A Model of Computation for Bit-Level Concurrent Computing and Programming: APEC
Ajiro, Takashi; Tsuchida, Kensei
A concurrent model of computation and a language based on the model for bit-level operation are useful for developing asynchronous and concurrent programs compositionally, which frequently use bit-level operations. Some examples are programs for video games, hardware emulation (including virtual machines), and signal processing. However, few models and languages are optimized and oriented to bit-level concurrent computation. We previously developed a visual programming language called A-BITS for bit-level concurrent programming. The language is based on a dataflow-like model that computes using processes that provide serial bit-level operations and FIFO buffers connected to them. It can express bit-level computation naturally and develop compositionally. We then devised a concurrent computation model called APEC (Asynchronous Program Elements Connection) for bit-level concurrent computation. This model enables precise and formal expression of the process of computation, and a notion of primitive program elements for controlling and operating can be expressed synthetically. Specifically, the model is based on a notion of uniform primitive processes, called primitives, that have three terminals and four ordered rules at most, as well as on bidirectional communication using vehicles called carriers. A new notion is that a carrier moving between two terminals can briefly express some kinds of computation such as synchronization and bidirectional communication. The model's properties make it most applicable to bit-level computation compositionally, since the uniform computation elements are enough to develop components that have practical functionality. Through future application of the model, our research may enable further research on a base model of fine-grain parallel computer architecture, since the model is suitable for expressing massive concurrency by a network of primitives.
Atomic-level computer simulation
International Nuclear Information System (INIS)
Adams, J.B.; Rockett, Angus; Kieffer, John; Xu Wei; Nomura, Miki; Kilian, K.A.; Richards, D.F.; Ramprasad, R.
1994-01-01
This paper provides a broad overview of the methods of atomic-level computer simulation. It discusses methods of modelling atomic bonding, and computer simulation methods such as energy minimization, molecular dynamics, Monte Carlo, and lattice Monte Carlo. ((orig.))
Kononowicz, Andrzej A; Narracott, Andrew J; Manini, Simone; Bayley, Martin J; Lawford, Patricia V; McCormack, Keith; Zary, Nabil
2014-01-23
Virtual patients are increasingly common tools used in health care education to foster learning of clinical reasoning skills. One potential way to expand their functionality is to augment virtual patients' interactivity by enriching them with computational models of physiological and pathological processes. The primary goal of this paper was to propose a conceptual framework for the integration of computational models within virtual patients, with particular focus on (1) characteristics to be addressed while preparing the integration, (2) the extent of the integration, (3) strategies to achieve integration, and (4) methods for evaluating the feasibility of integration. An additional goal was to pilot the first investigation of changing framework variables on altering perceptions of integration. The framework was constructed using an iterative process informed by Soft System Methodology. The Virtual Physiological Human (VPH) initiative has been used as a source of new computational models. The technical challenges associated with development of virtual patients enhanced by computational models are discussed from the perspectives of a number of different stakeholders. Concrete design and evaluation steps are discussed in the context of an exemplar virtual patient employing the results of the VPH ARCH project, as well as improvements for future iterations. The proposed framework consists of four main elements. The first element is a list of feasibility features characterizing the integration process from three perspectives: the computational modelling researcher, the health care educationalist, and the virtual patient system developer. The second element included three integration levels: basic, where a single set of simulation outcomes is generated for specific nodes in the activity graph; intermediate, involving pre-generation of simulation datasets over a range of input parameters; advanced, including dynamic solution of the model. The third element is the
Directory of Open Access Journals (Sweden)
Sushardjanti Felasari
2003-01-01
Full Text Available This research examines the accuracy of computer programmes to simulate the illuminance level in atrium buildings compare to the measurement of those in physical models. The case was taken in atrium building with 4 types of roof i.e. pitched roof, barrel vault roof, monitor pitched roof (both monitor pitched roof and monitor barrel vault roof, and north light roof (both with north orientation and south orientation. The results show that both methods have agreement and disagreement. They show the same pattern of daylight distribution. In the other side, in terms of daylight factors, computer simulation tends to underestimate calculation compared to physical model measurement, while for average and minimum illumination, it tends to overestimate the calculation.
Goal-directed behaviour and instrumental devaluation: a neural system-level computational model
Directory of Open Access Journals (Sweden)
Francesco Mannella
2016-10-01
Full Text Available Devaluation is the key experimental paradigm used to demonstrate the presence of instrumental behaviours guided by goals in mammals. We propose a neural system-level computational model to address the question of which brain mechanisms allow the current value of rewards to control instrumental actions. The model pivots on and shows the computational soundness of the hypothesis for which the internal representation of instrumental manipulanda (e.g., levers activate the representation of rewards (or `action-outcomes', e.g. foods while attributing to them a value which depends on the current internal state of the animal (e.g., satiation for some but not all foods. The model also proposes an initial hypothesis of the integrated system of key brain components supporting this process and allowing the recalled outcomes to bias action selection: (a the sub-system formed by the basolateral amygdala and insular cortex acquiring the manipulanda-outcomes associations and attributing the current value to the outcomes; (b the three basal ganglia-cortical loops selecting respectively goals, associative sensory representations, and actions; (c the cortico-cortical and striato-nigro-striatal neural pathways supporting the selection, and selection learning, of actions based on habits and goals. The model reproduces and integrates the results of different devaluation experiments carried out with control rats and rats with pre- and post-training lesions of the basolateral amygdala, the nucleus accumbens core, the prelimbic cortex, and the dorso-medial striatum. The results support the soundness of the hypotheses of the model and show its capacity to integrate, at the system-level, the operations of the key brain structures underlying devaluation. Based on its hypotheses and predictions, the model also represents an operational framework to support the design and analysis of new experiments on the motivational aspects of goal-directed behaviour.
Toward accurate tooth segmentation from computed tomography images using a hybrid level set model
Energy Technology Data Exchange (ETDEWEB)
Gan, Yangzhou; Zhao, Qunfei [Department of Automation, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240 (China); Xia, Zeyang, E-mail: zy.xia@siat.ac.cn, E-mail: jing.xiong@siat.ac.cn; Hu, Ying [Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, and The Chinese University of Hong Kong, Shenzhen 518055 (China); Xiong, Jing, E-mail: zy.xia@siat.ac.cn, E-mail: jing.xiong@siat.ac.cn [Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 510855 (China); Zhang, Jianwei [TAMS, Department of Informatics, University of Hamburg, Hamburg 22527 (Germany)
2015-01-15
Purpose: A three-dimensional (3D) model of the teeth provides important information for orthodontic diagnosis and treatment planning. Tooth segmentation is an essential step in generating the 3D digital model from computed tomography (CT) images. The aim of this study is to develop an accurate and efficient tooth segmentation method from CT images. Methods: The 3D dental CT volumetric images are segmented slice by slice in a two-dimensional (2D) transverse plane. The 2D segmentation is composed of a manual initialization step and an automatic slice by slice segmentation step. In the manual initialization step, the user manually picks a starting slice and selects a seed point for each tooth in this slice. In the automatic slice segmentation step, a developed hybrid level set model is applied to segment tooth contours from each slice. Tooth contour propagation strategy is employed to initialize the level set function automatically. Cone beam CT (CBCT) images of two subjects were used to tune the parameters. Images of 16 additional subjects were used to validate the performance of the method. Volume overlap metrics and surface distance metrics were adopted to assess the segmentation accuracy quantitatively. The volume overlap metrics were volume difference (VD, mm{sup 3}) and Dice similarity coefficient (DSC, %). The surface distance metrics were average symmetric surface distance (ASSD, mm), RMS (root mean square) symmetric surface distance (RMSSSD, mm), and maximum symmetric surface distance (MSSD, mm). Computation time was recorded to assess the efficiency. The performance of the proposed method has been compared with two state-of-the-art methods. Results: For the tested CBCT images, the VD, DSC, ASSD, RMSSSD, and MSSD for the incisor were 38.16 ± 12.94 mm{sup 3}, 88.82 ± 2.14%, 0.29 ± 0.03 mm, 0.32 ± 0.08 mm, and 1.25 ± 0.58 mm, respectively; the VD, DSC, ASSD, RMSSSD, and MSSD for the canine were 49.12 ± 9.33 mm{sup 3}, 91.57 ± 0.82%, 0.27 ± 0.02 mm, 0
Toward accurate tooth segmentation from computed tomography images using a hybrid level set model
International Nuclear Information System (INIS)
Gan, Yangzhou; Zhao, Qunfei; Xia, Zeyang; Hu, Ying; Xiong, Jing; Zhang, Jianwei
2015-01-01
Purpose: A three-dimensional (3D) model of the teeth provides important information for orthodontic diagnosis and treatment planning. Tooth segmentation is an essential step in generating the 3D digital model from computed tomography (CT) images. The aim of this study is to develop an accurate and efficient tooth segmentation method from CT images. Methods: The 3D dental CT volumetric images are segmented slice by slice in a two-dimensional (2D) transverse plane. The 2D segmentation is composed of a manual initialization step and an automatic slice by slice segmentation step. In the manual initialization step, the user manually picks a starting slice and selects a seed point for each tooth in this slice. In the automatic slice segmentation step, a developed hybrid level set model is applied to segment tooth contours from each slice. Tooth contour propagation strategy is employed to initialize the level set function automatically. Cone beam CT (CBCT) images of two subjects were used to tune the parameters. Images of 16 additional subjects were used to validate the performance of the method. Volume overlap metrics and surface distance metrics were adopted to assess the segmentation accuracy quantitatively. The volume overlap metrics were volume difference (VD, mm 3 ) and Dice similarity coefficient (DSC, %). The surface distance metrics were average symmetric surface distance (ASSD, mm), RMS (root mean square) symmetric surface distance (RMSSSD, mm), and maximum symmetric surface distance (MSSD, mm). Computation time was recorded to assess the efficiency. The performance of the proposed method has been compared with two state-of-the-art methods. Results: For the tested CBCT images, the VD, DSC, ASSD, RMSSSD, and MSSD for the incisor were 38.16 ± 12.94 mm 3 , 88.82 ± 2.14%, 0.29 ± 0.03 mm, 0.32 ± 0.08 mm, and 1.25 ± 0.58 mm, respectively; the VD, DSC, ASSD, RMSSSD, and MSSD for the canine were 49.12 ± 9.33 mm 3 , 91.57 ± 0.82%, 0.27 ± 0.02 mm, 0.28 ± 0.03 mm
Modeling Cardiac Electrophysiology at the Organ Level in the Peta FLOPS Computing Age
International Nuclear Information System (INIS)
Mitchell, Lawrence; Bishop, Martin; Hoetzl, Elena; Neic, Aurel; Liebmann, Manfred; Haase, Gundolf; Plank, Gernot
2010-01-01
Despite a steep increase in available compute power, in-silico experimentation with highly detailed models of the heart remains to be challenging due to the high computational cost involved. It is hoped that next generation high performance computing (HPC) resources lead to significant reductions in execution times to leverage a new class of in-silico applications. However, performance gains with these new platforms can only be achieved by engaging a much larger number of compute cores, necessitating strongly scalable numerical techniques. So far strong scalability has been demonstrated only for a moderate number of cores, orders of magnitude below the range required to achieve the desired performance boost.In this study, strong scalability of currently used techniques to solve the bidomain equations is investigated. Benchmark results suggest that scalability is limited to 512-4096 cores within the range of relevant problem sizes even when systems are carefully load-balanced and advanced IO strategies are employed.
Czaja, Klaudia; Matula, Rafal
2014-05-01
The paper presents analysis of the possibilities of application geophysical methods to investigation groundwater conditions. In this paper groundwater is defined as liquid water flowing through shallow aquifers. Groundwater conditions are described through the distribution of permeable layers (like sand, gravel, fractured rock) and impermeable or low-permeable layers (like clay, till, solid rock) in the subsurface. GPR (Ground Penetrating Radar), ERT(Electrical Resistivity Tomography), VES (Vertical Electric Soundings) and seismic reflection, refraction and MASW (Multichannel Analysis of Surface Waves) belong to non - invasive, surface, geophysical methods. Due to differences in physical parameters like dielectric constant, resistivity, density and elastic properties for saturated and saturated zones it is possible to use geophysical techniques for groundwater investigations. Few programmes for GPR, ERT, VES and seismic modelling were applied in order to verify and compare results. Models differ in values of physical parameters such as dielectric constant, electrical conductivity, P and S-wave velocity and the density, layers thickness and the depth of occurrence of the groundwater level. Obtained results for computer modelling for GPR and seismic methods and interpretation of test field measurements are presented. In all of this methods vertical resolution is the most important issue in groundwater investigations. This require proper measurement methodology e.g. antennas with frequencies high enough, Wenner array in electrical surveys, proper geometry for seismic studies. Seismic velocities of unconsolidated rocks like sand and gravel are strongly influenced by porosity and water saturation. No influence of water saturation degree on seismic velocities is observed below a value of about 90% water saturation. A further saturation increase leads to a strong increase of P-wave velocity and a slight decrease of S-wave velocity. But in case of few models only the
International Nuclear Information System (INIS)
Bonacorsi, D.
2007-01-01
The CMS experiment at LHC has developed a baseline Computing Model addressing the needs of a computing system capable to operate in the first years of LHC running. It is focused on a data model with heavy streaming at the raw data level based on trigger, and on the achievement of the maximum flexibility in the use of distributed computing resources. The CMS distributed Computing Model includes a Tier-0 centre at CERN, a CMS Analysis Facility at CERN, several Tier-1 centres located at large regional computing centres, and many Tier-2 centres worldwide. The workflows have been identified, along with a baseline architecture for the data management infrastructure. This model is also being tested in Grid Service Challenges of increasing complexity, coordinated with the Worldwide LHC Computing Grid community
Computational Modeling | Bioenergy | NREL
cell walls and are the source of biofuels and biomaterials. Our modeling investigates their properties . Quantum Mechanical Models NREL studies chemical and electronic properties and processes to reduce barriers Computational Modeling Computational Modeling NREL uses computational modeling to increase the
Computational models of neuromodulation.
Fellous, J M; Linster, C
1998-05-15
Computational modeling of neural substrates provides an excellent theoretical framework for the understanding of the computational roles of neuromodulation. In this review, we illustrate, with a large number of modeling studies, the specific computations performed by neuromodulation in the context of various neural models of invertebrate and vertebrate preparations. We base our characterization of neuromodulations on their computational and functional roles rather than on anatomical or chemical criteria. We review the main framework in which neuromodulation has been studied theoretically (central pattern generation and oscillations, sensory processing, memory and information integration). Finally, we present a detailed mathematical overview of how neuromodulation has been implemented at the single cell and network levels in modeling studies. Overall, neuromodulation is found to increase and control computational complexity.
Directory of Open Access Journals (Sweden)
Ali A. Rostami
2016-08-01
Full Text Available Concerns have been raised in the literature for the potential of secondhand exposure from e-vapor product (EVP use. It would be difficult to experimentally determine the impact of various factors on secondhand exposure including, but not limited to, room characteristics (indoor space size, ventilation rate, device specifications (aerosol mass delivery, e-liquid composition, and use behavior (number of users and usage frequency. Therefore, a well-mixed computational model was developed to estimate the indoor levels of constituents from EVPs under a variety of conditions. The model is based on physical and thermodynamic interactions between aerosol, vapor, and air, similar to indoor air models referred to by the Environmental Protection Agency. The model results agree well with measured indoor air levels of nicotine from two sources: smoking machine-generated aerosol and aerosol exhaled from EVP use. Sensitivity analysis indicated that increasing air exchange rate reduces room air level of constituents, as more material is carried away. The effect of the amount of aerosol released into the space due to variability in exhalation was also evaluated. The model can estimate the room air level of constituents as a function of time, which may be used to assess the level of non-user exposure over time.
Gray, Alan; Harlen, Oliver G; Harris, Sarah A; Khalid, Syma; Leung, Yuk Ming; Lonsdale, Richard; Mulholland, Adrian J; Pearson, Arwen R; Read, Daniel J; Richardson, Robin A
2015-01-01
Despite huge advances in the computational techniques available for simulating biomolecules at the quantum-mechanical, atomistic and coarse-grained levels, there is still a widespread perception amongst the experimental community that these calculations are highly specialist and are not generally applicable by researchers outside the theoretical community. In this article, the successes and limitations of biomolecular simulation and the further developments that are likely in the near future are discussed. A brief overview is also provided of the experimental biophysical methods that are commonly used to probe biomolecular structure and dynamics, and the accuracy of the information that can be obtained from each is compared with that from modelling. It is concluded that progress towards an accurate spatial and temporal model of biomacromolecules requires a combination of all of these biophysical techniques, both experimental and computational.
Computationally Modeling Interpersonal Trust
Directory of Open Access Journals (Sweden)
Jin Joo eLee
2013-12-01
Full Text Available We present a computational model capable of predicting—above human accuracy—the degree of trust a person has toward their novel partner by observing the trust-related nonverbal cues expressed in their social interaction. We summarize our prior work, in which we identify nonverbal cues that signal untrustworthy behavior and also demonstrate the human mind’s readiness to interpret those cues to assess the trustworthiness of a social robot. We demonstrate that domain knowledge gained from our prior work using human-subjects experiments, when incorporated into the feature engineering process, permits a computational model to outperform both human predictions and a baseline model built in naivete' of this domain knowledge. We then present the construction of hidden Markov models to incorporate temporal relationships among the trust-related nonverbal cues. By interpreting the resulting learned structure, we observe that models built to emulate different levels of trust exhibit different sequences of nonverbal cues. From this observation, we derived sequence-based temporal features that further improve the accuracy of our computational model. Our multi-step research process presented in this paper combines the strength of experimental manipulation and machine learning to not only design a computational trust model but also to further our understanding of the dynamics of interpersonal trust.
Treur, M.; Postma, M.
2014-01-01
Objectives: Patient-level simulation models provide increased flexibility to overcome the limitations of cohort-based approaches in health-economic analysis. However, computational requirements of reaching convergence is a notorious barrier. The objective was to assess the impact of using
Energy Technology Data Exchange (ETDEWEB)
Gray, Alan [The University of Edinburgh, Edinburgh EH9 3JZ, Scotland (United Kingdom); Harlen, Oliver G. [University of Leeds, Leeds LS2 9JT (United Kingdom); Harris, Sarah A., E-mail: s.a.harris@leeds.ac.uk [University of Leeds, Leeds LS2 9JT (United Kingdom); University of Leeds, Leeds LS2 9JT (United Kingdom); Khalid, Syma; Leung, Yuk Ming [University of Southampton, Southampton SO17 1BJ (United Kingdom); Lonsdale, Richard [Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany); Philipps-Universität Marburg, Hans-Meerwein Strasse, 35032 Marburg (Germany); Mulholland, Adrian J. [University of Bristol, Bristol BS8 1TS (United Kingdom); Pearson, Arwen R. [University of Leeds, Leeds LS2 9JT (United Kingdom); University of Hamburg, Hamburg (Germany); Read, Daniel J.; Richardson, Robin A. [University of Leeds, Leeds LS2 9JT (United Kingdom); The University of Edinburgh, Edinburgh EH9 3JZ, Scotland (United Kingdom)
2015-01-01
The current computational techniques available for biomolecular simulation are described, and the successes and limitations of each with reference to the experimental biophysical methods that they complement are presented. Despite huge advances in the computational techniques available for simulating biomolecules at the quantum-mechanical, atomistic and coarse-grained levels, there is still a widespread perception amongst the experimental community that these calculations are highly specialist and are not generally applicable by researchers outside the theoretical community. In this article, the successes and limitations of biomolecular simulation and the further developments that are likely in the near future are discussed. A brief overview is also provided of the experimental biophysical methods that are commonly used to probe biomolecular structure and dynamics, and the accuracy of the information that can be obtained from each is compared with that from modelling. It is concluded that progress towards an accurate spatial and temporal model of biomacromolecules requires a combination of all of these biophysical techniques, both experimental and computational.
Plasticity: modeling & computation
National Research Council Canada - National Science Library
Borja, Ronaldo Israel
2013-01-01
.... "Plasticity Modeling & Computation" is a textbook written specifically for students who want to learn the theoretical, mathematical, and computational aspects of inelastic deformation in solids...
Brown, Nathan P; Bertocci, Gina E; Marcellin-Little, Denis J
2014-07-01
To evaluate effects of tibial plateau leveling osteotomy (TPLO) on canine stifle joint biomechanics in a cranial cruciate ligament (CrCL)-deficient stifle joint by use of a 3-D computer model simulating the stance phase of gait and to compare biomechanics in TPLO-managed, CrCL-intact, and CrCL-deficient stifle joints. Computer simulations of the pelvic limb of a Golden Retriever. A previously developed computer model of the canine pelvic limb was used to simulate TPLO stabilization to achieve a tibial plateau angle (TPA) of 5° (baseline value) in a CrCL-deficient stifle joint. Sensitivity analysis was conducted for tibial fragment rotation of 13° to -3°. Ligament loads, relative tibial translation, and relative tibial rotation were determined and compared with values for CrCL-intact and CrCL-deficient stifle joints. TPLO with a 5° TPA converted cranial tibial translation to caudal tibial translation and increased loads placed on the remaining stifle joint ligaments, compared with results for a CrCL-intact stifle joint. Lateral collateral ligament load was similar, medial collateral ligament load increased, and caudal cruciate ligament load decreased after TPLO, compared with loads for a CrCL-deficient stifle joint. Relative tibial rotation after TPLO was similar to that of a CrCL-deficient stifle joint. Stifle joint biomechanics were affected by TPLO fragment rotation. In the model, stifle joint biomechanics were partially improved after TPLO, compared with CrCL-deficient stifle joint biomechanics, but TPLO did not fully restore CrCL-intact stifle joint biomechanics. Overrotation of the tibial fragment negatively influenced stifle joint biomechanics by increasing caudal tibial translation.
Computational neurogenetic modeling
Benuskova, Lubica
2010-01-01
Computational Neurogenetic Modeling is a student text, introducing the scope and problems of a new scientific discipline - Computational Neurogenetic Modeling (CNGM). CNGM is concerned with the study and development of dynamic neuronal models for modeling brain functions with respect to genes and dynamic interactions between genes. These include neural network models and their integration with gene network models. This new area brings together knowledge from various scientific disciplines, such as computer and information science, neuroscience and cognitive science, genetics and molecular biol
Energy Technology Data Exchange (ETDEWEB)
Kopper, Claudio, E-mail: claudio.kopper@nikhef.nl [NIKHEF, Science Park 105, 1098 XG Amsterdam (Netherlands)
2013-10-11
Completed in 2008, Antares is now the largest water Cherenkov neutrino telescope in the Northern Hemisphere. Its main goal is to detect neutrinos from galactic and extra-galactic sources. Due to the high background rate of atmospheric muons and the high level of bioluminescence, several on-line and off-line filtering algorithms have to be applied to the raw data taken by the instrument. To be able to handle this data stream, a dedicated computing infrastructure has been set up. The paper covers the main aspects of the current official Antares computing model. This includes an overview of on-line and off-line data handling and storage. In addition, the current usage of the “IceTray” software framework for Antares data processing is highlighted. Finally, an overview of the data storage formats used for high-level analysis is given.
DEFF Research Database (Denmark)
Featherstone, W.E.; Kirby, J.F.; Kearsley, A.H.W.
2001-01-01
The AUSGeoid98 gravimetric geoid model of Australia has been computed using data from the EGM96 global geopotential model, the 1996 release of the Australian gravity database, a nationwide digital elevation model, and satellite altimeter-derived marine gravity anomalies. The geoid heights are on ...
Enin, S. S.; Omelchenko, E. Y.; Fomin, N. V.; Beliy, A. V.
2018-03-01
The paper has a description of a computer model of an overhead crane system. The designed overhead crane system consists of hoisting, trolley and crane mechanisms as well as a payload two-axis system. With the help of the differential equation of specified mechanisms movement derived through Lagrange equation of the II kind, it is possible to build an overhead crane computer model. The computer model was obtained using Matlab software. Transients of coordinate, linear speed and motor torque of trolley and crane mechanism systems were simulated. In addition, transients of payload swaying were obtained with respect to the vertical axis. A trajectory of the trolley mechanism with simultaneous operation with the crane mechanism is represented in the paper as well as a two-axis trajectory of payload. The designed computer model of an overhead crane is a great means for studying positioning control and anti-sway control systems.
Computer Modeling and Simulation
Energy Technology Data Exchange (ETDEWEB)
Pronskikh, V. S. [Fermilab
2014-05-09
Verification and validation of computer codes and models used in simulation are two aspects of the scientific practice of high importance and have recently been discussed by philosophers of science. While verification is predominantly associated with the correctness of the way a model is represented by a computer code or algorithm, validation more often refers to model’s relation to the real world and its intended use. It has been argued that because complex simulations are generally not transparent to a practitioner, the Duhem problem can arise for verification and validation due to their entanglement; such an entanglement makes it impossible to distinguish whether a coding error or model’s general inadequacy to its target should be blamed in the case of the model failure. I argue that in order to disentangle verification and validation, a clear distinction between computer modeling (construction of mathematical computer models of elementary processes) and simulation (construction of models of composite objects and processes by means of numerical experimenting with them) needs to be made. Holding on to that distinction, I propose to relate verification (based on theoretical strategies such as inferences) to modeling and validation, which shares the common epistemology with experimentation, to simulation. To explain reasons of their intermittent entanglement I propose a weberian ideal-typical model of modeling and simulation as roles in practice. I suggest an approach to alleviate the Duhem problem for verification and validation generally applicable in practice and based on differences in epistemic strategies and scopes
International Nuclear Information System (INIS)
Grandi, C; Bonacorsi, D; Colling, D; Fisk, I; Girone, M
2014-01-01
The CMS Computing Model was developed and documented in 2004. Since then the model has evolved to be more flexible and to take advantage of new techniques, but many of the original concepts remain and are in active use. In this presentation we will discuss the changes planned for the restart of the LHC program in 2015. We will discuss the changes planning in the use and definition of the computing tiers that were defined with the MONARC project. We will present how we intend to use new services and infrastructure to provide more efficient and transparent access to the data. We will discuss the computing plans to make better use of the computing capacity by scheduling more of the processor nodes, making better use of the disk storage, and more intelligent use of the networking.
Computational Intelligence, Cyber Security and Computational Models
Anitha, R; Lekshmi, R; Kumar, M; Bonato, Anthony; Graña, Manuel
2014-01-01
This book contains cutting-edge research material presented by researchers, engineers, developers, and practitioners from academia and industry at the International Conference on Computational Intelligence, Cyber Security and Computational Models (ICC3) organized by PSG College of Technology, Coimbatore, India during December 19–21, 2013. The materials in the book include theory and applications for design, analysis, and modeling of computational intelligence and security. The book will be useful material for students, researchers, professionals, and academicians. It will help in understanding current research trends and findings and future scope of research in computational intelligence, cyber security, and computational models.
Field Level Computer Exploitation Package
2007-03-01
to take advantage of the data retrieved from the computer. Major Barge explained that if a tool could be designed that nearly anyone could use...the study of network forensics. This has become a necessity because of the constantly growing eCommerce industry and the stiff competition between...Security. One big advantage that Insert has is the fact that it is quite small compared to most bootable CDs. At only 60 megabytes it can be burned
Chaos Modelling with Computers
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 5. Chaos Modelling with Computers Unpredicatable Behaviour of Deterministic Systems. Balakrishnan Ramasamy T S K V Iyer. General Article Volume 1 Issue 5 May 1996 pp 29-39 ...
High-level language computer architecture
Chu, Yaohan
1975-01-01
High-Level Language Computer Architecture offers a tutorial on high-level language computer architecture, including von Neumann architecture and syntax-oriented architecture as well as direct and indirect execution architecture. Design concepts of Japanese-language data processing systems are discussed, along with the architecture of stack machines and the SYMBOL computer system. The conceptual design of a direct high-level language processor is also described.Comprised of seven chapters, this book first presents a classification of high-level language computer architecture according to the pr
Lee, Tai-Sung; Kantarjian, Hagop; Ma, Wanlong; Yeh, Chen-Hsiung; Giles, Francis; Albitar, Maher
2011-01-01
Mutations in the thrombopoietin receptor (MPL) may activate relevant pathways and lead to chronic myeloproliferative neoplasms (MPNs). The mechanisms of MPL activation remain elusive because of a lack of experimental structures. Modern computational biology techniques were utilized to explore the mechanisms of MPL protein activation due to various mutations. Transmembrane (TM) domain predictions, homology modeling, ab initio protein structure prediction, and molecular dynamics (MD) simulations were used to build structural dynamic models of wild-type and four clinically observed mutants of MPL. The simulation results suggest that S505 and W515 are important in keeping the TM domain in its correct position within the membrane. Mutations at either of these two positions cause movement of the TM domain, altering the conformation of the nearby intracellular domain in unexpected ways, and may cause the unwanted constitutive activation of MPL's kinase partner, JAK2. Our findings represent the first full-scale molecular dynamics simulations of the wild-type and clinically observed mutants of the MPL protein, a critical element of the MPL-JAK2-STAT signaling pathway. In contrast to usual explanations for the activation mechanism that are based on the relative translational movement between rigid domains of MPL, our results suggest that mutations within the TM region could result in conformational changes including tilt and rotation (azimuthal) angles along the membrane axis. Such changes may significantly alter the conformation of the adjacent and intrinsically flexible intracellular domain. Hence, caution should be exercised when interpreting experimental evidence based on rigid models of cytokine receptors or similar systems.
Energy Technology Data Exchange (ETDEWEB)
Lee, Chang Hoon; Baek, Sang Yeup; Shin, In Sup; Moon, Shin Myung; Moon, Jae Phil; Koo, Hoon Young; Kim, Ju Shin [Seoul National University, Seoul (Korea, Republic of); Hong, Jung Sik [Seoul National Polytechnology University, Seoul (Korea, Republic of); Lim, Tae Jin [Soongsil University, Seoul (Korea, Republic of)
1996-08-01
The objective of this project is to develop a methodology of the dynamic reliability analysis for NPP. The first year`s research was focused on developing a procedure for analyzing failure data of running components and a simulator for estimating the reliability of series-parallel structures. The second year`s research was concentrated on estimating the lifetime distribution and PM effect of a component from its failure data in various cases, and the lifetime distribution of a system with a particular structure. Computer codes for performing these jobs were also developed. The objectives of the third year`s research is to develop models for analyzing special failure types (CCFs, Standby redundant structure) that were nor considered in the first two years, and to complete a methodology of the dynamic reliability analysis for nuclear power plants. The analysis of failure data of components and related researches for supporting the simulator must be preceded for providing proper input to the simulator. Thus this research is divided into three major parts. 1. Analysis of the time dependent life distribution and the PM effect. 2. Development of a simulator for system reliability analysis. 3. Related researches for supporting the simulator : accelerated simulation analytic approach using PH-type distribution, analysis for dynamic repair effects. 154 refs., 5 tabs., 87 figs. (author)
International Nuclear Information System (INIS)
Max, G
2011-01-01
Traffic models in computer networks can be described as a complicated system. These systems show non-linear features and to simulate behaviours of these systems are also difficult. Before implementing network equipments users wants to know capability of their computer network. They do not want the servers to be overloaded during temporary traffic peaks when more requests arrive than the server is designed for. As a starting point for our study a non-linear system model of network traffic is established to exam behaviour of the network planned. The paper presents setting up a non-linear simulation model that helps us to observe dataflow problems of the networks. This simple model captures the relationship between the competing traffic and the input and output dataflow. In this paper, we also focus on measuring the bottleneck of the network, which was defined as the difference between the link capacity and the competing traffic volume on the link that limits end-to-end throughput. We validate the model using measurements on a working network. The results show that the initial model estimates well main behaviours and critical parameters of the network. Based on this study, we propose to develop a new algorithm, which experimentally determines and predict the available parameters of the network modelled.
Frank, M; Pacheco, Andreu
1998-01-01
This document is a first attempt to describe the LHCb computing model. The CPU power needed to process data for the event filter and reconstruction is estimated to be 2.2 \\Theta 106 MIPS. This will be installed at the experiment and will be reused during non data-taking periods for reprocessing. The maximal I/O of these activities is estimated to be around 40 MB/s.We have studied three basic models concerning the placement of the CPU resources for the other computing activities, Monte Carlo-simulation (1:4 \\Theta 106 MIPS) and physics analysis (0:5 \\Theta 106 MIPS): CPU resources may either be located at the physicist's homelab, national computer centres (Regional Centres) or at CERN.The CPU resources foreseen for analysis are sufficient to allow 100 concurrent analyses. It is assumed that physicists will work in physics groups that produce analysis data at an average rate of 4.2 MB/s or 11 TB per month. However, producing these group analysis data requires reading capabilities of 660 MB/s. It is further assu...
Ignatova, Zoya; Zimmermann, Karl-Heinz
2008-01-01
In this excellent text, the reader is given a comprehensive introduction to the field of DNA computing. The book emphasizes computational methods to tackle central problems of DNA computing, such as controlling living cells, building patterns, and generating nanomachines.
Directory of Open Access Journals (Sweden)
Constanta Nicoleta BODEA
2008-01-01
Full Text Available Is an original paper, which contains a hierarchical model with three levels, for determining the linearized non-homogeneous and homogeneous credibility premiums at company level, at sector level and at contract level, founded on the relevant covariance relations between the risk premium, the observations and the weighted averages. We give a rather explicit description of the input data for the multi- level hierarchical model used, only to show that in practical situations, there will always be enough data to apply credibility theory to a real insurance portfolio.
Plasticity modeling & computation
Borja, Ronaldo I
2013-01-01
There have been many excellent books written on the subject of plastic deformation in solids, but rarely can one find a textbook on this subject. “Plasticity Modeling & Computation” is a textbook written specifically for students who want to learn the theoretical, mathematical, and computational aspects of inelastic deformation in solids. It adopts a simple narrative style that is not mathematically overbearing, and has been written to emulate a professor giving a lecture on this subject inside a classroom. Each section is written to provide a balance between the relevant equations and the explanations behind them. Where relevant, sections end with one or more exercises designed to reinforce the understanding of the “lecture.” Color figures enhance the presentation and make the book very pleasant to read. For professors planning to use this textbook for their classes, the contents are sufficient for Parts A and B that can be taught in sequence over a period of two semesters or quarters.
International Nuclear Information System (INIS)
Amoroso, J.
2011-01-01
This report describes the results of a computer simulation study to predict the temperature of the glass at any location inside a DWPF canister during pouring and subsequent cooling. These simulations are an integral part of a larger research focus aimed at developing methods to predict, evaluate, and ultimately suppress nepheline formation in HLW glasses. That larger research focus is centered on holistically understanding nepheline formation in HLW glass by exploring the fundamental thermal and chemical driving forces for nepheline crystallization with respect to realistic processing conditions. Through experimental work, the goal is to integrate nepheline crystallization potential in HLW glass with processing capability to ultimately optimize waste loading and throughput while maintaining an acceptable product with respect to durability. The results of this study indicated severe temperature gradients and prolonged temperature dwell times exist throughout different locations in the canister and that the time and temperatures that HLW glass is subjected to during processing is a function of pour rate. The simulations indicate that crystallization driving forces are not uniform throughout the glass volume in a DWPF (or DWPF-like) canister and illustrate the importance of considering overall kinetics (chemical and thermal driving forces) of nepheline formation when developing methods to predict and suppress its formation in HLW glasses. The intended path forward is to use the simulation data both as a driver for future experimental work and, as an investigative tool for evaluating the impact of experimental results. Simulation data will be used to develop laboratory experiments to more acutely evaluate nepheline formation in HLW glass by incorporating the simulated temperatures throughout the canister into the laboratory experiments. Concurrently, laboratory experiments will be performed to identify nepheline crystallization potential in HLW glass as a function of
Hilal Karakış; Ayşen Karamete; Aydın Okçu
2016-01-01
This study examined the effects that computer-assisted instruction had on students’ attitudes toward a mathematics lesson and toward learning mathematics with computer-assisted instruction. The computer software we used was based on the ASSURE Instructional Systems Design and the ARCS Model of Motivation, and the software was designed to teach fractions to fourth-grade students. The skill levels of these students were gauged before and after receiving the computer-assisted instruction. We str...
Models of optical quantum computing
Directory of Open Access Journals (Sweden)
Krovi Hari
2017-03-01
Full Text Available I review some work on models of quantum computing, optical implementations of these models, as well as the associated computational power. In particular, we discuss the circuit model and cluster state implementations using quantum optics with various encodings such as dual rail encoding, Gottesman-Kitaev-Preskill encoding, and coherent state encoding. Then we discuss intermediate models of optical computing such as boson sampling and its variants. Finally, we review some recent work in optical implementations of adiabatic quantum computing and analog optical computing. We also provide a brief description of the relevant aspects from complexity theory needed to understand the results surveyed.
Qi, Nathan R.
2018-01-01
High capacity and low capacity running rats, HCR and LCR respectively, have been bred to represent two extremes of running endurance and have recently demonstrated disparities in fuel usage during transient aerobic exercise. HCR rats can maintain fatty acid (FA) utilization throughout the course of transient aerobic exercise whereas LCR rats rely predominantly on glucose utilization. We hypothesized that the difference between HCR and LCR fuel utilization could be explained by a difference in mitochondrial density. To test this hypothesis and to investigate mechanisms of fuel selection, we used a constraint-based kinetic analysis of whole-body metabolism to analyze transient exercise data from these rats. Our model analysis used a thermodynamically constrained kinetic framework that accounts for glycolysis, the TCA cycle, and mitochondrial FA transport and oxidation. The model can effectively match the observed relative rates of oxidation of glucose versus FA, as a function of ATP demand. In searching for the minimal differences required to explain metabolic function in HCR versus LCR rats, it was determined that the whole-body metabolic phenotype of LCR, compared to the HCR, could be explained by a ~50% reduction in total mitochondrial activity with an additional 5-fold reduction in mitochondrial FA transport activity. Finally, we postulate that over sustained periods of exercise that LCR can partly overcome the initial deficit in FA catabolic activity by upregulating FA transport and/or oxidation processes. PMID:29474500
Modeling Computer Virus and Its Dynamics
Directory of Open Access Journals (Sweden)
Mei Peng
2013-01-01
Full Text Available Based on that the computer will be infected by infected computer and exposed computer, and some of the computers which are in suscepitible status and exposed status can get immunity by antivirus ability, a novel coumputer virus model is established. The dynamic behaviors of this model are investigated. First, the basic reproduction number R0, which is a threshold of the computer virus spreading in internet, is determined. Second, this model has a virus-free equilibrium P0, which means that the infected part of the computer disappears, and the virus dies out, and P0 is a globally asymptotically stable equilibrium if R01 then this model has only one viral equilibrium P*, which means that the computer persists at a constant endemic level, and P* is also globally asymptotically stable. Finally, some numerical examples are given to demonstrate the analytical results.
den Harder, Annemarie M; Willemink, Martin J; van Hamersvelt, Robbert W; Vonken, Evertjan P A; Schilham, Arnold M R; Lammers, Jan-Willem J; Luijk, Bart; Budde, Ricardo P J; Leiner, Tim; de Jong, Pim A
2016-01-01
The aim of the study was to determine the effects of dose reduction and iterative reconstruction (IR) on pulmonary nodule volumetry. In this prospective study, 25 patients scheduled for follow-up of pulmonary nodules were included. Computed tomography acquisitions were acquired at 4 dose levels with a median of 2.1, 1.2, 0.8, and 0.6 mSv. Data were reconstructed with filtered back projection (FBP), hybrid IR, and model-based IR. Volumetry was performed using semiautomatic software. At the highest dose level, more than 91% (34/37) of the nodules could be segmented, and at the lowest dose level, this was more than 83%. Thirty-three nodules were included for further analysis. Filtered back projection and hybrid IR did not lead to significant differences, whereas model-based IR resulted in lower volume measurements with a maximum difference of -11% compared with FBP at routine dose. Pulmonary nodule volumetry can be accurately performed at a submillisievert dose with both FBP and hybrid IR.
A physicist's model of computation
International Nuclear Information System (INIS)
Fredkin, E.
1991-01-01
An attempt is presented to make a statement about what a computer is and how it works from the perspective of physics. The single observation that computation can be a reversible process allows for the same kind of insight into computing as was obtained by Carnot's discovery that heat engines could be modelled as reversible processes. It allows us to bring computation into the realm of physics, where the power of physics allows us to ask and answer questions that seemed intractable from the viewpoint of computer science. Strangely enough, this effort makes it clear why computers get cheaper every year. (author) 14 refs., 4 figs
Computational modeling in biomechanics
Mofrad, Mohammad
2010-01-01
This book provides a glimpse of the diverse and important roles that modern computational technology is playing in various areas of biomechanics. It includes unique chapters on ab initio quantum mechanical, molecular dynamic and scale coupling methods..
Baldassarre, Gianluca; Mannella, Francesco; Fiore, Vincenzo G; Redgrave, Peter; Gurney, Kevin; Mirolli, Marco
2013-05-01
Reinforcement (trial-and-error) learning in animals is driven by a multitude of processes. Most animals have evolved several sophisticated systems of 'extrinsic motivations' (EMs) that guide them to acquire behaviours allowing them to maintain their bodies, defend against threat, and reproduce. Animals have also evolved various systems of 'intrinsic motivations' (IMs) that allow them to acquire actions in the absence of extrinsic rewards. These actions are used later to pursue such rewards when they become available. Intrinsic motivations have been studied in Psychology for many decades and their biological substrates are now being elucidated by neuroscientists. In the last two decades, investigators in computational modelling, robotics and machine learning have proposed various mechanisms that capture certain aspects of IMs. However, we still lack models of IMs that attempt to integrate all key aspects of intrinsically motivated learning and behaviour while taking into account the relevant neurobiological constraints. This paper proposes a bio-constrained system-level model that contributes a major step towards this integration. The model focusses on three processes related to IMs and on the neural mechanisms underlying them: (a) the acquisition of action-outcome associations (internal models of the agent-environment interaction) driven by phasic dopamine signals caused by sudden, unexpected changes in the environment; (b) the transient focussing of visual gaze and actions on salient portions of the environment; (c) the subsequent recall of actions to pursue extrinsic rewards based on goal-directed reactivation of the representations of their outcomes. The tests of the model, including a series of selective lesions, show how the focussing processes lead to a faster learning of action-outcome associations, and how these associations can be recruited for accomplishing goal-directed behaviours. The model, together with the background knowledge reviewed in the paper
Mathematical Modeling and Computational Thinking
Sanford, John F.; Naidu, Jaideep T.
2017-01-01
The paper argues that mathematical modeling is the essence of computational thinking. Learning a computer language is a valuable assistance in learning logical thinking but of less assistance when learning problem-solving skills. The paper is third in a series and presents some examples of mathematical modeling using spreadsheets at an advanced…
COMPUTATIONAL MODELS FOR SUSTAINABLE DEVELOPMENT
Monendra Grover; Rajesh Kumar; Tapan Kumar Mondal; S. Rajkumar
2011-01-01
Genetic erosion is a serious problem and computational models have been developed to prevent it. The computational modeling in this field not only includes (terrestrial) reserve design, but also decision modeling for related problems such as habitat restoration, marine reserve design, and nonreserve approaches to conservation management. Models have been formulated for evaluating tradeoffs between socioeconomic, biophysical, and spatial criteria in establishing marine reserves. The percolatio...
Computer-Aided Modeling Framework
DEFF Research Database (Denmark)
Fedorova, Marina; Sin, Gürkan; Gani, Rafiqul
Models are playing important roles in design and analysis of chemicals based products and the processes that manufacture them. Computer-aided methods and tools have the potential to reduce the number of experiments, which can be expensive and time consuming, and there is a benefit of working...... development and application. The proposed work is a part of the project for development of methods and tools that will allow systematic generation, analysis and solution of models for various objectives. It will use the computer-aided modeling framework that is based on a modeling methodology, which combines....... In this contribution, the concept of template-based modeling is presented and application is highlighted for the specific case of catalytic membrane fixed bed models. The modeling template is integrated in a generic computer-aided modeling framework. Furthermore, modeling templates enable the idea of model reuse...
The algorithmic level is the bridge between computation and brain.
Love, Bradley C
2015-04-01
Every scientist chooses a preferred level of analysis and this choice shapes the research program, even determining what counts as evidence. This contribution revisits Marr's (1982) three levels of analysis (implementation, algorithmic, and computational) and evaluates the prospect of making progress at each individual level. After reviewing limitations of theorizing within a level, two strategies for integration across levels are considered. One is top-down in that it attempts to build a bridge from the computational to algorithmic level. Limitations of this approach include insufficient theoretical constraint at the computation level to provide a foundation for integration, and that people are suboptimal for reasons other than capacity limitations. Instead, an inside-out approach is forwarded in which all three levels of analysis are integrated via the algorithmic level. This approach maximally leverages mutual data constraints at all levels. For example, algorithmic models can be used to interpret brain imaging data, and brain imaging data can be used to select among competing models. Examples of this approach to integration are provided. This merging of levels raises questions about the relevance of Marr's tripartite view. Copyright © 2015 Cognitive Science Society, Inc.
International Nuclear Information System (INIS)
Potter, J.M.
1985-01-01
The mathematical background for a multiport-network-solving program is described. A method for accurately numerically modeling an arbitrary, continuous, multiport transmission line is discussed. A modification to the transmission-line equations to accommodate multiple rf drives is presented. An improved model for the radio-frequency quadrupole (RFQ) accelerator that corrects previous errors is given. This model permits treating the RFQ as a true eight-port network for simplicity in interpreting the field distribution and ensures that all modes propagate at the same velocity in the high-frequency limit. The flexibility of the multiport model is illustrated by simple modifications to otherwise two-dimensional systems that permit modeling them as linear chains of multiport networks
Computer Based Modelling and Simulation
Indian Academy of Sciences (India)
GENERAL I ARTICLE. Computer Based ... universities, and later did system analysis, ... sonal computers (PC) and low cost software packages and tools. They can serve as useful learning experience through student projects. Models are .... Let us consider a numerical example: to calculate the velocity of a trainer aircraft ...
Computational Modeling of Space Physiology
Lewandowski, Beth E.; Griffin, Devon W.
2016-01-01
The Digital Astronaut Project (DAP), within NASAs Human Research Program, develops and implements computational modeling for use in the mitigation of human health and performance risks associated with long duration spaceflight. Over the past decade, DAP developed models to provide insights into space flight related changes to the central nervous system, cardiovascular system and the musculoskeletal system. Examples of the models and their applications include biomechanical models applied to advanced exercise device development, bone fracture risk quantification for mission planning, accident investigation, bone health standards development, and occupant protection. The International Space Station (ISS), in its role as a testing ground for long duration spaceflight, has been an important platform for obtaining human spaceflight data. DAP has used preflight, in-flight and post-flight data from short and long duration astronauts for computational model development and validation. Examples include preflight and post-flight bone mineral density data, muscle cross-sectional area, and muscle strength measurements. Results from computational modeling supplement space physiology research by informing experimental design. Using these computational models, DAP personnel can easily identify both important factors associated with a phenomenon and areas where data are lacking. This presentation will provide examples of DAP computational models, the data used in model development and validation, and applications of the model.
Computational modelling in fluid mechanics
International Nuclear Information System (INIS)
Hauguel, A.
1985-01-01
The modelling of the greatest part of environmental or industrial flow problems gives very similar types of equations. The considerable increase in computing capacity over the last ten years consequently allowed numerical models of growing complexity to be processed. The varied group of computer codes presented are now a complementary tool of experimental facilities to achieve studies in the field of fluid mechanics. Several codes applied in the nuclear field (reactors, cooling towers, exchangers, plumes...) are presented among others [fr
Radiation levels from computer monitor screens within Benue State ...
African Journals Online (AJOL)
Investigation of possible presence of soft X-ray levels from Computer Screens at distances of 0.5m and 1.0m was carried out within Benue State University, Makurdi, using ten different monitor models. Radiation measurement was carried out using a portable digital radiation meter, INSPECTOR 06250 (SE international Inc.
Chaos Modelling with Computers
Indian Academy of Sciences (India)
Chaos is one of the major scientific discoveries of our times. In fact many scientists ... But there are other natural phenomena that are not predictable though ... characteristics of chaos. ... The position and velocity are all that are needed to determine the motion of a .... a system of equations that modelled the earth's weather ...
Patient-Specific Computational Modeling
Peña, Estefanía
2012-01-01
This book addresses patient-specific modeling. It integrates computational modeling, experimental procedures, imagine clinical segmentation and mesh generation with the finite element method (FEM) to solve problems in computational biomedicine and bioengineering. Specific areas of interest include cardiovascular problems, ocular and muscular systems and soft tissue modeling. Patient-specific modeling has been the subject of serious research over the last seven years and interest in the area is continually growing and this area is expected to further develop in the near future.
Computer model for ductile fracture
International Nuclear Information System (INIS)
Moran, B.; Reaugh, J. E.
1979-01-01
A computer model is described for predicting ductile fracture initiation and propagation. The computer fracture model is calibrated by simple and notched round-bar tension tests and a precracked compact tension test. The model is used to predict fracture initiation and propagation in a Charpy specimen and compare the results with experiments. The calibrated model provides a correlation between Charpy V-notch (CVN) fracture energy and any measure of fracture toughness, such as J/sub Ic/. A second simpler empirical correlation was obtained using the energy to initiate fracture in the Charpy specimen rather than total energy CVN, and compared the results with the empirical correlation of Rolfe and Novak
Trust Models in Ubiquitous Computing
DEFF Research Database (Denmark)
Nielsen, Mogens; Krukow, Karl; Sassone, Vladimiro
2008-01-01
We recapture some of the arguments for trust-based technologies in ubiquitous computing, followed by a brief survey of some of the models of trust that have been introduced in this respect. Based on this, we argue for the need of more formal and foundational trust models.......We recapture some of the arguments for trust-based technologies in ubiquitous computing, followed by a brief survey of some of the models of trust that have been introduced in this respect. Based on this, we argue for the need of more formal and foundational trust models....
Introducing Seismic Tomography with Computational Modeling
Neves, R.; Neves, M. L.; Teodoro, V.
2011-12-01
Learning seismic tomography principles and techniques involves advanced physical and computational knowledge. In depth learning of such computational skills is a difficult cognitive process that requires a strong background in physics, mathematics and computer programming. The corresponding learning environments and pedagogic methodologies should then involve sets of computational modelling activities with computer software systems which allow students the possibility to improve their mathematical or programming knowledge and simultaneously focus on the learning of seismic wave propagation and inverse theory. To reduce the level of cognitive opacity associated with mathematical or programming knowledge, several computer modelling systems have already been developed (Neves & Teodoro, 2010). Among such systems, Modellus is particularly well suited to achieve this goal because it is a domain general environment for explorative and expressive modelling with the following main advantages: 1) an easy and intuitive creation of mathematical models using just standard mathematical notation; 2) the simultaneous exploration of images, tables, graphs and object animations; 3) the attribution of mathematical properties expressed in the models to animated objects; and finally 4) the computation and display of mathematical quantities obtained from the analysis of images and graphs. Here we describe virtual simulations and educational exercises which enable students an easy grasp of the fundamental of seismic tomography. The simulations make the lecture more interactive and allow students the possibility to overcome their lack of advanced mathematical or programming knowledge and focus on the learning of seismological concepts and processes taking advantage of basic scientific computation methods and tools.
Confidence Level Computation for Combining Searches with Small Statistics
Junk, Thomas
1999-01-01
This article describes an efficient procedure for computing approximate confidence levels for searches for new particles where the expected signal and background levels are small enough to require the use of Poisson statistics. The results of many independent searches for the same particle may be combined easily, regardless of the discriminating variables which may be measured for the candidate events. The effects of systematic uncertainty in the signal and background models are incorporated ...
Trust models in ubiquitous computing.
Krukow, Karl; Nielsen, Mogens; Sassone, Vladimiro
2008-10-28
We recapture some of the arguments for trust-based technologies in ubiquitous computing, followed by a brief survey of some of the models of trust that have been introduced in this respect. Based on this, we argue for the need of more formal and foundational trust models.
Ch. 33 Modeling: Computational Thermodynamics
International Nuclear Information System (INIS)
Besmann, Theodore M.
2012-01-01
This chapter considers methods and techniques for computational modeling for nuclear materials with a focus on fuels. The basic concepts for chemical thermodynamics are described and various current models for complex crystalline and liquid phases are illustrated. Also included are descriptions of available databases for use in chemical thermodynamic studies and commercial codes for performing complex equilibrium calculations.
Computer Based Modelling and Simulation
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 3. Computer Based Modelling and Simulation - Modelling Deterministic Systems. N K Srinivasan. General Article Volume 6 Issue 3 March 2001 pp 46-54. Fulltext. Click here to view fulltext PDF. Permanent link:
Computer Modelling of Dynamic Processes
Directory of Open Access Journals (Sweden)
B. Rybakin
2000-10-01
Full Text Available Results of numerical modeling of dynamic problems are summed in the article up. These problems are characteristic for various areas of human activity, in particular for problem solving in ecology. The following problems are considered in the present work: computer modeling of dynamic effects on elastic-plastic bodies, calculation and determination of performances of gas streams in gas cleaning equipment, modeling of biogas formation processes.
Computational models of complex systems
Dabbaghian, Vahid
2014-01-01
Computational and mathematical models provide us with the opportunities to investigate the complexities of real world problems. They allow us to apply our best analytical methods to define problems in a clearly mathematical manner and exhaustively test our solutions before committing expensive resources. This is made possible by assuming parameter(s) in a bounded environment, allowing for controllable experimentation, not always possible in live scenarios. For example, simulation of computational models allows the testing of theories in a manner that is both fundamentally deductive and experimental in nature. The main ingredients for such research ideas come from multiple disciplines and the importance of interdisciplinary research is well recognized by the scientific community. This book provides a window to the novel endeavours of the research communities to present their works by highlighting the value of computational modelling as a research tool when investigating complex systems. We hope that the reader...
Climate Modeling Computing Needs Assessment
Petraska, K. E.; McCabe, J. D.
2011-12-01
This paper discusses early findings of an assessment of computing needs for NASA science, engineering and flight communities. The purpose of this assessment is to document a comprehensive set of computing needs that will allow us to better evaluate whether our computing assets are adequately structured to meet evolving demand. The early results are interesting, already pointing out improvements we can make today to get more out of the computing capacity we have, as well as potential game changing innovations for the future in how we apply information technology to science computing. Our objective is to learn how to leverage our resources in the best way possible to do more science for less money. Our approach in this assessment is threefold: Development of use case studies for science workflows; Creating a taxonomy and structure for describing science computing requirements; and characterizing agency computing, analysis, and visualization resources. As projects evolve, science data sets increase in a number of ways: in size, scope, timelines, complexity, and fidelity. Generating, processing, moving, and analyzing these data sets places distinct and discernable requirements on underlying computing, analysis, storage, and visualization systems. The initial focus group for this assessment is the Earth Science modeling community within NASA's Science Mission Directorate (SMD). As the assessment evolves, this focus will expand to other science communities across the agency. We will discuss our use cases, our framework for requirements and our characterizations, as well as our interview process, what we learned and how we plan to improve our materials after using them in the first round of interviews in the Earth Science Modeling community. We will describe our plans for how to expand this assessment, first into the Earth Science data analysis and remote sensing communities, and then throughout the full community of science, engineering and flight at NASA.
Computer Profiling Based Model for Investigation
Neeraj Choudhary; Nikhil Kumar Singh; Parmalik Singh
2011-01-01
Computer profiling is used for computer forensic analysis, and proposes and elaborates on a novel model for use in computer profiling, the computer profiling object model. The computer profiling object model is an information model which models a computer as objects with various attributes and inter-relationships. These together provide the information necessary for a human investigator or an automated reasoning engine to make judgments as to the probable usage and evidentiary value of a comp...
Getting computer models to communicate
International Nuclear Information System (INIS)
Caremoli, Ch.; Erhard, P.
1999-01-01
Today's computers have the processing power to deliver detailed and global simulations of complex industrial processes such as the operation of a nuclear reactor core. So should we be producing new, global numerical models to take full advantage of this new-found power? If so, it would be a long-term job. There is, however, another solution; to couple the existing validated numerical models together so that they work as one. (authors)
Computational Modeling in Liver Surgery
Directory of Open Access Journals (Sweden)
Bruno Christ
2017-11-01
Full Text Available The need for extended liver resection is increasing due to the growing incidence of liver tumors in aging societies. Individualized surgical planning is the key for identifying the optimal resection strategy and to minimize the risk of postoperative liver failure and tumor recurrence. Current computational tools provide virtual planning of liver resection by taking into account the spatial relationship between the tumor and the hepatic vascular trees, as well as the size of the future liver remnant. However, size and function of the liver are not necessarily equivalent. Hence, determining the future liver volume might misestimate the future liver function, especially in cases of hepatic comorbidities such as hepatic steatosis. A systems medicine approach could be applied, including biological, medical, and surgical aspects, by integrating all available anatomical and functional information of the individual patient. Such an approach holds promise for better prediction of postoperative liver function and hence improved risk assessment. This review provides an overview of mathematical models related to the liver and its function and explores their potential relevance for computational liver surgery. We first summarize key facts of hepatic anatomy, physiology, and pathology relevant for hepatic surgery, followed by a description of the computational tools currently used in liver surgical planning. Then we present selected state-of-the-art computational liver models potentially useful to support liver surgery. Finally, we discuss the main challenges that will need to be addressed when developing advanced computational planning tools in the context of liver surgery.
Logic as Marr's Computational Level: Four Case Studies.
Baggio, Giosuè; van Lambalgen, Michiel; Hagoort, Peter
2015-04-01
We sketch four applications of Marr's levels-of-analysis methodology to the relations between logic and experimental data in the cognitive neuroscience of language and reasoning. The first part of the paper illustrates the explanatory power of computational level theories based on logic. We show that a Bayesian treatment of the suppression task in reasoning with conditionals is ruled out by EEG data, supporting instead an analysis based on defeasible logic. Further, we describe how results from an EEG study on temporal prepositions can be reanalyzed using formal semantics, addressing a potential confound. The second part of the article demonstrates the predictive power of logical theories drawing on EEG data on processing progressive constructions and on behavioral data on conditional reasoning in people with autism. Logical theories can constrain processing hypotheses all the way down to neurophysiology, and conversely neuroscience data can guide the selection of alternative computational level models of cognition. Copyright © 2014 Cognitive Science Society, Inc.
Parallel computing in enterprise modeling.
Energy Technology Data Exchange (ETDEWEB)
Goldsby, Michael E.; Armstrong, Robert C.; Shneider, Max S.; Vanderveen, Keith; Ray, Jaideep; Heath, Zach; Allan, Benjamin A.
2008-08-01
This report presents the results of our efforts to apply high-performance computing to entity-based simulations with a multi-use plugin for parallel computing. We use the term 'Entity-based simulation' to describe a class of simulation which includes both discrete event simulation and agent based simulation. What simulations of this class share, and what differs from more traditional models, is that the result sought is emergent from a large number of contributing entities. Logistic, economic and social simulations are members of this class where things or people are organized or self-organize to produce a solution. Entity-based problems never have an a priori ergodic principle that will greatly simplify calculations. Because the results of entity-based simulations can only be realized at scale, scalable computing is de rigueur for large problems. Having said that, the absence of a spatial organizing principal makes the decomposition of the problem onto processors problematic. In addition, practitioners in this domain commonly use the Java programming language which presents its own problems in a high-performance setting. The plugin we have developed, called the Parallel Particle Data Model, overcomes both of these obstacles and is now being used by two Sandia frameworks: the Decision Analysis Center, and the Seldon social simulation facility. While the ability to engage U.S.-sized problems is now available to the Decision Analysis Center, this plugin is central to the success of Seldon. Because Seldon relies on computationally intensive cognitive sub-models, this work is necessary to achieve the scale necessary for realistic results. With the recent upheavals in the financial markets, and the inscrutability of terrorist activity, this simulation domain will likely need a capability with ever greater fidelity. High-performance computing will play an important part in enabling that greater fidelity.
Cosmic logic: a computational model
International Nuclear Information System (INIS)
Vanchurin, Vitaly
2016-01-01
We initiate a formal study of logical inferences in context of the measure problem in cosmology or what we call cosmic logic. We describe a simple computational model of cosmic logic suitable for analysis of, for example, discretized cosmological systems. The construction is based on a particular model of computation, developed by Alan Turing, with cosmic observers (CO), cosmic measures (CM) and cosmic symmetries (CS) described by Turing machines. CO machines always start with a blank tape and CM machines take CO's Turing number (also known as description number or Gödel number) as input and output the corresponding probability. Similarly, CS machines take CO's Turing number as input, but output either one if the CO machines are in the same equivalence class or zero otherwise. We argue that CS machines are more fundamental than CM machines and, thus, should be used as building blocks in constructing CM machines. We prove the non-computability of a CS machine which discriminates between two classes of CO machines: mortal that halts in finite time and immortal that runs forever. In context of eternal inflation this result implies that it is impossible to construct CM machines to compute probabilities on the set of all CO machines using cut-off prescriptions. The cut-off measures can still be used if the set is reduced to include only machines which halt after a finite and predetermined number of steps
Algebraic computability and enumeration models recursion theory and descriptive complexity
Nourani, Cyrus F
2016-01-01
This book, Algebraic Computability and Enumeration Models: Recursion Theory and Descriptive Complexity, presents new techniques with functorial models to address important areas on pure mathematics and computability theory from the algebraic viewpoint. The reader is first introduced to categories and functorial models, with Kleene algebra examples for languages. Functorial models for Peano arithmetic are described toward important computational complexity areas on a Hilbert program, leading to computability with initial models. Infinite language categories are also introduced to explain descriptive complexity with recursive computability with admissible sets and urelements. Algebraic and categorical realizability is staged on several levels, addressing new computability questions with omitting types realizably. Further applications to computing with ultrafilters on sets and Turing degree computability are examined. Functorial models computability is presented with algebraic trees realizing intuitionistic type...
Minimal models of multidimensional computations.
Directory of Open Access Journals (Sweden)
Jeffrey D Fitzgerald
2011-03-01
Full Text Available The multidimensional computations performed by many biological systems are often characterized with limited information about the correlations between inputs and outputs. Given this limitation, our approach is to construct the maximum noise entropy response function of the system, leading to a closed-form and minimally biased model consistent with a given set of constraints on the input/output moments; the result is equivalent to conditional random field models from machine learning. For systems with binary outputs, such as neurons encoding sensory stimuli, the maximum noise entropy models are logistic functions whose arguments depend on the constraints. A constraint on the average output turns the binary maximum noise entropy models into minimum mutual information models, allowing for the calculation of the information content of the constraints and an information theoretic characterization of the system's computations. We use this approach to analyze the nonlinear input/output functions in macaque retina and thalamus; although these systems have been previously shown to be responsive to two input dimensions, the functional form of the response function in this reduced space had not been unambiguously identified. A second order model based on the logistic function is found to be both necessary and sufficient to accurately describe the neural responses to naturalistic stimuli, accounting for an average of 93% of the mutual information with a small number of parameters. Thus, despite the fact that the stimulus is highly non-Gaussian, the vast majority of the information in the neural responses is related to first and second order correlations. Our results suggest a principled and unbiased way to model multidimensional computations and determine the statistics of the inputs that are being encoded in the outputs.
Computational Models of Rock Failure
May, Dave A.; Spiegelman, Marc
2017-04-01
Practitioners in computational geodynamics, as per many other branches of applied science, typically do not analyse the underlying PDE's being solved in order to establish the existence or uniqueness of solutions. Rather, such proofs are left to the mathematicians, and all too frequently these results lag far behind (in time) the applied research being conducted, are often unintelligible to the non-specialist, are buried in journals applied scientists simply do not read, or simply have not been proven. As practitioners, we are by definition pragmatic. Thus, rather than first analysing our PDE's, we first attempt to find approximate solutions by throwing all our computational methods and machinery at the given problem and hoping for the best. Typically this approach leads to a satisfactory outcome. Usually it is only if the numerical solutions "look odd" that we start delving deeper into the math. In this presentation I summarise our findings in relation to using pressure dependent (Drucker-Prager type) flow laws in a simplified model of continental extension in which the material is assumed to be an incompressible, highly viscous fluid. Such assumptions represent the current mainstream adopted in computational studies of mantle and lithosphere deformation within our community. In short, we conclude that for the parameter range of cohesion and friction angle relevant to studying rocks, the incompressibility constraint combined with a Drucker-Prager flow law can result in problems which have no solution. This is proven by a 1D analytic model and convincingly demonstrated by 2D numerical simulations. To date, we do not have a robust "fix" for this fundamental problem. The intent of this submission is to highlight the importance of simple analytic models, highlight some of the dangers / risks of interpreting numerical solutions without understanding the properties of the PDE we solved, and lastly to stimulate discussions to develop an improved computational model of
Griffiths, Thomas L; Lieder, Falk; Goodman, Noah D
2015-04-01
Marr's levels of analysis-computational, algorithmic, and implementation-have served cognitive science well over the last 30 years. But the recent increase in the popularity of the computational level raises a new challenge: How do we begin to relate models at different levels of analysis? We propose that it is possible to define levels of analysis that lie between the computational and the algorithmic, providing a way to build a bridge between computational- and algorithmic-level models. The key idea is to push the notion of rationality, often used in defining computational-level models, deeper toward the algorithmic level. We offer a simple recipe for reverse-engineering the mind's cognitive strategies by deriving optimal algorithms for a series of increasingly more realistic abstract computational architectures, which we call "resource-rational analysis." Copyright © 2015 Cognitive Science Society, Inc.
Factors Influencing Exemplary Science Teachers' Levels of Computer Use
Hakverdi, Meral; Dana, Thomas M.; Swain, Colleen
2011-01-01
The purpose of this study was to examine exemplary science teachers' use of technology in science instruction, factors influencing their level of computer use, their level of knowledge/skills in using specific computer applications for science instruction, their use of computer-related applications/tools during their instruction, and their…
Integrating interactive computational modeling in biology curricula.
Directory of Open Access Journals (Sweden)
Tomáš Helikar
2015-03-01
Full Text Available While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology class was developed to enable students to learn biology by "building and breaking it" via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the "Vision and Change" call to action in undergraduate biology education by providing a hands-on approach to biology.
Integrating interactive computational modeling in biology curricula.
Helikar, Tomáš; Cutucache, Christine E; Dahlquist, Lauren M; Herek, Tyler A; Larson, Joshua J; Rogers, Jim A
2015-03-01
While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology) class was developed to enable students to learn biology by "building and breaking it" via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the "Vision and Change" call to action in undergraduate biology education by providing a hands-on approach to biology.
Business model elements impacting cloud computing adoption
DEFF Research Database (Denmark)
Bogataj, Kristina; Pucihar, Andreja; Sudzina, Frantisek
The paper presents a proposed research framework for identification of business model elements impacting Cloud Computing Adoption. We provide a definition of main Cloud Computing characteristics, discuss previous findings on factors impacting Cloud Computing Adoption, and investigate technology a...
Computational Modeling in Tissue Engineering
2013-01-01
One of the major challenges in tissue engineering is the translation of biological knowledge on complex cell and tissue behavior into a predictive and robust engineering process. Mastering this complexity is an essential step towards clinical applications of tissue engineering. This volume discusses computational modeling tools that allow studying the biological complexity in a more quantitative way. More specifically, computational tools can help in: (i) quantifying and optimizing the tissue engineering product, e.g. by adapting scaffold design to optimize micro-environmental signals or by adapting selection criteria to improve homogeneity of the selected cell population; (ii) quantifying and optimizing the tissue engineering process, e.g. by adapting bioreactor design to improve quality and quantity of the final product; and (iii) assessing the influence of the in vivo environment on the behavior of the tissue engineering product, e.g. by investigating vascular ingrowth. The book presents examples of each...
McIntosh, Robert L; Iskra, Steve; Anderson, Vitas
2014-05-01
Using numerical modeling, a worst-case scenario is considered when a person with a metallic implant is exposed to a radiofrequency (RF) electromagnetic field (EMF). An adult male standing on a conductive ground plane was exposed to a 40 MHz vertically polarized plane wave field, close to whole-body resonance where maximal induced current flows are expected in the legs. A metal plate (50-300 mm long) was attached to the tibia in the left leg. The findings from this study re-emphasize the need to ensure compliance with limb current reference levels for exposures near whole-body resonance, and not just rely on compliance with ambient electric (E) and magnetic (H) field reference levels. Moreover, we emphasize this recommendation for someone with a tibial plate, as failure to comply may result in significant tissue damage (increases in the localized temperature of 5-10 °C were suggested by the modeling for an incident E-field of 61.4 V/m root mean square (rms)). It was determined that the occupational reference level for limb current (100 mA rms), as stipulated in the 1998 guidelines of the International Commission on Non-Ionizing Radiation Protection (ICNIRP), is satisfied if the plane wave incident E-field levels are no more than 29.8 V/m rms without an implant and 23.4 V/m rms for the model with a 300 mm implant. © 2014 Wiley Periodicals, Inc.
Mayer, Luciano; Gomes, Fernando Vacilotto; de Oliveira, Marília Gerhardt; de Moraes, João Feliz Duarte; Carlsson, Lennart
2016-12-01
The purpose of the present study is to evaluate the effects of low-level laser therapy on the osseointegration process by comparing resonance frequency analysis measurements performed at implant placement and after 30 days and micro-computed tomography images in irradiated vs nonirradiated rabbits. Fourteen male New Zealand rabbits were randomly divided into two groups of seven animals each, one control group (nonirradiated animals) and one experimental group that received low-level laser therapy (Thera Lase®, aluminum-gallium-arsenide laser diode, 10 J per spot, two spots per session, seven sessions, 830 nm, 50 mW, CW, Ø 0.0028 cm 2 ). The mandibular left incisor was surgically extracted in all animals, and one osseointegrated implant was placed immediately afterward (3.25ø × 11.5 mm; NanoTite, BIOMET 3i). Resonance frequency analysis was performed with the Osstell® device at implant placement and at 30 days (immediately before euthanasia). Micro-computed tomography analyses were then conducted using a high-resolution scanner (SkyScan 1172 X-ray Micro-CT) to evaluate the amount of newly formed bone around the implants. Irradiated animals showed significantly higher implant stability quotients at 30 days (64.286 ± 1.596; 95 % confidence interval (CI) 60.808-67.764) than controls (56.357 ± 1.596; 95 %CI 52.879-59.835) (P = .000). The percentage of newly formed bone around the implants was also significantly higher in irradiated animals (75.523 ± 8.510; 95 %CI 61.893-89.155) than in controls (55.012 ± 19.840; 95 %CI 41.380-68.643) (P = .027). Laser therapy, based on the irradiation protocol used in this study, was able to provide greater implant stability and increase the volume of peri-implant newly formed bone, indicating that laser irradiation effected an improvement in the osseointegration process.
Opportunity for Realizing Ideal Computing System using Cloud Computing Model
Sreeramana Aithal; Vaikunth Pai T
2017-01-01
An ideal computing system is a computing system with ideal characteristics. The major components and their performance characteristics of such hypothetical system can be studied as a model with predicted input, output, system and environmental characteristics using the identified objectives of computing which can be used in any platform, any type of computing system, and for application automation, without making modifications in the form of structure, hardware, and software coding by an exte...
Computational Modeling of Biological Systems From Molecules to Pathways
2012-01-01
Computational modeling is emerging as a powerful new approach for studying and manipulating biological systems. Many diverse methods have been developed to model, visualize, and rationally alter these systems at various length scales, from atomic resolution to the level of cellular pathways. Processes taking place at larger time and length scales, such as molecular evolution, have also greatly benefited from new breeds of computational approaches. Computational Modeling of Biological Systems: From Molecules to Pathways provides an overview of established computational methods for the modeling of biologically and medically relevant systems. It is suitable for researchers and professionals working in the fields of biophysics, computational biology, systems biology, and molecular medicine.
QSPIN: A High Level Java API for Quantum Computing Experimentation
Barth, Tim
2017-01-01
QSPIN is a high level Java language API for experimentation in QC models used in the calculation of Ising spin glass ground states and related quadratic unconstrained binary optimization (QUBO) problems. The Java API is intended to facilitate research in advanced QC algorithms such as hybrid quantum-classical solvers, automatic selection of constraint and optimization parameters, and techniques for the correction and mitigation of model and solution errors. QSPIN includes high level solver objects tailored to the D-Wave quantum annealing architecture that implement hybrid quantum-classical algorithms [Booth et al.] for solving large problems on small quantum devices, elimination of variables via roof duality, and classical computing optimization methods such as GPU accelerated simulated annealing and tabu search for comparison. A test suite of documented NP-complete applications ranging from graph coloring, covering, and partitioning to integer programming and scheduling are provided to demonstrate current capabilities.
International Conference on Computational Intelligence, Cyber Security, and Computational Models
Ramasamy, Vijayalakshmi; Sheen, Shina; Veeramani, C; Bonato, Anthony; Batten, Lynn
2016-01-01
This book aims at promoting high-quality research by researchers and practitioners from academia and industry at the International Conference on Computational Intelligence, Cyber Security, and Computational Models ICC3 2015 organized by PSG College of Technology, Coimbatore, India during December 17 – 19, 2015. This book enriches with innovations in broad areas of research like computational modeling, computational intelligence and cyber security. These emerging inter disciplinary research areas have helped to solve multifaceted problems and gained lot of attention in recent years. This encompasses theory and applications, to provide design, analysis and modeling of the aforementioned key areas.
Computer modeling of liquid crystals
International Nuclear Information System (INIS)
Al-Barwani, M.S.
1999-01-01
In this thesis, we investigate several aspects of the behaviour of liquid crystal molecules near interfaces using computer simulation. We briefly discuss experiment, theoretical and computer simulation studies of some of the liquid crystal interfaces. We then describe three essentially independent research topics. The first of these concerns extensive simulations of a liquid crystal formed by long flexible molecules. We examined the bulk behaviour of the model and its structure. Studies of a film of smectic liquid crystal surrounded by vapour were also carried out. Extensive simulations were also done for a long-molecule/short-molecule mixture, studies were then carried out to investigate the liquid-vapour interface of the mixture. Next, we report the results of large scale simulations of soft-spherocylinders of two different lengths. We examined the bulk coexistence of the nematic and isotropic phases of the model. Once the bulk coexistence behaviour was known, properties of the nematic-isotropic interface were investigated. This was done by fitting order parameter and density profiles to appropriate mathematical functions and calculating the biaxial order parameter. We briefly discuss the ordering at the interfaces and make attempts to calculate the surface tension. Finally, in our third project, we study the effects of different surface topographies on creating bistable nematic liquid crystal devices. This was carried out using a model based on the discretisation of the free energy on a lattice. We use simulation to find the lowest energy states and investigate if they are degenerate in energy. We also test our model by studying the Frederiks transition and comparing with analytical and other simulation results. (author)
Computational social dynamic modeling of group recruitment.
Energy Technology Data Exchange (ETDEWEB)
Berry, Nina M.; Lee, Marinna; Pickett, Marc; Turnley, Jessica Glicken (Sandia National Laboratories, Albuquerque, NM); Smrcka, Julianne D. (Sandia National Laboratories, Albuquerque, NM); Ko, Teresa H.; Moy, Timothy David (Sandia National Laboratories, Albuquerque, NM); Wu, Benjamin C.
2004-01-01
The Seldon software toolkit combines concepts from agent-based modeling and social science to create a computationally social dynamic model for group recruitment. The underlying recruitment model is based on a unique three-level hybrid agent-based architecture that contains simple agents (level one), abstract agents (level two), and cognitive agents (level three). This uniqueness of this architecture begins with abstract agents that permit the model to include social concepts (gang) or institutional concepts (school) into a typical software simulation environment. The future addition of cognitive agents to the recruitment model will provide a unique entity that does not exist in any agent-based modeling toolkits to date. We use social networks to provide an integrated mesh within and between the different levels. This Java based toolkit is used to analyze different social concepts based on initialization input from the user. The input alters a set of parameters used to influence the values associated with the simple agents, abstract agents, and the interactions (simple agent-simple agent or simple agent-abstract agent) between these entities. The results of phase-1 Seldon toolkit provide insight into how certain social concepts apply to different scenario development for inner city gang recruitment.
Improvement of level-1 PSA computer code package
Energy Technology Data Exchange (ETDEWEB)
Kim, Tae Woon; Park, C. K.; Kim, K. Y.; Han, S. H.; Jung, W. D.; Chang, S. C.; Yang, J. E.; Sung, T. Y.; Kang, D. I.; Park, J. H.; Lee, Y. H.; Kim, S. H.; Hwang, M. J.; Choi, S. Y.
1997-07-01
This year the fifth (final) year of the phase-I of the Government-sponsored Mid- and Long-term Nuclear Power Technology Development Project. The scope of this subproject titled on `The improvement of level-1 PSA Computer Codes` is divided into two main activities : (1) improvement of level-1 PSA methodology, (2) development of applications methodology of PSA techniques to operations and maintenance of nuclear power plant. Level-1 PSA code KIRAP is converted to PC-Windows environment. For the improvement of efficiency in performing PSA, the fast cutset generation algorithm and an analytical technique for handling logical loop in fault tree modeling are developed. Using about 30 foreign generic data sources, generic component reliability database (GDB) are developed considering dependency among source data. A computer program which handles dependency among data sources are also developed based on three stage bayesian updating technique. Common cause failure (CCF) analysis methods are reviewed and CCF database are established. Impact vectors can be estimated from this CCF database. A computer code, called MPRIDP, which handles CCF database are also developed. A CCF analysis reflecting plant-specific defensive strategy against CCF event is also performed. A risk monitor computer program, called Risk Monster, are being developed for the application to the operation and maintenance of nuclear power plant. The PSA application technique is applied to review the feasibility study of on-line maintenance and to the prioritization of in-service test (IST) of motor-operated valves (MOV). Finally, the root cause analysis (RCA) and reliability-centered maintenance (RCM) technologies are adopted and applied to the improvement of reliability of emergency diesel generators (EDG) of nuclear power plant. To help RCA and RCM analyses, two software programs are developed, which are EPIS and RAM Pro. (author). 129 refs., 20 tabs., 60 figs.
Improvement of level-1 PSA computer code package
International Nuclear Information System (INIS)
Kim, Tae Woon; Park, C. K.; Kim, K. Y.; Han, S. H.; Jung, W. D.; Chang, S. C.; Yang, J. E.; Sung, T. Y.; Kang, D. I.; Park, J. H.; Lee, Y. H.; Kim, S. H.; Hwang, M. J.; Choi, S. Y.
1997-07-01
This year the fifth (final) year of the phase-I of the Government-sponsored Mid- and Long-term Nuclear Power Technology Development Project. The scope of this subproject titled on 'The improvement of level-1 PSA Computer Codes' is divided into two main activities : 1) improvement of level-1 PSA methodology, 2) development of applications methodology of PSA techniques to operations and maintenance of nuclear power plant. Level-1 PSA code KIRAP is converted to PC-Windows environment. For the improvement of efficiency in performing PSA, the fast cutset generation algorithm and an analytical technique for handling logical loop in fault tree modeling are developed. Using about 30 foreign generic data sources, generic component reliability database (GDB) are developed considering dependency among source data. A computer program which handles dependency among data sources are also developed based on three stage bayesian updating technique. Common cause failure (CCF) analysis methods are reviewed and CCF database are established. Impact vectors can be estimated from this CCF database. A computer code, called MPRIDP, which handles CCF database are also developed. A CCF analysis reflecting plant-specific defensive strategy against CCF event is also performed. A risk monitor computer program, called Risk Monster, are being developed for the application to the operation and maintenance of nuclear power plant. The PSA application technique is applied to review the feasibility study of on-line maintenance and to the prioritization of in-service test (IST) of motor-operated valves (MOV). Finally, the root cause analysis (RCA) and reliability-centered maintenance (RCM) technologies are adopted and applied to the improvement of reliability of emergency diesel generators (EDG) of nuclear power plant. To help RCA and RCM analyses, two software programs are developed, which are EPIS and RAM Pro. (author). 129 refs., 20 tabs., 60 figs
Factors influencing exemplary science teachers' levels of computer use
Hakverdi, Meral
This study examines exemplary science teachers' use of technology in science instruction, factors influencing their level of computer use, their level of knowledge/skills in using specific computer applications for science instruction, their use of computer-related applications/tools during their instruction, and their students' use of computer applications/tools in or for their science class. After a relevant review of the literature certain variables were selected for analysis. These variables included personal self-efficacy in teaching with computers, outcome expectancy, pupil-control ideology, level of computer use, age, gender, teaching experience, personal computer use, professional computer use and science teachers' level of knowledge/skills in using specific computer applications for science instruction. The sample for this study includes middle and high school science teachers who received the Presidential Award for Excellence in Science Teaching Award (sponsored by the White House and the National Science Foundation) between the years 1997 and 2003 from all 50 states and U.S. territories. Award-winning science teachers were contacted about the survey via e-mail or letter with an enclosed return envelope. Of the 334 award-winning science teachers, usable responses were received from 92 science teachers, which made a response rate of 27.5%. Analysis of the survey responses indicated that exemplary science teachers have a variety of knowledge/skills in using computer related applications/tools. The most commonly used computer applications/tools are information retrieval via the Internet, presentation tools, online communication, digital cameras, and data collection probes. Results of the study revealed that students' use of technology in their science classroom is highly correlated with the frequency of their science teachers' use of computer applications/tools. The results of the multiple regression analysis revealed that personal self-efficacy related to
Computer models for economic and silvicultural decisions
Rosalie J. Ingram
1989-01-01
Computer systems can help simplify decisionmaking to manage forest ecosystems. We now have computer models to help make forest management decisions by predicting changes associated with a particular management action. Models also help you evaluate alternatives. To be effective, the computer models must be reliable and appropriate for your situation.
Analytical performance modeling for computer systems
Tay, Y C
2013-01-01
This book is an introduction to analytical performance modeling for computer systems, i.e., writing equations to describe their performance behavior. It is accessible to readers who have taken college-level courses in calculus and probability, networking and operating systems. This is not a training manual for becoming an expert performance analyst. Rather, the objective is to help the reader construct simple models for analyzing and understanding the systems that they are interested in.Describing a complicated system abstractly with mathematical equations requires a careful choice of assumpti
24 CFR 990.180 - Utilities expense level: Computation of the rolling base consumption level.
2010-04-01
...: Computation of the rolling base consumption level. 990.180 Section 990.180 Housing and Urban Development... Calculating Formula Expenses § 990.180 Utilities expense level: Computation of the rolling base consumption level. (a) General. (1) The rolling base consumption level (RBCL) shall be equal to the average of...
24 CFR 990.175 - Utilities expense level: Computation of the current consumption level.
2010-04-01
...: Computation of the current consumption level. 990.175 Section 990.175 Housing and Urban Development... Calculating Formula Expenses § 990.175 Utilities expense level: Computation of the current consumption level. The current consumption level shall be the actual amount of each utility consumed during the 12-month...
Modelling, abstraction, and computation in systems biology: A view from computer science.
Melham, Tom
2013-04-01
Systems biology is centrally engaged with computational modelling across multiple scales and at many levels of abstraction. Formal modelling, precise and formalised abstraction relationships, and computation also lie at the heart of computer science--and over the past decade a growing number of computer scientists have been bringing their discipline's core intellectual and computational tools to bear on biology in fascinating new ways. This paper explores some of the apparent points of contact between the two fields, in the context of a multi-disciplinary discussion on conceptual foundations of systems biology. Copyright © 2012 Elsevier Ltd. All rights reserved.
Connectionist Models and Parallelism in High Level Vision.
1985-01-01
GRANT NUMBER(s) Jerome A. Feldman N00014-82-K-0193 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENt. PROJECT, TASK Computer Science...Connectionist Models 2.1 Background and Overviev % Computer science is just beginning to look seriously at parallel computation : it may turn out that...the chair. The program includes intermediate level networks that compute more complex joints and ones that compute parallelograms in the image. These
Disciplines, models, and computers: the path to computational quantum chemistry.
Lenhard, Johannes
2014-12-01
Many disciplines and scientific fields have undergone a computational turn in the past several decades. This paper analyzes this sort of turn by investigating the case of computational quantum chemistry. The main claim is that the transformation from quantum to computational quantum chemistry involved changes in three dimensions. First, on the side of instrumentation, small computers and a networked infrastructure took over the lead from centralized mainframe architecture. Second, a new conception of computational modeling became feasible and assumed a crucial role. And third, the field of computa- tional quantum chemistry became organized in a market-like fashion and this market is much bigger than the number of quantum theory experts. These claims will be substantiated by an investigation of the so-called density functional theory (DFT), the arguably pivotal theory in the turn to computational quantum chemistry around 1990.
Computational biomechanics for medicine imaging, modeling and computing
Doyle, Barry; Wittek, Adam; Nielsen, Poul; Miller, Karol
2016-01-01
The Computational Biomechanics for Medicine titles provide an opportunity for specialists in computational biomechanics to present their latest methodologies and advancements. This volume comprises eighteen of the newest approaches and applications of computational biomechanics, from researchers in Australia, New Zealand, USA, UK, Switzerland, Scotland, France and Russia. Some of the interesting topics discussed are: tailored computational models; traumatic brain injury; soft-tissue mechanics; medical image analysis; and clinically-relevant simulations. One of the greatest challenges facing the computational engineering community is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences, and medicine. We hope the research presented within this book series will contribute to overcoming this grand challenge.
Iordache, Octavian
2011-01-01
This book is devoted to modeling of multi-level complex systems, a challenging domain for engineers, researchers and entrepreneurs, confronted with the transition from learning and adaptability to evolvability and autonomy for technologies, devices and problem solving methods. Chapter 1 introduces the multi-scale and multi-level systems and highlights their presence in different domains of science and technology. Methodologies as, random systems, non-Archimedean analysis, category theory and specific techniques as model categorification and integrative closure, are presented in chapter 2. Chapters 3 and 4 describe polystochastic models, PSM, and their developments. Categorical formulation of integrative closure offers the general PSM framework which serves as a flexible guideline for a large variety of multi-level modeling problems. Focusing on chemical engineering, pharmaceutical and environmental case studies, the chapters 5 to 8 analyze mixing, turbulent dispersion and entropy production for multi-scale sy...
Computer modeling of the gyrocon
International Nuclear Information System (INIS)
Tallerico, P.J.; Rankin, J.E.
1979-01-01
A gyrocon computer model is discussed in which the electron beam is followed from the gun output to the collector region. The initial beam may be selected either as a uniform circular beam or may be taken from the output of an electron gun simulated by the program of William Herrmannsfeldt. The fully relativistic equations of motion are then integrated numerically to follow the beam successively through a drift tunnel, a cylindrical rf beam deflection cavity, a combination drift space and magnetic bender region, and an output rf cavity. The parameters for each region are variable input data from a control file. The program calculates power losses in the cavity wall, power required by beam loading, power transferred from the beam to the output cavity fields, and electronic and overall efficiency. Space-charge effects are approximated if selected. Graphical displays of beam motions are produced. We discuss the Los Alamos Scientific Laboratory (LASL) prototype design as an example of code usage. The design shows a gyrocon of about two-thirds megawatt output at 450 MHz with up to 86% overall efficiency
The Fermilab central computing facility architectural model
International Nuclear Information System (INIS)
Nicholls, J.
1989-01-01
The goal of the current Central Computing Upgrade at Fermilab is to create a computing environment that maximizes total productivity, particularly for high energy physics analysis. The Computing Department and the Next Computer Acquisition Committee decided upon a model which includes five components: an interactive front-end, a Large-Scale Scientific Computer (LSSC, a mainframe computing engine), a microprocessor farm system, a file server, and workstations. With the exception of the file server, all segments of this model are currently in production: a VAX/VMS cluster interactive front-end, an Amdahl VM Computing engine, ACP farms, and (primarily) VMS workstations. This paper will discuss the implementation of the Fermilab Central Computing Facility Architectural Model. Implications for Code Management in such a heterogeneous environment, including issues such as modularity and centrality, will be considered. Special emphasis will be placed on connectivity and communications between the front-end, LSSC, and workstations, as practiced at Fermilab. (orig.)
The Fermilab Central Computing Facility architectural model
International Nuclear Information System (INIS)
Nicholls, J.
1989-05-01
The goal of the current Central Computing Upgrade at Fermilab is to create a computing environment that maximizes total productivity, particularly for high energy physics analysis. The Computing Department and the Next Computer Acquisition Committee decided upon a model which includes five components: an interactive front end, a Large-Scale Scientific Computer (LSSC, a mainframe computing engine), a microprocessor farm system, a file server, and workstations. With the exception of the file server, all segments of this model are currently in production: a VAX/VMS Cluster interactive front end, an Amdahl VM computing engine, ACP farms, and (primarily) VMS workstations. This presentation will discuss the implementation of the Fermilab Central Computing Facility Architectural Model. Implications for Code Management in such a heterogeneous environment, including issues such as modularity and centrality, will be considered. Special emphasis will be placed on connectivity and communications between the front-end, LSSC, and workstations, as practiced at Fermilab. 2 figs
Computational Modeling of Large Wildfires: A Roadmap
Coen, Janice L.
2010-08-01
Wildland fire behavior, particularly that of large, uncontrolled wildfires, has not been well understood or predicted. Our methodology to simulate this phenomenon uses high-resolution dynamic models made of numerical weather prediction (NWP) models coupled to fire behavior models to simulate fire behavior. NWP models are capable of modeling very high resolution (< 100 m) atmospheric flows. The wildland fire component is based upon semi-empirical formulas for fireline rate of spread, post-frontal heat release, and a canopy fire. The fire behavior is coupled to the atmospheric model such that low level winds drive the spread of the surface fire, which in turn releases sensible heat, latent heat, and smoke fluxes into the lower atmosphere, feeding back to affect the winds directing the fire. These coupled dynamic models capture the rapid spread downwind, flank runs up canyons, bifurcations of the fire into two heads, and rough agreement in area, shape, and direction of spread at periods for which fire location data is available. Yet, intriguing computational science questions arise in applying such models in a predictive manner, including physical processes that span a vast range of scales, processes such as spotting that cannot be modeled deterministically, estimating the consequences of uncertainty, the efforts to steer simulations with field data ("data assimilation"), lingering issues with short term forecasting of weather that may show skill only on the order of a few hours, and the difficulty of gathering pertinent data for verification and initialization in a dangerous environment. © 2010 IEEE.
ADGEN: ADjoint GENerator for computer models
Energy Technology Data Exchange (ETDEWEB)
Worley, B.A.; Pin, F.G.; Horwedel, J.E.; Oblow, E.M.
1989-05-01
This paper presents the development of a FORTRAN compiler and an associated supporting software library called ADGEN. ADGEN reads FORTRAN models as input and produces and enhanced version of the input model. The enhanced version reproduces the original model calculations but also has the capability to calculate derivatives of model results of interest with respect to any and all of the model data and input parameters. The method for calculating the derivatives and sensitivities is the adjoint method. Partial derivatives are calculated analytically using computer calculus and saved as elements of an adjoint matrix on direct assess storage. The total derivatives are calculated by solving an appropriate adjoint equation. ADGEN is applied to a major computer model of interest to the Low-Level Waste Community, the PRESTO-II model. PRESTO-II sample problem results reveal that ADGEN correctly calculates derivatives of response of interest with respect to 300 parameters. The execution time to create the adjoint matrix is a factor of 45 times the execution time of the reference sample problem. Once this matrix is determined, the derivatives with respect to 3000 parameters are calculated in a factor of 6.8 that of the reference model for each response of interest. For a single 3000 for determining these derivatives by parameter perturbations. The automation of the implementation of the adjoint technique for calculating derivatives and sensitivities eliminates the costly and manpower-intensive task of direct hand-implementation by reprogramming and thus makes the powerful adjoint technique more amenable for use in sensitivity analysis of existing models. 20 refs., 1 fig., 5 tabs.
ADGEN: ADjoint GENerator for computer models
International Nuclear Information System (INIS)
Worley, B.A.; Pin, F.G.; Horwedel, J.E.; Oblow, E.M.
1989-05-01
This paper presents the development of a FORTRAN compiler and an associated supporting software library called ADGEN. ADGEN reads FORTRAN models as input and produces and enhanced version of the input model. The enhanced version reproduces the original model calculations but also has the capability to calculate derivatives of model results of interest with respect to any and all of the model data and input parameters. The method for calculating the derivatives and sensitivities is the adjoint method. Partial derivatives are calculated analytically using computer calculus and saved as elements of an adjoint matrix on direct assess storage. The total derivatives are calculated by solving an appropriate adjoint equation. ADGEN is applied to a major computer model of interest to the Low-Level Waste Community, the PRESTO-II model. PRESTO-II sample problem results reveal that ADGEN correctly calculates derivatives of response of interest with respect to 300 parameters. The execution time to create the adjoint matrix is a factor of 45 times the execution time of the reference sample problem. Once this matrix is determined, the derivatives with respect to 3000 parameters are calculated in a factor of 6.8 that of the reference model for each response of interest. For a single 3000 for determining these derivatives by parameter perturbations. The automation of the implementation of the adjoint technique for calculating derivatives and sensitivities eliminates the costly and manpower-intensive task of direct hand-implementation by reprogramming and thus makes the powerful adjoint technique more amenable for use in sensitivity analysis of existing models. 20 refs., 1 fig., 5 tabs
Quantum vertex model for reversible classical computing.
Chamon, C; Mucciolo, E R; Ruckenstein, A E; Yang, Z-C
2017-05-12
Mappings of classical computation onto statistical mechanics models have led to remarkable successes in addressing some complex computational problems. However, such mappings display thermodynamic phase transitions that may prevent reaching solution even for easy problems known to be solvable in polynomial time. Here we map universal reversible classical computations onto a planar vertex model that exhibits no bulk classical thermodynamic phase transition, independent of the computational circuit. Within our approach the solution of the computation is encoded in the ground state of the vertex model and its complexity is reflected in the dynamics of the relaxation of the system to its ground state. We use thermal annealing with and without 'learning' to explore typical computational problems. We also construct a mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating an approach to reversible classical computation based on state-of-the-art implementations of quantum annealing.
The IceCube Computing Infrastructure Model
CERN. Geneva
2012-01-01
Besides the big LHC experiments a number of mid-size experiments is coming online which need to define new computing models to meet the demands on processing and storage requirements of those experiments. We present the hybrid computing model of IceCube which leverages GRID models with a more flexible direct user model as an example of a possible solution. In IceCube a central datacenter at UW-Madison servers as Tier-0 with a single Tier-1 datacenter at DESY Zeuthen. We describe the setup of the IceCube computing infrastructure and report on our experience in successfully provisioning the IceCube computing needs.
Teaching Concept Mapping and University Level Study Strategies Using Computers.
Mikulecky, Larry; And Others
1989-01-01
Assesses the utility and effectiveness of three interactive computer programs and associated print materials in instructing and modeling for undergraduates how to comprehend and reconceptualize scientific textbook material. Finds that "how to" reading strategies can be taught via computer and transferred to new material. (RS)
Karakis, Hilal; Karamete, Aysen; Okçu, Aydin
2016-01-01
This study examined the effects that computer-assisted instruction had on students' attitudes toward a mathematics lesson and toward learning mathematics with computer-assisted instruction. The computer software we used was based on the ASSURE Instructional Systems Design and the ARCS Model of Motivation, and the software was designed to teach…
Computational nanophotonics modeling and applications
Musa, Sarhan M
2013-01-01
This reference offers tools for engineers, scientists, biologists, and others working with the computational techniques of nanophotonics. It introduces the key concepts of computational methods in a manner that is easily digestible for newcomers to the field. The book also examines future applications of nanophotonics in the technical industry and covers new developments and interdisciplinary research in engineering, science, and medicine. It provides an overview of the key computational nanophotonics and describes the technologies with an emphasis on how they work and their key benefits.
Pervasive Computing and Prosopopoietic Modelling
DEFF Research Database (Denmark)
Michelsen, Anders Ib
2011-01-01
the mid-20th century of a paradoxical distinction/complicity between the technical organisation of computed function and the human Being, in the sense of creative action upon such function. This paradoxical distinction/complicity promotes a chiastic (Merleau-Ponty) relationship of extension of one......This article treats the philosophical underpinnings of the notions of ubiquity and pervasive computing from a historical perspective. The current focus on these notions reflects the ever increasing impact of new media and the underlying complexity of computed function in the broad sense of ICT...... that have spread vertiginiously since Mark Weiser coined the term ‘pervasive’, e.g., digitalised sensoring, monitoring, effectuation, intelligence, and display. Whereas Weiser’s original perspective may seem fulfilled since computing is everywhere, in his and Seely Brown’s (1997) terms, ‘invisible...
Level Design as Model Transformation
Dormans, Joris
2011-01-01
This paper frames the process of designing a level in a game as a series of model transformations. The transformations correspond to the application of particular design principles, such as the use of locks and keys to transform a linear mission into a branching space. It shows that by using rewrite
System level modeling and component level control of fuel cells
Xue, Xingjian
optimal design of tubular SOFC. With the system-level dynamic model as a basis, a framework for the robust, online monitoring of PEM fuel cell is developed in the dissertation. The monitoring scheme employs the Hotelling T2 based statistical scheme to handle the measurement noise and system uncertainties and identifies the fault conditions through a series of self-checking and conformal testing. A statistical sampling strategy is also utilized to improve the computation efficiency. Fuel/gas flow control is the fundamental operation for fuel cell energy systems. In the final part of the dissertation, a high-precision and robust tracking control scheme using piezoelectric actuator circuit with direct hysteresis compensation is developed. The key characteristic of the developed control algorithm includes the nonlinear continuous control action with the adaptive boundary layer strategy.
Climate Ocean Modeling on Parallel Computers
Wang, P.; Cheng, B. N.; Chao, Y.
1998-01-01
Ocean modeling plays an important role in both understanding the current climatic conditions and predicting future climate change. However, modeling the ocean circulation at various spatial and temporal scales is a very challenging computational task.
Computational Intelligence. Mortality Models for the Actuary
Willemse, W.J.
2001-01-01
This thesis applies computational intelligence to the field of actuarial (insurance) science. In particular, this thesis deals with life insurance where mortality modelling is important. Actuaries use ancient models (mortality laws) from the nineteenth century, for example Gompertz' and Makeham's
Modeling Reality: How Computers Mirror Life
International Nuclear Information System (INIS)
Inoue, J-I
2005-01-01
Modeling Reality: How Computers Mirror Life covers a wide range of modern subjects in complex systems, suitable not only for undergraduate students who want to learn about modelling 'reality' by using computer simulations, but also for researchers who want to learn something about subjects outside of their majors and need a simple guide. Readers are not required to have specialized training before they start the book. Each chapter is organized so as to train the reader to grasp the essential idea of simulating phenomena and guide him/her towards more advanced areas. The topics presented in this textbook fall into two categories. The first is at graduate level, namely probability, statistics, information theory, graph theory, and the Turing machine, which are standard topics in the course of information science and information engineering departments. The second addresses more advanced topics, namely cellular automata, deterministic chaos, fractals, game theory, neural networks, and genetic algorithms. Several topics included here (neural networks, game theory, information processing, etc) are now some of the main subjects of statistical mechanics, and many papers related to these interdisciplinary fields are published in Journal of Physics A: Mathematical and General, so readers of this journal will be familiar with the subject areas of this book. However, each area is restricted to an elementary level and if readers wish to know more about the topics they are interested in, they will need more advanced books. For example, on neural networks, the text deals with the back-propagation algorithm for perceptron learning. Nowadays, however, this is a rather old topic, so the reader might well choose, for example, Introduction to the Theory of Neural Computation by J Hertz et al (Perseus books, 1991) or Statistical Physics of Spin Glasses and Information Processing by H Nishimori (Oxford University Press, 2001) for further reading. Nevertheless, this book is worthwhile
Applications of computer modeling to fusion research
International Nuclear Information System (INIS)
Dawson, J.M.
1989-01-01
Progress achieved during this report period is presented on the following topics: Development and application of gyrokinetic particle codes to tokamak transport, development of techniques to take advantage of parallel computers; model dynamo and bootstrap current drive; and in general maintain our broad-based program in basic plasma physics and computer modeling
Large Scale Computations in Air Pollution Modelling
DEFF Research Database (Denmark)
Zlatev, Z.; Brandt, J.; Builtjes, P. J. H.
Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998......Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998...
Inter-level relations in computer science, biology, and psychology
Boogerd, F.; Bruggeman, F.; Jonker, C.M.; Looren de Jong, H.; Tamminga, A.; Treur, J.; Westerhoff, H.V.; Wijngaards, W.C.A.
2002-01-01
Investigations into inter-level relations in computer science, biology and psychology call for an empirical turn in the philosophy of mind. Rather than concentrate on a priori discussions of inter-level relations between 'completed' sciences, a case is made for the actual study of the way
Inter-level relations in computer science, biology and psychology
Boogerd, F.C.; Bruggeman, F.J.; Jonker, C.M.; Looren De Jong, H.; Tamminga, A.M.; Treur, J.; Westerhoff, H.V.; Wijngaards, W.C.A.
2002-01-01
Investigations into inter-level relations in computer science, biology and psychology call for an empirical turn in the philosophy of mind. Rather than concentrate on a priori discussions of inter-level relations between "completed" sciences, a case is made for the actual study of the way
Logic as Marr's computational level: Four case studies
Baggio, G.; Lambalgen, M. van; Hagoort, P.
2015-01-01
We sketch four applications of Marr's levels-of-analysis methodology to the relations between logic and experimental data in the cognitive neuroscience of language and reasoning. The first part of the paper illustrates the explanatory power of computational level theories based on logic. We show
Inter-level relations in computer science, biology, and psychology
Boogerd, Fred; Bruggeman, Frank; Jonker, Catholijn; Looren de Jong, Huib; Tamminga, Allard; Treur, Jan; Westerhoff, Hans; Wijngaards, Wouter
2002-01-01
Investigations into inter-level relations in computer science, biology and psychology call for an *empirical* turn in the philosophy of mind. Rather than concentrate on *a priori* discussions of inter-level relations between “completed” sciences, a case is made for the actual study of the way
Computer Aided Continuous Time Stochastic Process Modelling
DEFF Research Database (Denmark)
Kristensen, N.R.; Madsen, Henrik; Jørgensen, Sten Bay
2001-01-01
A grey-box approach to process modelling that combines deterministic and stochastic modelling is advocated for identification of models for model-based control of batch and semi-batch processes. A computer-aided tool designed for supporting decision-making within the corresponding modelling cycle...
Modeling Techniques for a Computational Efficient Dynamic Turbofan Engine Model
Directory of Open Access Journals (Sweden)
Rory A. Roberts
2014-01-01
Full Text Available A transient two-stream engine model has been developed. Individual component models developed exclusively in MATLAB/Simulink including the fan, high pressure compressor, combustor, high pressure turbine, low pressure turbine, plenum volumes, and exit nozzle have been combined to investigate the behavior of a turbofan two-stream engine. Special attention has been paid to the development of transient capabilities throughout the model, increasing physics model, eliminating algebraic constraints, and reducing simulation time through enabling the use of advanced numerical solvers. The lessening of computation time is paramount for conducting future aircraft system-level design trade studies and optimization. The new engine model is simulated for a fuel perturbation and a specified mission while tracking critical parameters. These results, as well as the simulation times, are presented. The new approach significantly reduces the simulation time.
Computer Based Modelling and Simulation
Indian Academy of Sciences (India)
where x increases from zero to N, the saturation value. Box 1. Matrix Meth- ... such as Laplace transforms and non-linear differential equa- tions with .... atomic bomb project in the. US in the early ... his work on game theory and computers.
Predictive Capability Maturity Model for computational modeling and simulation.
Energy Technology Data Exchange (ETDEWEB)
Oberkampf, William Louis; Trucano, Timothy Guy; Pilch, Martin M.
2007-10-01
The Predictive Capability Maturity Model (PCMM) is a new model that can be used to assess the level of maturity of computational modeling and simulation (M&S) efforts. The development of the model is based on both the authors experience and their analysis of similar investigations in the past. The perspective taken in this report is one of judging the usefulness of a predictive capability that relies on the numerical solution to partial differential equations to better inform and improve decision making. The review of past investigations, such as the Software Engineering Institute's Capability Maturity Model Integration and the National Aeronautics and Space Administration and Department of Defense Technology Readiness Levels, indicates that a more restricted, more interpretable method is needed to assess the maturity of an M&S effort. The PCMM addresses six contributing elements to M&S: (1) representation and geometric fidelity, (2) physics and material model fidelity, (3) code verification, (4) solution verification, (5) model validation, and (6) uncertainty quantification and sensitivity analysis. For each of these elements, attributes are identified that characterize four increasing levels of maturity. Importantly, the PCMM is a structured method for assessing the maturity of an M&S effort that is directed toward an engineering application of interest. The PCMM does not assess whether the M&S effort, the accuracy of the predictions, or the performance of the engineering system satisfies or does not satisfy specified application requirements.
Security in Service Level Agreements for Cloud Computing
Bernsmed, Karin; JAATUN, Martin Gilje; Undheim, Astrid
2011-01-01
The Cloud computing paradigm promises reliable services, accessible from anywhere in the world, in an on-demand manner. Insufficient security has been identified as a major obstacle to adopting Cloud services. To deal with the risks associated with outsourcing data and applications to the Cloud, new methods for security assurance are urgently needed. This paper presents a framework for security in Service Level Agreements for Cloud computing. The purpose is twofold; to help potential Cloud cu...
Computing NLTE Opacities -- Node Level Parallel
Energy Technology Data Exchange (ETDEWEB)
Holladay, Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-09-11
Presentation. The goal: to produce a robust library capable of computing reasonably accurate opacities inline with the assumption of LTE relaxed (non-LTE). Near term: demonstrate acceleration of non-LTE opacity computation. Far term (if funded): connect to application codes with in-line capability and compute opacities. Study science problems. Use efficient algorithms that expose many levels of parallelism and utilize good memory access patterns for use on advanced architectures. Portability to multiple types of hardware including multicore processors, manycore processors such as KNL, GPUs, etc. Easily coupled to radiation hydrodynamics and thermal radiative transfer codes.
Computer-Aided Modelling Methods and Tools
DEFF Research Database (Denmark)
Cameron, Ian; Gani, Rafiqul
2011-01-01
The development of models for a range of applications requires methods and tools. In many cases a reference model is required that allows the generation of application specific models that are fit for purpose. There are a range of computer aided modelling tools available that help to define the m...
A Categorisation of Cloud Computing Business Models
Chang, Victor; Bacigalupo, David; Wills, Gary; De Roure, David
2010-01-01
This paper reviews current cloud computing business models and presents proposals on how organisations can achieve sustainability by adopting appropriate models. We classify cloud computing business models into eight types: (1) Service Provider and Service Orientation; (2) Support and Services Contracts; (3) In-House Private Clouds; (4) All-In-One Enterprise Cloud; (5) One-Stop Resources and Services; (6) Government funding; (7) Venture Capitals; and (8) Entertainment and Social Networking. U...
A computational model of selection by consequences.
McDowell, J J
2004-01-01
Darwinian selection by consequences was instantiated in a computational model that consisted of a repertoire of behaviors undergoing selection, reproduction, and mutation over many generations. The model in effect created a digital organism that emitted behavior continuously. The behavior of this digital organism was studied in three series of computational experiments that arranged reinforcement according to random-interval (RI) schedules. The quantitative features of the model were varied o...
Creation of 'Ukrytie' objects computer model
International Nuclear Information System (INIS)
Mazur, A.B.; Kotlyarov, V.T.; Ermolenko, A.I.; Podbereznyj, S.S.; Postil, S.D.; Shaptala, D.V.
1999-01-01
A partial computer model of the 'Ukrytie' object was created with the use of geoinformation technologies. The computer model makes it possible to carry out information support of the works related to the 'Ukrytie' object stabilization and its conversion into ecologically safe system for analyzing, forecasting and controlling the processes occurring in the 'Ukrytie' object. Elements and structures of the 'Ukryttia' object were designed and input into the model
Computational models in physics teaching: a framework
Directory of Open Access Journals (Sweden)
Marco Antonio Moreira
2012-08-01
Full Text Available The purpose of the present paper is to present a theoretical framework to promote and assist meaningful physics learning through computational models. Our proposal is based on the use of a tool, the AVM diagram, to design educational activities involving modeling and computer simulations. The idea is to provide a starting point for the construction and implementation of didactical approaches grounded in a coherent epistemological view about scientific modeling.
Modelling of data uncertainties on hybrid computers
Energy Technology Data Exchange (ETDEWEB)
Schneider, Anke (ed.)
2016-06-15
The codes d{sup 3}f and r{sup 3}t are well established for modelling density-driven flow and nuclide transport in the far field of repositories for hazardous material in deep geological formations. They are applicable in porous media as well as in fractured rock or mudstone, for modelling salt- and heat transport as well as a free groundwater surface. Development of the basic framework of d{sup 3}f and r{sup 3}t had begun more than 20 years ago. Since that time significant advancements took place in the requirements for safety assessment as well as for computer hardware development. The period of safety assessment for a repository of high-level radioactive waste was extended to 1 million years, and the complexity of the models is steadily growing. Concurrently, the demands on accuracy increase. Additionally, model and parameter uncertainties become more and more important for an increased understanding of prediction reliability. All this leads to a growing demand for computational power that requires a considerable software speed-up. An effective way to achieve this is the use of modern, hybrid computer architectures which requires basically the set-up of new data structures and a corresponding code revision but offers a potential speed-up by several orders of magnitude. The original codes d{sup 3}f and r{sup 3}t were applications of the software platform UG /BAS 94/ whose development had begun in the early nineteennineties. However, UG had recently been advanced to the C++ based, substantially revised version UG4 /VOG 13/. To benefit also in the future from state-of-the-art numerical algorithms and to use hybrid computer architectures, the codes d{sup 3}f and r{sup 3}t were transferred to this new code platform. Making use of the fact that coupling between different sets of equations is natively supported in UG4, d{sup 3}f and r{sup 3}t were combined to one conjoint code d{sup 3}f++. A direct estimation of uncertainties for complex groundwater flow models with the
Uncertainty in biology a computational modeling approach
Gomez-Cabrero, David
2016-01-01
Computational modeling of biomedical processes is gaining more and more weight in the current research into the etiology of biomedical problems and potential treatment strategies. Computational modeling allows to reduce, refine and replace animal experimentation as well as to translate findings obtained in these experiments to the human background. However these biomedical problems are inherently complex with a myriad of influencing factors, which strongly complicates the model building and validation process. This book wants to address four main issues related to the building and validation of computational models of biomedical processes: Modeling establishment under uncertainty Model selection and parameter fitting Sensitivity analysis and model adaptation Model predictions under uncertainty In each of the abovementioned areas, the book discusses a number of key-techniques by means of a general theoretical description followed by one or more practical examples. This book is intended for graduate stude...
Ranked retrieval of Computational Biology models.
Henkel, Ron; Endler, Lukas; Peters, Andre; Le Novère, Nicolas; Waltemath, Dagmar
2010-08-11
The study of biological systems demands computational support. If targeting a biological problem, the reuse of existing computational models can save time and effort. Deciding for potentially suitable models, however, becomes more challenging with the increasing number of computational models available, and even more when considering the models' growing complexity. Firstly, among a set of potential model candidates it is difficult to decide for the model that best suits ones needs. Secondly, it is hard to grasp the nature of an unknown model listed in a search result set, and to judge how well it fits for the particular problem one has in mind. Here we present an improved search approach for computational models of biological processes. It is based on existing retrieval and ranking methods from Information Retrieval. The approach incorporates annotations suggested by MIRIAM, and additional meta-information. It is now part of the search engine of BioModels Database, a standard repository for computational models. The introduced concept and implementation are, to our knowledge, the first application of Information Retrieval techniques on model search in Computational Systems Biology. Using the example of BioModels Database, it was shown that the approach is feasible and extends the current possibilities to search for relevant models. The advantages of our system over existing solutions are that we incorporate a rich set of meta-information, and that we provide the user with a relevance ranking of the models found for a query. Better search capabilities in model databases are expected to have a positive effect on the reuse of existing models.
Multi-level programming paradigm for extreme computing
International Nuclear Information System (INIS)
Petiton, S.; Sato, M.; Emad, N.; Calvin, C.; Tsuji, M.; Dandouna, M.
2013-01-01
In order to propose a framework and programming paradigms for post peta-scale computing, on the road to exa-scale computing and beyond, we introduced new languages, associated with a hierarchical multi-level programming paradigm, allowing scientific end-users and developers to program highly hierarchical architectures designed for extreme computing. In this paper, we explain the interest of such hierarchical multi-level programming paradigm for extreme computing and its well adaptation to several large computational science applications, such as for linear algebra solvers used for reactor core physic. We describe the YML language and framework allowing describing graphs of parallel components, which may be developed using PGAS-like language such as XMP, scheduled and computed on supercomputers. Then, we propose experimentations on supercomputers (such as the 'K' and 'Hooper' ones) of the hybrid method MERAM (Multiple Explicitly Restarted Arnoldi Method) as a case study for iterative methods manipulating sparse matrices, and the block Gauss-Jordan method as a case study for direct method manipulating dense matrices. We conclude proposing evolutions for this programming paradigm. (authors)
Computational challenges in modeling gene regulatory events.
Pataskar, Abhijeet; Tiwari, Vijay K
2016-10-19
Cellular transcriptional programs driven by genetic and epigenetic mechanisms could be better understood by integrating "omics" data and subsequently modeling the gene-regulatory events. Toward this end, computational biology should keep pace with evolving experimental procedures and data availability. This article gives an exemplified account of the current computational challenges in molecular biology.
Notions of similarity for computational biology models
Waltemath, Dagmar
2016-03-21
Computational models used in biology are rapidly increasing in complexity, size, and numbers. To build such large models, researchers need to rely on software tools for model retrieval, model combination, and version control. These tools need to be able to quantify the differences and similarities between computational models. However, depending on the specific application, the notion of similarity may greatly vary. A general notion of model similarity, applicable to various types of models, is still missing. Here, we introduce a general notion of quantitative model similarities, survey the use of existing model comparison methods in model building and management, and discuss potential applications of model comparison. To frame model comparison as a general problem, we describe a theoretical approach to defining and computing similarities based on different model aspects. Potentially relevant aspects of a model comprise its references to biological entities, network structure, mathematical equations and parameters, and dynamic behaviour. Future similarity measures could combine these model aspects in flexible, problem-specific ways in order to mimic users\\' intuition about model similarity, and to support complex model searches in databases.
Notions of similarity for computational biology models
Waltemath, Dagmar; Henkel, Ron; Hoehndorf, Robert; Kacprowski, Tim; Knuepfer, Christian; Liebermeister, Wolfram
2016-01-01
Computational models used in biology are rapidly increasing in complexity, size, and numbers. To build such large models, researchers need to rely on software tools for model retrieval, model combination, and version control. These tools need to be able to quantify the differences and similarities between computational models. However, depending on the specific application, the notion of similarity may greatly vary. A general notion of model similarity, applicable to various types of models, is still missing. Here, we introduce a general notion of quantitative model similarities, survey the use of existing model comparison methods in model building and management, and discuss potential applications of model comparison. To frame model comparison as a general problem, we describe a theoretical approach to defining and computing similarities based on different model aspects. Potentially relevant aspects of a model comprise its references to biological entities, network structure, mathematical equations and parameters, and dynamic behaviour. Future similarity measures could combine these model aspects in flexible, problem-specific ways in order to mimic users' intuition about model similarity, and to support complex model searches in databases.
Predictive Models and Computational Embryology
EPA’s ‘virtual embryo’ project is building an integrative systems biology framework for predictive models of developmental toxicity. One schema involves a knowledge-driven adverse outcome pathway (AOP) framework utilizing information from public databases, standardized ontologies...
A Novel Computer Virus Propagation Model under Security Classification
Directory of Open Access Journals (Sweden)
Qingyi Zhu
2017-01-01
Full Text Available In reality, some computers have specific security classification. For the sake of safety and cost, the security level of computers will be upgraded with increasing of threats in networks. Here we assume that there exists a threshold value which determines when countermeasures should be taken to level up the security of a fraction of computers with low security level. And in some specific realistic environments the propagation network can be regarded as fully interconnected. Inspired by these facts, this paper presents a novel computer virus dynamics model considering the impact brought by security classification in full interconnection network. By using the theory of dynamic stability, the existence of equilibria and stability conditions is analysed and proved. And the above optimal threshold value is given analytically. Then, some numerical experiments are made to justify the model. Besides, some discussions and antivirus measures are given.
Sierra toolkit computational mesh conceptual model
International Nuclear Information System (INIS)
Baur, David G.; Edwards, Harold Carter; Cochran, William K.; Williams, Alan B.; Sjaardema, Gregory D.
2010-01-01
The Sierra Toolkit computational mesh is a software library intended to support massively parallel multi-physics computations on dynamically changing unstructured meshes. This domain of intended use is inherently complex due to distributed memory parallelism, parallel scalability, heterogeneity of physics, heterogeneous discretization of an unstructured mesh, and runtime adaptation of the mesh. Management of this inherent complexity begins with a conceptual analysis and modeling of this domain of intended use; i.e., development of a domain model. The Sierra Toolkit computational mesh software library is designed and implemented based upon this domain model. Software developers using, maintaining, or extending the Sierra Toolkit computational mesh library must be familiar with the concepts/domain model presented in this report.
Computer modelling as a tool for understanding language evolution
de Boer, Bart; Gontier, N; VanBendegem, JP; Aerts, D
2006-01-01
This paper describes the uses of computer models in studying the evolution of language. Language is a complex dynamic system that can be studied at the level of the individual and at the level of the population. Much of the dynamics of language evolution and language change occur because of the
Integrated multiscale modeling of molecular computing devices
International Nuclear Information System (INIS)
Cummings, Peter T; Leng Yongsheng
2005-01-01
Molecular electronics, in which single organic molecules are designed to perform the functions of transistors, diodes, switches and other circuit elements used in current siliconbased microelecronics, is drawing wide interest as a potential replacement technology for conventional silicon-based lithographically etched microelectronic devices. In addition to their nanoscopic scale, the additional advantage of molecular electronics devices compared to silicon-based lithographically etched devices is the promise of being able to produce them cheaply on an industrial scale using wet chemistry methods (i.e., self-assembly from solution). The design of molecular electronics devices, and the processes to make them on an industrial scale, will require a thorough theoretical understanding of the molecular and higher level processes involved. Hence, the development of modeling techniques for molecular electronics devices is a high priority from both a basic science point of view (to understand the experimental studies in this field) and from an applied nanotechnology (manufacturing) point of view. Modeling molecular electronics devices requires computational methods at all length scales - electronic structure methods for calculating electron transport through organic molecules bonded to inorganic surfaces, molecular simulation methods for determining the structure of self-assembled films of organic molecules on inorganic surfaces, mesoscale methods to understand and predict the formation of mesoscale patterns on surfaces (including interconnect architecture), and macroscopic scale methods (including finite element methods) for simulating the behavior of molecular electronic circuit elements in a larger integrated device. Here we describe a large Department of Energy project involving six universities and one national laboratory aimed at developing integrated multiscale methods for modeling molecular electronics devices. The project is funded equally by the Office of Basic
Computer simulations of the random barrier model
DEFF Research Database (Denmark)
Schrøder, Thomas; Dyre, Jeppe
2002-01-01
A brief review of experimental facts regarding ac electronic and ionic conduction in disordered solids is given followed by a discussion of what is perhaps the simplest realistic model, the random barrier model (symmetric hopping model). Results from large scale computer simulations are presented...
Computer self-efficacy - is there a gender gap in tertiary level introductory computing classes?
Directory of Open Access Journals (Sweden)
Shirley Gibbs
Full Text Available This paper explores the relationship between introductory computing students, self-efficacy, and gender. Since the use of computers has become more common there has been speculation that the confidence and ability to use them differs between genders. Self-efficacy is an important and useful concept used to describe how a student may perceive their own ability or confidence in using and learning new technology. A survey of students in an introductory computing class has been completed intermittently since the late 1990\\'s. Although some questions have been adapted to meet the changing technology the aim of the survey has remain unchanged. In this study self-efficacy is measured using two self-rating questions. Students are asked to rate their confidence using a computer and also asked to give their perception of their computing knowledge. This paper examines these two aspects of a person\\'s computer self-efficacy in order to identify any differences that may occur between genders in two introductory computing classes, one in 1999 and the other in 2012. Results from the 1999 survey are compared with those from the survey completed in 2012 and investigated to ascertain if the perception that males were more likely to display higher computer self-efficacy levels than their female classmates does or did exist in a class of this type. Results indicate that while overall there has been a general increase in self-efficacy levels in 2012 compared with 1999, there is no significant gender gap.
Computational Modeling of Culture's Consequences
Hofstede, G.J.; Jonker, C.M.; Verwaart, T.
2010-01-01
This paper presents an approach to formalize the influence of culture on the decision functions of agents in social simulations. The key components are (a) a definition of the domain of study in the form of a decision model, (b) knowledge acquisition based on a dimensional theory of culture,
Computational aspects of premixing modelling
Energy Technology Data Exchange (ETDEWEB)
Fletcher, D.F. [Sydney Univ., NSW (Australia). Dept. of Chemical Engineering; Witt, P.J.
1998-01-01
In the steam explosion research field there is currently considerable effort being devoted to the modelling of premixing. Practically all models are based on the multiphase flow equations which treat the mixture as an interpenetrating continuum. Solution of these equations is non-trivial and a wide range of solution procedures are in use. This paper addresses some numerical aspects of this problem. In particular, we examine the effect of the differencing scheme for the convective terms and show that use of hybrid differencing can cause qualitatively wrong solutions in some situations. Calculations are performed for the Oxford tests, the BNL tests, a MAGICO test and to investigate various sensitivities of the solution. In addition, we show that use of a staggered grid can result in a significant error which leads to poor predictions of `melt` front motion. A correction is given which leads to excellent convergence to the analytic solution. Finally, we discuss the issues facing premixing model developers and highlight the fact that model validation is hampered more by the complexity of the process than by numerical issues. (author)
Computational modeling of concrete flow
DEFF Research Database (Denmark)
Roussel, Nicolas; Geiker, Mette Rica; Dufour, Frederic
2007-01-01
particle flow, and numerical techniques allowing the modeling of particles suspended in a fluid. The general concept behind each family of techniques is described. Pros and cons for each technique are given along with examples and references to applications to fresh cementitious materials....
Computational neurorehabilitation: modeling plasticity and learning to predict recovery.
Reinkensmeyer, David J; Burdet, Etienne; Casadio, Maura; Krakauer, John W; Kwakkel, Gert; Lang, Catherine E; Swinnen, Stephan P; Ward, Nick S; Schweighofer, Nicolas
2016-04-30
Despite progress in using computational approaches to inform medicine and neuroscience in the last 30 years, there have been few attempts to model the mechanisms underlying sensorimotor rehabilitation. We argue that a fundamental understanding of neurologic recovery, and as a result accurate predictions at the individual level, will be facilitated by developing computational models of the salient neural processes, including plasticity and learning systems of the brain, and integrating them into a context specific to rehabilitation. Here, we therefore discuss Computational Neurorehabilitation, a newly emerging field aimed at modeling plasticity and motor learning to understand and improve movement recovery of individuals with neurologic impairment. We first explain how the emergence of robotics and wearable sensors for rehabilitation is providing data that make development and testing of such models increasingly feasible. We then review key aspects of plasticity and motor learning that such models will incorporate. We proceed by discussing how computational neurorehabilitation models relate to the current benchmark in rehabilitation modeling - regression-based, prognostic modeling. We then critically discuss the first computational neurorehabilitation models, which have primarily focused on modeling rehabilitation of the upper extremity after stroke, and show how even simple models have produced novel ideas for future investigation. Finally, we conclude with key directions for future research, anticipating that soon we will see the emergence of mechanistic models of motor recovery that are informed by clinical imaging results and driven by the actual movement content of rehabilitation therapy as well as wearable sensor-based records of daily activity.
Computer Modeling of Direct Metal Laser Sintering
Cross, Matthew
2014-01-01
A computational approach to modeling direct metal laser sintering (DMLS) additive manufacturing process is presented. The primary application of the model is for determining the temperature history of parts fabricated using DMLS to evaluate residual stresses found in finished pieces and to assess manufacturing process strategies to reduce part slumping. The model utilizes MSC SINDA as a heat transfer solver with imbedded FORTRAN computer code to direct laser motion, apply laser heating as a boundary condition, and simulate the addition of metal powder layers during part fabrication. Model results are compared to available data collected during in situ DMLS part manufacture.
Visual and Computational Modelling of Minority Games
Directory of Open Access Journals (Sweden)
Robertas Damaševičius
2017-02-01
Full Text Available The paper analyses the Minority Game and focuses on analysis and computational modelling of several variants (variable payoff, coalition-based and ternary voting of Minority Game using UAREI (User-Action-Rule-Entities-Interface model. UAREI is a model for formal specification of software gamification, and the UAREI visual modelling language is a language used for graphical representation of game mechanics. The URAEI model also provides the embedded executable modelling framework to evaluate how the rules of the game will work for the players in practice. We demonstrate flexibility of UAREI model for modelling different variants of Minority Game rules for game design.
Model to Implement Virtual Computing Labs via Cloud Computing Services
Directory of Open Access Journals (Sweden)
Washington Luna Encalada
2017-07-01
Full Text Available In recent years, we have seen a significant number of new technological ideas appearing in literature discussing the future of education. For example, E-learning, cloud computing, social networking, virtual laboratories, virtual realities, virtual worlds, massive open online courses (MOOCs, and bring your own device (BYOD are all new concepts of immersive and global education that have emerged in educational literature. One of the greatest challenges presented to e-learning solutions is the reproduction of the benefits of an educational institution’s physical laboratory. For a university without a computing lab, to obtain hands-on IT training with software, operating systems, networks, servers, storage, and cloud computing similar to that which could be received on a university campus computing lab, it is necessary to use a combination of technological tools. Such teaching tools must promote the transmission of knowledge, encourage interaction and collaboration, and ensure students obtain valuable hands-on experience. That, in turn, allows the universities to focus more on teaching and research activities than on the implementation and configuration of complex physical systems. In this article, we present a model for implementing ecosystems which allow universities to teach practical Information Technology (IT skills. The model utilizes what is called a “social cloud”, which utilizes all cloud computing services, such as Software as a Service (SaaS, Platform as a Service (PaaS, and Infrastructure as a Service (IaaS. Additionally, it integrates the cloud learning aspects of a MOOC and several aspects of social networking and support. Social clouds have striking benefits such as centrality, ease of use, scalability, and ubiquity, providing a superior learning environment when compared to that of a simple physical lab. The proposed model allows students to foster all the educational pillars such as learning to know, learning to be, learning
Computational modeling of epiphany learning.
Chen, Wei James; Krajbich, Ian
2017-05-02
Models of reinforcement learning (RL) are prevalent in the decision-making literature, but not all behavior seems to conform to the gradual convergence that is a central feature of RL. In some cases learning seems to happen all at once. Limited prior research on these "epiphanies" has shown evidence of sudden changes in behavior, but it remains unclear how such epiphanies occur. We propose a sequential-sampling model of epiphany learning (EL) and test it using an eye-tracking experiment. In the experiment, subjects repeatedly play a strategic game that has an optimal strategy. Subjects can learn over time from feedback but are also allowed to commit to a strategy at any time, eliminating all other options and opportunities to learn. We find that the EL model is consistent with the choices, eye movements, and pupillary responses of subjects who commit to the optimal strategy (correct epiphany) but not always of those who commit to a suboptimal strategy or who do not commit at all. Our findings suggest that EL is driven by a latent evidence accumulation process that can be revealed with eye-tracking data.
Computational models of airway branching morphogenesis.
Varner, Victor D; Nelson, Celeste M
2017-07-01
The bronchial network of the mammalian lung consists of millions of dichotomous branches arranged in a highly complex, space-filling tree. Recent computational models of branching morphogenesis in the lung have helped uncover the biological mechanisms that construct this ramified architecture. In this review, we focus on three different theoretical approaches - geometric modeling, reaction-diffusion modeling, and continuum mechanical modeling - and discuss how, taken together, these models have identified the geometric principles necessary to build an efficient bronchial network, as well as the patterning mechanisms that specify airway geometry in the developing embryo. We emphasize models that are integrated with biological experiments and suggest how recent progress in computational modeling has advanced our understanding of airway branching morphogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Computational multiscale modeling of intergranular cracking
International Nuclear Information System (INIS)
Simonovski, Igor; Cizelj, Leon
2011-01-01
A novel computational approach for simulation of intergranular cracks in a polycrystalline aggregate is proposed in this paper. The computational model includes a topological model of the experimentally determined microstructure of a 400 μm diameter stainless steel wire and automatic finite element discretization of the grains and grain boundaries. The microstructure was spatially characterized by X-ray diffraction contrast tomography and contains 362 grains and some 1600 grain boundaries. Available constitutive models currently include isotropic elasticity for the grain interior and cohesive behavior with damage for the grain boundaries. The experimentally determined lattice orientations are employed to distinguish between resistant low energy and susceptible high energy grain boundaries in the model. The feasibility and performance of the proposed computational approach is demonstrated by simulating the onset and propagation of intergranular cracking. The preliminary numerical results are outlined and discussed.
Modeling multimodal human-computer interaction
Obrenovic, Z.; Starcevic, D.
2004-01-01
Incorporating the well-known Unified Modeling Language into a generic modeling framework makes research on multimodal human-computer interaction accessible to a wide range off software engineers. Multimodal interaction is part of everyday human discourse: We speak, move, gesture, and shift our gaze
A Computational Model of Selection by Consequences
McDowell, J. J.
2004-01-01
Darwinian selection by consequences was instantiated in a computational model that consisted of a repertoire of behaviors undergoing selection, reproduction, and mutation over many generations. The model in effect created a digital organism that emitted behavior continuously. The behavior of this digital organism was studied in three series of…
Generating Computational Models for Serious Gaming
Westera, Wim
2018-01-01
Many serious games include computational models that simulate dynamic systems. These models promote enhanced interaction and responsiveness. Under the social web paradigm more and more usable game authoring tools become available that enable prosumers to create their own games, but the inclusion of
Computing Bounds on Resource Levels for Flexible Plans
Muscvettola, Nicola; Rijsman, David
2009-01-01
A new algorithm efficiently computes the tightest exact bound on the levels of resources induced by a flexible activity plan (see figure). Tightness of bounds is extremely important for computations involved in planning because tight bounds can save potentially exponential amounts of search (through early backtracking and detection of solutions), relative to looser bounds. The bound computed by the new algorithm, denoted the resource-level envelope, constitutes the measure of maximum and minimum consumption of resources at any time for all fixed-time schedules in the flexible plan. At each time, the envelope guarantees that there are two fixed-time instantiations one that produces the minimum level and one that produces the maximum level. Therefore, the resource-level envelope is the tightest possible resource-level bound for a flexible plan because any tighter bound would exclude the contribution of at least one fixed-time schedule. If the resource- level envelope can be computed efficiently, one could substitute looser bounds that are currently used in the inner cores of constraint-posting scheduling algorithms, with the potential for great improvements in performance. What is needed to reduce the cost of computation is an algorithm, the measure of complexity of which is no greater than a low-degree polynomial in N (where N is the number of activities). The new algorithm satisfies this need. In this algorithm, the computation of resource-level envelopes is based on a novel combination of (1) the theory of shortest paths in the temporal-constraint network for the flexible plan and (2) the theory of maximum flows for a flow network derived from the temporal and resource constraints. The measure of asymptotic complexity of the algorithm is O(N O(maxflow(N)), where O(x) denotes an amount of computing time or a number of arithmetic operations proportional to a number of the order of x and O(maxflow(N)) is the measure of complexity (and thus of cost) of a maximumflow
Random matrix model of adiabatic quantum computing
International Nuclear Information System (INIS)
Mitchell, David R.; Adami, Christoph; Lue, Waynn; Williams, Colin P.
2005-01-01
We present an analysis of the quantum adiabatic algorithm for solving hard instances of 3-SAT (an NP-complete problem) in terms of random matrix theory (RMT). We determine the global regularity of the spectral fluctuations of the instantaneous Hamiltonians encountered during the interpolation between the starting Hamiltonians and the ones whose ground states encode the solutions to the computational problems of interest. At each interpolation point, we quantify the degree of regularity of the average spectral distribution via its Brody parameter, a measure that distinguishes regular (i.e., Poissonian) from chaotic (i.e., Wigner-type) distributions of normalized nearest-neighbor spacings. We find that for hard problem instances - i.e., those having a critical ratio of clauses to variables - the spectral fluctuations typically become irregular across a contiguous region of the interpolation parameter, while the spectrum is regular for easy instances. Within the hard region, RMT may be applied to obtain a mathematical model of the probability of avoided level crossings and concomitant failure rate of the adiabatic algorithm due to nonadiabatic Landau-Zener-type transitions. Our model predicts that if the interpolation is performed at a uniform rate, the average failure rate of the quantum adiabatic algorithm, when averaged over hard problem instances, scales exponentially with increasing problem size
Computational modelling of memory retention from synapse to behaviour
van Rossum, Mark C. W.; Shippi, Maria
2013-03-01
One of our most intriguing mental abilities is the capacity to store information and recall it from memory. Computational neuroscience has been influential in developing models and concepts of learning and memory. In this tutorial review we focus on the interplay between learning and forgetting. We discuss recent advances in the computational description of the learning and forgetting processes on synaptic, neuronal, and systems levels, as well as recent data that open up new challenges for statistical physicists.
Computational modelling of memory retention from synapse to behaviour
International Nuclear Information System (INIS)
Van Rossum, Mark C W; Shippi, Maria
2013-01-01
One of our most intriguing mental abilities is the capacity to store information and recall it from memory. Computational neuroscience has been influential in developing models and concepts of learning and memory. In this tutorial review we focus on the interplay between learning and forgetting. We discuss recent advances in the computational description of the learning and forgetting processes on synaptic, neuronal, and systems levels, as well as recent data that open up new challenges for statistical physicists. (paper)
Security Management Model in Cloud Computing Environment
Ahmadpanah, Seyed Hossein
2016-01-01
In the cloud computing environment, cloud virtual machine (VM) will be more and more the number of virtual machine security and management faced giant Challenge. In order to address security issues cloud computing virtualization environment, this paper presents a virtual machine based on efficient and dynamic deployment VM security management model state migration and scheduling, study of which virtual machine security architecture, based on AHP (Analytic Hierarchy Process) virtual machine de...
Ewe: a computer model for ultrasonic inspection
International Nuclear Information System (INIS)
Douglas, S.R.; Chaplin, K.R.
1991-11-01
The computer program EWE simulates the propagation of elastic waves in solids and liquids. It has been applied to ultrasonic testing to study the echoes generated by cracks and other types of defects. A discussion of the elastic wave equations is given, including the first-order formulation, shear and compression waves, surface waves and boundaries, numerical method of solution, models for cracks and slot defects, input wave generation, returning echo construction, and general computer issues
Light reflection models for computer graphics.
Greenberg, D P
1989-04-14
During the past 20 years, computer graphic techniques for simulating the reflection of light have progressed so that today images of photorealistic quality can be produced. Early algorithms considered direct lighting only, but global illumination phenomena with indirect lighting, surface interreflections, and shadows can now be modeled with ray tracing, radiosity, and Monte Carlo simulations. This article describes the historical development of computer graphic algorithms for light reflection and pictorially illustrates what will be commonly available in the near future.
Finite difference computing with exponential decay models
Langtangen, Hans Petter
2016-01-01
This text provides a very simple, initial introduction to the complete scientific computing pipeline: models, discretization, algorithms, programming, verification, and visualization. The pedagogical strategy is to use one case study – an ordinary differential equation describing exponential decay processes – to illustrate fundamental concepts in mathematics and computer science. The book is easy to read and only requires a command of one-variable calculus and some very basic knowledge about computer programming. Contrary to similar texts on numerical methods and programming, this text has a much stronger focus on implementation and teaches testing and software engineering in particular. .
Do's and Don'ts of Computer Models for Planning
Hammond, John S., III
1974-01-01
Concentrates on the managerial issues involved in computer planning models. Describes what computer planning models are and the process by which managers can increase the likelihood of computer planning models being successful in their organizations. (Author/DN)
GRAVTool, a Package to Compute Geoid Model by Remove-Compute-Restore Technique
Marotta, G. S.; Blitzkow, D.; Vidotti, R. M.
2015-12-01
Currently, there are several methods to determine geoid models. They can be based on terrestrial gravity data, geopotential coefficients, astro-geodetic data or a combination of them. Among the techniques to compute a precise geoid model, the Remove-Compute-Restore (RCR) has been widely applied. It considers short, medium and long wavelengths derived from altitude data provided by Digital Terrain Models (DTM), terrestrial gravity data and global geopotential coefficients, respectively. In order to apply this technique, it is necessary to create procedures that compute gravity anomalies and geoid models, by the integration of different wavelengths, and that adjust these models to one local vertical datum. This research presents a developed package called GRAVTool based on MATLAB software to compute local geoid models by RCR technique and its application in a study area. The studied area comprehends the federal district of Brazil, with ~6000 km², wavy relief, heights varying from 600 m to 1340 m, located between the coordinates 48.25ºW, 15.45ºS and 47.33ºW, 16.06ºS. The results of the numerical example on the studied area show the local geoid model computed by the GRAVTool package (Figure), using 1377 terrestrial gravity data, SRTM data with 3 arc second of resolution, and geopotential coefficients of the EIGEN-6C4 model to degree 360. The accuracy of the computed model (σ = ± 0.071 m, RMS = 0.069 m, maximum = 0.178 m and minimum = -0.123 m) matches the uncertainty (σ =± 0.073) of 21 points randomly spaced where the geoid was computed by geometrical leveling technique supported by positioning GNSS. The results were also better than those achieved by Brazilian official regional geoid model (σ = ± 0.099 m, RMS = 0.208 m, maximum = 0.419 m and minimum = -0.040 m).
Quantum Vertex Model for Reversible Classical Computing
Chamon, Claudio; Mucciolo, Eduardo; Ruckenstein, Andrei; Yang, Zhicheng
We present a planar vertex model that encodes the result of a universal reversible classical computation in its ground state. The approach involves Boolean variables (spins) placed on links of a two-dimensional lattice, with vertices representing logic gates. Large short-ranged interactions between at most two spins implement the operation of each gate. The lattice is anisotropic with one direction corresponding to computational time, and with transverse boundaries storing the computation's input and output. The model displays no finite temperature phase transitions, including no glass transitions, independent of circuit. The computational complexity is encoded in the scaling of the relaxation rate into the ground state with the system size. We use thermal annealing and a novel and more efficient heuristic \\x9Dannealing with learning to study various computational problems. To explore faster relaxation routes, we construct an explicit mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating a novel approach to reversible classical computation based on quantum annealing.
Status and tendencies in combating computer crime at European level
Directory of Open Access Journals (Sweden)
Pisarić Milana
2011-01-01
Full Text Available Without certain adjustments to specifics of computer crime, as to a phenomenon of global proportions, detection, investigation and prosecution of this type of crime is almost impossible. Therefore, the need for setting up a legal framework for combating cyber crime has been identified, in order to define which activities related to information systems are considered computer crime; to determine the specific procedural rules, which would enable the access to data, computer and networks during investigating and prosecuting computer crime and to provide continuous training of members of the institutions responsible for countering this form of crime. This legal framework should consist of substantive and procedural rules adapted to this type of crime due its aim is the improvement of international cooperation in the framework of global and regional approach to combating cyber crime. In this this paper the current situation of strategic and legal framework of countering cyber crime is presented (at the level of the Council of Europe and of the European Union as well as trends in the development of systematic approach towards countering the mentioned abuses within these regional organizations. At the European level, the legal framework to combat cyber crime is set in the Council of Europe Convention on cyber crime and the Council of EU Framework Decision on attacks against information systems. In a series of documents organs of EU confirmed the strategic support of COE Convention and the encouragement of Member States to ratify the Convention. In addition, the Convention represent the base of the said Framework Decision. These two legal instruments have the same goal - removing the differences between national legislation, the introduction of new powers in the discovery and evidence of computer crime and improvement of the international cooperation in combating cyber crime. Although their legal nature and scope vary, its objectives will be achieved
Computational disease modeling – fact or fiction?
Directory of Open Access Journals (Sweden)
Stephan Klaas
2009-06-01
Full Text Available Abstract Background Biomedical research is changing due to the rapid accumulation of experimental data at an unprecedented scale, revealing increasing degrees of complexity of biological processes. Life Sciences are facing a transition from a descriptive to a mechanistic approach that reveals principles of cells, cellular networks, organs, and their interactions across several spatial and temporal scales. There are two conceptual traditions in biological computational-modeling. The bottom-up approach emphasizes complex intracellular molecular models and is well represented within the systems biology community. On the other hand, the physics-inspired top-down modeling strategy identifies and selects features of (presumably essential relevance to the phenomena of interest and combines available data in models of modest complexity. Results The workshop, "ESF Exploratory Workshop on Computational disease Modeling", examined the challenges that computational modeling faces in contributing to the understanding and treatment of complex multi-factorial diseases. Participants at the meeting agreed on two general conclusions. First, we identified the critical importance of developing analytical tools for dealing with model and parameter uncertainty. Second, the development of predictive hierarchical models spanning several scales beyond intracellular molecular networks was identified as a major objective. This contrasts with the current focus within the systems biology community on complex molecular modeling. Conclusion During the workshop it became obvious that diverse scientific modeling cultures (from computational neuroscience, theory, data-driven machine-learning approaches, agent-based modeling, network modeling and stochastic-molecular simulations would benefit from intense cross-talk on shared theoretical issues in order to make progress on clinically relevant problems.
A Perspective on Computational Human Performance Models as Design Tools
Jones, Patricia M.
2010-01-01
The design of interactive systems, including levels of automation, displays, and controls, is usually based on design guidelines and iterative empirical prototyping. A complementary approach is to use computational human performance models to evaluate designs. An integrated strategy of model-based and empirical test and evaluation activities is particularly attractive as a methodology for verification and validation of human-rated systems for commercial space. This talk will review several computational human performance modeling approaches and their applicability to design of display and control requirements.
All-memristive neuromorphic computing with level-tuned neurons
Pantazi, Angeliki; Woźniak, Stanisław; Tuma, Tomas; Eleftheriou, Evangelos
2016-09-01
In the new era of cognitive computing, systems will be able to learn and interact with the environment in ways that will drastically enhance the capabilities of current processors, especially in extracting knowledge from vast amount of data obtained from many sources. Brain-inspired neuromorphic computing systems increasingly attract research interest as an alternative to the classical von Neumann processor architecture, mainly because of the coexistence of memory and processing units. In these systems, the basic components are neurons interconnected by synapses. The neurons, based on their nonlinear dynamics, generate spikes that provide the main communication mechanism. The computational tasks are distributed across the neural network, where synapses implement both the memory and the computational units, by means of learning mechanisms such as spike-timing-dependent plasticity. In this work, we present an all-memristive neuromorphic architecture comprising neurons and synapses realized by using the physical properties and state dynamics of phase-change memristors. The architecture employs a novel concept of interconnecting the neurons in the same layer, resulting in level-tuned neuronal characteristics that preferentially process input information. We demonstrate the proposed architecture in the tasks of unsupervised learning and detection of multiple temporal correlations in parallel input streams. The efficiency of the neuromorphic architecture along with the homogenous neuro-synaptic dynamics implemented with nanoscale phase-change memristors represent a significant step towards the development of ultrahigh-density neuromorphic co-processors.
All-memristive neuromorphic computing with level-tuned neurons.
Pantazi, Angeliki; Woźniak, Stanisław; Tuma, Tomas; Eleftheriou, Evangelos
2016-09-02
In the new era of cognitive computing, systems will be able to learn and interact with the environment in ways that will drastically enhance the capabilities of current processors, especially in extracting knowledge from vast amount of data obtained from many sources. Brain-inspired neuromorphic computing systems increasingly attract research interest as an alternative to the classical von Neumann processor architecture, mainly because of the coexistence of memory and processing units. In these systems, the basic components are neurons interconnected by synapses. The neurons, based on their nonlinear dynamics, generate spikes that provide the main communication mechanism. The computational tasks are distributed across the neural network, where synapses implement both the memory and the computational units, by means of learning mechanisms such as spike-timing-dependent plasticity. In this work, we present an all-memristive neuromorphic architecture comprising neurons and synapses realized by using the physical properties and state dynamics of phase-change memristors. The architecture employs a novel concept of interconnecting the neurons in the same layer, resulting in level-tuned neuronal characteristics that preferentially process input information. We demonstrate the proposed architecture in the tasks of unsupervised learning and detection of multiple temporal correlations in parallel input streams. The efficiency of the neuromorphic architecture along with the homogenous neuro-synaptic dynamics implemented with nanoscale phase-change memristors represent a significant step towards the development of ultrahigh-density neuromorphic co-processors.
Developing Computer Model-Based Assessment of Chemical Reasoning: A Feasibility Study
Liu, Xiufeng; Waight, Noemi; Gregorius, Roberto; Smith, Erica; Park, Mihwa
2012-01-01
This paper reports a feasibility study on developing computer model-based assessments of chemical reasoning at the high school level. Computer models are flash and NetLogo environments to make simultaneously available three domains in chemistry: macroscopic, submicroscopic, and symbolic. Students interact with computer models to answer assessment…
Towards The Deep Model : Understanding Visual Recognition Through Computational Models
Wang, Panqu
2017-01-01
Understanding how visual recognition is achieved in the human brain is one of the most fundamental questions in vision research. In this thesis I seek to tackle this problem from a neurocomputational modeling perspective. More specifically, I build machine learning-based models to simulate and explain cognitive phenomena related to human visual recognition, and I improve computational models using brain-inspired principles to excel at computer vision tasks.I first describe how a neurocomputat...
Hybrid computer modelling in plasma physics
International Nuclear Information System (INIS)
Hromadka, J; Ibehej, T; Hrach, R
2016-01-01
Our contribution is devoted to development of hybrid modelling techniques. We investigate sheath structures in the vicinity of solids immersed in low temperature argon plasma of different pressures by means of particle and fluid computer models. We discuss the differences in results obtained by these methods and try to propose a way to improve the results of fluid models in the low pressure area. There is a possibility to employ Chapman-Enskog method to find appropriate closure relations of fluid equations in a case when particle distribution function is not Maxwellian. We try to follow this way to enhance fluid model and to use it in hybrid plasma model further. (paper)
Time series modeling, computation, and inference
Prado, Raquel
2010-01-01
The authors systematically develop a state-of-the-art analysis and modeling of time series. … this book is well organized and well written. The authors present various statistical models for engineers to solve problems in time series analysis. Readers no doubt will learn state-of-the-art techniques from this book.-Hsun-Hsien Chang, Computing Reviews, March 2012My favorite chapters were on dynamic linear models and vector AR and vector ARMA models.-William Seaver, Technometrics, August 2011… a very modern entry to the field of time-series modelling, with a rich reference list of the current lit
Biomedical Imaging and Computational Modeling in Biomechanics
Iacoviello, Daniela
2013-01-01
This book collects the state-of-art and new trends in image analysis and biomechanics. It covers a wide field of scientific and cultural topics, ranging from remodeling of bone tissue under the mechanical stimulus up to optimizing the performance of sports equipment, through the patient-specific modeling in orthopedics, microtomography and its application in oral and implant research, computational modeling in the field of hip prostheses, image based model development and analysis of the human knee joint, kinematics of the hip joint, micro-scale analysis of compositional and mechanical properties of dentin, automated techniques for cervical cell image analysis, and iomedical imaging and computational modeling in cardiovascular disease. The book will be of interest to researchers, Ph.D students, and graduate students with multidisciplinary interests related to image analysis and understanding, medical imaging, biomechanics, simulation and modeling, experimental analysis.
Computational algebraic geometry of epidemic models
Rodríguez Vega, Martín.
2014-06-01
Computational Algebraic Geometry is applied to the analysis of various epidemic models for Schistosomiasis and Dengue, both, for the case without control measures and for the case where control measures are applied. The models were analyzed using the mathematical software Maple. Explicitly the analysis is performed using Groebner basis, Hilbert dimension and Hilbert polynomials. These computational tools are included automatically in Maple. Each of these models is represented by a system of ordinary differential equations, and for each model the basic reproductive number (R0) is calculated. The effects of the control measures are observed by the changes in the algebraic structure of R0, the changes in Groebner basis, the changes in Hilbert dimension, and the changes in Hilbert polynomials. It is hoped that the results obtained in this paper become of importance for designing control measures against the epidemic diseases described. For future researches it is proposed the use of algebraic epidemiology to analyze models for airborne and waterborne diseases.
Computed gray levels in multislice and cone-beam computed tomography.
Azeredo, Fabiane; de Menezes, Luciane Macedo; Enciso, Reyes; Weissheimer, Andre; de Oliveira, Rogério Belle
2013-07-01
Gray level is the range of shades of gray in the pixels, representing the x-ray attenuation coefficient that allows for tissue density assessments in computed tomography (CT). An in-vitro study was performed to investigate the relationship between computed gray levels in 3 cone-beam CT (CBCT) scanners and 1 multislice spiral CT device using 5 software programs. Six materials (air, water, wax, acrylic, plaster, and gutta-percha) were scanned with the CBCT and CT scanners, and the computed gray levels for each material at predetermined points were measured with OsiriX Medical Imaging software (Geneva, Switzerland), OnDemand3D (CyberMed International, Seoul, Korea), E-Film (Merge Healthcare, Milwaukee, Wis), Dolphin Imaging (Dolphin Imaging & Management Solutions, Chatsworth, Calif), and InVivo Dental Software (Anatomage, San Jose, Calif). The repeatability of these measurements was calculated with intraclass correlation coefficients, and the gray levels were averaged to represent each material. Repeated analysis of variance tests were used to assess the differences in gray levels among scanners and materials. There were no differences in mean gray levels with the different software programs. There were significant differences in gray levels between scanners for each material evaluated (P <0.001). The software programs were reliable and had no influence on the CT and CBCT gray level measurements. However, the gray levels might have discrepancies when different CT and CBCT scanners are used. Therefore, caution is essential when interpreting or evaluating CBCT images because of the significant differences in gray levels between different CBCT scanners, and between CBCT and CT values. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Computer modeling of commercial refrigerated warehouse facilities
International Nuclear Information System (INIS)
Nicoulin, C.V.; Jacobs, P.C.; Tory, S.
1997-01-01
The use of computer models to simulate the energy performance of large commercial refrigeration systems typically found in food processing facilities is an area of engineering practice that has seen little development to date. Current techniques employed in predicting energy consumption by such systems have focused on temperature bin methods of analysis. Existing simulation tools such as DOE2 are designed to model commercial buildings and grocery store refrigeration systems. The HVAC and Refrigeration system performance models in these simulations tools model equipment common to commercial buildings and groceries, and respond to energy-efficiency measures likely to be applied to these building types. The applicability of traditional building energy simulation tools to model refrigerated warehouse performance and analyze energy-saving options is limited. The paper will present the results of modeling work undertaken to evaluate energy savings resulting from incentives offered by a California utility to its Refrigerated Warehouse Program participants. The TRNSYS general-purpose transient simulation model was used to predict facility performance and estimate program savings. Custom TRNSYS components were developed to address modeling issues specific to refrigerated warehouse systems, including warehouse loading door infiltration calculations, an evaporator model, single-state and multi-stage compressor models, evaporative condenser models, and defrost energy requirements. The main focus of the paper will be on the modeling approach. The results from the computer simulations, along with overall program impact evaluation results, will also be presented
Computer codes for level 1 probabilistic safety assessment
International Nuclear Information System (INIS)
1990-06-01
Probabilistic Safety Assessment (PSA) entails several laborious tasks suitable for computer codes assistance. This guide identifies these tasks, presents guidelines for selecting and utilizing computer codes in the conduct of the PSA tasks and for the use of PSA results in safety management and provides information on available codes suggested or applied in performing PSA in nuclear power plants. The guidance is intended for use by nuclear power plant system engineers, safety and operating personnel, and regulators. Large efforts are made today to provide PC-based software systems and PSA processed information in a way to enable their use as a safety management tool by the nuclear power plant overall management. Guidelines on the characteristics of software needed for management to prepare a software that meets their specific needs are also provided. Most of these computer codes are also applicable for PSA of other industrial facilities. The scope of this document is limited to computer codes used for the treatment of internal events. It does not address other codes available mainly for the analysis of external events (e.g. seismic analysis) flood and fire analysis. Codes discussed in the document are those used for probabilistic rather than for phenomenological modelling. It should be also appreciated that these guidelines are not intended to lead the user to selection of one specific code. They provide simply criteria for the selection. Refs and tabs
Geometric modeling for computer aided design
Schwing, James L.; Olariu, Stephen
1995-01-01
The primary goal of this grant has been the design and implementation of software to be used in the conceptual design of aerospace vehicles particularly focused on the elements of geometric design, graphical user interfaces, and the interaction of the multitude of software typically used in this engineering environment. This has resulted in the development of several analysis packages and design studies. These include two major software systems currently used in the conceptual level design of aerospace vehicles. These tools are SMART, the Solid Modeling Aerospace Research Tool, and EASIE, the Environment for Software Integration and Execution. Additional software tools were designed and implemented to address the needs of the engineer working in the conceptual design environment. SMART provides conceptual designers with a rapid prototyping capability and several engineering analysis capabilities. In addition, SMART has a carefully engineered user interface that makes it easy to learn and use. Finally, a number of specialty characteristics have been built into SMART which allow it to be used efficiently as a front end geometry processor for other analysis packages. EASIE provides a set of interactive utilities that simplify the task of building and executing computer aided design systems consisting of diverse, stand-alone, analysis codes. Resulting in a streamlining of the exchange of data between programs reducing errors and improving the efficiency. EASIE provides both a methodology and a collection of software tools to ease the task of coordinating engineering design and analysis codes.
Cloud Computing Adoption Model for Universities to Increase ICT Proficiency
Directory of Open Access Journals (Sweden)
Safiya Okai
2014-08-01
Full Text Available Universities around the world especially those in developing countries are faced with the problem of delivering the level of information and communications technology (ICT needed to facilitate teaching, learning, research, and development activities ideal in a typical university, which is needed to meet educational needs in-line with advancement in technology and the growing dependence on IT. This is mainly due to the high cost involved in providing and maintaining the needed hardware and software. A technology such as cloud computing that delivers on demand provisioning of IT resources on a pay per use basis can be used to address this problem. Cloud computing promises better delivery of IT services as well as availability whenever and wherever needed at reduced costs with users paying only as much as they consume through the services of cloud service providers. The cloud technology reduces complexity while increasing speed and quality of IT services provided; however, despite these benefits the challenges that come with its adoption have left many sectors especially the higher education skeptical in committing to this technology. This article identifies the reasons for the slow rate of adoption of cloud computing at university level, discusses the challenges faced and proposes a cloud computing adoption model that contains strategic guidelines to overcome the major challenges identified and a roadmap for the successful adoption of cloud computing by universities. The model was tested in one of the universities and found to be both useful and appropriate for adopting cloud computing at university level.
Applied Mathematics, Modelling and Computational Science
Kotsireas, Ilias; Makarov, Roman; Melnik, Roderick; Shodiev, Hasan
2015-01-01
The Applied Mathematics, Modelling, and Computational Science (AMMCS) conference aims to promote interdisciplinary research and collaboration. The contributions in this volume cover the latest research in mathematical and computational sciences, modeling, and simulation as well as their applications in natural and social sciences, engineering and technology, industry, and finance. The 2013 conference, the second in a series of AMMCS meetings, was held August 26–30 and organized in cooperation with AIMS and SIAM, with support from the Fields Institute in Toronto, and Wilfrid Laurier University. There were many young scientists at AMMCS-2013, both as presenters and as organizers. This proceedings contains refereed papers contributed by the participants of the AMMCS-2013 after the conference. This volume is suitable for researchers and graduate students, mathematicians and engineers, industrialists, and anyone who would like to delve into the interdisciplinary research of applied and computational mathematics ...
Description of mathematical models and computer programs
International Nuclear Information System (INIS)
1977-01-01
The paper gives a description of mathematical models and computer programs for analysing possible strategies for spent fuel management, with emphasis on economic analysis. The computer programs developed, describe the material flows, facility construction schedules, capital investment schedules and operating costs for the facilities used in managing the spent fuel. The computer programs use a combination of simulation and optimization procedures for the economic analyses. Many of the fuel cycle steps (such as spent fuel discharges, storage at the reactor, and transport to the RFCC) are described in physical and economic terms through simulation modeling, while others (such as reprocessing plant size and commissioning schedules, interim storage facility commissioning schedules etc.) are subjected to economic optimization procedures to determine the approximate lowest-cost plans from among the available feasible alternatives
Enhanced Waste Tank Level Model
Energy Technology Data Exchange (ETDEWEB)
Duignan, M.R.
1999-06-24
'With the increased sensitivity of waste-level measurements in the H-Area Tanks and with periods of isolation, when no mass transfer occurred for certain tanks, waste-level changes have been recorded with are unexplained.'
Modeling inputs to computer models used in risk assessment
International Nuclear Information System (INIS)
Iman, R.L.
1987-01-01
Computer models for various risk assessment applications are closely scrutinized both from the standpoint of questioning the correctness of the underlying mathematical model with respect to the process it is attempting to model and from the standpoint of verifying that the computer model correctly implements the underlying mathematical model. A process that receives less scrutiny, but is nonetheless of equal importance, concerns the individual and joint modeling of the inputs. This modeling effort clearly has a great impact on the credibility of results. Model characteristics are reviewed in this paper that have a direct bearing on the model input process and reasons are given for using probabilities-based modeling with the inputs. The authors also present ways to model distributions for individual inputs and multivariate input structures when dependence and other constraints may be present
Computer model for estimating electric utility environmental noise
International Nuclear Information System (INIS)
Teplitzky, A.M.; Hahn, K.J.
1991-01-01
This paper reports on a computer code for estimating environmental noise emissions from the operation and the construction of electric power plants that was developed based on algorithms. The computer code (Model) is used to predict octave band sound power levels for power plant operation and construction activities on the basis of the equipment operating characteristics and calculates off-site sound levels for each noise source and for an entire plant. Estimated noise levels are presented either as A-weighted sound level contours around the power plant or as octave band levels at user defined receptor locations. Calculated sound levels can be compared with user designated noise criteria, and the program can assist the user in analyzing alternative noise control strategies
Computer Modelling of Photochemical Smog Formation
Huebert, Barry J.
1974-01-01
Discusses a computer program that has been used in environmental chemistry courses as an example of modelling as a vehicle for teaching chemical dynamics, and as a demonstration of some of the factors which affect the production of smog. (Author/GS)
A Computational Model of Fraction Arithmetic
Braithwaite, David W.; Pyke, Aryn A.; Siegler, Robert S.
2017-01-01
Many children fail to master fraction arithmetic even after years of instruction, a failure that hinders their learning of more advanced mathematics as well as their occupational success. To test hypotheses about why children have so many difficulties in this area, we created a computational model of fraction arithmetic learning and presented it…
Model Checking - Automated Verification of Computational Systems
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 7. Model Checking - Automated Verification of Computational Systems. Madhavan Mukund. General Article Volume 14 Issue 7 July 2009 pp 667-681. Fulltext. Click here to view fulltext PDF. Permanent link:
Computational Modeling of Complex Protein Activity Networks
Schivo, Stefano; Leijten, Jeroen; Karperien, Marcel; Post, Janine N.; Prignet, Claude
2017-01-01
Because of the numerous entities interacting, the complexity of the networks that regulate cell fate makes it impossible to analyze and understand them using the human brain alone. Computational modeling is a powerful method to unravel complex systems. We recently described the development of a
Computer Modeling of Platinum Reforming Reactors | Momoh ...
African Journals Online (AJOL)
This paper, instead of using a theoretical approach has considered a computer model as means of assessing the reformate composition for three-stage fixed bed reactors in platforming unit. This is done by identifying many possible hydrocarbon transformation reactions that are peculiar to the process unit, identify the ...
Particle modeling of plasmas computational plasma physics
International Nuclear Information System (INIS)
Dawson, J.M.
1991-01-01
Recently, through the development of supercomputers, a powerful new method for exploring plasmas has emerged; it is computer modeling of plasmas. Such modeling can duplicate many of the complex processes that go on in a plasma and allow scientists to understand what the important processes are. It helps scientists gain an intuition about this complex state of matter. It allows scientists and engineers to explore new ideas on how to use plasma before building costly experiments; it allows them to determine if they are on the right track. It can duplicate the operation of devices and thus reduce the need to build complex and expensive devices for research and development. This is an exciting new endeavor that is in its infancy, but which can play an important role in the scientific and technological competitiveness of the US. There are a wide range of plasma models that are in use. There are particle models, fluid models, hybrid particle fluid models. These can come in many forms, such as explicit models, implicit models, reduced dimensional models, electrostatic models, magnetostatic models, electromagnetic models, and almost an endless variety of other models. Here the author will only discuss particle models. He will give a few examples of the use of such models; these will be taken from work done by the Plasma Modeling Group at UCLA because he is most familiar with work. However, it only gives a small view of the wide range of work being done around the US, or for that matter around the world
Reproducibility in Computational Neuroscience Models and Simulations
McDougal, Robert A.; Bulanova, Anna S.; Lytton, William W.
2016-01-01
Objective Like all scientific research, computational neuroscience research must be reproducible. Big data science, including simulation research, cannot depend exclusively on journal articles as the method to provide the sharing and transparency required for reproducibility. Methods Ensuring model reproducibility requires the use of multiple standard software practices and tools, including version control, strong commenting and documentation, and code modularity. Results Building on these standard practices, model sharing sites and tools have been developed that fit into several categories: 1. standardized neural simulators, 2. shared computational resources, 3. declarative model descriptors, ontologies and standardized annotations; 4. model sharing repositories and sharing standards. Conclusion A number of complementary innovations have been proposed to enhance sharing, transparency and reproducibility. The individual user can be encouraged to make use of version control, commenting, documentation and modularity in development of models. The community can help by requiring model sharing as a condition of publication and funding. Significance Model management will become increasingly important as multiscale models become larger, more detailed and correspondingly more difficult to manage by any single investigator or single laboratory. Additional big data management complexity will come as the models become more useful in interpreting experiments, thus increasing the need to ensure clear alignment between modeling data, both parameters and results, and experiment. PMID:27046845
Applied modelling and computing in social science
Povh, Janez
2015-01-01
In social science outstanding results are yielded by advanced simulation methods, based on state of the art software technologies and an appropriate combination of qualitative and quantitative methods. This book presents examples of successful applications of modelling and computing in social science: business and logistic process simulation and optimization, deeper knowledge extractions from big data, better understanding and predicting of social behaviour and modelling health and environment changes.
Validation of a phytoremediation computer model
Energy Technology Data Exchange (ETDEWEB)
Corapcioglu, M Y; Sung, K; Rhykerd, R L; Munster, C; Drew, M [Texas A and M Univ., College Station, TX (United States)
1999-01-01
The use of plants to stimulate remediation of contaminated soil is an effective, low-cost cleanup method which can be applied to many different sites. A phytoremediation computer model has been developed to simulate how recalcitrant hydrocarbons interact with plant roots in unsaturated soil. A study was conducted to provide data to validate and calibrate the model. During the study, lysimeters were constructed and filled with soil contaminated with 10 [mg kg[sub -1
Enhancing Security by System-Level Virtualization in Cloud Computing Environments
Sun, Dawei; Chang, Guiran; Tan, Chunguang; Wang, Xingwei
Many trends are opening up the era of cloud computing, which will reshape the IT industry. Virtualization techniques have become an indispensable ingredient for almost all cloud computing system. By the virtual environments, cloud provider is able to run varieties of operating systems as needed by each cloud user. Virtualization can improve reliability, security, and availability of applications by using consolidation, isolation, and fault tolerance. In addition, it is possible to balance the workloads by using live migration techniques. In this paper, the definition of cloud computing is given; and then the service and deployment models are introduced. An analysis of security issues and challenges in implementation of cloud computing is identified. Moreover, a system-level virtualization case is established to enhance the security of cloud computing environments.
Automating sensitivity analysis of computer models using computer calculus
International Nuclear Information System (INIS)
Oblow, E.M.; Pin, F.G.
1986-01-01
An automated procedure for performing sensitivity analysis has been developed. The procedure uses a new FORTRAN compiler with computer calculus capabilities to generate the derivatives needed to set up sensitivity equations. The new compiler is called GRESS - Gradient Enhanced Software System. Application of the automated procedure with direct and adjoint sensitivity theory for the analysis of non-linear, iterative systems of equations is discussed. Calculational efficiency consideration and techniques for adjoint sensitivity analysis are emphasized. The new approach is found to preserve the traditional advantages of adjoint theory while removing the tedious human effort previously needed to apply this theoretical methodology. Conclusions are drawn about the applicability of the automated procedure in numerical analysis and large-scale modelling sensitivity studies
Automating sensitivity analysis of computer models using computer calculus
International Nuclear Information System (INIS)
Oblow, E.M.; Pin, F.G.
1985-01-01
An automated procedure for performing sensitivity analyses has been developed. The procedure uses a new FORTRAN compiler with computer calculus capabilities to generate the derivatives needed to set up sensitivity equations. The new compiler is called GRESS - Gradient Enhanced Software System. Application of the automated procedure with ''direct'' and ''adjoint'' sensitivity theory for the analysis of non-linear, iterative systems of equations is discussed. Calculational efficiency consideration and techniques for adjoint sensitivity analysis are emphasized. The new approach is found to preserve the traditional advantages of adjoint theory while removing the tedious human effort previously needed to apply this theoretical methodology. Conclusions are drawn about the applicability of the automated procedure in numerical analysis and large-scale modelling sensitivity studies. 24 refs., 2 figs
Intermediate-Level Knowledge in Child-Computer Interaction
DEFF Research Database (Denmark)
Barendregt, Wolmet; Torgersson, Olof; Eriksson, Eva
2017-01-01
Based on an analysis of all papers at IDC from 2003 to 2016 this paper urges the Child-Computer Interaction (CCI) field to start formulating intermediate-level knowledge, in the form of e.g. strong concepts. Our analysis showed that 40% of all papers at the Interaction Design and Children...... conference presents the design of an artefact accompanied by an evaluation (to which we will refer as 'artefact-centered' papers). While exploring the design space in the form of artefacts is important and valuable, it can be argued that those artefact-centered papers generally make a smaller contribution...... to the field as a whole, which is also visible in the number of citations to such papers in comparison to the number of citations to other kinds of papers. As a first step towards more intermediate-level knowledge, we have thus attempted to formulate and ground three suggestions for strong concepts in CCI...
FPGA based compute nodes for high level triggering in PANDA
International Nuclear Information System (INIS)
Kuehn, W; Gilardi, C; Kirschner, D; Lang, J; Lange, S; Liu, M; Perez, T; Yang, S; Schmitt, L; Jin, D; Li, L; Liu, Z; Lu, Y; Wang, Q; Wei, S; Xu, H; Zhao, D; Korcyl, K; Otwinowski, J T; Salabura, P
2008-01-01
PANDA is a new universal detector for antiproton physics at the HESR facility at FAIR/GSI. The PANDA data acquisition system has to handle interaction rates of the order of 10 7 /s and data rates of several 100 Gb/s. FPGA based compute nodes with multi-Gb/s bandwidth capability using the ATCA architecture are designed to handle tasks such as event building, feature extraction and high level trigger processing. Data connectivity is provided via optical links as well as multiple Gb Ethernet ports. The boards will support trigger algorithms such us pattern recognition for RICH detectors, EM shower analysis, fast tracking algorithms and global event characterization. Besides VHDL, high level C-like hardware description languages will be considered to implement the firmware
Changes to a modelling approach with the use of computer
DEFF Research Database (Denmark)
Andresen, Mette
2006-01-01
of teaching materials on differential equations. One of the objectives of the project was changes at two levels: 1) Changes at curriculum level and 2) Changes in the intentions of modelling and using models. The paper relates the changes at these two levels and discusses how the use of computer can serve......This paper reports on a Ph.D. project, which was part of a larger research- and development project (see www.matnatverdensklasse.dk). In the reported part of the project, each student had had a laptop at his disposal for at least two years. The Ph.D. project inquires the try out in four classes...
Grid computing in large pharmaceutical molecular modeling.
Claus, Brian L; Johnson, Stephen R
2008-07-01
Most major pharmaceutical companies have employed grid computing to expand their compute resources with the intention of minimizing additional financial expenditure. Historically, one of the issues restricting widespread utilization of the grid resources in molecular modeling is the limited set of suitable applications amenable to coarse-grained parallelization. Recent advances in grid infrastructure technology coupled with advances in application research and redesign will enable fine-grained parallel problems, such as quantum mechanics and molecular dynamics, which were previously inaccessible to the grid environment. This will enable new science as well as increase resource flexibility to load balance and schedule existing workloads.
Attacker Modelling in Ubiquitous Computing Systems
DEFF Research Database (Denmark)
Papini, Davide
in with our everyday life. This future is visible to everyone nowadays: terms like smartphone, cloud, sensor, network etc. are widely known and used in our everyday life. But what about the security of such systems. Ubiquitous computing devices can be limited in terms of energy, computing power and memory...... attacker remain somehow undened and still under extensive investigation. This Thesis explores the nature of the ubiquitous attacker with a focus on how she interacts with the physical world and it denes a model that captures the abilities of the attacker. Furthermore a quantitative implementation...
Climate models on massively parallel computers
International Nuclear Information System (INIS)
Vitart, F.; Rouvillois, P.
1993-01-01
First results got on massively parallel computers (Multiple Instruction Multiple Data and Simple Instruction Multiple Data) allow to consider building of coupled models with high resolutions. This would make possible simulation of thermoaline circulation and other interaction phenomena between atmosphere and ocean. The increasing of computers powers, and then the improvement of resolution will go us to revise our approximations. Then hydrostatic approximation (in ocean circulation) will not be valid when the grid mesh will be of a dimension lower than a few kilometers: We shall have to find other models. The expert appraisement got in numerical analysis at the Center of Limeil-Valenton (CEL-V) will be used again to imagine global models taking in account atmosphere, ocean, ice floe and biosphere, allowing climate simulation until a regional scale
Rough – Granular Computing knowledge discovery models
Directory of Open Access Journals (Sweden)
Mohammed M. Eissa
2016-11-01
Full Text Available Medical domain has become one of the most important areas of research in order to richness huge amounts of medical information about the symptoms of diseases and how to distinguish between them to diagnose it correctly. Knowledge discovery models play vital role in refinement and mining of medical indicators to help medical experts to settle treatment decisions. This paper introduces four hybrid Rough – Granular Computing knowledge discovery models based on Rough Sets Theory, Artificial Neural Networks, Genetic Algorithm and Rough Mereology Theory. A comparative analysis of various knowledge discovery models that use different knowledge discovery techniques for data pre-processing, reduction, and data mining supports medical experts to extract the main medical indicators, to reduce the misdiagnosis rates and to improve decision-making for medical diagnosis and treatment. The proposed models utilized two medical datasets: Coronary Heart Disease dataset and Hepatitis C Virus dataset. The main purpose of this paper was to explore and evaluate the proposed models based on Granular Computing methodology for knowledge extraction according to different evaluation criteria for classification of medical datasets. Another purpose is to make enhancement in the frame of KDD processes for supervised learning using Granular Computing methodology.
40 CFR 194.23 - Models and computer codes.
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Models and computer codes. 194.23... General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... obtain stable solutions; (iv) Computer models accurately implement the numerical models; i.e., computer...
Computational Aerodynamic Modeling of Small Quadcopter Vehicles
Yoon, Seokkwan; Ventura Diaz, Patricia; Boyd, D. Douglas; Chan, William M.; Theodore, Colin R.
2017-01-01
High-fidelity computational simulations have been performed which focus on rotor-fuselage and rotor-rotor aerodynamic interactions of small quad-rotor vehicle systems. The three-dimensional unsteady Navier-Stokes equations are solved on overset grids using high-order accurate schemes, dual-time stepping, low Mach number preconditioning, and hybrid turbulence modeling. Computational results for isolated rotors are shown to compare well with available experimental data. Computational results in hover reveal the differences between a conventional configuration where the rotors are mounted above the fuselage and an unconventional configuration where the rotors are mounted below the fuselage. Complex flow physics in forward flight is investigated. The goal of this work is to demonstrate that understanding of interactional aerodynamics can be an important factor in design decisions regarding rotor and fuselage placement for next-generation multi-rotor drones.
DEFF Research Database (Denmark)
Kraft, Peter; Sørensen, Jens Otto
2001-01-01
The paper attempts theoretically to clarify the interrelation between various levels of descriptions used in the modelling and the programming of information systems. We suggest an analysis where we characterise the description levels with respect to how precisely they may handle information abou...... and other textual models. We also consider the aptness of models that include procedural mechanisms such as active and object databases...
An ODP computational model of a cooperative binding object
Logé, Christophe; Najm, Elie; Chen, Ken
1997-12-01
A next generation of systems that should appear will have to manage simultaneously several geographically distributed users. These systems belong to the class of computer-supported cooperative work systems (CSCW). The development of such complex systems requires rigorous development methods and flexible open architectures. Open distributed processing (ODP) is a standardization effort that aims at providing such architectures. ODP features appropriate abstraction levels and a clear articulation between requirements, programming and infrastructure support. ODP advocates the use of formal methods for the specification of systems and components. The computational model, an object-based model, one of the abstraction levels identified within ODP, plays a central role in the global architecture. In this model, basic objects can be composed with communication and distribution abstractions (called binding objects) to form a computational specification of distributed systems, or applications. Computational specifications can then be mapped (in a mechanism akin to compilation) onto an engineering solution. We use an ODP-inspired method to computationally specify a cooperative system. We start from a general purpose component that we progressively refine into a collection of basic and binding objects. We focus on two issues of a co-authoring application, namely, dynamic reconfiguration and multiview synchronization. We discuss solutions for these issues and formalize them using the MT-LOTOS specification language that is currently studied in the ISO standardization formal description techniques group.
Computational Modelling of Piston Ring Dynamics in 3D
Directory of Open Access Journals (Sweden)
Dlugoš Jozef
2014-12-01
Full Text Available Advanced computational models of a piston assembly based on the level of virtual prototypes require a detailed description of piston ring behaviour. Considering these requirements, the piston rings operate in regimes that cannot, in general, be simplified into an axisymmetric model. The piston and the cylinder liner do not have a perfect round shape, mainly due to machining tolerances and external thermo-mechanical loads. If the ring cannot follow the liner deformations, a local loss of contact occurs resulting in blow-by and increased consumption of lubricant oil in the engine. Current computational models are unable to implement such effects. The paper focuses on the development of a flexible 3D piston ring model based on the Timoshenko beam theory using the multibody system (MBS. The MBS model is compared to the finite element method (FEM solution.
Computational hemodynamics theory, modelling and applications
Tu, Jiyuan; Wong, Kelvin Kian Loong
2015-01-01
This book discusses geometric and mathematical models that can be used to study fluid and structural mechanics in the cardiovascular system. Where traditional research methodologies in the human cardiovascular system are challenging due to its invasive nature, several recent advances in medical imaging and computational fluid and solid mechanics modelling now provide new and exciting research opportunities. This emerging field of study is multi-disciplinary, involving numerical methods, computational science, fluid and structural mechanics, and biomedical engineering. Certainly any new student or researcher in this field may feel overwhelmed by the wide range of disciplines that need to be understood. This unique book is one of the first to bring together knowledge from multiple disciplines, providing a starting point to each of the individual disciplines involved, attempting to ease the steep learning curve. This book presents elementary knowledge on the physiology of the cardiovascular system; basic knowl...
Computer model for harmonic ultrasound imaging.
Li, Y; Zagzebski, J A
2000-01-01
Harmonic ultrasound imaging has received great attention from ultrasound scanner manufacturers and researchers. In this paper, we present a computer model that can generate realistic harmonic images. In this model, the incident ultrasound is modeled after the "KZK" equation, and the echo signal is modeled using linear propagation theory because the echo signal is much weaker than the incident pulse. Both time domain and frequency domain numerical solutions to the "KZK" equation were studied. Realistic harmonic images of spherical lesion phantoms were generated for scans by a circular transducer. This model can be a very useful tool for studying the harmonic buildup and dissipation processes in a nonlinear medium, and it can be used to investigate a wide variety of topics related to B-mode harmonic imaging.
Computer modelling of superconductive fault current limiters
Energy Technology Data Exchange (ETDEWEB)
Weller, R.A.; Campbell, A.M.; Coombs, T.A.; Cardwell, D.A.; Storey, R.J. [Cambridge Univ. (United Kingdom). Interdisciplinary Research Centre in Superconductivity (IRC); Hancox, J. [Rolls Royce, Applied Science Division, Derby (United Kingdom)
1998-05-01
Investigations are being carried out on the use of superconductors for fault current limiting applications. A number of computer programs are being developed to predict the behavior of different `resistive` fault current limiter designs under a variety of fault conditions. The programs achieve solution by iterative methods based around real measured data rather than theoretical models in order to achieve accuracy at high current densities. (orig.) 5 refs.
Internship training in computer science: Exploring student satisfaction levels.
Jaradat, Ghaith M
2017-08-01
The requirement of employability in the job market prompted universities to conduct internship training as part of their study plans. There is a need to train students on important academic and professional skills related to the workplace with an IT component. This article describes a statistical study that measures satisfaction levels among students in the faculty of Information Technology and Computer Science in Jordan. The objective of this study is to explore factors that influence student satisfaction with regards to enrolling in an internship training program. The study was conducted to gather student perceptions, opinions, preferences and satisfaction levels related to the program. Data were collected via a mixed method survey (surveys and interviews) from student-respondents. The survey collects demographic and background information from students, including their perception of faculty performance in the training poised to prepare them for the job market. Findings from this study show that students expect internship training to improve their professional and personal skills as well as to increase their workplace-related satisfaction. It is concluded that improving the internship training is crucial among the students as it is expected to enrich their experiences, knowledge and skills in the personal and professional life. It is also expected to increase their level of confidence when it comes to exploring their future job opportunities in the Jordanian market. Copyright © 2017 Elsevier Ltd. All rights reserved.
Computational fluid dynamics modelling in cardiovascular medicine.
Morris, Paul D; Narracott, Andrew; von Tengg-Kobligk, Hendrik; Silva Soto, Daniel Alejandro; Hsiao, Sarah; Lungu, Angela; Evans, Paul; Bressloff, Neil W; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P
2016-01-01
This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards 'digital patient' or 'virtual physiological human' representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges. Published by the BMJ Publishing Group Limited. For permission
The deterministic computational modelling of radioactivity
International Nuclear Information System (INIS)
Damasceno, Ralf M.; Barros, Ricardo C.
2009-01-01
This paper describes a computational applicative (software) that modelling the simply radioactive decay, the stable nuclei decay, and tbe chain decay directly coupled with superior limit of thirteen radioactive decays, and a internal data bank with the decay constants of the various existent decays, facilitating considerably the use of program by people who does not have access to the program are not connected to the nuclear area; this makes access of the program to people that do not have acknowledgment of that area. The paper presents numerical results for typical problem-models
Cloud Computing, Tieto Cloud Server Model
Suikkanen, Saara
2013-01-01
The purpose of this study is to find out what is cloud computing. To be able to make wise decisions when moving to cloud or considering it, companies need to understand what cloud is consists of. Which model suits best to they company, what should be taken into account before moving to cloud, what is the cloud broker role and also SWOT analysis of cloud? To be able to answer customer requirements and business demands, IT companies should develop and produce new service models. IT house T...
A conceptual framework of computations in mid-level vision.
Kubilius, Jonas; Wagemans, Johan; Op de Beeck, Hans P
2014-01-01
If a picture is worth a thousand words, as an English idiom goes, what should those words-or, rather, descriptors-capture? What format of image representation would be sufficiently rich if we were to reconstruct the essence of images from their descriptors? In this paper, we set out to develop a conceptual framework that would be: (i) biologically plausible in order to provide a better mechanistic understanding of our visual system; (ii) sufficiently robust to apply in practice on realistic images; and (iii) able to tap into underlying structure of our visual world. We bring forward three key ideas. First, we argue that surface-based representations are constructed based on feature inference from the input in the intermediate processing layers of the visual system. Such representations are computed in a largely pre-semantic (prior to categorization) and pre-attentive manner using multiple cues (orientation, color, polarity, variation in orientation, and so on), and explicitly retain configural relations between features. The constructed surfaces may be partially overlapping to compensate for occlusions and are ordered in depth (figure-ground organization). Second, we propose that such intermediate representations could be formed by a hierarchical computation of similarity between features in local image patches and pooling of highly-similar units, and reestimated via recurrent loops according to the task demands. Finally, we suggest to use datasets composed of realistically rendered artificial objects and surfaces in order to better understand a model's behavior and its limitations.
A conceptual framework of computations in mid-level vision
Kubilius, Jonas; Wagemans, Johan; Op de Beeck, Hans P.
2014-01-01
If a picture is worth a thousand words, as an English idiom goes, what should those words—or, rather, descriptors—capture? What format of image representation would be sufficiently rich if we were to reconstruct the essence of images from their descriptors? In this paper, we set out to develop a conceptual framework that would be: (i) biologically plausible in order to provide a better mechanistic understanding of our visual system; (ii) sufficiently robust to apply in practice on realistic images; and (iii) able to tap into underlying structure of our visual world. We bring forward three key ideas. First, we argue that surface-based representations are constructed based on feature inference from the input in the intermediate processing layers of the visual system. Such representations are computed in a largely pre-semantic (prior to categorization) and pre-attentive manner using multiple cues (orientation, color, polarity, variation in orientation, and so on), and explicitly retain configural relations between features. The constructed surfaces may be partially overlapping to compensate for occlusions and are ordered in depth (figure-ground organization). Second, we propose that such intermediate representations could be formed by a hierarchical computation of similarity between features in local image patches and pooling of highly-similar units, and reestimated via recurrent loops according to the task demands. Finally, we suggest to use datasets composed of realistically rendered artificial objects and surfaces in order to better understand a model's behavior and its limitations. PMID:25566044
Computational Design Modelling : Proceedings of the Design Modelling Symposium
Kilian, Axel; Palz, Norbert; Scheurer, Fabian
2012-01-01
This book publishes the peer-reviewed proceeding of the third Design Modeling Symposium Berlin . The conference constitutes a platform for dialogue on experimental practice and research within the field of computationally informed architectural design. More than 60 leading experts the computational processes within the field of computationally informed architectural design to develop a broader and less exotic building practice that bears more subtle but powerful traces of the complex tool set and approaches we have developed and studied over recent years. The outcome are new strategies for a reasonable and innovative implementation of digital potential in truly innovative and radical design guided by both responsibility towards processes and the consequences they initiate.
Toward a computational model of hemostasis
Leiderman, Karin; Danes, Nicholas; Schoeman, Rogier; Neeves, Keith
2017-11-01
Hemostasis is the process by which a blood clot forms to prevent bleeding at a site of injury. The formation time, size and structure of a clot depends on the local hemodynamics and the nature of the injury. Our group has previously developed computational models to study intravascular clot formation, a process confined to the interior of a single vessel. Here we present the first stage of an experimentally-validated, computational model of extravascular clot formation (hemostasis) in which blood through a single vessel initially escapes through a hole in the vessel wall and out a separate injury channel. This stage of the model consists of a system of partial differential equations that describe platelet aggregation and hemodynamics, solved via the finite element method. We also present results from the analogous, in vitro, microfluidic model. In both models, formation of a blood clot occludes the injury channel and stops flow from escaping while blood in the main vessel retains its fluidity. We discuss the different biochemical and hemodynamic effects on clot formation using distinct geometries representing intra- and extravascular injuries.
Computational Fluid Dynamics Modeling of Bacillus anthracis ...
Journal Article Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditions using average species-specific minute volumes. Four different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Despite the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways of the human at the same air concentration of anthrax spores. This greater deposition of spores in the upper airways in the human resulted in lower penetration and deposition in the tracheobronchial airways and the deep lung than that predict
Ferrofluids: Modeling, numerical analysis, and scientific computation
Tomas, Ignacio
This dissertation presents some developments in the Numerical Analysis of Partial Differential Equations (PDEs) describing the behavior of ferrofluids. The most widely accepted PDE model for ferrofluids is the Micropolar model proposed by R.E. Rosensweig. The Micropolar Navier-Stokes Equations (MNSE) is a subsystem of PDEs within the Rosensweig model. Being a simplified version of the much bigger system of PDEs proposed by Rosensweig, the MNSE are a natural starting point of this thesis. The MNSE couple linear velocity u, angular velocity w, and pressure p. We propose and analyze a first-order semi-implicit fully-discrete scheme for the MNSE, which decouples the computation of the linear and angular velocities, is unconditionally stable and delivers optimal convergence rates under assumptions analogous to those used for the Navier-Stokes equations. Moving onto the much more complex Rosensweig's model, we provide a definition (approximation) for the effective magnetizing field h, and explain the assumptions behind this definition. Unlike previous definitions available in the literature, this new definition is able to accommodate the effect of external magnetic fields. Using this definition we setup the system of PDEs coupling linear velocity u, pressure p, angular velocity w, magnetization m, and magnetic potential ϕ We show that this system is energy-stable and devise a numerical scheme that mimics the same stability property. We prove that solutions of the numerical scheme always exist and, under certain simplifying assumptions, that the discrete solutions converge. A notable outcome of the analysis of the numerical scheme for the Rosensweig's model is the choice of finite element spaces that allow the construction of an energy-stable scheme. Finally, with the lessons learned from Rosensweig's model, we develop a diffuse-interface model describing the behavior of two-phase ferrofluid flows and present an energy-stable numerical scheme for this model. For a
Computer Modeling of Human Delta Opioid Receptor
Directory of Open Access Journals (Sweden)
Tatyana Dzimbova
2013-04-01
Full Text Available The development of selective agonists of δ-opioid receptor as well as the model of interaction of ligands with this receptor is the subjects of increased interest. In the absence of crystal structures of opioid receptors, 3D homology models with different templates have been reported in the literature. The problem is that these models are not available for widespread use. The aims of our study are: (1 to choose within recently published crystallographic structures templates for homology modeling of the human δ-opioid receptor (DOR; (2 to evaluate the models with different computational tools; and (3 to precise the most reliable model basing on correlation between docking data and in vitro bioassay results. The enkephalin analogues, as ligands used in this study, were previously synthesized by our group and their biological activity was evaluated. Several models of DOR were generated using different templates. All these models were evaluated by PROCHECK and MolProbity and relationship between docking data and in vitro results was determined. The best correlations received for the tested models of DOR were found between efficacy (erel of the compounds, calculated from in vitro experiments and Fitness scoring function from docking studies. New model of DOR was generated and evaluated by different approaches. This model has good GA341 value (0.99 from MODELLER, good values from PROCHECK (92.6% of most favored regions and MolProbity (99.5% of favored regions. Scoring function correlates (Pearson r = -0.7368, p-value = 0.0097 with erel of a series of enkephalin analogues, calculated from in vitro experiments. So, this investigation allows suggesting a reliable model of DOR. Newly generated model of DOR receptor could be used further for in silico experiments and it will give possibility for faster and more correct design of selective and effective ligands for δ-opioid receptor.
Validation of a phytoremediation computer model
International Nuclear Information System (INIS)
Corapcioglu, M.Y.; Sung, K.; Rhykerd, R.L.; Munster, C.; Drew, M.
1999-01-01
The use of plants to stimulate remediation of contaminated soil is an effective, low-cost cleanup method which can be applied to many different sites. A phytoremediation computer model has been developed to simulate how recalcitrant hydrocarbons interact with plant roots in unsaturated soil. A study was conducted to provide data to validate and calibrate the model. During the study, lysimeters were constructed and filled with soil contaminated with 10 [mg kg -1 ] TNT, PBB and chrysene. Vegetated and unvegetated treatments were conducted in triplicate to obtain data regarding contaminant concentrations in the soil, plant roots, root distribution, microbial activity, plant water use and soil moisture. When given the parameters of time and depth, the model successfully predicted contaminant concentrations under actual field conditions. Other model parameters are currently being evaluated. 15 refs., 2 figs
Computer models for optimizing radiation therapy
International Nuclear Information System (INIS)
Duechting, W.
1998-01-01
The aim of this contribution is to outline how methods of system analysis, control therapy and modelling can be applied to simulate normal and malignant cell growth and to optimize cancer treatment as for instance radiation therapy. Based on biological observations and cell kinetic data, several types of models have been developed describing the growth of tumor spheroids and the cell renewal of normal tissue. The irradiation model is represented by the so-called linear-quadratic model describing the survival fraction as a function of the dose. Based thereon, numerous simulation runs for different treatment schemes can be performed. Thus, it is possible to study the radiation effect on tumor and normal tissue separately. Finally, this method enables a computer-assisted recommendation for an optimal patient-specific treatment schedule prior to clinical therapy. (orig.) [de
Rahman, P. A.
2018-05-01
This scientific paper deals with the two-level backbone computer networks with arbitrary topology. A specialized method, offered by the author for calculation of the stationary availability factor of the two-level backbone computer networks, based on the Markov reliability models for the set of the independent repairable elements with the given failure and repair rates and the methods of the discrete mathematics, is also discussed. A specialized algorithm, offered by the author for analysis of the network connectivity, taking into account different kinds of the network equipment failures, is also observed. Finally, this paper presents an example of calculation of the stationary availability factor for the backbone computer network with the given topology.
Computer modeling for optimal placement of gloveboxes
Energy Technology Data Exchange (ETDEWEB)
Hench, K.W.; Olivas, J.D. [Los Alamos National Lab., NM (United States); Finch, P.R. [New Mexico State Univ., Las Cruces, NM (United States)
1997-08-01
Reduction of the nuclear weapons stockpile and the general downsizing of the nuclear weapons complex has presented challenges for Los Alamos. One is to design an optimized fabrication facility to manufacture nuclear weapon primary components (pits) in an environment of intense regulation and shrinking budgets. Historically, the location of gloveboxes in a processing area has been determined without benefit of industrial engineering studies to ascertain the optimal arrangement. The opportunity exists for substantial cost savings and increased process efficiency through careful study and optimization of the proposed layout by constructing a computer model of the fabrication process. This paper presents an integrative two- stage approach to modeling the casting operation for pit fabrication. The first stage uses a mathematical technique for the formulation of the facility layout problem; the solution procedure uses an evolutionary heuristic technique. The best solutions to the layout problem are used as input to the second stage - a computer simulation model that assesses the impact of competing layouts on operational performance. The focus of the simulation model is to determine the layout that minimizes personnel radiation exposures and nuclear material movement, and maximizes the utilization of capacity for finished units.
Computer modeling for optimal placement of gloveboxes
International Nuclear Information System (INIS)
Hench, K.W.; Olivas, J.D.; Finch, P.R.
1997-08-01
Reduction of the nuclear weapons stockpile and the general downsizing of the nuclear weapons complex has presented challenges for Los Alamos. One is to design an optimized fabrication facility to manufacture nuclear weapon primary components (pits) in an environment of intense regulation and shrinking budgets. Historically, the location of gloveboxes in a processing area has been determined without benefit of industrial engineering studies to ascertain the optimal arrangement. The opportunity exists for substantial cost savings and increased process efficiency through careful study and optimization of the proposed layout by constructing a computer model of the fabrication process. This paper presents an integrative two- stage approach to modeling the casting operation for pit fabrication. The first stage uses a mathematical technique for the formulation of the facility layout problem; the solution procedure uses an evolutionary heuristic technique. The best solutions to the layout problem are used as input to the second stage - a computer simulation model that assesses the impact of competing layouts on operational performance. The focus of the simulation model is to determine the layout that minimizes personnel radiation exposures and nuclear material movement, and maximizes the utilization of capacity for finished units
Level of detail in 3D city models
Biljecki, F.
2017-01-01
The concept of level of detail (LOD) describes the content of 3D city models and it plays an essential role during their life cycle. On one hand it comes akin to the concepts of scale in cartography and LOD in computer graphics, on the other hand it is a standalone concept that requires attention.
Development of computing code system for level 3 PSA
International Nuclear Information System (INIS)
Jeong, Jong Tae; Yu, Dong Han; Kim, Seung Hwan.
1997-07-01
Among the various research areas of the level 3 PSA, the effect of terrain on the transport of radioactive material was investigated through wind tunnel experiment. These results will give a physical insight in the development of a new dispersion model. Because there are some discrepancies between the results from Gaussian plume model and those from field test, the effect of terrain on the atmospheric dispersion was investigated by using CTDMPLUS code. Through this study we find that the model which can treat terrain effect is essential in the atmospheric dispersion of radioactive materials and the CTDMPLUS model can be used as a useful tool. And it is suggested that modification of a model and experimental study should be made through the continuous effort. The health effect assessment near the Yonggwang site by using IPE (Individual plant examination) results and its site data was performed. The health effect assessment is an important part of consequence analysis of a nuclear power plant site. The MACCS was used in the assessment. Based on the calculation of CCDF for each risk measure, it is shown that CCDF has a slow slope and thus wide probability distribution in cases of early fatality, early injury, total early fatality risk, and total weighted early fatality risk. And in cases of cancer fatality and population dose within 48km and 80km, the CCDF curve have a steep slope and thus narrow probability distribution. The establishment of methodologies for necessary models for consequence analysis resulting form a server accident in the nuclear power plant was made and a program for consequence analysis was developed. The models include atmospheric transport and diffusion, calculation of exposure doses for various pathways, and assessment of health effects and associated risks. Finally, the economic impact resulting form an accident in a nuclear power plant was investigated. In this study, estimation models for each cost terms that considered in economic
Development of computing code system for level 3 PSA
Energy Technology Data Exchange (ETDEWEB)
Jeong, Jong Tae; Yu, Dong Han; Kim, Seung Hwan
1997-07-01
Among the various research areas of the level 3 PSA, the effect of terrain on the transport of radioactive material was investigated through wind tunnel experiment. These results will give a physical insight in the development of a new dispersion model. Because there are some discrepancies between the results from Gaussian plume model and those from field test, the effect of terrain on the atmospheric dispersion was investigated by using CTDMPLUS code. Through this study we find that the model which can treat terrain effect is essential in the atmospheric dispersion of radioactive materials and the CTDMPLUS model can be used as a useful tool. And it is suggested that modification of a model and experimental study should be made through the continuous effort. The health effect assessment near the Yonggwang site by using IPE (Individual plant examination) results and its site data was performed. The health effect assessment is an important part of consequence analysis of a nuclear power plant site. The MACCS was used in the assessment. Based on the calculation of CCDF for each risk measure, it is shown that CCDF has a slow slope and thus wide probability distribution in cases of early fatality, early injury, total early fatality risk, and total weighted early fatality risk. And in cases of cancer fatality and population dose within 48km and 80km, the CCDF curve have a steep slope and thus narrow probability distribution. The establishment of methodologies for necessary models for consequence analysis resulting form a server accident in the nuclear power plant was made and a program for consequence analysis was developed. The models include atmospheric transport and diffusion, calculation of exposure doses for various pathways, and assessment of health effects and associated risks. Finally, the economic impact resulting form an accident in a nuclear power plant was investigated. In this study, estimation models for each cost terms that considered in economic
Impact of changing computer technology on hydrologic and water resource modeling
Loucks, D.P.; Fedra, K.
1987-01-01
The increasing availability of substantial computer power at relatively low costs and the increasing ease of using computer graphics, of communicating with other computers and data bases, and of programming using high-level problem-oriented computer languages, is providing new opportunities and challenges for those developing and using hydrologic and water resources models. This paper reviews some of the progress made towards the development and application of computer support systems designe...
Stochastic Models for Low Level DNA Mixtures
Czech Academy of Sciences Publication Activity Database
Slovák, Dalibor; Zvárová, Jana
2012-01-01
Roč. 8, č. 5 (2012), s. 25-30 ISSN 1801-5603 Grant - others:GA UK(CZ) SVV-2012-264513 Institutional support: RVO:67985807 Keywords : forensic DNA interpretation * low level samples * allele peak areas * dropout probability Subject RIV: IN - Informatics, Computer Science http://www.ejbi.org/img/ejbi/2012/5/Slovak_en.pdf
Stochastic Models for Low Level DNA Mixtures
Czech Academy of Sciences Publication Activity Database
Slovák, Dalibor; Zvárová, Jana
2013-01-01
Roč. 1, č. 1 (2013), s. 28-28 ISSN 1805-8698. [EFMI 2013 Special Topic Conference. 17.04.2013-19.04.2013, Prague] Institutional support: RVO:67985807 Keywords : forensic DNA interpretation * low level samples * allele peak heights * dropout probability Subject RIV: IN - Informatics, Computer Science
Computer models in the design of FXR
International Nuclear Information System (INIS)
Vogtlin, G.; Kuenning, R.
1980-01-01
Lawrence Livermore National Laboratory is developing a 15 to 20 MeV electron accelerator with a beam current goal of 4 kA. This accelerator will be used for flash radiography and has a requirement of high reliability. Components being developed include spark gaps, Marx generators, water Blumleins and oil insulation systems. A SCEPTRE model was developed that takes into consideration the non-linearity of the ferrite and the time dependency of the emission from a field emitter cathode. This model was used to predict an optimum charge time to obtain maximum magnetic flux change from the ferrite. This model and its application will be discussed. JASON was used extensively to determine optimum locations and shapes of supports and insulators. It was also used to determine stress within bubbles adjacent to walls in oil. Computer results will be shown and bubble breakdown will be related to bubble size
Computational modeling of a forward lunge
DEFF Research Database (Denmark)
Alkjær, Tine; Wieland, Maja Rose; Andersen, Michael Skipper
2012-01-01
during forward lunging. Thus, the purpose of the present study was to establish a musculoskeletal model of the forward lunge to computationally investigate the complete mechanical force equilibrium of the tibia during the movement to examine the loading pattern of the cruciate ligaments. A healthy female...... was selected from a group of healthy subjects who all performed a forward lunge on a force platform, targeting a knee flexion angle of 90°. Skin-markers were placed on anatomical landmarks on the subject and the movement was recorded by five video cameras. The three-dimensional kinematic data describing...... the forward lunge movement were extracted and used to develop a biomechanical model of the lunge movement. The model comprised two legs including femur, crus, rigid foot segments and the pelvis. Each leg had 35 independent muscle units, which were recruited according to a minimum fatigue criterion...
Computational fluid dynamic modelling of cavitation
Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.
1993-01-01
Models in sheet cavitation in cryogenic fluids are developed for use in Euler and Navier-Stokes codes. The models are based upon earlier potential-flow models but enable the cavity inception point, length, and shape to be determined as part of the computation. In the present paper, numerical solutions are compared with experimental measurements for both pressure distribution and cavity length. Comparisons between models are also presented. The CFD model provides a relatively simple modification to an existing code to enable cavitation performance predictions to be included. The analysis also has the added ability of incorporating thermodynamic effects of cryogenic fluids into the analysis. Extensions of the current two-dimensional steady state analysis to three-dimensions and/or time-dependent flows are, in principle, straightforward although geometrical issues become more complicated. Linearized models, however offer promise of providing effective cavitation modeling in three-dimensions. This analysis presents good potential for improved understanding of many phenomena associated with cavity flows.
Computational model of a whole tree combustor
Energy Technology Data Exchange (ETDEWEB)
Bryden, K.M.; Ragland, K.W. [Univ. of Wisconsin, Madison, WI (United States)
1993-12-31
A preliminary computational model has been developed for the whole tree combustor and compared to test results. In the simulation model presented hardwood logs, 15 cm in diameter are burned in a 4 m deep fuel bed. Solid and gas temperature, solid and gas velocity, CO, CO{sub 2}, H{sub 2}O, HC and O{sub 2} profiles are calculated. This deep, fixed bed combustor obtains high energy release rates per unit area due to the high inlet air velocity and extended reaction zone. The lowest portion of the overall bed is an oxidizing region and the remainder of the bed acts as a gasification and drying region. The overfire air region completes the combustion. Approximately 40% of the energy is released in the lower oxidizing region. The wood consumption rate obtained from the computational model is 4,110 kg/m{sup 2}-hr which matches well the consumption rate of 3,770 kg/m{sup 2}-hr observed during the peak test period of the Aurora, MN test. The predicted heat release rate is 16 MW/m{sup 2} (5.0*10{sup 6} Btu/hr-ft{sup 2}).
Computer models for fading channels with applications to digital transmission
Loo, Chun; Secord, Norman
1991-11-01
The authors describe computer models for Rayleigh, Rician, log-normal, and land-mobile-satellite fading channels. All computer models for the fading channels are based on the manipulation of a white Gaussian random process. This process is approximated by a sum of sinusoids with random phase angle. These models compare very well with analytical models in terms of their probability distribution of envelope and phase of the fading signal. For the land mobile satellite fading channel, results of level crossing rate and average fade duration are given. These results show that the computer models can provide a good coarse estimate of the time statistic of the faded signal. Also, for the land-mobile-satellite fading channel, the results show that a 3-pole Butterworth shaping filter should be used with the model. An example of the application of the land-mobile-satellite fading-channel model to predict the performance of a differential phase-shift keying signal is described.
Optimization and mathematical modeling in computer architecture
Sankaralingam, Karu; Nowatzki, Tony
2013-01-01
In this book we give an overview of modeling techniques used to describe computer systems to mathematical optimization tools. We give a brief introduction to various classes of mathematical optimization frameworks with special focus on mixed integer linear programming which provides a good balance between solver time and expressiveness. We present four detailed case studies -- instruction set customization, data center resource management, spatial architecture scheduling, and resource allocation in tiled architectures -- showing how MILP can be used and quantifying by how much it outperforms t
Dynamical Models for Computer Viruses Propagation
Directory of Open Access Journals (Sweden)
José R. C. Piqueira
2008-01-01
Full Text Available Nowadays, digital computer systems and networks are the main engineering tools, being used in planning, design, operation, and control of all sizes of building, transportation, machinery, business, and life maintaining devices. Consequently, computer viruses became one of the most important sources of uncertainty, contributing to decrease the reliability of vital activities. A lot of antivirus programs have been developed, but they are limited to detecting and removing infections, based on previous knowledge of the virus code. In spite of having good adaptation capability, these programs work just as vaccines against diseases and are not able to prevent new infections based on the network state. Here, a trial on modeling computer viruses propagation dynamics relates it to other notable events occurring in the network permitting to establish preventive policies in the network management. Data from three different viruses are collected in the Internet and two different identification techniques, autoregressive and Fourier analyses, are applied showing that it is possible to forecast the dynamics of a new virus propagation by using the data collected from other viruses that formerly infected the network.
Energy Technology Data Exchange (ETDEWEB)
Pausader, M.; Parey, S.; Nogaj, M. [EDF/R and D, Chatou Cedex (France); Bernie, D. [Met Office Hadley Centre, Exeter (United Kingdom)
2012-03-15
In order to take into account uncertainties in the future climate projections there is a growing demand for probabilistic projections of climate change. This paper presents a methodology for producing such a probabilistic analysis of future temperature extremes. The 20- and 100-years return levels are obtained from that of the normalized variable and the changes in mean and standard deviation given by climate models for the desired future periods. Uncertainty in future change of these extremes is quantified using a multi-model ensemble and a perturbed physics ensemble. The probability density functions of future return levels are computed at a representative location from the joint probability distribution of mean and standard deviation changes given by the two combined ensembles of models. For the studied location, the 100-years return level at the end of the century is lower than 41 C with an 80% confidence. Then, as the number of model simulations is low to compute a reliable distribution, two techniques proposed in the literature (local pattern scaling and ANOVA) have been used to infer the changes in mean and standard deviation for the combinations of RCM and GCM which have not been run. The ANOVA technique leads to better results for the reconstruction of the mean changes, whereas the two methods fail to correctly infer the changes in standard deviation. As standard deviation change has a major impact on return level change, there is a need to improve the models and the different techniques regarding the variance changes. (orig.)
DEFF Research Database (Denmark)
Kraft, Peter; Sørensen, Jens Otto
2001-01-01
given types of properties, and examine how descriptions on higher levels translate into descriptions on lower levels. Our example looks at temporal properties where the information is concerned with the existence in time. In a high level temporal model with information kept in a three-dimensional space...... the existences in time can be mapped precisely and consistently securing a consistent handling of the temporal properties. We translate the high level temporal model into an entity-relationship model, with the information in a two-dimensional graph, and finally we look at the translations into relational...... and other textual models. We also consider the aptness of models that include procedural mechanisms such as active and object databases...
Demonstrated of the use of a computational systems biology approach to model dose response relationships. Also discussed how the biologically motivated dose response models have only limited reference to the underlying molecular level. Discussed the integration of Computational S...
Computer modelling of an underground mine ventilation system
International Nuclear Information System (INIS)
1984-12-01
The ability to control workplace short-lived radon daughter concentrations to appropriate levels is crucial to the underground mining of uranium ores. Recognizing that mine ventilation models can be used to design ventilation facilities in new mines and to evaluate proposed ventilation changes in existing mines the Atomic Energy Control Board (AECB) initiated this study to first investigate existing mine ventilation models and then develop a suitable model for use by AECB staff. At the start of the study, available literature on mine ventilation models, in partiuclar models suitable for the unique task of predicting radon daughter levels, were reviewed. While the details of the models varied, it was found that the basic calculation procedures used by the various models were similar. Consequently, a model developed at Queen's University that not only already incorporated most of the desired features but was also readily available, was selected for implementation. Subsequently, the Queen's computer program (actually two programs, one for mine ventilation and one to calculate radon daughter levels) was extended and tested. The following report provides the relevant documentation for setting up and running the models. The mathematical basis of the calculational procedures used in the models are also described
Advanced data analysis in neuroscience integrating statistical and computational models
Durstewitz, Daniel
2017-01-01
This book is intended for use in advanced graduate courses in statistics / machine learning, as well as for all experimental neuroscientists seeking to understand statistical methods at a deeper level, and theoretical neuroscientists with a limited background in statistics. It reviews almost all areas of applied statistics, from basic statistical estimation and test theory, linear and nonlinear approaches for regression and classification, to model selection and methods for dimensionality reduction, density estimation and unsupervised clustering. Its focus, however, is linear and nonlinear time series analysis from a dynamical systems perspective, based on which it aims to convey an understanding also of the dynamical mechanisms that could have generated observed time series. Further, it integrates computational modeling of behavioral and neural dynamics with statistical estimation and hypothesis testing. This way computational models in neuroscience are not only explanat ory frameworks, but become powerfu...
Getting computer models to communicate; Faire communiquer les modeles numeriques
Energy Technology Data Exchange (ETDEWEB)
Caremoli, Ch. [Electricite de France (EDF), 75 - Paris (France). Dept. Mecanique et Modeles Numeriques; Erhard, P. [Electricite de France (EDF), 75 - Paris (France). Dept. Physique des Reacteurs
1999-07-01
Today's computers have the processing power to deliver detailed and global simulations of complex industrial processes such as the operation of a nuclear reactor core. So should we be producing new, global numerical models to take full advantage of this new-found power? If so, it would be a long-term job. There is, however, another solution; to couple the existing validated numerical models together so that they work as one. (authors)
A High Level Model of a Conscious Embodied Agent
Czech Academy of Sciences Publication Activity Database
Wiedermann, Jiří
2010-01-01
Roč. 2, č. 3 (2010), s. 62-78 ISSN 1942-9045 R&D Projects: GA ČR GAP202/10/1333 Institutional research plan: CEZ:AV0Z10300504 Keywords : embodied agent * internal world models * higher cognitive function Subject RIV: IN - Informatics, Computer Science http://www.igi-global.com/article/high-level-model-conscious-embodied/46147
Analysis of a Model for Computer Virus Transmission
Directory of Open Access Journals (Sweden)
Peng Qin
2015-01-01
Full Text Available Computer viruses remain a significant threat to computer networks. In this paper, the incorporation of new computers to the network and the removing of old computers from the network are considered. Meanwhile, the computers are equipped with antivirus software on the computer network. The computer virus model is established. Through the analysis of the model, disease-free and endemic equilibrium points are calculated. The stability conditions of the equilibria are derived. To illustrate our theoretical analysis, some numerical simulations are also included. The results provide a theoretical basis to control the spread of computer virus.
Using Computational and Mechanical Models to Study Animal Locomotion
Miller, Laura A.; Goldman, Daniel I.; Hedrick, Tyson L.; Tytell, Eric D.; Wang, Z. Jane; Yen, Jeannette; Alben, Silas
2012-01-01
Recent advances in computational methods have made realistic large-scale simulations of animal locomotion possible. This has resulted in numerous mathematical and computational studies of animal movement through fluids and over substrates with the purpose of better understanding organisms’ performance and improving the design of vehicles moving through air and water and on land. This work has also motivated the development of improved numerical methods and modeling techniques for animal locomotion that is characterized by the interactions of fluids, substrates, and structures. Despite the large body of recent work in this area, the application of mathematical and numerical methods to improve our understanding of organisms in the context of their environment and physiology has remained relatively unexplored. Nature has evolved a wide variety of fascinating mechanisms of locomotion that exploit the properties of complex materials and fluids, but only recently are the mathematical, computational, and robotic tools available to rigorously compare the relative advantages and disadvantages of different methods of locomotion in variable environments. Similarly, advances in computational physiology have only recently allowed investigators to explore how changes at the molecular, cellular, and tissue levels might lead to changes in performance at the organismal level. In this article, we highlight recent examples of how computational, mathematical, and experimental tools can be combined to ultimately answer the questions posed in one of the grand challenges in organismal biology: “Integrating living and physical systems.” PMID:22988026
Electromagnetic Physics Models for Parallel Computing Architectures
International Nuclear Information System (INIS)
Amadio, G; Bianchini, C; Iope, R; Ananya, A; Apostolakis, J; Aurora, A; Bandieramonte, M; Brun, R; Carminati, F; Gheata, A; Gheata, M; Goulas, I; Nikitina, T; Bhattacharyya, A; Mohanty, A; Canal, P; Elvira, D; Jun, S Y; Lima, G; Duhem, L
2016-01-01
The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. GeantV, a next generation detector simulation, has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth and type of parallelization needed to achieve optimal performance. In this paper we describe implementation of electromagnetic physics models developed for parallel computing architectures as a part of the GeantV project. Results of preliminary performance evaluation and physics validation are presented as well. (paper)
Electromagnetic Physics Models for Parallel Computing Architectures
Amadio, G.; Ananya, A.; Apostolakis, J.; Aurora, A.; Bandieramonte, M.; Bhattacharyya, A.; Bianchini, C.; Brun, R.; Canal, P.; Carminati, F.; Duhem, L.; Elvira, D.; Gheata, A.; Gheata, M.; Goulas, I.; Iope, R.; Jun, S. Y.; Lima, G.; Mohanty, A.; Nikitina, T.; Novak, M.; Pokorski, W.; Ribon, A.; Seghal, R.; Shadura, O.; Vallecorsa, S.; Wenzel, S.; Zhang, Y.
2016-10-01
The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. GeantV, a next generation detector simulation, has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth and type of parallelization needed to achieve optimal performance. In this paper we describe implementation of electromagnetic physics models developed for parallel computing architectures as a part of the GeantV project. Results of preliminary performance evaluation and physics validation are presented as well.
A COMPUTATIONAL MODEL OF MOTOR NEURON DEGENERATION
Le Masson, Gwendal; Przedborski, Serge; Abbott, L.F.
2014-01-01
SUMMARY To explore the link between bioenergetics and motor neuron degeneration, we used a computational model in which detailed morphology and ion conductance are paired with intracellular ATP production and consumption. We found that reduced ATP availability increases the metabolic cost of a single action potential and disrupts K+/Na+ homeostasis, resulting in a chronic depolarization. The magnitude of the ATP shortage at which this ionic instability occurs depends on the morphology and intrinsic conductance characteristic of the neuron. If ATP shortage is confined to the distal part of the axon, the ensuing local ionic instability eventually spreads to the whole neuron and involves fasciculation-like spiking events. A shortage of ATP also causes a rise in intracellular calcium. Our modeling work supports the notion that mitochondrial dysfunction can account for salient features of the paralytic disorder amyotrophic lateral sclerosis, including motor neuron hyperexcitability, fasciculation, and differential vulnerability of motor neuron subpopulations. PMID:25088365
A computational model of motor neuron degeneration.
Le Masson, Gwendal; Przedborski, Serge; Abbott, L F
2014-08-20
To explore the link between bioenergetics and motor neuron degeneration, we used a computational model in which detailed morphology and ion conductance are paired with intracellular ATP production and consumption. We found that reduced ATP availability increases the metabolic cost of a single action potential and disrupts K+/Na+ homeostasis, resulting in a chronic depolarization. The magnitude of the ATP shortage at which this ionic instability occurs depends on the morphology and intrinsic conductance characteristic of the neuron. If ATP shortage is confined to the distal part of the axon, the ensuing local ionic instability eventually spreads to the whole neuron and involves fasciculation-like spiking events. A shortage of ATP also causes a rise in intracellular calcium. Our modeling work supports the notion that mitochondrial dysfunction can account for salient features of the paralytic disorder amyotrophic lateral sclerosis, including motor neuron hyperexcitability, fasciculation, and differential vulnerability of motor neuron subpopulations. Copyright © 2014 Elsevier Inc. All rights reserved.
Computational models of intergroup competition and warfare.
Energy Technology Data Exchange (ETDEWEB)
Letendre, Kenneth (University of New Mexico); Abbott, Robert G.
2011-11-01
This document reports on the research of Kenneth Letendre, the recipient of a Sandia Graduate Research Fellowship at the University of New Mexico. Warfare is an extreme form of intergroup competition in which individuals make extreme sacrifices for the benefit of their nation or other group to which they belong. Among animals, limited, non-lethal competition is the norm. It is not fully understood what factors lead to warfare. We studied the global variation in the frequency of civil conflict among countries of the world, and its positive association with variation in the intensity of infectious disease. We demonstrated that the burden of human infectious disease importantly predicts the frequency of civil conflict and tested a causal model for this association based on the parasite-stress theory of sociality. We also investigated the organization of social foraging by colonies of harvester ants in the genus Pogonomyrmex, using both field studies and computer models.
International Nuclear Information System (INIS)
Sullivan, T.M.; Kinsey, R.R.; Aronson, A.; Divadeenam, M.; MacKinnon, R.J.
1996-11-01
The BLT-MS computer code has been developed, implemented, and tested. BLT-MS is a two-dimensional finite element computer code capable of simulating the time evolution of concentration resulting from the time-dependent release and transport of aqueous phase species in a subsurface soil system. BLT-MS contains models to simulate the processes (water flow, container degradation, waste form performance, transport, and radioactive production and decay) most relevant to estimating the release and transport of contaminants from a subsurface disposal system. Water flow is simulated through tabular input or auxiliary files. Container degradation considers localized failure due to pitting corrosion and general failure due to uniform surface degradation processes. Waste form performance considers release to be limited by one of four mechanisms: rinse with partitioning, diffusion, uniform surface degradation, or solubility. Radioactive production and decay in the waste form are simulated. Transport considers the processes of advection, dispersion, diffusion, radioactive production and decay, reversible linear sorption, and sources (waste forms releases). To improve the usefulness of BLT-MS a preprocessor, BLTMSIN, which assists in the creation of input files, and a post-processor, BLTPLOT, which provides a visual display of the data have been developed. This document reviews the models implemented in BLT-MS and serves as a guide to creating input files for BLT-MS
Energy Technology Data Exchange (ETDEWEB)
Sullivan, T.M.; Kinsey, R.R.; Aronson, A.; Divadeenam, M. [Brookhaven National Lab., Upton, NY (United States); MacKinnon, R.J. [Brookhaven National Lab., Upton, NY (United States)]|[Ecodynamics Research Associates, Inc., Albuquerque, NM (United States)
1996-11-01
The BLT-MS computer code has been developed, implemented, and tested. BLT-MS is a two-dimensional finite element computer code capable of simulating the time evolution of concentration resulting from the time-dependent release and transport of aqueous phase species in a subsurface soil system. BLT-MS contains models to simulate the processes (water flow, container degradation, waste form performance, transport, and radioactive production and decay) most relevant to estimating the release and transport of contaminants from a subsurface disposal system. Water flow is simulated through tabular input or auxiliary files. Container degradation considers localized failure due to pitting corrosion and general failure due to uniform surface degradation processes. Waste form performance considers release to be limited by one of four mechanisms: rinse with partitioning, diffusion, uniform surface degradation, or solubility. Radioactive production and decay in the waste form are simulated. Transport considers the processes of advection, dispersion, diffusion, radioactive production and decay, reversible linear sorption, and sources (waste forms releases). To improve the usefulness of BLT-MS a preprocessor, BLTMSIN, which assists in the creation of input files, and a post-processor, BLTPLOT, which provides a visual display of the data have been developed. This document reviews the models implemented in BLT-MS and serves as a guide to creating input files for BLT-MS.
Method of generating a computer readable model
DEFF Research Database (Denmark)
2008-01-01
A method of generating a computer readable model of a geometrical object constructed from a plurality of interconnectable construction elements, wherein each construction element has a number of connection elements for connecting the construction element with another construction element. The met......A method of generating a computer readable model of a geometrical object constructed from a plurality of interconnectable construction elements, wherein each construction element has a number of connection elements for connecting the construction element with another construction element....... The method comprises encoding a first and a second one of the construction elements as corresponding data structures, each representing the connection elements of the corresponding construction element, and each of the connection elements having associated with it a predetermined connection type. The method...... further comprises determining a first connection element of the first construction element and a second connection element of the second construction element located in a predetermined proximity of each other; and retrieving connectivity information of the corresponding connection types of the first...
Direct modeling for computational fluid dynamics
Xu, Kun
2015-06-01
All fluid dynamic equations are valid under their modeling scales, such as the particle mean free path and mean collision time scale of the Boltzmann equation and the hydrodynamic scale of the Navier-Stokes (NS) equations. The current computational fluid dynamics (CFD) focuses on the numerical solution of partial differential equations (PDEs), and its aim is to get the accurate solution of these governing equations. Under such a CFD practice, it is hard to develop a unified scheme that covers flow physics from kinetic to hydrodynamic scales continuously because there is no such governing equation which could make a smooth transition from the Boltzmann to the NS modeling. The study of fluid dynamics needs to go beyond the traditional numerical partial differential equations. The emerging engineering applications, such as air-vehicle design for near-space flight and flow and heat transfer in micro-devices, do require further expansion of the concept of gas dynamics to a larger domain of physical reality, rather than the traditional distinguishable governing equations. At the current stage, the non-equilibrium flow physics has not yet been well explored or clearly understood due to the lack of appropriate tools. Unfortunately, under the current numerical PDE approach, it is hard to develop such a meaningful tool due to the absence of valid PDEs. In order to construct multiscale and multiphysics simulation methods similar to the modeling process of constructing the Boltzmann or the NS governing equations, the development of a numerical algorithm should be based on the first principle of physical modeling. In this paper, instead of following the traditional numerical PDE path, we introduce direct modeling as a principle for CFD algorithm development. Since all computations are conducted in a discretized space with limited cell resolution, the flow physics to be modeled has to be done in the mesh size and time step scales. Here, the CFD is more or less a direct
Stochastic linear programming models, theory, and computation
Kall, Peter
2011-01-01
This new edition of Stochastic Linear Programming: Models, Theory and Computation has been brought completely up to date, either dealing with or at least referring to new material on models and methods, including DEA with stochastic outputs modeled via constraints on special risk functions (generalizing chance constraints, ICC’s and CVaR constraints), material on Sharpe-ratio, and Asset Liability Management models involving CVaR in a multi-stage setup. To facilitate use as a text, exercises are included throughout the book, and web access is provided to a student version of the authors’ SLP-IOR software. Additionally, the authors have updated the Guide to Available Software, and they have included newer algorithms and modeling systems for SLP. The book is thus suitable as a text for advanced courses in stochastic optimization, and as a reference to the field. From Reviews of the First Edition: "The book presents a comprehensive study of stochastic linear optimization problems and their applications. … T...
Model ecosystem approach to estimate community level effects of radiation
Energy Technology Data Exchange (ETDEWEB)
Masahiro, Doi; Nobuyuki, Tanaka; Shoichi, Fuma; Nobuyoshi, Ishii; Hiroshi, Takeda; Zenichiro, Kawabata [National Institute of Radiological Sciences, Environmental and Toxicological Sciences Research Group, Chiba (Japan)
2004-07-01
Mathematical computer model is developed to simulate the population dynamics and dynamic mass budgets of the microbial community realized as a self sustainable aquatic ecological system in the tube. Autotrophic algae, heterotrophic protozoa and sapro-trophic bacteria live symbiotically with inter-species' interactions as predator-prey relationship, competition for the common resource, autolysis of detritus and detritus-grazing food chain, etc. The simulation model is the individual-based parallel model, built in the demographic stochasticity, environmental stochasticity by dividing the aquatic environment into patches. Validity of the model is checked by the multifaceted data of the microcosm experiments. In the analysis, intrinsic parameters of umbrella endpoints (lethality, morbidity, reproductive growth, mutation) are manipulated at the individual level, and tried to find the population level, community level and ecosystem level disorders of ecologically crucial parameters (e.g. intrinsic growth rate, carrying capacity, variation, etc.) that related to the probability of population extinction. (author)
Model ecosystem approach to estimate community level effects of radiation
International Nuclear Information System (INIS)
Masahiro, Doi; Nobuyuki, Tanaka; Shoichi, Fuma; Nobuyoshi, Ishii; Hiroshi, Takeda; Zenichiro, Kawabata
2004-01-01
Mathematical computer model is developed to simulate the population dynamics and dynamic mass budgets of the microbial community realized as a self sustainable aquatic ecological system in the tube. Autotrophic algae, heterotrophic protozoa and sapro-trophic bacteria live symbiotically with inter-species' interactions as predator-prey relationship, competition for the common resource, autolysis of detritus and detritus-grazing food chain, etc. The simulation model is the individual-based parallel model, built in the demographic stochasticity, environmental stochasticity by dividing the aquatic environment into patches. Validity of the model is checked by the multifaceted data of the microcosm experiments. In the analysis, intrinsic parameters of umbrella endpoints (lethality, morbidity, reproductive growth, mutation) are manipulated at the individual level, and tried to find the population level, community level and ecosystem level disorders of ecologically crucial parameters (e.g. intrinsic growth rate, carrying capacity, variation, etc.) that related to the probability of population extinction. (author)
A new level set model for multimaterial flows
Energy Technology Data Exchange (ETDEWEB)
Starinshak, David P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Karni, Smadar [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Mathematics; Roe, Philip L. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of AerospaceEngineering
2014-01-08
We present a new level set model for representing multimaterial flows in multiple space dimensions. Instead of associating a level set function with a specific fluid material, the function is associated with a pair of materials and the interface that separates them. A voting algorithm collects sign information from all level sets and determines material designations. M(M ₋1)/2 level set functions might be needed to represent a general M-material configuration; problems of practical interest use far fewer functions, since not all pairs of materials share an interface. The new model is less prone to producing indeterminate material states, i.e. regions claimed by more than one material (overlaps) or no material at all (vacuums). It outperforms existing material-based level set models without the need for reinitialization schemes, thereby avoiding additional computational costs and preventing excessive numerical diffusion.
Mapping the Most Significant Computer Hacking Events to a Temporal Computer Attack Model
Heerden , Renier ,; Pieterse , Heloise; Irwin , Barry
2012-01-01
Part 4: Section 3: ICT for Peace and War; International audience; This paper presents eight of the most significant computer hacking events (also known as computer attacks). These events were selected because of their unique impact, methodology, or other properties. A temporal computer attack model is presented that can be used to model computer based attacks. This model consists of the following stages: Target Identification, Reconnaissance, Attack, and Post-Attack Reconnaissance stages. The...
Identifying the Computer Competency Levels of Recreation Department Undergraduates
Zorba, Erdal
2011-01-01
Computer-based and web-based applications are as major instructional tools to increase undergraduates' motivation at school. In the recreation field usage of, computer and the internet based recreational applications has become more prevalent in order to present visual and interactive entertainment activities. Recreation department undergraduates…
Combinatorial nuclear level-density model
International Nuclear Information System (INIS)
Uhrenholt, H.; Åberg, S.; Dobrowolski, A.; Døssing, Th.; Ichikawa, T.; Möller, P.
2013-01-01
A microscopic nuclear level-density model is presented. The model is a completely combinatorial (micro-canonical) model based on the folded-Yukawa single-particle potential and includes explicit treatment of pairing, rotational and vibrational states. The microscopic character of all states enables extraction of level-distribution functions with respect to pairing gaps, parity and angular momentum. The results of the model are compared to available experimental data: level spacings at neutron separation energy, data on total level-density functions from the Oslo method, cumulative level densities from low-lying discrete states, and data on parity ratios. Spherical and deformed nuclei follow basically different coupling schemes, and we focus on deformed nuclei
Computer models of vocal tract evolution: an overview and critique
de Boer, B.; Fitch, W. T.
2010-01-01
Human speech has been investigated with computer models since the invention of digital computers, and models of the evolution of speech first appeared in the late 1960s and early 1970s. Speech science and computer models have a long shared history because speech is a physical signal and can be
Computational modeling of intraocular gas dynamics
International Nuclear Information System (INIS)
Noohi, P; Abdekhodaie, M J; Cheng, Y L
2015-01-01
The purpose of this study was to develop a computational model to simulate the dynamics of intraocular gas behavior in pneumatic retinopexy (PR) procedure. The presented model predicted intraocular gas volume at any time and determined the tolerance angle within which a patient can maneuver and still gas completely covers the tear(s). Computational fluid dynamics calculations were conducted to describe PR procedure. The geometrical model was constructed based on the rabbit and human eye dimensions. SF_6 in the form of pure and diluted with air was considered as the injected gas. The presented results indicated that the composition of the injected gas affected the gas absorption rate and gas volume. After injection of pure SF_6, the bubble expanded to 2.3 times of its initial volume during the first 23 h, but when diluted SF_6 was used, no significant expansion was observed. Also, head positioning for the treatment of retinal tear influenced the rate of gas absorption. Moreover, the determined tolerance angle depended on the bubble and tear size. More bubble expansion and smaller retinal tear caused greater tolerance angle. For example, after 23 h, for the tear size of 2 mm the tolerance angle of using pure SF_6 is 1.4 times more than that of using diluted SF_6 with 80% air. Composition of the injected gas and conditions of the tear in PR may dramatically affect the gas absorption rate and gas volume. Quantifying these effects helps to predict the tolerance angle and improve treatment efficiency. (paper)
Global and local level density models
International Nuclear Information System (INIS)
Koning, A.J.; Hilaire, S.; Goriely, S.
2008-01-01
Four different level density models, three phenomenological and one microscopic, are consistently parameterized using the same set of experimental observables. For each of the phenomenological models, the Constant Temperature Model, the Back-shifted Fermi gas Model and the Generalized Superfluid Model, a version without and with explicit collective enhancement is considered. Moreover, a recently published microscopic combinatorial model is compared with the phenomenological approaches and with the same set of experimental data. For each nuclide for which sufficient experimental data exists, a local level density parameterization is constructed for each model. Next, these local models have helped to construct global level density prescriptions, to be used for cases for which no experimental data exists. Altogether, this yields a collection of level density formulae and parameters that can be used with confidence in nuclear model calculations. To demonstrate this, a large-scale validation with experimental discrete level schemes and experimental cross sections and neutron emission spectra for various different reaction channels has been performed
Pârvu, Ovidiu; Gilbert, David
2016-01-01
Insights gained from multilevel computational models of biological systems can be translated into real-life applications only if the model correctness has been verified first. One of the most frequently employed in silico techniques for computational model verification is model checking. Traditional model checking approaches only consider the evolution of numeric values, such as concentrations, over time and are appropriate for computational models of small scale systems (e.g. intracellular networks). However for gaining a systems level understanding of how biological organisms function it is essential to consider more complex large scale biological systems (e.g. organs). Verifying computational models of such systems requires capturing both how numeric values and properties of (emergent) spatial structures (e.g. area of multicellular population) change over time and across multiple levels of organization, which are not considered by existing model checking approaches. To address this limitation we have developed a novel approximate probabilistic multiscale spatio-temporal meta model checking methodology for verifying multilevel computational models relative to specifications describing the desired/expected system behaviour. The methodology is generic and supports computational models encoded using various high-level modelling formalisms because it is defined relative to time series data and not the models used to generate it. In addition, the methodology can be automatically adapted to case study specific types of spatial structures and properties using the spatio-temporal meta model checking concept. To automate the computational model verification process we have implemented the model checking approach in the software tool Mule (http://mule.modelchecking.org). Its applicability is illustrated against four systems biology computational models previously published in the literature encoding the rat cardiovascular system dynamics, the uterine contractions of labour
Preliminary Phase Field Computational Model Development
Energy Technology Data Exchange (ETDEWEB)
Li, Yulan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hu, Shenyang Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xu, Ke [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Suter, Jonathan D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McCloy, John S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Bradley R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2014-12-15
This interim report presents progress towards the development of meso-scale models of magnetic behavior that incorporate microstructural information. Modeling magnetic signatures in irradiated materials with complex microstructures (such as structural steels) is a significant challenge. The complexity is addressed incrementally, using the monocrystalline Fe (i.e., ferrite) film as model systems to develop and validate initial models, followed by polycrystalline Fe films, and by more complicated and representative alloys. In addition, the modeling incrementally addresses inclusion of other major phases (e.g., martensite, austenite), minor magnetic phases (e.g., carbides, FeCr precipitates), and minor nonmagnetic phases (e.g., Cu precipitates, voids). The focus of the magnetic modeling is on phase-field models. The models are based on the numerical solution to the Landau-Lifshitz-Gilbert equation. From the computational standpoint, phase-field modeling allows the simulation of large enough systems that relevant defect structures and their effects on functional properties like magnetism can be simulated. To date, two phase-field models have been generated in support of this work. First, a bulk iron model with periodic boundary conditions was generated as a proof-of-concept to investigate major loop effects of single versus polycrystalline bulk iron and effects of single non-magnetic defects. More recently, to support the experimental program herein using iron thin films, a new model was generated that uses finite boundary conditions representing surfaces and edges. This model has provided key insights into the domain structures observed in magnetic force microscopy (MFM) measurements. Simulation results for single crystal thin-film iron indicate the feasibility of the model for determining magnetic domain wall thickness and mobility in an externally applied field. Because the phase-field model dimensions are limited relative to the size of most specimens used in
Parallel Computing for Terrestrial Ecosystem Carbon Modeling
International Nuclear Information System (INIS)
Wang, Dali; Post, Wilfred M.; Ricciuto, Daniel M.; Berry, Michael
2011-01-01
Terrestrial ecosystems are a primary component of research on global environmental change. Observational and modeling research on terrestrial ecosystems at the global scale, however, has lagged behind their counterparts for oceanic and atmospheric systems, largely because the unique challenges associated with the tremendous diversity and complexity of terrestrial ecosystems. There are 8 major types of terrestrial ecosystem: tropical rain forest, savannas, deserts, temperate grassland, deciduous forest, coniferous forest, tundra, and chaparral. The carbon cycle is an important mechanism in the coupling of terrestrial ecosystems with climate through biological fluxes of CO 2 . The influence of terrestrial ecosystems on atmospheric CO 2 can be modeled via several means at different timescales. Important processes include plant dynamics, change in land use, as well as ecosystem biogeography. Over the past several decades, many terrestrial ecosystem models (see the 'Model developments' section) have been developed to understand the interactions between terrestrial carbon storage and CO 2 concentration in the atmosphere, as well as the consequences of these interactions. Early TECMs generally adapted simple box-flow exchange models, in which photosynthetic CO 2 uptake and respiratory CO 2 release are simulated in an empirical manner with a small number of vegetation and soil carbon pools. Demands on kinds and amount of information required from global TECMs have grown. Recently, along with the rapid development of parallel computing, spatially explicit TECMs with detailed process based representations of carbon dynamics become attractive, because those models can readily incorporate a variety of additional ecosystem processes (such as dispersal, establishment, growth, mortality etc.) and environmental factors (such as landscape position, pest populations, disturbances, resource manipulations, etc.), and provide information to frame policy options for climate change
Benchmarking of computer codes and approaches for modeling exposure scenarios
International Nuclear Information System (INIS)
Seitz, R.R.; Rittmann, P.D.; Wood, M.I.; Cook, J.R.
1994-08-01
The US Department of Energy Headquarters established a performance assessment task team (PATT) to integrate the activities of DOE sites that are preparing performance assessments for the disposal of newly generated low-level waste. The PATT chartered a subteam with the task of comparing computer codes and exposure scenarios used for dose calculations in performance assessments. This report documents the efforts of the subteam. Computer codes considered in the comparison include GENII, PATHRAE-EPA, MICROSHIELD, and ISOSHLD. Calculations were also conducted using spreadsheets to provide a comparison at the most fundamental level. Calculations and modeling approaches are compared for unit radionuclide concentrations in water and soil for the ingestion, inhalation, and external dose pathways. Over 30 tables comparing inputs and results are provided
Modeling of Communication in a Computational Situation Assessment Model
International Nuclear Information System (INIS)
Lee, Hyun Chul; Seong, Poong Hyun
2009-01-01
Operators in nuclear power plants have to acquire information from human system interfaces (HSIs) and the environment in order to create, update, and confirm their understanding of a plant state, or situation awareness, because failures of situation assessment may result in wrong decisions for process control and finally errors of commission in nuclear power plants. Quantitative or prescriptive models to predict operator's situation assessment in a situation, the results of situation assessment, provide many benefits such as HSI design solutions, human performance data, and human reliability. Unfortunately, a few computational situation assessment models for NPP operators have been proposed and those insufficiently embed human cognitive characteristics. Thus we proposed a new computational situation assessment model of nuclear power plant operators. The proposed model incorporating significant cognitive factors uses a Bayesian belief network (BBN) as model architecture. It is believed that communication between nuclear power plant operators affects operators' situation assessment and its result, situation awareness. We tried to verify that the proposed model represent the effects of communication on situation assessment. As the result, the proposed model succeeded in representing the operators' behavior and this paper shows the details
Computational Models Used to Assess US Tobacco Control Policies.
Feirman, Shari P; Glasser, Allison M; Rose, Shyanika; Niaura, Ray; Abrams, David B; Teplitskaya, Lyubov; Villanti, Andrea C
2017-11-01
Simulation models can be used to evaluate existing and potential tobacco control interventions, including policies. The purpose of this systematic review was to synthesize evidence from computational models used to project population-level effects of tobacco control interventions. We provide recommendations to strengthen simulation models that evaluate tobacco control interventions. Studies were eligible for review if they employed a computational model to predict the expected effects of a non-clinical US-based tobacco control intervention. We searched five electronic databases on July 1, 2013 with no date restrictions and synthesized studies qualitatively. Six primary non-clinical intervention types were examined across the 40 studies: taxation, youth prevention, smoke-free policies, mass media campaigns, marketing/advertising restrictions, and product regulation. Simulation models demonstrated the independent and combined effects of these interventions on decreasing projected future smoking prevalence. Taxation effects were the most robust, as studies examining other interventions exhibited substantial heterogeneity with regard to the outcomes and specific policies examined across models. Models should project the impact of interventions on overall tobacco use, including nicotine delivery product use, to estimate preventable health and cost-saving outcomes. Model validation, transparency, more sophisticated models, and modeling policy interactions are also needed to inform policymakers to make decisions that will minimize harm and maximize health. In this systematic review, evidence from multiple studies demonstrated the independent effect of taxation on decreasing future smoking prevalence, and models for other tobacco control interventions showed that these strategies are expected to decrease smoking, benefit population health, and are reasonable to implement from a cost perspective. Our recommendations aim to help policymakers and researchers minimize harm and
Methodical Approaches to Teaching of Computer Modeling in Computer Science Course
Rakhimzhanova, B. Lyazzat; Issabayeva, N. Darazha; Khakimova, Tiyshtik; Bolyskhanova, J. Madina
2015-01-01
The purpose of this study was to justify of the formation technique of representation of modeling methodology at computer science lessons. The necessity of studying computer modeling is that the current trends of strengthening of general education and worldview functions of computer science define the necessity of additional research of the…
Model to Implement Virtual Computing Labs via Cloud Computing Services
Washington Luna Encalada; José Luis Castillo Sequera
2017-01-01
In recent years, we have seen a significant number of new technological ideas appearing in literature discussing the future of education. For example, E-learning, cloud computing, social networking, virtual laboratories, virtual realities, virtual worlds, massive open online courses (MOOCs), and bring your own device (BYOD) are all new concepts of immersive and global education that have emerged in educational literature. One of the greatest challenges presented to e-learning solutions is the...
Polymorphous Computing Architecture (PCA) Kernel-Level Benchmarks
National Research Council Canada - National Science Library
Lebak, J
2004-01-01
.... "Computation" aspects include floating-point and integer performance, as well as the memory hierarchy, while the "communication" aspects include the network, the memory hierarchy, and the 110 capabilities...
COMPUTER MODEL AND SIMULATION OF A GLOVE BOX PROCESS
International Nuclear Information System (INIS)
Foster, C.
2001-01-01
The development of facilities to deal with the disposition of nuclear materials at an acceptable level of Occupational Radiation Exposure (ORE) is a significant issue facing the nuclear community. One solution is to minimize the worker's exposure though the use of automated systems. However, the adoption of automated systems for these tasks is hampered by the challenging requirements that these systems must meet in order to be cost effective solutions in the hazardous nuclear materials processing environment. Retrofitting current glove box technologies with automation systems represents potential near-term technology that can be applied to reduce worker ORE associated with work in nuclear materials processing facilities. Successful deployment of automation systems for these applications requires the development of testing and deployment strategies to ensure the highest level of safety and effectiveness. Historically, safety tests are conducted with glove box mock-ups around the finished design. This late detection of problems leads to expensive redesigns and costly deployment delays. With wide spread availability of computers and cost effective simulation software it is possible to discover and fix problems early in the design stages. Computer simulators can easily create a complete model of the system allowing a safe medium for testing potential failures and design shortcomings. The majority of design specification is now done on computer and moving that information to a model is relatively straightforward. With a complete model and results from a Failure Mode Effect Analysis (FMEA), redesigns can be worked early. Additional issues such as user accessibility, component replacement, and alignment problems can be tackled early in the virtual environment provided by computer simulation. In this case, a commercial simulation package is used to simulate a lathe process operation at the Los Alamos National Laboratory (LANL). The Lathe process operation is indicative of
Computer experiments with a coarse-grid hydrodynamic climate model
International Nuclear Information System (INIS)
Stenchikov, G.L.
1990-01-01
A climate model is developed on the basis of the two-level Mintz-Arakawa general circulation model of the atmosphere and a bulk model of the upper layer of the ocean. A detailed model of the spectral transport of shortwave and longwave radiation is used to investigate the radiative effects of greenhouse gases. The radiative fluxes are calculated at the boundaries of five layers, each with a pressure thickness of about 200 mb. The results of the climate sensitivity calculations for mean-annual and perpetual seasonal regimes are discussed. The CCAS (Computer Center of the Academy of Sciences) climate model is used to investigate the climatic effects of anthropogenic changes of the optical properties of the atmosphere due to increasing CO 2 content and aerosol pollution, and to calculate the sensitivity to changes of land surface albedo and humidity
Computer modelling of eddy current probes
International Nuclear Information System (INIS)
Sullivan, S.P.
1992-01-01
Computer programs have been developed for modelling impedance and transmit-receive eddy current probes in two-dimensional axis-symmetric configurations. These programs, which are based on analytic equations, simulate bobbin probes in infinitely long tubes and surface probes on plates. They calculate probe signal due to uniform variations in conductor thickness, resistivity and permeability. These signals depend on probe design and frequency. A finite element numerical program has been procured to calculate magnetic permeability in non-linear ferromagnetic materials. Permeability values from these calculations can be incorporated into the above analytic programs to predict signals from eddy current probes with permanent magnets in ferromagnetic tubes. These programs were used to test various probe designs for new testing applications. Measurements of magnetic permeability in magnetically biased ferromagnetic materials have been performed by superimposing experimental signals, from special laboratory ET probes, on impedance plane diagrams calculated using these programs. (author). 3 refs., 2 figs
The MESORAD dose assessment model: Computer code
International Nuclear Information System (INIS)
Ramsdell, J.V.; Athey, G.F.; Bander, T.J.; Scherpelz, R.I.
1988-10-01
MESORAD is a dose equivalent model for emergency response applications that is designed to be run on minicomputers. It has been developed by the Pacific Northwest Laboratory for use as part of the Intermediate Dose Assessment System in the US Nuclear Regulatory Commission Operations Center in Washington, DC, and the Emergency Management System in the US Department of Energy Unified Dose Assessment Center in Richland, Washington. This volume describes the MESORAD computer code and contains a listing of the code. The technical basis for MESORAD is described in the first volume of this report (Scherpelz et al. 1986). A third volume of the documentation planned. That volume will contain utility programs and input and output files that can be used to check the implementation of MESORAD. 18 figs., 4 tabs
Computational Process Modeling for Additive Manufacturing (OSU)
Bagg, Stacey; Zhang, Wei
2015-01-01
Powder-Bed Additive Manufacturing (AM) through Direct Metal Laser Sintering (DMLS) or Selective Laser Melting (SLM) is being used by NASA and the Aerospace industry to "print" parts that traditionally are very complex, high cost, or long schedule lead items. The process spreads a thin layer of metal powder over a build platform, then melts the powder in a series of welds in a desired shape. The next layer of powder is applied, and the process is repeated until layer-by-layer, a very complex part can be built. This reduces cost and schedule by eliminating very complex tooling and processes traditionally used in aerospace component manufacturing. To use the process to print end-use items, NASA seeks to understand SLM material well enough to develop a method of qualifying parts for space flight operation. Traditionally, a new material process takes many years and high investment to generate statistical databases and experiential knowledge, but computational modeling can truncate the schedule and cost -many experiments can be run quickly in a model, which would take years and a high material cost to run empirically. This project seeks to optimize material build parameters with reduced time and cost through modeling.
Prediction of monthly regional groundwater levels through hybrid soft-computing techniques
Chang, Fi-John; Chang, Li-Chiu; Huang, Chien-Wei; Kao, I.-Feng
2016-10-01
Groundwater systems are intrinsically heterogeneous with dynamic temporal-spatial patterns, which cause great difficulty in quantifying their complex processes, while reliable predictions of regional groundwater levels are commonly needed for managing water resources to ensure proper service of water demands within a region. In this study, we proposed a novel and flexible soft-computing technique that could effectively extract the complex high-dimensional input-output patterns of basin-wide groundwater-aquifer systems in an adaptive manner. The soft-computing models combined the Self Organized Map (SOM) and the Nonlinear Autoregressive with Exogenous Inputs (NARX) network for predicting monthly regional groundwater levels based on hydrologic forcing data. The SOM could effectively classify the temporal-spatial patterns of regional groundwater levels, the NARX could accurately predict the mean of regional groundwater levels for adjusting the selected SOM, the Kriging was used to interpolate the predictions of the adjusted SOM into finer grids of locations, and consequently the prediction of a monthly regional groundwater level map could be obtained. The Zhuoshui River basin in Taiwan was the study case, and its monthly data sets collected from 203 groundwater stations, 32 rainfall stations and 6 flow stations during 2000 and 2013 were used for modelling purpose. The results demonstrated that the hybrid SOM-NARX model could reliably and suitably predict monthly basin-wide groundwater levels with high correlations (R2 > 0.9 in both training and testing cases). The proposed methodology presents a milestone in modelling regional environmental issues and offers an insightful and promising way to predict monthly basin-wide groundwater levels, which is beneficial to authorities for sustainable water resources management.
I. Fisk
2010-01-01
Introduction It has been a very active quarter in Computing with interesting progress in all areas. The activity level at the computing facilities, driven by both organised processing from data operations and user analysis, has been steadily increasing. The large-scale production of simulated events that has been progressing throughout the fall is wrapping-up and reprocessing with pile-up will continue. A large reprocessing of all the proton-proton data has just been released and another will follow shortly. The number of analysis jobs by users each day, that was already hitting the computing model expectations at the time of ICHEP, is now 33% higher. We are expecting a busy holiday break to ensure samples are ready in time for the winter conferences. Heavy Ion An activity that is still in progress is computing for the heavy-ion program. The heavy-ion events are collected without zero suppression, so the event size is much large at roughly 11 MB per event of RAW. The central collisions are more complex and...
Energy Use and Power Levels in New Monitors and Personal Computers; TOPICAL
International Nuclear Information System (INIS)
Roberson, Judy A.; Homan, Gregory K.; Mahajan, Akshay; Nordman, Bruce; Webber, Carrie A.; Brown, Richard E.; McWhinney, Marla; Koomey, Jonathan G.
2002-01-01
Our research was conducted in support of the EPA ENERGY STAR Office Equipment program, whose goal is to reduce the amount of electricity consumed by office equipment in the U.S. The most energy-efficient models in each office equipment category are eligible for the ENERGY STAR label, which consumers can use to identify and select efficient products. As the efficiency of each category improves over time, the ENERGY STAR criteria need to be revised accordingly. The purpose of this study was to provide reliable data on the energy consumption of the newest personal computers and monitors that the EPA can use to evaluate revisions to current ENERGY STAR criteria as well as to improve the accuracy of ENERGY STAR program savings estimates. We report the results of measuring the power consumption and power management capabilities of a sample of new monitors and computers. These results will be used to improve estimates of program energy savings and carbon emission reductions, and to inform rev isions of the ENERGY STAR criteria for these products. Our sample consists of 35 monitors and 26 computers manufactured between July 2000 and October 2001; it includes cathode ray tube (CRT) and liquid crystal display (LCD) monitors, Macintosh and Intel-architecture computers, desktop and laptop computers, and integrated computer systems, in which power consumption of the computer and monitor cannot be measured separately. For each machine we measured power consumption when off, on, and in each low-power level. We identify trends in and opportunities to reduce power consumption in new personal computers and monitors. Our results include a trend among monitor manufacturers to provide a single very low low-power level, well below the current ENERGY STAR criteria for sleep power consumption. These very low sleep power results mean that energy consumed when monitors are off or in active use has become more important in terms of contribution to the overall unit energy consumption (UEC
System level modelling with open source tools
DEFF Research Database (Denmark)
Jakobsen, Mikkel Koefoed; Madsen, Jan; Niaki, Seyed Hosein Attarzadeh
, called ForSyDe. ForSyDe is available under the open Source approach, which allows small and medium enterprises (SME) to get easy access to advanced modeling capabilities and tools. We give an introduction to the design methodology through the system level modeling of a simple industrial use case, and we...
International Nuclear Information System (INIS)
Nodarse, F.F.; Ivanov, V.G.
1991-01-01
Using BLACKBOARD architecture and qualitative model, an expert systm was developed to assist the use in defining the computers method for High Energy Physics computing. The COMEX system requires an IBM AT personal computer or compatible with than 640 Kb RAM and hard disk. 5 refs.; 9 figs
Computer-Based Molecular Modelling: Finnish School Teachers' Experiences and Views
Aksela, Maija; Lundell, Jan
2008-01-01
Modern computer-based molecular modelling opens up new possibilities for chemistry teaching at different levels. This article presents a case study seeking insight into Finnish school teachers' use of computer-based molecular modelling in teaching chemistry, into the different working and teaching methods used, and their opinions about necessary…
COGMIR: A computer model for knowledge integration
Energy Technology Data Exchange (ETDEWEB)
Chen, Z.X.
1988-01-01
This dissertation explores some aspects of knowledge integration, namely, accumulation of scientific knowledge and performing analogical reasoning on the acquired knowledge. Knowledge to be integrated is conveyed by paragraph-like pieces referred to as documents. By incorporating some results from cognitive science, the Deutsch-Kraft model of information retrieval is extended to a model for knowledge engineering, which integrates acquired knowledge and performs intelligent retrieval. The resulting computer model is termed COGMIR, which stands for a COGnitive Model for Intelligent Retrieval. A scheme, named query invoked memory reorganization, is used in COGMIR for knowledge integration. Unlike some other schemes which realize knowledge integration through subjective understanding by representing new knowledge in terms of existing knowledge, the proposed scheme suggests at storage time only recording the possible connection of knowledge acquired from different documents. The actual binding of the knowledge acquired from different documents is deferred to query time. There is only one way to store knowledge and numerous ways to utilize the knowledge. Each document can be represented as a whole as well as its meaning. In addition, since facts are constructed from the documents, document retrieval and fact retrieval are treated in a unified way. When the requested knowledge is not available, query invoked memory reorganization can generate suggestion based on available knowledge through analogical reasoning. This is done by revising the algorithms developed for document retrieval and fact retrieval, and by incorporating Gentner's structure mapping theory. Analogical reasoning is treated as a natural extension of intelligent retrieval, so that two previously separate research areas are combined. A case study is provided. All the components are implemented as list structures similar to relational data-bases.
Coping With Stress of Teacher Trainees With Different Levels of Computer Anxiety
Ceyhan, Esra
2004-01-01
The aim of this study is to examine whether levels and styles of coping with the stress of teacher trainees having low and high levels of computer anxiety across a number of variables. This research was carried out with 800 teacher trainees. Data were collected using the Computer Anxiety Scale, Coping With Stress Scale, and an Information Form. The results of the study indicate that the computer anxiety levels of teacher trainees differentiate levels and styles of coping with stress. It was f...
The use of conduction model in laser weld profile computation
Grabas, Bogusław
2007-02-01
Profiles of joints resulting from deep penetration laser beam welding of a flat workpiece of carbon steel were computed. A semi-analytical conduction model solved with Green's function method was used in computations. In the model, the moving heat source was attenuated exponentially in accordance with Beer-Lambert law. Computational results were compared with those in the experiment.
Performance of Air Pollution Models on Massively Parallel Computers
DEFF Research Database (Denmark)
Brown, John; Hansen, Per Christian; Wasniewski, Jerzy
1996-01-01
To compare the performance and use of three massively parallel SIMD computers, we implemented a large air pollution model on the computers. Using a realistic large-scale model, we gain detailed insight about the performance of the three computers when used to solve large-scale scientific problems...
Computational and Organotypic Modeling of Microcephaly ...
Microcephaly is associated with reduced cortical surface area and ventricular dilations. Many genetic and environmental factors precipitate this malformation, including prenatal alcohol exposure and maternal Zika infection. This complexity motivates the engineering of computational and experimental models to probe the underlying molecular targets, cellular consequences, and biological processes. We describe an Adverse Outcome Pathway (AOP) framework for microcephaly derived from literature on all gene-, chemical-, or viral- effects and brain development. Overlap with NTDs is likely, although the AOP connections identified here focused on microcephaly as the adverse outcome. A query of the Mammalian Phenotype Browser database for ‘microcephaly’ (MP:0000433) returned 85 gene associations; several function in microtubule assembly and centrosome cycle regulated by (microcephalin, MCPH1), a gene for primary microcephaly in humans. The developing ventricular zone is the likely target. In this zone, neuroprogenitor cells (NPCs) self-replicate during the 1st trimester setting brain size, followed by neural differentiation of the neocortex. Recent studies with human NPCs confirmed infectivity with Zika virions invoking critical cell loss (apoptosis) of precursor NPCs; similar findings have been shown with fetal alcohol or methylmercury exposure in rodent studies, leading to mathematical models of NPC dynamics in size determination of the ventricular zone. A key event
Computer modeling of the Cabriolet Event
International Nuclear Information System (INIS)
Kamegai, M.
1979-01-01
Computer modeling techniques are described for calculating the results of underground nuclear explosions at depths shallow enough to produce cratering. The techniques are applied to the Cabriolet Event, a well-documented nuclear excavation experiment, and the calculations give good agreement with the experimental results. It is concluded that, given data obtainable by outside observers, these modeling techniques are capable of verifying the yield and depth of underground nuclear cratering explosions, and that they could thus be useful in monitoring another country's compliance with treaty agreements on nuclear testing limitations. Several important facts emerge from the study: (1) seismic energy is produced by only a fraction of the nuclear yield, a fraction depending strongly on the depth of shot and the mechanical properties of the surrounding rock; (2) temperature of the vented gas can be predicted accurately only if good equations of state are available for the rock in the detonation zone; and (3) temperature of the vented gas is strongly dependent on the cooling effect, before venting, of mixing with melted rock in the expanding cavity and, to a lesser extent, on the cooling effect of water in the rock
A Parallel and Distributed Surrogate Model Implementation for Computational Steering
Butnaru, Daniel; Buse, Gerrit; Pfluger, Dirk
2012-01-01
of the input parameters. Such an exploration process is however not possible if the simulation is computationally too expensive. For these cases we present in this paper a scalable computational steering approach utilizing a fast surrogate model as substitute
AIR INGRESS ANALYSIS: COMPUTATIONAL FLUID DYNAMIC MODELS
Energy Technology Data Exchange (ETDEWEB)
Chang H. Oh; Eung S. Kim; Richard Schultz; Hans Gougar; David Petti; Hyung S. Kang
2010-08-01
The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in very high temperature reactors (VHTRs). Phenomena Identification and Ranking Studies to date have ranked an air ingress event, following on the heels of a VHTR depressurization, as important with regard to core safety. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority. Following a loss of coolant and system depressurization incident, air will enter the core of the High Temperature Gas Cooled Reactor through the break, possibly causing oxidation of the in-the core and reflector graphite structure. Simple core and plant models indicate that, under certain circumstances, the oxidation may proceed at an elevated rate with additional heat generated from the oxidation reaction itself. Under postulated conditions of fluid flow and temperature, excessive degradation of the lower plenum graphite can lead to a loss of structural support. Excessive oxidation of core graphite can also lead to the release of fission products into the confinement, which could be detrimental to a reactor safety. Computational fluid dynamic model developed in this study will improve our understanding of this phenomenon. This paper presents two-dimensional and three-dimensional CFD results for the quantitative assessment of the air ingress phenomena. A portion of results of the density-driven stratified flow in the inlet pipe will be compared with results of the experimental results.
Computer models for kinetic equations of magnetically confined plasmas
International Nuclear Information System (INIS)
Killeen, J.; Kerbel, G.D.; McCoy, M.G.; Mirin, A.A.; Horowitz, E.J.; Shumaker, D.E.
1987-01-01
This paper presents four working computer models developed by the computational physics group of the National Magnetic Fusion Energy Computer Center. All of the models employ a kinetic description of plasma species. Three of the models are collisional, i.e., they include the solution of the Fokker-Planck equation in velocity space. The fourth model is collisionless and treats the plasma ions by a fully three-dimensional particle-in-cell method
Noise in restaurants: levels and mathematical model.
To, Wai Ming; Chung, Andy
2014-01-01
Noise affects the dining atmosphere and is an occupational hazard to restaurant service employees worldwide. This paper examines the levels of noise in dining areas during peak hours in different types of restaurants in Hong Kong SAR, China. A mathematical model that describes the noise level in a restaurant is presented. The 1-h equivalent continuous noise level (L(eq,1-h)) was measured using a Type-1 precision integral sound level meter while the occupancy density, the floor area of the dining area, and the ceiling height of each of the surveyed restaurants were recorded. It was found that the measured noise levels using Leq,1-h ranged from 67.6 to 79.3 dBA in Chinese restaurants, from 69.1 to 79.1 dBA in fast food restaurants, and from 66.7 to 82.6 dBA in Western restaurants. Results of the analysis of variance show that there were no significant differences between means of the measured noise levels among different types of restaurants. A stepwise multiple regression analysis was employed to determine the relationships between geometrical and operational parameters and the measured noise levels. Results of the regression analysis show that the measured noise levels depended on the levels of occupancy density only. By reconciling the measured noise levels and the mathematical model, it was found that people in restaurants increased their voice levels when the occupancy density increased. Nevertheless, the maximum measured hourly noise level indicated that the noise exposure experienced by restaurant service employees was below the regulated daily noise exposure value level of 85 dBA.
Noise in restaurants: Levels and mathematical model
Directory of Open Access Journals (Sweden)
Wai Ming To
2014-01-01
Full Text Available Noise affects the dining atmosphere and is an occupational hazard to restaurant service employees worldwide. This paper examines the levels of noise in dining areas during peak hours in different types of restaurants in Hong Kong SAR, China. A mathematical model that describes the noise level in a restaurant is presented. The 1-h equivalent continuous noise level (Leq,1-h was measured using a Type-1 precision integral sound level meter while the occupancy density, the floor area of the dining area, and the ceiling height of each of the surveyed restaurants were recorded. It was found that the measured noise levels using Leq,1-h ranged from 67.6 to 79.3 dBA in Chinese restaurants, from 69.1 to 79.1 dBA in fast food restaurants, and from 66.7 to 82.6 dBA in Western restaurants. Results of the analysis of variance show that there were no significant differences between means of the measured noise levels among different types of restaurants. A stepwise multiple regression analysis was employed to determine the relationships between geometrical and operational parameters and the measured noise levels. Results of the regression analysis show that the measured noise levels depended on the levels of occupancy density only. By reconciling the measured noise levels and the mathematical model, it was found that people in restaurants increased their voice levels when the occupancy density increased. Nevertheless, the maximum measured hourly noise level indicated that the noise exposure experienced by restaurant service employees was below the regulated daily noise exposure value level of 85 dBA.
Model Selection in Historical Research Using Approximate Bayesian Computation
Rubio-Campillo, Xavier
2016-01-01
Formal Models and History Computational models are increasingly being used to study historical dynamics. This new trend, which could be named Model-Based History, makes use of recently published datasets and innovative quantitative methods to improve our understanding of past societies based on their written sources. The extensive use of formal models allows historians to re-evaluate hypotheses formulated decades ago and still subject to debate due to the lack of an adequate quantitative framework. The initiative has the potential to transform the discipline if it solves the challenges posed by the study of historical dynamics. These difficulties are based on the complexities of modelling social interaction, and the methodological issues raised by the evaluation of formal models against data with low sample size, high variance and strong fragmentation. Case Study This work examines an alternate approach to this evaluation based on a Bayesian-inspired model selection method. The validity of the classical Lanchester’s laws of combat is examined against a dataset comprising over a thousand battles spanning 300 years. Four variations of the basic equations are discussed, including the three most common formulations (linear, squared, and logarithmic) and a new variant introducing fatigue. Approximate Bayesian Computation is then used to infer both parameter values and model selection via Bayes Factors. Impact Results indicate decisive evidence favouring the new fatigue model. The interpretation of both parameter estimations and model selection provides new insights into the factors guiding the evolution of warfare. At a methodological level, the case study shows how model selection methods can be used to guide historical research through the comparison between existing hypotheses and empirical evidence. PMID:26730953
Energy Technology Data Exchange (ETDEWEB)
Rezaei, Davood; Farajzadeh Khosroshahi, Samaneh; Sadegh Falahat, Mohammad [Zanjan University (Iran, Islamic Republic of)], email: d_rezaei@znu.ac.ir, email: ronas_66@yahoo.com, email: Safalahat@yahoo.com
2011-07-01
In order to minimize the energy consumption of a building it is important to achieve optimum solar energy. The aim of this paper is to introduce the use of computer modeling in the early stages of design to optimize solar radiation received and energy disposal in an architectural design. Computer modeling was performed on 2 different projects located in Los Angeles, USA, using ECOTECT software. Changes were made to the designs following analysis of the modeling results and a subsequent analysis was carried out on the optimized designs. Results showed that the computer simulation allows the designer to set the analysis criteria and improve the energy performance of a building before it is constructed; moreover, it can be used for a wide range of optimization levels. This study pointed out that computer simulation should be performed in the design stage to optimize a building's energy performance.
Computational Models and Emergent Properties of Respiratory Neural Networks
Lindsey, Bruce G.; Rybak, Ilya A.; Smith, Jeffrey C.
2012-01-01
Computational models of the neural control system for breathing in mammals provide a theoretical and computational framework bringing together experimental data obtained from different animal preparations under various experimental conditions. Many of these models were developed in parallel and iteratively with experimental studies and provided predictions guiding new experiments. This data-driven modeling approach has advanced our understanding of respiratory network architecture and neural mechanisms underlying generation of the respiratory rhythm and pattern, including their functional reorganization under different physiological conditions. Models reviewed here vary in neurobiological details and computational complexity and span multiple spatiotemporal scales of respiratory control mechanisms. Recent models describe interacting populations of respiratory neurons spatially distributed within the Bötzinger and pre-Bötzinger complexes and rostral ventrolateral medulla that contain core circuits of the respiratory central pattern generator (CPG). Network interactions within these circuits along with intrinsic rhythmogenic properties of neurons form a hierarchy of multiple rhythm generation mechanisms. The functional expression of these mechanisms is controlled by input drives from other brainstem components, including the retrotrapezoid nucleus and pons, which regulate the dynamic behavior of the core circuitry. The emerging view is that the brainstem respiratory network has rhythmogenic capabilities at multiple levels of circuit organization. This allows flexible, state-dependent expression of different neural pattern-generation mechanisms under various physiological conditions, enabling a wide repertoire of respiratory behaviors. Some models consider control of the respiratory CPG by pulmonary feedback and network reconfiguration during defensive behaviors such as cough. Future directions in modeling of the respiratory CPG are considered. PMID:23687564
The Evaluation of Steam Generator Level Measurement Model for OPR1000 Using RETRAN-3D
International Nuclear Information System (INIS)
Doo Yong Lee; Soon Joon Hong; Byung Chul Lee; Heok Soon Lim
2006-01-01
Steam generator level measurement is important factor for plant transient analyses using best estimate thermal hydraulic computer codes since the value of steam generator level is used for steam generator level control system and plant protection system. Because steam generator is in the saturation condition which includes steam and liquid together and is the place that heat exchange occurs from primary side to secondary side, computer codes are hard to calculate steam generator level realistically without appropriate level measurement model. In this paper, we prepare the steam generator models using RETRAN-3D that include geometry models, full range feedwater control system and five types of steam generator level measurement model. Five types of steam generator level measurement model consist of level measurement model using elevation difference in downcomer, 1D level measurement model using fluid mass, 1D level measurement model using fluid volume, 2D level measurement model using power and fluid mass, and 2D level measurement model using power and fluid volume. And we perform the evaluation of the capability of each steam generator level measurement model by simulating the real plant transient condition, the title is 'Reactor Trip by The Failure of The Deaerator Level Control Card of Ulchin Unit 3'. The comparison results between real plant data and RETRAN-3D analyses for each steam generator level measurement model show that 2D level measurement model using power and fluid mass or fluid volume has more realistic prediction capability compared with other level measurement models. (authors)
Editorial: Modelling and computational challenges in granular materials
Weinhart, Thomas; Thornton, Anthony Richard; Einav, Itai
2015-01-01
This is the editorial for the special issue on “Modelling and computational challenges in granular materials” in the journal on Computational Particle Mechanics (CPM). The issue aims to provide an opportunity for physicists, engineers, applied mathematicians and computational scientists to discuss the current progress and latest advancements in the field of advanced numerical methods and modelling of granular materials. The focus will be on computational methods, improved algorithms and the m...
Biocellion: accelerating computer simulation of multicellular biological system models.
Kang, Seunghwa; Kahan, Simon; McDermott, Jason; Flann, Nicholas; Shmulevich, Ilya
2014-11-01
Biological system behaviors are often the outcome of complex interactions among a large number of cells and their biotic and abiotic environment. Computational biologists attempt to understand, predict and manipulate biological system behavior through mathematical modeling and computer simulation. Discrete agent-based modeling (in combination with high-resolution grids to model the extracellular environment) is a popular approach for building biological system models. However, the computational complexity of this approach forces computational biologists to resort to coarser resolution approaches to simulate large biological systems. High-performance parallel computers have the potential to address the computing challenge, but writing efficient software for parallel computers is difficult and time-consuming. We have developed Biocellion, a high-performance software framework, to solve this computing challenge using parallel computers. To support a wide range of multicellular biological system models, Biocellion asks users to provide their model specifics by filling the function body of pre-defined model routines. Using Biocellion, modelers without parallel computing expertise can efficiently exploit parallel computers with less effort than writing sequential programs from scratch. We simulate cell sorting, microbial patterning and a bacterial system in soil aggregate as case studies. Biocellion runs on x86 compatible systems with the 64 bit Linux operating system and is freely available for academic use. Visit http://biocellion.com for additional information. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Energy Technology Data Exchange (ETDEWEB)
Davidson, George S.; Brown, William Michael
2007-09-01
Techniques for high throughput determinations of interactomes, together with high resolution protein collocalizations maps within organelles and through membranes will soon create a vast resource. With these data, biological descriptions, akin to the high dimensional phase spaces familiar to physicists, will become possible. These descriptions will capture sufficient information to make possible realistic, system-level models of cells. The descriptions and the computational models they enable will require powerful computing techniques. This report is offered as a call to the computational biology community to begin thinking at this scale and as a challenge to develop the required algorithms and codes to make use of the new data.3
Elements of matrix modeling and computing with Matlab
White, Robert E
2006-01-01
As discrete models and computing have become more common, there is a need to study matrix computation and numerical linear algebra. Encompassing a diverse mathematical core, Elements of Matrix Modeling and Computing with MATLAB examines a variety of applications and their modeling processes, showing you how to develop matrix models and solve algebraic systems. Emphasizing practical skills, it creates a bridge from problems with two and three variables to more realistic problems that have additional variables. Elements of Matrix Modeling and Computing with MATLAB focuses on seven basic applicat
Vehicle - Bridge interaction, comparison of two computing models
Melcer, Jozef; Kuchárová, Daniela
2017-07-01
The paper presents the calculation of the bridge response on the effect of moving vehicle moves along the bridge with various velocities. The multi-body plane computing model of vehicle is adopted. The bridge computing models are created in two variants. One computing model represents the bridge as the Bernoulli-Euler beam with continuously distributed mass and the second one represents the bridge as the lumped mass model with 1 degrees of freedom. The mid-span bridge dynamic deflections are calculated for both computing models. The results are mutually compared and quantitative evaluated.
A high level language for a high performance computer
Perrott, R. H.
1978-01-01
The proposed computational aerodynamic facility will join the ranks of the supercomputers due to its architecture and increased execution speed. At present, the languages used to program these supercomputers have been modifications of programming languages which were designed many years ago for sequential machines. A new programming language should be developed based on the techniques which have proved valuable for sequential programming languages and incorporating the algorithmic techniques required for these supercomputers. The design objectives for such a language are outlined.
Toward a Computational Neuropsychology of High-Level Vision.
1984-08-20
known as visual agnosia ’ (also called "mindblindness’)l this patient failed to *recognize her nurses, got lost frequently when travelling familiar routes...visual agnosia are not blind: these patients can compare two shapes reliably when Computational neuropsychology 16 both are visible, but they cannot...visually recognize what an object is (although many can recognize objects by touch). This sort of agnosia has been well-documented in the literature (see
A cost modelling system for cloud computing
Ajeh, Daniel; Ellman, Jeremy; Keogh, Shelagh
2014-01-01
An advance in technology unlocks new opportunities for organizations to increase their productivity, efficiency and process automation while reducing the cost of doing business as well. The emergence of cloud computing addresses these prospects through the provision of agile systems that are scalable, flexible and reliable as well as cost effective. Cloud computing has made hosting and deployment of computing resources cheaper and easier with no up-front charges but pay per-use flexible payme...
International Nuclear Model personal computer (PCINM): Model documentation
International Nuclear Information System (INIS)
1992-08-01
The International Nuclear Model (INM) was developed to assist the Energy Information Administration (EIA), U.S. Department of Energy (DOE) in producing worldwide projections of electricity generation, fuel cycle requirements, capacities, and spent fuel discharges from commercial nuclear reactors. The original INM was developed, maintained, and operated on a mainframe computer system. In spring 1992, a streamlined version of INM was created for use on a microcomputer utilizing CLIPPER and PCSAS software. This new version is known as PCINM. This documentation is based on the new PCINM version. This document is designed to satisfy the requirements of several categories of users of the PCINM system including technical analysts, theoretical modelers, and industry observers. This document assumes the reader is familiar with the nuclear fuel cycle and each of its components. This model documentation contains four chapters and seven appendices. Chapter Two presents the model overview containing the PCINM structure and process flow, the areas for which projections are made, and input data and output reports. Chapter Three presents the model technical specifications showing all model equations, algorithms, and units of measure. Chapter Four presents an overview of all parameters, variables, and assumptions used in PCINM. The appendices present the following detailed information: variable and parameter listings, variable and equation cross reference tables, source code listings, file layouts, sample report outputs, and model run procedures. 2 figs
PETRI NET MODELING OF COMPUTER VIRUS LIFE CYCLE
African Journals Online (AJOL)
Dr Obe
dynamic system analysis is applied to model the virus life cycle. Simulation of the derived model ... Keywords: Virus lifecycle, Petri nets, modeling. simulation. .... complex process. Figure 2 .... by creating Matlab files for five different computer ...
Moreo, P.; Gaffney, E. A.; Garcí a-Aznar, J. M.; Doblaré , M.
2009-01-01
The diversity of biological form is generated by a relatively small number of underlying mechanisms. Consequently, mathematical and computational modelling can, and does, provide insight into how cellular level interactions ultimately give rise
Regenerating computer model of the thymus
International Nuclear Information System (INIS)
Lumb, J.R.
1975-01-01
This computer model simulates the cell population kinetics of the development and later degeneration of the thymus. Nutritional factors are taken into account by the growth of blood vessels in the simulated thymus. The stem cell population is kept at its maximum by allowing some stem cells to divide into two stem cells until the population reaches its maximum, thus regenerating the thymus after an insult such as irradiation. After a given number of population doublings the maximum allowed stem cell population is gradually decreased in order to simulate the degeneration of the thymus. Results show that the simulated thymus develops and degenerates in a pattern similar to that of the natural thymus. This simulation is used to evaluate cellular kinetic data for the the thymus. The results from testing the internal consistency of available data are reported. The number of generations which most represents the natural thymus includes seven dividing generations of lymphocytes and one mature, nondividing generation of small lymphocytes. The size of the resulting developed thymus can be controlled without affecting other variables by changing the maximum stem cell population allowed. In addition, recovery from irradiation is simulated
Computational modeling of epidural cortical stimulation
Wongsarnpigoon, Amorn; Grill, Warren M.
2008-12-01
Epidural cortical stimulation (ECS) is a developing therapy to treat neurological disorders. However, it is not clear how the cortical anatomy or the polarity and position of the electrode affects current flow and neural activation in the cortex. We developed a 3D computational model simulating ECS over the precentral gyrus. With the electrode placed directly above the gyrus, about half of the stimulus current flowed through the crown of the gyrus while current density was low along the banks deep in the sulci. Beneath the electrode, neurons oriented perpendicular to the cortical surface were depolarized by anodic stimulation, and neurons oriented parallel to the boundary were depolarized by cathodic stimulation. Activation was localized to the crown of the gyrus, and neurons on the banks deep in the sulci were not polarized. During regulated voltage stimulation, the magnitude of the activating function was inversely proportional to the thickness of the CSF and dura. During regulated current stimulation, the activating function was not sensitive to the thickness of the dura but was slightly more sensitive than during regulated voltage stimulation to the thickness of the CSF. Varying the width of the gyrus and the position of the electrode altered the distribution of the activating function due to changes in the orientation of the neurons beneath the electrode. Bipolar stimulation, although often used in clinical practice, reduced spatial selectivity as well as selectivity for neuron orientation.
Review of computational thermal-hydraulic modeling
International Nuclear Information System (INIS)
Keefer, R.H.; Keeton, L.W.
1995-01-01
Corrosion of heat transfer tubing in nuclear steam generators has been a persistent problem in the power generation industry, assuming many different forms over the years depending on chemistry and operating conditions. Whatever the corrosion mechanism, a fundamental understanding of the process is essential to establish effective management strategies. To gain this fundamental understanding requires an integrated investigative approach that merges technology from many diverse scientific disciplines. An important aspect of an integrated approach is characterization of the corrosive environment at high temperature. This begins with a thorough understanding of local thermal-hydraulic conditions, since they affect deposit formation, chemical concentration, and ultimately corrosion. Computational Fluid Dynamics (CFD) can and should play an important role in characterizing the thermal-hydraulic environment and in predicting the consequences of that environment,. The evolution of CFD technology now allows accurate calculation of steam generator thermal-hydraulic conditions and the resulting sludge deposit profiles. Similar calculations are also possible for model boilers, so that tests can be designed to be prototypic of the heat exchanger environment they are supposed to simulate. This paper illustrates the utility of CFD technology by way of examples in each of these two areas. This technology can be further extended to produce more detailed local calculations of the chemical environment in support plate crevices, beneath thick deposits on tubes, and deep in tubesheet sludge piles. Knowledge of this local chemical environment will provide the foundation for development of mechanistic corrosion models, which can be used to optimize inspection and cleaning schedules and focus the search for a viable fix
Modelling of Signal - Level Crossing System
Directory of Open Access Journals (Sweden)
Daniel Novak
2006-01-01
Full Text Available The author presents an object-oriented model of a railway level-crossing system created for the purpose of functional requirements specification. Unified Modelling Language (UML, version 1.4, which enables specification, visualisation, construction and documentation of software system artefacts, was used. The main attention was paid to analysis and design phases. The former phase resulted in creation of use case diagrams and sequential diagrams, the latter in creation of class/object diagrams and statechart diagrams.
I. Fisk
2011-01-01
Introduction It has been a very active quarter in Computing with interesting progress in all areas. The activity level at the computing facilities, driven by both organised processing from data operations and user analysis, has been steadily increasing. The large-scale production of simulated events that has been progressing throughout the fall is wrapping-up and reprocessing with pile-up will continue. A large reprocessing of all the proton-proton data has just been released and another will follow shortly. The number of analysis jobs by users each day, that was already hitting the computing model expectations at the time of ICHEP, is now 33% higher. We are expecting a busy holiday break to ensure samples are ready in time for the winter conferences. Heavy Ion The Tier 0 infrastructure was able to repack and promptly reconstruct heavy-ion collision data. Two copies were made of the data at CERN using a large CASTOR disk pool, and the core physics sample was replicated ...
Models, controls, and levels of semiotic autonomy
Energy Technology Data Exchange (ETDEWEB)
Joslyn, C.
1998-12-01
In this paper the authors consider forms of autonomy, forms of semiotic systems, and any necessary relations among them. Levels of autonomy are identified as levels of system identity, from adiabatic closure to disintegration. Forms of autonomy or closure in systems are also recognized, including physical, dynamical, functional, and semiotic. Models and controls are canonical linear and circular (closed) semiotic relations respectively. They conclude that only at higher levels of autonomy do semiotic properties become necessary. In particular, all control systems display at least a minimal degree of semiotic autonomy; and all systems with sufficiently interesting functional autonomy are semiotically related to their environments.
National Aeronautics and Space Administration — There are significant logistical barriers to entry-level high performance computing (HPC) modeling and simulation (M IllinoisRocstar) sets up the infrastructure for...
A computational model predicting disruption of blood vessel development.
Directory of Open Access Journals (Sweden)
Nicole Kleinstreuer
2013-04-01
Full Text Available Vascular development is a complex process regulated by dynamic biological networks that vary in topology and state across different tissues and developmental stages. Signals regulating de novo blood vessel formation (vasculogenesis and remodeling (angiogenesis come from a variety of biological pathways linked to endothelial cell (EC behavior, extracellular matrix (ECM remodeling and the local generation of chemokines and growth factors. Simulating these interactions at a systems level requires sufficient biological detail about the relevant molecular pathways and associated cellular behaviors, and tractable computational models that offset mathematical and biological complexity. Here, we describe a novel multicellular agent-based model of vasculogenesis using the CompuCell3D (http://www.compucell3d.org/ modeling environment supplemented with semi-automatic knowledgebase creation. The model incorporates vascular endothelial growth factor signals, pro- and anti-angiogenic inflammatory chemokine signals, and the plasminogen activating system of enzymes and proteases linked to ECM interactions, to simulate nascent EC organization, growth and remodeling. The model was shown to recapitulate stereotypical capillary plexus formation and structural emergence of non-coded cellular behaviors, such as a heterologous bridging phenomenon linking endothelial tip cells together during formation of polygonal endothelial cords. Molecular targets in the computational model were mapped to signatures of vascular disruption derived from in vitro chemical profiling using the EPA's ToxCast high-throughput screening (HTS dataset. Simulating the HTS data with the cell-agent based model of vascular development predicted adverse effects of a reference anti-angiogenic thalidomide analog, 5HPP-33, on in vitro angiogenesis with respect to both concentration-response and morphological consequences. These findings support the utility of cell agent-based models for simulating a
Computational Intelligence Agent-Oriented Modelling
Czech Academy of Sciences Publication Activity Database
Neruda, Roman
2006-01-01
Roč. 5, č. 2 (2006), s. 430-433 ISSN 1109-2777 R&D Projects: GA MŠk 1M0567 Institutional research plan: CEZ:AV0Z10300504 Keywords : multi-agent systems * adaptive agents * computational intelligence Subject RIV: IN - Informatics, Computer Science
Computer modeling of jet mixing in INEL waste tanks
International Nuclear Information System (INIS)
Meyer, P.A.
1994-01-01
The objective of this study is to examine the feasibility of using submerged jet mixing pumps to mobilize and suspend settled sludge materials in INEL High Level Radioactive Waste Tanks. Scenarios include removing the heel (a shallow liquid and sludge layer remaining after tank emptying processes) and mobilizing and suspending solids in full or partially full tanks. The approach used was to (1) briefly review jet mixing theory, (2) review erosion literature in order to identify and estimate important sludge characterization parameters (3) perform computer modeling of submerged liquid mixing jets in INEL tank geometries, (4) develop analytical models from which pump operating conditions and mixing times can be estimated, and (5) analyze model results to determine overall feasibility of using jet mixing pumps and make design recommendations
Deployment Models: Towards Eliminating Security Concerns From Cloud Computing
Zhao, Gansen; Chunming, Rong; Jaatun, Martin Gilje; Sandnes, Frode Eika
2010-01-01
Cloud computing has become a popular choice as an alternative to investing new IT systems. When making decisions on adopting cloud computing related solutions, security has always been a major concern. This article summarizes security concerns in cloud computing and proposes five service deployment models to ease these concerns. The proposed models provide different security related features to address different requirements and scenarios and can serve as reference models for deployment. D...
Cloud Computing Adoption Business Model Factors: Does Enterprise Size Matter?
Bogataj Habjan, Kristina; Pucihar, Andreja
2017-01-01
This paper presents the results of research investigating the impact of business model factors on cloud computing adoption. The introduced research model consists of 40 cloud computing business model factors, grouped into eight factor groups. Their impact and importance for cloud computing adoption were investigated among enterpirses in Slovenia. Furthermore, differences in opinion according to enterprise size were investigated. Research results show no statistically significant impacts of in...
Client/server models for transparent, distributed computational resources
International Nuclear Information System (INIS)
Hammer, K.E.; Gilman, T.L.
1991-01-01
Client/server models are proposed to address issues of shared resources in a distributed, heterogeneous UNIX environment. Recent development of automated Remote Procedure Call (RPC) interface generator has simplified the development of client/server models. Previously, implementation of the models was only possible at the UNIX socket level. An overview of RPCs and the interface generator will be presented and will include a discussion of generation and installation of remote services, the RPC paradigm, and the three levels of RPC programming. Two applications, the Nuclear Plant Analyzer (NPA) and a fluids simulation using molecular modelling, will be presented to demonstrate how client/server models using RPCs and External Data Representations (XDR) have been used production/computation situations. The NPA incorporates a client/server interface for transferring/translation of TRAC or RELAP results from the UNICOS Cray to a UNIX workstation. The fluids simulation program utilizes the client/server model to access the Cray via a single function allowing it to become a shared co-processor to the workstation application. 5 refs., 6 figs
A conceptual framework of computations in mid-level vision
Directory of Open Access Journals (Sweden)
Jonas eKubilius
2014-12-01
Full Text Available If a picture is worth a thousand words, as an English idiom goes, what should those words – or, rather, descriptors – capture? What format of image representation would be sufficiently rich if we were to reconstruct the essence of images from their descriptors? In this paper, we set out to develop a conceptual framework that would be: (i biologically plausible in order to provide a better mechanistic understanding of our visual system; (ii sufficiently robust to apply in practice on realistic images; and (iii able to tap into underlying structure of our visual world. We bring forward three key ideas. First, we argue that surface-based representations are constructed based on feature inference from the input in the intermediate processing layers of the visual system. Such representations are computed in a largely pre-semantic (prior to categorization and pre-attentive manner using multiple cues (orientation, color, polarity, variation in orientation and so on, and explicitly retain configural relations between features. The constructed surfaces may be partially overlapping to compensate for occlusions and are ordered in depth (figure-ground organization. Second, we propose that such intermediate representations could be formed by a hierarchical computation of similarity between features in local image patches and pooling of highly-similar units, and reestimated via recurrent loops according to the task demands. Finally, we suggest to use datasets composed of realistically rendered artificial objects and surfaces in order to better understand a model’s behavior and its limitations.
The complete guide to blender graphics computer modeling and animation
Blain, John M
2014-01-01
Smoothly Leads Users into the Subject of Computer Graphics through the Blender GUIBlender, the free and open source 3D computer modeling and animation program, allows users to create and animate models and figures in scenes, compile feature movies, and interact with the models and create video games. Reflecting the latest version of Blender, The Complete Guide to Blender Graphics: Computer Modeling & Animation, 2nd Edition helps beginners learn the basics of computer animation using this versatile graphics program. This edition incorporates many new features of Blender, including developments
Computational Models for Nonlinear Aeroelastic Systems, Phase II
National Aeronautics and Space Administration — Clear Science Corp. and Duke University propose to develop and demonstrate new and efficient computational methods of modeling nonlinear aeroelastic systems. The...
Ursavas, Omer Faruk; Karal, Hasan
2009-01-01
In this study it is aimed to determine the level of pre-service teachers' computer phobia. Whether or not computer phobia meaningfully varies statistically according to gender and computer experience has been tested in the study. The study was performed on 430 pre-service teachers at the Education Faculty in Rize/Turkey. Data in the study were…
Editorial: Modelling and computational challenges in granular materials
Weinhart, Thomas; Thornton, Anthony Richard; Einav, Itai
2015-01-01
This is the editorial for the special issue on “Modelling and computational challenges in granular materials” in the journal on Computational Particle Mechanics (CPM). The issue aims to provide an opportunity for physicists, engineers, applied mathematicians and computational scientists to discuss
Security Issues Model on Cloud Computing: A Case of Malaysia
Komeil Raisian; Jamaiah Yahaya
2015-01-01
By developing the cloud computing, viewpoint of many people regarding the infrastructure architectures, software distribution and improvement model changed significantly. Cloud computing associates with the pioneering deployment architecture, which could be done through grid calculating, effectiveness calculating and autonomic calculating. The fast transition towards that, has increased the worries regarding a critical issue for the effective transition of cloud computing. From the security v...
An Emotional Agent Model Based on Granular Computing
Directory of Open Access Journals (Sweden)
Jun Hu
2012-01-01
Full Text Available Affective computing has a very important significance for fulfilling intelligent information processing and harmonious communication between human being and computers. A new model for emotional agent is proposed in this paper to make agent have the ability of handling emotions, based on the granular computing theory and the traditional BDI agent model. Firstly, a new emotion knowledge base based on granular computing for emotion expression is presented in the model. Secondly, a new emotional reasoning algorithm based on granular computing is proposed. Thirdly, a new emotional agent model based on granular computing is presented. Finally, based on the model, an emotional agent for patient assistant in hospital is realized, experiment results show that it is efficient to handle simple emotions.
Research on the improvement of nuclear safety -Improvement of level 1 PSA computer code package-
International Nuclear Information System (INIS)
Park, Chang Kyoo; Kim, Tae Woon; Kim, Kil Yoo; Han, Sang Hoon; Jung, Won Dae; Jang, Seung Chul; Yang, Joon Un; Choi, Yung; Sung, Tae Yong; Son, Yung Suk; Park, Won Suk; Jung, Kwang Sub; Kang Dae Il; Park, Jin Heui; Hwang, Mi Jung; Hah, Jae Joo
1995-07-01
This year is the third year of the Government-sponsored mid- and long-term nuclear power technology development project. The scope of this sub project titled on 'The improvement of level-1 PSA computer codes' is divided into three main activities : (1) Methodology development on the underdeveloped fields such as risk assessment technology for plant shutdown and low power situations, (2) Computer code package development for level-1 PSA, (3) Applications of new technologies to reactor safety assessment. At first, in this area of shutdown risk assessment technology development, plant outage experiences of domestic plants are reviewed and plant operating states (POS) are decided. A sample core damage frequency is estimated for over draining event in RCS low water inventory i.e. mid-loop operation. Human reliability analysis and thermal hydraulic support analysis are identified to be needed to reduce uncertainty. Two design improvement alternatives are evaluated using PSA technique for mid-loop operation situation: one is use of containment spray system as backup of shutdown cooling system and the other is installation of two independent level indication system. Procedure change is identified more preferable option to hardware modification in the core damage frequency point of view. Next, level-1 PSA code KIRAP is converted to PC-windows environment. For the improvement of efficiency in performing PSA, the fast cutest generation algorithm and an analytical technique for handling logical loop in fault tree modeling are developed. 48 figs, 15 tabs, 59 refs. (Author)
Research on the improvement of nuclear safety -Improvement of level 1 PSA computer code package-
Energy Technology Data Exchange (ETDEWEB)
Park, Chang Kyoo; Kim, Tae Woon; Kim, Kil Yoo; Han, Sang Hoon; Jung, Won Dae; Jang, Seung Chul; Yang, Joon Un; Choi, Yung; Sung, Tae Yong; Son, Yung Suk; Park, Won Suk; Jung, Kwang Sub; Kang Dae Il; Park, Jin Heui; Hwang, Mi Jung; Hah, Jae Joo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1995-07-01
This year is the third year of the Government-sponsored mid- and long-term nuclear power technology development project. The scope of this sub project titled on `The improvement of level-1 PSA computer codes` is divided into three main activities : (1) Methodology development on the underdeveloped fields such as risk assessment technology for plant shutdown and low power situations, (2) Computer code package development for level-1 PSA, (3) Applications of new technologies to reactor safety assessment. At first, in this area of shutdown risk assessment technology development, plant outage experiences of domestic plants are reviewed and plant operating states (POS) are decided. A sample core damage frequency is estimated for over draining event in RCS low water inventory i.e. mid-loop operation. Human reliability analysis and thermal hydraulic support analysis are identified to be needed to reduce uncertainty. Two design improvement alternatives are evaluated using PSA technique for mid-loop operation situation: one is use of containment spray system as backup of shutdown cooling system and the other is installation of two independent level indication system. Procedure change is identified more preferable option to hardware modification in the core damage frequency point of view. Next, level-1 PSA code KIRAP is converted to PC-windows environment. For the improvement of efficiency in performing PSA, the fast cutest generation algorithm and an analytical technique for handling logical loop in fault tree modeling are developed. 48 figs, 15 tabs, 59 refs. (Author).
Computationally based methodology for reengineering the high-level waste planning process at SRS
International Nuclear Information System (INIS)
Paul, P.K.; Gregory, M.V.; Wells, M.N.
1997-01-01
The Savannah River Site (SRS) has started processing its legacy of 34 million gallons of high-level radioactive waste into its final disposable form. The SRS high-level waste (HLW) complex consists of 51 waste storage tanks, 3 evaporators, 6 waste treatment operations, and 2 waste disposal facilities. It is estimated that processing wastes to clean up all tanks will take 30+ yr of operation. Integrating all the highly interactive facility operations through the entire life cycle in an optimal fashion-while meeting all the budgetary, regulatory, and operational constraints and priorities-is a complex and challenging planning task. The waste complex operating plan for the entire time span is periodically published as an SRS report. A computationally based integrated methodology has been developed that has streamlined the planning process while showing how to run the operations at economically and operationally optimal conditions. The integrated computational model replaced a host of disconnected spreadsheet calculations and the analysts' trial-and-error solutions using various scenario choices. This paper presents the important features of the integrated computational methodology and highlights the parameters that are core components of the planning process
Scaling predictive modeling in drug development with cloud computing.
Moghadam, Behrooz Torabi; Alvarsson, Jonathan; Holm, Marcus; Eklund, Martin; Carlsson, Lars; Spjuth, Ola
2015-01-26
Growing data sets with increased time for analysis is hampering predictive modeling in drug discovery. Model building can be carried out on high-performance computer clusters, but these can be expensive to purchase and maintain. We have evaluated ligand-based modeling on cloud computing resources where computations are parallelized and run on the Amazon Elastic Cloud. We trained models on open data sets of varying sizes for the end points logP and Ames mutagenicity and compare with model building parallelized on a traditional high-performance computing cluster. We show that while high-performance computing results in faster model building, the use of cloud computing resources is feasible for large data sets and scales well within cloud instances. An additional advantage of cloud computing is that the costs of predictive models can be easily quantified, and a choice can be made between speed and economy. The easy access to computational resources with no up-front investments makes cloud computing an attractive alternative for scientists, especially for those without access to a supercomputer, and our study shows that it enables cost-efficient modeling of large data sets on demand within reasonable time.
Computer Models for IRIS Control System Transient Analysis
International Nuclear Information System (INIS)
Gary D Storrick; Bojan Petrovic; Luca Oriani
2007-01-01
This report presents results of the Westinghouse work performed under Task 3 of this Financial Assistance Award and it satisfies a Level 2 Milestone for the project. Task 3 of the collaborative effort between ORNL, Brazil and Westinghouse for the International Nuclear Energy Research Initiative entitled 'Development of Advanced Instrumentation and Control for an Integrated Primary System Reactor' focuses on developing computer models for transient analysis. This report summarizes the work performed under Task 3 on developing control system models. The present state of the IRIS plant design--such as the lack of a detailed secondary system or I and C system designs--makes finalizing models impossible at this time. However, this did not prevent making considerable progress. Westinghouse has several working models in use to further the IRIS design. We expect to continue modifying the models to incorporate the latest design information until the final IRIS unit becomes operational. Section 1.2 outlines the scope of this report. Section 2 describes the approaches we are using for non-safety transient models. It describes the need for non-safety transient analysis and the model characteristics needed to support those analyses. Section 3 presents the RELAP5 model. This is the highest-fidelity model used for benchmark evaluations. However, it is prohibitively slow for routine evaluations and additional lower-fidelity models have been developed. Section 4 discusses the current Matlab/Simulink model. This is a low-fidelity, high-speed model used to quickly evaluate and compare competing control and protection concepts. Section 5 describes the Modelica models developed by POLIMI and Westinghouse. The object-oriented Modelica language provides convenient mechanisms for developing models at several levels of detail. We have used this to develop a high-fidelity model for detailed analyses and a faster-running simplified model to help speed the I and C development process. Section
The emerging role of cloud computing in molecular modelling.
Ebejer, Jean-Paul; Fulle, Simone; Morris, Garrett M; Finn, Paul W
2013-07-01
There is a growing recognition of the importance of cloud computing for large-scale and data-intensive applications. The distinguishing features of cloud computing and their relationship to other distributed computing paradigms are described, as are the strengths and weaknesses of the approach. We review the use made to date of cloud computing for molecular modelling projects and the availability of front ends for molecular modelling applications. Although the use of cloud computing technologies for molecular modelling is still in its infancy, we demonstrate its potential by presenting several case studies. Rapid growth can be expected as more applications become available and costs continue to fall; cloud computing can make a major contribution not just in terms of the availability of on-demand computing power, but could also spur innovation in the development of novel approaches that utilize that capacity in more effective ways. Copyright © 2013 Elsevier Inc. All rights reserved.
Reduced order methods for modeling and computational reduction
Rozza, Gianluigi
2014-01-01
This monograph addresses the state of the art of reduced order methods for modeling and computational reduction of complex parametrized systems, governed by ordinary and/or partial differential equations, with a special emphasis on real time computing techniques and applications in computational mechanics, bioengineering and computer graphics. Several topics are covered, including: design, optimization, and control theory in real-time with applications in engineering; data assimilation, geometry registration, and parameter estimation with special attention to real-time computing in biomedical engineering and computational physics; real-time visualization of physics-based simulations in computer science; the treatment of high-dimensional problems in state space, physical space, or parameter space; the interactions between different model reduction and dimensionality reduction approaches; the development of general error estimation frameworks which take into account both model and discretization effects. This...
A Parallel Computational Model for Multichannel Phase Unwrapping Problem
Imperatore, Pasquale; Pepe, Antonio; Lanari, Riccardo
2015-05-01
In this paper, a parallel model for the solution of the computationally intensive multichannel phase unwrapping (MCh-PhU) problem is proposed. Firstly, the Extended Minimum Cost Flow (EMCF) algorithm for solving MCh-PhU problem is revised within the rigorous mathematical framework of the discrete calculus ; thus permitting to capture its topological structure in terms of meaningful discrete differential operators. Secondly, emphasis is placed on those methodological and practical aspects, which lead to a parallel reformulation of the EMCF algorithm. Thus, a novel dual-level parallel computational model, in which the parallelism is hierarchically implemented at two different (i.e., process and thread) levels, is presented. The validity of our approach has been demonstrated through a series of experiments that have revealed a significant speedup. Therefore, the attained high-performance prototype is suitable for the solution of large-scale phase unwrapping problems in reasonable time frames, with a significant impact on the systematic exploitation of the existing, and rapidly growing, large archives of SAR data.
Mathematical and computational modeling and simulation fundamentals and case studies
Moeller, Dietmar P F
2004-01-01
Mathematical and Computational Modeling and Simulation - a highly multi-disciplinary field with ubiquitous applications in science and engineering - is one of the key enabling technologies of the 21st century. This book introduces to the use of Mathematical and Computational Modeling and Simulation in order to develop an understanding of the solution characteristics of a broad class of real-world problems. The relevant basic and advanced methodologies are explained in detail, with special emphasis on ill-defined problems. Some 15 simulation systems are presented on the language and the logical level. Moreover, the reader can accumulate experience by studying a wide variety of case studies. The latter are briefly described within the book but their full versions as well as some simulation software demos are available on the Web. The book can be used for University courses of different level as well as for self-study. Advanced sections are marked and can be skipped in a first reading or in undergraduate courses...
Nano-Modeling and Computation in Bio and Brain Dynamics
Directory of Open Access Journals (Sweden)
Paolo Di Sia
2016-04-01
Full Text Available The study of brain dynamics currently utilizes the new features of nanobiotechnology and bioengineering. New geometric and analytical approaches appear very promising in all scientific areas, particularly in the study of brain processes. Efforts to engage in deep comprehension lead to a change in the inner brain parameters, in order to mimic the external transformation by the proper use of sensors and effectors. This paper highlights some crossing research areas of natural computing, nanotechnology, and brain modeling and considers two interesting theoretical approaches related to brain dynamics: (a the memory in neural network, not as a passive element for storing information, but integrated in the neural parameters as synaptic conductances; and (b a new transport model based on analytical expressions of the most important transport parameters, which works from sub-pico-level to macro-level, able both to understand existing data and to give new predictions. Complex biological systems are highly dependent on the context, which suggests a “more nature-oriented” computational philosophy.
Soft Computing Technique and Conventional Controller for Conical Tank Level Control
Directory of Open Access Journals (Sweden)
Sudharsana Vijayan
2016-03-01
Full Text Available In many process industries the control of liquid level is mandatory. But the control of nonlinear process is difficult. Many process industries use conical tanks because of its non linear shape contributes better drainage for solid mixtures, slurries and viscous liquids. So, control of conical tank level is a challenging task due to its non-linearity and continually varying cross-section. This is due to relationship between controlled variable level and manipulated variable flow rate, which has a square root relationship. The main objective is to execute the suitable controller for conical tank system to maintain the desired level. System identification of the non-linear process is done using black box modelling and found to be first order plus dead time (FOPDT model. In this paper it is proposed to obtain the mathematical modelling of a conical tank system and to study the system using block diagram after that soft computing technique like fuzzy and conventional controller is also used for the comparison.
An intermediate level of abstraction for computational systems chemistry
DEFF Research Database (Denmark)
Andersen, Jakob L.; Flamm, Christoph; Merkle, Daniel
2017-01-01
system, well grounded in category theory, at the right level of abstraction for the analysis of large and complex reaction networks. An extension of the basic formalism into the realm of integer hyperflows allows for the identification of complex reaction patterns, such as autocatalysis, in large...
A Memory and Computation Efficient Sparse Level-Set Method
Laan, Wladimir J. van der; Jalba, Andrei C.; Roerdink, Jos B.T.M.
Since its introduction, the level set method has become the favorite technique for capturing and tracking moving interfaces, and found applications in a wide variety of scientific fields. In this paper we present efficient data structures and algorithms for tracking dynamic interfaces through the
Structure, function, and behaviour of computational models in systems biology.
Knüpfer, Christian; Beckstein, Clemens; Dittrich, Peter; Le Novère, Nicolas
2013-05-31
Systems Biology develops computational models in order to understand biological phenomena. The increasing number and complexity of such "bio-models" necessitate computer support for the overall modelling task. Computer-aided modelling has to be based on a formal semantic description of bio-models. But, even if computational bio-models themselves are represented precisely in terms of mathematical expressions their full meaning is not yet formally specified and only described in natural language. We present a conceptual framework - the meaning facets - which can be used to rigorously specify the semantics of bio-models. A bio-model has a dual interpretation: On the one hand it is a mathematical expression which can be used in computational simulations (intrinsic meaning). On the other hand the model is related to the biological reality (extrinsic meaning). We show that in both cases this interpretation should be performed from three perspectives: the meaning of the model's components (structure), the meaning of the model's intended use (function), and the meaning of the model's dynamics (behaviour). In order to demonstrate the strengths of the meaning facets framework we apply it to two semantically related models of the cell cycle. Thereby, we make use of existing approaches for computer representation of bio-models as much as possible and sketch the missing pieces. The meaning facets framework provides a systematic in-depth approach to the semantics of bio-models. It can serve two important purposes: First, it specifies and structures the information which biologists have to take into account if they build, use and exchange models. Secondly, because it can be formalised, the framework is a solid foundation for any sort of computer support in bio-modelling. The proposed conceptual framework establishes a new methodology for modelling in Systems Biology and constitutes a basis for computer-aided collaborative research.
Investigation of a Markov Model for Computer System Security Threats
Directory of Open Access Journals (Sweden)
Alexey A. A. Magazev
2017-01-01
Full Text Available In this work, a model for computer system security threats formulated in terms of Markov processes is investigated. In the framework of this model the functioning of the computer system is considered as a sequence of failures and recovery actions which appear as results of information security threats acting on the system. We provide a detailed description of the model: the explicit analytical formulas for the probabilities of computer system states at any arbitrary moment of time are derived, some limiting cases are discussed, and the long-run dynamics of the system is analysed. The dependence of the security state probability (i.e. the state for which threats are absent on the probabilities of threats is separately investigated. In particular, it is shown that this dependence is qualitatively different for odd and even moments of time. For instance, in the case of one threat the security state probability demonstrates non-monotonic dependence on the probability of threat at even moments of time; this function admits at least one local minimum in its domain of definition. It is believed that the mentioned feature is important because it allows to locate the most dangerous areas of threats where the security state probability can be lower then the permissible level. Finally, we introduce an important characteristic of the model, called the relaxation time, by means of which we construct the permitting domain of the security parameters. Also the prospects of the received results application to the problem of finding the optimal values of the security parameters is discussed.
PRAXIS, High Level Computer Language for System Applications
International Nuclear Information System (INIS)
Holloway, F.W.
1998-01-01
1 - Description of program or function: PRAXIS is a systems implementation programming language designed especially for control and communications programming. It is a modern, strongly-typed, block-structured language similar to PASCAL but with extensions and features particular to control systems applications. The software consists of three PRAXIS compilers and three associated support utilities - the PRAXIS RMS-11 Interface, a set of procedures, functions, and type declarations which allow PRAXIS programs to interface to the RMS-11 Input/Output system under VAX/VMS and the RSX-11M systems; TEXTIO, character I/O software for terminal and line-printer text operations; and UNPASCAL, a program which translates simple PASCAL programs into PRAXIS. The compilers included are: a VAX/VMS version which generates VAX code, a VAX/VMS version which generates PDP11 codes, and a PDP11/RSX-11M version which generates PDP11 code. NESC Edition B of PRAXIS is designated as Version 7.3 by the contributors. The PDP11 compiler is not supported and has not been changed since February 1982. 2 - Method of solution: The PRAXIS compilers use LALR parsing technique to generate an intermediate machine-independent code. This is then processed using templates for the target computer to generate actual machine instructions
Learning Natural Selection in 4th Grade with Multi-Agent-Based Computational Models
Dickes, Amanda Catherine; Sengupta, Pratim
2013-01-01
In this paper, we investigate how elementary school students develop multi-level explanations of population dynamics in a simple predator-prey ecosystem, through scaffolded interactions with a multi-agent-based computational model (MABM). The term "agent" in an MABM indicates individual computational objects or actors (e.g., cars), and these…
Ocean Modeling and Visualization on Massively Parallel Computer
Chao, Yi; Li, P. Peggy; Wang, Ping; Katz, Daniel S.; Cheng, Benny N.
1997-01-01
Climate modeling is one of the grand challenges of computational science, and ocean modeling plays an important role in both understanding the current climatic conditions and predicting future climate change.
Computational multiscale modeling of fluids and solids theory and applications
Steinhauser, Martin Oliver
2017-01-01
The idea of the book is to provide a comprehensive overview of computational physics methods and techniques, that are used for materials modeling on different length and time scales. Each chapter first provides an overview of the basic physical principles which are the basis for the numerical and mathematical modeling on the respective length-scale. The book includes the micro-scale, the meso-scale and the macro-scale, and the chapters follow this classification. The book explains in detail many tricks of the trade of some of the most important methods and techniques that are used to simulate materials on the perspective levels of spatial and temporal resolution. Case studies are included to further illustrate some methods or theoretical considerations. Example applications for all techniques are provided, some of which are from the author’s own contributions to some of the research areas. The second edition has been expanded by new sections in computational models on meso/macroscopic scales for ocean and a...
Computational modeling, optimization and manufacturing simulation of advanced engineering materials
2016-01-01
This volume presents recent research work focused in the development of adequate theoretical and numerical formulations to describe the behavior of advanced engineering materials. Particular emphasis is devoted to applications in the fields of biological tissues, phase changing and porous materials, polymers and to micro/nano scale modeling. Sensitivity analysis, gradient and non-gradient based optimization procedures are involved in many of the chapters, aiming at the solution of constitutive inverse problems and parameter identification. All these relevant topics are exposed by experienced international and inter institutional research teams resulting in a high level compilation. The book is a valuable research reference for scientists, senior undergraduate and graduate students, as well as for engineers acting in the area of computational material modeling.
Level-set techniques for facies identification in reservoir modeling
Iglesias, Marco A.; McLaughlin, Dennis
2011-03-01
In this paper we investigate the application of level-set techniques for facies identification in reservoir models. The identification of facies is a geometrical inverse ill-posed problem that we formulate in terms of shape optimization. The goal is to find a region (a geologic facies) that minimizes the misfit between predicted and measured data from an oil-water reservoir. In order to address the shape optimization problem, we present a novel application of the level-set iterative framework developed by Burger in (2002 Interfaces Free Bound. 5 301-29 2004 Inverse Problems 20 259-82) for inverse obstacle problems. The optimization is constrained by (the reservoir model) a nonlinear large-scale system of PDEs that describes the reservoir dynamics. We reformulate this reservoir model in a weak (integral) form whose shape derivative can be formally computed from standard results of shape calculus. At each iteration of the scheme, the current estimate of the shape derivative is utilized to define a velocity in the level-set equation. The proper selection of this velocity ensures that the new shape decreases the cost functional. We present results of facies identification where the velocity is computed with the gradient-based (GB) approach of Burger (2002) and the Levenberg-Marquardt (LM) technique of Burger (2004). While an adjoint formulation allows the straightforward application of the GB approach, the LM technique requires the computation of the large-scale Karush-Kuhn-Tucker system that arises at each iteration of the scheme. We efficiently solve this system by means of the representer method. We present some synthetic experiments to show and compare the capabilities and limitations of the proposed implementations of level-set techniques for the identification of geologic facies.
Level-set techniques for facies identification in reservoir modeling
International Nuclear Information System (INIS)
Iglesias, Marco A; McLaughlin, Dennis
2011-01-01
In this paper we investigate the application of level-set techniques for facies identification in reservoir models. The identification of facies is a geometrical inverse ill-posed problem that we formulate in terms of shape optimization. The goal is to find a region (a geologic facies) that minimizes the misfit between predicted and measured data from an oil–water reservoir. In order to address the shape optimization problem, we present a novel application of the level-set iterative framework developed by Burger in (2002 Interfaces Free Bound. 5 301–29; 2004 Inverse Problems 20 259–82) for inverse obstacle problems. The optimization is constrained by (the reservoir model) a nonlinear large-scale system of PDEs that describes the reservoir dynamics. We reformulate this reservoir model in a weak (integral) form whose shape derivative can be formally computed from standard results of shape calculus. At each iteration of the scheme, the current estimate of the shape derivative is utilized to define a velocity in the level-set equation. The proper selection of this velocity ensures that the new shape decreases the cost functional. We present results of facies identification where the velocity is computed with the gradient-based (GB) approach of Burger (2002) and the Levenberg–Marquardt (LM) technique of Burger (2004). While an adjoint formulation allows the straightforward application of the GB approach, the LM technique requires the computation of the large-scale Karush–Kuhn–Tucker system that arises at each iteration of the scheme. We efficiently solve this system by means of the representer method. We present some synthetic experiments to show and compare the capabilities and limitations of the proposed implementations of level-set techniques for the identification of geologic facies
Computer model for economic study of unbleached kraft paperboard production
Peter J. Ince
1984-01-01
Unbleached kraft paperboard is produced from wood fiber in an industrial papermaking process. A highly specific and detailed model of the process is presented. The model is also presented as a working computer program. A user of the computer program will provide data on physical parameters of the process and on prices of material inputs and outputs. The program is then...
Airfoil Computations using the γ - Reθ Model
DEFF Research Database (Denmark)
Sørensen, Niels N.
computations. Based on this, an estimate of the error in the computations is determined to be approximately one percent in the attached region. Following the verification of the implemented model, the model is applied to four airfoils, NACA64- 018, NACA64-218, NACA64-418 and NACA64-618 and the results...
Python for Scientific Computing Education: Modeling of Queueing Systems
Directory of Open Access Journals (Sweden)
Vladimiras Dolgopolovas
2014-01-01
Full Text Available In this paper, we present the methodology for the introduction to scientific computing based on model-centered learning. We propose multiphase queueing systems as a basis for learning objects. We use Python and parallel programming for implementing the models and present the computer code and results of stochastic simulations.
Computational intelligence applications in modeling and control
Vaidyanathan, Sundarapandian
2015-01-01
The development of computational intelligence (CI) systems was inspired by observable and imitable aspects of intelligent activity of human being and nature. The essence of the systems based on computational intelligence is to process and interpret data of various nature so that that CI is strictly connected with the increase of available data as well as capabilities of their processing, mutually supportive factors. Developed theories of computational intelligence were quickly applied in many fields of engineering, data analysis, forecasting, biomedicine and others. They are used in images and sounds processing and identifying, signals processing, multidimensional data visualization, steering of objects, analysis of lexicographic data, requesting systems in banking, diagnostic systems, expert systems and many other practical implementations. This book consists of 16 contributed chapters by subject experts who are specialized in the various topics addressed in this book. The special chapters have been brought ...
COMPUTATIONAL MODELING OF AIRFLOW IN NONREGULAR SHAPED CHANNELS
Directory of Open Access Journals (Sweden)
A. A. Voronin
2013-05-01
Full Text Available The basic approaches to computational modeling of airflow in the human nasal cavity are analyzed. Different models of turbulent flow which may be used in order to calculate air velocity and pressure are discussed. Experimental measurement results of airflow temperature are illustrated. Geometrical model of human nasal cavity reconstructed from computer-aided tomography scans and numerical simulation results of airflow inside this model are also given. Spatial distributions of velocity and temperature for inhaled and exhaled air are shown.
Sentient Sketchbook: Computer-Assisted Game Level Authoring
DEFF Research Database (Denmark)
Liapis, Antonios; Yannakakis, Georgios N.; Togelius, Julian
2013-01-01
constrained novelty search via a two-population paradigm for generating, in real-time, alternatives to the author's design and evaluates its potential against current approaches. The paper concludes with a small-scale user study in which industry experts interact with the Sentient Sketchbook to design game......This paper introduces the Sentient Sketchbook, a tool which supports a designer in the creation of game levels. Using map sketches to alleviate designer effort, the tool automates playability checks and evaluations and visualizes significant gameplay properties. This paper also introduces...
Parallel computing of a climate model on the dawn 1000 by domain decomposition method
Bi, Xunqiang
1997-12-01
In this paper the parallel computing of a grid-point nine-level atmospheric general circulation model on the Dawn 1000 is introduced. The model was developed by the Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS). The Dawn 1000 is a MIMD massive parallel computer made by National Research Center for Intelligent Computer (NCIC), CAS. A two-dimensional domain decomposition method is adopted to perform the parallel computing. The potential ways to increase the speed-up ratio and exploit more resources of future massively parallel supercomputation are also discussed.
Multi-level decision making models, methods and applications
Zhang, Guangquan; Gao, Ya
2015-01-01
This monograph presents new developments in multi-level decision-making theory, technique and method in both modeling and solution issues. It especially presents how a decision support system can support managers in reaching a solution to a multi-level decision problem in practice. This monograph combines decision theories, methods, algorithms and applications effectively. It discusses in detail the models and solution algorithms of each issue of bi-level and tri-level decision-making, such as multi-leaders, multi-followers, multi-objectives, rule-set-based, and fuzzy parameters. Potential readers include organizational managers and practicing professionals, who can use the methods and software provided to solve their real decision problems; PhD students and researchers in the areas of bi-level and multi-level decision-making and decision support systems; students at an advanced undergraduate, master’s level in information systems, business administration, or the application of computer science.
Model Checking Quantified Computation Tree Logic
Rensink, Arend; Baier, C; Hermanns, H.
2006-01-01
Propositional temporal logic is not suitable for expressing properties on the evolution of dynamically allocated entities over time. In particular, it is not possible to trace such entities through computation steps, since this requires the ability to freely mix quantification and temporal
Computational compliance criteria in water hammer modelling
Directory of Open Access Journals (Sweden)
Urbanowicz Kamil
2017-01-01
Full Text Available Among many numerical methods (finite: difference, element, volume etc. used to solve the system of partial differential equations describing unsteady pipe flow, the method of characteristics (MOC is most appreciated. With its help, it is possible to examine the effect of numerical discretisation carried over the pipe length. It was noticed, based on the tests performed in this study, that convergence of the calculation results occurred on a rectangular grid with the division of each pipe of the analysed system into at least 10 elements. Therefore, it is advisable to introduce computational compliance criteria (CCC, which will be responsible for optimal discretisation of the examined system. The results of this study, based on the assumption of various values of the Courant-Friedrichs-Levy (CFL number, indicate also that the CFL number should be equal to one for optimum computational results. Application of the CCC criterion to own written and commercial computer programmes based on the method of characteristics will guarantee fast simulations and the necessary computational coherence.
Computational compliance criteria in water hammer modelling
Urbanowicz, Kamil
2017-10-01
Among many numerical methods (finite: difference, element, volume etc.) used to solve the system of partial differential equations describing unsteady pipe flow, the method of characteristics (MOC) is most appreciated. With its help, it is possible to examine the effect of numerical discretisation carried over the pipe length. It was noticed, based on the tests performed in this study, that convergence of the calculation results occurred on a rectangular grid with the division of each pipe of the analysed system into at least 10 elements. Therefore, it is advisable to introduce computational compliance criteria (CCC), which will be responsible for optimal discretisation of the examined system. The results of this study, based on the assumption of various values of the Courant-Friedrichs-Levy (CFL) number, indicate also that the CFL number should be equal to one for optimum computational results. Application of the CCC criterion to own written and commercial computer programmes based on the method of characteristics will guarantee fast simulations and the necessary computational coherence.
Mathematical modeling and computational intelligence in engineering applications
Silva Neto, Antônio José da; Silva, Geraldo Nunes
2016-01-01
This book brings together a rich selection of studies in mathematical modeling and computational intelligence, with application in several fields of engineering, like automation, biomedical, chemical, civil, electrical, electronic, geophysical and mechanical engineering, on a multidisciplinary approach. Authors from five countries and 16 different research centers contribute with their expertise in both the fundamentals and real problems applications based upon their strong background on modeling and computational intelligence. The reader will find a wide variety of applications, mathematical and computational tools and original results, all presented with rigorous mathematical procedures. This work is intended for use in graduate courses of engineering, applied mathematics and applied computation where tools as mathematical and computational modeling, numerical methods and computational intelligence are applied to the solution of real problems.
Simulating Serious Games: A Discrete-Time Computational Model Based on Cognitive Flow Theory
Westera, Wim
2018-01-01
This paper presents a computational model for simulating how people learn from serious games. While avoiding the combinatorial explosion of a games micro-states, the model offers a meso-level pathfinding approach, which is guided by cognitive flow theory and various concepts from learning sciences. It extends a basic, existing model by exposing…
Tarim, S.A.; Ozen, U.; Dogru, M.K.; Rossi, R.
2011-01-01
We provide an efficient computational approach to solve the mixed integer programming (MIP) model developed by Tarim and Kingsman [8] for solving a stochastic lot-sizing problem with service level constraints under the static–dynamic uncertainty strategy. The effectiveness of the proposed method
Multi-Level iterative methods in computational plasma physics
International Nuclear Information System (INIS)
Knoll, D.A.; Barnes, D.C.; Brackbill, J.U.; Chacon, L.; Lapenta, G.
1999-01-01
Plasma physics phenomena occur on a wide range of spatial scales and on a wide range of time scales. When attempting to model plasma physics problems numerically the authors are inevitably faced with the need for both fine spatial resolution (fine grids) and implicit time integration methods. Fine grids can tax the efficiency of iterative methods and large time steps can challenge the robustness of iterative methods. To meet these challenges they are developing a hybrid approach where multigrid methods are used as preconditioners to Krylov subspace based iterative methods such as conjugate gradients or GMRES. For nonlinear problems they apply multigrid preconditioning to a matrix-few Newton-GMRES method. Results are presented for application of these multilevel iterative methods to the field solves in implicit moment method PIC, multidimensional nonlinear Fokker-Planck problems, and their initial efforts in particle MHD
An integrated introduction to computer graphics and geometric modeling
Goldman, Ronald
2009-01-01
… this book may be the first book on geometric modelling that also covers computer graphics. In addition, it may be the first book on computer graphics that integrates a thorough introduction to 'freedom' curves and surfaces and to the mathematical foundations for computer graphics. … the book is well suited for an undergraduate course. … The entire book is very well presented and obviously written by a distinguished and creative researcher and educator. It certainly is a textbook I would recommend. …-Computer-Aided Design, 42, 2010… Many books concentrate on computer programming and soon beco
Integrating Cloud-Computing-Specific Model into Aircraft Design
Zhimin, Tian; Qi, Lin; Guangwen, Yang
Cloud Computing is becoming increasingly relevant, as it will enable companies involved in spreading this technology to open the door to Web 3.0. In the paper, the new categories of services introduced will slowly replace many types of computational resources currently used. In this perspective, grid computing, the basic element for the large scale supply of cloud services, will play a fundamental role in defining how those services will be provided. The paper tries to integrate cloud computing specific model into aircraft design. This work has acquired good results in sharing licenses of large scale and expensive software, such as CFD (Computational Fluid Dynamics), UG, CATIA, and so on.
SmartShadow models and methods for pervasive computing
Wu, Zhaohui
2013-01-01
SmartShadow: Models and Methods for Pervasive Computing offers a new perspective on pervasive computing with SmartShadow, which is designed to model a user as a personality ""shadow"" and to model pervasive computing environments as user-centric dynamic virtual personal spaces. Just like human beings' shadows in the physical world, it follows people wherever they go, providing them with pervasive services. The model, methods, and software infrastructure for SmartShadow are presented and an application for smart cars is also introduced. The book can serve as a valuable reference work for resea
Gering, Kevin L
2013-08-27
A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware periodically samples performance characteristics of the electrochemical cell. The computing system determines cell information from the performance characteristics of the electrochemical cell. The computing system also develops a mechanistic level model of the electrochemical cell to determine performance fade characteristics of the electrochemical cell and analyzing the mechanistic level model to estimate performance fade characteristics over aging of a similar electrochemical cell. The mechanistic level model uses first constant-current pulses applied to the electrochemical cell at a first aging period and at three or more current values bracketing a first exchange current density. The mechanistic level model also is based on second constant-current pulses applied to the electrochemical cell at a second aging period and at three or more current values bracketing the second exchange current density.
Lascano, Jorge Edison
2017-01-01
Networking protocols have been developed throughout time following layered architectures such as the Open Systems Interconnection model and the Internet model. These protocols are grouped in the Internet protocol suite. Most developers do not deal with low-level protocols, instead they design application-level protocols on top of the low-level protocol. Although each application-level protocol is different, there is commonality among them and developers can apply lessons learned from one prot...
Computer modeling of ORNL storage tank sludge mobilization and mixing
International Nuclear Information System (INIS)
Terrones, G.; Eyler, L.L.
1993-09-01
This report presents and analyzes the results of the computer modeling of mixing and mobilization of sludge in horizontal, cylindrical storage tanks using submerged liquid jets. The computer modeling uses the TEMPEST computational fluid dynamics computer program. The horizontal, cylindrical storage tank configuration is similar to the Melton Valley Storage Tanks (MVST) at Oak Ridge National (ORNL). The MVST tank contents exhibit non-homogeneous, non-Newtonian rheology characteristics. The eventual goals of the simulations are to determine under what conditions sludge mobilization using submerged liquid jets is feasible in tanks of this configuration, and to estimate mixing times required to approach homogeneity of the contents of the tanks
Computational Modeling of Large Wildfires: A Roadmap
Coen, Janice L.; Douglas, Craig C.
2010-01-01
Wildland fire behavior, particularly that of large, uncontrolled wildfires, has not been well understood or predicted. Our methodology to simulate this phenomenon uses high-resolution dynamic models made of numerical weather prediction (NWP) models
Fractal approach to computer-analytical modelling of tree crown
International Nuclear Information System (INIS)
Berezovskaya, F.S.; Karev, G.P.; Kisliuk, O.F.; Khlebopros, R.G.; Tcelniker, Yu.L.
1993-09-01
In this paper we discuss three approaches to the modeling of a tree crown development. These approaches are experimental (i.e. regressive), theoretical (i.e. analytical) and simulation (i.e. computer) modeling. The common assumption of these is that a tree can be regarded as one of the fractal objects which is the collection of semi-similar objects and combines the properties of two- and three-dimensional bodies. We show that a fractal measure of crown can be used as the link between the mathematical models of crown growth and light propagation through canopy. The computer approach gives the possibility to visualize a crown development and to calibrate the model on experimental data. In the paper different stages of the above-mentioned approaches are described. The experimental data for spruce, the description of computer system for modeling and the variant of computer model are presented. (author). 9 refs, 4 figs
Models of parallel computation :a survey and classification
Institute of Scientific and Technical Information of China (English)
ZHANG Yunquan; CHEN Guoliang; SUN Guangzhong; MIAO Qiankun
2007-01-01
In this paper,the state-of-the-art parallel computational model research is reviewed.We will introduce various models that were developed during the past decades.According to their targeting architecture features,especially memory organization,we classify these parallel computational models into three generations.These models and their characteristics are discussed based on three generations classification.We believe that with the ever increasing speed gap between the CPU and memory systems,incorporating non-uniform memory hierarchy into computational models will become unavoidable.With the emergence of multi-core CPUs,the parallelism hierarchy of current computing platforms becomes more and more complicated.Describing this complicated parallelism hierarchy in future computational models becomes more and more important.A semi-automatic toolkit that can extract model parameters and their values on real computers can reduce the model analysis complexity,thus allowing more complicated models with more parameters to be adopted.Hierarchical memory and hierarchical parallelism will be two very important features that should be considered in future model design and research.
Patentability aspects of computational cancer models
Lishchuk, Iryna
2017-07-01
Multiscale cancer models, implemented in silico, simulate tumor progression at various spatial and temporal scales. Having the innovative substance and possessing the potential of being applied as decision support tools in clinical practice, patenting and obtaining patent rights in cancer models seems prima facie possible. What legal hurdles the cancer models need to overcome for being patented we inquire from this paper.
Modeling molecular boiling points using computed interaction energies.
Peterangelo, Stephen C; Seybold, Paul G
2017-12-20
The noncovalent van der Waals interactions between molecules in liquids are typically described in textbooks as occurring between the total molecular dipoles (permanent, induced, or transient) of the molecules. This notion was tested by examining the boiling points of 67 halogenated hydrocarbon liquids using quantum chemically calculated molecular dipole moments, ionization potentials, and polarizabilities obtained from semi-empirical (AM1 and PM3) and ab initio Hartree-Fock [HF 6-31G(d), HF 6-311G(d,p)], and density functional theory [B3LYP/6-311G(d,p)] methods. The calculated interaction energies and an empirical measure of hydrogen bonding were employed to model the boiling points of the halocarbons. It was found that only terms related to London dispersion energies and hydrogen bonding proved significant in the regression analyses, and the performances of the models generally improved at higher levels of quantum chemical computation. An empirical estimate for the molecular polarizabilities was also tested, and the best models for the boiling points were obtained using either this empirical polarizability itself or the polarizabilities calculated at the B3LYP/6-311G(d,p) level, along with the hydrogen-bonding parameter. The results suggest that the cohesive forces are more appropriately described as resulting from highly localized interactions rather than interactions between the global molecular dipoles.
Introduction to computation and modeling for differential equations
Edsberg, Lennart
2008-01-01
An introduction to scientific computing for differential equationsIntroduction to Computation and Modeling for Differential Equations provides a unified and integrated view of numerical analysis, mathematical modeling in applications, and programming to solve differential equations, which is essential in problem-solving across many disciplines, such as engineering, physics, and economics. This book successfully introduces readers to the subject through a unique ""Five-M"" approach: Modeling, Mathematics, Methods, MATLAB, and Multiphysics. This approach facilitates a thorough understanding of h
Computational model of cellular metabolic dynamics
DEFF Research Database (Denmark)
Li, Yanjun; Solomon, Thomas; Haus, Jacob M
2010-01-01
of the cytosol and mitochondria. The model simulated skeletal muscle metabolic responses to insulin corresponding to human hyperinsulinemic-euglycemic clamp studies. Insulin-mediated rate of glucose disposal was the primary model input. For model validation, simulations were compared with experimental data......: intracellular metabolite concentrations and patterns of glucose disposal. Model variations were simulated to investigate three alternative mechanisms to explain insulin enhancements: Model 1 (M.1), simple mass action; M.2, insulin-mediated activation of key metabolic enzymes (i.e., hexokinase, glycogen synthase......, by application of mechanism M.3, the model predicts metabolite concentration changes and glucose partitioning patterns consistent with experimental data. The reaction rate fluxes quantified by this detailed model of insulin/glucose metabolism provide information that can be used to evaluate the development...
High burnup models in computer code fair
Energy Technology Data Exchange (ETDEWEB)
Dutta, B K; Swami Prasad, P; Kushwaha, H S; Mahajan, S C; Kakodar, A [Bhabha Atomic Research Centre, Bombay (India)
1997-08-01
An advanced fuel analysis code FAIR has been developed for analyzing the behavior of fuel rods of water cooled reactors under severe power transients and high burnups. The code is capable of analyzing fuel pins of both collapsible clad, as in PHWR and free standing clad as in LWR. The main emphasis in the development of this code is on evaluating the fuel performance at extended burnups and modelling of the fuel rods for advanced fuel cycles. For this purpose, a number of suitable models have been incorporated in FAIR. For modelling the fission gas release, three different models are implemented, namely Physically based mechanistic model, the standard ANS 5.4 model and the Halden model. Similarly the pellet thermal conductivity can be modelled by the MATPRO equation, the SIMFUEL relation or the Halden equation. The flux distribution across the pellet is modelled by using the model RADAR. For modelling pellet clad interaction (PCMI)/ stress corrosion cracking (SCC) induced failure of sheath, necessary routines are provided in FAIR. The validation of the code FAIR is based on the analysis of fuel rods of EPRI project ``Light water reactor fuel rod modelling code evaluation`` and also the analytical simulation of threshold power ramp criteria of fuel rods of pressurized heavy water reactors. In the present work, a study is carried out by analysing three CRP-FUMEX rods to show the effect of various combinations of fission gas release models and pellet conductivity models, on the fuel analysis parameters. The satisfactory performance of FAIR may be concluded through these case studies. (author). 12 refs, 5 figs.
High burnup models in computer code fair
International Nuclear Information System (INIS)
Dutta, B.K.; Swami Prasad, P.; Kushwaha, H.S.; Mahajan, S.C.; Kakodar, A.
1997-01-01
An advanced fuel analysis code FAIR has been developed for analyzing the behavior of fuel rods of water cooled reactors under severe power transients and high burnups. The code is capable of analyzing fuel pins of both collapsible clad, as in PHWR and free standing clad as in LWR. The main emphasis in the development of this code is on evaluating the fuel performance at extended burnups and modelling of the fuel rods for advanced fuel cycles. For this purpose, a number of suitable models have been incorporated in FAIR. For modelling the fission gas release, three different models are implemented, namely Physically based mechanistic model, the standard ANS 5.4 model and the Halden model. Similarly the pellet thermal conductivity can be modelled by the MATPRO equation, the SIMFUEL relation or the Halden equation. The flux distribution across the pellet is modelled by using the model RADAR. For modelling pellet clad interaction (PCMI)/ stress corrosion cracking (SCC) induced failure of sheath, necessary routines are provided in FAIR. The validation of the code FAIR is based on the analysis of fuel rods of EPRI project ''Light water reactor fuel rod modelling code evaluation'' and also the analytical simulation of threshold power ramp criteria of fuel rods of pressurized heavy water reactors. In the present work, a study is carried out by analysing three CRP-FUMEX rods to show the effect of various combinations of fission gas release models and pellet conductivity models, on the fuel analysis parameters. The satisfactory performance of FAIR may be concluded through these case studies. (author). 12 refs, 5 figs
International Nuclear Information System (INIS)
Hatakeyama, Nozomu; Ise, Mariko; Inaba, Kenji
2011-01-01
In order to reveal the deactivation mechanism of the hydrogen recombination catalyst of off-gas treatment system, we investigate by using multi-level computational chemistry simulation methods. The recombiner apparatus is modeled by the numerical mesh system in the axial coordinates, and unsteady, advection and reaction rate equations are solved by using a finite difference method. The chemical reactions are formulated to represent adsorption-desorption of hydrogen and oxygen on Pt catalyst, and time developments of the coverage factors of Pt are solved numerically. The computational simulations successfully reproduce the very similar behaviors observed by experiments, such as increasing of the inversion rates of H 2 to H 2 O, the temperatures distributions along the flow direction, dependencies of experimental condition, and so on. Thus Pt poisoning is considered to cause the deactivation of the hydrogen recombination catalyst. To clarify the poisoning mechanism, the molecular level simulation is applied to the system of Pt on boehmite attacked by a cyclic siloxane which has been detected by experiments and considered as one of poisoning spices. The simulation shows ring-opening reaction of the cyclic siloxane on Pt, then attachment of two ends of the chain-like siloxane to Pt and boehmite, respectively, and that finally the recombination reaction is prevented. This may be the first study to find out the detailed dynamical mechanism of hydrogen recombination catalyst poisoning with cyclic siloxane. (author)
Out-of-Core Computations of High-Resolution Level Sets by Means of Code Transformation
DEFF Research Database (Denmark)
Christensen, Brian Bunch; Nielsen, Michael Bang; Museth, Ken
2012-01-01
We propose a storage efficient, fast and parallelizable out-of-core framework for streaming computations of high resolution level sets. The fundamental techniques are skewing and tiling transformations of streamed level set computations which allow for the combination of interface propagation, re...... computations are now CPU bound and consequently the overall performance is unaffected by disk latency and bandwidth limitations. We demonstrate this with several benchmark tests that show sustained out-of-core throughputs close to that of in-core level set simulations....
Establishing a Cloud Computing Success Model for Hospitals in Taiwan
Lian, Jiunn-Woei
2017-01-01
The purpose of this study is to understand the critical quality-related factors that affect cloud computing success of hospitals in Taiwan. In this study, private cloud computing is the major research target. The chief information officers participated in a questionnaire survey. The results indicate that the integration of trust into the information systems success model will have acceptable explanatory power to understand cloud computing success in the hospital. Moreover, information quality and system quality directly affect cloud computing satisfaction, whereas service quality indirectly affects the satisfaction through trust. In other words, trust serves as the mediator between service quality and satisfaction. This cloud computing success model will help hospitals evaluate or achieve success after adopting private cloud computing health care services. PMID:28112020
Establishing a Cloud Computing Success Model for Hospitals in Taiwan.
Lian, Jiunn-Woei
2017-01-01
The purpose of this study is to understand the critical quality-related factors that affect cloud computing success of hospitals in Taiwan. In this study, private cloud computing is the major research target. The chief information officers participated in a questionnaire survey. The results indicate that the integration of trust into the information systems success model will have acceptable explanatory power to understand cloud computing success in the hospital. Moreover, information quality and system quality directly affect cloud computing satisfaction, whereas service quality indirectly affects the satisfaction through trust. In other words, trust serves as the mediator between service quality and satisfaction. This cloud computing success model will help hospitals evaluate or achieve success after adopting private cloud computing health care services.
Establishing a Cloud Computing Success Model for Hospitals in Taiwan
Directory of Open Access Journals (Sweden)
Jiunn-Woei Lian PhD
2017-01-01
Full Text Available The purpose of this study is to understand the critical quality-related factors that affect cloud computing success of hospitals in Taiwan. In this study, private cloud computing is the major research target. The chief information officers participated in a questionnaire survey. The results indicate that the integration of trust into the information systems success model will have acceptable explanatory power to understand cloud computing success in the hospital. Moreover, information quality and system quality directly affect cloud computing satisfaction, whereas service quality indirectly affects the satisfaction through trust. In other words, trust serves as the mediator between service quality and satisfaction. This cloud computing success model will help hospitals evaluate or achieve success after adopting private cloud computing health care services.
Computer modeling of Cannabinoid receptor type 1
Directory of Open Access Journals (Sweden)
Sapundzhi Fatima
2018-01-01
Full Text Available Cannabinoid receptors are important class of receptors as they are involved in various physiological processes such as appetite, pain-sensation, mood, and memory. It is important to design receptor-selective ligands in order to treat a particular disorder. The aim of the present study is to model the structure of cannabinoid receptor CB1 and to perform docking between obtained models and known ligands. Two models of CBR1 were prepared with two different methods (Modeller of Chimera and MOE. They were used for docking with GOLD 5.2. It was established a high correlation between inhibitory constant Ki of CB1 cannabinoid ligands and the ChemScore scoring function of GOLD, which concerns both models. This suggests that the models of the CB1 receptors obtained could be used for docking studies and in further investigation and design of new potential, selective and active cannabinoids with the desired effects.
Two-level modelling of real estate taxtation
DEFF Research Database (Denmark)
Gall, Jaroslav; Stubkjær, Erik
2006-01-01
Real estate taxes recurrently attract attention, because they are a source of potentially increased revenue for local and national government. Most experts agree that it is necessary to switch from using normative values for taxation to a market-value-based taxation of real property with computer......-assisted mass valuation, witch benefit from use of value maps. In Czech Republic, efforts have been made to adopt current tax policy goals, but improvements are still needed. The paper aims at supporting the current improvement process towards a market based system. It presents models, which describe aspects...... of the present Czech property tax system. A proposal for the future system focuses on the value map component. The described change depends on political involvement. This political activity is modelled as well. The hypothesis is that the two-level modelling effort enhances the change process by providing...
Establishing a Cloud Computing Success Model for Hospitals in Taiwan
Lian, Jiunn-Woei
2017-01-01
The purpose of this study is to understand the critical quality-related factors that affect cloud computing success of hospitals in Taiwan. In this study, private cloud computing is the major research target. The chief information officers participated in a questionnaire survey. The results indicate that the integration of trust into the information systems success model will have acceptable explanatory power to understand cloud computing success in the hospital. Moreover, information quality...
Computational modeling of shallow geothermal systems
Al-Khoury, Rafid
2011-01-01
A Step-by-step Guide to Developing Innovative Computational Tools for Shallow Geothermal Systems Geothermal heat is a viable source of energy and its environmental impact in terms of CO2 emissions is significantly lower than conventional fossil fuels. Shallow geothermal systems are increasingly utilized for heating and cooling of buildings and greenhouses. However, their utilization is inconsistent with the enormous amount of energy available underneath the surface of the earth. Projects of this nature are not getting the public support they deserve because of the uncertainties associated with
Constructing a Computer Model of the Human Eye Based on Tissue Slice Images
Dai, Peishan; Wang, Boliang; Bao, Chunbo; Ju, Ying
2010-01-01
Computer simulation of the biomechanical and biological heat transfer in ophthalmology greatly relies on having a reliable computer model of the human eye. This paper proposes a novel method on the construction of a geometric model of the human eye based on tissue slice images. Slice images were obtained from an in vitro Chinese human eye through an embryo specimen processing methods. A level set algorithm was used to extract contour points of eye tissues while a principle component analysi...
Computational Psychometrics for Modeling System Dynamics during Stressful Disasters
Directory of Open Access Journals (Sweden)
Pietro Cipresso
2017-08-01
Full Text Available Disasters can be very stressful events. However, computational models of stress require data that might be very difficult to collect during disasters. Moreover, personal experiences are not repeatable, so it is not possible to collect bottom-up information when building a coherent model. To overcome these problems, we propose the use of computational models and virtual reality integration to recreate disaster situations, while examining possible dynamics in order to understand human behavior and relative consequences. By providing realistic parameters associated with disaster situations, computational scientists can work more closely with emergency responders to improve the quality of interventions in the future.
The Architectural Designs of a Nanoscale Computing Model
Directory of Open Access Journals (Sweden)
Mary M. Eshaghian-Wilner
2004-08-01
Full Text Available A generic nanoscale computing model is presented in this paper. The model consists of a collection of fully interconnected nanoscale computing modules, where each module is a cube of cells made out of quantum dots, spins, or molecules. The cells dynamically switch between two states by quantum interactions among their neighbors in all three dimensions. This paper includes a brief introduction to the field of nanotechnology from a computing point of view and presents a set of preliminary architectural designs for fabricating the nanoscale model studied.
A Dynamic Object Behavior Model and Implementation Based on Computational Reflection
Institute of Scientific and Technical Information of China (English)
HE Cheng-wan; HE Fei; HE Ke-qing
2005-01-01
A dynamic object behavior model based on computational reflection is proposed. This model consists of function level and meta level, the meta objects in meta level manage the base objects and behaviors in function level, including dynamic binding and unbinding of base object and behavior.We implement this model with RoleJava Language, which is our self linguistic extension of the Java Language. Meta Objects are generated automatically at compile-time, this makes the reflecton mechanism transparent to programmers. Finally an example applying this model to a banking system is presented.
Computer-based modelling and optimization in transportation
Rossi, Riccardo
2014-01-01
This volume brings together works resulting from research carried out by members of the EURO Working Group on Transportation (EWGT) and presented during meetings and workshops organized by the Group under the patronage of the Association of European Operational Research Societies in 2012 and 2013. The main targets of the EWGT include providing a forum to share research information and experience, encouraging joint research and the development of both theoretical methods and applications, and promoting cooperation among the many institutions and organizations which are leaders at national level in the field of transportation and logistics. The primary fields of interest concern operational research methods, mathematical models and computation algorithms, to solve and sustain solutions to problems mainly faced by public administrations, city authorities, public transport companies, service providers and logistic operators. Related areas of interest are: land use and transportation planning, traffic control and ...
Systems approaches to computational modeling of the oral microbiome
Directory of Open Access Journals (Sweden)
Dimiter V. Dimitrov
2013-07-01
Full Text Available Current microbiome research has generated tremendous amounts of data providing snapshots of molecular activity in a variety of organisms, environments, and cell types. However, turning this knowledge into whole system level of understanding on pathways and processes has proven to be a challenging task. In this review we highlight the applicability of bioinformatics and visualization techniques to large collections of data in order to better understand the information that contains related diet – oral microbiome – host mucosal transcriptome interactions. In particular we focus on systems biology of Porphyromonas gingivalis in the context of high throughput computational methods tightly integrated with translational systems medicine. Those approaches have applications for both basic research, where we can direct specific laboratory experiments in model organisms and cell cultures, to human disease, where we can validate new mechanisms and biomarkers for prevention and treatment of chronic disorders
Computational Modeling of Turbulent Spray Combustion
Ma, L.
2016-01-01
The objective of the research presented in this thesis is development and validation of predictive models or modeling approaches of liquid fuel combustion (spray combustion) in hot-diluted environments, known as flameless combustion or MILD combustion. The goal is to combine good physical insight,
Computer Aided Modelling – Opportunities and Challenges
DEFF Research Database (Denmark)
Cameron, Ian; Gani, Rafiqul
2011-01-01
-based solutions to significant problems? The important issues of workflow and data flow are discussed together with fit-for-purpose model development. As well, the lack of tools around multiscale modelling provides opportunities for the development of efficient tools to address such challenges. The ability...
Computational techniques in tribology and material science at the atomic level
Ferrante, J.; Bozzolo, G. H.
1992-01-01
Computations in tribology and material science at the atomic level present considerable difficulties. Computational techniques ranging from first-principles to semi-empirical and their limitations are discussed. Example calculations of metallic surface energies using semi-empirical techniques are presented. Finally, application of the methods to calculation of adhesion and friction are presented.
Computing broadband accelerograms using kinematic rupture modeling
International Nuclear Information System (INIS)
Ruiz Paredes, J.A.
2007-05-01
In order to make the broadband kinematic rupture modeling more realistic with respect to dynamic modeling, physical constraints are added to the rupture parameters. To improve the slip velocity function (SVF) modeling, an evolution of the k -2 source model is proposed, which consists to decompose the slip as a sum of sub-events by band of k. This model yields to SVF close to the solution proposed by Kostrov for a crack, while preserving the spectral characteristics of the radiated wave field, i.e. a w 2 model with spectral amplitudes at high frequency scaled to the coefficient of directivity C d . To better control the directivity effects, a composite source description is combined with a scaling law defining the extent of the nucleation area for each sub-event. The resulting model allows to reduce the apparent coefficient of directivity to a fraction of C d , as well as to reproduce the standard deviation of the new empirical attenuation relationships proposed for Japan. To make source models more realistic, a variable rupture velocity in agreement with the physics of the rupture must be considered. The followed approach that is based on an analytical relation between the fracture energy, the slip and the rupture velocity, leads to higher values of the peak ground acceleration in the vicinity of the fault. Finally, to better account for the interaction of the wave field with the geological medium, a semi-empirical methodology is developed combining a composite source model with empirical Green functions, and is applied to the Yamaguchi, M w 5.9 earthquake. The modeled synthetics reproduce satisfactorily well the observed main characteristics of ground motions. (author)
Overview of Computer Simulation Modeling Approaches and Methods
Robert E. Manning; Robert M. Itami; David N. Cole; Randy Gimblett
2005-01-01
The field of simulation modeling has grown greatly with recent advances in computer hardware and software. Much of this work has involved large scientific and industrial applications for which substantial financial resources are available. However, advances in object-oriented programming and simulation methodology, concurrent with dramatic increases in computer...
Computer Simulation (Microcultures): An Effective Model for Multicultural Education.
Nelson, Jorge O.
This paper presents a rationale for using high-fidelity computer simulation in planning for and implementing effective multicultural education strategies. Using computer simulation, educators can begin to understand and plan for the concept of cultural sensitivity in delivering instruction. The model promises to emphasize teachers' understanding…
The European computer model for optronic system performance prediction (ECOMOS)
Kessler, S.; Bijl, P.; Labarre, L.; Repasi, E.; Wittenstein, W.; Bürsing, H.
2017-01-01
ECOMOS is a multinational effort within the framework of an EDA Project Arrangement. Its aim is to provide a generally accepted and harmonized European computer model for computing nominal Target Acquisition (TA) ranges of optronic imagers operating in the Visible or thermal Infrared (IR). The
Computer - based modeling in extract sciences research -III ...
African Journals Online (AJOL)
Molecular modeling techniques have been of great applicability in the study of the biological sciences and other exact science fields like agriculture, mathematics, computer science and the like. In this write up, a list of computer programs for predicting, for instance, the structure of proteins has been provided. Discussions on ...
Methods for teaching geometric modelling and computer graphics
Energy Technology Data Exchange (ETDEWEB)
Rotkov, S.I.; Faitel`son, Yu. Ts.
1992-05-01
This paper considers methods for teaching the methods and algorithms of geometric modelling and computer graphics to programmers, designers and users of CAD and computer-aided research systems. There is a bibliography that can be used to prepare lectures and practical classes. 37 refs., 1 tab.
Validation of the STAFF-5 computer model
International Nuclear Information System (INIS)
Fletcher, J.F.; Fields, S.R.
1981-04-01
STAFF-5 is a dynamic heat-transfer-fluid-flow stress model designed for computerized prediction of the temperature-stress performance of spent LWR fuel assemblies under storage/disposal conditions. Validation of the temperature calculating abilities of this model was performed by comparing temperature calculations under specified conditions to experimental data from the Engine Maintenance and Dissassembly (EMAD) Fuel Temperature Test Facility and to calculations performed by Battelle Pacific Northwest Laboratory (PNL) using the HYDRA-1 model. The comparisons confirmed the ability of STAFF-5 to calculate representative fuel temperatures over a considerable range of conditions, as a first step in the evaluation and prediction of fuel temperature-stress performance
Final technical position on documentation of computer codes for high-level waste management
International Nuclear Information System (INIS)
Silling, S.A.
1983-06-01
Guidance is given for the content of documentation of computer codes which are used in support of a license application for high-level waste disposal. The guidelines cover theoretical basis, programming, and instructions for use of the code
Computation of large scale currents in the Arabian Sea during winter using a semi-diagnostic model
Digital Repository Service at National Institute of Oceanography (India)
Shaji, C.; Bahulayan, N.; Rao, A.D.; Dube, S.K.
A 3-dimensional, semi-diagnostic model with 331 levels in the vertical has been used for the computation of climatic circulation in the western tropical Indian Ocean. Model is driven with the seasonal mean data on wind stress, temperature...
Transport modeling and advanced computer techniques
International Nuclear Information System (INIS)
Wiley, J.C.; Ross, D.W.; Miner, W.H. Jr.
1988-11-01
A workshop was held at the University of Texas in June 1988 to consider the current state of transport codes and whether improved user interfaces would make the codes more usable and accessible to the fusion community. Also considered was the possibility that a software standard could be devised to ease the exchange of routines between groups. It was noted that two of the major obstacles to exchanging routines now are the variety of geometrical representation and choices of units. While the workshop formulated no standards, it was generally agreed that good software engineering would aid in the exchange of routines, and that a continued exchange of ideas between groups would be worthwhile. It seems that before we begin to discuss software standards we should review the current state of computer technology --- both hardware and software to see what influence recent advances might have on our software goals. This is done in this paper
Predictive Models and Computational Toxicology (II IBAMTOX)
EPA’s ‘virtual embryo’ project is building an integrative systems biology framework for predictive models of developmental toxicity. One schema involves a knowledge-driven adverse outcome pathway (AOP) framework utilizing information from public databases, standardized ontologies...
Computational Models of Human Organizational Dynamics
National Research Council Canada - National Science Library
Courand, Gregg
2000-01-01
.... ThIs is the final report for our Phase II SBIR project, conducted over three years. Our research program has contributed theory, methodology, and technology for organizational modeling and analysis...
Computational Model for Spacecraft/Habitat Volume
National Aeronautics and Space Administration — Please note that funding to Dr. Simon Hsiang, a critical co-investigator for the development of the Spacecraft Optimization Layout and Volume (SOLV) model, was...
Computational modeling and engineering in pediatric and congenital heart disease.
Marsden, Alison L; Feinstein, Jeffrey A
2015-10-01
Recent methodological advances in computational simulations are enabling increasingly realistic simulations of hemodynamics and physiology, driving increased clinical utility. We review recent developments in the use of computational simulations in pediatric and congenital heart disease, describe the clinical impact in modeling in single-ventricle patients, and provide an overview of emerging areas. Multiscale modeling combining patient-specific hemodynamics with reduced order (i.e., mathematically and computationally simplified) circulatory models has become the de-facto standard for modeling local hemodynamics and 'global' circulatory physiology. We review recent advances that have enabled faster solutions, discuss new methods (e.g., fluid structure interaction and uncertainty quantification), which lend realism both computationally and clinically to results, highlight novel computationally derived surgical methods for single-ventricle patients, and discuss areas in which modeling has begun to exert its influence including Kawasaki disease, fetal circulation, tetralogy of Fallot (and pulmonary tree), and circulatory support. Computational modeling is emerging as a crucial tool for clinical decision-making and evaluation of novel surgical methods and interventions in pediatric cardiology and beyond. Continued development of modeling methods, with an eye towards clinical needs, will enable clinical adoption in a wide range of pediatric and congenital heart diseases.
Computational numerical modelling of plasma focus
International Nuclear Information System (INIS)
Brollo, Fabricio
2005-01-01
Several models for calculation of the dynamics of Plasma Focus have been developed. All of them begin from the same physic principle: the current sheet run down the anode length, ionizing and collecting the gas that finds in its way.This is known as snow-plow model.Concerning pinch's compression, a MHD model is proposed.The plasma is treated as a fluid , particularly as a high ionized gas.However, there are not many models that, taking into account thermal equilibrium inside the plasma, make approximated calculations of the maximum temperatures reached in the pinch.Besides, there are no models which use those temperatures to estimate the termofusion neutron yield for the Deuterium or Deuterium-Tritium gas filled cases.In the PLADEMA network (Dense Magnetized Plasmas) a code was developed with the objective of describe the plasma focus dynamics, in a conceptual engineering stage.The codes calculates the principal variables (currents, time to focus, etc) and estimates the neutron yield in Deuterium-filled plasma focus devices.It can be affirmed that the code's experimental validation, in its axial and radial stages, was very successfully. However, it was accepted that the compression stage should be formulated again, to find a solution for a large variation of a parameter related with velocity profiles for the particles trapped inside the pinch.The objectives of this work can be stated in the next way : - Check the compression's model hypothesis. Develop a new model .- Implement the new model in the code. Compare results against experimental data of Plasma Focus devices from all around the world [es
Computer models and output, Spartan REM: Appendix B
Marlowe, D. S.; West, E. J.
1984-01-01
A computer model of the Spartan Release Engagement Mechanism (REM) is presented in a series of numerical charts and engineering drawings. A crack growth analysis code is used to predict the fracture mechanics of critical components.
Methodology of modeling and measuring computer architectures for plasma simulations
Wang, L. P. T.
1977-01-01
A brief introduction to plasma simulation using computers and the difficulties on currently available computers is given. Through the use of an analyzing and measuring methodology - SARA, the control flow and data flow of a particle simulation model REM2-1/2D are exemplified. After recursive refinements the total execution time may be greatly shortened and a fully parallel data flow can be obtained. From this data flow, a matched computer architecture or organization could be configured to achieve the computation bound of an application problem. A sequential type simulation model, an array/pipeline type simulation model, and a fully parallel simulation model of a code REM2-1/2D are proposed and analyzed. This methodology can be applied to other application problems which have implicitly parallel nature.
The Next Generation ARC Middleware and ATLAS Computing Model
Filipcic, A; The ATLAS collaboration; Smirnova, O; Konstantinov, A; Karpenko, D
2012-01-01
The distributed NDGF Tier-1 and associated Nordugrid clusters are well integrated into the ATLAS computing model but follow a slightly different paradigm than other ATLAS resources. The current strategy does not divide the sites as in the commonly used hierarchical model, but rather treats them as a single storage endpoint and a pool of distributed computing nodes. The next generation ARC middleware with its several new technologies provides new possibilities in development of the ATLAS computing model, such as pilot jobs with pre-cached input files, automatic job migration between the sites, integration of remote sites without connected storage elements, and automatic brokering for jobs with non-standard resource requirements. ARC's data transfer model provides an automatic way for the computing sites to participate in ATLAS' global task management system without requiring centralised brokering or data transfer services. The powerful API combined with Python and Java bindings can easily be used to build new ...
Model and Computing Experiment for Research and Aerosols Usage Management
Directory of Open Access Journals (Sweden)
Daler K. Sharipov
2012-09-01
Full Text Available The article deals with a math model for research and management of aerosols released into the atmosphere as well as numerical algorithm used as hardware and software systems for conducting computing experiment.
Computational Models for Nonlinear Aeroelastic Systems, Phase I
National Aeronautics and Space Administration — Clear Science Corp. and Duke University propose to develop and demonstrate a new and efficient computational method of modeling nonlinear aeroelastic systems. The...
Uhr, Leonard
1984-01-01
Computer Science and Applied Mathematics: Algorithm-Structured Computer Arrays and Networks: Architectures and Processes for Images, Percepts, Models, Information examines the parallel-array, pipeline, and other network multi-computers.This book describes and explores arrays and networks, those built, being designed, or proposed. The problems of developing higher-level languages for systems and designing algorithm, program, data flow, and computer structure are also discussed. This text likewise describes several sequences of successively more general attempts to combine the power of arrays wi
Computational modelling of the impact of AIDS on business.
Matthews, Alan P
2007-07-01
An overview of computational modelling of the impact of AIDS on business in South Africa, with a detailed description of the AIDS Projection Model (APM) for companies, developed by the author, and suggestions for further work. Computational modelling of the impact of AIDS on business in South Africa requires modelling of the epidemic as a whole, and of its impact on a company. This paper gives an overview of epidemiological modelling, with an introduction to the Actuarial Society of South Africa (ASSA) model, the most widely used such model for South Africa. The APM produces projections of HIV prevalence, new infections, and AIDS mortality on a company, based on the anonymous HIV testing of company employees, and projections from the ASSA model. A smoothed statistical model of the prevalence test data is computed, and then the ASSA model projection for each category of employees is adjusted so that it matches the measured prevalence in the year of testing. FURTHER WORK: Further techniques that could be developed are microsimulation (representing individuals in the computer), scenario planning for testing strategies, and models for the business environment, such as models of entire sectors, and mapping of HIV prevalence in time and space, based on workplace and community data.
Model Uncertainty and Robustness: A Computational Framework for Multimodel Analysis
Young, Cristobal; Holsteen, Katherine
2017-01-01
Model uncertainty is pervasive in social science. A key question is how robust empirical results are to sensible changes in model specification. We present a new approach and applied statistical software for computational multimodel analysis. Our approach proceeds in two steps: First, we estimate the modeling distribution of estimates across all…
Computational quench model applicable to the SMES/CICC
Luongo, Cesar A.; Chang, Chih-Lien; Partain, Kenneth D.
1994-07-01
A computational quench model accounting for the hydraulic peculiarities of the 200 kA SMES cable-in-conduit conductor has been developed. The model is presented and used to simulate the quench on the SMES-ETM. Conclusions are drawn concerning quench detection and protection. A plan for quench model validation is presented.
Petri Net Modeling of Computer Virus Life Cycle | Ikekonwu ...
African Journals Online (AJOL)
Virus life cycle, which refers to the stages of development of a computer virus, is presented as a suitable area for the application of Petri nets. Petri nets a powerful modeling tool in the field of dynamic system analysis is applied to model the virus life cycle. Simulation of the derived model is also presented. The intention of ...
High-throughput landslide modelling using computational grids
Wallace, M.; Metson, S.; Holcombe, L.; Anderson, M.; Newbold, D.; Brook, N.
2012-04-01
Landslides are an increasing problem in developing countries. Multiple landslides can be triggered by heavy rainfall resulting in loss of life, homes and critical infrastructure. Through computer simulation of individual slopes it is possible to predict the causes, timing and magnitude of landslides and estimate the potential physical impact. Geographical scientists at the University of Bristol have developed software that integrates a physically-based slope hydrology and stability model (CHASM) with an econometric model (QUESTA) in order to predict landslide risk over time. These models allow multiple scenarios to be evaluated for each slope, accounting for data uncertainties, different engineering interventions, risk management approaches and rainfall patterns. Individual scenarios can be computationally intensive, however each scenario is independent and so multiple scenarios can be executed in parallel. As more simulations are carried out the overhead involved in managing input and output data becomes significant. This is a greater problem if multiple slopes are considered concurrently, as is required both for landslide research and for effective disaster planning at national levels. There are two critical factors in this context: generated data volumes can be in the order of tens of terabytes, and greater numbers of simulations result in long total runtimes. Users of such models, in both the research community and in developing countries, need to develop a means for handling the generation and submission of landside modelling experiments, and the storage and analysis of the resulting datasets. Additionally, governments in developing countries typically lack the necessary computing resources and infrastructure. Consequently, knowledge that could be gained by aggregating simulation results from many different scenarios across many different slopes remains hidden within the data. To address these data and workload management issues, University of Bristol particle
Optimizing Classroom Acoustics Using Computer Model Studies.
Reich, Rebecca; Bradley, John
1998-01-01
Investigates conditions relating to the maximum useful-to-detrimental sound ratios present in classrooms and determining the optimum conditions for speech intelligibility. Reveals that speech intelligibility is more strongly influenced by ambient noise levels and that the optimal location for sound absorbing material is on a classroom's upper…
A Situative Space Model for Mobile Mixed-Reality Computing
DEFF Research Database (Denmark)
Pederson, Thomas; Janlert, Lars-Erik; Surie, Dipak
2011-01-01
This article proposes a situative space model that links the physical and virtual realms and sets the stage for complex human-computer interaction defined by what a human agent can see, hear, and touch, at any given point in time.......This article proposes a situative space model that links the physical and virtual realms and sets the stage for complex human-computer interaction defined by what a human agent can see, hear, and touch, at any given point in time....
Computational model of miniature pulsating heat pipes
Energy Technology Data Exchange (ETDEWEB)
Martinez, Mario J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Givler, Richard C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2013-01-01
The modeling work described herein represents Sandia National Laboratories (SNL) portion of a collaborative three-year project with Northrop Grumman Electronic Systems (NGES) and the University of Missouri to develop an advanced, thermal ground-plane (TGP), which is a device, of planar configuration, that delivers heat from a source to an ambient environment with high efficiency. Work at all three institutions was funded by DARPA/MTO; Sandia was funded under DARPA/MTO project number 015070924. This is the final report on this project for SNL. This report presents a numerical model of a pulsating heat pipe, a device employing a two phase (liquid and its vapor) working fluid confined in a closed loop channel etched/milled into a serpentine configuration in a solid metal plate. The device delivers heat from an evaporator (hot zone) to a condenser (cold zone). This new model includes key physical processes important to the operation of flat plate pulsating heat pipes (e.g. dynamic bubble nucleation, evaporation and condensation), together with conjugate heat transfer with the solid portion of the device. The model qualitatively and quantitatively predicts performance characteristics and metrics, which was demonstrated by favorable comparisons with experimental results on similar configurations. Application of the model also corroborated many previous performance observations with respect to key parameters such as heat load, fill ratio and orientation.
Navier-Stokes Computations With One-Equation Turbulence Model for Flows Along Concave Wall Surfaces
Wang, Chi R.
2005-01-01
This report presents the use of a time-marching three-dimensional compressible Navier-Stokes equation numerical solver with a one-equation turbulence model to simulate the flow fields developed along concave wall surfaces without and with a downstream extension flat wall surface. The 3-D Navier- Stokes numerical solver came from the NASA Glenn-HT code. The one-equation turbulence model was derived from the Spalart and Allmaras model. The computational approach was first calibrated with the computations of the velocity and Reynolds shear stress profiles of a steady flat plate boundary layer flow. The computational approach was then used to simulate developing boundary layer flows along concave wall surfaces without and with a downstream extension wall. The author investigated the computational results of surface friction factors, near surface velocity components, near wall temperatures, and a turbulent shear stress component in terms of turbulence modeling, computational mesh configurations, inlet turbulence level, and time iteration step. The computational results were compared with existing measurements of skin friction factors, velocity components, and shear stresses of the developing boundary layer flows. With a fine computational mesh and a one-equation model, the computational approach could predict accurately the skin friction factors, near surface velocity and temperature, and shear stress within the flows. The computed velocity components and shear stresses also showed the vortices effect on the velocity variations over a concave wall. The computed eddy viscosities at the near wall locations were also compared with the results from a two equation turbulence modeling technique. The inlet turbulence length scale was found to have little effect on the eddy viscosities at locations near the concave wall surface. The eddy viscosities, from the one-equation and two-equation modeling, were comparable at most stream-wise stations. The present one
Computer Models and Automata Theory in Biology and Medicine
Baianu, I C
2004-01-01
The applications of computers to biological and biomedical problem solving goes back to the very beginnings of computer science, automata theory [1], and mathematical biology [2]. With the advent of more versatile and powerful computers, biological and biomedical applications of computers have proliferated so rapidly that it would be virtually impossible to compile a comprehensive review of all developments in this field. Limitations of computer simulations in biology have also come under close scrutiny, and claims have been made that biological systems have limited information processing power [3]. Such general conjectures do not, however, deter biologists and biomedical researchers from developing new computer applications in biology and medicine. Microprocessors are being widely employed in biological laboratories both for automatic data acquisition/processing and modeling; one particular area, which is of great biomedical interest, involves fast digital image processing and is already established for rout...
Computer Models Simulate Fine Particle Dispersion
2010-01-01
Through a NASA Seed Fund partnership with DEM Solutions Inc., of Lebanon, New Hampshire, scientists at Kennedy Space Center refined existing software to study the electrostatic phenomena of granular and bulk materials as they apply to planetary surfaces. The software, EDEM, allows users to import particles and obtain accurate representations of their shapes for modeling purposes, such as simulating bulk solids behavior, and was enhanced to be able to more accurately model fine, abrasive, cohesive particles. These new EDEM capabilities can be applied in many industries unrelated to space exploration and have been adopted by several prominent U.S. companies, including John Deere, Pfizer, and Procter & Gamble.
Computational Models for Analysis of Illicit Activities
DEFF Research Database (Denmark)
Nizamani, Sarwat
been explored in this thesis by considering them as epidemic-like processes. A mathematical model has been developed based on differential equations, which studies the dynamics of the issues from the very beginning until the issues cease. This study extends classical models of the spread of epidemics...... to describe the phenomenon of contagious public outrage, which eventually leads to the spread of violence following a disclosure of some unpopular political decisions and/or activity. The results shed a new light on terror activity and provide some hint on how to curb the spreading of violence within...
Model Infrastruktur dan Manajemen Platform Server Berbasis Cloud Computing
Directory of Open Access Journals (Sweden)
Mulki Indana Zulfa
2017-11-01
Full Text Available Cloud computing is a new technology that is still very rapidly growing. This technology makes the Internet as the main media for the management of data and applications remotely. Cloud computing allows users to run an application without having to think about infrastructure and its platforms. Other technical aspects such as memory, storage, backup and restore, can be done very easily. This research is intended to modeling the infrastructure and management of computer platform in computer network of Faculty of Engineering, University of Jenderal Soedirman. The first stage in this research is literature study, by finding out the implementation model in previous research. Then the result will be combined with a new approach to existing resources and try to implement directly on the existing server network. The results showed that the implementation of cloud computing technology is able to replace the existing platform network.
Complex system modelling and control through intelligent soft computations
Azar, Ahmad
2015-01-01
The book offers a snapshot of the theories and applications of soft computing in the area of complex systems modeling and control. It presents the most important findings discussed during the 5th International Conference on Modelling, Identification and Control, held in Cairo, from August 31-September 2, 2013. The book consists of twenty-nine selected contributions, which have been thoroughly reviewed and extended before their inclusion in the volume. The different chapters, written by active researchers in the field, report on both current theories and important applications of soft-computing. Besides providing the readers with soft-computing fundamentals, and soft-computing based inductive methodologies/algorithms, the book also discusses key industrial soft-computing applications, as well as multidisciplinary solutions developed for a variety of purposes, like windup control, waste management, security issues, biomedical applications and many others. It is a perfect reference guide for graduate students, r...
A Computational Analysis Model for Open-ended Cognitions
Morita, Junya; Miwa, Kazuhisa
In this paper, we propose a novel usage for computational cognitive models. In cognitive science, computational models have played a critical role of theories for human cognitions. Many computational models have simulated results of controlled psychological experiments successfully. However, there have been only a few attempts to apply the models to complex realistic phenomena. We call such a situation ``open-ended situation''. In this study, MAC/FAC (``many are called, but few are chosen''), proposed by [Forbus 95], that models two stages of analogical reasoning was applied to our open-ended psychological experiment. In our experiment, subjects were presented a cue story, and retrieved cases that had been learned in their everyday life. Following this, they rated inferential soundness (goodness as analogy) of each retrieved case. For each retrieved case, we computed two kinds of similarity scores (content vectors/structural evaluation scores) using the algorithms of the MAC/FAC. As a result, the computed content vectors explained the overall retrieval of cases well, whereas the structural evaluation scores had a strong relation to the rated scores. These results support the MAC/FAC's theoretical assumption - different similarities are involved on the two stages of analogical reasoning. Our study is an attempt to use a computational model as an analysis device for open-ended human cognitions.
Calculations on HYDROCOIN level 2, case 1 using the GWHRT flow model
International Nuclear Information System (INIS)
Thunvik, R.
1987-03-01
The report presents solutions to Hydrocoin Level 2: Case 1, dealing with thermal convection and conduction around a field heat transfer experiment. Hydrocoin is an international cooperation project to compare different computer models used for describing groundwater flow in geological media. The purpose of the project is to improve the understanding of various strategies for modelling groundwater flow for the safety assessment of final radioactive waste repositories. The project is structured in three levels. The object of level 2 is to study the capability of computer models to describe in-situ measurements. (orig./HP)
Global Stability of an Epidemic Model of Computer Virus
Directory of Open Access Journals (Sweden)
Xiaofan Yang
2014-01-01
Full Text Available With the rapid popularization of the Internet, computers can enter or leave the Internet increasingly frequently. In fact, no antivirus software can detect and remove all sorts of computer viruses. This implies that viruses would persist on the Internet. To better understand the spread of computer viruses in these situations, a new propagation model is established and analyzed. The unique equilibrium of the model is globally asymptotically stable, in accordance with the reality. A parameter analysis of the equilibrium is also conducted.
Computational modelling of Er(3+): Garnet laser materials
Spangler, Lee H.
1994-01-01
The Er(3+) ion has attracted a lot of interest for four reasons: (1) Its (4)I(sub 13/2) yields (4)I(sub 15/2) transition lases in the eyesafe region near 1.5 micron; (2) the (4)I(sub 13/2) transition lases near 2.8 micron, an important wavelength for surgical purposes; (3) it displays surprisingly efficient upconversion with lasing observed at 1.7, 1.2, 0.85, 0.56, 0.55, and 0.47 micron following 1.5 micron pumping; and (4) it has absorption bands at 0.96 and 0.81 micron and thus can be diode pumped. However, properties desirable for upconversion reduce the efficiency of 1.5 and 3 micron laser operation and vice versa. Since all of the processes are influenced by the host via the crystal field induced stark splittings in the Er levels, this project undertook modelling of the host influence on the Er lasinng behavior. While growth and measurement of all ten Er(3+) doped garnets is the surest way of identifying hosts which maximize upconversion (or conversly, 1.5 and 3 micron performance), it is also expensive - costing approximately $10,000/material or approximately $100,000 for the materials computationally investigated here. The calculations were performed using a quantum mechanical point charge model developed by Clyde Morrison at Harry Diamond Laboratories. The programs were used to fit the Er:YAG experimental energy levels so that the crystal field parameters, B(sub nm) could be extracted. From these radial factors, rho (sub n) were determined for Er(3+) in garnets. These, in combination with crystal field components, Anm, available from X-ray data, were used to predict energy levels for Er in the other nine garnet hosts. The levels in Er:YAG were fit with an rms error of 12.2/cm over a 22,000/cm range. Predicted levels for two other garnets for which literature values were available had rms errors of less than 17/cm , showing the calculations to be reliable. Based on resonances between pairs of calculated stark levels, the model predicts GSGG as the best host
Computational Modeling for Language Acquisition: A Tutorial With Syntactic Islands.
Pearl, Lisa S; Sprouse, Jon
2015-06-01
Given the growing prominence of computational modeling in the acquisition research community, we present a tutorial on how to use computational modeling to investigate learning strategies that underlie the acquisition process. This is useful for understanding both typical and atypical linguistic development. We provide a general overview of why modeling can be a particularly informative tool and some general considerations when creating a computational acquisition model. We then review a concrete example of a computational acquisition model for complex structural knowledge referred to as syntactic islands. This includes an overview of syntactic islands knowledge, a precise definition of the acquisition task being modeled, the modeling results, and how to meaningfully interpret those results in a way that is relevant for questions about knowledge representation and the learning process. Computational modeling is a powerful tool that can be used to understand linguistic development. The general approach presented here can be used to investigate any acquisition task and any learning strategy, provided both are precisely defined.
Computational Modeling Develops Ultra-Hard Steel
2007-01-01
Glenn Research Center's Mechanical Components Branch developed a spiral bevel or face gear test rig for testing thermal behavior, surface fatigue, strain, vibration, and noise; a full-scale, 500-horsepower helicopter main-rotor transmission testing stand; a gear rig that allows fundamental studies of the dynamic behavior of gear systems and gear noise; and a high-speed helical gear test for analyzing thermal behavior for rotorcraft. The test rig provides accelerated fatigue life testing for standard spur gears at speeds of up to 10,000 rotations per minute. The test rig enables engineers to investigate the effects of materials, heat treat, shot peen, lubricants, and other factors on the gear's performance. QuesTek Innovations LLC, based in Evanston, Illinois, recently developed a carburized, martensitic gear steel with an ultra-hard case using its computational design methodology, but needed to verify surface fatigue, lifecycle performance, and overall reliability. The Battelle Memorial Institute introduced the company to researchers at Glenn's Mechanical Components Branch and facilitated a partnership allowing researchers at the NASA Center to conduct spur gear fatigue testing for the company. Testing revealed that QuesTek's gear steel outperforms the current state-of-the-art alloys used for aviation gears in contact fatigue by almost 300 percent. With the confidence and credibility provided by the NASA testing, QuesTek is commercializing two new steel alloys. Uses for this new class of steel are limitless in areas that demand exceptional strength for high throughput applications.
A Computational Model of Spatial Development
Hiraki, Kazuo; Sashima, Akio; Phillips, Steven
Psychological experiments on children's development of spatial knowledge suggest experience at self-locomotion with visual tracking as important factors. Yet, the mechanism underlying development is unknown. We propose a robot that learns to mentally track a target object (i.e., maintaining a representation of an object's position when outside the field-of-view) as a model for spatial development. Mental tracking is considered as prediction of an object's position given the previous environmental state and motor commands, and the current environment state resulting from movement. Following Jordan & Rumelhart's (1992) forward modeling architecture the system consists of two components: an inverse model of sensory input to desired motor commands; and a forward model of motor commands to desired sensory input (goals). The robot was tested on the `three cups' paradigm (where children are required to select the cup containing the hidden object under various movement conditions). Consistent with child development, without the capacity for self-locomotion the robot's errors are self-center based. When given the ability of self-locomotion the robot responds allocentrically.
Electricity load modelling using computational intelligence
Ter Borg, R.W.
2005-01-01
As a consequence of the liberalisation of the electricity markets in Europe, market players have to continuously adapt their future supply to match their customers' demands. This poses the challenge of obtaining a predictive model that accurately describes electricity loads, current in this thesis.
Computational Modeling of Fluorescence Loss in Photobleaching
DEFF Research Database (Denmark)
Hansen, Christian Valdemar; Schroll, Achim; Wüstner, Daniel
2015-01-01
sequences as reaction– diffusion systems on segmented cell images. The cell geometry is extracted from microscopy images using the Chan–Vese active contours algorithm [8]. The PDE model is subsequently solved by the automated Finite Element software package FEniCS [20]. The flexibility of FEniCS allows...
Radiation enhanced conduction in insulators: computer modelling
International Nuclear Information System (INIS)
Fisher, A.J.
1986-10-01
The report describes the implementation of the Klaffky-Rose-Goland-Dienes [Phys. Rev. B.21 3610,1980] model of radiation-enhanced conduction and describes the codes used. The approach is demonstrated for the data for alumina of Pells, Buckley, Hill and Murphy [AERE R.11715, 1985]. (author)
GPSS and Modeling of Computer Communication Networks.
1982-04-01
action block in a flowchart of the system being modeled. For instance, the process of capturing a facility for some length of time and then...because of the abundance of tutorial material available; whereas, far less complete 47 tutorial material is available to beginners learning SIMSCRIPT
Life system modeling and intelligent computing. Pt. I. Proceedings
Energy Technology Data Exchange (ETDEWEB)
Li, Kang; Irwin, George W. (eds.) [Belfast Queen' s Univ. (United Kingdom). School of Electronics, Electrical Engineering and Computer Science; Fei, Minrui; Jia, Li [Shanghai Univ. (China). School of Mechatronical Engineering and Automation
2010-07-01
This book is part I of a two-volume work that contains the refereed proceedings of the International Conference on Life System Modeling and Simulation, LSMS 2010 and the International Conference on Intelligent Computing for Sustainable Energy and Environment, ICSEE 2010, held in Wuxi, China, in September 2010. The 194 revised full papers presented were carefully reviewed and selected from over 880 submissions and recommended for publication by Springer in two volumes of Lecture Notes in Computer Science (LNCS) and one volume of Lecture Notes in Bioinformatics (LNBI). This particular volume of Lecture Notes in Computer Science (LNCS) includes 55 papers covering 7 relevant topics. The 55 papers in this volume are organized in topical sections on intelligent modeling, monitoring, and control of complex nonlinear systems; autonomy-oriented computing and intelligent agents; advanced theory and methodology in fuzzy systems and soft computing; computational intelligence in utilization of clean and renewable energy resources; intelligent modeling, control and supervision for energy saving and pollution reduction; intelligent methods in developing vehicles, engines and equipments; computational methods and intelligence in modeling genetic and biochemical networks and regulation. (orig.)
Computer Modeling of Ceramic Boride Composites
2014-11-01
temperature above the eutectic one; these states describe a complete disintegration with a liquid interface. This shows the role of interface energy as...mechanical properties that characterize strength of the material decreases and the level of plastic properties — increases. Many of the materials at...defined as the work required for reversible separation of the interface into two free surfaces without plastic deformation and diffusion. From a practical
Differences on the Level of Social Skills between Freshman Computer Gamers and Non-Gamers
Directory of Open Access Journals (Sweden)
Joseph B. Campit
2015-02-01
Full Text Available Computer games play a large role in socialization and the consequences of playing them have been a topic of debates. This observation led the researcher to conduct the study about the influence of computer games on the social skills of the BSIT first year students of Pangasinan State University, Bayambang Campus, during school year 2012-2013. This study determined the profile of the 115 BSIT first year students according to: preferred computer games and frequency of playing. It investigated the level of social skills among playing and non-playing gamers. This study used the descriptive-comparative method of research. It was found out that crossfire was the most preferred computer game played at least once a week. Computer gamers had lower social skills than non-computer gamers. Gamers have more negative social behaviors compared to non-gamers and there is a negative effect of playing computer games on the level of social skills among first year students. There is a significant difference in the level of social skills of the students when grouped according to frequency of playing computer games. Students who play computer games everyday had significantly lower social skills than who play once a week. Thus, parents and teachers should give proper guidance in the limitation of playing computer games and the choice of games. Teachers should organize seminars on the awareness of the influence and negative effects of violent computer games on social skills. And students should choose educational over violent games to enhance their knowledge and social skills.
Three essays on multi-level optimization models and applications
Rahdar, Mohammad
The general form of a multi-level mathematical programming problem is a set of nested optimization problems, in which each level controls a series of decision variables independently. However, the value of decision variables may also impact the objective function of other levels. A two-level model is called a bilevel model and can be considered as a Stackelberg game with a leader and a follower. The leader anticipates the response of the follower and optimizes its objective function, and then the follower reacts to the leader's action. The multi-level decision-making model has many real-world applications such as government decisions, energy policies, market economy, network design, etc. However, there is a lack of capable algorithms to solve medium and large scale these types of problems. The dissertation is devoted to both theoretical research and applications of multi-level mathematical programming models, which consists of three parts, each in a paper format. The first part studies the renewable energy portfolio under two major renewable energy policies. The potential competition for biomass for the growth of the renewable energy portfolio in the United States and other interactions between two policies over the next twenty years are investigated. This problem mainly has two levels of decision makers: the government/policy makers and biofuel producers/electricity generators/farmers. We focus on the lower-level problem to predict the amount of capacity expansions, fuel production, and power generation. In the second part, we address uncertainty over demand and lead time in a multi-stage mathematical programming problem. We propose a two-stage tri-level optimization model in the concept of rolling horizon approach to reducing the dimensionality of the multi-stage problem. In the third part of the dissertation, we introduce a new branch and bound algorithm to solve bilevel linear programming problems. The total time is reduced by solving a smaller relaxation
Multi-level and hybrid modelling approaches for systems biology.
Bardini, R; Politano, G; Benso, A; Di Carlo, S
2017-01-01
During the last decades, high-throughput techniques allowed for the extraction of a huge amount of data from biological systems, unveiling more of their underling complexity. Biological systems encompass a wide range of space and time scales, functioning according to flexible hierarchies of mechanisms making an intertwined and dynamic interplay of regulations. This becomes particularly evident in processes such as ontogenesis, where regulative assets change according to process context and timing, making structural phenotype and architectural complexities emerge from a single cell, through local interactions. The information collected from biological systems are naturally organized according to the functional levels composing the system itself. In systems biology, biological information often comes from overlapping but different scientific domains, each one having its own way of representing phenomena under study. That is, the different parts of the system to be modelled may be described with different formalisms. For a model to have improved accuracy and capability for making a good knowledge base, it is good to comprise different system levels, suitably handling the relative formalisms. Models which are both multi-level and hybrid satisfy both these requirements, making a very useful tool in computational systems biology. This paper reviews some of the main contributions in this field.
DEFF Research Database (Denmark)
Yeboah-Boateng, Ezer Osei; Essandoh, Kofi Asare
2013-01-01
Cloud computing services are being touted as a major enabler for small businesses lately. This new paradigm is seen to offer unique opportunities to small and medium enterprises (SMEs) worldwide and developing economies are no exception. It presents SMEs access to similar technologies available...... indicated that a slight majority of the respondents were familiar with cloud computing on the individual level but the level of awareness amongst the larger SME industry was low to medium. The finding therefore recommends education and sensitization on cloud computing in order to increase awareness...... to their larger counterparts and those in the developed world which inherently creates innovativeness, increases competitive advantage and impacts their operations and processes. This paper seeks to determine the level of awareness and familiarity with this emerging computing paradigm. The results of the study...
Patient dose, gray level and exposure index with a computed radiography system
Silva, T. R.; Yoshimura, E. M.
2014-02-01
Computed radiography (CR) is gradually replacing conventional screen-film system in Brazil. To assess image quality, manufactures provide the calculation of an exposure index through the acquisition software of the CR system. The objective of this study is to verify if the CR image can be used as an evaluator of patient absorbed dose too, through a relationship between the entrance skin dose and the exposure index or the gray level values obtained in the image. The CR system used for this study (Agfa model 30-X with NX acquisition software) calculates an exposure index called Log of the Median (lgM), related to the absorbed dose to the IP. The lgM value depends on the average gray level (called Scan Average Level (SAL)) of the segmented pixel value histogram of the whole image. A Rando male phantom was used to simulate a human body (chest and head), and was irradiated with an X-ray equipment, using usual radiologic techniques for chest exams. Thermoluminescent dosimeters (LiF, TLD100) were used to evaluate entrance skin dose and exit dose. The results showed a logarithm relation between entrance dose and SAL in the image center, regardless of the beam filtration. The exposure index varies linearly with the entrance dose, but the angular coefficient is beam quality dependent. We conclude that, with an adequate calibration, the CR system can be used to evaluate the patient absorbed dose.
Computational Intelligence in a Human Brain Model
Directory of Open Access Journals (Sweden)
Viorel Gaftea
2016-06-01
Full Text Available This paper focuses on the current trends in brain research domain and the current stage of development of research for software and hardware solutions, communication capabilities between: human beings and machines, new technologies, nano-science and Internet of Things (IoT devices. The proposed model for Human Brain assumes main similitude between human intelligence and the chess game thinking process. Tactical & strategic reasoning and the need to follow the rules of the chess game, all are very similar with the activities of the human brain. The main objective for a living being and the chess game player are the same: securing a position, surviving and eliminating the adversaries. The brain resolves these goals, and more, the being movement, actions and speech are sustained by the vital five senses and equilibrium. The chess game strategy helps us understand the human brain better and easier replicate in the proposed ‘Software and Hardware’ SAH Model.
Computational Modeling of Supercritical and Transcritical Flows
2017-01-09
Acentric factor I. Introduction Liquid rocket and gas turbine engines operate at high pressures . For gas turbines, the combustor pressurecan be 60 − 100...equation of state for several reduced pressures . The model captures the high density at very low temperatures and the supercritical behavior at high reduced...physical meaning. The temperature range over which the three roots are present is bounded by TL on the low side and TH on the high side. Figure 2: Roots
Computational Modeling of Lipid Metabolism in Yeast
Directory of Open Access Journals (Sweden)
Vera Schützhold
2016-09-01
Full Text Available Lipid metabolism is essential for all major cell functions and has recently gained increasing attention in research and health studies. However, mathematical modeling by means of classical approaches such as stoichiometric networks and ordinary differential equation systems has not yet provided satisfactory insights, due to the complexity of lipid metabolism characterized by many different species with only slight differences and by promiscuous multifunctional enzymes.Here, we present a object-oriented stochastic model approach as a way to cope with the complex lipid metabolic network. While all lipid species are treated objects in the model, they can be modified by the respective converting reactions based on reaction rules, a hybrid method that integrates benefits of agent-based and classical stochastic simulation. This approach allows to follow the dynamics of all lipid species with different fatty acids, different degrees of saturation and different headgroups over time and to analyze the effect of parameter changes, potential mutations in the catalyzing enzymes or provision of different precursors. Applied to yeast metabolism during one cell cycle period, we could analyze the distribution of all lipids to the various membranes in time-dependent manner.The presented approach allows to efficiently treat the complexity of cellular lipid metabolism and to derive conclusions on the time- and location-dependent distributions of lipid species and their properties such as saturation. It is widely applicable, easily extendable and will provide further insights in healthy and diseased states of cell metabolism.
Computational mathematics models, methods, and analysis with Matlab and MPI
White, Robert E
2004-01-01
Computational Mathematics: Models, Methods, and Analysis with MATLAB and MPI explores and illustrates this process. Each section of the first six chapters is motivated by a specific application. The author applies a model, selects a numerical method, implements computer simulations, and assesses the ensuing results. These chapters include an abundance of MATLAB code. By studying the code instead of using it as a "black box, " you take the first step toward more sophisticated numerical modeling. The last four chapters focus on multiprocessing algorithms implemented using message passing interface (MPI). These chapters include Fortran 9x codes that illustrate the basic MPI subroutines and revisit the applications of the previous chapters from a parallel implementation perspective. All of the codes are available for download from www4.ncsu.edu./~white.This book is not just about math, not just about computing, and not just about applications, but about all three--in other words, computational science. Whether us...
Tutorial: Parallel Computing of Simulation Models for Risk Analysis.
Reilly, Allison C; Staid, Andrea; Gao, Michael; Guikema, Seth D
2016-10-01
Simulation models are widely used in risk analysis to study the effects of uncertainties on outcomes of interest in complex problems. Often, these models are computationally complex and time consuming to run. This latter point may be at odds with time-sensitive evaluations or may limit the number of parameters that are considered. In this article, we give an introductory tutorial focused on parallelizing simulation code to better leverage modern computing hardware, enabling risk analysts to better utilize simulation-based methods for quantifying uncertainty in practice. This article is aimed primarily at risk analysts who use simulation methods but do not yet utilize parallelization to decrease the computational burden of these models. The discussion is focused on conceptual aspects of embarrassingly parallel computer code and software considerations. Two complementary examples are shown using the languages MATLAB and R. A brief discussion of hardware considerations is located in the Appendix. © 2016 Society for Risk Analysis.
Airfoil computations using the gamma-Retheta model; Wind turbines
Energy Technology Data Exchange (ETDEWEB)
Soerensen, Niels N.
2009-05-15
The present work addresses the validation of the implementation of the Menter, Langtry et al. gamma-theta correlation based transition model [1, 2, 3] in the EllipSys2D code. Firstly the 2. order of accuracy of the code is verified using a grid refinement study for laminar, turbulent and transitional computations. Based on this, an estimate of the error in the computations is determined to be approximately one percent in the attached region. Following the verification of the implemented model, the model is applied to four airfoils, NACA64-018, NACA64-218, NACA64-418 and NACA64-618 and the results are compared to measurements [4] and computations using the Xfoil code by Drela et al. [5]. In the linear pre stall region good agreement is observed both for lift and drag, while differences to both measurements and Xfoil computations are observed in stalled conditions. (au)
International Nuclear Information System (INIS)
Correa, S.C.A.; Souza, E.M.; Oliveira, D.F.; Silva, A.X.; Lopes, R.T.; Marinho, C.; Camerini, C.S.
2009-01-01
In order to guarantee the structural integrity of oil plants it is crucial to monitor the amount of weld thickness loss in offshore pipelines. However, in spite of its relevance, this parameter is very difficult to determine, due to both the large diameter of most pipes and the complexity of the multi-variable system involved. In this study, a computational modeling based on Monte Carlo MCNPX code is combined with computed radiography to estimate the weld thickness loss in large-diameter offshore pipelines. Results show that computational modeling is a powerful tool to estimate intensity variations in radiographic images generated by weld thickness variations, and it can be combined with computed radiography to assess weld thickness loss in offshore and subsea pipelines.
The role of computer modelling in participatory integrated assessments
International Nuclear Information System (INIS)
Siebenhuener, Bernd; Barth, Volker
2005-01-01
In a number of recent research projects, computer models have been included in participatory procedures to assess global environmental change. The intention was to support knowledge production and to help the involved non-scientists to develop a deeper understanding of the interactions between natural and social systems. This paper analyses the experiences made in three projects with the use of computer models from a participatory and a risk management perspective. Our cross-cutting analysis of the objectives, the employed project designs and moderation schemes and the observed learning processes in participatory processes with model use shows that models play a mixed role in informing participants and stimulating discussions. However, no deeper reflection on values and belief systems could be achieved. In terms of the risk management phases, computer models serve best the purposes of problem definition and option assessment within participatory integrated assessment (PIA) processes
Computer modeling of road bridge for simulation moving load
Directory of Open Access Journals (Sweden)
Miličić Ilija M.
2016-01-01
Full Text Available In this paper is shown computational modelling one span road structures truss bridge with the roadway on the upper belt of. Calculation models were treated as planar and spatial girders made up of 1D finite elements with applications for CAA: Tower and Bridge Designer 2016 (2nd Edition. The conducted computer simulations results are obtained for each comparison of the impact of moving load according to the recommendations of the two standards SRPS and AASHATO. Therefore, it is a variant of the bridge structure modeling application that provides Bridge Designer 2016 (2nd Edition identical modeled in an environment of Tower. As important information for the selection of a computer applications point out that the application Bridge Designer 2016 (2nd Edition we arent unable to treat the impacts moving load model under national standard - V600. .
Understanding Emergency Care Delivery Through Computer Simulation Modeling.
Laker, Lauren F; Torabi, Elham; France, Daniel J; Froehle, Craig M; Goldlust, Eric J; Hoot, Nathan R; Kasaie, Parastu; Lyons, Michael S; Barg-Walkow, Laura H; Ward, Michael J; Wears, Robert L
2018-02-01
In 2017, Academic Emergency Medicine convened a consensus conference entitled, "Catalyzing System Change through Health Care Simulation: Systems, Competency, and Outcomes." This article, a product of the breakout session on "understanding complex interactions through systems modeling," explores the role that computer simulation modeling can and should play in research and development of emergency care delivery systems. This article discusses areas central to the use of computer simulation modeling in emergency care research. The four central approaches to computer simulation modeling are described (Monte Carlo simulation, system dynamics modeling, discrete-event simulation, and agent-based simulation), along with problems amenable to their use and relevant examples to emergency care. Also discussed is an introduction to available software modeling platforms and how to explore their use for research, along with a research agenda for computer simulation modeling. Through this article, our goal is to enhance adoption of computer simulation, a set of methods that hold great promise in addressing emergency care organization and design challenges. © 2017 by the Society for Academic Emergency Medicine.
A distributed computing model for telemetry data processing
Barry, Matthew R.; Scott, Kevin L.; Weismuller, Steven P.
1994-05-01
We present a new approach to distributing processed telemetry data among spacecraft flight controllers within the control centers at NASA's Johnson Space Center. This approach facilitates the development of application programs which integrate spacecraft-telemetered data and ground-based synthesized data, then distributes this information to flight controllers for analysis and decision-making. The new approach combines various distributed computing models into one hybrid distributed computing model. The model employs both client-server and peer-to-peer distributed computing models cooperating to provide users with information throughout a diverse operations environment. Specifically, it provides an attractive foundation upon which we are building critical real-time monitoring and control applications, while simultaneously lending itself to peripheral applications in playback operations, mission preparations, flight controller training, and program development and verification. We have realized the hybrid distributed computing model through an information sharing protocol. We shall describe the motivations that inspired us to create this protocol, along with a brief conceptual description of the distributed computing models it employs. We describe the protocol design in more detail, discussing many of the program design considerations and techniques we have adopted. Finally, we describe how this model is especially suitable for supporting the implementation of distributed expert system applications.
A distributed computing model for telemetry data processing
Barry, Matthew R.; Scott, Kevin L.; Weismuller, Steven P.
1994-01-01
We present a new approach to distributing processed telemetry data among spacecraft flight controllers within the control centers at NASA's Johnson Space Center. This approach facilitates the development of application programs which integrate spacecraft-telemetered data and ground-based synthesized data, then distributes this information to flight controllers for analysis and decision-making. The new approach combines various distributed computing models into one hybrid distributed computing model. The model employs both client-server and peer-to-peer distributed computing models cooperating to provide users with information throughout a diverse operations environment. Specifically, it provides an attractive foundation upon which we are building critical real-time monitoring and control applications, while simultaneously lending itself to peripheral applications in playback operations, mission preparations, flight controller training, and program development and verification. We have realized the hybrid distributed computing model through an information sharing protocol. We shall describe the motivations that inspired us to create this protocol, along with a brief conceptual description of the distributed computing models it employs. We describe the protocol design in more detail, discussing many of the program design considerations and techniques we have adopted. Finally, we describe how this model is especially suitable for supporting the implementation of distributed expert system applications.
Modeling Adsorption-Desorption Processes at the Intermolecular Interactions Level
Varfolomeeva, Vera V.; Terentev, Alexey V.
2018-01-01
Modeling of the surface adsorption and desorption processes, as well as the diffusion, are of considerable interest for the physical phenomenon under study in ground tests conditions. When imitating physical processes and phenomena, it is important to choose the correct parameters to describe the adsorption of gases and the formation of films on the structural materials surface. In the present research the adsorption-desorption processes on the gas-solid interface are modeled with allowance for diffusion. Approaches are proposed to describe the adsorbate distribution on the solid body surface at the intermolecular interactions level. The potentials of the intermolecular interaction of water-water, water-methane and methane-methane were used to adequately modeling the real physical and chemical processes. The energies calculated by the B3LYP/aug-cc-pVDZ method. Computational algorithms for determining the average molecule area in a dense monolayer, are considered here. Differences in modeling approaches are also given: that of the proposed in this work and the previously approved probabilistic cellular automaton (PCA) method. It has been shown that the main difference is due to certain limitations of the PCA method. The importance of accounting the intermolecular interactions via hydrogen bonding has been indicated. Further development of the adsorption-desorption processes modeling will allow to find the conditions for of surface processes regulation by means of quantity adsorbed molecules control. The proposed approach to representing the molecular system significantly shortens the calculation time in comparison with the use of atom-atom potentials. In the future, this will allow to modeling the multilayer adsorption at a reasonable computational cost.
Enabling Grid Computing resources within the KM3NeT computing model
Directory of Open Access Journals (Sweden)
Filippidis Christos
2016-01-01
Full Text Available KM3NeT is a future European deep-sea research infrastructure hosting a new generation neutrino detectors that – located at the bottom of the Mediterranean Sea – will open a new window on the universe and answer fundamental questions both in particle physics and astrophysics. International collaborative scientific experiments, like KM3NeT, are generating datasets which are increasing exponentially in both complexity and volume, making their analysis, archival, and sharing one of the grand challenges of the 21st century. These experiments, in their majority, adopt computing models consisting of different Tiers with several computing centres and providing a specific set of services for the different steps of data processing such as detector calibration, simulation and data filtering, reconstruction and analysis. The computing requirements are extremely demanding and, usually, span from serial to multi-parallel or GPU-optimized jobs. The collaborative nature of these experiments demands very frequent WAN data transfers and data sharing among individuals and groups. In order to support the aforementioned demanding computing requirements we enabled Grid Computing resources, operated by EGI, within the KM3NeT computing model. In this study we describe our first advances in this field and the method for the KM3NeT users to utilize the EGI computing resources in a simulation-driven use-case.
M. Kasemann
Overview In autumn the main focus was to process and handle CRAFT data and to perform the Summer08 MC production. The operational aspects were well covered by regular Computing Shifts, experts on duty and Computing Run Coordination. At the Computing Resource Board (CRB) in October a model to account for service work at Tier 2s was approved. The computing resources for 2009 were reviewed for presentation at the C-RRB. The quarterly resource monitoring is continuing. Facilities/Infrastructure operations Operations during CRAFT data taking ran fine. This proved to be a very valuable experience for T0 workflows and operations. The transfers of custodial data to most T1s went smoothly. A first round of reprocessing started at the Tier-1 centers end of November; it will take about two weeks. The Computing Shifts procedure was tested full scale during this period and proved to be very efficient: 30 Computing Shifts Persons (CSP) and 10 Computing Resources Coordinators (CRC). The shift program for the shut down w...
International Nuclear Information System (INIS)
Walton, S.
1987-01-01
The Committee, asked to provide an assessment of computer-assisted modeling of molecular structure, has highlighted the signal successes and the significant limitations for a broad panoply of technologies and has projected plausible paths of development over the next decade. As with any assessment of such scope, differing opinions about present or future prospects were expressed. The conclusions and recommendations, however, represent a consensus of our views of the present status of computational efforts in this field
Computational needs for modelling accelerator components
International Nuclear Information System (INIS)
Hanerfeld, H.
1985-06-01
The particle-in-cell MASK is being used to model several different electron accelerator components. These studies are being used both to design new devices and to understand particle behavior within existing structures. Studies include the injector for the Stanford Linear Collider and the 50 megawatt klystron currently being built at SLAC. MASK is a 2D electromagnetic code which is being used by SLAC both on our own IBM 3081 and on the CRAY X-MP at the NMFECC. Our experience with running MASK illustrates the need for supercomputers to continue work of the kind described. 3 refs., 2 figs
Paradox of integration-A computational model
Krawczyk, Małgorzata J.; Kułakowski, Krzysztof
2017-02-01
The paradoxical aspect of integration of a social group has been highlighted by Blau (1964). During the integration process, the group members simultaneously compete for social status and play the role of the audience. Here we show that when the competition prevails over the desire of approval, a sharp transition breaks all friendly relations. However, as was described by Blau, people with high status are inclined to bother more with acceptance of others; this is achieved by praising others and revealing her/his own weak points. In our model, this action smooths the transition and improves interpersonal relations.
Simulation model of load balancing in distributed computing systems
Botygin, I. A.; Popov, V. N.; Frolov, S. G.
2017-02-01
The availability of high-performance computing, high speed data transfer over the network and widespread of software for the design and pre-production in mechanical engineering have led to the fact that at the present time the large industrial enterprises and small engineering companies implement complex computer systems for efficient solutions of production and management tasks. Such computer systems are generally built on the basis of distributed heterogeneous computer systems. The analytical problems solved by such systems are the key models of research, but the system-wide problems of efficient distribution (balancing) of the computational load and accommodation input, intermediate and output databases are no less important. The main tasks of this balancing system are load and condition monitoring of compute nodes, and the selection of a node for transition of the user’s request in accordance with a predetermined algorithm. The load balancing is one of the most used methods of increasing productivity of distributed computing systems through the optimal allocation of tasks between the computer system nodes. Therefore, the development of methods and algorithms for computing optimal scheduling in a distributed system, dynamically changing its infrastructure, is an important task.
Information-preserving models of physics and computation: Final report
International Nuclear Information System (INIS)
1986-01-01
This research pertains to discrete dynamical systems, as embodied by cellular automata, reversible finite-difference equations, and reversible computation. The research has strengthened the cross-fertilization between physics, computer science and discrete mathematics. It has shown that methods and concepts of physics can be exported to computation. Conversely, fully discrete dynamical systems have been shown to be fruitful for representing physical phenomena usually described with differential equations - cellular automata for fluid dynamics has been the most noted example of such a representation. At the practical level, the fully discrete representation approach suggests innovative uses of computers for scientific computing. The originality of these uses lies in their non-numerical nature: they avoid the inaccuracies of floating-point arithmetic and bypass the need for numerical analysis. 38 refs
High level language for measurement complex control based on the computer E-100I
Zubkov, B. V.
1980-01-01
A high level language was designed to control the process of conducting an experiment using the computer "Elektrinika-1001". Program examples are given to control the measuring and actuating devices. The procedure of including these programs in the suggested high level language is described.
Global sensitivity analysis of computer models with functional inputs
International Nuclear Information System (INIS)
Iooss, Bertrand; Ribatet, Mathieu
2009-01-01
Global sensitivity analysis is used to quantify the influence of uncertain model inputs on the response variability of a numerical model. The common quantitative methods are appropriate with computer codes having scalar model inputs. This paper aims at illustrating different variance-based sensitivity analysis techniques, based on the so-called Sobol's indices, when some model inputs are functional, such as stochastic processes or random spatial fields. In this work, we focus on large cpu time computer codes which need a preliminary metamodeling step before performing the sensitivity analysis. We propose the use of the joint modeling approach, i.e., modeling simultaneously the mean and the dispersion of the code outputs using two interlinked generalized linear models (GLMs) or generalized additive models (GAMs). The 'mean model' allows to estimate the sensitivity indices of each scalar model inputs, while the 'dispersion model' allows to derive the total sensitivity index of the functional model inputs. The proposed approach is compared to some classical sensitivity analysis methodologies on an analytical function. Lastly, the new methodology is applied to an industrial computer code that simulates the nuclear fuel irradiation.
COMPUTER MODELLING OF ENERGY SAVING EFFECTS
Directory of Open Access Journals (Sweden)
Marian JANCZAREK
2016-09-01
Full Text Available The paper presents the analysis of the dynamics of the heat transfer through the outer wall of the thermal technical spaces, taking into account the impact of the sinusoidal nature of the changes in atmospheric temperature. These temporal variations of the input on the outer surface of the chamber divider result at the output of the sinusoidal change on the inner wall of the room, but suitably suppressed and shifted in phase. Properly selected phase shift is clearly important for saving energy used for the operation associated with the maintenance of a specific regime of heat inside the thermal technical chamber support. Laboratory tests of the model and the actual object allowed for optimal design of the chamber due to the structure of the partition as well as due to the orientation of the geographical location of the chamber.
Computational modeling of Metal-Organic Frameworks
Sung, Jeffrey Chuen-Fai
In this work, the metal-organic frameworks MIL-53(Cr), DMOF-2,3-NH 2Cl, DMOF-2,5-NH2Cl, and HKUST-1 were modeled using molecular mechanics and electronic structure. The effect of electronic polarization on the adsorption of water in MIL-53(Cr) was studied using molecular dynamics simulations of water-loaded MIL-53 systems with both polarizable and non-polarizable force fields. Molecular dynamics simulations of the full systems and DFT calculations on representative framework clusters were utilized to study the difference in nitrogen adsorption between DMOF-2,3-NH2Cl and DMOF-2,5-NH 2Cl. Finally, the control of proton conduction in HKUST-1 by complexation of molecules to the Cu open metal site was investigated using the MS-EVB methodology.
Computer Forensics Field Triage Process Model
Directory of Open Access Journals (Sweden)
Marcus K. Rogers
2006-06-01
Full Text Available With the proliferation of digital based evidence, the need for the timely identification, analysis and interpretation of digital evidence is becoming more crucial. In many investigations critical information is required while at the scene or within a short period of time - measured in hours as opposed to days. The traditional cyber forensics approach of seizing a system(s/media, transporting it to the lab, making a forensic image(s, and then searching the entire system for potential evidence, is no longer appropriate in some circumstances. In cases such as child abductions, pedophiles, missing or exploited persons, time is of the essence. In these types of cases, investigators dealing with the suspect or crime scene need investigative leads quickly; in some cases it is the difference between life and death for the victim(s. The Cyber Forensic Field Triage Process Model (CFFTPM proposes an onsite or field approach for providing the identification, analysis and interpretation of digital evidence in a short time frame, without the requirement of having to take the system(s/media back to the lab for an in-depth examination or acquiring a complete forensic image(s. The proposed model adheres to commonly held forensic principles, and does not negate the ability that once the initial field triage is concluded, the system(s/storage media be transported back to a lab environment for a more thorough examination and analysis. The CFFTPM has been successfully used in various real world cases, and its investigative importance and pragmatic approach has been amply demonstrated. Furthermore, the derived evidence from these cases has not been challenged in the court proceedings where it has been introduced. The current article describes the CFFTPM in detail, discusses the model’s forensic soundness, investigative support capabilities and practical considerations.
Modeling soft factors in computer-based wargames
Alexander, Steven M.; Ross, David O.; Vinarskai, Jonathan S.; Farr, Steven D.
2002-07-01
Computer-based wargames have seen much improvement in recent years due to rapid increases in computing power. Because these games have been developed for the entertainment industry, most of these advances have centered on the graphics, sound, and user interfaces integrated into these wargames with less attention paid to the game's fidelity. However, for a wargame to be useful to the military, it must closely approximate as many of the elements of war as possible. Among the elements that are typically not modeled or are poorly modeled in nearly all military computer-based wargames are systematic effects, command and control, intelligence, morale, training, and other human and political factors. These aspects of war, with the possible exception of systematic effects, are individually modeled quite well in many board-based commercial wargames. The work described in this paper focuses on incorporating these elements from the board-based games into a computer-based wargame. This paper will also address the modeling and simulation of the systemic paralysis of an adversary that is implied by the concept of Effects Based Operations (EBO). Combining the fidelity of current commercial board wargames with the speed, ease of use, and advanced visualization of the computer can significantly improve the effectiveness of military decision making and education. Once in place, the process of converting board wargames concepts to computer wargames will allow the infusion of soft factors into military training and planning.
CDIAC catalog of numeric data packages and computer model packages
International Nuclear Information System (INIS)
Boden, T.A.; Stoss, F.W.
1993-05-01
The Carbon Dioxide Information Analysis Center acquires, quality-assures, and distributes to the scientific community numeric data packages (NDPs) and computer model packages (CMPs) dealing with topics related to atmospheric trace-gas concentrations and global climate change. These packages include data on historic and present atmospheric CO 2 and CH 4 concentrations, historic and present oceanic CO 2 concentrations, historic weather and climate around the world, sea-level rise, storm occurrences, volcanic dust in the atmosphere, sources of atmospheric CO 2 , plants' response to elevated CO 2 levels, sunspot occurrences, and many other indicators of, contributors to, or components of climate change. This catalog describes the packages presently offered by CDIAC, reviews the processes used by CDIAC to assure the quality of the data contained in these packages, notes the media on which each package is available, describes the documentation that accompanies each package, and provides ordering information. Numeric data are available in the printed NDPs and CMPs, in CD-ROM format, and from an anonymous FTP area via Internet. All CDIAC information products are available at no cost
Computational modeling of neural activities for statistical inference
Kolossa, Antonio
2016-01-01
This authored monograph supplies empirical evidence for the Bayesian brain hypothesis by modeling event-related potentials (ERP) of the human electroencephalogram (EEG) during successive trials in cognitive tasks. The employed observer models are useful to compute probability distributions over observable events and hidden states, depending on which are present in the respective tasks. Bayesian model selection is then used to choose the model which best explains the ERP amplitude fluctuations. Thus, this book constitutes a decisive step towards a better understanding of the neural coding and computing of probabilities following Bayesian rules. The target audience primarily comprises research experts in the field of computational neurosciences, but the book may also be beneficial for graduate students who want to specialize in this field. .
An integrative computational modelling of music structure apprehension
DEFF Research Database (Denmark)
Lartillot, Olivier
2014-01-01
, the computational model, by virtue of its generality, extensiveness and operationality, is suggested as a blueprint for the establishment of cognitively validated model of music structure apprehension. Available as a Matlab module, it can be used for practical musicological uses.......An objectivization of music analysis requires a detailed formalization of the underlying principles and methods. The formalization of the most elementary structural processes is hindered by the complexity of music, both in terms of profusions of entities (such as notes) and of tight interactions...... between a large number of dimensions. Computational modeling would enable systematic and exhaustive tests on sizeable pieces of music, yet current researches cover particular musical dimensions with limited success. The aim of this research is to conceive a computational modeling of music analysis...
Modelling Emission from Building Materials with Computational Fluid Dynamics
DEFF Research Database (Denmark)
Topp, Claus; Nielsen, Peter V.; Heiselberg, Per
This paper presents a numerical model that by means of computational fluid dynamics (CFD) is capable of dealing with both pollutant transport across the boundary layer and internal diffusion in the source without prior knowledge of which is the limiting process. The model provides the concentration...
An approximate fractional Gaussian noise model with computational cost
Sø rbye, Sigrunn H.; Myrvoll-Nilsen, Eirik; Rue, Haavard
2017-01-01
Fractional Gaussian noise (fGn) is a stationary time series model with long memory properties applied in various fields like econometrics, hydrology and climatology. The computational cost in fitting an fGn model of length $n$ using a likelihood
Computational 3-D Model of the Human Respiratory System
We are developing a comprehensive, morphologically-realistic computational model of the human respiratory system that can be used to study the inhalation, deposition, and clearance of contaminants, while being adaptable for age, race, gender, and health/disease status. The model ...
Computational and Game-Theoretic Approaches for Modeling Bounded Rationality
L. Waltman (Ludo)
2011-01-01
textabstractThis thesis studies various computational and game-theoretic approaches to economic modeling. Unlike traditional approaches to economic modeling, the approaches studied in this thesis do not rely on the assumption that economic agents behave in a fully rational way. Instead, economic