronic hepatitis, 31 inactive carriers and 12 with cirrhosis, and 16 healthy subjects were enrolled. Total antioxidant response and total peroxide level measurement, and calculation of oxidative stress index were performed in all participants. Results Total antioxidant response was significantly lower in cirrhotics than inactive HbsAg carriers and controls (p = 0.008 and p = 0.008, respectively. Total peroxide level and oxidative stress index was significantly higher in cirrhotic (p 0.05/6. Total peroxide level and oxidative stress index were also comparable in inactive HBsAg carriers and controls (both, p > 0.05/6. Serum alanine amino transferase level was positively correlated with total peroxide level and oxidative stress index only in chronic hepatitis B subjects (p = 0.002, r = 0.519 and p = 0.008, r = 0.453, respectively. Conclusion Oxidative stress occurs secondarily to increased total lipid peroxidation and inadequate total antioxidant response and is related to severity of the disease and replication status of virus in hepatitis B infection.

  2. Increased oxidative stress associated with the severity of the liver disease in various forms of hepatitis B virus infection.

    Science.gov (United States)

    Bolukbas, Cengiz; Bolukbas, Fusun Filiz; Horoz, Mehmet; Aslan, Mehmet; Celik, Hakim; Erel, Ozcan

    2005-10-31

    Oxidative stress can be defined as an increase in oxidants and/or a decrease in antioxidant capacity. There is limited information about the oxidative status in subjects with hepatitis B virus infection. We aimed to evaluate the oxidative status in patients with various clinical forms of chronic hepatitis B infection. Seventy-six patients with hepatitis B virus infection, in whom 33 with chronic hepatitis, 31 inactive carriers and 12 with cirrhosis, and 16 healthy subjects were enrolled. Total antioxidant response and total peroxide level measurement, and calculation of oxidative stress index were performed in all participants. Total antioxidant response was significantly lower in cirrhotics than inactive HbsAg carriers and controls (p = 0.008 and p = 0.008, respectively). Total peroxide level and oxidative stress index was significantly higher in cirrhotic (p Total antioxidant response was comparable in chronic hepatitis B subjects, inactive HbsAg carriers and controls (both, p > 0.05/6). Total peroxide level and oxidative stress index were also comparable in inactive HBsAg carriers and controls (both, p > 0.05/6). Serum alanine amino transferase level was positively correlated with total peroxide level and oxidative stress index only in chronic hepatitis B subjects (p = 0.002, r = 0.519 and p = 0.008, r = 0.453, respectively). Oxidative stress occurs secondarily to increased total lipid peroxidation and inadequate total antioxidant response and is related to severity of the disease and replication status of virus in hepatitis B infection.

  3. Free radicals, reactive oxygen species, oxidative stress and its classification.

    Science.gov (United States)

    Lushchak, Volodymyr I

    2014-12-05

    Reactive oxygen species (ROS) initially considered as only damaging agents in living organisms further were found to play positive roles also. This paper describes ROS homeostasis, principles of their investigation and technical approaches to investigate ROS-related processes. Especial attention is paid to complications related to experimental documentation of these processes, their diversity, spatiotemporal distribution, relationships with physiological state of the organisms. Imbalance between ROS generation and elimination in favor of the first with certain consequences for cell physiology has been called "oxidative stress". Although almost 30years passed since the first definition of oxidative stress was introduced by Helmut Sies, to date we have no accepted classification of oxidative stress. In order to fill up this gape here classification of oxidative stress based on its intensity is proposed. Due to that oxidative stress may be classified as basal oxidative stress (BOS), low intensity oxidative stress (LOS), intermediate intensity oxidative stress (IOS), and high intensity oxidative stress (HOS). Another classification of potential interest may differentiate three categories such as mild oxidative stress (MOS), temperate oxidative stress (TOS), and finally severe (strong) oxidative stress (SOS). Perspective directions of investigations in the field include development of sophisticated classification of oxidative stresses, accurate identification of cellular ROS targets and their arranged responses to ROS influence, real in situ functions and operation of so-called "antioxidants", intracellular spatiotemporal distribution and effects of ROS, deciphering of molecular mechanisms responsible for cellular response to ROS attacks, and ROS involvement in realization of normal cellular functions in cellular homeostasis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. The effects of propolis extract on ovarian tissue and oxidative stress in rats with maternal separation stress

    Directory of Open Access Journals (Sweden)

    Atefeh Arabameri

    2017-09-01

    Full Text Available Abstract Background: Stress in infancy has dramatic effects on different systems, including the nervous system, endocrine, immune, reproductive and etc. Objective: The purpose of this study was to investigate the effects of extract of Iranian propolis (EIP on ovarian tissue and oxidative stress in rats with maternal separation stress. Materials and Methods: 48 immature female rats were divided randomly into six groups. 1 Control group, 2 Control group+saline, 3 Stress group, includes infants that were separated from their mothers 6 hr/day, the 4th, 5th and 6th groups consisted of infants who in addition to daily stress received 50, 100 and 200 mg/kg of EIP, respectively. Then serum corticosterone, 17-beta-estradiol, malondialdehyde, total superoxide dismutase, glutathione peroxidase and ferric reducing antioxidant power levels were measured. The ovarian sections were stained by H&E, PAS, and TUNEL methods and were studied with optical microscopy. Results: Stress increased the blood serum corticosterone levels and 17-beta-estradiol reduced significantly (p<0.001 and EIP prevented from this changes (p<0.01. EIP significantly increased the number of ovarian follicles, oocytes and oocytes diameter in neonatal rat following stress (p<0.01. EIP also significantly decreased the number of atretic follicles, TUNEL+granulosa cells, malondialdehyde levels and increased ferric reducing antioxidant power, total superoxide dismutase and glutathione peroxidase serum levels in neonatal rats following stress. The dose of 200 mg/kg EIP was more effective. Conclusion: This Study showed that the Iranian Propolis significantly could prevent oxidative stress and histopathological changes in the ovary of the neonatal rat the following stress.

  5. Associations of oxidative stress status parameters with traditional cardiovascular disease risk factors in patients with schizophrenia.

    Science.gov (United States)

    Vidović, Bojana; Stefanović, Aleksandra; Milovanović, Srđan; Ðorđević, Brižita; Kotur-Stevuljević, Jelena; Ivanišević, Jasmina; Miljković, Milica; Spasić, Slavica

    2014-04-01

    The purpose of this study was to assess oxidative stress status parameters and their possible associations with traditional cardiovascular risk factors in patients with schizophrenia, as well as their potential for patient-control discrimination. Fasting glucose, lipid profile and oxidative stress status parameters were assessed in 30 schizophrenic patients with atypical antipsychotic therapy and 60 control subjects. Malondialdehyde (MDA), pro-oxidant/antioxidant balance (PAB) and total anti-oxidant status (TAS) were significantly higher whereas total sulfhydryl (SH) groups were significantly lower in schizophrenic patients vs. control group. Higher serum PAB values showed an independent association with schizophrenia. The addition of PAB to conventional risk factors improved discrimination between healthy control subjects and patients. Increased oxidative stress and changed lipid profile parameters are associated in schizophrenic patients and may indicate risk for atherosclerosis. The serum PAB level may reflect the levels of oxidative stress in schizophrenia and improve discrimination of patients from controls.

  6. Phototoxicity and oxidative stress responses in Daphnia magna under exposure to sulfathiazole and environmental level ultraviolet B irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jungkon [School of Public Health, Seoul National University, Seoul, 110-799 (Korea, Republic of)], E-mail: koguma@snu.ac.kr; Park, Yena [School of Public Health, Seoul National University, Seoul, 110-799 (Korea, Republic of)], E-mail: elohim@snu.ac.kr; Choi, Kyungho [School of Public Health, Seoul National University, Seoul, 110-799 (Korea, Republic of)], E-mail: kyungho@snu.ac.kr

    2009-01-18

    Sulfonamide antibiotics frequently occur in aquatic environments. In this study, phototoxicity of sulfathiazole (STZ) and its mechanism of action were investigated using Daphnia magna. We evaluated the changes of molecular level stress responses by assessing gene expression, enzyme induction and lipid peroxidation, and the related organism-level effects in D. magna. In the presence of ultraviolet B (UV-B) light (continuous irradiation with 13.8 {+-} 1.0 {mu}W cm{sup -2} d{sup -1}), STZ (at the nominal concentration of 94.9 mg/L) caused a significant increase in reactive oxygen species (ROS) generation and lipid peroxidation. Catalase (CAT) and glutathione S-transferase (GST) showed concentration-dependent increases caused by the exposure. Exposure to STZ and UV-B light caused apparent up-regulation of {alpha}-esterase, hemoglobin, and vitellogenin mRNA. The survival of daphnids was significantly affected by the co-exposure to STZ and UV-B. The biochemical and molecular level observations in combination with organism-level effects suggest that the phototoxicity of STZ was mediated in part by ROS generated by oxidative stress in D. magna.

  7. Phototoxicity and oxidative stress responses in Daphnia magna under exposure to sulfathiazole and environmental level ultraviolet B irradiation

    International Nuclear Information System (INIS)

    Kim, Jungkon; Park, Yena; Choi, Kyungho

    2009-01-01

    Sulfonamide antibiotics frequently occur in aquatic environments. In this study, phototoxicity of sulfathiazole (STZ) and its mechanism of action were investigated using Daphnia magna. We evaluated the changes of molecular level stress responses by assessing gene expression, enzyme induction and lipid peroxidation, and the related organism-level effects in D. magna. In the presence of ultraviolet B (UV-B) light (continuous irradiation with 13.8 ± 1.0 μW cm -2 d -1 ), STZ (at the nominal concentration of 94.9 mg/L) caused a significant increase in reactive oxygen species (ROS) generation and lipid peroxidation. Catalase (CAT) and glutathione S-transferase (GST) showed concentration-dependent increases caused by the exposure. Exposure to STZ and UV-B light caused apparent up-regulation of α-esterase, hemoglobin, and vitellogenin mRNA. The survival of daphnids was significantly affected by the co-exposure to STZ and UV-B. The biochemical and molecular level observations in combination with organism-level effects suggest that the phototoxicity of STZ was mediated in part by ROS generated by oxidative stress in D. magna

  8. Impact of Oxidative Stress in Fetal Programming

    Directory of Open Access Journals (Sweden)

    Loren P. Thompson

    2012-01-01

    Full Text Available Intrauterine stress induces increased risk of adult disease through fetal programming mechanisms. Oxidative stress can be generated by several conditions, such as, prenatal hypoxia, maternal under- and overnutrition, and excessive glucocorticoid exposure. The role of oxidant molecules as signaling factors in fetal programming via epigenetic mechanisms is discussed. By linking oxidative stress with dysregulation of specific target genes, we may be able to develop therapeutic strategies that protect against organ dysfunction in the programmed offspring.

  9. Oxidative Stress Markers and Genetic Polymorphisms of Glutathione ...

    African Journals Online (AJOL)

    Hence, we evaluated the serum levels of oxidative stress markers and investigated genetic polymorphisms of glutathione S-transferase associated with autism. Materials and Methods: Forty-two children clinically diagnosed with ASD using the Diagnostic and Statistical Manual for Mental Disorders (DSM-5) criteria and a ...

  10. Circadian Rhythm Connections to Oxidative Stress: Implications for Human Health

    Science.gov (United States)

    Wilking, Melissa; Ndiaye, Mary; Mukhtar, Hasan

    2013-01-01

    Abstract Significance: Oxygen and circadian rhythmicity are essential in a myriad of physiological processes to maintain homeostasis, from blood pressure and sleep/wake cycles, down to cellular signaling pathways that play critical roles in health and disease. If the human body or cells experience significant stress, their ability to regulate internal systems, including redox levels and circadian rhythms, may become impaired. At cellular as well as organismal levels, impairment in redox regulation and circadian rhythms may lead to a number of adverse effects, including the manifestation of a variety of diseases such as heart diseases, neurodegenerative conditions, and cancer. Recent Advances: Researchers have come to an understanding as to the basics of the circadian rhythm mechanism, as well as the importance of the numerous species of oxidative stress components. The effects of oxidative stress and dysregulated circadian rhythms have been a subject of intense investigations since they were first discovered, and recent investigations into the molecular mechanisms linking the two have started to elucidate the bases of their connection. Critical Issues: While much is known about the mechanics and importance of oxidative stress systems and circadian rhythms, the front where they interact has had very little research focused on it. This review discusses the idea that these two systems are together intricately involved in the healthy body, as well as in disease. Future Directions: We believe that for a more efficacious management of diseases that have both circadian rhythm and oxidative stress components in their pathogenesis, targeting both systems in tandem would be far more successful. Antioxid. Redox Signal. 19, 192–208 PMID:23198849

  11. Associations between Vitamin B-12 Status and Oxidative Stress and Inflammation in Diabetic Vegetarians and Omnivores.

    Science.gov (United States)

    Lee, Yau-Jiunn; Wang, Ming-Yang; Lin, Mon-Chiou; Lin, Ping-Ting

    2016-02-26

    Diabetes is considered an oxidative stress and a chronic inflammatory disease. The purpose of this study was to investigate the correlations between vitamin B-12 status and oxidative stress and inflammation in diabetic vegetarians and omnivores. We enrolled 154 patients with type 2 diabetes (54 vegetarians and 100 omnivores). Levels of fasting glucose, glycohemoglobin (HbA1c), lipid profiles, oxidative stress, antioxidant enzymes activity, and inflammatory makers were measured. Diabetic vegetarians with higher levels of vitamin B-12 (>250 pmol/L) had significantly lower levels of fasting glucose, HbA1c and higher antioxidant enzyme activity (catalase) than those with lower levels of vitamin B-12 (≤ 250 pmol/L). A significant association was found between vitamin B-12 status and fasting glucose (r = -0.17, p = 0.03), HbA1c (r = -0.33, p = 0.02), oxidative stress (oxidized low density lipoprotein-cholesterol, r = -0.19, p = 0.03), and antioxidant enzyme activity (catalase, r = 0.28, p = 0.01) in the diabetic vegetarians; vitamin B-12 status was significantly correlated with inflammatory markers (interleukin-6, r = -0.33, p vegetarian diet.

  12. Beyond Diabetes: Does Obesity-Induced Oxidative Stress Drive the Aging Process?

    Directory of Open Access Journals (Sweden)

    Adam B. Salmon

    2016-07-01

    Full Text Available Despite numerous correlative data, a causative role for oxidative stress in mammalian longevity has remained elusive. However, there is strong evidence that increased oxidative stress is associated with exacerbation of many diseases and pathologies that are also strongly related to advanced age. Obesity, or increased fat accumulation, is one of the most common chronic conditions worldwide and is associated with not only metabolic dysfunction but also increased levels of oxidative stress in vivo. Moreover, obesity is also associated with significantly increased risks of cardiovascular disease, neurological decline and cancer among many other diseases as well as a significantly increased risk of mortality. In this review, we investigate the possible interpretation that the increased incidence of these diseases in obesity may be due to chronic oxidative stress mediating segmental acceleration of the aging process. Understanding how obesity can alter cellular physiology beyond that directly related to metabolic function could open new therapeutic areas of approach to extend the period of healthy aging among people of all body composition.

  13. Effects of Kombucha on oxidative stress induced nephrotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Gharib Ola

    2009-11-01

    Full Text Available Abstract Background Trichloroethylene (TCE may induce oxidative stress which generates free radicals and alters antioxidants or oxygen-free radical scavenging enzymes. Methods Twenty male albino rats were divided into four groups: (1 the control group treated with vehicle, (2 Kombucha (KT-treated group, (3 TCE-treated group and (4 KT/TCE-treated group. Kidney lipid peroxidation, glutathione content, nitric oxide (NO and total blood free radical concentrations were evaluated. Serum urea, creatinine level, gamma-glutamyl transferase (GGT and lactate dehydrogenase (LDH activities were also measured. Results TCE administration increased the malondiahyde (MDA and NO contents in kidney, urea and creatinine concentrations in serum, total free radical level in blood and GGT and LDH activities in serum, whereas it decreased the glutathione (GSH level in kidney homogenate. KT administration significantly improved lipid peroxidation and oxidative stress induced by TCE. Conclusion The present study indicates that Kombucha may repair damage caused by environmental pollutants such as TCE and may be beneficial to patient suffering from renal impairment.

  14. Is Oxidative Stress Associated with Activation and Pathogenesis of Inflammatory Bowel Disease?

    Directory of Open Access Journals (Sweden)

    Yuksel Mahmut

    2017-08-01

    Full Text Available Background: We aimed to determine the levels of total antioxidant status (TAS, total oxidant status (TOS, oxidative stress index (OSI and paraoxonase1/arylesterase levels in inflammatory bowel disease (IBD, and the relation be - tween these molecules and the activity index of the disease. Methods: Eighty IBD patients (ulcerative colitis (UC/Crohn disease (CD 40/40 and 80 control group participants were included in the study. Oxidative stress parameters were measured using the colorimetric method. As disease activity indexes, the endoscopic activity index (EAI was used for UC and the CD activity index (CDAI was used for CD. Results: In IBD patients, mean TAS (1.3±0.2 vs 1.9±0.2, respectively; p<0.001 and arylesterase (963.9±232.2 vs 1252.9±275, respectively; p<0.001 levels were found to be lower and TOS level (5.6±1.6 vs 4.0±1.0, respectively; p<0.001 and OSI rate (4.5±1.6 vs 2.2±0.8, respectively; p<0.001 were found to be higher compared to the control group. A strong positive correlation was found between EAI and TOS levels (r=0.948, p<0.001 and OSI rate (r=0.894, p<0.001 for UC patients. A very strong positive correlation was found between EAI and TOS levels (r=0.964, p<0.001 and OSI rate (r=0.917, p<0.001 for CD patients. It was found in a stepwise regression model that C-reactive protein, OSI and arylesterase risk factors were predictors of IBD compared to the control group. Conclusion: Increased oxidative stress level in IBD patients and the detection of OSI rate as an independent predictor for disease activity indexes lead to the idea that oxidative stress might be related to the pathogenesis of IBD.

  15. Downregulation of miR-205 modulates cell susceptibility to oxidative and endoplasmic reticulum stresses in renal tubular cells.

    Directory of Open Access Journals (Sweden)

    Shiyo Muratsu-Ikeda

    Full Text Available BACKGROUND: Oxidative stress and endoplasmic reticulum (ER stress play a crucial role in tubular damage in both acute kidney injury (AKI and chronic kidney disease (CKD. While the pathophysiological contribution of microRNAs (miRNA to renal damage has also been highlighted, the effect of miRNA on renal damage under oxidative and ER stresses conditions remains elusive. METHODS: We assessed changes in miRNA expression in the cultured renal tubular cell line HK-2 under hypoxia-reoxygenation-induced oxidative stress or ER stress using miRNA microarray assay and real-time RT-PCR. The pathophysiological effect of miRNA was evaluated by cell survival rate, intracellular reactive oxygen species (ROS level, and anti-oxidant enzyme expression in miRNA-inhibited HK-2 or miRNA-overexpressed HK-2 under these stress conditions. The target gene of miRNA was identified by 3'-UTR-luciferase assay. RESULTS: We identified 8 and 10 miRNAs whose expression was significantly altered by oxidative and ER stresses, respectively. Among these, expression of miR-205 was markedly decreased in both stress conditions. Functional analysis revealed that decreased miR-205 led to an increase in cell susceptibility to oxidative and ER stresses, and that this increase was associated with the induction of intracellular ROS and suppression of anti-oxidant enzymes. While increased miR-205 by itself made no change in cell growth or morphology, cell viability under oxidative or ER stress conditions was partially restored. Further, miR-205 bound to the 3'-UTR of the prolyl hydroxylase 1 (PHD1/EGLN2 gene and suppressed the transcription level of EGLN2, which modulates both intracellular ROS level and ER stress state. CONCLUSIONS: miR-205 serves a protective role against both oxidative and ER stresses via the suppression of EGLN2 and subsequent decrease in intracellular ROS. miR-205 may represent a novel therapeutic target in AKI and CKD associated with oxidative or ER stress in tubules.

  16. Increased oxidative stress in preschool children exposed to passive smoking.

    Science.gov (United States)

    Yıldırım, Faruk; Sermetow, Kabil; Aycicek, Ali; Kocyigit, Abdurrahim; Erel, Ozcan

    2011-01-01

    To study the effect of passive cigarette smoking on plasma oxidative and antioxidative status in passive smoking preschool children and to compare them with controls. Thirty-four passive smoking (five to 50 cigarettes per day) preschool children (study group) and 32 controls who had never been exposed to cigarette smoke were randomly chosen from children aged from 4 to 6 years. Urinary cotinine and plasma indicators of oxidative and antioxidative status, i.e., total oxidant status (TOS), total antioxidant capacity (TAC), and oxidative stress index (OSI), were determined. Mean environmental cigarette consumption was 22±13 cigarettes per day in passive smoking children. Mean urinary cotinine levels were 77.6±41.4 ng/mL and 11.9±2.3 ng/mL in the study and control groups, respectively (p < 0.001). Mean plasma TAC levels were 0.95±0.13 mmol Trolox equivalent/L and 1.01±0.09 mmol Trolox equivalent/L, respectively (p = 0.039). Mean plasma TOS levels were 28.6±7.9 µmol H2O2 equivalent/L and 18.5±6.3 µmol H2O2 equivalent/L, respectively (p < 0.001). Mean OSI levels were 3.08±0.98 arbitrary units and 1.84±0.64 arbitrary units, respectively (p < 0.001). A small amount of cigarette smoke (five to 10 cigarettes per day) causes considerable oxidative stress. There were significant correlations between number of cigarettes consumed and oxidant status and OSI levels. Passive smoke is a potent oxidant in preschool children. Its deleterious effects are not limited just to heavy passive smoking, but also occur with exposure to small amounts of smoke.

  17. Hypoxia, Oxidative Stress and Fat

    Directory of Open Access Journals (Sweden)

    Nikolaus Netzer

    2015-06-01

    Full Text Available Metabolic disturbances in white adipose tissue in obese individuals contribute to the pathogenesis of insulin resistance and the development of type 2 diabetes mellitus. Impaired insulin action in adipocytes is associated with elevated lipolysis and increased free fatty acids leading to ectopic fat deposition in liver and skeletal muscle. Chronic adipose tissue hypoxia has been suggested to be part of pathomechanisms causing dysfunction of adipocytes. Hypoxia can provoke oxidative stress in human and animal adipocytes and reduce the production of beneficial adipokines, such as adiponectin. However, time-dose responses to hypoxia relativize the effects of hypoxic stress. Long-term exposure of fat cells to hypoxia can lead to the production of beneficial substances such as leptin. Knowledge of time-dose responses of hypoxia on white adipose tissue and the time course of generation of oxidative stress in adipocytes is still scarce. This paper reviews the potential links between adipose tissue hypoxia, oxidative stress, mitochondrial dysfunction, and low-grade inflammation caused by adipocyte hypertrophy, macrophage infiltration and production of inflammatory mediators.

  18. Relationship between oxidative stress and circulating testosterone and cortisol in pre-spawning female brown trout

    NARCIS (Netherlands)

    Hoogenboom, Mia O.; Metcalfe, Neil B.; Groothuis, Ton G. G.; de Vries, Bonnie; Costantini, David

    Reproduction in vertebrates is an energy-demanding process that is mediated by endogenous hormones and potentially results in oxidative stress. The primary aim of this study was to quantify the relationship between oxidative stress parameters (antioxidant capacity and levels of reactive oxygen

  19. Measurement of exercise-induced oxidative stress in lymphocytes.

    Science.gov (United States)

    Turner, James E; Bosch, Jos A; Aldred, Sarah

    2011-10-01

    Vigorous exercise is associated with oxidative stress, a state that involves modifications to bodily molecules due to release of pro-oxidant species. Assessment of such modifications provides non-specific measures of oxidative stress in human tissues and blood, including circulating lymphocytes. Lymphocytes are a very heterogeneous group of white blood cells, consisting of subtypes that have different functions in immunity. Importantly, exercise drastically changes the lymphocyte composition in blood by increasing the numbers of some subsets, while leaving other cells unaffected. This fact may imply that observed changes in oxidative stress markers are confounded by changes in lymphocyte composition. For example, lymphocyte subsets may differ in exposure to oxidative stress because of subset differences in cell division and the acquisition of cytotoxic effector functions. The aim of the present review is to raise awareness of interpretational issues related to the assessment of oxidative stress in lymphocytes with exercise and to address the relevance of lymphocyte subset phenotyping in these contexts.

  20. Characterizing dose response relationships: Chronic gamma radiation in Lemna minor induces oxidative stress and altered polyploidy level.

    Science.gov (United States)

    Van Hoeck, Arne; Horemans, Nele; Van Hees, May; Nauts, Robin; Knapen, Dries; Vandenhove, Hildegarde; Blust, Ronny

    2015-12-01

    The biological effects and interactions of different radiation types in plants are still far from understood. Among different radiation types, external gamma radiation treatments have been mostly studied to assess the biological impact of radiation toxicity in organisms. Upon exposure of plants to gamma radiation, ionisation events can cause, either directly or indirectly, severe biological damage to DNA and other biomolecules. However, the biological responses and oxidative stress related mechanisms under chronic radiation conditions are poorly understood in plant systems. In the following study, it was questioned if the Lemna minor growth inhibition test is a suitable approach to also assess the radiotoxicity of this freshwater plant. Therefore, L. minor plants were continuously exposed for seven days to 12 different dose rate levels covering almost six orders of magnitude starting from 80 μGy h(-1) up to 1.5 Gy h(-1). Subsequently, growth, antioxidative defence system and genomic responses of L. minor plants were evaluated. Although L. minor plants could survive the exposure treatment at environmental relevant exposure conditions, higher dose rate levels induced dose dependent growth inhibitions starting from approximately 27 mGy h(-1). A ten-percentage growth inhibition of frond area Effective Dose Rate (EDR10) was estimated at 95 ± 7 mGy h(-1), followed by 153 ± 13 mGy h(-1) and 169 ± 12 mGy h(-1) on fresh weight and frond number, respectively. Up to a dose rate of approximately 5 mGy h(-1), antioxidative enzymes and metabolites remained unaffected in plants. A significant change in catalase enzyme activity was found at 27 mGy h(-1) which was accompanied with significant increases of other antioxidative enzyme activities and shifts in ascorbate and glutathione content at higher dose rate levels, indicating an increase in oxidative stress in plants. Recent plant research hypothesized that environmental genotoxic stress conditions

  1. Acute Impact of Tobacco vs Electronic Cigarette Smoking on Oxidative Stress and Vascular Function.

    Science.gov (United States)

    Carnevale, Roberto; Sciarretta, Sebastiano; Violi, Francesco; Nocella, Cristina; Loffredo, Lorenzo; Perri, Ludovica; Peruzzi, Mariangela; Marullo, Antonino G M; De Falco, Elena; Chimenti, Isotta; Valenti, Valentina; Biondi-Zoccai, Giuseppe; Frati, Giacomo

    2016-09-01

    The vascular safety of electronic cigarettes (e-Cigarettes) must still be clarified. We compared the impact of e-Cigarettes vs traditional tobacco cigarettes on oxidative stress and endothelial function in healthy smokers and nonsmoker adults. A crossover, single-blind study was performed in 40 healthy subjects (20 smokers and 20 nonsmokers, matched for age and sex). First, all subjects smoked traditional tobacco cigarettes. One week later, the same subjects smoked an e-Cigarette with the same nominal nicotine content. Blood samples were drawn just before and after smoking, and markers of oxidative stress, nitric oxide bioavailability, and vitamin E levels were measured. Flow-mediated dilation (FMD) was also measured. Smoking both e-Cigarettes and traditional cigarettes led to a significant increase in the levels of soluble NOX2-derived peptide and 8-iso-prostaglandin F2α and a significant decrease in nitric oxide bioavailability, vitamin E levels, and FMD. Generalized estimating equation analysis confirmed that all markers of oxidative stress and FMD were significantly affected by smoking and showed that the biologic effects of e-Cigarettes vstraditional cigarettes on vitamin E levels (P = .413) and FMD (P = .311) were not statistically different. However, e-Cigarettes seemed to have a lesser impact than traditional cigarettes on levels of soluble NOX2-derived peptide (P = .001), 8-iso-prostaglandin F2α (P = .046), and nitric oxide bioavailability (P = .001). Our study showed that both cigarettes have unfavorable effects on markers of oxidative stress and FMD after single use, although e-Cigarettes seemed to have a lesser impact. Future studies are warranted to clarify the chronic vascular effects of e-Cigarette smoking. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  2. Evaluation of oxidant, antioxidant, and S100B levels in patients with conversion disorder.

    Science.gov (United States)

    Büyükaslan, Hasan; Kandemir, Sultan Basmacı; Asoğlu, Mehmet; Kaya, Halil; Gökdemir, Mehmet Tahir; Karababa, İbrahim Fatih; Güngörmez, Fatih; Kılıçaslan, Fethiye; Şavik, Emin

    2016-01-01

    Various psychodynamic, neurobiological, genetic, and sociocultural factors are believed to be involved in the etiology of conversion disorder (CD). Oxidative metabolism has been shown to deteriorate in association with many health problems and psychiatric disorders. We evaluated oxidative metabolism and S100B levels in the context of this multifactorial disease. Thirty-seven patients with CD (25 females and 12 males) and 42 healthy volunteers (21 females and 21 males), all matched for age and sex, were included in this study. The total oxidant status, total antioxidant status, oxidative stress index, and S100B levels were compared between the two groups. The total oxidant status, oxidative stress index, and S100B levels were significantly higher in patients with CD than in the control group, whereas the total antioxidant status was significantly lower. CD is associated with deterioration of oxidative metabolism and increased neuronal damage.

  3. Carnosol promotes endothelial differentiation under H2O2-induced oxidative stress

    Directory of Open Access Journals (Sweden)

    Ou Shulin

    2017-01-01

    Full Text Available Oxidative stress causes deregulation of endothelial cell differentiation. Carnosol is a potent antioxidant and antiinflammatory compound. In the present study, we examined whether the antioxidant effect of carnosol might protect bone marrow stem cells against H2O2-induced oxidative stress and promote endothelial differentiation. We examined cell viability by the MTT assay; oxidative stress and apoptosis were analyzed through changes in ROS levels, apoptotic ratio and caspase-3 activity; changes in protein expression of OCT-4, Flk-1, CD31 and Nrf-2 were assessed by Western blot analysis. H2O2 treatment increased oxidative stress and reduced cell viability, while the stem cell marker OCT-4 and endothelial markers Flk-1, CD31 were significantly downregulated as a result of the treatment with H2O2. Treatment with carnosol improved the antioxidant status, increased OCT-4 expression and promoted endothelial differentiation. This study provides evidence that carnosol could increase the antioxidant defense mechanism and promote endothelial differentiation.

  4. Obesity, reproduction and oxidative stress

    Directory of Open Access Journals (Sweden)

    Tamara V. Zhuk

    2017-12-01

    Full Text Available The prevalence of obesity and overweight is one of the most pressing problems nowadays. Obesity as a comorbid condition affects all body systems. Obesity has been reported to be a risk factor not only for cardiovascular diseases and oncopathology, but also for fertility problems, many obstetric and perinatal complications worsening the maternal and infant health. The balance between the oxidative and antioxidant system is one of the indicators of the state of human homeostasis. Today it is proved that obesity is associated with an increase in oxidative stress and a decrease in antioxidant protection. This review reveals a close relationship between obesity, oxidative stress and reproductive problems.

  5. Biomarkers of oxidative stress and DNA damage in agricultural workers: A pilot study

    International Nuclear Information System (INIS)

    Muniz, Juan F.; McCauley, Linda; Scherer, J.; Lasarev, M.; Koshy, M.; Kow, Y.W.; Nazar-Stewart, Valle; Kisby, G.E.

    2008-01-01

    Oxidative stress and DNA damage have been proposed as mechanisms linking pesticide exposure to health effects such as cancer and neurological diseases. A study of pesticide applicators and farmworkers was conducted to examine the relationship between organophosphate pesticide exposure and biomarkers of oxidative stress and DNA damage. Urine samples were analyzed for OP metabolites and 8-hydroxy-2'-deoxyguanosine (8-OH-dG). Lymphocytes were analyzed for oxidative DNA repair activity and DNA damage (Comet assay), and serum was analyzed for lipid peroxides (i.e., malondialdehyde, MDA). Cellular damage in agricultural workers was validated using lymphocyte cell cultures. Urinary OP metabolites were significantly higher in farmworkers and applicators (p < 0.001) when compared to controls. 8-OH-dG levels were 8.5 times and 2.3 times higher in farmworkers or applicators (respectively) than in controls. Serum MDA levels were 4.9 times and 24 times higher in farmworkers or applicators (respectively) than in controls. DNA damage (Comet assay) and oxidative DNA repair were significantly greater in lymphocytes from applicators and farmworkers when compared with controls. Markers of oxidative stress (i.e., increased reactive oxygen species and reduced glutathione levels) and DNA damage were also observed in lymphocyte cell cultures treated with an OP. The findings from these in vivo and in vitro studies indicate that organophosphate pesticides induce oxidative stress and DNA damage in agricultural workers. These biomarkers may be useful for increasing our understanding of the link between pesticides and a number of health effects

  6. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    International Nuclear Information System (INIS)

    Malaviya, Rama; Laskin, Jeffrey D.; Laskin, Debra L.

    2014-01-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic

  7. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Malaviya, Rama [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2014-03-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic.

  8. Oxidative Stress in the Carcinogenicity of Chemical Carcinogens

    International Nuclear Information System (INIS)

    Kakehashi, Anna; Wei, Min; Fukushima, Shoji; Wanibuchi, Hideki

    2013-01-01

    This review highlights several in vivo studies utilizing non-genotoxic and genotoxic chemical carcinogens, and the mechanisms of their high and low dose carcinogenicities with respect to formation of oxidative stress. Here, we survey the examples and discuss possible mechanisms of hormetic effects with cytochrome P 450 inducers, such as phenobarbital, α-benzene hexachloride and 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane. Epigenetic processes differentially can be affected by agents that impinge on oxidative DNA damage, repair, apoptosis, cell proliferation, intracellular communication and cell signaling. Non-genotoxic carcinogens may target nuclear receptors and induce post-translational modifications at the protein level, thereby impacting on the stability or activity of key regulatory proteins, including oncoproteins and tumor suppressor proteins. We further discuss role of oxidative stress focusing on the low dose carcinogenicities of several genotoxic carcinogens such as a hepatocarcinogen contained in seared fish and meat, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, arsenic and its metabolites, and the kidney carcinogen potassium bromate

  9. Oxidative Stress in the Carcinogenicity of Chemical Carcinogens

    Energy Technology Data Exchange (ETDEWEB)

    Kakehashi, Anna; Wei, Min [Department of Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-Ku, Osaka 545-8585 (Japan); Fukushima, Shoji [Japan Bioassay Research Center, Japan Industrial Safety and Health Association, 2445 Hirasawa, Hadano, Kanagawa 257-0015 (Japan); Wanibuchi, Hideki, E-mail: wani@med.osaka-cu.ac.jp [Department of Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-Ku, Osaka 545-8585 (Japan)

    2013-10-28

    This review highlights several in vivo studies utilizing non-genotoxic and genotoxic chemical carcinogens, and the mechanisms of their high and low dose carcinogenicities with respect to formation of oxidative stress. Here, we survey the examples and discuss possible mechanisms of hormetic effects with cytochrome P{sub 450} inducers, such as phenobarbital, α-benzene hexachloride and 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane. Epigenetic processes differentially can be affected by agents that impinge on oxidative DNA damage, repair, apoptosis, cell proliferation, intracellular communication and cell signaling. Non-genotoxic carcinogens may target nuclear receptors and induce post-translational modifications at the protein level, thereby impacting on the stability or activity of key regulatory proteins, including oncoproteins and tumor suppressor proteins. We further discuss role of oxidative stress focusing on the low dose carcinogenicities of several genotoxic carcinogens such as a hepatocarcinogen contained in seared fish and meat, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, arsenic and its metabolites, and the kidney carcinogen potassium bromate.

  10. Is there an oxidative stress in children with Helicobacter Pylori Infection?

    International Nuclear Information System (INIS)

    Arslan, D.; Kose, K.; Patiroglu, Tahir E.

    2007-01-01

    Objective was to investigate the status of oxidative stress in children with Helicobacter Pylori (HP) infection and their relationship with inflammatory parameters. At the Pediatric Gastroenterology Department of Erciyes University, Kayseri, Turkey, between January 2004 to August 2005, 39 children undergoing upper gastrointestinal endoscopy were investigated for malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity in gastric tissue and erythrocytes and presence of HP infection by means of histology. There is an increase of the oxidative stress parameter, MDA, in gastric tissue, but not in erythrocytes in HP (+) and HP (-) patients. The antioxidant enzyme, SOD, levels both in gastric tissue and erythrocyte were not different between HP (+) and HP (-) patients. In 8 HP infected children after treatment with an anti-HP regimen, no change was observed except for tissue SOD activity which is increased after therapy. No correlation was observed between histological findings and tissue and erythrocyte MDA levels and SOD activities. Oxiadtive stress has some role in tissue damage in HP infection in children. (author)

  11. Asymmetric dimethylarginine, oxidative stress, and vascular nitric oxide synthase in essential hypertension

    DEFF Research Database (Denmark)

    Wang, Dan; Strandgaard, Svend; Iversen, Jens

    2009-01-01

    that the patients in this study have increased circulating levels of the cNOS inhibitor, asymmetric dimethylarginine (ADMA), or the lipid peroxidation product of linoleic acid, 13-hydroxyoctadecadienoic acid (HODE), which is a marker of reactive oxygen species. Patients had significantly (P ... and hypertensive subjects, the individual values for plasma levels of ADMA and HODE were both significantly (P inversely correlated with microvascular EDRF/NO and positively correlated with mean blood pressure. In conclusion, elevated levels of ADMA and oxidative stress in a group of hypertensive...

  12. Oxidative stress in the elderly with diabetes mellitus or hypertension

    Science.gov (United States)

    Rodríguez-Castañeda, Aleida; Martínez-González, Katia Leticia; Sánchez-Arenas, Rosalinda; Sánchez-García, Sergio; Grijalva, Israel; Basurto-Acevedo, Lourdes; Cuadros-Moreno, Juan; Ramírez-García, Eliseo; García-de la Torre, Paola

    2018-01-01

    Mexico City has the highest aging rate in the country, as well as a high prevalence of diabetes mellitus (DM) and hypertension (HT). It is known that each one of these conditions increase oxidative stress (OS) independently. With this study we described changes in OS of 18 patients without DM or HT (controls), 12 with DM, 23 with HT, and 18 with DM and HT, all of them members of the COSFAMM (Cohorte de Obesidad, Sarcopenia y Fragilidad en Adultos Mayores de México). OS was measured by the quantification of reactive oxygen species (ROS), by the oxidation of diclorofluorosceine, and by determination of lipid peroxidation by product malondialdehyde (MDA). HT patients showed increased ROS levels, as did men with HT compared with the respective DM and HT groups. Also, women of control group showed higher levels of ROS compared with men. Generally, HT turned out to be the most influential factor for the increase of oxidative stress in the elderly while DM has no effect whatsoever.

  13. Sex differences in oxidative stress resistance in relation to longevity in Drosophila melanogaster.

    Science.gov (United States)

    Niveditha, S; Deepashree, S; Ramesh, S R; Shivanandappa, T

    2017-10-01

    Gender differences in lifespan and aging are known across species. Sex differences in longevity within a species can be useful to understand sex-specific aging. Drosophila melanogaster is a good model to study the problem of sex differences in longevity since females are longer lived than males. There is evidence that stress resistance influences longevity. The objective of this study was to investigate if there is a relationship between sex differences in longevity and oxidative stress resistance in D. melanogaster. We observed a progressive age-dependent decrease in the activity of SOD and catalase, major antioxidant enzymes involved in defense mechanisms against oxidative stress in parallel to the increased ROS levels over time. Longer-lived females showed lower ROS levels and higher antioxidant enzymes than males as a function of age. Using ethanol as a stressor, we have shown differential susceptibility of the sexes to ethanol wherein females exhibited higher resistance to ethanol-induced mortality and locomotor behavior compared to males. Our results show strong correlation between sex differences in oxidative stress resistance, antioxidant defenses and longevity. The study suggests that higher antioxidant defenses in females may confer resistance to oxidative stress, which could be a factor that influences sex-specific aging in D. melanogaster.

  14. Genetics of Oxidative Stress in Obesity

    Directory of Open Access Journals (Sweden)

    Azahara I. Rupérez

    2014-02-01

    Full Text Available Obesity is a multifactorial disease characterized by the excessive accumulation of fat in adipose tissue and peripheral organs. Its derived metabolic complications are mediated by the associated oxidative stress, inflammation and hypoxia. Oxidative stress is due to the excessive production of reactive oxygen species or diminished antioxidant defenses. Genetic variants, such as single nucleotide polymorphisms in antioxidant defense system genes, could alter the efficacy of these enzymes and, ultimately, the risk of obesity; thus, studies investigating the role of genetic variations in genes related to oxidative stress could be useful for better understanding the etiology of obesity and its metabolic complications. The lack of existing literature reviews in this field encouraged us to gather the findings from studies focusing on the impact of single nucleotide polymorphisms in antioxidant enzymes, oxidative stress-producing systems and transcription factor genes concerning their association with obesity risk and its phenotypes. In the future, the characterization of these single nucleotide polymorphisms (SNPs in obese patients could contribute to the development of controlled antioxidant therapies potentially beneficial for the treatment of obesity-derived metabolic complications.

  15. Genetics of oxidative stress in obesity.

    Science.gov (United States)

    Rupérez, Azahara I; Gil, Angel; Aguilera, Concepción M

    2014-02-20

    Obesity is a multifactorial disease characterized by the excessive accumulation of fat in adipose tissue and peripheral organs. Its derived metabolic complications are mediated by the associated oxidative stress, inflammation and hypoxia. Oxidative stress is due to the excessive production of reactive oxygen species or diminished antioxidant defenses. Genetic variants, such as single nucleotide polymorphisms in antioxidant defense system genes, could alter the efficacy of these enzymes and, ultimately, the risk of obesity; thus, studies investigating the role of genetic variations in genes related to oxidative stress could be useful for better understanding the etiology of obesity and its metabolic complications. The lack of existing literature reviews in this field encouraged us to gather the findings from studies focusing on the impact of single nucleotide polymorphisms in antioxidant enzymes, oxidative stress-producing systems and transcription factor genes concerning their association with obesity risk and its phenotypes. In the future, the characterization of these single nucleotide polymorphisms (SNPs) in obese patients could contribute to the development of controlled antioxidant therapies potentially beneficial for the treatment of obesity-derived metabolic complications.

  16. Oxidative stress in rats experimentally infected by Sporothrix schenckii.

    Science.gov (United States)

    Castro, Verônica S P; Da Silva, Aleksandro S; Thomé, Gustavo R; Wolkmer, Patrícia; Castro, Jorge L C; Costa, Márcio M; Graça, Dominguita L; Oliveira, Daniele C; Alves, Sydney H; Schetinger, Maria R C; Lopes, Sonia T A; Stefani, Lenita M; Azevedo, Maria I; Baldissera, Matheus D; Andrade, Cinthia M

    2017-06-01

    The aim of this study was to evaluate whether oxidative stress occurs in rats experimentally infected by Sporothrix schenckii, and its possible effect on disease pathogenesis. Thirty rats were divided into two groups: the group A (uninfected, n = 18) and the group B (infected by S. schenckii, n=21). Blood samples were collected on days 15, 30 and 40 post-infection (PI). At each sampling time, six rats of the group A, and seven of the group B were bled. TBARS (thiobarbituric acid reactive substances) levels in serum samples were measured to evaluate lipid peroxidation. In addition, catalase (CAT) and superoxide dismutase (SOD) activities, known as biomarkers of antioxidants levels, were verified in whole blood. Seric pro-inflammatory cytokine levels were measured (IFN-γ, TNF-α, and IL-6), which showed that these inflammatory mediators were at higher levels in the infected rats (P sporotrichosis showed significantly higher (p sporotrichosis is a likely mechanism for redox imbalance, and consequently cause the oxidative stress in experimentally infected rats. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Toxicological and pharmacological concerns on oxidative stress and related diseases

    Energy Technology Data Exchange (ETDEWEB)

    Saeidnia, Soodabeh [Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411 (Iran, Islamic Republic of); College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon (Canada); Abdollahi, Mohammad, E-mail: Mohammad@TUMS.Ac.Ir [Department of Toxicology and Pharmacology, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran 1417614411 (Iran, Islamic Republic of)

    2013-12-15

    Although reactive oxygen species (ROS) such as superoxide, hydrogen peroxide and hydroxyl radical are generated as the natural byproduct of normal oxygen metabolism, they can create oxidative damage via interaction with bio-molecules. The role of oxidative stress as a remarkable upstream part is frequently reported in the signaling cascade of inflammation as well as chemo attractant production. Even though hydrogen peroxide can control cell signaling and stimulate cell proliferation at low levels, in higher concentrations it can initiate apoptosis and in very high levels may create necrosis. So far, the role of ROS in cellular damage and death is well documented with implicating in a broad range of degenerative alterations e.g. carcinogenesis, aging and other oxidative stress related diseases (OSRDs). Reversely, it is cleared that antioxidants are potentially able to suppress (at least in part) the immune system and to enhance the normal cellular protective responses to tissue damage. In this review, we aimed to provide insights on diverse OSRDs, which are correlated with the concept of oxidative stress as well as its cellular effects that can be inhibited by antioxidants. Resveratrol, angiotensin converting enzyme inhibitors, angiotensin receptor blockers, statins, nebivolol and carvedilol, pentaerythritol tetranitrate, mitochondria-targeted antioxidants, and plant-derived drugs (alone or combined) are the potential medicines that can be used to control OSRD.

  18. Toxicological and pharmacological concerns on oxidative stress and related diseases

    International Nuclear Information System (INIS)

    Saeidnia, Soodabeh; Abdollahi, Mohammad

    2013-01-01

    Although reactive oxygen species (ROS) such as superoxide, hydrogen peroxide and hydroxyl radical are generated as the natural byproduct of normal oxygen metabolism, they can create oxidative damage via interaction with bio-molecules. The role of oxidative stress as a remarkable upstream part is frequently reported in the signaling cascade of inflammation as well as chemo attractant production. Even though hydrogen peroxide can control cell signaling and stimulate cell proliferation at low levels, in higher concentrations it can initiate apoptosis and in very high levels may create necrosis. So far, the role of ROS in cellular damage and death is well documented with implicating in a broad range of degenerative alterations e.g. carcinogenesis, aging and other oxidative stress related diseases (OSRDs). Reversely, it is cleared that antioxidants are potentially able to suppress (at least in part) the immune system and to enhance the normal cellular protective responses to tissue damage. In this review, we aimed to provide insights on diverse OSRDs, which are correlated with the concept of oxidative stress as well as its cellular effects that can be inhibited by antioxidants. Resveratrol, angiotensin converting enzyme inhibitors, angiotensin receptor blockers, statins, nebivolol and carvedilol, pentaerythritol tetranitrate, mitochondria-targeted antioxidants, and plant-derived drugs (alone or combined) are the potential medicines that can be used to control OSRD

  19. Oxidative stress resistance in Porphyromonas gingivalis

    Science.gov (United States)

    Henry, Leroy G; McKenzie, Rachelle ME; Robles, Antonette; Fletcher, Hansel M

    2012-01-01

    Porphyromonas gingivalis, a black-pigmented, Gram-negative anaerobe, is an important etiologic agent of periodontal disease. The harsh inflammatory condition of the periodontal pocket implies that this organism has properties that will facilitate its ability to respond and adapt to oxidative stress. Because the stress response in the pathogen is a major determinant of its virulence, a comprehensive understanding of its oxidative stress resistance strategy is vital. We discuss multiple mechanisms and systems that clearly work in synergy to defend and protect P. gingivalis against oxidative damage caused by reactive oxygen species. The involvement of multiple hypothetical proteins and/or proteins of unknown function in this process may imply other unique mechanisms and potential therapeutic targets. PMID:22439726

  20. Cytokines and Oxidative Stress Status Following a Handball Game in Elite Male Players

    Science.gov (United States)

    Marin, Douglas Popp; Macedo dos Santos, Rita de Cassia; Bolin, Anaysa Paola; Guerra, Beatriz Alves; Hatanaka, Elaine; Otton, Rosemari

    2011-01-01

    Background. Handball is considered an intermittent sport that places an important stress on a player's aerobic and anaerobic metabolism. However, the oxidative stress responses following a handball game remain unknown. We investigated the responses of plasma and erythrocyte antioxidant system and oxidative stress biomarkers following a single handball game. Methods. Fourteen male elite Brazilian handball athletes were recruited in the present study. Blood samples were taken before, immediately, and 24 hours after the game. Results. After the game and during 24 hours of recovery, the concentration of all oxidative stress indices changed significantly in a way indicating increased oxidative stress in the blood (thiol groups and reduced glutathione decreased, whereas TBARS and plasma antioxidant capacity was increased) as well as in erythrocyte (increased levels of TBARS and protein carbonyls). Erythrocyte antioxidant enzyme activities were also significantly changed by handball. Muscle damage indices (creatine kinase and lactate dehydrogenase) increased significantly after exercise. In addition, IL-6 increased after the game, whereas TNF-α decreased during recovery. Conclusion. This study demonstrates that a single handball game in elite athletes induces a marked state of oxidative stress evidenced by the oxidative modification in plasma and erythrocyte macromolecules, as well as by changes in the enzymatic and nonenzymatic antioxidant system. PMID:21922038

  1. Cytokines and Oxidative Stress Status Following a Handball Game in Elite Male Players

    Directory of Open Access Journals (Sweden)

    Douglas Popp Marin

    2011-01-01

    Full Text Available Background. Handball is considered an intermittent sport that places an important stress on a player's aerobic and anaerobic metabolism. However, the oxidative stress responses following a handball game remain unknown. We investigated the responses of plasma and erythrocyte antioxidant system and oxidative stress biomarkers following a single handball game. Methods. Fourteen male elite Brazilian handball athletes were recruited in the present study. Blood samples were taken before, immediately, and 24 hours after the game. Results. After the game and during 24 hours of recovery, the concentration of all oxidative stress indices changed significantly in a way indicating increased oxidative stress in the blood (thiol groups and reduced glutathione decreased, whereas TBARS and plasma antioxidant capacity was increased as well as in erythrocyte (increased levels of TBARS and protein carbonyls. Erythrocyte antioxidant enzyme activities were also significantly changed by handball. Muscle damage indices (creatine kinase and lactate dehydrogenase increased significantly after exercise. In addition, IL-6 increased after the game, whereas TNF-α decreased during recovery. Conclusion. This study demonstrates that a single handball game in elite athletes induces a marked state of oxidative stress evidenced by the oxidative modification in plasma and erythrocyte macromolecules, as well as by changes in the enzymatic and nonenzymatic antioxidant system.

  2. Oxidative stress signaling to chromatin in health and disease

    KAUST Repository

    Kreuz, Sarah

    2016-06-20

    Oxidative stress has a significant impact on the development and progression of common human pathologies, including cancer, diabetes, hypertension and neurodegenerative diseases. Increasing evidence suggests that oxidative stress globally influences chromatin structure, DNA methylation, enzymatic and non-enzymatic post-translational modifications of histones and DNA-binding proteins. The effects of oxidative stress on these chromatin alterations mediate a number of cellular changes, including modulation of gene expression, cell death, cell survival and mutagenesis, which are disease-driving mechanisms in human pathologies. Targeting oxidative stress-dependent pathways is thus a promising strategy for the prevention and treatment of these diseases. We summarize recent research developments connecting oxidative stress and chromatin regulation.

  3. Biologic Stress, Oxidative Stress, and Resistance to Drugs: What Is Hidden Behind

    Directory of Open Access Journals (Sweden)

    Maria Pantelidou

    2017-02-01

    Full Text Available Stress can be defined as the homeostatic, nonspecific defensive response of the organism to challenges. It is expressed by morphological, biochemical, and functional changes. In this review, we present biological and oxidative stress, as well as their interrelation. In addition to the mediation in biologic stress (central nervous, immune, and hormonal systems and oxidative stress, the effect of these phenomena on xenobiotic metabolism and drug response is also examined. It is concluded that stress decreases drug response, a result which seems to be mainly attributed to the induction of hepatic drug metabolizing enzymes. A number of mechanisms are presented. Structure-activity studies are also discussed. Vitamin E, as well as two synthetic novel compounds, seem to reduce both oxidative and biological stress and, consequently, influence drug response and metabolism.

  4. Maternal active or passive smoking causes oxidative stress in placental tissue.

    Science.gov (United States)

    Aycicek, Ali; Varma, Mustafa; Ahmet, Koc; Abdurrahim, Kocyigit; Erel, Ozcan

    2011-05-01

    The aim of this study was to assess the influence of active and passive maternal smoking on placenta total oxidant/antioxidant status in term infants. The levels of cord blood total antioxidant capacity (TAC), total oxidant status (TOS), and oxidative stress index (OSI) were measured in samples of fetal placental tissue, cord blood, and the maternal peripheral blood serum and from 19 mothers who were active smokers, 19 who were passive smokers, and 22 who were nonsmokers (not exposed to active or passive smoking). The pregnancies were between 37 and 40 weeks' gestation, were uncomplicated, and the infants were delivered vaginally. Birth weight and head circumference in the active smokers were significantly (P antioxidant balance in fetal placental tissue and causes potent oxidative stress.

  5. Biological markers of oxidative stress: Applications to cardiovascular research and practice

    Directory of Open Access Journals (Sweden)

    Edwin Ho

    2013-01-01

    Full Text Available Oxidative stress is a common mediator in pathogenicity of established cardiovascular risk factors. Furthermore, it likely mediates effects of emerging, less well-defined variables that contribute to residual risk not explained by traditional factors. Functional oxidative modifications of cellular proteins, both reversible and irreversible, are a causal step in cellular dysfunction. Identifying markers of oxidative stress has been the focus of many researchers as they have the potential to act as an “integrator” of a multitude of processes that drive cardiovascular pathobiology. One of the major challenges is the accurate quantification of reactive oxygen species with very short half-life. Redox-sensitive proteins with important cellular functions are confined to signalling microdomains in cardiovascular cells and are not readily available for quantification. A popular approach is the measurement of stable by-products modified under conditions of oxidative stress that have entered the circulation. However, these may not accurately reflect redox stress at the cell/tissue level. Many of these modifications are “functionally silent”. Functional significance of the oxidative modifications enhances their validity as a proposed biological marker of cardiovascular disease, and is the strength of the redox cysteine modifications such as glutathionylation. We review selected biomarkers of oxidative stress that show promise in cardiovascular medicine, as well as new methodologies for high-throughput measurement in research and clinical settings. Although associated with disease severity, further studies are required to examine the utility of the most promising oxidative biomarkers to predict prognosis or response to treatment.

  6. The glutathione mimic ebselen inhibits oxidative stress but not endoplasmic reticulum stress in endothelial cells.

    Science.gov (United States)

    Ahwach, Salma Makhoul; Thomas, Melanie; Onstead-Haas, Luisa; Mooradian, Arshag D; Haas, Michael J

    2015-08-01

    Reactive oxygen species are associated with cardiovascular disease, diabetes, and atherosclerosis, yet the use of antioxidants in clinical trials has been ineffective at improving outcomes. In endothelial cells, high-dextrose-induced oxidative stress and endoplasmic reticulum stress promote endothelial dysfunction leading to the recruitment and activation of peripheral blood lymphocytes and the breakdown of barrier function. Ebselen, a glutathione peroxidase 1 (GPX1) mimic, has been shown to improve β-cell function in diabetes and prevent atherosclerosis. To determine if ebselen inhibits both oxidative stress and endoplasmic reticulum (ER) stress in endothelial cells, we examined its effects in human umbilical vein endothelial cells (HUVEC) and human coronary artery endothelial cells (HCAEC) with and without high-dextrose. Oxidative stress and ER stress were measured by 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[1,2-A]pyrazin-3-one hydrochloride chemiluminescence and ER stress alkaline phosphatase assays, respectively. GPX1 over-expression and knockdown were performed by transfecting cells with a GPX1 expression construct or a GPX1-specific siRNA, respectively. Ebselen inhibited dextrose-induced oxidative stress but not ER stress in both HUVEC and HCAEC. Ebselen also had no effect on tunicamycin-induced ER stress in HCAEC. Furthermore, augmentation of GPX1 activity directly by sodium selenite supplementation or transfection of a GPX1 expression plasmid decreased dextrose-induced oxidative stress but not ER stress, while GPX1 knockout enhanced oxidative stress but had no effect on ER stress. These results suggest that ebselen targets only oxidative stress but not ER stress. Copyright © 2015. Published by Elsevier Inc.

  7. Nickel exposure and plasma levels of biomarkers for assessing oxidative stress in nickel electroplating workers.

    Science.gov (United States)

    Tsao, Yu-Chung; Gu, Po-Wen; Liu, Su-Hsun; Tzeng, I-Shiang; Chen, Jau-Yuan; Luo, Jiin-Chyuan John

    2017-07-01

    The mechanism of nickel-induced pathogenesis remains elusive. To examine effects of nickel exposure on plasma oxidative and anti-oxidative biomarkers. Biomarker data were collected from 154 workers with various levels of nickel exposure and from 73 controls. Correlations between nickel exposure and oxidative and anti-oxidative biomarkers were determined using linear regression models. Workers with a exposure to high nickel levels had significantly lower levels of anti-oxidants (glutathione and catalase) than those with a lower exposure to nickel; however, only glutathione showed an independent association after multivariable adjustment. Exposure to high levels of nickel may reduce serum anti-oxidative capacity.

  8. Oxidative Stress Promotes Peroxiredoxin Hyperoxidation and Attenuates Pro-survival Signaling in Aging Chondrocytes*

    Science.gov (United States)

    Collins, John A.; Wood, Scott T.; Nelson, Kimberly J.; Rowe, Meredith A.; Carlson, Cathy S.; Chubinskaya, Susan; Poole, Leslie B.; Furdui, Cristina M.; Loeser, Richard F.

    2016-01-01

    Oxidative stress-mediated post-translational modifications of redox-sensitive proteins are postulated as a key mechanism underlying age-related cellular dysfunction and disease progression. Peroxiredoxins (PRX) are critical intracellular antioxidants that also regulate redox signaling events. Age-related osteoarthritis is a common form of arthritis that has been associated with mitochondrial dysfunction and oxidative stress. The objective of this study was to determine the effect of aging and oxidative stress on chondrocyte intracellular signaling, with a specific focus on oxidation of cytosolic PRX2 and mitochondrial PRX3. Menadione was used as a model to induce cellular oxidative stress. Compared with chondrocytes isolated from young adult humans, chondrocytes from older adults exhibited higher levels of PRX1–3 hyperoxidation basally and under conditions of oxidative stress. Peroxiredoxin hyperoxidation was associated with inhibition of pro-survival Akt signaling and stimulation of pro-death p38 signaling. These changes were prevented in cultured human chondrocytes by adenoviral expression of catalase targeted to the mitochondria (MCAT) and in cartilage explants from MCAT transgenic mice. Peroxiredoxin hyperoxidation was observed in situ in human cartilage sections from older adults and in osteoarthritic cartilage. MCAT transgenic mice exhibited less age-related osteoarthritis. These findings demonstrate that age-related oxidative stress can disrupt normal physiological signaling and contribute to osteoarthritis and suggest peroxiredoxin hyperoxidation as a potential mechanism. PMID:26797130

  9. Voluntary locomotor activity mitigates oxidative damage associated with isolation stress in the prairie vole (Microtus ochrogaster).

    Science.gov (United States)

    Fletcher, Kelsey L; Whitley, Brittany N; Treidel, Lisa A; Thompson, David; Williams, Annie; Noguera, Jose C; Stevenson, Jennie R; Haussmann, Mark F

    2015-07-01

    Organismal performance directly depends on an individual's ability to cope with a wide array of physiological challenges. For social animals, social isolation is a stressor that has been shown to increase oxidative stress. Another physiological challenge, routine locomotor activity, has been found to decrease oxidative stress levels. Because we currently do not have a good understanding of how diverse physiological systems like stress and locomotion interact to affect oxidative balance, we studied this interaction in the prairie vole (Microtus ochrogaster). Voles were either pair housed or isolated and within the isolation group, voles either had access to a moving wheel or a stationary wheel. We found that chronic periodic isolation caused increased levels of oxidative stress. However, within the vole group that was able to run voluntarily, longer durations of locomotor activity were associated with less oxidative stress. Our work suggests that individuals who demonstrate increased locomotor activity may be better able to cope with the social stressor of isolation. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  10. Oxidative Stress Induced Lipid Peroxidation And DNA Adduct Formation In The Pathogenesis Of Multiple Myeloma And Lymphoma

    Directory of Open Access Journals (Sweden)

    Tandon, Ravi

    2013-02-01

    Full Text Available Objective: To access the oxidative stress status by quantification of byproducts generated during lipid peroxidation and DNA breakdown products generated during DNA damage in the blood serum of multiple myeloma and lymphoma patients.Material & Methods: Case control study comprised of 40 patients of multiple myeloma and 20 patients of lymphoma along with 20 age and sex-matched healthy subjects as controls. Levels of Malondialdehyde and 8-hydroxy-2-deoxy-Guanosine were measured to study the oxidative stress status in the study subjects.Results: The level of markers of DNA damage and lipid peroxidation were found to be raised significantly in the study subjects in comparison to healthy controls. The results indicate oxidative stress and DNA damage activity increase progressively with the progression of disease.Conclusion: Oxidative stress causes DNA damage and Lipid peroxidation which results in the formation of DNA adducts leading to mutations thereby indicate the role of oxidative stress in the pathogenesis of multiple myeloma and lymphoma.

  11. Maternal periodontal disease is associated with oxidative stress during pregnancy.

    Science.gov (United States)

    Hickman, M Ashley; Boggess, Kim A; Moss, Kevin L; Beck, James D; Offenbacher, Steven

    2011-03-01

    We sought to determine if maternal periodontal disease is associated with oxidative stress as measured by serum 8-isoprostane. A secondary analysis was conducted using prospective data from the Oral Conditions and Pregnancy Study. Healthy women enrolled at periodontal disease status was categorized as healthy, mild, or moderate to severe by clinical criteria. Maternal serum was analyzed for 8-isoprostane using ultrasensitive enzyme-linked immunosorbent assay. Elevated 8-isoprostane level was defined as ≥ 75th percentile. Maternal factors associated with elevated 8-isoprostane were determined using chi-square or T test. Multivariable logistic regression was used to assess association between elevated 8-isoprostane and maternal factors. Seven hundred ninety-one women had complete data. Median (interquartile) 8-isoprostane serum level was 1806 (16 to 81,870) pg/dL. Using bivariate analysis, maternal age, race, marital status, utilization of public assistance, and mild or moderate to severe periodontal disease were associated with elevated serum 8-isoprostane. Using logistic regression, moderate to severe periodontal disease (adjusted odds ratio 2.9, 95% confidence interval: 1.7 to 5.0) remained significantly associated with an elevated serum 8-isoprostane level. Maternal periodontal disease is associated with oxidative stress during pregnancy. Further study is needed to determine the role of maternal oxidative stress in periodontal disease-associated adverse pregnancy outcomes. © Thieme Medical Publishers.

  12. HCV-Induced Oxidative Stress: Battlefield-Winning Strategy

    Directory of Open Access Journals (Sweden)

    Khadija Rebbani

    2016-01-01

    Full Text Available About 150 million people worldwide are chronically infected with hepatitis C virus (HCV. The persistence of the infection is controlled by several mechanisms including the induction of oxidative stress. HCV relies on this strategy to redirect lipid metabolism machinery and escape immune response. The 3β-hydroxysterol Δ24-reductase (DHCR24 is one of the newly discovered host markers of oxidative stress. This protein, as HCV-induced oxidative stress responsive protein, may play a critical role in the pathogenesis of HCV chronic infection and associated liver diseases, when aberrantly expressed. The sustained expression of DHCR24 in response to HCV-induced oxidative stress results in suppression of nuclear p53 activity by blocking its acetylation and increasing its interaction with MDM2 in the cytoplasm leading to its degradation, which may induce hepatocarcinogenesis.

  13. Walking the oxidative stress tightrope: a perspective from the naked mole-rat, the longest-living rodent.

    Science.gov (United States)

    Rodriguez, Karl A; Wywial, Ewa; Perez, Viviana I; Lambert, Adriant J; Edrey, Yael H; Lewis, Kaitlyn N; Grimes, Kelly; Lindsey, Merry L; Brand, Martin D; Buffenstein, Rochelle

    2011-01-01

    Reactive oxygen species (ROS), by-products of aerobic metabolism, cause oxidative damage to cells and tissue and not surprisingly many theories have arisen to link ROS-induced oxidative stress to aging and health. While studies clearly link ROS to a plethora of divergent diseases, their role in aging is still debatable. Genetic knock-down manipulations of antioxidants alter the levels of accrued oxidative damage, however, the resultant effect of increased oxidative stress on lifespan are equivocal. Similarly the impact of elevating antioxidant levels through transgenic manipulations yield inconsistent effects on longevity. Furthermore, comparative data from a wide range of endotherms with disparate longevity remain inconclusive. Many long-living species such as birds, bats and mole-rats exhibit high-levels of oxidative damage, evident already at young ages. Clearly, neither the amount of ROS per se nor the sensitivity in neutralizing ROS are as important as whether or not the accrued oxidative stress leads to oxidative-damage-linked age-associated diseases. In this review we examine the literature on ROS, its relation to disease and the lessons gleaned from a comparative approach based upon species with widely divergent responses. We specifically focus on the longest lived rodent, the naked mole-rat, which maintains good health and provides novel insights into the paradox of maintaining both an extended healthspan and lifespan despite high oxidative stress from a young age.

  14. Oral contraceptive therapy increases oxidative stress in pre-menopausal women

    Directory of Open Access Journals (Sweden)

    Jui Tung Chen

    2012-01-01

    Conclusions: The use of OCT may increase oxidative stress levels, independent of traditional cardiovascular risk factors, in pre-menopausal women, providing new insights to the primary prevention of vascular complications in these subjects.

  15. The role of heat shock protein 70 in oxidant stress and inflammatory injury in quail spleen induced by cold stress.

    Science.gov (United States)

    Ren, Jiayi; Liu, Chunpeng; Zhao, Dan; Fu, Jing

    2018-05-15

    The aim of this study was to investigate the role of heat shock protein 70 (Hsp70) in oxidative stress and inflammatory damage in the spleen of quails which were induced by cold stress. One hundred ninety-two 15-day-old male quails were randomly divided into 12 groups and kept at 12 ± 1 °C to examine acute and chronic cold stress. We first detected the changes in activities of antioxidant enzymes in the spleen tissue under acute and chronic cold stress. The activities of glutathione peroxidase (GSH-Px) fluctuated in acute cold stress groups, while they were significantly decreased (p stress. The activities of superoxide dismutase (SOD), inducible nitric oxide synthase (iNOS), and nitric oxide (NO) content were decreased significantly (p stress groups. Malondialdehyde (MDA) content was significantly increased (p stress except the 0.5 h group of acute cold stress. Besides, histopathological analysis showed that quail's spleen tissue was inflammatory injured seriously in both the acute and chronic cold stress groups. Additionally, the inflammatory factors (cyclooxygenase-2 (COX-2), prostaglandin E synthase (PTGES), iNOS, nuclear factor-kappa B (NF-κB), and tumor necrosis factor-a (TNF-α)) and Hsp70 mRNA levels were increased in both of the acute and chronic cold stress groups compared with the control groups. These results suggest that oxidative stress and inflammatory injury could be induced by cold stress in spleen tissues of quails. Furthermore, the increased expression of Hsp70 may play a role in protecting the spleen against oxidative stress and inflammatory damage caused by cold stress.

  16. Biochemical basis of the high resistance to oxidative stress

    Indian Academy of Sciences (India)

    Aerobic organisms experience oxidative stress due to generation of reactive oxygen species during normal aerobic metabolism. In addition, several chemicals also generate reactive oxygen species which induce oxidative stress. Thus oxidative stress constitutes a major threat to organisms living in aerobic environments.

  17. Lowered quality of life in mood disorders is associated with increased neuro-oxidative stress and basal thyroid-stimulating hormone levels and use of anticonvulsant mood stabilizers.

    Science.gov (United States)

    Nunes, Caroline Sampaio; Maes, Michael; Roomruangwong, Chutima; Moraes, Juliana Brum; Bonifacio, Kamila Landucci; Vargas, Heber Odebrecht; Barbosa, Decio Sabbatini; Anderson, George; de Melo, Luiz Gustavo Piccoli; Drozdstoj, Stoyanov; Moreira, Estefania; Carvalho, André F; Nunes, Sandra Odebrecht Vargas

    2018-04-17

    Major affective disorders including bipolar disorder (BD) and major depressive disorder (MDD) are associated with impaired health-related quality of life (HRQoL). Oxidative stress and subtle thyroid abnormalities may play a pathophysiological role in both disorders. Thus, the current study was performed to examine whether neuro-oxidative biomarkers and thyroid-stimulating hormone (TSH) levels could predict HRQoL in BD and MDD. This cross-sectional study enrolled 68 BD and 37 MDD patients and 66 healthy controls. The World Health Organization (WHO) QoL-BREF scale was used to assess 4 QoL subdomains. Peripheral blood malondialdehyde (MDA), advanced oxidation protein products, paraoxonaxe/CMPAase activity, a composite index of nitro-oxidative stress, and basal TSH were measured. In the total WHOQoL score, 17.3% of the variance was explained by increased advanced oxidation protein products and TSH levels and lowered CMPAase activity and male gender. Physical HRQoL (14.4%) was associated with increased MDA and TSH levels and lowered CMPAase activity. Social relations HRQoL (17.4%) was predicted by higher nitro-oxidative index and TSH values, while mental and environment HRQoL were independently predicted by CMPAase activity. Finally, 73.0% of the variance in total HRQoL was explained by severity of depressive symptoms, use of anticonvulsants, lower income, early lifetime emotional neglect, MDA levels, the presence of mood disorders, and suicidal ideation. These data show that lowered HRQoL in major affective disorders could at least in part result from the effects of lipid peroxidation, protein oxidation, lowered antioxidant enzyme activities, and higher levels of TSH. © 2018 John Wiley & Sons, Ltd.

  18. Nutritionally Mediated Oxidative Stress and Inflammation

    Directory of Open Access Journals (Sweden)

    Alexandra Muñoz

    2013-01-01

    Full Text Available There are many sources of nutritionally mediated oxidative stress that trigger inflammatory cascades along short and long time frames. These events are primarily mediated via NFκB. On the short-term scale postprandial inflammation is characterized by an increase in circulating levels of IL-6 and TNF-α and is mirrored on the long-term by proinflammatory gene expression changes in the adipocytes and peripheral blood mononuclear cells (PBMCs of obese individuals. Specifically the upregulation of CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1β, CXCL2/MIP-2α, and CXCL3/MIP-2β is noted because these changes have been observed in both adipocytes and PBMC of obese humans. In comparing numerous human intervention studies it is clear that pro-inflammatory and anti-inflammatory consumption choices mediate gene expression in humans adipocytes and peripheral blood mononuclear cells. Arachidonic acid and saturated fatty acids (SFAs both demonstrate an ability to increase pro-inflammatory IL-8 along with numerous other inflammatory factors including IL-6, TNFα, IL-1β, and CXCL1 for arachidonic acid and IGB2 and CTSS for SFA. Antioxidant rich foods including olive oil, fruits, and vegetables all demonstrate an ability to lower levels of IL-6 in PBMCs. Thus, dietary choices play a complex role in the mediation of unavoidable oxidative stress and can serve to exacerbate or dampen the level of inflammation.

  19. Oxidatively generated DNA/RNA damage in psychological stress states

    DEFF Research Database (Denmark)

    Jørgensen, Anders

    2013-01-01

    age-related somatic disorders. The overall aim of the PhD project was to investigate the relation between psychopathology, psychological stress, stress hormone secretion and oxidatively generated DNA and RNA damage, as measured by the urinary excretion of markers of whole-body DNA/RNA oxidation (8...... between the 24 h urinary cortisol excretion and the excretion of 8-oxodG/8-oxoGuo, determined in the same samples. Collectively, the studies could not confirm an association between psychological stress and oxidative stress on nucleic acids. Systemic oxidatively generated DNA/RNA damage was increased......Both non-pathological psychological stress states and mental disorders are associated with molecular, cellular and epidemiological signs of accelerated aging. Oxidative stress on nucleic acids is a critical component of cellular and organismal aging, and a suggested pathogenic mechanism in several...

  20. Delta-aminolevulinate dehydratase activity and oxidative stress markers in preeclampsia.

    Science.gov (United States)

    de Lucca, Leidiane; Rodrigues, Fabiane; Jantsch, Letícia B; Kober, Helena; Neme, Walter S; Gallarreta, Francisco M P; Gonçalves, Thissiane L

    2016-12-01

    Preeclampsia is an important pregnancy-specific multisystem disorder characterized by the onset of hypertension and proteinuria. It is of unknown etiology and involves serious risks for the pregnant women and fetus. One of the main factors involved in the pathophysiology of preeclampsia is oxidative stress, where excess free radicals produce harmful effects, including damage to macromolecules such as lipids, proteins and DNA. In addition, the sulfhydryl delta-aminolevulinate dehydratase enzyme (δ-ALA-D) that is part of the heme biosynthetic pathway in pro-oxidant conditions can be inhibited, which may result in the accumulation of 5-aminolevulinic acid (ALA), associated with the overproduction of free radicals, suggesting it to be an indirect marker of oxidative stress. As hypertensive pregnancy complications are a major cause of morbidity and mortality maternal and fetal where oxidative stress appears to be an important factor involved in preeclampsia, the aim of this study was to evaluate the activity of δ-ALA-D and classic oxidative stress markers in the blood of pregnant women with mild and severe preeclampsia. The analysis and quantification of the following oxidative stress markers were performed: thiobarbituric acid-reactive species (TBARS); presence of protein and non-protein thiol group; quantification of vitamin C; Catalase and δ-ALA--D activities in samples of blood of pregnant women with mild preeclampsia (n=25), with severe preeclampsia (n=30) and in a control group of healthy pregnant women (n=30). TBARS was significantly higher in women with preeclampsia, while the presence of thiol groups, levels of vitamin C, catalase and δ-ALA-D activity were significantly lower in groups of pregnant women with preeclampsia compared with healthy women. In addition, the results showed no significant difference between groups of pregnant women with mild and severe preeclampsia. The data suggest a state of increased oxidative stress in pregnant women with

  1. Pharmacological inhibition of arachidonate 15-lipoxygenase (ALOX15) protects human spermatozoa against oxidative stress.

    Science.gov (United States)

    Walters, Jessica L H; De Iuliis, Geoffry N; Dun, Matthew D; Aitken, Robert John; McLaughlin, Eileen A; Nixon, Brett; Bromfield, Elizabeth G

    2018-03-13

    One of the leading causes of male infertility is defective sperm function, a pathology that commonly arises from oxidative stress in the germline. Lipid peroxidation events in the sperm plasma membrane result in the generation of cytotoxic aldehydes such as 4-hydroxynonenal (4HNE), which accentuate the production of reactive oxygen species (ROS) and cause cellular damage. One of the key enzymes involved in the metabolism of polyunsaturated fatty acids to 4HNE in somatic cells is arachidonate 15-lipoxygenase (ALOX15). Although ALOX15 has yet to be characterized in human spermatozoa, our previous studies have revealed a strong link between ALOX15 activity and the levels of oxidative stress and 4HNE in mouse germ cell models. In view of these data, we sought to assess the function of ALOX15 in mature human spermatozoa and determine whether the pharmacological inhibition of this enzyme could influence the level of oxidative stress experienced by these cells. By driving oxidative stress in vitro with exogenous H2O2, our data reveal that 6,11-dihydro[1]benzothiopyrano[4,3-b]indole (PD146176; a selective ALOX15 inhibitor), was able to significantly reduce several deleterious, oxidative insults in spermatozoa. Indeed, PD146176 attenuated the production of ROS, as well as membrane lipid peroxidation and 4HNE production in human spermatozoa. Accordingly, ALOX15 inhibition also protected the functional competence of these cells to acrosome react and bind homologous human zonae pellucidae. Together, these results implicate ALOX15 in the propagation of an oxidative stress cascade within human spermatozoa and offer insight into potential therapeutic avenues to address male fertility that arises from oxidative stress.

  2. Oxidative Stress Type Influences the Properties of Antioxidants Containing Polyphenols in RINm5F Beta Cells

    Directory of Open Access Journals (Sweden)

    Nathalie Auberval

    2015-01-01

    Full Text Available The in vitro methods currently used to screen bioactive compounds focus on the use of a single model of oxidative stress. However, this simplistic view may lead to conflicting results. The aim of this study was to evaluate the antioxidant properties of two natural extracts (a mix of red wine polyphenols (RWPs and epigallocatechin gallate (EGCG with three models of oxidative stress induced with hydrogen peroxide (H2O2, a mixture of hypoxanthine and xanthine oxidase (HX/XO, or streptozotocin (STZ in RINm5F beta cells. We employed multiple approaches to validate their potential as therapeutic treatment options, including cell viability, reactive oxygen species production, and antioxidant enzymes expression. All three oxidative stresses induced a decrease in cell viability and an increase in apoptosis, whereas the level of ROS production was variable depending on the type of stress. The highest level of ROS was found for the HX/XO-induced stress, an increase that was reflected by higher expression antioxidant enzymes. Further, both antioxidant compounds presented beneficial effects during oxidative stress, but EGCG appeared to be a more efficient antioxidant. These data indicate that the efficiency of natural antioxidants is dependent on both the nature of the compound and the type of oxidative stress generated.

  3. The effects of yellow soybean, black soybean, and sword bean on lipid levels and oxidative stress in ovariectomized rats.

    Science.gov (United States)

    Byun, Jae Soon; Han, Young Sun; Lee, Sang Sun

    2010-04-01

    Soy isoflavones have been reported to decrease the risk of atherosclerosis in postmenopausal women. However, the effects of dietary consumption of soybean have not been explored. In this study, we evaluated the effects of consuming yellow soybeans, black soybeans (Glycine max), or sword beans (Canavalia gladiate) on lipid and oxidative stress levels in an ovariectomized rat model. Forty-seven nine-week-old female rats were ovariectomized, randomly divided into four groups, and fed one of the following diets for 10 weeks: a diet supplemented with casein (NC, n = 12), a diet supplemented with yellow soybean (YS, n = 12), a diet supplemented with black soybean (BS, n = 12), or a diet supplemented with sword bean (SB, n = 11). Plasma triglyceride (TG) levels in the BS and SB groups were significantly lower than that in the NC group. Notably, the BS group had significantly lower plasma total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels than the other groups. Hepatic total lipid levels were significantly lower in the YS and SB groups, and cholesterol levels were significantly lower in the SB group than in the NC group. Superoxide dismutase (SOD) and catalase (CAT) activities were significantly higher in the groups fed beans compared to the NC group. Hepatic thiobarbituric acid reactive substances (TBARS) levels were also significantly lower in the BS and SB groups than the NC group. In conclusion, our results suggest that consumption of various types of beans may inhibit oxidative stress in postmenopausal women by increasing antioxidant activity and improving lipid profiles. Notably, intake of black soybean resulted in the greatest improvement in risk factors associated with cardiovascular disease.

  4. Investigations of oxidative stress effects and their mechanisms in rat brain after systemic administration of ceria engineered nanomaterials

    Science.gov (United States)

    Hardas, Sarita S.

    Advancing applications of engineered nanomaterials (ENM) in various fields create the opportunity for intended (e.g. drug and gene delivery) or unintended (e.g. occupational and environmental) exposure to ENM. However, the knowledge of ENM-toxicity is lagging behind their application development. Understanding the ENM hazard can help us to avoid potential human health problems associated with ENM applications as well as to increase their public acceptance. Ceria (cerium [Ce] oxide) ENM have many current and potential commercial applications. Beyond the traditional use of ceria as an abrasive, the scope of ceria ENM applications now extends into fuel cell manufacturing, diesel fuel additives and for therapeutic intervention as a putative antioxidant. However, the biological effects of ceria ENM exposure have yet to be fully defined. Both pro-and anti-oxidative effects of ceria ENM exposure are repeatedly reported in literature. EPA, NIEHS and OECD organizations have nominated ceria for its toxicological evaluation. All these together gave us the impetus to examine the oxidative stress effects of ceria ENM after systemic administration. Induction of oxidative stress is one of the primary mechanisms of ENM toxicity. Oxidative stress plays an important role in maintaining the redox homeostasis in the biological system. Increased oxidative stress, due to depletion of antioxidant enzymes or molecules and / or due to increased production of reactive oxygen (ROS) or nitrogen (RNS) species may lead to protein oxidation, lipid peroxidation and/or DNA damage. Increased protein oxidation or lipid peroxidation together with antioxidant protein levels and activity can serve as markers of oxidative stress. To investigate the oxidative stress effects and the mechanisms of ceria-ENM toxicity, fully characterized ceria ENM of different sizes (˜ 5nm, 15nm, 30nm, 55nm and nanorods) were systematically injected into rats intravenously in separate experiments. Three brain regions

  5. Oxidative stress under ambient and physiological oxygen tension in tissue culture

    Science.gov (United States)

    Jagannathan, Lakshmanan; Cuddapah, Suresh; Costa, Max

    2016-01-01

    Oxygen (O2) levels range from 2–9% in vivo. However, cell culture experiments are performed at atmospheric O2 levels (21%). Oxidative stress due to generation of reactive oxygen species (ROS) in cells cultured at higher than physiological levels is implicated in multitude of deleterious effects including DNA damage, genomic instability and senescence. In addition, oxidative stress activates redox sensitive transcription factors related to inflammatory signaling and apoptotic signaling. Furthermore, several chromatin-modifying enzymes are affected by ROS, potentially impacting epigenetic regulation of gene expression. While primary cells are cultured at lower O2 levels due to their inability to grow at higher O2, the immortalized cells, which display no such apparent growth difficulties, are typically cultured at 21% O2. This review will provide an overview of issues associated with increased oxygen levels in in vitro cell culture and point out the benefits of using lower levels of oxygen tension even for immortalized cells. PMID:27034917

  6. Hyperglycaemia-induced impairment of endothelium-dependent vasorelaxation in rat mesenteric arteries is mediated by intracellular methylglyoxal levels in a pathway dependent on oxidative stress

    DEFF Research Database (Denmark)

    Brouwers, O; Niessen, P M; Haenen, G

    2010-01-01

    -hydro-5-methylimidazolone (MG-H1) was detected with an antibody against MG-H1 and quantified with ultra-performance liquid chromatography (tandem) mass spectrometry. Reactive oxygen species formation was measured with a 5-(and-6)-chloromethyl-2'7'-dichlorodihydrofluorescein diacetate acetyl ester probe...... for AGE ligand S100b did (p cells and adventitia by fivefold accompanied by an eightfold increase in the oxidative stress marker nitrotyrosine. Antioxidant pre-incubation prevented methylglyoxal......-induced impairment of vasoreactivity. CONCLUSIONS/INTERPRETATION: These data show that hyperglycaemia-induced impairment of endothelium-dependent vasorelaxation is mediated by increased intracellular methylglyoxal levels in a pathway dependent on oxidative stress....

  7. Comparison of the protective effects of seven selected herbs against oxidative stress

    Directory of Open Access Journals (Sweden)

    Lee-Wen Chang

    2015-07-01

    Full Text Available Objective: To compare the protective effects of the water extracts of seven herbs, including Solanum indicum L., Mallotus repandus (Wild Muell-Arg. (MRM, Bombax malabarica DC (BMDC, Tadehagi triquetrum (L. Ohashi (TTLO, Clinacanthus nutans (Burm f. Lindau, Salvia plebeia R. Br (SPRB, Ixeris chinensis Mak (ICM, against tert-butylhydroperoxide (t-BHP-induced oxidative stress in Clone 9 cells. Methods: To evaluate the antioxidant properties of water extracts from seven herbs, reducing ability, metal-chelating activity and radical-scavenging activity such as 2,2′-azino-bis(3- ethylbenzothiazoline-6-sulphonic acid radical cation and 1,1-diphenyl-2-picrylhydrazyl (DPPH were determined. In cellular systems, t-BHP was used as a model oxidant to induce oxidative stress. 2′,7′-Dichlorofluorescin diacetate and chloromethylfluorescein-diacetate were used as fluorescence probe to determine reactive oxygen species generation and glutathione level in t-BHP-induced Clone 9 cells, respectively. In addition, total tannins, total anthocyanins, total polyphenolics and flavonoids were determined. Results: According to the data obtained from the trolox equivalent antioxidant capacity method, DPPH radical scavenging assay and reducing ability determination, MRM, SPRB, and BMDC showed relatively high antioxidant properties while TTLO and ICM were in the middle and Solanum indicum and Clinacanthus nutans had relatively low activity. In cellular model systems, SPRB, BMDC, and TTLO showed higher protective effects against t-BHP-induced oxidative stress. BMDC, ICM, and TTLO displayed higher inhibitory effects on reactive oxygen species generation in t-BHP-induced Clone 9 cells. In addition, SPRB, MRM, and BMDC showed significantly positive modulated glutathione levels. Tannins, anthocyanins, flavonoids and polyphenolics were present in the herbs, which may in part contribute to regulating the oxidative stress. Conclusions: These results indicated that the seven

  8. Adaptive stress response to menadione-induced oxidative stress in Saccharomyces cerevisiae KNU5377.

    Science.gov (United States)

    Kim, Il-Sup; Sohn, Ho-Yong; Jin, Ingnyol

    2011-10-01

    The molecular mechanisms involved in the ability of yeast cells to adapt and respond to oxidative stress are of great interest to the pharmaceutical, medical, food, and fermentation industries. In this study, we investigated the time-dependent, cellular redox homeostasis ability to adapt to menadione-induced oxidative stress, using biochemical and proteomic approaches in Saccharomyces cerevisiae KNU5377. Time-dependent cell viability was inversely proportional to endogenous amounts of ROS measured by a fluorescence assay with 2',7'-dichlorofluorescin diacetate (DCFHDA), and was hypersensitive when cells were exposed to the compound for 60 min. Morphological changes, protein oxidation and lipid peroxidation were also observed. To overcome the unfavorable conditions due to the presence of menadione, yeast cells activated a variety of cell rescue proteins including antioxidant enzymes, molecular chaperones, energy-generating metabolic enzymes, and antioxidant molecules such as trehalose. Thus, these results show that menadione causes ROS generation and high accumulation of cellular ROS levels, which affects cell viability and cell morphology and there is a correlation between resistance to menadione and the high induction of cell rescue proteins after cells enter into this physiological state, which provides a clue about the complex and dynamic stress response in yeast cells.

  9. Mulberry Leaf Extract Attenuates Oxidative Stress-Mediated Testosterone Depletion in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Hajizadeh

    2014-03-01

    Full Text Available Background: It has been proposed that oxidative stress may contribute to the development of testicular abnormalities in diabetes. Morus alba leaf extract (MAE has hypoglycemic and antioxidant properties. We, therefore, explored the impact of the administration of MAE on steroidogenesis in diabetic rats. Methods: To address this hypothesis, we measured the serum level of glucose, insulin, and free testosterone (Ts as well as oxidative stress parameters (including glutathione peroxidase, glutathione reductase, total antioxidant capacity, and malondialdehyde in the testis of control, untreated and MAE-treated (1 g/day/kg diabetic rats. In order to determine the likely mechanism of MAE action on Ts levels, we analyzed the quantitative mRNA expression level of the two key steroidogenic proteins, namely steroid acute regulatory protein (StAR and P450 cholesterol side-chain cleavage enzyme (P450scc, by real-time PCR. Results: The MAE-treated diabetic rats had significantly decreased glucose levels and on the other hand increased insulin and free Ts levels than the untreated diabetic rats. In addition, the administration of MAE to the diabetic rats restored the oxidative stress parameters toward control. Induction of diabetes decreased testicular StAR mRNA expression by 66% and MAE treatment enhanced mRNA expression to the same level of the control group. However, the expression of P540scc was not significantly decreased in the diabetic group as compared to the control group. Conclusion: Our findings indicated that MAE significantly increased Ts production in the diabetic rats, probably through the induction of StAR mRNA expression levels. Administration of MAE to experimental models of diabetes can effectively attenuate oxidative stress-mediated testosterone depletion. Please cite this article as: Hajizadeh MR, Eftekhar E, Zal F, Jaffarian A, Mostafavi-Pour Z. Mulberry Leaf Extract Attenuates Oxidative Stress-Mediated Testosterone Depletion in

  10. Halobenzoquinone-Induced Alteration of Gene Expression Associated with Oxidative Stress Signaling Pathways.

    Science.gov (United States)

    Li, Jinhua; Moe, Birget; Liu, Yanming; Li, Xing-Fang

    2018-06-05

    Halobenzoquinones (HBQs) are emerging disinfection byproducts (DBPs) that effectively induce reactive oxygen species and oxidative damage in vitro. However, the impacts of HBQs on oxidative-stress-related gene expression have not been investigated. In this study, we examined alterations in the expression of 44 genes related to oxidative-stress-induced signaling pathways in human uroepithelial cells (SV-HUC-1) upon exposure to six HBQs. The results show the structure-dependent effects of HBQs on the studied gene expression. After 2 h of exposure, the expression levels of 9 to 28 genes were altered, while after 8 h of exposure, the expression levels of 29 to 31 genes were altered. Four genes ( HMOX1, NQO1, PTGS2, and TXNRD1) were significantly upregulated by all six HBQs at both exposure time points. Ingenuity pathway analysis revealed that the Nrf2 pathway was significantly responsive to HBQ exposure. Other canonical pathways responsive to HBQ exposure included GSH redox reductions, superoxide radical degradation, and xenobiotic metabolism signaling. This study has demonstrated that HBQs significantly alter the gene expression of oxidative-stress-related signaling pathways and contributes to the understanding of HBQ-DBP-associated toxicity.

  11. Sub-acute nickel exposure impairs behavior, alters neuronal microarchitecture, and induces oxidative stress in rats' brain.

    Science.gov (United States)

    Ijomone, Omamuyovwi Meashack; Okori, Stephen Odey; Ijomone, Olayemi Kafilat; Ebokaiwe, Azubike Peter

    2018-02-26

    Nickel (Ni) is a heavy metal with wide industrial uses. Environmental and occupational exposures to Ni are potential risk factors for neurological symptoms in humans. The present study investigated the behavior and histomorphological alterations in brain of rats sub-acutely exposed to nickel chloride (NiCl 2 ) and the possible involvement of oxidative stress. Rats were administered with 5, 10 or 20 mg/kg NiCl 2 via intraperitoneal injections for 21 days. Neurobehavioral assessment was performed using the Y-maze and open field test (OFT). Histomorphological analyses of brain tissues, as well as biochemical determination of oxidative stress levels were performed. Results showed that Ni treatments significantly reduced body weight and food intake. Cognitive and motor behaviors on the Y-maze and OFT, respectively, were compromised following Ni treatments. Administration of Ni affected neuronal morphology in the brain and significantly reduced percentage of intact neurons in both hippocampus and striatum. Additionally, markers of oxidative stress levels and nitric oxide (NO) levels were significantly altered following Ni treatments. These data suggest that compromised behavior and brain histomorphology following Ni exposures is associated with increase in oxidative stress.

  12. Beneficial effects of oral pure caffeine on oxidative stress

    Directory of Open Access Journals (Sweden)

    Daniela Metro

    2017-12-01

    Full Text Available Ingestion of coffee (which is a mixture of over 1000 hydrosoluble substances is known to protect from type-2 diabetes mellitus and its complications, and other chronic disorders associated with increased oxidative damage in blood and tissues. This protection is generally attributed to polyphenols and melanoidins. Very few studies were conducted on the amelioration of classic blood markers of oxidative stress induced after a few days of caffeine administration, but results vary.To assess whether caffeine per se could account for antioxidant properties of coffee in the short-term, we tested the ability of pure caffeine ingestion (5 mg/kg body weight/day in two daily doses for seven consecutive days to improve plasma levels of six biochemical indices in healthy male volunteers (n = 15. These indices were total antioxidant capacity (TAC, glutathione (GSH, oxidized glutathione (GSSG, GSH to GSSG ratio, lipid hydroperoxides (LOOH and malondialdehyde (MDA.We found that all indices changed significantly (P < .05 or < .01 in a favourable manner, ranging from −41% for GSSG to −70% for LHP levels, and +106% for GSH levels to +249% for the GSG/GSSG ratio. Changes of any given index were uniform across subjects, with no outliers.We conclude that caffeine has unequivocal, consistent antioxidant properties. Keyword: Oxidative stress, Coffee, Caffeine, Lipid peroxidation, Gluthathione, Malondialdehyde

  13. Pulmonary dysfunctions, oxidative stress and DNA damage in brick kiln workers.

    Science.gov (United States)

    Kaushik, R; Khaliq, F; Subramaneyaan, M; Ahmed, R S

    2012-11-01

    Brick kilns in the suburban areas in developing countries pose a big threat to the environment and hence the health of their workers and people residing around them. The present study was planned to assess the lung functions, oxidative stress parameters and DNA damage in brick kiln workers. A total of 31 male subjects working in brick kiln, and 32 age, sex and socioeconomic status matched controls were included in the study. The lung volumes, capacities and flow rates, namely, forced expiratory volume in first second (FEV(1)), forced vital capacity (FVC), FEV(1)/FVC, expiratory reserve volume, inspiratory capacity (IC), maximal expiratory flow when 50% of FVC is remaining to be expired, maximum voluntary ventilation, peak expiratory flow rate and vital capacity were significantly decreased in the brick kiln workers. Increased oxidative stress as evidenced by increased malonedialdehyde levels and reduced glutathione content, glutathione S-transferase activity and ferric reducing ability of plasma were observed in the study group when compared with controls. Our results indicate a significant correlation between oxidative stress parameters and pulmonary dysfunction, which may be due to silica-induced oxidative stress and resulting lung damage.

  14. Relationship between oxidative stress and "burning mouth syndrome" in female patients: a scientific hypothesis.

    Science.gov (United States)

    Tatullo, M; Marrelli, M; Scacco, S; Lorusso, M; Doria, S; Sabatini, R; Auteri, P; Cagiano, R; Inchingolo, F

    2012-09-01

    Burning Mouth Syndrome (BMS) is characterized by burning sensation and pain in the mouth with or without inflammatory signs and specific lesions. Aim of the present study was to investigate about a possible correlation between the Burning Mouth Syndrome and oxidative stress. We recruited 18 healthy female patients between 54 and 68 years of age with a diagnosis of Burning Mouth Syndrome. Oxidative stress assessment was performed by means of an integrated analytical system composed of a photometer and a mini-centrifuge (FRAS4, H and D s.r.l., Parma, Italy). Samples of whole capillary blood were taken by a finger puncture in a heparinized tube and immediately centrifuged; a small amount of samples plasma (10 microL) were thereafter tested for total oxidant capacity (d-ROMs test) and biological antioxidant potential as iron-reducing activity (BAP test) (Diacron International s.r.l., Grosseto, Italy). Our results indicate that female patients affected by Burning Mouth Syndrome show significantly different d-ROMs and BAP levels, similar to those present in oxidative stress condition with respect to the general population. It was also emphasized that, after the most painful phase, the levels representing the present oxidative stress, progressively return to normal, even if still significantly higher 7 days after, with respect to the normal population. No similar study was performed up to now. This study confirms the effectiveness of antioxidant treatments in the patients affected by BMS, in order to prevent or decrease the onset of oxidative stress and the consequent increased risk of oxidative-related systemic diseases.

  15. Oxidative stress response after laparoscopic versus conventional sigmoid resection

    DEFF Research Database (Denmark)

    Madsen, Michael Tvilling; Kücükakin, Bülent; Lykkesfeldt, Jens

    2012-01-01

    Surgery is accompanied by a surgical stress response, which results in increased morbidity and mortality. Oxidative stress is a part of the surgical stress response. Minimally invasive laparoscopic surgery may result in reduced oxidative stress compared with open surgery. Nineteen patients...... scheduled for sigmoid resection were randomly allocated to open or laparoscopic sigmoid resection in a double-blind, prospective clinical trial. Three biochemical markers of oxidative stress (malondialdehyde, ascorbic acid, and dehydroascorbic acid) were measured at 6 different time points (preoperatively......, 1 h, 6 h, 24 h, 48 h, and 72 h postoperatively). There were no statistical significant differences between laparoscopic and open surgery for any of the 3 oxidative stress parameters. Malondialdehyde was reduced 1 hour postoperatively (P...

  16. Cooperative functions of manganese and thiol redox system against oxidative stress in human spermatozoa

    Directory of Open Access Journals (Sweden)

    Amrit Kaur Bansal

    2009-01-01

    Full Text Available Aims: In this study, the effects of 0.1 mM Mn 2+ on thiol components (total thiols [TSH], glutathione reduced [GSH], glutathione oxidized [GSSG] and redox ratio [GSH/ GSSG] have been determined in human spermatozoa. Settings and Design: The subjects of the study were healthy males having more than 75% motility and 80 x 10 6 sperms/mL. Materials and Methods: Fresh semen was suspended in phosphate-buffered saline (PBS (pH 7.2 and this suspension was divided into eight equal fractions. All fractions, control (containing PBS and experimental (treated/untreated with [ferrous ascorbate, FeAA - 200 FeSO 4 μM, 1000 μM ascorbic acid, nicotine (0.5 mM and FeAA + nicotine], supplemented/unsupplemented with Mn 2+ [0.1 mM], were incubated for 2 h at 378C. These fractions were assessed for determining the thiol components. Statistical Analysis: The data were statistically analyzed by Students " t" test. Results and Conclusions: Ferrous ascorbate, nicotine and ferrous ascorbate + nicotine induced oxidative stress and decreased GSH and redox ratio (GSH/GSSG ratio but increased the TSH and GSSG levels. Mn 2+ supplementation improved TSH, GSH and redox ratio (GSH/GSSG but decreased the GSSG level under normal and oxidative stress conditions. Thiol groups serve as defense mechanisms of sperm cells to fight against oxidative stress induced by stress inducers such as ferrous ascorbate, nicotine and their combination (ferrous ascorbate + nicotine. In addition, Mn 2+ supplementation maintains the thiol level by reducing oxidative stress.

  17. Primary and secondary oxidative stress in Bacillus

    NARCIS (Netherlands)

    Mols, Maarten; Abee, Tjakko

    Coping with oxidative stress originating from oxidizing compounds or reactive oxygen species (ROS), associated with the exposure to agents that cause environmental stresses, is one of the prerequisites for an aerobic lifestyle of Bacillus spp. such as B. subtilis, B. cereus and B. anthracis. This

  18. Primary and secondary oxidative stress in Bacillus

    NARCIS (Netherlands)

    Mols, J.M.; Abee, T.

    2011-01-01

    Coping with oxidative stress originating from oxidizing compounds or reactive oxygen species (ROS), associated with the exposure to agents that cause environmental stresses, is one of the prerequisites for an aerobic lifestyle of Bacillus spp. such as B. subtilis, B. cereus and B. anthracis. This

  19. Characterizing dose response relationships: Chronic gamma radiation in Lemna minor induces oxidative stress and altered polyploidy level

    International Nuclear Information System (INIS)

    Van Hoeck, Arne; Horemans, Nele; Van Hees, May; Nauts, Robin; Knapen, Dries; Vandenhove, Hildegarde; Blust, Ronny

    2015-01-01

    The biological effects and interactions of different radiation types in plants are still far from understood. Among different radiation types, external gamma radiation treatments have been mostly studied to assess the biological impact of radiation toxicity in organisms. Upon exposure of plants to gamma radiation, ionisation events can cause, either directly or indirectly, severe biological damage to DNA and other biomolecules. However, the biological responses and oxidative stress related mechanisms under chronic radiation conditions are poorly understood in plant systems. In the following study, it was questioned if the Lemna minor growth inhibition test is a suitable approach to also assess the radiotoxicity of this freshwater plant. Therefore, L. minor plants were continuously exposed for seven days to 12 different dose rate levels covering almost six orders of magnitude starting from 80 μGy h"−"1 up to 1.5 Gy h"−"1. Subsequently, growth, antioxidative defence system and genomic responses of L. minor plants were evaluated. Although L. minor plants could survive the exposure treatment at environmental relevant exposure conditions, higher dose rate levels induced dose dependent growth inhibitions starting from approximately 27 mGy h"−"1. A ten-percentage growth inhibition of frond area Effective Dose Rate (EDR_1_0) was estimated at 95 ± 7 mGy h"−"1, followed by 153 ± 13 mGy h"−"1 and 169 ± 12 mGy h"−"1 on fresh weight and frond number, respectively. Up to a dose rate of approximately 5 mGy h"−"1, antioxidative enzymes and metabolites remained unaffected in plants. A significant change in catalase enzyme activity was found at 27 mGy h"−"1 which was accompanied with significant increases of other antioxidative enzyme activities and shifts in ascorbate and glutathione content at higher dose rate levels, indicating an increase in oxidative stress in plants. Recent plant research hypothesized that environmental genotoxic

  20. Diabetic Cardiovascular Disease Induced by Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Yosuke Kayama

    2015-10-01

    Full Text Available Cardiovascular disease (CVD is the leading cause of morbidity and mortality among patients with diabetes mellitus (DM. DM can lead to multiple cardiovascular complications, including coronary artery disease (CAD, cardiac hypertrophy, and heart failure (HF. HF represents one of the most common causes of death in patients with DM and results from DM-induced CAD and diabetic cardiomyopathy. Oxidative stress is closely associated with the pathogenesis of DM and results from overproduction of reactive oxygen species (ROS. ROS overproduction is associated with hyperglycemia and metabolic disorders, such as impaired antioxidant function in conjunction with impaired antioxidant activity. Long-term exposure to oxidative stress in DM induces chronic inflammation and fibrosis in a range of tissues, leading to formation and progression of disease states in these tissues. Indeed, markers for oxidative stress are overexpressed in patients with DM, suggesting that increased ROS may be primarily responsible for the development of diabetic complications. Therefore, an understanding of the pathophysiological mechanisms mediated by oxidative stress is crucial to the prevention and treatment of diabetes-induced CVD. The current review focuses on the relationship between diabetes-induced CVD and oxidative stress, while highlighting the latest insights into this relationship from findings on diabetic heart and vascular disease.

  1. Diabetic Neuropathy and Oxidative Stress: Therapeutic Perspectives

    Directory of Open Access Journals (Sweden)

    Asieh Hosseini

    2013-01-01

    Full Text Available Diabetic neuropathy (DN is a widespread disabling disorder comprising peripheral nerves' damage. DN develops on a background of hyperglycemia and an entangled metabolic imbalance, mainly oxidative stress. The majority of related pathways like polyol, advanced glycation end products, poly-ADP-ribose polymerase, hexosamine, and protein kinase c all originated from initial oxidative stress. To date, no absolute cure for DN has been defined; although some drugs are conventionally used, much more can be found if all pathophysiological links with oxidative stress would be taken into account. In this paper, although current therapies for DN have been reviewed, we have mainly focused on the links between DN and oxidative stress and therapies on the horizon, such as inhibitors of protein kinase C, aldose reductase, and advanced glycation. With reference to oxidative stress and the related pathways, the following new drugs are under study such as taurine, acetyl-L-carnitine, alpha lipoic acid, protein kinase C inhibitor (ruboxistaurin, aldose reductase inhibitors (fidarestat, epalrestat, ranirestat, advanced glycation end product inhibitors (benfotiamine, aspirin, aminoguanidine, the hexosamine pathway inhibitor (benfotiamine, inhibitor of poly ADP-ribose polymerase (nicotinamide, and angiotensin-converting enzyme inhibitor (trandolapril. The development of modern drugs to treat DN is a real challenge and needs intensive long-term comparative trials.

  2. Diabetic Neuropathy and Oxidative Stress: Therapeutic Perspectives

    Science.gov (United States)

    Hosseini, Asieh; Abdollahi, Mohammad

    2013-01-01

    Diabetic neuropathy (DN) is a widespread disabling disorder comprising peripheral nerves' damage. DN develops on a background of hyperglycemia and an entangled metabolic imbalance, mainly oxidative stress. The majority of related pathways like polyol, advanced glycation end products, poly-ADP-ribose polymerase, hexosamine, and protein kinase c all originated from initial oxidative stress. To date, no absolute cure for DN has been defined; although some drugs are conventionally used, much more can be found if all pathophysiological links with oxidative stress would be taken into account. In this paper, although current therapies for DN have been reviewed, we have mainly focused on the links between DN and oxidative stress and therapies on the horizon, such as inhibitors of protein kinase C, aldose reductase, and advanced glycation. With reference to oxidative stress and the related pathways, the following new drugs are under study such as taurine, acetyl-L-carnitine, alpha lipoic acid, protein kinase C inhibitor (ruboxistaurin), aldose reductase inhibitors (fidarestat, epalrestat, ranirestat), advanced glycation end product inhibitors (benfotiamine, aspirin, aminoguanidine), the hexosamine pathway inhibitor (benfotiamine), inhibitor of poly ADP-ribose polymerase (nicotinamide), and angiotensin-converting enzyme inhibitor (trandolapril). The development of modern drugs to treat DN is a real challenge and needs intensive long-term comparative trials. PMID:23738033

  3. Yeast aquaporin regulation by 4-hydroxynonenal is implicated in oxidative stress response.

    Science.gov (United States)

    Rodrigues, Claudia; Tartaro Bujak, Ivana; Mihaljević, Branka; Soveral, Graça; Cipak Gasparovic, Ana

    2017-05-01

    Reactive oxygen species, especially hydrogen peroxide (H 2 O 2 ), contribute to functional molecular impairment and cellular damage, but also are necessary in normal cellular metabolism, and in low doses play stimulatory role in cell proliferation and stress resistance. In parallel, reactive aldehydes such as 4-hydroxynonenal (HNE), are lipid peroxidation breakdown products which also contribute to regulation of numerous cellular processes. Recently, channeling of H 2 O 2 by some mammalian aquaporin isoforms has been reported and suggested to contribute to aquaporin involvement in cancer malignancies, although the mechanism by which these membrane water channels are implicated in oxidative stress is not clear. In this study, two yeast models with increased levels of membrane polyunsaturated fatty acids (PUFAs) and aquaporin AQY1 overexpression, respectively, were used to evaluate their interplay in cell's oxidative status. In particular, the aim of the study was to investigate if HNE accumulation could affect aquaporin function with an outcome in oxidative stress response. The data showed that induction of aquaporin expression by PUFAs results in increased water permeability in yeast membranes and that AQY1 activity is impaired by HNE. Moreover, AQY1 expression increases cellular sensitivity to oxidative stress by facilitating H 2 O 2 influx. On the other hand, AQY1 expression has no influence on the cellular antioxidant GSH levels and catalase activity. These results strongly suggest that aquaporins are important players in oxidative stress response and could contribute to regulation of cellular processes by regulation of H 2 O 2 influx. © 2017 IUBMB Life, 69(5):355-362, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  4. Melatonin resists oxidative stress-induced apoptosis in nucleus pulposus cells.

    Science.gov (United States)

    He, Ruijun; Cui, Min; Lin, Hui; Zhao, Lei; Wang, Jiayu; Chen, Songfeng; Shao, Zengwu

    2018-04-15

    Intervertebral disc degeneration (IVDD) is thought to be the major cause of low back pain (LBP), which is still in lack of effective etiological treatment. Oxidative stress has been demonstrated to participate in the impairment of nucleus pulposus cells (NPCs). As the most important neuroendocrine hormone in biological clock regulation, melatonin (MLT) is also featured by good antioxidant effect. In this study, we investigated the effect and mechanisms of melatonin on oxidative stress-induced damage in rat NPCs. Cytotoxicity of H 2 O 2 and protecting effect of melatonin were analyzed with Cell Counting kit-8 (CCK-8). Cell apoptosis rate was detected by Annexin V-FITC/PI staining. DCFH-DA probe was used for the reactive oxygen species (ROS) detection. The mitochondrial membrane potential (MMP) changes were analyzed with JC-1 probe. Intracellular oxidation product and reductants were measured through enzymatic reactions. Extracellular matrix (ECM) and apoptosis associated proteins were analyzed with Western blot assays. Melatonin preserved cell viability of NPCs under oxidative stress. The apoptosis rate, ROS level and malonaldehyde (MDA) declined with melatonin. MLT/H 2 O 2 group showed higher activities of GSH and SOD. The fall of MMP receded and the expression of ECM protein increased with treatment of melatonin. The mitochondrial pathway of apoptosis was inhibited by melatonin. Melatonin alleviated the oxidative stress-induced apoptosis of NPCs. Melatonin could be a promising alternative in treatment of IVDD. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Catalase therapy corrects oxidative stress-induced pathophysiology in incipient diabetic retinopathy.

    Science.gov (United States)

    Giordano, Courtney R; Roberts, Robin; Krentz, Kendra A; Bissig, David; Talreja, Deepa; Kumar, Ashok; Terlecky, Stanley R; Berkowitz, Bruce A

    2015-05-01

    Preclinical studies have highlighted retinal oxidative stress in the pathogenesis of diabetic retinopathy. We evaluated whether a treatment designed to enhance cellular catalase reduces oxidative stress in retinal cells cultured in high glucose and in diabetic mice corrects an imaging biomarker responsive to antioxidant therapy (manganese-enhanced magnetic resonance imaging [MEMRI]). Human retinal Müller and pigment epithelial cells were chronically exposed to normal or high glucose levels and treated with a cell-penetrating derivative of the peroxisomal enzyme catalase (called CAT-SKL). Hydrogen peroxide (H2O2) levels were measured using a quantitative fluorescence-based assay. For in vivo studies, streptozotocin (STZ)-induced diabetic C57Bl/6 mice were treated subcutaneously once a week for 3 to 4 months with CAT-SKL; untreated age-matched nondiabetic controls and untreated diabetic mice also were studied. MEMRI was used to analytically assess the efficacy of CAT-SKL treatment on diabetes-evoked oxidative stress-related pathophysiology in vivo. Similar analyses were performed with difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase. After catalase transduction, high glucose-induced peroxide production was significantly lowered in both human retinal cell lines. In diabetic mice in vivo, subnormal intraretinal uptake of manganese was significantly improved by catalase supplementation. In addition, in the peroxisome-rich liver of treated mice catalase enzyme activity increased and oxidative damage (as measured by lipid peroxidation) declined. On the other hand, DFMO was largely without effect in these in vitro or in vivo assays. This proof-of-concept study raises the possibility that augmentation of catalase is a therapy for treating the retinal oxidative stress associated with diabetic retinopathy.

  6. Bursopentin (BP5 protects dendritic cells from lipopolysaccharide-induced oxidative stress for immunosuppression.

    Directory of Open Access Journals (Sweden)

    Tao Qin

    Full Text Available Dendritic cells (DCs play a vital role in the regulation of immune-mediated inflammatory diseases. Thus, DCs have been regarded as a major target for the development of immunomodulators. However, oxidative stress could disturb inflammatory regulation in DCs. Here, we examined the effect of bursopentine (BP5, a novel pentapeptide isolated from chicken bursa of fabricius, on the protection of DCs against oxidative stress for immunosuppression. BP5 showed potent protective effects against the lipopolysaccharide (LPS-induced oxidative stress in DCs, including nitric oxide, reactive oxygen species and lipid peroxidation. Furthermore, BP5 elevated the level of cellular reductive status through increasing the reduced glutathione (GSH and the GSH/GSSG ratio. Concomitant with these, the activities of several antioxidative redox enzymes, including glutathione peroxidase (GPx, catalase (CAT and superoxide dismutase (SOD, were obviously enhanced. BP5 also suppressed submucosal DC maturation in the LPS-stimulated intestinal epithelial cells (ECs/DCs coculture system. Finally, we found that heme oxygenase 1 (HO-1 was remarkably upregulated by BP5 in the LPS-induced DCs, and played an important role in the suppression of oxidative stress and DC maturation. These results suggested that BP5 could protect the LPS-activated DCs against oxidative stress and have potential applications in DC-related inflammatory responses.

  7. Salinity-dependent nickel accumulation and oxidative stress responses in the euryhaline killifish (Fundulus heteroclitus).

    Science.gov (United States)

    Blewett, Tamzin A; Wood, Chris M

    2015-02-01

    The mechanisms of nickel (Ni) toxicity in marine fish remain unclear, although evidence from freshwater (FW) fish suggests that Ni can act as a pro-oxidant. This study investigated the oxidative stress effects of Ni on the euryhaline killifish (Fundulus heteroclitus) as a function of salinity. Killifish were exposed to sublethal levels (5, 10, and 20 mg L(-1)) of waterborne Ni for 96 h in FW (0 ppt) and 100 % saltwater (SW) (35 ppt). In general, SW was protective against both Ni accumulation and indicators of oxidative stress [protein carbonyl formation and catalase (CAT) activity]. This effect was most pronounced at the highest Ni exposure level. For example, FW intestine showed increased Ni accumulation relative to SW intestine at 20 mg Ni L(-1), and this was accompanied by significantly greater protein carbonylation and CAT activity in this tissue. There were exceptions, however, in that although liver of FW killifish at the highest exposure concentration showed greater Ni accumulation relative to SW liver, levels of CAT activity were greatly decreased. This may relate to tissue- and salinity-specific differences in oxidative stress responses. The results of the present study suggest (1) that there was Ni-induced oxidative stress in killifish, (2) that the effects of salinity depend on differences in the physiology of the fish in FW versus SW, and (3) that increased levels of cations (sodium, calcium, potassium, and magnesium) and anions (SO4 and Cl) in SW are likely protective against Ni accumulation in tissues exposed to the aquatic environment.

  8. Enhanced oxidative stress in the jasmonic acid-deficient tomato mutant def-1 exposed to NaCl stress.

    Science.gov (United States)

    Abouelsaad, Ibrahim; Renault, Sylvie

    2018-04-21

    Jasmonic acid (JA) has been mostly studied in responses to biotic stresses, such as herbivore attack and pathogenic infection. More recently, the involvement of JA in abiotic stresses including salinity was highlighted; yet, its role in salt stress remained unclear. In the current study, we compared the physiological and biochemical responses of wild-type (WT) tomato (Solanum lycopersicum) cv Castlemart and its JA-deficient mutant defenseless-1 (def-1) under salt stress to investigate the role of JA. Plant growth, photosynthetic pigment content, ion accumulation, oxidative stress-related parameters, proline accumulation and total phenolic compounds, in addition to both enzymatic and non-enzymatic antioxidant activities, were measured in both genotypes after 14 days of 100 mM NaCl treatment. Although we observed in both genotypes similar growth pattern and sodium, calcium and potassium levels in leaves under salt stress, def-1 plants exhibited a more pronounced decrease of nitrogen content in both leaves and roots and a slightly higher level of sodium in roots compared to WT plants. In addition, def-1 plants exposed to salt stress showed reactive oxygen species (ROS)-associated injury phenotypes. These oxidative stress symptoms in def-1 were associated with lower activity of both enzymatic antioxidants and non-enzymatic antioxidants. Furthermore, the levels of the non-enzymatic ROS scavengers proline and total phenolic compounds increased in both genotypes exposed to salt stress, with a higher amount of proline in the WT plants. Overall the results of this study suggest that endogenous JA mainly enhanced tomato salt tolerance by maintaining ROS homeostasis. Copyright © 2018 Elsevier GmbH. All rights reserved.

  9. The effects of oxidative stress in urinary tract infection during pregnancy.

    Science.gov (United States)

    Ciragil, Pinar; Kurutas, Ergul Belge; Gul, Mustafa; Kilinc, Metin; Aral, Murat; Guven, Alanur

    2005-10-24

    The purpose of this study was to determine the effect of urinary tract infection (UTI) on antioxidant systems and lipid peroxidation (LPO) levels during pregnancy. We also investigated if these antioxidant systems and LPO levels differed in each trimester. One hundred forty-three nonpregnant women, as a control group, and 77 pregnant women were included in the study. Urine cultures were performed according to standard techniques. Catalase (CAT), superoxide dismutase (SOD), and LPO levels were measured using a spectrophotometer. UTI was observed in 14 of 77 pregnant women and the isolated microorganisms were Escherichia coli, Klebsiella pneumoniae, and Staphylococcus saprophyticus. CAT, SOD, and LPO levels were increased in pregnant women compared with nonpregnant women (Ppregnancy without UTI. However, CAT and SOD activities were decreased, LPO levels were increased from the first trimester to the third trimester in pregnancy with UTI (PPregnancy causes oxidative stress and also UTI during pregnancy may aggravate oxidative stress.

  10. Etiologies of sperm oxidative stress

    Directory of Open Access Journals (Sweden)

    Parvin Sabeti

    2016-04-01

    Full Text Available Sperm is particularly susceptible to reactive oxygen species (ROS during critical phases of spermiogenesis. However, the level of seminal ROS is restricted by seminal antioxidants which have beneficial effects on sperm parameters and developmental potentials. Mitochondria and sperm plasma membrane are two major sites of ROS generation in sperm cells. Besides, leukocytes including polymer phonuclear (PMN leukocytes and macrophages produce broad category of molecules including oxygen free radicals, non-radical species and reactive nitrogen species. Physiological role of ROS increase the intracellular cAMP which then activate protein kinase in male reproductive system. This indicates that spermatozoa need small amounts of ROS to acquire the ability of nuclear maturation regulation and condensation to fertilize the oocyte. There is a long list of intrinsic and extrinsic factors which can induce oxidative stress to interact with lipids, proteins and DNA molecules. As a result, we have lipid peroxidation, DNA fragmentation, axonemal damage, denaturation of the enzymes, over generation of superoxide in the mitochondria, lower antioxidant activity and finally abnormal spermatogenesis. If oxidative stress is considered as one of the main cause of DNA damage in the germ cells, then there should be good reason for antioxidant therapy in these conditions

  11. Non-invasive Imaging based Detection and Mapping of Brain Oxidative Stress and its Correlation with Cognitive Functions

    Science.gov (United States)

    2017-05-14

    the impact of oxidative stress on brain function, but also enable development of reliable screening tools for cognitive performance of individuals in...of Brain Oxidative Stress and its Correlation with Cognitive Functions Date 04/20/2017 PI information: Dr. Pravat K. Mandal,Ph.D Professor...relationship between the brain oxidative status and stress at a cellular, physiological as well as a psychological level. These stressors, in turn, have

  12. Oxidative Stress in Patients with Drug Resistant Partial Complex Seizure

    Directory of Open Access Journals (Sweden)

    Lourdes Lorigados Pedre

    2018-06-01

    Full Text Available Oxidative stress (OS has been implicated as a pathophysiological mechanism of drug-resistant epilepsy, but little is known about the relationship between OS markers and clinical parameters, such as the number of drugs, age onset of seizure and frequency of seizures per month. The current study’s aim was to evaluate several oxidative stress markers and antioxidants in 18 drug-resistant partial complex seizure (DRPCS patients compared to a control group (age and sex matched, and the results were related to clinical variables. We examined malondialdehyde (MDA, advanced oxidation protein products (AOPP, advanced glycation end products (AGEs, nitric oxide (NO, uric acid, superoxide dismutase (SOD, glutathione, vitamin C, 4-hydroxy-2-nonenal (4-HNE and nitrotyrosine (3-NT. All markers except 4-HNE and 3-NT were studied by spectrophotometry. The expressions of 4-HNE and 3-NT were evaluated by Western blot analysis. MDA levels in patients were significantly increased (p ≤ 0.0001 while AOPP levels were similar to the control group. AGEs, NO and uric acid concentrations were significantly decreased (p ≤ 0.004, p ≤ 0.005, p ≤ 0.0001, respectively. Expressions of 3-NT and 4-HNE were increased (p ≤ 0.005 similarly to SOD activity (p = 0.0001, whereas vitamin C was considerably diminished (p = 0.0001. Glutathione levels were similar to the control group. There was a positive correlation between NO and MDA with the number of drugs. The expression of 3-NT was positively related with the frequency of seizures per month. There was a negative relationship between MDA and age at onset of seizures, as well as vitamin C with seizure frequency/month. We detected an imbalance in the redox state in patients with DRCPS, supporting oxidative stress as a relevant mechanism in this pathology. Thus, it is apparent that some oxidant and antioxidant parameters are closely linked with clinical variables.

  13. Transcriptome Analysis of Sunflower Genotypes with Contrasting Oxidative Stress Tolerance Reveals Individual- and Combined- Biotic and Abiotic Stress Tolerance Mechanisms.

    Directory of Open Access Journals (Sweden)

    Vemanna S Ramu

    Full Text Available In nature plants are often simultaneously challenged by different biotic and abiotic stresses. Although the mechanisms underlying plant responses against single stress have been studied considerably, plant tolerance mechanisms under combined stress is not understood. Also, the mechanism used to combat independently and sequentially occurring many number of biotic and abiotic stresses has also not systematically studied. From this context, in this study, we attempted to explore the shared response of sunflower plants to many independent stresses by using meta-analysis of publically available transcriptome data and transcript profiling by quantitative PCR. Further, we have also analyzed the possible role of the genes so identified in contributing to combined stress tolerance. Meta-analysis of transcriptomic data from many abiotic and biotic stresses indicated the common representation of oxidative stress responsive genes. Further, menadione-mediated oxidative stress in sunflower seedlings showed similar pattern of changes in the oxidative stress related genes. Based on this a large scale screening of 55 sunflower genotypes was performed under menadione stress and those contrasting in oxidative stress tolerance were identified. Further to confirm the role of genes identified in individual and combined stress tolerance the contrasting genotypes were individually and simultaneously challenged with few abiotic and biotic stresses. The tolerant hybrid showed reduced levels of stress damage both under combined stress and few independent stresses. Transcript profiling of the genes identified from meta-analysis in the tolerant hybrid also indicated that the selected genes were up-regulated under individual and combined stresses. Our results indicate that menadione-based screening can identify genotypes not only tolerant to multiple number of individual biotic and abiotic stresses, but also the combined stresses.

  14. The Relations Between Immunity, Oxidative Stress and Inflammation Markers, in Childhood Obesity.

    Science.gov (United States)

    Laura Anca, Popescu; Bogdana, Virgolici; Olivia, Timnea; Horia, Virgolici; Dumitru, Oraseanu; Leon, Zagrean

    2014-10-01

    Oxidative stress, inflammation and insulin resistance are the principal culprits in childhood obesity. Immune modifications are also important in the development of the obesity complications.The aim of this study is to find the relations for some immunity parameters with markers for oxidative stress and inflammation. Sixty obese children (10-16 years old) and thirty age and sex matched lean children were involved. The activities for erythrocyte superoxid dismutase (SOD), for erythrocyte glutathione peroxidase (GPx) and serum thioredoxin level were measured by ELISA, as oxidative stress markers. Circulating immune complexes (CIC), complement fractions C3, C4 and the self-antibodies, antismooth muscle antibodies (ASMA), antiliver-kidney microsome antibodies (LKM1) were measured by ELISA methods. Ceruloplasmin, haptoglobin and C reactive protein (CRP) were measured as inflammatory markers by immunoturbidimetric methods. ceruloplasmin (pLKM1 and ASMA and GPx activity were not modified between groups. Positive correlations (for pLKM1 (r=0.37), GPx activity and ASMA (r=0.27), haptoglobin and C3 (r=0.33), ceruloplasmin and CIC (r=0.41), CRP and C3 (p<0.27) and negative correlations were calculated for C4 both with GPx activity (r= -0.28) and with thioredoxin level (r= -0.27). In the obese children versus the lean ones, higher levels for C3 (p<0.001), C4(p<0.001), CIC (p<0.05), In conclusion, this study demonstrates that immune modifications, inflammation and oxidative stress are related and they act in cluster in childhood obesity. Copyright © 2014. Published by Elsevier Inc.

  15. Changes in angiotensin AT1 receptor mRNA levels in the rat brain after immobilization stress and inhibition of central nitric oxide synthase.

    Science.gov (United States)

    Kiss, A; Jurkovicova, D; Jezova, D; Krizanova, O

    2001-06-01

    To study functional interactions between angiotensin II AT1 receptors and nitric oxide (NO) activity in different brain areas in rats exposed to immobilization stress. Central inhibition of nitric oxide synthase (NOS) was provided by intracerebroventricular (i.c.v.) administration of (N-omega-nitro-L-arginine-methylester) L-NAME and analysis of AT1 receptor mRNA was performed using semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) technique. The immobilization in prone position lasted 2 hrs and the rats were sacrificed 24 hr later. The hypothalamus, hippocampus, thalamus, and cortex were isolated from fresh brains. In the cortex, gene expression of AT1 receptors was unaffected either by L-NAME treatment, or by a single exposure to immobilization stress for 2 hours followed by 24 hours of rest. In the hippocampus, the repeated treatment with L-NAME increased mRNA levels of AT1 receptors approximately 9-times compared to those in the control (untreated) group. Immobilization also increased AT1 receptor mRNA levels in the hippocampus which was similar to that induced by the L-NAME. The increase of AT1 receptor mRNA levels in the hippocampus of immobilized rats was not further altered when the animals were pretreated with L-NAME. In control rats, exposure to immobilization resulted in a significant rise in mRNA levels coding for AT1 receptors in the hypothalamus, but not in the thalamus. L-NAME treatment showed a tendency of increase in AT1 receptor mRNA levels in the hypothalamus. Moreover, when animals treated with L-NAME were subjected to immobilization, a further increase in AT1 receptor mRNA levels was observed in the hypothalamus in comparison with corresponding controls. The present data indicate that a single immobilization stress results in increased gene expression of AT1 receptors in the hypothalamus and hippocampus. The rise in AT1 mRNA levels in the same brain structures after repeated treatment with L-NAME allow to suggest an

  16. Natural resistance to ascorbic acid induced oxidative stress is mainly mediated by catalase activity in human cancer cells and catalase-silencing sensitizes to oxidative stress

    Directory of Open Access Journals (Sweden)

    Klingelhoeffer Christoph

    2012-05-01

    Full Text Available Abstract Background Ascorbic acid demonstrates a cytotoxic effect by generating hydrogen peroxide, a reactive oxygen species (ROS involved in oxidative cell stress. A panel of eleven human cancer cell lines, glioblastoma and carcinoma, were exposed to serial dilutions of ascorbic acid (5-100 mmol/L. The purpose of this study was to analyse the impact of catalase, an important hydrogen peroxide-detoxifying enzyme, on the resistance of cancer cells to ascorbic acid mediated oxidative stress. Methods Effective concentration (EC50 values, which indicate the concentration of ascorbic acid that reduced the number of viable cells by 50%, were detected with the crystal violet assay. The level of intracellular catalase protein and enzyme activity was determined. Expression of catalase was silenced by catalase-specific short hairpin RNA (sh-RNA in BT-20 breast carcinoma cells. Oxidative cell stress induced apoptosis was measured by a caspase luminescent assay. Results The tested human cancer cell lines demonstrated obvious differences in their resistance to ascorbic acid mediated oxidative cell stress. Forty-five percent of the cell lines had an EC50 > 20 mmol/L and fifty-five percent had an EC50 50 of 2.6–5.5 mmol/L, glioblastoma cells were the most susceptible cancer cell lines analysed in this study. A correlation between catalase activity and the susceptibility to ascorbic acid was observed. To study the possible protective role of catalase on the resistance of cancer cells to oxidative cell stress, the expression of catalase in the breast carcinoma cell line BT-20, which cells were highly resistant to the exposure to ascorbic acid (EC50: 94,9 mmol/L, was silenced with specific sh-RNA. The effect was that catalase-silenced BT-20 cells (BT-20 KD-CAT became more susceptible to high concentrations of ascorbic acid (50 and 100 mmol/L. Conclusions Fifty-five percent of the human cancer cell lines tested were unable to protect themselves

  17. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    International Nuclear Information System (INIS)

    Shin, Jung Ar; Chung, Jin Sil; Cho, Sang-Ho; Kim, Hyung Jung; Yoo, Young Do

    2013-01-01

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain. Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H 2 O 2 ) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H 2 O 2 treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells

  18. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jung Ar [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Chung, Jin Sil [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of); Cho, Sang-Ho [Department of Pathology, Pochon CHA University, College of Medicine, Gyeonggi-do (Korea, Republic of); Kim, Hyung Jung, E-mail: khj57@yuhs.ac.kr [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Yoo, Young Do, E-mail: ydy1130@korea.ac.kr [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of)

    2013-09-20

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain. Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H{sub 2}O{sub 2}) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H{sub 2}O{sub 2} treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells.

  19. Cadmium induced oxidative stress in Dunaliella salina | Moradshahi ...

    African Journals Online (AJOL)

    The unicellular green algae Dunaliella salina contains various antioxidants which protect the cell from oxidative damage due to environmental stresses such as heavy metal stress. In the present study, the response of D. salina at the stationary growth phase to oxidative stress generated by cadmium chloride was ...

  20. Oxidative stress, aging, and diseases

    Directory of Open Access Journals (Sweden)

    Liguori I

    2018-04-01

    Full Text Available Ilaria Liguori,1 Gennaro Russo,1 Francesco Curcio,1 Giulia Bulli,1 Luisa Aran,1 David Della-Morte,2,3 Gaetano Gargiulo,4 Gianluca Testa,1,5 Francesco Cacciatore,1,6 Domenico Bonaduce,1 Pasquale Abete1 1Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy; 2Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; 3San Raffaele Roma Open University, Rome, Italy; 4Division of Internal Medicine, AOU San Giovanni di Dio e Ruggi di Aragona, Salerno, Italy; 5Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy; 6Azienda Ospedaliera dei Colli, Monaldi Hospital, Heart Transplantation Unit, Naples, Italy Abstract: Reactive oxygen and nitrogen species (RONS are produced by several endogenous and exogenous processes, and their negative effects are neutralized by antioxidant defenses. Oxidative stress occurs from the imbalance between RONS production and these antioxidant defenses. Aging is a process characterized by the progressive loss of tissue and organ function. The oxidative stress theory of aging is based on the hypothesis that age-associated functional losses are due to the accumulation of RONS-induced damages. At the same time, oxidative stress is involved in several age-related conditions (ie, cardiovascular diseases [CVDs], chronic obstructive pulmonary disease, chronic kidney disease, neurodegenerative diseases, and cancer, including sarcopenia and frailty. Different types of oxidative stress biomarkers have been identified and may provide important information about the efficacy of the treatment, guiding the selection of the most effective drugs/dose regimens for patients and, if particularly relevant from a pathophysiological point of view, acting on a specific therapeutic target. Given the important role of oxidative stress in the pathogenesis of many clinical conditions and aging, antioxidant therapy could positively affect the natural history of

  1. Implantation of Neural Probes in the Brain Elicits Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Evon S. Ereifej

    2018-02-01

    Full Text Available Clinical implantation of intracortical microelectrodes has been hindered, at least in part, by the perpetual inflammatory response occurring after device implantation. The neuroinflammatory response observed after device implantation has been correlated to oxidative stress that occurs due to neurological injury and disease. However, there has yet to be a definitive link of oxidative stress to intracortical microelectrode implantation. Thus, the objective of this study is to give direct evidence of oxidative stress following intracortical microelectrode implantation. This study also aims to identify potential molecular targets to attenuate oxidative stress observed postimplantation. Here, we implanted adult rats with silicon non-functional microelectrode probes for 4 weeks and compared the oxidative stress response to no surgery controls through postmortem gene expression analysis and qualitative histological observation of oxidative stress markers. Gene expression analysis results at 4 weeks postimplantation indicated that EH domain-containing 2, prion protein gene (Prnp, and Stearoyl-Coenzyme A desaturase 1 (Scd1 were all significantly higher for animals implanted with intracortical microelectrode probes compared to no surgery control animals. To the contrary, NADPH oxidase activator 1 (Noxa1 relative gene expression was significantly lower for implanted animals compared to no surgery control animals. Histological observation of oxidative stress showed an increased expression of oxidized proteins, lipids, and nucleic acids concentrated around the implant site. Collectively, our results reveal there is a presence of oxidative stress following intracortical microelectrode implantation compared to no surgery controls. Further investigation targeting these specific oxidative stress linked genes could be beneficial to understanding potential mechanisms and downstream therapeutics that can be utilized to reduce oxidative stress-mediated damage

  2. Effect of Zinc and Melatonin on Oxidative Stress and Serum Inhibin-B Levels in a Rat Testicular Torsion-Detorsion Model.

    Science.gov (United States)

    Semercioz, Atilla; Baltaci, Abdulkerim Kasim; Mogulkoc, Rasim; Avunduk, Mustafa Cihat

    2017-12-01

    The present study was aimed to examine the effects of 3-week zinc and melatonin administration on testicular tissue injury and serum Inhibin-B levels caused by unilateral testicular torsion-detorsion in rats. The study was performed on 60 Wistar Albino-type adult male rats. The animals were allocated to 6 groups in equal numbers. 1. Control; 2. Sham; 3. Ischemia-reperfusion; 4. Zinc + ischemia-reperfusion; 5. Melatonin + ischemia-reperfusion; 6. Zinc + melatonin + ischemia-reperfusion. Zinc and melatonin were administered before ischemia-reperfusion at doses of 5 and 3 mg/kg respectively, by intraperitoneal route for a period of 3 weeks. Testicular torsion-detorsion procedures consisted of ischemia for 1 h and then reperfusion for another hour of the left testis. Blood and testicular tissue samples were collected to analyze erythrocyte and tissue GSH and plasma and tissue MDA, Inhibin-B levels. The highest erythrocyte and testis GSH values were found in zinc, melatonin, and zinc + melatonin groups (p zinc-, melatonin-, and melatonin + zinc-supplemented groups have higher inhibin-B and spermatogenetic activity (p zinc, melatonin, and melatonin + zinc administration partially restores the increased oxidative stress, as well as the reduced inhibin-B and spermatogenic activity levels in testes ischemia-reperfusion in rats. Suppressed inhibin-B levels in the testicular tissue may be a marker of oxidative stress.

  3. [Serum markers of oxidative stress in infertile women with endometriosis].

    Science.gov (United States)

    Andrade, Aline Zyman de; Rodrigues, Jhenifer Kliemchen; Dib, Luciana Azôr; Romão, Gustavo Salata; Ferriani, Rui Alberto; Jordão Junior, Alceu Afonso; Navarro, Paula Andrea de Albuquerque Salles

    2010-06-01

    to compare serum markers of oxidative stress between infertile patients with and without endometriosis and to assess the association of these markers with disease staging. this was a prospective study conducted on 112 consecutive infertile, non-obese patients younger than 39 years, divided into two groups: Endometriosis (n=48, 26 with minimal and mild endometriosis - Stage I/II, and 22 with moderate and severe endometriosis - Stage III/IV) and Control (n=64, with tubal and/or male factor infertility). Blood samples were collected during the early follicular phase of the menstrual cycle for the analysis of serum malondialdehyde, glutathione and total hydroxyperoxide levels by spectrophotometry and of vitamin E by high performance liquid chromatography. The results were compared between the endometriosis and control groups, stage I/II endometriosis and control, stage III/IV endometriosis and control, and between the two endometriosis subgroups. The level of significance was set at 5% (p Control Group (8.0 ± 2 µMol/g protein) and among patients with stage III/IV disease (9.7 ± 2.3 µMol/g protein) compared to patients with stage I/II disease (8.2 ± 1.0 µMol/g protein). No significant differences in serum malondialdehyde levels were observed between groups. we demonstrated a positive association between infertility related to endometriosis, advanced disease stage and increased serum hydroxyperoxide levels, suggesting an increased production of reactive species in women with endometriosis. These data, taken together with the reduction of serum vitamin E and glutathione levels, suggest the occurrence of systemic oxidative stress in women with infertility associated with endometriosis. The reproductive and metabolic implications of oxidative stress should be assessed in future studies.

  4. Slow Replication Fork Velocity of Homologous Recombination-Defective Cells Results from Endogenous Oxidative Stress

    Science.gov (United States)

    Magdalou, Indiana; Machon, Christelle; Dardillac, Elodie; Técher, Hervé; Guitton, Jérôme; Debatisse, Michelle; Lopez, Bernard S.

    2016-01-01

    Replications forks are routinely hindered by different endogenous stresses. Because homologous recombination plays a pivotal role in the reactivation of arrested replication forks, defects in homologous recombination reveal the initial endogenous stress(es). Homologous recombination-defective cells consistently exhibit a spontaneously reduced replication speed, leading to mitotic extra centrosomes. Here, we identify oxidative stress as a major endogenous source of replication speed deceleration in homologous recombination-defective cells. The treatment of homologous recombination-defective cells with the antioxidant N-acetyl-cysteine or the maintenance of the cells at low O2 levels (3%) rescues both the replication fork speed, as monitored by single-molecule analysis (molecular combing), and the associated mitotic extra centrosome frequency. Reciprocally, the exposure of wild-type cells to H2O2 reduces the replication fork speed and generates mitotic extra centrosomes. Supplying deoxynucleotide precursors to H2O2-exposed cells rescued the replication speed. Remarkably, treatment with N-acetyl-cysteine strongly expanded the nucleotide pool, accounting for the replication speed rescue. Remarkably, homologous recombination-defective cells exhibit a high level of endogenous reactive oxygen species. Consistently, homologous recombination-defective cells accumulate spontaneous γH2AX or XRCC1 foci that are abolished by treatment with N-acetyl-cysteine or maintenance at 3% O2. Finally, oxidative stress stimulated homologous recombination, which is suppressed by supplying deoxynucleotide precursors. Therefore, the cellular redox status strongly impacts genome duplication and transmission. Oxidative stress should generate replication stress through different mechanisms, including DNA damage and nucleotide pool imbalance. These data highlight the intricacy of endogenous replication and oxidative stresses, which are both evoked during tumorigenesis and senescence initiation

  5. Slow Replication Fork Velocity of Homologous Recombination-Defective Cells Results from Endogenous Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Therese Wilhelm

    2016-05-01

    Full Text Available Replications forks are routinely hindered by different endogenous stresses. Because homologous recombination plays a pivotal role in the reactivation of arrested replication forks, defects in homologous recombination reveal the initial endogenous stress(es. Homologous recombination-defective cells consistently exhibit a spontaneously reduced replication speed, leading to mitotic extra centrosomes. Here, we identify oxidative stress as a major endogenous source of replication speed deceleration in homologous recombination-defective cells. The treatment of homologous recombination-defective cells with the antioxidant N-acetyl-cysteine or the maintenance of the cells at low O2 levels (3% rescues both the replication fork speed, as monitored by single-molecule analysis (molecular combing, and the associated mitotic extra centrosome frequency. Reciprocally, the exposure of wild-type cells to H2O2 reduces the replication fork speed and generates mitotic extra centrosomes. Supplying deoxynucleotide precursors to H2O2-exposed cells rescued the replication speed. Remarkably, treatment with N-acetyl-cysteine strongly expanded the nucleotide pool, accounting for the replication speed rescue. Remarkably, homologous recombination-defective cells exhibit a high level of endogenous reactive oxygen species. Consistently, homologous recombination-defective cells accumulate spontaneous γH2AX or XRCC1 foci that are abolished by treatment with N-acetyl-cysteine or maintenance at 3% O2. Finally, oxidative stress stimulated homologous recombination, which is suppressed by supplying deoxynucleotide precursors. Therefore, the cellular redox status strongly impacts genome duplication and transmission. Oxidative stress should generate replication stress through different mechanisms, including DNA damage and nucleotide pool imbalance. These data highlight the intricacy of endogenous replication and oxidative stresses, which are both evoked during tumorigenesis and

  6. Slow Replication Fork Velocity of Homologous Recombination-Defective Cells Results from Endogenous Oxidative Stress.

    Science.gov (United States)

    Wilhelm, Therese; Ragu, Sandrine; Magdalou, Indiana; Machon, Christelle; Dardillac, Elodie; Técher, Hervé; Guitton, Jérôme; Debatisse, Michelle; Lopez, Bernard S

    2016-05-01

    Replications forks are routinely hindered by different endogenous stresses. Because homologous recombination plays a pivotal role in the reactivation of arrested replication forks, defects in homologous recombination reveal the initial endogenous stress(es). Homologous recombination-defective cells consistently exhibit a spontaneously reduced replication speed, leading to mitotic extra centrosomes. Here, we identify oxidative stress as a major endogenous source of replication speed deceleration in homologous recombination-defective cells. The treatment of homologous recombination-defective cells with the antioxidant N-acetyl-cysteine or the maintenance of the cells at low O2 levels (3%) rescues both the replication fork speed, as monitored by single-molecule analysis (molecular combing), and the associated mitotic extra centrosome frequency. Reciprocally, the exposure of wild-type cells to H2O2 reduces the replication fork speed and generates mitotic extra centrosomes. Supplying deoxynucleotide precursors to H2O2-exposed cells rescued the replication speed. Remarkably, treatment with N-acetyl-cysteine strongly expanded the nucleotide pool, accounting for the replication speed rescue. Remarkably, homologous recombination-defective cells exhibit a high level of endogenous reactive oxygen species. Consistently, homologous recombination-defective cells accumulate spontaneous γH2AX or XRCC1 foci that are abolished by treatment with N-acetyl-cysteine or maintenance at 3% O2. Finally, oxidative stress stimulated homologous recombination, which is suppressed by supplying deoxynucleotide precursors. Therefore, the cellular redox status strongly impacts genome duplication and transmission. Oxidative stress should generate replication stress through different mechanisms, including DNA damage and nucleotide pool imbalance. These data highlight the intricacy of endogenous replication and oxidative stresses, which are both evoked during tumorigenesis and senescence initiation

  7. Markers of Oxidative stress in Smoker and Nonsmoker Athletes

    International Nuclear Information System (INIS)

    Wahba, O.; Shalby, H.; Ashry, Kh.

    2009-01-01

    To Investigate the effect of smoking on oxidative stress in male athletes. Plasma levels of nitric oxide (NO), apoptosis % in circulating lymphocytes and inducible nitric oxide synthase mRNA (iNOS mRNA) expression in neutrophils, erythrocytes antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) were measured in the blood of 40 non smoker and 25 smoker athletes compared to age and socioeconomic class matching 20 smoker and 20 non-smoker non-athlete controls. Plasma levels NO, apoptosis % in circulating lymphocytes and inducible iNOS mRNA expression in neutrophils were significantly higher among athletes compared to non athletes and exhibited the highest levels in athlete smokers followed by control smokers. Concurrently, erythrocytes SOD was significantly higher among athletes compared to non athletes and exhibited highest levels in athlete smokers followed by control smokers. Conclusion: The results of this work demonstrate the impact of smoking on the health of athletes

  8. Catalase expression impairs oxidative stress-mediated signalling in Trypanosoma cruzi.

    Science.gov (United States)

    Freire, Anna Cláudia Guimarães; Alves, Ceres Luciana; Goes, Grazielle Ribeiro; Resende, Bruno Carvalho; Moretti, Nilmar Silvio; Nunes, Vinícius Santana; Aguiar, Pedro Henrique Nascimento; Tahara, Erich Birelli; Franco, Glória Regina; Macedo, Andréa Mara; Pena, Sérgio Danilo Junho; Gadelha, Fernanda Ramos; Guarneri, Alessandra Aparecida; Schenkman, Sergio; Vieira, Leda Quercia; Machado, Carlos Renato

    2017-09-01

    Trypanosoma cruzi is exposed to oxidative stresses during its life cycle, and amongst the strategies employed by this parasite to deal with these situations sits a peculiar trypanothione-dependent antioxidant system. Remarkably, T. cruzi's antioxidant repertoire does not include catalase. In an attempt to shed light on what are the reasons by which this parasite lacks this enzyme, a T. cruzi cell line stably expressing catalase showed an increased resistance to hydrogen peroxide (H2O2) when compared with wild-type cells. Interestingly, preconditioning carried out with low concentrations of H2O2 led untransfected parasites to be as much resistant to this oxidant as cells expressing catalase, but did not induce the same level of increased resistance in the latter ones. Also, presence of catalase decreased trypanothione reductase and increased superoxide dismutase levels in T. cruzi, resulting in higher levels of residual H2O2 after challenge with this oxidant. Although expression of catalase contributed to elevated proliferation rates of T. cruzi in Rhodnius prolixus, it failed to induce a significant increase of parasite virulence in mice. Altogether, these results indicate that the absence of a gene encoding catalase in T. cruzi has played an important role in allowing this parasite to develop a shrill capacity to sense and overcome oxidative stress.

  9. Effects of Photobiomodulation Therapy on Oxidative Stress in Muscle Injury Animal Models: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Solange Almeida dos Santos

    2017-01-01

    Full Text Available This systematic review was performed to identify the role of photobiomodulation therapy on experimental muscle injury models linked to induce oxidative stress. EMBASE, PubMed, and CINAHL were searched for studies published from January 2006 to January 2016 in the areas of laser and oxidative stress. Any animal model using photobiomodulation therapy to modulate oxidative stress was included in analysis. Eight studies were selected from 68 original articles targeted on laser irradiation and oxidative stress. Articles were critically assessed by two independent raters with a structured tool for rating the research quality. Although the small number of studies limits conclusions, the current literature indicates that photobiomodulation therapy can be an effective short-term approach to reduce oxidative stress markers (e.g., thiobarbituric acid-reactive and to increase antioxidant substances (e.g., catalase, glutathione peroxidase, and superoxide dismutase. However, there is a nonuniformity in the terminology used to describe the parameters and dose for low-level laser treatment.

  10. Heavy metals induce oxidative stress and trigger oxidative stress-mediated heat shock protein (hsp) modulation in the intertidal copepod Tigriopus japonicus.

    Science.gov (United States)

    Kim, Bo-Mi; Rhee, Jae-Sung; Jeong, Chang-Bum; Seo, Jung Soo; Park, Gyung Soo; Lee, Young-Mi; Lee, Jae-Seong

    2014-11-01

    Heat shock proteins (hsps) are induced by a wide range of environmental stressors including heavy metals in aquatic organisms. However, the effect of heavy metals on zooplankton at the molecular level remains still unclear. In this study, we measured the intracellular reactive oxygen species (ROS) level and the antioxidant enzyme activities for 96 h after exposure to five heavy metals: arsenic (As), cadmium (Cd), copper (Cu), silver (Ag), and zinc (Zn) in the intertidal copepod Tigriopus japonicus. Activities of the antioxidant enzymes were highly elevated in metal-exposed copepods, indicating that heavy metals can induce oxidative stress by generating ROS, and stimulate the involvement of antioxidant enzymes as cellular defense mechanisms. Subsequently, transcriptional changes in hsp gene families were further investigated in the metal-exposed groups for 96 h. The ROS level and glutathione (GSH) content were significantly increased in Ag-, As-, and Cu-exposed copepods, while they were only slightly elevated in Cd- and Zn-exposed groups. Based on the numbers of significantly modulated hsp genes and their expression levels for 96 h, we measured the effect of heavy metals to stress genes of T. japonicus in the following order: Cu > Zn > Ag > As > Cd, implying that Cu acts as a stronger oxidative stress inducer than other heavy metals. Of them, the expression of hsp20 and hsp70 genes was substantially modulated by exposure to heavy metals, indicating that these genes would provide a sensitive molecular biomarker for aquatic monitoring of heavy metal pollution. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Quantitative measurements of oxidative stress in mouse skin induced by X-ray irradiation

    International Nuclear Information System (INIS)

    Chi, Cuiping; Tanaka, Ryoko; Okuda, Yohei; Ikota, Nobuo; Ozawa, Toshihiko; Anzai, Kazunori; Yamamoto, Haruhiko; Urano, Shiro

    2005-01-01

    To find efficient methods to evaluate oxidative stress in mouse skin caused by X-ray irradiation, several markers and methodologies were examined. Hairless mice were irradiated with 50 Gy X-rays and skin homogenates or skin strips were prepared. Lipid peroxidation was measured using the skin homogenate as the level of thiobarbituric acid reactive substances. The level of lipid peroxidation increased with time after irradiation and was twice that of the control at 78 h. Electron spin resonance (ESR) spectra of skin strips showed a clear signal for the ascorbyl radical, which increased with time after irradiation in a manner similar to that of lipid peroxidation. To measure levels of glutathione (GSH) and its oxidized forms (GSSG) simultaneously, two high performance liquid chromatography (HPLC) methods, sample derivatization with 1-fluoro-2,4-dinitrobenzene and detection with a UV detector (method A) and no derivatization and detection with an electrochemical detector (method B), were compared and the latter was found to be better. No significant change was observed within 24 h after irradiation in the levels of GSH and GSSG measured by method B. The GSH/GSSG ratio may be a less sensitive parameter for the evaluation of acute oxidative stress caused by X-ray irradiation in the skin. Monitoring the ascorbyl radical seems to be a good way to evaluate oxidative stress in skin in vivo. (author)

  12. Fatty acids and oxidative stress in psychiatric disorders

    OpenAIRE

    Tonello Lucio; Cocchi Massimo; Tsaluchidu Sofia; Puri Basant K

    2008-01-01

    Abstract Background The aim of this study was to determine whether there is published evidence for increased oxidative stress in neuropsychiatric disorders. Methods A PubMed search was carried out using the MeSH search term 'oxidative stress' in conjunction with each of the DSM-IV-TR diagnostic categories of the American Psychiatric Association in order to identify potential studies. Results There was published evidence of increased oxidative stress in the following DSM-IV-TR diagnostic categ...

  13. Oxidative Stress and DNA Methylation in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Krishna Vanaja Donkena

    2010-01-01

    Full Text Available The protective effects of fruits, vegetables, and other foods on prostate cancer may be due to their antioxidant properties. An imbalance in the oxidative stress/antioxidant status is observed in prostate cancer patients. Genome oxidative damage in prostate cancer patients is associated with higher lipid peroxidation and lower antioxidant levels. Oxygen radicals are associated with different steps of carcinogenesis, including structural DNA damage, epigenetic changes, and protein and lipid alterations. Epigenetics affects genetic regulation, cellular differentiation, embryology, aging, cancer, and other diseases. DNA methylation is perhaps the most extensively studied epigenetic modification, which plays an important role in the regulation of gene expression and chromatin architecture, in association with histone modification and other chromatin-associated proteins. This review will provide a broad overview of the interplay of oxidative stress and DNA methylation, DNA methylation changes in regulation of gene expression, lifestyle changes for prostate cancer prevention, DNA methylation as biomarkers for prostate cancer, methods for detection of methylation, and clinical application of DNA methylation inhibitors for epigenetic therapy.

  14. Oxidative Stress in the Carcinogenicity of Chemical Carcinogens

    Directory of Open Access Journals (Sweden)

    Hideki Wanibuchi

    2013-10-01

    Full Text Available This review highlights several in vivo studies utilizing non-genotoxic and genotoxic chemical carcinogens, and the mechanisms of their high and low dose carcinogenicities with respect to formation of oxidative stress. Here, we survey the examples and discuss possible mechanisms of hormetic effects with cytochrome P450 inducers, such as phenobarbital, a-benzene hexachloride and 1,1-bis(p-chlorophenyl-2,2,2-trichloroethane. Epigenetic processes differentially can be affected by agents that impinge on oxidative DNA damage, repair, apoptosis, cell proliferation, intracellular communication and cell signaling. Non-genotoxic carcinogens may target nuclear receptors and induce post-translational modifications at the protein level, thereby impacting on the stability or activity of key regulatory proteins, including oncoproteins and tumor suppressor proteins. We further discuss role of oxidative stress focusing on the low dose carcinogenicities of several genotoxic carcinogens such as a hepatocarcinogen contained in seared fish and meat, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, arsenic and its metabolites, and the kidney carcinogen potassium bromate.

  15. Housing in Pyramid Counteracts Neuroendocrine and Oxidative Stress Caused by Chronic Restraint in Rats

    Directory of Open Access Journals (Sweden)

    M. Surekha Bhat

    2007-01-01

    Full Text Available The space within the great pyramid and its smaller replicas is believed to have an antistress effect. Research has shown that the energy field within the pyramid can protect the hippocampal neurons of mice from stress-induced atrophy and also reduce neuroendocrine stress, oxidative stress and increase antioxidant defence in rats. In this study, we have, for the first time, attempted to study the antistress effects of pyramid exposure on the status of cortisol level, oxidative damage and antioxidant status in rats during chronic restraint stress. Adult female Wistar rats were divided into four groups as follows: normal controls (NC housed in home cage and left in the laboratory; restrained rats (with three subgroups subject to chronic restraint stress by placing in a wire mesh restrainer for 6 h per day for 14 days, the restrained controls (RC having their restrainers kept in the laboratory; restrained pyramid rats (RP being kept in the pyramid; and restrained square box rats (RS in the square box during the period of restraint stress everyday. Erythrocyte malondialdehyde (MDA and plasma cortisol levels were significantly increased and erythrocyte-reduced glutathione (GSH levels, erythrocyte glutathione peroxidase (GSH-Px and superoxide dismutase (SOD activities were significantly decreased in RC and RS rats as compared to NC. However, these parameters were maintained to near normal levels in RP rats which showed significantly decreased erythrocyte MDA and plasma cortisol and significantly increased erythrocyte GSH levels, erythrocyte GSH-Px and SOD activities when compared with RS rats. The results showed that housing in pyramid counteracts neuroendocrine and oxidative stress caused by chronic restraint in rats.

  16. Soluble (Prorenin Receptor and Obstructive Sleep Apnea Syndrome: Oxidative Stress in Brain?

    Directory of Open Access Journals (Sweden)

    Kazuhiro Takahashi

    2017-06-01

    Full Text Available (Prorenin receptor ((PRR is a multi-functional molecule that is related to both the renin-angiotensin system (RAS and vacuolar H+-ATPase (v-ATPase, an ATP-dependent multi-subunit proton pump. Soluble (PRR (s(PRR, which consists of the extracellular domain of (PRR, is present in blood and urine. Elevated plasma s(PRR concentrations are reported in patients with chronic kidney disease and pregnant women with hypertension or diabetes mellitus. In addition, we have shown that plasma s(PRR concentrations are elevated in patients with obstructive sleep apnea syndrome (OSAS. Interestingly, the levels are elevated in parallel with the severity of OSAS, but are not related to the presence of hypertension or the status of the circulating RAS in OSAS. It is known that v-ATPase activity protects cells from endogenous oxidative stress, and loss of v-ATPase activity results in chronic oxidative stress. We hypothesize that hypoxia and subsequent oxidative stress, perhaps in the brain, may be one of the factors that elevate plasma s(PRR levels in OSAS.

  17. Yeast signaling pathways in the oxidative stress response

    Energy Technology Data Exchange (ETDEWEB)

    Ikner, Aminah [Section of Microbiology, Division of Biological Sciences, University of California, Davis, CA 95616 (United States); Shiozaki, Kazuhiro [Section of Microbiology, Division of Biological Sciences, University of California, Davis, CA 95616 (United States)]. E-mail: kshiozaki@ucdavis.edu

    2005-01-06

    Oxidative stress that generates the reactive oxygen species (ROS) is one of the major causes of DNA damage and mutations. The 'DNA damage checkpoint' that arrests cell cycle and repairs damaged DNA has been a focus of recent studies, and the genetically amenable model systems provided by yeasts have been playing a leading role in the eukaryotic checkpoint research. However, means to eliminate ROS are likely to be as important as the DNA repair mechanisms in order to suppress mutations in the chromosomal DNA, and yeasts also serve as excellent models to understand how eukaryotes combat oxidative stress. In this article, we present an overview of the signaling pathways that sense oxidative stress and induce expression of various anti-oxidant genes in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the pathogenic yeast Candida albicans. Three conserved signaling modules have been identified in the oxidative stress response of these diverse yeast species: the stress-responsive MAP kinase cascade, the multistep phosphorelay and the AP-1-like transcription factor. The structure and function of these signaling modules are discussed.

  18. Yeast signaling pathways in the oxidative stress response

    International Nuclear Information System (INIS)

    Ikner, Aminah; Shiozaki, Kazuhiro

    2005-01-01

    Oxidative stress that generates the reactive oxygen species (ROS) is one of the major causes of DNA damage and mutations. The 'DNA damage checkpoint' that arrests cell cycle and repairs damaged DNA has been a focus of recent studies, and the genetically amenable model systems provided by yeasts have been playing a leading role in the eukaryotic checkpoint research. However, means to eliminate ROS are likely to be as important as the DNA repair mechanisms in order to suppress mutations in the chromosomal DNA, and yeasts also serve as excellent models to understand how eukaryotes combat oxidative stress. In this article, we present an overview of the signaling pathways that sense oxidative stress and induce expression of various anti-oxidant genes in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the pathogenic yeast Candida albicans. Three conserved signaling modules have been identified in the oxidative stress response of these diverse yeast species: the stress-responsive MAP kinase cascade, the multistep phosphorelay and the AP-1-like transcription factor. The structure and function of these signaling modules are discussed

  19. Thoracic radiography and oxidative stress indices in heartworm affected dogs

    Directory of Open Access Journals (Sweden)

    P. K. Rath

    2014-09-01

    Full Text Available Aim: The aim was to study the pathomorphological changes through thoracic radiography and status of oxidative stress parameters in heartworm affected dogs in Odisha. Materials and Methods: A total of 16 dogs with clinically established diagnosis of dirofilariasis by wet blood smear and modified Knott’s test and equal numbers of dogs as control were included in this study. The present study was conducted in heartworm affected dogs to see the pathomorphological changes through thoracic radiography. Similarly, the evaluation was undertaken for observing any alterations in oxidative stress status in affected as well as non-affected, but healthy control dogs by adopting standard procedure. Results: Thoracic radiography revealed cardiac enlargement, round heart appearance suggestive of right ventricular hypertrophy, tortuous pulmonary artery and darkening of lungs. Alterations in oxidative stress indices showed a significant rise of lipid peroxidase activity, non-significant rise of superoxide dismutase and a significant although reverse trend for catalase levels in affected dogs in comparison to Dirofilaria negative control but apparently healthy dogs. Conclusions: Radiographic changes, as well as alterations in oxidative stress parameters, may not be diagnostic for heartworm infection, but useful for detecting heartworm disease, assessing severity and evaluating cardiopulmonary parenchyma changes and gives a fair idea about the degree of severity of the disease. It aids as contributing factors in disease pathogenesis.

  20. Effect of Chlorella Ingestion on Oxidative Stress and Fatigue Symptoms in Healthy Men.

    Science.gov (United States)

    Okada, Hirotaka; Yoshida, Noriko; Kakuma, Tatsuyuki; Toyomasu, Kouji

    2018-05-21

    We examined the effects of dietary chlorella ingestion on oxidative stress and fatigue symptoms in healthy men under resting and fatigue conditions. We conducted a double-blind, parallel-arm controlled study. Twenty-seven healthy male volunteers (mean age, 35.4±10.4 years) were randomly divided into the chlorella and placebo groups, and received chlorella (6 g/day) and lactose as placebo (7.2 g/day), respectively, for 4 weeks. To simulate mild fatigue, subjects underwent exercise (40% of the heart rate reserve) for 30 minutes. Fatigue was measured using the visual analog scale of fatigue (F-VAS) pre- and post-exercise. Serum antioxidant capacity (AC), malondialdehyde levels, and other indices of oxidative stress were measured pre- and post-exercise. All measurements were repeated after the intervention period and the results were compared with baseline measurements. Under resting conditions, AC significantly increased after the intervention period in the chlorella group, but not in the placebo group. Malondialdehyde levels after the intervention period were significantly lower in the chlorella group than in the placebo group. There were no significant differences in any of the oxidative-stress indices measured pre- and post-exercise, either before or after intervention, in either group. F-VAS significantly increased after exercise at all measurement time-points in both groups, except after the intervention period in the chlorella group. Under fatigue conditions, there were no significant differences in oxidative stress indices between the groups. Our results suggest that chlorella ingestion has the potential to relieve oxidative stress and enhance tolerance for fatigue under resting conditions.

  1. Alpha-1 Antitrypsin Prevents the Development of Preeclampsia Through Suppression of Oxidative Stress.

    Science.gov (United States)

    Feng, Yaling; Xu, Jianjuan; Zhou, Qin; Wang, Rong; Liu, Nin; Wu, Yanqun; Yuan, Hua; Che, Haisha

    2016-01-01

    Preeclampsia (PE) and its complications have become the leading cause of maternal and fetal morbidity and mortality in the world. And the development of PE is still barely predictable and thus challenging to prevent and manage clinically. Oxidative stress contributes to the development of the disease. Our previous study demonstrated that exogenous Alpha-1 antitrypsin (AAT) played a cytoprotective role in vascular endothelial cell by suppressing oxidative stress. In this study, we aim to investigate whether AAT contributes to the development of PE, and to identify the mechanism behind these effects. We found that AAT levels were significantly decreased in placenta tissues from women with PE compared that of healthy women. Notably, we demonstrate that AAT injection is able to relieve the high blood pressure and reduce urine protein levels in a dose-dependent manner in PE mice. In addition, our results showed that AAT injection exhibited an anti-oxidative stress role by significantly reducing PE mediated-upregulation of ROS, MMP9 and MDA, and increasing the levels of SOD, eNOS, and GPx with increased dosage of AAT. Furthermore, we found that AAT injection inactivated PE mediated activation of PAK/STAT1/p38 signaling. These findings were confirmed in human samples. In conclusion, our study suggests that exogenous AAT injection increases the antioxidants and suppresses oxidative stress, and subsequent prevention of PE development through inactivation of STAT1/p38 signaling. Thus, AAT would become a potential strategy for PE therapy.

  2. Alpha-1 antitrypsin prevents the development of preeclampsia through suppression of oxidative stress

    Directory of Open Access Journals (Sweden)

    Yaling eFeng

    2016-05-01

    Full Text Available Preeclampsia (PE and its complications have become the leading cause of maternal and fetal morbidity and mortality in the world. And the development of PE is still barely predictable and thus challenging to prevent and manage clinically. Oxidative stress contributes to the development of the disease. Our previous study demonstrated that exogenous Alpha-1 antitrypsin (AAT played a cytoprotective role in vascular endothelial cell by suppressing oxidative stress. In this study, we aim to investigate whether AAT contributes to the development of PE, and to identify the mechanism behind these effects. We found that AAT levels were significantly decreased in placenta tissues from women with PE compared that of healthy women. Notably, we demonstrate that AAT injection is able to relieve the high blood pressure and reduce urine protein levels in a dose-dependent manner in PE mice. In addition, our results showed that AAT injection exhibited an anti-oxidative stress role by significantly reducing PE mediated-upregulation of ROS, MMP9 and MDA, and increasing the levels of SOD, eNOS and GPx with increased dosage of AAT. Furthermore, we found that AAT injection inactivated PE mediated activation of PAK/STAT1/p38 signaling. These findings were confirmed in human samples. In conclusion, our study suggests that exogenous AAT injection increases the antioxidants and suppresses oxidative stress, and subsequent prevention of PE development through inactivation of STAT1/p38 signaling. Thus, AAT would become a potential strategy for PE therapy.

  3. High intake of heterocyclic amines from meat is associated with oxidative stress.

    Science.gov (United States)

    Carvalho, A M; Miranda, A M; Santos, F A; Loureiro, A P M; Fisberg, R M; Marchioni, D M

    2015-04-28

    High meat intake has been related to chronic diseases such as cancer and CVD. One hypothesis is that heterocyclic amines (HCA), which are formed during the cooking process of meat, can generate reactive species. These compounds can cause oxidation of lipids, proteins and DNA, resulting in oxidative stress, cell damage and loss of biological function. This association has been seen in vitro; however, it remains unclear in vivo. The aim of the present study was to investigate the association between oxidative stress and HCA intake, and oxidative stress and meat intake. Data were from the Health Survey for Sao Paulo--ISA-Capital (561 adult and elderly). Food intake was estimated by one 24-h dietary recall (24HR) complemented by a detailed FFQ with preferences of cooking methods and level of doneness for meat. HCA intake was estimated linking the meat from the 24HR to a database of HCA. Oxidative stress was estimated by malondialdehyde (MDA) concentration in the plasma, after derivatisation with thiobarbituric acid and quantification by HPLC/diode array. Analyses were performed using multivariate logistic regressions adjusted for smoking, sex, age, BMI, skin colour, energy intake, fruit and vegetable intake, and physical activity. A positive association between HCA intake and MDA concentration (OR 1·17; 95% CI 1·01, 1·38) was observed, showing that HCA from meat may contribute to increase oxidative stress, and may consequently increase the risk of chronic diseases.

  4. Oxidative stress induced by zearalenone in porcine granulosa cells and its rescue by curcumin in vitro.

    Directory of Open Access Journals (Sweden)

    Xunsi Qin

    Full Text Available Oxidative stress (OS, as a signal of aberrant intracellular mechanisms, plays key roles in maintaining homeostasis for organisms. The occurrence of OS due to the disorder of normal cellular redox balance indicates the overproduction of reactive oxygen species (ROS and/or deficiency of antioxidants. Once the balance is broken down, repression of oxidative stress is one of the most effective ways to alleviate it. Ongoing studies provide remarkable evidence that oxidative stress is involved in reproductive toxicity induced by various stimuli, such as environmental toxicants and food toxicity. Zearalenone (ZEA, as a toxic compound existing in contaminated food products, is found to induce mycotoxicosis that has a significant impact on the reproduction of domestic animals, especially pigs. However, there is no information about how ROS and oxidative stress is involved in the influence of ZEA on porcine granulosa cells, or whether the stress can be rescued by curcumin. In this study, ZEA-induced effect on porcine granulosa cells was investigated at low concentrations (15 μM, 30 μM and 60 μM. In vitro ROS levels, the mRNA level and activity of superoxide dismutase, glutathione peroxidase and catalase were obtained. The results showed that in comparison with negative control, ZEA increased oxidative stress with higher ROS levels, reduced the expression and activity of antioxidative enzymes, increased the intensity of fluorogenic probes 2', 7'-Dichlorodihydrofluorescin diacetate and dihydroethidium in flow cytometry assay and fluorescence microscopy. Meanwhile, the activity of glutathione (GSH did not change obviously following 60 μM ZEA treatment. Furthermore, the underlying protective mechanisms of curcumin on the ZEA-treated porcine granulosa cells were investigated. The data revealed that curcumin pre-treatment significantly suppressed ZEA-induced oxidative stress. Collectively, porcine granulosa cells were sensitive to ZEA, which may induce

  5. Interpretation of metabolic memory phenomenon using a physiological systems model: What drives oxidative stress following glucose normalization?

    Science.gov (United States)

    Voronova, Veronika; Zhudenkov, Kirill; Helmlinger, Gabriel; Peskov, Kirill

    2017-01-01

    Hyperglycemia is generally associated with oxidative stress, which plays a key role in diabetes-related complications. A complex, quantitative relationship has been established between glucose levels and oxidative stress, both in vitro and in vivo. For example, oxidative stress is known to persist after glucose normalization, a phenomenon described as metabolic memory. Also, uncontrolled glucose levels appear to be more detrimental to patients with diabetes (non-constant glucose levels) vs. patients with high, constant glucose levels. The objective of the current study was to delineate the mechanisms underlying such behaviors, using a mechanistic physiological systems modeling approach that captures and integrates essential underlying pathophysiological processes. The proposed model was based on a system of ordinary differential equations. It describes the interplay between reactive oxygen species production potential (ROS), ROS-induced cell alterations, and subsequent adaptation mechanisms. Model parameters were calibrated using different sources of experimental information, including ROS production in cell cultures exposed to various concentration profiles of constant and oscillating glucose levels. The model adequately reproduced the ROS excess generation after glucose normalization. Such behavior appeared to be driven by positive feedback regulations between ROS and ROS-induced cell alterations. The further oxidative stress-related detrimental effect as induced by unstable glucose levels can be explained by inability of cells to adapt to dynamic environment. Cell adaptation to instable high glucose declines during glucose normalization phases, and further glucose increase promotes similar or higher oxidative stress. In contrast, gradual ROS production potential decrease, driven by adaptation, is observed in cells exposed to constant high glucose.

  6. Relationship between oxidative stress and muscle mass loss in early postmenopause: an exploratory study.

    Science.gov (United States)

    Zacarías-Flores, Mariano; Sánchez-Rodríguez, Martha A; García-Anaya, Oswaldo Daniel; Correa-Muñoz, Elsa; Mendoza-Núñez, Víctor Manuel

    2018-04-09

    Endocrine changes due to menopause have been associated to oxidative stress and muscle mass loss. The study objective was to determine the relationship between both variables in early postmenopause. An exploratory, cross-sectional study was conducted in 107 pre- and postmenopausal women (aged 40-57 years). Levels of serum lipid peroxides and uric acid and enzymes superoxide dismutase and glutathione peroxidase, as well as total plasma antioxidant capacity were measured as oxidative stress markers. Muscle mass using bioelectrical impedance and muscle strength using dynamometry were also measured. Muscle mass, skeletal muscle index, fat-free mass, and body mass index were calculated. More than 90% of participants were diagnosed with overweight or obesity. Postmenopausal women had lower values of muscle mass and strength markers, with a negative correlation between lipid peroxide level and skeletal muscle index (r= -0.326, p<.05), and a positive correlation between uric acid and skeletal muscle index (r=0.295, p<.05). A multivariate model including oxidative stress markers, age, and waist circumference showed lipid peroxide level to be the main contributor to explain the decrease in skeletal muscle mass in postmenopause, since for every 0.1μmol/l increase in lipid peroxide level, skeletal muscle index decreases by 3.03 units. Our findings suggest an association between increased oxidative stress and muscle mass loss in early postmenopause. Copyright © 2018 SEEN y SED. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Petroselinum Crispum is Effective in Reducing Stress-Induced Gastric Oxidative Damage

    Directory of Open Access Journals (Sweden)

    Ayşin Akıncı

    2017-02-01

    Full Text Available Background: Oxidative stress has been shown to play a principal role in the pathogenesis of stress-induced gastric injury. Parsley (Petroselinum crispum contains many antioxidants such as flavanoids, carotenoids and ascorbic acid. Aims: In this study, the histopathological and biochemical results of nutrition with a parsley-rich diet in terms of eliminating stress-induced oxidative gastric injury were evaluated. Study Design: Animal experimentation. Methods: Forty male Wistar albino rats were divided into five groups: control, stress, stress + standard diet, stress + parsley-added diet and stress + lansoprazole (LPZ groups. Subjects were exposed to 72 hours of fasting and later immobilized and exposed to the cold at +4 degrees for 8 hours to create a severe stress condition. Samples from the animals’ stomachs were arranged for microscopic and biochemical examinations. Results: Gastric mucosal injury was obvious in rats exposed to stress. The histopathologic damage score of the stress group (7.00±0.57 was higher than that of the control group (1.50±0.22 (p<0.05. Significant differences in histopathologic damage score were found between the stress and stress + parsley-added diet groups (p<0.05, the stress and stress + standard diet groups (p<0.05, and the stress and stress + LPZ groups (p<0.05. The mean tissue malondialdehyde levels of the stress + parsley-added group and the stress + LPZ group were lower than that of the stress group (p<0.05. Parsley supported the cellular antioxidant system by increasing the mean tissue glutathione level (53.31±9.50 and superoxide dismutase (15.18±1.05 and catalase (16.68±2.29 activities. Conclusion: Oral administration of parsley is effective in reducing stress-induced gastric injury by supporting the cellular antioxidant defence system

  8. Effects of 12-week combined exercise therapy on oxidative stress in female fibromyalgia patients.

    Science.gov (United States)

    Sarıfakıoğlu, Banu; Güzelant, Aliye Yıldırım; Güzel, Eda Celik; Güzel, Savaş; Kızıler, Ali Rıza

    2014-10-01

    The aims of this study were to investigate the effect of exercise therapy on the oxidative stress in fibromyalgia patients and relationship between oxidative stress and fibromyalgia symptoms. Thirty women diagnosed with fibromyalgia according to the American College of Rheumatology preliminary criteria, and 23 healthy women whose age- and weight-matched women were enrolled the study. Pain intensity with visual analog scale (VAS), the number of tender points, the fibromyalgia impact questionnaire (FIQ), the Beck depression inventory (BDI) were evaluated. The oxidative stress parameters thiobarbituric acid reactive substances, protein carbonyls, and nitric oxide, and antioxidant parameters thiols and catalase were investigated in patients and control group. After, combined aerobic and strengthen exercise regimen was given to fibromyalgia group. Exercise therapy consisted of a warming period of 10 min, aerobic exercises period of 20 min, muscle strengthening exercises for 20 min, and 10 min cooling down period. Therapy was lasting 1 h three times per week over a 12-week period. All parameters were reevaluated after the treatment in the patient group. The oxidative stress parameters levels were significantly higher, and antioxidant parameters were significantly lower in patients with fibromyalgia than in the controls. VAS, FIQ, and BDI scores decreased significantly with exercise therapy. The exercise improved all parameters of oxidative stress and antioxidant parameters. Also, all clinical parameters were improved with exercise. We should focus on oxidative stress in the treatment for fibromyalgia with the main objective of reducing oxidative load.

  9. Brain-derived neurotrophic factor (BDNF) and oxidative stress in heroin-dependent male patients undergoing methadone maintenance treatment.

    Science.gov (United States)

    Tsai, Meng-Chang; Huang, Tiao-Lai

    2017-03-01

    Brain-derived neurotrophic factor (BDNF) and oxidative stress may play a role in patients with heroin dependence. The aim of this study was to investigate the serum levels and activities of BDNF and oxidative stress markers, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), thiobarbituric acid reactive substances (TBARS), protein carbonyl content (PCC), and 8-hydroxy 2'-deoxyguanosine (8-OHdG), in heroin-dependent patients undergoing methadone maintenance treatment (MMT). 60 heroin-dependent male MMT patients and 30 healthy males were recruited for this study. The serum BDNF and oxidative stress markers of these subjects were measured with assay kits. Analyses of covariance (ANCOVAs) with age and body mass index adjustments indicated that the serum levels of BDNF in the MMT patients were significantly higher than those in the healthy controls (F=5.169; p=0.026). However, there were no significant differences between the heroin-dependent patients and the healthy controls in the serum levels or activities of oxidative stress markers (p>0.05). In conclusion, our results suggest that MMT increases BDNF levels in heroin-dependent patients, and that patients undergoing MMT might be in a balanced state of reduced oxidation. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  10. Oxidative Stress as Estimated by Gamma-Glutamyl Transferase Levels Amplifies the Alkaline Phosphatase-Dependent Risk for Mortality in ESKD Patients on Dialysis

    NARCIS (Netherlands)

    C. Torino (Claudia); F.U.S. Mattace Raso (Francesco); J.L.C.M. van Saase (Jan); M. Postorino (Maurizio); G.L. Tripepi (Giovanni); F. Mallamaci (Francesca); C. Zoccali (Carmine)

    2016-01-01

    textabstractAlkaline phosphatase (Alk-Phos) is a powerful predictor of death in patients with end-stage kidney disease (ESKD) and oxidative stress is a strong inducer of Alk-Phos in various tissues. We tested the hypothesis that oxidative stress, as estimated by a robust marker of systemic oxidative

  11. Evaluation of oxidative stress using exhaled breath 8‑isoprostane ...

    African Journals Online (AJOL)

    2013-08-05

    Aug 5, 2013 ... progress, plasma 8‑isoprostane levels significantly increase. A significant .... Horvath I, Hunt J, Barnes PJ, Alving K, Antczak A, Baraldi E, et al. ATS/ERS ... Lenaz G. Role of mitochondria in oxidative stress and ageing. Biochim ...

  12. Allene oxide synthase, allene oxide cyclase and jasmonic acid levels in Lotus japonicus nodules.

    Directory of Open Access Journals (Sweden)

    Anna Zdyb

    Full Text Available Jasmonic acid (JA, its derivatives and its precursor cis-12-oxo phytodienoic acid (OPDA form a group of phytohormones, the jasmonates, representing signal molecules involved in plant stress responses, in the defense against pathogens as well as in development. Elevated levels of JA have been shown to play a role in arbuscular mycorrhiza and in the induction of nitrogen-fixing root nodules. In this study, the gene families of two committed enzymes of the JA biosynthetic pathway, allene oxide synthase (AOS and allene oxide cyclase (AOC, were characterized in the determinate nodule-forming model legume Lotus japonicus JA levels were to be analysed in the course of nodulation. Since in all L. japonicus organs examined, JA levels increased upon mechanical disturbance and wounding, an aeroponic culture system was established to allow for a quick harvest, followed by the analysis of JA levels in whole root and shoot systems. Nodulated plants were compared with non-nodulated plants grown on nitrate or ammonium as N source, respectively, over a five week-period. JA levels turned out to be more or less stable independently of the growth conditions. However, L. japonicus nodules formed on aeroponically grown plants often showed patches of cells with reduced bacteroid density, presumably a stress symptom. Immunolocalization using a heterologous antibody showed that the vascular systems of these nodules also seemed to contain less AOC protein than those of nodules of plants grown in perlite/vermiculite. Hence, aeroponically grown L. japonicus plants are likely to be habituated to stress which could have affected JA levels.

  13. Protective effect of nicotinamide adenine dinucleotide (NAD+) against spinal cord ischemia-reperfusion injury via reducing oxidative stress-induced neuronal apoptosis.

    Science.gov (United States)

    Xie, Lei; Wang, Zhenfei; Li, Changwei; Yang, Kai; Liang, Yu

    2017-02-01

    As previous studies demonstrate that oxidative stress and apoptosis play crucial roles in ischemic pathogenesis and nicotinamide adenine dinucleotide (NAD + ) treatment attenuates oxidative stress-induced cell death among primary neurons and astrocytes as well as significantly reduce cerebral ischemic injury in rats. We used a spinal cord ischemia injury (SCII) model in rats to verify our hypothesis that NAD + could ameliorate oxidative stress-induced neuronal apoptosis. Adult male rats were subjected to transient spinal cord ischemia for 60min, and different doses of NAD + were administered intraperitoneally immediately after the start of reperfusion. Neurological function was determined by Basso, Beattie, Bresnahan (BBB) scores. The oxidative stress level was assessed by superoxide dismutase (SOD) activity and malondialdehyde (MDA) content. The degree of apoptosis was analyzed by deoxyuridinetriphosphate nick-end labeling (TUNEL) staining and protein levels of cleaved caspase-3 and AIF (apoptosis inducing factor). The results showed that NAD + at 50 or 100mg/kg significantly decreased the oxidative stress level and neuronal apoptosis in the spinal cord of ischemia-reperfusion rats compared with saline, as accompanied with the decreased oxidative stress, NAD + administration significantly restrained the neuronal apoptosis after ischemia injury while improved the neurological and motor function. These findings suggested that NAD + might protect against spinal cord ischemia-reperfusion via reducing oxidative stress-induced neuronal apoptosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Treadmill Exercise Attenuates Retinal Oxidative Stress in Naturally-Aged Mice: An Immunohistochemical Study

    Directory of Open Access Journals (Sweden)

    Chan-Sik Kim

    2015-09-01

    Full Text Available In the retina, a number of degenerative diseases, including glaucoma, diabetic retinopathy, and age-related macular degeneration, may occur as a result of aging. Oxidative damage is believed to contribute to the pathogenesis of aging as well as to age-related retinal disease. Although physiological exercise has been shown to reduce oxidative stress in rats and mice, it is not known whether it has a similar effect in retinal tissues. The aim of this study was to evaluate retinal oxidative stress in naturally-aged mice. In addition, we evaluated the effects of aerobic training on retinal oxidative stress by immunohistochemically evaluating oxidative stress markers. A group of twelve-week-old male mice were not exercised (young control. Two groups of twenty-two-month-old male mice were created: an old control group and a treadmill exercise group. The old control group mice were not exercised. The treadmill exercise group mice ran on a treadmill (5 to 12 m/min, 30 to 60 min/day, 3 days/week for 12 weeks. The retinal thickness and number of cells in the ganglion cell layer of the naturally-aged mice were reduced compared to those in the young control mice. However, treadmill exercise reversed these morphological changes in the retinas. We evaluated retinal expression of carboxymethyllysine (CML, 8-hydroxy-2′-deoxyguanosine (8-OHdG and nitrotyrosine. The retinas from the aged mice showed increased CML, 8-OHdG, and nitrotyrosine immunostaining intensities compared to young control mice. The exercise group exhibited significantly lower CML levels and nitro-oxidative stress than the old control group. These results suggest that regular exercise can reduce retinal oxidative stress and that physiological exercise may be distinctly advantageous in reducing retinal oxidative stress.

  15. Relation of iron stores to oxidative stress in type 2 diabetes | Kundu ...

    African Journals Online (AJOL)

    Relation of iron stores to oxidative stress in type 2 diabetes. ... patients who attended the outpatient and inpatient departments of Medical College, Kolkata. ... levels to MDA levels in the diabetic cases of longer duration of more than 10 years.

  16. Incapacity, Handicap, and Oxidative Stress Markers of Male Smokers With and Without COPD.

    Science.gov (United States)

    Ben Moussa, Syrine; Rouatbi, Sonia; Ben Saad, Helmi

    2016-05-01

    Mechanisms of incapacity and quality of life (QOL) of smokers with COPD and those free from COPD (non-COPD) are still unclear. The aims of this work were to compare the submaximal exercise, the QOL, and the blood and lung oxidative stress biomarker data of smokers without and with COPD. Thirty-two male-smokers 40-60 y old were included (16 with COPD). QOL (Saint George Respiratory Questionnaire) and physical activity (Voorrips questionnaire) scores were determined. Blood sample levels of malondialdehyde, protein sulfhydryl, and glutathione were measured. Fraction of exhaled nitric oxide, plethysmographic data, and 6-min walk distance (6MWD) were collected. All data are presented as mean ± SD, except oxidative stress biomarkers expressed as mean ± SE. Correlation coefficient (r) evaluated the association between oxidative stress biomarkers and 6MWD, QOL, and physical activity data. Two age- and amount of tobacco used-matched groups of smokers were included. Compared with the non-COPD group, the COPD group had significantly lower 6MWD (573 ± 63 vs 476 ± 53 m) and physical activity score (7.14 ± 1.50 vs 2.86 ± 1.50) and significantly worse QOL (19.47 ± 15.33 vs 47.70 ± 16.73) and lower glutathione level (39.44 ± 6.28 vs 24.67 ± 5.41 μg/mL). The COPD group malondialdehyde level was significantly correlated with 6MWD, symptoms, and QOL scores (good r value between 0.50 and 0.70). The non-COPD group fraction of exhaled nitric oxide and glutathione levels were significantly correlated with leisure activity score and 6MWD, respectively (good r value between 0.50 and 0.70). Compared with the non-COPD group, the COPD group had a marked decrease in submaximal exercise data and in QOL score. Oxidative stress could be one explanation of incapacity and handicap observed in the COPD group. Copyright © 2016 by Daedalus Enterprises.

  17. Psychological stress during exercise: immunoendocrine and oxidative responses.

    Science.gov (United States)

    Huang, Chun-Jung; Webb, Heather E; Evans, Ronald K; McCleod, Kelly A; Tangsilsat, Supatchara E; Kamimori, Gary H; Acevedo, Edmund O

    2010-12-01

    The purpose of this study was to examine the changes in catecholamines (epinephrine [EPI] and norepinephrine [NE]), interleukin-2 (IL-2) and a biomarker of oxidative stress (8-isoprostane) in healthy individuals who were exposed to a dual challenge (physical and psychological stress). Furthermore, this study also examined the possible relationships between catecholamines (NE and EPI) and 8-isoprostane and between IL-2 and 8-isoprostane following a combined physical and psychological challenge. Seven healthy male subjects completed two experimental conditions. The exercise-alone condition (EAC) consisted of cycling at 60% VO(2max) for 37 min, while the dual-stress condition (DSC) included 20 min of a mental challenge while cycling. DSC showed greater EPI and 8-isoprostane levels (significant condition by time interaction). NE and IL-2 revealed significant change across time in both conditions. In addition, following dual stress, EPI area-under-the-curve (AUC) demonstrated a positive correlation with NE AUC and IL-2 AUC. NE AUC was positively correlated with IL-2 AUC and peak 8-isoprostane, and peak IL-2 was positively correlated with peak 8-isoprostane in response to a dual stress. The potential explanation for elevated oxidative stress during dual stress may be through the effects of the release of catecholamines and IL-2. These findings may further provide the potential explanation that dual stress alters physiological homeostasis in many occupations including firefighting, military operations and law enforcement. A greater understanding of these responses to stress can assist in finding strategies (e.g. exercise training) to overcome the inherent psychobiological challenges associated with physically and mentally demanding professions.

  18. Oxidative stress and APO E polymorphisms in Alzheimer's disease and in mild cognitive impairment.

    Science.gov (United States)

    Chico, L; Simoncini, C; Lo Gerfo, A; Rocchi, A; Petrozzi, L; Carlesi, C; Volpi, L; Tognoni, G; Siciliano, G; Bonuccelli, U

    2013-08-01

    A number of evidences indicates oxidative stress as a relevant pathogenic factor in Alzheimer's disease (AD) and mild cognitive impairment (MCI). Considering its recognized major genetic risk factors in AD, apolipoprotein (APO E) has been investigated in several experimental settings regarding its role in the process of reactive oxygen species (ROS) generation. The aim of this work has been to evaluate possible relationships between APO E genotype and plasma levels of selected oxidative stress markers in both AD and MCI patients. APO E genotypes were determined using restriction enzyme analysis. Plasma levels of oxidative markers, advanced oxidation protein products, iron-reducing ability of plasma and, in MCI, activity of superoxide dismutases were evaluated using spectrophotometric analysis. We found, compared to controls, increased levels of oxidized proteins and decreased values of plasma-reducing capacity in both AD patients (p < 0.0001) and MCI patients (p < 0.001); the difference between AD and MCI patients was significant only for plasma-reducing capacity (p < 0.0001), the former showing the lowest values. Superoxide dismutase activity was reduced, although not at statistical level, in MCI compared with that in controls. E4 allele was statistically associated (p < 0.05) with AD patients. When comparing different APO E genotype subgroups, no difference was present, as far as advanced oxidation protein products and iron-reducing ability of plasma levels were concerned, between E4 and non-E4 carriers, in both AD and MCI; on the contrary, E4 carriers MCI patients showed significantly decreased (p < 0.05) superoxide dismutase activity with respect to non-E4 carriers. This study, in confirming the occurrence of oxidative stress in AD and MCI patients, shows how it can be related, at least for superoxide dismutase activity in MCI, to APO E4 allele risk factor.

  19. Oxidative stress and Ramadan observance; a possible influence of associated dieting

    Directory of Open Access Journals (Sweden)

    RJ Shephard

    2017-06-01

    Full Text Available Introduction: The effects of Ramadan observance and any associated dietary restriction upon oxidative stress are not well known. The topic has thus been examined in a brief systematic review of available literature concerning non-athletic but otherwise healthy subjects, patients with selected clinical conditions, and in athletes. Methods: Ovid/Medline and Google searches were supplemented by a perusal of reference lists in papers thus identified. Results: Ramadan observance and associated dietary restrictions are generally associated with a decrease of body mass in non-athletic adults, and in patients with conditions such as obesity, metabolic syndrome, diabetes mellitus and hypertension. During Ramadan, measures of oxidative stress (particularly malondialdehyde and F2 isoprostanes are consistently decreased, antioxidant status (particularly levels of peroxidases, uric acid and reduced glutathione are enhanced and inflammatory reactions (particularly c-reactive protein, IL-6 and TNF-a are decreased in association with decreases in body mass. Perhaps because of lower initial body weights and greater dietary control during Ramadan, changes of oxidant status are more variable in athletes; in 3 of 7 studies, Ramadan observance had little effect on oxidant status, and in 2 reports there was some deterioration. In 3 of 4 studies where athletes underwent short-term dieting, there was also no improvement of antioxidant status. Conclusion: Ramadan observance and any associated dieting reduce oxidative stress in non-athletic individuals, apparently in association with decreases of body mass. In athletes, oxidant levels are generally unchanged during Ramadan, and if food intake is maintained they may even increase. More information is needed upon possible adverse health consequences, but chronic risks are probably small because any changes are limited to one month per year.

  20. Sex-dependent effects of high-fat-diet feeding on rat pancreas oxidative stress.

    Science.gov (United States)

    Gómez-Pérez, Yolanda; Gianotti, Magdalena; Lladó, Isabel; Proenza, Ana M

    2011-07-01

    The objective of the study was to investigate whether sex differences in oxidative stress-associated insulin resistance previously reported in rats could be attributed to a possible sex dimorphism in pancreas redox status. Fifteen-month-old male and female Wistar rats were fed a control diet or a high-fat diet for 14 weeks. Serum glucose, lipids, and hormone levels were measured. Insulin immunohistochemistry and morphometric analysis of islets were performed. Pancreas triglyceride content, oxidative damage, and antioxidant enzymatic activities were determined. Lipoprotein lipase, hormone-sensitive lipase, and uncoupling protein 2 (UCP2) levels were also measured. Male rats showed a more marked insulin resistance profile than females. In control female rats, pancreas Mn-superoxide dismutase activity and UCP2 levels were higher, and oxidative damage was lower compared with males. High-fat-diet feeding decreased pancreas triglyceride content in female rats and UCP2 levels in male rats. High-fat-diet female rats showed larger islets than both their control and sex counterparts. These results confirm the existence of a sex dimorphism in pancreas oxidative status in both control and high-fat-diet feeding situations, with female rats showing higher protection against oxidative stress, thus maintaining pancreatic function and contributing to a lower risk of insulin resistance.

  1. Effects of aerobic training on exercise-related oxidative stress in mitochondrial myopathies.

    Science.gov (United States)

    Siciliano, Gabriele; Simoncini, Costanza; Lo Gerfo, Annalisa; Orsucci, Daniele; Ricci, Giulia; Mancuso, Michelangelo

    2012-12-01

    In mitochondrial myopathies with respiratory chain deficiency impairment of energy cell production may lead to in excess reactive oxygen species generation with consequent oxidative stress and cell damage. Aerobic training has been showed to increase muscle performance in patients with mitochondrial myopathies. Aim of this study has been to evaluate, in 7 patients (6 F e 1M, mean age 44.9 ± 12.1 years) affected by mitochondrial disease, concomitantly to lactate exercise curve, the occurrence of oxidative stress, as indicated by circulating levels of lipoperoxides, in rest condition and as effect of exercise, and also, to verify if an aerobic training program is able to modify, in these patients, ox-redox balance efficiency. At rest and before training blood level of lipoperoxides was 382.4 ± 37.8 AU, compared to controls (318.7 ± 63.8; Pstress degree according to the adopted scale. During incremental exercise blood level of lipoperoxides did not increase, but maintained significantly higher compared to controls. After an aerobic training of 10 weeks the blood level of lipoperoxides decreased by 13.7% at rest (Pexercise test (P=0.06). These data indicate that, in mitochondrial patients, oxidative stress occurs and that an aerobic training is useful in partially reverting this condition. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Investigating Endothelial Activation and Oxidative Stress in relation to Glycaemic Control in a Multiethnic Population

    Science.gov (United States)

    Brady, E. M.; Webb, D. R.; Morris, D. H.; Khunti, K.; Talbot, D. S. C.; Sattar, N.; Davies, M. J.

    2012-01-01

    Aim. An exploration of ethnic differences in measures of oxidative stress and endothelial activation in relation to known cardiovascular risk factors within South Asians (SA) and White Europeans (WE) residing in the UK. Methods. 202 participants within a UK multiethnic population provided biomedical and anthropometric data. Human urinary 2,3-dinor-8-iso-prostaglandin-F1α and plasma ICAM-1 were quantified as measures of oxidative stress and endothelial activation, respectively. Results. 2,3-Dinor-8-iso-prostaglandin-F1α levels were significantly higher in the SA group compared to WE group (10.36 (95% CI: 9.09, 11.79) versus 8.46 (7.71, 9.29), P = 0.021) after adjustment for age, gender, smoking status, body weight, HbA1c, and medication. Oxidative stress was positively associated with HbA1c (β = 1.08, 95% CI:1.02, 1.14, P = 0.009), fasting (β = 1.06, 95% CI: 1.02, 1.10, P = 0.002), and 2 hr glucose (β = 1.02, 95% CI: 1.00, 1.04, P = 0.052). In each adjusted model, SA continued to have elevated levels of oxidative stress compared to WE. ICAM-1 levels were significantly higher in the composite IGR group compared to the normoglycaemic group (P < 0.001). No ethnic differences in ICAM-1 were observed. Conclusion. These results suggest that SA are more susceptible to the detrimental effects of hyperglycaemia-induced oxidative stress at lower blood glucose thresholds than WE. Further research into the potential mechanisms involved is warranted. PMID:23304116

  3. Investigating Endothelial Activation and Oxidative Stress in relation to Glycaemic Control in a Multiethnic Population

    Directory of Open Access Journals (Sweden)

    E. M. Brady

    2012-01-01

    Full Text Available Aim. An exploration of ethnic differences in measures of oxidative stress and endothelial activation in relation to known cardiovascular risk factors within South Asians (SA and White Europeans (WE residing in the UK. Methods. 202 participants within a UK multiethnic population provided biomedical and anthropometric data. Human urinary 2,3-dinor-8-iso-prostaglandin-F1α and plasma ICAM-1 were quantified as measures of oxidative stress and endothelial activation, respectively. Results. 2,3-Dinor-8-iso-prostaglandin-F1α levels were significantly higher in the SA group compared to WE group (10.36 (95% CI: 9.09, 11.79 versus 8.46 (7.71, 9.29, P=0.021 after adjustment for age, gender, smoking status, body weight, HbA1c, and medication. Oxidative stress was positively associated with HbA1c (β=1.08, 95% CI:1.02, 1.14, P=0.009, fasting (β=1.06, 95% CI: 1.02, 1.10, P=0.002, and 2 hr glucose (β=1.02, 95% CI: 1.00, 1.04, P=0.052. In each adjusted model, SA continued to have elevated levels of oxidative stress compared to WE. ICAM-1 levels were significantly higher in the composite IGR group compared to the normoglycaemic group (P<0.001. No ethnic differences in ICAM-1 were observed. Conclusion. These results suggest that SA are more susceptible to the detrimental effects of hyperglycaemia-induced oxidative stress at lower blood glucose thresholds than WE. Further research into the potential mechanisms involved is warranted.

  4. Interferon-¿ regulates oxidative stress during experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Espejo, C.; Penkowa, Milena; Saez-Torres, I.

    2002-01-01

    Neurobiology, experimental autoimmune encephalomyelitis IFN-d, multiple sclerosis, neurodegeneration, oxidative stress......Neurobiology, experimental autoimmune encephalomyelitis IFN-d, multiple sclerosis, neurodegeneration, oxidative stress...

  5. Effects of naringin on apoptosis and oxidative stress in type 2 diabetic rats

    Science.gov (United States)

    Adelani, Isaacson; Bankole, Esther; Rotimi, Oluwakemi; Rotimi, Solomon

    2018-04-01

    Oxidative stress and apoptosis have been reported to play major roles in the pathogenesis of Type 2 Diabetes Mellitus (T2DM) through insulin resistance and β-cell dysfunction. Naringin is a citrus derived flavonoid that has been reported for its antioxidant properties. Even though effects of naringin in T2DM related oxidative stress has been reported, varying dose concentration in oxidative stress and mechanism of action involving T2DM related apoptosis is far-fetched. This research studied the effects of naringin at varying dose concentration on apoptosis, biomarkers of organ function and oxidative stress in high fat diet/low-streptozotocin-induced T2DM in albino Wistar rats. Diabetic rats were treated with naringin at 50mg/kg, 100mg/kg and 200mg/kg body weight for 21 days. Some biomarkers of organ function and oxidative stress in the animals were assayed using spectrophotometric techniques. The levels of expression of caspases and apoptotic regulators were quantified using semi-quantitative reverse transcriptase polymerase chain reaction (RT PCR). Enzyme - linked immunosorbent assay was used to determine inducible nitric oxide synthase (iNOS) level. Naringin treatment shows a dose dependent significant (plipid peroxidation, glutathione- s-transferase, glutathione peroxidase and glutathione reductase activities in the liver. Naringin treatment also showed a significant (p<0.05) increase in the expression of caspase 3 and reduction in BCL-2 as against the diabetic control. In addition, there was dose dependent decrease in plasma CO2 concentration and increase in the plasma iNOS concentration as compared to the diabetic control. This result highlights positive effect of naringin as an antioxidant, its role in apoptosis and also reverting the effects of organ damage in type 2 diabetes.

  6. Increased oxidative/nitrosative stress and decreased antioxidant enzyme activities in prostate cancer.

    Science.gov (United States)

    Arsova-Sarafinovska, Zorica; Eken, Ayse; Matevska, Nadica; Erdem, Onur; Sayal, Ahmet; Savaser, Ayhan; Banev, Saso; Petrovski, Daniel; Dzikova, Sonja; Georgiev, Vladimir; Sikole, Aleksandar; Ozgök, Yaşar; Suturkova, Ljubica; Dimovski, Aleksandar J; Aydin, Ahmet

    2009-08-01

    The study was aimed to evaluate the oxidative/nitrosative stress status in prostate cancer (CaP) and benign prostatic hyperplasia (BPH). 312 men from two different populations were included: 163 men from Macedonia (73 CaP patients, 67 BPH patients and 23 control subjects) and 149 men from Turkey (34 prostate cancer patients, 100 BPH patients and 15 control subjects). We measured erythrocyte malondialdehyde (MDA) levels, erythrocyte activities of superoxide dismutase (CuZn-SOD), glutathione peroxidase (GPX) and catalase (CAT); plasma nitrite/nitrate (NO(2)(-)/NO(3)(-)), cGMP and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels. A similar pattern of alteration in the oxidative/nitrosative stress-related parameters was found in both, Macedonian and Turkish studied samples: higher MDA concentrations with lower GPX and CuZn-SOD activities in CaP patients versus controls and BPH groups. The CAT activity was decreased in the CaP patients versus controls in the Turkish studied sample. Furthermore, CaP patients had increased plasma NO(2)(-)/NO(3)(-) and cGMP levels versus controls and BPH groups in both studied samples. This study has confirmed an imbalance in the oxidative stress/antioxidant status and revealed an altered nitrosative status in prostate cancer patients.

  7. Circulating oxidative stress caused by Psoroptes natalensis infestation in Indian water buffaloes.

    Science.gov (United States)

    Mahajan, Sumit; Panigrahi, Padma Nibash; Dey, Sahadeb; Dan, Ananya; Kumar, Akhilesh; Mahendran, K; Maurya, P S

    2017-09-01

    The present study reports the circulating oxidative stress associated with Psoroptes natalensis infestation in Indian water buffaloes. Three non-descriptive water buffaloes, age ranging between 4 and 9 years, presented to Referral Veterinary Polyclinic, IVRI, for treatment served as clinical subject. The infested animals were treated with Ivermectin subcutaneously and Amitraz topically along with antioxidant like ascorbic acid, Vitamin E and selenium. The level of lipid peroxidase was significantly higher (3.94 ± 0.34) in Psoroptes infested buffalo and was reduced significantly ( P  ≤ 0.05) after treatment (1.56 ± 0.40). The significantly higher levels of MDA before treatment signify the role of lipid peroxide mediated skin lesions in P. natalensis infested buffaloes. Similarly the activities of the body antioxidant like GSH and CAT were significantly higher ( P  ≤ 0.05) after treatment. The less level of the body antioxidant (GSH) and reduced activities of the antioxidant enzymes like CAT and SOD before treatment imply that Psoroptes mite-infested buffaloes were in a state of significant oxidative stress. The study provides information on oxidative stress indices in P. natalensis infested buffaloes and gives additional insight regarding the pathogenesis of the disease and its management.

  8. Oxidative Stress in Myopia

    Directory of Open Access Journals (Sweden)

    Bosch-Morell Francisco

    2015-01-01

    Full Text Available Myopia affected approximately 1.6 billion people worldwide in 2000, and it is expected to increase to 2.5 billion by 2020. Although optical problems can be corrected by optics or surgical procedures, normal myopia and high myopia are still an unsolved medical problem. They frequently predispose people who have them to suffer from other eye pathologies: retinal detachment, glaucoma, macular hemorrhage, cataracts, and so on being one of the main causes of visual deterioration and blindness. Genetic and environmental factors have been associated with myopia. Nevertheless, lack of knowledge in the underlying physiopathological molecular mechanisms has not permitted an adequate diagnosis, prevention, or treatment to be found. Nowadays several pieces of evidence indicate that oxidative stress may help explain the altered regulatory pathways in myopia and the appearance of associated eye diseases. On the one hand, oxidative damage associated with hypoxia myopic can alter the neuromodulation that nitric oxide and dopamine have in eye growth. On the other hand, radical superoxide or peroxynitrite production damage retina, vitreous, lens, and so on contributing to the appearance of retinopathies, retinal detachment, cataracts and so on. The objective of this review is to suggest that oxidative stress is one of the key pieces that can help solve this complex eye problem.

  9. Quercetin reduces markers of oxidative stress and inflammation in sarcoidosis

    NARCIS (Netherlands)

    Boots, Agnes W.; Drent, Marjolein; de Boer, Vincent C. J.; Bast, Aalt; Haenen, Guido R. M. M.

    2011-01-01

    Oxidative stress and low antioxidant levels are implicated in the aetiology of sarcoidosis, an inflammatory disease. Quercetin is a potent dietary antioxidant that also displays anti-inflammatory activities. Consequently, the aim is to examine the effect of quercetin supplementation on markers of

  10. Reperfusion does not induce oxidative stress but sustained endoplasmic reticulum stress in livers of rats subjected to traumatic-hemorrhagic shock.

    Science.gov (United States)

    Duvigneau, Johanna Catharina; Kozlov, Andrey V; Zifko, Clara; Postl, Astrid; Hartl, Romana T; Miller, Ingrid; Gille, Lars; Staniek, Katrin; Moldzio, Rudolf; Gregor, Wolfgang; Haindl, Susanne; Behling, Tricia; Redl, Heinz; Bahrami, Soheyl

    2010-03-01

    Oxidative stress is believed to accompany reperfusion and to mediate dysfunction of the liver after traumatic-hemorrhagic shock (THS). Recently, endoplasmic reticulum (ER) stress has been suggested as an additional factor. This study investigated whether reperfusion after THS leads to increased oxidative and/or ER stress in the liver. In a rat model, including laparotomy, bleeding until decompensation, followed by inadequate or adequate reperfusion phase, three time points were investigated: 40 min, 3 h, and 18 h after shock. The reactive oxygen and nitrogen species and its scavenging capacity (superoxide dismutase 2), the nitrotyrosine formation in proteins, and the lipid peroxidation together with the status of endogenous antioxidants (alpha-tocopherylquinone-alpha-tocopherol ratio) were investigated as markers for oxidative or nitrosylative stress. Mitochondrial function and cytochrome P450 isoform 1A1 activity were analyzed as representatives for hepatocyte function. Activation of the inositol-requiring enzyme 1/X-box binding protein pathway and up-regulation of the 78-kDa glucose-regulated protein were recorded as ER stress markers. Plasma levels of alanine aminotransferase and Bax/Bcl-XL messenger RNA (mRNA) ratio were used as indicators for hepatocyte damage and apoptosis induction. Oxidative or nitrosylative stress markers or representatives of hepatocyte function were unchanged during and short after reperfusion (40 min, 3 h after shock). In contrast, ER stress markers were elevated and paralleled those of hepatocyte damage. Incidence for sustained ER stress and subsequent apoptosis induction were found at 18 h after shock. Thus, THS or reperfusion induces early and persistent ER stress of the liver, independent of oxidative or nitrosylative stress. Although ER stress was not associated with depressed hepatocyte function, it may act as an early trigger of protracted cell death, thereby contributing to delayed organ failure after THS.

  11. Curcumin targeting the thioredoxin system elevates oxidative stress in HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Wenqing; Zhang, Baoxin; Duan, Dongzhu [State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000 (China); Wu, Jincai [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000 (China); Fang, Jianguo, E-mail: fangjg@lzu.edu.cn [State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000 (China); College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2012-08-01

    The thioredoxin system, composed of thioredoxin reductase (TrxR), thioredoxin (Trx), and NADPH, is ubiquitous in all cells and involved in many redox-dependent signaling pathways. Curcumin, a naturally occurring pigment that gives a specific yellow color in curry food, is consumed in normal diet up to 100 mg per day. This molecule has also been used in traditional medicine for the treatment of a variety of diseases. Curcumin has numerous biological functions, and many of these functions are related to induction of oxidative stress. However, how curcumin elicits oxidative stress in cells is unclear. Our previous work has demonstrated the way by which curcumin interacts with recombinant TrxR1 and alters the antioxidant enzyme into a reactive oxygen species (ROS) generator in vitro. Herein we reported that curcumin can target the cytosolic/nuclear thioredoxin system to eventually elevate oxidative stress in HeLa cells. Curcumin-modified TrxR1 dose-dependently and quantitatively transfers electrons from NADPH to oxygen with the production of ROS. Also, curcumin can drastically down-regulate Trx1 protein level as well as its enzyme activity in HeLa cells, which in turn remarkably decreases intracellular free thiols, shifting the intracellular redox balance to a more oxidative state, and subsequently induces DNA oxidative damage. Furthermore, curcumin-pretreated HeLa cells are more sensitive to oxidative stress. Knockdown of TrxR1 sensitizes HeLa cells to curcumin cytotoxicity, highlighting the physiological significance of targeting TrxR1 by curcumin. Taken together, our data disclose a previously unrecognized prooxidant mechanism of curcumin in cells, and provide a deep insight in understanding how curcumin works in vivo. -- Highlights: ► Curcumin induces oxidative stress by targeting the thioredoxin system. ► Curcumin-modified TrxR quantitatively oxidizes NADPH to generate ROS. ► Knockdown of TrxR1 augments curcumin's cytotoxicity in HeLa cells.

  12. Curcumin targeting the thioredoxin system elevates oxidative stress in HeLa cells

    International Nuclear Information System (INIS)

    Cai, Wenqing; Zhang, Baoxin; Duan, Dongzhu; Wu, Jincai; Fang, Jianguo

    2012-01-01

    The thioredoxin system, composed of thioredoxin reductase (TrxR), thioredoxin (Trx), and NADPH, is ubiquitous in all cells and involved in many redox-dependent signaling pathways. Curcumin, a naturally occurring pigment that gives a specific yellow color in curry food, is consumed in normal diet up to 100 mg per day. This molecule has also been used in traditional medicine for the treatment of a variety of diseases. Curcumin has numerous biological functions, and many of these functions are related to induction of oxidative stress. However, how curcumin elicits oxidative stress in cells is unclear. Our previous work has demonstrated the way by which curcumin interacts with recombinant TrxR1 and alters the antioxidant enzyme into a reactive oxygen species (ROS) generator in vitro. Herein we reported that curcumin can target the cytosolic/nuclear thioredoxin system to eventually elevate oxidative stress in HeLa cells. Curcumin-modified TrxR1 dose-dependently and quantitatively transfers electrons from NADPH to oxygen with the production of ROS. Also, curcumin can drastically down-regulate Trx1 protein level as well as its enzyme activity in HeLa cells, which in turn remarkably decreases intracellular free thiols, shifting the intracellular redox balance to a more oxidative state, and subsequently induces DNA oxidative damage. Furthermore, curcumin-pretreated HeLa cells are more sensitive to oxidative stress. Knockdown of TrxR1 sensitizes HeLa cells to curcumin cytotoxicity, highlighting the physiological significance of targeting TrxR1 by curcumin. Taken together, our data disclose a previously unrecognized prooxidant mechanism of curcumin in cells, and provide a deep insight in understanding how curcumin works in vivo. -- Highlights: ► Curcumin induces oxidative stress by targeting the thioredoxin system. ► Curcumin-modified TrxR quantitatively oxidizes NADPH to generate ROS. ► Knockdown of TrxR1 augments curcumin's cytotoxicity in HeLa cells. ► Curcumin

  13. 13 reasons why the brain is susceptible to oxidative stress

    Directory of Open Access Journals (Sweden)

    James Nathan Cobley

    2018-05-01

    Full Text Available The human brain consumes 20% of the total basal oxygen (O2 budget to support ATP intensive neuronal activity. Without sufficient O2 to support ATP demands, neuronal activity fails, such that, even transient ischemia is neurodegenerative. While the essentiality of O2 to brain function is clear, how oxidative stress causes neurodegeneration is ambiguous. Ambiguity exists because many of the reasons why the brain is susceptible to oxidative stress remain obscure. Many are erroneously understood as the deleterious result of adventitious O2 derived free radical and non-radical species generation. To understand how many reasons underpin oxidative stress, one must first re-cast free radical and non-radical species in a positive light because their deliberate generation enables the brain to achieve critical functions (e.g. synaptic plasticity through redox signalling (i.e. positive functionality. Using free radicals and non-radical derivatives to signal sensitises the brain to oxidative stress when redox signalling goes awry (i.e. negative functionality. To advance mechanistic understanding, we rationalise 13 reasons why the brain is susceptible to oxidative stress. Key reasons include inter alia unsaturated lipid enrichment, mitochondria, calcium, glutamate, modest antioxidant defence, redox active transition metals and neurotransmitter auto-oxidation. We review RNA oxidation as an underappreciated cause of oxidative stress. The complex interplay between each reason dictates neuronal susceptibility to oxidative stress in a dynamic context and neural identity dependent manner. Our discourse sets the stage for investigators to interrogate the biochemical basis of oxidative stress in the brain in health and disease.

  14. Nitric oxide reduces oxidative damage induced by water stress in sunflower plants

    Directory of Open Access Journals (Sweden)

    Inês Cechin

    2015-06-01

    Full Text Available Drought is one of the main environmental constraints that can reduce plant yield. Nitric oxide (NO is a signal molecule involved in plant responses to several environmental stresses. The objective of this study was to investigate the cytoprotective effect of a single foliar application of 0, 1, 10 or 100 µM of the NO donor sodium nitroprusside (SNP in sunflower plants under water stress. Water stressed plants treated with 1μM SNP showed an increase in the relative water content compared with 0 μM SNP. Drought reduced the shoot dry weight but SNP applications did not result in alleviation of drought effects. Neither drought nor water stress plus SNP applications altered the content of photosynthetic pigments. Stomatal conductance was reduced by drought and this reduction was accompanied by a significant reduction in intercellular CO2 concentration and photosynthesis. Treatment with SNP did not reverse the effect of drought on the gas exchange characteristics. Drought increased the level of malondialdehyde (MDA and proline and reduced pirogalol peroxidase (PG-POD activity, but did not affect the activity of superoxide dismutase (SOD. When the water stressed plants were treated with 10 μM SNP, the activity of PG-POD and the content of proline were increased and the level of MDA was decreased. The results show that the adverse effects of water stress on sunflower plants are dependent on the external NO concentration. The action of NO may be explained by its ability to increase the levels of antioxidant compounds and the activity of ROS-scavenging enzymes.

  15. Association of abdominal obesity, insulin resistance, and oxidative stress in adipose tissue in women with polycystic ovary syndrome.

    Science.gov (United States)

    Chen, Li; Xu, Wen Ming; Zhang, Dan

    2014-10-01

    To study the expression of insulin signaling-related genes and oxidative stress markers in the visceral adipose tissue obtained from polycystic ovary syndrome (PCOS) patients and healthy control subjects and to investigate the relationships among abdominal obesity, insulin resistance, and oxidative stress at the tissue level. Case-control study. University teaching hospital. In total, 30 PCOS patients and 30 healthy control subjects, who underwent laparoscopic surgery, were included in the study. Abdominal obesity was defined based on waist circumference (WC). The homeostasis model index was used to assess insulin resistance (HOMA-IR). Gene expression of glucose transporter 4 (GLUT4) and insulin receptor substrate 1 (IRS1) in visceral adipose tissue (VAT) and the parameters of oxidative stress, such as superoxide dismutase, enzyme glutathione reductase, and dimethylarginine, were measured, and the expression of protein oxidative damage product 3-nitro-tyrosine residues (nitrotyrosine) in VAT was identified with the use of immunohistochemistry. PCOS was associated with lower expression of GLUT4 and IRS1 and a higher level of oxidative stress in VAT, which was strongly correlated with WC and HOMA-IR. Presence of abdominal obesity further intensified the correlations observed in our measurements. The nitrotyrosine expression in VAT was stronger in PCOS patients. The strong correlation of insulin resistance with oxidative stress at the VAT level suggests that local oxidative stress and abnormalities of insulin signaling in adipose tissue play critical roles in the pathogenesis of PCOS. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  16. Salidroside Improves Homocysteine-Induced Endothelial Dysfunction by Reducing Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Sin Bond Leung

    2013-01-01

    Full Text Available Hyperhomocysteinemia is associated with an increased risk for cardiovascular diseases through increased oxidative stress. Salidroside is an active ingredient of the root of Rhodiola rosea with documented antioxidative, antihypoxia and neuroprotective properties. However, the vascular benefits of salidroside against endothelial dysfunction have yet to be explored. The present study, therefore, aimed to investigate the protective effect of salidroside on homocysteine-induced endothelial dysfunction. Functional studies on the rat aortas were performed to delineate the vascular effect of salidroside. DHE imaging was used to evaluate the reactive oxygen species (ROS level in aortic wall and endothelial cells. Western blotting was performed to assess the protein expression associated with oxidative stress and nitric oxide (NO bioavailability. Exposure to homocysteine attenuated endothelium-dependent relaxations in rat aortas while salidroside pretreatment rescued it. Salidroside inhibited homocystein-induced elevation in the NOX2 expression and ROS overproduction in both aortas and cultured endothelial cells and increased phosphorylation of eNOS which was diminished by homocysteine. The present study shows that salidroside is effective in preserving the NO bioavailability and thus protects against homocysteine-induced impairment of endothelium-dependent relaxations, largely through inhibiting the NOX2 expression and ROS production. Our results indicate a therapeutic potential of salidroside in the management of oxidative-stress-associated cardiovascular dysfunction.

  17. Salidroside Improves Homocysteine-Induced Endothelial Dysfunction by Reducing Oxidative Stress

    Science.gov (United States)

    Leung, Sin Bond; Zhang, Huina; Lau, Chi Wai; Huang, Yu; Lin, Zhixiu

    2013-01-01

    Hyperhomocysteinemia is associated with an increased risk for cardiovascular diseases through increased oxidative stress. Salidroside is an active ingredient of the root of Rhodiola rosea with documented antioxidative, antihypoxia and neuroprotective properties. However, the vascular benefits of salidroside against endothelial dysfunction have yet to be explored. The present study, therefore, aimed to investigate the protective effect of salidroside on homocysteine-induced endothelial dysfunction. Functional studies on the rat aortas were performed to delineate the vascular effect of salidroside. DHE imaging was used to evaluate the reactive oxygen species (ROS) level in aortic wall and endothelial cells. Western blotting was performed to assess the protein expression associated with oxidative stress and nitric oxide (NO) bioavailability. Exposure to homocysteine attenuated endothelium-dependent relaxations in rat aortas while salidroside pretreatment rescued it. Salidroside inhibited homocystein-induced elevation in the NOX2 expression and ROS overproduction in both aortas and cultured endothelial cells and increased phosphorylation of eNOS which was diminished by homocysteine. The present study shows that salidroside is effective in preserving the NO bioavailability and thus protects against homocysteine-induced impairment of endothelium-dependent relaxations, largely through inhibiting the NOX2 expression and ROS production. Our results indicate a therapeutic potential of salidroside in the management of oxidative-stress-associated cardiovascular dysfunction. PMID:23589720

  18. Caenorhabditis elegans: A Useful Model for Studying Metabolic Disorders in Which Oxidative Stress Is a Contributing Factor

    Directory of Open Access Journals (Sweden)

    Elizabeth Moreno-Arriola

    2014-01-01

    Full Text Available Caenorhabditis elegans is a powerful model organism that is invaluable for experimental research because it can be used to recapitulate most human diseases at either the metabolic or genomic level in vivo. This organism contains many key components related to metabolic and oxidative stress networks that could conceivably allow us to increase and integrate information to understand the causes and mechanisms of complex diseases. Oxidative stress is an etiological factor that influences numerous human diseases, including diabetes. C. elegans displays remarkably similar molecular bases and cellular pathways to those of mammals. Defects in the insulin/insulin-like growth factor-1 signaling pathway or increased ROS levels induce the conserved phase II detoxification response via the SKN-1 pathway to fight against oxidative stress. However, it is noteworthy that, aside from the detrimental effects of ROS, they have been proposed as second messengers that trigger the mitohormetic response to attenuate the adverse effects of oxidative stress. Herein, we briefly describe the importance of C. elegans as an experimental model system for studying metabolic disorders related to oxidative stress and the molecular mechanisms that underlie their pathophysiology.

  19. The Role of Oxidative Stress and Antioxidants in Liver Diseases

    Directory of Open Access Journals (Sweden)

    Sha Li

    2015-11-01

    Full Text Available A complex antioxidant system has been developed in mammals to relieve oxidative stress. However, excessive reactive species derived from oxygen and nitrogen may still lead to oxidative damage to tissue and organs. Oxidative stress has been considered as a conjoint pathological mechanism, and it contributes to initiation and progression of liver injury. A lot of risk factors, including alcohol, drugs, environmental pollutants and irradiation, may induce oxidative stress in liver, which in turn results in severe liver diseases, such as alcoholic liver disease and non-alcoholic steatohepatitis. Application of antioxidants signifies a rational curative strategy to prevent and cure liver diseases involving oxidative stress. Although conclusions drawn from clinical studies remain uncertain, animal studies have revealed the promising in vivo therapeutic effect of antioxidants on liver diseases. Natural antioxidants contained in edible or medicinal plants often possess strong antioxidant and free radical scavenging abilities as well as anti-inflammatory action, which are also supposed to be the basis of other bioactivities and health benefits. In this review, PubMed was extensively searched for literature research. The keywords for searching oxidative stress were free radicals, reactive oxygen, nitrogen species, anti-oxidative therapy, Chinese medicines, natural products, antioxidants and liver diseases. The literature, including ours, with studies on oxidative stress and anti-oxidative therapy in liver diseases were the focus. Various factors that cause oxidative stress in liver and effects of antioxidants in the prevention and treatment of liver diseases were summarized, questioned, and discussed.

  20. Analysis of Oxidative Stress Status, Catalase and Catechol-O-Methyltransferase Polymorphisms in Egyptian Vitiligo Patients

    Science.gov (United States)

    Mehaney, Dina A.; Darwish, Hebatallah A.; Hegazy, Rehab A.; Nooh, Mohammed M.; Tawdy, Amira M.; Gawdat, Heba I.; El-Sawalhi, Maha M.

    2014-01-01

    Vitiligo is the most common depigmentation disorder of the skin. Oxidative stress is implicated as one of the probable events involved in vitiligo pathogenesis possibly contributing to melanocyte destruction. Evidence indicates that certain genes including those involved in oxidative stress and melanin synthesis are crucial for development of vitiligo. This study evaluates the oxidative stress status, the role of catalase (CAT) and catechol-O-Methyltransferase (COMT) gene polymorphisms in the etiology of generalized vitiligo in Egyptians. Total antioxidant capacity (TAC) and malondialdehyde (MDA) levels as well as CAT exon 9 T/C and COMT 158 G/A polymorphisms were determined in 89 patients and 90 age and sex-matched controls. Our results showed significantly lower TAC along with higher MDA levels in vitiligo patients compared with controls. Meanwhile, genotype and allele distributions of CAT and COMT polymorphisms in cases were not significantly different from those of controls. Moreover, we found no association between both polymorphisms and vitiligo susceptibility. In conclusion, the enhanced oxidative stress with the lack of association between CAT and COMT polymorphisms and susceptibility to vitiligo in our patients suggest that mutations in other genes related to the oxidative pathway might contribute to the etiology of generalized vitiligo in Egyptian population. PMID:24915010

  1. Analysis of oxidative stress status, catalase and catechol-O-methyltransferase polymorphisms in Egyptian vitiligo patients.

    Directory of Open Access Journals (Sweden)

    Dina A Mehaney

    Full Text Available Vitiligo is the most common depigmentation disorder of the skin. Oxidative stress is implicated as one of the probable events involved in vitiligo pathogenesis possibly contributing to melanocyte destruction. Evidence indicates that certain genes including those involved in oxidative stress and melanin synthesis are crucial for development of vitiligo. This study evaluates the oxidative stress status, the role of catalase (CAT and catechol-O-Methyltransferase (COMT gene polymorphisms in the etiology of generalized vitiligo in Egyptians. Total antioxidant capacity (TAC and malondialdehyde (MDA levels as well as CAT exon 9 T/C and COMT 158 G/A polymorphisms were determined in 89 patients and 90 age and sex-matched controls. Our results showed significantly lower TAC along with higher MDA levels in vitiligo patients compared with controls. Meanwhile, genotype and allele distributions of CAT and COMT polymorphisms in cases were not significantly different from those of controls. Moreover, we found no association between both polymorphisms and vitiligo susceptibility. In conclusion, the enhanced oxidative stress with the lack of association between CAT and COMT polymorphisms and susceptibility to vitiligo in our patients suggest that mutations in other genes related to the oxidative pathway might contribute to the etiology of generalized vitiligo in Egyptian population.

  2. Protective Effects of Alkaloid Compounds from Nelumbinis Plumula on tert-Butyl Hydroperoxide-Induced Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Ze-Bin Guo

    2013-08-01

    Full Text Available This study was conducted to investigate the effect of Nelumbinis Plumula total alkaloid (NPA and its main alkaloid components on oxidative stress induced by tert-butyl hydroperoxide (t-BHP in the human hepatocellular HepG2 cell line. According to HPLC analysis, several major alkaloid compounds such as liensinine, isoliensinine and neferine were present in NPA. The cytotoxic effects in 0.55 mM t-BHP-induced HepG2 cells were significantly inhibited by NPA and the major compound in NPA, neferine, showed the strongest activities. The protective effect of neferine against oxidative stress induced by t-BHP may be associated with decreased ROS formation, TBARS generation, LDH release and increased GSH levels, suggesting their involvement of the cytoprotective on oxidative stress. The effects were comparable with quercetin, which was used as positive control. Overall, total alkaloid and alkaloid compounds from Nelumbinis Plumula displayed a significant cytoprotective effect against oxidative stress. Further study is needed to elucidate the relationship between the chemical structures of the components in NPA and their protective effect on oxidative stress.

  3. Effects of Exogenous Melatonin on Methyl Viologen-Mediated Oxidative Stress in Apple Leaf

    Directory of Open Access Journals (Sweden)

    Zhiwei Wei

    2018-01-01

    Full Text Available Oxidative stress is a major source of damage of plants exposed to adverse environments. We examined the effect of exogenous melatonin (MT in limiting of oxidative stress caused by methyl viologen (MV; paraquatin in apple leaves (Malus domestica Borkh.. When detached leaves were pre-treated with melatonin, their level of stress tolerance increased. Under MV treatment, melatonin effectively alleviated the decrease in chlorophyll concentrations and maximum potential Photosystem II efficiency while also mitigating membrane damage and lipid peroxidation when compared with control leaves that were sprayed only with water prior to the stress experiment. The melatonin-treated leaves also showed higher activities and transcripts of antioxidant enzymes superoxide dismutase, peroxidase, and catalase. In addition, the expression of genes for those enzymes was upregulated. Melatonin-synthesis genes MdTDC1, MdT5H4, MdAANAT2, and MdASMT1 were also upregulated under oxidative stress in leaves but that expression was suppressed in response to 1 mM melatonin pretreatment during the MV treatments. Therefore, we conclude that exogenous melatonin mitigates the detrimental effects of oxidative stress, perhaps by slowing the decline in chlorophyll concentrations, moderating membrane damage and lipid peroxidation, increasing the activities of antioxidant enzymes, and changing the expression of genes for melatonin synthesis.

  4. Oxidative stress induces mitochondrial fragmentation in frataxin-deficient cells

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, Sophie [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); ED515 UPMC, 4 place Jussieu 75005 Paris (France); Sliwa, Dominika [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); Rustin, Pierre [Inserm, U676, Physiopathology and Therapy of Mitochondrial Disease Laboratory, 75019 Paris (France); Universite Paris-Diderot, Faculte de Medecine Denis Diderot, IFR02 Paris (France); Camadro, Jean-Michel [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); Santos, Renata, E-mail: santos.renata@ijm.univ-paris-diderot.fr [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Yeast frataxin-deficiency leads to increased proportion of fragmented mitochondria. Black-Right-Pointing-Pointer Oxidative stress induces complete mitochondrial fragmentation in {Delta}yfh1 cells. Black-Right-Pointing-Pointer Oxidative stress increases mitochondrial fragmentation in patient fibroblasts. Black-Right-Pointing-Pointer Inhibition of mitochondrial fission in {Delta}yfh1 induces oxidative stress resistance. -- Abstract: Friedreich ataxia (FA) is the most common recessive neurodegenerative disease. It is caused by deficiency in mitochondrial frataxin, which participates in iron-sulfur cluster assembly. Yeast cells lacking frataxin ({Delta}yfh1 mutant) showed an increased proportion of fragmented mitochondria compared to wild-type. In addition, oxidative stress induced complete fragmentation of mitochondria in {Delta}yfh1 cells. Genetically controlled inhibition of mitochondrial fission in these cells led to increased resistance to oxidative stress. Here we present evidence that in yeast frataxin-deficiency interferes with mitochondrial dynamics, which might therefore be relevant for the pathophysiology of FA.

  5. Fatty acid oxidation changes and the correlation with oxidative stress in different preeclampsia-like mouse models.

    Directory of Open Access Journals (Sweden)

    Xiaoyan Ding

    Full Text Available BACKGROUND: Long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD expression is decreased in placenta of some cases of preeclampsia (PE which may result in free fatty acid (FFA increased. High FFA level will induce oxidative stress, so abnormal long-chain fatty acid-oxidation may participate in the pathogenesis of PE through oxidative stress pathway. METHODS: PE-like groups were ApoC3 transgenic mice with abnormal fatty acid metabolism, classical PE-like models with injection of Nw-nitro-L-arginine-methyl ester (L-NA or lipopolysaccharide (LPS and the antiphospholipid syndrome (APS mouse model with β2GPI injection (ApoC3+NS, ApoC3+L-NA, L-NA, LPS and β2GPI groups. The control group was wild-type mice with normal saline injection. Except for β2GPI mice, the other mice were subdivided into pre-implantation (Pre and mid-pregnancy (Mid subgroups by injection time. RESULTS: All PE-like groups showed hypertension and proteinuria except ApoC3+NS mice only showed hypertension. Serum FFA levels increased significantly except in LPS group compared to controls (P<0.05. LCHAD mRNA and protein expression in the liver and placenta was significantly higher for ApoC3+NS, ApoC3+L-NA and β2GPI mice and lower for L-NA mice than controls (P<0.05 but did not differ between LPS mice and controls. P47phox mRNA and protein expression in the liver significantly increased in all PE-like groups except LPS group, while P47phox expression in the placenta only significantly increased in L-NA and β2GPI groups. CONCLUSIONS: Abnormal long-chain fatty acid-oxidation may play a different role in different PE-like models and in some cases participate in the pathogenesis of PE through oxidative stress pathway.

  6. Genotoxicity and oxidative stress of microwave radiation role of ascorbic acid

    International Nuclear Information System (INIS)

    Desouky, O.S.; Abdel Karim, M.A.; Deiaa El Deen, D.A.; Nayal, N.A.

    2005-01-01

    Radiofrequency fields and especially microwaves are very important part of electromagnetic spectrum that can produce generations of reactive oxygen species, and thus can affect DNA and cause chromosomal aberrations. So this effect can be diminished by the supplement of an antioxidant such as ascorbic acid. In this study, the proposed protective role of ascorbic acid was tested against the EMF induced chromosomal aberrations and lipid peroxidation. The present study proved that EMF had a clastogenic effect on the bone marrow cells of mice, either with the exposure to EMF; 950 MHz or frequency EMF; 2450 MHz. This effect was evidenced by structural and numerical chromosomal aberrations. The study also proved that EMF had an effect on oxidative stress, evidenced by increase in the level of lipid peroxide, in a dose dependent manner. So, the mechanism of EMF induced chromosomal aberrations can be explained by this oxidative stress induced by EMF exposure. The present study showed that ascorbic acid had a protective effect against both EMF induced chromosomal aberrations and oxidative stress, when it is applied concomitantly with EMF exposure either at frequency of 950 MHz or 2450 MHz. this is evident by decreases in the level of lipid peroxide and decrease in chromosomal aberrations

  7. THE ROLE OF PROTEIN OXIDATIVE MODIFICATION IN REDOX-REGULATION OF CASPASE-3 ACTIVITY IN BLOOD LYMPHOCYTES DURING OXIDATIVE STRESS IN VITRO

    Directory of Open Access Journals (Sweden)

    O. L. Nosareva

    2015-01-01

    Full Text Available The formation of oxidative stress lies at the heart of many frequent and socially-important diseases. Blood lymphocytes are the cells which provide immunological control of our organism. As a result of their function implementation blood lymphocytes contact with different endogenic and exogenic factors, which can lead to active oxygen species production activation, macromolecules oxidative modification and to cell survival alteration. At the present time it is essential to expand and deepen the fundamental knowledge of blood lymphocytes apoptosis regulation peculiarities. The research objective was to establish the interaction among alterations of glutathione system condition, carbonylation level, protein glutathionylation and caspase-3 activity in blood lymphocytes during oxidative stress in vitro.Material and Methods. The material for research was blood lymphocytes cultivated with addition of hydrogen peroxide in final concentration of 0,5 mmol and/or protein SH-group inhibitor N-ethylmaleimide – 5 mmol, protector – 5 mmol – 1,4-dithioerythritol. Reduced, oxidized and protein-bound glutathione concentration was measured by method of spectropho-tometry, additionally, the ratio size of reduced to oxidized thiol fraction was estimated. With help of enzymoimmunoassay the level of protein carbonyl derivatives was evaluated; caspase-3 activity was registered by spectrofluorometric method.Results. Protein SH-group blocking in blood lymphocytes during oxidative stress in vitro was accompanied by protein-bound glutathione concentration rapid decrease in connection with increase of protein carbonyl derivatives content and caspase-3 activity. Protein SH-group protection in blood lymphocytes during oxidative stress in vitro was accompanied by concentration increase of protein-bound glutathione and protein carbonyl derivatives under comparable values of enzyme activity under study.Conclusion. The carried out research shows that caspase-3 and protein

  8. Status epilepticus in immature rats is associated with oxidative stress and mitochondrial dysfunction

    Directory of Open Access Journals (Sweden)

    Jaroslava eFolbergrová

    2016-05-01

    Full Text Available Epilepsy is a neurologic disorder, particularly frequent in infants and children where it can lead to serious consequences later in life. Oxidative stress and mitochondrial dysfunction are implicated in the pathogenesis of many neurological disorders including epilepsy in adults. However, their role in immature epileptic brain is unclear since there have been two contrary opinions: oxidative stress is age-dependent and does not occur in immature brain during status epilepticus and, on the other hand, evidence of oxidative stress in immature brain during a specific model of status epilepticus. To solve this dilemma, we have decided to investigate oxidative stress following status epilepticus induced in immature 12-day-old rats by three substances with a different mechanism of action, namely 4-aminopyridine, LiCl-pilocarpine or kainic acid. FluoroJade-B staining revealed mild brain damage especially in hippocampus and thalamus in each of the tested models. Decrease of glucose and glycogen with parallel rises of lactate clearly indicate high rate of glycolysis, which was apparently not sufficient in 4-AP and Li-Pilo status, as evident from the decreases of PCr levels. Hydroethidium method revealed significantly higher levels of superoxide anion (by ~60 % in the hippocampus, cerebral cortex and thalamus of immature rats during status. Status epilepticus lead to mitochondrial dysfunction with a specific pronounced decrease of complex I activity that persisted for a long period of survival. Complex II and IV activities remained in the control range. Antioxidant treatment with SOD mimetic MnTMPYP or peroxynitrite scavenger FeTPPS significantly attenuated oxidative stress and inhibition of complex I activity. These findings bring evidence that oxidative stress and mitochondrial dysfunction are age and model independent, and may thus be considered a general phenomenon. They can have a clinical relevance for a novel approach to the treatment of epilepsy

  9. Temperature and Oxidative Stress as Triggers for Virulence Gene Expression in Pathogenic Leptospira spp.

    Directory of Open Access Journals (Sweden)

    Tricia Fraser

    2017-05-01

    Full Text Available Leptospirosis is a zooanthroponosis aetiologically caused by pathogenic bacteria belonging to the genus, Leptospira. Environmental signals such as increases in temperatures or oxidative stress can trigger response regulatory modes of virulence genes during infection. This study sought to determine the effect of temperature and oxidative stress on virulence associated genes in highly passaged Leptospira borgpeterseneii Jules and L. interrogans Portlandvere. Bacteria were grown in EMJH at 30°C, 37°C, or at 30°C before being transferred to 37°C. A total of 14 virulence-associated genes (fliY, invA, lenA, ligB, lipL32, lipL36, lipL41, lipL45, loa22, lsa21, mce, ompL1, sph2, and tlyC were assessed using endpoint PCR. Transcriptional analyses of lenA, lipL32, lipL41, loa22, sph2 were assessed by quantitative real-time RT-PCR at the temperature conditions. To assess oxidative stress, bacteria were exposed to H2O2 for 30 and 60 min with or without the temperature stress. All genes except ligB (for Portlandvere and ligB and mce (for Jules were detectable in the strains. Quantitatively, temperature stress resulted in significant changes in gene expression within species or between species. Temperature changes were more influential in gene expression for Jules, particularly at 30°C and upshift conditions; at 37°C, expression levels were higher for Portlandvere. However, compared to Jules, where temperature was influential in two of five genes, temperature was an essential element in four of five genes in Portlandvere exposed to oxidative stress. At both low and high oxidative stress levels, the interplay between genetic predisposition (larger genome size and temperature was biased towards Portlandvere particularly at 30°C and upshift conditions. While it is clear that expression of many virulence genes in highly passaged strains of Leptospira are attenuated or lost, genetic predisposition, changes in growth temperature and/or oxidative intensity and

  10. Mechanism of H₂O₂-induced oxidative stress regulating viability and biocontrol ability of Rhodotorula glutinis.

    Science.gov (United States)

    Chen, Jian; Li, Boqiang; Qin, Guozheng; Tian, Shiping

    2015-01-16

    The use of antagonistic yeasts to control postharvest pathogens is a promising alternative to fungicides. The effectiveness of the antagonists against fungal pathogens is greatly dependent on their viability, which is usually mediated by reactive oxygen species (ROS). Here, we investigated the effects of H₂O₂-induced oxidative stress on the viability and biocontrol efficacy of Rhodotorula glutinis and, using flow cytometric analysis, observed the changes of ROS accumulation and apoptosis in the yeast cells with or without H₂O₂ treatment. We found that the viability of R. glutinis decreased in a time- and dose-dependent manner under H₂O₂-induced oxidative stress. Compared to the control, yeast cells exposed to oxidative stress exhibited more accumulation of ROS and higher levels of protein oxidative damage, but showed lower efficacy for biocontrol of Penicillium expansum causing blue mold rot on peach fruit. The results indicate that apoptosis is a main cause of the cell viability loss in R. glutinis, which is attributed to ROS accumulation under oxidative stress. These findings offer a plausible explanation that oxidative stress affects biocontrol efficacy of R. glutinis via regulating its viability and cell apoptosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Melamine Induces Oxidative Stress in Mouse Ovary.

    Directory of Open Access Journals (Sweden)

    Xiao-Xin Dai

    Full Text Available Melamine is a nitrogen heterocyclic triazine compound which is widely used as an industrial chemical. Although melamine is not considered to be acutely toxic with a high LD50 in animals, food contaminated with melamine expose risks to the human health. Melamine has been reported to be responsible for the renal impairment in mammals, its toxicity on the reproductive system, however, has not been adequately assessed. In the present study, we examined the effect of melamine on the follicle development and ovary formation. The data showed that melamine increased reactive oxygen species (ROS levels, and induced granulosa cell apoptosis as well as follicle atresia. To further analyze the mechanism by which melamine induces oxidative stress, the expression and activities of two key antioxidant enzymes superoxide dismutase (SOD and glutathione peroxidase (GPX were analyzed, and the concentration of malondialdehyde (MDA were compared between control and melamine-treated ovaries. The result revealed that melamine changed the expression and activities of SOD and GPX in the melamine-treated mice. Therefore, we demonstrate that melamine causes damage to the ovaries via oxidative stress pathway.

  12. Oxidative Stress Implications in the Affective Disorders: Main Biomarkers, Animal Models Relevance, Genetic Perspectives, and Antioxidant Approaches.

    Science.gov (United States)

    Balmus, Ioana Miruna; Ciobica, Alin; Antioch, Iulia; Dobrin, Romeo; Timofte, Daniel

    2016-01-01

    The correlation between the affective disorders and the almost ubiquitous pathological oxidative stress can be described in a multifactorial way, as an important mechanism of central nervous system impairment. Whether the obvious changes which occur in oxidative balance of the affective disorders are a part of the constitutive mechanism or a collateral effect yet remains as an interesting question. However it is now clear that oxidative stress is a component of these disorders, being characterized by different aspects in a disease-dependent manner. Still, there are a lot of controversies regarding the relevance of the oxidative stress status in most of the affective disorders and despite the fact that most of the studies are showing that the affective disorders development can be correlated to increased oxidative levels, there are various studies stating that oxidative stress is not linked with the mood changing tendencies. Thus, in this minireview we decided to describe the way in which oxidative stress is involved in the affective disorders development, by focusing on the main oxidative stress markers that could be used mechanistically and therapeutically in these deficiencies, the genetic perspectives, some antioxidant approaches, and the relevance of some animal models studies in this context.

  13. Association between Diastolic Dysfunction with Inflammation and Oxidative Stress in Females ob/ob Mice

    Science.gov (United States)

    Sartori, Michelle; Conti, Filipe F.; Dias, Danielle da Silva; dos Santos, Fernando; Machi, Jacqueline F.; Palomino, Zaira; Casarini, Dulce E.; Rodrigues, Bruno; De Angelis, Kátia; Irigoyen, Maria-Claudia

    2017-01-01

    Objective: To evaluate autonomic and cardiovascular function, as well as inflammatory and oxidative stress markers in ob/ob female mice. Methods: Metabolic parameters, cardiac function, arterial pressure (AP), autonomic, hormonal, inflammatory, and oxidative stress markers were evaluated in 12-weeks female wild-type (WT group) and ob/ob mice (OB group). Results: OB animals showed increased body weight, blood glucose, and triglyceride levels, along with glucose intolerance, when compared to WT animals. Ejection fraction (EF) and AP were similar between groups; however, the OB group presented diastolic dysfunction, as well as an impairment on myocardial performance index. Moreover, the OB group exhibited important autonomic dysfunction and baroreflex sensitivity impairment, when compared to WT group. OB group showed increased Angiotensin II levels in heart and renal tissues; decreased adiponectin and increased inflammatory markers in adipose tissue and spleen. Additionally, OB mice presented a higher damage to proteins and lipoperoxidation and lower activity of antioxidant enzymes in kidney and heart. Correlations were found between autonomic dysfunction with angiotensin II and inflammatory mediators, as well as between inflammation and oxidative stress. Conclusions: Our results showed that female adult ob/ob mice presented discrete diastolic dysfunction accompanied by autonomic disorder, which is associated with inflammation and oxidative stress in these animals. PMID:28878683

  14. Association between Diastolic Dysfunction with Inflammation and Oxidative Stress in Females ob/ob Mice

    Directory of Open Access Journals (Sweden)

    Michelle Sartori

    2017-08-01

    Full Text Available Objective: To evaluate autonomic and cardiovascular function, as well as inflammatory and oxidative stress markers in ob/ob female mice.Methods: Metabolic parameters, cardiac function, arterial pressure (AP, autonomic, hormonal, inflammatory, and oxidative stress markers were evaluated in 12-weeks female wild-type (WT group and ob/ob mice (OB group.Results: OB animals showed increased body weight, blood glucose, and triglyceride levels, along with glucose intolerance, when compared to WT animals. Ejection fraction (EF and AP were similar between groups; however, the OB group presented diastolic dysfunction, as well as an impairment on myocardial performance index. Moreover, the OB group exhibited important autonomic dysfunction and baroreflex sensitivity impairment, when compared to WT group. OB group showed increased Angiotensin II levels in heart and renal tissues; decreased adiponectin and increased inflammatory markers in adipose tissue and spleen. Additionally, OB mice presented a higher damage to proteins and lipoperoxidation and lower activity of antioxidant enzymes in kidney and heart. Correlations were found between autonomic dysfunction with angiotensin II and inflammatory mediators, as well as between inflammation and oxidative stress.Conclusions: Our results showed that female adult ob/ob mice presented discrete diastolic dysfunction accompanied by autonomic disorder, which is associated with inflammation and oxidative stress in these animals.

  15. Hesperidin, a citrus bioflavonoid, alleviates trichloroethylene-induced oxidative stress in Drosophila melanogaster.

    Science.gov (United States)

    Abolaji, Amos Olalekan; Babalola, Oluwatoyin Victoria; Adegoke, Abimbola Kehinde; Farombi, Ebenezer Olatunde

    2017-10-01

    Trichloroethylene (TCE) is a chlorinated organic pollutant of groundwater with diverse toxic effects in animals and humans. Here, we investigated the ameliorative role of hesperidin, a citrus bioflavonoid on TCE-induced toxicity in Drosophila melanogaster. Four groups of D. melanogaster (50 flies/vial, with 5 vials/group) were exposed to ethanol (2.5%, control), HSP (400mg/10g diet), TCE (10μM/10g diet) and TCE (10μM/10g diet)+HSP (400mg/10g diet) respectively in the diet for 5days. Then, selected oxidative stress and antioxidant markers were evaluated. The results showed that TCE significantly increased the level of reactive oxygen species (ROS) and inhibited catalase, glutathione S-transferase and acetylcholinesterase (AChE) activities with concurrent depletion of total thiol level. However, co-administration of TCE and hesperidin mitigated TCE-induced depletion of antioxidants, and restored ROS level and AChE activity in the flies (p<0.05). Overall, hesperidin offered protective potency on TCE-induced oxidative stress in the flies via anti-oxidative mechanism. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Salidroside Suppresses HUVECs Cell Injury Induced by Oxidative Stress through Activating the Nrf2 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yao Zhu

    2016-08-01

    Full Text Available Oxidative stress plays an important role in the pathogenesis of cardiovascular diseases. Salidroside (SAL, one of the main effective constituents of Rhodiola rosea, has been reported to suppress oxidative stress-induced cardiomyocyte injury and necrosis by promoting transcription of nuclear factor E2-related factor 2 (Nrf2-regulated genes such as heme oxygenase-1 (HO-1 and NAD(PH dehydrogenase (quinone1 (NQO1. However, it has not been indicated whether SAL might ameliorate endothelial injury induced by oxidative stress. Here, our study demonstrated that SAL might suppress HUVEC cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. The results of our study indicated that SAL decreased the levels of intercellular reactive oxygen species (ROS and malondialdehyde (MDA, and improved the activities of superoxide dismutase (SOD and catalase (CAT, resulting in protective effects against oxidative stress-induced cell damage in HUVECs. It suppressed oxidative stress damage by inducing Nrf2 nuclear translocation and activating the expression of Nrf2-regulated antioxidant enzyme genes such as HO-1 and NQO1 in HUVECs. Knockdown of Nrf2 with siRNA abolished the cytoprotective effects against oxidative stress, decreased the expression of Nrf2, HO-1, and NQO1, and inhibited the nucleus translocation of Nrf2 in HUVECs. This study is the first to demonstrate that SAL suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway.

  17. The relationship of nitric oxide synthesis capacity, oxidative stress, and albumin-to-creatinine ratio in black and white men: the SABPA study.

    Science.gov (United States)

    Mels, Catharina M C; Huisman, Hugo W; Smith, Wayne; Schutte, Rudolph; Schwedhelm, Edzard; Atzler, Dorothee; Böger, Rainer H; Ware, Lisa J; Schutte, Aletta E

    2016-02-01

    Inadequate substrate availability and increased nitric oxide synthase inhibitor levels attenuate nitric oxide (NO) synthesis, whereas increased vascular oxidative stress may lead to inactivation of NO. We compared markers of NO synthesis capacity and oxidative stress in a bi-ethnic male population. Inter-relationships of ambulatory blood pressure and urinary albumin-to-creatinine ratio with NO synthesis capacity and oxidative stress markers were investigated. NO synthesis capacity markers (L-arginine, asymmetric dimethylarginine (ADMA), and symmetric dimethylarginine (SDMA)) and oxidative stress markers (serum peroxides, total glutathione, glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD), and catalase) were measured. Black men displayed higher blood pressure and albumin-to-creatinine ratio (all p creatinine ratio. In white men, albumin-to-creatinine ratio was positively associated with ADMA (R (2) = 0.18; β = 0.39; p creatinine ratio displayed a favorable NO synthesis capacity. This may be counteracted by increased inactivation of NO, although it was not linked to vascular or renal phenotypes. In white men, reduced NO synthesis capacity may lower NO bio-availability, thereby influencing the albumin-to-creatinine ratio.

  18. Buffer modulation of menadione-induced oxidative stress in Saccharomyces cerevisiae.

    Science.gov (United States)

    Lushchak, Oleh V; Bayliak, Maria M; Korobova, Olha V; Levine, Rodney L; Lushchak, Volodymyr I

    2009-01-01

    The objective of this study was to compare, in vivo, the effects of bicarbonate and phosphate buffers on survival and menadione-induced oxidative stress in yeast cells. The latter were treated with different concentrations of menadione in the presence of these two buffers. At 25 mM concentration of buffers, menadione only slightly reduced yeast surviving; at 50 mM concentration, cell killing by menadione was much more pronounced in bicarbonate than in phosphate buffer. Although the content of protein carbonyl groups did not show development of oxidative stress under menadione-induced stress, inactivation of aconitase and decrease in glutathione level mirrored its induction. However, cellular glutathione and aconitase activity decrease did not correlate with yeast survival. In vitro, aconitase was more quickly inactivated in 50 mM carbonate, than in 50 mM phosphate buffer. The possible involvement of the carbonate radical in these processes is discussed.

  19. IGF-1, oxidative stress, and atheroprotection

    Science.gov (United States)

    Higashi, Yusuke; Sukhanov, Sergiy; Anwar, Asif; Shai, Shaw-Yung; Delafontaine, Patrice

    2009-01-01

    Atherosclerosis is a chronic inflammatory disease in which early endothelial dysfunction and subintimal modified lipoprotein deposition progress to complex, advanced lesions that are predisposed to erosion, rupture and thrombosis. Oxidative stress plays a critical role not only in initial lesion formation but also in lesion progression and destabilization. While growth factors are thought to promote vascular smooth muscle cell proliferation and migration, thereby increasing neointima, recent animal studies indicate that IGF-1 exerts pleiotropic anti-oxidant effects along with anti-inflammatory effects that together reduce atherosclerotic burden. This review discusses the effects of IGF-1 in vascular injury and atherosclerosis models, emphasizing the relationship between oxidative stress and potential atheroprotective actions of IGF-1. PMID:20071192

  20. Oxidative stress impairs the heat stress response and delays unfolded protein recovery.

    Directory of Open Access Journals (Sweden)

    Masaaki Adachi

    2009-11-01

    Full Text Available Environmental changes, air pollution and ozone depletion are increasing oxidative stress, and global warming threatens health by heat stress. We now face a high risk of simultaneous exposure to heat and oxidative stress. However, there have been few studies investigating their combined adverse effects on cell viability.Pretreatment of hydrogen peroxide (H(2O(2 specifically and highly sensitized cells to heat stress, and enhanced loss of mitochondrial membrane potential. H(2O(2 exposure impaired the HSP40/HSP70 induction as heat shock response (HSR and the unfolded protein recovery, and enhanced eIF2alpha phosphorylation and/or XBP1 splicing, land marks of ER stress. These H(2O(2-mediated effects mimicked enhanced heat sensitivity in HSF1 knockdown or knockout cells. Importantly, thermal preconditioning blocked H(2O(2-mediated inhibitory effects on refolding activity and rescued HSF1 +/+ MEFs, but neither blocked the effects nor rescued HSF1 -/- MEFs. These data strongly suggest that inhibition of HSR and refolding activity is crucial for H(2O(2-mediated enhanced heat sensitivity.H(2O(2 blocks HSR and refolding activity under heat stress, thereby leading to insufficient quality control and enhancing ER stress. These uncontrolled stress responses may enhance cell death. Our data thus highlight oxidative stress as a crucial factor affecting heat tolerance.

  1. Plant Polyphenol Antioxidants and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    INES URQUIAGA

    2000-01-01

    Full Text Available In recent years there has been a remarkable increment in scientific articles dealing with oxidative stress. Several reasons justify this trend: knowledge about reactive oxygen and nitrogen species metabolism; definition of markers for oxidative damage; evidence linking chronic diseases and oxidative stress; identification of flavonoids and other dietary polyphenol antioxidants present in plant foods as bioactive molecules; and data supporting the idea that health benefits associated with fruits, vegetables and red wine in the diet are probably linked to the polyphenol antioxidants they contain.In this review we examine some of the evidence linking chronic diseases and oxidative stress, the distribution and basic structure of plant polyphenol antioxidants, some biological effects of polyphenols, and data related to their bioavailability and the metabolic changes they undergo in the intestinal lumen and after absorption into the organism.Finally, we consider some of the challenges that research in this area currently faces, with particular emphasis on the contributions made at the International Symposium "Biology and Pathology of Free Radicals: Plant and Wine Polyphenol Antioxidants" held July 29-30, 1999, at the Catholic University, Santiago, Chile and collected in this special issue of Biological Research

  2. Oxidative Stress Markers in Tuberculosis and HIV/TB Co-Infection.

    Science.gov (United States)

    Rajopadhye, Shreewardhan Haribhau; Mukherjee, Sandeepan R; Chowdhary, Abhay S; Dandekar, Sucheta P

    2017-08-01

    Dysfunction of redox homeostasis has been implicated in many pathological conditions. An imbalance of pro- and anti-oxidants have been observed in Tuberculosis (TB) and its co-morbidities especially HIV/AIDS. The pro inflammatory milieu in either condition aggravates the physiological balance of the redox mechanisms. The present study therefore focuses on assessing the redox status of patients suffering from TB and HIV-TB co-infection. To assess the oxidative stress markers in the HIV-TB and TB study cohort. The current prospective study was conducted in Haffkine Institute, Parel, Maharashtra, India, during January 2013 to December 2015. Blood samples from 50 patients each suffering from active TB and HIV-TB co-infection were collected from Seth G.S.Medical College and KEM Hospital Mumbai and Group of Tuberculosis Hospital, Sewree Mumbai. Samples were processed and the experiments were carried out at the Department of Biochemistry, Haffkine Institute. Samples from 50 healthy volunteers were used as controls. Serum was assessed for pro-oxidant markers such as Nitric Oxide (NO), Thiobarbituric Acid Reactive Species (TBARS), C-Reactive Protein (CRP), superoxide anion. Antioxidant markers such as catalase and Superoxide Dismutase (SOD) were assessed. Total serum protein, was also assessed. Among the pro-oxidants, serum NO levels were decreased in TB group while no change was seen in HIV-TB group. TBARS and CRP levels showed significant increase in both groups; superoxide anion increased significantly in HIV-TB group. Catalase levels showed decreased activities in TB group. SOD activity significantly increased in HIV-TB but not in TB group. The total serum proteins were significantly increased in HIV-TB and TB groups. The values of Control cohort were with the normal reference ranges. In the present study, we found the presence of oxidative stress to be profound in the TB and HIV-TB co-infection population.

  3. Oxidative stress in patients with endodontic pathologies

    Directory of Open Access Journals (Sweden)

    Vengerfeldt V

    2017-08-01

    Full Text Available Veiko Vengerfeldt,1 Reet Mändar,2,3 Mare Saag,1 Anneli Piir,2 Tiiu Kullisaar2 1Institute of Dental Sciences, Faculty of Medicine, University of Tartu, 2Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, 3Competence Centre on Health Technologies, Tartu, Estonia Background: Apical periodontitis (AP is an inflammatory disease affecting periradicular tissues. It is a widespread condition but its etiopathogenetic mechanisms have not been completely elucidated and the current treatment options are not always successful.Purpose: To compare oxidative stress (OxS levels in the saliva and the endodontium (root canal [RC] contents in patients with different endodontic pathologies and in endodontically healthy subjects.Patients and methods: The study group of this comparison study included 22 subjects with primary chronic apical periodontitis (pCAP, 26 with posttreatment or secondary chronic apical periodontitis (sCAP, eight with acute periapical abscess, 13 with irreversible pulpitis, and 17 healthy controls. Resting saliva samples were collected before clinical treatment. Pulp samples (remnants of the pulp, tooth tissue, and/or previous root filling material were collected under strict aseptic conditions using the Hedström file. The samples were frozen to −80°C until analysis. OxS markers (myeloperoxidase [MPO], oxidative stress index [OSI], 8-isoprostanes [8-EPI] were detected in the saliva and the endodontium. Results: The highest MPO and 8-EPI levels were seen in pCAP and pulpitis, while the highest levels of OSI were seen in pCAP and abscess patients, as well as the saliva of sCAP patients. Controls showed the lowest OxS levels in both RC contents and saliva. Significant positive correlations between OxS markers, periapical index, and pain were revealed. Patients with pain had significantly higher OxS levels in both the endodontium (MPO median 27.9 vs 72.6 ng/mg protein, p=0.004; OSI 6.0 vs 10.4, p<0

  4. Oxidative stress induces caveolin 1 degradation and impairs caveolae functions in skeletal muscle cells.

    Directory of Open Access Journals (Sweden)

    Alexis Mougeolle

    Full Text Available Increased level of oxidative stress, a major actor of cellular aging, impairs the regenerative capacity of skeletal muscle and leads to the reduction in the number and size of muscle fibers causing sarcopenia. Caveolin 1 is the major component of caveolae, small membrane invaginations involved in signaling and endocytic trafficking. Their role has recently expanded to mechanosensing and to the regulation of oxidative stress-induced pathways. Here, we increased the amount of reactive oxidative species in myoblasts by addition of hydrogen peroxide (H2O2 at non-toxic concentrations. The expression level of caveolin 1 was significantly decreased as early as 10 min after 500 μM H2O2 treatment. This reduction was not observed in the presence of a proteasome inhibitor, suggesting that caveolin 1 was rapidly degraded by the proteasome. In spite of caveolin 1 decrease, caveolae were still able to assemble at the plasma membrane. Their functions however were significantly perturbed by oxidative stress. Endocytosis of a ceramide analog monitored by flow cytometry was significantly diminished after H2O2 treatment, indicating that oxidative stress impaired its selective internalization via caveolae. The contribution of caveolae to the plasma membrane reservoir has been monitored after osmotic cell swelling. H2O2 treatment increased membrane fragility revealing that treated cells were more sensitive to an acute mechanical stress. Altogether, our results indicate that H2O2 decreased caveolin 1 expression and impaired caveolae functions. These data give new insights on age-related deficiencies in skeletal muscle.

  5. Bartter/Gitelman syndromes as a model to study systemic oxidative stress in humans.

    Science.gov (United States)

    Maiolino, Giuseppe; Azzolini, Matteo; Rossi, Gian Paolo; Davis, Paul A; Calò, Lorenzo A

    2015-11-01

    Reactive oxygen species (ROS) are intermediates in reduction-oxidation reactions that begin with the addition of one electron to molecular oxygen, generating the primary ROS superoxide, which in turn interacts with other molecules to produce secondary ROS, such as hydrogen peroxide, hydroxyl radical, and peroxynitrite. ROS are continuously produced during metabolic processes and are deemed to play an important role in cardiovascular diseases, namely, myocardial hypertrophy and fibrosis and atherosclerosis, via oxidative damage of lipids, proteins, and deoxyribonucleic acid. Angiotensin II (Ang II) is a potent vasoactive agent that also exerts mitogenic, proinflammatory, and profibrotic effects through several signaling pathways, in part involving ROS, particularly superoxide and hydrogen peroxide. Moreover, Ang II stimulates NADPH oxidases, leading to higher ROS generation and oxidative stress. Bartter/Gitelman syndrome patients, despite elevated plasma renin activity, Ang II, and aldosterone levels, exhibit reduced peripheral resistance, normal/low blood pressure, and blunted pressor effect of vasoconstrictors. In addition, notwithstanding the activation of the renin-angiotensin system and the increased plasma levels of Ang II, these patients display decreased production of ROS, reduced oxidative stress, and increased antioxidant defenses. In fact, Bartter/Gitelman syndrome patients are characterized by reduced levels of p22(phox) gene expression and undetectable plasma peroxynitrite levels, while showing increased plasma antioxidant power and expression of antioxidant enzymes, such as heme oxygenase-1. In conclusion, multifarious data suggest that Bartter and Gitelman syndrome patients are a model of low oxidative stress and high antioxidant defenses. The contribution offered by the study of these syndromes in elucidating the molecular mechanisms underlying this favorable status could offer chances for new therapeutic targets in disease characterized by high

  6. Oxidative stress and apoptosis after acute respiratory hypoxia and reoxygenation in rat brain

    Directory of Open Access Journals (Sweden)

    Debora Coimbra-Costa

    2017-08-01

    Full Text Available Acute hypoxia increases the formation of reactive oxygen species (ROS in the brain. However, the effect of reoxygenation, unavoidable to achieve full recovery of the hypoxic organ, has not been clearly established. The aim of the present study was to evaluate the effects of exposition to acute severe respiratory hypoxia followed by reoxygenation on the evolution of oxidative stress and apoptosis in the brain. We investigated the effect of in vivo acute severe normobaric hypoxia (rats exposed to 7% O2 for 6 h and reoxygenation in normoxia (21% O2 for 24 h or 48 h on oxidative stress markers, the antioxidant system and apoptosis in the brain. After respiratory hypoxia we found increased levels of HIF-1α expression, lipid peroxidation, protein oxidation and nitric oxide in brain extracts. Antioxidant defence systems such as superoxide dismutase (SOD, reduced glutathione (GSH and glutathione peroxidase (GPx and the reduced/oxidized glutathione (GSH/GSSG ratio were significantly decreased in the brain. After 24 h of reoxygenation, oxidative stress parameters and the anti-oxidant system returned to control values. Regarding the apoptosis parameters, acute hypoxia increased cytochrome c, AIF and caspase 3 activity in the brain. The apoptotic effect is greatest after 24 h of reoxygenation. Immunohistochemistry suggests that CA3 and dentate gyrus in the hippocampus seem more susceptible to hypoxia than the cortex. Severe acute hypoxia increases oxidative damage, which in turn could activate apoptotic mechanisms. Our work is the first to demonstrate that after 24 h of reoxygenation oxidative stress is attenuated, while apoptosis is maintained mainly in the hippocampus, which may, in fact, be the cause of impaired brain function. Keywords: Antioxidants, Apoptosis, Normobaric hypoxia, Oxidative stress, Reoxygenation

  7. Quality of life among post-menopausal women due to oxidative stress boosted by dysthymia and anxiety.

    Science.gov (United States)

    Sánchez-Rodríguez, Martha A; Castrejón-Delgado, Lizett; Zacarías-Flores, Mariano; Arronte-Rosales, Alicia; Mendoza-Núñez, Víctor Manuel

    2017-01-03

    Menopause is the onset of aging in women. During this process, some women experience physical changes that may impact upon their psychological and social status, also affecting their quality of life. Furthermore, several psychological changes following menopause have been shown to act as pro-oxidant, but the association between the psychological status that modify the quality of life and oxidative stress in postmenopausal women is still unclear. The aim of this study was to determinate the relationship between oxidative stress with psychological disturbances, low self-esteem, depressive mood and anxiety, and quality of life in the postmenopausal women. We carried out a cross-sectional study with101 premenopausal and 101 postmenopausal women from Mexico City. As markers of oxidative stress we measured plasma lipoperoxide levels, erythrocyte superoxide dismutase and glutathione peroxidase activities, and total antioxidant status. We calculate a stress score as global oxidative stress status, with cut-off values for each parameter; this score range from 0 to 6, representing the severity of markers modifications. All the women were rated using the Coopersmith Self-Esteem Inventory, the Zung Self-Rating Anxiety and the Zung Self-Rating Depression Scales, and the WHO Quality of Life-brief. The postmenopausal women with low quality of life in the WHO Quality of Life-brief and their subscales had higher stress score compared with premenopausal women with high quality of life (p Life-brief scores (r = -0.266, p Life-brief, after adjusted for pro-oxidant factors. Zung Self-Rating Anxiety and Zung Self-Rating Depression Scales scores also contribute to increase lipoperoxides levels, but not significant. Our findings suggest that oxidative stress is increased in postmenopausal women with psychological disturbances and low quality of life.

  8. Prolidase activity and oxidative stress in patients with major depressive disorder.

    Science.gov (United States)

    Kokacya, Mehmet Hanifi; Bahceci, Bulent; Bahceci, Ilkay; Dilek, Aziz Ramazan; Dokuyucu, Recep

    2014-12-01

    The aim of the current study was to determine whether the serum prolidase levels are associated with the etiopathogenesis of depression. This study included 29 patients with major depressive disorder (MDD), who were consecutively recruited from the psychiatric outpatient clinic, and 30 healthy individuals recruited from the general community. Each patient underwent a detailed diagnostic evaluation by two psychiatrists using the Structured Clinical Interview for DSM-IV (SCID-I). Serum prolidase activity and oxidative parameters were measured in the patient and control groups. The severity of depressive symptoms was assessed using the Hamilton Depression Rating Scale. Serum prolidase level was significantly higher in patients with MDD compared to healthy subjects (pStress Index (OSI) were also significantly higher in patients with MDD (pstress in patients with MDD. Increased serum prolidase levels in patients with MDD may be interpreted as the interaction of prolidase activity, glutamate transmission and oxidative stress. It is suggested that prolidase activity is involved in the etiopathogenesis of depressive disorder.

  9. Cytoprotective Effects of Pumpkin (Cucurbita Moschata) Fruit Extract against Oxidative Stress and Carbonyl Stress.

    Science.gov (United States)

    Shayesteh, Reyhaneh; Kamalinejad, Mohammad; Adiban, Hasan; Kardan, Azin; Keyhanfar, Fariborz; Eskandari, Mohammad Reza

    2017-10-01

    Background Diabetes mellitus is a chronic endocrine disorder that is associated with significant mortality and morbidity due to microvascular and macrovascular complications. Diabetes complications accompanied with oxidative stress and carbonyl stress in different organs of human body because of the increased generation of free radicals and impaired antioxidant defense systems. In the meantime, reactive oxygen species (ROS) and reactive carbonyl species (RCS) have key mediatory roles in the development and progression of diabetes complications. Therapeutic strategies have recently focused on preventing such diabetes-related abnormalities using different natural and chemical compounds. Pumpkin ( Cucurbita moschata ) is one of the most important vegetables in the world with a broad-range of pharmacological activities such as antihyperglycemic effect. Methods In the present study, the cytoprotective effects of aqueous extract of C. moschata fruit on hepatocyte cytotoxicity induced by cumene hydroperoxide (oxidative stress model) or glyoxal (carbonylation model) were investigated using freshly isolated rat hepatocytes. Results The extract of C. moschata (50 μg/ml) excellently prevented oxidative and carbonyl stress markers, including hepatocyte lysis, ROS production, lipid peroxidation, glutathione depletion, mitochondrial membrane potential collapse, lysosomal damage, and cellular proteolysis. In addition, protein carbonylation was prevented by C. moschata in glyoxal-induced carbonyl stress. Conclusion It can be concluded that C. moschata has cytoprotective effects in oxidative stress and carbonyl stress models and this valuable vegetable can be considered as a suitable herbal product for the prevention of toxic subsequent of oxidative stress and carbonyl stress seen in chronic hyperglycemia. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Obstructive Sleep Apnea, Oxidative Stress, and Cardiovascular Disease: Evidence from Human Studies

    Directory of Open Access Journals (Sweden)

    Hans-Joachim Eisele

    2015-01-01

    Full Text Available Obstructive sleep apnea (OSA is a frequent disease mainly affecting obese people and caused by repetitive collapse of the upper airways during sleep. The increased morbidity and mortality of OSA are mainly thought to be the consequence of its adverse effects on cardiovascular (CV health. In this context, oxidative stress induced by nocturnal intermittent hypoxia has been identified to play a major role. This is suggested by biomarker studies in OSA patients showing excessively generated reactive oxygen species from leukocytes, reduced plasma levels of nitrite and nitrate, increased lipid peroxidation, and reduced antioxidant capacity. Biopsy studies complement these findings by demonstrating reduced endothelial nitric oxide synthase expression and increased nitrotyrosine immunofluorescence in the vasculature of these patients. Furthermore, oxidative stress in OSA correlates with surrogate markers of CV disease such as endothelial function, intima-media thickness, and high blood pressure. Continuous positive airway pressure therapy reverses oxidative stress in OSA. The same may be true for antioxidants; however, more studies are needed to clarify this issue.

  11. Effect of hydrogen on stresses in anodic oxide film on titanium

    International Nuclear Information System (INIS)

    Kim, Joong-Do; Pyun, Su-Il; Seo, Masahiro

    2003-01-01

    Stresses in anodic oxide film on titanium thin film/glass electrode in pH 8.4 borate solution were investigated by a bending beam method. The increases in compressive stress observed with cathodic potential sweeps after formation of anodic oxide film were attributed to the volume expansion due to the compositional change of anodic oxide film from TiO 2 to TiO 2-x (OH) x . The instantaneous responses of changes in stress, Δσ, in the anodic oxide film to potential steps demonstrated the reversible characteristic of the TiO 2-x (OH) x formation reaction. In contrast, the transient feature of Δσ for the titanium without anodic oxide film represented the irreversible formation of TiH x at the metal/oxide interphase. The large difference in stress between with and without the oxide film, has suggested that most of stresses generated during the hydrogen absorption/desorption reside in the anodic oxide film. A linear relationship between changes in stress, Δ(Δσ) des , and electric charge, ΔQ des , during hydrogen desorption was found from the current and stress transients, manifesting that the stress changes were crucially determined by the amount of hydrogen desorbed from the oxide film. The increasing tendency of -Δ(Δσ) des with increasing number of potential steps and film formation potential were discussed in connection with the increase in desorption amount of hydrogen in the oxide film with increasing absorption/desorption cycles and oxide film thickness

  12. p,p'-DDT induces testicular oxidative stress-induced apoptosis in adult rats.

    Science.gov (United States)

    Marouani, Neila; Hallegue, Dorsaf; Sakly, Mohsen; Benkhalifa, Moncef; Ben Rhouma, Khémais; Tebourbi, Olfa

    2017-05-26

    The 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (p,p'-DDT) is a known persistent organic pollutant and male reproductive toxicant. The present study is designed to test the hypothesis that oxidative stress mediates p,p'-DDT-induced apoptosis in testis. Male Wistar rats received an intraperitoneal (ip) injection of the pesticide at doses of 50 and 100mg/kg for 10 consecutive days. The oxidative stress was evaluated by biomarkers such lipid peroxidation (LPO) and metallothioneins (MTs) levels. Antioxidant enzymes activities was assessed by determination of superoxide dismutase (SOD), catalase (CAT) and hydrogen peroxide (H 2 O 2 ) production. In addition, glutathione-dependent enzymes and reducing power in testis was evaluated by glutathione peroxidase (Gpx), glutathione reductase (GR), glutathione S-transferase (GST) activities and reduced and oxidized glutathione (GSH - GSSG) levels. Apoptosis was evaluated by DNA fragmentation detected by agarose gel electrophoresis. Germinal cells apoptosis and the apoptotic index was assessed through the TUNEL assay. After 10 days of treatment, an increase in LPO level and H 2 O 2 production occurred, while MTs level, SOD and CAT activities were decreased. Also, the Gpx, GR, GST, and GSH activities were decreased, whereas GSSG activity was increased. Testicular tissues of treated rats showed pronounced degradation of the DNA into oligonucleotides as seen in the typical electrophoretic DNA ladder pattern. Intense apoptosis was observed in germinal cells of DDT-exposed rats. In addition, the apoptotic index was significantly increased in testis of DDT-treated rats. These results clearly suggest that DDT sub-acute treatment causes oxidative stress in rat testis leading to apoptosis.

  13. A review: oxidative stress in fish induced by pesticides.

    Science.gov (United States)

    Slaninova, Andrea; Smutna, Miriam; Modra, Helena; Svobodova, Zdenka

    2009-01-01

    The knowledge in oxidative stress in fish has a great importance for environmental and aquatic toxicology. Because oxidative stress is evoked by many chemicals including some pesticides, pro-oxidant factors' action in fish organism can be used to assess specific area pollution or world sea pollution. Hepatotoxic effect of DDT may be related with lipid peroxidation. Releasing of reactive oxygen species (ROS) after HCB exposure can be realized via two ways: via the uncoupling of the electron transport chain from monooxygenase activity and via metabolism of HCB major metabolite pentachlorophenol. Chlorothalonil disrupts mitochondrial metabolism due to the impairment of NADPH oxidase function. Activation of spleen macrophages and a decrease of catalase (CAT) activity have been observed after endosulfan exposure. Excessive release of superoxide radicals after etoxazole exposure can cause a decrease of CAT activity and increase phagocytic activity of splenocytes. Anticholinergic activity of organophosphates leads to the accumulation of ROS and resulting lipid peroxidation. Carbaryl induces changes in the content of glutathione and antioxidant enzymes activities. The antioxidant enzymes changes have been observed after actuation of pesticides deltamethrin and cypermethrin. Bipyridyl herbicides are able to form redox cycles and thereby cause oxidative stress. Low concentrations of simazine do not cause oxidative stress in carps during sub-chronic tests while sublethal concentrations of atrazin can induce oxidative stress in bluegill sunfish. Butachlor causes increased activity of superoxide dismutase -catalase system in the kidney. Rotenon can inhibit the electron transport in mitochondria and thereby increase ROS production. Dichloroaniline, the metabolite of diuron, has oxidative effects. Oxidative damage from fenpyroximate actuation is related to the disruption of mitochondrial redox respiratory chain. Low concentration of glyphosate can cause mild oxidative stress.

  14. Oxaliplatin-induced Oxidative Stress Provokes Toxicity in Isolated Rat Liver Mitochondria.

    Science.gov (United States)

    Tabassum, Heena; Waseem, Mohammad; Parvez, Suhel; Qureshi, M Irfan

    2015-11-01

    Oxaliplatin is a widely employed platinum-derived chemotherapeutic agent commonly used for the treatment of colorectal cancer. Unfortunately, the benefit of this important drug is compromised by severe side effects such as neuropathy, ototoxicity, gastrointestinal toxicity, and hematological toxicity. Recently, few studies have also suggested the occurrence of hepatotoxicity in oxaliplatin-treated patients. Mitochondria have emerged as targets for anticancer drugs in various kinds of toxicity including hepatotoxicity that can lead to neoplastic disease. Oxidative stress is a well-established biomarker of mitochondrial toxicity. The purpose of this study was to investigate the dose-dependent damage caused by oxaliplatin on isolated liver mitochondria under in vitro conditions. The study was conducted in mitochondria isolated from liver of Wistar rats. Oxaliplatin was incubated with mitochondria in a dose-dependent manner under in vitro conditions. Oxidative stress indexes, non-enzymatic and enzymatic antioxidants were evaluated, looking at the overall armamentarium against the toxicity induced by oxaliplatin. Oxaliplatin caused a significant rise in the mitochondrial oxidative stress indexes lipid peroxidation and protein carbonyl. Alterations in the levels of non-enzymatic antioxidants and activities of enzymatic antioxidants were also observed. Oxidative stress plays an important role in the mitochondrial toxicity of oxaliplatin. The integrity of the hepatic tissue is compromised by the reactive oxygen species-mediated lipid peroxidation and protein carbonyl formation. Copyright © 2015 IMSS. Published by Elsevier Inc. All rights reserved.

  15. Novel protective role of kallistatin in obesity by limiting adipose tissue low grade inflammation and oxidative stress.

    Science.gov (United States)

    Frühbeck, Gema; Gómez-Ambrosi, Javier; Rodríguez, Amaia; Ramírez, Beatriz; Valentí, Víctor; Moncada, Rafael; Becerril, Sara; Unamuno, Xabier; Silva, Camilo; Salvador, Javier; Catalán, Victoria

    2018-04-18

    Kallistatin plays an important role in the inhibition of inflammation, oxidative stress, fibrosis and angiogenesis. We aimed to determine the impact of kallistatin on obesity and its associated metabolic alterations as well as its role in adipocyte inflammation and oxidative stress. Samples obtained from 95 subjects were used in a case-control study. Circulating concentrations and expression levels of kallistatin as well as key inflammation, oxidative stress and extracellular matrix remodelling-related genes were analyzed. Circulating kallistatin concentrations were measured before and after weight loss achieved by Roux-en-Y gastric bypass (RYGB). The impact of kallistatin on lipopolysaccharide (LPS)- and tumour necrosis factor (TNF)-α-mediated inflammatory as well as oxidative stress signalling pathways was evaluated. We show that the reduced (P role of kallistatin in obesity and its associated comorbidities by limiting adipose tissue inflammation and oxidative stress. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Maternal Parity and Blood Oxidative Stress in Mother and Neonate

    Directory of Open Access Journals (Sweden)

    Golalizadeh

    2016-02-01

    Full Text Available Background Parturition has been associated with free radicals, itself linked with poor pregnancy outcome. Objectives This study aimed to investigate the relationship between oxidative stress biomarkers levels of maternal and cord blood samples at the second stage of labor with the maternal parity number. Materials and Methods In this analytical cross-sectional study, subjects were selected from Fatemieh teaching hospital, Hamadan, Iran, and allocated into the two groups according to their number of parity: the primiparous group (n = 33, and multiparous group (n = 35. Maternal and umbilical cord blood samples were taken from all subjects and then assessed for catalas activity (CAT, total thiol molecules (TTM and total antioxidant capacity (TAC. Results Total antioxidant capacity levels were significantly higher in newborns of primiparous women compared to multiparous women (P = 0.006. The CAT levels were significantly lower (P = 0.04 and TAC levels significantly higher (P = 0.03 in maternal plasma of primiparous women compared to those of multiparous women. Conclusions Increment in the number of parity can lead to decrease antioxidant defense mechanisms in multiparous women and their newborns. So, control of oxidative stress is considered to be beneficial in multiparous women.

  17. Oxidative stress and antioxidants in athletes undertaking regular exercise training.

    Science.gov (United States)

    Watson, Trent A; MacDonald-Wicks, Lesley K; Garg, Manohar L

    2005-04-01

    Exercise has been shown to increase the production of reactive oxygen species to a point that can exceed antioxidant defenses to cause oxidative stress. Dietary intake of antioxidants, physical activity levels, various antioxidants and oxidative stress markers were examined in 20 exercise-trained "athletes" and 20 age- and sex-matched sedentary "controls." Plasma F2-isoprostanes, antioxidant enzyme activities, and uric acid levels were similar in athletes and sedentary controls. Plasma alpha-tocopherol and beta-carotene were higher in athletes compared with sedentary controls. Total antioxidant capacity tended to be lower in athletes, with a significant difference between male athletes and male controls. Dietary intakes of antioxidants were also similar between groups and well above recommended dietary intakes for Australians. These findings suggest that athletes who consume a diet rich in antioxidants have elevated plasma alpha-tocopherol and beta-carotene that were likely to be brought about by adaptive processes resulting from regular exercise.

  18. Comparative Study of Antidiabetic Activity and Oxidative Stress Induced by Zinc Oxide Nanoparticles and Zinc Sulfate in Diabetic Rats.

    Science.gov (United States)

    Nazarizadeh, Ali; Asri-Rezaie, Siamak

    2016-08-01

    In the current study, antidiabetic activity and toxic effects of zinc oxide nanoparticles (ZnO) were investigated in diabetic rats compared to zinc sulfate (ZnSO4) with particular emphasis on oxidative stress parameters. One hundred and twenty male Wistar rats were divided into two healthy and diabetic groups, randomly. Each major group was further subdivided into five subgroups and then orally supplemented with various doses of ZnO (1, 3, and 10 mg/kg) and ZnSO4 (30 mg/kg) for 56 consecutive days. ZnO showed greater antidiabetic activity compared to ZnSO4 evidenced by improved glucose disposal, insulin levels, and zinc status. The altered activities of erythrocyte antioxidant enzymes as well as raised levels of lipid peroxidation and a marked reduction of total antioxidant capacity were observed in rats receiving ZnO. ZnO nanoparticles acted as a potent antidiabetic agent, however, severely elicited oxidative stress particularly at higher doses.

  19. Oxidative stress signaling to chromatin in health and disease

    KAUST Repository

    Kreuz, Sarah; Fischle, Wolfgang

    2016-01-01

    Oxidative stress has a significant impact on the development and progression of common human pathologies, including cancer, diabetes, hypertension and neurodegenerative diseases. Increasing evidence suggests that oxidative stress globally influences

  20. The Response to Heat Shock and Oxidative Stress in Saccharomyces cerevisiae

    Science.gov (United States)

    Morano, Kevin A.; Grant, Chris M.; Moye-Rowley, W. Scott

    2012-01-01

    A common need for microbial cells is the ability to respond to potentially toxic environmental insults. Here we review the progress in understanding the response of the yeast Saccharomyces cerevisiae to two important environmental stresses: heat shock and oxidative stress. Both of these stresses are fundamental challenges that microbes of all types will experience. The study of these environmental stress responses in S. cerevisiae has illuminated many of the features now viewed as central to our understanding of eukaryotic cell biology. Transcriptional activation plays an important role in driving the multifaceted reaction to elevated temperature and levels of reactive oxygen species. Advances provided by the development of whole genome analyses have led to an appreciation of the global reorganization of gene expression and its integration between different stress regimens. While the precise nature of the signal eliciting the heat shock response remains elusive, recent progress in the understanding of induction of the oxidative stress response is summarized here. Although these stress conditions represent ancient challenges to S. cerevisiae and other microbes, much remains to be learned about the mechanisms dedicated to dealing with these environmental parameters. PMID:22209905

  1. Critical Minireview: The Fate of tRNACys during Oxidative Stress in Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Juan Campos Guillen

    2017-01-01

    Full Text Available Oxidative stress occurs when cells are exposed to elevated levels of reactive oxygen species that can damage biological molecules. One bacterial response to oxidative stress involves disulfide bond formation either between protein thiols or between protein thiols and low-molecular-weight (LMW thiols. Bacillithiol was recently identified as a major low-molecular-weight thiol in Bacillus subtilis and related Firmicutes. Four genes (bshA, bshB1, bshB2, and bshC are involved in bacillithiol biosynthesis. The bshA and bshB1 genes are part of a seven-gene operon (ypjD, which includes the essential gene cca, encoding CCA-tRNA nucleotidyltransferase. The inclusion of cca in the operon containing bacillithiol biosynthetic genes suggests that the integrity of the 3′ terminus of tRNAs may also be important in oxidative stress. The addition of the 3′ terminal CCA sequence by CCA-tRNA nucleotidyltransferase to give rise to a mature tRNA and functional molecules ready for aminoacylation plays an essential role during translation and expression of the genetic code. Any defects in these processes, such as the accumulation of shorter and defective tRNAs under oxidative stress, might exert a deleterious effect on cells. This review summarizes the physiological link between tRNACys regulation and oxidative stress in Bacillus.

  2. Oxidative Stress to the Cornea, Changes in Corneal Optical Properties, and Advances in Treatment of Corneal Oxidative Injuries

    Directory of Open Access Journals (Sweden)

    Cestmir Cejka

    2015-01-01

    Full Text Available Oxidative stress is involved in many ocular diseases and injuries. The imbalance between oxidants and antioxidants in favour of oxidants (oxidative stress leads to the damage and may be highly involved in ocular aging processes. The anterior eye segment and mainly the cornea are directly exposed to noxae of external environment, such as air pollution, radiation, cigarette smoke, vapors or gases from household cleaning products, chemical burns from splashes of industrial chemicals, and danger from potential oxidative damage evoked by them. Oxidative stress may initiate or develop ocular injury resulting in decreased visual acuity or even vision loss. The role of oxidative stress in the pathogenesis of ocular diseases with particular attention to oxidative stress in the cornea and changes in corneal optical properties are discussed. Advances in the treatment of corneal oxidative injuries or diseases are shown.

  3. Commercial Lysogeny Broth culture media and oxidative stress: a cautious tale.

    Science.gov (United States)

    Ezraty, Benjamin; Henry, Camille; Hérisse, Marion; Denamur, Erick; Barras, Frédéric

    2014-09-01

    Lysogeny Broth (LB), most often misnamed Luria-Bertani medium, ranks among the most commonly used growth media in microbiology. Surprisingly, we observed that oxidative levels vary with the commercial origin of the LB ready to use powder. Indeed, growth on solid media of Escherichia coli and Salmonella derivatives lacking antioxidative stress defenses, such as oxyR mutant devoid of the H2O2-sensing transcriptional activator or Hpx(-) strains lacking catalases and peroxidases, exhibit different phenotypes on LB-Sigma or LB-Difco. Using gene fusion and exogenously added catalase, we found that LB-Sigma contains higher levels of H2O2 than LB-Difco. Also we observed differences in population counts of 82 clinical and environmental isolates of E. coli, depending on the LB used. Further investigations revealed a significant influence of the commercial origin of agar as well. Besides being a warning to the wide population of LB users, our observations provide researchers in the oxidative stress field with a tool to appreciate the severity of mutations in antioxidative stress defenses. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Subchronic nandrolone administration reduces cardiac oxidative markers during restraint stress by modulating protein expression patterns.

    Science.gov (United States)

    Pergolizzi, Barbara; Carriero, Vitina; Abbadessa, Giuliana; Penna, Claudia; Berchialla, Paola; De Francia, Silvia; Bracco, Enrico; Racca, Silvia

    2017-10-01

    Nandrolone decanoate (ND), an anabolic-androgenic steroid prohibited in collegiate and professional sports, is associated with detrimental cardiovascular effects through redox-dependent mechanisms. We previously observed that high-dose short-term ND administration (15 mg/kg for 2 weeks) did not induce left heart ventricular hypertrophy and, paradoxically, improved postischemic response, whereas chronic ND treatment (5 mg/kg twice a week for 10 weeks) significantly reduced the cardioprotective effect of postconditioning, with an increase in infarct size and a decrease in cardiac performance. We wanted to determine whether short-term ND administration could affect the oxidative redox status in animals exposed to acute restraint stress. Our hypothesis was that, depending on treatment schedule, ND may have a double-edged sword effect. Measurement of malondialdehyde and 4-hydroxynonenal, two oxidative stress markers, in rat plasma and left heart ventricular tissue, revealed that the levels of both markers were increased in animals exposed to restraint stress, whereas no increase in marker levels was noted in animals pretreated with ND, indicating a possible protective action of ND against stress-induced oxidative damage. Furthermore, isolation and identification of proteins extracted from the left heart ventricular tissue samples of rats pretreated or not with ND and exposed to acute stress showed a prevalent expression of enzymes involved in amino acid synthesis and energy metabolism. Among other proteins, peroxiredoxin 6 and alpha B-crystallin, both involved in the oxidative stress response, were predominantly expressed in the left heart ventricular tissues of the ND-pretreated rats. In conclusion, ND seems to reduce oxidative stress by inducing the expression of antioxidant proteins in the hearts of restraint-stressed animals, thus contributing to amelioration of postischemic heart performance.

  5. The Impact of Rapid Weight Loss on Oxidative Stress Markers and the Expression of the Metabolic Syndrome in Obese Individuals

    Directory of Open Access Journals (Sweden)

    Eva Tumova

    2013-01-01

    Full Text Available Objective. Obesity is linked with a state of increased oxidative stress, which plays an important role in the etiology of atherosclerosis and type 2 diabetes mellitus. The aim of our study was to evaluate the effect of rapid weight loss on oxidative stress markers in obese individuals with metabolic syndrome (MetS. Design and Methods. We measured oxidative stress markers in 40 obese subjects with metabolic syndrome (MetS+, 40 obese subjects without metabolic syndrome (MetS−, and 20 lean controls (LC at baseline and after three months of very low caloric diet. Results. Oxidized low density lipoprotein (ox-LDL levels decreased by 12% in MetS+ subjects, associated with a reduction in total cholesterol (TC, even after adjustment for age and sex. Lipoprotein associated phospholipase A2 (Lp-PLA2 activity decreased by 4.7% in MetS+ subjects, associated with a drop in LDL-cholesterol (LDL-C, TC, and insulin levels. Multivariate logistic regression analysis showed that a model including ox-LDL, LpPLA2 activity, and myeloperoxidase (MPO improved prediction of MetS status among obese individuals compared to each oxidative stress marker alone. Conclusions. Oxidative stress markers were predictive of MetS in obese subjects, suggesting a higher oxidative stress. Rapid weight loss resulted in a decline in oxidative stress markers, especially in MetS+ patients.

  6. Punica granatum juice effects on oxidative stress in severe physical activity.

    Science.gov (United States)

    Naghizadeh-Baghi, Abbas; Mazani, Mohammad; Shadman-Fard, Ali; Nemati, Ali

    2015-02-01

    The aim of this study was to investigate Punica granatum juice effects on oxidative stress in young healthy males during severe physical activity. Our subjects were selected from healthy males at 18 - 24 years. They were enrolled and randomly distributed into control and supplemented groups. 240 ml of Punica granatum juice and tap water were given to supplement and control groups daily for two weeks, respectively. Fasting blood samples were taken at the starting and the end of two weeks of intervention. Subjects were given once severe physical activity and then fasting blood samples were taken. Fasting blood samples were used for testing of oxidative and antioxidative factors. Data were analyzed using descriptive statistical tests, paired samples t-test, and independent samples t-test. The levels of arylesterase, superoxide dismutase, glutathione peroxidase and total antioxidant capacity after severe physical activity in supplement group were significantly increased (pPunica granatum juice significantly modulates oxidative stress and thus protects against severe physical activity oxidative injury in young healthy males.

  7. Correlation of oxidative stress in patients with HBV-induced liver disease with HBV genotypes and drug resistance mutations.

    Science.gov (United States)

    Xianyu, Jianbo; Feng, Jiafu; Yang, Yuwei; Tang, Jie; Xie, Gang; Fan, Lingying

    2018-05-01

    This study aims to explore the correlation of oxidative stress (OxS) in patients with chronic hepatitis B (CHB) and the disease severity with HBV genotypes and drug resistance mutations. A total of 296 patients with CHB were enrolled into the study. PCR-reverse dot-blot hybridization was used to detect the HBV genotypes (B, C, and D) and the drug resistance-causing HBV mutant genes. In addition, the total oxidative stress (TOS) and total antioxidant status (TAS) were determined, and oxidative stress index (OSI) was calculated and compared. Serum levels of TOS and OSI, the B/C ratio, and drug resistance mutation rate were increased along with the elevated disease severity degree (CHBHBV mutation had higher serum TOS and OSI levels, while lower serum TAS levels (P HBV-induced liver disease, and the damage degree is correlated with the HBV genotype and drug resistance mutation. Oxidative stress might be a useful indicator of the progression of HBV-induced liver disease in patients. Copyright © 2018. Published by Elsevier Inc.

  8. MnTM-4-PyP modulates endogenous antioxidant responses and protects primary cortical neurons against oxidative stress.

    Science.gov (United States)

    Cheng, Kuo-Yuan; Guo, Fei; Lu, Jia-Qi; Cao, Yuan-Zhao; Wang, Tian-Chang; Yang, Qi; Xia, Qing

    2015-05-01

    Oxidative stress is a direct cause of injury in various neural diseases. Manganese porphyrins (MnPs), a large category of superoxide dismutase (SOD) mimics, shown universally to have effects in numerous neural disease models in vivo. Given their complex intracellular redox activities, detailed mechanisms underlying the biomedical efficacies are not fully elucidated. This study sought to investigate the regulation of endogenous antioxidant systems by a MnP (MnTM-4-PyP) and its role in the protection against neural oxidative stress. Primary cortical neurons were treated with MnTM-4-PyP prior to hydrogen peroxide-induced oxidative stress. MnTM-4-PyP increased cell viability, reduced intracellular level of reactive oxygen species, inhibited mitochondrial apoptotic pathway, and ameliorated endoplasmic reticulum function. The protein levels and activities of endogenous SODs were elevated, but not those of catalase. SOD2 transcription was promoted in a transcription factor-specific manner. Additionally, we found FOXO3A and Sirt3 levels also increased. These effects were not observed with MnTM-4-PyP alone. Induction of various levels of endogenous antioxidant responses by MnTM-4-PyP has indispensable functions in its protection for cortical neurons against hydrogen peroxide-induced oxidative stress. © 2014 John Wiley & Sons Ltd.

  9. Total oxidant status, total antioxidant capacity and ischemia modified albumin levels in children with celiac disease.

    Science.gov (United States)

    Sayar, Ersin; Özdem, Sebahat; Uzun, Gülbahar; İşlek, Ali; Yılmaz, Aygen; Artan, Reha

    2015-01-01

    In our study, we aimed to investigate ischemia modified albumin (IMA) as an oxidative stress marker, as well as other oxidant and antioxidant markers that have not been evaluated in children with celiac disease. A total of 37 pediatric patients who were diagnosed with celiac disease (CD) and 29 healthy children were enrolled in this prospective study. We evaluated the IMA, total oxidant status, total antioxidant capacity, sulfhydryl, and advanced oxidation protein products in all of the subjects. We also compared the levels at the time of the diagnosis, and following a gluten-free diet (GFD) in the children with CD. While the IMA and the other oxidant marker levels were significantly higher in the patient group compared to the control group, the antioxidant marker levels were found to be significantly lower in the patient group, compared to the control group. We also determined that the tissue transglutaminase IgA showed a highly positive correlation, and that the IMA showed a moderately positive correlation with the Marsh-Oberhuber histopathological stage. Additionally, the IMA and other oxidant marker levels were significantly lower, while the antioxidant marker levels were significantly higher after the GFD, compared to the pre-diet period. We detected that oxidative stress played a role in the pathogenesis of CD, and that this could be evaluated using oxidative stress markers, which would regress after the GFD. We also detected that IMA is a marker that shows a correlation with the histopathological stage, and may be used in the diagnosis.

  10. Independent and co-morbid HIV infection and Meth use disorders on oxidative stress markers in the cerebrospinal fluid and depressive symptoms.

    Science.gov (United States)

    Panee, Jun; Pang, Xiaosha; Munsaka, Sody; Berry, Marla J; Chang, Linda

    2015-03-01

    Both HIV infection and Methamphetamine (Meth) use disorders are associated with greater depressive symptoms and oxidative stress; whether the two conditions would show additive or interactive effects on the severity of depressive symptoms, and whether this is related to the level of oxidative stress in the CNS is unknown. 123 participants were evaluated, which included 41 HIV-seronegative subjects without substance use disorders (Control), 25 with recent (HIV-seropositive subjects without substance use disorders (HIV) and 23 HIV+Meth subjects. Depressive symptoms were assessed with the Center for Epidemiologic Studies-Depression Scale (CES-D), and oxidative stress markers were evaluated with glutathione (GSH), 4-hydroxynonenal (HNE), and activities of gamma-glutamyltransferase (GGT) and glutathione peroxidase (GPx) in the cerebrospinal fluid (CSF). Compared with Controls, HIV subjects had higher levels of HNE (+350%) and GGT (+27%), and lower level of GSH (-34%), while Meth users had higher levels of GPx activity (+23%) and GSH (+30 %). GGT correlated with GPx, and with age, across all subjects (p HIV groups, but not in Meth and HIV+Meth groups. HIV and Meth use had an interactive effects on depressive symptoms, but did not show additive or interactive effects on oxidative stress. The differential relationship between depressive symptoms and oxidative stress response amongst the four groups suggest that depressive symptoms in these groups are mediated through different mechanisms which are not always related to oxidative stress.

  11. Secondhand smoke exposure induces acutely airway acidification and oxidative stress.

    Science.gov (United States)

    Kostikas, Konstantinos; Minas, Markos; Nikolaou, Eftychia; Papaioannou, Andriana I; Liakos, Panagiotis; Gougoura, Sofia; Gourgoulianis, Konstantinos I; Dinas, Petros C; Metsios, Giorgos S; Jamurtas, Athanasios Z; Flouris, Andreas D; Koutedakis, Yiannis

    2013-02-01

    Previous studies have shown that secondhand smoke induces lung function impairment and increases proinflammatory cytokines. The aim of the present study was to evaluate the acute effects of secondhand smoke on airway acidification and airway oxidative stress in never-smokers. In a randomized controlled cross-over trial, 18 young healthy never-smokers were assessed at baseline and 0, 30, 60, 120, 180 and 240 min after one-hour secondhand smoke exposure at bar/restaurant levels. Exhaled NO and CO measurements, exhaled breath condensate collection (for pH, H(2)O(2) and NO(2)(-)/NO(3)(-) measurements) and spirometry were performed at all time-points. Secondhand smoke exposure induced increases in serum cotinine and exhaled CO that persisted until 240 min. Exhaled breath condensate pH decreased immediately after exposure (p secondhand smoke induced airway acidification and increased airway oxidative stress, accompanied by significant impairment of lung function. Despite the reversal in EBC pH and lung function, airway oxidative stress remained increased 4 h after the exposure. Clinical trial registration number (EudraCT): 2009-013545-28. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Effect of vitamin A and vitamin C supplementation on oxidative stress in HIV and HIV-TB co-infection at Lagos University Teaching Hospital (LUTH) Nigeria.

    Science.gov (United States)

    Makinde, Oluwamayowa; Rotimi, Kunle; Ikumawoyi, Victor; Adeyemo, Titilope; Olayemi, Sunday

    2017-06-01

    HIV and TB infections are both associated with elevated oxidative stress parameters. Anti-oxidant supplementation may offer beneficial effects in positively modulating oxidative stress parameters in HIV and HIV-TB infected patients. We investigated the effects of vitamin A and C supplementation on oxidative stress in HIV infected and HIV-TB co-infected subjects. 40 HIV/TB co-infected and 50 HIV mono-infected patients were divided into 2 equal groups. Participants provided demographic information and blood was collected to determine oxidative stress parameters before and after vitamin A (5000 IU) and C (2600 mg) supplementation for 1 month. There was a significantly (p < 0.05) higher level of Malondialdehyde (MDA) at baseline for HIV infected subjects compared with HIV-TB co-infected subjects. There was a significantly (p < 0.05) lower level of MDA and higher level of Catalase (CAT) in subjects administered supplementation compared to subjects without supplementation for the HIV infected group. There was a significantly lower level of Reduced Glutathione (GSH), Superoxide Dismutase (SOD) and higher level of MDA after one month of supplementation compared with baseline levels for HIV/TB co infected subjects. A similar result was also obtained for the HIV mono-infected groups which had a significantly lower level of SOD, MDA and CAT compared to the baseline. There was a significantly lower level of GSH and SOD, and higher level of MDA after supplementation compared with the baseline for HIV/TB co-infected subjects. Comparing the indices at baseline and post no-supplementation in HIV/TB co-infection showed no significant differences in the oxidative stress parameters. HIV/TB co-infection and HIV mono-infection seems to diminish the capacity of the anti-oxidant system to control oxidative stress, however exogenous anti-oxidant supplementation appears not to have beneficial roles in positively modulating the associated oxidative stress.

  13. Oxidative stress in Complex Regional Pain Syndrome (CRPS): no systemically elevated levels of malondialdehyde, F2-isoprostanes and 8OHdG in a selected sample of patients.

    Science.gov (United States)

    Fischer, Sigrid G L; Perez, Roberto S G M; Nouta, Jan; Zuurmond, Wouter W A; Scheffer, Peter G

    2013-04-10

    Exaggerated inflammation and oxidative stress are involved in the pathogenesis of Complex Regional Pain Syndrome (CRPS). However, studies assessing markers for oxidative stress in CRPS patients are limited. In this study, markers for lipid peroxidation (malondialdehyde and F2-isoprostanes) and DNA damage (8-hydroxy-2-deoxyguanosine) were measured in nine patients (mean age 50.1 ± 17.1 years) with short term CRPS-1 (median 3 months) and nine age and sex matched healthy volunteers (mean age 49.3 ± 16.8 years) to assess and compare the level of oxidative stress. No differences were found in plasma between CRPS patients and healthy volunteers for malondialdehyde (5.2 ± 0.9 µmol/L vs. 5.4 ± 0.5 µmol/L) F2-isoprostanes (83.9 ± 18.7 pg/mL vs. 80.5 ± 12.3 pg/mL) and 8-hydroxy-2-deoxyguanosine (92.6 ± 25.5 pmol/L vs. 86.9 ± 19.0 pmol/L). Likewise, in urine, no differences were observed between CRPS patients and healthy volunteers for F2-isoprostanes (117 ng/mmol, IQR 54.5-124.3 vs. 85 ng/mmol, IQR 55.5-110) and 8-hydroxy-2-deoxyguanosine (1.4 ± 0.7 nmol/mmol vs. 1.4 ± 0.5 nmol/mmol). Our data show no elevation of systemic markers of oxidative stress in CRPS patients compared to matched healthy volunteers. Future research should focus on local sampling methods of oxidative stress with adequate patient selection based on CRPS phenotype and lifestyle.

  14. Thymosin beta 4 protects cardiomyocytes from oxidative stress by targeting anti-oxidative enzymes and anti-apoptotic genes.

    Directory of Open Access Journals (Sweden)

    Chuanyu Wei

    Full Text Available Thymosin beta-4 (Tβ4 is a ubiquitous protein with many properties relating to cell proliferation and differentiation that promotes wound healing and modulates inflammatory mediators. The mechanism by which Tβ4 modulates cardiac protection under oxidative stress is not known. The purpose of this study is to dissect the cardioprotective mechanism of Tβ4 on H(2O(2 induced cardiac damage.Rat neonatal cardiomyocytes with or without Tβ4 pretreatment were exposed to H(2O(2 and expression of antioxidant, apoptotic, and anti-inflammatory genes was evaluated by quantitative real-time PCR and western blotting. ROS levels were estimated by DCF-DA using fluorescent microscopy and fluorimetry. Selected antioxidant, anti-inflammatory and antiapoptotic genes were silenced by siRNA transfections in neonatal cardiomyocytes and effect of Tβ4 on H(2O(2-induced cardiac damage was evaluated.Pre-treatment of Tβ4 resulted in reduction of the intracellular ROS levels induced by H(2O(2 in cardiomyocytes. Tβ4 pretreatment also resulted in an increase in the expression of antiapoptotic proteins and reduction of Bax/BCl(2 ratio in the cardiomyocytes. Pretreatment with Tβ4 resulted in stimulating the expression of antioxidant enzymes copper/zinc SOD and catalase in cardiomyocytes at both transcription and translation levels. Tβ4 treatment resulted in the increased expression of anti-apoptotic and anti-inflammatory genes. Silencing of Cu/Zn SOD and catalase gene resulted in apoptotic cell death in the cardiomyocytes which was prevented by treatment with Tβ4.This is the first report that demonstrates the effect of Tβ4 on cardiomyocytes and its capability to selectively upregulate anti-oxidative enzymes, anti-inflammatory genes, and antiapoptotic enzymes in the neonatal cardiomyocytes thus preventing cell death thereby protecting the myocardium. Tβ4 treatment resulted in decreased oxidative stress and inflammation in the myocardium under oxidative stress.

  15. Protective Effect against Oxidative Stress in Medicinal Plant Extracts

    International Nuclear Information System (INIS)

    Kim, Jeong Hee; Lee, Eun Ju; Shin, Dong O; Hong, Sung Eun; Kim, Jin Kyu

    2000-01-01

    Protective effect of medicinal plant extracts against oxidative stress were screened in this study. Methanol extracts from 48 medicinal plants, which were reported to have antioxidative or anti-inflammatory effect were prepared and screened for their protective activity against chemically-induced and radiation-induced oxidative stress by using MTT assay. Thirty three samples showed protective activity against chemically-induced oxidative stress in various extent. Among those samples, extract of Glycyrrhiza uralensis revealed the strongest activity (25.9% at 100 μg/ml) with relatively lower cytotoxicity. Seven other samples showed higher than 20% protection at 100 μg/ml. These samples were tested for protection activity against radiation-induced oxidative stress. Methanol extract of Alpina officinarum showed the highest activity (17.8% at 20 μg/ml). Five fractions were prepared from the each 10 methanol extracts which showed high protective activity against oxidative stress. Among those fraction samples butanol fractions of Areca catechu var. dulcissima and Spirodela polyrrhiza showed the highest protective activities (78.8% and 77.2%, respectively, at 20 μg/ml)

  16. Genome-wide association analysis of oxidative stress resistance in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Allison L Weber

    Full Text Available Aerobic organisms are susceptible to damage by reactive oxygen species. Oxidative stress resistance is a quantitative trait with population variation attributable to the interplay between genetic and environmental factors. Drosophila melanogaster provides an ideal system to study the genetics of variation for resistance to oxidative stress.We used 167 wild-derived inbred lines of the Drosophila Genetic Reference Panel for a genome-wide association study of acute oxidative stress resistance to two oxidizing agents, paraquat and menadione sodium bisulfite. We found significant genetic variation for both stressors. Single nucleotide polymorphisms (SNPs associated with variation in oxidative stress resistance were often sex-specific and agent-dependent, with a small subset common for both sexes or treatments. Associated SNPs had moderately large effects, with an inverse relationship between effect size and allele frequency. Linear models with up to 12 SNPs explained 67-79% and 56-66% of the phenotypic variance for resistance to paraquat and menadione sodium bisulfite, respectively. Many genes implicated were novel with no known role in oxidative stress resistance. Bioinformatics analyses revealed a cellular network comprising DNA metabolism and neuronal development, consistent with targets of oxidative stress-inducing agents. We confirmed associations of seven candidate genes associated with natural variation in oxidative stress resistance through mutational analysis.We identified novel candidate genes associated with variation in resistance to oxidative stress that have context-dependent effects. These results form the basis for future translational studies to identify oxidative stress susceptibility/resistance genes that are evolutionary conserved and might play a role in human disease.

  17. Ochratoxin A induces rat renal carcinogenicity with limited induction of oxidative stress responses

    International Nuclear Information System (INIS)

    Qi, Xiaozhe; Yu, Tao; Zhu, Liye; Gao, Jing; He, Xiaoyun; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2014-01-01

    Ochratoxin A (OTA) has displayed nephrotoxicity and renal carcinogenicity in mammals, however, no clear mechanisms have been identified detailing the relationship between oxidative stress and these toxicities. This study was performed to clarify the relationship between oxidative stress and the renal carcinogenicity induced by OTA. Rats were treated with 70 or 210 μg/kg b.w. OTA for 4 or 13 weeks. In the rats administrated with OTA for 13 weeks, the kidney was damaged seriously. Cytoplasmic vacuolization was observed in the outer stripe of the outer medulla. Karyomegaly was prominent in the tubular epithelium. Kidney injury molecule-1 (Kim-1) was detected in the outer stripe of the outer medulla in both low- and high-dose groups. OTA increased the mRNA levels of clusterin in rat kidneys. Interestingly, OTA did not significantly alter the oxidative stress level in rat liver and kidney. Yet, some indications related to proliferation and carcinogenicity were observed. A dose-related increase in proliferating cell nuclear antigen (PCNA) was observed at 4 weeks in both liver and kidney, but at 13 weeks, only in the kidney. OTA down-regulated reactive oxygen species (ROS) and up-regulated vimentin and lipocalin 2 in rat kidney at 13 weeks. The p53 gene was decreased in both liver and kidney at 13 weeks. These results suggest that OTA caused apparent kidney damage within 13 weeks but exerted limited effect on oxidative stress parameters. It implies that cell proliferation is the proposed mode of action for OTA-induced renal carcinogenicity. - Highlights: • We studied OTA toxicities in both the rat liver and kidney for 13 weeks. • OTA exerts limited effects on oxidative stress in the rat liver and kidney. • OTA induced renal carcinogenicity resulting from cell proliferation

  18. Ochratoxin A induces rat renal carcinogenicity with limited induction of oxidative stress responses

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Xiaozhe; Yu, Tao; Zhu, Liye; Gao, Jing [College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); He, Xiaoyun; Huang, Kunlun; Luo, Yunbo [College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Xu, Wentao, E-mail: xuwentao@cau.edu.cn [College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China)

    2014-11-01

    Ochratoxin A (OTA) has displayed nephrotoxicity and renal carcinogenicity in mammals, however, no clear mechanisms have been identified detailing the relationship between oxidative stress and these toxicities. This study was performed to clarify the relationship between oxidative stress and the renal carcinogenicity induced by OTA. Rats were treated with 70 or 210 μg/kg b.w. OTA for 4 or 13 weeks. In the rats administrated with OTA for 13 weeks, the kidney was damaged seriously. Cytoplasmic vacuolization was observed in the outer stripe of the outer medulla. Karyomegaly was prominent in the tubular epithelium. Kidney injury molecule-1 (Kim-1) was detected in the outer stripe of the outer medulla in both low- and high-dose groups. OTA increased the mRNA levels of clusterin in rat kidneys. Interestingly, OTA did not significantly alter the oxidative stress level in rat liver and kidney. Yet, some indications related to proliferation and carcinogenicity were observed. A dose-related increase in proliferating cell nuclear antigen (PCNA) was observed at 4 weeks in both liver and kidney, but at 13 weeks, only in the kidney. OTA down-regulated reactive oxygen species (ROS) and up-regulated vimentin and lipocalin 2 in rat kidney at 13 weeks. The p53 gene was decreased in both liver and kidney at 13 weeks. These results suggest that OTA caused apparent kidney damage within 13 weeks but exerted limited effect on oxidative stress parameters. It implies that cell proliferation is the proposed mode of action for OTA-induced renal carcinogenicity. - Highlights: • We studied OTA toxicities in both the rat liver and kidney for 13 weeks. • OTA exerts limited effects on oxidative stress in the rat liver and kidney. • OTA induced renal carcinogenicity resulting from cell proliferation.

  19. DJ-1-dependent regulation of oxidative stress in the retinal pigment epithelium (RPE.

    Directory of Open Access Journals (Sweden)

    Karen G Shadrach

    Full Text Available DJ-1 is found in many tissues, including the brain, where it has been extensively studied due to its association with Parkinson's disease. DJ-1 functions as a redox-sensitive molecular chaperone and transcription regulator that robustly protects cells from oxidative stress.Retinal pigment epithelial (RPE cultures were treated with H2O2 for various times followed by biochemical and immunohistological analysis. Cells were transfected with adenoviruses carrying the full-length human DJ-1 cDNA and a mutant construct, which has the cysteine residues at amino acid 46, 53 and 106 mutated to serine (C to S prior to stress experiments. DJ-1 localization, levels of expression and reactive oxygen species (ROS generation were also analyzed in cells expressing exogenous DJ-1 under baseline and oxidative stress conditions. The presence of DJ-1 and oxidized DJ-1 was evaluated in human RPE total lysates. The distribution of DJ-1 was assessed in AMD and non-AMD cryosectionss and in isolated human Bruch's membrane (BM/choroid from AMD eyes.DJ-1 in RPE cells under baseline conditions, displays a diffuse cytoplasmic and nuclear staining. After oxidative challenge, more DJ-1 was associated with mitochondria. Increasing concentrations of H2O2 resulted in a dose-dependent increase in DJ-1. Overexpression of DJ-1 but not the C to S mutant prior to exposure to oxidative stress led to significant decrease in the generation of ROS. DJ-1 and oxDJ-1 intensity of immunoreactivity was significantly higher in the RPE lysates from AMD eyes. More DJ-1 was localized to RPE cells from AMD donors with geographic atrophy and DJ-1 was also present in isolated human BM/choroid from AMD eyes.DJ-1 regulates RPE responses to oxidative stress. Most importantly, increased DJ-1 expression prior to oxidative stress leads to decreased generation of ROS, which will be relevant for future studies of AMD since oxidative stress is a known factor affecting this disease.

  20. [b][/b]The influence of 9-day trekking in the Alps on the level of oxidative stress parameters and blood parameters in native lowlanders

    Directory of Open Access Journals (Sweden)

    Jakub Krzeszowiak

    2014-09-01

    Full Text Available Background. The stimuli acting on a person in a high mountain environment (such as hypobaric hypoxia with subsequent reoxygenation, physical exercise can significantly increase oxidative stress, stimulate erythropoiesis, lead to changes in the blood count and participate in the development of altitude sickness. [b]Objective. [/b]The aim was to investigate changes in haematological parameters, indicators of oxidative stress (malondialdehyde – MDA and antioxidant defences: catalase (CAT, superoxide dismutase (SOD, and total antioxidant status (TAS in the plasma of young, healthy people after a 9-day expedition in the Alps. [b]Materials and method[/b]. A total of 5 patients (4 men and 1 woman, members of the Wrocław Mountaineering Club, aged 24–26 years. Collection of blood samples was carried out immediately before departure and 3 days after the end of exposure to high-altitude conditions. During the expedition, the subjects were exposed to heights: 2,050–4,165 m.a.s.l., and exercise associated with climbing. [b]Results[/b]. Trekking in the Alps neither caused significant changes in the parameters of red blood cells nor increased the level of oxidative stress parameters in plasma. CAT activity increased, the ratio of SOD / CAT decreased. There was also a decrease in the total number of leukocytes, mainly monocytes and basophils. [b]Conclusions[/b]. 9-day exposure to high-altitude conditions is not a substantial burden for the organism of young, physically active people. The increase in antioxidant capacity is sufficient to stop oxidative processes, which are severe in these conditions, and to prevent the occurrence of significant oxidative stress. Discontinuation of exposure to allergens and dust pollution clears the airways, which is indicated by the reduction in the number of monocytes and basophils.

  1. Oxidative stress in diabetic patients with retinopathy | Kundu ...

    African Journals Online (AJOL)

    Background: Diabetes mellitus (DM) is known to induce oxidative stress along with deranging various metabolisms; one of the late complications of diabetes mellitus is diabetic retinopathy, which is a leading cause of acquired blindness. Poor glycemic control and oxidative stress have been attributed to the development of ...

  2. The Oxidative Stress Response in Elite Water Polo Players: Effects of Genetic Background.

    Science.gov (United States)

    Vecchio, Mercurio; Currò, Monica; Trimarchi, Fabio; Naccari, Sergio; Caccamo, Daniela; Ientile, Riccardo; Barreca, Davide; Di Mauro, Debora

    2017-01-01

    Acute exercise is known to induce oxidative stress. Here we assessed the effects of gene polymorphisms SOD2 A16V, CAT -844 G>A, and GPx-1 rs1800668 C>T on oxidative stress markers in 28 elite water polo male players prior to and after a routinely programmed friendly match. The mean plasma concentrations of derivatives of reactive oxygen metabolites (dROMs), as well as lactic dehydrogenase (LDH) activity, creatine kinase (CK) activity, CK-MB, and myoglobin, were significantly increased after exercise, while blood antioxidant potential (BAP) and total free thiols were significantly decreased, compared with those measured before exercise. Advanced oxidation protein products (AOPP) were also increased after exercise but not significantly. We observed that water polo players having either AV16 or VV16 SOD genotype exhibited a significant increase of postexercise AOPP, LDH, CK, and myoglobin plasma levels in comparison with wild-type athletes. Water polo players having either CAT -844 GA or GPx1 CT genotype showed a significant increase of postexercise dROMs plasma levels and, respectively, GPx and CAT enzyme activities in comparison with wild-type subjects. These preliminary results suggest that the screening for gene variants of antioxidant enzymes could be useful to assess individual susceptibility to oxidative stress and muscle damage in water polo players.

  3. Evaluation of oxidative stress in D-serine induced nephrotoxicity

    International Nuclear Information System (INIS)

    Orozco-Ibarra, Marisol; Medina-Campos, Omar Noel; Sanchez-Gonzalez, Dolores Javier; Martinez-Martinez, Claudia Maria; Floriano-Sanchez, Esau; Santamaria, Abel; Ramirez, Victoria; Bobadilla, Norma A.; Pedraza-Chaverri, Jose

    2007-01-01

    It has been suggested that oxidative stress is involved in D-serine-induced nephrotoxicity. The purpose of this study was to assess if oxidative stress is involved in this experimental model using several approaches including (a) the determination of several markers of oxidative stress and the activity of some antioxidant enzymes in kidney and (b) the use of compounds with antioxidant or prooxidant effects. Rats were sacrificed at several periods of time (from 3 to 24 h) after a single i.p. injection of D-serine (400 mg/kg). Control rats were injected with L-serine (400 mg/kg) and sacrificed 24 h after. The following markers were used to assess the temporal aspects of renal damage: (a) urea nitrogen (BUN) and creatinine in blood serum, (b) kidney injury molecule (KIM-1) mRNA levels, and (c) tubular necrotic damage. In addition, creatinine clearance, proteinuria, and urinary excretion of N-acetyl-β-D-glucosaminidase (NAG) were measured 24 h after D-serine injection. Protein carbonyl content, malondialdehyde (MDA), 4-hydroxy-2-nonenal (4-HNE), fluorescent products of lipid peroxidation, reactive oxygen species (ROS), glutathione (GSH) content, and heme oxygenase-1 (HO-1) expression were measured as markers of oxidative stress in the kidney. Additional experiments were performed using the following compounds with antioxidant or pro-oxidant effects before D-serine injection: (a) α-phenyl-tert-butyl-nitrone (PBN), a spin trapping agent; (b) 5,10,15,20-tetrakis (4-sulfonatophenyl) porphyrinato iron(III) (FeTPPS), a soluble complex able to metabolize peroxynitrite; (c) aminotriazole (ATZ), a catalase (CAT) inhibitor; (d) stannous chloride (SnCl 2 ), an HO-1 inductor; (e) tin mesoporphyrin (SnMP), an HO inhibitor. In the time-course study, serum creatinine and BUN increased significantly on 15-24 and 20-24 h, respectively, and KIM-1 mRNA levels increased significantly on 6-24 h. Histological analyses revealed tubular necrosis at 12 h. The activity of antioxidant enzymes

  4. High hydrostatic pressure leads to free radicals accumulation in yeast cells triggering oxidative stress.

    Science.gov (United States)

    Bravim, Fernanda; Mota, Mainã M; Fernandes, A Alberto R; Fernandes, Patricia M B

    2016-08-01

    Saccharomyces cerevisiae is a unicellular organism that during the fermentative process is exposed to a variable environment; hence, resistance to multiple stress conditions is a desirable trait. The stress caused by high hydrostatic pressure (HHP) in S. cerevisiae resembles the injuries generated by other industrial stresses. In this study, it was confirmed that gene expression pattern in response to HHP displays an oxidative stress response profile which is expanded upon hydrostatic pressure release. Actually, reactive oxygen species (ROS) concentration level increased in yeast cells exposed to HHP treatment and an incubation period at room pressure led to a decrease in intracellular ROS concentration. On the other hand, ethylic, thermic and osmotic stresses did not result in any ROS accumulation in yeast cells. Microarray analysis revealed an upregulation of genes related to methionine metabolism, appearing to be a specific cellular response to HHP, and not related to other stresses, such as heat and osmotic stresses. Next, we investigated whether enhanced oxidative stress tolerance leads to enhanced tolerance to HHP stress. Overexpression of STF2 is known to enhance tolerance to oxidative stress and we show that it also leads to enhanced tolerance to HHP stress. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Cognitive decline is associated with systemic oxidative stress: the EVA study. Etude du Vieillissement Artériel.

    Science.gov (United States)

    Berr, C; Balansard, B; Arnaud, J; Roussel, A M; Alpérovitch, A

    2000-10-01

    To determine whether systemic oxidative stress status is associated with cognitive decline. A longitudinal population-based study. A cohort study of older subjects in Nantes, France. A total of 1166 high cognitive functioning subjects aged 60 to 70 in the Etude du Vieillissement Arteriel (EVA) cohort with a 4 year follow-up. Subjects completed a baseline interview and a global cognitive test (Mini-Mental Status Examination (MMSE)). Blood samples were obtained at baseline to determine plasma levels of selenium, carotenoids, thiobarbituric acid reactant substances (TBARS), an indicator of lipoperoxidation, and red blood cell vitamin E. Risk of cognitive decline, defined as a loss of 3 points in MMSE score between baseline and the 4 year follow-up, was assessed by oxidative stress level. Subjects with the highest levels of TBARS show an increased risk of cognitive decline (adjusted odds ratio (OR) = 2.25; confidence interval (CI) 95% = 1.26-4.02). This result is reinforced in the lower antioxidant status subgroup. Subjects with low levels of selenium have an increased risk of cognitive decline (OR = 1.58; CI 95% = 1.08-2.31) after adjustment for various confounding factors. These results suggest that increased levels of oxidative stress and/or antioxidant deficiencies may pose risk factors for cognitive decline. The direct implication of oxidative stress in vascular and neurodegenerative mechanisms that lead to cognitive impairment should be further explored.

  6. Mode of action of nifurtimox and N-oxide-containing heterocycles against Trypanosoma cruzi: is oxidative stress involved?

    Science.gov (United States)

    Boiani, Mariana; Piacenza, Lucia; Hernández, Paola; Boiani, Lucia; Cerecetto, Hugo; González, Mercedes; Denicola, Ana

    2010-06-15

    Chagas disease is caused by the trypanosomatid parasite Trypanosoma cruzi and threatens millions of lives in South America. As other neglected diseases there is almost no research and development effort by the pharmaceutical industry and the treatment relies on two drugs, Nifurtimox and Benznidazole, discovered empirically more than three decades ago. Nifurtimox, a nitrofurane derivative, is believed to exert its biological activity through the bioreduction of the nitro-group to a nitro-anion radical which undergoes redox-cycling with molecular oxygen. This hypothesis is generally accepted, although arguments against it have been presented. In the present work we studied the ability of Nifurtimox and five N-oxide-containing heterocycles to induce oxidative stress in T. cruzi. N-Oxide-containing heterocycles represent a promising group of new trypanosomicidal agents and their mode of action is not completely elucidated. The results here obtained argue against the oxidative stress hypothesis almost for all the studied compounds, including Nifurtimox. A significant reduction in the level of parasitic low-molecular-weight thiols was observed after Nifurtimox treatment; however, it was not linked to the production of reactive oxidant species. Besides, redox-cycling is only observed at high Nifurtimox concentrations (>400microM), two orders of magnitude higher than the concentration required for anti-proliferative activity (5microM). Our results indicate that an increase in oxidative stress is not the main mechanism of action of Nifurtimox. Among the studied N-oxide-containing heterocycles, benzofuroxan derivatives strongly inhibited parasite dehydrogenase activity and affected mitochondrial membrane potential. The indazole derivative raised intracellular oxidants production, but it was the least effective as anti-T. cruzi. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Enhanced transfection by antioxidative polymeric gene carrier that reduces polyplex-mediated cellular oxidative stress.

    Science.gov (United States)

    Lee, Min Sang; Kim, Nak Won; Lee, Kyuri; Kim, Hongtae; Jeong, Ji Hoon

    2013-06-01

    To test the hypothesis in which polyplex-induced oxidative stress may affect overall transfection efficiency, an antioxidative transfection system minimizing cellular oxidative stress was designed for enhanced transfection. An amphiphilic copolymer (PEI-PLGA) was synthesized and used as a micelle-type gene carrier containing hydrophobic antioxidant, α-tocopherol. Cellular oxidative stress and the change of mitochondrial membrane potential after transfection was measured by using a fluorescent probe (H₂DCFDA) and lipophilic cationic probe (JC-1), respectively. Transfection efficiency was determined by measuring a reporter gene (luciferase) expression level. The initial transfection study with conventional PEI/plasmid DNA polyplex showed significant generation of reactive oxygen species (ROS). The PEI-PLGA copolymer successfully carried out the simultaneous delivery of α-tocopherol and plasmid DNA (PEI-PLGA/Toco/pDNA polyplex) into cells, resulting in a significant reduction in cellular ROS generation after transfection and helped to maintain the mitochondrial membrane potential (ΔΨ). In addition, the transfection efficiency was dramatically increased using the antioxidative transfection system. This work showed that oxidative stress would be one of the important factors that should be considered in designing non-viral gene carriers and suggested a possible way to reduce the carrier-mediated oxidative stress, which consequently leads to enhanced transfection.

  8. Oxidative Stress and Antioxidant Levels in Patients with Anorexia Nervosa after Oral Re-alimentation: A Systematic Review and Exploratory Meta-analysis.

    Science.gov (United States)

    Solmi, Marco; Veronese, Nicola; Luchini, Claudio; Manzato, Enzo; Sergi, Giuseppe; Favaro, Angela; Santonastaso, Paolo; Correll, Christoph U

    2016-03-01

    Oxidative stress markers seem to be higher in patients with anorexia nervosa (AN) than healthy controls, but the potentially beneficial effects of weight gain is not known. We calculated random effects standardised mean differences (SMDs) as effect size measures of oxidative stress marker changes after re-alimentation reported in two or more studies, summarising others descriptively. Seven longitudinal studies (n = 104) were included. After a median follow-up period of 8 weeks, AN patients significantly increased their body mass index (15.1 ± 2.1 to 17.1 ± 2.2, p alimentation, even without full-weight normalisation, seems to improve oxidative stress in people with AN. Copyright © 2015 John Wiley & Sons, Ltd and Eating Disorders Association.

  9. The role of oxidative stress on the pathophysiology of metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Fabiane Valentini Francisqueti

    Full Text Available Summary Metabolic syndrome (MetS has a high prevalence around the world. Considering the components used to classify MetS, it is clear that it is closely related to obesity. These two conditions begin with an increase in abdominal adipose tissue, which is metabolically more active, containing a greater amount of resident macrophages compared to other fat deposits. Abdominal adiposity promotes inflammation and oxidative stress, which are precursors of various complications involving MetS components, namely insulin resistance, hypertension and hyperlipidemia. One way to block the effects of oxidative stress would be through the antioxidant defense system, which offsets the excess free radicals. It is known that individuals with metabolic syndrome and obesity have high consumption of fats and sugars originated from processed foods containing high levels of sodium as well as low intake of fruits and vegetables, thus maintaining a state of oxidative stress, that can speed up the onset of MetS. Healthy eating habits could prevent or delay MetS by adding antioxidant-rich foods into the diet.

  10. Exercise through a cardiac rehabilitation program attenuates oxidative stress in patients submitted to coronary artery bypass grafting.

    Science.gov (United States)

    Taty Zau, José Francisco; Costa Zeferino, Rodrigo; Sandrine Mota, Nádia; Fernandes Martins, Gerez; Manoel Serra, Salvador; Bonates da Cunha, Therezil; Medeiros Lima, Daniel; Bragança Pereira, Basilio de; Matos do Nascimento, Emília; Filho, Danilo Wilhelm; Curi Pedrosa, Rozangela; Pedrosa, Roberto Coury

    2018-12-01

    Cardiovascular disease is the main cause of morbidity and mortality in the world and oxidative stress has been implicated in the pathogenesis. Cardiac rehabilitation in patients with coronary artery disease submitted to coronary artery bypass grafting may prevent cardiovascular events probably through the attenuation of oxidative stress. The aim of this study was to evaluate the benefits of a cardiac rehabilitation program in the control of the systemic oxidative stress. The studied population consisted of 40 patients, with chronic stable coronary artery disease submitted to coronary artery bypass grafting, who attended a cardiac rehabilitation program. Biomarkers of oxidative stress were evaluated in the blood of these patients at different moments. After the onset of cardiac rehabilitation, there was a significant and progressive decrease in thiobarbituric acid reactive substances levels and protein carbonyls, an initial increase and subsequent decrease in superoxide dismutase, catalase and glutathione peroxidase activities. Also, a progressive increase of uric acid, while ferric reducing antioxidant power levels increased only at the end of the cardiac rehabilitation and a tendency to increase of glutathione contents. The results suggest that regular exercise through a cardiac rehabilitation program can attenuate oxidative stress in chronic coronary artery disease patients submitted to coronary artery bypass grafting.

  11. Enhanced 15-HPETE production during oxidant stress induces apoptosis of endothelial cells.

    Science.gov (United States)

    Sordillo, Lorraine M; Weaver, James A; Cao, Yu-Zhang; Corl, Chris; Sylte, Matt J; Mullarky, Isis K

    2005-05-01

    Oxidant stress plays an important role in the etiology of vascular diseases by increasing rates of endothelial cell apoptosis, but few data exist on the mechanisms involved. Using a unique model of oxidative stress based on selenium deficiency (-Se), the effects of altered eicosanoid production on bovine aortic endothelial cells (BAEC) apoptosis was evaluated. Oxidant stress significantly increased the immediate oxygenation product of arachidonic acid metabolized by the 15-lipoxygenase pathway, 15-hydroxyperoxyeicosatetraenoic acid (15-HPETE). Treatment of -Se BAEC with TNFalpha/cyclohexamide (CHX) exhibited elevated levels of apoptosis, which was significantly reduced by the addition of a specific 15-lipoxygenase inhibitor PD146176. Furthermore, the addition of 15-HPETE to PD146176-treated BAEC, partially restored TNF/CHX-induced apoptosis. Increased exposure to 15-HPETE induced apoptosis, as determined by internucleosomal DNA fragmentation, chromatin condensation, caspase-3 activation, and caspase-9 activation, which suggests mitochondrial dysfunction. The expression of Bcl-2 protein also was decreased in -Se BAEC. Addition of a caspase-9 inhibitor (LEHD-fmk) completely blocked 15-HPETE-induced chromatin condensation in -Se BAEC, suggesting that 15-HPETE-induced apoptosis is caspase-9 dependent. Increased apoptosis of BAEC as a result of oxidant stress and subsequent production of 15-HPETE may play a critical role in a variety of inflammatory based diseases.

  12. Oxidative stress and antioxidative systems: recipes for successful data collection and interpretation.

    Science.gov (United States)

    Noctor, Graham; Mhamdi, Amna; Foyer, Christine H

    2016-05-01

    Oxidative stress and reactive oxygen species (ROS) are common to many fundamental responses of plants. Enormous and ever-growing interest has focused on this research area, leading to an extensive literature that documents the tremendous progress made in recent years. As in other areas of plant biology, advances have been greatly facilitated by developments in genomics-dependent technologies and the application of interdisciplinary techniques that generate information at multiple levels. At the same time, advances in understanding ROS are fundamentally reliant on the use of biochemical and cell biology techniques that are specific to the study of oxidative stress. It is therefore timely to revisit these approaches with the aim of providing a guide to convenient methods and assisting interested researchers in avoiding potential pitfalls. Our critical overview of currently popular methodologies includes a detailed discussion of approaches used to generate oxidative stress, measurements of ROS themselves, determination of major antioxidant metabolites, assays of antioxidative enzymes and marker transcripts for oxidative stress. We consider the applicability of metabolomics, proteomics and transcriptomics approaches and discuss markers such as damage to DNA and RNA. Our discussion of current methodologies is firmly anchored to future technological developments within this popular research field. © 2016 John Wiley & Sons Ltd.

  13. Glycine Increases Insulin Sensitivity and Glutathione Biosynthesis and Protects against Oxidative Stress in a Model of Sucrose-Induced Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Mohammed El-Hafidi

    2018-01-01

    Full Text Available Oxidative stress and redox status play a central role in the link between insulin resistance (IR and lipotoxicity in metabolic syndrome. This mechanistic link may involve alterations in the glutathione redox state. We examined the effect of glycine supplementation to diet on glutathione biosynthesis, oxidative stress, IR, and insulin cell signaling in liver from sucrose-fed (SF rats characterized by IR and oxidative stress. Our hypothesis is that the correction of glutathione levels by glycine treatment leads to reduced oxidative stress, a mechanism associated with improved insulin signaling and IR. Glycine treatment decreases the levels of oxidative stress markers in liver from SF rats and increases the concentrations of glutathione (GSH and γ-glutamylcysteine and the amount of γ-glutamylcysteine synthetase (γ-GCS, a key enzyme of GSH biosynthesis in liver from SF rats. In liver from SF rats, glycine also decreases the insulin-induced phosphorylation of insulin receptor substrate-1 (ISR-1 in serine residue and increases the phosphorylation of insulin receptor β-subunit (IR-β in tyrosine residue. Thus, supplementing diets with glycine to correct GSH deficiency and to reduce oxidative stress provides significant metabolic benefits to SF rats by improving insulin sensitivity.

  14. The partial pressure of oxygen affects biomarkers of oxidative stress in cultured rainbow trout (Oncorhynchus mykiss) hepatocytes.

    Science.gov (United States)

    Finne, E F; Olsvik, P A; Berntssen, M H G; Hylland, K; Tollefsen, K E

    2008-09-01

    Oxidative stress, the imbalance between production of reactive oxygen species and the cellular detoxification of these reactive compounds, is believed to be involved in the pathology of various diseases. Several biomarkers for oxidative stress have been proposed to serve as tools in toxicological and ecotoxicological research. Not only may exposure to various pro-oxidants create conditions of cellular oxidative stress, but hyperoxic conditions may also increase the production of reactive oxygen species. The objective of the current study was to determine the extent to which differences in oxygen partial pressure would affect biomarkers of oxidative stress in a primary culture of hepatocytes from rainbow trout (Oncorhynchus mykiss). Membrane integrity, metabolic activity, levels of total and oxidized glutathione (tGSH/GSSG) was determined, as well as mRNA expression levels of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GSSG-R), gamma-glutamyl-cystein synthetase (GCS) and thioredoxin (TRX). The results show that different biomarkers of oxidative stress are affected when the cell culture is exposed to atmospheric oxygen, and that changes such as increased GSSG content and induction of GSSG-R and GSH-Px can be reduced by culturing the cells under lower oxygen tension. Oxygen tension may thus influence results of in vitro based cell research and is particularly important when assessing parameters in the antioxidant defence system. Further research is needed to establish the magnitude of this effect in different cellular systems.

  15. Effect of modest caloric restriction on oxidative stress in women, a randomized trial.

    Science.gov (United States)

    Buchowski, Maciej S; Hongu, Nobuko; Acra, Sari; Wang, Li; Warolin, Joshua; Roberts, L Jackson

    2012-01-01

    It is not established to what extent caloric intake must be reduced to lower oxidative stress in humans. The aim of this study was to determine the effect of short-term, moderate caloric restriction on markers of oxidative stress and inflammation in overweight and obese premenopausal women. Randomized trial comparison of 25% caloric restriction (CR) or control diet in 40 overweight or obese women (body mass index 32±5.8 kg/m(2)) observed for 28 days and followed for the next 90 days. Weight, anthropometry, validated markers of oxidative stress (F(2)-isoprostane) and inflammation (C-reactive protein), adipokines, hormones, lipids, interleukins, and blood pressure were assessed at baseline, during the intervention, and at follow-up. Baseline median F(2)-isoprostane concentration (57.0, IQR = 40.5-79.5) in the CR group was 1.75-fold above average range for normal weight women (32.5 pg/ml). After starting of the caloric restriction diet, F(2)-isoprostane levels fell rapidly in the CR group, reaching statistical difference from the control group by day 5 (median 33.5, IQR = 26.0-48.0, Prestriction diet. Three months after resuming a habitual diet, concentrations of F(2)-isoprostane returned to baseline elevated levels in ∼80% of the women. Oxidative stress can be rapidly reduced and sustained through a modest reduction in caloric intake suggesting potential health benefits in overweight and obese women. Clinicaltrials.gov NCT00808275.

  16. Oxidative Stress in Early Life: Associations with Sex, Rearing Conditions, and Parental Physiological Traits in Nestling Pied Flycatchers.

    Science.gov (United States)

    López-Arrabé, Jimena; Cantarero, Alejandro; Pérez-Rodríguez, Lorenzo; Palma, Antonio; Moreno, Juan

    2016-01-01

    Conditions experienced during juvenile development can affect the fitness of an organism. During early life, oxidative stress levels can be particularly high as a result of the increased metabolism and the relatively immature antioxidant system of the individual, and this may have medium- and long-term fitness consequences. Here we explore variation in levels of oxidative stress measured during early life in relation to sex, rearing conditions (hatching date and brood size), and parental condition and levels of oxidative markers in a wild population of the pied flycatcher (Ficedula hypoleuca) followed for 2 yr. A marker of total antioxidant status (TAS) in plasma and total levels of glutathione (GSH) in red blood cells, as well as a marker of oxidative damage in plasma lipids (malondialdehyde [MDA]), were assessed simultaneously. Our results show that nestling total GSH levels were associated with parental oxidative status, correlating negatively with maternal MDA and positively with total GSH levels of both parents, with a high estimated heritability. This suggests that parental physiology and genes could be determinants for endogenous components of the antioxidant system of the offspring. Moreover, we found that total GSH levels were higher in female than in male nestlings and that hatching date was positively associated with antioxidant defenses (higher TAS and total GSH levels). These results suggest that different components of oxidative balance are related to a variety of environmental and intrinsic--including parental--influencing factors. Future experimental studies must disentangle the relative contribution of each of these on nestling oxidative status and how the resulting oxidative stress at early phases shape adult phenotype and fitness.

  17. Effect of increased magnesium intake on plasma cholesterol, triglyceride and oxidative stress in alloxan-diabetic rats.

    Science.gov (United States)

    Olatunji, L A; Soladoye, A O

    2007-06-01

    Cardiovascular disorders are the primary causes of morbidity and mortality in patients with diabetes mellitus (DM). Agents that improve lipid profile and reduce oxidative stress have been shown to reduce the ensuing risk factors. In the present study, we investigated whether increased magnesium intake could improve hyperglycaemia, dyslipidaemia, and reduce oxidative stress in alloxan-induced diabetic rats. Male Wistar rats were divided into non-diabetic (ND), diabetic (DM) and diabetic fed on a high magnesium diet (DM-Mg) groups. Plasma concentrations of thiobarbituric acid reactive substances (TBARS) were used as markers of oxidative stress. Plasma levels of ascorbic acid, magnesium and calcium were also determined. Diabetes was induced by injecting alloxan (100 mg/kg B.W). The fasting blood glucose levels were significantly lower in the DM-Mg rats than in the DM rats. Plasma total cholesterol, triglyceride, TBARS levels were significantly higher while plasma HDL-cholesterol, HDL-cholesterol/total cholesterol ratio, ascorbic acid levels were significantly lowered in DM rats compared with the ND rats. Increased intake of magnesium significantly abrogated these alterations. There were no significant differences in the plasma levels of magnesium and calcium between the DM and ND groups. However, plasma levels of magnesium but not calcium were significantly elevated in DM-Mg rats when compared with other groups. In conclusion, these results suggest that diet rich in magnesium could exert cardioprotective effect through reduced plasma total cholesterol, triglyceride, oxidative stress and ameliorated HDL-cholesterol/total cholesterol ratio as well as increased plasma ascorbic acid and magnesium in diabetic rats.

  18. Evidence against a direct role for oxidative stress in cadmium-induced axial malformation in the chick embryo

    International Nuclear Information System (INIS)

    Thompson, Jennifer; Doi, Takashi; Power, Eoin; Balasubramanian, Ishwarya; Puri, Prem; Bannigan, John

    2010-01-01

    Cadmium (Cd) is a powerful inducer of oxidative stress. It also causes ventral body wall defects in chick embryos treated at Hamburger-Hamilton stages 16-17. By measuring malondialdehyde levels (TBARS method) and cotreating with antioxidants (tempol, ascorbate, and N-acetylcysteine), we sought to determine if oxidative stress were directly related to teratogenesis. We also investigated the expression of mRNAs for antioxidant enzymes superoxide dismutase (SOD) -1 and -2, catalase (CAT), and glutathione peroxidase (GPx). RT-PCR showed reductions in SOD-1, SOD-2, and CAT 1 hour after treatment with Cd. MDA levels increased 4 hours after Cd, and remained elevated 24 hours after treatment. Of the antioxidants, only N-acetylcysteine reduced MDA levels to control values. Nonetheless, no antioxidant could reduce embryo lethality or malformation rates. Furthermore, MDA levels 24 hours after treatment were identical in malformed and normal embryos exposed to Cd. Hence, we conclude that oxidative stress may not have a direct role in Cd teratogenesis.

  19. Absence of DJ-1 causes age-related retinal abnormalities in association with increased oxidative stress.

    Science.gov (United States)

    Bonilha, Vera L; Bell, Brent A; Rayborn, Mary E; Samuels, Ivy S; King, Anna; Hollyfield, Joe G; Xie, Chengsong; Cai, Huaibin

    2017-03-01

    Oxidative stress alters physiological function in most biological tissues and can lead to cell death. In the retina, oxidative stress initiates a cascade of events leading to focal loss of RPE and photoreceptors, which is thought to be a major contributing factor to geographic atrophy. Despite these implications, the molecular regulation of RPE oxidative stress under normal and pathological conditions remains largely unknown. A better understanding of the mechanisms involved in regulating RPE and photoreceptors oxidative stress response is greatly needed. To this end we evaluated photoreceptor and RPE changes in mice deficient in DJ-1, a protein that is thought to be important in protecting cells from oxidative stress. Young (3 months) and aged (18 months) DJ-1 knockout (DJ-1 KO) and age-matched wild-type mice were examined. In both group of aged mice, scanning laser ophthalmoscopy (SLO) showed the presence of a few autofluorescent foci. The 18 month-old DJ-1 KO retinas were also characterized by a noticeable increase in RPE fluorescence to wild-type. Optical coherence tomography (OCT) imaging demonstrated that all retinal layers were present in the eyes of both DJ-1 KO groups. ERG comparisons showed that older DJ-1 KO mice had reduced sensitivity under dark- and light-adapted conditions compared to age-matched control. Histologically, the RPE contained prominent vacuoles in young DJ-1 KO group with the appearance of enlarged irregularly shaped RPE cells in the older group. These were also evident in OCT and in whole mount RPE/choroid preparations labeled with phalloidin. Photoreceptors in the older DJ-1 KO mice displayed decreased immunoreactivity to rhodopsin and localized reduction in cone markers compared to the wild-type control group. Lower levels of activated Nrf2 were evident in retina/RPE lysates in both young and old DJ-1 KO mouse groups compared to wild-type control levels. Conversely, higher levels of protein carbonyl derivatives and i

  20. Short-term and long-term effects of transient exogenous cortisol manipulation on oxidative stress in juvenile brown trout.

    Science.gov (United States)

    Birnie-Gauvin, Kim; Peiman, Kathryn S; Larsen, Martin H; Aarestrup, Kim; Willmore, William G; Cooke, Steven J

    2017-05-01

    In the wild, animals are exposed to a growing number of stressors with increasing frequency and intensity, as a result of human activities and human-induced environmental change. To fully understand how wild organisms are affected by stressors, it is crucial to understand the physiology that underlies an organism's response to a stressor. Prolonged levels of elevated glucocorticoids are associated with a state of chronic stress and decreased fitness. Exogenous glucocorticoid manipulation reduces an individual's ability to forage, avoid predators and grow, thereby limiting the resources available for physiological functions like defence against oxidative stress. Using brown trout ( Salmo trutta ), we evaluated the short-term (2 weeks) and long-term (4 months over winter) effects of exogenous cortisol manipulations (versus relevant shams and controls) on the oxidative status of wild juveniles. Cortisol caused an increase in glutathione over a 2 week period and appeared to reduce glutathione over winter. Cortisol treatment did not affect oxidative stress levels or low molecular weight antioxidants. Cortisol caused a significant decrease in growth rates but did not affect predation risk. Over-winter survival in the stream was associated with low levels of oxidative stress and glutathione. Thus, oxidative stress may be a mechanism by which elevated cortisol causes negative physiological effects. © 2017. Published by The Company of Biologists Ltd.