WorldWideScience

Sample records for level light images

  1. A Study of Light Level Effect on the Accuracy of Image Processing-based Tomato Grading

    Science.gov (United States)

    Prijatna, D.; Muhaemin, M.; Wulandari, R. P.; Herwanto, T.; Saukat, M.; Sugandi, W. K.

    2018-05-01

    Image processing method has been used in non-destructive tests of agricultural products. Compared to manual method, image processing method may produce more objective and consistent results. Image capturing box installed in currently used tomato grading machine (TEP-4) is equipped with four fluorescence lamps to illuminate the processed tomatoes. Since the performance of any lamp will decrease if its service time has exceeded its lifetime, it is predicted that this will affect tomato classification. The objective of this study was to determine the minimum light levels which affect classification accuracy. This study was conducted by varying light level from minimum and maximum on tomatoes in image capturing boxes and then investigates its effects on image characteristics. Research results showed that light intensity affects two variables which are important for classification, for example, area and color of captured image. Image processing program was able to determine correctly the weight and classification of tomatoes when light level was 30 lx to 140 lx.

  2. A color fusion method of infrared and low-light-level images based on visual perception

    Science.gov (United States)

    Han, Jing; Yan, Minmin; Zhang, Yi; Bai, Lianfa

    2014-11-01

    The color fusion images can be obtained through the fusion of infrared and low-light-level images, which will contain both the information of the two. The fusion images can help observers to understand the multichannel images comprehensively. However, simple fusion may lose the target information due to inconspicuous targets in long-distance infrared and low-light-level images; and if targets extraction is adopted blindly, the perception of the scene information will be affected seriously. To solve this problem, a new fusion method based on visual perception is proposed in this paper. The extraction of the visual targets ("what" information) and parallel processing mechanism are applied in traditional color fusion methods. The infrared and low-light-level color fusion images are achieved based on efficient typical targets learning. Experimental results show the effectiveness of the proposed method. The fusion images achieved by our algorithm can not only improve the detection rate of targets, but also get rich natural information of the scenes.

  3. A 256×256 low-light-level CMOS imaging sensor with digital CDS

    Science.gov (United States)

    Zou, Mei; Chen, Nan; Zhong, Shengyou; Li, Zhengfen; Zhang, Jicun; Yao, Li-bin

    2016-10-01

    In order to achieve high sensitivity for low-light-level CMOS image sensors (CIS), a capacitive transimpedance amplifier (CTIA) pixel circuit with a small integration capacitor is used. As the pixel and the column area are highly constrained, it is difficult to achieve analog correlated double sampling (CDS) to remove the noise for low-light-level CIS. So a digital CDS is adopted, which realizes the subtraction algorithm between the reset signal and pixel signal off-chip. The pixel reset noise and part of the column fixed-pattern noise (FPN) can be greatly reduced. A 256×256 CIS with CTIA array and digital CDS is implemented in the 0.35μm CMOS technology. The chip size is 7.7mm×6.75mm, and the pixel size is 15μm×15μm with a fill factor of 20.6%. The measured pixel noise is 24LSB with digital CDS in RMS value at dark condition, which shows 7.8× reduction compared to the image sensor without digital CDS. Running at 7fps, this low-light-level CIS can capture recognizable images with the illumination down to 0.1lux.

  4. Image quality enhancement in low-light-level ghost imaging using modified compressive sensing method

    Science.gov (United States)

    Shi, Xiaohui; Huang, Xianwei; Nan, Suqin; Li, Hengxing; Bai, Yanfeng; Fu, Xiquan

    2018-04-01

    Detector noise has a significantly negative impact on ghost imaging at low light levels, especially for existing recovery algorithm. Based on the characteristics of the additive detector noise, a method named modified compressive sensing ghost imaging is proposed to reduce the background imposed by the randomly distributed detector noise at signal path. Experimental results show that, with an appropriate choice of threshold value, modified compressive sensing ghost imaging algorithm can dramatically enhance the contrast-to-noise ratio of the object reconstruction significantly compared with traditional ghost imaging and compressive sensing ghost imaging methods. The relationship between the contrast-to-noise ratio of the reconstruction image and the intensity ratio (namely, the average signal intensity to average noise intensity ratio) for the three reconstruction algorithms are also discussed. This noise suppression imaging technique will have great applications in remote-sensing and security areas.

  5. InGaAs focal plane arrays for low-light-level SWIR imaging

    Science.gov (United States)

    MacDougal, Michael; Hood, Andrew; Geske, Jon; Wang, Jim; Patel, Falgun; Follman, David; Manzo, Juan; Getty, Jonathan

    2011-06-01

    Aerius Photonics will present their latest developments in large InGaAs focal plane arrays, which are used for low light level imaging in the short wavelength infrared (SWIR) regime. Aerius will present imaging in both 1280x1024 and 640x512 formats. Aerius will present characterization of the FPA including dark current measurements. Aerius will also show the results of development of SWIR FPAs for high temperaures, including imagery and dark current data. Finally, Aerius will show results of using the SWIR camera with Aerius' SWIR illuminators using VCSEL technology.

  6. Improved detection probability of low level light and infrared image fusion system

    Science.gov (United States)

    Luo, Yuxiang; Fu, Rongguo; Zhang, Junju; Wang, Wencong; Chang, Benkang

    2018-02-01

    Low level light(LLL) image contains rich information on environment details, but is easily affected by the weather. In the case of smoke, rain, cloud or fog, much target information will lose. Infrared image, which is from the radiation produced by the object itself, can be "active" to obtain the target information in the scene. However, the image contrast and resolution is bad, the ability of the acquisition of target details is very poor, and the imaging mode does not conform to the human visual habit. The fusion of LLL and infrared image can make up for the deficiency of each sensor and give play to the advantages of single sensor. At first, we show the hardware design of fusion circuit. Then, through the recognition probability calculation of the target(one person) and the background image(trees), we find that the trees detection probability of LLL image is higher than that of the infrared image, and the person detection probability of the infrared image is obviously higher than that of LLL image. The detection probability of fusion image for one person and trees is higher than that of single detector. Therefore, image fusion can significantly enlarge recognition probability and improve detection efficiency.

  7. Naturalness and image quality : saturation and lightness variation in color images of natural scenes

    NARCIS (Netherlands)

    Ridder, de H.

    1996-01-01

    The relation between perceived image quality and naturalness was investigated by varying the colorfulness of natural images at various lightness levels. At each lightness level, subjects assessed perceived colorfulness, naturalness, and quality as a function of average saturation by means of direct

  8. Light Imaging Section

    Data.gov (United States)

    Federal Laboratory Consortium — The mission of the Light Imaging Section is to give NIAMS scientists access to state-of-the-art light imaging equipment and to offer training and assistance at all...

  9. Multispectral simulation environment for modeling low-light-level sensor systems

    Science.gov (United States)

    Ientilucci, Emmett J.; Brown, Scott D.; Schott, John R.; Raqueno, Rolando V.

    1998-11-01

    Image intensifying cameras have been found to be extremely useful in low-light-level (LLL) scenarios including military night vision and civilian rescue operations. These sensors utilize the available visible region photons and an amplification process to produce high contrast imagery. It has been demonstrated that processing techniques can further enhance the quality of this imagery. For example, fusion with matching thermal IR imagery can improve image content when very little visible region contrast is available. To aid in the improvement of current algorithms and the development of new ones, a high fidelity simulation environment capable of producing radiometrically correct multi-band imagery for low- light-level conditions is desired. This paper describes a modeling environment attempting to meet these criteria by addressing the task as two individual components: (1) prediction of a low-light-level radiance field from an arbitrary scene, and (2) simulation of the output from a low- light-level sensor for a given radiance field. The radiance prediction engine utilized in this environment is the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model which is a first principles based multi-spectral synthetic image generation model capable of producing an arbitrary number of bands in the 0.28 to 20 micrometer region. The DIRSIG model is utilized to produce high spatial and spectral resolution radiance field images. These images are then processed by a user configurable multi-stage low-light-level sensor model that applies the appropriate noise and modulation transfer function (MTF) at each stage in the image processing chain. This includes the ability to reproduce common intensifying sensor artifacts such as saturation and 'blooming.' Additionally, co-registered imagery in other spectral bands may be simultaneously generated for testing fusion and exploitation algorithms. This paper discusses specific aspects of the DIRSIG radiance prediction for low

  10. [Influence of human body target's spectral characteristics on visual range of low light level image intensifiers].

    Science.gov (United States)

    Zhang, Jun-Ju; Yang, Wen-Bin; Xu, Hui; Liu, Lei; Tao, Yuan-Yaun

    2013-11-01

    To study the effect of different human target's spectral reflective characteristic on low light level (LLL) image intensifier's distance, based on the spectral characteristics of the night-sky radiation and the spectral reflective coefficients of common clothes, we established a equation of human body target's spectral reflective distribution, and analyzed the spectral reflective characteristics of different human targets wearing the clothes of different color and different material, and from the actual detection equation of LLL image intensifier distance, discussed the detection capability of LLL image intensifier for different human target. The study shows that the effect of different human target's spectral reflective characteristic on LLL image intensifier distance is mainly reflected in the average reflectivity rho(-) and the initial contrast of the target and the background C0. Reflective coefficient and spectral reflection intensity of cotton clothes are higher than polyester clothes, and detection capability of LLL image intensifier is stronger for the human target wearing cotton clothes. Experimental results show that the LLL image intensifiers have longer visual ranges for targets who wear cotton clothes than targets who wear same color but polyester clothes, and have longer visual ranges for targets who wear light-colored clothes than targets who wear dark-colored clothes. And in the full moon illumination conditions, LLL image intensifiers are more sensitive to the clothes' material.

  11. A Novel Approach of Low-Light Image Denoising for Face Recognition

    Directory of Open Access Journals (Sweden)

    Yimei Kang

    2014-04-01

    Full Text Available Illumination variation makes automatic face recognition a challenging task, especially in low light environments. A very simple and efficient novel low-light image denoising of low frequency noise (DeLFN is proposed. The noise frequency distribution of low-light images is presented based on massive experimental results. The low and very low frequency noise are dominant in low light conditions. DeLFN is a three-level image denoising method. The first level denoises mixed noises by histogram equalization (HE to improve overall contrast. The second level denoises low frequency noise by logarithmic transformation (LOG to enhance the image detail. The third level denoises residual very low frequency noise by high-pass filtering to recover more features of the true images. The PCA (Principal Component Analysis recognition method is applied to test recognition rate of the preprocessed face images with DeLFN. DeLFN are compared with several representative illumination preprocessing methods on the Yale Face Database B, the Extended Yale face database B, and the CMU PIE face database, respectively. DeLFN not only outperformed other algorithms in improving visual quality and face recognition rate, but also is simpler and computationally efficient for real time applications.

  12. Backscatter absorption gas imaging systems and light sources therefore

    Science.gov (United States)

    Kulp, Thomas Jan [Livermore, CA; Kliner, Dahv A. V. [San Ramon, CA; Sommers, Ricky [Oakley, CA; Goers, Uta-Barbara [Campbell, NY; Armstrong, Karla M [Livermore, CA

    2006-12-19

    The location of gases that are not visible to the unaided human eye can be determined using tuned light sources that spectroscopically probe the gases and cameras that can provide images corresponding to the absorption of the gases. The present invention is a light source for a backscatter absorption gas imaging (BAGI) system, and a light source incorporating the light source, that can be used to remotely detect and produce images of "invisible" gases. The inventive light source has a light producing element, an optical amplifier, and an optical parametric oscillator to generate wavelength tunable light in the IR. By using a multi-mode light source and an amplifier that operates using 915 nm pump sources, the power consumption of the light source is reduced to a level that can be operated by batteries for long periods of time. In addition, the light source is tunable over the absorption bands of many hydrocarbons, making it useful for detecting hazardous gases.

  13. Low Voltage Low Light Imager and Photodetector

    Science.gov (United States)

    Nikzad, Shouleh (Inventor); Martin, Chris (Inventor); Hoenk, Michael E. (Inventor)

    2013-01-01

    Highly efficient, low energy, low light level imagers and photodetectors are provided. In particular, a novel class of Della-Doped Electron Bombarded Array (DDEBA) photodetectors that will reduce the size, mass, power, complexity, and cost of conventional imaging systems while improving performance by using a thinned imager that is capable of detecting low-energy electrons, has high gain, and is of low noise.

  14. Development of an ultralow-light-level luminescence image analysis system for dynamic measurements of transcriptional activity in living and migrating cells.

    Science.gov (United States)

    Maire, E; Lelièvre, E; Brau, D; Lyons, A; Woodward, M; Fafeur, V; Vandenbunder, B

    2000-04-10

    We have developed an approach to study in single living epithelial cells both cell migration and transcriptional activation, which was evidenced by the detection of luminescence emission from cells transfected with luciferase reporter vectors. The image acquisition chain consists of an epifluorescence inverted microscope, connected to an ultralow-light-level photon-counting camera and an image-acquisition card associated to specialized image analysis software running on a PC computer. Using a simple method based on a thin calibrated light source, the image acquisition chain has been optimized following comparisons of the performance of microscopy objectives and photon-counting cameras designed to observe luminescence. This setup allows us to measure by image analysis the luminescent light emitted by individual cells stably expressing a luciferase reporter vector. The sensitivity of the camera was adjusted to a high value, which required the use of a segmentation algorithm to eliminate the background noise. Following mathematical morphology treatments, kinetic changes of luminescent sources were analyzed and then correlated with the distance and speed of migration. Our results highlight the usefulness of our image acquisition chain and mathematical morphology software to quantify the kinetics of luminescence changes in migrating cells.

  15. Low-Light Image Enhancement Using Adaptive Digital Pixel Binning

    Directory of Open Access Journals (Sweden)

    Yoonjong Yoo

    2015-06-01

    Full Text Available This paper presents an image enhancement algorithm for low-light scenes in an environment with insufficient illumination. Simple amplification of intensity exhibits various undesired artifacts: noise amplification, intensity saturation, and loss of resolution. In order to enhance low-light images without undesired artifacts, a novel digital binning algorithm is proposed that considers brightness, context, noise level, and anti-saturation of a local region in the image. The proposed algorithm does not require any modification of the image sensor or additional frame-memory; it needs only two line-memories in the image signal processor (ISP. Since the proposed algorithm does not use an iterative computation, it can be easily embedded in an existing digital camera ISP pipeline containing a high-resolution image sensor.

  16. Light field imaging and application analysis in THz

    Science.gov (United States)

    Zhang, Hongfei; Su, Bo; He, Jingsuo; Zhang, Cong; Wu, Yaxiong; Zhang, Shengbo; Zhang, Cunlin

    2018-01-01

    The light field includes the direction information and location information. Light field imaging can capture the whole light field by single exposure. The four-dimensional light field function model represented by two-plane parameter, which is proposed by Levoy, is adopted in the light field. Acquisition of light field is based on the microlens array, camera array and the mask. We calculate the dates of light-field to synthetize light field image. The processing techniques of light field data include technology of refocusing rendering, technology of synthetic aperture and technology of microscopic imaging. Introducing the technology of light field imaging into THz, the efficiency of 3D imaging is higher than that of conventional THz 3D imaging technology. The advantages compared with visible light field imaging include large depth of field, wide dynamic range and true three-dimensional. It has broad application prospects.

  17. High visibility temporal ghost imaging with classical light

    Science.gov (United States)

    Liu, Jianbin; Wang, Jingjing; Chen, Hui; Zheng, Huaibin; Liu, Yanyan; Zhou, Yu; Li, Fu-li; Xu, Zhuo

    2018-03-01

    High visibility temporal ghost imaging with classical light is possible when superbunching pseudothermal light is employed. In the numerical simulation, the visibility of temporal ghost imaging with pseudothermal light, equaling (4 . 7 ± 0 . 2)%, can be increased to (75 ± 8)% in the same scheme with superbunching pseudothermal light. The reasons for that the retrieved images are different for superbunching pseudothermal light with different values of degree of second-order coherence are discussed in detail. It is concluded that high visibility and high quality temporal ghost image can be obtained by collecting sufficient number of data points. The results are helpful to understand the difference between ghost imaging with classical light and entangled photon pairs. The superbunching pseudothermal light can be employed to improve the image quality in ghost imaging applications.

  18. Ultraviolet light imaging technology and applications

    Science.gov (United States)

    Yokoi, Takane; Suzuki, Kenji; Oba, Koichiro

    1991-06-01

    Demands on the high-quality imaging in ultraviolet (UV) light region have been increasing recently, especially in fields such as forensic investigations, laser experiments, spent fuel identification, and so on. Important requirements on the UV imaging devices in such applications are high sensitivity, excellent solar blindness, and small image distortion, since the imaging of very weak UV images are usually carried out under natural sunlight or room illuminations and the image data have to be processed to produce useful two-dimensional quantitative data. A new photocathode has been developed to meet these requirements. It is specially made of RbTe on a sapphire window and its quantum efficiency is as high as 20% with the solar blindness of 10,000. The tube is specially designed to meet UV light optics and to minimize image distortion. It has an invertor type image intensifier tube structure and intensifies the incident UV light up to approximately 10,000 times. The distortion of the output image is suppressed less than 1.8%, because of a specially designed electron optic lens system. The device has shown excellent results in the observation of such objects as fingerprints and footprints in forensic investigations, the Cherenkov light produced by the spent fuels stored in a cooling water pool in the nuclear power station, and UV laser beam path in excimer laser experiments. Furthermore, many other applications of the UV light imaging will be expected in various fields such as semiconductors, cosmetics, and electrical power.

  19. Detection of light images by simple tissues as visualized by photosensitized magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Catherine Tempel-Brami

    Full Text Available In this study, we show how light can be absorbed by the body of a living rat due to an injected pigment circulating in the blood stream. This process is then physiologically translated in the tissue into a chemical signature that can be perceived as an image by magnetic resonance imaging (MRI. We previously reported that illumination of an injected photosynthetic bacteriochlorophyll-derived pigment leads to a generation of reactive oxygen species, upon oxygen consumption in the blood stream. Consequently, paramagnetic deoxyhemoglobin accumulating in the illuminated area induces changes in image contrast, detectable by a Blood Oxygen Level Dependent (BOLD-MRI protocol, termed photosensitized (psMRI. Here, we show that laser beam pulses synchronously trigger BOLD-contrast transients in the tissue, allowing representation of the luminous spatiotemporal profile, as a contrast map, on the MR monitor. Regions with enhanced BOLD-contrast (7-61 fold were deduced as illuminated, and were found to overlap with the anatomical location of the incident light. Thus, we conclude that luminous information can be captured and translated by typical oxygen exchange processes in the blood of ordinary tissues, and made visible by psMRI (Fig. 1. This process represents a new channel for communicating environmental light into the body in certain analogy to light absorption by visual pigments in the retina where image perception takes place in the central nervous system. Potential applications of this finding may include: non-invasive intra-operative light guidance and follow-up of photodynamic interventions, determination of light diffusion in opaque tissues for optical imaging and possible assistance to the blind.

  20. Development of a PET/Cerenkov-light hybrid imaging system

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Hamamura, Fuka; Kato, Katsuhiko; Ogata, Yoshimune; Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Hatazawa, Jun; Watabe, Hiroshi

    2014-01-01

    Purpose: Cerenkov-light imaging is a new molecular imaging technology that detects visible photons from high-speed electrons using a high sensitivity optical camera. However, the merit of Cerenkov-light imaging remains unclear. If a PET/Cerenkov-light hybrid imaging system were developed, the merit of Cerenkov-light imaging would be clarified by directly comparing these two imaging modalities. Methods: The authors developed and tested a PET/Cerenkov-light hybrid imaging system that consists of a dual-head PET system, a reflection mirror located above the subject, and a high sensitivity charge coupled device (CCD) camera. The authors installed these systems inside a black box for imaging the Cerenkov-light. The dual-head PET system employed a 1.2 × 1.2 × 10 mm 3 GSO arranged in a 33 × 33 matrix that was optically coupled to a position sensitive photomultiplier tube to form a GSO block detector. The authors arranged two GSO block detectors 10 cm apart and positioned the subject between them. The Cerenkov-light above the subject is reflected by the mirror and changes its direction to the side of the PET system and is imaged by the high sensitivity CCD camera. Results: The dual-head PET system had a spatial resolution of ∼1.2 mm FWHM and sensitivity of ∼0.31% at the center of the FOV. The Cerenkov-light imaging system's spatial resolution was ∼275μm for a 22 Na point source. Using the combined PET/Cerenkov-light hybrid imaging system, the authors successfully obtained fused images from simultaneously acquired images. The image distributions are sometimes different due to the light transmission and absorption in the body of the subject in the Cerenkov-light images. In simultaneous imaging of rat, the authors found that 18 F-FDG accumulation was observed mainly in the Harderian gland on the PET image, while the distribution of Cerenkov-light was observed in the eyes. Conclusions: The authors conclude that their developed PET/Cerenkov-light hybrid imaging

  1. Hiding Information Using different lighting Color images

    Science.gov (United States)

    Majead, Ahlam; Awad, Rash; Salman, Salema S.

    2018-05-01

    The host medium for the secret message is one of the important principles for the designers of steganography method. In this study, the best color image was studied to carrying any secret image.The steganography approach based Lifting Wavelet Transform (LWT) and Least Significant Bits (LSBs) substitution. The proposed method offers lossless and unnoticeable changes in the contrast carrier color image and imperceptible by human visual system (HVS), especially the host images which was captured in dark lighting conditions. The aim of the study was to study the process of masking the data in colored images with different light intensities. The effect of the masking process was examined on the images that are classified by a minimum distance and the amount of noise and distortion in the image. The histogram and statistical characteristics of the cover image the results showed the efficient use of images taken with different light intensities in hiding data using the least important bit substitution method. This method succeeded in concealing textual data without distorting the original image (low light) Lire developments due to the concealment process.The digital image segmentation technique was used to distinguish small areas with masking. The result is that smooth homogeneous areas are less affected as a result of hiding comparing with high light areas. It is possible to use dark color images to send any secret message between two persons for the purpose of secret communication with good security.

  2. Light-leaking region segmentation of FOG fiber based on quality evaluation of infrared image

    Science.gov (United States)

    Liu, Haoting; Wang, Wei; Gao, Feng; Shan, Lianjie; Ma, Yuzhou; Ge, Wenqian

    2014-07-01

    To improve the assembly reliability of Fiber Optic Gyroscope (FOG), a light leakage detection system and method is developed. First, an agile movement control platform is designed to implement the pose control of FOG optical path component in 6 Degrees of Freedom (DOF). Second, an infrared camera is employed to capture the working state images of corresponding fibers in optical path component after the manual assembly of FOG; therefore the entire light transmission process of key sections in light-path can be recorded. Third, an image quality evaluation based region segmentation method is developed for the light leakage images. In contrast to the traditional methods, the image quality metrics, including the region contrast, the edge blur, and the image noise level, are firstly considered to distinguish the image characters of infrared image; then the robust segmentation algorithms, including graph cut and flood fill, are all developed for region segmentation according to the specific image quality. Finally, after the image segmentation of light leakage region, the typical light-leaking type, such as the point defect, the wedge defect, and the surface defect can be identified. By using the image quality based method, the applicability of our proposed system can be improved dramatically. Many experiment results have proved the validity and effectiveness of this method.

  3. Classical imaging with undetected light

    Science.gov (United States)

    Cardoso, A. C.; Berruezo, L. P.; Ávila, D. F.; Lemos, G. B.; Pimenta, W. M.; Monken, C. H.; Saldanha, P. L.; Pádua, S.

    2018-03-01

    We obtained the phase and intensity images of an object by detecting classical light which never interacted with it. With a double passage of a pump and a signal laser beams through a nonlinear crystal, we observe interference between the two idler beams produced by stimulated parametric down conversion. The object is placed in the amplified signal beam after its first passage through the crystal and the image is observed in the interference of the generated idler beams. High contrast images can be obtained even for objects with small transmittance coefficient due to the geometry of the interferometer and to the stimulated parametric emission. Like its quantum counterpart, this three-color imaging concept can be useful when the object must be probed with light at a wavelength for which detectors are not available.

  4. Restoration of uneven illumination in light sheet microscopy images.

    Science.gov (United States)

    Uddin, Mohammad Shorif; Lee, Hwee Kuan; Preibisch, Stephan; Tomancak, Pavel

    2011-08-01

    Light microscopy images suffer from poor contrast due to light absorption and scattering by the media. The resulting decay in contrast varies exponentially across the image along the incident light path. Classical space invariant deconvolution approaches, while very effective in deblurring, are not designed for the restoration of uneven illumination in microscopy images. In this article, we present a modified radiative transfer theory approach to solve the contrast degradation problem of light sheet microscopy (LSM) images. We confirmed the effectiveness of our approach through simulation as well as real LSM images.

  5. Optical image encryption scheme with multiple light paths based on compressive ghost imaging

    Science.gov (United States)

    Zhu, Jinan; Yang, Xiulun; Meng, Xiangfeng; Wang, Yurong; Yin, Yongkai; Sun, Xiaowen; Dong, Guoyan

    2018-02-01

    An optical image encryption method with multiple light paths is proposed based on compressive ghost imaging. In the encryption process, M random phase-only masks (POMs) are generated by means of logistic map algorithm, and these masks are then uploaded to the spatial light modulator (SLM). The collimated laser light is divided into several beams by beam splitters as it passes through the SLM, and the light beams illuminate the secret images, which are converted into sparse images by discrete wavelet transform beforehand. Thus, the secret images are simultaneously encrypted into intensity vectors by ghost imaging. The distances between the SLM and secret images vary and can be used as the main keys with original POM and the logistic map algorithm coefficient in the decryption process. In the proposed method, the storage space can be significantly decreased and the security of the system can be improved. The feasibility, security and robustness of the method are further analysed through computer simulations.

  6. Ghost imaging with third-order correlated thermal light

    International Nuclear Information System (INIS)

    Ou, L-H; Kuang, L-M

    2007-01-01

    In this paper, we propose a ghost imaging scheme with third-order correlated thermal light. We show that it is possible to produce the spatial information of an object at two different places in a nonlocal fashion by means of a third-order correlated imaging process with a third-order correlated thermal source and third-order correlation measurement. Concretely, we propose a protocol to create two ghost images at two different places from one object. This protocol involves two optical configurations. We derive the Gaussian thin lens equations and plot the geometrical optics of the ghost imaging processes for the two configurations. It is indicated that third-order correlated ghost imaging with thermal light exhibits richer correlated imaging effects than second-order correlated ghost imaging with thermal light

  7. Deep Learning-Based Banknote Fitness Classification Using the Reflection Images by a Visible-Light One-Dimensional Line Image Sensor

    Directory of Open Access Journals (Sweden)

    Tuyen Danh Pham

    2018-02-01

    Full Text Available In automatic paper currency sorting, fitness classification is a technique that assesses the quality of banknotes to determine whether a banknote is suitable for recirculation or should be replaced. Studies on using visible-light reflection images of banknotes for evaluating their usability have been reported. However, most of them were conducted under the assumption that the denomination and input direction of the banknote are predetermined. In other words, a pre-classification of the type of input banknote is required. To address this problem, we proposed a deep learning-based fitness-classification method that recognizes the fitness level of a banknote regardless of the denomination and input direction of the banknote to the system, using the reflection images of banknotes by visible-light one-dimensional line image sensor and a convolutional neural network (CNN. Experimental results on the banknote image databases of the Korean won (KRW and the Indian rupee (INR with three fitness levels, and the Unites States dollar (USD with two fitness levels, showed that our method gives better classification accuracy than other methods.

  8. Deep Learning-Based Banknote Fitness Classification Using the Reflection Images by a Visible-Light One-Dimensional Line Image Sensor.

    Science.gov (United States)

    Pham, Tuyen Danh; Nguyen, Dat Tien; Kim, Wan; Park, Sung Ho; Park, Kang Ryoung

    2018-02-06

    In automatic paper currency sorting, fitness classification is a technique that assesses the quality of banknotes to determine whether a banknote is suitable for recirculation or should be replaced. Studies on using visible-light reflection images of banknotes for evaluating their usability have been reported. However, most of them were conducted under the assumption that the denomination and input direction of the banknote are predetermined. In other words, a pre-classification of the type of input banknote is required. To address this problem, we proposed a deep learning-based fitness-classification method that recognizes the fitness level of a banknote regardless of the denomination and input direction of the banknote to the system, using the reflection images of banknotes by visible-light one-dimensional line image sensor and a convolutional neural network (CNN). Experimental results on the banknote image databases of the Korean won (KRW) and the Indian rupee (INR) with three fitness levels, and the Unites States dollar (USD) with two fitness levels, showed that our method gives better classification accuracy than other methods.

  9. Modelling of classical ghost images obtained using scattered light

    International Nuclear Information System (INIS)

    Crosby, S; Castelletto, S; Aruldoss, C; Scholten, R E; Roberts, A

    2007-01-01

    The images obtained in ghost imaging with pseudo-thermal light sources are highly dependent on the spatial coherence properties of the incident light. Pseudo-thermal light is often created by reducing the coherence length of a coherent source by passing it through a turbid mixture of scattering spheres. We describe a model for simulating ghost images obtained with such partially coherent light, using a wave-transport model to calculate the influence of the scattering on initially coherent light. The model is able to predict important properties of the pseudo-thermal source, such as the coherence length and the amplitude of the residual unscattered component of the light which influence the resolution and visibility of the final ghost image. We show that the residual ballistic component introduces an additional background in the reconstructed image, and the spatial resolution obtainable depends on the size of the scattering spheres

  10. Modelling of classical ghost images obtained using scattered light

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, S; Castelletto, S; Aruldoss, C; Scholten, R E; Roberts, A [School of Physics, University of Melbourne, Victoria, 3010 (Australia)

    2007-08-15

    The images obtained in ghost imaging with pseudo-thermal light sources are highly dependent on the spatial coherence properties of the incident light. Pseudo-thermal light is often created by reducing the coherence length of a coherent source by passing it through a turbid mixture of scattering spheres. We describe a model for simulating ghost images obtained with such partially coherent light, using a wave-transport model to calculate the influence of the scattering on initially coherent light. The model is able to predict important properties of the pseudo-thermal source, such as the coherence length and the amplitude of the residual unscattered component of the light which influence the resolution and visibility of the final ghost image. We show that the residual ballistic component introduces an additional background in the reconstructed image, and the spatial resolution obtainable depends on the size of the scattering spheres.

  11. Endoscopic hyperspectral imaging: light guide optimization for spectral light source

    Science.gov (United States)

    Browning, Craig M.; Mayes, Samuel; Rich, Thomas C.; Leavesley, Silas J.

    2018-02-01

    Hyperspectral imaging (HSI) is a technology used in remote sensing, food processing and documentation recovery. Recently, this approach has been applied in the medical field to spectrally interrogate regions of interest within respective substrates. In spectral imaging, a two (spatial) dimensional image is collected, at many different (spectral) wavelengths, to sample spectral signatures from different regions and/or components within a sample. Here, we report on the use of hyperspectral imaging for endoscopic applications. Colorectal cancer is the 3rd leading cancer for incidences and deaths in the US. One factor of severity is the miss rate of precancerous/flat lesions ( 65% accuracy). Integrating HSI into colonoscopy procedures could minimize misdiagnosis and unnecessary resections. We have previously reported a working prototype light source with 16 high-powered light emitting diodes (LEDs) capable of high speed cycling and imaging. In recent testing, we have found our current prototype is limited by transmission loss ( 99%) through the multi-furcated solid light guide (lightpipe) and the desired framerate (20-30 fps) could not be achieved. Here, we report on a series of experimental and modeling studies to better optimize the lightpipe and the spectral endoscopy system as a whole. The lightpipe was experimentally evaluated using an integrating sphere and spectrometer (Ocean Optics). Modeling the lightpipe was performed using Monte Carlo optical ray tracing in TracePro (Lambda Research Corp.). Results of these optimization studies will aid in manufacturing a revised prototype with the newly designed light guide and increased sensitivity. Once the desired optical output (5-10 mW) is achieved then the HIS endoscope system will be able to be implemented without adding onto the procedure time.

  12. An Estimate of the Pixel-Level Connection between Visible Infrared Imaging Radiometer Suite Day/Night Band (VIIRS DNB Nighttime Lights and Land Features across China

    Directory of Open Access Journals (Sweden)

    Ting Ma

    2018-05-01

    Full Text Available Satellite-derived nighttime light images are increasingly used for various studies in relation to demographic, socioeconomic and urbanization dynamics because of the salient relationships between anthropogenic lighting signals at night and statistical variables at multiple scales. Owing to a higher spatial resolution and fewer over-glow and saturation effects, the new generation of nighttime light data derived from the Visible Infrared Imaging Radiometer Suite (VIIRS day/night band (DNB, which is located on board the Suomi National Polar-Orbiting Partnership (Suomi-NPP satellite, is expected to facilitate the performance of nocturnal luminosity-based investigations of human activity in a spatially explicit manner. In spite of the importance of the spatial connection between the VIIRS DNB nighttime light radiance (NTL and the land surface type at a fine scale, the crucial role of NTL-based investigations of human settlements is not well understood. In this study, we investigated the pixel-level relationship between the VIIRS DNB-derived NTL, a Landsat-derived land-use/land-cover dataset, and the map of point of interest (POI density over China, especially with respect to the identification of artificial surfaces in urban land. Our estimates suggest that notable differences in the NTL between urban (man-made surfaces and other types of land surfaces likely allow us to spatially identify most of the urban pixels with relatively high radiance values in VIIRS DNB images. Our results also suggest that current nighttime light data have a limited capability for detecting rural residential areas and explaining pixel-level variations in the POI density at a large scale. Moreover, the impact of non-man-made surfaces on the partitioned results appears inevitable because of the spatial heterogeneity of human settlements and the nature of remotely sensed nighttime light data. Using receiver operating characteristic (ROC curve-based analysis, we obtained

  13. A novel method for detecting light source for digital images forensic

    Science.gov (United States)

    Roy, A. K.; Mitra, S. K.; Agrawal, R.

    2011-06-01

    Manipulation in image has been in practice since centuries. These manipulated images are intended to alter facts — facts of ethics, morality, politics, sex, celebrity or chaos. Image forensic science is used to detect these manipulations in a digital image. There are several standard ways to analyze an image for manipulation. Each one has some limitation. Also very rarely any method tried to capitalize on the way image was taken by the camera. We propose a new method that is based on light and its shade as light and shade are the fundamental input resources that may carry all the information of the image. The proposed method measures the direction of light source and uses the light based technique for identification of any intentional partial manipulation in the said digital image. The method is tested for known manipulated images to correctly identify the light sources. The light source of an image is measured in terms of angle. The experimental results show the robustness of the methodology.

  14. A Comparison of Techniques for Approximating Full Image-Based Lighting

    DEFF Research Database (Denmark)

    Madsen, Claus B.; Laursen, Rune Elmgaard

    2006-01-01

    Light probes, or environment maps, are used extensively in computer graphics for visual effects involving rendering virtual objects into real scenes (Augment Reality). A light probe is a High Dynamic Range omni-directional image covering all directions on a sphere at some location. Each pixel...... in the light probe image measures the incident radiance at the light probe acquisition point. The figure above shows an example of a light probe image in the longitude-latitude mapping, (similar to an atlas mapping of the Earth). Using the light probe information a virtual object can be rendered with correct...... scene illumination and inserted into images of the scene with credible shading, reflections and shadows. Rendering virtual objects with light probe information is a very time consuming process. Therefore several techniques exist which attempt to approximate the light probe with a set of directional...

  15. Image compensation for camera and lighting variability

    Science.gov (United States)

    Daley, Wayne D.; Britton, Douglas F.

    1996-12-01

    With the current trend of integrating machine vision systems in industrial manufacturing and inspection applications comes the issue of camera and illumination stabilization. Unless each application is built around a particular camera and highly controlled lighting environment, the interchangeability of cameras of fluctuations in lighting become a problem as each camera usually has a different response. An empirical approach is proposed where color tile data is acquired using the camera of interest, and a mapping is developed to some predetermined reference image using neural networks. A similar analytical approach based on a rough analysis of the imaging systems is also considered for deriving a mapping between cameras. Once a mapping has been determined, all data from one camera is mapped to correspond to the images of the other prior to performing any processing on the data. Instead of writing separate image processing algorithms for the particular image data being received, the image data is adjusted based on each particular camera and lighting situation. All that is required when swapping cameras is the new mapping for the camera being inserted. The image processing algorithms can remain the same as the input data has been adjusted appropriately. The results of utilizing this technique are presented for an inspection application.

  16. The Fresnel Zone Light Field Spectral Imager

    Science.gov (United States)

    2017-03-23

    detection efficiency for weak signals . Additionally, further study should be done on spectral calibration methods for a FZLFSI. When dealing with weak ... detection assembly. The different image formation planes for each wavelength are constructed synthetically through processing the collected light ...a single micro-lens image. This character- istic also holds for wavelengths other than the design wavelength. 36 modified light field PSF is detected

  17. FIRST SCATTERED-LIGHT IMAGE OF THE DEBRIS DISK AROUND HD 131835 WITH THE GEMINI PLANET IMAGER

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Li-Wei; Arriaga, Pauline; Fitzgerald, Michael P.; Esposito, Thomas M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Duchêne, Gaspard; Kalas, Paul G.; De Rosa, Robert J.; Graham, James R. [Astronomy Department, University of California, Berkeley CA 94720-3411 (United States); Maire, Jérôme; Chilcote, Jeffrey K. [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Marois, Christian [National Research Council of Canada Herzberg, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Millar-Blanchaer, Maxwell A. [Department of Astronomy and Astrophysics, University of Toronto, Toronto ON M5S 3H4 (Canada); Bruzzone, Sebastian [Department of Physics and Astronomy, Centre for Planetary and Space Exploration, University of Western Ontario, London, ON N6A 3K7 (Canada); Rajan, Abhijith [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287 (United States); Pueyo, Laurent; Wolff, Schuyler G.; Chen, Christine H. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Konopacky, Quinn [Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States); Ammons, S. Mark [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94040 (United States); Draper, Zachary H. [University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2 (Canada); and others

    2015-12-10

    We present the first scattered-light image of the debris disk around HD 131835 in the H band using the Gemini Planet Imager. HD 131835 is a ∼15 Myr old A2IV star at a distance of ∼120 pc in the Sco-Cen OB association. We detect the disk only in polarized light and place an upper limit on the peak total intensity. No point sources resembling exoplanets were identified. Compared to its mid-infrared thermal emission,  in scattered light the disk shows similar orientation but different morphology. The scattered-light disk extends from ∼75 to ∼210 AU in the disk plane with roughly flat surface density. Our Monte Carlo radiative transfer model can describe the observations with a model disk composed of a mixture of silicates and amorphous carbon. In addition to the obvious brightness asymmetry due to stronger forward scattering, we discover a weak brightness asymmetry along the major axis, with the northeast side being 1.3 times brighter than the southwest side at a 3σ level.

  18. 3D reconstruction based on light field images

    Science.gov (United States)

    Zhu, Dong; Wu, Chunhong; Liu, Yunluo; Fu, Dongmei

    2018-04-01

    This paper proposed a method of reconstructing three-dimensional (3D) scene from two light field images capture by Lytro illium. The work was carried out by first extracting the sub-aperture images from light field images and using the scale-invariant feature transform (SIFT) for feature registration on the selected sub-aperture images. Structure from motion (SFM) algorithm is further used on the registration completed sub-aperture images to reconstruct the three-dimensional scene. 3D sparse point cloud was obtained in the end. The method shows that the 3D reconstruction can be implemented by only two light field camera captures, rather than at least a dozen times captures by traditional cameras. This can effectively solve the time-consuming, laborious issues for 3D reconstruction based on traditional digital cameras, to achieve a more rapid, convenient and accurate reconstruction.

  19. Low cost light-sheet microscopy for whole brain imaging

    Science.gov (United States)

    Kumar, Manish; Nasenbeny, Jordan; Kozorovitskiy, Yevgenia

    2018-02-01

    Light-sheet microscopy has evolved as an indispensable tool in imaging biological samples. It can image 3D samples at fast speed, with high-resolution optical sectioning, and with reduced photobleaching effects. These properties make light-sheet microscopy ideal for imaging fluorophores in a variety of biological samples and organisms, e.g. zebrafish, drosophila, cleared mouse brains, etc. While most commercial turnkey light-sheet systems are expensive, the existing lower cost implementations, e.g. OpenSPIM, are focused on achieving high-resolution imaging of small samples or organisms like zebrafish. In this work, we substantially reduce the cost of light-sheet microscope system while targeting to image much larger samples, i.e. cleared mouse brains, at single-cell resolution. The expensive components of a lightsheet system - excitation laser, water-immersion objectives, and translation stage - are replaced with an incoherent laser diode, dry objectives, and a custom-built Arduino-controlled translation stage. A low-cost CUBIC protocol is used to clear fixed mouse brain samples. The open-source platforms of μManager and Fiji support image acquisition, processing, and visualization. Our system can easily be extended to multi-color light-sheet microscopy.

  20. High resolution Cerenkov light imaging of induced positron distribution in proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Fujii, Kento; Morishita, Yuki; Okumura, Satoshi; Komori, Masataka [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Aichi 461-8673 (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Aichi 462-8508 (Japan)

    2014-11-01

    Purpose: In proton therapy, imaging of the positron distribution produced by fragmentation during or soon after proton irradiation is a useful method to monitor the proton range. Although positron emission tomography (PET) is typically used for this imaging, its spatial resolution is limited. Cerenkov light imaging is a new molecular imaging technology that detects the visible photons that are produced from high-speed electrons using a high sensitivity optical camera. Because its inherent spatial resolution is much higher than PET, the authors can measure more precise information of the proton-induced positron distribution with Cerenkov light imaging technology. For this purpose, they conducted Cerenkov light imaging of induced positron distribution in proton therapy. Methods: First, the authors evaluated the spatial resolution of our Cerenkov light imaging system with a {sup 22}Na point source for the actual imaging setup. Then the transparent acrylic phantoms (100 × 100 × 100 mm{sup 3}) were irradiated with two different proton energies using a spot scanning proton therapy system. Cerenkov light imaging of each phantom was conducted using a high sensitivity electron multiplied charge coupled device (EM-CCD) camera. Results: The Cerenkov light’s spatial resolution for the setup was 0.76 ± 0.6 mm FWHM. They obtained high resolution Cerenkov light images of the positron distributions in the phantoms for two different proton energies and made fused images of the reference images and the Cerenkov light images. The depths of the positron distribution in the phantoms from the Cerenkov light images were almost identical to the simulation results. The decay curves derived from the region-of-interests (ROIs) set on the Cerenkov light images revealed that Cerenkov light images can be used for estimating the half-life of the radionuclide components of positrons. Conclusions: High resolution Cerenkov light imaging of proton-induced positron distribution was possible. The

  1. High resolution Cerenkov light imaging of induced positron distribution in proton therapy

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Fujii, Kento; Morishita, Yuki; Okumura, Satoshi; Komori, Masataka; Toshito, Toshiyuki

    2014-01-01

    Purpose: In proton therapy, imaging of the positron distribution produced by fragmentation during or soon after proton irradiation is a useful method to monitor the proton range. Although positron emission tomography (PET) is typically used for this imaging, its spatial resolution is limited. Cerenkov light imaging is a new molecular imaging technology that detects the visible photons that are produced from high-speed electrons using a high sensitivity optical camera. Because its inherent spatial resolution is much higher than PET, the authors can measure more precise information of the proton-induced positron distribution with Cerenkov light imaging technology. For this purpose, they conducted Cerenkov light imaging of induced positron distribution in proton therapy. Methods: First, the authors evaluated the spatial resolution of our Cerenkov light imaging system with a 22 Na point source for the actual imaging setup. Then the transparent acrylic phantoms (100 × 100 × 100 mm 3 ) were irradiated with two different proton energies using a spot scanning proton therapy system. Cerenkov light imaging of each phantom was conducted using a high sensitivity electron multiplied charge coupled device (EM-CCD) camera. Results: The Cerenkov light’s spatial resolution for the setup was 0.76 ± 0.6 mm FWHM. They obtained high resolution Cerenkov light images of the positron distributions in the phantoms for two different proton energies and made fused images of the reference images and the Cerenkov light images. The depths of the positron distribution in the phantoms from the Cerenkov light images were almost identical to the simulation results. The decay curves derived from the region-of-interests (ROIs) set on the Cerenkov light images revealed that Cerenkov light images can be used for estimating the half-life of the radionuclide components of positrons. Conclusions: High resolution Cerenkov light imaging of proton-induced positron distribution was possible. The authors

  2. Concept of dual-resolution light field imaging using an organic photoelectric conversion film for high-resolution light field photography.

    Science.gov (United States)

    Sugimura, Daisuke; Kobayashi, Suguru; Hamamoto, Takayuki

    2017-11-01

    Light field imaging is an emerging technique that is employed to realize various applications such as multi-viewpoint imaging, focal-point changing, and depth estimation. In this paper, we propose a concept of a dual-resolution light field imaging system to synthesize super-resolved multi-viewpoint images. The key novelty of this study is the use of an organic photoelectric conversion film (OPCF), which is a device that converts spectra information of incoming light within a certain wavelength range into an electrical signal (pixel value), for light field imaging. In our imaging system, we place the OPCF having the green spectral sensitivity onto the micro-lens array of the conventional light field camera. The OPCF allows us to acquire the green spectra information only at the center viewpoint with the full resolution of the image sensor. In contrast, the optical system of the light field camera in our imaging system captures the other spectra information (red and blue) at multiple viewpoints (sub-aperture images) but with low resolution. Thus, our dual-resolution light field imaging system enables us to simultaneously capture information about the target scene at a high spatial resolution as well as the direction information of the incoming light. By exploiting these advantages of our imaging system, our proposed method enables the synthesis of full-resolution multi-viewpoint images. We perform experiments using synthetic images, and the results demonstrate that our method outperforms other previous methods.

  3. Rapid Automatic Lighting Control of a Mixed Light Source for Image Acquisition using Derivative Optimum Search Methods

    Directory of Open Access Journals (Sweden)

    Kim HyungTae

    2015-01-01

    Full Text Available Automatic lighting (auto-lighting is a function that maximizes the image quality of a vision inspection system by adjusting the light intensity and color.In most inspection systems, a single color light source is used, and an equal step search is employed to determine the maximum image quality. However, when a mixed light source is used, the number of iterations becomes large, and therefore, a rapid search method must be applied to reduce their number. Derivative optimum search methods follow the tangential direction of a function and are usually faster than other methods. In this study, multi-dimensional forms of derivative optimum search methods are applied to obtain the maximum image quality considering a mixed-light source. The auto-lighting algorithms were derived from the steepest descent and conjugate gradient methods, which have N-size inputs of driving voltage and one output of image quality. Experiments in which the proposed algorithm was applied to semiconductor patterns showed that a reduced number of iterations is required to determine the locally maximized image quality.

  4. Optimized lighting method of applying shaped-function signal for increasing the dynamic range of LED-multispectral imaging system

    Science.gov (United States)

    Yang, Xue; Hu, Yajia; Li, Gang; Lin, Ling

    2018-02-01

    This paper proposes an optimized lighting method of applying a shaped-function signal for increasing the dynamic range of light emitting diode (LED)-multispectral imaging system. The optimized lighting method is based on the linear response zone of the analog-to-digital conversion (ADC) and the spectral response of the camera. The auxiliary light at a higher sensitivity-camera area is introduced to increase the A/D quantization levels that are within the linear response zone of ADC and improve the signal-to-noise ratio. The active light is modulated by the shaped-function signal to improve the gray-scale resolution of the image. And the auxiliary light is modulated by the constant intensity signal, which is easy to acquire the images under the active light irradiation. The least square method is employed to precisely extract the desired images. One wavelength in multispectral imaging based on LED illumination was taken as an example. It has been proven by experiments that the gray-scale resolution and the accuracy of information of the images acquired by the proposed method were both significantly improved. The optimum method opens up avenues for the hyperspectral imaging of biological tissue.

  5. External motion tracking for brain imaging: structured light tracking with invisible light

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Paulsen, Rasmus Reinhold; Højgaard, Liselotte

    2010-01-01

    The importance of motion correction in 3D medical imaging increases with increasing scanner resolution. It is necessary for scanners with long image acquisition and low contrast images to correct for patient motion in order to optimize image quality. We present a near infrared structured light...... stereo depth map system for head motion estimation inside 3D medical scanners with limited space....

  6. Focused fluorescence excitation with time-reversed ultrasonically encoded light and imaging in thick scattering media

    International Nuclear Information System (INIS)

    Lai, Puxiang; Suzuki, Yuta; Xu, Xiao; Wang, Lihong V

    2013-01-01

    Scattering dominates light propagation in biological tissue, and therefore restricts both resolution and penetration depth in optical imaging within thick tissue. As photons travel into the diffusive regime, typically 1 mm beneath human skin, their trajectories transition from ballistic to diffusive due to the increased number of scattering events, which makes it impossible to focus, much less track, photon paths. Consequently, imaging methods that rely on controlled light illumination are ineffective in deep tissue. This problem has recently been addressed by a novel method capable of dynamically focusing light in thick scattering media via time reversal of ultrasonically encoded (TRUE) diffused light. Here, using photorefractive materials as phase conjugate mirrors, we show a direct visualization and dynamic control of optical focusing with this light delivery method, and demonstrate its application for focused fluorescence excitation and imaging in thick turbid media. These abilities are increasingly critical for understanding the dynamic interactions of light with biological matter and processes at different system levels, as well as their applications for biomedical diagnosis and therapy. (letter)

  7. Fast imaging of live organisms with sculpted light sheets

    Science.gov (United States)

    Chmielewski, Aleksander K.; Kyrsting, Anders; Mahou, Pierre; Wayland, Matthew T.; Muresan, Leila; Evers, Jan Felix; Kaminski, Clemens F.

    2015-04-01

    Light-sheet microscopy is an increasingly popular technique in the life sciences due to its fast 3D imaging capability of fluorescent samples with low photo toxicity compared to confocal methods. In this work we present a new, fast, flexible and simple to implement method to optimize the illumination light-sheet to the requirement at hand. A telescope composed of two electrically tuneable lenses enables us to define thickness and position of the light-sheet independently but accurately within milliseconds, and therefore optimize image quality of the features of interest interactively. We demonstrated the practical benefit of this technique by 1) assembling large field of views from tiled single exposure each with individually optimized illumination settings; 2) sculpting the light-sheet to trace complex sample shapes within single exposures. This technique proved compatible with confocal line scanning detection, further improving image contrast and resolution. Finally, we determined the effect of light-sheet optimization in the context of scattering tissue, devising procedures for balancing image quality, field of view and acquisition speed.

  8. Pseudo color ghost coding imaging with pseudo thermal light

    Science.gov (United States)

    Duan, De-yang; Xia, Yun-jie

    2018-04-01

    We present a new pseudo color imaging scheme named pseudo color ghost coding imaging based on ghost imaging but with multiwavelength source modulated by a spatial light modulator. Compared with conventional pseudo color imaging where there is no nondegenerate wavelength spatial correlations resulting in extra monochromatic images, the degenerate wavelength and nondegenerate wavelength spatial correlations between the idle beam and signal beam can be obtained simultaneously. This scheme can obtain more colorful image with higher quality than that in conventional pseudo color coding techniques. More importantly, a significant advantage of the scheme compared to the conventional pseudo color coding imaging techniques is the image with different colors can be obtained without changing the light source and spatial filter.

  9. Image processing and data reduction of Apollo low light level photographs

    Science.gov (United States)

    Alvord, G. C.

    1975-01-01

    The removal of the lens induced vignetting from a selected sample of the Apollo low light level photographs is discussed. The methods used were developed earlier. A study of the effect of noise on vignetting removal and the comparability of the Apollo 35mm Nikon lens vignetting was also undertaken. The vignetting removal was successful to about 10% photometry, and noise has a severe effect on the useful photometric output data. Separate vignetting functions must be used for different flights since the vignetting function varies from camera to camera in size and shape.

  10. Adaptability of drowsiness level detection that measures blinks utilizing image processing to changes in the ambient light; Hikari kankyo no henka ni tekiosuru kao gazo shori ni yoru inemuri unten kenchi

    Energy Technology Data Exchange (ETDEWEB)

    Kaneda, M; Obara, H; Nasu, T [Nissan Motor Co. Ltd, Tokyo (Japan)

    1997-10-01

    A drowsiness warning system that measures blinks utilizing image processing technology has a number of issues that need to be resolved. One issue is the adaptability of the system to changes in the ambient light environment in the actual vehicle interior. We have devised image processing software which is robust to changes in the ambient light. The drowsiness detection performance of the system was evaluated in laboratory tests and actual driving tests. It was found that the system can has a positive effect on detecting drowsiness level. 3 refs., 10 figs.

  11. Intelligent Luminance Control of Lighting Systems Based on Imaging Sensor Feedback

    Directory of Open Access Journals (Sweden)

    Haoting Liu

    2017-02-01

    Full Text Available An imaging sensor-based intelligent Light Emitting Diode (LED lighting system for desk use is proposed. In contrast to the traditional intelligent lighting system, such as the photosensitive resistance sensor-based or the infrared sensor-based system, the imaging sensor can realize a finer perception of the environmental light; thus it can guide a more precise lighting control. Before this system works, first lots of typical imaging lighting data of the desk application are accumulated. Second, a series of subjective and objective Lighting Effect Evaluation Metrics (LEEMs are defined and assessed for these datasets above. Then the cluster benchmarks of these objective LEEMs can be obtained. Third, both a single LEEM-based control and a multiple LEEMs-based control are developed to realize a kind of optimal luminance tuning. When this system works, first it captures the lighting image using a wearable camera. Then it computes the objective LEEMs of the captured image and compares them with the cluster benchmarks of the objective LEEMs. Finally, the single LEEM-based or the multiple LEEMs-based control can be implemented to get a kind of optimal lighting effect. Many experiment results have shown the proposed system can tune the LED lamp automatically according to environment luminance changes.

  12. Robust reflective ghost imaging against different partially polarized thermal light

    Science.gov (United States)

    Li, Hong-Guo; Wang, Yan; Zhang, Rui-Xue; Zhang, De-Jian; Liu, Hong-Chao; Li, Zong-Guo; Xiong, Jun

    2018-03-01

    We theoretically study the influence of degree of polarization (DOP) of thermal light on the contrast-to-noise ratio (CNR) of the reflective ghost imaging (RGI), which is a novel and indirect imaging modality. An expression for the CNR of RGI with partially polarized thermal light is carefully derived, which suggests a weak dependence of CNR on the DOP, especially when the ratio of the object size to the speckle size of thermal light has a large value. Different from conventional imaging approaches, our work reveals that RGI is much more robust against the DOP of the light source, which thereby has advantages in practical applications, such as remote sensing.

  13. Computational model of lightness perception in high dynamic range imaging

    Science.gov (United States)

    Krawczyk, Grzegorz; Myszkowski, Karol; Seidel, Hans-Peter

    2006-02-01

    An anchoring theory of lightness perception by Gilchrist et al. [1999] explains many characteristics of human visual system such as lightness constancy and its spectacular failures which are important in the perception of images. The principal concept of this theory is the perception of complex scenes in terms of groups of consistent areas (frameworks). Such areas, following the gestalt theorists, are defined by the regions of common illumination. The key aspect of the image perception is the estimation of lightness within each framework through the anchoring to the luminance perceived as white, followed by the computation of the global lightness. In this paper we provide a computational model for automatic decomposition of HDR images into frameworks. We derive a tone mapping operator which predicts lightness perception of the real world scenes and aims at its accurate reproduction on low dynamic range displays. Furthermore, such a decomposition into frameworks opens new grounds for local image analysis in view of human perception.

  14. Research and application on imaging technology of line structure light based on confocal microscopy

    Science.gov (United States)

    Han, Wenfeng; Xiao, Zexin; Wang, Xiaofen

    2009-11-01

    In 2005, the theory of line structure light confocal microscopy was put forward firstly in China by Xingyu Gao and Zexin Xiao in the Institute of Opt-mechatronics of Guilin University of Electronic Technology. Though the lateral resolution of line confocal microscopy can only reach or approach the level of the traditional dot confocal microscopy. But compared with traditional dot confocal microscopy, it has two advantages: first, by substituting line scanning for dot scanning, plane imaging only performs one-dimensional scanning, with imaging velocity greatly improved and scanning mechanism simplified, second, transfer quantity of light is greatly improved by substituting detection hairline for detection pinhole, and low illumination CCD is used directly to collect images instead of photoelectric intensifier. In order to apply the line confocal microscopy to practical system, based on the further research on the theory of the line confocal microscopy, imaging technology of line structure light is put forward on condition of implementation of confocal microscopy. Its validity and reliability are also verified by experiments.

  15. Design of light-small high-speed image data processing system

    Science.gov (United States)

    Yang, Jinbao; Feng, Xue; Li, Fei

    2015-10-01

    A light-small high speed image data processing system was designed in order to meet the request of image data processing in aerospace. System was constructed of FPGA, DSP and MCU (Micro-controller), implementing a video compress of 3 million pixels@15frames and real-time return of compressed image to the upper system. Programmable characteristic of FPGA, high performance image compress IC and configurable MCU were made best use to improve integration. Besides, hard-soft board design was introduced and PCB layout was optimized. At last, system achieved miniaturization, light-weight and fast heat dispersion. Experiments show that, system's multifunction was designed correctly and worked stably. In conclusion, system can be widely used in the area of light-small imaging.

  16. Self-imaging of partially coherent light in graded-index media.

    Science.gov (United States)

    Ponomarenko, Sergey A

    2015-02-15

    We demonstrate that partially coherent light beams of arbitrary intensity and spectral degree of coherence profiles can self-image in linear graded-index media. The results can be applicable to imaging with noisy spatial or temporal light sources.

  17. Survey of on-road image projection with pixel light systems

    Science.gov (United States)

    Rizvi, Sadiq; Knöchelmann, Marvin; Ley, Peer-Phillip; Lachmayer, Roland

    2017-12-01

    HID, LED and laser-based high resolution automotive headlamps, as of late known as `pixel light systems', are at the forefront of the developing technologies paving the way for autonomous driving. In addition to light distribution capabilities that outperform Adaptive Front Lighting and Matrix Beam systems, pixel light systems provide the possibility of image projection directly onto the street. The underlying objective is to improve the driving experience, in any given scenario, in terms of safety, comfort and interaction for all road users. The focus of this work is to conduct a short survey on this state-of-the-art image projection functionality. A holistic research regarding the image projection functionality can be divided into three major categories: scenario selection, technological development and evaluation design. Consequently, the work presented in this paper is divided into three short studies. Section 1 provides a brief introduction to pixel light systems and a justification for the approach adopted for this study. Section 2 deals with the selection of scenarios (and driving maneuvers) where image projection can play a critical role. Section 3 discusses high power LED and LED array based prototypes that are currently under development. Section 4 demonstrates results from an experiment conducted to evaluate the illuminance of an image space projected using a pixel light system prototype developed at the Institute of Product Development (IPeG). Findings from this work can help to identify and advance future research work relating to: further development of pixel light systems, scenario planning, examination of optimal light sources, behavioral response studies etc.

  18. Fluorescence lifetime imaging using light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Gordon T; Munro, Ian; Poher, Vincent; French, Paul M W; Neil, Mark A A [Blackett Laboratory, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Elson, Daniel S [Institute of Biomedical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Hares, Jonathan D [Kentech Instruments Ltd, Unit 9, Hall Farm Workshops, South Moreton, Didcot, Oxfordshire, OX11 9AG (United Kingdom)], E-mail: gordon.kennedy@imperial.ac.uk

    2008-05-07

    We demonstrate flexible use of low cost, high-power light emitting diodes as illumination sources for fluorescence lifetime imaging (FLIM). Both time-domain and frequency-domain techniques have been implemented at wavelengths spanning the range 450-640 nm. Additionally, we demonstrate optically sectioned fluorescence lifetime imaging by combining structured illumination with frequency-domain FLIM.

  19. Pedestrian Detection Based on Adaptive Selection of Visible Light or Far-Infrared Light Camera Image by Fuzzy Inference System and Convolutional Neural Network-Based Verification.

    Science.gov (United States)

    Kang, Jin Kyu; Hong, Hyung Gil; Park, Kang Ryoung

    2017-07-08

    A number of studies have been conducted to enhance the pedestrian detection accuracy of intelligent surveillance systems. However, detecting pedestrians under outdoor conditions is a challenging problem due to the varying lighting, shadows, and occlusions. In recent times, a growing number of studies have been performed on visible light camera-based pedestrian detection systems using a convolutional neural network (CNN) in order to make the pedestrian detection process more resilient to such conditions. However, visible light cameras still cannot detect pedestrians during nighttime, and are easily affected by shadows and lighting. There are many studies on CNN-based pedestrian detection through the use of far-infrared (FIR) light cameras (i.e., thermal cameras) to address such difficulties. However, when the solar radiation increases and the background temperature reaches the same level as the body temperature, it remains difficult for the FIR light camera to detect pedestrians due to the insignificant difference between the pedestrian and non-pedestrian features within the images. Researchers have been trying to solve this issue by inputting both the visible light and the FIR camera images into the CNN as the input. This, however, takes a longer time to process, and makes the system structure more complex as the CNN needs to process both camera images. This research adaptively selects a more appropriate candidate between two pedestrian images from visible light and FIR cameras based on a fuzzy inference system (FIS), and the selected candidate is verified with a CNN. Three types of databases were tested, taking into account various environmental factors using visible light and FIR cameras. The results showed that the proposed method performs better than the previously reported methods.

  20. 3D widefield light microscope image reconstruction without dyes

    Science.gov (United States)

    Larkin, S.; Larson, J.; Holmes, C.; Vaicik, M.; Turturro, M.; Jurkevich, A.; Sinha, S.; Ezashi, T.; Papavasiliou, G.; Brey, E.; Holmes, T.

    2015-03-01

    3D image reconstruction using light microscope modalities without exogenous contrast agents is proposed and investigated as an approach to produce 3D images of biological samples for live imaging applications. Multimodality and multispectral imaging, used in concert with this 3D optical sectioning approach is also proposed as a way to further produce contrast that could be specific to components in the sample. The methods avoid usage of contrast agents. Contrast agents, such as fluorescent or absorbing dyes, can be toxic to cells or alter cell behavior. Current modes of producing 3D image sets from a light microscope, such as 3D deconvolution algorithms and confocal microscopy generally require contrast agents. Zernike phase contrast (ZPC), transmitted light brightfield (TLB), darkfield microscopy and others can produce contrast without dyes. Some of these modalities have not previously benefitted from 3D image reconstruction algorithms, however. The 3D image reconstruction algorithm is based on an underlying physical model of scattering potential, expressed as the sample's 3D absorption and phase quantities. The algorithm is based upon optimizing an objective function - the I-divergence - while solving for the 3D absorption and phase quantities. Unlike typical deconvolution algorithms, each microscope modality, such as ZPC or TLB, produces two output image sets instead of one. Contrast in the displayed image and 3D renderings is further enabled by treating the multispectral/multimodal data as a feature set in a mathematical formulation that uses the principal component method of statistics.

  1. Fluorescence image excited by a scanning UV-LED light

    Science.gov (United States)

    Tsai, Hsin-Yi; Chen, Yi-Ju; Huang, Kuo-Cheng

    2013-03-01

    An optical scanning system using UV-LED light to induced fluorescence technology can enhance a fluorescence image significantly in a short period. It has several advantages such as lower power consumption, no scattering effect in skins, and multilayer images can be obtained to analyze skin disease. From the experiment results, the light intensity increases with increase spot size and decrease scanning speed, but the image resolution is oppositely. Moreover, the system could be widely used in clinical diagnosis and photodynamic therapy for skin disease because even the irradiated time of fluorescence substance is short but it will provide accurately positioning of fluorescence object.

  2. Real-time Image Generation for Compressive Light Field Displays

    International Nuclear Information System (INIS)

    Wetzstein, G; Lanman, D; Hirsch, M; Raskar, R

    2013-01-01

    With the invention of integral imaging and parallax barriers in the beginning of the 20th century, glasses-free 3D displays have become feasible. Only today—more than a century later—glasses-free 3D displays are finally emerging in the consumer market. The technologies being employed in current-generation devices, however, are fundamentally the same as what was invented 100 years ago. With rapid advances in optical fabrication, digital processing power, and computational perception, a new generation of display technology is emerging: compressive displays exploring the co-design of optical elements and computational processing while taking particular characteristics of the human visual system into account. In this paper, we discuss real-time implementation strategies for emerging compressive light field displays. We consider displays composed of multiple stacked layers of light-attenuating or polarization-rotating layers, such as LCDs. The involved image generation requires iterative tomographic image synthesis. We demonstrate that, for the case of light field display, computed tomographic light field synthesis maps well to operations included in the standard graphics pipeline, facilitating efficient GPU-based implementations with real-time framerates.

  3. MICADO: first light imager for the E-ELT

    NARCIS (Netherlands)

    Davies, R.; Schubert, J.; Hartl, M.; Alves, J.; Clénet, Y.; Lang-Bardl, F.; Nicklas, H.; Pott, J. -U; Ragazzoni, R.; Tolstoy, E.; Agocs, T.; Anwand-Heerwart, H.; Barboza, S.; Baudoz, P.; Bender, R.; Bizenberger, P.; Boccaletti, A.; Boland, W.; Bonifacio, P.; Briegel, F.; Buey, T.; Chapron, F.; Cohen, M.; Czoske, O.; Dreizler, S.; Falomo, R.; Feautrier, P.; Förster Schreiber, N.; Gendron, E.; Genzel, R.; Glück, M.; Gratadour, D.; Greimel, R.; Grupp, F.; Häuser, M.; Haug, M.; Hennawi, J.; Hess, H. J.; Hörmann, V.; Hofferbert, R.; Hopp, U.; Hubert, Z.; Ives, D.; Kausch, W.; Kerber, F.; Kravcar, H.; Kuijken, K.; Leitzinger, M.; Leschinski, K.; Massari, D.; Mei, S.; Merlin, F.; Mohr, L.; Monna, A.; Müller, F.; Navarro, R.; Plattner, M.; Przybilla, N.; Ramlau, R.; Ramsay, S.; Ratzka, T.; Rhode, P.; Richter, J.; Rix, H. -W; Rodeghiero, G.; Rohloff, R. -R; Rousset, G.; Ruddenklau, R.; Schaffenroth, V.; Schlichter, J.; Sevin, A.; Stuik, R.; Sturm, E.; Thomas, J.; Tromp, N.; Turatto, M.; Verdoes-Kleijn, G.; Vidal, F.; Wagner, R.; Wegner, M.; Zeilinger, W.; Ziegler, B.; Zins, G.

    2016-01-01

    MICADO will equip the E-ELT with a first light capability for diffraction limited imaging at near-infrared wavelengths. The instrument's observing modes focus on various flavours of imaging, including astrometric, high contrast, and time resolved. There is also a single object spectroscopic mode

  4. Cerebral vessels segmentation for light-sheet microscopy image using convolutional neural networks

    Science.gov (United States)

    Hu, Chaoen; Hui, Hui; Wang, Shuo; Dong, Di; Liu, Xia; Yang, Xin; Tian, Jie

    2017-03-01

    Cerebral vessel segmentation is an important step in image analysis for brain function and brain disease studies. To extract all the cerebrovascular patterns, including arteries and capillaries, some filter-based methods are used to segment vessels. However, the design of accurate and robust vessel segmentation algorithms is still challenging, due to the variety and complexity of images, especially in cerebral blood vessel segmentation. In this work, we addressed a problem of automatic and robust segmentation of cerebral micro-vessels structures in cerebrovascular images acquired by light-sheet microscope for mouse. To segment micro-vessels in large-scale image data, we proposed a convolutional neural networks (CNNs) architecture trained by 1.58 million pixels with manual label. Three convolutional layers and one fully connected layer were used in the CNNs model. We extracted a patch of size 32x32 pixels in each acquired brain vessel image as training data set to feed into CNNs for classification. This network was trained to output the probability that the center pixel of input patch belongs to vessel structures. To build the CNNs architecture, a series of mouse brain vascular images acquired from a commercial light sheet fluorescence microscopy (LSFM) system were used for training the model. The experimental results demonstrated that our approach is a promising method for effectively segmenting micro-vessels structures in cerebrovascular images with vessel-dense, nonuniform gray-level and long-scale contrast regions.

  5. Individuality evaluation for paper based artifact-metrics using transmitted light image

    Science.gov (United States)

    Yamakoshi, Manabu; Tanaka, Junichi; Furuie, Makoto; Hirabayashi, Masashi; Matsumoto, Tsutomu

    2008-02-01

    Artifact-metrics is an automated method of authenticating artifacts based on a measurable intrinsic characteristic. Intrinsic characters, such as microscopic random-patterns made during the manufacturing process, are very difficult to copy. A transmitted light image of the distribution can be used for artifact-metrics, since the fiber distribution of paper is random. Little is known about the individuality of the transmitted light image although it is an important requirement for intrinsic characteristic artifact-metrics. Measuring individuality requires that the intrinsic characteristic of each artifact significantly differs, so having sufficient individuality can make an artifact-metric system highly resistant to brute force attack. Here we investigate the influence of paper category, matching size of sample, and image-resolution on the individuality of a transmitted light image of paper through a matching test using those images. More concretely, we evaluate FMR/FNMR curves by calculating similarity scores with matches using correlation coefficients between pairs of scanner input images, and the individuality of paper by way of estimated EER with probabilistic measure through a matching method based on line segments, which can localize the influence of rotation gaps of a sample in the case of large matching size. As a result, we found that the transmitted light image of paper has a sufficient individuality.

  6. Coherent imaging with incoherent light in digital holographic microscopy

    Science.gov (United States)

    Chmelik, Radim

    2012-01-01

    Digital holographic microscope (DHM) allows for imaging with a quantitative phase contrast. In this way it becomes an important instrument, a completely non-invasive tool for a contrast intravital observation of living cells and a cell drymass density distribution measurement. A serious drawback of current DHMs is highly coherent illumination which makes the lateral resolution worse and impairs the image quality by a coherence noise and a parasitic interference. An uncompromising solution to this problem can be found in the Leith concept of incoherent holography. An off-axis hologram can be formed with arbitrary degree of light coherence in systems equipped with an achromatic interferometer and thus the resolution and the image quality typical for an incoherent-light wide-field microscopy can be achieved. In addition, advanced imaging modes based on limited coherence can be utilized. The typical example is a coherence-gating effect which provides a finite axial resolution and makes DHM image similar to that of a confocal microscope. These possibilities were described theoretically using the formalism of three-dimensional coherent transfer functions and proved experimentally by the coherence-controlled holographic microscope which is DHM based on the Leith achromatic interferometer. Quantitative-phase-contrast imaging is demonstrated with incoherent light by the living cancer cells observation and their motility evaluation. The coherence-gating effect was proved by imaging of model samples through a scattering layer and living cells inside an opalescent medium.

  7. Theory and analysis of a large field polarization imaging system with obliquely incident light.

    Science.gov (United States)

    Lu, Xiaotian; Jin, Weiqi; Li, Li; Wang, Xia; Qiu, Su; Liu, Jing

    2018-02-05

    Polarization imaging technology provides information about not only the irradiance of a target but also the polarization degree and angle of polarization, which indicates extensive application potential. However, polarization imaging theory is based on paraxial optics. When a beam of obliquely incident light passes an analyser, the direction of light propagation is not perpendicular to the surface of the analyser and the applicability of the traditional paraxial optical polarization imaging theory is challenged. This paper investigates a theoretical model of a polarization imaging system with obliquely incident light and establishes a polarization imaging transmission model with a large field of obliquely incident light. In an imaging experiment with an integrating sphere light source and rotatable polarizer, the polarization imaging transmission model is verified and analysed for two cases of natural light and linearly polarized light incidence. Although the results indicate that the theoretical model is consistent with the experimental results, the theoretical model distinctly differs from the traditional paraxial approximation model. The results prove the accuracy and necessity of the theoretical model and the theoretical guiding significance for theoretical and systematic research of large field polarization imaging.

  8. Compression and Processing of Space Image Sequences of Northern Lights and Sprites

    DEFF Research Database (Denmark)

    Forchhammer, Søren Otto; Martins, Bo; Jensen, Ole Riis

    1999-01-01

    Compression of image sequences of auroral activity as northern lights and thunderstorms with sprites is investigated.......Compression of image sequences of auroral activity as northern lights and thunderstorms with sprites is investigated....

  9. Multispectral imaging of the ocular fundus using light emitting diode illumination.

    Science.gov (United States)

    Everdell, N L; Styles, I B; Calcagni, A; Gibson, J; Hebden, J; Claridge, E

    2010-09-01

    We present an imaging system based on light emitting diode (LED) illumination that produces multispectral optical images of the human ocular fundus. It uses a conventional fundus camera equipped with a high power LED light source and a highly sensitive electron-multiplying charge coupled device camera. It is able to take pictures at a series of wavelengths in rapid succession at short exposure times, thereby eliminating the image shift introduced by natural eye movements (saccades). In contrast with snapshot systems the images retain full spatial resolution. The system is not suitable for applications where the full spectral resolution is required as it uses discrete wavebands for illumination. This is not a problem in retinal imaging where the use of selected wavelengths is common. The modular nature of the light source allows new wavelengths to be introduced easily and at low cost. The use of wavelength-specific LEDs as a source is preferable to white light illumination and subsequent filtering of the remitted light as it minimizes the total light exposure of the subject. The system is controlled via a graphical user interface that enables flexible control of intensity, duration, and sequencing of sources in synchrony with the camera. Our initial experiments indicate that the system can acquire multispectral image sequences of the human retina at exposure times of 0.05 s in the range of 500-620 nm with mean signal to noise ratio of 17 dB (min 11, std 4.5), making it suitable for quantitative analysis with application to the diagnosis and screening of eye diseases such as diabetic retinopathy and age-related macular degeneration.

  10. Low-Light-Level InGaAs focal plane arrays with and without illumination

    Science.gov (United States)

    Macdougal, Michael; Geske, Jon; Wang, Chad; Follman, David

    2010-04-01

    Short wavelength IR imaging using InGaAs-based FPAs is shown. Aerius demonstrates low dark current in InGaAs detector arrays with 15 μm pixel pitch. The same material is mated with a 640x 512 CTIA-based readout integrated circuit. The resulting FPA is capable of imaging photon fluxes with wavelengths between 1 and 1.6 microns at low light levels. The mean dark current density on the FPAs is extremely low at 0.64 nA/cm2 at 10°C. Noise due to the readout can be reduced from 95 to 57 electrons by using off-chip correlated double sampling (CDS). In addition, Aerius has developed laser arrays that provide flat illumination in scenes that are normally light-starved. The illuminators have 40% wall-plug efficiency and provide speckle-free illumination, provide artifact-free imagery versus conventional laser illuminators.

  11. Transurethral light delivery for prostate photoacoustic imaging

    OpenAIRE

    Lediju Bell, Muyinatu A.; Guo, Xiaoyu; Song, Danny Y.; Boctor, Emad M.

    2015-01-01

    Photoacoustic imaging has broad clinical potential to enhance prostate cancer detection and treatment, yet it is challenged by the lack of minimally invasive, deeply penetrating light delivery methods that provide sufficient visualization of targets (e.g., tumors, contrast agents, brachytherapy seeds). We constructed a side-firing fiber prototype for transurethral photoacoustic imaging of prostates with a dual-array (linear and curvilinear) transrectal ultrasound probe. A method to calculate ...

  12. Confocal non-line-of-sight imaging based on the light-cone transform

    Science.gov (United States)

    O’Toole, Matthew; Lindell, David B.; Wetzstein, Gordon

    2018-03-01

    How to image objects that are hidden from a camera’s view is a problem of fundamental importance to many fields of research, with applications in robotic vision, defence, remote sensing, medical imaging and autonomous vehicles. Non-line-of-sight (NLOS) imaging at macroscopic scales has been demonstrated by scanning a visible surface with a pulsed laser and a time-resolved detector. Whereas light detection and ranging (LIDAR) systems use such measurements to recover the shape of visible objects from direct reflections, NLOS imaging reconstructs the shape and albedo of hidden objects from multiply scattered light. Despite recent advances, NLOS imaging has remained impractical owing to the prohibitive memory and processing requirements of existing reconstruction algorithms, and the extremely weak signal of multiply scattered light. Here we show that a confocal scanning procedure can address these challenges by facilitating the derivation of the light-cone transform to solve the NLOS reconstruction problem. This method requires much smaller computational and memory resources than previous reconstruction methods do and images hidden objects at unprecedented resolution. Confocal scanning also provides a sizeable increase in signal and range when imaging retroreflective objects. We quantify the resolution bounds of NLOS imaging, demonstrate its potential for real-time tracking and derive efficient algorithms that incorporate image priors and a physically accurate noise model. Additionally, we describe successful outdoor experiments of NLOS imaging under indirect sunlight.

  13. Light Emission Requires Exposure to the Atmosphere in Ex Vivo Bioluminescence Imaging

    Directory of Open Access Journals (Sweden)

    Yusuke Inoue

    2006-04-01

    Full Text Available The identification of organs bearing luciferase activity by in vivo bioluminescence imaging (BLI is often difficult, and ex vivo imaging of excised organs plays a complementary role. This study investigated the importance of exposure to the atmosphere in ex vivo BLI. Mice were inoculated with murine pro-B cell line Ba/F3 transduced with firefly luciferase and p190 BCR-ABL. They were killed following in vivo BLI, and whole-body imaging was done after death and then after intraperitoneal air injection. In addition, the right knee was exposed and imaged before and after the adjacent bones were cut. Extensive light signals were seen on in vivo imaging. The luminescence disappeared after the animal was killed, and air injection restored the light emission from the abdomen only, suggesting a critical role of atmospheric oxygen in luminescence after death. Although no substantial light signal at the right knee was seen before bone cutting, light emission was evident after cutting. In conclusion, in ex vivo BLI, light emission requires exposure to the atmosphere. Bone destruction is required to demonstrate luciferase activity in the bone marrow after death.

  14. VLC-based indoor location awareness using LED light and image sensors

    Science.gov (United States)

    Lee, Seok-Ju; Yoo, Jong-Ho; Jung, Sung-Yoon

    2012-11-01

    Recently, indoor LED lighting can be considered for constructing green infra with energy saving and additionally providing LED-IT convergence services such as visible light communication (VLC) based location awareness and navigation services. For example, in case of large complex shopping mall, location awareness to navigate the destination is very important issue. However, the conventional navigation using GPS is not working indoors. Alternative location service based on WLAN has a problem that the position accuracy is low. For example, it is difficult to estimate the height exactly. If the position error of the height is greater than the height between floors, it may cause big problem. Therefore, conventional navigation is inappropriate for indoor navigation. Alternative possible solution for indoor navigation is VLC based location awareness scheme. Because indoor LED infra will be definitely equipped for providing lighting functionality, indoor LED lighting has a possibility to provide relatively high accuracy of position estimation combined with VLC technology. In this paper, we provide a new VLC based positioning system using visible LED lights and image sensors. Our system uses location of image sensor lens and location of reception plane. By using more than two image sensor, we can determine transmitter position less than 1m position error. Through simulation, we verify the validity of the proposed VLC based new positioning system using visible LED light and image sensors.

  15. Light-pollution measurement with the Wide-field all-sky image analyzing monitoring system

    Science.gov (United States)

    Vítek, S.

    2017-07-01

    The purpose of this experiment was to measure light pollution in the capital of Czech Republic, Prague. As a measuring instrument is used calibrated consumer level digital single reflex camera with IR cut filter, therefore, the paper reports results of measuring and monitoring of the light pollution in the wavelength range of 390 - 700 nm, which most affects visual range astronomy. Combining frames of different exposure times made with a digital camera coupled with fish-eye lens allow to create high dynamic range images, contain meaningful values, so such a system can provide absolute values of the sky brightness.

  16. Development of gamma-photon/Cerenkov-light hybrid system for simultaneous imaging of I-131 radionuclide

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi; Suzuki, Mayumi; Kato, Katsuhiko [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu [Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine (Japan); Ogata, Yoshimune [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Hatazawa, Jun [Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine (Japan)

    2016-09-11

    Although iodine 131 (I-131) is used for radionuclide therapy, high resolution images are difficult to obtain with conventional gamma cameras because of the high energy of I-131 gamma photons (364 keV). Cerenkov-light imaging is a possible method for beta emitting radionuclides, and I-131 (606 MeV maximum beta energy) is a candidate to obtain high resolution images. We developed a high energy gamma camera system for I-131 radionuclide and combined it with a Cerenkov-light imaging system to form a gamma-photon/Cerenkov-light hybrid imaging system to compare the simultaneously measured images of these two modalities. The high energy gamma imaging detector used 0.85-mm×0.85-mm×10-mm thick GAGG scintillator pixels arranged in a 44×44 matrix with a 0.1-mm thick reflector and optical coupled to a Hamamatsu 2 in. square position sensitive photomultiplier tube (PSPMT: H12700 MOD). The gamma imaging detector was encased in a 2 cm thick tungsten shield, and a pinhole collimator was mounted on its top to form a gamma camera system. The Cerenkov-light imaging system was made of a high sensitivity cooled CCD camera. The Cerenkov-light imaging system was combined with the gamma camera using optical mirrors to image the same area of the subject. With this configuration, we simultaneously imaged the gamma photons and the Cerenkov-light from I-131 in the subjects. The spatial resolution and sensitivity of the gamma camera system for I-131 were respectively ~3 mm FWHM and ~10 cps/MBq for the high sensitivity collimator at 10 cm from the collimator surface. The spatial resolution of the Cerenkov-light imaging system was 0.64 mm FWHM at 10 cm from the system surface. Thyroid phantom and rat images were successfully obtained with the developed gamma-photon/Cerenkov-light hybrid imaging system, allowing direct comparison of these two modalities. Our developed gamma-photon/Cerenkov-light hybrid imaging system will be useful to evaluate the advantages and disadvantages of these two

  17. Fourier-transform ghost imaging with pure far-field correlated thermal light

    International Nuclear Information System (INIS)

    Liu Honglin; Shen Xia; Han Shensheng; Zhu Daming

    2007-01-01

    Pure far-field correlated thermal light beams are created with phase grating, and Fourier-transform ghost imaging depending only on the far-field correlation is demonstrated experimentally. Theoretical analysis and the results of experimental investigation of this pure far-field correlated thermal light are presented. Applications which may be exploited with this imaging scheme are discussed

  18. Illumination Effect of Laser Light in Foggy Objects Using an Active Imaging System

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Seong-Ouk; Park, Seung-Kyu; Ahn, Yong-Jin; Baik, Sung-Hoon; Choi, Young-Soo; Jeong, Kyung-Min [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    Active imaging techniques usually provide improved image information when compared to passive imaging techniques. Active vision is a direct visualization technique using an artificial illuminant. Range-gated imaging (RGI) technique is one of active vision technologies. The RGI technique extracts vision information by summing time sliced vision images. In the RGI system, objects are illuminated for ultra-short time by a high intensity illuminant and then the light reflected from objects is captured by a highly sensitive image sensor with the exposure of ultra-short time. The Range-gated imaging is an emerging technology in the field of surveillance for security application, especially in the visualization of darken night or foggy environment. Although RGI viewing was discovered in the 1960's, this technology is currently more applicable by virtue of the rapid development of optical and sensor technologies, such as highly sensitive imaging sensor and ultra-short pulse laser light. Especially, this system can be adopted in robot-vision system by virtue of the compact system configuration. During the past decades, several applications of this technology have been applied in target recognition and in harsh environments, such as fog, underwater vision. Also, this technology has been demonstrated range imaging based on range-gated imaging. Laser light having a short pulse width is usually used for the range-gated imaging system. In this paper, an illumination effect of laser light in foggy objects is studied using a range-gated imaging system. The used imaging system consists of an ultra-short pulse (0.35 ns) laser light and a gated imaging sensor. The experiment is carried out to monitor objects in a box filled by fog. In this paper, the effects by fog particles in range-gated imaging technique are studied. Edge blurring and range distortion are the generated by fog particles.

  19. Illumination Effect of Laser Light in Foggy Objects Using an Active Imaging System

    International Nuclear Information System (INIS)

    Kwon, Seong-Ouk; Park, Seung-Kyu; Ahn, Yong-Jin; Baik, Sung-Hoon; Choi, Young-Soo; Jeong, Kyung-Min

    2015-01-01

    Active imaging techniques usually provide improved image information when compared to passive imaging techniques. Active vision is a direct visualization technique using an artificial illuminant. Range-gated imaging (RGI) technique is one of active vision technologies. The RGI technique extracts vision information by summing time sliced vision images. In the RGI system, objects are illuminated for ultra-short time by a high intensity illuminant and then the light reflected from objects is captured by a highly sensitive image sensor with the exposure of ultra-short time. The Range-gated imaging is an emerging technology in the field of surveillance for security application, especially in the visualization of darken night or foggy environment. Although RGI viewing was discovered in the 1960's, this technology is currently more applicable by virtue of the rapid development of optical and sensor technologies, such as highly sensitive imaging sensor and ultra-short pulse laser light. Especially, this system can be adopted in robot-vision system by virtue of the compact system configuration. During the past decades, several applications of this technology have been applied in target recognition and in harsh environments, such as fog, underwater vision. Also, this technology has been demonstrated range imaging based on range-gated imaging. Laser light having a short pulse width is usually used for the range-gated imaging system. In this paper, an illumination effect of laser light in foggy objects is studied using a range-gated imaging system. The used imaging system consists of an ultra-short pulse (0.35 ns) laser light and a gated imaging sensor. The experiment is carried out to monitor objects in a box filled by fog. In this paper, the effects by fog particles in range-gated imaging technique are studied. Edge blurring and range distortion are the generated by fog particles

  20. Measuring incident light on grape clusters using photosensitive paper and image analysis

    International Nuclear Information System (INIS)

    Price, S.F.; Schuette, M.L.; Tassie, E.

    1995-01-01

    Digital imaging and analysis was used to quantify and characterize the light exposure patterns of photosensitive paper tubes placed in representative cluster positions in two grape (Vitis vinifera L.) canopies: a minimally pruned and a vertically trained canopy. Blue pixel values of the captured images had a negative correlation with the log of irradiance from an integrating quantum sensor (r2 = 0.9308). The spectral response of the photosensitive paper was not measured. Histograms of incident light distribution on individual paper tubes were developed using imaging software. Histograms were able to quantify the distribution of incident light on individual tubes and were clearly related to the tube's exposure in the canopy. Average population curves of pixel light distribution of 20 tubes in each canopy were able to differentiate the typical cluster light environment in the two canopies. Tubes in the minimally pruned canopy had a larger proportion of their surface exposed to irradiances > 50 micromoles.s-1 m-2 and 65% higher average irradiance than the vertical canopy. Image analysis of photosensitive paper appears to be a workable method to record the distribution of incident light in plant canopies and may have utility in a range of ecological studies

  1. Surface displacement imaging by interferometry with a light emitting diode

    International Nuclear Information System (INIS)

    Dilhaire, Stefan; Grauby, Stephane; Jorez, Sebastien; Lopez, Luis David Patino; Rampnoux, Jean-Michel; Claeys, Wilfrid

    2002-01-01

    We present an imaging technique to measure static surface displacements of electronic components. A device is supplied by a transient current that creates a variation of temperature, thus a surface displacement. To measure the latter, a setup that is based on a Michelson interferometer is used. To avoid the phenomenon of speckle and the drawbacks inherent to it, we use a light emitting diode as the light source for the interferometer. The detector is a visible CCD camera that analyzes the optical signal containing the information of surface displacement of the device. Combining images, we extract the amplitude of the surface displacement. Out-of-plane surface-displacement images of a thermoelectric device are presented

  2. Efficient light emission from inorganic and organic semiconductor hybrid structures by energy-level tuning.

    Science.gov (United States)

    Schlesinger, R; Bianchi, F; Blumstengel, S; Christodoulou, C; Ovsyannikov, R; Kobin, B; Moudgil, K; Barlow, S; Hecht, S; Marder, S R; Henneberger, F; Koch, N

    2015-04-15

    The fundamental limits of inorganic semiconductors for light emitting applications, such as holographic displays, biomedical imaging and ultrafast data processing and communication, might be overcome by hybridization with their organic counterparts, which feature enhanced frequency response and colour range. Innovative hybrid inorganic/organic structures exploit efficient electrical injection and high excitation density of inorganic semiconductors and subsequent energy transfer to the organic semiconductor, provided that the radiative emission yield is high. An inherent obstacle to that end is the unfavourable energy level offset at hybrid inorganic/organic structures, which rather facilitates charge transfer that quenches light emission. Here, we introduce a technologically relevant method to optimize the hybrid structure's energy levels, here comprising ZnO and a tailored ladder-type oligophenylene. The ZnO work function is substantially lowered with an organometallic donor monolayer, aligning the frontier levels of the inorganic and organic semiconductors. This increases the hybrid structure's radiative emission yield sevenfold, validating the relevance of our approach.

  3. Efficient light emission from inorganic and organic semiconductor hybrid structures by energy-level tuning

    Science.gov (United States)

    Schlesinger, R.; Bianchi, F.; Blumstengel, S.; Christodoulou, C.; Ovsyannikov, R.; Kobin, B.; Moudgil, K.; Barlow, S.; Hecht, S.; Marder, S.R.; Henneberger, F.; Koch, N.

    2015-01-01

    The fundamental limits of inorganic semiconductors for light emitting applications, such as holographic displays, biomedical imaging and ultrafast data processing and communication, might be overcome by hybridization with their organic counterparts, which feature enhanced frequency response and colour range. Innovative hybrid inorganic/organic structures exploit efficient electrical injection and high excitation density of inorganic semiconductors and subsequent energy transfer to the organic semiconductor, provided that the radiative emission yield is high. An inherent obstacle to that end is the unfavourable energy level offset at hybrid inorganic/organic structures, which rather facilitates charge transfer that quenches light emission. Here, we introduce a technologically relevant method to optimize the hybrid structure's energy levels, here comprising ZnO and a tailored ladder-type oligophenylene. The ZnO work function is substantially lowered with an organometallic donor monolayer, aligning the frontier levels of the inorganic and organic semiconductors. This increases the hybrid structure's radiative emission yield sevenfold, validating the relevance of our approach. PMID:25872919

  4. Classification of quantitative light-induced fluorescence images using convolutional neural network

    NARCIS (Netherlands)

    Imangaliyev, S.; van der Veen, M.H.; Volgenant, C.M.C.; Loos, B.G.; Keijser, B.J.F.; Crielaard, W.; Levin, E.; Lintas, A.; Rovetta, S.; Verschure, P.F.M.J.; Villa, A.E.P.

    2017-01-01

    Images are an important data source for diagnosis of oral diseases. The manual classification of images may lead to suboptimal treatment procedures due to subjective errors. In this paper an image classification algorithm based on Deep Learning framework is applied to Quantitative Light-induced

  5. Novel Detecting Methods of Shack-Hartmann Wavefront Sensor at Low Light Levels

    International Nuclear Information System (INIS)

    Zhang, A; Rao, C H; Zhang, Y D; Jiang, W H

    2006-01-01

    A study of novel detecting methods of Shack-Hartmann wavefront sensor at low light levels has been made. Three methods of images processing before slope estimating are presented: Linear Enhancing (LE), Exponential Enhancing (EE) and Fourier Spectrum Filtering (FSF). The idea of LE method is to time the image intensity with a special coefficient before slope estimation. The image points are powered by a selected exponent in EE method. The FSF method is based on the spectrum difference between signal and noise. Most of noise spectrum is filtered and the noise is restrained. The simulated and experimental results show that the LE method does not work effectively, and the other two methods can improve the slope estimation when the Signal-to-noise ratio is higher than 3.0. When the Signal-to-noise ratio is less than 3.0, especially when it is less than 1.0, the FSF is the only method that can overcome the readout noise of the CCD detector

  6. Pulsed operation of high-power light emitting diodes for imaging flow velocimetry

    International Nuclear Information System (INIS)

    Willert, C; Klinner, J; Moessner, S; Stasicki, B

    2010-01-01

    High-powered light emitting diodes (LED) are investigated for possible uses as light sources in flow diagnostics, in particular, as an alternative to laser-based illumination in particle imaging flow velocimetry in side-scatter imaging arrangements. Recent developments in solid state illumination resulted in mass-produced LEDs that provide average radiant power in excess of 10 W. By operating these LEDs with short duration, pulsed currents that are considerably beyond their continuous current damage threshold, light pulses can be generated that are sufficient to illuminate and image micron-sized particles in flow velocimetry. Time-resolved PIV measurements in water at a framing rate of 2kHz are presented. The feasibility of LED-based PIV measurements in air is also demonstrated

  7. Light-Induced Alterations in Basil Ganglia Kynurenic Acid Levels

    Science.gov (United States)

    Sroufe, Angela E.; Whittaker, J. A.; Patrickson, J. W.; Orr, M. C.

    1997-01-01

    The metabolic synthesis, release and breakdown of several known CNS neurotransmitters have been shown to follow a circadian pattern entrained to the environmental light/dark cycle. The levels of excitatory amino acid (EAA) transmitters such as glutamate, have been shown to vary with environmental lighting conditions. Kynurenic Acid (KA), an endogenous tryptophan metabolite and glutamate receptor antagonist, has been reported to have neuroprotective effects against EAA-induced excitotoxic cell damage. Changes in KA's activity within the mammalian basal ganglia has been proposed as being contributory to neurotoxicity in Huntington's Disease. It is not known whether CNS KA levels follow a circadian pattern or exhibit light-induced fluctuations. However, because the symptoms of certain degenerative motor disorders seem to fluctuate with daily 24 hour rhythm, we initiated studies to determine if basal ganglia KA were influenced by the daily light/dark cycle and could influence motor function. Therefore in this study, HPLC-EC was utilized to determine if basal ganglia KA levels in tissue extracts from adult male Long-Evans rats (200-250g) entrained to 24 and 48 hours constant light and dark conditions, respectively. Samples were taken one hour before the onset of the subjective day and one hour prior to the onset of the subjective night in order to detect possible phase differences in KA levels and to allow for accumulation of factors expressed in association with the light or dark phase. Data analysis revealed that KA levels in the basal ganglia vary with environmental lighting conditions; being elevated generally during the dark. Circadian phase differences in KA levels were also evident during the subjective night and subjective day, respectively. Results from these studies are discussed with respect to potential cyclic changes in neuronal susceptibility to excitotoxic damage during the daily 24 hour cycle and its possible relevance to future therapeutic approaches in

  8. Incident Light Frequency-Based Image Defogging Algorithm

    Directory of Open Access Journals (Sweden)

    Wenbo Zhang

    2017-01-01

    Full Text Available To solve the color distortion problem produced by the dark channel prior algorithm, an improved method for calculating transmittance of all channels, respectively, was proposed in this paper. Based on the Beer-Lambert Law, the influence between the frequency of the incident light and the transmittance was analyzed, and the ratios between each channel’s transmittance were derived. Then, in order to increase efficiency, the input image was resized to a smaller size before acquiring the refined transmittance which will be resized to the same size of original image. Finally, all the transmittances were obtained with the help of the proportion between each color channel, and then they were used to restore the defogging image. Experiments suggest that the improved algorithm can produce a much more natural result image in comparison with original algorithm, which means the problem of high color saturation was eliminated. What is more, the improved algorithm speeds up by four to nine times compared to the original algorithm.

  9. Single-Molecule Light-Sheet Imaging of Suspended T Cells.

    Science.gov (United States)

    Ponjavic, Aleks; McColl, James; Carr, Alexander R; Santos, Ana Mafalda; Kulenkampff, Klara; Lippert, Anna; Davis, Simon J; Klenerman, David; Lee, Steven F

    2018-05-08

    Adaptive immune responses are initiated by triggering of the T cell receptor. Single-molecule imaging based on total internal reflection fluorescence microscopy at coverslip/basal cell interfaces is commonly used to study this process. These experiments have suggested, unexpectedly, that the diffusional behavior and organization of signaling proteins and receptors may be constrained before activation. However, it is unclear to what extent the molecular behavior and cell state is affected by the imaging conditions, i.e., by the presence of a supporting surface. In this study, we implemented single-molecule light-sheet microscopy, which enables single receptors to be directly visualized at any plane in a cell to study protein dynamics and organization in live, resting T cells. The light sheet enabled the acquisition of high-quality single-molecule fluorescence images that were comparable to those of total internal reflection fluorescence microscopy. By comparing the apical and basal surfaces of surface-contacting T cells using single-molecule light-sheet microscopy, we found that most coated-glass surfaces and supported lipid bilayers profoundly affected the diffusion of membrane proteins (T cell receptor and CD45) and that all the surfaces induced calcium influx to various degrees. Our results suggest that, when studying resting T cells, surfaces are best avoided, which we achieve here by suspending cells in agarose. Copyright © 2018. Published by Elsevier Inc.

  10. Exquisite Nova Light Curves from the Solar Mass Ejection Imager (SMEI)

    OpenAIRE

    Hounsell, R.; Bode, M. F.; Hick, P. P.; Buffington, A.; Jackson, B. V.; Clover, J. M.; Shafter, A. W.; Darnley, M. J.; Mawson, N. R.; Steele, I. A.; Evans, A.; Eyres, S. P. S.; O'Brien, T. J.

    2010-01-01

    We present light curves of three classical novae (KT Eridani, V598 Puppis, V1280 Scorpii) and one recurrent nova (RS Ophiuchi) derived from data obtained by the Solar Mass Ejection Imager (SMEI) on board the Coriolis satellite. SMEI provides near complete sky-map coverage with precision visible-light photometry at 102-minute cadence. The light curves derived from these sky maps offer unprecedented temporal resolution around, and especially before, maximum light, a phase of the nova eruption n...

  11. Using advertisement light-panel and CMOS image sensor with frequency-shift-keying for visible light communication.

    Science.gov (United States)

    Chow, Chi-Wai; Shiu, Ruei-Jie; Liu, Yen-Chun; Liao, Xin-Lan; Lin, Kun-Hsien; Wang, Yi-Chang; Chen, Yi-Yuan

    2018-05-14

    A frequency-shift-keying (FSK) visible light communication (VLC) system is proposed and demonstrated using advertisement light-panel as transmitter and mobile-phone image sensor as receiver. The developed application program (APP) in mobile-phone can retrieve the rolling shutter effect (RSE) pattern produced by the FSK VLC signal effectively. Here, we also define noise-ratio value (NRV) to evaluate the contrast of different advertisements displayed on the light-panel. Both mobile-phones under test can achieve success rate > 96% even when the transmission distance is up to 200 cm and the NRVs are low.

  12. Recognizing Banknote Fitness with a Visible Light One Dimensional Line Image Sensor

    Directory of Open Access Journals (Sweden)

    Tuyen Danh Pham

    2015-08-01

    Full Text Available In general, dirty banknotes that have creases or soiled surfaces should be replaced by new banknotes, whereas clean banknotes should be recirculated. Therefore, the accurate classification of banknote fitness when sorting paper currency is an important and challenging task. Most previous research has focused on sensors that used visible, infrared, and ultraviolet light. Furthermore, there was little previous research on the fitness classification for Indian paper currency. Therefore, we propose a new method for classifying the fitness of Indian banknotes, with a one-dimensional line image sensor that uses only visible light. The fitness of banknotes is usually determined by various factors such as soiling, creases, and tears, etc. although we just consider banknote soiling in our research. This research is novel in the following four ways: first, there has been little research conducted on fitness classification for the Indian Rupee using visible-light images. Second, the classification is conducted based on the features extracted from the regions of interest (ROIs, which contain little texture. Third, 1-level discrete wavelet transformation (DWT is used to extract the features for discriminating between fit and unfit banknotes. Fourth, the optimal DWT features that represent the fitness and unfitness of banknotes are selected based on linear regression analysis with ground-truth data measured by densitometer. In addition, the selected features are used as the inputs to a support vector machine (SVM for the final classification of banknote fitness. Experimental results showed that our method outperforms other methods.

  13. Recognizing Banknote Fitness with a Visible Light One Dimensional Line Image Sensor.

    Science.gov (United States)

    Pham, Tuyen Danh; Park, Young Ho; Kwon, Seung Yong; Nguyen, Dat Tien; Vokhidov, Husan; Park, Kang Ryoung; Jeong, Dae Sik; Yoon, Sungsoo

    2015-08-27

    In general, dirty banknotes that have creases or soiled surfaces should be replaced by new banknotes, whereas clean banknotes should be recirculated. Therefore, the accurate classification of banknote fitness when sorting paper currency is an important and challenging task. Most previous research has focused on sensors that used visible, infrared, and ultraviolet light. Furthermore, there was little previous research on the fitness classification for Indian paper currency. Therefore, we propose a new method for classifying the fitness of Indian banknotes, with a one-dimensional line image sensor that uses only visible light. The fitness of banknotes is usually determined by various factors such as soiling, creases, and tears, etc. although we just consider banknote soiling in our research. This research is novel in the following four ways: first, there has been little research conducted on fitness classification for the Indian Rupee using visible-light images. Second, the classification is conducted based on the features extracted from the regions of interest (ROIs), which contain little texture. Third, 1-level discrete wavelet transformation (DWT) is used to extract the features for discriminating between fit and unfit banknotes. Fourth, the optimal DWT features that represent the fitness and unfitness of banknotes are selected based on linear regression analysis with ground-truth data measured by densitometer. In addition, the selected features are used as the inputs to a support vector machine (SVM) for the final classification of banknote fitness. Experimental results showed that our method outperforms other methods.

  14. Measurements of incoherent light and background structure at exo-Earth detection levels in the High Contrast Imaging Testbed

    Science.gov (United States)

    Cady, Eric; Shaklan, Stuart

    2014-08-01

    A major component of the estimation and correction of starlight at very high contrasts is the creation of a dark hole: a region in the vicinity of the core of the stellar point spread function (PSF) where speckles in the PSF wings have been greatly attenuated, up to a factor of 1010 for the imaging of terrestrial exoplanets. At these very high contrasts, removing these speckles requires distinguishing between light from the stellar PSF scattered by instrument imperfections, which may be partially corrected across a broad band using deformable mirrors in the system, from light from other sources which generally may not. These other sources may be external or internal to the instrument (e.g. planets, exozodiacal light), but in either case, their distinguishing characteristic is their inability to interfere coherently with the PSF. In the following we discuss the estimation, structure, and expected origin of this incoherent" signal, primarily in the context of a series of experiments made with a linear band-limited mask in Jan-Mar 2013. We find that the incoherent" signal at moderate contrasts is largely estimation error of the coherent signal, while at very high contrasts it represents a true floor which is stable over week-timescales.

  15. Recent Hubble Space Telescope Imaging of the Light Echoes of Supernova 2014J in M 82 and Supernova 2016adj in Centaurus A

    Science.gov (United States)

    Lawrence, Stephen S.; Hyder, Ali; Sugerman, Ben; Crotts, Arlin P. S.

    2017-06-01

    We report on our ongoing use of Hubble Space Telescope (HST) imaging to monitor the scattered light echoes of recent heavily-extincted supernovae in two nearby, albeit unusual, galaxies.Supernova 2014J was a highly-reddened Type Ia supernova that erupted in the nearby irregular star-forming galaxy M 82 in 2014 January. It was discovered to have light echo by Crotts (2016) in early epoch HST imaging and has been further described by Yang, et al. (2017) based on HST imaging through late 2014. Our ongoing monitoring in the WFC3 F438W, F555W, and F814W filters shows that, consistent with Crotts (2106) and Yang, et al. (2017), throughout 2015 and 2016 the main light echo arc expanded through a dust complex located approximately 230 pc in the foreground of the supernova. This main light echo has, however, faded dramatically in our most recent HST imaging from 2017 March. The supernova itself has also faded to undetectable levels by 2017 March.Supernova 2016adj is a highly-reddened core-collapse supernova that erupted inside the unusual dust lane of the nearby giant elliptical galaxy Centaurus A (NGC 5128) in 2016 February. It was discovered to have a light echo by Sugerman & Lawrence (2016) in early epoch HST imaging in 2016 April. Our ongoing monitoring in the WFC3 F438W, F547M, and F814W filters shows a slightly elliptical series of light echo arc segments hosted by a tilted dust complex ranging approximately 150--225 pc in the foreground of the supernova. The supernova itself has also faded to undetectable levels by 2017 April.References: Crotts, A. P. S., ApJL, 804, L37 (2016); Yang et al., ApJ, 834, 60 (2017); Sugerman, B. and Lawrence, S., ATel #8890 (2016).

  16. Integrated light-sheet imaging and flow-based enquiry (iLIFE) system for 3D in-vivo imaging of multicellular organism

    Science.gov (United States)

    Rasmi, Chelur K.; Padmanabhan, Sreedevi; Shirlekar, Kalyanee; Rajan, Kanhirodan; Manjithaya, Ravi; Singh, Varsha; Mondal, Partha Pratim

    2017-12-01

    We propose and demonstrate a light-sheet-based 3D interrogation system on a microfluidic platform for screening biological specimens during flow. To achieve this, a diffraction-limited light-sheet (with a large field-of-view) is employed to optically section the specimens flowing through the microfluidic channel. This necessitates optimization of the parameters for the illumination sub-system (illumination intensity, light-sheet width, and thickness), microfluidic specimen platform (channel-width and flow-rate), and detection sub-system (camera exposure time and frame rate). Once optimized, these parameters facilitate cross-sectional imaging and 3D reconstruction of biological specimens. The proposed integrated light-sheet imaging and flow-based enquiry (iLIFE) imaging technique enables single-shot sectional imaging of a range of specimens of varying dimensions, ranging from a single cell (HeLa cell) to a multicellular organism (C. elegans). 3D reconstruction of the entire C. elegans is achieved in real-time and with an exposure time of few hundred micro-seconds. A maximum likelihood technique is developed and optimized for the iLIFE imaging system. We observed an intracellular resolution for mitochondria-labeled HeLa cells, which demonstrates the dynamic resolution of the iLIFE system. The proposed technique is a step towards achieving flow-based 3D imaging. We expect potential applications in diverse fields such as structural biology and biophysics.

  17. HST Archival Imaging of the Light Echoes of SN 1987A

    Science.gov (United States)

    Lawrence, S. S.; Hayon, M.; Sugerman, B. E. K.; Crotts, A. P. S.

    2002-12-01

    We have undertaken a search for light echo signals from Supernova 1987A that have been serendipitously recorded in images taken near the 30 Doradus region of the Large Magellanic Cloud by HST. We used the MAST interface to create a database of the 1282 WF/PC, WFPC2 and STIS images taken within 15 arcminutes of the supernova, between 1992 April and 2002 June. These 1282 images are grouped into 125 distinct epochs and pointings, with each epoch containing between 1 and 42 separate exposures. Sorting this database with various programs, aided by the STScI Visual Target Tuner, we have identified 63 pairs of WFPC2 imaging epochs that are not centered on the supernova but that have a significant amount of spatial overlap between their fields of view. These image data were downloaded from the public archive, cleaned of cosmic rays, and blinked to search for light echoes at radii larger than 2 arcminutes from the supernova. Our search to date has focused on those pairs of epochs with the largest degree of overlap. Of 16 pairs of epochs scanned to date, we have detected 3 strong light echoes and one faint, tentative echo signal. We will present direct and difference images of these and any further echoes, as well as the 3-D geometric, photometric and color properties of the echoing dust structures. In addition, a set of 20 epochs of WF/PC and WFPC2 imaging centered on SN 1987A remain to be searched for echoes within 2 arcminutes of the supernova. We will discuss our plans to integrate the high spatial-resolution HST snapshots of the echoes with our extensive, well-time-sampled, ground-based imaging data. We gratefully acknowledge the support of this undergraduate research project through an HST Archival Research Grant (HST-AR-09209.01-A).

  18. Sub-Angstrom Atomic-Resolution Imaging of Heavy Atoms to Light Atoms

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, Michael A.; Shao-Horn, Yang

    2003-05-23

    Three decades ago John Cowley and his group at ASU achieved high-resolution electron microscope images showing the crystal unit cell contents at better than 4Angstrom resolution. Over the years, this achievement has inspired improvements in resolution that have enabled researchers to pinpoint the positions of heavy atom columns within the cell. More recently, this ability has been extended to light atoms as resolution has improved. Sub-Angstrom resolution has enabled researchers to image the columns of light atoms (carbon, oxygen and nitrogen) that are present in many complex structures. By using sub-Angstrom focal-series reconstruction of the specimen exit surface wave to image columns of cobalt, oxygen, and lithium atoms in a transition metal oxide structure commonly used as positive electrodes in lithium rechargeable batteries, we show that the range of detectable light atoms extends to lithium. HRTEM at sub-Angstrom resolution will provide the essential role of experimental verification for the emergent nanotech revolution. Our results foreshadow those to be expected from next-generation TEMs with Cs-corrected lenses and monochromated electron beams.

  19. Theoretical scheme of thermal-light many-ghost imaging by Nth-order intensity correlation

    International Nuclear Information System (INIS)

    Liu Yingchuan; Kuang Leman

    2011-01-01

    In this paper, we propose a theoretical scheme of many-ghost imaging in terms of Nth-order correlated thermal light. We obtain the Gaussian thin lens equations in the many-ghost imaging protocol. We show that it is possible to produce N-1 ghost images of an object at different places in a nonlocal fashion by means of a higher order correlated imaging process with an Nth-order correlated thermal source and correlation measurements. We investigate the visibility of the ghost images in the scheme and obtain the upper bounds of the visibility for the Nth-order correlated thermal-light ghost imaging. It is found that the visibility of the ghost images can be dramatically enhanced when the order of correlation becomes larger. It is pointed out that the many-ghost imaging phenomenon is an observable physical effect induced by higher order coherence or higher order correlations of optical fields.

  20. Imaging Electron Dynamics with Ultrashort Light Pulses: A Theory Perspective

    Directory of Open Access Journals (Sweden)

    Daria Popova-Gorelova

    2018-02-01

    Full Text Available A wide range of ultrafast phenomena in various atomic, molecular and condense matter systems is governed by electron dynamics. Therefore, the ability to image electronic motion in real space and real time would provide a deeper understanding of such processes and guide developments of tools to control them. Ultrashort light pulses, which can provide unprecedented time resolution approaching subfemtosecond time scale, are perspective to achieve real-time imaging of electron dynamics. This task is challenging not only from an experimental view, but also from a theory perspective, since standard theories describing light-matter interaction in a stationary regime can provide erroneous results in an ultrafast case as demonstrated by several theoretical studies. We review the theoretical framework based on quantum electrodynamics, which has been shown to be necessary for an accurate description of time-resolved imaging of electron dynamics with ultrashort light pulses. We compare the results of theoretical studies of time-resolved nonresonant and resonant X-ray scattering, and time- and angle-resolved photoelectron spectroscopy and show that the corresponding time-resolved signals encode analogous information about electron dynamics. Thereby, the information about an electronic system provided by these time-resolved techniques is different from the information provided by their time-independent analogues.

  1. Light chain deposition disease in multiple myeloma: MR imaging features correlated with histopathological findings

    International Nuclear Information System (INIS)

    Baur, A.; Staebler, A.; Reiser, M.; Lamerz, R.; Bartl, R.

    1998-01-01

    The clinical, histopathological, and imaging findings on MRI of a 56-year-old woman with light chain deposition disease occurring in multiple myeloma are presented. Light chain deposition disease is a variant of multiple myeloma with distinct clinical and histological characteristics. MRI of this patient also revealed an infiltration pattern in the bone marrow distinct from that of typical multiple myeloma. Multiple small foci of low signal intensity were present on T1- and T2-weighted spin echo and STIR images, corresponding to conglomerates of light chains in bone marrow biopsy. Contrast-enhanced T1-weighted spin echo images show diffuse enhancement of 51% over all vertebral bodies, with a minor enhancement of the focal conglomerates of light chains. Light chain deposition disease in multiple myeloma should be added to the list of those few entities with normal radiographs and discrete low-signal marrow lesions on T1- and T2-weighted spin echo pulse sequences. (orig.)

  2. Bessel light sheet structured illumination microscopy

    Science.gov (United States)

    Noshirvani Allahabadi, Golchehr

    Biomedical study researchers using animals to model disease and treatment need fast, deep, noninvasive, and inexpensive multi-channel imaging methods. Traditional fluorescence microscopy meets those criteria to an extent. Specifically, two-photon and confocal microscopy, the two most commonly used methods, are limited in penetration depth, cost, resolution, and field of view. In addition, two-photon microscopy has limited ability in multi-channel imaging. Light sheet microscopy, a fast developing 3D fluorescence imaging method, offers attractive advantages over traditional two-photon and confocal microscopy. Light sheet microscopy is much more applicable for in vivo 3D time-lapsed imaging, owing to its selective illumination of tissue layer, superior speed, low light exposure, high penetration depth, and low levels of photobleaching. However, standard light sheet microscopy using Gaussian beam excitation has two main disadvantages: 1) the field of view (FOV) of light sheet microscopy is limited by the depth of focus of the Gaussian beam. 2) Light-sheet images can be degraded by scattering, which limits the penetration of the excitation beam and blurs emission images in deep tissue layers. While two-sided sheet illumination, which doubles the field of view by illuminating the sample from opposite sides, offers a potential solution, the technique adds complexity and cost to the imaging system. We investigate a new technique to address these limitations: Bessel light sheet microscopy in combination with incoherent nonlinear Structured Illumination Microscopy (SIM). Results demonstrate that, at visible wavelengths, Bessel excitation penetrates up to 250 microns deep in the scattering media with single-side illumination. Bessel light sheet microscope achieves confocal level resolution at a lateral resolution of 0.3 micron and an axial resolution of 1 micron. Incoherent nonlinear SIM further reduces the diffused background in Bessel light sheet images, resulting in

  3. Model-based restoration using light vein for range-gated imaging systems.

    Science.gov (United States)

    Wang, Canjin; Sun, Tao; Wang, Tingfeng; Wang, Rui; Guo, Jin; Tian, Yuzhen

    2016-09-10

    The images captured by an airborne range-gated imaging system are degraded by many factors, such as light scattering, noise, defocus of the optical system, atmospheric disturbances, platform vibrations, and so on. The characteristics of low illumination, few details, and high noise make the state-of-the-art restoration method fail. In this paper, we present a restoration method especially for range-gated imaging systems. The degradation process is divided into two parts: the static part and the dynamic part. For the static part, we establish the physical model of the imaging system according to the laser transmission theory, and estimate the static point spread function (PSF). For the dynamic part, a so-called light vein feature extraction method is presented to estimate the fuzzy parameter of the atmospheric disturbance and platform movement, which make contributions to the dynamic PSF. Finally, combined with the static and dynamic PSF, an iterative updating framework is used to restore the image. Compared with the state-of-the-art methods, the proposed method can effectively suppress ringing artifacts and achieve better performance in a range-gated imaging system.

  4. Human Detection Based on the Generation of a Background Image by Using a Far-Infrared Light Camera

    Directory of Open Access Journals (Sweden)

    Eun Som Jeon

    2015-03-01

    Full Text Available The need for computer vision-based human detection has increased in fields, such as security, intelligent surveillance and monitoring systems. However, performance enhancement of human detection based on visible light cameras is limited, because of factors, such as nonuniform illumination, shadows and low external light in the evening and night. Consequently, human detection based on thermal (far-infrared light cameras has been considered as an alternative. However, its performance is influenced by the factors, such as low image resolution, low contrast and the large noises of thermal images. It is also affected by the high temperature of backgrounds during the day. To solve these problems, we propose a new method for detecting human areas in thermal camera images. Compared to previous works, the proposed research is novel in the following four aspects. One background image is generated by median and average filtering. Additional filtering procedures based on maximum gray level, size filtering and region erasing are applied to remove the human areas from the background image. Secondly, candidate human regions in the input image are located by combining the pixel and edge difference images between the input and background images. The thresholds for the difference images are adaptively determined based on the brightness of the generated background image. Noise components are removed by component labeling, a morphological operation and size filtering. Third, detected areas that may have more than two human regions are merged or separated based on the information in the horizontal and vertical histograms of the detected area. This procedure is adaptively operated based on the brightness of the generated background image. Fourth, a further procedure for the separation and removal of the candidate human regions is performed based on the size and ratio of the height to width information of the candidate regions considering the camera viewing direction

  5. Optical image encryption method based on incoherent imaging and polarized light encoding

    Science.gov (United States)

    Wang, Q.; Xiong, D.; Alfalou, A.; Brosseau, C.

    2018-05-01

    We propose an incoherent encoding system for image encryption based on a polarized encoding method combined with an incoherent imaging. Incoherent imaging is the core component of this proposal, in which the incoherent point-spread function (PSF) of the imaging system serves as the main key to encode the input intensity distribution thanks to a convolution operation. An array of retarders and polarizers is placed on the input plane of the imaging structure to encrypt the polarized state of light based on Mueller polarization calculus. The proposal makes full use of randomness of polarization parameters and incoherent PSF so that a multidimensional key space is generated to deal with illegal attacks. Mueller polarization calculus and incoherent illumination of imaging structure ensure that only intensity information is manipulated. Another key advantage is that complicated processing and recording related to a complex-valued signal are avoided. The encoded information is just an intensity distribution, which is advantageous for data storage and transition because information expansion accompanying conventional encryption methods is also avoided. The decryption procedure can be performed digitally or using optoelectronic devices. Numerical simulation tests demonstrate the validity of the proposed scheme.

  6. Image statistics and the perception of surface gloss and lightness.

    Science.gov (United States)

    Kim, Juno; Anderson, Barton L

    2010-07-01

    Despite previous data demonstrating the critical importance of 3D surface geometry in the perception of gloss and lightness, I. Motoyoshi, S. Nishida, L. Sharan, and E. H. Adelson (2007) recently proposed that a simple image statistic--histogram or sub-band skew--is computed by the visual system to infer the gloss and albedo of surfaces. One key source of evidence used to support this claim was an experiment in which adaptation to skewed image statistics resulted in opponent aftereffects in observers' judgments of gloss and lightness. We report a series of adaptation experiments that were designed to assess the cause of these aftereffects. We replicated their original aftereffects in gloss but found no consistent aftereffect in lightness. We report that adaptation to zero-skew adaptors produced similar aftereffects as positively skewed adaptors, and that negatively skewed adaptors induced no reliable aftereffects. We further find that the adaptation effect observed with positively skewed adaptors is not robust to changes in mean luminance that diminish the intensity of the luminance extrema. Finally, we show that adaptation to positive skew reduces (rather than increases) the apparent lightness of light pigmentation on non-uniform albedo surfaces. These results challenge the view that the adaptation results reported by Motoyoshi et al. (2007) provide evidence that skew is explicitly computed by the visual system.

  7. Towards optical brain imaging: getting light through a bone

    Science.gov (United States)

    Thompson, J. V.; Hokr, B. H.; Nodurft, D. T.; Yakovlev, V. V.

    2018-06-01

    Optical imaging and detection in biological samples is severely limited by scattering effects. In particular, optical techniques for measuring conditions beneath the skull and within the bone marrow hold significant promise when it comes to speed, sensitivity and specificity. However, the strong optical scattering due to bone hinders the realization of these methods. In this article, we propose a technique to enhance the transmittance of light through bone. This is achieved by injecting light below the top surface of the bone and utilizing multiple scattering to increase transmittance. This technique suggests that enhancements of 2-6 times may be realized by injection of light 1 mm below the surface of the bone. By enhancing the transmittance of light through bone, we will greatly improve our ability to utilize optical methods to better understand and diagnose conditions within biological media.

  8. Sharpest Ever VLT Images at NAOS-CONICA "First Light"

    Science.gov (United States)

    2001-12-01

    Very Promising Start-Up of New Adaptive Optics Instrument at Paranal Summary A team of astronomers and engineers from French and German research institutes and ESO at the Paranal Observatory is celebrating the successful accomplishment of "First Light" for the NAOS-CONICA Adaptive Optics facility . With this event, another important milestone for the Very Large Telescope (VLT) project has been passed. Normally, the achievable image sharpness of a ground-based telescope is limited by the effect of atmospheric turbulence. However, with the Adaptive Optics (AO) technique, this drawback can be overcome and the telescope produces images that are at the theoretical limit, i.e., as sharp as if it were in space . Adaptive Optics works by means of a computer-controlled, flexible mirror that counteracts the image distortion induced by atmospheric turbulence in real time. The larger the main mirror of the telescope is, and the shorter the wavelength of the observed light, the sharper will be the images recorded. During a preceding four-week period of hard and concentrated work, the expert team assembled and installed this major astronomical instrument at the 8.2-m VLT YEPUN Unit Telescope (UT4). On November 25, 2001, following careful adjustments of this complex apparatus, a steady stream of photons from a southern star bounced off the computer-controlled deformable mirror inside NAOS and proceeded to form in CONICA the sharpest image produced so far by one of the VLT telescopes. With a core angular diameter of only 0.07 arcsec, this image is near the theoretical limit possible for a telescope of this size and at the infrared wavelength used for this demonstration (the K-band at 2.2 µm). Subsequent tests reached the spectacular performance of 0.04 arcsec in the J-band (wavelength 1.2 µm). "I am proud of this impressive achievement", says ESO Director General Catherine Cesarsky. "It shows the true potential of European science and technology and it provides a fine

  9. Multimodal imaging of the human knee down to the cellular level

    Science.gov (United States)

    Schulz, G.; Götz, C.; Müller-Gerbl, M.; Zanette, I.; Zdora, M.-C.; Khimchenko, A.; Deyhle, H.; Thalmann, P.; Müller, B.

    2017-06-01

    Computed tomography reaches the best spatial resolution for the three-dimensional visualization of human tissues among the available nondestructive clinical imaging techniques. Nowadays, sub-millimeter voxel sizes are regularly obtained. Regarding investigations on true micrometer level, lab-based micro-CT (μCT) has become gold standard. The aim of the present study is firstly the hierarchical investigation of a human knee post mortem using hard X-ray μCT and secondly a multimodal imaging using absorption and phase contrast modes in order to investigate hard (bone) and soft (cartilage) tissues on the cellular level. After the visualization of the entire knee using a clinical CT, a hierarchical imaging study was performed using the lab-system nanotom® m. First, the entire knee was measured with a pixel length of 65 μm. The highest resolution with a pixel length of 3 μm could be achieved after extracting cylindrically shaped plugs from the femoral bones. For the visualization of the cartilage, grating-based phase contrast μCT (I13-2, Diamond Light Source) was performed. With an effective voxel size of 2.3 μm it was possible to visualize individual chondrocytes within the cartilage.

  10. Enriching text with images and colored light

    Science.gov (United States)

    Sekulovski, Dragan; Geleijnse, Gijs; Kater, Bram; Korst, Jan; Pauws, Steffen; Clout, Ramon

    2008-01-01

    We present an unsupervised method to enrich textual applications with relevant images and colors. The images are collected by querying large image repositories and subsequently the colors are computed using image processing. A prototype system based on this method is presented where the method is applied to song lyrics. In combination with a lyrics synchronization algorithm the system produces a rich multimedia experience. In order to identify terms within the text that may be associated with images and colors, we select noun phrases using a part of speech tagger. Large image repositories are queried with these terms. Per term representative colors are extracted using the collected images. Hereto, we either use a histogram-based or a mean shift-based algorithm. The representative color extraction uses the non-uniform distribution of the colors found in the large repositories. The images that are ranked best by the search engine are displayed on a screen, while the extracted representative colors are rendered on controllable lighting devices in the living room. We evaluate our method by comparing the computed colors to standard color representations of a set of English color terms. A second evaluation focuses on the distance in color between a queried term in English and its translation in a foreign language. Based on results from three sets of terms, a measure of suitability of a term for color extraction based on KL Divergence is proposed. Finally, we compare the performance of the algorithm using either the automatically indexed repository of Google Images and the manually annotated Flickr.com. Based on the results of these experiments, we conclude that using the presented method we can compute the relevant color for a term using a large image repository and image processing.

  11. RESEARCH OF NIGHT LIGHT EFFECTS ON COLORIMETRIC CHARACTERISTICS OF IMAGE PERCEIVED BY THE PILOT IN AN AIRCRAFT COCKPIT

    Directory of Open Access Journals (Sweden)

    I. O. Zharinov

    2015-09-01

    Full Text Available Subject of Research. The influence of radiation spectra from the source of artificial night light on colorimetric characteristics of image perceived by the pilot in the aircraft cockpit has been studied. The image is displayed on the LCD screen of multifunctional color indication equipment unit. Night illumination of the cockpit is performed with the use of artificial lamps of red, green, blue and, rarely, white light. Method. Any given color to be displayed on the screen is perceived by an observer differently with presence and absence of external illumination. When external light of white color is used, perceived color depends upon color temperature of the light source; if illumination source has any arbitrary spectral characteristics, then perceivable color depends upon whole spectral content of the used source. The color, perceived by an observer, is formed as the mixture of the color displayed on the screen (image element color with the color presented by diffuse reflection of external illumination source from the surface of the screen. The brightness of both colors is added. Mathematical expressions, that define calculation rule for chromaticity coordinates of color perceived by an observer, are based on the Grassmann’s law of additive color mixing. Quantitative analysis of the effect, caused by radiation spectra from an external source of artificial light on color gamut area, corresponding to image, perceived by an observer, has been performed through simulation in MathCad 15.0. Main Results. It was shown, that the color palette of on-board indication equipment, obtained on automated working place for any preset source of external illumination of fluorescent spectrum, corresponding to white light, is not usable correctly in the aircraft night flight mode. An observer loses ability to perceive properly saturated primary colors of red and blue in the case of green-blue light source of external illumination; and the same issue occurs with

  12. Fish freshness estimation using eye image processing under white and UV lightings

    Science.gov (United States)

    Kanamori, Katsuhiro; Shirataki, Yuri; Liao, Qiuhong; Ogawa, Yuichi; Suzuki, Tetsuhito; Kondo, Naoshi

    2017-05-01

    A non-destructive method of estimating the freshness of fish is required for appropriate price setting and food safety. In particular, for determining the possibility of eating raw fish (sashimi), freshness estimation is critical. We studied such an estimation method by capturing images of fish eyes and performing image processing using the temporal changes of the luminance of pupil and iris. To detect subtle non-visible changes of these features, we used UV (375 nm) light illumination in addition to visible white light illumination. Polarization and two-channel LED techniques were used to remove strong specular reflection from the cornea of the eye and from clear-plastic wrap used to cover the fish to maintain humidity. Pupil and iris regions were automatically detected separately by image processing after the specular reflection removal process, and two types of eye contrast were defined as the ratio of mean and median pixel values of each region. Experiments using 16 Japanese dace (Tribolodon hakonensis) at 23° and 85% humidity for 24 hours were performed. The eye contrast of raw fish increase non-linearly in the initial period and then decreased; however, that of frozen-thawed fish decreased linearly throughout 24 hours, regardless of the lighting. Interestingly, the eye contrast using UV light showed a higher correlation with time than that using white light only in the case of raw fish within the early 6- hour period postmortem. These results show the possibility of estimating fish freshness in the initial stage when fish are eaten raw using white and UV lightings.

  13. Instrumentation and method for measuring NIR light absorbed in tissue during MR imaging in medical NIRS measurements

    Science.gov (United States)

    Myllylä, Teemu S.; Sorvoja, Hannu S. S.; Nikkinen, Juha; Tervonen, Osmo; Kiviniemi, Vesa; Myllylä, Risto A.

    2011-07-01

    Our goal is to provide a cost-effective method for examining human tissue, particularly the brain, by the simultaneous use of functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS). Due to its compatibility requirements, MRI poses a demanding challenge for NIRS measurements. This paper focuses particularly on presenting the instrumentation and a method for the non-invasive measurement of NIR light absorbed in human tissue during MR imaging. One practical method to avoid disturbances in MR imaging involves using long fibre bundles to enable conducting the measurements at some distance from the MRI scanner. This setup serves in fact a dual purpose, since also the NIRS device will be less disturbed by the MRI scanner. However, measurements based on long fibre bundles suffer from light attenuation. Furthermore, because one of our primary goals was to make the measuring method as cost-effective as possible, we used high-power light emitting diodes instead of more expensive lasers. The use of LEDs, however, limits the maximum output power which can be extracted to illuminate the tissue. To meet these requirements, we improved methods of emitting light sufficiently deep into tissue. We also show how to measure NIR light of a very small power level that scatters from the tissue in the MRI environment, which is characterized by strong electromagnetic interference. In this paper, we present the implemented instrumentation and measuring method and report on test measurements conducted during MRI scanning. These measurements were performed in MRI operating rooms housing 1.5 Tesla-strength closed MRI scanners (manufactured by GE) in the Dept. of Diagnostic Radiology at the Oulu University Hospital.

  14. Hexabundles: imaging fibre arrays for low-light astronomical applications

    DEFF Research Database (Denmark)

    Bland-Hawthorn, Joss; Bryant, Julie; Robertson, Gordon

    2010-01-01

    We demonstrate for the first time an imaging fibre bundle (“hexabundle”) that is suitable for low-light applications in astronomy. The most successful survey instruments at optical-infrared wavelengths today have obtained data on up to a million celestial sources using hundreds of multimode fibre...

  15. Implementing non-image-forming effects of light in the built environment : A review on what we need

    NARCIS (Netherlands)

    Khademagha, P.; Aries, M.B.C.; Rosemann, A.L.P.; van Loenen, E.J.

    2016-01-01

    This paper presents a theoretical framework for incorporating the non-image-forming effects of light into daylighting design in the built environment. The framework includes human performance indicators to measure the magnitude of the non-image-forming effects of light as well as light factors to

  16. Phase shifting white light interferometry using colour CCD for optical metrology and bio-imaging applications

    Science.gov (United States)

    Upputuri, Paul Kumar; Pramanik, Manojit

    2018-02-01

    Phase shifting white light interferometry (PSWLI) has been widely used for optical metrology applications because of their precision, reliability, and versatility. White light interferometry using monochrome CCD makes the measurement process slow for metrology applications. WLI integrated with Red-Green-Blue (RGB) CCD camera is finding imaging applications in the fields optical metrology and bio-imaging. Wavelength dependent refractive index profiles of biological samples were computed from colour white light interferograms. In recent years, whole-filed refractive index profiles of red blood cells (RBCs), onion skin, fish cornea, etc. were measured from RGB interferograms. In this paper, we discuss the bio-imaging applications of colour CCD based white light interferometry. The approach makes the measurement faster, easier, cost-effective, and even dynamic by using single fringe analysis methods, for industrial applications.

  17. Selective detection of Escherichia coli by imaging of the light intensity transmitted through an optical disk

    Science.gov (United States)

    Shiramizu, Hideyuki; Kuroda, Chiaki; Ohki, Yoshimichi; Shima, Takayuki; Wang, Xiaomin; Fujimaki, Makoto

    2018-03-01

    We have developed an optical disk system for imaging transmitted light from Escherichia coli dispersed on an optical disk. When E. coli was stained using Bismarck brown, the transmittance was found to decrease in images obtained at λ = 405 nm. The results indicate that transmittance imaging is suitable for finding the difference in light intensity between stained and unstained E. coli, whereas the reflectance images were scarcely changed by staining. Therefore, E. coli can be selectively discriminated from abiotic contaminants using transmittance imaging.

  18. Light field moment imaging with the ptychographic iterative engine

    Directory of Open Access Journals (Sweden)

    Zhilong Jiang

    2014-10-01

    Full Text Available The recently developed Light Field Moment Imaging (LMI is adopted to show the stereoscopic structure of the sample studied in Coherent Diffractive Imaging (CDI, where 3D image were always generated with complicated experimental procedure such as the rotation of the sample and time-consuming computation. The animation of large view angle can be generated with LMI very quickly, and the 3D structure of sample can be shown vividly. This method can find many applications for the coherent diffraction imaging with x-ray and electron beams, where a glimpse of the hierarchical structure required and the quick and simple 3D view of object is sufficient. The feasibility of this method is demonstrated theoretically and experimentally with a recently developed CDI method called Ptychographic Iterative Engine.

  19. A novel segmentation method for uneven lighting image with noise injection based on non-local spatial information and intuitionistic fuzzy entropy

    Science.gov (United States)

    Yu, Haiyan; Fan, Jiulun

    2017-12-01

    Local thresholding methods for uneven lighting image segmentation always have the limitations that they are very sensitive to noise injection and that the performance relies largely upon the choice of the initial window size. This paper proposes a novel algorithm for segmenting uneven lighting images with strong noise injection based on non-local spatial information and intuitionistic fuzzy theory. We regard an image as a gray wave in three-dimensional space, which is composed of many peaks and troughs, and these peaks and troughs can divide the image into many local sub-regions in different directions. Our algorithm computes the relative characteristic of each pixel located in the corresponding sub-region based on fuzzy membership function and uses it to replace its absolute characteristic (its gray level) to reduce the influence of uneven light on image segmentation. At the same time, the non-local adaptive spatial constraints of pixels are introduced to avoid noise interference with the search of local sub-regions and the computation of local characteristics. Moreover, edge information is also taken into account to avoid false peak and trough labeling. Finally, a global method based on intuitionistic fuzzy entropy is employed on the wave transformation image to obtain the segmented result. Experiments on several test images show that the proposed method has excellent capability of decreasing the influence of uneven illumination on images and noise injection and behaves more robustly than several classical global and local thresholding methods.

  20. Imaging spectroscopic analysis at the Advanced Light Source

    International Nuclear Information System (INIS)

    MacDowell, A. A.; Warwick, T.; Anders, S.; Lamble, G.M.; Martin, M.C.; McKinney, W.R.; Padmore, H.A.

    1999-01-01

    One of the major advances at the high brightness third generation synchrotrons is the dramatic improvement of imaging capability. There is a large multi-disciplinary effort underway at the ALS to develop imaging X-ray, UV and Infra-red spectroscopic analysis on a spatial scale from. a few microns to 10nm. These developments make use of light that varies in energy from 6meV to 15KeV. Imaging and spectroscopy are finding applications in surface science, bulk materials analysis, semiconductor structures, particulate contaminants, magnetic thin films, biology and environmental science. This article is an overview and status report from the developers of some of these techniques at the ALS. The following table lists all the currently available microscopes at the. ALS. This article will describe some of the microscopes and some of the early applications

  1. Wound healing stimulation in mice by low-level light

    Science.gov (United States)

    Demidova, Tatiana N.; Herman, Ira M.; Salomatina, Elena V.; Yaroslavsky, Anna N.; Hamblin, Michael R.

    2006-02-01

    It has been known for many years that low levels of laser or non-coherent light (LLLT) accelerate some phases of wound healing. LLLT can stimulate fibroblast and keratinocyte proliferation and migration. It is thought to work via light absorption by mitochondrial chromophores leading to an increase in ATP, reactive oxygen species and consequent gene transcription. However, despite many reports about the positive effects of LLLT on wound healing, its use remains controversial. Our laboratory has developed a model of a full thickness excisional wound in mice that allows quantitative and reproducible light dose healing response curves to be generated. We have found a biphasic dose response curve with a maximum positive effect at 2 J/cm2 of 635-nm light and successively lower beneficial effects from 3-25 J/cm2, the effect is diminished at doses below 2J/cm2 and gradually reaches control healing levels. At light doses above 25 J/cm2 healing is actually worse than controls. The two most effective wavelengths of light were found to be 635 and 820-nm. We found no difference between filtered 635+/-15-nm light from a lamp and 633-nm light from a HeNe laser. The strain and age of the mouse affected the magnitude of the effect. Light treated wounds start to contract after illumination while control wounds initially expand for the first 24 hours. Our hypothesis is that a single brief light exposure soon after wounding affects fibroblast cells in the margins of the wound. Cells may be induced to proliferate, migrate and assume a myofibroblast phenotype. Our future work will be focused on understanding the mechanisms underlying effects of light on wound healing processes.

  2. Color and illuminance level of lighting can modulate willingness to eat bell peppers.

    Science.gov (United States)

    Hasenbeck, Aimee; Cho, Sungeun; Meullenet, Jean-François; Tokar, Tonya; Yang, Famous; Huddleston, Elizabeth A; Seo, Han-Seok

    2014-08-01

    Food products are often encountered under colored lighting, particularly in restaurants and retail stores. However, relatively little attention has been paid to whether the color of ambient lighting can affect consumers' motivation for consumption. This study aimed to determine whether color (Experiment 1) and illuminance level (Experiment 2) of lighting can influence consumers' liking of appearance and their willingness to eat bell peppers. For red, green, and yellow bell peppers, yellow and blue lighting conditions consistently increased participants' liking of appearance the most and the least, respectively. Participants' willingness to consume bell peppers increased the most under yellow lighting and the least under blue lighting. In addition, a dark condition (i.e. low level of lighting illuminance) decreased liking of appearance and willingness to eat the bell peppers compared to a bright condition (i.e. high level of lighting illuminance). Our findings demonstrate that lighting color and illuminance level can influence consumers' hedonic impression and likelihood to consume bell peppers. Furthermore, the influences of color and illuminance level of lighting appear to be dependent on the surface color of bell peppers. © 2013 Society of Chemical Industry.

  3. Inverted light-sheet microscope for imaging mouse pre-implantation development.

    Science.gov (United States)

    Strnad, Petr; Gunther, Stefan; Reichmann, Judith; Krzic, Uros; Balazs, Balint; de Medeiros, Gustavo; Norlin, Nils; Hiiragi, Takashi; Hufnagel, Lars; Ellenberg, Jan

    2016-02-01

    Despite its importance for understanding human infertility and congenital diseases, early mammalian development has remained inaccessible to in toto imaging. We developed an inverted light-sheet microscope that enabled us to image mouse embryos from zygote to blastocyst, computationally track all cells and reconstruct a complete lineage tree of mouse pre-implantation development. We used this unique data set to show that the first cell fate specification occurs at the 16-cell stage.

  4. Light, Wind and Fire - Beautiful Image of a Cosmic Sculpture

    Science.gov (United States)

    2010-02-01

    Today ESO has released a dramatic new image of NGC 346, the brightest star-forming region in our neighbouring galaxy, the Small Magellanic Cloud, 210 000 light-years away towards the constellation of Tucana (the Toucan). The light, wind and heat given off by massive stars have dispersed the glowing gas within and around this star cluster, forming a surrounding wispy nebular structure that looks like a cobweb. NGC 346, like other beautiful astronomical scenes, is a work in progress, and changes as the aeons pass. As yet more stars form from loose matter in the area, they will ignite, scattering leftover dust and gas, carving out great ripples and altering the face of this lustrous object. NGC 346 spans approximately 200 light-years, a region of space about fifty times the distance between the Sun and its nearest stellar neighbours. Astronomers classify NGC 346 as an open cluster of stars, indicating that this stellar brood all originated from the same collapsed cloud of matter. The associated nebula containing this clutch of bright stars is known as an emission nebula, meaning that gas within it has been heated up by stars until the gas emits its own light, just like the neon gas used in electric store signs. Many stars in NGC 346 are relatively young in cosmic terms with their births dating back only a few million years or so (eso0834). Powerful winds thrown off by a massive star set off this recent round of star birth by compressing large amounts of matter, the first critical step towards igniting new stars. This cloud of material then collapses under its own gravity, until some regions become dense and hot enough to roar forth as a brilliantly shining, nuclear fusion-powered furnace - a star, illuminating the residual debris of gas and dust. In sufficiently congested regions like NGC 346, with high levels of recent star birth, the result is a glorious, glowing vista for our telescopes to capture. NGC 346 is in the Small Magellanic Cloud, a dwarf galaxy some 210

  5. The Suitability of Different Nighttime Light Data for GDP Estimation at Different Spatial Scales and Regional Levels

    Directory of Open Access Journals (Sweden)

    Zhaoxin Dai

    2017-02-01

    Full Text Available Nighttime light data offer a unique view of the Earth’s surface and can be used to estimate the spatial distribution of gross domestic product (GDP. Historically, using a simple regression function, the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP/OLS has been used to correlate regional and global GDP values. In early 2013, the first global Suomi National Polar-orbiting Partnership (NPP visible infrared imaging radiometer suite (VIIRS nighttime light data were released. Compared with DMSP/OLS, they have a higher spatial resolution and a wider radiometric detection range. This paper aims to study the suitability of the two nighttime light data sources for estimating the GDP relationship between the provincial and city levels in Mainland China, as well as of different regression functions. First, NPP/VIIRS nighttime light data for 2014 are corrected with DMSP/OLS data for 2013 to reduce the background noise in the original data. Subsequently, three regression functions are used to estimate the relationship between nighttime light data and GDP statistical data at the provincial and city levels in Mainland China. Then, through the comparison of the relative residual error (RE and the relative root mean square error (RRMSE parameters, a systematical assessment of the suitability of the GDP estimation is provided. The results show that the NPP/VIIRS nighttime light data are better than the DMSP/OLS data for GDP estimation, whether at the provincial or city level, and that the power function and polynomial models are better for GDP estimation than the linear regression model. This study reveals that the accuracy of GDP estimation based on nighttime light data is affected by the resolution of the data and the spatial scale of the study area, as well as by the land cover types and industrial structures of the study area.

  6. Convolutional Neural Network-Based Shadow Detection in Images Using Visible Light Camera Sensor

    Directory of Open Access Journals (Sweden)

    Dong Seop Kim

    2018-03-01

    Full Text Available Recent developments in intelligence surveillance camera systems have enabled more research on the detection, tracking, and recognition of humans. Such systems typically use visible light cameras and images, in which shadows make it difficult to detect and recognize the exact human area. Near-infrared (NIR light cameras and thermal cameras are used to mitigate this problem. However, such instruments require a separate NIR illuminator, or are prohibitively expensive. Existing research on shadow detection in images captured by visible light cameras have utilized object and shadow color features for detection. Unfortunately, various environmental factors such as illumination change and brightness of background cause detection to be a difficult task. To overcome this problem, we propose a convolutional neural network-based shadow detection method. Experimental results with a database built from various outdoor surveillance camera environments, and from the context-aware vision using image-based active recognition (CAVIAR open database, show that our method outperforms previous works.

  7. Shape-based grey-level image interpolation

    International Nuclear Information System (INIS)

    Keh-Shih Chuang; Chun-Yuan Chen; Ching-Kai Yeh

    1999-01-01

    The three-dimensional (3D) object data obtained from a CT scanner usually have unequal sampling frequencies in the x-, y- and z-directions. Generally, the 3D data are first interpolated between slices to obtain isotropic resolution, reconstructed, then operated on using object extraction and display algorithms. The traditional grey-level interpolation introduces a layer of intermediate substance and is not suitable for objects that are very different from the opposite background. The shape-based interpolation method transfers a pixel location to a parameter related to the object shape and the interpolation is performed on that parameter. This process is able to achieve a better interpolation but its application is limited to binary images only. In this paper, we present an improved shape-based interpolation method for grey-level images. The new method uses a polygon to approximate the object shape and performs the interpolation using polygon vertices as references. The binary images representing the shape of the object were first generated via image segmentation on the source images. The target object binary image was then created using regular shape-based interpolation. The polygon enclosing the object for each slice can be generated from the shape of that slice. We determined the relative location in the source slices of each pixel inside the target polygon using the vertices of a polygon as the reference. The target slice grey-level was interpolated from the corresponding source image pixels. The image quality of this interpolation method is better and the mean squared difference is smaller than with traditional grey-level interpolation. (author)

  8. Colposcopic imaging using visible-light optical coherence tomography

    Science.gov (United States)

    Duan, Lian; McRaven, Michael D.; Liu, Wenzhong; Shu, Xiao; Hu, Jianmin; Sun, Cheng; Veazey, Ronald S.; Hope, Thomas J.; Zhang, Hao F.

    2017-05-01

    High-resolution colposcopic optical coherence tomography (OCT) provides key anatomical measures, such as thickness and minor traumatic injury of vaginal epithelium, of the female reproductive tract noninvasively. This information can be helpful in both fundamental investigations in animal models and disease screenings in humans. We present a fiber-based visible-light OCT and two probe designs for colposcopic application. One probe conducts circular scanning using a DC motor, and the other probe is capable of three-dimensional imaging over a 4.6×4.6-mm2 area using a pair of galvo scanners. Using this colposcopic vis-OCT with both probes, we acquired high-resolution images from whole isolated macaque vaginal samples and identified biopsy lesions.

  9. Imaging a seizure model in zebrafish with structured illumination light sheet microscopy

    Science.gov (United States)

    Liu, Yang; Dale, Savannah; Ball, Rebecca; VanLeuven, Ariel J.; Baraban, Scott; Sornborger, Andrew; Lauderdale, James D.; Kner, Peter

    2018-02-01

    Zebrafish are a promising vertebrate model for elucidating how neural circuits generate behavior under normal and pathological conditions. The Baraban group first demonstrated that zebrafish larvae are valuable for investigating seizure events and can be used as a model for epilepsy in humans. Because of their small size and transparency, zebrafish embryos are ideal for imaging seizure activity using calcium indicators. Light-sheet microscopy is well suited to capturing neural activity in zebrafish because it is capable of optical sectioning, high frame rates, and low excitation intensities. We describe work in our lab to use light-sheet microscopy for high-speed long-time imaging of neural activity in wildtype and mutant zebrafish to better understand the connectivity and activity of inhibitory neural networks when GABAergic signaling is altered in vivo. We show that, with light-sheet microscopy, neural activity can be recorded at 23 frames per second in twocolors for over 10 minutes allowing us to capture rare seizure events in mutants. We have further implemented structured illumination to increase resolution and contrast in the vertical and axial directions during high-speed imaging at an effective frame rate of over 7 frames per second.

  10. Decoding mobile-phone image sensor rolling shutter effect for visible light communications

    Science.gov (United States)

    Liu, Yang

    2016-01-01

    Optical wireless communication (OWC) using visible lights, also known as visible light communication (VLC), has attracted significant attention recently. As the traditional OWC and VLC receivers (Rxs) are based on PIN photo-diode or avalanche photo-diode, deploying the complementary metal-oxide-semiconductor (CMOS) image sensor as the VLC Rx is attractive since nowadays nearly every person has a smart phone with embedded CMOS image sensor. However, deploying the CMOS image sensor as the VLC Rx is challenging. In this work, we propose and demonstrate two simple contrast ratio (CR) enhancement schemes to improve the contrast of the rolling shutter pattern. Then we describe their processing algorithms one by one. The experimental results show that both the proposed CR enhancement schemes can significantly mitigate the high-intensity fluctuations of the rolling shutter pattern and improve the bit-error-rate performance.

  11. EVEREST: Pixel Level Decorrelation of K2 Light Curves

    Science.gov (United States)

    Luger, Rodrigo; Agol, Eric; Kruse, Ethan; Barnes, Rory; Becker, Andrew; Foreman-Mackey, Daniel; Deming, Drake

    2016-10-01

    We present EPIC Variability Extraction and Removal for Exoplanet Science Targets (EVEREST), an open-source pipeline for removing instrumental noise from K2 light curves. EVEREST employs a variant of pixel level decorrelation to remove systematics introduced by the spacecraft’s pointing error and a Gaussian process to capture astrophysical variability. We apply EVEREST to all K2 targets in campaigns 0-7, yielding light curves with precision comparable to that of the original Kepler mission for stars brighter than {K}p≈ 13, and within a factor of two of the Kepler precision for fainter targets. We perform cross-validation and transit injection and recovery tests to validate the pipeline, and compare our light curves to the other de-trended light curves available for download at the MAST High Level Science Products archive. We find that EVEREST achieves the highest average precision of any of these pipelines for unsaturated K2 stars. The improved precision of these light curves will aid in exoplanet detection and characterization, investigations of stellar variability, asteroseismology, and other photometric studies. The EVEREST pipeline can also easily be applied to future surveys, such as the TESS mission, to correct for instrumental systematics and enable the detection of low signal-to-noise transiting exoplanets. The EVEREST light curves and the source code used to generate them are freely available online.

  12. Synchrotron light

    International Nuclear Information System (INIS)

    2001-01-01

    'Synchrotron Light' is an interactive and detailed introduction to the physics and technology of the generation of coherent radiation from accelerators as well as to its widespread high-tech applications in science, medicine and engineering. The topics covered are the interaction of light and matter, the technology of synchrotron light sources, spectroscopy, imaging, scattering and diffraction of X-rays, and applications to materials science, biology, biochemistry, medicine, chemistry, food and pharmaceutical technology. All synchrotron light facilities are introduced with their home-page addresses. 'Synchrotron Light' provides an instructive and comprehensive multimedia learning tool for students, experienced practitioners and novices wishing to apply synchrotron radiation in their future work. Its multiple-entry points permit an easy exploration of the CD-Rom according to the users knowledge and interest. 2-D and 3-D animations and virtual reconstruction with computer-generated images guide visitors into the scientific and technical world of a synchrotron and into the applications of synchrotron radiation. This bilingual (English and French) CD-Rom can be used for self-teaching and in courses at various levels in physics, chemistry, engineering, and biology. (author)

  13. High-Throughput Light Sheet Microscopy for the Automated Live Imaging of Larval Zebrafish

    Science.gov (United States)

    Baker, Ryan; Logan, Savannah; Dudley, Christopher; Parthasarathy, Raghuveer

    The zebrafish is a model organism with a variety of useful properties; it is small and optically transparent, it reproduces quickly, it is a vertebrate, and there are a large variety of transgenic animals available. Because of these properties, the zebrafish is well suited to study using a variety of optical technologies including light sheet fluorescence microscopy (LSFM), which provides high-resolution three-dimensional imaging over large fields of view. Research progress, however, is often not limited by optical techniques but instead by the number of samples one can examine over the course of an experiment, which in the case of light sheet imaging has so far been severely limited. Here we present an integrated fluidic circuit and microscope which provides rapid, automated imaging of zebrafish using several imaging modes, including LSFM, Hyperspectral Imaging, and Differential Interference Contrast Microscopy. Using this system, we show that we can increase our imaging throughput by a factor of 10 compared to previous techniques. We also show preliminary results visualizing zebrafish immune response, which is sensitive to gut microbiota composition, and which shows a strong variability between individuals that highlights the utility of high throughput imaging. National Science Foundation, Award No. DBI-1427957.

  14. [Getting an insight into the brain - new optical clearing techniques and imaging using light-sheet microscope].

    Science.gov (United States)

    Pawłowska, Monika; Legutko, Diana; Stefaniuk, Marzena

    2017-01-01

    One of the biggest challenges in neuroscience is to understand how brain operates. For this, it would be the best to image the whole brain with at least cellular resolution, preserving the three-dimensional structure in order to capture the connections between different areas. Most currently available high-resolution imaging techniques are based on preparing thin brain sections that are next photographed one by one and subsequently bigger structures are reconstructed. These techniques are laborious and create artifacts. Recent optical clearing methods allow to obtain literally transparent brains that can be imaged using light-sheet microscope. The present review summarizes the most popular optical clearing techniques, describing their different mechanisms and comparing advantages and disadvantages of different approaches, and presents the principle of light-sheet microscopy and its use in imaging. Finally, it gives examples of application of optical tissue clearing and light-sheet imaging in neuroscience and beyond it.

  15. Timing growth and development of Campanula by daily light integral and supplemental light level in a cost-efficient light control system

    DEFF Research Database (Denmark)

    Kjær, Katrine Heinsvig; Ottosen, Carl-Otto; Jørgensen, Bo Nørregaard

    2012-01-01

    light control system (DynaLight desktop) automatically defines the most cost-efficient use of supplemental light based on predefined setpoints for daily photosynthesis integral (DPI), forecasted solar irradiance and the market price on electricity. It saves energy in high-cost periods of electricity......Two campanula species Campanula portenschlagiana (‘Blue Get Mee’) and Campanula cochlearifolia (‘Blue Wonder’) were grown in a cost-efficient light control system and the effect of supplemental light level and daily light integral (DLI) on growth and development was quantified. The alternative...... the number of flowers and buds and CLI in ‘Blue Get Mee’. The results demonstrate that DLI was the main limiting factor for prediction of growth and development when two campanula species were grown in a cost-efficient light control system where the number of daily light hours was often below the critical...

  16. Experimental Investigation of Quality of Lensless Ghost Imaging with Pseudo-Thermal Light

    International Nuclear Information System (INIS)

    Xia, Shen; Yan-Feng, Bai; Tao, Qin; Shen-Sheng, Han

    2008-01-01

    Factors influencing the quality of lensless ghost imaging are investigated. According to the experimental results, we find that the imaging quality is determined by the number of independent sub light sources on the imaging plane of the reference arm. A qualitative picture based on advanced wave optics is presented to explain the physics behind the experimental phenomena. The present results will be helpful to provide a basis for improving the quality of ghost imaging systems in future works. (fundamental areas of phenomenology(including applications))

  17. A theory of frequency domain invariants: spherical harmonic identities for BRDF/lighting transfer and image consistency.

    Science.gov (United States)

    Mahajan, Dhruv; Ramamoorthi, Ravi; Curless, Brian

    2008-02-01

    This paper develops a theory of frequency domain invariants in computer vision. We derive novel identities using spherical harmonics, which are the angular frequency domain analog to common spatial domain invariants such as reflectance ratios. These invariants are derived from the spherical harmonic convolution framework for reflection from a curved surface. Our identities apply in a number of canonical cases, including single and multiple images of objects under the same and different lighting conditions. One important case we consider is two different glossy objects in two different lighting environments. For this case, we derive a novel identity, independent of the specific lighting configurations or BRDFs, that allows us to directly estimate the fourth image if the other three are available. The identity can also be used as an invariant to detecttampering in the images. While this paper is primarily theoretical, it has the potential to lay the mathematical foundations for two important practical applications. First, we can develop more general algorithms for inverse rendering problems, which can directly relight and change material properties by transferring the BRDF or lighting from another object or illumination. Second, we can check the consistency of an image, to detect tampering or image splicing.

  18. Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy

    Science.gov (United States)

    Gualda, Emilio J.; Simão, Daniel; Pinto, Catarina; Alves, Paula M.; Brito, Catarina

    2014-01-01

    The development of three dimensional (3D) cell cultures represents a big step for the better understanding of cell behavior and disease in a more natural like environment, providing not only single but multiple cell type interactions in a complex 3D matrix, highly resembling physiological conditions. Light sheet fluorescence microscopy (LSFM) is becoming an excellent tool for fast imaging of such 3D biological structures. We demonstrate the potential of this technique for the imaging of human differentiated 3D neural aggregates in fixed and live samples, namely calcium imaging and cell death processes, showing the power of imaging modality compared with traditional microscopy. The combination of light sheet microscopy and 3D neural cultures will open the door to more challenging experiments involving drug testing at large scale as well as a better understanding of relevant biological processes in a more realistic environment. PMID:25161607

  19. Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Emilio J Gualda

    2014-08-01

    Full Text Available The development of three dimensional cell cultures represents a big step for the better understanding of cell behavior and disease in a more natural like environment, providing not only single but multiple cell type interactions in a complex three dimensional matrix, highly resembling physiological conditions. Light sheet fluorescence microscopy is becoming an excellent tool for fast imaging of such three-dimensional biological structures. We demonstrate the potential of this technique for the imaging of human differentiated 3D neural aggregates in fixed and live samples, namely calcium imaging and cell death processes, showing the power of imaging modality compared with traditional microscopy. The combination of light sheet microscopy and 3D neural cultures will open the door to more challenging experiments involving drug testing at large scale as well as a better understanding of relevant biological processes in a more realistic environment.

  20. A fast VUV light pulser for testing ring-imaging Cerenkov counters

    International Nuclear Information System (INIS)

    Margulies, S.; Ozelis, J.

    1986-01-01

    A simple, fast, VUV light pulser for testing a TMAE-based, time-projection-chamber-type photon detector for a ring-imaging Cerenkov counter is described. The pulser consists of an automobile spark plug fired in a controlled atmosphere by a relaxation oscillator. The resulting VUV spectrum, spark-current pulse, and light pulse were investigated for hydrogen, xenon, krypton, and nitrogen fills. The best pulse (3.5 ns FWHM) was obtained with hydrogen at 60 kPa absolute pressure. Xenon was, generally, unsuitable because it continued to emit light for more than a microsecond after excitation. With krypton and nitrogen, no light was emitted in the wavelength region of interest except for a series of sharp lines attributable to the electrodes

  1. Laser speckle contrast imaging using light field microscope approach

    Science.gov (United States)

    Ma, Xiaohui; Wang, Anting; Ma, Fenghua; Wang, Zi; Ming, Hai

    2018-01-01

    In this paper, a laser speckle contrast imaging (LSCI) system using light field (LF) microscope approach is proposed. As far as we known, it is first time to combine LSCI with LF. To verify this idea, a prototype consists of a modified LF microscope imaging system and an experimental device was built. A commercially used Lytro camera was modified for microscope imaging. Hollow glass tubes with different depth fixed in glass dish were used to simulate the vessels in brain and test the performance of the system. Compared with conventional LSCI, three new functions can be realized by using our system, which include refocusing, extending the depth of field (DOF) and gathering 3D information. Experiments show that the principle is feasible and the proposed system works well.

  2. A Heuristic Approach to Remove the Background Intensity on White-light Solar Images. I. STEREO /HI-1 Heliospheric Images

    Energy Technology Data Exchange (ETDEWEB)

    Stenborg, Guillermo; Howard, Russell A. [Space Science Division, U.S. Naval Research Laboratory, Washington, DC 20375 (United States)

    2017-04-10

    White-light coronal and heliospheric imagers observe scattering of photospheric light from both dust particles (the F-Corona) and free electrons in the corona (the K-corona). The separation of the two coronae is thus vitally important to reveal the faint K-coronal structures (e.g., streamers, co-rotating interaction regions, coronal mass ejections, etc.). However, the separation of the two coronae is very difficult, so we are content in defining a background corona that contains the F- and as little K- as possible. For both the LASCO-C2 and LASCO-C3 coronagraphs aboard the Solar and Heliospheric Observatory ( SOHO ) and the white-light imagers of the SECCHI suite aboard the Solar Terrestrial Relationships Observatory ( STEREO ), a time-dependent model of the background corona is generated from about a month of similar images. The creation of such models is possible because the missions carrying these instruments are orbiting the Sun at about 1 au. However, the orbit profiles for the upcoming Solar Orbiter and Solar Probe Plus missions are very different. These missions will have elliptic orbits with a rapidly changing radial distance, hence invalidating the techniques in use for the SOHO /LASCO and STEREO /SECCHI instruments. We have been investigating techniques to generate background models out of just single images that could be used for the Solar Orbiter Heliospheric Imager and the Wide-field Imager for the Solar Probe Plus packages on board the respective spacecraft. In this paper, we introduce a state-of-the-art, heuristic technique to create the background intensity models of STEREO /HI-1 data based solely on individual images, report on new results derived from its application, and discuss its relevance to instrumental and operational issues.

  3. LFNet: A Novel Bidirectional Recurrent Convolutional Neural Network for Light-Field Image Super-Resolution.

    Science.gov (United States)

    Wang, Yunlong; Liu, Fei; Zhang, Kunbo; Hou, Guangqi; Sun, Zhenan; Tan, Tieniu

    2018-09-01

    The low spatial resolution of light-field image poses significant difficulties in exploiting its advantage. To mitigate the dependency of accurate depth or disparity information as priors for light-field image super-resolution, we propose an implicitly multi-scale fusion scheme to accumulate contextual information from multiple scales for super-resolution reconstruction. The implicitly multi-scale fusion scheme is then incorporated into bidirectional recurrent convolutional neural network, which aims to iteratively model spatial relations between horizontally or vertically adjacent sub-aperture images of light-field data. Within the network, the recurrent convolutions are modified to be more effective and flexible in modeling the spatial correlations between neighboring views. A horizontal sub-network and a vertical sub-network of the same network structure are ensembled for final outputs via stacked generalization. Experimental results on synthetic and real-world data sets demonstrate that the proposed method outperforms other state-of-the-art methods by a large margin in peak signal-to-noise ratio and gray-scale structural similarity indexes, which also achieves superior quality for human visual systems. Furthermore, the proposed method can enhance the performance of light field applications such as depth estimation.

  4. Graphene metamaterial spatial light modulator for infrared single pixel imaging.

    Science.gov (United States)

    Fan, Kebin; Suen, Jonathan Y; Padilla, Willie J

    2017-10-16

    High-resolution and hyperspectral imaging has long been a goal for multi-dimensional data fusion sensing applications - of interest for autonomous vehicles and environmental monitoring. In the long wave infrared regime this quest has been impeded by size, weight, power, and cost issues, especially as focal-plane array detector sizes increase. Here we propose and experimentally demonstrated a new approach based on a metamaterial graphene spatial light modulator (GSLM) for infrared single pixel imaging. A frequency-division multiplexing (FDM) imaging technique is designed and implemented, and relies entirely on the electronic reconfigurability of the GSLM. We compare our approach to the more common raster-scan method and directly show FDM image frame rates can be 64 times faster with no degradation of image quality. Our device and related imaging architecture are not restricted to the infrared regime, and may be scaled to other bands of the electromagnetic spectrum. The study presented here opens a new approach for fast and efficient single pixel imaging utilizing graphene metamaterials with novel acquisition strategies.

  5. Structured light 3D tracking system for measuring motions in PET brain imaging

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Jørgensen, Morten Rudkjær; Paulsen, Rasmus Reinhold

    2010-01-01

    Patient motion during scanning deteriorates image quality, especially for high resolution PET scanners. A new proposal for a 3D head tracking system for motion correction in high resolution PET brain imaging is set up and demonstrated. A prototype tracking system based on structured light with a ...

  6. Navigational efficiency of nocturnal Myrmecia ants suffers at low light levels.

    Directory of Open Access Journals (Sweden)

    Ajay Narendra

    Full Text Available Insects face the challenge of navigating to specific goals in both bright sun-lit and dim-lit environments. Both diurnal and nocturnal insects use quite similar navigation strategies. This is despite the signal-to-noise ratio of the navigational cues being poor at low light conditions. To better understand the evolution of nocturnal life, we investigated the navigational efficiency of a nocturnal ant, Myrmecia pyriformis, at different light levels. Workers of M. pyriformis leave the nest individually in a narrow light-window in the evening twilight to forage on nest-specific Eucalyptus trees. The majority of foragers return to the nest in the morning twilight, while few attempt to return to the nest throughout the night. We found that as light levels dropped, ants paused for longer, walked more slowly, the success in finding the nest reduced and their paths became less straight. We found that in both bright and dark conditions ants relied predominantly on visual landmark information for navigation and that landmark guidance became less reliable at low light conditions. It is perhaps due to the poor navigational efficiency at low light levels that the majority of foragers restrict navigational tasks to the twilight periods, where sufficient navigational information is still available.

  7. Effects of light-emitting diode light v. fluorescent light on growing performance, activity levels and well-being of non-beak-trimmed W-36 pullets.

    Science.gov (United States)

    Liu, K; Xin, H; Settar, P

    2018-01-01

    More energy-efficient, readily dimmable, long-lasting and more affordable light-emitting diode (LED) lights are increasingly finding applications in poultry production facilities. Despite anecdotal evidence about the benefits of such lighting on bird performance and behavior, concrete research data were lacking. In this study, a commercial poultry-specific LED light (dim-to-blue, controllable correlated color temperature (CCT) from 4500 to 5300 K) and a typical compact fluorescent light (CFL) (soft white, CCT=2700 K) were compared with regards to their effects on growing performance, activity levels, and feather and comb conditions of non-beak-trimmed W-36 pullets during a 14-week rearing period. A total of 1280-day-old pullets in two successive batches, 640 birds each, were used in the study. For each batch, pullets were randomly assigned to four identical litter-floor rooms equipped with perches, two rooms per light regimen, 160 birds per room. Body weight, BW uniformity (BWU), BW gain (BWG) and cumulative mortality rate (CMR) of the pullets were determined every 2 weeks from day-old to 14 weeks of age (WOA). Activity levels of the pullets at 5 to 14 WOA were delineated by movement index. Results revealed that pullets under the LED and CFL lights had comparable BW (1140±5 g v. 1135±5 g, P=0.41), BWU (90.8±1.0% v. 91.9±1.0%, P=0.48) and CMR (1.3±0.6% v. 2.7±0.6%, P=0.18) at 14 WOA despite some varying BWG during the rearing. Circadian activity levels of the pullets were higher under the LED light than under the CFL light, possibly resulting from differences in spectrum and/or perceived light intensity between the two lights. No feather damage or comb wound was apparent in either light regimen at the end of the rearing period. The results contribute to understanding the impact of emerging LED lights on pullets rearing which is a critical component of egg production.

  8. Orange Recognition on Tree Using Image Processing Method Based on Lighting Density Pattern

    Directory of Open Access Journals (Sweden)

    H. R Ahmadi

    2015-03-01

    Full Text Available Within the last few years, a new tendency has been created towards robotic harvesting of oranges and some of citrus fruits. The first step in robotic harvesting is accurate recognition and positioning of fruits. Detection through image processing by color cameras and computer is currently the most common method. Obviously, a harvesting robot faces with natural conditions and, therefore, detection must be done in various light conditions and environments. In this study, it was attempted to provide a suitable algorithm for recognizing the orange fruits on tree. In order to evaluate the proposed algorithm, 500 images were taken in different conditions of canopy, lighting and the distance to the tree. The algorithm included sub-routines for optimization, segmentation, size filtering, separation of fruits based on lighting density method and coordinates determination. In this study, MLP neural network (with 3 hidden layers was used for segmentation that was found to be successful with an accuracy of 88.2% in correct detection. As there exist a high percentage of the clustered oranges in images, any algorithm aiming to detect oranges on the trees successfully should offer a solution to separate these oranges first. A new method based on the light and shade density method was applied and evaluated in this research. Finally, the accuracies for differentiation and recognition were obtained to be 89.5% and 88.2%, respectively.

  9. New method of contour image processing based on the formalism of spiral light beams

    International Nuclear Information System (INIS)

    Volostnikov, Vladimir G; Kishkin, S A; Kotova, S P

    2013-01-01

    The possibility of applying the mathematical formalism of spiral light beams to the problems of contour image recognition is theoretically studied. The advantages and disadvantages of the proposed approach are evaluated; the results of numerical modelling are presented. (optical image processing)

  10. Digital image manipulation of underexposed X-rays - examinations with a fluorescent light scanner

    International Nuclear Information System (INIS)

    Hidajat, N.; Schroeder, R.J.; Bergh, B.; Cordes, M.; Felix, R.

    1994-01-01

    Incorrect exposure of conventional radiographs frequently leads to repetition of the examination and thereby to increased radiation exposure for the patient. Underexposed films of an Alderson-Rando phantom, an ankle joint and a patella were digitised by means of an inexpensive fluorescent light scanner, and subsequent image manipulation improved quality so as to make the image diagnostically adequate. For the demonstration of markedly underexposed structures digitalisation with subsequent contrast enhancement was used. Well exposed structures are best evaluated in contrast enhanced transmitted light. Our results suggest it should be possible to reduce the number of repeat exposures and thereby to limit radiation exposure. (orig.) [de

  11. A new method of the light irradiation image by the computed radiography (imaging plate) system

    International Nuclear Information System (INIS)

    Aiba, Susumu; Nishi, Katsuki.

    1997-01-01

    There are two method for the purpose of diagnosing medically by using gamma-ray light irradiation image. One is to use of the scintillation camera for gamma-ray, the other is to use of the photostimulable luminescence point by the secondary excitation of the image plate (IP) system for X-ray. The standpoint of the spatial resolution at the total medical image, using gamma-ray, the first can get the image on a short time, but the first is a poor image quality, and the second is good image quality, but the second can get the image on a long time, because of insensitive to gamma-ray. We report on the improvement for IP's week point by our proposal method, and by our clinical and quantitative analysis data, to use the highly efficient IP (ST-III). We make the improvement on the imaging time (from 30 minutes to 20 minutes), and the inprocessing time (from 33-50 minutes to 27 minutes) for a former method on an organism. We strongly believe that our convenience improvement method, and our clinical quantitative analysis data can contribute to the wide application as well as the quality up for the clinical diagnosis to use gamma-ray. (author)

  12. Lights All Askew: Systematics in Galaxy Images from Megaparsecs to Microns

    Science.gov (United States)

    Bradshaw, Andrew Kenneth

    The stars and galaxies are not where they seem. In the process of imaging and measurement, the light from distant objects is distorted, blurred, and skewed by several physical effects on scales from megaparsecs to microns. Charge-coupled devices (CCDs) provide sensitive detection of this light, but introduce their own problems in the form of systematic biases. Images of these stars and galaxies are formed in CCDs when incoming light generates photoelectrons which are then collected in a pixel's potential well and measured as signal. However, these signal electrons can be diverted from purely parallel paths toward the pixel wells by transverse fields sourced by structural elements of the CCD, accidental imperfections in fabrication, or dynamic electric fields induced by other collected charges. These charge transport anomalies lead to measurable systematic errors in the images which bias cosmological inferences based on them. The physics of imaging therefore deserves thorough investigation, which is performed in the laboratory using a unique optical beam simulator and in computer simulations of charge transport. On top of detector systematics, there are often biases in the mathematical analysis of pixelized images; in particular, the location, shape, and orientation of stars and galaxies. Using elliptical Gaussians as a toy model for galaxies, it is demonstrated how small biases in the computed image moments lead to observable orientation patterns in modern survey data. Also presented are examples of the reduction of data and fitting of optical aberrations of images in the lab and on the sky which are modeled by physically or mathematically-motivated methods. Finally, end-to-end analysis of the weak gravitational lensing signal is presented using deep sky data as well as in N-body simulations. It is demonstrated how measured weak lens shear can be transformed by signal matched filters which aid in the detection of mass overdensities and separate signal from noise. A

  13. Optical coherence tomography imaging of telangiectasias during intense pulsed light treatment

    DEFF Research Database (Denmark)

    Ring, Hans Christian; Mogensen, Mette; Banzhaf, Christina

    2013-01-01

    Vascular malformations commonly occur in the facial region, and can be associated with significant stigma and embarrassment. Studies have shown that even recommended light-based treatments do not always result in complete clearance. This indicates the need for more accurate pre-treatment assessment...... the vessels, which may indicate edema or insufficient coagulation. (2) Hyperreflective signals within the lumen of the vessels, compatible with the expected irreversible microthrombus formation in the vessels. OCT imaging is capable of real-time assessment of tissue damage during light and laser treatment...

  14. An imaging-based photometric and colorimetric measurement method for characterizing OLED panels for lighting applications

    Science.gov (United States)

    Zhu, Yiting; Narendran, Nadarajah; Tan, Jianchuan; Mou, Xi

    2014-09-01

    The organic light-emitting diode (OLED) has demonstrated its novelty in displays and certain lighting applications. Similar to white light-emitting diode (LED) technology, it also holds the promise of saving energy. Even though the luminous efficacy values of OLED products have been steadily growing, their longevity is still not well understood. Furthermore, currently there is no industry standard for photometric and colorimetric testing, short and long term, of OLEDs. Each OLED manufacturer tests its OLED panels under different electrical and thermal conditions using different measurement methods. In this study, an imaging-based photometric and colorimetric measurement method for OLED panels was investigated. Unlike an LED that can be considered as a point source, the OLED is a large form area source. Therefore, for an area source to satisfy lighting application needs, it is important that it maintains uniform light level and color properties across the emitting surface of the panel over a long period. This study intended to develop a measurement procedure that can be used to test long-term photometric and colorimetric properties of OLED panels. The objective was to better understand how test parameters such as drive current or luminance and temperature affect the degradation rate. In addition, this study investigated whether data interpolation could allow for determination of degradation and lifetime, L70, at application conditions based on the degradation rates measured at different operating conditions.

  15. Image matching in Bayer raw domain to de-noise low-light still images, optimized for real-time implementation

    Science.gov (United States)

    Romanenko, I. V.; Edirisinghe, E. A.; Larkin, D.

    2013-03-01

    Temporal accumulation of images is a well-known approach to improve signal to noise ratios of still images taken in a low light conditions. However, the complexity of known algorithms often leads to high hardware resource usage, increased memory bandwidth and computational complexity, making their practical use impossible. In our research we attempt to solve this problem with an implementation of a practical spatial-temporal de-noising algorithm, based on image accumulation. Image matching and spatial-temporal filtering was performed in Bayer RAW data space, which allowed us to benefit from predictable sensor noise characteristics, thus allowing using a range of algorithmic optimizations. The proposed algorithm accurately compensates for global and local motion and efficiently removes different kinds of noise in noisy images taken in low light conditions. In our algorithm we were able to perform global and local motion compensation in Bayer RAW data space, while preserving the resolution and effectively improving signal to noise ratios of moving objects as well as non-stationary background. The proposed algorithm is suitable for implementation in commercial grade FPGA's and capable of processing 16MP images at capturing rate (10 frames per second). The main challenge for matching between still images is the compromise between the quality of the motion prediction and the complexity of the algorithm and required memory bandwidth. Still images taken in a burst sequence must be aligned to compensate for background motion and foreground objects movements in a scene. High resolution still images coupled with significant time between successive frames can produce large displacements between images, which creates additional difficulty for image matching algorithms. In photo applications it is very important that the noise is efficiently removed in both static, and non-static background as well as in a moving objects, maintaining the resolution of the image. In our proposed

  16. SuperPixel based mid-level image description for image recognition

    NARCIS (Netherlands)

    Tasli, H.E.; Sicre, R.; Gevers, T.

    2015-01-01

    This study proposes a mid-level feature descriptor and aims to validate improvement on image classification and retrieval tasks. In this paper, we propose a method to explore the conventional feature extraction techniques in the image classification pipeline from a different perspective where

  17. Integrated ultrasonic particle positioning and low excitation light fluorescence imaging

    International Nuclear Information System (INIS)

    Bernassau, A. L.; Al-Rawhani, M.; Beeley, J.; Cumming, D. R. S.

    2013-01-01

    A compact hybrid system has been developed to position and detect fluorescent micro-particles by combining a Single Photon Avalanche Diode (SPAD) imager with an acoustic manipulator. The detector comprises a SPAD array, light-emitting diode (LED), lenses, and optical filters. The acoustic device is formed of multiple transducers surrounding an octagonal cavity. By stimulating pairs of transducers simultaneously, an acoustic landscape is created causing fluorescent micro-particles to agglomerate into lines. The fluorescent pattern is excited by a low power LED and detected by the SPAD imager. Our technique combines particle manipulation and visualization in a compact, low power, portable setup

  18. Quantitative luminescence imaging system

    Science.gov (United States)

    Erwin, David N.; Kiel, Johnathan L.; Batishko, Charles R.; Stahl, Kurt A.

    1990-01-01

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopie imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber.

  19. Semantics by levels: An example for an image language

    International Nuclear Information System (INIS)

    Fasciano, M.; Levialdi, S.; Tortora, G.

    1984-01-01

    Ambiguities in formal language constructs may decrease both the understanding and the coding efficiency of a program. Within an image language, two semantic levels have been detected, corresponding to the lower level (pixel-based) and to the higher level (image-based). Denotational semantics has been used to define both levels within PIXAL (an image language) in order to enable the reader to visualize a concrete application of the semantic levels and their implications in a programming environment. This paper presents the semantics of different levels of conceptualization in the abstract formal description of an image language. The disambiguation of the meaning of special purpose constructs that imply either the elementary (pixels) level or the high image (array) level is naturally obtained by means of such semantic clauses. Perhaps non Von architectures on which hierarchical computations may be performed could also benefit from the use of semantic clauses to explicit the different levels where such computations are executed

  20. Fundamentals of fluorescence microscopy exploring life with light

    CERN Document Server

    Mondal, Partha Pratim

    2014-01-01

    This book starts at an introductory level and leads reader to the most advanced developments in fluorescence imaging and super-resolution techniques that have enabled the emergence of new disciplines such as nanobioimaging, multiphoton microscopy, photodynamic therapy, nanometrology and nanosensors. The interdisciplinary subject of fluorescence microscopy and imaging requires complete knowledge of imaging optics and molecular physics. So, this book approaches the subject by introducing optical imaging concepts before going deep into the advanced imaging systems and their applications. Molecular orbital theory forms the basis for understanding fluorescent molecules and thereby facilitates complete explanation of light-matter interaction at the geometrical focus. The two disciplines have some overlap since light controls the states of molecules and conversely, molecular states control the emitted light. These two mechanisms together determine essential fluorescence  factors and phenomena such as, molecular cro...

  1. Clinical application of photodynamic medicine technology using light-emitting fluorescence imaging based on a specialized luminous source.

    Science.gov (United States)

    Namikawa, Tsutomu; Fujisawa, Kazune; Munekage, Eri; Iwabu, Jun; Uemura, Sunao; Tsujii, Shigehiro; Maeda, Hiromichi; Kitagawa, Hiroyuki; Fukuhara, Hideo; Inoue, Keiji; Sato, Takayuki; Kobayashi, Michiya; Hanazaki, Kazuhiro

    2018-04-04

    The natural amino acid 5-aminolevulinic acid (ALA) is a protoporphyrin IX (PpIX) precursor and a new-generation photosensitive substance that accumulates specifically in cancer cells. When indocyanine green (ICG) is irradiated with near-infrared (NIR) light, it shifts to a higher energy state and emits infrared light with a longer wavelength than the irradiated NIR light. Photodynamic diagnosis (PDD) using ALA and ICG-based NIR fluorescence imaging has emerged as a new diagnostic technique. Specifically, in laparoscopic examinations for serosa-invading advanced gastric cancer, peritoneal metastases could be detected by ALA-PDD, but not by conventional visible-light imaging. The HyperEye Medical System (HEMS) can visualize ICG fluorescence as color images simultaneously projected with visible light in real time. This ICG fluorescence method is widely applicable, including for intraoperative identification of sentinel lymph nodes, visualization of blood vessels in organ resection, and blood flow evaluation during surgery. Fluorescence navigation by ALA-PDD and NIR using ICG imaging provides good visualization and detection of the target lesions that is not possible with the naked eye. We propose that this technique should be used in fundamental research on the relationship among cellular dynamics, metabolic enzymes, and tumor tissues, and to evaluate clinical efficacy and safety in multicenter cooperative clinical trials.

  2. Dependence of reconstructed image characteristics on the observation condition in light-in-flight recording by holography.

    Science.gov (United States)

    Komatsu, Aya; Awatsuji, Yasuhiro; Kubota, Toshihiro

    2005-08-01

    We analyze the dependence of the reconstructed image characteristic on the observation condition in the light-in-flight recording by holography both theoretically and experimentally. This holography makes it possible to record a propagating light pulse. We have found that the shape of the reconstructed image is changed when the observation position is vertically moved along the hologram plane. The reconstructed image is numerically simulated on the basis of the theory and is experimentally obtained by using a 373 fs pulsed laser. The numerical results agree with the experimental result, and the validity of the theory is verified. Also, experimental results are analyzed and the restoration of the reconstructed image is discussed.

  3. Method to restore images from chaotic frequency-down-converted light using phase matching

    International Nuclear Information System (INIS)

    Andreoni, Alessandra; Puddu, Emiliano; Bondani, Maria

    2006-01-01

    We present an optical frequency-down-conversion process of the image of an object illuminated with chaotic light in which also the low-frequency field entering the second-order nonlinear crystal is chaotic. We show that the fulfillment of the phase-matching conditions by the chaotic interacting fields provides the rules to retrieve the object image by calculating suitable correlations of the local intensity fluctuations even if a single record of down-converted chaotic image is available

  4. Mutations in specific structural regions of immunoglobulin light chains are associated with free light chain levels in patients with AL amyloidosis.

    Directory of Open Access Journals (Sweden)

    Tanya L Poshusta

    Full Text Available BACKGROUND: The amyloidoses are protein misfolding diseases characterized by the deposition of amyloid that leads to cell death and tissue degeneration. In immunoglobulin light chain amyloidosis (AL, each patient has a unique monoclonal immunoglobulin light chain (LC that forms amyloid deposits. Somatic mutations in AL LCs make these proteins less thermodynamically stable than their non-amyloidogenic counterparts, leading to misfolding and ultimately the formation of amyloid fibrils. We hypothesize that location rather than number of non-conservative mutations determines the amyloidogenicity of light chains. METHODOLOGY/PRINCIPAL FINDINGS: We performed sequence alignments on the variable domain of 50 kappa and 91 lambda AL light chains and calculated the number of non-conservative mutations over total number of patients for each secondary structure element in order to identify regions that accumulate non-conservative mutations. Among patients with AL, the levels of circulating immunoglobulin free light chain varies greatly, but even patients with very low levels can have very advanced amyloid deposition. CONCLUSIONS: Our results show that in specific secondary structure elements, there are significant differences in the number of non-conservative mutations between normal and AL sequences. AL sequences from patients with different levels of secreted light chain have distinct differences in the location of non-conservative mutations, suggesting that for patients with very low levels of light chains and advanced amyloid deposition, the location of non-conservative mutations rather than the amount of free light chain in circulation may determine the amyloidogenic propensity of light chains.

  5. Light-Addressable Potentiometric Sensors for Quantitative Spatial Imaging of Chemical Species.

    Science.gov (United States)

    Yoshinobu, Tatsuo; Miyamoto, Ko-Ichiro; Werner, Carl Frederik; Poghossian, Arshak; Wagner, Torsten; Schöning, Michael J

    2017-06-12

    A light-addressable potentiometric sensor (LAPS) is a semiconductor-based chemical sensor, in which a measurement site on the sensing surface is defined by illumination. This light addressability can be applied to visualize the spatial distribution of pH or the concentration of a specific chemical species, with potential applications in the fields of chemistry, materials science, biology, and medicine. In this review, the features of this chemical imaging sensor technology are compared with those of other technologies. Instrumentation, principles of operation, and various measurement modes of chemical imaging sensor systems are described. The review discusses and summarizes state-of-the-art technologies, especially with regard to the spatial resolution and measurement speed; for example, a high spatial resolution in a submicron range and a readout speed in the range of several tens of thousands of pixels per second have been achieved with the LAPS. The possibility of combining this technology with microfluidic devices and other potential future developments are discussed.

  6. Supplemental Blue LED Lighting Array to Improve the Signal Quality in Hyperspectral Imaging of Plants

    Directory of Open Access Journals (Sweden)

    Anne-Katrin Mahlein

    2015-06-01

    Full Text Available Hyperspectral imaging systems used in plant science or agriculture often have suboptimal signal-to-noise ratio in the blue region (400–500 nm of the electromagnetic spectrum. Typically there are two principal reasons for this effect, the low sensitivity of the imaging sensor and the low amount of light available from the illuminating source. In plant science, the blue region contains relevant information about the physiology and the health status of a plant. We report on the improvement in sensitivity of a hyperspectral imaging system in the blue region of the spectrum by using supplemental illumination provided by an array of high brightness light emitting diodes (LEDs with an emission peak at 470 nm.

  7. Target detection and driving behaviour measurements in a driving simulator at mesopic light levels

    NARCIS (Netherlands)

    Alferdinck, J.W.A.M.

    2006-01-01

    During night-time driving hazardous objects often appear at mesopic light levels, which are typically measured using light meters with a spectral sensitivity that is only valid for photopic light levels. In order to develop suitable mesopic models a target detection experiment was performed in a

  8. Imaging of Biological Tissues by Visible Light CDI

    Science.gov (United States)

    Karpov, Dmitry; Dos Santos Rolo, Tomy; Rich, Hannah; Fohtung, Edwin

    Recent advances in the use of synchrotron and X-ray free electron laser (XFEL) based coherent diffraction imaging (CDI) with application to material sciences and medicine proved the technique to be efficient in recovering information about the samples encoded in the phase domain. The current state-of-the-art algorithms of reconstruction are transferable to optical frequencies, which makes laser sources a reasonable milestone both in technique development and applications. Here we present first results from table-top laser CDI system for imaging of biological tissues and reconstruction algorithms development and discuss approaches that are complimenting the data quality improvement that is applicable to visible light frequencies due to it's properties. We demonstrate applicability of the developed methodology to a wide class of soft bio-matter and condensed matter systems. This project is funded by DOD-AFOSR under Award No FA9550-14-1-0363 and the LANSCE Professorship at LANL.

  9. Testing a high-power LED based light source for hyperspectral imaging microscopy

    Science.gov (United States)

    Klomkaew, Phiwat; Mayes, Sam A.; Rich, Thomas C.; Leavesley, Silas J.

    2017-02-01

    Our lab has worked to develop high-speed hyperspectral imaging systems that scan the fluorescence excitation spectrum for biomedical imaging applications. Hyperspectral imaging can be used in remote sensing, medical imaging, reaction analysis, and other applications. Here, we describe the development of a hyperspectral imaging system that comprised an inverted Nikon Eclipse microscope, sCMOS camera, and a custom light source that utilized a series of high-power LEDs. LED selection was performed to achieve wavelengths of 350-590 nm. To reduce scattering, LEDs with low viewing angles were selected. LEDs were surface-mount soldered and powered by an RCD. We utilized 3D printed mounting brackets to assemble all circuit components. Spectraradiometric calibration was performed using a spectrometer (QE65000, Ocean Optics) and integrating sphere (FOIS-1, Ocean Optics). Optical output and LED driving current were measured over a range of illumination intensities. A normalization algorithm was used to calibrate and optimize the intensity of the light source. The highest illumination power was at 375 nm (3300 mW/cm2), while the lowest illumination power was at 515, 525, and 590 nm (5200 mW/cm2). Comparing the intensities supplied by each LED to the intensities measured at the microscope stage, we found there was a great loss in power output. Future work will focus on using two of the same LEDs to double the power and finding more LED and/or laser diodes and chips around the range. This custom hyperspectral imaging system could be used for the detection of cancer and the identification of biomolecules.

  10. Design and evaluation of an imaging spectrophotometer incorporating a uniform light source.

    Science.gov (United States)

    Noble, S D; Brown, R B; Crowe, T G

    2012-03-01

    Accounting for light that is diffusely scattered from a surface is one of the practical challenges in reflectance measurement. Integrating spheres are commonly used for this purpose in point measurements of reflectance and transmittance. This solution is not directly applicable to a spectral imaging application for which diffuse reflectance measurements are desired. In this paper, an imaging spectrophotometer design is presented that employs a uniform light source to provide diffuse illumination. This creates the inverse measurement geometry to the directional illumination/diffuse reflectance mode typically used for point measurements. The final system had a spectral range between 400 and 1000 nm with a 5.2 nm resolution, a field of view of approximately 0.5 m by 0.5 m, and millimeter spatial resolution. Testing results indicate illumination uniformity typically exceeding 95% and reflectance precision better than 1.7%.

  11. Light Microscopy Module (LMM)-Emulator

    Science.gov (United States)

    Levine, Howard G.; Smith, Trent M.; Richards, Stephanie E.

    2016-01-01

    The Light Microscopy Module (LMM) is a microscope facility developed at Glenn Research Center (GRC) that provides researchers with powerful imaging capability onboard the International Space Station (ISS). LMM has the ability to have its hardware recongured on-orbit to accommodate a wide variety of investigations, with the capability of remotely acquiring and downloading digital images across multiple levels of magnication.

  12. Flow velocity and light level drive non-linear response of seagrass

    NARCIS (Netherlands)

    Villazán, B.; Brun, F.G.; Moreno-Marín, F; Bouma, T.J.; Vergara, J.J.

    2016-01-01

    We investigated the interactive effects of light (low and high light doses) and flowvelocity (low, medium and high levels) under NH4+ enriched conditions on dynamic and morphologicalvariables of Zostera noltei plants in a 5 wk flume experiment. Our results showed a nonlinearresponse of Z. noltei in

  13. Near-infrared light-responsive liposomal contrast agent for photoacoustic imaging and drug release applications.

    Science.gov (United States)

    Sivasubramanian, Kathyayini; Mathiyazhakan, Malathi; Wiraja, Christian; Upputuri, Paul Kumar; Xu, Chenjie; Pramanik, Manojit

    2017-04-01

    Photoacoustic imaging has become an emerging tool for theranostic applications. Not only does it help in release and therapeutic applications. We explore near-infrared light-sensitive liposomes coated with gold nanostars (AuNSs) for both imaging and drug release applications using a photoacoustic imaging system. Being amphiphilic, the liposomes lipid bilayer and the aqueous core enable encapsulation of both hydrophobic and hydrophilic drugs. The AuNSs on the surface of the liposomes act as photon absorbers due to their intrinsic surface plasmon resonance. Upon excitation by laser light at specific wavelength, AuNSs facilitate rapid release of the contents encapsulated in the liposomes due to local heating and pressure wave formation (photoacoustic wave). Herein, we describe the design and optimization of the AuNSs-coated liposomes and demonstrate the release of both hydrophobic and hydrophilic model drugs (paclitaxel and calcein, respectively) through laser excitation at near-infrared wavelength. The use of AuNSs-coated liposomes as contrast agents for photoacoustic imaging is also explored with tissue phantom experiments. In comparison to blood, the AuNSs-coated liposomes have better contrast (approximately two times) at 2-cm imaging depth.

  14. Single shot imaging through turbid medium and around corner using coherent light

    Science.gov (United States)

    Li, Guowei; Li, Dayan; Situ, Guohai

    2018-01-01

    Optical imaging through turbid media and around corner is a difficult challenge. Even a very thin layer of a turbid media, which randomly scatters the probe light, can appear opaque and hide any objects behind it. Despite many recent advances, no current method can image the object behind turbid media with single record using coherent laser illumination. Here we report a method that allows non-invasive single-shot optical imaging through turbid media and around corner via speckle correlation. Instead of being as an obstacle in forming diffractionlimited images, speckle actually can be a carrier that encodes sufficient information to imaging through visually opaque layers. Optical imaging through turbid media and around corner is experimentally demonstrated using traditional imaging system with the aid of iterative phase retrieval algorithm. Our method require neither scan of illumination nor two-arm interferometry or long-time exposure in acquisition, which has new implications in optical sensing through common obscurants such as fog, smoke and haze.

  15. GEO light imaging national testbed (GLINT) heliostat design and testing status

    Science.gov (United States)

    Thornton, Marcia A.; Oldenettel, Jerry R.; Hult, Dane W.; Koski, Katrina; Depue, Tracy; Cuellar, Edward L.; Balfour, Jim; Roof, Morey; Yarger, Fred W.; Newlin, Greg; Ramzel, Lee; Buchanan, Peter; Mariam, Fesseha G.; Scotese, Lee

    2002-01-01

    The GEO Light Imaging National Testbed (GLINT) will use three laser beams producing simultaneous interference fringes to illuminate satellites in geosynchronous earth orbit (GEO). The reflected returns will be recorded using a large 4,000 m2 'light bucket' receiver. This imaging methodology is termed Fourier Telescopy. A major component of the 'light bucket' will be an array of 40 - 80 heliostats. Each heliostat will have a mirrored surface area of 100 m2 mounted on a rigid truss structure which is supported by an A-frame. The truss structure attaches to the torque tube elevation drive and the A-frame structure rests on an azimuth ring that could provide nearly full coverage of the sky. The heliostat is designed to operate in 15 mph winds with jitter of less than 500 microradians peak-to- peak. One objective of the design was to minimize receiver cost to the maximum extent possible while maintaining GLINT system performance specifications. The mechanical structure weights approximately seven tons and is a simple fabricated steel framework. A prototype heliostat has been assembled at Stallion Range Center, White Sands Missile Range, New Mexico and is being tested under a variety of weather and operational conditions. The preliminary results of that testing will be presented as well as some finite element model analyses that were performed to predict the performance of the structure.

  16. Searching for transits in the Wide Field Camera Transit Survey with difference-imaging light curves

    NARCIS (Netherlands)

    Zendejas, Dominguez J.; Koppenhoefer, J.; Saglia, R.; Birkby, J.L.; Hodgkin, S.; Kovács, G.; Pinfield, D.; Sipocz, B.; Barrado, D.; Bender, R.; Burgo, del C.; Cappetta, M.; Martín, E.; Nefs, B.; Riffeser, A.; Steele, P.

    2013-01-01

    The Wide Field Camera Transit Survey is a pioneer program aiming at for searching extra-solar planets in the near-infrared. The images from the survey are processed by a data reduction pipeline, which uses aperture photometry to construct the light curves. We produce an alternative set of light

  17. Logarithmic Type Image Processing Framework for Enhancing Photographs Acquired in Extreme Lighting

    Directory of Open Access Journals (Sweden)

    FLOREA, C.

    2013-05-01

    Full Text Available The Logarithmic Type Image Processing (LTIP tools are mathematical models that were constructed for the representation and processing of gray tones images. By careful redefinition of the fundamental operations, namely addition and scalar multiplication, a set of mathematical properties are achieved. Here we propose the extension of LTIP models by a novel parameterization rule that ensures preservation of the required cone space structure. To prove the usability of the proposed extension we present an application for low-light image enhancement in images acquired with digital still camera. The closing property of the named model facilitates similarity with human visual system and digital camera processing pipeline, thus leading to superior behavior when compared with state of the art methods.

  18. A light weight secure image encryption scheme based on chaos & DNA computing

    Directory of Open Access Journals (Sweden)

    Bhaskar Mondal

    2017-10-01

    Full Text Available This paper proposed a new light weight secure cryptographic scheme for secure image communication. In this scheme the plain image is permuted first using a sequence of pseudo random number (PRN and encrypted by DeoxyriboNucleic Acid (DNA computation. Two PRN sequences are generated by a Pseudo Random Number Generator (PRNG based on cross coupled chaotic logistic map using two sets of keys. The first PRN sequence is used for permuting the plain image whereas the second PRN sequence is used for generating random DNA sequence. The number of rounds of permutation and encryption may be variable to increase security. The scheme is proposed for gray label images but the scheme may be extended for color images and text data. Simulation results exhibit that the proposed scheme can defy any kind of attack.

  19. Tilted Light Sheet Microscopy with 3D Point Spread Functions for Single-Molecule Super-Resolution Imaging in Mammalian Cells.

    Science.gov (United States)

    Gustavsson, Anna-Karin; Petrov, Petar N; Lee, Maurice Y; Shechtman, Yoav; Moerner, W E

    2018-02-01

    To obtain a complete picture of subcellular nanostructures, cells must be imaged with high resolution in all three dimensions (3D). Here, we present tilted light sheet microscopy with 3D point spread functions (TILT3D), an imaging platform that combines a novel, tilted light sheet illumination strategy with engineered long axial range point spread functions (PSFs) for low-background, 3D super localization of single molecules as well as 3D super-resolution imaging in thick cells. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The axial positions of the single molecules are encoded in the shape of the PSF rather than in the position or thickness of the light sheet, and the light sheet can therefore be formed using simple optics. The result is flexible and user-friendly 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validated TILT3D for 3D super-resolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed Tetrapod PSF for fiducial bead tracking and live axial drift correction. We envision TILT3D to become an important tool not only for 3D super-resolution imaging, but also for live whole-cell single-particle and single-molecule tracking.

  20. Tilted light sheet microscopy with 3D point spread functions for single-molecule super-resolution imaging in mammalian cells

    Science.gov (United States)

    Gustavsson, Anna-Karin; Petrov, Petar N.; Lee, Maurice Y.; Shechtman, Yoav; Moerner, W. E.

    2018-02-01

    To obtain a complete picture of subcellular nanostructures, cells must be imaged with high resolution in all three dimensions (3D). Here, we present tilted light sheet microscopy with 3D point spread functions (TILT3D), an imaging platform that combines a novel, tilted light sheet illumination strategy with engineered long axial range point spread functions (PSFs) for low-background, 3D super localization of single molecules as well as 3D super-resolution imaging in thick cells. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The axial positions of the single molecules are encoded in the shape of the PSF rather than in the position or thickness of the light sheet, and the light sheet can therefore be formed using simple optics. The result is flexible and user-friendly 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validated TILT3D for 3D superresolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed Tetrapod PSF for fiducial bead tracking and live axial drift correction. We envision TILT3D to become an important tool not only for 3D super-resolution imaging, but also for live whole-cell single-particle and single-molecule tracking.

  1. County-Level Population Economic Status and Medicare Imaging Resource Consumption.

    Science.gov (United States)

    Rosenkrantz, Andrew B; Hughes, Danny R; Prabhakar, Anand M; Duszak, Richard

    2017-06-01

    The aim of this study was to assess relationships between county-level variation in Medicare beneficiary imaging resource consumption and measures of population economic status. The 2013 CMS Geographic Variation Public Use File was used to identify county-level per capita Medicare fee-for-service imaging utilization and nationally standardized costs to the Medicare program. The County Health Rankings public data set was used to identify county-level measures of population economic status. Regional variation was assessed, and multivariate regressions were performed. Imaging events per 1,000 Medicare beneficiaries varied 1.8-fold (range, 2,723-4,843) at the state level and 5.3-fold (range, 1,228-6,455) at the county level. Per capita nationally standardized imaging costs to Medicare varied 4.2-fold (range, $84-$353) at the state level and 14.1-fold (range, $33-$471) at the county level. Within individual states, county-level utilization varied on average 2.0-fold (range, 1.1- to 3.1-fold), and costs varied 2.8-fold (range, 1.1- to 6.4-fold). For both large urban populations and small rural states, Medicare imaging resource consumption was heterogeneously variable at the county level. Adjusting for county-level gender, ethnicity, rural status, and population density, countywide unemployment rates showed strong independent positive associations with Medicare imaging events (β = 26.96) and costs (β = 4.37), whereas uninsured rates showed strong independent positive associations with Medicare imaging costs (β = 2.68). Medicare imaging utilization and costs both vary far more at the county than at the state level. Unfavorable measures of county-level population economic status in the non-Medicare population are independently associated with greater Medicare imaging resource consumption. Future efforts to optimize Medicare imaging use should consider the influence of local indigenous socioeconomic factors outside the scope of traditional beneficiary-focused policy

  2. Phosphorescent light-emitting iridium complexes serve as a hypoxia-sensing probe for tumor imaging in living animals

    Science.gov (United States)

    Takeuchi, Toshiyuki; Zhang, Shaojuan; Negishi, Kazuya; Yoshihara, Toshitada; Hosaka, Masahiro; Tobita, Seiji

    2010-02-01

    Iridium complex, a promising organic light-emitting diode material for next generation television and computer displays, emits phosphorescence. Phosphorescence is quenched by oxygen. We used this oxygen-quenching feature for imaging tumor hypoxia. Red light-emitting iridium complex Ir(btp)2(acac) (BTP) presented hypoxia-dependent light emission in culture cell lines, whose intensity was in parallel with hypoxia-inducible factor (HIF)-1 expression. BTP was further applied to imaging five nude mouse-transplanted tumors. All tumors presented a bright BTP-emitting image as early as 5 min after the injection. The BTP-dependent tumor image peaked at 1 to 2 h after the injection, and was then removed from tumors within 24 h. The minimal BTP image recognition size was at least 2 mm in diameter. By morphological examination and phosphorescence lifetime measurement, BTP is presumed to localize to the tumor cells, not to stay in the tumor microvessels by binding to albumin. The primary problem on suse of luminescent probe for tumor imaging is its weak penetrance to deep tissues from the skin surface. Since BTP is easily modifiable, we made BTP analogues with a longer excitation/emission wavelength to improve the tissue penetrance. One of them, BTPHSA, displayed 560/720 wavelength, and depicted its clear imaging from tumors transplanted over 6-7 mm deep from the skin surface. We suggest that BTP analogues have a vast potential for imaging hypoxic lesions such as tumor tissues.

  3. Imaging back scattered and near back scattered light in ignition scale plasmas

    International Nuclear Information System (INIS)

    Kirkwood, R.K.; Back, C.A.; Glenzer, S.H.; Moody, J.D.

    1996-01-01

    Diagnostics have been developed and fielded at the Nova laser facility that image scattered light in the vicinity of the final laser focusing lens. The absolute calibration of optical components exposed to the target debris have been achieved by a combination of routine in situ calibration and maintenance. The scattering observed from plasmas relevant to ignition experiments indicates that light scattered just outside the lens can be larger than that collected by the lens, and is a significant factor in the energy balance when the f number is high

  4. System and technique for retrieving depth information about a surface by projecting a composite image of modulated light patterns

    Science.gov (United States)

    Hassebrook, Laurence G. (Inventor); Lau, Daniel L. (Inventor); Guan, Chun (Inventor)

    2010-01-01

    A technique, associated system and program code, for retrieving depth information about at least one surface of an object, such as an anatomical feature. Core features include: projecting a composite image comprising a plurality of modulated structured light patterns, at the anatomical feature; capturing an image reflected from the surface; and recovering pattern information from the reflected image, for each of the modulated structured light patterns. Pattern information is preferably recovered for each modulated structured light pattern used to create the composite, by performing a demodulation of the reflected image. Reconstruction of the surface can be accomplished by using depth information from the recovered patterns to produce a depth map/mapping thereof. Each signal waveform used for the modulation of a respective structured light pattern, is distinct from each of the other signal waveforms used for the modulation of other structured light patterns of a composite image; these signal waveforms may be selected from suitable types in any combination of distinct signal waveforms, provided the waveforms used are uncorrelated with respect to each other. The depth map/mapping to be utilized in a host of applications, for example: displaying a 3-D view of the object; virtual reality user-interaction interface with a computerized device; face--or other animal feature or inanimate object--recognition and comparison techniques for security or identification purposes; and 3-D video teleconferencing/telecollaboration.

  5. Detecting and locating light atoms from high-resolution STEM images: The quest for a single optimal design.

    Science.gov (United States)

    Gonnissen, J; De Backer, A; den Dekker, A J; Sijbers, J; Van Aert, S

    2016-11-01

    In the present paper, the optimal detector design is investigated for both detecting and locating light atoms from high resolution scanning transmission electron microscopy (HR STEM) images. The principles of detection theory are used to quantify the probability of error for the detection of light atoms from HR STEM images. To determine the optimal experiment design for locating light atoms, use is made of the so-called Cramér-Rao Lower Bound (CRLB). It is investigated if a single optimal design can be found for both the detection and location problem of light atoms. Furthermore, the incoming electron dose is optimised for both research goals and it is shown that picometre range precision is feasible for the estimation of the atom positions when using an appropriate incoming electron dose under the optimal detector settings to detect light atoms. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Tilt-effect of holograms and images displayed on a spatial light modulator.

    Science.gov (United States)

    Harm, Walter; Roider, Clemens; Bernet, Stefan; Ritsch-Marte, Monika

    2015-11-16

    We show that a liquid crystal spatial light modulator (LCOS-SLM) can be used to display amplitude images, or phase holograms, which change in a pre-determined way when the display is tilted, i.e. observed under different angles. This is similar to the tilt-effect (also called "latent image effect") known from various security elements ("kinegrams") on credit cards or bank notes. The effect is achieved without any specialized optical components, simply by using the large phase shifting capability of a "thick" SLM, which extends over several multiples of 2π, in combination with the angular dependence of the phase shift. For hologram projection one can use the fact that the phase of a monochromatic wave is only defined modulo 2π. Thus one can design a phase pattern extending over several multiples of 2π, which transforms at different readout angles into different 2π-wrapped phase structures, due to the angular dependence of the modulo 2π operation. These different beams then project different holograms at the respective readout angles. In amplitude modulation mode (with inserted polarizer) the intensity of each SLM pixel oscillates over several periods when tuning its control voltage. Since the oscillation period depends on the readout angle, it is possible to find a certain control voltage which produces two (or more) selectable gray levels at a corresponding number of pre-determined readout angles. This is done with all SLM pixels individually, thus constructing different images for the selected angles. We experimentally demonstrate the reconstruction of multiple (Fourier- and Fresnel-) holograms, and of different amplitude images, by readout of static diffractive patterns in a variable angular range between 0° and 60°.

  7. The application of image processing in the measurement for three-light-axis parallelity of laser ranger

    Science.gov (United States)

    Wang, Yang; Wang, Qianqian

    2008-12-01

    When laser ranger is transported or used in field operations, the transmitting axis, receiving axis and aiming axis may be not parallel. The nonparallelism of the three-light-axis will affect the range-measuring ability or make laser ranger not be operated exactly. So testing and adjusting the three-light-axis parallelity in the production and maintenance of laser ranger is important to ensure using laser ranger reliably. The paper proposes a new measurement method using digital image processing based on the comparison of some common measurement methods for the three-light-axis parallelity. It uses large aperture off-axis paraboloid reflector to get the images of laser spot and white light cross line, and then process the images on LabVIEW platform. The center of white light cross line can be achieved by the matching arithmetic in LABVIEW DLL. And the center of laser spot can be achieved by gradation transformation, binarization and area filter in turn. The software system can set CCD, detect the off-axis paraboloid reflector, measure the parallelity of transmitting axis and aiming axis and control the attenuation device. The hardware system selects SAA7111A, a programmable vedio decoding chip, to perform A/D conversion. FIFO (first-in first-out) is selected as buffer.USB bus is used to transmit data to PC. The three-light-axis parallelity can be achieved according to the position bias between them. The device based on this method has been already used. The application proves this method has high precision, speediness and automatization.

  8. Visible-light-driven dynamic cancer therapy and imaging using graphitic carbon nitride nanoparticles.

    Science.gov (United States)

    Heo, Nam Su; Lee, Sun Uk; Rethinasabapathy, Muruganantham; Lee, Eun Zoo; Cho, Hye-Jin; Oh, Seo Yeong; Choe, Sang Rak; Kim, Yeonho; Hong, Won G; Krishnan, Giribabu; Hong, Won Hi; Jeon, Tae-Joon; Jun, Young-Si; Kim, Hae Jin; Huh, Yun Suk

    2018-09-01

    Organic graphitic carbon nitride nanoparticles (NP-g-CN), less than 30 nm in size, were synthesized and evaluated for photodynamic therapy (PDT) and cell imaging applications. NP-g-CN particles were prepared through an intercalation process using a rod-like melamine-cyanuric acid adduct (MCA) as the molecular precursor and a eutectic mixture of LiCl-KCl (45:55 wt%) as the reaction medium for polycondensation. The nano-dimensional NP-g-CN penetrated the malignant tumor cells with minimal hindrance and effectively generated reactive oxygen species (ROS) under visible light irradiation, which could ablate cancer cells. When excited by visible light irradiation (λ > 420 nm), NP-g-CN introduced to HeLa and cos-7 cells generated a significant amount of ROS and killed the cancerous cells selectively. The cytotoxicity of NP-g-CN was manipulated by altering the light irradiation and the BP-g-CN caused more damage to the cancer cells than normal cells at low concentrations. As a potential non-toxic organic nanomaterial, the synthesized NP-g-CN are biocompatible with less cytotoxicity than toxic inorganic materials. The combined effects of the high efficacy of ROS generation under visible light irradiation, low toxicity, and bio-compatibility highlight the potential of NP-g-CN for PDT and imaging without further modification. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Influence of light refraction on the image reconstruction in transmission optical tomography of scattering media

    International Nuclear Information System (INIS)

    Tereshchenko, Sergei A; Potapov, D A; Podgaetskii, Vitalii M; Smirnov, A V

    2002-01-01

    A distorting influence of light refraction at the boundaries of scattering media on the results of tomographic reconstruction of images of radially symmetric objects is investigated. The methods for the correction of such refraction-caused distortions are described. The results of the image reconstruction for two model cylindrical objects are presented.

  10. Optical imaging of human cone photoreceptors directly following the capture of light.

    Directory of Open Access Journals (Sweden)

    Phillip Bedggood

    Full Text Available Capture of light in the photoreceptor outer segment initiates a cascade of chemical events that inhibit neurotransmitter release, ultimately resulting in vision. The massed response of the photoreceptor population can be measured non-invasively by electrical recordings, but responses from individual cells cannot be measured without dissecting the retina. Here we used optical imaging to observe individual human cones in the living eye as they underwent bleaching of photopigment and associated phototransduction. The retina was simultaneously stimulated and observed with high intensity visible light at 1 kHz, using adaptive optics. There was marked variability between individual cones in both photosensitivity and pigment optical density, challenging the conventional assumption that photoreceptors act as identical subunits (coefficient of variation in rate of photoisomerization = 23%. There was also a pronounced inverse correlation between these two parameters (p<10(-7; the temporal evolution of image statistics revealed this to be a dynamic relationship, with cone waveguiding efficiency beginning a dramatic increase within 3 ms of light onset. Beginning as early as 2 ms after light onset and including half of cells by ∼7 ms, cone intensity showed reversals characteristic of interference phenomena, with greater delays in reversal corresponding to cones with more photopigment (p<10(-3. The timing of these changes is argued to best correspond with either the cessation of dark current, or to related events such as changes in intracellular cGMP. Cone intensity also showed fluctuations of high frequency (332±25 Hz and low amplitude (3.0±0.85%. Other groups have shown similar fluctuations that were directly evoked by light; if this corresponds to the same phenomenon, we propose that the amplitude of fluctuation may be increased by the use of a bright flash followed by a brief pause, to allow recovery of cone circulating current.

  11. IR sensitivity enhancement of CMOS Image Sensor with diffractive light trapping pixels.

    Science.gov (United States)

    Yokogawa, Sozo; Oshiyama, Itaru; Ikeda, Harumi; Ebiko, Yoshiki; Hirano, Tomoyuki; Saito, Suguru; Oinoue, Takashi; Hagimoto, Yoshiya; Iwamoto, Hayato

    2017-06-19

    We report on the IR sensitivity enhancement of back-illuminated CMOS Image Sensor (BI-CIS) with 2-dimensional diffractive inverted pyramid array structure (IPA) on crystalline silicon (c-Si) and deep trench isolation (DTI). FDTD simulations of semi-infinite thick c-Si having 2D IPAs on its surface whose pitches over 400 nm shows more than 30% improvement of light absorption at λ = 850 nm and the maximum enhancement of 43% with the 540 nm pitch at the wavelength is confirmed. A prototype BI-CIS sample with pixel size of 1.2 μm square containing 400 nm pitch IPAs shows 80% sensitivity enhancement at λ = 850 nm compared to the reference sample with flat surface. This is due to diffraction with the IPA and total reflection at the pixel boundary. The NIR images taken by the demo camera equip with a C-mount lens show 75% sensitivity enhancement in the λ = 700-1200 nm wavelength range with negligible spatial resolution degradation. Light trapping CIS pixel technology promises to improve NIR sensitivity and appears to be applicable to many different image sensor applications including security camera, personal authentication, and range finding Time-of-Flight camera with IR illuminations.

  12. Feeling Safe in the Dark : Examining the Effect of Entrapment, Lighting Levels, and Gender on Feelings of Safety and Lighting Policy Acceptability

    NARCIS (Netherlands)

    Boomsma, Christine; Steg, LInda

    This research examined to what extent physical factors, notably lighting and entrapment (blocked escape), and individual factors, notably gender, affect feelings of safety and the acceptability of reduced lighting levels. The authors reasoned that acceptability of reduced street lighting depends on

  13. Error of image saturation in the structured-light method.

    Science.gov (United States)

    Qi, Zhaoshuai; Wang, Zhao; Huang, Junhui; Xing, Chao; Gao, Jianmin

    2018-01-01

    In the phase-measuring structured-light method, image saturation will induce large phase errors. Usually, by selecting proper system parameters (such as the phase-shift number, exposure time, projection intensity, etc.), the phase error can be reduced. However, due to lack of a complete theory of phase error, there is no rational principle or basis for the selection of the optimal system parameters. For this reason, the phase error due to image saturation is analyzed completely, and the effects of the two main factors, including the phase-shift number and saturation degree, on the phase error are studied in depth. In addition, the selection of optimal system parameters is discussed, including the proper range and the selection principle of the system parameters. The error analysis and the conclusion are verified by simulation and experiment results, and the conclusion can be used for optimal parameter selection in practice.

  14. Digital image processing of arterial thrombi images, recorded by light transmission

    International Nuclear Information System (INIS)

    Nyssen, M.; Blockeel, E.; Bourgain, R.

    1985-01-01

    For several years, the formation and evolution of thrombi in small arteries of rats has been quantitatively studied at the Laboratory of Physiology and Physiopathology at the V.U.B. Global size parameters can be determined by projecting the image of a small arterial segment onto photosensitive cells. The transmitted light intensity is a measure for the thrombotic phenomenon. This unique method permitted extensive in vivo study of the platelet vessel wall interaction and local thrombosis. A development has emerged with the aim to improve the resolution of these measurements in order to get information on texture and form of the thrombotic mass at any stage of its evolution. In the particular situation studied, the dispersive properties of the flowing blood were found to be highly anisotropic. An explanation for this phenomenon could be given by considering the alignment of red blood cells in the blood flow. In order to explain the measured intensity profiles, the authors postulated alignment in the plane perpendicular to the flow as well. The theoretical predictions are in good agreement with the experimental values if we assume almost perfect alignment of the erythrocytes such that their short axes are pointing in the direction of the center of the artery. Conclusive evidence of the interaction between local flow properties and light transmission could be found by observing arteries with perturbated flow

  15. Morphometric Evaluation of Preeclamptic Placenta Using Light Microscopic Images

    Directory of Open Access Journals (Sweden)

    Rashmi Mukherjee

    2014-01-01

    Full Text Available Deficient trophoblast invasion and anomalies in placental development generally lead to preeclampsia (PE but the inter-relationship between placental function and morphology in PE still remains unknown. The aim of this study was to evaluate the morphometric features of placental villi and capillaries in preeclamptic and normal placentae. The study included light microscopic images of placental tissue sections of 40 preeclamptic and 35 normotensive pregnant women. Preprocessing and segmentation of these images were performed to characterize the villi and capillaries. Fisher’s linear discriminant analysis (FLDA, hierarchical cluster analysis (HCA, and principal component analysis (PCA were applied to identify the most significant placental (morphometric features from microscopic images. A total of 10 morphometric features were extracted, of which the villous parameters were significantly altered in PE. FLDA identified 5 highly significant morphometric features (>90% overall discrimination accuracy. Two large subclusters were clearly visible in HCA based dendrogram. PCA returned three most significant principal components cumulatively explaining 98.4% of the total variance based on these 5 significant features. Hence, quantitative microscopic evaluation revealed that placental morphometry plays an important role in characterizing PE, where the villous is the major component that is affected.

  16. Development and characterisation of a visible light photon counting imaging detector system

    CERN Document Server

    Barnstedt, J

    2002-01-01

    We report on the development of a visible light photon counting imaging detector system. The detector concept is based on standard 25 mm diameter microchannel plate image intensifiers made by Proxitronic in Bensheim (Germany). Modifications applied to these image intensifiers are the use of three microchannel plates instead of two and a high resistance ceramics plate used instead of the standard phosphor output screen. A wedge and strip anode mounted directly behind the high resistance ceramics plate was used as a read out device. This wedge and strip anode picks up the image charge of electron clouds emerging from the microchannel plates. The charge pulses are fed into four charge amplifiers and subsequently into a digital position decoding electronics, achieving a position resolution of up to 1024x1024 pixels. Mounting the anode outside the detector tube is a new approach and has the great advantage of avoiding electrical feedthroughs from the anode so that the standard image intensifier fabrication process...

  17. Non-image-forming light driven functions are preserved in a mouse model of autosomal dominant optic atrophy.

    Directory of Open Access Journals (Sweden)

    Georgia Perganta

    Full Text Available Autosomal dominant optic atrophy (ADOA is a slowly progressive optic neuropathy that has been associated with mutations of the OPA1 gene. In patients, the disease primarily affects the retinal ganglion cells (RGCs and causes optic nerve atrophy and visual loss. A subset of RGCs are intrinsically photosensitive, express the photopigment melanopsin and drive non-image-forming (NIF visual functions including light driven circadian and sleep behaviours and the pupil light reflex. Given the RGC pathology in ADOA, disruption of NIF functions might be predicted. Interestingly in ADOA patients the pupil light reflex was preserved, although NIF behavioural outputs were not examined. The B6; C3-Opa1(Q285STOP mouse model of ADOA displays optic nerve abnormalities, RGC dendropathy and functional visual disruption. We performed a comprehensive assessment of light driven NIF functions in this mouse model using wheel running activity monitoring, videotracking and pupillometry. Opa1 mutant mice entrained their activity rhythm to the external light/dark cycle, suppressed their activity in response to acute light exposure at night, generated circadian phase shift responses to 480 nm and 525 nm pulses, demonstrated immobility-defined sleep induction following exposure to a brief light pulse at night and exhibited an intensity dependent pupil light reflex. There were no significant differences in any parameter tested relative to wildtype littermate controls. Furthermore, there was no significant difference in the number of melanopsin-expressing RGCs, cell morphology or melanopsin transcript levels between genotypes. Taken together, these findings suggest the preservation of NIF functions in Opa1 mutants. The results provide support to growing evidence that the melanopsin-expressing RGCs are protected in mitochondrial optic neuropathies.

  18. IrisDenseNet: Robust Iris Segmentation Using Densely Connected Fully Convolutional Networks in the Images by Visible Light and Near-Infrared Light Camera Sensors.

    Science.gov (United States)

    Arsalan, Muhammad; Naqvi, Rizwan Ali; Kim, Dong Seop; Nguyen, Phong Ha; Owais, Muhammad; Park, Kang Ryoung

    2018-05-10

    The recent advancements in computer vision have opened new horizons for deploying biometric recognition algorithms in mobile and handheld devices. Similarly, iris recognition is now much needed in unconstraint scenarios with accuracy. These environments make the acquired iris image exhibit occlusion, low resolution, blur, unusual glint, ghost effect, and off-angles. The prevailing segmentation algorithms cannot cope with these constraints. In addition, owing to the unavailability of near-infrared (NIR) light, iris recognition in visible light environment makes the iris segmentation challenging with the noise of visible light. Deep learning with convolutional neural networks (CNN) has brought a considerable breakthrough in various applications. To address the iris segmentation issues in challenging situations by visible light and near-infrared light camera sensors, this paper proposes a densely connected fully convolutional network (IrisDenseNet), which can determine the true iris boundary even with inferior-quality images by using better information gradient flow between the dense blocks. In the experiments conducted, five datasets of visible light and NIR environments were used. For visible light environment, noisy iris challenge evaluation part-II (NICE-II selected from UBIRIS.v2 database) and mobile iris challenge evaluation (MICHE-I) datasets were used. For NIR environment, the institute of automation, Chinese academy of sciences (CASIA) v4.0 interval, CASIA v4.0 distance, and IIT Delhi v1.0 iris datasets were used. Experimental results showed the optimal segmentation of the proposed IrisDenseNet and its excellent performance over existing algorithms for all five datasets.

  19. IrisDenseNet: Robust Iris Segmentation Using Densely Connected Fully Convolutional Networks in the Images by Visible Light and Near-Infrared Light Camera Sensors

    Directory of Open Access Journals (Sweden)

    Muhammad Arsalan

    2018-05-01

    Full Text Available The recent advancements in computer vision have opened new horizons for deploying biometric recognition algorithms in mobile and handheld devices. Similarly, iris recognition is now much needed in unconstraint scenarios with accuracy. These environments make the acquired iris image exhibit occlusion, low resolution, blur, unusual glint, ghost effect, and off-angles. The prevailing segmentation algorithms cannot cope with these constraints. In addition, owing to the unavailability of near-infrared (NIR light, iris recognition in visible light environment makes the iris segmentation challenging with the noise of visible light. Deep learning with convolutional neural networks (CNN has brought a considerable breakthrough in various applications. To address the iris segmentation issues in challenging situations by visible light and near-infrared light camera sensors, this paper proposes a densely connected fully convolutional network (IrisDenseNet, which can determine the true iris boundary even with inferior-quality images by using better information gradient flow between the dense blocks. In the experiments conducted, five datasets of visible light and NIR environments were used. For visible light environment, noisy iris challenge evaluation part-II (NICE-II selected from UBIRIS.v2 database and mobile iris challenge evaluation (MICHE-I datasets were used. For NIR environment, the institute of automation, Chinese academy of sciences (CASIA v4.0 interval, CASIA v4.0 distance, and IIT Delhi v1.0 iris datasets were used. Experimental results showed the optimal segmentation of the proposed IrisDenseNet and its excellent performance over existing algorithms for all five datasets.

  20. Combining Deep and Handcrafted Image Features for Presentation Attack Detection in Face Recognition Systems Using Visible-Light Camera Sensors

    Directory of Open Access Journals (Sweden)

    Dat Tien Nguyen

    2018-02-01

    Full Text Available Although face recognition systems have wide application, they are vulnerable to presentation attack samples (fake samples. Therefore, a presentation attack detection (PAD method is required to enhance the security level of face recognition systems. Most of the previously proposed PAD methods for face recognition systems have focused on using handcrafted image features, which are designed by expert knowledge of designers, such as Gabor filter, local binary pattern (LBP, local ternary pattern (LTP, and histogram of oriented gradients (HOG. As a result, the extracted features reflect limited aspects of the problem, yielding a detection accuracy that is low and varies with the characteristics of presentation attack face images. The deep learning method has been developed in the computer vision research community, which is proven to be suitable for automatically training a feature extractor that can be used to enhance the ability of handcrafted features. To overcome the limitations of previously proposed PAD methods, we propose a new PAD method that uses a combination of deep and handcrafted features extracted from the images by visible-light camera sensor. Our proposed method uses the convolutional neural network (CNN method to extract deep image features and the multi-level local binary pattern (MLBP method to extract skin detail features from face images to discriminate the real and presentation attack face images. By combining the two types of image features, we form a new type of image features, called hybrid features, which has stronger discrimination ability than single image features. Finally, we use the support vector machine (SVM method to classify the image features into real or presentation attack class. Our experimental results indicate that our proposed method outperforms previous PAD methods by yielding the smallest error rates on the same image databases.

  1. Combining Deep and Handcrafted Image Features for Presentation Attack Detection in Face Recognition Systems Using Visible-Light Camera Sensors.

    Science.gov (United States)

    Nguyen, Dat Tien; Pham, Tuyen Danh; Baek, Na Rae; Park, Kang Ryoung

    2018-02-26

    Although face recognition systems have wide application, they are vulnerable to presentation attack samples (fake samples). Therefore, a presentation attack detection (PAD) method is required to enhance the security level of face recognition systems. Most of the previously proposed PAD methods for face recognition systems have focused on using handcrafted image features, which are designed by expert knowledge of designers, such as Gabor filter, local binary pattern (LBP), local ternary pattern (LTP), and histogram of oriented gradients (HOG). As a result, the extracted features reflect limited aspects of the problem, yielding a detection accuracy that is low and varies with the characteristics of presentation attack face images. The deep learning method has been developed in the computer vision research community, which is proven to be suitable for automatically training a feature extractor that can be used to enhance the ability of handcrafted features. To overcome the limitations of previously proposed PAD methods, we propose a new PAD method that uses a combination of deep and handcrafted features extracted from the images by visible-light camera sensor. Our proposed method uses the convolutional neural network (CNN) method to extract deep image features and the multi-level local binary pattern (MLBP) method to extract skin detail features from face images to discriminate the real and presentation attack face images. By combining the two types of image features, we form a new type of image features, called hybrid features, which has stronger discrimination ability than single image features. Finally, we use the support vector machine (SVM) method to classify the image features into real or presentation attack class. Our experimental results indicate that our proposed method outperforms previous PAD methods by yielding the smallest error rates on the same image databases.

  2. Combining Deep and Handcrafted Image Features for Presentation Attack Detection in Face Recognition Systems Using Visible-Light Camera Sensors

    Science.gov (United States)

    Nguyen, Dat Tien; Pham, Tuyen Danh; Baek, Na Rae; Park, Kang Ryoung

    2018-01-01

    Although face recognition systems have wide application, they are vulnerable to presentation attack samples (fake samples). Therefore, a presentation attack detection (PAD) method is required to enhance the security level of face recognition systems. Most of the previously proposed PAD methods for face recognition systems have focused on using handcrafted image features, which are designed by expert knowledge of designers, such as Gabor filter, local binary pattern (LBP), local ternary pattern (LTP), and histogram of oriented gradients (HOG). As a result, the extracted features reflect limited aspects of the problem, yielding a detection accuracy that is low and varies with the characteristics of presentation attack face images. The deep learning method has been developed in the computer vision research community, which is proven to be suitable for automatically training a feature extractor that can be used to enhance the ability of handcrafted features. To overcome the limitations of previously proposed PAD methods, we propose a new PAD method that uses a combination of deep and handcrafted features extracted from the images by visible-light camera sensor. Our proposed method uses the convolutional neural network (CNN) method to extract deep image features and the multi-level local binary pattern (MLBP) method to extract skin detail features from face images to discriminate the real and presentation attack face images. By combining the two types of image features, we form a new type of image features, called hybrid features, which has stronger discrimination ability than single image features. Finally, we use the support vector machine (SVM) method to classify the image features into real or presentation attack class. Our experimental results indicate that our proposed method outperforms previous PAD methods by yielding the smallest error rates on the same image databases. PMID:29495417

  3. Coherence holography by achromatic 3-D field correlation of generic thermal light with an imaging Sagnac shearing interferometer.

    Science.gov (United States)

    Naik, Dinesh N; Ezawa, Takahiro; Singh, Rakesh Kumar; Miyamoto, Yoko; Takeda, Mitsuo

    2012-08-27

    We propose a new technique for achromatic 3-D field correlation that makes use of the characteristics of both axial and lateral magnifications of imaging through a common-path Sagnac shearing interferometer. With this technique, we experimentally demonstrate, for the first time to our knowledge, 3-D image reconstruction of coherence holography with generic thermal light. By virtue of the achromatic axial shearing implemented by the difference in axial magnifications in imaging, the technique enables coherence holography to reconstruct a 3-D object with an axial depth beyond the short coherence length of the thermal light.

  4. Comparison of computer workstation with light box for detecting setup errors from portal images

    International Nuclear Information System (INIS)

    Boxwala, Aziz A.; Chaney, Edward L.; Fritsch, Daniel S.; Raghavan, Suraj; Coffey, Christopher S.; Major, Stacey A.; Muller, Keith E.

    1999-01-01

    Purpose: Observer studies were conducted to test the hypothesis that radiation oncologists using a computer workstation for portal image analysis can detect setup errors at least as accurately as when following standard clinical practice of inspecting portal films on a light box. Methods and Materials: In a controlled observer study, nine radiation oncologists used a computer workstation, called PortFolio, to detect setup errors in 40 realistic digitally reconstructed portal radiograph (DRPR) images. PortFolio is a prototype workstation for radiation oncologists to display and inspect digital portal images for setup errors. PortFolio includes tools for image enhancement; alignment of crosshairs, field edges, and anatomic structures on reference and acquired images; measurement of distances and angles; and viewing registered images superimposed on one another. The test DRPRs contained known in-plane translation or rotation errors in the placement of the fields over target regions in the pelvis and head. Test images used in the study were also printed on film for observers to view on a light box and interpret using standard clinical practice. The mean accuracy for error detection for each approach was measured and the results were compared using repeated measures analysis of variance (ANOVA) with the Geisser-Greenhouse test statistic. Results: The results indicate that radiation oncologists participating in this study could detect and quantify in-plane rotation and translation errors more accurately with PortFolio compared to standard clinical practice. Conclusions: Based on the results of this limited study, it is reasonable to conclude that workstations similar to PortFolio can be used efficaciously in clinical practice

  5. Image analysis using reflected light: an underutilized tool for interpreting magnetic fabrics

    Science.gov (United States)

    Waters-Tormey, C. L.; Liner, T.; Miller, B.; Kelso, P. R.

    2010-12-01

    Grain shape fabric analysis is one of the most common tools used to compare magnetic fabric and handsample scale rock fabric. Usually, this image analysis uses photomicrographs taken under plane or polarized light, which may be problematic if there are several dominant magnetic carriers (e.g., magnetite and pyrrhotite). The method developed for this study uses reflected light photomicrographs, and is effective in assessing the relative contribution of different phases to the opaque mineral shape-preferred orientation (SPO). Mosaics of high-resolution photomicrographs are first assembled and processed in Adobe Photoshop®. The Adobe Illustrator® “Live Trace” tool, whose settings can be optimized for reflected light images, completes initial automatic grain tracing and phase separation. Checking and re-classification of phases using reflected light properties and trace editing occurs manually. Phase identification is confirmed by microprobe or quantitative EDS, after which grain traces are easily reclassified as needed. Traces are imported into SPO2003 (Launeau and Robin, 2005) for SPO analysis. The combination of image resolution and magnification used here includes grains down to 10 microns. This work is part of an ongoing study examining fabric development across strain gradients in the granulite facies Capricorn ridge shear zone exposed in the Mt. Hay block of central Australia (Waters-Tormey et al., 2009). Strain marker shape fabrics, mesoscale structures, and strain localization adjacent to major lithologic boundaries all indicate that the deformation involved flattening, but that components of the deformation have been partitioned into different lithological domains. Thin sections were taken from the two gabbroic map units which volumetrically dominate the shear zone (northern and southern) using samples with similar outcrop fabric intensity. Prior thermomagnetic analyses indicate these units contain magnetite ± titanomagnetite ± ilmenite ± pyrrhotite

  6. Simultaneous live cell imaging using dual FRET sensors with a single excitation light.

    Directory of Open Access Journals (Sweden)

    Yusuke Niino

    Full Text Available Fluorescence resonance energy transfer (FRET between fluorescent proteins is a powerful tool for visualization of signal transduction in living cells, and recently, some strategies for imaging of dual FRET pairs in a single cell have been reported. However, these necessitate alteration of excitation light between two different wavelengths to avoid the spectral overlap, resulting in sequential detection with a lag time. Thus, to follow fast signal dynamics or signal changes in highly motile cells, a single-excitation dual-FRET method should be required. Here we reported this by using four-color imaging with a single excitation light and subsequent linear unmixing to distinguish fluorescent proteins. We constructed new FRET sensors with Sapphire/RFP to combine with CFP/YFP, and accomplished simultaneous imaging of cAMP and cGMP in single cells. We confirmed that signal amplitude of our dual FRET measurement is comparable to of conventional single FRET measurement. Finally, we demonstrated to monitor both intracellular Ca(2+ and cAMP in highly motile cardiac myocytes. To cancel out artifacts caused by the movement of the cell, this method expands the applicability of the combined use of dual FRET sensors for cell samples with high motility.

  7. Three Dimensional Imaging of Cold Atoms in a Magneto Optical Trap with a Light Field Microscope

    Science.gov (United States)

    2017-09-14

    with a Light Field Microscope Gordon E. Lott Follow this and additional works at: https://scholar.afit.edu/etd Part of the Atomic, Molecular and......https://scholar.afit.edu/etd/774 THREE-DIMENSIONAL IMAGING OF COLD ATOMS IN A MAGNETO-OPTICAL TRAP WITH A LIGHT FIELD MICROSCOPE DISSERTATION Gordon E

  8. The usability of the optical parametric amplification of light for high-angular-resolution imaging and fast astrometry

    Science.gov (United States)

    Kurek, A. R.; Stachowski, A.; Banaszek, K.; Pollo, A.

    2018-05-01

    High-angular-resolution imaging is crucial for many applications in modern astronomy and astrophysics. The fundamental diffraction limit constrains the resolving power of both ground-based and spaceborne telescopes. The recent idea of a quantum telescope based on the optical parametric amplification (OPA) of light aims to bypass this limit for the imaging of extended sources by an order of magnitude or more. We present an updated scheme of an OPA-based device and a more accurate model of the signal amplification by such a device. The semiclassical model that we present predicts that the noise in such a system will form so-called light speckles as a result of light interference in the optical path. Based on this model, we analysed the efficiency of OPA in increasing the angular resolution of the imaging of extended targets and the precise localization of a distant point source. According to our new model, OPA offers a gain in resolved imaging in comparison to classical optics. For a given time-span, we found that OPA can be more efficient in localizing a single distant point source than classical telescopes.

  9. Near-infrared light-triggered theranostics for tumor-specific enhanced multimodal imaging and photothermal therapy

    Directory of Open Access Journals (Sweden)

    Wu B

    2017-06-01

    Full Text Available Bo Wu,1,* Bing Wan,2,* Shu-Ting Lu,1 Kai Deng,3 Xiao-Qi Li,1 Bao-Lin Wu,1 Yu-Shuang Li,1 Ru-Fang Liao,1 Shi-Wen Huang,3 Hai-Bo Xu1,2 1Department of Radiology, Zhongnan Hospital of Wuhan University, 2Department of Radiology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, 3Department of Chemistry, Key Laboratory of Biomedical Polymers, Ministry of Education, Wuhan University, Wuhan, People’s Republic of China *These authors contributed equally to this work Abstract: The major challenge in current clinic contrast agents (CAs and chemotherapy is the poor tumor selectivity and response. Based on the self-quench property of IR820 at high concentrations, and different contrast effect ability of Gd-DOTA between inner and outer of liposome, we developed “bomb-like” light-triggered CAs (LTCAs for enhanced CT/MRI/FI multimodal imaging, which can improve the signal-to-noise ratio of tumor tissue specifically. IR820, Iohexol and Gd-chelates were firstly encapsulated into the thermal-sensitive nanocarrier with a high concentration. This will result in protection and fluorescence quenching. Then, the release of CAs was triggered by near-infrared (NIR light laser irradiation, which will lead to fluorescence and MRI activation and enable imaging of inflammation. In vitro and in vivo experiments demonstrated that LTCAs with 808 nm laser irradiation have shorter T1 relaxation time in MRI and stronger intensity in FI compared to those without irradiation. Additionally, due to the high photothermal conversion efficiency of IR820, the injection of LTCAs was demonstrated to completely inhibit C6 tumor growth in nude mice up to 17 days after NIR laser irradiation. The results indicate that the LTCAs can serve as a promising platform for NIR-activated multimodal imaging and photothermal therapy. Keywords: light triggered, near-infrared light, tumor-specific, multimodal imaging, photothermal therapy, contrast agents

  10. Light guide technology: using light to enhance safety

    Science.gov (United States)

    Lerner, William S.

    2009-05-01

    When used to detect extreme temperatures in harsh environments, warning devices have been placed at a distance from the "danger zone" for several reasons. The inability to mix electricity with flammable, caustic, liquid or volatile substances, the limited heat tolerances exhibited by most light sources, and the susceptibility of light sources to damage from vibration, have made the placement of a warning light directly within these harsh environments impossible. This paper describes a system that utilizes a beam of light to provide just such a warning. This system can be used with hard-wired or wireless sensors, side-light illumination, image projection and image transfer. The entire system may be self-contained and portable.

  11. Shape-based interpolation of multidimensional grey-level images

    International Nuclear Information System (INIS)

    Grevera, G.J.; Udupa, J.K.

    1996-01-01

    Shape-based interpolation as applied to binary images causes the interpolation process to be influenced by the shape of the object. It accomplishes this by first applying a distance transform to the data. This results in the creation of a grey-level data set in which the value at each point represents the minimum distance from that point to the surface of the object. (By convention, points inside the object are assigned positive values; points outside are assigned negative values.) This distance transformed data set is then interpolated using linear or higher-order interpolation and is then thresholded at a distance value of zero to produce the interpolated binary data set. In this paper, the authors describe a new method that extends shape-based interpolation to grey-level input data sets. This generalization consists of first lifting the n-dimensional (n-D) image data to represent it as a surface, or equivalently as a binary image, in an (n + 1)-dimensional [(n + 1)-D] space. The binary shape-based method is then applied to this image to create an (n + 1)-D binary interpolated image. Finally, this image is collapsed (inverse of lifting) to create the n-D interpolated grey-level data set. The authors have conducted several evaluation studies involving patient computed tomography (CT) and magnetic resonance (MR) data as well as mathematical phantoms. They all indicate that the new method produces more accurate results than commonly used grey-level linear interpolation methods, although at the cost of increased computation

  12. Acceptable levels of digital image compression in chest radiology

    International Nuclear Information System (INIS)

    Smith, I.

    2000-01-01

    The introduction of picture archival and communications systems (PACS) and teleradiology has prompted an examination of techniques that optimize the storage capacity and speed of digital storage and distribution networks. The general acceptance of the move to replace conventional screen-film capture with computed radiography (CR) is an indication that clinicians within the radiology community are willing to accept images that have been 'compressed'. The question to be answered, therefore, is what level of compression is acceptable. The purpose of the present study is to provide an assessment of the ability of a group of imaging professionals to determine whether an image has been compressed. To undertake this study a single mobile chest image, selected for the presence of some subtle pathology in the form of a number of septal lines in both costphrenic angles, was compressed to levels of 10:1, 20:1 and 30:1. These images were randomly ordered and shown to the observers for interpretation. Analysis of the responses indicates that in general it was not possible to distinguish the original image from its compressed counterparts. Furthermore, a preference appeared to be shown for images that have undergone low levels of compression. This preference can most likely be attributed to the 'de-noising' effect of the compression algorithm at low levels. Copyright (1999) Blackwell Science Pty. Ltd

  13. Correlated Light Microscopy and Electron Microscopy

    NARCIS (Netherlands)

    Sjollema, Klaas A.; Schnell, Ulrike; Kuipers, Jeroen; Kalicharan, Ruby; Giepmans, Ben N. G.; MullerReichert, T; Verkade, P

    2012-01-01

    Understanding where, when, and how biomolecules (inter)act is crucial to uncover fundamental mechanisms in cell biology. Recent developments in fluorescence light microscopy (FLM) allow protein imaging in living cells and at the near molecular level. However, fluorescence microscopy only reveals

  14. Probing neural tissue with airy light-sheet microscopy: investigation of imaging performance at depth within turbid media

    Science.gov (United States)

    Nylk, Jonathan; McCluskey, Kaley; Aggarwal, Sanya; Tello, Javier A.; Dholakia, Kishan

    2017-02-01

    Light-sheet microscopy (LSM) has received great interest for fluorescent imaging applications in biomedicine as it facilitates three-dimensional visualisation of large sample volumes with high spatiotemporal resolution whilst minimising irradiation of, and photo-damage to the specimen. Despite these advantages, LSM can only visualize superficial layers of turbid tissues, such as mammalian neural tissue. Propagation-invariant light modes have played a key role in the development of high-resolution LSM techniques as they overcome the natural divergence of a Gaussian beam, enabling uniform and thin light-sheets over large distances. Most notably, Bessel and Airy beam-based light-sheet imaging modalities have been demonstrated. In the single-photon excitation regime and in lightly scattering specimens, Airy-LSM has given competitive performance with advanced Bessel-LSM techniques. Airy and Bessel beams share the property of self-healing, the ability of the beam to regenerate its transverse beam profile after propagation around an obstacle. Bessel-LSM techniques have been shown to increase the penetration-depth of the illumination into turbid specimens but this effect has been understudied in biologically relevant tissues, particularly for Airy beams. It is expected that Airy-LSM will give a similar enhancement over Gaussian-LSM. In this paper, we report on the comparison of Airy-LSM and Gaussian-LSM imaging modalities within cleared and non-cleared mouse brain tissue. In particular, we examine image quality versus tissue depth by quantitative spatial Fourier analysis of neural structures in virally transduced fluorescent tissue sections, showing a three-fold enhancement at 50 μm depth into non-cleared tissue with Airy-LSM. Complimentary analysis is performed by resolution measurements in bead-injected tissue sections.

  15. Phase contrast scanning transmission electron microscopy imaging of light and heavy atoms at the limit of contrast and resolution.

    Science.gov (United States)

    Yücelen, Emrah; Lazić, Ivan; Bosch, Eric G T

    2018-02-08

    Using state of the art scanning transmission electron microscopy (STEM) it is nowadays possible to directly image single atomic columns at sub-Å resolution. In standard (high angle) annular dark field STEM ((HA)ADF-STEM), however, light elements are usually invisible when imaged together with heavier elements in one image. Here we demonstrate the capability of the recently introduced Integrated Differential Phase Contrast STEM (iDPC-STEM) technique to image both light and heavy atoms in a thin sample at sub-Å resolution. We use the technique to resolve both the Gallium and Nitrogen dumbbells in a GaN crystal in [[Formula: see text

  16. Efficient demodulation scheme for rolling-shutter-patterning of CMOS image sensor based visible light communications.

    Science.gov (United States)

    Chen, Chia-Wei; Chow, Chi-Wai; Liu, Yang; Yeh, Chien-Hung

    2017-10-02

    Recently even the low-end mobile-phones are equipped with a high-resolution complementary-metal-oxide-semiconductor (CMOS) image sensor. This motivates using a CMOS image sensor for visible light communication (VLC). Here we propose and demonstrate an efficient demodulation scheme to synchronize and demodulate the rolling shutter pattern in image sensor based VLC. The implementation algorithm is discussed. The bit-error-rate (BER) performance and processing latency are evaluated and compared with other thresholding schemes.

  17. Absolute Configuration from Different Multifragmentation Pathways in Light-Induced Coulomb Explosion Imaging.

    Science.gov (United States)

    Pitzer, Martin; Kastirke, Gregor; Kunitski, Maksim; Jahnke, Till; Bauer, Tobias; Goihl, Christoph; Trinter, Florian; Schober, Carl; Henrichs, Kevin; Becht, Jasper; Zeller, Stefan; Gassert, Helena; Waitz, Markus; Kuhlins, Andreas; Sann, Hendrik; Sturm, Felix; Wiegandt, Florian; Wallauer, Robert; Schmidt, Lothar Ph H; Johnson, Allan S; Mazenauer, Manuel; Spenger, Benjamin; Marquardt, Sabrina; Marquardt, Sebastian; Schmidt-Böcking, Horst; Stohner, Jürgen; Dörner, Reinhard; Schöffler, Markus; Berger, Robert

    2016-08-18

    The absolute configuration of individual small molecules in the gas phase can be determined directly by light-induced Coulomb explosion imaging (CEI). Herein, this approach is demonstrated for ionization with a single X-ray photon from a synchrotron light source, leading to enhanced efficiency and faster fragmentation as compared to previous experiments with a femtosecond laser. In addition, it is shown that even incomplete fragmentation pathways of individual molecules from a racemic CHBrClF sample can give access to the absolute configuration in CEI. This leads to a significant increase of the applicability of the method as compared to the previously reported complete break-up into atomic ions and can pave the way for routine stereochemical analysis of larger chiral molecules by light-induced CEI. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Near-field imaging of out-of-plane light scattering in photonic crystal slabs

    DEFF Research Database (Denmark)

    Volkov, Valentyn; Bozhevolnyi, Sergey; Taillaert, Dirk

    2003-01-01

    A collection scanning near-field optical microscope (SNOM) is used to image the propagating of light at telecommunication wavelengths (1520-1570 nm) along photonic crystal (PC) slabs, which combine slab waveguides with in-plane PCs consisting of one- and two-dimensional gratings. The efficient out...

  19. Searching for transits in the WTS with the difference imaging light curves

    Science.gov (United States)

    Zendejas Dominguez, Jesus

    2013-12-01

    The search for exo-planets is currently one of the most exiting and active topics in astronomy. Small and rocky planets are particularly the subject of intense research, since if they are suitably located from their host star, they may be warm and potentially habitable worlds. On the other hand, the discovery of giant planets in short-period orbits provides important constraints on models that describe planet formation and orbital migration theories. Several projects are dedicated to discover and characterize planets outside of our solar system. Among them, the Wide-Field Camera Transit Survey (WTS) is a pioneer program aimed to search for extra-solar planets, that stands out for its particular aims and methodology. The WTS has been in operation since August 2007 with observations from the United Kingdom Infrared Telescope, and represents the first survey that searches for transiting planets in the near-infrared wavelengths; hence the WTS is designed to discover planets around M-dwarfs. The survey was originally assigned about 200 nights, observing four fields that were selected seasonally (RA = 03, 07, 17 and 19h) during a year. The images from the survey are processed by a data reduction pipeline, which uses aperture photometry to construct the light curves. For the most complete field (19h-1145 epochs) in the survey, we produce an alternative set of light curves by using the method of difference imaging, which is a photometric technique that has shown important advantages when used in crowded fields. A quantitative comparison between the photometric precision achieved with both methods is carried out in this work. We remove systematic effects using the sysrem algorithm, scale the error bars on the light curves, and perform a comparison of the corrected light curves. The results show that the aperture photometry light curves provide slightly better precision for objects with J detect transits in the WTS light curves, we use a modified version of the box

  20. A 75-ps Gated CMOS Image Sensor with Low Parasitic Light Sensitivity.

    Science.gov (United States)

    Zhang, Fan; Niu, Hanben

    2016-06-29

    In this study, a 40 × 48 pixel global shutter complementary metal-oxide-semiconductor (CMOS) image sensor with an adjustable shutter time as low as 75 ps was implemented using a 0.5-μm mixed-signal CMOS process. The implementation consisted of a continuous contact ring around each p+/n-well photodiode in the pixel array in order to apply sufficient light shielding. The parasitic light sensitivity of the in-pixel storage node was measured to be 1/8.5 × 10⁷ when illuminated by a 405-nm diode laser and 1/1.4 × 10⁴ when illuminated by a 650-nm diode laser. The pixel pitch was 24 μm, the size of the square p+/n-well photodiode in each pixel was 7 μm per side, the measured random readout noise was 217 e(-) rms, and the measured dynamic range of the pixel of the designed chip was 5500:1. The type of gated CMOS image sensor (CIS) that is proposed here can be used in ultra-fast framing cameras to observe non-repeatable fast-evolving phenomena.

  1. Detecting and locating light atoms from high-resolution STEM images: The quest for a single optimal design

    Energy Technology Data Exchange (ETDEWEB)

    Gonnissen, J.; De Backer, A. [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Dekker, A.J. den [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium); Delft Center for Systems and Control (DCSC), Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands); Sijbers, J. [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium); Van Aert, S., E-mail: sandra.vanaert@uantwerpen.be [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2016-11-15

    In the present paper, the optimal detector design is investigated for both detecting and locating light atoms from high resolution scanning transmission electron microscopy (HR STEM) images. The principles of detection theory are used to quantify the probability of error for the detection of light atoms from HR STEM images. To determine the optimal experiment design for locating light atoms, use is made of the so-called Cramér–Rao Lower Bound (CRLB). It is investigated if a single optimal design can be found for both the detection and location problem of light atoms. Furthermore, the incoming electron dose is optimised for both research goals and it is shown that picometre range precision is feasible for the estimation of the atom positions when using an appropriate incoming electron dose under the optimal detector settings to detect light atoms. - Highlights: • The optimal detector design to detect and locate light atoms in HR STEM is derived. • The probability of error is quantified and used to detect light atoms. • The Cramér–Rao lower bound is calculated to determine the atomic column precision. • Both measures are evaluated and result in the single optimal LAADF detector regime. • The incoming electron dose is optimised for both research goals.

  2. Computational imaging using lightweight diffractive-refractive optics

    KAUST Repository

    Peng, Yifan

    2015-11-23

    Diffractive optical elements (DOE) show great promise for imaging optics that are thinner and more lightweight than conventional refractive lenses while preserving their light efficiency. Unfortunately, severe spectral dispersion currently limits the use of DOEs in consumer-level lens design. In this article, we jointly design lightweight diffractive-refractive optics and post-processing algorithms to enable imaging under white light illumination. Using the Fresnel lens as a general platform, we show three phase-plate designs, including a super-thin stacked plate design, a diffractive-refractive-hybrid lens, and a phase coded-aperture lens. Combined with cross-channel deconvolution algorithm, both spherical and chromatic aberrations are corrected. Experimental results indicate that using our computational imaging approach, diffractive-refractive optics is an alternative candidate to build light efficient and thin optics for white light imaging.

  3. Computational imaging using lightweight diffractive-refractive optics

    KAUST Repository

    Peng, Yifan; Fu, Qiang; Amata, Hadi; Su, Shuochen; Heide, Felix; Heidrich, Wolfgang

    2015-01-01

    Diffractive optical elements (DOE) show great promise for imaging optics that are thinner and more lightweight than conventional refractive lenses while preserving their light efficiency. Unfortunately, severe spectral dispersion currently limits the use of DOEs in consumer-level lens design. In this article, we jointly design lightweight diffractive-refractive optics and post-processing algorithms to enable imaging under white light illumination. Using the Fresnel lens as a general platform, we show three phase-plate designs, including a super-thin stacked plate design, a diffractive-refractive-hybrid lens, and a phase coded-aperture lens. Combined with cross-channel deconvolution algorithm, both spherical and chromatic aberrations are corrected. Experimental results indicate that using our computational imaging approach, diffractive-refractive optics is an alternative candidate to build light efficient and thin optics for white light imaging.

  4. On the study of level density parameters for some deformed light nuclei

    International Nuclear Information System (INIS)

    Sonmezoglu, S.

    2005-01-01

    The nuclear level density, which is the number of energy levels/MeV at an excitation energy Ex , is a characteristic property of every nucleus. Total level densities are among the key quantities in statistical calculations in many fields, such as nuclear physics, astrophysics, spallation s neutrons measurements, and studies of intermediate-energy heavy-ion collisions. The nuclear level density is an important physical quantity both from the fundamental point of view as well as in understanding the particle and gamma ray emission in various reactions. In light and heavy deformed nucleus, the gamma-ray energies drop with decreasing spin in a very regular fashion. The nuclear level density parameters have been usually used in investigation of the nuclear level density. This parameter itself changes with excitation energy depending on both shell effect in the single particle model and different excitation modes in the collective models. In this study, the energy level density parameters of some deformed light nucleus (40 C a, 47 T i, 59 N i, 79 S e, 80 B r) are determined by using energy spectrum of the interest nucleus for different band. In calculation of energy-level density parameters dependent upon excitation energy of nuclei studied, a model was considered which relies on the fact that energy levels of deformed light nuclei, just like those of deformed heavy nuclei, are equidistant and which relies on collective motions of their nucleons. The present calculation results have been compared with the corresponding experimental and theoretical results. The obtained results are in good agreement with the experimental results

  5. Dual light-emitting diode-based multichannel microscopy for whole-slide multiplane, multispectral and phase imaging.

    Science.gov (United States)

    Liao, Jun; Wang, Zhe; Zhang, Zibang; Bian, Zichao; Guo, Kaikai; Nambiar, Aparna; Jiang, Yutong; Jiang, Shaowei; Zhong, Jingang; Choma, Michael; Zheng, Guoan

    2018-02-01

    We report the development of a multichannel microscopy for whole-slide multiplane, multispectral and phase imaging. We use trinocular heads to split the beam path into 6 independent channels and employ a camera array for parallel data acquisition, achieving a maximum data throughput of approximately 1 gigapixel per second. To perform single-frame rapid autofocusing, we place 2 near-infrared light-emitting diodes (LEDs) at the back focal plane of the condenser lens to illuminate the sample from 2 different incident angles. A hot mirror is used to direct the near-infrared light to an autofocusing camera. For multiplane whole-slide imaging (WSI), we acquire 6 different focal planes of a thick specimen simultaneously. For multispectral WSI, we relay the 6 independent image planes to the same focal position and simultaneously acquire information at 6 spectral bands. For whole-slide phase imaging, we acquire images at 3 focal positions simultaneously and use the transport-of-intensity equation to recover the phase information. We also provide an open-source design to further increase the number of channels from 6 to 15. The reported platform provides a simple solution for multiplexed fluorescence imaging and multimodal WSI. Acquiring an instant focal stack without z-scanning may also enable fast 3-dimensional dynamic tracking of various biological samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Light scattering and transmission measurement using digital imaging for online analysis of constituents in milk

    Science.gov (United States)

    Jain, Pranay; Sarma, Sanjay E.

    2015-05-01

    Milk is an emulsion of fat globules and casein micelles dispersed in an aqueous medium with dissolved lactose, whey proteins and minerals. Quantification of constituents in milk is important in various stages of the dairy supply chain for proper process control and quality assurance. In field-level applications, spectrophotometric analysis is an economical option due to the low-cost of silicon photodetectors, sensitive to UV/Vis radiation with wavelengths between 300 - 1100 nm. Both absorption and scattering are witnessed as incident UV/Vis radiation interacts with dissolved and dispersed constituents in milk. These effects can in turn be used to characterize the chemical and physical composition of a milk sample. However, in order to simplify analysis, most existing instrument require dilution of samples to avoid effects of multiple scattering. The sample preparation steps are usually expensive, prone to human errors and unsuitable for field-level and online analysis. This paper introduces a novel digital imaging based method of online spectrophotometric measurements on raw milk without any sample preparation. Multiple LEDs of different emission spectra are used as discrete light sources and a digital CMOS camera is used as an image sensor. The extinction characteristic of samples is derived from captured images. The dependence of multiple scattering on power of incident radiation is exploited to quantify scattering. The method has been validated with experiments for response with varying fat concentrations and fat globule sizes. Despite of the presence of multiple scattering, the method is able to unequivocally quantify extinction of incident radiation and relate it to the fat concentrations and globule sizes of samples.

  7. Nonintrusive iris image acquisition system based on a pan-tilt-zoom camera and light stripe projection

    Science.gov (United States)

    Yoon, Soweon; Jung, Ho Gi; Park, Kang Ryoung; Kim, Jaihie

    2009-03-01

    Although iris recognition is one of the most accurate biometric technologies, it has not yet been widely used in practical applications. This is mainly due to user inconvenience during the image acquisition phase. Specifically, users try to adjust their eye position within small capture volume at a close distance from the system. To overcome these problems, we propose a novel iris image acquisition system that provides users with unconstrained environments: a large operating range, enabling movement from standing posture, and capturing good-quality iris images in an acceptable time. The proposed system has the following three contributions compared with previous works: (1) the capture volume is significantly increased by using a pan-tilt-zoom (PTZ) camera guided by a light stripe projection, (2) the iris location in the large capture volume is found fast due to 1-D vertical face searching from the user's horizontal position obtained by the light stripe projection, and (3) zooming and focusing on the user's irises at a distance are accurate and fast using the estimated 3-D position of a face by the light stripe projection and the PTZ camera. Experimental results show that the proposed system can capture good-quality iris images in 2.479 s on average at a distance of 1.5 to 3 m, while allowing a limited amount of movement by the user.

  8. Hyperspectral Image-Based Night-Time Vehicle Light Detection Using Spectral Normalization and Distance Mapper for Intelligent Headlight Control

    Directory of Open Access Journals (Sweden)

    Heekang Kim

    2016-07-01

    Full Text Available This paper proposes a vehicle light detection method using a hyperspectral camera instead of a Charge-Coupled Device (CCD or Complementary metal-Oxide-Semiconductor (CMOS camera for adaptive car headlamp control. To apply Intelligent Headlight Control (IHC, the vehicle headlights need to be detected. Headlights are comprised from a variety of lighting sources, such as Light Emitting Diodes (LEDs, High-intensity discharge (HID, and halogen lamps. In addition, rear lamps are made of LED and halogen lamp. This paper refers to the recent research in IHC. Some problems exist in the detection of headlights, such as erroneous detection of street lights or sign lights and the reflection plate of ego-car from CCD or CMOS images. To solve these problems, this study uses hyperspectral images because they have hundreds of bands and provide more information than a CCD or CMOS camera. Recent methods to detect headlights used the Spectral Angle Mapper (SAM, Spectral Correlation Mapper (SCM, and Euclidean Distance Mapper (EDM. The experimental results highlight the feasibility of the proposed method in three types of lights (LED, HID, and halogen.

  9. Decoupled illumination detection in light sheet microscopy for fast volumetric imaging

    OpenAIRE

    Olarte, Omar; Andilla, Jordi; Artigas García, David; Loza-Alvarez, Pablo

    2015-01-01

    Current microscopy demands the visualization of large three-dimensional samples with increased sensitivity, higher resolution, and faster speed. Several imaging techniques based on widefield, point-scanning, and light-sheet strategies have been designed to tackle some of these demands. Although successful, all these require the illuminated volumes to be tightly coupled with the detection optics to accomplish efficient optical sectioning. Here, we break this paradigm and produce optical sectio...

  10. Water level response measurement in a steel cylindrical liquid storage tank using image filter processing under seismic excitation

    Science.gov (United States)

    Kim, Sung-Wan; Choi, Hyoung-Suk; Park, Dong-Uk; Baek, Eun-Rim; Kim, Jae-Min

    2018-02-01

    Sloshing refers to the movement of fluid that occurs when the kinetic energy of various storage tanks containing fluid (e.g., excitation and vibration) is continuously applied to the fluid inside the tanks. As the movement induced by an external force gets closer to the resonance frequency of the fluid, the effect of sloshing increases, and this can lead to a serious problem with the structural stability of the system. Thus, it is important to accurately understand the physics of sloshing, and to effectively suppress and reduce the sloshing. Also, a method for the economical measurement of the water level response of a liquid storage tank is needed for the exact analysis of sloshing. In this study, a method using images was employed among the methods for measuring the water level response of a liquid storage tank, and the water level response was measured using an image filter processing algorithm for the reduction of the noise of the fluid induced by light, and for the sharpening of the structure installed at the liquid storage tank. A shaking table test was performed to verify the validity of the method of measuring the water level response of a liquid storage tank using images, and the result was analyzed and compared with the response measured using a water level gauge.

  11. Diagnostic reference levels in medical imaging

    International Nuclear Information System (INIS)

    Rosenstein, M.

    2001-01-01

    The paper proposes additional advice to national or local authorities and the clinical community on the application of diagnostic reference levels as a practical tool to manage radiation doses to patients in diagnostic radiology and nuclear medicine. A survey was made of the various approaches that have been taken by authoritative bodies to establish diagnostic reference levels for medical imaging tasks. There are a variety of ways to implement the idea of diagnostic reference levels, depending on the medical imaging task of interest, the national or local state of practice and the national or local preferences for technical implementation. The existing International Commission on Radiological Protection (ICRP) guidance is reviewed, the survey information is summarized, a set of unifying principles is espoused and a statement of additional advice that has been proposed to ICRP Committee 3 is presented. The proposed advice would meet a need for a unifying set of principles to provide a framework for diagnostic reference levels but would allow flexibility in their selection and use. While some illustrative examples are given, the proposed advice does not specify the specific quantities to be used, the numerical values to be set for the quantities or the technical details of how national or local authorities should implement diagnostic reference levels. (author)

  12. Flight performance in night-flying sweat bees suffers at low light levels.

    Science.gov (United States)

    Theobald, Jamie Carroll; Coates, Melissa M; Wcislo, William T; Warrant, Eric J

    2007-11-01

    The sweat bee Megalopta (Hymenoptera: Halictidae), unlike most bees, flies in extremely dim light. And although nocturnal insects are often equipped with superposition eyes, which greatly enhance light capture, Megalopta performs visually guided flight with apposition eyes. We examined how light limits Megalopta's flight behavior by measuring flight times and corresponding light levels and comparing them with flight trajectories upon return to the nest. We found the average time to land increased in dim light, an effect due not to slow approaches, but to circuitous approaches. Some landings, however, were quite fast even in the dark. To explain this, we examined the flight trajectories and found that in dim light, landings became increasingly error prone and erratic, consistent with repeated landing attempts. These data agree well with the premise that Megalopta uses visual summation, sacrificing acuity in order to see and fly at the very dimmest light intensities that its visual system allows.

  13. 3D change detection at street level using mobile laser scanning point clouds and terrestrial images

    Science.gov (United States)

    Qin, Rongjun; Gruen, Armin

    2014-04-01

    Automatic change detection and geo-database updating in the urban environment are difficult tasks. There has been much research on detecting changes with satellite and aerial images, but studies have rarely been performed at the street level, which is complex in its 3D geometry. Contemporary geo-databases include 3D street-level objects, which demand frequent data updating. Terrestrial images provides rich texture information for change detection, but the change detection with terrestrial images from different epochs sometimes faces problems with illumination changes, perspective distortions and unreliable 3D geometry caused by the lack of performance of automatic image matchers, while mobile laser scanning (MLS) data acquired from different epochs provides accurate 3D geometry for change detection, but is very expensive for periodical acquisition. This paper proposes a new method for change detection at street level by using combination of MLS point clouds and terrestrial images: the accurate but expensive MLS data acquired from an early epoch serves as the reference, and terrestrial images or photogrammetric images captured from an image-based mobile mapping system (MMS) at a later epoch are used to detect the geometrical changes between different epochs. The method will automatically mark the possible changes in each view, which provides a cost-efficient method for frequent data updating. The methodology is divided into several steps. In the first step, the point clouds are recorded by the MLS system and processed, with data cleaned and classified by semi-automatic means. In the second step, terrestrial images or mobile mapping images at a later epoch are taken and registered to the point cloud, and then point clouds are projected on each image by a weighted window based z-buffering method for view dependent 2D triangulation. In the next step, stereo pairs of the terrestrial images are rectified and re-projected between each other to check the geometrical

  14. New method of contour image processing based on the formalism of spiral light beams

    Science.gov (United States)

    Volostnikov, Vladimir G.; Kishkin, S. A.; Kotova, S. P.

    2013-07-01

    The possibility of applying the mathematical formalism of spiral light beams to the problems of contour image recognition is theoretically studied. The advantages and disadvantages of the proposed approach are evaluated; the results of numerical modelling are presented.

  15. Effect of Magnesium on Gas Exchange and Photosynthetic Efficiency of Coffee Plants Grown under Different Light Levels

    Directory of Open Access Journals (Sweden)

    Kaio Gonçalves de Lima Dias

    2017-09-01

    Full Text Available The aim of the present study was to investigate the effects of magnesium on the gas exchange and photosynthetic efficiency of Coffee seedlings grown in nutrient solution under different light levels. The experiment was conducted under controlled conditions in growth chambers and nutrient solution at the Department of Plant Pathology of the Federal University of Lavras. The treatments consisted of five different Mg concentrations (0, 48, 96, 192 and 384 mg·L−1 and four light levels (80, 160, 240 and 320 µmol photon m−2·s−1. Both the Mg concentration and light levels affected gas exchange in the coffee plants. Photosynthesis increased linearly with the increasing light, indicating that the light levels tested were low for this crop. The highest CO2 assimilation rate, lowest transpiration, and highest water use efficiency were observed with 250 mg·Mg·L−1, indicating that this concentration was the optimal Mg supply for the tested light levels.

  16. Image processing of muscle striations below the resolution limit of the light microscope

    International Nuclear Information System (INIS)

    Burns, D.H.; Holdren, D.N.; Periasamy, A.; Everts, W.C.; Pollack, G.H.

    1985-01-01

    We describe the use of digital deconvolution in the study of muscle striations below the resolution imposed by the optical diffraction of our video light microscope. To use deconvolution procedures on muscle images, the transfer function of the optical system is first characterized. This is accomplished by imaging a step object and fitting the image with the combination of a first order Bessel and Guassian function using a non-linear least squares approach. Due to the ill-conditioned nature of deconvolution, however, ambiguity in the reconstruction is sometimes found. To allow better estimation of the true object, separate deconvolution approaches are used and the reconstructions compared. In this manner, the fine structure of muscle striations is determined

  17. Feasibility of the optical imaging of thrombus formation in a rotary blood pump by near-infrared light.

    Science.gov (United States)

    Sakota, Daisuke; Murashige, Tomotaka; Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu

    2014-09-01

    Blood coagulation is one of the primary concerns when using mechanical circulatory support devices such as blood pumps. Noninvasive detection and imaging of thrombus formation is useful not only for the development of more hemocompatible devices but also for the management of blood coagulation to avoid risk of infarction. The objective of this study is to investigate the use of near-infrared light for imaging of thrombus formation in a rotary blood pump. The optical properties of a thrombus at wavelengths ranging from 600 to 750 nm were analyzed using a hyperspectral imaging (HSI) system. A specially designed hydrodynamically levitated centrifugal blood pump with a visible bottom area was used. In vitro antithrombogenic testing was conducted five times with the pump using bovine whole blood in which the activated blood clotting time was adjusted to 200 s prior to the experiment. Two halogen lights were used for the light sources. The forward scattering through the pump and backward scattering on the pump bottom area were imaged using the HSI system. HSI showed an increase in forward scattering at wavelengths ranging from 670 to 750 nm in the location of thrombus formation. The time at which the thrombus began to form in the impeller rotating at 2780 rpm could be detected. The spectral difference between the whole blood and the thrombus was utilized to image thrombus formation. The results indicate the feasibility of dynamically detecting and imaging thrombus formation in a rotary blood pump. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  18. Light output measurements and computational models of microcolumnar CsI scintillators for x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nillius, Peter, E-mail: nillius@mi.physics.kth.se; Klamra, Wlodek; Danielsson, Mats [Royal Institute of Technology (KTH), Stockholm SE-100 44 (Sweden); Sibczynski, Pawel [National Centre for Nuclear Research, Otwock 05-400 (Poland); Sharma, Diksha; Badano, Aldo [Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, FDA, Silver Spring, Maryland 20993 (United States)

    2015-02-15

    Purpose: The authors report on measurements of light output and spatial resolution of microcolumnar CsI:Tl scintillator detectors for x-ray imaging. In addition, the authors discuss the results of simulations aimed at analyzing the results of synchrotron and sealed-source exposures with respect to the contributions of light transport to the total light output. Methods: The authors measured light output from a 490-μm CsI:Tl scintillator screen using two setups. First, the authors used a photomultiplier tube (PMT) to measure the response of the scintillator to sealed-source exposures. Second, the authors performed imaging experiments with a 27-keV monoenergetic synchrotron beam and a slit to calculate the total signal generated in terms of optical photons per keV. The results of both methods are compared to simulations obtained with hybridMANTIS, a coupled x-ray, electron, and optical photon Monte Carlo transport package. The authors report line response (LR) and light output for a range of linear absorption coefficients and describe a model that fits at the same time the light output and the blur measurements. Comparing the experimental results with the simulations, the authors obtained an estimate of the absorption coefficient for the model that provides good agreement with the experimentally measured LR. Finally, the authors report light output simulation results and their dependence on scintillator thickness and reflectivity of the backing surface. Results: The slit images from the synchrotron were analyzed to obtain a total light output of 48 keV{sup −1} while measurements using the fast PMT instrument setup and sealed-sources reported a light output of 28 keV{sup −1}. The authors attribute the difference in light output estimates between the two methods to the difference in time constants between the camera and PMT measurements. Simulation structures were designed to match the light output measured with the camera while providing good agreement with the

  19. Fluorescence Imaging Reveals Surface Contamination

    Science.gov (United States)

    Schirato, Richard; Polichar, Raulf

    1992-01-01

    In technique to detect surface contamination, object inspected illuminated by ultraviolet light to make contaminants fluoresce; low-light-level video camera views fluorescence. Image-processing techniques quantify distribution of contaminants. If fluorescence of material expected to contaminate surface is not intense, tagged with low concentration of dye.

  20. Spatial light modulator array with heat minimization and image enhancement features

    Science.gov (United States)

    Jain, Kanti [Briarcliff Manor, NY; Sweatt, William C [Albuquerque, NM; Zemel, Marc [New Rochelle, NY

    2007-01-30

    An enhanced spatial light modulator (ESLM) array, a microelectronics patterning system and a projection display system using such an ESLM for heat-minimization and resolution enhancement during imaging, and the method for fabricating such an ESLM array. The ESLM array includes, in each individual pixel element, a small pixel mirror (reflective region) and a much larger pixel surround. Each pixel surround includes diffraction-grating regions and resolution-enhancement regions. During imaging, a selected pixel mirror reflects a selected-pixel beamlet into the capture angle of a projection lens, while the diffraction grating of the pixel surround redirects heat-producing unused radiation away from the projection lens. The resolution-enhancement regions of selected pixels provide phase shifts that increase effective modulation-transfer function in imaging. All of the non-selected pixel surrounds redirect all radiation energy away from the projection lens. All elements of the ESLM are fabricated by deposition, patterning, etching and other microelectronic process technologies.

  1. Depth resolved hyperspectral imaging spectrometer based on structured light illumination and Fourier transform interferometry

    Science.gov (United States)

    Choi, Heejin; Wadduwage, Dushan; Matsudaira, Paul T.; So, Peter T.C.

    2014-01-01

    A depth resolved hyperspectral imaging spectrometer can provide depth resolved imaging both in the spatial and the spectral domain. Images acquired through a standard imaging Fourier transform spectrometer do not have the depth-resolution. By post processing the spectral cubes (x, y, λ) obtained through a Sagnac interferometer under uniform illumination and structured illumination, spectrally resolved images with depth resolution can be recovered using structured light illumination algorithms such as the HiLo method. The proposed scheme is validated with in vitro specimens including fluorescent solution and fluorescent beads with known spectra. The system is further demonstrated in quantifying spectra from 3D resolved features in biological specimens. The system has demonstrated depth resolution of 1.8 μm and spectral resolution of 7 nm respectively. PMID:25360367

  2. Higher Serum Levels of Free ĸ plus λ Immunoglobulin Light Chains Ameliorate Survival of Hemodialysis Patients

    DEFF Research Database (Denmark)

    Thilo, Florian; Caspari, Christina; Scholze, Alexandra

    2011-01-01

    Background/Aims: Impaired immune function is common in patients with chronic renal failure. Now, we determined whether serum levels of free immunoglobulin light chains predict mortality in patients with chronic kidney disease stage 5 on hemodialysis. Methods: We performed a prospective cohort study...... of 160 hemodialysis patients with a median follow-up of 15 months (interquartile range, 3-44 months). Serum levels of free κ and λ immunoglobulin light chains were measured at the start of the study. The primary end point was mortality from any cause. Results: In survivors, median serum levels of free κ...... plus λ immunoglobulin light chains were significantly higher compared with nonsurvivors (p light chains above the median compared with patients with serum levels below the median of 210 mg...

  3. Light-sheet fluorescence imaging to localize cardiac lineage and protein distribution

    Science.gov (United States)

    Ding, Yichen; Lee, Juhyun; Ma, Jianguo; Sung, Kevin; Yokota, Tomohiro; Singh, Neha; Dooraghi, Mojdeh; Abiri, Parinaz; Wang, Yibin; Kulkarni, Rajan P.; Nakano, Atsushi; Nguyen, Thao P.; Fei, Peng; Hsiai, Tzung K.

    2017-02-01

    Light-sheet fluorescence microscopy (LSFM) serves to advance developmental research and regenerative medicine. Coupled with the paralleled advances in fluorescence-friendly tissue clearing technique, our cardiac LSFM enables dual-sided illumination to rapidly uncover the architecture of murine hearts over 10 by 10 by 10 mm3 in volume; thereby allowing for localizing progenitor differentiation to the cardiomyocyte lineage and AAV9-mediated expression of exogenous transmembrane potassium channels with high contrast and resolution. Without the steps of stitching image columns, pivoting the light-sheet and sectioning the heart mechanically, we establish a holistic strategy for 3-dimentional reconstruction of the “digital murine heart” to assess aberrant cardiac structures as well as the spatial distribution of the cardiac lineages in neonates and ion-channels in adults.

  4. Food Image Recognition via Superpixel Based Low-Level and Mid-Level Distance Coding for Smart Home Applications

    Directory of Open Access Journals (Sweden)

    Jiannan Zheng

    2017-05-01

    Full Text Available Food image recognition is a key enabler for many smart home applications such as smart kitchen and smart personal nutrition log. In order to improve living experience and life quality, smart home systems collect valuable insights of users’ preferences, nutrition intake and health conditions via accurate and robust food image recognition. In addition, efficiency is also a major concern since many smart home applications are deployed on mobile devices where high-end GPUs are not available. In this paper, we investigate compact and efficient food image recognition methods, namely low-level and mid-level approaches. Considering the real application scenario where only limited and noisy data are available, we first proposed a superpixel based Linear Distance Coding (LDC framework where distinctive low-level food image features are extracted to improve performance. On a challenging small food image dataset where only 12 training images are available per category, our framework has shown superior performance in both accuracy and robustness. In addition, to better model deformable food part distribution, we extend LDC’s feature-to-class distance idea and propose a mid-level superpixel food parts-to-class distance mining framework. The proposed framework show superior performance on a benchmark food image datasets compared to other low-level and mid-level approaches in the literature.

  5. Bi-level image compression with tree coding

    DEFF Research Database (Denmark)

    Martins, Bo; Forchhammer, Søren

    1996-01-01

    Presently, tree coders are the best bi-level image coders. The current ISO standard, JBIG, is a good example. By organising code length calculations properly a vast number of possible models (trees) can be investigated within reasonable time prior to generating code. Three general-purpose coders...... are constructed by this principle. A multi-pass free tree coding scheme produces superior compression results for all test images. A multi-pass fast free template coding scheme produces much better results than JBIG for difficult images, such as halftonings. Rissanen's algorithm `Context' is presented in a new...

  6. Scanned Image Projection System Employing Intermediate Image Plane

    Science.gov (United States)

    DeJong, Christian Dean (Inventor); Hudman, Joshua M. (Inventor)

    2014-01-01

    In imaging system, a spatial light modulator is configured to produce images by scanning a plurality light beams. A first optical element is configured to cause the plurality of light beams to converge along an optical path defined between the first optical element and the spatial light modulator. A second optical element is disposed between the spatial light modulator and a waveguide. The first optical element and the spatial light modulator are arranged such that an image plane is created between the spatial light modulator and the second optical element. The second optical element is configured to collect the diverging light from the image plane and collimate it. The second optical element then delivers the collimated light to a pupil at an input of the waveguide.

  7. Hyperspectral imaging based on diffused laser light for prediction of astaxanthin coating concentration

    DEFF Research Database (Denmark)

    Ljungqvist, Martin Georg; Nielsen, Otto Højager Attermann; Frosch, Stina

    2014-01-01

    -continuum laser as the light source was introduced. Furthermore, a parallel study with the commercially available multispectral VideometerLab imaging system was performed. The SuperK setup used 113 spectral bands (455–1,015 nm), and the VideometerLab used 20 spectral bands (385–1,050 nm). To predict...

  8. Image forming apparatus

    DEFF Research Database (Denmark)

    2005-01-01

    An image H(x, y) for displaying a target image G(x, y) is displayed on a liquid-crystal display panel and illumination light from an illumination light source is made to pass therethrough to form an image on a PALSLM. Read light hv is radiated to the PALSLM and a phase-modulated light image alpha...... (x, y) read out of the PALSLM is subjected to Fourier transform by a lens. A phase contrast filter gives a predetermined phase shift to only the zero-order light component of Fourier light image alpha f(x, y). The phase-shifted light image is subjected to inverse Fourier transform by a lens...... to project an output image O(x, y) to an output plane. A light image O'(x, y) branched by a beam sampler is picked up by a pickup device and an evaluation value calculating unit evaluates conformity between the image O(x, y) and the image G(x, y).; A control unit performs feedback control of optical...

  9. X-ray microscopy as an approach to increasing accuracy and efficiency of serial block-face imaging for correlated light and electron microscopy of biological specimens.

    Science.gov (United States)

    Bushong, Eric A; Johnson, Donald D; Kim, Keun-Young; Terada, Masako; Hatori, Megumi; Peltier, Steven T; Panda, Satchidananda; Merkle, Arno; Ellisman, Mark H

    2015-02-01

    The recently developed three-dimensional electron microscopic (EM) method of serial block-face scanning electron microscopy (SBEM) has rapidly established itself as a powerful imaging approach. Volume EM imaging with this scanning electron microscopy (SEM) method requires intense staining of biological specimens with heavy metals to allow sufficient back-scatter electron signal and also to render specimens sufficiently conductive to control charging artifacts. These more extreme heavy metal staining protocols render specimens light opaque and make it much more difficult to track and identify regions of interest (ROIs) for the SBEM imaging process than for a typical thin section transmission electron microscopy correlative light and electron microscopy study. We present a strategy employing X-ray microscopy (XRM) both for tracking ROIs and for increasing the efficiency of the workflow used for typical projects undertaken with SBEM. XRM was found to reveal an impressive level of detail in tissue heavily stained for SBEM imaging, allowing for the identification of tissue landmarks that can be subsequently used to guide data collection in the SEM. Furthermore, specific labeling of individual cells using diaminobenzidine is detectable in XRM volumes. We demonstrate that tungsten carbide particles or upconverting nanophosphor particles can be used as fiducial markers to further increase the precision and efficiency of SBEM imaging.

  10. Diffuse optical imaging using spatially and temporally modulated light

    Science.gov (United States)

    O'Sullivan, Thomas D.; Cerussi, Albert E.; Cuccia, David J.; Tromberg, Bruce J.

    2012-07-01

    The authors describe the development of diffuse optical imaging (DOI) technologies, specifically the use of spatial and temporal modulation to control near infrared light propagation in thick tissues. We present theory and methods of DOI focusing on model-based techniques for quantitative, in vivo measurements of endogenous tissue absorption and scattering properties. We specifically emphasize the common conceptual framework of the scalar photon density wave for both temporal and spatial frequency-domain approaches. After presenting the history, theoretical foundation, and instrumentation related to these methods, we provide a brief review of clinical and preclinical applications from our research as well as our outlook on the future of DOI technology.

  11. Level-set segmentation of pulmonary nodules in megavolt electronic portal images using a CT prior

    International Nuclear Information System (INIS)

    Schildkraut, J. S.; Prosser, N.; Savakis, A.; Gomez, J.; Nazareth, D.; Singh, A. K.; Malhotra, H. K.

    2010-01-01

    Purpose: Pulmonary nodules present unique problems during radiation treatment due to nodule position uncertainty that is caused by respiration. The radiation field has to be enlarged to account for nodule motion during treatment. The purpose of this work is to provide a method of locating a pulmonary nodule in a megavolt portal image that can be used to reduce the internal target volume (ITV) during radiation therapy. A reduction in the ITV would result in a decrease in radiation toxicity to healthy tissue. Methods: Eight patients with nonsmall cell lung cancer were used in this study. CT scans that include the pulmonary nodule were captured with a GE Healthcare LightSpeed RT 16 scanner. Megavolt portal images were acquired with a Varian Trilogy unit equipped with an AS1000 electronic portal imaging device. The nodule localization method uses grayscale morphological filtering and level-set segmentation with a prior. The treatment-time portion of the algorithm is implemented on a graphical processing unit. Results: The method was retrospectively tested on eight cases that include a total of 151 megavolt portal image frames. The method reduced the nodule position uncertainty by an average of 40% for seven out of the eight cases. The treatment phase portion of the method has a subsecond execution time that makes it suitable for near-real-time nodule localization. Conclusions: A method was developed to localize a pulmonary nodule in a megavolt portal image. The method uses the characteristics of the nodule in a prior CT scan to enhance the nodule in the portal image and to identify the nodule region by level-set segmentation. In a retrospective study, the method reduced the nodule position uncertainty by an average of 40% for seven out of the eight cases studied.

  12. SENTINEL-2 LEVEL 1 PRODUCTS AND IMAGE PROCESSING PERFORMANCES

    Directory of Open Access Journals (Sweden)

    S. J. Baillarin

    2012-07-01

    Full Text Available In partnership with the European Commission and in the frame of the Global Monitoring for Environment and Security (GMES program, the European Space Agency (ESA is developing the Sentinel-2 optical imaging mission devoted to the operational monitoring of land and coastal areas. The Sentinel-2 mission is based on a satellites constellation deployed in polar sun-synchronous orbit. While ensuring data continuity of former SPOT and LANDSAT multi-spectral missions, Sentinel-2 will also offer wide improvements such as a unique combination of global coverage with a wide field of view (290 km, a high revisit (5 days with two satellites, a high resolution (10 m, 20 m and 60 m and multi-spectral imagery (13 spectral bands in visible and shortwave infra-red domains. In this context, the Centre National d'Etudes Spatiales (CNES supports ESA to define the system image products and to prototype the relevant image processing techniques. This paper offers, first, an overview of the Sentinel-2 system and then, introduces the image products delivered by the ground processing: the Level-0 and Level-1A are system products which correspond to respectively raw compressed and uncompressed data (limited to internal calibration purposes, the Level-1B is the first public product: it comprises radiometric corrections (dark signal, pixels response non uniformity, crosstalk, defective pixels, restoration, and binning for 60 m bands; and an enhanced physical geometric model appended to the product but not applied, the Level-1C provides ortho-rectified top of atmosphere reflectance with a sub-pixel multi-spectral and multi-date registration; a cloud and land/water mask is associated to the product. Note that the cloud mask also provides an indication about cirrus. The ground sampling distance of Level-1C product will be 10 m, 20 m or 60 m according to the band. The final Level-1C product is tiled following a pre-defined grid of 100x100 km2, based on UTM/WGS84 reference frame

  13. SENTINEL-2 Level 1 Products and Image Processing Performances

    Science.gov (United States)

    Baillarin, S. J.; Meygret, A.; Dechoz, C.; Petrucci, B.; Lacherade, S.; Tremas, T.; Isola, C.; Martimort, P.; Spoto, F.

    2012-07-01

    In partnership with the European Commission and in the frame of the Global Monitoring for Environment and Security (GMES) program, the European Space Agency (ESA) is developing the Sentinel-2 optical imaging mission devoted to the operational monitoring of land and coastal areas. The Sentinel-2 mission is based on a satellites constellation deployed in polar sun-synchronous orbit. While ensuring data continuity of former SPOT and LANDSAT multi-spectral missions, Sentinel-2 will also offer wide improvements such as a unique combination of global coverage with a wide field of view (290 km), a high revisit (5 days with two satellites), a high resolution (10 m, 20 m and 60 m) and multi-spectral imagery (13 spectral bands in visible and shortwave infra-red domains). In this context, the Centre National d'Etudes Spatiales (CNES) supports ESA to define the system image products and to prototype the relevant image processing techniques. This paper offers, first, an overview of the Sentinel-2 system and then, introduces the image products delivered by the ground processing: the Level-0 and Level-1A are system products which correspond to respectively raw compressed and uncompressed data (limited to internal calibration purposes), the Level-1B is the first public product: it comprises radiometric corrections (dark signal, pixels response non uniformity, crosstalk, defective pixels, restoration, and binning for 60 m bands); and an enhanced physical geometric model appended to the product but not applied, the Level-1C provides ortho-rectified top of atmosphere reflectance with a sub-pixel multi-spectral and multi-date registration; a cloud and land/water mask is associated to the product. Note that the cloud mask also provides an indication about cirrus. The ground sampling distance of Level-1C product will be 10 m, 20 m or 60 m according to the band. The final Level-1C product is tiled following a pre-defined grid of 100x100 km2, based on UTM/WGS84 reference frame. The

  14. Light-sensitive elements for radiographic use and process for the formation of an X-ray image

    International Nuclear Information System (INIS)

    Bussi, G.; Cavallo, E.

    1990-01-01

    A light-sensitive silver halide element for radiographic use with X-ray intensifying screens comprising coated on at least one side of a transparent support base at least a spectrally sensitized silver halide emulsion layer and, between the base and a silver halide emulsion layer, a hydrophillic colloid layer containing a) substantially light-insensitivelow iodide silver bromoiodide grains having an avergae grain size in therange of from 0.01 to 0.1 μm on which a spectral sensitizing dye is adsorbed to form a J-band, said dye adsorbed on said grains having a significant portion of its absorption in a region of the electromagnetic spectrum corresponding substantially to the spectral sensitivity of the silver halide emulsion, and b) dispersed zinc oxide particles. The invention allows the use of low coverage weights of silver halide light-sensitive elements and provides X-ray images with a favorable image quality and sensitivity ratio. (author)

  15. Light-sensitive elements for radiographic use and process for the formation of an X-ray image

    Energy Technology Data Exchange (ETDEWEB)

    Bussi, G; Cavallo, E

    1990-12-15

    A light-sensitive silver halide element for radiographic use with X-ray intensifying screens comprising coated on at least one side of a transparent support base at least a spectrally sensitized silver halide emulsion layer and, between the base and a silver halide emulsion layer, a hydrophillic colloid layer containing (a) substantially light-insensitivelow iodide silver bromoiodide grains having an avergae grain size in therange of from 0.01 to 0.1 {mu}m on which a spectral sensitizing dye is adsorbed to form a J-band, said dye adsorbed on said grains having a significant portion of its absorption in a region of the electromagnetic spectrum corresponding substantially to the spectral sensitivity of the silver halide emulsion, and (b) dispersed zinc oxide particles. The invention allows the use of low coverage weights of silver halide light-sensitive elements and provides X-ray images with a favorable image quality and sensitivity ratio. (author).

  16. Hybrid of two-photon microscopy and optical multimodality imaging for multi-scale imaging of small animals

    Science.gov (United States)

    Li, Tianmeng; Hui, Hui; Ma, He; Yang, Xin; Tian, Jie

    2018-02-01

    Non-invasive imaging technologies, such as magnetic resonance imaging (MRI) and optical multimodality imaging methods, are commonly used for diagnosing and supervising the development of inflammatory bowel disease (IBD). These in vivo imaging methods can provide morphology changes information of IBD in macro-scale. However, it is difficult to investigate the intestinal wall in molecular and cellular level. State-of-art light-sheet and two-photon microscopy have the ability to acquire the changes for IBD in micro-scale. The aim of this work is to evaluate the size of the enterocoel and the thickness of colon wall using both MRI for in vivo imaging, and light-sheet and two-photon microscope for in vitro imaging. C57BL/6 mice were received 3.5% Dextran sodium sulfate (DSS) in the drinking water for 5 days to build IBD model. Mice were imaged with MRI on days 0, 6 to observe colitis progression. After MRI imaging, the mice were sacrificed to take colons for tissue clearing. Then, light-sheet and two-photon microscopies are used for in vitro imaging of the cleared samples. The experimental group showed symptoms of bloody stools, sluggishness and weight loss. It showed that the colon wall was thicker while the enterocoel was narrower compare to control group. The more details are observed using light-sheet and two-photon microscope. It is demonstrated that hybrid of MRI in macro-scale and light-sheet and two-photon microscopy in micro-scale imaging is feasible for colon inflammation diagnosing and supervising.

  17. OSCILLATING LIGHT WALL ABOVE A SUNSPOT LIGHT BRIDGE

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuhong; Zhang, Jun; Jiang, Fayu [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Xiang, Yongyuan, E-mail: shuhongyang@nao.cas.cn [Fuxian Solar Observatory, Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)

    2015-05-10

    With the high tempo-spatial Interface Region Imaging Spectrograph 1330 Å images, we find that many bright structures are rooted in the light bridge of NOAA 12192, forming a light wall. The light wall is brighter than the surrounding areas, and the wall top is much brighter than the wall body. The New Vacuum Solar Telescope Hα and the Solar Dynamics Observatory 171 and 131 Å images are also used to study the light-wall properties. In 1330, 171, and 131 Å, the top of the wall has a higher emission, while in the Hα line, the wall-top emission is very low. The wall body corresponds to bright areas in 1330 Å and dark areas in the other lines. The top of the light wall moves upward and downward successively, performing oscillations in height. The deprojected mean height, amplitude, oscillation velocity, and the dominant period are determined to be 3.6 Mm, 0.9 Mm, 15.4 km s{sup −1}, and 3.9 minutes, respectively. We interpret the oscillations of the light wall as the leakage of p-modes from below the photosphere. The constant brightness enhancement of the wall top implies the existence of some kind of atmospheric heating, e.g., via the persistent small-scale reconnection or the magneto-acoustic waves. In another series of 1330 Å images, we find that the wall top in the upward motion phase is significantly brighter than in the downward phase. This kind of oscillation may be powered by the energy released due to intermittent impulsive magnetic reconnection.

  18. Optimization of high-inclination orbits using planetary flybys for a zodiacal light-imaging mission

    Science.gov (United States)

    Soto, Gabriel; Lloyd, James; Savransky, Dmitry; Grogan, Keith; Sinha, Amlan

    2017-09-01

    The zodiacal light caused by interplanetary dust grains is the second-most luminous source in the solar system. The dust grains coalesce into structures reminiscent of early solar system formation; their composition has been predicted through simulations and some edge-on observations but better data is required to validate them. Scattered light from these dust grains presents challenges to exoplanet imaging missions: resolution of their stellar environment is hindered by exozodiacal emissions and therefore sets the size and scope of these imaging missions. Understanding the composition of this interplanetary dust in our solar system requires an imaging mission from a vantage point above the ecliptic plane. The high surface brightness of the zodiacal light requires only a small aperture with moderate sensitivity; therefore a 3cm camera is enough to meet the science goals of the mission at an orbital height of 0.1AU above the ecliptic. A 6U CubeSat is the target mass for this mission which will be a secondary payload detaching from an existing interplanetary mission. Planetary flybys are utilized to produce most of the plane change Δv deep space corrective maneuvers are implemented to optimize each planetary flyby. We developed an algorithm which determines the minimum Δv required to place the CubeSat on a transfer orbit to a planet's sphere of influence and maximizes the resultant orbital height with respect to the ecliptic plane. The satellite could reach an orbital height of 0.22 AU with an Earth gravity assist in late 2024 by boarding the Europa Clipper mission.

  19. Images crossing borders: image and workflow sharing on multiple levels.

    Science.gov (United States)

    Ross, Peeter; Pohjonen, Hanna

    2011-04-01

    Digitalisation of medical data makes it possible to share images and workflows between related parties. In addition to linear data flow where healthcare professionals or patients are the information carriers, a new type of matrix of many-to-many connections is emerging. Implementation of shared workflow brings challenges of interoperability and legal clarity. Sharing images or workflows can be implemented on different levels with different challenges: inside the organisation, between organisations, across country borders, or between healthcare institutions and citizens. Interoperability issues vary according to the level of sharing and are either technical or semantic, including language. Legal uncertainty increases when crossing national borders. Teleradiology is regulated by multiple European Union (EU) directives and legal documents, which makes interpretation of the legal system complex. To achieve wider use of eHealth and teleradiology several strategic documents were published recently by the EU. Despite EU activities, responsibility for organising, providing and funding healthcare systems remains with the Member States. Therefore, the implementation of new solutions requires strong co-operation between radiologists, societies of radiology, healthcare administrators, politicians and relevant EU authorities. The aim of this article is to describe different dimensions of image and workflow sharing and to analyse legal acts concerning teleradiology in the EU.

  20. Design of dual-road transportable portal monitoring system for visible light and gamma-ray imaging

    Science.gov (United States)

    Karnowski, Thomas P.; Cunningham, Mark F.; Goddard, James S.; Cheriyadat, Anil M.; Hornback, Donald E.; Fabris, Lorenzo; Kerekes, Ryan A.; Ziock, Klaus-Peter; Bradley, E. Craig; Chesser, J.; Marchant, W.

    2010-04-01

    The use of radiation sensors as portal monitors is increasing due to heightened concerns over the smuggling of fissile material. Transportable systems that can detect significant quantities of fissile material that might be present in vehicular traffic are of particular interest, especially if they can be rapidly deployed to different locations. To serve this application, we have constructed a rapid-deployment portal monitor that uses visible-light and gamma-ray imaging to allow simultaneous monitoring of multiple lanes of traffic from the side of a roadway. The system operation uses machine vision methods on the visible-light images to detect vehicles as they enter and exit the field of view and to measure their position in each frame. The visible-light and gamma-ray cameras are synchronized which allows the gamma-ray imager to harvest gamma-ray data specific to each vehicle, integrating its radiation signature for the entire time that it is in the field of view. Thus our system creates vehicle-specific radiation signatures and avoids source confusion problems that plague non-imaging approaches to the same problem. Our current prototype instrument was designed for measurement of upto five lanes of freeway traffic with a pair of instruments, one on either side of the roadway. Stereoscopic cameras are used with a third "alignment" camera for motion compensation and are mounted on a 50' deployable mast. In this paper we discuss the design considerations for the machine-vision system, the algorithms used for vehicle detection and position estimates, and the overall architecture of the system. We also discuss system calibration for rapid deployment. We conclude with notes on preliminary performance and deployment.

  1. Design of Dual-Road Transportable Portal Monitoring System for Visible Light and Gamma-Ray Imaging

    International Nuclear Information System (INIS)

    Karnowski, Thomas Paul; Cunningham, Mark F.; Goddard, James Samuel Jr.; Cheriyadat, Anil M.; Hornback, Donald Eric; Fabris, Lorenzo; Kerekes, Ryan A.; Ziock, Klaus-Peter; Bradley, Eric Craig; Chesser, Joel B.; Marchant, William

    2010-01-01

    The use of radiation sensors as portal monitors is increasing due to heightened concerns over the smuggling of fissile material. Transportable systems that can detect significant quantities of fissile material that might be present in vehicular traffic are of particular interest, especially if they can be rapidly deployed to different locations. To serve this application, we have constructed a rapid-deployment portal monitor that uses visible-light and gamma-ray imaging to allow simultaneous monitoring of multiple lanes of traffic from the side of a roadway. The system operation uses machine vision methods on the visible-light images to detect vehicles as they enter and exit the field of view and to measure their position in each frame. The visible-light and gamma-ray cameras are synchronized which allows the gamma-ray imager to harvest gamma-ray data specific to each vehicle, integrating its radiation signature for the entire time that it is in the field of view. Thus our system creates vehicle-specific radiation signatures and avoids source confusion problems that plague non-imaging approaches to the same problem. Our current prototype instrument was designed for measurement of upto five lanes of freeway traffic with a pair of instruments, one on either side of the roadway. Stereoscopic cameras are used with a third alignment camera for motion compensation and are mounted on a 50 deployable mast. In this paper we discuss the design considerations for the machine-vision system, the algorithms used for vehicle detection and position estimates, and the overall architecture of the system. We also discuss system calibration for rapid deployment. We conclude with notes on preliminary performance and deployment.

  2. Cellular chromophores and signaling in low level light therapy

    Science.gov (United States)

    Hamblin, Michael R.; Demidova-Rice, Tatiana N.

    2007-02-01

    The use of low levels of visible or near infrared light (LLLT) for reducing pain, inflammation and edema, promoting healing of wounds, deeper tissues and nerves, and preventing tissue damage by reducing cellular apoptosis has been known for almost forty years since the invention of lasers. Originally thought to be a peculiar property of laser light (soft or cold lasers), the subject has now broadened to include photobiomodulation and photobiostimulation using non-coherent light. Despite many reports of positive findings from experiments conducted in vitro, in animal models and in randomized controlled clinical trials, LLLT remains controversial. This likely is due to two main reasons; firstly the biochemical mechanisms underlying the positive effects are incompletely understood, and secondly the complexity of rationally choosing amongst a large number of illumination parameters such as wavelength, fluence, power density, pulse structure and treatment timing has led to the publication of a number of negative studies as well as many positive ones. In recent years major advances have been made in understanding the mechanisms that operate at the cellular and tissue levels during LLLT. Mitochondria are thought to be the main site for the initial effects of light and specifically cytochrome c oxidase that has absorption peaks in the red and near infrared regions of the electromagnetic spectrum matches the action spectra of LLLT effects. The discovery that cells employ nitric oxide (NO) synthesized in the mitochondria by neuronal nitric oxide synthase, to regulate respiration by competitive binding to the oxygen binding of cytochrome c oxidase, now suggests how LLLT can affect cell metabolism. If LLLT photodissociates inhibitory NO from cytochrome c oxidase, this would explain increased ATP production, modulation of reactive oxygen species, reduction and prevention of apoptosis, stimulation of angiogenesis, increase of blood flow and induction of transcription factors. In

  3. Non-imaging optics for LED-lighting

    NARCIS (Netherlands)

    Berg, van den J.B.; Castro, R.M.; Draisma, J.; Evers, J.H.M.; Hendriks, M.; Krehel, O.; Kryven, I.; Mora, K.; Szabó, B.T.; Zwiernik, P.W.; Boon, M.A.A.

    2013-01-01

    In this report, several methods are investigated to rapidly compute the light intensity function, either in the far field or on a finite-distance screen, of light emanating from a light fixture with a given shape. Different shapes are considered, namely polygonal and (piecewise) smooth. In the first

  4. Image-guided regularization level set evolution for MR image segmentation and bias field correction.

    Science.gov (United States)

    Wang, Lingfeng; Pan, Chunhong

    2014-01-01

    Magnetic resonance (MR) image segmentation is a crucial step in surgical and treatment planning. In this paper, we propose a level-set-based segmentation method for MR images with intensity inhomogeneous problem. To tackle the initialization sensitivity problem, we propose a new image-guided regularization to restrict the level set function. The maximum a posteriori inference is adopted to unify segmentation and bias field correction within a single framework. Under this framework, both the contour prior and the bias field prior are fully used. As a result, the image intensity inhomogeneity can be well solved. Extensive experiments are provided to evaluate the proposed method, showing significant improvements in both segmentation and bias field correction accuracies as compared with other state-of-the-art approaches. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. A web-based virtual lighting simulator

    Energy Technology Data Exchange (ETDEWEB)

    Papamichael, Konstantinos; Lai, Judy; Fuller, Daniel; Tariq, Tara

    2002-05-06

    This paper is about a web-based ''virtual lighting simulator,'' which is intended to allow architects and lighting designers to quickly assess the effect of key parameters on the daylighting and lighting performance in various space types. The virtual lighting simulator consists of a web-based interface that allows navigation through a large database of images and data, which were generated through parametric lighting simulations. At its current form, the virtual lighting simulator has two main modules, one for daylighting and one for electric lighting. The daylighting module includes images and data for a small office space, varying most key daylighting parameters, such as window size and orientation, glazing type, surface reflectance, sky conditions, time of the year, etc. The electric lighting module includes images and data for five space types (classroom, small office, large open office, warehouse and small retail), varying key lighting parameters, such as the electric lighting system, surface reflectance, dimming/switching, etc. The computed images include perspectives and plans and are displayed in various formats to support qualitative as well as quantitative assessment. The quantitative information is in the form of iso-contour lines superimposed on the images, as well as false color images and statistical information on work plane illuminance. The qualitative information includes images that are adjusted to account for the sensitivity and adaptation of the human eye. The paper also includes a section on the major technical issues and their resolution.

  6. Drug quantification in turbid media by fluorescence imaging combined with light-absorption correction using white Monte Carlo simulations

    DEFF Research Database (Denmark)

    Xie, Haiyan; Liu, Haichun; Svenmarker, Pontus

    2011-01-01

    Accurate quantification of photosensitizers is in many cases a critical issue in photodynamic therapy. As a noninvasive and sensitive tool, fluorescence imaging has attracted particular interest for quantification in pre-clinical research. However, due to the absorption of excitation and emission...... in vivo by the fluorescence imaging technique. In this paper we present a novel approach to compensate for the light absorption in homogeneous turbid media both for the excitation and emission light, utilizing time-resolved fluorescence white Monte Carlo simulations combined with the Beer-Lambert law......-absorption correction and absolute fluorophore concentrations. These results suggest that the technique potentially provides the means to quantify the fluorophore concentration from fluorescence images. © 2011 Society of Photo-Optical Instrumentation Engineers (SPIE)....

  7. General theory of light propagation and imaging through the atmosphere

    CERN Document Server

    McKechnie, T Stewart

    2016-01-01

    This book lays out a new, general theory of light propagation and imaging through Earth’s turbulent atmosphere. Current theory is based on the – now widely doubted – assumption of Kolmogorov turbulence. The new theory is based on a generalized atmosphere, the turbulence characteristics of which can be established, as needed, from readily measurable properties of point-object, or star, images. The pessimistic resolution predictions of Kolmogorov theory led to lax optical tolerance prescriptions for large ground-based astronomical telescopes which were widely adhered to in the 1970s and 1980s. Around 1990, however, it became clear that much better resolution was actually possible, and Kolmogorov tolerance prescriptions were promptly abandoned. Most large telescopes built before 1990 have had their optics upgraded (e.g., the UKIRT instrument) and now achieve, without adaptive optics (AO), almost an order of magnitude better resolution than before. As well as providing a more comprehensive and precise under...

  8. The importance of macro- versus microstructure in modulating light levels inside coral colonies

    DEFF Research Database (Denmark)

    Kaniewska, Paulina; Magnusson, Sveinn H.; Anthony, Ken R. N.

    2011-01-01

    Adjusting the light exposure and capture of their symbiotic photosynthetic dinoflagellates (genus Symbiodinium Freud.) is central to the success of reef-building corals (order Scleractinia) across high spatio-temporal variation in the light environment of coral reefs. We tested the hypothesis...... irradiances at the level of coral photosymbionts. Key index words: irradiance; morphology; photoacclimation; scale; scleractinian coral; Symbiodinium Abbreviations: a chl a, specific absorption coefficient of chl a; Ddn, diadinoxanthin; Dtn, diatoxanthin; GBR, Great Barrier Reef; GFP, green fluorescent...... that optical properties of tissues in some coral species can provide light management at the tissue scale comparable to light modulation by colony architecture in other species. We compared within-tissue scalar irradiance in two coral species from the same light habitat but with contrasting colony growth forms...

  9. DEM RECONSTRUCTION USING LIGHT FIELD AND BIDIRECTIONAL REFLECTANCE FUNCTION FROM MULTI-VIEW HIGH RESOLUTION SPATIAL IMAGES

    Directory of Open Access Journals (Sweden)

    F. de Vieilleville

    2016-06-01

    Full Text Available This paper presents a method for dense DSM reconstruction from high resolution, mono sensor, passive imagery, spatial panchromatic image sequence. The interest of our approach is four-fold. Firstly, we extend the core of light field approaches using an explicit BRDF model from the Image Synthesis community which is more realistic than the Lambertian model. The chosen model is the Cook-Torrance BRDF which enables us to model rough surfaces with specular effects using specific material parameters. Secondly, we extend light field approaches for non-pinhole sensors and non-rectilinear motion by using a proper geometric transformation on the image sequence. Thirdly, we produce a 3D volume cost embodying all the tested possible heights and filter it using simple methods such as Volume Cost Filtering or variational optimal methods. We have tested our method on a Pleiades image sequence on various locations with dense urban buildings and report encouraging results with respect to classic multi-label methods such as MIC-MAC, or more recent pipelines such as S2P. Last but not least, our method also produces maps of material parameters on the estimated points, allowing us to simplify building classification or road extraction.

  10. The x-ray light valve: A potentially low-cost, digital radiographic imaging system-concept and implementation considerations

    International Nuclear Information System (INIS)

    Webster, Christie Ann; Koprinarov, Ivaylo; Germann, Stephen; Rowlands, J. A.

    2008-01-01

    New x-ray radiographic systems based on large-area flat-panel technology have revolutionized our capability to produce digital x-ray images. However, these imagers are extraordinarily expensive compared to the systems they are replacing. Hence, there is a need for a low-cost digital imaging system for general applications in radiology. A novel potentially low-cost radiographic imaging system based on established technologies is proposed--the X-Ray Light Valve (XLV). This is a potentially high-quality digital x-ray detector made of a photoconducting layer and a liquid-crystal cell, physically coupled in a sandwich structure. Upon exposure to x rays, charge is collected on the surface of the photoconductor. This causes a change in the optical properties of the liquid-crystal cell and a visible image is generated. Subsequently, it is digitized by a scanned optical imager. The image formation is based on controlled modulation of light from an external source. The operation and practical implementation of the XLV system are described. The potential performance of the complete system and issues related to sensitivity, spatial resolution, noise, and speed are discussed. The feasibility of clinical use of an XLV device based on amorphous selenium (a-Se) as the photoconductor and a reflective electrically controlled birefringence cell is analyzed. The results of our analysis indicate that the XLV can potentially be adapted to a wide variety of radiographic tasks

  11. Convolutional Neural Network-Based Human Detection in Nighttime Images Using Visible Light Camera Sensors.

    Science.gov (United States)

    Kim, Jong Hyun; Hong, Hyung Gil; Park, Kang Ryoung

    2017-05-08

    Because intelligent surveillance systems have recently undergone rapid growth, research on accurately detecting humans in videos captured at a long distance is growing in importance. The existing research using visible light cameras has mainly focused on methods of human detection for daytime hours when there is outside light, but human detection during nighttime hours when there is no outside light is difficult. Thus, methods that employ additional near-infrared (NIR) illuminators and NIR cameras or thermal cameras have been used. However, in the case of NIR illuminators, there are limitations in terms of the illumination angle and distance. There are also difficulties because the illuminator power must be adaptively adjusted depending on whether the object is close or far away. In the case of thermal cameras, their cost is still high, which makes it difficult to install and use them in a variety of places. Because of this, research has been conducted on nighttime human detection using visible light cameras, but this has focused on objects at a short distance in an indoor environment or the use of video-based methods to capture multiple images and process them, which causes problems related to the increase in the processing time. To resolve these problems, this paper presents a method that uses a single image captured at night on a visible light camera to detect humans in a variety of environments based on a convolutional neural network. Experimental results using a self-constructed Dongguk night-time human detection database (DNHD-DB1) and two open databases (Korea advanced institute of science and technology (KAIST) and computer vision center (CVC) databases), as well as high-accuracy human detection in a variety of environments, show that the method has excellent performance compared to existing methods.

  12. Convolutional Neural Network-Based Human Detection in Nighttime Images Using Visible Light Camera Sensors

    Directory of Open Access Journals (Sweden)

    Jong Hyun Kim

    2017-05-01

    Full Text Available Because intelligent surveillance systems have recently undergone rapid growth, research on accurately detecting humans in videos captured at a long distance is growing in importance. The existing research using visible light cameras has mainly focused on methods of human detection for daytime hours when there is outside light, but human detection during nighttime hours when there is no outside light is difficult. Thus, methods that employ additional near-infrared (NIR illuminators and NIR cameras or thermal cameras have been used. However, in the case of NIR illuminators, there are limitations in terms of the illumination angle and distance. There are also difficulties because the illuminator power must be adaptively adjusted depending on whether the object is close or far away. In the case of thermal cameras, their cost is still high, which makes it difficult to install and use them in a variety of places. Because of this, research has been conducted on nighttime human detection using visible light cameras, but this has focused on objects at a short distance in an indoor environment or the use of video-based methods to capture multiple images and process them, which causes problems related to the increase in the processing time. To resolve these problems, this paper presents a method that uses a single image captured at night on a visible light camera to detect humans in a variety of environments based on a convolutional neural network. Experimental results using a self-constructed Dongguk night-time human detection database (DNHD-DB1 and two open databases (Korea advanced institute of science and technology (KAIST and computer vision center (CVC databases, as well as high-accuracy human detection in a variety of environments, show that the method has excellent performance compared to existing methods.

  13. Predictions for shepherding planets in scattered light images of debris disks

    International Nuclear Information System (INIS)

    Rodigas, Timothy J.; Hinz, Philip M.; Malhotra, Renu

    2014-01-01

    Planets can affect debris disk structure by creating gaps, sharp edges, warps, and other potentially observable signatures. However, there is currently no simple way for observers to deduce a disk-shepherding planet's properties from the observed features of the disk. Here we present a single equation that relates a shepherding planet's maximum mass to the debris ring's observed width in scattered light, along with a procedure to estimate the planet's eccentricity and minimum semimajor axis. We accomplish this by performing dynamical N-body simulations of model systems containing a star, a single planet, and an exterior disk of parent bodies and dust grains to determine the resulting debris disk properties over a wide range of input parameters. We find that the relationship between planet mass and debris disk width is linear, with increasing planet mass producing broader debris rings. We apply our methods to five imaged debris rings to constrain the putative planet masses and orbits in each system. Observers can use our empirically derived equation as a guide for future direct imaging searches for planets in debris disk systems. In the fortuitous case of an imaged planet orbiting interior to an imaged disk, the planet's maximum mass can be estimated independent of atmospheric models.

  14. Exquisite Nova Light Curves from the Solar Mass Ejection Imager (SMEI)

    Science.gov (United States)

    Hounsell, R.; Bode, M. F.; Hick, P. P.; Buffington, A.; Jackson, B. V.; Clover, J. M.; Shafter, A. W.; Darnley, M. J.; Mawson, N. R.; Steele, I. A.; Evans, A.; Eyres, S. P. S.; O'Brien, T. J.

    2010-11-01

    We present light curves of three classical novae (CNe; KT Eridani, V598 Puppis, V1280 Scorpii) and one recurrent nova (RS Ophiuchi) derived from data obtained by the Solar Mass Ejection Imager (SMEI) on board the Coriolis satellite. SMEI provides near complete skymap coverage with precision visible-light photometry at 102 minute cadence. The light curves derived from these skymaps offer unprecedented temporal resolution around, and especially before, maximum light, a phase of the eruption normally not covered by ground-based observations. They allow us to explore fundamental parameters of individual objects including the epoch of the initial explosion, the reality and duration of any pre-maximum halt (found in all three fast novae in our sample), the presence of secondary maxima, speed of decline of the initial light curve, plus precise timing of the onset of dust formation (in V1280 Sco) leading to estimation of the bolometric luminosity, white dwarf mass, and object distance. For KT Eri, Liverpool Telescope SkyCamT data confirm important features of the SMEI light curve and overall our results add weight to the proposed similarities of this object to recurrent rather than to CNe. In RS Oph, comparison with hard X-ray data from the 2006 outburst implies that the onset of the outburst coincides with extensive high-velocity mass loss. It is also noted that two of the four novae we have detected (V598 Pup and KT Eri) were only discovered by ground-based observers weeks or months after maximum light, yet these novae reached peak magnitudes of 3.46 and 5.42, respectively. This emphasizes the fact that many bright novae per year are still overlooked, particularly those of the very fast speed class. Coupled with its ability to observe novae in detail even when relatively close to the Sun in the sky, we estimate that as many as five novae per year may be detectable by SMEI.

  15. Setting up and running an advanced light microscopy and imaging facility.

    Science.gov (United States)

    Sánchez, Carlos; Muñoz, Ma Ángeles; Villalba, Maite; Labrador, Verónica; Díez-Guerra, F Javier

    2011-07-01

    During the last twenty years, interest in light microscopy and imaging techniques has grown in various fields, such as molecular and cellular biology, developmental biology, and neurobiology. In addition, the number of scientific articles and journals using these techniques is rapidly increasing. Nowadays, most research institutions require sophisticated microscopy systems to cover their investigation demands. In general, such instruments are too expensive and complex to be purchased and managed by a single laboratory or research group, so they have to be shared with other groups and supervised by specialized personnel. This is the reason why microscopy and imaging facilities are becoming so important at research institutions nowadays. In this unit, we have gathered and presented a number of issues and considerations from our own experience that we hope will be helpful when planning or setting up a new facility.

  16. Slow Images and Entangled Photons

    International Nuclear Information System (INIS)

    Swordy, Simon

    2007-01-01

    I will discuss some recent experiments using slow light and entangled photons. We recently showed that it was possible to map a two dimensional image onto very low light level signals, slow them down in a hot atomic vapor while preserving the amplitude and phase of the images. If time remains, I will discuss some of our recent work with time-energy entangled photons for quantum cryptography. We were able to show that we could have a measurable state space of over 1000 states for a single pair of entangled photons in fiber.

  17. Selections from 2017: Image Processing with AstroImageJ

    Science.gov (United States)

    Kohler, Susanna

    2017-12-01

    Editors note:In these last two weeks of 2017, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume in January.AstroImageJ: Image Processing and Photometric Extraction for Ultra-Precise Astronomical Light CurvesPublished January2017The AIJ image display. A wide range of astronomy specific image display options and image analysis tools are available from the menus, quick access icons, and interactive histogram. [Collins et al. 2017]Main takeaway:AstroImageJ is a new integrated software package presented in a publication led byKaren Collins(Vanderbilt University,Fisk University, andUniversity of Louisville). Itenables new users even at the level of undergraduate student, high school student, or amateur astronomer to quickly start processing, modeling, and plotting astronomical image data.Why its interesting:Science doesnt just happen the momenta telescope captures a picture of a distantobject. Instead, astronomical images must firstbe carefully processed to clean up thedata, and this data must then be systematically analyzed to learn about the objects within it. AstroImageJ as a GUI-driven, easily installed, public-domain tool is a uniquelyaccessible tool for thisprocessing and analysis, allowing even non-specialist users to explore and visualizeastronomical data.Some features ofAstroImageJ:(as reported by Astrobites)Image calibration:generate master flat, dark, and bias framesImage arithmetic:combineimages viasubtraction, addition, division, multiplication, etc.Stack editing:easily perform operations on a series of imagesImage stabilization and image alignment featuresPrecise coordinate converters:calculate Heliocentric and Barycentric Julian DatesWCS coordinates:determine precisely where atelescope was pointed for an image by PlateSolving using Astronomy.netMacro and plugin support:write your own macrosMulti-aperture photometry

  18. Azimuthal anisotropy of light extraction from photonic crystal light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Chun-Feng; Lu, T.C.; Wang, S.C. [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao-Tung University, Hsinchu 300, Taiwan (China); Chao, C.H.; Hsueh, H.T.; Wang, J.F.T.; Yeh, W.Y.; Chi, J.Y. [Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan (China); Kuo, H.C.

    2008-07-01

    Photonic crystal (PhC) light-emitting diodes (LEDs) exhibiting anisotropic light extraction have been investigated experimentally and theoretically. It is found that the anisotropic light extraction strongly depends on the lattice constant and orientation. Optical images of the anisotropy in the azimuthal direction are obtained using annular structure with triangular lattice. 6-fold symmetric light extraction patterns with varying number of petals are observed. More petals in multiple of 6 appear in the observed image with lattice constant increasing. This anisotropic behavior suggests a new means to optimize the PhC design of GaN LED for light extraction. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Simulation-Based Evaluation of Light Posts and Street Signs as 3-D Geolocation Targets in SAR Images

    Science.gov (United States)

    Auer, S.; Balss, U.

    2017-05-01

    The assignment of phase center positions (in 2D or 3D) derived from SAR data to physical object is challenging for many man-made structures such as buildings or bridges. In contrast, light poles and traffic signs are promising targets for tasks based on 3-D geolocation as they often show a prominent and spatially isolated appearance. For a detailed understanding of the nature of both targets, this paper presents results of a dedicated simulation case study, which is based on ray tracing methods (simulator RaySAR). For the first time, the appearance of the targets is analyzed in 2D (image plane) and 3D space (world coordinates of scene model) and reflecting surfaces are identified for related dominant image pixels. The case studies confirms the crucial impact of spatial resolution in the context of light poles and traffic signs and the appropriateness of light poles as target for 3-D geolocation in case of horizontal ground surfaces beneath.

  20. SIMULATION-BASED EVALUATION OF LIGHT POSTS AND STREET SIGNS AS 3-D GEOLOCATION TARGETS IN SAR IMAGES

    Directory of Open Access Journals (Sweden)

    S. Auer

    2017-05-01

    Full Text Available The assignment of phase center positions (in 2D or 3D derived from SAR data to physical object is challenging for many man-made structures such as buildings or bridges. In contrast, light poles and traffic signs are promising targets for tasks based on 3-D geolocation as they often show a prominent and spatially isolated appearance. For a detailed understanding of the nature of both targets, this paper presents results of a dedicated simulation case study, which is based on ray tracing methods (simulator RaySAR. For the first time, the appearance of the targets is analyzed in 2D (image plane and 3D space (world coordinates of scene model and reflecting surfaces are identified for related dominant image pixels. The case studies confirms the crucial impact of spatial resolution in the context of light poles and traffic signs and the appropriateness of light poles as target for 3-D geolocation in case of horizontal ground surfaces beneath.

  1. Evaluation of the Effect of Light and Scanning Time Delay on The Image Quality of Intra Oral Photostimulable Phosphor Plates.

    Science.gov (United States)

    Eskandarloo, Amir; Yousefi, Arman; Soheili, Setareh; Ghazikhanloo, Karim; Amini, Payam; Mohammadpoor, Haniyeh

    2017-01-01

    Nowadays, digital radiography is widely used in dental practice. One of the most common types is Photo Stimulated Phosphor Plate (PSP). The aims of this experimental study were to evaluate the impacts of different combinations of storage conditions and varying delays in reading of digital images captured using PSPs. Standardized images of a step wedges were obtained using PSPs from the Digora digital systems. Plates were exposed and immediately scanned to produce the baseline gold standard. The plates were re-exposed and stored in four different storage conditions: white light, yellow light, natural light environment and dark room, then scanned after 10 and 30 minutes and 4 and 8 hours. Objective analysis was conducted by density measurements and the data were analyzed statistically using GEE test. Subjective analysis was performed by two oral and maxillofacial radiologists and the results were analyzed using McNemar's test. The results from GEE analysis show that in the natural light environment, the densities in 10 minutes did not differ from the baseline. The mean densities decreased significantly during the time in all environments. The mean densities in step 2 for the dark room environment decreased with a slighter slope in comparison to yellow environment significantly. PSP images showed significant decrease in the density in plates scanned for 10 minutes or longer after exposure which may not be detected clinically. The yellow light environment had a different impact on the quality of PSP images. The spatial resolution did not change significantly with time.

  2. The effect of base image window level selection on the dimensional measurement accuracy of resultant three-dimensional image displays

    International Nuclear Information System (INIS)

    Kurmis, A.P.; Hearn, T.C.; Reynolds, K.J.

    2003-01-01

    Purpose: The aim of this study was to determine the effect of base image window level selection on direct linear measurement of knee structures displayed using new magnetic resonance (MR)-based three-dimensional reconstructed computer imaging techniques. Methods: A prospective comparative study was performed using a series of three-dimensional knee images, generated from conventional MR imaging (MRI) sections. Thirty distinct anatomical structural features were identified within the image series of which repeated measurements were compared at 10 different window grey scale levels. Results: Statistical analysis demonstrated an excellent raw correlation between measurements and suggested no significant difference between measurements made at each of the 10 window level settings (P>0.05). Conclusions: The findings of this study suggest that unlike conventional MR or CT applications, grey scale window level selection at the time of imaging does not significantly affect the visual quality of resultant three-dimensional reconstructed images and hence the accuracy of subsequent direct linear measurement. The diagnostic potential of clinical progression from routine two-dimensional to advanced three-dimensional reconstructed imaging techniques may therefore be less likely to be degraded by inappropriate MR technician image windowing during the capturing of image series

  3. Environment Adaptive Lighting Systems for Smart Homes

    Directory of Open Access Journals (Sweden)

    Cem Mehmet Catalbas

    2017-09-01

    Full Text Available In this work, an application of adaptive lighting system is proposed for smart homes. In this paper, it is suggested that, an intelligent lighting system with outdoor adaptation can be realized via a real fisheye image. During the implementation of the proposed method, the fuzzy c-means method, which is a commonly used data clustering method, has been used. The input image is divided into three different regions according to its brightness levels. Then, the RGB image is converted to CIE 1931 XYZ color space; and the obtained XYZ values are converted to x and y values. The parameters of x and y values are shown in CIE Chromaticity Diagram for different regions in the sky. Thereafter, the coordinate values are converted to Correlated Color Temperature by using two different formulas. Additionally, the conversion results are examined with respect to actual and estimated CCT values.

  4. Optimizing Low Light Level Imaging Techniques and Sensor Design Parameters using CCD Digital Cameras for Potential NASA Earth Science Research aboard a Small Satellite or ISS

    Data.gov (United States)

    National Aeronautics and Space Administration — For this project, the potential of using state-of-the-art aerial digital framing cameras that have time delayed integration (TDI) to acquire useful low light level...

  5. SU-F-T-486: A Simple Approach to Performing Light Versus Radiation Field Coincidence Quality Assurance Using An Electronic Portal Imaging Device (EPID)

    Energy Technology Data Exchange (ETDEWEB)

    Herchko, S; Ding, G [Vanderbilt University, Nashville, TN (United States)

    2016-06-15

    Purpose: To develop an accurate, straightforward, and user-independent method for performing light versus radiation field coincidence quality assurance utilizing EPID images, a simple phantom made of readily-accessible materials, and a free software program. Methods: A simple phantom consisting of a blocking tray, graph paper, and high-density wire was constructed. The phantom was used to accurately set the size of a desired light field and imaged on the electronic portal imaging device (EPID). A macro written for use in ImageJ, a free image processing software, was then use to determine the radiation field size utilizing the high density wires on the phantom for a pixel to distance calibration. The macro also performs an analysis on the measured radiation field utilizing the tolerances recommended in the AAPM Task Group #142. To verify the accuracy of this method, radiochromic film was used to qualitatively demonstrate agreement between the film and EPID results, and an additional ImageJ macro was used to quantitatively compare the radiation field sizes measured both with the EPID and film images. Results: The results of this technique were benchmarked against film measurements, which have been the gold standard for testing light versus radiation field coincidence. The agreement between this method and film measurements were within 0.5 mm. Conclusion: Due to the operator dependency associated with tracing light fields and measuring radiation fields by hand when using film, this method allows for a more accurate comparison between the light and radiation fields with minimal operator dependency. Removing the need for radiographic or radiochromic film also eliminates a reoccurring cost and increases procedural efficiency.

  6. SU-F-T-486: A Simple Approach to Performing Light Versus Radiation Field Coincidence Quality Assurance Using An Electronic Portal Imaging Device (EPID)

    International Nuclear Information System (INIS)

    Herchko, S; Ding, G

    2016-01-01

    Purpose: To develop an accurate, straightforward, and user-independent method for performing light versus radiation field coincidence quality assurance utilizing EPID images, a simple phantom made of readily-accessible materials, and a free software program. Methods: A simple phantom consisting of a blocking tray, graph paper, and high-density wire was constructed. The phantom was used to accurately set the size of a desired light field and imaged on the electronic portal imaging device (EPID). A macro written for use in ImageJ, a free image processing software, was then use to determine the radiation field size utilizing the high density wires on the phantom for a pixel to distance calibration. The macro also performs an analysis on the measured radiation field utilizing the tolerances recommended in the AAPM Task Group #142. To verify the accuracy of this method, radiochromic film was used to qualitatively demonstrate agreement between the film and EPID results, and an additional ImageJ macro was used to quantitatively compare the radiation field sizes measured both with the EPID and film images. Results: The results of this technique were benchmarked against film measurements, which have been the gold standard for testing light versus radiation field coincidence. The agreement between this method and film measurements were within 0.5 mm. Conclusion: Due to the operator dependency associated with tracing light fields and measuring radiation fields by hand when using film, this method allows for a more accurate comparison between the light and radiation fields with minimal operator dependency. Removing the need for radiographic or radiochromic film also eliminates a reoccurring cost and increases procedural efficiency.

  7. Improving NIR snow pit stratigraphy observations by introducing a controlled NIR light source

    Science.gov (United States)

    Dean, J.; Marshall, H.; Rutter, N.; Karlson, A.

    2013-12-01

    Near-infrared (NIR) photography in a prepared snow pit measures mm-/grain-scale variations in snow structure, as reflectivity is strongly dependent on microstructure and grain size at the NIR wavelengths. We explore using a controlled NIR light source to maximize signal to noise ratio and provide uniform incident, diffuse light on the snow pit wall. NIR light fired from the flash is diffused across and reflected by an umbrella onto the snow pit; the lens filter transmits NIR light onto the spectrum-modified sensor of the DSLR camera. Lenses are designed to refract visible light properly, not NIR light, so there must be a correction applied for the subsequent NIR bright spot. To avoid interpolation and debayering algorithms automatically performed by programs like Adobe's Photoshop on the images, the raw data are analyzed directly in MATLAB. NIR image data show a doubling of the amount of light collected in the same time for flash over ambient lighting. Transitions across layer boundaries in the flash-lit image are detailed by higher camera intensity values than ambient-lit images. Curves plotted using median intensity at each depth, normalized to the average profile intensity, show a separation between flash- and ambient-lit images in the upper 10-15 cm; the ambient-lit image curve asymptotically approaches the level of the flash-lit image curve below 15cm. We hypothesize that the difference is caused by additional ambient light penetrating the upper 10-15 cm of the snowpack from above and transmitting through the wall of the snow pit. This indicates that combining NIR ambient and flash photography could be a powerful technique for studying penetration depth of radiation as a function of microstructure and grain size. The NIR flash images do not increase the relative contrast at layer boundaries; however, the flash more than doubles the amount of recorded light and controls layer noise as well as layer boundary transition noise.

  8. White-light full-field OCT resolution improvement by image sensor colour balance adjustment: numerical simulation

    International Nuclear Information System (INIS)

    Kalyanov, A L; Lychagov, V V; Ryabukho, V P; Smirnov, I V

    2012-01-01

    The possibility of improving white-light full-field optical coherence tomography (OCT) resolution by image sensor colour balance tuning is shown numerically. We calculated the full-width at half-maximum (FWHM) of a coherence pulse registered by a silicon colour image sensor under various colour balance settings. The calculations were made for both a halogen lamp and white LED sources. The results show that the interference pulse width can be reduced by the proper choice of colour balance coefficients. The reduction is up to 18%, as compared with a colour image sensor with regular settings, and up to 20%, as compared with a monochrome sensor. (paper)

  9. A new level set model for cell image segmentation

    Science.gov (United States)

    Ma, Jing-Feng; Hou, Kai; Bao, Shang-Lian; Chen, Chun

    2011-02-01

    In this paper we first determine three phases of cell images: background, cytoplasm and nucleolus according to the general physical characteristics of cell images, and then develop a variational model, based on these characteristics, to segment nucleolus and cytoplasm from their relatively complicated backgrounds. In the meantime, the preprocessing obtained information of cell images using the OTSU algorithm is used to initialize the level set function in the model, which can speed up the segmentation and present satisfactory results in cell image processing.

  10. Effect of blood glucose level on 18F-FDG PET/CT imaging

    International Nuclear Information System (INIS)

    Tan Haibo; Lin Xiangtong; Guan Yihui; Zhao Jun; Zuo Chuantao; Hua Fengchun; Tang Wenying

    2008-01-01

    Objective: The aim of this study was to investigate the effect of blood glucose level on the image quality of 18 F-fluorodeoxyglucose (FDG) PET/CT imaging. Methods: Eighty patients referred to the authors' department for routine whole-body 18 F-FDG PET/CT check up were recruited into this study. The patients were classified into 9 groups according to their blood glucose level: normal group avg and SUV max ) of liver on different slices. SPSS 12.0 was used to analyse the data. Results: (1) There were significant differences among the 9 groups in image quality scores and image noises (all P avg and SUV max : 0.60 and 0.33, P<0.05). Conclusions: The higher the blood glucose level, the worse the image quality. When the blood glucose level is more than or equal to 12.0 mmol/L, the image quality will significantly degrade. (authors)

  11. Uniformity of LED light illumination in application to direct imaging lithography

    Science.gov (United States)

    Huang, Ting-Ming; Chang, Shenq-Tsong; Tsay, Ho-Lin; Hsu, Ming-Ying; Chen, Fong-Zhi

    2016-09-01

    Direct imaging has widely applied in lithography for a long time because of its simplicity and easy-maintenance. Although this method has limitation of lithography resolution, it is still adopted in industries. Uniformity of UV irradiance for a designed area is an important requirement. While mercury lamps were used as the light source in the early stage, LEDs have drawn a lot of attention for consideration from several aspects. Although LED has better and better performance, arrays of LEDs are required to obtain desired irradiance because of limitation of brightness for a single LED. Several effects are considered that affect the uniformity of UV irradiance such as alignment of optics, temperature of each LED, performance of each LED due to production uniformity, and pointing of LED module. Effects of these factors are considered to study the uniformity of LED Light Illumination. Numerical analysis is performed by assuming a serious of control factors to have a better understanding of each factor.

  12. Resonant imaging of carotenoid pigments in the human retina

    Science.gov (United States)

    Gellermann, Werner; Emakov, Igor V.; McClane, Robert W.

    2002-06-01

    We have generated high spatial resolution images showing the distribution of carotenoid macular pigments in the human retina using Raman spectroscopy. A low level of macular pigments is associated with an increased risk of developing age-related macular degeneration, a leading cause of irreversible blindness. Using excised human eyecups and resonant excitation of the pigment molecules with narrow bandwidth blue light from a mercury arc lamp, we record Raman images originating from the carbon-carbon double bond stretch vibrations of lutein and zeaxanthin, the carotenoids comprising human macular pigments. Our Raman images reveal significant differences among subjects, both in regard to absolute levels as well as spatial distribution within the macula. Since the light levels used to obtain these images are well below established safety limits, this technique holds promise for developing a rapid screening diagnostic in large populations at risk for vision loss from age-related macular degeneration.

  13. Assessing Light Pollution in China Based on Nighttime Light Imagery

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    2017-02-01

    Full Text Available Rapid urbanization and economic development inevitably lead to light pollution, which has become a universal environmental issue. In order to reveal the spatiotemporal patterns and evolvement rules of light pollution in China, images from 1992 to 2012 were selected from the Defense Meteorological Satellite Program Operational Linescan System (DMSP/OLS and systematically corrected to ensure consistency. Furthermore, we employed a linear regression trend method and nighttime light index method to demonstrate China’s light pollution characteristics across national, regional, and provincial scales, respectively. We found that: (1 China’s light pollution expanded significantly in provincial capital cities over the past 21 years and hot-spots of light pollution were located in the eastern coastal region. The Yangtze River Delta, Pearl River Delta, and Beijing–Tianjin–Hebei regions have formed light pollution stretch areas; (2 China’s light pollution was mainly focused in areas of north China (NC and east China (EC, which, together, accounted for over 50% of the light pollution for the whole country. The fastest growth of light pollution was observed in northwest China (NWC, followed by southwest China (SWC. The growth rates of east China (EC, central China (CC, and northeast China (NEC were stable, while those of north China (NC and south China (SC declined; (3 Light pollution at the provincial scale was mainly located in the Shandong, Guangdong, and Hebei provinces, whereas the fastest growth of light pollution was in Tibet and Hainan. However, light pollution levels in the developed provinces (Hong Kong, Macao, Shanghai, and Tianjin were higher than those of the undeveloped provinces. Similarly, the light pollution heterogeneities of Taiwan, Beijing, and Shanghai were higher than those of undeveloped western provinces.

  14. Texture Feature Analysis for Different Resolution Level of Kidney Ultrasound Images

    Science.gov (United States)

    Kairuddin, Wan Nur Hafsha Wan; Mahmud, Wan Mahani Hafizah Wan

    2017-08-01

    Image feature extraction is a technique to identify the characteristic of the image. The objective of this work is to discover the texture features that best describe a tissue characteristic of a healthy kidney from ultrasound (US) image. Three ultrasound machines that have different specifications are used in order to get a different quality (different resolution) of the image. Initially, the acquired images are pre-processed to de-noise the speckle to ensure the image preserve the pixels in a region of interest (ROI) for further extraction. Gaussian Low- pass Filter is chosen as the filtering method in this work. 150 of enhanced images then are segmented by creating a foreground and background of image where the mask is created to eliminate some unwanted intensity values. Statistical based texture features method is used namely Intensity Histogram (IH), Gray-Level Co-Occurance Matrix (GLCM) and Gray-level run-length matrix (GLRLM).This method is depends on the spatial distribution of intensity values or gray levels in the kidney region. By using One-Way ANOVA in SPSS, the result indicated that three features (Contrast, Difference Variance and Inverse Difference Moment Normalized) from GLCM are not statistically significant; this concludes that these three features describe a healthy kidney characteristics regardless of the ultrasound image quality.

  15. Photobleaching effect in image fiber

    International Nuclear Information System (INIS)

    Hayashi, Shotaro; Wada, Yukio; Chigusa, Yoshiki; Fujiwara, Kunio; Hattori, Yasuji.

    1985-01-01

    The photobleaching effect in two types of image fibers is investigated using various light sources, light intensities, radiation dose rates and environmental temperatures. It is shown that the use of a xenon lamp, He-Cd laser or deuterium lamp can cause the photobleaching effect on the induced loss in an image fiber in the ultraviolet region. Of these light sources, a xenon lamp is found to have the greatest effect. This effectiveness appears to arise from the fact that this light source possesses a spectrum over the range from 0.3 to 0.36 μm. It is also revealed that when an image fiber is used for spectroscopic analysis under irradiation of gamma rays at a dose rate of 300 R/h, the available period of the fiber can be increase by 4 - 8 times with the aid of the photobleaching effect caused by a xenon lamp. In addition, the photobleaching effect is found to be dependent on temperature. It is inferred that this temperature dependence occur because electrons first excited to a level by the light energy tend to be further excited more easily at higher temperatures. (Nogami, K.)

  16. Bio- and chemiluminescence imaging in analytical chemistry

    International Nuclear Information System (INIS)

    Roda, Aldo; Guardigli, Massimo; Pasini, Patrizia; Mirasoli, Mara; Michelini, Elisa; Musiani, Monica

    2005-01-01

    Bio- and chemiluminescence imaging techniques combine the high sensitivity of bio- and chemiluminescence detection with the ability of current light imaging devices to localize and quantify light emission down to the single-photon level. These techniques have been successfully exploited for the development of sensitive analytical methods relying on the evaluation of the spatial distribution of the light emitted from a target sample. In this paper, we report on recent applications of bio- and chemiluminescence imaging for in vitro and in vivo assays, including: quantitative assays performed in various analytical formats, such as microtiter plates, microarrays and miniaturized analytical devices, used in the pharmaceutical, clinical, diagnostic and environmental fields; luminescence imaging microscopy based on enzymatic, immunohistochemical and in situ hybridization reactions for the localization of metabolites, enzymes, antigens and gene sequences in cells and tissues; whole-body luminescence imaging in live animals for evaluating biological and pathological processes and for pharmacological studies

  17. Traffic analysis and control using image processing

    Science.gov (United States)

    Senthilkumar, K.; Ellappan, Vijayan; Arun, A. R.

    2017-11-01

    This paper shows the work on traffic analysis and control till date. It shows an approach to regulate traffic the use of image processing and MATLAB systems. This concept uses computational images that are to be compared with original images of the street taken in order to determine the traffic level percentage and set the timing for the traffic signal accordingly which are used to reduce the traffic stoppage on traffic lights. They concept proposes to solve real life scenarios in the streets, thus enriching the traffic lights by adding image receivers like HD cameras and image processors. The input is then imported into MATLAB to be used. as a method for calculating the traffic on roads. Their results would be computed in order to adjust the traffic light timings on a particular street, and also with respect to other similar proposals but with the added value of solving a real, big instance.

  18. Correction of motion artefacts and pseudo colour visualization of multispectral light scattering images for optical diagnosis of rheumatoid arthritis

    Science.gov (United States)

    Minet, Olaf; Scheibe, Patrick; Beuthan, Jürgen; Zabarylo, Urszula

    2010-02-01

    State-of-the-art image processing methods offer new possibilities for diagnosing diseases using scattered light. The optical diagnosis of rheumatism is taken as an example to show that the diagnostic sensitivity can be improved using overlapped pseudo-coloured images of different wavelengths, provided that multispectral images are recorded to compensate for any motion related artefacts which occur during examination.

  19. Image gently, step lightly: increasing radiation dose awareness in pediatric interventions through an international social marketing campaign.

    Science.gov (United States)

    Sidhu, Manrita K; Goske, Marilyn J; Coley, Brian J; Connolly, Bairbre; Racadio, John; Yoshizumi, Terry T; Utley, Tara; Strauss, Keith J

    2009-09-01

    In the past several decades, advances in imaging and interventional techniques have been accompanied by an increase in medical radiation dose to the public. Radiation exposure is even more important in children, who are more sensitive to radiation and have a longer lifespan during which effects may manifest. To address radiation safety in pediatric computed tomography, in 2008 the Alliance for Radiation Safety in Pediatric Imaging launched an international social marketing campaign entitled Image Gently. This article describes the next phase of the Image Gently campaign, entitled Step Lightly, which focuses on radiation safety in pediatric interventional radiology.

  20. Combined application of dynamic light scattering imaging and fluorescence intravital microscopy in vascular biology

    International Nuclear Information System (INIS)

    Kalchenko, V; Harmelin, A; Ziv, K; Addadi, Y; Madar-Balakirski, N; Neeman, M; Meglinski, I

    2010-01-01

    The dynamic light scattering imaging (DLSI) system combined with the conventional fluorescence intravital microscope (FIM) has been applied for the examination of blood and lymph vessels in the mouse ear in vivo. While the CCD camera can be shared by both techniques the combined application of DLSI and FIM allows rapid switching between the modalities. In current study temporal speckles fluctuations are used for rendering blood vessels structure and monitoring blood perfusion with the higher spatial resolution, whereas FIM provides the images of lymphatic vessels. The results clearly demonstrate that combined application of DLSI and FIM approaches provides synchronic in vivo images of blood and lymph vessels with higher contrast and specificity. The use of this new dual-modal diagnostic system is particularly important and has a great potential to significantly expand the capabilities of vascular diagnostics providing synchronic in vivo images of blood and lymph vessels

  1. Direct imaging of phase objects enables conventional deconvolution in bright field light microscopy.

    Directory of Open Access Journals (Sweden)

    Carmen Noemí Hernández Candia

    Full Text Available In transmitted optical microscopy, absorption structure and phase structure of the specimen determine the three-dimensional intensity distribution of the image. The elementary impulse responses of the bright field microscope therefore consist of separate absorptive and phase components, precluding general application of linear, conventional deconvolution processing methods to improve image contrast and resolution. However, conventional deconvolution can be applied in the case of pure phase (or pure absorptive objects if the corresponding phase (or absorptive impulse responses of the microscope are known. In this work, we present direct measurements of the phase point- and line-spread functions of a high-aperture microscope operating in transmitted bright field. Polystyrene nanoparticles and microtubules (biological polymer filaments serve as the pure phase point and line objects, respectively, that are imaged with high contrast and low noise using standard microscopy plus digital image processing. Our experimental results agree with a proposed model for the response functions, and confirm previous theoretical predictions. Finally, we use the measured phase point-spread function to apply conventional deconvolution on the bright field images of living, unstained bacteria, resulting in improved definition of cell boundaries and sub-cellular features. These developments demonstrate practical application of standard restoration methods to improve imaging of phase objects such as cells in transmitted light microscopy.

  2. DEEP HST /STIS VISIBLE-LIGHT IMAGING OF DEBRIS SYSTEMS AROUND SOLAR ANALOG HOSTS

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Glenn; Gaspar, Andras [Steward Observatory and the Department of Astronomy, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Grady, Carol A. [Eureka Scientific, 2452 Delmer, Suite 100, Oakland, CA 96002 (United States); Stark, Christopher C.; Kuchner, Marc J. [NASA/Goddard Space Flight Center, Exoplanets and Stellar Astrophysics Laboratory, Code 667, Greenbelt, MD 20771 (United States); Carson, Joseph [Department of Physics and Astronomy, College of Charleston, 66 George Street, Charleston, SC 29424 (United States); Debes, John H.; Hines, Dean C.; Perrin, Marshall [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Henning, Thomas [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117, Heidelberg (Germany); Jang-Condell, Hannah [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Rodigas, Timothy J. [Department of Terrestrial Magnetism, Carnegie Institute of Washington, 5241 Branch Road, NW, Washington, DC 20015 (United States); Tamura, Motohide [The University of Tokyo, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588 (Japan); Wisniewski, John P., E-mail: gschneider@as.arizona.edu [H. L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States)

    2016-09-01

    We present new Hubble Space Telescope observations of three a priori known starlight-scattering circumstellar debris systems (CDSs) viewed at intermediate inclinations around nearby close-solar analog stars: HD 207129, HD 202628, and HD 202917. Each of these CDSs possesses ring-like components that are more massive analogs of our solar system's Edgeworth–Kuiper Belt. These systems were chosen for follow-up observations to provide imaging with higher fidelity and better sensitivity for the sparse sample of solar-analog CDSs that range over two decades in systemic ages, with HD 202628 and HD 207129 (both ∼2.3 Gyr) currently the oldest CDSs imaged in visible or near-IR light. These deep (10–14 ks) observations, made with six-roll point-spread-function template visible-light coronagraphy using the Space Telescope Imaging Spectrograph, were designed to better reveal their angularly large debris rings of diffuse/low surface brightness, and for all targets probe their exo-ring environments for starlight-scattering materials that present observational challenges for current ground-based facilities and instruments. Contemporaneously also observing with a narrower occulter position, these observations additionally probe the CDS endo-ring environments that are seen to be relatively devoid of scatterers. We discuss the morphological, geometrical, and photometric properties of these CDSs also in the context of other CDSs hosted by FGK stars that we have previously imaged as a homogeneously observed ensemble. From this combined sample we report a general decay in quiescent-disk F {sub disk}/ F {sub star} optical brightness ∼ t {sup −0.8}, similar to what is seen at thermal IR wavelengths, and CDSs with a significant diversity in scattering phase asymmetries, and spatial distributions of their starlight-scattering grains.

  3. A New Method for Automated Identification and Morphometry of Myelinated Fibers Through Light Microscopy Image Analysis

    OpenAIRE

    Novas, Romulo Bourget; Fazan, Valeria Paula Sassoli; Felipe, Joaquim Cezar

    2015-01-01

    Nerve morphometry is known to produce relevant information for the evaluation of several phenomena, such as nerve repair, regeneration, implant, transplant, aging, and different human neuropathies. Manual morphometry is laborious, tedious, time consuming, and subject to many sources of error. Therefore, in this paper, we propose a new method for the automated morphometry of myelinated fibers in cross-section light microscopy images. Images from the recurrent laryngeal nerve of adult rats and ...

  4. Efficiency of light energy used by leaves situated in different levels of a sweet pepper canopy

    NARCIS (Netherlands)

    Dueck, T.A.; Grashoff, C.; Broekhuijsen, A.G.M.; Marcelis, L.F.M.

    2006-01-01

    In order to make the most use of the available light in glasshouse crops, measurements of light penetration, leaf photosynthesis, respiration and transpiration were performed at five levels in a sweet paper canopy at two commercial farms, from July to November 2004. Light response curves of leaf

  5. Fluid-fluid level on MR image: significance in Musculoskeletal diseases

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hye Won; Lee, Kyung Won [Seoul Naitonal University, Seoul (Korea, Republic of). Coll. of Medicine; Song, Chi Sung [Seoul City Boramae Hospital, Seoul (Korea, Republic of); Han, Sang Wook; Kang, Heung Sik [Seoul Naitonal University, Seoul (Korea, Republic of). Coll. of Medicine

    1998-01-01

    To evaluate the frequency, number and signal intensity of fluid-fluid levels of musculoskeletal diseases on MR images, and to determine the usefulness of this information for the differentiation of musculoskeletal diseases. MR images revealed fluid-fluid levels in the following diseases : giant cell tumor(6), telangiectatic osteosarcoma(4), aneurysmal bone cyst(3), synovial sarcoma(3), chondroblastoma(2), soft tissue tuberculous abscess(2), hematoma(2), hemangioma (1), neurilemmoma(1), metastasis(1), malignant fibrous histiocytoma(1), bursitis(1), pyogenic abscess(1), and epidermoid inclusion cyst(1). Fourteen benign tumors and ten malignant, three abscesses, and the epidermoid inclusion cyst showed only one fluid-fluid level in a unilocular cyst. On T1-weighted images, the signal intensities of fluid varied, but on T2-weighted images, superior layers were in most cases more hyperintense than inferior layers. Because fluid-fluid layers are a nonspecific finding, it is difficult to specifically diagnose each disease according to the number of fluid-fluid levels or signal intensity of fluid. In spite of the nonspecificity of fluid-fluid levels, they were frequently seen in cases of giant cell tumor, telangiectatic osteosarcoma, aneurysmal bone cycle, and synovial sarcoma. Nontumorous diseases such abscesses and hematomas also demonstrated this finding. (author). 11 refs., 1 tab., 4 figs.

  6. Fluid-fluid level on MR image: significance in Musculoskeletal diseases

    International Nuclear Information System (INIS)

    Chung, Hye Won; Lee, Kyung Won; Han, Sang Wook; Kang, Heung Sik

    1998-01-01

    To evaluate the frequency, number and signal intensity of fluid-fluid levels of musculoskeletal diseases on MR images, and to determine the usefulness of this information for the differentiation of musculoskeletal diseases. MR images revealed fluid-fluid levels in the following diseases : giant cell tumor(6), telangiectatic osteosarcoma(4), aneurysmal bone cyst(3), synovial sarcoma(3), chondroblastoma(2), soft tissue tuberculous abscess(2), hematoma(2), hemangioma (1), neurilemmoma(1), metastasis(1), malignant fibrous histiocytoma(1), bursitis(1), pyogenic abscess(1), and epidermoid inclusion cyst(1). Fourteen benign tumors and ten malignant, three abscesses, and the epidermoid inclusion cyst showed only one fluid-fluid level in a unilocular cyst. On T1-weighted images, the signal intensities of fluid varied, but on T2-weighted images, superior layers were in most cases more hyperintense than inferior layers. Because fluid-fluid layers are a nonspecific finding, it is difficult to specifically diagnose each disease according to the number of fluid-fluid levels or signal intensity of fluid. In spite of the nonspecificity of fluid-fluid levels, they were frequently seen in cases of giant cell tumor, telangiectatic osteosarcoma, aneurysmal bone cycle, and synovial sarcoma. Nontumorous diseases such abscesses and hematomas also demonstrated this finding. (author). 11 refs., 1 tab., 4 figs

  7. Light scattering reviews 8 radiative transfer and light scattering

    CERN Document Server

    Kokhanovsky, Alexander A

    2013-01-01

    Light scattering review (vol 8) is aimed at the presentation of recent advances in radiative transfer and light scattering optics. The topics to be covered include: scattering of light by irregularly shaped particles suspended in atmosphere (dust, ice crystals), light scattering by particles much larger as compared the wavelength of incident radiation, atmospheric radiative forcing, astrophysical radiative transfer, radiative transfer and optical imaging in biological media, radiative transfer of polarized light, numerical aspects of radiative transfer.

  8. Tile-Level Annotation of Satellite Images Using Multi-Level Max-Margin Discriminative Random Field

    Directory of Open Access Journals (Sweden)

    Hong Sun

    2013-05-01

    Full Text Available This paper proposes a multi-level max-margin discriminative analysis (M3DA framework, which takes both coarse and fine semantics into consideration, for the annotation of high-resolution satellite images. In order to generate more discriminative topic-level features, the M3DA uses the maximum entropy discrimination latent Dirichlet Allocation (MedLDA model. Moreover, for improving the spatial coherence of visual words neglected by M3DA, conditional random field (CRF is employed to optimize the soft label field composed of multiple label posteriors. The framework of M3DA enables one to combine word-level features (generated by support vector machines and topic-level features (generated by MedLDA via the bag-of-words representation. The experimental results on high-resolution satellite images have demonstrated that, using the proposed method can not only obtain suitable semantic interpretation, but also improve the annotation performance by taking into account the multi-level semantics and the contextual information.

  9. Lighting.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1992-09-01

    Since lighting accounts for about one-third of the energy used in commercial buildings, there is opportunity to conserve. There are two ways to reduce lighting energy use: modify lighting systems so that they used less electricity and/or reduce the number of hours the lights are used. This booklet presents a number of ways to do both. Topics covered include: reassessing lighting levels, reducing lighting levels, increasing bulb & fixture efficiency, using controls to regulate lighting, and taking advantage of daylight.

  10. The performance of photon counting imaging with a Geiger mode silicon avalanche photodiode

    International Nuclear Information System (INIS)

    Qu, Hui-Ming; Zhang, Yi-Fan; Ji, Zhong-Jie; Chen, Qian

    2013-01-01

    In principle, photon counting imaging can detect a photon. With the development of low-level-light image intensifier techniques and low-level-light detection devices, photon counting imaging can now detect photon images under extremely low illumination. Based on a Geiger mode silicon avalanche photodiode single photon counter, an experimental system for photon counting imaging was built through two-dimensional scanning of a SPAD (single photon avalanche diode) detector. The feasibility of the imaging platform was validated experimentally. Two images with different characteristics, namely, the USAF 1951 resolution test panel and the image of Lena, were chosen to evaluate the imaging performance of the experimental system. The results were compared and analysed. The imaging properties under various illumination and scanning steps were studied. The lowest illumination limit of the SPAD photon counting imaging was determined. (letter)

  11. Imaging and modeling of collagen architecture in living tissue with polarized light transfer (Conference Presentation)

    Science.gov (United States)

    Ramella-Roman, Jessica C.; Stoff, Susan; Chue-Sang, Joseph; Bai, Yuqiang

    2016-03-01

    The extra-cellular space in connective tissue of animals and humans alike is comprised in large part of collagen. Monitoring of collagen arrangement and cross-linking has been utilized to diagnose a variety of medical conditions and guide surgical intervention. For example, collagen monitoring is useful in the assessment and treatment of cervical cancer, skin cancer, myocardial infarction, and non-arteritic anterior ischemic optic neuropathy. We have developed a suite of tools and models based on polarized light transfer for the assessment of collagen presence, cross-linking, and orientation in living tissue. Here we will present some example of such approach applied to the human cervix. We will illustrate a novel Mueller Matrix (MM) imaging system for the study of cervical tissue; furthermore we will show how our model of polarized light transfer through cervical tissue compares to the experimental findings. Finally we will show validation of the methodology through histological results and Second Harmonic imaging microscopy.

  12. A novel imaging technique for measuring kinematics of light-weight flexible structures

    Energy Technology Data Exchange (ETDEWEB)

    Zakaria, Mohamed Y., E-mail: zakaria@vt.edu [Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA and Department of Aerospace Engineering, Military Technical College, Cairo 11241 (Egypt); Eliethy, Ahmed S. [Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627 (United States); Canfield, Robert A. [Department of Aerospace and Ocean Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (United States); Hajj, Muhammad R. [Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (United States)

    2016-07-15

    A new imaging algorithm is proposed to capture the kinematics of flexible, thin, light structures including frequencies and motion amplitudes for real time analysis. The studied case is a thin flexible beam that is preset at different angles of attack in a wind tunnel. As the angle of attack is increased beyond a critical value, the beam was observed to undergo a static deflection that is ensued by limit cycle oscillations. Imaging analysis of the beam vibrations shows that the motion consists of a superposition of the bending and torsion modes. The proposed algorithm was able to capture the oscillation amplitudes as well as the frequencies of both bending and torsion modes. The analysis results are validated through comparison with measurements from a piezoelectric sensor that is attached to the beam at its root.

  13. Simultaneous optical coherence tomography and lipofuscin autofluorescence imaging of the retina with a single broadband light source at 480nm

    OpenAIRE

    Jiang, Minshan; Liu, Tan; Liu, Xiaojing; Jiao, Shuliang

    2014-01-01

    We accomplished spectral domain optical coherence tomography and auto-fluorescence microscopy for imaging the retina with a single broadband light source centered at 480 nm. This technique is able to provide simultaneous structural imaging and lipofuscin molecular contrast of the retina. Since the two imaging modalities are provided by the same group of photons, their images are intrinsically registered. To test the capabilities of the technique we periodically imaged the retinas of the same ...

  14. 3D light robotics

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin; Villangca, Mark Jayson

    2016-01-01

    As celebrated by the Nobel Prize 2014 in Chemistry light-based technologies can now overcome the diffraction barrier for imaging with nanoscopic resolution by so-called super-resolution microscopy1. However, interactive investigations coupled with advanced imaging modalities at these small scale ...... research discipline that could potentially be able to offer the full packet needed for true "active nanoscopy" by use of so-called light-driven micro-robotics or Light Robotics in short....

  15. Fast X-ray imaging at beamline I13L at Diamond Light Source

    International Nuclear Information System (INIS)

    Fanis, A De; Pešić, Z D; Wagner, U; Rau, C

    2013-01-01

    The imaging branch of the dual-branch beamline I13L at Diamond Light Source has been operational since April 2012. This branch is dedicated to hard X-ray imaging (in-line phase contrast radiography and tomography, and full-field microscopy), with energies in the ranges 6-30keV. At present we aim to achieve spatial resolution of the order of 1 μm over a field of view of l-20mm 2 . This branch aims to excel at imaging experiment of fast dynamic processes, where it is of interest to have short exposure times and high frame rates. To accommodate for this, we prepared for the beamline to operate with 'pink' beam to provide higher flux, an efficient detection system, and rapid data acquisition, transfer, and saving to storage. This contributed paper describes the present situation and illustrate the author's goal for the mid-future.

  16. Fast X-ray imaging at beamline I13L at Diamond Light Source

    Science.gov (United States)

    De Fanis, A.; Pešić, Z. D.; Wagner, U.; Rau, C.

    2013-03-01

    The imaging branch of the dual-branch beamline I13L at Diamond Light Source has been operational since April 2012. This branch is dedicated to hard X-ray imaging (in-line phase contrast radiography and tomography, and full-field microscopy), with energies in the ranges 6-30keV. At present we aim to achieve spatial resolution of the order of 1 μm over a field of view of l-20mm2. This branch aims to excel at imaging experiment of fast dynamic processes, where it is of interest to have short exposure times and high frame rates. To accommodate for this, we prepared for the beamline to operate with "pink" beam to provide higher flux, an efficient detection system, and rapid data acquisition, transfer, and saving to storage. This contributed paper describes the present situation and illustrate the author's goal for the mid-future.

  17. A new level set model for cell image segmentation

    International Nuclear Information System (INIS)

    Ma Jing-Feng; Chen Chun; Hou Kai; Bao Shang-Lian

    2011-01-01

    In this paper we first determine three phases of cell images: background, cytoplasm and nucleolus according to the general physical characteristics of cell images, and then develop a variational model, based on these characteristics, to segment nucleolus and cytoplasm from their relatively complicated backgrounds. In the meantime, the preprocessing obtained information of cell images using the OTSU algorithm is used to initialize the level set function in the model, which can speed up the segmentation and present satisfactory results in cell image processing. (cross-disciplinary physics and related areas of science and technology)

  18. The reinvention of twentieth century microscopy for three-dimensional imaging.

    Science.gov (United States)

    Whitehead, Lachlan W; McArthur, Kate; Geoghegan, Niall D; Rogers, Kelly L

    2017-07-01

    In just over a decade, the field of biomedical research has witnessed a radical evolution in technologies for the 3- and 4-dimensional imaging of biological samples. Light sheet fluorescence microscopy is quickly developing into a powerful approach for fast, volumetric imaging of cells, tissues and living organisms. This review touches on the development of 3-dimensional imaging, from its foundations, namely from the invention of confocal microscopy in the twentieth century to more recent examples, notably the IsoView SPIM, the Lattice Light Sheet Microscope and swept confocally aligned planar excitation. These technologies overcome the limitations of conventional optical sectioning techniques and enable unprecedented levels of spatio-temporal resolution with low levels of phototoxicity. Developing in parallel with powerful computational approaches, light sheet based methods promise to completely transform cell biology as we know it today.

  19. ASHI: An All Sky Heliospheric Imager for Viewing Thomson-Scattered Light

    Science.gov (United States)

    Buffington, A.; Jackson, B. V.; Yu, H. S.; Hick, P. P.; Bisi, M. M.

    2017-12-01

    We have developed, and are now making a detailed design for an All-Sky Heliospheric Imager (ASHI), to fly on future deep-space missions. ASHI's principal long-term objective is acquisition of a precision photometric map of the inner heliosphere as viewed from deep space. Photometers on the twin Helios spacecraft, the Solar Mass Ejection Imager (SMEI) upon the Coriolis satellite, and the Heliospheric Imagers (HIs) upon the Solar-TErrestrial RElations Observatory (STEREO) twin spacecraft, all indicate an optimum instrument design for visible-light Thomson-scattering observations. This design views a hemisphere of sky starting a few degrees from the Sun. Two imagers can cover almost all of the whole sky. A key photometric specification for ASHI is 0.1% differential photometry: this enables the three dimensional reconstruction of density starting from near the Sun and extending outward. SMEI analyses have demonstrated the success of this technique: when employed by ASHI, this will provide an order of magnitude better resolution in 3-D density over time. We augment this analysis to include velocity, and these imagers deployed in deep space can thus provide high-resolution comparisons both of direct in-situ density and velocity measurements to remote observations of solar wind structures. In practice we find that the 3-D velocity determinations provide the best tomographic timing depiction of heliospheric structures. We discuss the simple concept behind this, and present recent progress in the instrument design, and its expected performance specifications. A preliminary balloon flight of an ASHI prototype is planned to take place next Summer.

  20. Comparing phototoxicity during the development of a zebrafish craniofacial bone using confocal and light sheet fluorescence microscopy techniques.

    Science.gov (United States)

    Jemielita, Matthew; Taormina, Michael J; Delaurier, April; Kimmel, Charles B; Parthasarathy, Raghuveer

    2013-12-01

    The combination of genetically encoded fluorescent proteins and three-dimensional imaging enables cell-type-specific studies of embryogenesis. Light sheet microscopy, in which fluorescence excitation is provided by a plane of laser light, is an appealing approach to live imaging due to its high speed and efficient use of photons. While the advantages of rapid imaging are apparent from recent work, the importance of low light levels to studies of development is not well established. We examine the zebrafish opercle, a craniofacial bone that exhibits pronounced shape changes at early developmental stages, using both spinning disk confocal and light sheet microscopies of fluorescent osteoblast cells. We find normal and aberrant opercle morphologies for specimens imaged with short time intervals using light sheet and spinning disk confocal microscopies, respectively, under equivalent exposure conditions over developmentally-relevant time scales. Quantification of shapes reveals that the differently imaged specimens travel along distinct trajectories in morphological space. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Improved classification accuracy of powdery mildew infection levels of wine grapes by spatial-spectral analysis of hyperspectral images.

    Science.gov (United States)

    Knauer, Uwe; Matros, Andrea; Petrovic, Tijana; Zanker, Timothy; Scott, Eileen S; Seiffert, Udo

    2017-01-01

    , perhaps due to colonized berries or sparse mycelia hidden within the bunch or airborne conidia on the berries that were detected by qPCR. An advanced approach to hyperspectral image classification based on combined spatial and spectral image features, potentially applicable to many available hyperspectral sensor technologies, has been developed and validated to improve the detection of powdery mildew infection levels of Chardonnay grape bunches. The spatial-spectral approach improved especially the detection of light infection levels compared with pixel-wise spectral data analysis. This approach is expected to improve the speed and accuracy of disease detection once the thresholds for fungal biomass detected by hyperspectral imaging are established; it can also facilitate monitoring in plant phenotyping of grapevine and additional crops.

  2. Stray light characteristics of the diffractive telescope system

    Science.gov (United States)

    Liu, Dun; Wang, Lihua; Yang, Wei; Wu, Shibin; Fan, Bin; Wu, Fan

    2018-02-01

    Diffractive telescope technology is an innovation solution in construction of large light-weight space telescope. However, the nondesign orders of diffractive optical elements (DOEs) may affect the imaging performance as stray light. To study the stray light characteristics of a diffractive telescope, a prototype was developed and its stray light analysis model was established. The stray light characteristics including ghost, point source transmittance, and veiling glare index (VGI) were analyzed. During the star imaging test of the prototype, the ghost images appeared around the star image as the exposure time of the charge-coupled device improving, consistent with the simulation results. The test result of VGI was 67.11%, slightly higher than the calculated value 57.88%. The study shows that the same order diffraction of the diffractive primary lens and correcting DOE is the main factor that causes ghost images. The stray light sources outside the field of view can illuminate the image plane through nondesign orders diffraction of the primary lens and contributes to more than 90% of the stray light flux on the image plane. In summary, it is expected that these works will provide some guidance for optimizing the imaging performance of diffractive telescopes.

  3. Imaging the onset kinetics of the swarming transition using light-controlled bacteria

    Science.gov (United States)

    Peng, Yi; Tai, Yishu; Zhang, Kechun; Cheng, Xiang

    Active fluids are a novel class of nonequilibrium soft materials, which are composed of a large number of self-propelled particles. These particles collectively form coherent structures at high densities, as illustrated vividly by the striking patterns of flocking birds, schooling fishes and swarming bacteria. Although the disorder-swarming transition of active fluids has been extensively studied, its very nature is still under heated debate. Here, using an engineered E. coli strain, whose locomotion can be reversibly controlled by light, we experimentally study the onset of the swarming transition of active fluids and explore its kinetic pathway. Particularly, we trigger bacterial swarming using a blue light and image the emergence of the collective structure in concentrated bacterial suspensions. We find a discontinuous jump in the order parameter of the transition and observe a hysteresis in the formation of swarming, which indicate the discontinuous nature. We further investigate the microscopic dynamics in the context of nucleation-and-growth processes and measure the incubation time and the size distribution of nuclei. Our study sheds light on the phase transition of active fluids and the emergent properties of many-body nonequilibrium systems.

  4. Quantitative Assessment of Fat Levels in Caenorhabditis elegans Using Dark Field Microscopy

    Directory of Open Access Journals (Sweden)

    Anthony D. Fouad

    2017-06-01

    Full Text Available The roundworm Caenorhabditis elegans is widely used as a model for studying conserved pathways for fat storage, aging, and metabolism. The most broadly used methods for imaging fat in C. elegans require fixing and staining the animal. Here, we show that dark field images acquired through an ordinary light microscope can be used to estimate fat levels in worms. We define a metric based on the amount of light scattered per area, and show that this light scattering metric is strongly correlated with worm fat levels as measured by Oil Red O (ORO staining across a wide variety of genetic backgrounds and feeding conditions. Dark field imaging requires no exogenous agents or chemical fixation, making it compatible with live worm imaging. Using our method, we track fat storage with high temporal resolution in developing larvae, and show that fat storage in the intestine increases in at least one burst during development.

  5. Medical imaging systems

    Science.gov (United States)

    Frangioni, John V [Wayland, MA

    2012-07-24

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remains in a subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may also employ dyes or other fluorescent substances associated with antibodies, antibody fragments, or ligands that accumulate within a region of diagnostic significance. In one embodiment, the system provides an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide that is used to capture images. In another embodiment, the system is configured for use in open surgical procedures by providing an operating area that is closed to ambient light. More broadly, the systems described herein may be used in imaging applications where a visible light image may be usefully supplemented by an image formed from fluorescent emissions from a fluorescent substance that marks areas of functional interest.

  6. Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Volkov, V.S.; Søndergaard, Thomas

    2002-01-01

    We employ a collection scanning near-field optical microscope (SNOM) to image the propagation of light at telecommunication wavelengths along straight and bent regions of silicon-on-insulator photonic crystal waveguides (PCWs) formed by removing a single row of holes in the triangular 410-nm...... the interference between a quasihomogeneous background field and Bloch harmonics of the PCW mode, we account for spatial frequency spectra of the intensity variations and determine the propagation constant of the PCW mode at 1520 nm. The possibilities and limitations of SNOM imaging for the characterization...

  7. A simple multipurpose double-beam optical image analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Popowicz, A., E-mail: adam.popowicz@polsl.pl [Institute of Automatic Control, Silesian University of Technology, Akademicka Str. 16, 44-100 Gliwice (Poland); Blachowicz, T. [Institute of Physics - Center for Science and Education, Silesian University of Technology, S. Konarskiego 22B Str., 44-100 Gliwice (Poland)

    2016-07-15

    In the paper we present a low cost optical device which splits the light in the focal plane into two separate optical paths and collimates it back into a single image plane, and where a selective information processing can be carried out. The optical system is straightforward and easily implementable as it consists of only three lenses and two mirrors. The system is dedicated for imaging in low-light-level conditions in which widely used optical devices, based on beam splitters or dichroic mirrors, suffer from light loss. We expose examples of applications of our device, using a prototype model. The proposed optical system may be employed for: monitoring the objects located at different distances from observer (1), creating regions of different magnification within a single image plane (2), high dynamic range photometry (3), or imaging in two wavelength bands simultaneously (4).

  8. Gender Recognition from Human-Body Images Using Visible-Light and Thermal Camera Videos Based on a Convolutional Neural Network for Image Feature Extraction.

    Science.gov (United States)

    Nguyen, Dat Tien; Kim, Ki Wan; Hong, Hyung Gil; Koo, Ja Hyung; Kim, Min Cheol; Park, Kang Ryoung

    2017-03-20

    Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT), speed-up robust feature (SURF), local binary patterns (LBP), histogram of oriented gradients (HOG), and weighted HOG. Recently, the convolutional neural network (CNN) method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images.

  9. Gender Recognition from Human-Body Images Using Visible-Light and Thermal Camera Videos Based on a Convolutional Neural Network for Image Feature Extraction

    Science.gov (United States)

    Nguyen, Dat Tien; Kim, Ki Wan; Hong, Hyung Gil; Koo, Ja Hyung; Kim, Min Cheol; Park, Kang Ryoung

    2017-01-01

    Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT), speed-up robust feature (SURF), local binary patterns (LBP), histogram of oriented gradients (HOG), and weighted HOG. Recently, the convolutional neural network (CNN) method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images. PMID:28335510

  10. Low-level processing for real-time image analysis

    Science.gov (United States)

    Eskenazi, R.; Wilf, J. M.

    1979-01-01

    A system that detects object outlines in television images in real time is described. A high-speed pipeline processor transforms the raw image into an edge map and a microprocessor, which is integrated into the system, clusters the edges, and represents them as chain codes. Image statistics, useful for higher level tasks such as pattern recognition, are computed by the microprocessor. Peak intensity and peak gradient values are extracted within a programmable window and are used for iris and focus control. The algorithms implemented in hardware and the pipeline processor architecture are described. The strategy for partitioning functions in the pipeline was chosen to make the implementation modular. The microprocessor interface allows flexible and adaptive control of the feature extraction process. The software algorithms for clustering edge segments, creating chain codes, and computing image statistics are also discussed. A strategy for real time image analysis that uses this system is given.

  11. Light

    DEFF Research Database (Denmark)

    Prescott, N.B.; Kristensen, Helle Halkjær; Wathes, C.M.

    2004-01-01

    This chapter presents the effect of artificial light environments (light levels, colour, photoperiod and flicker) on the welfare of broilers in terms of vision, behaviour, lameness and mortality......This chapter presents the effect of artificial light environments (light levels, colour, photoperiod and flicker) on the welfare of broilers in terms of vision, behaviour, lameness and mortality...

  12. [Influence of different lighting levels at workstations with video display terminals on operators' work efficiency].

    Science.gov (United States)

    Janosik, Elzbieta; Grzesik, Jan

    2003-01-01

    The aim of this work was to evaluate the influence of different lighting levels at workstations with video display terminals (VDTs) on the course of the operators' visual work, and to determine the optimal levels of lighting at VDT workstations. For two kinds of job (entry of figures from a typescript and edition of the text displayed on the screen), the work capacity, the degree of the visual strain and the operators' subjective symptoms were determined for four lighting levels (200, 300, 500 and 750 lx). It was found that the work at VDT workstations may overload the visual system and cause eyes complaints as well as the reduction of accommodation or convergence strength. It was also noted that the edition of the text displayed on the screen is more burdening for operators than the entry of figures from a typescript. Moreover, the examination results showed that the lighting at VDT workstations should be higher than 200 lx and that 300 lx makes the work conditions most comfortable during the entry of figures from a typescript, and 500 lx during the edition of the text displayed on the screen.

  13. Classification of video sequences into chosen generalized use classes of target size and lighting level.

    Science.gov (United States)

    Leszczuk, Mikołaj; Dudek, Łukasz; Witkowski, Marcin

    The VQiPS (Video Quality in Public Safety) Working Group, supported by the U.S. Department of Homeland Security, has been developing a user guide for public safety video applications. According to VQiPS, five parameters have particular importance influencing the ability to achieve a recognition task. They are: usage time-frame, discrimination level, target size, lighting level, and level of motion. These parameters form what are referred to as Generalized Use Classes (GUCs). The aim of our research was to develop algorithms that would automatically assist classification of input sequences into one of the GUCs. Target size and lighting level parameters were approached. The experiment described reveals the experts' ambiguity and hesitation during the manual target size determination process. However, the automatic methods developed for target size classification make it possible to determine GUC parameters with 70 % compliance to the end-users' opinion. Lighting levels of the entire sequence can be classified with an efficiency reaching 93 %. To make the algorithms available for use, a test application has been developed. It is able to process video files and display classification results, the user interface being very simple and requiring only minimal user interaction.

  14. Imaging arrangement and microscope

    Science.gov (United States)

    Pertsinidis, Alexandros; Chu, Steven

    2015-12-15

    An embodiment of the present invention is an imaging arrangement that includes imaging optics, a fiducial light source, and a control system. In operation, the imaging optics separate light into first and second tight by wavelength and project the first and second light onto first and second areas within first and second detector regions, respectively. The imaging optics separate fiducial light from the fiducial light source into first and second fiducial light and project the first and second fiducial light onto third and fourth areas within the first and second detector regions, respectively. The control system adjusts alignment of the imaging optics so that the first and second fiducial light projected onto the first and second detector regions maintain relatively constant positions within the first and second detector regions, respectively. Another embodiment of the present invention is a microscope that includes the imaging arrangement.

  15. Image forming apparatus

    DEFF Research Database (Denmark)

    2005-01-01

    (x, y) read out of the PALSLM is subjected to Fourier transform by a lens. A phase contrast filter gives a predetermined phase shift to only the zero-order light component of Fourier light image alpha f(x, y). The phase-shifted light image is subjected to inverse Fourier transform by a lens...... to project an output image O(x, y) to an output plane. A light image O'(x, y) branched by a beam sampler is picked up by a pickup device and an evaluation value calculating unit evaluates conformity between the image O(x, y) and the image G(x, y).; A control unit performs feedback control of optical...

  16. Visible light photon counters (VLPCs) for high rate tracking medical imaging and particle astrophysics

    International Nuclear Information System (INIS)

    Atac, M.

    1998-02-01

    This paper is on the operation principles of the Visible Light Photon Counters (VLPCs), application to high luminosity-high multiplicity tracking for High Energy Charged Particle Physics, and application to Medical Imaging and Particle Astrophysics. The VLPCs as Solid State Photomultipliers (SSPMS) with high quantum efficiency can detect down to single photons very efficiently with excellent time resolution and high avalanche gains

  17. Bio-inspired nano-photodiode for Low Light, High Resolution and crosstalk-free CMOS image sensing

    KAUST Repository

    Saffih, Faycal

    2011-05-01

    Previous attempts have been devoted to mimic biological vision intelligence at the architectural system level. In this paper, a novel imitation of biological visual system intelligence is suggested, at the device level with the introduction of novel photodiode morphology. The proposed bio-inspired nanorod photodiode puts the depletion region length on the path of the incident photon instead of on its width, as the case is with the planar photodiodes. The depletion region has a revolving volume to increase the photodiode responsivity, and thus its photosensitivity. In addition, it can virtually boost the pixel fill factor (FF) above the 100% classical limit due to decoupling of its vertical sensing area from its limited planar circuitry area. Furthermore, the suggested nanorod photodiode photosensitivity is analytically proven to be higher than that of the planar photodiode. We also show semi-empirically that the responsivity of the suggested device varies linearly with its height; this important feature has been confirmed using Sentaurus simulation. The proposed nano-photorod is believed to meet the increasingly stringent High-Resolution-Low-Light (HRLL) detection requirements of the camera-phone and biomedical imaging markets. © 2011 IEEE.

  18. Composite multi-lobe descriptor for cross spectral face recognition: matching active IR to visible light images

    Science.gov (United States)

    Cao, Zhicheng; Schmid, Natalia A.

    2015-05-01

    Matching facial images across electromagnetic spectrum presents a challenging problem in the field of biometrics and identity management. An example of this problem includes cross spectral matching of active infrared (IR) face images or thermal IR face images against a dataset of visible light images. This paper describes a new operator named Composite Multi-Lobe Descriptor (CMLD) for facial feature extraction in cross spectral matching of near-infrared (NIR) or short-wave infrared (SWIR) against visible light images. The new operator is inspired by the design of ordinal measures. The operator combines Gaussian-based multi-lobe kernel functions, Local Binary Pattern (LBP), generalized LBP (GLBP) and Weber Local Descriptor (WLD) and modifies them into multi-lobe functions with smoothed neighborhoods. The new operator encodes both the magnitude and phase responses of Gabor filters. The combining of LBP and WLD utilizes both the orientation and intensity information of edges. Introduction of multi-lobe functions with smoothed neighborhoods further makes the proposed operator robust against noise and poor image quality. Output templates are transformed into histograms and then compared by means of a symmetric Kullback-Leibler metric resulting in a matching score. The performance of the multi-lobe descriptor is compared with that of other operators such as LBP, Histogram of Oriented Gradients (HOG), ordinal measures, and their combinations. The experimental results show that in many cases the proposed method, CMLD, outperforms the other operators and their combinations. In addition to different infrared spectra, various standoff distances from close-up (1.5 m) to intermediate (50 m) and long (106 m) are also investigated in this paper. Performance of CMLD is evaluated for of each of the three cases of distances.

  19. Quantitative myocardial perfusion PET parametric imaging at the voxel-level

    International Nuclear Information System (INIS)

    Mohy-ud-Din, Hassan; Rahmim, Arman; Lodge, Martin A

    2015-01-01

    Quantitative myocardial perfusion (MP) PET has the potential to enhance detection of early stages of atherosclerosis or microvascular dysfunction, characterization of flow-limiting effects of coronary artery disease (CAD), and identification of balanced reduction of flow due to multivessel stenosis. We aim to enable quantitative MP-PET at the individual voxel level, which has the potential to allow enhanced visualization and quantification of myocardial blood flow (MBF) and flow reserve (MFR) as computed from uptake parametric images. This framework is especially challenging for the 82 Rb radiotracer. The short half-life enables fast serial imaging and high patient throughput; yet, the acquired dynamic PET images suffer from high noise-levels introducing large variability in uptake parametric images and, therefore, in the estimates of MBF and MFR. Robust estimation requires substantial post-smoothing of noisy data, degrading valuable functional information of physiological and pathological importance. We present a feasible and robust approach to generate parametric images at the voxel-level that substantially reduces noise without significant loss of spatial resolution. The proposed methodology, denoted physiological clustering, makes use of the functional similarity of voxels to penalize deviation of voxel kinetics from physiological partners. The results were validated using extensive simulations (with transmural and non-transmural perfusion defects) and clinical studies. Compared to post-smoothing, physiological clustering depicted enhanced quantitative noise versus bias performance as well as superior recovery of perfusion defects (as quantified by CNR) with minimal increase in bias. Overall, parametric images obtained from the proposed methodology were robust in the presence of high-noise levels as manifested in the voxel time-activity-curves. (paper)

  20. Light emission efficiency and imaging properties of YAP:Ce granular phosphor screens

    International Nuclear Information System (INIS)

    Kalivas, N.; Valais, I.; Nikolopoulos, D.; Konstantinidis, A.; Cavouras, D.; Kandarakis, I.; Gaitanis, A.; Nomicos, C.D.; Panayiotakis, G.

    2007-01-01

    Phosphor materials are used in medical imaging combined with radiographic film or other photodetectors. Cerium (Ce 3+ ) -doped scintillators are of particular interest for medical imaging, because of their very fast response. YAP:Ce scintillator-based image detectors have already been evaluated in single-crystal form and under conditions of positron emission tomography and synchrotron or γ-ray irradiation. Furthermore, YAP:Ce phosphor has been evaluated in conjunction with radiographic films. The present work reports experimental and theoretical data concerning the light output absolute luminescence efficiency (AE) of the YAP:Ce screens under irradiation conditions employed in medical X-ray projection imaging (i.e., in diagnostic radiology). projection imaging (i.e., in diagnostic radiology). YAP:Ce phosphor screens with surface densities ranging between 53 and 110 mg/cm 2 were prepared by sedimentation on fused silica substrates in our laboratory. The resulted surface density of the screens was determined by dividing the phosphor mass deposited on the screen surface with the area of the surface. Additionally this work addresses the imaging performance of YAP:Ce by estimation of the detective quantum efficiency (DQE), i.e., the square of the signal to noise ratio transfer. Absolute efficiency was found to decrease with X-ray tube voltage for for YAP:Ce phosphor. The highest experimental efficiency was obtained for the 53.7 mg/cm 2 and 88.0 mg/cm 2 YAP:Ce screens. The highest DQE value was found for the 88.0 mg/cm 2 screen irradiated at 60 kVp. (orig.)

  1. Development and evaluation of a light-emitting diode endoscopic light source

    Science.gov (United States)

    Clancy, Neil T.; Li, Rui; Rogers, Kevin; Driscoll, Paul; Excel, Peter; Yandle, Ron; Hanna, George; Copner, Nigel; Elson, Daniel S.

    2012-03-01

    Light-emitting diode (LED) based endoscopic illumination devices have been shown to have several benefits over arclamp systems. LEDs are energy-efficient, small, durable, and inexpensive, however their use in endoscopy has been limited by the difficulty in efficiently coupling enough light into the endoscopic light cable. We have demonstrated a highly homogenised lightpipe LED light source that combines the light from four Luminus LEDs emitting in the red, green, blue and violet using innovative dichroics that maximise light throughput. The light source spectrally combines light from highly divergent incoherent sources that have a Lambertian intensity profile to provide illumination matched to the acceptance numerical aperture of a liquid light guide or fibre bundle. The LED light source was coupled to a standard laparoscope and performance parameters (power, luminance, colour temperature) compared to a xenon lamp. Although the total illuminance from the endoscope was lower, adjustment of the LEDs' relative intensities enabled contrast enhancement in biological tissue imaging. The LED light engine was also evaluated in a minimally invasive surgery (MIS) box trainer and in vivo during a porcine MIS procedure where it was used to generate 'narrowband' images. Future work using the violet LED could enable photodynamic diagnosis of bladder cancer.

  2. BinCat: a Catalog of Nearby Binary Stars with Tools for Calculating Light-Leakage for Direct Imaging Missions

    Science.gov (United States)

    Holte, Elias Peter; Sirbu, Dan; Belikov, Ruslan

    2018-01-01

    Binary stars have been largely left out of direct imaging surveys for exoplanets, specifically for earth-sized planets in their star's habitable zone. Utilizing new direct imaging techniques brings us closer to being able to detect earth-like exoplanets around binary stars. In preparation for the upcoming WFIRST mission and other direct imaging-capable missions (HabEx, LUVIOR) it is important to understand the expected science yield resulting from the implementation of these imaging techniques. BinCat is a catalog of binary systems within 30 parsecs to be used as a target list for future direct imaging missions. There is a non-static component along with BinCat that allows researchers to predict the expected light-leakage between a binary component and its off-axis companion (a value critical to the aforementioned techniques) at any epoch. This is accomplished by using orbital elements from the Sixth Orbital Catalog to model the orbits of the binaries. The software was validated against the historical data used to generate the orbital parameters. When orbital information is unknown or the binaries are purely optical the proper motion of the pair taken from the Washington Double Star catalog is integrated in time to estimate expected light-leakage.

  3. Lossless, Near-Lossless, and Refinement Coding of Bi-level Images

    DEFF Research Database (Denmark)

    Martins, Bo; Forchhammer, Søren Otto

    1997-01-01

    We present general and unified algorithms for lossy/lossless codingof bi-level images. The compression is realized by applying arithmetic coding to conditional probabilities. As in the current JBIG standard the conditioning may be specified by a template.For better compression, the more general....... Introducing only a small amount of loss in halftoned test images, compression is increased by up to a factor of four compared with JBIG. Lossy, lossless, and refinement decoding speed and lossless encoding speed are less than a factor of two slower than JBIG. The (de)coding method is proposed as part of JBIG......-2, an emerging international standard for lossless/lossy compression of bi-level images....

  4. A Variational Level Set Model Combined with FCMS for Image Clustering Segmentation

    Directory of Open Access Journals (Sweden)

    Liming Tang

    2014-01-01

    Full Text Available The fuzzy C means clustering algorithm with spatial constraint (FCMS is effective for image segmentation. However, it lacks essential smoothing constraints to the cluster boundaries and enough robustness to the noise. Samson et al. proposed a variational level set model for image clustering segmentation, which can get the smooth cluster boundaries and closed cluster regions due to the use of level set scheme. However it is very sensitive to the noise since it is actually a hard C means clustering model. In this paper, based on Samson’s work, we propose a new variational level set model combined with FCMS for image clustering segmentation. Compared with FCMS clustering, the proposed model can get smooth cluster boundaries and closed cluster regions due to the use of level set scheme. In addition, a block-based energy is incorporated into the energy functional, which enables the proposed model to be more robust to the noise than FCMS clustering and Samson’s model. Some experiments on the synthetic and real images are performed to assess the performance of the proposed model. Compared with some classical image segmentation models, the proposed model has a better performance for the images contaminated by different noise levels.

  5. Near infrared imaging-guided photodynamic therapy under an extremely low energy of light by galactose targeted amphiphilic polypeptide micelle encapsulating BODIPY-Br2.

    Science.gov (United States)

    Liu, Le; Ruan, Zheng; Li, Tuanwei; Yuan, Pan; Yan, Lifeng

    2016-10-18

    Near infrared (NIR) imaging-guided photodynamic therapy (PDT) is attractive, especially the utilization of one dye as both a photosensitizer and fluorescent probe, and the as-synthesized BODIPY-Br 2 molecule is a candidate. Here, a galactose targeted amphiphilic copolymer of a polypeptide was synthesized and its micelles work as nanocarriers for BODIPY for targeting the NIR imaging-guided PDT of hepatoma cancer cells. At the same time, BODIPY could light up the cytoplasm for real-time imaging and kill cancer cells when the light was switched on. In vitro tests performed on both HepG2 and HeLa cells confirmed that the as-prepared PMAGP-POEGMA-PLys-B micelles showed efficient cell suppression of the cells with galactose receptors in the presence of light under an extremely low energy density (6.5 J cm -2 ). This protocol highlights the potential of polypeptides as biodegradable carriers for NIR image-guided and confined targeting photodynamic therapy.

  6. Automatic detection of diseased tomato plants using thermal and stereo visible light images.

    Directory of Open Access Journals (Sweden)

    Shan-e-Ahmed Raza

    Full Text Available Accurate and timely detection of plant diseases can help mitigate the worldwide losses experienced by the horticulture and agriculture industries each year. Thermal imaging provides a fast and non-destructive way of scanning plants for diseased regions and has been used by various researchers to study the effect of disease on the thermal profile of a plant. However, thermal image of a plant affected by disease has been known to be affected by environmental conditions which include leaf angles and depth of the canopy areas accessible to the thermal imaging camera. In this paper, we combine thermal and visible light image data with depth information and develop a machine learning system to remotely detect plants infected with the tomato powdery mildew fungus Oidium neolycopersici. We extract a novel feature set from the image data using local and global statistics and show that by combining these with the depth information, we can considerably improve the accuracy of detection of the diseased plants. In addition, we show that our novel feature set is capable of identifying plants which were not originally inoculated with the fungus at the start of the experiment but which subsequently developed disease through natural transmission.

  7. A Novel 2D Image Compression Algorithm Based on Two Levels DWT and DCT Transforms with Enhanced Minimize-Matrix-Size Algorithm for High Resolution Structured Light 3D Surface Reconstruction

    Science.gov (United States)

    Siddeq, M. M.; Rodrigues, M. A.

    2015-09-01

    Image compression techniques are widely used on 2D image 2D video 3D images and 3D video. There are many types of compression techniques and among the most popular are JPEG and JPEG2000. In this research, we introduce a new compression method based on applying a two level discrete cosine transform (DCT) and a two level discrete wavelet transform (DWT) in connection with novel compression steps for high-resolution images. The proposed image compression algorithm consists of four steps. (1) Transform an image by a two level DWT followed by a DCT to produce two matrices: DC- and AC-Matrix, or low and high frequency matrix, respectively, (2) apply a second level DCT on the DC-Matrix to generate two arrays, namely nonzero-array and zero-array, (3) apply the Minimize-Matrix-Size algorithm to the AC-Matrix and to the other high-frequencies generated by the second level DWT, (4) apply arithmetic coding to the output of previous steps. A novel decompression algorithm, Fast-Match-Search algorithm (FMS), is used to reconstruct all high-frequency matrices. The FMS-algorithm computes all compressed data probabilities by using a table of data, and then using a binary search algorithm for finding decompressed data inside the table. Thereafter, all decoded DC-values with the decoded AC-coefficients are combined in one matrix followed by inverse two levels DCT with two levels DWT. The technique is tested by compression and reconstruction of 3D surface patches. Additionally, this technique is compared with JPEG and JPEG2000 algorithm through 2D and 3D root-mean-square-error following reconstruction. The results demonstrate that the proposed compression method has better visual properties than JPEG and JPEG2000 and is able to more accurately reconstruct surface patches in 3D.

  8. Non-visual effects of light on melatonin, alertness and cognitive performance: can blue-enriched light keep us alert?

    Directory of Open Access Journals (Sweden)

    Sarah Laxhmi Chellappa

    Full Text Available BACKGROUND: Light exposure can cascade numerous effects on the human circadian process via the non-imaging forming system, whose spectral relevance is highest in the short-wavelength range. Here we investigated if commercially available compact fluorescent lamps with different colour temperatures can impact on alertness and cognitive performance. METHODS: Sixteen healthy young men were studied in a balanced cross-over design with light exposure of 3 different light settings (compact fluorescent lamps with light of 40 lux at 6500K and at 2500K and incandescent lamps of 40 lux at 3000K during 2 h in the evening. RESULTS: Exposure to light at 6500K induced greater melatonin suppression, together with enhanced subjective alertness, well-being and visual comfort. With respect to cognitive performance, light at 6500K led to significantly faster reaction times in tasks associated with sustained attention (Psychomotor Vigilance and GO/NOGO Task, but not in tasks associated with executive function (Paced Visual Serial Addition Task. This cognitive improvement was strongly related with attenuated salivary melatonin levels, particularly for the light condition at 6500K. CONCLUSIONS: Our findings suggest that the sensitivity of the human alerting and cognitive response to polychromatic light at levels as low as 40 lux, is blue-shifted relative to the three-cone visual photopic system. Thus, the selection of commercially available compact fluorescent lights with different colour temperatures significantly impacts on circadian physiology and cognitive performance at home and in the workplace.

  9. Indium-111 labeled leukocyte images demonstrating a lung abscess with prominent fluid level

    International Nuclear Information System (INIS)

    Massie, J.D.; Winer-Muram, H.

    1986-01-01

    In-111 labeled leukocyte images show an abscess cavity with a fluid level on 24-hour upright images. Fluid levels, frequently seen on radiographs, are uncommon on nuclear images. This finding demonstrates rapid migration of labeled leukocytes into purulent abscess fluid

  10. Low level light in combination with metabolic modulators for effective therapy

    Science.gov (United States)

    Dong, Tingting; Zhang, Qi; Hamblin, Michael R.; Wu, Mei X.

    2015-03-01

    Vascular damage occurs frequently at the injured brain causing hypoxia and is associated with poor outcomes in the clinics. We found high levels of glycolysis, reduced ATP generation, and increased formation of reactive oxygen species (ROS) and apoptosis in neurons under hypoxia. Strikingly, these adverse events were reversed significantly by noninvasive exposure of injured brain to low-level light (LLL). LLL illumination sustained the mitochondrial membrane potential, constrained cytochrome C leakage in hypoxic cells, and protected them from apoptosis, underscoring a unique property of LLL. The effect of LLL was further bolstered by combination with metabolic substrates such as pyruvate or lactate both in vivo and in vitro. The combinational treatment retained memory and learning activities of injured mice to a normal level, whereas those treated with LLL or pyruvate alone, or sham light displayed partial or severe deficiency in these cognitive functions. In accordance with well-protected learning and memory function, the hippocampal region primarily responsible for learning and memory was completely protected by a combination of LLL and pyruvate, in marked contrast to the severe loss of hippocampal tissue due to secondary damage in control mice. These data clearly suggest that energy metabolic modulators can additively or synergistically enhance the therapeutic effect of LLL in energy-producing insufficient tissues like injured brain. Keywords:

  11. Synergistic Instance-Level Subspace Alignment for Fine-Grained Sketch-Based Image Retrieval.

    Science.gov (United States)

    Li, Ke; Pang, Kaiyue; Song, Yi-Zhe; Hospedales, Timothy M; Xiang, Tao; Zhang, Honggang

    2017-08-25

    We study the problem of fine-grained sketch-based image retrieval. By performing instance-level (rather than category-level) retrieval, it embodies a timely and practical application, particularly with the ubiquitous availability of touchscreens. Three factors contribute to the challenging nature of the problem: (i) free-hand sketches are inherently abstract and iconic, making visual comparisons with photos difficult, (ii) sketches and photos are in two different visual domains, i.e. black and white lines vs. color pixels, and (iii) fine-grained distinctions are especially challenging when executed across domain and abstraction-level. To address these challenges, we propose to bridge the image-sketch gap both at the high-level via parts and attributes, as well as at the low-level, via introducing a new domain alignment method. More specifically, (i) we contribute a dataset with 304 photos and 912 sketches, where each sketch and image is annotated with its semantic parts and associated part-level attributes. With the help of this dataset, we investigate (ii) how strongly-supervised deformable part-based models can be learned that subsequently enable automatic detection of part-level attributes, and provide pose-aligned sketch-image comparisons. To reduce the sketch-image gap when comparing low-level features, we also (iii) propose a novel method for instance-level domain-alignment, that exploits both subspace and instance-level cues to better align the domains. Finally (iv) these are combined in a matching framework integrating aligned low-level features, mid-level geometric structure and high-level semantic attributes. Extensive experiments conducted on our new dataset demonstrate effectiveness of the proposed method.

  12. Simulating the operation of photosensor-based lighting controls

    International Nuclear Information System (INIS)

    Ehrlich, Charles; Papamichael, Konstantinos; Lai, Judy; Revzan, Kenneth

    2001-01-01

    Energy savings from the use of daylighting in commercial buildings are realized through implementation of photoelectric lighting controls that dim electric lights when sufficient daylight is available to provide adequate workplane illumination. The dimming level of electric lighting is based on the signal of a photosensor. Current simulation approaches for such systems are based on the questionable assumption that the signal of the photosensor is proportional to the task illuminance. This paper presents a method that simulates the performance of photosensor controls considering the acceptance angle, angular sensitivity, placement of the photosensor within a space, and color correction filter. The method is based on the multiplication of two fisheye images: one generated from the angular sensitivity of the photosensor and the other from a 180- or 360-degree fisheye image of the space as ''seen'' by the photosensor. The paper includes a detailed description of the method and its implementation, example applications, and validation results based on comparison with measurements in an actual office space

  13. A new three-dimensional nonscanning laser imaging system based on the illumination pattern of a point-light-source array

    Science.gov (United States)

    Xia, Wenze; Ma, Yayun; Han, Shaokun; Wang, Yulin; Liu, Fei; Zhai, Yu

    2018-06-01

    One of the most important goals of research on three-dimensional nonscanning laser imaging systems is the improvement of the illumination system. In this paper, a new three-dimensional nonscanning laser imaging system based on the illumination pattern of a point-light-source array is proposed. This array is obtained using a fiber array connected to a laser array with each unit laser having independent control circuits. This system uses a point-to-point imaging process, which is realized using the exact corresponding optical relationship between the point-light-source array and a linear-mode avalanche photodiode array detector. The complete working process of this system is explained in detail, and the mathematical model of this system containing four equations is established. A simulated contrast experiment and two real contrast experiments which use the simplified setup without a laser array are performed. The final results demonstrate that unlike a conventional three-dimensional nonscanning laser imaging system, the proposed system meets all the requirements of an eligible illumination system. Finally, the imaging performance of this system is analyzed under defocusing situations, and analytical results show that the system has good defocusing robustness and can be easily adjusted in real applications.

  14. Effects of long-term light, darkness and oral administration of melatonin on serum levels of melatonin

    OpenAIRE

    Naser Farhadi; Majid Gharghani; Zahra Farhadi

    2016-01-01

    Background: Continuous light or darkness has various effects on different systems. In the present research work, the effects of constant light and darkness exposure of male rats and oral administration of exogenous melatonin on the serum levels of melatonin have been studied. Methods: Thirty adult male Wistar rats were divided into six groups of: (1) Control, (2) melatonin, (3) light, (4) light and melatonin, (5) darkness, and (6) darkness and melatonin. All groups were placed according to...

  15. Aspheric lens based imaging receiver for MIMO visible light communication

    Science.gov (United States)

    Ju, Qiuqi; Liang, Zhongcheng; Liu, Xueming; Yang, Tingting; Wang, Jin

    2014-10-01

    Visible light communication (VLC) has been regarded as a promising solution in short-range intelligent communication system. Nowadays, the research is focused on integrating the multi-input multi-output (MIMO) technique in the VLC system, to achieve a larger transmission capacity and stronger transmission reliability. However, one important issue should be addressed due to the use of MIMO technology: the multipath inter-symbol interference. The multipath intersymbol interference comes from the reflection of the signal in the room and channel crosstalk between different channels. In this paper, we propose a novel optical system used in the MIMO VLC system to reduce multipath interference dramatically. Signals from different LEDs can be separated by using parabolic lens plated with reflecting film. This structure can reduce the reflection effect effectively as well. We present the simulation results to observe the distribution of optical power on the imaging plane for various receiving positions and low correlation between all channels. We can find that the optical power density becomes stronger than non-imaging system and the interference is sharply decreased, thus the SNR and BER are also optimized. Analysis about the optical system is given in this paper.

  16. Light Field Photography A Survey

    Directory of Open Access Journals (Sweden)

    M Zulkifl Hasan

    2017-01-01

    Full Text Available In this survey author will be discussing about light field photography its importance techniques used in it to have an excellent output from the normal cameras. Light field photography has become an emerging area due to its refocusing of digital image and 3D reconstruction. Reconstruction of image tells us about its high resolution and refocusing is used to clear the blur image.1

  17. Gender Recognition from Human-Body Images Using Visible-Light and Thermal Camera Videos Based on a Convolutional Neural Network for Image Feature Extraction

    Directory of Open Access Journals (Sweden)

    Dat Tien Nguyen

    2017-03-01

    Full Text Available Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT, speed-up robust feature (SURF, local binary patterns (LBP, histogram of oriented gradients (HOG, and weighted HOG. Recently, the convolutional neural network (CNN method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images.

  18. Level set method for image segmentation based on moment competition

    Science.gov (United States)

    Min, Hai; Wang, Xiao-Feng; Huang, De-Shuang; Jin, Jing; Wang, Hong-Zhi; Li, Hai

    2015-05-01

    We propose a level set method for image segmentation which introduces the moment competition and weakly supervised information into the energy functional construction. Different from the region-based level set methods which use force competition, the moment competition is adopted to drive the contour evolution. Here, a so-called three-point labeling scheme is proposed to manually label three independent points (weakly supervised information) on the image. Then the intensity differences between the three points and the unlabeled pixels are used to construct the force arms for each image pixel. The corresponding force is generated from the global statistical information of a region-based method and weighted by the force arm. As a result, the moment can be constructed and incorporated into the energy functional to drive the evolving contour to approach the object boundary. In our method, the force arm can take full advantage of the three-point labeling scheme to constrain the moment competition. Additionally, the global statistical information and weakly supervised information are successfully integrated, which makes the proposed method more robust than traditional methods for initial contour placement and parameter setting. Experimental results with performance analysis also show the superiority of the proposed method on segmenting different types of complicated images, such as noisy images, three-phase images, images with intensity inhomogeneity, and texture images.

  19. Visible-light imaging MHD studies of the edge plasma in the JIPP-T-IIU tokamak

    International Nuclear Information System (INIS)

    Yamazaki, K.; Haba, K.; Hirokura, S.

    1984-06-01

    MHD activity and turbulence near the plasma edge are studied on the JIPP-T-IIU tokamak using a new high-speed visible-light image-converter video-camera system. Different from conventional cinefilm and photo-diode array systems, this system is convenient for the instantaneous display of the high-speed optical plasma images after plasma discharges. The effectiveness of this instrument for the research of the plasma wall interaction is demonstrated in this experiment. The observed characteristics on the edge-plasma behavior are as follows: (1) The helical mode structure of the luminous plasma boundary suggesting plasma-surface interaction is identified in the case of OH or ICRF-heated discharge. (2) In the LH-current drive case, no clear large-scale coherent modes are identified, however, on the initial stage a medium-scale turbulence (lambda-- a few cm, f -- ten kHz) is found. (3) Before current disruptions, an m=2 or m=3 helical mode is found and up-down asymmetric light emissions are often observed during disruptions. (author)

  20. Studies of energy levels and lifetimes in neutral and ionized light atoms

    International Nuclear Information System (INIS)

    Huldt, S.

    1980-05-01

    The spectrum of singly ionized Titanium has been analysed by photographic spectral recordings of the light from a hollow- cathod. 1240 classified lines in the region 1200 A - 11000 A and 202 term values are reported. Lifetimes of the 3p 5 5p levels in neutral Argon have been measured by the High-frequency-Deflection technique considering the trapping of radiation from the excited 3p 5 4s level. Energy levels and lifetimes of excited states have been studied with the beam-foil method for selected ions in the atomic number range 7 - 30. Influence of transition probabilities caused by hyper-fine interaction for low members of the Helium iso-electronic sequence i verified. The oscillator strength for the inter-combination transition ls 2 1S 0 -1s3p 3 p 1 is measured in Beryllium-like Nitrogen, Oxygen and Fluorine. Accurate determinations of lifetimes for some of the lowest excited levels in Si I - Si IV and Zn II are reported. A large fraction of circularly polarized light is seen in the 0 VI n=6-7 hydrogenic transition when a 4 MeV beam of oxygen was passed through a tilted carbon foil. (author)

  1. Imaging the dorsal hippocampus: light reflectance relationships to electroencephalographic patterns during sleep

    DEFF Research Database (Denmark)

    Rector, D M; Poe, G R; Kristensen, Morten Pilgaard

    1995-01-01

    We assessed the correspondence of 660 nm light reflectance changes from the dorsal hippocampus with slow wave electroencephalographic (EEG) activity during quiet sleep (QS) and rapid eye movement (REM) sleep in four cats. An optic probe, attached to a charge-coupled-device (CCD) video camera...... as EEG changes. Dividing the image into 10 subregions revealed that reflectance changes at the rhythmical slow wave activity band (RSA, 4-6 Hz) persisted in localized regions during QS and REM sleep, but regional changes showed considerable wave-by-wave independence between areas and from slow wave...

  2. High resolution light-sheet based high-throughput imaging cytometry system enables visualization of intra-cellular organelles

    Science.gov (United States)

    Regmi, Raju; Mohan, Kavya; Mondal, Partha Pratim

    2014-09-01

    Visualization of intracellular organelles is achieved using a newly developed high throughput imaging cytometry system. This system interrogates the microfluidic channel using a sheet of light rather than the existing point-based scanning techniques. The advantages of the developed system are many, including, single-shot scanning of specimens flowing through the microfluidic channel at flow rate ranging from micro- to nano- lit./min. Moreover, this opens-up in-vivo imaging of sub-cellular structures and simultaneous cell counting in an imaging cytometry system. We recorded a maximum count of 2400 cells/min at a flow-rate of 700 nl/min, and simultaneous visualization of fluorescently-labeled mitochondrial network in HeLa cells during flow. The developed imaging cytometry system may find immediate application in biotechnology, fluorescence microscopy and nano-medicine.

  3. Low-level rf system for the AGS Light Ion Program

    International Nuclear Information System (INIS)

    Kovarik, V.; Ahrens, L.; Barton, D.S.; Frankel, R.; Otis, A.; Pope, D.; Pritsker, M.; Raka, E.; Warkentien, R.

    1987-01-01

    The new low level rf system for the light ion acceleration program features direct digital control of a phase continuous rf synthesizer clocked by finite changes in the B field. The system, its operation and testing are described. The system covers the complete rf frequency range and switches over from single cavity acceleration to multiple cavity acceleration with no beam loss. It also switches from the programmed drive to the normal bootstrap system

  4. Jupiter's Multi-level Clouds

    Science.gov (United States)

    1997-01-01

    Clouds and hazes at various altitudes within the dynamic Jovian atmosphere are revealed by multi-color imaging taken by the Near-Infrared Mapping Spectrometer (NIMS) onboard the Galileo spacecraft. These images were taken during the second orbit (G2) on September 5, 1996 from an early-morning vantage point 2.1 million kilometers (1.3 million miles) above Jupiter. They show the planet's appearance as viewed at various near-infrared wavelengths, with distinct differences due primarily to variations in the altitudes and opacities of the cloud systems. The top left and right images, taken at 1.61 microns and 2.73 microns respectively, show relatively clear views of the deep atmosphere, with clouds down to a level about three times the atmospheric pressure at the Earth's surface.By contrast, the middle image in top row, taken at 2.17 microns, shows only the highest altitude clouds and hazes. This wavelength is severely affected by the absorption of light by hydrogen gas, the main constituent of Jupiter's atmosphere. Therefore, only the Great Red Spot, the highest equatorial clouds, a small feature at mid-northern latitudes, and thin, high photochemical polar hazes can be seen. In the lower left image, at 3.01 microns, deeper clouds can be seen dimly against gaseous ammonia and methane absorption. In the lower middle image, at 4.99 microns, the light observed is the planet's own indigenous heat from the deep, warm atmosphere.The false color image (lower right) succinctly shows various cloud and haze levels seen in the Jovian atmosphere. This image indicates the temperature and altitude at which the light being observed is produced. Thermally-rich red areas denote high temperatures from photons in the deep atmosphere leaking through minimal cloud cover; green denotes cool temperatures of the tropospheric clouds; blue denotes cold of the upper troposphere and lower stratosphere. The polar regions appear purplish, because small-particle hazes allow leakage and reflectivity

  5. Design of a dynamic biofilm imaging cell for white-light interferometric microscopy

    Science.gov (United States)

    Larimer, Curtis; Brann, Michelle; Suter, Jonathan D.; Addleman, R. Shane

    2017-11-01

    In microbiology research, there is a strong need for next-generation imaging and sensing instrumentation that will enable minimally invasive and label-free investigation of soft, hydrated structures, such as in bacterial biofilms. White-light interferometry (WLI) can provide high-resolution images of surface topology without the use of fluorescent labels but is not typically used to image biofilms because there is insufficient refractive index contrast to induce reflection from the biofilm's interface. The soft structure and water-like bulk properties of hydrated biofilms make them difficult to characterize in situ, especially in a nondestructive manner. We build on our prior description of static biofilm imaging and describe the design of a dynamic growth flow cell that enables monitoring of the thickness and topology of live biofilms over time using a WLI microscope. The microfluidic system is designed to grow biofilms in dynamic conditions and to create a reflective interface on the surface while minimizing disruption of fragile structures. The imaging cell was also designed to accommodate limitations imposed by the depth of focus of the microscope's objective lens. Example images of live biofilm samples are shown to illustrate the ability of the flow cell and WLI instrument to (1) support bacterial growth and biofilm development, (2) image biofilm structure that reflects growth in flow conditions, and (3) monitor biofilm development over time nondestructively. In future work, the apparatus described here will enable surface metrology measurements (roughness, surface area, etc.) of biofilms and may be used to observe changes in biofilm structure in response to changes in environmental conditions (e.g., flow velocity, availability of nutrients, and presence of biocides). This development will open opportunities for the use of WLI in bioimaging.

  6. Effects of monochromatic light sources on sex hormone levels in serum and on semen quality of ganders.

    Science.gov (United States)

    Chang, Shen-Chang; Zhuang, Zi-Xuan; Lin, Min-Jung; Cheng, Chuen-Yu; Lin, Tsung-Yi; Jea, Yu-Shine; Huang, San-Yuan

    2016-04-01

    Light is an essential external factor influencing various physiological processes, including reproductive performance, in birds. Although several attempts have been made to understand the effect of light on poultry production, the effect of light of a particular wavelength (color) on the reproductive function in geese remains unclear. This study evaluated the effect of various monochromatic light sources on the levels of sex hormone and on semen quality of ganders. Of 30 male White Roman geese in their third reproductive season (average age=3 years), 27 were divided into three groups receiving monochromatic white or red or blue lights. The birds were kept in an environmentally controlled house with a lighting photoperiod of 7L:17D for six weeks as the adaptation period. The photoperiod was subsequently changed to 9L:15D and maintained for 24 weeks. Three ganders at the beginning of the study and three from each group at the end of the adjusting period and the 20th and 30th week of the study period were sacrificed, and their testes and blood samples were collected for determining the sex hormone levels. Semen samples were collected for determining semen quality parameters, including the semen collection index, sperm concentration, semen volume, sperm motility, sperm viability, sperm morphology, and semen quality factor. The results showed that the testosterone and estradiol levels remained unchanged in all three groups at all time points. The ratio of testosterone to estradiol of ganders exposed to white light was significantly higher than that of ganders exposed to red light at the 30th week (PSemen collection index and sperm viability of ganders exposed to blue light were significantly the lowest (Psemen quality than that with red or blue lights in ganders. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Comparison of Color Model in Cotton Image Under Conditions of Natural Light

    Science.gov (United States)

    Zhang, J. H.; Kong, F. T.; Wu, J. Z.; Wang, S. W.; Liu, J. J.; Zhao, P.

    Although the color images contain a large amount of information reflecting the species characteristics, different color models also get different information. The selection of color models is the key to separating crops from background effectively and rapidly. Taking the cotton images collected under natural light as the object, we convert the color components of RGB color model, HSL color model and YIQ color model respectively. Then, we use subjective evaluation and objective evaluation methods, evaluating the 9 color components of conversion. It is concluded that the Q component of the soil, straw and plastic film region gray values remain the same without larger fluctuation when using subjective evaluation method. In the objective evaluation, we use the variance method, average gradient method, gray prediction objective evaluation error statistics method and information entropy method respectively to find the minimum numerical of Q color component suitable for background segmentation.

  8. Combining low level features and visual attributes for VHR remote sensing image classification

    Science.gov (United States)

    Zhao, Fumin; Sun, Hao; Liu, Shuai; Zhou, Shilin

    2015-12-01

    Semantic classification of very high resolution (VHR) remote sensing images is of great importance for land use or land cover investigation. A large number of approaches exploiting different kinds of low level feature have been proposed in the literature. Engineers are often frustrated by their conclusions and a systematic assessment of various low level features for VHR remote sensing image classification is needed. In this work, we firstly perform an extensive evaluation of eight features including HOG, dense SIFT, SSIM, GIST, Geo color, LBP, Texton and Tiny images for classification of three public available datasets. Secondly, we propose to transfer ground level scene attributes to remote sensing images. Thirdly, we combine both low-level features and mid-level visual attributes to further improve the classification performance. Experimental results demonstrate that i) Dene SIFT and HOG features are more robust than other features for VHR scene image description. ii) Visual attribute competes with a combination of low level features. iii) Multiple feature combination achieves the best performance under different settings.

  9. Geometrical Reasoning in Wave Situations: The Case of Light Diffraction and Coherent Illumination Optical Imaging

    Science.gov (United States)

    Maurines, Laurence

    2010-01-01

    This particular study is part of a research programme on the difficulties encountered by students when learning about wave phenomena in a three-dimensional medium in the absence or presence of obstacles. It focuses on how students reason in situations in which wave optics need to be used: diffraction of light by an aperture, imaging in the…

  10. Properties of light reflected from road signs in active imaging for driving safety

    Science.gov (United States)

    Halstuch, Aviran; Yitzhaky, Yitzhak

    2007-10-01

    Night-vision systems in vehicles are a new emerging technology. A crucial problem in active (illumination-based) systems is distortion of images by saturation and blooming, due to strong retro-reflections from road signs. In this work we quantified this phenomenon. We measured the Mueller matrices and the polarization state of the reflected light from three different types of road signs commonly used. Measurements of the reflected intensity were taken also with respect to the angle of reflection. We found that different types of signs have different reflection properties. It is concluded from our measurements that the optimal solution for attenuating the retro-reflected intensity is using a linear horizontal polarized light source and a linear vertical polarizer. Unfortunately, while the performance of this solution is good for two types of road signs, it is less efficient for the third sign type.

  11. Mapping whole-brain activity with cellular resolution by light-sheet microscopy and high-throughput image analysis (Conference Presentation)

    Science.gov (United States)

    Silvestri, Ludovico; Rudinskiy, Nikita; Paciscopi, Marco; Müllenbroich, Marie Caroline; Costantini, Irene; Sacconi, Leonardo; Frasconi, Paolo; Hyman, Bradley T.; Pavone, Francesco S.

    2016-03-01

    Mapping neuronal activity patterns across the whole brain with cellular resolution is a challenging task for state-of-the-art imaging methods. Indeed, despite a number of technological efforts, quantitative cellular-resolution activation maps of the whole brain have not yet been obtained. Many techniques are limited by coarse resolution or by a narrow field of view. High-throughput imaging methods, such as light sheet microscopy, can be used to image large specimens with high resolution and in reasonable times. However, the bottleneck is then moved from image acquisition to image analysis, since many TeraBytes of data have to be processed to extract meaningful information. Here, we present a full experimental pipeline to quantify neuronal activity in the entire mouse brain with cellular resolution, based on a combination of genetics, optics and computer science. We used a transgenic mouse strain (Arc-dVenus mouse) in which neurons which have been active in the last hours before brain fixation are fluorescently labelled. Samples were cleared with CLARITY and imaged with a custom-made confocal light sheet microscope. To perform an automatic localization of fluorescent cells on the large images produced, we used a novel computational approach called semantic deconvolution. The combined approach presented here allows quantifying the amount of Arc-expressing neurons throughout the whole mouse brain. When applied to cohorts of mice subject to different stimuli and/or environmental conditions, this method helps finding correlations in activity between different neuronal populations, opening the possibility to infer a sort of brain-wide 'functional connectivity' with cellular resolution.

  12. EVENT DETECTION USING MOBILE PHONE MASS GPS DATA AND THEIR RELIAVILITY VERIFICATION BY DMSP/OLS NIGHT LIGHT IMAGE

    Directory of Open Access Journals (Sweden)

    A. Yuki

    2016-06-01

    Full Text Available In this study, we developed a method to detect sudden population concentration on a certain day and area, that is, an “Event,” all over Japan in 2012 using mass GPS data provided from mobile phone users. First, stay locations of all phone users were detected using existing methods. Second, areas and days where Events occurred were detected by aggregation of mass stay locations into 1-km-square grid polygons. Finally, the proposed method could detect Events with an especially large number of visitors in the year by removing the influences of Events that occurred continuously throughout the year. In addition, we demonstrated reasonable reliability of the proposed Event detection method by comparing the results of Event detection with light intensities obtained from the night light images from the DMSP/OLS night light images. Our method can detect not only positive events such as festivals but also negative events such as natural disasters and road accidents. These results are expected to support policy development of urban planning, disaster prevention, and transportation management.

  13. Application of a spectral sky in Radiance for daylighting calculations including non-image-forming light effects

    NARCIS (Netherlands)

    Khademagha, P.; Aries, M.B.C.; Rosemann, A.L.P.; van Loenen, E.J.

    2016-01-01

    Daylight is dynamic and rich in the blue part of the spectrum. To date, the spectral composition of daylight is ignored in sky models used in Radiance. Spectral sky composition is particularly important when non-image-forming (NIF) light effects are concerned, since the action spectrum for these

  14. Ultra high-speed x-ray imaging of laser-driven shock compression using synchrotron light

    Science.gov (United States)

    Olbinado, Margie P.; Cantelli, Valentina; Mathon, Olivier; Pascarelli, Sakura; Grenzer, Joerg; Pelka, Alexander; Roedel, Melanie; Prencipe, Irene; Laso Garcia, Alejandro; Helbig, Uwe; Kraus, Dominik; Schramm, Ulrich; Cowan, Tom; Scheel, Mario; Pradel, Pierre; De Resseguier, Thibaut; Rack, Alexander

    2018-02-01

    A high-power, nanosecond pulsed laser impacting the surface of a material can generate an ablation plasma that drives a shock wave into it; while in situ x-ray imaging can provide a time-resolved probe of the shock-induced material behaviour on macroscopic length scales. Here, we report on an investigation into laser-driven shock compression of a polyurethane foam and a graphite rod by means of single-pulse synchrotron x-ray phase-contrast imaging with MHz frame rate. A 6 J, 10 ns pulsed laser was used to generate shock compression. Physical processes governing the laser-induced dynamic response such as elastic compression, compaction, pore collapse, fracture, and fragmentation have been imaged; and the advantage of exploiting the partial spatial coherence of a synchrotron source for studying low-density, carbon-based materials is emphasized. The successful combination of a high-energy laser and ultra high-speed x-ray imaging using synchrotron light demonstrates the potentiality of accessing complementary information from scientific studies of laser-driven shock compression.

  15. Recent progress in low-level gamma imaging

    International Nuclear Information System (INIS)

    Mahe, C.; Girones, Ph.; Lamadie, F.; Le Goaller, C.

    2007-01-01

    The CEA's Aladin gamma imaging system has been operated successfully for several years in nuclear plants and during decommissioning projects with additional tools such as gamma spectrometry detectors and dose rate probes. The radiological information supplied by these devices is becoming increasingly useful for establishing robust and optimized decommissioning scenarios. Recent technical improvements allow this gamma imaging system to be operated in low-level applications and with shorter acquisition times suitable for decommissioning projects. The compact portable system can be used in places inaccessible to operators. It is quick and easy to implement, notably for onsite component characterization. Feasibility trials and in situ measurements were recently carried out under low-level conditions, mainly on waste packages and glove boxes for decommissioning projects. This paper describes recent low-level in situ applications. These characterization campaigns mainly concerned gamma emitters with γ energy < 700 keV. In many cases, the localization of hot spots by gamma camera was confirmed by additional measurements such as dose rate mapping and gamma spectrometry measurements. These complementary techniques associated with advanced calculation codes (MCNP, Mercure 6.2, Visiplan and Siren) offer a mobile and compact tool for specific assessment of waste packages and glove boxes. (authors)

  16. Multi-channel medical imaging system

    Science.gov (United States)

    Frangioni, John V

    2013-12-31

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remain in the subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may provide an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide used to capture images. The system may be configured for use in open surgical procedures by providing an operating area that is closed to ambient light. The systems described herein provide two or more diagnostic imaging channels for capture of multiple, concurrent diagnostic images and may be used where a visible light image may be usefully supplemented by two or more images that are independently marked for functional interest.

  17. Pixel-level multisensor image fusion based on matrix completion and robust principal component analysis

    Science.gov (United States)

    Wang, Zhuozheng; Deller, J. R.; Fleet, Blair D.

    2016-01-01

    Acquired digital images are often corrupted by a lack of camera focus, faulty illumination, or missing data. An algorithm is presented for fusion of multiple corrupted images of a scene using the lifting wavelet transform. The method employs adaptive fusion arithmetic based on matrix completion and self-adaptive regional variance estimation. Characteristics of the wavelet coefficients are used to adaptively select fusion rules. Robust principal component analysis is applied to low-frequency image components, and regional variance estimation is applied to high-frequency components. Experiments reveal that the method is effective for multifocus, visible-light, and infrared image fusion. Compared with traditional algorithms, the new algorithm not only increases the amount of preserved information and clarity but also improves robustness.

  18. FY1995 fundamental study of imaging simulator for diagnostics and therapeutics using light; 1995 nendo hikari wo riyosuru shindan chiryoyo gazo simulator no kiso kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Medical application of lasers is rapidly expanding in accordance with the development of laser technology. However, it is difficult to predict how light propagates and is absorbed by living bodies because of strong scattering of light by biological tissues. Therefore, the determination of light dose has been based on experience. This fundamental study aims to develop a imaging simulator which can predict propagation of light and its effectiveness in medical diagnostics and therapeutics. Teoretical models of light propagation in biological tissues have been constructed, and experiments have been conducted to validate the theoretical calculation. In the theoretical calculation, a three-dimensional model which simulates a human head with five layers of different tissue types. Numerical calculation has been done by using the finite element method to simulate the propagation of ultrashort pulse light, and it is shown by a computer graphics technique for the first time in the world. In the experiment, a solid phantom which anatomically and optically simulates a human head based on MRI images has been fabricated by using the optical prototyping technology for the first time in the world again. Also, we have compared the experimental results of the transmitted light through the solid phantoms with the theoretical results and have succeeded in reconstructing the tomographic images of optical properties. (NEDO)

  19. Photoreactivity of the occipital cortex measured by functional magnetic resonance imaging-blood oxygenation level dependent in migraine patients and healthy volunteers: pathophysiological implications.

    Science.gov (United States)

    Martín, Helena; Sánchez del Río, Margarita; de Silanes, Carlos López; Álvarez-Linera, Juan; Hernández, Juan Antonio; Pareja, Juan A

    2011-01-01

    The brain of migraineurs is hyperexcitable, particularly the occipital cortex, which is probably hypersensitive to light. Photophobia or hypersensitivity to light may be accounted for by an increased excitability of trigeminal, the visual pathways, and the occipital cortex. To study light sensitivity and photophobia by assessing the response to light stimuli with functional magnetic resonance imaging-blood oxygenation level dependent (fMRI-BOLD) of the occipital cortex in migraineurs and in controls. Also, to try to decipher the contribution of the occipital cortex to photophobia and whether the cortical reactivity of migraineurs may be part of a constitutional (defensive) mechanism or represents an acquired (sensitization) phenomenon. Nineteen patients with migraine (7 with aura and 12 without aura) and 19 controls were studied with fMRI-BOLD during 4 increasing light intensities. Eight axial image sections of 0.5 cm that covered the occipital cortex were acquired for each intensity. We measured the extension and the intensity of activation for every light stimuli. Photophobia was estimated according to a 0 to 3 semiquantitative scale of light discomfort. Migraineurs had a significantly higher number of fMRI-activated voxels at low (320.4 for migraineurs [SD = 253.9] and 164.3 for controls [SD = 102.7], P = .027) and medium-low luminance levels (501.2 for migraineurs [SD = 279.5] and 331.1 for controls [SD = 194.3], P = .034) but not at medium-high (579.5 for migraineurs [SD = 201.4] and 510.2 for controls [SD = 239.5], P = .410) and high light stimuli (496.2 for migraineurs [SD = 216.2] and 394.7 for controls [SD = 240], P = .210). No differences were found with respect to the voxel activation intensity (amplitude of the BOLD wave) between migraineurs and controls (8.98 [SD = 2.58] vs 7.99 [SD = 2.57], P = .25; 10.82 [SD = 3.27] vs 9.81 [SD = 3.19], P = .31; 11.90 [SD = 3.18] vs 11.06 [SD = 2.56], P = .62; 11.45 [SD = 2.65] vs 10.25 [SD = 2.22], P = .16). Light

  20. Non-contact detection of cardiac rate based on visible light imaging device

    Science.gov (United States)

    Zhu, Huishi; Zhao, Yuejin; Dong, Liquan

    2012-10-01

    We have developed a non-contact method to detect human cardiac rate at a distance. This detection is based on the general lighting condition. Using the video signal of human face region captured by webcam, we acquire the cardiac rate based on the PhotoPlethysmoGraphy theory. In this paper, the cardiac rate detecting method is mainly in view of the blood's different absorptivities of the lights various wavelengths. Firstly, we discompose the video signal into RGB three color signal channels and choose the face region as region of interest to take average gray value. Then, we draw three gray-mean curves on each color channel with time as variable. When the imaging device has good fidelity of color, the green channel signal shows the PhotoPlethysmoGraphy information most clearly. But the red and blue channel signals can provide more other physiological information on the account of their light absorptive characteristics of blood. We divide red channel signal by green channel signal to acquire the pulse wave. With the passband from 0.67Hz to 3Hz as a filter of the pulse wave signal and the frequency spectrum superimposed algorithm, we design frequency extracted algorithm to achieve the cardiac rate. Finally, we experiment with 30 volunteers, containing different genders and different ages. The results of the experiments are all relatively agreeable. The difference is about 2bmp. Through the experiment, we deduce that the PhotoPlethysmoGraphy theory based on visible light can also be used to detect other physiological information.

  1. Coupling an Intercalibration of Radiance-Calibrated Nighttime Light Images and Land Use/Cover Data for Modeling and Analyzing the Distribution of GDP in Guangdong, China

    Directory of Open Access Journals (Sweden)

    Ziyang Cao

    2016-01-01

    Full Text Available Spatialized GDP data is important for studying the relationships between human activities and environmental changes. Rapid and accurate acquisition of these datasets are therefore a significant area of study. Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS radiance-calibrated nighttime light (RC NTL images exhibit the potential for providing superior estimates for GDP spatialization, as they are not restricted by the saturated pixels which exist in nighttime stable light (NSL images. However, the drawback of light overflow is the limited accuracy of GDP estimation, and GDP data estimations based on RC NTL images cannot be directly used for temporal analysis due to a lack of on-board calibration. This study develops an intercalibration method to address the comparability problem. Additionally, NDVI images are used to reduce the light overflow effect. In this way, the secondary and tertiary industry outputs are estimated by using intercalibrated RC NTL images. Primary industry production is estimated by using land use/cover data. Ultimately, four 1 km gridded GDP maps of Guangdong for 2000, 2004, 2006 and 2010 are generated. The verification results of the proposed intercalibration method demonstrate that this method is reasonable and can be effectively implemented. These maps can be used to analyze the distribution and spatiotemporal changes of GDP density in Guangdong.

  2. Light-Triggered Soft Artificial Muscles: Molecular-Level Amplification of Actuation Control Signals.

    Science.gov (United States)

    Dicker, Michael P M; Baker, Anna B; Iredale, Robert J; Naficy, Sina; Bond, Ian P; Faul, Charl F J; Rossiter, Jonathan M; Spinks, Geoffrey M; Weaver, Paul M

    2017-08-23

    The principle of control signal amplification is found in all actuation systems, from engineered devices through to the operation of biological muscles. However, current engineering approaches require the use of hard and bulky external switches or valves, incompatible with both the properties of emerging soft artificial muscle technology and those of the bioinspired robotic systems they enable. To address this deficiency a biomimetic molecular-level approach is developed that employs light, with its excellent spatial and temporal control properties, to actuate soft, pH-responsive hydrogel artificial muscles. Although this actuation is triggered by light, it is largely powered by the resulting excitation and runaway chemical reaction of a light-sensitive acid autocatalytic solution in which the actuator is immersed. This process produces actuation strains of up to 45% and a three-fold chemical amplification of the controlling light-trigger, realising a new strategy for the creation of highly functional soft actuating systems.

  3. Conical refraction and formation of multiring focal image with Laguerre-Gauss light beams.

    Science.gov (United States)

    Peet, Viktor

    2011-08-01

    For a light beam focused through a biaxial crystal along one of its optical axes, the effect of internal conical refraction in the crystal leads to the formation in the focal image plane of two bright rings separated by a dark ring. It is shown that, with circularly polarized Laguerre-Gauss LG(0)(ℓ) beams entering the crystal, this classical double-ring pattern is transformed into a multiring one consisting of ℓ+2 bright rings. © 2011 Optical Society of America

  4. Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy

    Science.gov (United States)

    Hunter, Jennifer J.; Masella, Benjamin; Dubra, Alfredo; Sharma, Robin; Yin, Lu; Merigan, William H.; Palczewska, Grazyna; Palczewski, Krzysztof; Williams, David R.

    2011-01-01

    In vivo two-photon imaging through the pupil of the primate eye has the potential to become a useful tool for functional imaging of the retina. Two-photon excited fluorescence images of the macaque cone mosaic were obtained using a fluorescence adaptive optics scanning laser ophthalmoscope, overcoming the challenges of a low numerical aperture, imperfect optics of the eye, high required light levels, and eye motion. Although the specific fluorophores are as yet unknown, strong in vivo intrinsic fluorescence allowed images of the cone mosaic. Imaging intact ex vivo retina revealed that the strongest two-photon excited fluorescence signal comes from the cone inner segments. The fluorescence response increased following light stimulation, which could provide a functional measure of the effects of light on photoreceptors. PMID:21326644

  5. Knowledge-based low-level image analysis for computer vision systems

    Science.gov (United States)

    Dhawan, Atam P.; Baxi, Himanshu; Ranganath, M. V.

    1988-01-01

    Two algorithms for entry-level image analysis and preliminary segmentation are proposed which are flexible enough to incorporate local properties of the image. The first algorithm involves pyramid-based multiresolution processing and a strategy to define and use interlevel and intralevel link strengths. The second algorithm, which is designed for selected window processing, extracts regions adaptively using local histograms. The preliminary segmentation and a set of features are employed as the input to an efficient rule-based low-level analysis system, resulting in suboptimal meaningful segmentation.

  6. Level densities and γ strength functions in light Sc and Ti isotopes

    International Nuclear Information System (INIS)

    Burger, A.; Larsen, A.C.; Syed, N.U.H.; Guttormsen, M.; Nyhus, H.; Siem, S.; Harissopulos, S.; Konstantinopoulos, T.; Lagoyannis, A.; Perdidakis, G.; Spyrou, A.; Kmiecik, M.; Mazurek, K.; Krticka, M.; Loennroth, T.; Norby, M.; Voinov, A.

    2010-01-01

    We present preliminary results from a measurement of nuclear level densities and the γ-ray strength of light Sc (Sc 43 , Sc 45 ) and Ti (Ti 44 , Ti 45 and Ti 46 ) isotopes using the Oslo Method. The article begins with a presentation of the experimental setup. (authors)

  7. Infrared to visible image up-conversion using optically addressed spatial light modulator utilizing liquid crystal and InGaAs photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Solodar, A., E-mail: asisolodar@gmail.com; Arun Kumar, T.; Sarusi, G.; Abdulhalim, I. [Department of Electro-Optics Engineering and The Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)

    2016-01-11

    Combination of InGaAs/InP heterojunction photodetector with nematic liquid crystal (LC) as the electro-optic modulating material for optically addressed spatial light modulator for short wavelength infra-red (SWIR) to visible light image conversion was designed, fabricated, and tested. The photodetector layer is composed of 640 × 512 photodiodes array based on heterojunction InP/InGaAs having 15 μm pitch on InP substrate and with backside illumination architecture. The photodiodes exhibit extremely low, dark current at room temperature, with optimum photo-response in the SWIR region. The photocurrent generated in the heterojunction, due to the SWIR photons absorption, is drifted to the surface of the InP, thus modulating the electric field distribution which modifies the orientation of the LC molecules. This device can be attractive for SWIR to visible image upconversion, such as for uncooled night vision goggles under low ambient light conditions.

  8. Correcting the effect of refraction and dispersion of light in FT-IR spectroscopic imaging in transmission through thick infrared windows.

    Science.gov (United States)

    Chan, K L Andrew; Kazarian, Sergei G

    2013-01-15

    Transmission mode is one of the most common sampling methods for FT-IR spectroscopic imaging because the spectra obtained generally have a reasonable signal-to-noise ratio. However, dispersion and refraction of infrared light occurs when samples are sandwiched between infrared windows or placed underneath a layer of liquid. Dispersion and refraction cause infrared light to focus with different focal lengths depending on the wavelength (wavenumber) of the light. As a result, images obtained are in focus only at a particular wavenumber while they are defocused at other wavenumber values. In this work, a solution to correct this spread of focus by means of adding a lens on top of the infrared transparent window, such that a pseudo hemisphere is formed, has been investigated. Through this lens (or pseudo hemisphere), refraction of light is removed and the light across the spectral range has the same focal depth. Furthermore, the lens acts as a solid immersion objective and an increase of both magnification and spatial resolution (by 1.4 times) is demonstrated. The spatial resolution was investigated using an USAF resolution target, showing that the Rayleigh criterion can be achieved, as well as a sample with a sharp polymer interface to indicate the spatial resolution that can be expected in real samples. The reported approach was used to obtain chemical images of cross sections of cancer tissue and hair samples sandwiched between infrared windows showing the versatility and applicability of the method. In addition to the improved spatial resolution, the results reported herein also demonstrate that the lens can reduce the effect of scattering near the edges of tissue samples. The advantages of the presented approach, obtaining FT-IR spectroscopic images in transmission mode with the same focus across all wavenumber values and simultaneous improvement in spatial resolution, will have wide implications ranging from studies of live cells to sorption of drugs into tissues.

  9. Low-level light therapy of the eye and brain

    Directory of Open Access Journals (Sweden)

    Rojas JC

    2011-10-01

    Full Text Available Julio C Rojas1,2, F Gonzalez-Lima1 1Departments of Psychology, Pharmacology and Toxicology, University of Texas at Austin, Austin, TX; 2Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA Abstract: Low-level light therapy (LLLT using red to near-infrared light energy has gained attention in recent years as a new scientific approach with therapeutic applications in ophthalmology, neurology, and psychiatry. The ongoing therapeutic revolution spearheaded by LLLT is largely propelled by progress in the basic science fields of photobiology and bioenergetics. This paper describes the mechanisms of action of LLLT at the molecular, cellular, and nervous tissue levels. Photoneuromodulation of cytochrome oxidase activity is the most important primary mechanism of action of LLLT. Cytochrome oxidase is the primary photoacceptor of light in the red to near-infrared region of the electromagnetic spectrum. It is also a key mitochondrial enzyme for cellular bioenergetics, especially for nerve cells in the retina and the brain. Evidence shows that LLLT can secondarily enhance neural metabolism by regulating mitochondrial function, intraneuronal signaling systems, and redox states. Current knowledge about LLLT dosimetry relevant for its hormetic effects on nervous tissue, including noninvasive in vivo retinal and transcranial effects, is also presented. Recent research is reviewed that supports LLLT potential benefits in retinal disease, stroke, neurotrauma, neurodegeneration, and memory and mood disorders. Since mitochondrial dysfunction plays a key role in neurodegeneration, LLLT has potential significant applications against retinal and brain damage by counteracting the consequences of mitochondrial failure. Upon transcranial delivery in vivo, LLLT induces brain metabolic and antioxidant beneficial effects, as measured by increases in cytochrome oxidase and superoxide dismutase activities. Increases

  10. Note: A portable Raman analyzer for microfluidic chips based on a dichroic beam splitter for integration of imaging and signal collection light paths

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Yijia; Xu, Shuping; Xu, Weiqing, E-mail: xuwq@jlu.edu.cn [State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130012 (China); Chen, Lei [State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130012 (China); College of Physics, Jilin University, Changchun 130012 (China); Chen, Gang [State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130012 (China); College of Chemistry, Jilin University, Changchun 130012 (China); Bi, Wenbin [State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130012 (China); School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022 (China); Cui, Haining [College of Physics, Jilin University, Changchun 130012 (China)

    2015-05-15

    An integrated and portable Raman analyzer featuring an inverted probe fixed on a motor-driving adjustable optical module was designed for the combination of a microfluidic system. It possesses a micro-imaging function. The inverted configuration is advantageous to locate and focus microfluidic channels. Different from commercial micro-imaging Raman spectrometers using manual switchable light path, this analyzer adopts a dichroic beam splitter for both imaging and signal collection light paths, which avoids movable parts and improves the integration and stability of optics. Combined with surface-enhanced Raman scattering technique, this portable Raman micro-analyzer is promising as a powerful tool for microfluidic analytics.

  11. Spotted star light curve numerical modeling technique and its application to HII 1883 surface imaging

    Science.gov (United States)

    Kolbin, A. I.; Shimansky, V. V.

    2014-04-01

    We developed a code for imaging the surfaces of spotted stars by a set of circular spots with a uniform temperature distribution. The flux from the spotted surface is computed by partitioning the spots into elementary areas. The code takes into account the passing of spots behind the visible stellar limb, limb darkening, and overlapping of spots. Modeling of light curves includes the use of recent results of the theory of stellar atmospheres needed to take into account the temperature dependence of flux intensity and limb darkening coefficients. The search for spot parameters is based on the analysis of several light curves obtained in different photometric bands. We test our technique by applying it to HII 1883.

  12. Detecting and locating light atoms from high-resolution STEM images : The quest for a single optimal design

    NARCIS (Netherlands)

    Gonnissen, J; De Backer, A; den Dekker, A.J.; Sijbers, J.; Van Aert, S.

    2016-01-01

    In the present paper, the optimal detector design is investigated for both detecting and locating light atoms from high resolution scanning transmission electron microscopy (HR STEM) images. The principles of detection theory are used to quantify the probability of error for the detection of

  13. : Light Steering Projection Systems and Attributes for HDR Displays

    KAUST Repository

    Damberg, Gerwin

    2017-06-02

    New light steering projectors in cinema form images by moving light away from dark regions into bright areas of an image. In these systems, the peak luminance of small features can far exceed full screen white luminance. In traditional projectors where light is filtered or blocked in order to give shades of gray (or colors), the peak luminance is fixed. The luminance of chromatic features benefit in the same way as white features, and chromatic image details can be reproduced at high brightness leading to a much wider overall color gamut coverage than previously possible. Projectors of this capability are desired by the creative community to aid in and enhance storytelling. Furthermore, reduced light source power requirements of light steering projectors provide additional economic and environmental benefits. While the dependency of peak luminance level on (bright) image feature size is new in the digital cinema space, display technologies with identical characteristics such as OLED, LED LCD and Plasma TVs are well established in the home. Similarly, direct view LED walls are popular in events, advertising and architectural markets. To enable consistent color reproduction across devices in today’s content production pipelines, models that describe modern projectors and display attributes need to evolve together with HDR standards and available metadata. This paper is a first step towards rethinking legacy display descriptors such as contrast, peak luminance and color primaries in light of new display technology. We first summarize recent progress in the field of light steering projectors in cinema and then, based on new projector and existing display characteristics propose the inclusion of two simple display attributes: Maximum Average Luminance and Peak (Color) Primary Luminance. We show that the proposed attributes allow a better prediction of content reproducibility on HDR displays. To validate this assertion, we test professional content on a commercial HDR

  14. Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering

    Science.gov (United States)

    Jeong, Seungwon; Lee, Ye-Ryoung; Choi, Wonjun; Kang, Sungsam; Hong, Jin Hee; Park, Jin-Sung; Lim, Yong-Sik; Park, Hong-Gyu; Choi, Wonshik

    2018-05-01

    The efficient delivery of light energy is a prerequisite for the non-invasive imaging and stimulating of target objects embedded deep within a scattering medium. However, the injected waves experience random diffusion by multiple light scattering, and only a small fraction reaches the target object. Here, we present a method to counteract wave diffusion and to focus multiple-scattered waves at the deeply embedded target. To realize this, we experimentally inject light into the reflection eigenchannels of a specific flight time to preferably enhance the intensity of those multiple-scattered waves that have interacted with the target object. For targets that are too deep to be visible by optical imaging, we demonstrate a more than tenfold enhancement in light energy delivery in comparison with ordinary wave diffusion cases. This work will lay a foundation to enhance the working depth of imaging, sensing and light stimulation.

  15. Output blue light evaluation for phosphor based smart white LED wafer level packages.

    Science.gov (United States)

    Kolahdouz, Zahra; Rostamian, Ali; Kolahdouz, Mohammadreza; Ma, Teng; van Zeijl, Henk; Zhang, Kouchi

    2016-02-22

    This study presents a blue light detector for evaluating the output light of phosphor based white LED package. It is composed of a silicon stripe-shaped photodiode designed and implemented in a 2 μm BiCMOS process which can be used for wafer level integration of different passive and active devices all in just 5 lithography steps. The final device shows a high selectivity to blue light. The maximum responsivity at 480 nm is matched with the target blue LED illumination. The designed structure have better responsivity compared to simple photodiode structure due to reducing the effect of dead layer formation close to the surface because of implantation. It has also a two-fold increase in the responsivity and quantum efficiency compared to previously similar published sensors.

  16. Lighting issues in the 1980's. Summary and proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, A. I. [ed.

    1980-01-01

    The Lighting Roundtable described in this report was conducted to foster an open discussion of the goals, issues, and responsibilities of the lighting community. It was not a problem-solving session, but rather a time to examine the long-term aspirations and objectives of lighting and the barriers that may stand in the way of achieving them. Eight major issues were addressed by nine panelists and a number of invited auditors. The issues are as follows: (1) The Public Image of the Lighting Community; (2) US Role in the Worldwide Lighting Community; (3) Factors Affecting Human Activities in the Built Environment; (4) Effect of Lighting on Environmental Quality; (5) Effects of Barriers; (6) Establishment of Illuminance Levels; (7) Integration of Subsystems; and (8) Professional Development and Lighting Education. Two parts presented are: (1) a summary of the proceedings; and (2) a complete transcript.

  17. Lossless, Near-Lossless, and Refinement Coding of Bi-level Images

    DEFF Research Database (Denmark)

    Martins, Bo; Forchhammer, Søren Otto

    1999-01-01

    We present general and unified algorithms for lossy/lossless coding of bi-level images. The compression is realized by applying arithmetic coding to conditional probabilities. As in the current JBIG standard the conditioning may be specified by a template.For better compression, the more general...... to the specialized soft pattern matching techniques which work better for text. Template based refinement coding is applied for lossy-to-lossless refinement. Introducing only a small amount of loss in halftoned test images, compression is increased by up to a factor of four compared with JBIG. Lossy, lossless......, and refinement decoding speed and lossless encoding speed are less than a factor of two slower than JBIG. The (de)coding method is proposed as part of JBIG2, an emerging international standard for lossless/lossy compression of bi-level images....

  18. Simultaneous optical coherence tomography and lipofuscin autofluorescence imaging of the retina with a single broadband light source at 480nm.

    Science.gov (United States)

    Jiang, Minshan; Liu, Tan; Liu, Xiaojing; Jiao, Shuliang

    2014-12-01

    We accomplished spectral domain optical coherence tomography and auto-fluorescence microscopy for imaging the retina with a single broadband light source centered at 480 nm. This technique is able to provide simultaneous structural imaging and lipofuscin molecular contrast of the retina. Since the two imaging modalities are provided by the same group of photons, their images are intrinsically registered. To test the capabilities of the technique we periodically imaged the retinas of the same rats for four weeks. The images successfully demonstrated lipofuscin accumulation in the retinal pigment epithelium with aging. The experimental results showed that the dual-modal imaging system can be a potentially powerful tool in the study of age-related degenerative retinal diseases.

  19. Estimation and correction of produced light from prompt gamma photons on luminescence imaging of water for proton therapy dosimetry

    Science.gov (United States)

    Yabe, Takuya; Komori, Masataka; Toshito, Toshiyuki; Yamaguchi, Mitsutaka; Kawachi, Naoki; Yamamoto, Seiichi

    2018-02-01

    Although the luminescence images of water during proton-beam irradiation using a cooled charge-coupled device camera showed almost the same ranges of proton beams as those measured by an ionization chamber, the depth profiles showed lower Bragg peak intensities than those measured by an ionization chamber. In addition, a broad optical baseline signal was observed in depths that exceed the depth of the Bragg peak. We hypothesize that this broad baseline signal originates from the interaction of proton-induced prompt gamma photons with water. These prompt gamma photons interact with water to form high-energy Compton electrons, which may cause luminescence or Cherenkov emission from depths exceeding the location of the Bragg peak. To clarify this idea, we measured the luminescence images of water during the irradiations of protons in water with minimized parallax errors, and also simulated the produced light by the interactions of prompt gamma photons with water. We corrected the measured depth profiles of the luminescence images by subtracting the simulated distributions of the produced light by the interactions of prompt gamma photons in water. Corrections were also conducted using the estimated depth profiles of the light of the prompt gamma photons, as obtained from the off-beam areas of the luminescence images of water. With these corrections, we successfully obtained depth profiles that have almost identical distributions as the simulated dose distributions for protons. The percentage relative height of the Bragg peak with corrections to that of the simulation data increased to 94% from 80% without correction. Also, the percentage relative offset heights of the deeper part of the Bragg peak with corrections decreased to 0.2%-0.4% from 4% without correction. These results indicate that the luminescence imaging of water has potential for the dose distribution measurements for proton therapy dosimetry.

  20. Collimating lens for light-emitting-diode light source based on non-imaging optics.

    Science.gov (United States)

    Wang, Guangzhen; Wang, Lili; Li, Fuli; Zhang, Gongjian

    2012-04-10

    A collimating lens for a light-emitting-diode (LED) light source is an essential device widely used in lighting engineering. Lens surfaces are calculated by geometrical optics and nonimaging optics. This design progress does not rely on any software optimization and any complex iterative process. This method can be used for any type of light source not only Lambertian. The theoretical model is based on point source. But the practical LED source has a certain size. So in the simulation, an LED chip whose size is 1 mm*1 mm is used to verify the feasibility of the model. The mean results show that the lenses have a very compact structure and good collimating performance. Efficiency is defined as the ratio of the flux in the illuminated plane to the flux from LED source without considering the lens material transmission. Just investigating the loss in the designed lens surfaces, the two types of lenses have high efficiencies of more than 90% and 99%, respectively. Most lighting area (possessing 80% flux) radii are no more than 5 m when the illuminated plane is 200 m away from the light source.

  1. A deep level set method for image segmentation

    OpenAIRE

    Tang, Min; Valipour, Sepehr; Zhang, Zichen Vincent; Cobzas, Dana; MartinJagersand

    2017-01-01

    This paper proposes a novel image segmentation approachthat integrates fully convolutional networks (FCNs) with a level setmodel. Compared with a FCN, the integrated method can incorporatesmoothing and prior information to achieve an accurate segmentation.Furthermore, different than using the level set model as a post-processingtool, we integrate it into the training phase to fine-tune the FCN. Thisallows the use of unlabeled data during training in a semi-supervisedsetting. Using two types o...

  2. Fasciola hepatica: effect of the natural light level on cercarial emergence from temperature-challenged Galba truncatula

    Directory of Open Access Journals (Sweden)

    Vignoles Philippe

    2014-01-01

    Full Text Available As abrupt changes in water temperature (thermal shock triggered a significantly greater cercarial emergence of Fasciola hepatica from experimentally infected Galba truncatula, laboratory investigations were carried out to study the influence of light on cercarial emergence in snails subjected to a thermal shock every week (a mean of 12 °C for 3 h during the patent period. Thermal shock for these temperature-challenged (TC snails was carried out outdoors under artificial or natural light, or indoors under constant artificial light. Compared with the infected control snails always reared indoors at 20 °C, the number of cercariae in TC snails subjected to a thermal shock and natural light outdoors was significantly greater. The repetition of this experiment by subjecting TC snails to the same thermal shock indoors under an artificial light level ranging from 600 to 3000 lux did not show any significant difference among the numbers of cercariae in the different subgroups. A detailed analysis of the results noted in the TC snails subjected to natural light during the thermal shock demonstrated that the number of cercariae-releasing snails was significantly higher between 601 and 1200 lux and for the highest nebulosity values (7–8 octas, which corresponds to a sufficiently or completely overcast sky. Contrary to the intensity of artificial light, which did not influence cercarial emergence, the natural light level had a significant effect on this process when F. hepatica-infected snails were subjected to a regular thermal shock during the patent period.

  3. Effect of glucose level on brain FDG-PET images

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Young; Lee, Yong Ki; Ahn, Sung Min [Dept. of Radiological Science, Gachon University, Seongnam (Korea, Republic of)

    2017-06-15

    In addition to tumors, normal tissues, such as the brain and myocardium can intake {sup 18}F-FDG, and the amount of {sup 18}F-FDG intake by normal tissues can be altered by the surrounding environment. Therefore, a process is necessary during which the contrasts of the tumor and normal tissues can be enhanced. Thus, this study examines the effects of glucose levels on FDG PET images of brain tissues, which features high glucose activity at all times, in small animals. Micro PET scan was performed on fourteen mice after injecting {sup 18}F-FDG. The images were compared in relation to fasting. The findings showed that the mean SUV value w as 0 .84 higher in fasted mice than in non-fasted mice. During observation, the images from non-fasted mice showed high accumulation in organs other than the brain with increased surrounding noise. In addition, compared to the non-fasted mice, the fasted mice showed higher early intake and curve increase. The findings of this study suggest that fasting is important in assessing brain functions in brain PET using {sup 18}F-FDG. Additional studies to investigate whether caffeine levels and other preprocessing items have an impact on the acquired images would contribute to reducing radiation exposure in patients.

  4. Effect of glucose level on brain FDG-PET images

    International Nuclear Information System (INIS)

    Kim, In Young; Lee, Yong Ki; Ahn, Sung Min

    2017-01-01

    In addition to tumors, normal tissues, such as the brain and myocardium can intake 18 F-FDG, and the amount of 18 F-FDG intake by normal tissues can be altered by the surrounding environment. Therefore, a process is necessary during which the contrasts of the tumor and normal tissues can be enhanced. Thus, this study examines the effects of glucose levels on FDG PET images of brain tissues, which features high glucose activity at all times, in small animals. Micro PET scan was performed on fourteen mice after injecting 18 F-FDG. The images were compared in relation to fasting. The findings showed that the mean SUV value w as 0 .84 higher in fasted mice than in non-fasted mice. During observation, the images from non-fasted mice showed high accumulation in organs other than the brain with increased surrounding noise. In addition, compared to the non-fasted mice, the fasted mice showed higher early intake and curve increase. The findings of this study suggest that fasting is important in assessing brain functions in brain PET using 18 F-FDG. Additional studies to investigate whether caffeine levels and other preprocessing items have an impact on the acquired images would contribute to reducing radiation exposure in patients

  5. Beamline Design and Instrumentation for the Imaging and Coherence Beamline I13L at the Diamond Light Source

    Science.gov (United States)

    Wagner, U. H.; Pešić, Z. D.; De Fanis, A.; Rau, C.

    2013-03-01

    I13L is a 250 m long hard x-ray beamline (6 keV to 35 keV) at the Diamond Light Source. The beamline comprises of two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques. In this paper we will discuss the fundamental design concepts of the beamline and explain their implications for the civil engineering of the endstation building and the beamline instrumentation. For the latter this paper will focus on the beamline mirror systems and monochromators.

  6. Beamline Design and Instrumentation for the Imaging and Coherence Beamline I13L at the Diamond Light Source

    International Nuclear Information System (INIS)

    Wagner, U H; Pešić, Z D; Fanis, A De; Rau, C

    2013-01-01

    I13L is a 250 m long hard x-ray beamline (6 keV to 35 keV) at the Diamond Light Source. The beamline comprises of two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques. In this paper we will discuss the fundamental design concepts of the beamline and explain their implications for the civil engineering of the endstation building and the beamline instrumentation. For the latter this paper will focus on the beamline mirror systems and monochromators.

  7. Assessing Light Pollution in China Based on Nighttime Light Imagery

    OpenAIRE

    Wei Jiang; Guojin He; Tengfei Long; Chen Wang; Yuan Ni; Ruiqi Ma

    2017-01-01

    Rapid urbanization and economic development inevitably lead to light pollution, which has become a universal environmental issue. In order to reveal the spatiotemporal patterns and evolvement rules of light pollution in China, images from 1992 to 2012 were selected from the Defense Meteorological Satellite Program Operational Linescan System (DMSP/OLS) and systematically corrected to ensure consistency. Furthermore, we employed a linear regression trend method and nighttime light index method...

  8. Fusing complementary images for pavement cracking measurements

    International Nuclear Information System (INIS)

    Yao, Ming; Zhao, Zuyun; Xu, Bugao; Yao, Xun

    2015-01-01

    Cracking is a major pavement distress that jeopardizes road serviceability and traffic safety. Automated pavement distress survey (APDS) systems have been developed using digital imaging technology to replace human surveys for more timely and accurate inspections. Most APDS systems require special lighting devices to illuminate pavements and prevent shadows of roadside objects that distort cracks in the image. Most artificial lighting devices are laser based, and are either hazardous to unprotected people or require dedicated power supplies on the vehicle. This study was aimed to develop a new imaging system that can scan pavement surface at highway speed and determine the level of severity of pavement cracking without using any artificial lighting. The new system consists of dual line-scan cameras that are installed side by side to scan the same pavement area as the vehicle moves. Cameras are controlled with different exposure settings so that both sunlit and shadowed areas can be visible in two separate images. The paired images contain complementary details useful for reconstructing an image in which the shadows are eliminated. This paper intends to present (1) the design of the dual line-scan camera system, (2) a new calibration method for line-scan cameras to rectify and register paired images, (3) a customized image-fusion algorithm that merges the multi-exposure images into one shadow-free image for crack detection, and (4) the results of the field tests on a selected road over a long period. (paper)

  9. A Novel Mirror-Aided Non-imaging Receiver for Indoor 2x2 MIMO Visible Light Communication Systems

    KAUST Repository

    Park, Kihong

    2017-06-07

    Indoor visible light communication (VLC) systems are now possible because of advances in light emitting diode and laser diode technologies. These lighting technologies provide the foundation for multiple-input multiple-output (MIMO) data transmission through visible light. However, the channel matrix can be strongly correlated in indoor MIMO-VLC systems, preventing parallel data streams from being decoded. Here, in $2\\\\times 2$ MIMO-VLC systems, we describe a mirror diversity receiver (MDR) design that reduces the channel correlation by both blocking the reception of light from one specific direction and improving the channel gain from light from another direction by utilizing a double-sided mirror deployed between the receiver\\'s photodetectors. We report on the channel capacity of the MDR system and the optimal height of its mirrors in terms of maximum channel capacity. We also derived analytic results on the effect of rotation on MDR\\'s performance. Based on numerical and experimental results, we show that the double-sided mirror has both constructive and destructive effects on the channel matrix. Our design can be used with previously described non-imaging systems to improve the performance of indoor VLC systems.

  10. Built-in hyperspectral camera for smartphone in visible, near-infrared and middle-infrared lights region (second report): sensitivity improvement of Fourier-spectroscopic imaging to detect diffuse reflection lights from internal human tissues for healthcare sensors

    Science.gov (United States)

    Kawashima, Natsumi; Hosono, Satsuki; Ishimaru, Ichiro

    2016-05-01

    We proposed the snapshot-type Fourier spectroscopic imaging for smartphone that was mentioned in 1st. report in this conference. For spectroscopic components analysis, such as non-invasive blood glucose sensors, the diffuse reflection lights from internal human skins are very weak for conventional hyperspectral cameras, such as AOTF (Acousto-Optic Tunable Filter) type. Furthermore, it is well known that the spectral absorption of mid-infrared lights or Raman spectroscopy especially in long wavelength region is effective to distinguish specific biomedical components quantitatively, such as glucose concentration. But the main issue was that photon energies of middle infrared lights and light intensities of Raman scattering are extremely weak. For improving sensitivity of our spectroscopic imager, the wide-field-stop & beam-expansion method was proposed. Our line spectroscopic imager introduced a single slit for field stop on the conjugate objective plane. Obviously to increase detected light intensities, the wider slit width of the field stop makes light intensities higher, regardless of deterioration of spatial resolutions. Because our method is based on wavefront-division interferometry, it becomes problems that the wider width of single slit makes the diffraction angle narrower. This means that the narrower diameter of collimated objective beams deteriorates visibilities of interferograms. By installing the relative inclined phaseshifter onto optical Fourier transform plane of infinity corrected optical systems, the collimated half flux of objective beams derived from single-bright points on objective surface penetrate through the wedge prism and the cuboid glass respectively. These two beams interfere each other and form the infererogram as spatial fringe patterns. Thus, we installed concave-cylindrical lens between the wider slit and objective lens as a beam expander. We successfully obtained the spectroscopic characters of hemoglobin from reflected lights from

  11. Stokes vector based interpolation method to improve the efficiency of bio-inspired polarization-difference imaging in turbid media

    Science.gov (United States)

    Guan, Jinge; Ren, Wei; Cheng, Yaoyu

    2018-04-01

    We demonstrate an efficient polarization-difference imaging system in turbid conditions by using the Stokes vector of light. The interaction of scattered light with the polarizer is analyzed by the Stokes-Mueller formalism. An interpolation method is proposed to replace the mechanical rotation of the polarization axis of the analyzer theoretically, and its performance is verified by the experiment at different turbidity levels. We show that compared with direct imaging, the Stokes vector based imaging method can effectively reduce the effect of light scattering and enhance the image contrast.

  12. [Fundus Autofluorescence Imaging].

    Science.gov (United States)

    Schmitz-Valckenberg, S

    2015-09-01

    Fundus autofluorescence (FAF) imaging allows for non-invasive mapping of changes at the level of the retinal pigment epithelium/photoreceptor complex and of alterations of macular pigment distribution. This imaging method is based on the visualisation of intrinsic fluorophores and may be easily and rapidly used in routine patient care. Main applications include degenerative disorders of the outer retina such as age-related macular degeneration, hereditary and acquired retinal diseases. FAF imaging is particularly helpful for differential diagnosis, detection and extent of involved retinal areas, structural-functional correlations and monitoring of changes over time. Recent developments include - in addition to the original application of short wavelength light for excitation ("blue" FAF imaging) - the use of other wavelength ranges ("green" or "near-infrared" FAF imaging), widefield imaging for visualisation of peripheral retinal areas and quantitative FAF imaging. Georg Thieme Verlag KG Stuttgart · New York.

  13. Radiological considerations for POE-1 photon shutters, collimators and beam stops of the Biomedical Imaging and Therapy beamline at the Canadian Light Source

    International Nuclear Information System (INIS)

    Asai, Juhachi; Wysokinski, Tomasz W.; Smith, Sheldon; Chapman, Dean

    2008-01-01

    A study of radiation levels due to primary and secondary gas bremsstrahlung is carried out for the BioMedical Imaging and Therapy (BMIT) beamline at the Canadian Light Source (CLS). The BMIT beamline, being built at present, is a major research and diagnostic tool for X-ray imaging and X-ray radiation therapy for animals and humans. For the BMIT beamline to be as flexible as possible, a movable tungsten collimator is designed. This can move vertically and assumes two positions; up and down. The BMIT beamline is, thus, able to perform two modes of operation: one white beam, the other monochromatic. Gas bremsstrahlung produced in the vacuum chamber propagates with synchrotron radiation and may enter the imaging or therapy hutch. In this study, the dose behind the collimator is investigated in each mode by assessing the energy deposition in a water phantom that surrounds the entire copper shutter-tungsten collimator unit. When estimating the dose, particular attention is given to the opening area of the collimator, since this passage leads to the imaging or therapy hutch. Also examined are the doses when a tungsten safety shutter is closed

  14. An automatic high precision registration method between large area aerial images and aerial light detection and ranging data

    Science.gov (United States)

    Du, Q.; Xie, D.; Sun, Y.

    2015-06-01

    The integration of digital aerial photogrammetry and Light Detetion And Ranging (LiDAR) is an inevitable trend in Surveying and Mapping field. We calculate the external orientation elements of images which identical with LiDAR coordinate to realize automatic high precision registration between aerial images and LiDAR data. There are two ways to calculate orientation elements. One is single image spatial resection using image matching 3D points that registered to LiDAR. The other one is Position and Orientation System (POS) data supported aerotriangulation. The high precision registration points are selected as Ground Control Points (GCPs) instead of measuring GCPs manually during aerotriangulation. The registration experiments indicate that the method which registering aerial images and LiDAR points has a great advantage in higher automation and precision compare with manual registration.

  15. Dislocation-related trap levels in nitride-based light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Venturi, Giulia; Castaldini, Antonio; Cavallini, Anna [Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, Bologna 40127 (Italy); Meneghini, Matteo; Zanoni, Enrico [Department of Information Engineering, University of Padova, via Gradenigo 6/B, Padova 35131 (Italy); Zhu, Dandan; Humphreys, Colin [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom)

    2014-05-26

    Deep level transient spectroscopy was performed on InGaN/GaN multiple quantum well light emitting diodes (LEDs) in order to determine the effect of the dislocation density on the deep intragap electronic levels. The LEDs were grown by metalorganic vapor phase epitaxy on GaN templates with a high dislocation density of 8 × 10{sup 9} cm{sup −2} and a low dislocation density of 3 × 10{sup 8} cm{sup −2}. Three trapping levels for electrons were revealed, named A, A1, and B, with energies E{sub A} ≈ 0.04 eV, E{sub A1} ≈ 0.13 eV, and E{sub B} ≈ 0.54 eV, respectively. The trapping level A has a much higher concentration in the LEDs grown on the template with a high density of dislocations. The logarithmic dependence of the peak amplitude on the bias pulse width for traps A and A1 identifies the defects responsible for these traps as associated with linearly arranged defects. We conclude that traps A and A1 are dislocation-related intragap energy levels.

  16. Dislocation-related trap levels in nitride-based light emitting diodes

    International Nuclear Information System (INIS)

    Venturi, Giulia; Castaldini, Antonio; Cavallini, Anna; Meneghini, Matteo; Zanoni, Enrico; Zhu, Dandan; Humphreys, Colin

    2014-01-01

    Deep level transient spectroscopy was performed on InGaN/GaN multiple quantum well light emitting diodes (LEDs) in order to determine the effect of the dislocation density on the deep intragap electronic levels. The LEDs were grown by metalorganic vapor phase epitaxy on GaN templates with a high dislocation density of 8 × 10 9 cm −2 and a low dislocation density of 3 × 10 8 cm −2 . Three trapping levels for electrons were revealed, named A, A1, and B, with energies E A  ≈ 0.04 eV, E A1  ≈ 0.13 eV, and E B  ≈ 0.54 eV, respectively. The trapping level A has a much higher concentration in the LEDs grown on the template with a high density of dislocations. The logarithmic dependence of the peak amplitude on the bias pulse width for traps A and A1 identifies the defects responsible for these traps as associated with linearly arranged defects. We conclude that traps A and A1 are dislocation-related intragap energy levels.

  17. A SOLAR FLARE DISTURBING A LIGHT WALL ABOVE A SUNSPOT LIGHT BRIDGE

    International Nuclear Information System (INIS)

    Hou, Yijun; Zhang, Jun; Li, Ting; Yang, Shuhong; Li, Leping; Li, Xiaohong

    2016-01-01

    With the high-resolution data from the Interface Region Imaging Spectrograph , we detect a light wall above a sunspot light bridge in the NOAA active region (AR) 12403. In the 1330 Å slit-jaw images, the light wall is brighter than the ambient areas while the wall top and base are much brighter than the wall body, and it keeps oscillating above the light bridge. A C8.0 flare caused by a filament activation occurred in this AR with the peak at 02:52 UT on 2015 August 28, and the flare’s one ribbon overlapped the light bridge, which was the observational base of the light wall. Consequently, the oscillation of the light wall was evidently disturbed. The mean projective oscillation amplitude of the light wall increased from 0.5 to 1.6 Mm before the flare and decreased to 0.6 Mm after the flare. We suggest that the light wall shares a group of magnetic field lines with the flare loops, which undergo a magnetic reconnection process, and they constitute a coupled system. When the magnetic field lines are pushed upward at the pre-flare stage, the light wall turns to the vertical direction, resulting in the increase of the light wall’s projective oscillation amplitude. After the magnetic reconnection takes place, a group of new field lines with smaller scales are formed underneath the reconnection site, and the light wall inclines. Thus, the projective amplitude notably decrease at the post-flare stage.

  18. A SOLAR FLARE DISTURBING A LIGHT WALL ABOVE A SUNSPOT LIGHT BRIDGE

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Yijun; Zhang, Jun; Li, Ting; Yang, Shuhong; Li, Leping; Li, Xiaohong, E-mail: yijunhou@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2016-10-01

    With the high-resolution data from the Interface Region Imaging Spectrograph , we detect a light wall above a sunspot light bridge in the NOAA active region (AR) 12403. In the 1330 Å slit-jaw images, the light wall is brighter than the ambient areas while the wall top and base are much brighter than the wall body, and it keeps oscillating above the light bridge. A C8.0 flare caused by a filament activation occurred in this AR with the peak at 02:52 UT on 2015 August 28, and the flare’s one ribbon overlapped the light bridge, which was the observational base of the light wall. Consequently, the oscillation of the light wall was evidently disturbed. The mean projective oscillation amplitude of the light wall increased from 0.5 to 1.6 Mm before the flare and decreased to 0.6 Mm after the flare. We suggest that the light wall shares a group of magnetic field lines with the flare loops, which undergo a magnetic reconnection process, and they constitute a coupled system. When the magnetic field lines are pushed upward at the pre-flare stage, the light wall turns to the vertical direction, resulting in the increase of the light wall’s projective oscillation amplitude. After the magnetic reconnection takes place, a group of new field lines with smaller scales are formed underneath the reconnection site, and the light wall inclines. Thus, the projective amplitude notably decrease at the post-flare stage.

  19. Melanopsin gene polymorphism I394T is associated with pupillary light responses in a dose-dependent manner.

    Directory of Open Access Journals (Sweden)

    Shigekazu Higuchi

    Full Text Available BACKGROUND: Melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs play an important role in non-image forming responses to light, such as circadian photoentrainment, light-induced melatonin suppression, and pupillary light response. Although it is known that there are some single nucleotide polymorphisms (SNPs in the melanopsin (OPN4 gene in humans, the associations of the SNPs with non-image forming responses to light remains unclear. In the present study, we examined the associations of melanopsin gene polymorphisms with pupillary light response. METHODS: Japanese university students (mean age: 21.0 ± 1.7 years with the genotypes of TT (n = 38, TC (n = 28 and CC (n = 7 at rs1079610 (I394T located in the coding region participated in the present study. They were matched by age and sex ratio. Dark-adapted pupil size (<1 lx was first measured. Then steady-state pupil size was measured during exposure to five lighting conditions (10 lx, 100 lx, 1000 lx, 3000 lx, 6000 lx in the vertical direction at eye level. RESULTS: Significant interaction between the genotype of I394T (TT versus TC+CC and luminance levels was found in pupil size. Under high illuminance levels (1000 lx, 3000 lx and 6000 lx, pupil sizes in subjects with the C allele were significantly smaller than those in subjects with the TT genotype. On the other hand, pupil size in subjects with the C allele under low illuminance (<1 lx was significantly larger than that in subjects with the TT genotype. Percentages of pupil constriction under high illuminance levels were significantly greater in subjects with the C allele than in subjects with the TT genotype. CONCLUSIONS: Human melanopsin gene polymorphism I394T interacted with irradiance in association with pupil size. This is the first evidence suggesting a functional connection between melanopsin gene polymorphism and pupillary light response as an index of non-image forming response to light.

  20. Microstructural analysis of human white matter architecture using Polarized Light Imaging (PLI: Views from neuroanatomy

    Directory of Open Access Journals (Sweden)

    Hubertus eAxer

    2011-11-01

    Full Text Available To date, there are several methods for mapping connectivity, ranging from the macroscopic to molecular scales. However, it is difficult to integrate this multiply-scaled data into one concept. Polarized light imaging (PLI is a method to quantify fiber orientation in gross histological brain sections based on the birefringent properties of the myelin sheaths. The method is capable of imaging fiber orientation of larger-scale architectural patterns with higher detail than diffusion MRI of the human brain. PLI analyses light transmission through a gross histological section of a human brain under rotation of a polarization filter combination. Estimates of the angle of fiber direction and the angle of fiber inclination are automatically calculated at every point of the imaged section. Multiple sections can be assembled into a 3D volume. We describe the principles of PLI and present several studies of fiber anatomy in the human brain: 6 brainstems were serially sectioned, imaged with PLI, and 3D reconstructed. Pyramidal tract and lemniscus medialis were segmented in the PLI datasets. PLI data from the internal capsule was related to results from confocal laser scanning microscopy, which is a method of smaller scale fiber anatomy. PLI fiber architecture of the extreme capsule was compared to macroscopical dissection, which represents a method of larger scale anatomy. The microstructure of the anterior human cingulum bundle was analyzed in serial sections of 6 human brains. PLI can generate highly-resolved 3D datsets of fiber orientation of the human brain and has, therefore, a high comparability to diffusion MR. To get additional information regarding axon structure and density, PLI can also be combined with classical histological stains. It brings the directional aspects of diffusion MRI into the range of histology and may represent a promising tool to close the gap between larger scale diffusion orientation and microstructural histological analysis

  1. Contrasting trends in light pollution across Europe based on satellite observed night time lights.

    Science.gov (United States)

    Bennie, Jonathan; Davies, Thomas W; Duffy, James P; Inger, Richard; Gaston, Kevin J

    2014-01-21

    Since the 1970s nighttime satellite images of the Earth from space have provided a striking illustration of the extent of artificial light. Meanwhile, growing awareness of adverse impacts of artificial light at night on scientific astronomy, human health, ecological processes and aesthetic enjoyment of the night sky has led to recognition of light pollution as a significant global environmental issue. Links between economic activity, population growth and artificial light are well documented in rapidly developing regions. Applying a novel method to analysis of satellite images of European nighttime lights over 15 years, we show that while the continental trend is towards increasing brightness, some economically developed regions show more complex patterns with large areas decreasing in observed brightness over this period. This highlights that opportunities exist to constrain and even reduce the environmental impact of artificial light pollution while delivering cost and energy-saving benefits.

  2. STUDY OF BIREFRINGENCE INFLUENCE ON IMAGE QUALITY OF PHOTOLITHOGRAPHY SYSTEMS IN VIEW OF PARTIALLY-COHERENT LIGHT SOURCE

    Directory of Open Access Journals (Sweden)

    E. A. Nikulina

    2015-03-01

    Full Text Available Subject of study. A vector model for conversion of electromagnetic radiation in optical systems is considered, taking into account the influence of birefringence, as well as partially coherent illumination. Model. The proposed model is based on the representation of the complex amplitude of the monochromatic field through thesuperposition of basic plane waves. Transmitted light image with partially coherent illumination is performed by the sourceintegration method. Main results. The results of simulation for the point spread function are demonstrating the level of the birefringence influence on the image quality. In the presence of the wave aberration about 0.098 of the wavelength, the wave energy loss in the center of the Airy disk with an average birefringence of 4 nm/cm was 8%, and at 16 nm/cm it reached 30%. The calculation of the point spread function for a real sample of fluorite is given. The central peak of the PSF without birefringence was 0.722, with regard to birefringence it was equal to 0.701. Practical significance. The findings can be used in the development of photolithographic lenses, as well as for the manufacturing of any other optical systems that require consideration of the polarization properties of the materials.

  3. Development of Gentle Slope Light Guide Structure in a 3.4 μm Pixel Pitch Global Shutter CMOS Image Sensor with Multiple Accumulation Shutter Technology.

    Science.gov (United States)

    Sekine, Hiroshi; Kobayashi, Masahiro; Onuki, Yusuke; Kawabata, Kazunari; Tsuboi, Toshiki; Matsuno, Yasushi; Takahashi, Hidekazu; Inoue, Shunsuke; Ichikawa, Takeshi

    2017-12-09

    CMOS image sensors (CISs) with global shutter (GS) function are strongly required in order to avoid image degradation. However, CISs with GS function have generally been inferior to the rolling shutter (RS) CIS in performance, because they have more components. This problem is remarkable in small pixel pitch. The newly developed 3.4 µm pitch GS CIS solves this problem by using multiple accumulation shutter technology and the gentle slope light guide structure. As a result, the developed GS pixel achieves 1.8 e - temporal noise and 16,200 e - full well capacity with charge domain memory in 120 fps operation. The sensitivity and parasitic light sensitivity are 28,000 e - /lx·s and -89 dB, respectively. Moreover, the incident light angle dependence of sensitivity and parasitic light sensitivity are improved by the gentle slope light guide structure.

  4. Multi-spectral quantitative phase imaging based on filtration of light via ultrasonic wave

    Science.gov (United States)

    Machikhin, A. S.; Polschikova, O. V.; Ramazanova, A. G.; Pozhar, V. E.

    2017-07-01

    A new digital holographic microscopy scheme for multi-spectral quantitative phase imaging is proposed and implemented. It is based on acousto-optic filtration of wide-band low-coherence light at the entrance of a Mach-Zehnder interferometer, recording and digital processing of interferograms. The key requirements for the acousto-optic filter are discussed. The effectiveness of the technique is demonstrated by calculating the phase maps of human red blood cells at multiple wavelengths in the range 770-810 nm. The scheme can be used for the measurement of dispersion of thin films and biological samples.

  5. Simulation of bonding effects in HRTEM images of light element materials

    Directory of Open Access Journals (Sweden)

    Simon Kurasch

    2011-07-01

    Full Text Available The accuracy of multislice high-resolution transmission electron microscopy (HRTEM simulation can be improved by calculating the scattering potential using density functional theory (DFT. This approach accounts for the fact that electrons in the specimen are redistributed according to their local chemical environment. This influences the scattering process and alters the absolute and relative contrast in the final image. For light element materials with well defined geometry, such as graphene and hexagonal boron nitride monolayers, the DFT based simulation scheme turned out to be necessary to prevent misinterpretation of weak signals, such as the identification of nitrogen substitutions in a graphene network. Furthermore, this implies that the HRTEM image does not only contain structural information (atom positions and atomic numbers. Instead, information on the electron charge distribution can be gained in addition.In order to produce meaningful results, the new input parameters need to be chosen carefully. Here we present details of the simulation process and discuss the influence of the main parameters on the final result. Furthermore we apply the simulation scheme to three model systems: A single atom boron and a single atom oxygen substitution in graphene and an oxygen adatom on graphene.

  6. Perceptual transparency from image deformation.

    Science.gov (United States)

    Kawabe, Takahiro; Maruya, Kazushi; Nishida, Shin'ya

    2015-08-18

    Human vision has a remarkable ability to perceive two layers at the same retinal locations, a transparent layer in front of a background surface. Critical image cues to perceptual transparency, studied extensively in the past, are changes in luminance or color that could be caused by light absorptions and reflections by the front layer, but such image changes may not be clearly visible when the front layer consists of a pure transparent material such as water. Our daily experiences with transparent materials of this kind suggest that an alternative potential cue of visual transparency is image deformations of a background pattern caused by light refraction. Although previous studies have indicated that these image deformations, at least static ones, play little role in perceptual transparency, here we show that dynamic image deformations of the background pattern, which could be produced by light refraction on a moving liquid's surface, can produce a vivid impression of a transparent liquid layer without the aid of any other visual cues as to the presence of a transparent layer. Furthermore, a transparent liquid layer perceptually emerges even from a randomly generated dynamic image deformation as long as it is similar to real liquid deformations in its spatiotemporal frequency profile. Our findings indicate that the brain can perceptually infer the presence of "invisible" transparent liquids by analyzing the spatiotemporal structure of dynamic image deformation, for which it uses a relatively simple computation that does not require high-level knowledge about the detailed physics of liquid deformation.

  7. Relationship between Lighting and Noise Levels and Productivity of the Occupants in Automotive Assembly Industry

    Directory of Open Access Journals (Sweden)

    Jafar Akbari

    2013-01-01

    Full Text Available Work environment affects human productivity and his performance. The aims of this study were to investigate the effects of lighting and noise levels on human productivity in the automotive assembly industry. Method. Subjects were 181 workers from different parts of an automobile assembly industry. Illuminance (Lx at the height of 30 inches from the surface of work station and noise (dBA were locally measured. Also human productivity by the Goldsmith and Hersey scale (1980 was measured. Data were analyzed by using SPSS v20 Pearson correlation coefficient. Results. The results showed that the relationship between noise level and human productivity is negative and significant (, , but there was no significant relationship between lighting and human productivity (. Conclusion. Based on the results, in assembly tasks, noise has a negative impact on human productivity, and lighting does not affect this. So, in order to increase employee productivity, noise control and reduction to less than the standard values (less than 85 dB is necessary.

  8. THE PDS 66 CIRCUMSTELLAR DISK AS SEEN IN POLARIZED LIGHT WITH THE GEMINI PLANET IMAGER

    International Nuclear Information System (INIS)

    Wolff, Schuyler G.; Greenbaum, Alexandra Z.; Perrin, Marshall; Hines, Dean C.; Millar-Blanchaer, Maxwell A.; Nielsen, Eric L.; Wang, Jason; Dong, Ruobing; Duchêne, Gaspard; Graham, James R.; Kalas, Paul; Cardwell, Andrew; Chilcote, Jeffrey; Draper, Zachary H.; Fitzgerald, Michael P.; Hung, Li-Wei; Goodsell, Stephen J.; Grady, Carol A.; Hartung, Markus; Hibon, Pascale

    2016-01-01

    We present H- and K-band imaging polarimetry for the PDS 66 circumstellar disk obtained during the commissioning of the Gemini Planet Imager (GPI). Polarization images reveal a clear detection of the disk in to the 0.″12 inner working angle (IWA) in the H band, almost three times closer to the star than the previous Hubble Space Telescope (HST) observations with NICMOS and STIS (0.″35 effective IWA). The centro-symmetric polarization vectors confirm that the bright inner disk detection is due to circumstellar scattered light. A more diffuse disk extends to a bright outer ring centered at 80 AU. We discuss several physical mechanisms capable of producing the observed ring + gap structure. GPI data confirm enhanced scattering on the east side of the disk that is inferred to be nearer to us. We also detect a lateral asymmetry in the south possibly due to shadowing from material within the IWA. This likely corresponds to a temporally variable azimuthal asymmetry observed in HST/STIS coronagraphic imaging

  9. THE PDS 66 CIRCUMSTELLAR DISK AS SEEN IN POLARIZED LIGHT WITH THE GEMINI PLANET IMAGER

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, Schuyler G.; Greenbaum, Alexandra Z. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Perrin, Marshall; Hines, Dean C. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Millar-Blanchaer, Maxwell A. [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Nielsen, Eric L. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Wang, Jason; Dong, Ruobing; Duchêne, Gaspard; Graham, James R.; Kalas, Paul [Astronomy Department, University of California, Berkeley, Berkeley, CA 94720 (United States); Cardwell, Andrew [LBT Observatory, University of Arizona, 933 N. Cherry Avenue, Room 552, Tucson, AZ 85721 (United States); Chilcote, Jeffrey [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Draper, Zachary H. [University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2 (Canada); Fitzgerald, Michael P.; Hung, Li-Wei [Department of Physics and Astronomy, University of California, Los Angeles, 430 Portola Plaza, Los Angeles, CA 90095 (United States); Goodsell, Stephen J. [Gemini Observatory, 670 N. A’ohoku Place, Hilo, HI 96720 (United States); Grady, Carol A. [Eureka Scientific, 2452 Delmer, Suite 100, Oakland, CA 96002 (United States); Hartung, Markus; Hibon, Pascale, E-mail: swolff9@jh.edu [Gemini Observatory, Casilla 603, La Serena (Chile); and others

    2016-02-10

    We present H- and K-band imaging polarimetry for the PDS 66 circumstellar disk obtained during the commissioning of the Gemini Planet Imager (GPI). Polarization images reveal a clear detection of the disk in to the 0.″12 inner working angle (IWA) in the H band, almost three times closer to the star than the previous Hubble Space Telescope (HST) observations with NICMOS and STIS (0.″35 effective IWA). The centro-symmetric polarization vectors confirm that the bright inner disk detection is due to circumstellar scattered light. A more diffuse disk extends to a bright outer ring centered at 80 AU. We discuss several physical mechanisms capable of producing the observed ring + gap structure. GPI data confirm enhanced scattering on the east side of the disk that is inferred to be nearer to us. We also detect a lateral asymmetry in the south possibly due to shadowing from material within the IWA. This likely corresponds to a temporally variable azimuthal asymmetry observed in HST/STIS coronagraphic imaging.

  10. Low level cloud motion vectors from Kalpana-1 visible images

    Indian Academy of Sciences (India)

    . In this paper, an attempt has been made to retrieve low-level cloud motion vectors using Kalpana-1 visible (VIS) images at every half an hour. The VIS channel provides better detection of low level clouds, which remain obscure in thermal IR ...

  11. FACT light collection - solid light concentrators in Cherenkov Astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Isabel [ETH Zurich, Institute for Particle Physics, CH-8093 Zurich (Switzerland); Collaboration: FACT-Collaboration

    2011-07-01

    Pixelized cameras of Imaging Atmospheric Cherenkov Telescopes use hollow light guides with reflective surfaces based on the Winston cone design. These cones minimize insensitive spaces between the photo sensors and shield the camera from stray background light by limiting the angular acceptance to the primary reflector area. FACT (First G-APD Cherenkov Telescope) will be the first IACT with Geiger-mode avalanche photodiodes as light sensors. Solid light concentrators complementing these sensors will be used instead of hollow Winston cones. We will present simulations and measurements of our light collector design, which was optimized for the requirements of the FACT telescope and detector, and discuss the specific differences to more traditional solutions.

  12. Research on Remote Sensing Image Classification Based on Feature Level Fusion

    Science.gov (United States)

    Yuan, L.; Zhu, G.

    2018-04-01

    Remote sensing image classification, as an important direction of remote sensing image processing and application, has been widely studied. However, in the process of existing classification algorithms, there still exists the phenomenon of misclassification and missing points, which leads to the final classification accuracy is not high. In this paper, we selected Sentinel-1A and Landsat8 OLI images as data sources, and propose a classification method based on feature level fusion. Compare three kind of feature level fusion algorithms (i.e., Gram-Schmidt spectral sharpening, Principal Component Analysis transform and Brovey transform), and then select the best fused image for the classification experimental. In the classification process, we choose four kinds of image classification algorithms (i.e. Minimum distance, Mahalanobis distance, Support Vector Machine and ISODATA) to do contrast experiment. We use overall classification precision and Kappa coefficient as the classification accuracy evaluation criteria, and the four classification results of fused image are analysed. The experimental results show that the fusion effect of Gram-Schmidt spectral sharpening is better than other methods. In four kinds of classification algorithms, the fused image has the best applicability to Support Vector Machine classification, the overall classification precision is 94.01 % and the Kappa coefficients is 0.91. The fused image with Sentinel-1A and Landsat8 OLI is not only have more spatial information and spectral texture characteristics, but also enhances the distinguishing features of the images. The proposed method is beneficial to improve the accuracy and stability of remote sensing image classification.

  13. Noninvasive, low-noise, fast imaging of blood volume and deoxygenation changes in muscles using light-emitting diode continuous-wave imager

    Science.gov (United States)

    Lin, Yuanqing; Lech, Gwen; Nioka, Shoko; Intes, Xavier; Chance, Britton

    2002-08-01

    This article focuses on optimizing the signal to noise ratio (SNR) of a three-wavelength light-emitting diode (LED) near-infrared continuous-wave (cw) imager and its application to in vivo muscle metabolism measurement. The shot-noise limited SNR is derived and calculated to be 2 x104 for the physiological blood concentrations of muscle. Aiming at shot-noise limited SNR performance and fast imaging, we utilize sample and hold circuits to reduce high-frequency noise. These circuits have also been designed to be parallel integrating, through which SNR of 2 x103 and 2 Hz imaging acquisition rate have been achieved when the probe is placed on a muscle model. The noise corresponds to 2 x10-4 optical density error, which suggests an in vitro resolution of 15. 4 nM blood volume and 46.8 nM deoxygenation changes. A 48 dB digital gain control circuit with 256 steps is employed to enlarge the dynamic range of the imager. We utilize cuff ischemia as a living model demonstration and its results are reported. The instrument is applied during exercise to measure the changes of blood volume and deoxygenation, which provides important information about muscle metabolism. We find that the primary source of noise encountered during exercise experiment is from the random motion of muscle. The results demonstrate that the LED cw imager is ideal for the noninvasive study of muscle metabolism.

  14. Image quality affected by diffraction of aperture structure arrangement in transparent active-matrix organic light-emitting diode displays.

    Science.gov (United States)

    Tsai, Yu-Hsiang; Huang, Mao-Hsiu; Jeng, Wei-de; Huang, Ting-Wei; Lo, Kuo-Lung; Ou-Yang, Mang

    2015-10-01

    Transparent display is one of the main technologies in next-generation displays, especially for augmented reality applications. An aperture structure is attached on each display pixel to partition them into transparent and black regions. However, diffraction blurs caused by the aperture structure typically degrade the transparent image when the light from a background object passes through finite aperture window. In this paper, the diffraction effect of an active-matrix organic light-emitting diode display (AMOLED) is studied. Several aperture structures have been proposed and implemented. Based on theoretical analysis and simulation, the appropriate aperture structure will effectively reduce the blur. The analysis data are also consistent with the experimental results. Compared with the various transparent aperture structure on AMOLED, diffraction width (zero energy position of diffraction pattern) of the optimize aperture structure can be reduced 63% and 31% in the x and y directions in CASE 3. Associated with a lenticular lens on the aperture structure, the improvement could reach to 77% and 54% of diffraction width in the x and y directions. Modulation transfer function and practical images are provided to evaluate the improvement of image blurs.

  15. Two-Level Evaluation on Sensor Interoperability of Features in Fingerprint Image Segmentation

    Directory of Open Access Journals (Sweden)

    Ya-Shuo Li

    2012-03-01

    Full Text Available Features used in fingerprint segmentation significantly affect the segmentation performance. Various features exhibit different discriminating abilities on fingerprint images derived from different sensors. One feature which has better discriminating ability on images derived from a certain sensor may not adapt to segment images derived from other sensors. This degrades the segmentation performance. This paper empirically analyzes the sensor interoperability problem of segmentation feature, which refers to the feature’s ability to adapt to the raw fingerprints captured by different sensors. To address this issue, this paper presents a two-level feature evaluation method, including the first level feature evaluation based on segmentation error rate and the second level feature evaluation based on decision tree. The proposed method is performed on a number of fingerprint databases which are obtained from various sensors. Experimental results show that the proposed method can effectively evaluate the sensor interoperability of features, and the features with good evaluation results acquire better segmentation accuracies of images originating from different sensors.

  16. Imaging properties of the light sword optical element used as a contact lens in a presbyopic eye model.

    Science.gov (United States)

    Petelczyc, K; Bará, S; Lopez, A Ciro; Jaroszewicz, Z; Kakarenko, K; Kolodziejczyk, A; Sypek, M

    2011-12-05

    The paper analyzes the imaging properties of the light sword optical element (LSOE) applied as a contact lens to the presbyopic human eye. We performed our studies with a human eye model based on the Gullstrand parameterization. In order to quantify the discussion concerning imaging with extended depth of focus, we introduced quantitative parameters characterizing output images of optotypes obtained in numerical simulations. The quality of the images formed by the LSOE were compared with those created by a presbyopic human eye, reading glasses and a quartic inverse axicon. Then we complemented the numerical results by an experiment where a 3D scene was imaged by means of the refractive LSOE correcting an artificial eye based on the Gullstrand model. According to performed simulations and experiments the LSOE exhibits abilities for presbyopia correction in a wide range of functional vision distances.

  17. Compact light-emitting diode lighting ring for video-assisted thoracic surgery.

    Science.gov (United States)

    Lu, Ming-Kuan; Chang, Feng-Chen; Wang, Wen-Zhe; Hsieh, Chih-Cheng; Kao, Fu-Jen

    2014-01-01

    In this work, a foldable ring-shaped light-emitting diode (LED) lighting assembly, designed to attach to a rubber wound retractor, is realized and tested through porcine animal experiments. Enabled by the small size and the high efficiency of LED chips, the lighting assembly is compact, flexible, and disposable while providing direct and high brightness lighting for more uniform background illumination in video-assisted thoracic surgery (VATS). When compared with a conventional fiber bundle coupled light source that is usually used in laparoscopy and endoscopy, the much broader solid angle of illumination enabled by the LED assembly allows greatly improved background lighting and imaging quality in VATS.

  18. Compact light-emitting diode lighting ring for video-assisted thoracic surgery

    Science.gov (United States)

    Lu, Ming-Kuan; Chang, Feng-Chen; Wang, Wen-Zhe; Hsieh, Chih-Cheng; Kao, Fu-Jen

    2014-10-01

    In this work, a foldable ring-shaped light-emitting diode (LED) lighting assembly, designed to attach to a rubber wound retractor, is realized and tested through porcine animal experiments. Enabled by the small size and the high efficiency of LED chips, the lighting assembly is compact, flexible, and disposable while providing direct and high brightness lighting for more uniform background illumination in video-assisted thoracic surgery (VATS). When compared with a conventional fiber bundle coupled light source that is usually used in laparoscopy and endoscopy, the much broader solid angle of illumination enabled by the LED assembly allows greatly improved background lighting and imaging quality in VATS.

  19. Computed tomography imaging with the Adaptive Statistical Iterative Reconstruction (ASIR) algorithm: dependence of image quality on the blending level of reconstruction.

    Science.gov (United States)

    Barca, Patrizio; Giannelli, Marco; Fantacci, Maria Evelina; Caramella, Davide

    2018-06-01

    Computed tomography (CT) is a useful and widely employed imaging technique, which represents the largest source of population exposure to ionizing radiation in industrialized countries. Adaptive Statistical Iterative Reconstruction (ASIR) is an iterative reconstruction algorithm with the potential to allow reduction of radiation exposure while preserving diagnostic information. The aim of this phantom study was to assess the performance of ASIR, in terms of a number of image quality indices, when different reconstruction blending levels are employed. CT images of the Catphan-504 phantom were reconstructed using conventional filtered back-projection (FBP) and ASIR with reconstruction blending levels of 20, 40, 60, 80, and 100%. Noise, noise power spectrum (NPS), contrast-to-noise ratio (CNR) and modulation transfer function (MTF) were estimated for different scanning parameters and contrast objects. Noise decreased and CNR increased non-linearly up to 50 and 100%, respectively, with increasing blending level of reconstruction. Also, ASIR has proven to modify the NPS curve shape. The MTF of ASIR reconstructed images depended on tube load/contrast and decreased with increasing blending level of reconstruction. In particular, for low radiation exposure and low contrast acquisitions, ASIR showed lower performance than FBP, in terms of spatial resolution for all blending levels of reconstruction. CT image quality varies substantially with the blending level of reconstruction. ASIR has the potential to reduce noise whilst maintaining diagnostic information in low radiation exposure CT imaging. Given the opposite variation of CNR and spatial resolution with the blending level of reconstruction, it is recommended to use an optimal value of this parameter for each specific clinical application.

  20. Trends in the development of large area photon detectors for Cherenkov light imaging applications

    CERN Document Server

    Nappi, E

    2003-01-01

    Since the successful operations of hi-tech devices at OMEGA, DELPHI and SLD, the technique of Cherenkov light imaging has gone through an impressive and fruitful evolution driven by the conception of novel large area photon detectors. The well-assessed potentialities of thin CsI films, employed as reflective photoconverters in gas counters operated at atmospheric pressure, will be compared with the promising features of hybrid and multianode vacuum photomultipliers. Recently proposed single-photon gaseous detectors based on GEMs will also be reviewed.

  1. Far field photoluminescence imaging of single AlGaN nanowire in the sub-wavelength scale using confinement of polarized light

    Energy Technology Data Exchange (ETDEWEB)

    Sivadasan, A.K.; Dhara, Sandip [Nanomaterials and Sensors Section, Surface and Nanoscience Division, Indira Gandhi Centre for Atomic Research, Homi Bhabha National Institute, Kalpakkam (India); Sardar, Manas [Theoretical Studies Section, Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2017-03-15

    Till now the nanoscale focusing and imaging in the sub-diffraction limit is achieved mainly with the help of plasmonic field enhancement by confining the light assisted with noble metal nanostructures. Using far field imaging technique, we have recorded polarized spectroscopic photoluminescence (PL) imaging of a single AlGaN nanowire (NW) of diameter ∝100 nm using confinement of polarized light. It is found that the PL from a single NW is influenced by the proximity to other NWs. The PL intensity is proportional to 1/(l x d), where l and d are the average NW length and separation between the NWs, respectively. We suggest that the proximity induced PL intensity enhancement can be understood by assuming the existence of reasonably long lived photons in the intervening space between the NWs. A nonzero non-equilibrium population of such photons may cause stimulated emission leading to the enhancement of PL emission with the intensity proportional to 1/(l x d). The enhancement of PL emission facilitates far field spectroscopic imaging of a single semiconductor AlGaN NW of sub-wavelength dimension. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Image transport through a disordered optical fibre mediated by transverse Anderson localization

    Science.gov (United States)

    Karbasi, Salman; Frazier, Ryan J.; Koch, Karl W.; Hawkins, Thomas; Ballato, John; Mafi, Arash

    2014-02-01

    Transverse Anderson localization of light allows localized optical-beam-transport through a transversely disordered and longitudinally invariant medium. Its successful implementation in disordered optical fibres recently resulted in the propagation of localized beams of radii comparable to that of conventional optical fibres. Here we demonstrate optical image transport using transverse Anderson localization of light. The image transport quality obtained in the polymer disordered optical fibre is comparable to or better than some of the best commercially available multicore image fibres with less pixelation and higher contrast. It is argued that considerable improvement in image transport quality can be obtained in a disordered fibre made from a glass matrix with near wavelength-size randomly distributed air-holes with an air-hole fill-fraction of 50%. Our results open the way to device-level implementation of the transverse Anderson localization of light with potential applications in biological and medical imaging.

  3. Level-set-based reconstruction algorithm for EIT lung images: first clinical results.

    Science.gov (United States)

    Rahmati, Peyman; Soleimani, Manuchehr; Pulletz, Sven; Frerichs, Inéz; Adler, Andy

    2012-05-01

    We show the first clinical results using the level-set-based reconstruction algorithm for electrical impedance tomography (EIT) data. The level-set-based reconstruction method (LSRM) allows the reconstruction of non-smooth interfaces between image regions, which are typically smoothed by traditional voxel-based reconstruction methods (VBRMs). We develop a time difference formulation of the LSRM for 2D images. The proposed reconstruction method is applied to reconstruct clinical EIT data of a slow flow inflation pressure-volume manoeuvre in lung-healthy and adult lung-injury patients. Images from the LSRM and the VBRM are compared. The results show comparable reconstructed images, but with an improved ability to reconstruct sharp conductivity changes in the distribution of lung ventilation using the LSRM.

  4. Level-set-based reconstruction algorithm for EIT lung images: first clinical results

    International Nuclear Information System (INIS)

    Rahmati, Peyman; Adler, Andy; Soleimani, Manuchehr; Pulletz, Sven; Frerichs, Inéz

    2012-01-01

    We show the first clinical results using the level-set-based reconstruction algorithm for electrical impedance tomography (EIT) data. The level-set-based reconstruction method (LSRM) allows the reconstruction of non-smooth interfaces between image regions, which are typically smoothed by traditional voxel-based reconstruction methods (VBRMs). We develop a time difference formulation of the LSRM for 2D images. The proposed reconstruction method is applied to reconstruct clinical EIT data of a slow flow inflation pressure–volume manoeuvre in lung-healthy and adult lung-injury patients. Images from the LSRM and the VBRM are compared. The results show comparable reconstructed images, but with an improved ability to reconstruct sharp conductivity changes in the distribution of lung ventilation using the LSRM. (paper)

  5. Monitoring bacterial biofilms with a microfluidic flow chip designed for imaging with white-light interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Brann, Michelle; Suter, Jonathan D.; Addleman, R. Shane; Larimer, Curtis

    2017-07-01

    There is a need for imaging and sensing instrumentation that can monitor transitions in biofilm structure in order to better understand biofilm development and emergent properties such as anti-microbial resistance. Herein, we expanded on our previously reported technique for measuring and monitoring the thickness and topology of live biofilms using white-light interferometry (WLI). A flow cell designed for WLI enabled the use of this non-disruptive imaging method for the capture of high resolution three-dimensional profile images of biofilm growth over time. The fine axial resolution (3 nm) and wide field of view (>1 mm by 1 mm) enabled detection of biofilm formation as early as three hours after inoculation of the flow cell with a live bacterial culture (Pseudomonas fluorescens). WLI imaging facilitated monitoring the early stages of biofilm development and subtle variations in the structure of mature biofilms. Minimally-invasive imaging enabled monitoring of biofilm structure with surface metrology metrics (e.g., surface roughness). The system was used to observe a transition in biofilm structure that occurred in response to expsoure to a common antiseptic. In the future, WLI and the biofilm imaging cell described herein may be used to test the effectiveness of biofilm-specific therapies to combat common diseases associated with biofilm formation such as cystic fibrosis and periodontitis.

  6. In a Heartbeat: Light and Cardiovascular Physiology

    Directory of Open Access Journals (Sweden)

    Sarah L. Chellappa

    2017-10-01

    Full Text Available Light impinging on the retina fulfils a dual function: it serves for vision and it is required for proper entrainment of the endogenous circadian timing system to the 24-h day, thus influencing behaviors that promote health and optimal quality of life but are independent of image formation. The circadian pacemaker located in the suprachiasmatic nuclei modulates the cardiovascular system with an intrinsic ability to anticipate morning solar time and with a circadian nature of adverse cardiovascular events. Here, we infer that light exposure might affect cardiovascular function and provide evidence from existing research. Findings show a time-of-day dependent increase in relative sympathetic tone associated with bright light in the morning but not in the evening hours. Furthermore, dynamic light in the early morning hours can reduce the deleterious sleep-to-wake evoked transition on cardiac modulation. On the contrary, effects of numerous light parameters, such as illuminance level and wavelength of monochromatic light, on cardiac function are mixed. Therefore, in future research studies, light modalities, such as timing, duration, and its wavelength composition, should be taken in to account when testing the potential of light as a non-invasive countermeasure for adverse cardiovascular events.

  7. Bit-level plane image encryption based on coupled map lattice with time-varying delay

    Science.gov (United States)

    Lv, Xiupin; Liao, Xiaofeng; Yang, Bo

    2018-04-01

    Most of the existing image encryption algorithms had two basic properties: confusion and diffusion in a pixel-level plane based on various chaotic systems. Actually, permutation in a pixel-level plane could not change the statistical characteristics of an image, and many of the existing color image encryption schemes utilized the same method to encrypt R, G and B components, which means that the three color components of a color image are processed three times independently. Additionally, dynamical performance of a single chaotic system degrades greatly with finite precisions in computer simulations. In this paper, a novel coupled map lattice with time-varying delay therefore is applied in color images bit-level plane encryption to solve the above issues. Spatiotemporal chaotic system with both much longer period in digitalization and much excellent performances in cryptography is recommended. Time-varying delay embedded in coupled map lattice enhances dynamical behaviors of the system. Bit-level plane image encryption algorithm has greatly reduced the statistical characteristics of an image through the scrambling processing. The R, G and B components cross and mix with one another, which reduces the correlation among the three components. Finally, simulations are carried out and all the experimental results illustrate that the proposed image encryption algorithm is highly secure, and at the same time, also demonstrates superior performance.

  8. Spatial and spectral image distortions caused by diffraction of an ordinary polarised light beam by an ultrasonic wave

    Energy Technology Data Exchange (ETDEWEB)

    Machikhin, A S; Pozhar, V E [Scientific and Technological Centre of Unique Instrumentation, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-02-28

    We consider the problem of determining the spatial and spectral image distortions arising from anisotropic diffraction by ultrasonic waves in crystals with ordinary polarised light (o → e). By neglecting the small-birefringence approximation, we obtain analytical solutions that describe the dependence of the diffraction angles and wave mismatch on the acousto-optic (AO) interaction geometry and crystal parameters. The formulas derived allow one to calculate and analyse the magnitude of diffraction-induced spatial and spectral image distortions and to identify the main types of distortions: chromatic compression and trapezoidal deformation. A comparison of the values of these distortions in the diffraction of ordinary and extraordinary polarised light shows that they are almost equal in magnitude and opposite in signs, so that consistent diffraction (o → e → o or e → o → e) in two identical AO cells rotated through 180° in the plane of diffraction can compensate for these distortions. (diffraction of radiation)

  9. Training Methods for Image Noise Level Estimation on Wavelet Components

    Directory of Open Access Journals (Sweden)

    A. De Stefano

    2004-12-01

    Full Text Available The estimation of the standard deviation of noise contaminating an image is a fundamental step in wavelet-based noise reduction techniques. The method widely used is based on the mean absolute deviation (MAD. This model-based method assumes specific characteristics of the noise-contaminated image component. Three novel and alternative methods for estimating the noise standard deviation are proposed in this work and compared with the MAD method. Two of these methods rely on a preliminary training stage in order to extract parameters which are then used in the application stage. The sets used for training and testing, 13 and 5 images, respectively, are fully disjoint. The third method assumes specific statistical distributions for image and noise components. Results showed the prevalence of the training-based methods for the images and the range of noise levels considered.

  10. Full-frame, programmable hyperspectral imager

    Science.gov (United States)

    Love, Steven P.; Graff, David L.

    2017-07-25

    A programmable, many-band spectral imager based on addressable spatial light modulators (ASLMs), such as micro-mirror-, micro-shutter- or liquid-crystal arrays, is described. Capable of collecting at once, without scanning, a complete two-dimensional spatial image with ASLM spectral processing applied simultaneously to the entire image, the invention employs optical assemblies wherein light from all image points is forced to impinge at the same angle onto the dispersing element, eliminating interplay between spatial position and wavelength. This is achieved, as examples, using telecentric optics to image light at the required constant angle, or with micro-optical array structures, such as micro-lens- or capillary arrays, that aim the light on a pixel-by-pixel basis. Light of a given wavelength then emerges from the disperser at the same angle for all image points, is collected at a unique location for simultaneous manipulation by the ASLM, then recombined with other wavelengths to form a final spectrally-processed image.

  11. Correlative Light- and Electron Microscopy Using Quantum Dot Nanoparticles.

    Science.gov (United States)

    Killingsworth, Murray C; Bobryshev, Yuri V

    2016-08-07

    A method is described whereby quantum dot (QD) nanoparticles can be used for correlative immunocytochemical studies of human pathology tissue using widefield fluorescence light microscopy and transmission electron microscopy (TEM). To demonstrate the protocol we have immunolabeled ultrathin epoxy sections of human somatostatinoma tumor using a primary antibody to somatostatin, followed by a biotinylated secondary antibody and visualization with streptavidin conjugated 585 nm cadmium-selenium (CdSe) quantum dots (QDs). The sections are mounted on a TEM specimen grid then placed on a glass slide for observation by widefield fluorescence light microscopy. Light microscopy reveals 585 nm QD labeling as bright orange fluorescence forming a granular pattern within the tumor cell cytoplasm. At low to mid-range magnification by light microscopy the labeling pattern can be easily recognized and the level of non-specific or background labeling assessed. This is a critical step for subsequent interpretation of the immunolabeling pattern by TEM and evaluation of the morphological context. The same section is then blotted dry and viewed by TEM. QD probes are seen to be attached to amorphous material contained in individual secretory granules. Images are acquired from the same region of interest (ROI) seen by light microscopy for correlative analysis. Corresponding images from each modality may then be blended to overlay fluorescence data on TEM ultrastructure of the corresponding region.

  12. Haemozoin Detection in Mouse Liver Histology Using Simple Polarized Light Microscope

    Directory of Open Access Journals (Sweden)

    DWI RAMADHANI

    2014-03-01

    Full Text Available The presence of malarial pigment (haemozoin due to Plasmodium infection is a common histopathological effect in mouse liver. Previous research showed that by using a polarized light microscope, researchers were better able to detect haemozoin in mouse liver histology section. Thus, the aim of this research was to compare the haemozoin area observed by a conventional vs. simple polarized light microscope by using image processing analysis. A total of 40 images produced from both conventional light microscope and simple polarized light microscope were collected. All images were analyzed using ImageJ 1.47 software to measure the haemozoin areas. Our results showed that non birefringent haemozoin and birefringent haemozoin area was significantly different. This was because when using conventional light microscope the brown area that contained images of non birefringent haemozoin images also contained Kupffer cells which appeared as the same brown color as haemozoin. In contrast, haemozoin gave bright effect and can be easily differentiated with Kupffer cells in the birefringent haemozoin images. This study concluded that haemozoin detection in mouse liver histology using a simple polarized light microscope was more accurate compared to that of conventional light microscope.

  13. The reduction of retinal autofluorescence caused by light exposure.

    Science.gov (United States)

    Morgan, Jessica I W; Hunter, Jennifer J; Merigan, William H; Williams, David R

    2009-12-01

    A prior study showed that long exposure to 568-nm light at levels below the maximum permissible exposure safety limit produces retinal damage preceded by a transient reduction in the autofluorescence of retinal pigment epithelial (RPE) cells in vivo. The present study shows how the effects of exposure power and duration combine to produce this autofluorescence reduction and find the minimum exposure causing a detectable autofluorescence reduction. Macaque retinas were imaged using a fluorescence adaptive optics scanning laser ophthalmoscope to resolve individual RPE cells in vivo. The retina was exposed to 568-nm light over a square subtending 0.5 degrees with energies ranging from 1 to 788 J/cm(2), where power and duration were independently varied. In vivo exposures of 5 J/cm(2) and higher caused an immediate decrease in autofluorescence followed by either full autofluorescence recovery (exposures or= 247 J/cm(2)). No significant autofluorescence reduction was observed for exposures of 2 J/cm(2) and lower. Reciprocity of exposure power and duration held for the exposures tested, implying that the total energy delivered to the retina, rather than its distribution in time, determines the amount of autofluorescence reduction. That reciprocity held is consistent with a photochemical origin, which may or may not cause retinal degeneration. The implementation of safe methods for delivering light to the retina requires a better understanding of the mechanism causing autofluorescence reduction. Finally, RPE imaging was demonstrated using light levels that do not cause a detectable reduction in autofluorescence.

  14. Simultaneous reconstruction, segmentation, and edge enhancement of relatively piecewise continuous images with intensity-level information

    International Nuclear Information System (INIS)

    Liang, Z.; Jaszczak, R.; Coleman, R.; Johnson, V.

    1991-01-01

    A multinomial image model is proposed which uses intensity-level information for reconstruction of contiguous image regions. The intensity-level information assumes that image intensities are relatively constant within contiguous regions over the image-pixel array and that intensity levels of these regions are determined either empirically or theoretically by information criteria. These conditions may be valid, for example, for cardiac blood-pool imaging, where the intensity levels (or radionuclide activities) of myocardium, blood-pool, and background regions are distinct and the activities within each region of muscle, blood, or background are relatively uniform. To test the model, a mathematical phantom over a 64x64 array was constructed. The phantom had three contiguous regions. Each region had a different intensity level. Measurements from the phantom were simulated using an emission-tomography geometry. Fifty projections were generated over 180 degree, with 64 equally spaced parallel rays per projection. Projection data were randomized to contain Poisson noise. Image reconstructions were performed using an iterative maximum a posteriori probability procedure. The contiguous regions corresponding to the three intensity levels were automatically segmented. Simultaneously, the edges of the regions were sharpened. Noise in the reconstructed images was significantly suppressed. Convergence of the iterative procedure to the phantom was observed. Compared with maximum likelihood and filtered-backprojection approaches, the results obtained using the maximum a posteriori probability with the intensity-level information demonstrated qualitative and quantitative improvement in localizing the regions of varying intensities

  15. Exploring Algorithms for Stellar Light Curves With TESS

    Science.gov (United States)

    Buzasi, Derek

    2018-01-01

    The Kepler and K2 missions have produced tens of thousands of stellar light curves, which have been used to measure rotation periods, characterize photometric activity levels, and explore phenomena such as differential rotation. The quasi-periodic nature of rotational light curves, combined with the potential presence of additional periodicities not due to rotation, complicates the analysis of these time series and makes characterization of uncertainties difficult. A variety of algorithms have been used for the extraction of rotational signals, including autocorrelation functions, discrete Fourier transforms, Lomb-Scargle periodograms, wavelet transforms, and the Hilbert-Huang transform. In addition, in the case of K2 a number of different pipelines have been used to produce initial detrended light curves from the raw image frames.In the near future, TESS photometry, particularly that deriving from the full-frame images, will dramatically further expand the number of such light curves, but details of the pipeline to be used to produce photometry from the FFIs remain under development. K2 data offers us an opportunity to explore the utility of different reduction and analysis tool combinations applied to these astrophysically important tasks. In this work, we apply a wide range of algorithms to light curves produced by a number of popular K2 pipeline products to better understand the advantages and limitations of each approach and provide guidance for the most reliable and most efficient analysis of TESS stellar data.

  16. Light diffuseness metric, part 2 : Describing, measuring and visualizing the light flow and diffuseness in three-dimensional spaces

    NARCIS (Netherlands)

    Xia, L.; Pont, S.C.; Heynderickx, I.E.J.

    2017-01-01

    We introduce a way to simultaneously measure the light density, light vector and diffuseness of the light field using a cubic illumination meter based on the spherical harmonics representation of the light field. This approach was applied to six light probe images of natural scenes and four real

  17. A New Method for Automated Identification and Morphometry of Myelinated Fibers Through Light Microscopy Image Analysis.

    Science.gov (United States)

    Novas, Romulo Bourget; Fazan, Valeria Paula Sassoli; Felipe, Joaquim Cezar

    2016-02-01

    Nerve morphometry is known to produce relevant information for the evaluation of several phenomena, such as nerve repair, regeneration, implant, transplant, aging, and different human neuropathies. Manual morphometry is laborious, tedious, time consuming, and subject to many sources of error. Therefore, in this paper, we propose a new method for the automated morphometry of myelinated fibers in cross-section light microscopy images. Images from the recurrent laryngeal nerve of adult rats and the vestibulocochlear nerve of adult guinea pigs were used herein. The proposed pipeline for fiber segmentation is based on the techniques of competitive clustering and concavity analysis. The evaluation of the proposed method for segmentation of images was done by comparing the automatic segmentation with the manual segmentation. To further evaluate the proposed method considering morphometric features extracted from the segmented images, the distributions of these features were tested for statistical significant difference. The method achieved a high overall sensitivity and very low false-positive rates per image. We detect no statistical difference between the distribution of the features extracted from the manual and the pipeline segmentations. The method presented a good overall performance, showing widespread potential in experimental and clinical settings allowing large-scale image analysis and, thus, leading to more reliable results.

  18. Reproducibility of 201Tl myocardial imaging

    International Nuclear Information System (INIS)

    McLaughlin, P.R.; Martin, R.P.; Doherty, P.; Daspit, S.; Goris, M.; Haskell, W.; Lewis, S.; Kriss, J.P.; Harrison, D.C.

    1977-01-01

    Seventy-six thallium-201 myocardial perfusion studies were performed on twenty-five patients to assess their reproducibility and the effect of varying the level of exercise on the results of imaging. Each patient had a thallium-201 study at rest. Fourteen patients had studies on two occasions at maximum exercise, and twelve patients had studies both at light and at maximum exercise. Of 70 segments in the 14 patients assessed on each of two maximum exercise tests, 64 (91 percent) were reproducible. Only 53 percent (16/30) of the ischemic defects present at maximum exercise were seen in the light exercise study in the 12 patients assessed at two levels of exercise. Correlation of perfusion defects with arteriographically proven significant coronary stenosis was good for the left anterior descending and right coronary arteries, but not as good for circumflex artery disease. Thallium-201 myocardial imaging at maximum exercise is reproducible within acceptable limits, but careful attention to exercise technique is essential for valid comparative studies

  19. Subaru/SCExAO First-light Direct Imaging of a Young Debris Disk around HD 36546

    Energy Technology Data Exchange (ETDEWEB)

    Currie, Thayne; Guyon, Olivier; Kudo, Tomoyuki; Jovanovic, Nemanja; Lozi, Julien [National Astronomical Observatory of Japan, Subaru Telescope, National Institutes of Natural Sciences, Hilo, HI 96720 (United States); Tamura, Motohide; Kuzuhara, Masayuki [Astrobiology Center, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo (Japan); Schlieder, Joshua E. [IPAC-NExScI, Mail Code 100-22, Caltech, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Brandt, Timothy D. [Astrophysics Department, Institute for Advanced Study, Princeton, NJ (United States); Kuhn, Jonas [Institute for Astronomy, ETH-Zurich, Wolfgang-Pauli-Str. 27, 8093 Zurich (Switzerland); Serabyn, Eugene; Singh, Garima [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA (United States); Janson, Markus [Department of Astronomy, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm (Sweden); Carson, Joseph [Department of Physics and Astronomy, College of Charleston, 66 George Street, Charleston, SC (United States); Groff, Tyler; Kasdin, N. Jeremy [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ (United States); McElwain, Michael W.; Grady, Carol [Exoplanets and Stellar Astrophysics Laboratory, Code 667, NASA-Goddard Space Flight Center, Greenbelt, MD (United States); Uyama, Taichi [Department of Astronomy, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo (Japan); Akiyama, Eiji [Chile Observatory, National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo (Japan); and others

    2017-02-10

    We present H -band scattered light imaging of a bright debris disk around the A0 star HD 36546 obtained from the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system with data recorded by the HiCIAO camera using the vector vortex coronagraph. SCExAO traces the disk from r ∼ 0.″3 to r ∼1″ (34–114 au). The disk is oriented in a near east–west direction (PA ∼ 75°), is inclined by i ∼ 70°–75°, and is strongly forward-scattering (g > 0.5). It is an extended disk rather than a sharp ring; a second, diffuse dust population extends from the disk’s eastern side. While HD 36546 intrinsic properties are consistent with a wide age range (t ∼ 1–250 Myr), its kinematics and analysis of coeval stars suggest a young age (3–10 Myr) and a possible connection to Taurus-Auriga’s star formation history. SCExAO’s planet-to-star contrast ratios are comparable to the first-light Gemini Planet Imager contrasts; for an age of 10 Myr, we rule out planets with masses comparable to HR 8799 b beyond a projected separation of 23 au. A massive icy planetesimal disk or an unseen super-Jovian planet at r > 20 au may explain the disk’s visibility. The HD 36546 debris disk may be the youngest debris disk yet imaged, is the first newly identified object from the now-operational SCExAO extreme AO system, is ideally suited for spectroscopic follow-up with SCExAO/CHARIS in 2017, and may be a key probe of icy planet formation and planet–disk interactions.

  20. Subaru/SCExAO First-light Direct Imaging of a Young Debris Disk around HD 36546

    International Nuclear Information System (INIS)

    Currie, Thayne; Guyon, Olivier; Kudo, Tomoyuki; Jovanovic, Nemanja; Lozi, Julien; Tamura, Motohide; Kuzuhara, Masayuki; Schlieder, Joshua E.; Brandt, Timothy D.; Kuhn, Jonas; Serabyn, Eugene; Singh, Garima; Janson, Markus; Carson, Joseph; Groff, Tyler; Kasdin, N. Jeremy; McElwain, Michael W.; Grady, Carol; Uyama, Taichi; Akiyama, Eiji

    2017-01-01

    We present H -band scattered light imaging of a bright debris disk around the A0 star HD 36546 obtained from the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system with data recorded by the HiCIAO camera using the vector vortex coronagraph. SCExAO traces the disk from r ∼ 0.″3 to r ∼1″ (34–114 au). The disk is oriented in a near east–west direction (PA ∼ 75°), is inclined by i ∼ 70°–75°, and is strongly forward-scattering (g > 0.5). It is an extended disk rather than a sharp ring; a second, diffuse dust population extends from the disk’s eastern side. While HD 36546 intrinsic properties are consistent with a wide age range (t ∼ 1–250 Myr), its kinematics and analysis of coeval stars suggest a young age (3–10 Myr) and a possible connection to Taurus-Auriga’s star formation history. SCExAO’s planet-to-star contrast ratios are comparable to the first-light Gemini Planet Imager contrasts; for an age of 10 Myr, we rule out planets with masses comparable to HR 8799 b beyond a projected separation of 23 au. A massive icy planetesimal disk or an unseen super-Jovian planet at r > 20 au may explain the disk’s visibility. The HD 36546 debris disk may be the youngest debris disk yet imaged, is the first newly identified object from the now-operational SCExAO extreme AO system, is ideally suited for spectroscopic follow-up with SCExAO/CHARIS in 2017, and may be a key probe of icy planet formation and planet–disk interactions.

  1. Two-level image authentication by two-step phase-shifting interferometry and compressive sensing

    Science.gov (United States)

    Zhang, Xue; Meng, Xiangfeng; Yin, Yongkai; Yang, Xiulun; Wang, Yurong; Li, Xianye; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi

    2018-01-01

    A two-level image authentication method is proposed; the method is based on two-step phase-shifting interferometry, double random phase encoding, and compressive sensing (CS) theory, by which the certification image can be encoded into two interferograms. Through discrete wavelet transform (DWT), sparseness processing, Arnold transform, and data compression, two compressed signals can be generated and delivered to two different participants of the authentication system. Only the participant who possesses the first compressed signal attempts to pass the low-level authentication. The application of Orthogonal Match Pursuit CS algorithm reconstruction, inverse Arnold transform, inverse DWT, two-step phase-shifting wavefront reconstruction, and inverse Fresnel transform can result in the output of a remarkable peak in the central location of the nonlinear correlation coefficient distributions of the recovered image and the standard certification image. Then, the other participant, who possesses the second compressed signal, is authorized to carry out the high-level authentication. Therefore, both compressed signals are collected to reconstruct the original meaningful certification image with a high correlation coefficient. Theoretical analysis and numerical simulations verify the feasibility of the proposed method.

  2. Level set segmentation of medical images based on local region statistics and maximum a posteriori probability.

    Science.gov (United States)

    Cui, Wenchao; Wang, Yi; Lei, Tao; Fan, Yangyu; Feng, Yan

    2013-01-01

    This paper presents a variational level set method for simultaneous segmentation and bias field estimation of medical images with intensity inhomogeneity. In our model, the statistics of image intensities belonging to each different tissue in local regions are characterized by Gaussian distributions with different means and variances. According to maximum a posteriori probability (MAP) and Bayes' rule, we first derive a local objective function for image intensities in a neighborhood around each pixel. Then this local objective function is integrated with respect to the neighborhood center over the entire image domain to give a global criterion. In level set framework, this global criterion defines an energy in terms of the level set functions that represent a partition of the image domain and a bias field that accounts for the intensity inhomogeneity of the image. Therefore, image segmentation and bias field estimation are simultaneously achieved via a level set evolution process. Experimental results for synthetic and real images show desirable performances of our method.

  3. Luminescence imaging of water during irradiation of X-ray photons lower energy than Cerenkov- light threshold

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi; Koyama, Shuji; Komori, Masataka [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center (Japan)

    2016-10-01

    Luminescence imaging of water using X-ray photon irradiation at energy lower than maximum energy of ~200 keV is thought to be impossible because the secondary electrons produced in this energy range do not emit Cerenkov- light. Contrary to this consensus assumption, we show that the luminescence imaging of water can be achieved by X-ray irradiation at energy lower than 120 keV. We placed water phantoms on a table with a conventional X-ray imaging system, and luminescence images of these phantoms were measured with a high-sensitivity, cooled charge coupled device (CCD) camera during X-ray photon irradiation at energy below 120 keV. We also carried out such imaging of an acrylic block and plastic scintillator. The luminescence images of water phantoms taken during X-ray photon irradiation clearly showed X-ray photon distribution. The intensity of the X-ray photon images of the phantom increased almost proportionally to the number of X-ray irradiations. Lower-energy X-ray photon irradiation showed lower-intensity luminescence at the deeper parts of the phantom due to the higher X-ray absorption in the water phantom. Furthermore, lower-intensity luminescence also appeared at the deeper parts of the acrylic phantom due to its higher density than water. The intensity of the luminescence for water was 0.005% of that for plastic scintillator. Luminescence imaging of water during X-ray photon irradiation at energy lower than 120 keV was possible. This luminescence imaging method is promising for dose estimation in X-ray imaging systems.

  4. Luminescence imaging of water during irradiation of X-ray photons lower energy than Cerenkov- light threshold

    Science.gov (United States)

    Yamamoto, Seiichi; Koyama, Shuji; Komori, Masataka; Toshito, Toshiyuki

    2016-10-01

    Luminescence imaging of water using X-ray photon irradiation at energy lower than maximum energy of 200 keV is thought to be impossible because the secondary electrons produced in this energy range do not emit Cerenkov- light. Contrary to this consensus assumption, we show that the luminescence imaging of water can be achieved by X-ray irradiation at energy lower than 120 keV. We placed water phantoms on a table with a conventional X-ray imaging system, and luminescence images of these phantoms were measured with a high-sensitivity, cooled charge coupled device (CCD) camera during X-ray photon irradiation at energy below 120 keV. We also carried out such imaging of an acrylic block and plastic scintillator. The luminescence images of water phantoms taken during X-ray photon irradiation clearly showed X-ray photon distribution. The intensity of the X-ray photon images of the phantom increased almost proportionally to the number of X-ray irradiations. Lower-energy X-ray photon irradiation showed lower-intensity luminescence at the deeper parts of the phantom due to the higher X-ray absorption in the water phantom. Furthermore, lower-intensity luminescence also appeared at the deeper parts of the acrylic phantom due to its higher density than water. The intensity of the luminescence for water was 0.005% of that for plastic scintillator. Luminescence imaging of water during X-ray photon irradiation at energy lower than 120 keV was possible. This luminescence imaging method is promising for dose estimation in X-ray imaging systems.

  5. Low level light therapy and tattoos: A case report.

    Science.gov (United States)

    Ingenito, Teresa

    2016-10-01

    Physical therapists (PTs) frequently provide neuromusculoskeletal treatment for patients who incidentally may have one or more tattoos. Low level light therapy (LLLT) is one of the modalities commonly used by physical therapists to decrease pain and facilitate healing. This case report describes a 22 year old man who was given LLLT to address his complaints of musculoskeletal pain. Blistering of the skin was documented over the LLLT application site, a black tattoo. The blisters, which formed after the LLLT treatment were most likely caused by the inadvertent and unexpected heating of the iron oxides and/or the metal salts in the tattoo's black pigment. PTs should exercise caution when applying LLLT in the presence of dark tattoos. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Interactive analysis of geographically distributed population imaging data collections over light-path data networks

    Science.gov (United States)

    van Lew, Baldur; Botha, Charl P.; Milles, Julien R.; Vrooman, Henri A.; van de Giessen, Martijn; Lelieveldt, Boudewijn P. F.

    2015-03-01

    The cohort size required in epidemiological imaging genetics studies often mandates the pooling of data from multiple hospitals. Patient data, however, is subject to strict privacy protection regimes, and physical data storage may be legally restricted to a hospital network. To enable biomarker discovery, fast data access and interactive data exploration must be combined with high-performance computing resources, while respecting privacy regulations. We present a system using fast and inherently secure light-paths to access distributed data, thereby obviating the need for a central data repository. A secure private cloud computing framework facilitates interactive, computationally intensive exploration of this geographically distributed, privacy sensitive data. As a proof of concept, MRI brain imaging data hosted at two remote sites were processed in response to a user command at a third site. The system was able to automatically start virtual machines, run a selected processing pipeline and write results to a user accessible database, while keeping data locally stored in the hospitals. Individual tasks took approximately 50% longer compared to a locally hosted blade server but the cloud infrastructure reduced the total elapsed time by a factor of 40 using 70 virtual machines in the cloud. We demonstrated that the combination light-path and private cloud is a viable means of building an analysis infrastructure for secure data analysis. The system requires further work in the areas of error handling, load balancing and secure support of multiple users.

  7. Estimation of light source colours for light pollution assessment.

    Science.gov (United States)

    Ziou, D; Kerouh, F

    2018-05-01

    The concept of the smart city raised several technological and scientific issues including light pollution. There are various negative impacts of light pollution on economy, ecology, and heath. This paper deals with the census of the colour of light emitted by lamps used in a city environment. To this end, we derive a light bulb colour estimator based on Bayesian reasoning, directional data, and image formation model in which the usual concept of reflectance is not used. All choices we made are devoted to designing an algorithm which can be run almost in real-time. Experimental results show the effectiveness of the proposed approach. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Imaging in scattering media using correlation image sensors and sparse convolutional coding

    KAUST Repository

    Heide, Felix; Xiao, Lei; Kolb, Andreas; Hullin, Matthias B.; Heidrich, Wolfgang

    2014-01-01

    Correlation image sensors have recently become popular low-cost devices for time-of-flight, or range cameras. They usually operate under the assumption of a single light path contributing to each pixel. We show that a more thorough analysis of the sensor data from correlation sensors can be used can be used to analyze the light transport in much more complex environments, including applications for imaging through scattering and turbid media. The key of our method is a new convolutional sparse coding approach for recovering transient (light-in-flight) images from correlation image sensors. This approach is enabled by an analysis of sparsity in complex transient images, and the derivation of a new physically-motivated model for transient images with drastically improved sparsity.

  9. Imaging in scattering media using correlation image sensors and sparse convolutional coding

    KAUST Repository

    Heide, Felix

    2014-10-17

    Correlation image sensors have recently become popular low-cost devices for time-of-flight, or range cameras. They usually operate under the assumption of a single light path contributing to each pixel. We show that a more thorough analysis of the sensor data from correlation sensors can be used can be used to analyze the light transport in much more complex environments, including applications for imaging through scattering and turbid media. The key of our method is a new convolutional sparse coding approach for recovering transient (light-in-flight) images from correlation image sensors. This approach is enabled by an analysis of sparsity in complex transient images, and the derivation of a new physically-motivated model for transient images with drastically improved sparsity.

  10. Cerenkov imaging.

    Science.gov (United States)

    Das, Sudeep; Thorek, Daniel L J; Grimm, Jan

    2014-01-01

    Cerenkov luminescence (CL) has been used recently in a plethora of medical applications like imaging and therapy with clinically relevant medical isotopes. The range of medical isotopes used is fairly large and expanding. The generation of in vivo light is useful since it circumvents depth limitations for excitation light. Cerenkov luminescence imaging (CLI) is much cheaper in terms of infrastructure than positron emission tomography (PET) and is particularly useful for imaging of superficial structures. Imaging can basically be done using a sensitive camera optimized for low-light conditions, and it has a better resolution than any other nuclear imaging modality. CLI has been shown to effectively diagnose disease with regularly used PET isotope ((18)F-FDG) in clinical setting. Cerenkov luminescence tomography, Cerenkov luminescence endoscopy, and intraoperative Cerenkov imaging have also been explored with positive conclusions expanding the current range of applications. Cerenkov has also been used to improve PET imaging resolution since the source of both is the radioisotope being used. Smart imaging agents have been designed based on modulation of the Cerenkov signal using small molecules and nanoparticles giving better insight of the tumor biology. © 2014 Elsevier Inc. All rights reserved.

  11. 3D shape recovery from image focus using gray level co-occurrence matrix

    Science.gov (United States)

    Mahmood, Fahad; Munir, Umair; Mehmood, Fahad; Iqbal, Javaid

    2018-04-01

    Recovering a precise and accurate 3-D shape of the target object utilizing robust 3-D shape recovery algorithm is an ultimate objective of computer vision community. Focus measure algorithm plays an important role in this architecture which convert the color values of each pixel of the acquired 2-D image dataset into corresponding focus values. After convolving the focus measure filter with the input 2-D image dataset, a 3-D shape recovery approach is applied which will recover the depth map. In this document, we are concerned with proposing Gray Level Co-occurrence Matrix along with its statistical features for computing the focus information of the image dataset. The Gray Level Co-occurrence Matrix quantifies the texture present in the image using statistical features and then applies joint probability distributive function of the gray level pairs of the input image. Finally, we quantify the focus value of the input image using Gaussian Mixture Model. Due to its little computational complexity, sharp focus measure curve, robust to random noise sources and accuracy, it is considered as superior alternative to most of recently proposed 3-D shape recovery approaches. This algorithm is deeply investigated on real image sequences and synthetic image dataset. The efficiency of the proposed scheme is also compared with the state of art 3-D shape recovery approaches. Finally, by means of two global statistical measures, root mean square error and correlation, we claim that this approach -in spite of simplicity generates accurate results.

  12. Selective Deflection of Polarized Light Via Coherently Driven Four-Level Atoms in a Double-Λ Configuration

    International Nuclear Information System (INIS)

    Guo Yu

    2010-01-01

    We study the interaction of a weak probe field, having two circular polarized components, i.e., σ - and σ + polarization, with an optically dense medium of four-level atoms in a double-Λ configuration, which is mediated by the electromagnetically induced transparency with a polarized control light with spatially inhomogeneous profile. We analyse the deflection of the polarized probe light and we find that we can selectively determine which circular component will be deflected after the polarized probe light enters the atom medium via adjusting the polarization and detuning of the control field. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  13. Cerenkov Imaging

    OpenAIRE

    Das, Sudeep; Thorek, Daniel L.J.; Grimm, Jan

    2014-01-01

    Cerenkov luminescence (CL) has been used recently in a plethora of medical applications like imaging and therapy with clinically relevant medical isotopes. The range of medical isotopes used is fairly large and expanding. The generation of in vivo light is useful since it circumvents depth limitations for excitation light. Cerenkov luminescence imaging (CLI) is much cheaper in terms of infrastructure than positron emission tomography (PET) and is particularly useful for imaging of superficial...

  14. Image accuracy and representational enhancement through low-level, multi-sensor integration techniques

    International Nuclear Information System (INIS)

    Baker, J.E.

    1993-05-01

    Multi-Sensor Integration (MSI) is the combining of data and information from more than one source in order to generate a more reliable and consistent representation of the environment. The need for MSI derives largely from basic ambiguities inherent in our current sensor imaging technologies. These ambiguities exist as long as the mapping from reality to image is not 1-to-1. That is, if different 44 realities'' lead to identical images, a single image cannot reveal the particular reality which was the truth. MSI techniques can be divided into three categories based on the relative information content of the original images with that of the desired representation: (1) ''detail enhancement,'' wherein the relative information content of the original images is less rich than the desired representation; (2) ''data enhancement,'' wherein the MSI techniques axe concerned with improving the accuracy of the data rather than either increasing or decreasing the level of detail; and (3) ''conceptual enhancement,'' wherein the image contains more detail than is desired, making it difficult to easily recognize objects of interest. In conceptual enhancement one must group pixels corresponding to the same conceptual object and thereby reduce the level of extraneous detail. This research focuses on data and conceptual enhancement algorithms. To be useful in many real-world applications, e.g., autonomous or teleoperated robotics, real-time feedback is critical. But, many MSI/image processing algorithms require significant processing time. This is especially true of feature extraction, object isolation, and object recognition algorithms due to their typical reliance on global or large neighborhood information. This research attempts to exploit the speed currently available in state-of-the-art digitizers and highly parallel processing systems by developing MSI algorithms based on pixel rather than global-level features

  15. Geophysical Imaging of Sea-level Proxies in Beach-Ridge Deposits

    Science.gov (United States)

    Nielsen, L.; Emerich Souza, P.; Meldgaard, A.; Bendixen, M.; Kroon, A.; Clemmensen, L. B.

    2017-12-01

    We show ground-penetrating radar (GPR) reflection data collected over modern and fossil beach deposits from different localities along coastlines in meso-tidal regimes of Greenland and micro-tidal regimes of Denmark. The acquired reflection GPR sections show several similar characteristics but also some differences. A similar characteristic is the presence of downlapping reflections, where the downlap point is interpreted to mark the transition from upper shoreface to beachface deposits and, thus, be a marker of a level close to or at sea-level at the time of deposition. Differences in grain size of the investigated beach ridge system result in different scattering characteristics of the acquired GPR data. These differences call for tailored, careful processing of the GPR data for optimal imaging of internal beach ridge architecture. We outline elements of the GPR data processing of particular importance for optimal imaging. Moreover, we discuss advantages and challenges related to using GPR-based proxies of sea-level as compared to other methods traditionally used for establishment of curves of past sea-level variation.

  16. Visual Method for Detecting Contaminant on Dried Nutmeg Using Fluorescence Imaging

    Science.gov (United States)

    Dahlan, S. A.; Ahmad, U.; Subrata, I. D. M.

    2018-05-01

    Traditional practice of nutmeg sun-drying causes some fungi such as Aspergillus flavus to grow. One of the secondary metabolites of A. flavus named aflatoxin (AFs) is known to be carcinogenic, so the dried nutmeg kernel must be aflatoxin-free in the trading. Aflatoxin detection requires time and costly, make it difficult to conduct at the farmers level. This study aims to develop a simple and low-cost method to detect aflatoxin at the farmer level. Fresh nutmeg seeds were dried in two ways; sundried everyday (continuous), and sundried every two days (intermittent), both for around 18 days. The dried nutmeg seeds are then stored in a rice sack under normal conditions until the fungi grow, then they were opened and the images of kernels were captured using a CCD camera, with normal light and UV light sources. Visual observation on images captured in normal light source was able to detect the presence of fungi on dried kernels, by 28.0% for continuous and 26.2% for intermittent sun-drying. Visual observation on images captured in UV light source was able to detect the presence of aflatoxin on dried kernels, indicated by blue luminance on kernel, by 10.4% and 13.4% for continuous and intermittent sun-drying.

  17. Aligned energy-level design for decreasing operation voltage of tandem white organic light-emitting diodes

    International Nuclear Information System (INIS)

    Chang, Chih-Hao; Wu, Zih-Jyun; Liang, Yi-Hu; Chang, Yu-Shuo; Chiu, Chuan-Hao; Tai, Cheng-Wei; Chang, Hsin-Hua

    2013-01-01

    In general, organic light-emitting devices (OLEDs) need to operate at higher current density levels to ensure an ample light flux. However, stressed operation will result in poor performance and limited device lifetime. Recently, a tandem structure has been proposed as a pivotal technique to meet the stringent lighting requirements for OLED commercialization, with a research focus on decreasing the concomitant higher operation voltage. Driving two connected emission units (EMUs) in a tandem structure often requires more than twice the driving voltage for a single EMU. This study investigates bipolar host materials and their effective employment in fabricating tandem white phosphorescent OLEDs (PhOLEDs). In addition, the design of a mechanism to align the energy level between the hole transport layer/emitting layer is shown to effectively mitigate operational voltages. In sharp contrast to devices using a unipolar host material, we demonstrate that the turn-on voltage of blue PhOLEDs could be decreased from 3.8 V to 2.7 V through utilizing a bipolar host. Furthermore, applying the proposed techniques to tandem white PhOLEDs produces a luminance of 10 3 cd/m 2 by a 10.1 V driving voltage. - Highlights: • The matched energy level between the hole transport/emitting layer lowers voltages. • Multiple conduction dopants were used to investigate charge generation layer. • Two-color emitters were used to quantify the charge generation strength

  18. Particle Image Velocimetry

    DEFF Research Database (Denmark)

    Zhang, Chen; Vasilevskis, Sandijs; Kozlowski, Bartosz

    Particle image velocimetry (PIV) is a non-intrusive, whole filed optical method providing instantaneous velocity information in fluids. The flow is seeded with tracer particles. The particles are illuminated in the target area with a light sheet at least twice within a short time interval....... The camera images the target area and captures each light pulse in separate image frames. The displacement of the particle between the light pulses can be used to determine the velocity vectors. This guideline introduces the principle of the PIV system and the system configuration. The measurement procedure...

  19. Gastric Tissue Damage Analysis Generated by Ischemia: Bioimpedance, Confocal Endomicroscopy, and Light Microscopy

    Directory of Open Access Journals (Sweden)

    Nohra E. Beltran

    2013-01-01

    Full Text Available The gastric mucosa ischemic tissular damage plays an important role in critical care patients’ outcome, because it is the first damaged tissue by compensatory mechanism during shock. The aim of the study is to relate bioimpedance changes with tissular damage level generated by ischemia by means of confocal endomicroscopy and light microscopy. Bioimpedance of the gastric mucosa and confocal images were obtained from Wistar male rats during basal and ischemia conditions. They were anesthetized, and stain was applied (fluorescein and/or acriflavine. The impedance spectroscopy catheter was inserted and then confocal endomicroscopy probe. After basal measurements and biopsy, hepatic and gastric arteries clamping induced ischemia. Finally, pyloric antrum tissue was preserved in buffered formaldehyde (10% for histology processing using light microscopy. Confocal images were equalized, binarized, and boundary defined, and infiltrations were quantified. Impedance and infiltrations increased with ischemia showing significant changes between basal and ischemia conditions (. Light microscopy analysis allows detection of general alterations in cellular and tissular integrity, confirming gastric reactance and confocal images quantification increments obtained during ischemia.

  20. Developmental light level affects growth, morphology, and leaf physiology of young carambola trees

    International Nuclear Information System (INIS)

    Marler, T.E.; Schaffer, B.; Crane, J.H.

    1994-01-01

    Growth and leaf physiology responses of container-grown 'Arkin' carambola (Averrhoa carambola L.) trees to long-term exposure of approximately 25%, approximately 50%, or 100% sunlight were studied in four experiments in Guam and Florida. Shading increased rachis length and leaflet area, and decreased leaflet thickness. Shaded trees also had a more horizontal branch orientation. Shading reduced dark respiration (Rd) and light compensation and saturation points but increased chlorophyll concentration and N-use efficiency. Light-saturated net CO2 assimilation (A) was not affected by developmental light level. Trees in full sun had smaller total leaf area, canopy diameter, and shoot:root ratio and exhibited leaflet movement to avoid direct solar radiation. Also, trees grown in 100% sunlight had a more vertical branch orientation and greater stomatal density than shaded trees. The ratio of variable to maximum fluorescence (Fv/Fm) declined during midday in 100% sunlight trees. This pattern was accompanied by a midday suppression of A in 100% sunlight-grown trees in Guam. 'Arkin' carambola trees exposed to approximately 25%, approximately 50%, or 100% sunlight for up to 39 weeks exhibited physiological and morphological adaptations that resulted in similar growth. These results indicate that carambola efficiently adapts to different developmental light intensities

  1. Image of а head of law-enforcement body on micro level (empirical experimentation

    Directory of Open Access Journals (Sweden)

    D. G. Perednya

    2016-01-01

    Full Text Available The article determines image of the head of law-enforcement body. Subjects and objects of image are described. Inhomogenuity of image is cleared up. Method of examination is shortly micro level described. It is talking about image, which is formed in mind of members of team of law-enforcement body, who are subordinated to object of image. State-of-the-art is illustrated, according to received data. Hypothesis about negative image of the head in mind of subordinates is disproved. It is shown contradiction of images in collective mind and social mind.

  2. A visible light imaging device for cardiac rate detection with reduced effect of body movement

    Science.gov (United States)

    Jiang, Xiaotian; Liu, Ming; Zhao, Yuejin

    2014-09-01

    A visible light imaging system to detect human cardiac rate is proposed in this paper. A color camera and several LEDs, acting as lighting source, were used to avoid the interference of ambient light. From people's forehead, the cardiac rate could be acquired based on photoplethysmography (PPG) theory. The template matching method was used after the capture of video. The video signal was discomposed into three signal channels (RGB) and the region of interest was chosen to take the average gray value. The green channel signal could provide an excellent waveform of pulse wave on the account of green lights' absorptive characteristics of blood. Through the fast Fourier transform, the cardiac rate was exactly achieved. But the research goal was not just to achieve the cardiac rate accurately. With the template matching method, the effects of body movement are reduced to a large extent, therefore the pulse wave can be detected even while people are in the moving state and the waveform is largely optimized. Several experiments are conducted on volunteers, and the results are compared with the ones gained by a finger clamped pulse oximeter. The contrast results between these two ways are exactly agreeable. This method to detect the cardiac rate and the pulse wave largely reduces the effects of body movement and can probably be widely used in the future.

  3. Intravital imaging of cardiac function at the single-cell level.

    Science.gov (United States)

    Aguirre, Aaron D; Vinegoni, Claudio; Sebas, Matt; Weissleder, Ralph

    2014-08-05

    Knowledge of cardiomyocyte biology is limited by the lack of methods to interrogate single-cell physiology in vivo. Here we show that contracting myocytes can indeed be imaged with optical microscopy at high temporal and spatial resolution in the beating murine heart, allowing visualization of individual sarcomeres and measurement of the single cardiomyocyte contractile cycle. Collectively, this has been enabled by efficient tissue stabilization, a prospective real-time cardiac gating approach, an image processing algorithm for motion-artifact-free imaging throughout the cardiac cycle, and a fluorescent membrane staining protocol. Quantification of cardiomyocyte contractile function in vivo opens many possibilities for investigating myocardial disease and therapeutic intervention at the cellular level.

  4. Quantifying bone thickness, light transmission, and contrast interrelationships in transcranial photoacoustic imaging

    Science.gov (United States)

    Lediju Bell, Muyinatu A.; Ostrowski, Anastasia K.; Li, Ke; Kaanzides, Peter; Boctor, Emad

    2015-03-01

    We previously introduced photoacoustic imaging to detect blood vessels surrounded by bone and thereby eliminate the deadly risk of carotid artery injury during endonasal, transsphenoidal surgeries. Light would be transmitted through an optical fiber attached to the surgical drill, while a transcranial probe placed on the temporal region of the skull receives photoacoustic signals. This work quantifies changes in photoacoustic image contrast as the sphenoid bone is drilled. Frontal bone from a human adult cadaver skull was cut into seven 3 cm x 3 cm chips and sanded to thicknesses ranging 1-4 mm. For 700-940 nm wavelengths, the average optical transmission through these specimens increased from 19% to 44% as bone thickness decreased, with measurements agreeing with Monte Carlo simulations within 5%. These skull specimens were individually placed in the optical pathway of a 3.5 mm diameter, cylindrical, vessel-mimicking photoacoustic target, as the laser wavelength was varied between 700-940 nm. The mean optical insertion loss and photoacoustic image contrast loss due to the bone specimens were 56-80% and 46-79%, respectively, with the majority of change observed when the bone was <=2 mm thick. The decrease in contrast is directly proportional to insertion loss over this thickness range by factors of 0.8-1.1 when multiple wavelengths are considered. Results suggest that this proportional relationship may be used to determine the amount of bone that remains to be drilled when the thickness is 2 mm or less.

  5. P1-16: The Effect of Visual Stimuli of LED Lighting by Color Temperature and Illuminance Control on Attention and Meditation Level of Mind

    Directory of Open Access Journals (Sweden)

    Chan-Su Lee

    2012-10-01

    Full Text Available Recently LED (Lighting Emitting Diode lighting sources are applied not only for displays like LED BLU (back light unit TV but also for general lighting like LED lamps for home and office. The color temperature, or chromaticity, and brightness of LED lighting can be easily controlled. Preferred combinations between illuminance and color temperature of lighting depend on daily living activities (Oi et al., 2007 Symposium on Design of Artificial Environments 214–215. Changes in intensity can be more easily detected than color changes (Almeida et al., 2009 Perception 38 1109–1117. We investigated whether the illumination stimuli of LED lighting can enhance attention and relaxation level by controlling color temperature and illuminance according to activities. EEG signals are used to estimate attention and relaxation levels of human subjects under different lighting conditions. Nine participants with normal eye sight and color vision participated in the experiments with four different activities under different illumination conditions. LED lighting with color temperature 3600 K in 240 lux is used for relaxation activities, and LED lighting with 6600 K in 794 lux is used for the task which requires attention. These lighting conditions are compared with conventional lighting condition with 4600 K in 530 lux. Preliminary experiment results show that low color temperature with low illumination intensity of LED lighting enhances relaxation level and high color temperature with high illuminance improves attention level compared with conventional lighting environment without illuminance and color temperature changes.

  6. Integrating light-sheet imaging with virtual reality to recapitulate developmental cardiac mechanics.

    Science.gov (United States)

    Ding, Yichen; Abiri, Arash; Abiri, Parinaz; Li, Shuoran; Chang, Chih-Chiang; Baek, Kyung In; Hsu, Jeffrey J; Sideris, Elias; Li, Yilei; Lee, Juhyun; Segura, Tatiana; Nguyen, Thao P; Bui, Alexander; Sevag Packard, René R; Fei, Peng; Hsiai, Tzung K

    2017-11-16

    Currently, there is a limited ability to interactively study developmental cardiac mechanics and physiology. We therefore combined light-sheet fluorescence microscopy (LSFM) with virtual reality (VR) to provide a hybrid platform for 3D architecture and time-dependent cardiac contractile function characterization. By taking advantage of the rapid acquisition, high axial resolution, low phototoxicity, and high fidelity in 3D and 4D (3D spatial + 1D time or spectra), this VR-LSFM hybrid methodology enables interactive visualization and quantification otherwise not available by conventional methods, such as routine optical microscopes. We hereby demonstrate multiscale applicability of VR-LSFM to (a) interrogate skin fibroblasts interacting with a hyaluronic acid-based hydrogel, (b) navigate through the endocardial trabecular network during zebrafish development, and (c) localize gene therapy-mediated potassium channel expression in adult murine hearts. We further combined our batch intensity normalized segmentation algorithm with deformable image registration to interface a VR environment with imaging computation for the analysis of cardiac contraction. Thus, the VR-LSFM hybrid platform demonstrates an efficient and robust framework for creating a user-directed microenvironment in which we uncovered developmental cardiac mechanics and physiology with high spatiotemporal resolution.

  7. Images of Light - Is phasing out the solution?

    DEFF Research Database (Denmark)

    Jensen, Charlotte Louise; Remmen, Arne

    2012-01-01

    approximately 20% of the world’s total energy consumption was consumed by lighting (Brown, 2010) which calls for attention to how energy consumption from lighting may be reduced. A strategy for phasing out the worst-performing light bulbs for domestic use is included in the European Ecodesign directive (2005......Due to a combination of reasons such as climate change, peak oil, security, etc., especially EU and several national governments have an increased focus on a transformation of the current energy systems through reduction of energy consumption and increased use of renewable energy sources.In 2005....../32/EC), constantly raising the performance standards. Various lighting technologies are now on the market, however with fluctuating quality, which, among other things, affect the rate households adopting new technologies (Krantz and Bladh, 2008) (Wall and Crosbie, 2009). However, aspects such as culture...

  8. Polarimetric imaging of retinal disease by polarization sensitive SLO

    Science.gov (United States)

    Miura, Masahiro; Elsner, Ann E.; Iwasaki, Takuya; Goto, Hiroshi

    2015-03-01

    Polarimetry imaging is used to evaluate different features of the macular disease. Polarimetry images were recorded using a commercially- available polarization-sensitive scanning laser opthalmoscope at 780 nm (PS-SLO, GDx-N). From data sets of PS-SLO, we computed average reflectance image, depolarized light images, and ratio-depolarized light images. The average reflectance image is the grand mean of all input polarization states. The depolarized light image is the minimum of crossed channel. The ratio-depolarized light image is a ratio between the average reflectance image and depolarized light image, and was used to compensate for variation of brightness. Each polarimetry image is compared with the autofluorescence image at 800 nm (NIR-AF) and autofluorescence image at 500 nm (SW-AF). We evaluated four eyes with geographic atrophy in age related macular degeneration, one eye with retinal pigment epithelium hyperplasia, and two eyes with chronic central serous chorioretinopathy. Polarization analysis could selectively emphasize different features of the retina. Findings in ratio depolarized light image had similarities and differences with NIR-AF images. Area of hyper-AF in NIR-AF images showed high intensity areas in the ratio depolarized light image, representing melanin accumulation. Areas of hypo-AF in NIR-AF images showed low intensity areas in the ratio depolarized light images, representing melanin loss. Drusen were high-intensity areas in the ratio depolarized light image, but NIR-AF images was insensitive to the presence of drusen. Unlike NIR-AF images, SW-AF images showed completely different features from the ratio depolarized images. Polarization sensitive imaging is an effective tool as a non-invasive assessment of macular disease.

  9. Speckless head-up display on two spatial light modulators

    Science.gov (United States)

    Siemion, Andrzej; Ducin, Izabela; Kakarenko, Karol; Makowski, Michał; Siemion, Agnieszka; Suszek, Jarosław; Sypek, Maciej; Wojnowski, Dariusz; Jaroszewicz, Zbigniew; Kołodziejczyk, Andrzej

    2010-12-01

    There is a continuous demand for the computer generated holograms to give an almost perfect reconstruction with a reasonable cost of manufacturing. One method of improving the image quality is to illuminate a Fourier hologram with a quasi-random, but well known, light field phase distribution. It can be achieved with a lithographically produced phase mask. Up to date, the implementation of the lithographic technique is relatively complex and time and money consuming, which is why we have decided to use two Spatial Light Modulators (SLM). For the correctly adjusted light polarization a SLM acts as a pure phase modulator with 256 adjustable phase levels between 0 and 2π. The two modulators give us an opportunity to use the whole surface of the device and to reduce the size of the experimental system. The optical system with one SLM can also be used but it requires dividing the active surface into halves (one for the Fourier hologram and the second for the quasi-random diffuser), which implies a more complicated optical setup. A larger surface allows to display three Fourier holograms, each for one primary colour: red, green and blue. This allows to reconstruct almost noiseless colourful dynamic images. In this work we present the results of numerical simulations of image reconstructions with the use of two SLM displays.

  10. Listening to light scattering in turbid media: quantitative optical scattering imaging using photoacoustic measurements with one-wavelength illumination

    International Nuclear Information System (INIS)

    Yuan, Zhen; Li, Xiaoqi; Xi, Lei

    2014-01-01

    Biomedical photoacoustic tomography (PAT), as a potential imaging modality, can visualize tissue structure and function with high spatial resolution and excellent optical contrast. It is widely recognized that the ability of quantitatively imaging optical absorption and scattering coefficients from photoacoustic measurements is essential before PAT can become a powerful imaging modality. Existing quantitative PAT (qPAT), while successful, has been focused on recovering absorption coefficient only by assuming scattering coefficient a constant. An effective method for photoacoustically recovering optical scattering coefficient is presently not available. Here we propose and experimentally validate such a method for quantitative scattering coefficient imaging using photoacoustic data from one-wavelength illumination. The reconstruction method developed combines conventional PAT with the photon diffusion equation in a novel way to realize the recovery of scattering coefficient. We demonstrate the method using various objects having scattering contrast only or both absorption and scattering contrasts embedded in turbid media. The listening-to-light-scattering method described will be able to provide high resolution scattering imaging for various biomedical applications ranging from breast to brain imaging. (papers)

  11. Enhanced light microscopy visualization of virus particles from Zika virus to filamentous ebolaviruses.

    Directory of Open Access Journals (Sweden)

    George G Daaboul

    Full Text Available Light microscopy is a powerful tool in the detection and analysis of parasites, fungi, and prokaryotes, but has been challenging to use for the detection of individual virus particles. Unlabeled virus particles are too small to be visualized using standard visible light microscopy. Characterization of virus particles is typically performed using higher resolution approaches such as electron microscopy or atomic force microscopy. These approaches require purification of virions away from their normal millieu, requiring significant levels of expertise, and can only enumerate small numbers of particles per field of view. Here, we utilize a visible light imaging approach called Single Particle Interferometric Reflectance Imaging Sensor (SP-IRIS that allows automated counting and sizing of thousands of individual virions. Virions are captured directly from complex solutions onto a silicon chip and then detected using a reflectance interference imaging modality. We show that the use of different imaging wavelengths allows the visualization of a multitude of virus particles. Using Violet/UV illumination, the SP-IRIS technique is able to detect individual flavivirus particles (~40 nm, while green light illumination is capable of identifying and discriminating between vesicular stomatitis virus and vaccinia virus (~360 nm. Strikingly, the technology allows the clear identification of filamentous infectious ebolavirus particles and virus-like particles. The ability to differentiate and quantify unlabeled virus particles extends the usefulness of traditional light microscopy and can be embodied in a straightforward benchtop approach allowing widespread applications ranging from rapid detection in biological fluids to analysis of virus-like particles for vaccine development and production.

  12. Why directionality is an important light factor for human health to consider in lighting design?

    NARCIS (Netherlands)

    Khademagha, P.; Aries, M.B.C.; Rosemann, A.L.P.; van Loenen, E.J.

    2016-01-01

    Both image-forming and non-image-forming effects of radiation require proper attention in lighting design that aims at meeting human vision and health requirements. Intrinsically Photosensitive Retinal Ganglion Cells (ipRGCs) appear to play an essential role in stimulation of the non-image forming

  13. Effect of Nitrogen Fertilizer on Light Interception and Light Extinction Coefficient in Different Wheat Cultivars

    Directory of Open Access Journals (Sweden)

    F Samadiyan

    2016-07-01

    amount of a third off chemical fertilizer of urea, 46 % Nitrogen was given to the plant and two third by the end of clawing the plot. In the period of growing in order to control brushes 2, 4, D herbicide and Fenitrothion insecticidal was used for countering the louse pest and other insects. In the laboratory, leaf area was measured using scanner and 4.Image 0.2 software program. To determine changes of growth indices, regression relations were used. Total dry matter, leaf area index, net assimilation rate, crop growth rate, light interception extinction were measured. Results and Discussion The results showed that the effects of N fertilizilation were significant on the maximum leaf area index, total dry matter and light interception percent were related to Pishtaz cultivar and 150 kg N ha-1 fertilizer treatment significantly resulted Maximum light interception percent, net assimilation rate, with other treatments. Effects of cultivar were significant on maximum light absorption. The Maximum absorption of light, crop growth rate, total dry matter was related to Pishtaz. The interaction between nitrogen and the harvest index was significant at the five percent level. The evidence showed that higher light interception in plants, is associated with the higher performance of plant. The increase of light interception promote the biological and economic performance. Conclusions The results showed that application of 150 kg nitrogen per hectare, with the highest level of leaf area index and higher light absorption caused higher extinction coefficient of light in the canopy. Nitrogen fertilizer consumption increased light absorption by leaves, therefore the light extinction coefficient consuming more nitrogen in the plant community. The Maximum absorption of light, crop growth rate, total dry matter was related to pishtaz. Scale of light extinction coefficient for fertilizer treatment control, 50, 100, 150 kg ha-1, was 0.4675, 0.4794, 0.4858 and 0.495, respectively and for

  14. Analysis of gene expression levels in individual bacterial cells without image segmentation.

    Science.gov (United States)

    Kwak, In Hae; Son, Minjun; Hagen, Stephen J

    2012-05-11

    Studies of stochasticity in gene expression typically make use of fluorescent protein reporters, which permit the measurement of expression levels within individual cells by fluorescence microscopy. Analysis of such microscopy images is almost invariably based on a segmentation algorithm, where the image of a cell or cluster is analyzed mathematically to delineate individual cell boundaries. However segmentation can be ineffective for studying bacterial cells or clusters, especially at lower magnification, where outlines of individual cells are poorly resolved. Here we demonstrate an alternative method for analyzing such images without segmentation. The method employs a comparison between the pixel brightness in phase contrast vs fluorescence microscopy images. By fitting the correlation between phase contrast and fluorescence intensity to a physical model, we obtain well-defined estimates for the different levels of gene expression that are present in the cell or cluster. The method reveals the boundaries of the individual cells, even if the source images lack the resolution to show these boundaries clearly. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. A generalized ray-tracing procedure for an atmospheric Cherenkov imaging telescope and optical characteristics of the TACTIC light collector

    International Nuclear Information System (INIS)

    Tickoo, A.K.; Suthar, R.L.; Koul, R.; Sapru, M.L.; Kumar, N.; Kaul, C.L.; Yadav, K.K.; Thoudam, S.; Kaul, S.K.; Venugopal, K.; Kothari, M.; Goyal, H.C.; Chandra, P.; Dhar, V.K.; Rannot, R.C.; Koul, M.K.; Kaul, S.R.

    2005-01-01

    A generalized ray-tracing procedure has been developed, which facilitates the design of a multimirror-based light collector used in atmospheric Cherenkov telescopes. This procedure has been employed to study the optical characteristics of the 3.5 m diameter light collector of the TACTIC Imaging telescope. Comparison of the measured point-spread function of the light collector with the simulated performance of ideal Davies-Cotton and paraboloid designs has been made to determine an optimum arrangement of the 34 spherical mirror facets used in the telescope to obtain the best possible point-spread function. A description of the ray-tracing subroutine used for processing CORSIKA-generated Cherenkov data, required for carrying out Monte-Carlo simulation studies, is also discussed in the paper

  16. Application of Cherenkov light observation to reactor measurements (2). Design and trial fabrication of Cherenkov light estimation system

    International Nuclear Information System (INIS)

    Yamamoto, Keiichi; Takeuchi, Tomoaki; Tsuchiya, Kunihiko; Hayashi, Takayasu; Kosuge, Fumiaki; Sano, Tadafumi

    2015-11-01

    Development of the reactor measurement system was started to obtain the real-time in-core nuclear and thermal information, where the quantitative measurement of brightness of Cherenkov light was investigated. This report summarized the results of design and trial fabrication of the Cherenkov light estimation system from thermal power evaluation from Cherenkov light image emitted from the fuel elements. The developed Cherenkov light estimation system was verified with the Cherenkov light image emitted from the fuels in the core of Kyoto University Research Reactor (KUR). From the results, the thermal power of the fuel elements evaluated from the brightness of the Cherenkov light observed by a CCD camera was almost the same as that of thermal power calculated from SRAC code. On the other hand, the evaluation values of some fuel elements were different from the calculation values. This, it is necessary to improve the observation method of Cherenkov light in the reactor and the evaluation method of the brightness of Cherenkov light. (author)

  17. Light Field Rendering for Head Mounted Displays using Pixel Reprojection

    DEFF Research Database (Denmark)

    Hansen, Anne Juhler; Klein, Jákup; Kraus, Martin

    2017-01-01

    of the information of the different images is redundant, we use pixel reprojection from the corner cameras to compute the remaining images in the light field. We compare the reprojected images with directly rendered images in a user test. In most cases, the users were unable to distinguish the images. In extreme...... cases, the reprojection approach is not capable of creating the light field. We conclude that pixel reprojection is a feasible method for rendering light fields as far as quality of perspective and diffuse shading is concerned, but render time needs to be reduced to make the method practical....

  18. Simulation of photon and charge transport in X-ray imaging semiconductor sensors

    CERN Document Server

    Nilsson, H E; Hjelm, M; Bertilsson, K

    2002-01-01

    A fully stochastic model for the imaging properties of X-ray silicon pixel detectors is presented. Both integrating and photon counting configurations have been considered, as well as scintillator-coated structures. The model is based on three levels of Monte Carlo simulations; photon transport and absorption using MCNP, full band Monte Carlo simulation of charge transport and system level Monte Carlo simulation of the imaging performance of the detector system. In the case of scintillator-coated detectors, the light scattering in the detector layers has been simulated using a Monte Carlo method. The image resolution was found to be much lower in scintillator-coated systems due to large light spread in thick scintillator layers. A comparison between integrating and photon counting readout methods shows that the image resolution can be slightly enhanced using a photon-counting readout. In addition, the proposed model has been used to study charge-sharing effects on the energy resolution in photon counting dete...

  19. Local gray level S-curve transformation - A generalized contrast enhancement technique for medical images.

    Science.gov (United States)

    Gandhamal, Akash; Talbar, Sanjay; Gajre, Suhas; Hani, Ahmad Fadzil M; Kumar, Dileep

    2017-04-01

    Most medical images suffer from inadequate contrast and brightness, which leads to blurred or weak edges (low contrast) between adjacent tissues resulting in poor segmentation and errors in classification of tissues. Thus, contrast enhancement to improve visual information is extremely important in the development of computational approaches for obtaining quantitative measurements from medical images. In this research, a contrast enhancement algorithm that applies gray-level S-curve transformation technique locally in medical images obtained from various modalities is investigated. The S-curve transformation is an extended gray level transformation technique that results into a curve similar to a sigmoid function through a pixel to pixel transformation. This curve essentially increases the difference between minimum and maximum gray values and the image gradient, locally thereby, strengthening edges between adjacent tissues. The performance of the proposed technique is determined by measuring several parameters namely, edge content (improvement in image gradient), enhancement measure (degree of contrast enhancement), absolute mean brightness error (luminance distortion caused by the enhancement), and feature similarity index measure (preservation of the original image features). Based on medical image datasets comprising 1937 images from various modalities such as ultrasound, mammograms, fluorescent images, fundus, X-ray radiographs and MR images, it is found that the local gray-level S-curve transformation outperforms existing techniques in terms of improved contrast and brightness, resulting in clear and strong edges between adjacent tissues. The proposed technique can be used as a preprocessing tool for effective segmentation and classification of tissue structures in medical images. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Robust boundary detection of left ventricles on ultrasound images using ASM-level set method.

    Science.gov (United States)

    Zhang, Yaonan; Gao, Yuan; Li, Hong; Teng, Yueyang; Kang, Yan

    2015-01-01

    Level set method has been widely used in medical image analysis, but it has difficulties when being used in the segmentation of left ventricular (LV) boundaries on echocardiography images because the boundaries are not very distinguish, and the signal-to-noise ratio of echocardiography images is not very high. In this paper, we introduce the Active Shape Model (ASM) into the traditional level set method to enforce shape constraints. It improves the accuracy of boundary detection and makes the evolution more efficient. The experiments conducted on the real cardiac ultrasound image sequences show a positive and promising result.