WorldWideScience

Sample records for level boiler blowdown

  1. Exergy analysis and evolutionary optimization of boiler blowdown heat recovery in steam power plants

    International Nuclear Information System (INIS)

    Vandani, Amin Mohammadi Khoshkar; Bidi, Mokhtar; Ahmadi, Fatemeh

    2015-01-01

    Highlights: • Heat recovery of boiler blow downed water using a flash tank is modeled. • Exergy destruction of each component is calculated. • Exergy efficiency of the whole system is optimized using GA and PSO algorithms. • Utilizing the flash tank increases the net power and efficiency of the system. - Abstract: In this study, energy and exergy analyses of boiler blowdown heat recovery are performed. To evaluate the effect of heat recovery on the system performance, a steam power plant in Iran is selected and the results of implementation of heat recovery system on the power plant are investigated. Also two different optimization algorithms including GA and PSO are established to increase the plant efficiency. The decision variables are extraction pressure from steam turbine and temperature and pressure of boiler outlet stream. The results indicate that using blowdown recovery technique, the net generated power increases 0.72%. Also energy and exergy efficiency of the system increase by 0.23 and 0.22, respectively. The optimization results show that temperature and pressure of boiler outlet stream have a higher effect on the exergy efficiency of the system in respect to the other decision variables. Using optimization methods, exergy efficiency of the system reaches to 30.66% which shows a 1.86% augmentation with regard to the situation when a flash tank is implemented.

  2. Avoiding pressure shocks in HP blowdown lines; Vermeidung von Druckstossen in einer HD-Abschlammleitung

    Energy Technology Data Exchange (ETDEWEB)

    Stemme, R. [GESTRA AG, Bremen (Germany); Klackl, J. [EICHLER GmbH, Wien (Austria)

    2007-06-15

    Intermittent blowdown valves are installed in steam boilers as close as possible to the drum in order to avoid hydraulic pressure shocks. In the here presented case in the district heating plant Wels in Austria (gas-heated steam boiler 25 t/h 69 bar/290 C) this was not possible, and as a consequence the intermittent blowdown valves were damaged. By selecting valves suitable for this particular operating condition we have found a way to prevent pressure shocks. This example shows clearly that not only the operating data but also the right selection of the most suitable valve are of prime importance. (orig.)

  3. Stress analysis of LOFT steam generator blowdown cross-over line

    International Nuclear Information System (INIS)

    Singh, J.N.

    1978-01-01

    The purpose of this report is to demonstrate compliance of the LOFT Steam Generator Blowdown Cross-Over Piping with the ASME Boiler and Pressure Vessel Code, Section III, Subsection NC. Deadweight, thermal expansion, seismic, LOCE, and LOCA loads have been considered. With the addition of two snubbers, as shown in this report, the system conforms to all requirements

  4. Computational modeling and analysis of heavy water losses in boiler blow down with different positions of BBW-V100 at KANUPP

    International Nuclear Information System (INIS)

    Maqbool, M. U.

    2012-01-01

    The term blowdown is referred to the boilers and steam generators. Blowing down water from the steam generators maintains the chemistry of the feedwater and helps prevent scaling or sludge formation. In a nuclear power plant, the primary loop contains some activity in the form of tritium content. In boilers, primary and secondary systems interface and due to the pressure difference there is always a chance of mixing of primary and secondary fluids in event of tube leak. This primary fluid i.e., heavy water in our case can be lost through the blowdown lines after mixing with the feedwater. This thesis is a computational work for the determination of heavy water losses through the blowdown lines. (author)

  5. The test section of the COSIMA blowdown test facility

    International Nuclear Information System (INIS)

    Bruederle, F.; Hain, K.

    1980-08-01

    The test section of the COSIMA blowdown test facility has been designed as a geometric analogy of the core of a pressurized water reactor for a shortened single fuel rod simulator. Its design and instrumentation together with the whole loop allow to simulate out of pile and trace by measurements the energy and hydraulic conditions arising in a blowdown. Special attention is being given in this report to one particular design problem: the number of load cycles up to incipient cracking of the test section as a pressure vessel containing hot water at high pressures and subjected to extreme rates of temperature variation in excess of 300 K/min. The methods of calculating cyclic loads as specified in the German Technical Rules for Boilers (TRD) have been supplemented in such a way that the number of load cycles up to incipient cracking may now be determined not only by the mean wall temperature, which is difficult to measure, but equally also well by the outer wall temperature, which is easy to measure precisely. (orig.) [de

  6. A theoretical approach for energy saving in industrial steam boilers

    International Nuclear Information System (INIS)

    Sabry, T.I.; Mohamed, N.H.; Elghonimy, A.M.

    1993-01-01

    Optimization of the performance characteristics of such a steam boiler has been analyzed theoretically. Suitable thermodynamic relations have been utilized here to construct a computer model that would carry out the boiler performance characteristics at different operating parameters (e.g.; amount of excess air, fuel type, rate of blowdown preheating of combustion air and flow gases temperature). The results demonstrate that this computer model is to be used successfully in selecting the different operating parameters of the steam boiler at variant loads considering the best economical operation. Besides, this model can be used to investigate the sensitivity of the performance characteristics to the deviation of the boiler operating parameters from their optimum values. It was found also that changing the operating parameters beside the type of fuel in a boiler affects its performance characteristics. 3 figs

  7. Minimizing secondary coolant blowdown in HANARO

    International Nuclear Information System (INIS)

    Park, Y. C.; Woo, J. S.; Ryu, J. S.; Cho, Y. G.; Lim, N. Y.

    2000-01-01

    There is about 80m 3 /h loss of the secondary cooling water by evaporation, windage and blowdown during the operation of HANARO, 30MW research reactor. The evaporation and the windage is necessary loss to maintain the performance of cooling tower, but the blowdown is artificial lose to get rid of the foreign material and to maintain the quality of the secondary cooling water. Therefore, minimizing the blowdown loss was studied. It was confirmed, through the relation of the number of cycle and the loss rate of secondary coolant, that the number of cycle is saturated to 12 without blowdown because of the windage loss. When the secondary coolant is treated by high Ca-hardness treatment program (the number of cycle > 10) to maintain the number of cycle around 12 without blowdown, only the turbidity exceeds the limit. By adding filtering system it was confirmed, through the relation of turbidity and filtering rate of secondary cooling water, that the turbidity is reduced below the limit (5 deg.) by 2% of filtering rate without blowdown. And it was verified, through the performance test of back-flow filtering unit, that this unit gets rid of foreign material up to 95% of the back-flow and that the water can be reused as coolant. Therefore, the secondary cooling water can be treated by the high Ca-hardness program and filter system without blowdown

  8. Blowdown heat transfer experiment, (1)

    International Nuclear Information System (INIS)

    Soda, Kunihisa; Yamamoto, Nobuo; Osaki, Hideki; Shiba, Masayoshi

    1976-09-01

    Blowdown heat transfer experiment has been carried out with a transparent test section to observe phenomena in coolant behavior during blowdown process. Experimental parameters are discharge position, initial system pressure, initial coolant temperature, power supply to heater rods and number of heater rods. At initial pressure 7-12 ata and initial power 6-50 kw per one heater rod, the flow condition in the test section is a major factor in determining time of DNB occurrence and physical process to DNB during blowdown. (auth.)

  9. Mixture level models in Toshiba and General Electric blowdown experimental analysis

    International Nuclear Information System (INIS)

    Gebrim, A.N.

    1993-01-01

    Three different mixture level tracking methods to vertical flow channels were tested in two Blowdown experiments. The aim of the tests is to observe the Computational efficiency and the agreement of their results with the experimental data. The first method has been used in the system code ATHLET. The second one has been used in the system code developed at BNL. The third one is described in a report but there is no notice that it has been tested. The results show that the first and the third method produce good agreement with the experimental data. The third method need a fine nodalization to yield good results. (C.M.)

  10. Pos-calculation of blowdown experiments

    International Nuclear Information System (INIS)

    Gebrim, Anibal N.

    1997-01-01

    Three best estimate codes were utilized to analyse four blowdown separated tests. The experiments were created to study the pressure behavior, mass flow, mixture level movement, etc, related to the break area and the position. The theoretical results have a good agreement with the experimental results in three of the four tests. (author). 5 refs., 21 figs., 4 tabs

  11. PPOOLEX experiments with a modified blowdown pipe outlet

    International Nuclear Information System (INIS)

    Laine, J.; Puustinen, M.; Raesaenen, A.

    2009-08-01

    This report summarizes the results of the experiments with a modified blowdown pipe outlet carried out with the PPOOLEX test facility designed and constructed at Lappeenranta University of Technology. Steam was blown into the dry well compartment and from there through a vertical DN200 blowdown pipe to the condensation pool. Four reference experiments with a straight pipe and ten with the Forsmark type collar were carried out. The main purpose of the experiment series was to study the effect of a blowdown pipe outlet collar design on loads caused by chugging phenomena (rapid condensation) while steam is discharged into the condensation pool. The PPOOLEX test facility is a closed stainless steel vessel divided into two compartments, dry well and wet well. During the experiments the initial temperature level of the condensation pool water was either 20-25 or 50-55 deg. C. The steam flow rate varied from 400 to 1200 g/s and the temperature of incoming steam from 142 to 185 deg. C. In the experiments with 20-25 deg. C pool water, even 10 times higher pressure pulses were measured inside the blowdown pipe in the case of the straight pipe than with the collar. In this respect, the collar design worked as planned and removed the high pressure spikes from the blowdown pipe. Meanwhile, there seemed to be no suppressing effect on the loads due to the collar in the pool side in this temperature range. Registered loads in the pool were approximately in the same range (or even a little higher) with the collar as with the straight pipe. In the experiments with 50-55 deg. C pool water no high pressure pulses were measured inside the blowdown pipe either with the straight pipe or with the collar. In this case, more of the suppressing effect is probably due to the warmer pool water than due to the modified pipe outlet. It has been observed already in the earlier experiments with a straight pipe in the POOLEX and PPOOLEX facilities that warm pool water has a diminishing effect on

  12. PPOOLEX experiments with a modified blowdown pipe outlet

    Energy Technology Data Exchange (ETDEWEB)

    Laine, J.; Puustinen, M.; Raesaenen, A. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2009-08-15

    This report summarizes the results of the experiments with a modified blowdown pipe outlet carried out with the PPOOLEX test facility designed and constructed at Lappeenranta University of Technology. Steam was blown into the dry well compartment and from there through a vertical DN200 blowdown pipe to the condensation pool. Four reference experiments with a straight pipe and ten with the Forsmark type collar were carried out. The main purpose of the experiment series was to study the effect of a blowdown pipe outlet collar design on loads caused by chugging phenomena (rapid condensation) while steam is discharged into the condensation pool. The PPOOLEX test facility is a closed stainless steel vessel divided into two compartments, dry well and wet well. During the experiments the initial temperature level of the condensation pool water was either 20-25 or 50-55 deg. C. The steam flow rate varied from 400 to 1200 g/s and the temperature of incoming steam from 142 to 185 deg. C. In the experiments with 20-25 deg. C pool water, even 10 times higher pressure pulses were measured inside the blowdown pipe in the case of the straight pipe than with the collar. In this respect, the collar design worked as planned and removed the high pressure spikes from the blowdown pipe. Meanwhile, there seemed to be no suppressing effect on the loads due to the collar in the pool side in this temperature range. Registered loads in the pool were approximately in the same range (or even a little higher) with the collar as with the straight pipe. In the experiments with 50-55 deg. C pool water no high pressure pulses were measured inside the blowdown pipe either with the straight pipe or with the collar. In this case, more of the suppressing effect is probably due to the warmer pool water than due to the modified pipe outlet. It has been observed already in the earlier experiments with a straight pipe in the POOLEX and PPOOLEX facilities that warm pool water has a diminishing effect on

  13. Thermo-hydraulic characteristics of serpentine tubing in the boilers of gas cooled reactors under condition of rapid and slow depressurization

    International Nuclear Information System (INIS)

    Abouhadra, D.S.; Byrne, J.E.

    2003-01-01

    In nuclear reactors of the magnox or advanced gas cooled type, serpentine tubing is used in some designs to generate steam in a once through arrangement. The calculation of accidents using two phase flow codes requires knowledge of the heat transfer behaviour of the boiler steam side. A series of experiments to study the blowdown characteristics of a typical serpentine boiler section was devised in order to validate the MARTHA section of the MACE code used by nuclear electric . The tests were carried out on the thermal hydraulics experimental research assembly (THERA) loop at manchester university. Depressurization from an initial pressure of 60 bar, with fluid subcooling of 5 k, 50 k, and 100 k was controlled by discharging the test section contents through suitably chosen orifices to produce blowdown to 10% of the initial pressure over a time scale of 30 s to 3600 s. pressures and temperatures in the serpentine were measured at average time intervals of approximately 1 s

  14. Forest blowdown and lake acidification

    International Nuclear Information System (INIS)

    Dobson, J.E.; Rush, R.M.; Peplies, R.W.

    1990-01-01

    The authors examine the role of forest blowdown in lake acidification. The approach combines geographic information systems (GIS) and digital remote sensing with traditional field methods. The methods of analysis consist of direct observation, interpretation of satellite imagery and aerial photographs, and statistical comparison of two geographical distributions-one representing forest blow-down and another representing lake chemistry. Spatial and temporal associations between surface water pH and landscape disturbance are strong and consistent in the Adirondack Mountains of New York. In 43 Adirondack Mountain watersheds, lake pH is associated with the percentage of the watershed area blown down and with hydrogen ion deposition (Spearman rank correlation coefficients of -0.67 and -0.73, respectively). Evidence of a temporal association is found at Big Moose Lake and Jerseyfield Lake in New York and the Lygners Vider Plateau of Sweden. They conclude that forest blowdown facilities the acidification of some lakes by altering hydrologic pathways so that waters (previously acidified by acid deposition and/or other sources) do not experience the neutralization normally available through contact with subsurface soils and bedrock. Increased pipeflow is suggested as a mechanism that may link the biogeochemical impacts of forest blowdown to lake chemistry

  15. LMR steam generator blowdown with RETRAN

    International Nuclear Information System (INIS)

    Wei, T.Y.C.

    1985-01-01

    One of the transients being considered in the FSAR Chapter 15 analyses of anticipated LMR transients is the fast blowdown of a steam generator upon inadvertent actuation of the liquid metal/water reaction mitigation system. For the blowdown analysis, a stand-alone steam generator model for the IFR plant was constructed using RETRAN

  16. PPOOLEX experiments with two parallel blowdown pipes

    Energy Technology Data Exchange (ETDEWEB)

    Laine, J.; Puustinen, M.; Raesaenen, A. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2011-01-15

    This report summarizes the results of the experiments with two transparent blowdown pipes carried out with the scaled down PPOOLEX test facility designed and constructed at Lappeenranta University of Technology. Steam was blown into the dry well compartment and from there through either one or two vertical transparent blowdown pipes to the condensation pool. Five experiments with one pipe and six with two parallel pipes were carried out. The main purpose of the experiments was to study loads caused by chugging (rapid condensation) while steam is discharged into the condensation pool filled with sub-cooled water. The PPOOLEX test facility is a closed stainless steel vessel divided into two compartments, dry well and wet well. In the experiments the initial temperature of the condensation pool water varied from 12 deg. C to 55 deg. C, the steam flow rate from 40 g/s to 1 300 g/s and the temperature of incoming steam from 120 deg. C to 185 deg. C. In the experiments with only one transparent blowdown pipe chugging phenomenon didn't occur as intensified as in the preceding experiments carried out with a DN200 stainless steel pipe. With the steel blowdown pipe even 10 times higher pressure pulses were registered inside the pipe. Meanwhile, loads registered in the pool didn't indicate significant differences between the steel and polycarbonate pipe experiments. In the experiments with two transparent blowdown pipes, the steamwater interface moved almost synchronously up and down inside both pipes. Chugging was stronger than in the one pipe experiments and even two times higher loads were measured inside the pipes. The loads at the blowdown pipe outlet were approximately the same as in the one pipe cases. Other registered loads around the pool were about 50-100 % higher than with one pipe. The experiments with two parallel blowdown pipes gave contradictory results compared to the earlier studies dealing with chugging loads in case of multiple pipes. Contributing

  17. Transient analysis of blowdown thrust force under PWR LOCA

    International Nuclear Information System (INIS)

    Yano, Toshikazu; Miyazaki, Noriyuki; Isozaki, Toshikuni

    1982-10-01

    The analytical results of blowdown characteristics and thrust forces were compared with the experiments, which were performed as pipe whip and jet discharge tests under the PWR LOCA conditions. The blowdown thrust forces obtained by Navier-Stokes momentum equation about a single-phase, homogeneous and separated two-phase flow, assuming critical pressure at the exit if a critical flow condition was satisfied. The following results are obtained. (1) The node-junction method is useful for both the analyses of the blowdown thrust force and of the water hammer phenomena. (2) The Henry-Fauske model for subcooled critical flow is effective for the analysis of the maximum thrust force under the PWR LOCA conditions. The jet thrust parameter of the analysis and experiment is equal to 1.08. (3) The thrust parameter of saturated blowdown has the same one with the value under pressurized condition when the stagnant pressure is chosen as the saturated one. (4) The dominant terms of the blowdown thrust force in the momentum equation are the pressure and momentum terms except that the acceleration term has large contribution only just after the break. (5) The blowdown thrust force in the analysis greatly depends on the selection of the exit pressure. (author)

  18. A correlation for safety valve blowdown and ring settings

    International Nuclear Information System (INIS)

    Singh, A.; Shak, D.

    1982-01-01

    The blowdown of a spring loaded safety valve is defined as the difference between the pressure at which the valve opens and the pressure at which the valve fully closes under certain fluid flow conditions. Generally, the blowdown is expressed in terms of percentage of the opening pressure. An extensive series of tests carried out in the EPRI/PWR Utilities Valve Test Program has shown that the blowdown of safety valves can in general be strongly dependent upon the valve geometry and other parameters such as ring adjustments, spring stiffness, backpressure etc. In the present study, correlations have been developed using the EPRI safety valve test data to predict the expected blowdown as a function of adjustment ring settings for geometrically similar valves under steam discharge conditions. The correlation is validated against two different size Dresser valves

  19. Development of the CATHENA fuel channel model for an integrated blowdown and post-blowdown analysis for a 37-element CANDU fuel channel

    International Nuclear Information System (INIS)

    Rhee, B.W.; Shin, T.Y.; Yoo, K.M.; Kim, H.T.; Min, B.-J.; Park, J.H.

    2006-01-01

    The objective of this study is to develop a new fuel channel safety analysis system for covering both the blowdown analysis including the power pulse and the post-blowdown analysis with the same safety analysis code, CATHENA in a consistent manner. This new safety analysis methodology for a fuel channel analysis is expected to be better than the previous one used for the Wolsong 2,3,4 licensing which used CATHENA for the blowdown analysis and CHAN-II for the post-blowdown analysis, in several areas; consistency in the computer codes used and the modeling methods, the degree of uncertainty in the modeling and calculation. For this aim the existing CATHENA subchannel fuel channel model for a post blowdown analysis has been modified, and thus improved, and a processing program that conveys all the final state of the fuel channel at the end of blowdown analysis to the post-blowdown analysis as the initial conditions has been developed, and tested for its proper implementation for the intended purposes. A comparison of the results of this new analysis method with those of the Wolsong 2/3/4 Safety Analysis confirmed that the total heat transfer rate matches well up to 1000 sec, and then that of the new method begins to under-predict it consistently. On the other hand, the fuel temperatures of the center pin, inner ring fuel and the middle ring fuel are predicted by this new method to be lower than the old method by about 200 - 250 o C at the peak time. Considering the differences in these two analyses methodologies, especially the modeling of the fuel ring, a subchannel flow passage with an intermixing, and the radiation among the solid structures by considering every fuel individually, this trend of the results seems to be physically reasonable. However considerable future validation works are necessary to justify this new methodology for a licensing. (author)

  20. Innovation of blow-down system in steam generators of a VVER 440 unit

    International Nuclear Information System (INIS)

    Matal, O.; Simo, T.; Mancev, M.D.

    1997-01-01

    The impurities getting into the steam generator with the feedwater are continually removed by the blowdown and unit sludge system. The mostly non-symmetrical type of pipe branches under steam generators at WWER-440 units causes nonuniform blowdown flow rates at the halves of the steam generator; this often leads to a blocking of the pipe with the lower flow rate. The most simple way of hydraulically equalizing the blowdown pipes is to implement symmetric blowdown pipes and to install efficient throttling elements in the pipe. The proposed innovation will make it possible to re-distribute the blowdown flow rates and to reduce more effectively the concentrations of impurities in steam generators. (M.D.)

  1. Contribution to the theory of the two phase blowdown phenomenon

    International Nuclear Information System (INIS)

    Hutcherson, M.N.

    1975-12-01

    In order to accurately model the two phase portion of a pressure vessel blowdown, it becomes necessary to understand the bubble growth mechanism within the vessel during the early period of the decompression, the two phase flow behavior within the vessel, and the applicability of the available two phase critical flow models to the blowdown transient. To aid in providing answers to such questions, a small scale, separate effects, isothermal blowdown experiment has been conducted in a small pressure vessel. The tests simulated a full open, double ended, guillotine break in a large diameter, short exhaust duct from the vessel. The vaporization process at the initiation of the decompression is apparently that of thermally dominated bubble growth originating from the surface cavities inside the system. Thermodynamic equilibrium of the remaining fluid within the vessel existed in the latter portion of the decompression. A nonuniform distribution of fluid quality within the vessel was also detected in this experiment. By comparison of the experimental results from this and other similar transient, two phase critical flow studies with steady state, small duct, two phase critical flow data, it is shown that transient, two phase critical flow in large ducts appears to be similar to steady state, two phase critical flow in small ducts. Analytical models have been developed to predict the blowdown characteristics of a system during subcooled decompression, the bubble growth regime of blowdown, and also in the nearly dispersed period of depressurization. This analysis indicates that the system pressure history early in the blowdown is dependent on the internal vessel surface area, the internal vessel volume, and also on the exhaust flow area from the system. This analysis also illustrates that the later period of decompression can be predicted based on thermodynamic equilibrium

  2. Vapor generating unit blowdown arrangement

    International Nuclear Information System (INIS)

    McDonald, B.N.

    1978-01-01

    A vapor generating unit having a U-shaped tube bundle is provided with an orificed downcomer shroud and a fluid flow distribution plate between the lower hot and cold leg regions to promote fluid entrained sediment deposition in proximity to an apertured blowdown pipe

  3. Multiple blowdown pipe experiments with the PPOOLEX facility

    International Nuclear Information System (INIS)

    Puustinen, M.; Laine, J.; Raesaenen, A.

    2011-03-01

    This report summarizes the results of the experiments with two steel blowdown pipes carried out with the scaled down PPOOLEX test facility designed and constructed at Lappeenranta University of Technology. Steam was blown into the dry well compartment and from there through the blowdown pipes to the condensation pool. The main purpose of the experiment series was to study chugging phenomena (rapid condensation) while steam is discharged through two parallel blowdown pipes into the condensation pool filled with sub-cooled water. Particularly, the aim was to study if the pipe material (polycarbonate) used in the earlier experiment series with two blowdown pipes has had an effect on the general chugging behaviour and measured loads. In the experiments the initial temperature of the pool water was 20 deg. C. The steam flow rate ranged from 220 g/s to 2 350 g/s and the temperature of incoming steam from 148 deg. C to 207 deg. C. The formation and collapse of steam bubbles and the movement of the steam/water interface inside the pipes was non-synchronous. There could be even a 70 ms time difference between the occurrences of steam bubble collapses at the outlets of the two pipes. There was no clear pattern in which pipe the steam bubble first starts to collapse. Several successive bubbles could collapse first in either pipe but then the order changed for a single or several cycles. High pressure loads were measured inside the blowdown pipes due to rapid condensation of the steam volumes in the pipes and resulting water hammer effects. The loads seemed to be higher in pipe 1 than in pipe 2. An explanation for this could be a possible unequal distribution of steam flow between the two pipes. The pipe material has an effect on the condensation phenomena inside the blowdown pipes. A huge difference in the measured pressure curves inside the pipes could be observed compared to the experiments with the polycarbonate pipes. With the same test conditions the amplitude of the

  4. Multiple blowdown pipe experiments with the PPOOLEX facility

    Energy Technology Data Exchange (ETDEWEB)

    Puustinen, M.; Laine, J.; Raesaenen, A. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2011-03-15

    This report summarizes the results of the experiments with two steel blowdown pipes carried out with the scaled down PPOOLEX test facility designed and constructed at Lappeenranta University of Technology. Steam was blown into the dry well compartment and from there through the blowdown pipes to the condensation pool. The main purpose of the experiment series was to study chugging phenomena (rapid condensation) while steam is discharged through two parallel blowdown pipes into the condensation pool filled with sub-cooled water. Particularly, the aim was to study if the pipe material (polycarbonate) used in the earlier experiment series with two blowdown pipes has had an effect on the general chugging behaviour and measured loads. In the experiments the initial temperature of the pool water was 20 deg. C. The steam flow rate ranged from 220 g/s to 2 350 g/s and the temperature of incoming steam from 148 deg. C to 207 deg. C. The formation and collapse of steam bubbles and the movement of the steam/water interface inside the pipes was non-synchronous. There could be even a 70 ms time difference between the occurrences of steam bubble collapses at the outlets of the two pipes. There was no clear pattern in which pipe the steam bubble first starts to collapse. Several successive bubbles could collapse first in either pipe but then the order changed for a single or several cycles. High pressure loads were measured inside the blowdown pipes due to rapid condensation of the steam volumes in the pipes and resulting water hammer effects. The loads seemed to be higher in pipe 1 than in pipe 2. An explanation for this could be a possible unequal distribution of steam flow between the two pipes. The pipe material has an effect on the condensation phenomena inside the blowdown pipes. A huge difference in the measured pressure curves inside the pipes could be observed compared to the experiments with the polycarbonate pipes. With the same test conditions the amplitude of the

  5. A review of progress with analysis of blowdown experiments using RELAP-UK

    International Nuclear Information System (INIS)

    Fayers, F.J.

    1975-10-01

    This paper briefly reviews some of the recent work at AEE Winfrith to establish the validity of the RELAP-UK code by comparison with blowdown experiments. Five sources of experimental data have been used which include two of the Edwards' simple pipe blowdown experiments, the LOFT semi-scale Benchmark Problem No. 2, and the Italian and Japanese blowdown rig results. Various difficulties in the comparison between theory and measurements are highlighted and the steps proposed to resolve the problems are indicated. (author)

  6. Blowdown experiments and interpretation

    International Nuclear Information System (INIS)

    Rousseau, J.C.

    1975-01-01

    The CANON experiments which are being carried out in Grenoble, are intended for providing data for the development of a new theoretical analysis programmed in a computer code named BERTHA, which will predict the hydrodynamic phenomena of a blowdown accident, in a light water reactor. CANON experiments, carried out under adiabatic conditions, are a means of checking methods of pressure and temperature measurements. Presently, they allow the development of a new technique of measuring the mean void fraction in a section of the channel from epithermal neutron absorption, such measurements being made every one or two milliseconds. the BERTHA code is a one-dimensional model with the hypothesis of equal velocity of each phase, but taking into account a thermodynamic nonequilibrium. The energy flux at the phase interface is evaluated with a conduction model in the liquid layer at this interface. The numerical method used is a characteristic one. It is very slow as soon as the flow is in liquid phase, but it leads to an acceptable time-step in two-phase flow. Consequently, the method is well adapted to the problem of blowdown in which the fluid remains in liquid phase during a few milliseconds [fr

  7. PWR-blowdown heat transfer separate effects program

    International Nuclear Information System (INIS)

    Thomas, D.G.

    1976-01-01

    The ORNL Pressurized-Water Reactor Blowdown Heat Transfer (PWR-BDHT) Program is an experimental separate-effects study of the relations among the principal variables that can alter the rate of blowdown, the presence of flow reversal and rereversal, time delay to critical heat flux, the rate at which dryout progresses, and similar time-related functions that are important to LOCA analysis. Primary test results are obtained from the Thermal-Hydraulic Test Facility (THTF). Supporting experiments are carried out in several additional test loops - the Forced Convection Test Facility (FCTF), an air-water loop, a transient steam-water loop, and a low-temperature water mockup of the THTF heater rod bundle. The studies to date are described

  8. MODELLING, SIMULATING AND OPTIMIZING BOILERS

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2004-01-01

    In the present work a framework for optimizing the design of boilers for dynamic operation has been developed. A cost function to be minimized during the optimization has been formulated and for the present design variables related to the Boiler Volume and the Boiler load Gradient (i.e. ring rate...... on the boiler) have been dened. Furthermore a number of constraints related to: minimum and maximum boiler load gradient, minimum boiler size, Shrinking and Swelling and Steam Space Load have been dened. For dening the constraints related to the required boiler volume a dynamic model for simulating the boiler...... performance has been developed. Outputs from the simulations are shrinking and swelling of water level in the drum during for example a start-up of the boiler, these gures combined with the requirements with respect to allowable water level uctuations in the drum denes the requirements with respect to drum...

  9. Occurrence of critical heat flux during blowdown with flow reversal

    International Nuclear Information System (INIS)

    Leung, J.C.M.

    1976-04-01

    A small-scale experiment using Freon-11 at 130 0 F and 65 psia in a well-instrumented transparent annular test section was used to study the occurrence of critical heat flux (CHF) during blowdown with flow reversal. The inner stainless steel tube of the annulus was uniformly heated over its 2 ft length. Inlet and exit void fractions were measured by a capacitance technique. Flow regime transition was observed with high speed photography. A 1-hr contact time between Freon-11 and nitrogen at 130 0 F and 60 psig was found to greatly affect the steady-state subcooled boiling initial conditions. Delay in bubble growth was observed in adiabatic blowdown runs. This was caused by the thermodynamic nonequilibrium conditions required for the unstable bubble growth. For the diabatic runs, equilibrium was more closely approached in the test section during the early phase of blowdown. Critical heat flux did not occur immediately during the flow decay in an approximately 60 msec reversal period. The first or early CHF which occurred at about 400 msec was independent of the blowdown volume and did not propagate upward. An annular flow pattern appeared at the onset of this CHF which occurred only at the lower 8 in. of the heated zone

  10. Fluid-structure interactions in PWR vessels during blowdown

    International Nuclear Information System (INIS)

    Schumann, U.; Enderle, G.; Katz, F.; Ludwig, A.; Moesinger, H.; Schlechtendahl, E.G.

    1979-01-01

    For analysis of blowdown loadings and dynamic response of PWR vessel internals several computer codes have been developed at Karlsruhe. The goal is to provide advanced codes which permit a 'best estimate' analysis of the deformations and stresses of the internal structures, in particular the core barrel, such that the safety margins can be evaluated. The stresses reach their maxima during the initial subcooled period of the blowdown in which two-phase phenomena are important in the blowdown pipe only. In this period, the computed results with and without fluid-structural interactions show that the coupling between the water in the downcomer and the rather thin elastic core barrel is of dominant importance. Without coupling the core barrel oscillates with much higher frequencies than with coupling. The amplitudes and stresses are about twice as large initially. Later, the decoupled analysis can result in a meaningless overestimation of the structural response. By comparison of computations for incompressible and for compressible fluid with and without coupling we have found that a correct treatment of the fluid-structure coupling is more important than the description of pressure waves. (orig.)

  11. Computer calculations of air and steam blowdown suppression

    International Nuclear Information System (INIS)

    Norris, D.M. Jr.; McMaster, W.H.; Landram, C.S.; Quinones, D.F.; Gong, E.Y.; Macken, N.A.

    1980-01-01

    We describe a computer code that combines an Eulerian incompressible-fluid algorithm (SOLA) with a Lagrangian finite-element shell algorithm. The former models the fluid and the latter models the containing structure in an analysis of pressure suppression in boiling-water reactors. The code (PELE-IC) calculates loads and structural response from air blow-down and from the oscillatory condensation of steam bubbles in a water pool. The fluid, structure, and coupling algorithms are tested by recalculating problems that have known analytical solutions, including tank drainage, spherical bubble growth, coupling for circular plates, and submerged cylinder vibration. Code calculations are also compared with the results of small-scale blowdown experiments. (orig.)

  12. LOFT blowdown loop piping thermal analysis Class I review

    International Nuclear Information System (INIS)

    Kinnaman, T.L.

    1978-01-01

    In accordance with ASME Code, Section III requirements, all analyses of Class I components must be independently reviewed. Since the LOFT blowdown loop piping up through the blowdown valve is a Class I piping system, the thermal analyses are reviewed. The Thermal Analysis Branch comments to this review are also included. It is the opinion of the Thermal Analysis Branch that these comments satisfy all of the reviewers questions and that the analyses should stand as is, without additional considerations in meeting the ASME Code requirements and ANC Specification 60139

  13. Blowdown heat transfer surface in RELAP4/MOD6

    International Nuclear Information System (INIS)

    Nelson, R.A.; Sullivan, L.H.

    1978-01-01

    New heat transfer correlations for both PWR and BWR blowdowns have been implemented in the RELAP4/MOD6 program. The concept of a multidimensional surface is introduced with the heat flux from a given heat transfer correlation or correlations depicted as a mathematical surface that is dependent upon quality, wall superheat, mass flow and pressure. The heat transfer logic has been modularized to facilitate replacing boiling curves for future correlation data comparisons and investigations. To determine the validity of the blowdown surface, comparison has been performed using data from the Semiscale experimental facility. (author)

  14. 30 CFR 57.13030 - Boilers.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Boilers. 57.13030 Section 57.13030 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13030 Boilers. (a) Fired pressure vessels (boilers) shall be equipped with water level gauges, pressure...

  15. 30 CFR 56.13030 - Boilers.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Boilers. 56.13030 Section 56.13030 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13030 Boilers. (a) Fired pressure vessels (boilers) shall be equipped with water level gauges, pressure gauges...

  16. Steam blowdown experiments with the condensation pool test rig

    International Nuclear Information System (INIS)

    Purhonen, H.; Puustinen, M.; Laine, J.; Raesaenen, A.; Kyrki-Rajamaeki, R.; Vihavainen, J.

    2005-01-01

    During a possible loss-of-coolant accident (Local) a large amount of non-condensable (nitrogen) and condensable (steam) gas is blown from the upper drywell of the containment to the condensation pool through the blowdown pipes at the boiling water reactors (BWRs). The wet well pool serves as the major heat sink for condensation of steam. The blowdown causes both dynamic and structural loads to the condensation pool. There might also be a risk that the gas discharging to the pool could push its way to the emergency core cooling systems (ECCS) and undermine their performance. (author)

  17. Occurrence of critical heat flux during blowdown with flow reversal

    International Nuclear Information System (INIS)

    Leung, J.C.M.

    1977-01-01

    A small-scale experiment using Freon-11 at 130 0 F (54.4 0 C) and 65 psia (0.45 MPa) in a well-instrumented, transparent annular test section was used to study the occurrence of critical heat flux (CHF) during blowdown with flow reversal. The inner stainless steel tube of the annulus was uniformly heated over its 61-cm length. Inlet and exit void fractions were measured by a capacitance technique. Flow-regime transition was observed with high-speed photography. A 1-hr contact time between Freon-11 and nitrogen at 130 0 F (54.4 0 C) and 60 psig (0.517 MPa) was found to greatly affect the steady-state subcooled-boiling initial conditions. Delay in bubble growth was observed in adiabatic blowdown runs. This was caused by the conditions of thermodynamic nonequilibrium required for the unstable bubble growth. For the diabatic runs, equilibrium was more closely approached in the test section during the early phase of blowdown

  18. Analytical studies of blowdown thrust force and dynamic response of pipe at pipe rupture accident

    International Nuclear Information System (INIS)

    Miyazaki, Noriyuki

    1985-01-01

    The motion of a pipe due to blowdown thrust when the pipe broke is called pipe whip. In LWR power plants, by installing restraints, the motion of a pipe when it broke is suppressed, so that the damage does not spread to neighboring equipment by pipe whip. When the pipe whip of a piping system in a LWR power plant is analyzed, blowdown thrust and the dynamic response of a pipe-restraint system are calculated with a computer. The blowdown thrust can be calculated by using such physical quantities as the pressure, flow velocity, density and so on in the system at the time of blowdown, obtained by the thermal-fluid analysis code at LOCA. The dynamic response of a piping-restraint system can be determined by the stress analysis code using finite element method taking the blowdown thrust as an external force acting on the piping. In this study, the validity of the analysis techniques was verified by comparing with the experimental results of the measurement of blowdown thrust and the pipe whip of a piping-restraint system, carried out in the Japan Atomic Energy Research Institute. Also the simplified analysis method to give the maximum strain on a pipe surface is presented. (Kako, I.)

  19. Blowdown heat transfer surface in RELAP4/MOD6 and data comparisons

    International Nuclear Information System (INIS)

    Nelson, R.A.; Sullivan, L.H.

    1978-01-01

    RELAP4 is a thermal hydraulic analysis tool written to analyze transients in light water reactors (LWR). To date, most of the applications for RELAP4 have been to analyze postulated LOCA transients in LWR and the response of experimental systems to loss-of-coolant experiments. An important part of these analyses is the prediction of the fuel rod or heater surface temperature which involves the calculation of surface heat transfer coefficients. The paper describes the outcome of a significant blowdown heat transfer development effort which is incorporated in RELAP4/MOD6 (the current version of the code available to the United States public from the Argonne Code Center). The primary emphasis in the MOD6 development was on a PWR reflood capability. The best-estimate blowdown heat transfer correlation and logic were added to provide improved blowdown predictive capability

  20. Blowdown and rewetting characteristics for AHWR under postulated LOCA - an analytical study

    International Nuclear Information System (INIS)

    Mukhopadhyay, D.; Chatterjee, B.

    2015-01-01

    Advanced Heavy Water Reactor (AHWR) is a thorium fuelled, natural circulation driven and heavy water moderated reactor. The cooling of the nuclear fuel is achieved through natural circulation mode for the tube type reactor where hot and cold leg of the reactor has been designed to be long and high enough to avail the gravity head desired to overcome the hydraulic resistances in the flow path. The natural circulation cooling mode makes AHWR very different as compared to other tube type reactors with forced circulation e.g RBMK. This cooling feature which calls for longer pipes length and elevation head is having an influence on the blowdown characteristic and the initial fuel heatup characteristic of the reactor. Analyses of Loss of Coolant Accident carried out for different break sizes in the inlet header of the reactor identifies two competing transient forces namely 'blowdown force' and 'natural circulation' which act against each other due to virtue of the break location. The flow in the reactor channel is being decided by these two forces and eventually the flow condition decides the fuel heatup. It has been observed through analyses that variation of break sizes from moving smaller break sizes to bigger one (30% to 200%), causes an enhancement in blowdown forces and weakening of driving force for natural circulation as quality appears in cold leg section. A balance of these two forces is observed for 200% break case, causing a sustained flow stagnation condition leading to maximum fuel heat up among all the break cases. The blowdown characterization study is being carried out with RELAP5/mod3.4 code and the influences of transient forces on the fuel heatup are presented. It is concluded that the fuel heat up during blowdown phase is significantly dependent on the two competing forces namely blowdown and natural circulation which eventually depend on break sizes. The mist flow regime remains for a longer period during rewetting phase and the

  1. Dynamic Boiler Performance

    DEFF Research Database (Denmark)

    Sørensen, Kim

    Traditionally, boilers have been designed mainly focussing on the static operation of the plant. The dynamic capability has been given lower priority and the analysis has typically been limited to assuring that the plant was not over-stressed due to large temperature gradients. New possibilities...... developed. Analyzing boilers for dynamic operation gives rise to a number of opposing aims: shrinking and swelling, steam quality, stress levels, control system/philosophy, pressurization etc. Common for these opposing aims is that an optimum can be found for selected operation conditions. The framework has...... for buying and selling energy has increased the focus on the dynamic operation capability, efciency, emissions etc. For optimizing the design of boilers for dynamic operation a quantication of the dynamic capability is needed. A framework for optimizing design of boilers for dynamic operation has been...

  2. Membrane distillation of industrial cooling tower blowdown water

    Directory of Open Access Journals (Sweden)

    N.E. Koeman-Stein

    2016-06-01

    Full Text Available The potential of membrane distillation for desalination of cooling tower blowdown water (CTBD is investigated. Technical feasibility is tested on laboratory and pilot scale using real cooling tower blowdown water from Dow Benelux in Terneuzen (Netherlands. Two types of membranes, polytetrafluorethylene and polyethylene showed good performance regarding distillate quality and fouling behavior. Concentrating CTBD by a factor 4.5 while maintaining a flux of around 2 l/m2*h was possible with a water recovery of 78% available for reuse. Higher concentration factors lead to severe decrease in flux which was caused by scaling. Membrane distillation could use the thermal energy that would otherwise be discharged of in a cooling tower and function as a heat exchanger. This reduces the need for cooling capacity and could lead to a total reduction of 37% water intake for make-up water, as well as reduced energy and chemicals demands and greenhouse gas emissions.

  3. Assessment of integrity for the pressure vessel internals of PWRs under blowdown loadings

    International Nuclear Information System (INIS)

    Geiss, M.; Benner, J.; Ludwig, A.

    1984-01-01

    In safety analysis of pressurized water reactors the loss-of-coolant accident plays a central role. Thereby a sudden break of a cold primary coolant pipe close to the reactor pressure vessel is postulated. The sudden pressure release of the primary system (blowdown) causes high dynamic loading on the pressure vessel internals. The resulting deformations must not impair shut down of the reactor and decay heat removal in an inadmissible way. For this assessment a blowdown analysis for a 1300 MW pressurized water reactor is carried out. These investigations are completed with a detailed stress analysis for the highly loaded core barrel clamping. The results show that the reactor pressure vessel internals are able to withstand blowdown loading. Even in case of a sudden and complete break of the primary coolant pipe the loading has to be twice as high to endanger the structural integrity. (orig.) [de

  4. Experiment data report for semiscale Mod-1 test S-02-3 (blowdown heat transfer test)

    International Nuclear Information System (INIS)

    Crapo, H.S.; Jensen, M.F.; Sackett, K.E.

    1975-09-01

    Recorded test data are presented for Test S-02-3 of the Semiscale Mod-1 blowdown heat transfer test series. Test S-02-3 was conducted from an initial cold leg fluid temperature of 544 0 F and an initial pressure of 2,263 psig. A simulated double-ended offset shear cold leg break was used to investigate the system response to a depressurization transient with a moderately heated core (75 percent design power level). An electrically heated core was used in the pressure vessel to simulate the effects of a nuclear core. System flow was also set at the 75 percent design level to achieve full core temperature differential. The flow resistance of the intact loop was based on core area scaling. During system depressurization, core power was reduced from the initial level of 1.2 MW in such a manner as to simulate the surface heat flux response of the LOFT nuclear fuel rods until such time that departure from nucleate boiling (DNB) occurs. Blowdown to the pressure suppression system was accomplished without simulated emergency core coolant injection or pressure suppression system coolant spray

  5. Change in CNE boiler control level and stepback to overcome strong grid transients

    International Nuclear Information System (INIS)

    Lorenzetti, J.; Sablic, J.C.

    1991-01-01

    In Argentina the grid distribution is organized in such a way that the Embalse Power Plant is located in a place where power is produced. The most important places of power consumption are located near Buenos Aires city. Just one line connects Embalse with the consumption places. As a result of that condition the power is flowing through the interconnection line in such a way that every time a disturb cuts the line a strong power transient affects the Nuclear Power Plant. The changes in the boiler level control were done in order to avoid reactor trip, reactor stepback or turbine trip based on boiler level upsets. After several years of operation it was possible to verify that the new algorithm reduces the chances of plant outage increasing the confidence in the plant to overcome with success such transient. Every transient in the plant is analyzed in order to improve the control algorithm

  6. Emissions from three wood-fired domestic central heating boilers - heat load dependence

    International Nuclear Information System (INIS)

    Karlsson, M.L.

    1992-01-01

    The flue gases from three wood-fired domestic central heating boilers have been characterized. Measurements were made at three part loads; 3, 7 and 15 kW. Two of the boilers were modern multi-fuel boilers, with inverse firing and natural draught. The third boiler was a single-fuel wood boiler, with inverse firing and combustion air supply through a fan. All boilers were environmentally approved; the tar emissions were below 30 mg/MJ at nominal heat load. The following parameters were measured: - CO, CO 2 , NO x , total hydrocarbons (THC), - tar and particulates, - twelve volatile organic compounds (VOC). The limit value for tar emission was heavily exceeded for all three boilers at the part loads at which they were tested. For the two multi-fuel boilers the tar emissions decreased with increasing load level, while the opposite was found for the wood boiler with a fan. The NO x emissions varied between 20 and 120 mg/MJ. The multi-fuel boilers showed increasing NO x emissions with increasing heat load. The single-fuel wood boiler showed NO x emissions at about 60 mg/MJ, independent of load level. The CO and THC levels in general were high. The CO levels varied between 1000 and 2000 mg/MJ. While the THC levels varied between 300 and 4000 mg/MJ. Broadly speaking, the CO and THC levels decreased with increasing load levels for the multi-fuel boilers. For the single-fuel wood boiler the CO and THC levels were roughly the same at all load levels. Out of the twelve VOC compounds which were measured, the following could be detected and quantified. With FTIR analysis: Methane, ethylene, propene and acetylene. With GC analysis: Methanol, phenol and acetic acid. (1 ref., 31 figs., 7 tabs.)

  7. Chemical control in steam systems by using a stabilized inorganic product with gain of energy and speed in detecting contaminations; Controle quimico em geradores de vapor, pelo uso de agente inorganico estabilizado, com ganhos de energia e celeridade na deteccao de contaminacoes

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Barny de; Pereira, Renato Andre Nunes [Kurita do Brasil, Rio de Janeiro, RJ (Brazil)

    2010-07-01

    This paper shows the basic conditions to control the relation between phosphate and sodium in high pressure boilers by applying a stabilized chemical product ensuring operation with low variability and energy gain by the eliminating of corrective blowdown. It presents the routine and the relevant benefits provided by a strong monitoring program of phosphate application in high pressure boilers as an important tool do detect deviations and to get better control of silica solubilization in this pressure level. (author)

  8. Early results of gate valve flow interruption blowdown tests

    International Nuclear Information System (INIS)

    DeWall, K.G.

    1988-01-01

    The preliminary results of the USNRC/INEL high-energy BWR line break flow interruption testing are presented. Two representative nuclear valve assemblies were cycled under design basis Reactor Water Cleanup pipe break conditions to provide input for the technical basis for resolving the Nuclear Regulatory Commission's Generic Issue 87. The effects of the blowdown hydraulic loadings on valve operability, especially valve closure stem forces, were studied. The blowdown tests showed that, given enough thrust, typical gate valves will close against the high flow resulting from a line break. The tests also showed that proper operator sizing depends on the correct identification of values for the sizing equation. Evidence exists that values used in the past may not be conservative for all valve applications. The tests showed that improper operator lock ring installation following test or maintenance can invalidate in-situ test results and prevent the valve from performing its design function. 2 refs., 12 figs., 2 tabs

  9. High gradient magnetic filters for boiler water treatment

    International Nuclear Information System (INIS)

    Harland, J.R.; Nichols, R.M.

    1977-01-01

    Heavy metal oxide suspended solids in those steam condensates recycled to the boilers produce buildup within the boiler tubes which can lead to unequal and reduced heat transfer efficiency, and indirectly, to boiler tube failures. Recommended reductions in such suspended solids in feedwater to the economizers of modern high pressure boilers to levels of under 10 ppb have been published. The industrially-available SALA-HGMF magnetic filter has achieved these desired suspended solids levels in treating steam condensates. The high gradient magnetic filter has been shown in pilot tests to achieve and even exceed the recommended low level suspended solids in a practical and efficient industrial system. Such electromagnetic filters, when combined with good system chemistry, have achieved low single number parts per billion levels of several heavy metals with very high single-pass efficiencies

  10. Full-scale HDR blowdown experiments as a tool for investigating dynamic fluid-structural coupling

    International Nuclear Information System (INIS)

    Krieg, R.; Schlechtendahl, E.G.; Scholl, K.-H.; Schumann, U.

    1977-01-01

    As an answer to rigorous safety requirements in reactor technology an experimental-theoretical program has been established to investigate safety-relevant mechanical aspects of LWR-blowdown accidents. Part of the program are several full-scale blowdown experiments which will be performed in the former HDR-reactor. As the conceptional study confirms, the primary goal is to find out, how big the safety margins of present LWR's in the case of a blowdown actually are, rather than simply to show that essential parts of the reactor will withstand such an accident. However, to determine the safety margins, the physical phenomena involved in the blowdown process must be understood and appropriate wave of description must be found. Therefore the experimental program is accompanied by the development of theoretical models and computer codes. A survey is given over existing methods for coupled fluid structural dynamics. The following approaches are used: - Specific finite difference-code for integrated treatment of both fluid and structure in 3D-geometry using the fast cyclic reduction scheme for solving Poisson's equation. - Modification of mass and stiffness matrices of FEM-models for shell dynamics by reducing the 3D incompressible fluid problem to 2D with the boundary integral equation method. This presently developed method has the capacity to deal with general problems in fluid-structural coupling. (Auth.)

  11. Efficient boiler operations sourcebook

    Energy Technology Data Exchange (ETDEWEB)

    Payne, F.W. (comp.)

    1985-01-01

    This book emphasizes the practical aspects of industrial and commercial boiler operations. It starts with a comprehensive review of general combustion and boiler fundamentals and then deals with specific efficiency improvement methods, and the cost savings which result. The book has the following chapter headings: boiler combustion fundamentals; boiler efficiency goals; major factors controlling boiler efficiency; boiler efficiency calculations; heat loss; graphical solutions; preparation for boiler testing; boiler test procedures; efficiency-related boiler maintenance procedures; boiler tune-up; boiler operational modifications; effect of water side and gas side scale deposits; load management; auxillary equipment to increase boiler efficiency; air preheaters and economizers; other types of auxillary equipment; combustion control systems and instrumentation; boiler O/sub 2/ trim controls; should you purchase a new boiler.; financial evaluation procedures; case studies. The last chapter includes a case study of a boiler burning pulverized coal and a case study of stoker-fired coal.

  12. Design optimization on structure of blowdown in CPR1000 steam generator

    International Nuclear Information System (INIS)

    Wang Guoxian; Ren Hongbing; Zuo Chaoping; Zhu Yong; Mo Shaojia

    2014-01-01

    The structure of blowdown in CPR1000 steam generator has been optimized by eliminating the blowdown pipe and tube lane blocking, drilling holes in the peripheral tube lane, which can improve the accessibility of the central tube lane and facilitate inspecting and lancing. This paper detailed compares and analyzes the thermal hydraulic characteristic before and after optimization using GENEPI code which a special software for SG thermal hydraulic analysis. The results showed that the thermal hydraulic characteristic of steam generator meets the design requirements compared with the original design. Structure optimization can improve lancing effects, although the change of flow field distribution above the tubesheet leads to increase the number of tube subjected to sludge deposit. The analysis results proved the feasibility of the optimization. (authors)

  13. Application of RELAP5 to a pipe blowdown experiment

    International Nuclear Information System (INIS)

    Carlson, K.E.; Ransom, V.H.; Wagner, R.J.

    1980-01-01

    The application of the RELAP5 computer program to a pipe blowdown experiment is described in this paper. The basic hydrodynamic model, constitutive relations, and special process models included in RELAP5 are also briefly discussed. The results of this application confirm the effectiveness of using a choked flow model

  14. Deposit Probe Measurements in Large Biomass-Fired Grate Boilers and Pulverized-Fuel Boilers

    DEFF Research Database (Denmark)

    Hansen, Stine Broholm; Jensen, Peter Arendt; Jappe Frandsen, Flemming

    2014-01-01

    A number of full-scale deposit probe measuring campaigns conducted in grate-fired and suspension-fired boilers, fired with biomass, have been reviewed and compared. The influence of operational parameters on the chemistry of ash and deposits, on deposit build-up rates, and on shedding behavior has...... of the deposits formed is determined by the fly ash composition and the flue gas temperature; increases in the local flue gas temperature lead to higher contents of Si and Ca and lower contents of Cl in the deposits. The net deposit build-up rates in grate-fired and suspension-fired boilers are at similar levels....../wood-firing in suspension-fired boilers, shedding occurred by debonding with incomplete removal at flue gas temperatures of 600–1000 °C and by debonding with complete removal during wood-firing in suspension-fired boilers at high flue gas temperatures (1300 °C). Shedding events were not observed during wood suspension...

  15. Pellet wood gasification boiler / Combination boiler. Market review. 7. ed.; Scheitholzvergaser-/Kombikessel. Marktuebersicht

    Energy Technology Data Exchange (ETDEWEB)

    Uth, Joern

    2010-08-15

    In the market review under consideration on pellet wood gasification boilers and combination boilers, the Federal Ministry of Food, Agriculture and Consumer Protection (Bonn, Federal Republic of Germany) report on planning and installation of wood-fired heating systems, recommendations regarding to the technical assessment of boiler systems, buffers/combination boilers, prices of pellet wood gasification boilers, data sheets of the compared pellet wood gasification boilers, pellet wood combination boilers, prices of pellet wood combination boilers, data sheets of the compared pellet wood gasification boilers, list of providers.

  16. Market review. Pellet wood gasification boiler / combination boiler. 8. ed.; Marktuebersicht. Scheitholzvergaser-/Kombikessel

    Energy Technology Data Exchange (ETDEWEB)

    Uth, Joern

    2012-01-15

    In the market review under consideration on pellet wood gasification boilers and combination boilers, the Federal Ministry of Food, Agriculture and Consumer Protection (Bonn, Federal Republic of Germany) reports on planning and installation of wood-fired heating systems, recommendations regarding to the technical assessment of boiler systems, buffers/combination boilers, prices of pellet wood gasification boilers, data sheets of the compared pellet wood gasification boilers, pellet wood combination boilers, prices of pellet wood combination boilers, data sheets of the compared pellet wood gasification boilers, list of providers.

  17. Performance of R + D works to study the behavior during blowdown of LWRs

    International Nuclear Information System (INIS)

    Kaffanke, E.

    1980-03-01

    The aim of the RS 16B experiments is to study thermohydraulic behavior during blowdown of pressure vessels (with internals) of BWRS or PWR-steam generators. A small scale vessel will be used for simulation and measurement. Three series of experiments with varying paramters will be carried out in order to gain insight into flow behavior and loadings on internals caused by steam and feedwater line breaks. The experiments, besides supplying experimental results, will also serve to verify mathematical codes that have been developed to describe such highly complex phenomena. The contributions was as follows: 1) Planning and design of models to simulate BWR-internals. 2) Pre-test calculation of the effects of pressure differences on these models. 3) Post-test calculations upon completion of experiments. Since the beginning of the RS 16B-project in 1972, blowdown effects due to steam and feedwater line breaks have been calculated. A version of the short time computer program LAMB was used for the predictions. This program is an accepted code for the licensing procedure where blowdown analysis of BWR and PWR-steam generator is involved. (orig./HP) [de

  18. Evaluation of conditions of SNCR in small boilers

    International Nuclear Information System (INIS)

    Kullendorff, A.; Lorentzon, K.

    1996-04-01

    The report describes the first part of a project 'SNCR for small boilers', supported by Vaermeforsk (Thermal Engineering Research Institute), with the purpose of assessing the potential for SNCR in small boilers. Given favourable conditions, the project was to be continued in a second part with the demonstration of a SNCR system in a small boiler (or several boilers). During the base establishment, the temperatures in four locations per boiler, in a couple of horizontal or vertical levels and at 2-3 thermal outputs, were measured. Out of the four locations two showed temperatures mainly within the theoretical temperature window for SNCR. These locations were used during the try-out tests to inject urea and ammonia. The locations and the equipment used during the try-out tests together with existing operation strategies seem to limit the reduction levels to approximately 10-20% at acceptable levels of ammonia slip. The measurements and try-out tests carried out does not provide enough basis for forming any general conclusions concerning SNCR in small boilers. Neither the base establishment nor the try-out tests included any optimisation of the boilers regarding the operation strategy or, for the try-out tests, locations and equipment (drop size, flow shape and direction). Therefore, it is likely to believe that better results can be obtained, given other conditions of operation and using well established SNCR technology, adapted to the circumstances. 2 refs, 27 figs, 5 tabs

  19. Super Boiler: First Generation, Ultra-High Efficiency Firetube Boiler

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-06-01

    This factsheet describes a research project whose goal is to develop and demonstrate a first-generation ultra-high-efficiency, ultra-low emissions, compact gas-fired package boiler (Super Boiler), and formulate a long-range RD&D plan for advanced boiler technology out to the year 2020.

  20. HR boiler

    Energy Technology Data Exchange (ETDEWEB)

    1982-08-01

    A number of manufacturers of central heating boilers in the Netherlands have produced high-efficiency boilers, all carrying the GIVEG-HR seal of approval (GIVEG is the manufacturers' association in the Netherlands, and HR stands for 'hoog rendement': high efficiency). Efficiences were considerably improved by reducing flue, idling and radiation losses. Control and safety, discharges of flue gases and condensate need special attention. Whether installation of a GIVEG-HR boiler is profitable in view of the cost/profit ratio, will have to be determined from case to case. N.V. Nederlandse Gasunie felt it was time to present the facts so far in a way specially aimed at the construction industry. This special edition of 'Gas and Architecture' answers a number of questions which the architect or consultant engineer might have in particular before advising on the installation of the new boiler in houses and other buildings in the interests of energy saving. A technical description of the HR boiler covers the backgrounds of its development and considers the role of the Netherlands government as regards to the introduction of the boiler.

  1. Construction of the blowdown and condensation loop

    Energy Technology Data Exchange (ETDEWEB)

    Park, Choon Kyung; Song, Chul Kyung; Cho, Seok; Chun, S. Y.; Chung, Moon Ki

    1997-12-01

    The blowdown and condensation loop (B and C loop) has been constructed to get experimental data for designing the safety depressurization system (SDS) and steam sparger which are considered to implement in the Korea Next Generation Reactor (KNGR). In this report, system description on the B and C loop is given in detail, which includes the drawings and technical specification of each component, instrumentation and control system, and the operational procedures and the results of the performance testing. (author). 7 refs., 11 tabs., 48 figs.

  2. Boiler tube failure prevention in fossil fired boilers

    International Nuclear Information System (INIS)

    Townsend, R.D.

    1993-01-01

    It is the common experience of power generating companies worldwide that the main causes of forced outages on power plant are those due to boiler tube failures on fossil units. The main reason for the large number of failures are the severe environmental conditions in fossil boilers as the effects of stress, temperature, temperature gradients, corrosion, erosion and vibration combine to produce degradation of the tube steel. Corrosion by oxidation, by combustion products and by impure boiler water can significantly reduce the tube wall thickness and result in failure of a tube many years before its designed service life. Errors can also occur in the design manufacturer, storage, operation, and maintenance of boiler tubing and the wrong material installed in a critical location can lead to premature failure. Altogether, experts in the US and UK, from many different disciplines, have identified seven broad categories of boiler tube failure mechanisms. 1 tab., 2 figs

  3. Simulation and testing of a new condensing boiler

    International Nuclear Information System (INIS)

    Rosa, L.; Tosato, R.

    1987-01-01

    The paper describes a new condensing boiler, characterized by the evacuation of flue-gases by natural draft. The best result is the consequent simplification of manufacturing, hook-up and operation of the boiler. Seasonal efficiency of the boiler, which operates with flue-gases conditioning to assure natural draft, rests about at same levels as for conventional condensing boilers. The authors emphasize the difficulty of simulate natural draft mechanism by mathematics because, in this case, flow of flue-gases and air at the draft diverter is strongly three-dimensional

  4. Chemical approaches to zero blowdown operation (TP93-05)

    International Nuclear Information System (INIS)

    Geiger, G.E.; Ogg, J.; Hatch, M.R.

    1993-03-01

    Zero blowdown operation was evaluated at a cooling tower at the Stanford Linear Accelerator Center in an attempt to eliminate cooling water discharge. Testing was performed with and without acid feed for pH control using a state-of-the-art treatment which contained polymer, phosphonate, and azole. Supplemental additional of a proprietary calcium carbonate scale inhibitor was also evaluated

  5. Optimisation of Marine Boilers using Model-based Multivariable Control

    DEFF Research Database (Denmark)

    Solberg, Brian

    Traditionally, marine boilers have been controlled using classical single loop controllers. To optimise marine boiler performance, reduce new installation time and minimise the physical dimensions of these large steel constructions, a more comprehensive and coherent control strategy is needed....... This research deals with the application of advanced control to a specific class of marine boilers combining well-known design methods for multivariable systems. This thesis presents contributions for modelling and control of the one-pass smoke tube marine boilers as well as for hybrid systems control. Much...... of the focus has been directed towards water level control which is complicated by the nature of the disturbances acting on the system as well as by low frequency sensor noise. This focus was motivated by an estimated large potential to minimise the boiler geometry by reducing water level fluctuations...

  6. PIV measurement at the blowdown pipe outlet

    International Nuclear Information System (INIS)

    Puustinen, M.; Laine, J.; Raesaenen, A.; Pyy, L.; Telkkae, J.

    2013-04-01

    This report summarizes the findings of the PIV measurement tests carried out in January - February 2013 with the scaled down PPOOLEX test facility at LUT. The main objective of the tests was to find out the operational limits of the PIV system regarding suitable test conditions and correct values of different adjustable PIV parameters. An additional objective was to gather CFD grade data for verification/validation of numerical models. Both water and steam injection tests were carried out. PIV measurements with cold water injection succeeded well. Raw images were of high quality, averaging over the whole measurement period could be done and flow fields close to the blowdown pipe outlet could be determined. In the warm water injection cases the obtained averaged velocity field images were harder to interpret, especially if the blowdown pipe was also filled with warm water in the beginning of the measurement period. The absolute values of the velocity vectors seemed to be smaller than in the cold water injection cases. With very small steam flow rates the steam/water interface was inside the blowdown pipe and quite stable in nature. The raw images were of good quality but due to some fluctuation in the velocity field averaging of the velocity images over the whole measured period couldn't be done. Condensation of steam in the vicinity of the pipe exit probably caused these fluctuations. A constant outflow was usually followed by a constant inflow towards the pipe exit. Vector field images corresponding to a certain phase of the test could be extracted and averaged but this would require a very careful analysis so that the images could be correctly categorized. With higher steam flow rates rapid condensation of large steam bubbles created small gas bubbles which were in front of the measurement area of the PIV system. They disturbed the measurements by reflecting laser light like seeding particles and therefore the raw images were of poor quality and they couldn't be

  7. LOFT system structural response during subcooled blowdown

    International Nuclear Information System (INIS)

    Martinell, J.S.

    1978-01-01

    The Loss-of-Fluid Test (LOFT) facility is a highly instrumented, pressurized water reactor test system designed to be representative of large pressurized water reactors (LPWRs) for the simulation of loss-of-coolant accidents (LOCAs). Detailed structural analysis and appropriate instrumentation (accelerometers and strain gages) on the LOFT system provided information for evaluation of the structural response of the LOFT facility for loss-of-coolant experiment (LOCE) induced loads. In general, the response of the system during subcooled blowdown was small with typical structural accelerations below 2.0 G's and dynamic strains less than 150 x 10 - 6 m/m. The accelerations measured at the steam generator and simulated steam generator flange exceeded LOCE design values; however, integration of the accelerometer data at these locations yielded displacements which were less than one half of the design values associated with a safe shutdown earthquake (SSE), which assures structural integrity for LOCE loads. The existing measurement system was adequate for evaluation of the LOFT system response during the LOCEs. The conditions affecting blowdown loads during nuclear LOCEs will be nearly the same as those experienced during the nonnuclear LOCEs, and the characteristics of the structural response data in both types of experiments are expected to be the same. The LOFT system is concluded to be adequately designed and further analysis of the LOFT system with structural codes is not required for future LOCE experiments

  8. MULTIPLE LINEAR REGRESSION ANALYSIS FOR PREDICTION OF BOILER LOSSES AND BOILER EFFICIENCY

    OpenAIRE

    Chayalakshmi C.L

    2018-01-01

    MULTIPLE LINEAR REGRESSION ANALYSIS FOR PREDICTION OF BOILER LOSSES AND BOILER EFFICIENCY ABSTRACT Calculation of boiler efficiency is essential if its parameters need to be controlled for either maintaining or enhancing its efficiency. But determination of boiler efficiency using conventional method is time consuming and very expensive. Hence, it is not recommended to find boiler efficiency frequently. The work presented in this paper deals with establishing the statistical mo...

  9. Analysis of the fluid-structure dynamic interaction of reactor pressure vessel internals during blowdown

    International Nuclear Information System (INIS)

    Schlechtendahl, E.G.; Krieg, R.; Schumann, U.

    1977-01-01

    The loadings on reactor internal structures (in particular the core barrel) induced during a PWR-blowdown must not result in excessive stresses and strains. The deformations are strongly influenced by the coupling of fluid and structure dynamics and it is necessary, therefore, to develop and apply new coupled analysis tools. In this paper a survey is given over work currently in progress in the Nuclear Research Center Karlsruhe and the Los Alamos Scientific Laboratory which aim towards 'best estimate codes'. The new methods will be verified by means of the HDR-blowdown tests and other experiments. The results of several scoping calculations are presented and illustrated by movie films. (orig.) [de

  10. Thermal effects influencing measurements in a supersonic blowdown wind tunnel

    Directory of Open Access Journals (Sweden)

    Vuković Đorđe S.

    2016-01-01

    Full Text Available During a supersonic run of a blowdown wind tunnel, temperature of air in the test section drops which can affect planned measurements. Adverse thermal effects include variations of the Mach and Reynolds numbers, variation of airspeed, condensation of moisture on the model, change of characteristics of the instrumentation in the model, et cetera. Available data on thermal effects on instrumentation are pertaining primarily to long-run-duration wind tunnel facilities. In order to characterize such influences on instrumentation in the models, in short-run-duration blowdown wind tunnels, temperature measurements were made in the wing-panel-balance and main-balance spaces of two wind tunnel models tested in the T-38 wind tunnel. The measurements showed that model-interior temperature in a run increased at the beginning of the run, followed by a slower drop and, at the end of the run, by a large temperature drop. Panel-force balance was affected much more than the main balance. Ways of reducing the unwelcome thermal effects by instrumentation design and test planning are discussed.

  11. DESIGN REPORT: LOW-NOX BURNERS FOR PACKAGE BOILERS

    Science.gov (United States)

    The report describes a low-NOx burner design, presented for residual-oil-fired industrial boilers and boilers cofiring conventional fuels and nitrated hazardous wastes. The burner offers lower NOx emission levels for these applications than conventional commercial burners. The bu...

  12. Boiler conversions for biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kinni, J [Tampella Power Inc., Tampere (Finland)

    1997-12-31

    Boiler conversions from grate- and oil-fired boilers to bubbling fluidized bed combustion have been most common in pulp and paper industry. Water treatment sludge combustion, need for additional capacity and tightened emission limits have been the driving forces for the conversion. To accomplish a boiler conversion for biofuel, the lower part of the boiler is replaced with a fluidized bed bottom and new fuel, ash and air systems are added. The Imatran Voima Rauhalahti pulverized-peat-fired boiler was converted to bubbling fluidized bed firing in 1993. In the conversion the boiler capacity was increased by 10 % to 295 MWth and NO{sub x} emissions dropped. In the Kymmene Kuusankoski boiler, the reason for conversion was the combustion of high chlorine content biosludge. The emissions have been under general European limits. During the next years, the emission limits will tighten and the boilers will be designed for most complete combustion and compounds, which can be removed from flue gases, will be taken care of after the boiler. (orig.) 3 refs.

  13. Boiler conversions for biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kinni, J. [Tampella Power Inc., Tampere (Finland)

    1996-12-31

    Boiler conversions from grate- and oil-fired boilers to bubbling fluidized bed combustion have been most common in pulp and paper industry. Water treatment sludge combustion, need for additional capacity and tightened emission limits have been the driving forces for the conversion. To accomplish a boiler conversion for biofuel, the lower part of the boiler is replaced with a fluidized bed bottom and new fuel, ash and air systems are added. The Imatran Voima Rauhalahti pulverized-peat-fired boiler was converted to bubbling fluidized bed firing in 1993. In the conversion the boiler capacity was increased by 10 % to 295 MWth and NO{sub x} emissions dropped. In the Kymmene Kuusankoski boiler, the reason for conversion was the combustion of high chlorine content biosludge. The emissions have been under general European limits. During the next years, the emission limits will tighten and the boilers will be designed for most complete combustion and compounds, which can be removed from flue gases, will be taken care of after the boiler. (orig.) 3 refs.

  14. Treatment of Berkeley boilers in Studsvik. Project description and experiences - Berkeley Boilers Project

    International Nuclear Information System (INIS)

    Saul, Dave; Davidson, Gavin; Wirendal, Bo

    2014-01-01

    In November 2011 Studsvik was awarded a contract to transport five decommissioned boilers from the Berkeley Nuclear Licensed Site in the UK to the Studsvik Nuclear Site in Sweden for metal treatment and recycling. A key objective of the project was to remove the boilers from the site by 31 March 2012 and this was successfully achieved with all boilers off site by 22 March and delivered to Studsvik on 6 April. In November 2012 Studsvik was awarded a further contract for the remaining ten Berkeley Boilers with the requirement to remove all boilers from the Berkeley site by 31 March 2013. Again this was successfully achieved ahead of programme with all boilers in Sweden by 1 April 2013. A total of nine boilers have now been processed and all remaining boilers will be completed by end of September 2014. The projects have had many challenges including a very tight timescale and both have been successfully delivered to cost and ahead of the baseline programme. This paper describes the project and the experience gained from treatment of the boilers to date. (authors)

  15. Bench-scale treatability studies for simulated incinerator scrubber blowdown containing radioactive cesium and strontium

    International Nuclear Information System (INIS)

    Coroneos, A.C.; Taylor, P.A.; Arnold, W.D. Jr.; Bostick, D.A.; Perona, J.J.

    1994-12-01

    The purpose of this report is to document the results of bench-scale testing completed to remove 137 Cs and 90 Sr from the Oak Ridge K-25 Site Toxic Substances Control Act (TSCA) Incinerator blowdown at the K-25 Site Central Neutralization Facility, a wastewater treatment facility designed to remove heavy metals and uranium from various wastewaters. The report presents results of bench-scale testing using chabazite and clinoptilolite zeolites to remove cesium and strontium; using potassium cobalt ferrocyanide (KCCF) to remove cesium; and using strontium chloride coprecipitation, sodium phosphate coprecipitation, and calcium sulfate coprecipitation to remove strontium. Low-range, average-range, and high-range concentration blowdown surrogates were used to complete the bench-scale testing

  16. High temperature pressure water's blowdown into water. Experimental results

    International Nuclear Information System (INIS)

    Ishida, Toshihisa; Kusunoki, Tsuyoshi; Kasahara, Yoshiyuki; Iida, Hiromasa

    1994-01-01

    The purpose of the present experimental study is to clarify the phenomena in blowdown of high temperature and pressure water in pressure vessel into the containment water for evaluation of design of an advanced marine reactor(MRX). The water blown into the containment water flushed and formed steam jet plume. The steam jet condensed in the water, but some stream penetrated to gas phase of containment and contributed to increase of containment pressure. (author)

  17. Optimization of Boiler Heat Load in Water-Heating Boiler-House

    Directory of Open Access Journals (Sweden)

    B. A. Bayrashevsky

    2009-01-01

    Full Text Available An analytical method for optimization of water-heating boiler loads has been developed on the basis of approximated semi-empirical dependences pertaining to changes of boiler gross efficiency due to its load. A complex (∂tух/∂ξΔξ is determined on the basis of a systematic analysis (monitoring of experimental data and the Y. P. Pecker’s formula for calculation of balance losses q2. This complex makes it possible to set a corresponding correction to a standard value of the boiler gross efficiency due to contamination of heating surfaces.Software means for optimization of water-heating boilers has been developed and it is recommended to be applied under operational conditions.

  18. Multidimensional analysis of fluid flow in the loft cold leg blowdown pipe during a loss-of-coolant experiment

    International Nuclear Information System (INIS)

    Demmie, P.N.; Hofmann, K.R.

    1979-03-01

    A computer analysis of fluid flow in the Loss-of-Fluid Test (LOFT) cold leg blowdown pipe during a loss-of-coolant experiment (LOCE) was performed using the computer program K-FIX/MOD1. The purpose of this analysis was to evaluate the capability of K-FIX/MOD1 to calculate theoretical fluid quantity distributions in the blowdown pipe during a LOCE for possible application to the analysis of LOFT experimental data, the determination of mass flow, or the development of data reduction models. A rectangular section of a portion of the LOFT blowdown pipe containing measurement Station BL-1 was modeled using time-dependent boundary conditions. Fluid quantities were calculated during a simulation of the first 26 s of LOFT LOCE L1-4. Sensitivity studies were made to determine changes in void fractions and velocities resulting from specific changes in the inflow boundary conditions used for this simulation

  19. Effect of air content and mass inflow on the pressure rise in a containment during blowdown

    International Nuclear Information System (INIS)

    Marshall, J.; Holland, P.G.

    1977-01-01

    Experiments were made to investigate conditions arising during blowdown of a vessel filled with saturated steam/water at 7 MPa pressure into a containment vessel. The initial air pressure in the containment vessel was varied from one atmosphere to near vacuum. The initial water content of the high pressure vessel was varied. Pressure and temperature distributions were measured during the blowdown transient and compared with calculations based on a simple lumped-parameter model. The effect of condensation heat transfer on the containment pressure is discussed and attention drawn to the inadequacy of most available data. (Author)

  20. Blow.MOD2: a program for blowdown transient calculations

    International Nuclear Information System (INIS)

    Doval, A.

    1990-01-01

    The BLOW.MOD2 program has been developed to calculate the blowdown phase in a pressurized vessel after a break/valve is opened. It is a one volume model where break height and flow area are specified. Moody critical flow model was adopted under saturation conditions for flow calculation through the break. Heat transfer from structures and internals have been taken into account. Long term depressurization results and a more complex model are compared satisfactorily. (Author)

  1. PWR blowdown heat transfer separate-effects program: thermal-hydraulic test facility experimental data report for test 104

    International Nuclear Information System (INIS)

    Leon, D.M.; White, M.D.; Moore, P.A.; Hedrick, R.A.

    1978-01-01

    Reduced instrument responses are presented for Thermal-Hydraulic Test Facility (THTF) test 104, which is part of the ORNL Pressurized-Water Reactor (PWR) Blowdown Heat Transfer Separate-Effects Program. The objective of the program is to investigate the thermal-hydraulic phenomenon governing the energy transfer and transport processes that occur during a loss-of-coolant accident in the PWR system. Test 104 was conducted to obtain CHF in bundle 1 under blowdown conditions. The primary purpose of this report is to make the reduced instrument responses during test 104 available

  2. Boilers, evaporators, and condensers

    International Nuclear Information System (INIS)

    Kakac, S.

    1991-01-01

    This book reports on the boilers, evaporators and condensers that are used in power plants including nuclear power plants. Topics included are forced convection for single-phase side heat exchangers, heat exchanger fouling, industrial heat exchanger design, fossil-fuel-fired boilers, once through boilers, thermodynamic designs of fossil fuel-first boilers, evaporators and condensers in refrigeration and air conditioning systems (with respect to reducing CFC's) and nuclear steam generators

  3. Dynamic simulation of a circulating fluidized bed boiler system part II: Simulation of a boiler system operating in a power plant

    International Nuclear Information System (INIS)

    Kim, Seong Il; Choi, Sang Min; Yang, Jong In

    2016-01-01

    A case of dynamic performance simulation model of a CFB boiler is presented in this study. The dynamic system of a CFB boiler in an operating power plant and the transient behavior of sub-models is described in the accompanying paper, Part I. The current paper, Part II, describes the model extension for the CFB boiler system in a power plant. The open loop model in Paper I was expanded by applying a set of PID (Proportional-integral-differential) control loops. In the control loop, pressure, temperature, mass flow rate of the main steam, the drum water level and the oxygen level at the stack were controlled. Dynamic performance was simulated to check the response of the closed control loop. Finally, performance of the total boiler system for a range of operation load of the power plant was simulated, where the parameters were calculated and control variables were maintained at the set values by PID control. Dynamic performance of a boiler at a selected load variation case was simulated and compared with actual measurements and their transient response characteristics were discussed. The simulation can also directly produce useful operation parameters, which are not measurable, but could be used for engineering evaluation

  4. Dynamic simulation of a circulating fluidized bed boiler system part II: Simulation of a boiler system operating in a power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Il; Choi, Sang Min; Yang, Jong In [Dept. of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon(Korea, Republic of)

    2016-12-15

    A case of dynamic performance simulation model of a CFB boiler is presented in this study. The dynamic system of a CFB boiler in an operating power plant and the transient behavior of sub-models is described in the accompanying paper, Part I. The current paper, Part II, describes the model extension for the CFB boiler system in a power plant. The open loop model in Paper I was expanded by applying a set of PID (Proportional-integral-differential) control loops. In the control loop, pressure, temperature, mass flow rate of the main steam, the drum water level and the oxygen level at the stack were controlled. Dynamic performance was simulated to check the response of the closed control loop. Finally, performance of the total boiler system for a range of operation load of the power plant was simulated, where the parameters were calculated and control variables were maintained at the set values by PID control. Dynamic performance of a boiler at a selected load variation case was simulated and compared with actual measurements and their transient response characteristics were discussed. The simulation can also directly produce useful operation parameters, which are not measurable, but could be used for engineering evaluation.

  5. Condensation pool experiments with steam using DN200 blowdown pipe

    International Nuclear Information System (INIS)

    Laine, J.; Puustinen, M.

    2005-08-01

    This report summarizes the results of the condensation pool experiments with steam using a DN200 blowdown pipe. Altogether five experiment series, each consisting of several steam blows, were carried out in December 2004 with a scaled-down test facility designed and constructed at Lappeenranta University of Technology. The main purpose of the experiments was to increase the understanding of different phenomena in the condensation pool during steam discharge. (au)

  6. PPOOLEX experiments on the dynamics of free water surface in the blowdown pipe

    International Nuclear Information System (INIS)

    Laine, J.; Puustinen, M.; Raesaenen, A.

    2013-04-01

    This report summarizes the results of the thermal stratification and mixing experiments carried out with the scaled down PPOOLEX test facility designed and constructed at Lappeenranta University of Technology. Steam was blown into the dry well compartment and from there through the vertical DN200 blowdown pipe to the condensation pool filled with sub-cooled water. The main objective of the experiments was to obtain verification data for the development of the Effective Momentum Source (EMS) and Effective Heat Source (EHS) models to be implemented in GOTHIC code by KTH. A detailed test matrix and procedure put together on the basis of pre-test calculations was provided by KTH before the experiments. Altogether six experiments were carried out. The experiments consisted of a small steam flow rate stratification period and of a higher flow rate mixing period. The dry well structures were heated up to approximately 130 deg. C before the stratification period was initiated. The initial water bulk temperature in the condensation pool was 13-16 deg. C. During the low steam flow rate (85-105 g/s) period steam condensed mainly inside the blowdown pipe. As a result temperatures remained constant below the blowdown pipe outlet while they increased towards the pool surface layers indicating strong thermal stratification of the wet well pool water. In the end of the stratification period the temperature difference between the pool bottom and surface was 15-30 deg. C depending on the test parameters and the duration of the low flow rate period. In the beginning of the mixing phase the steam flow rate was increased rapidly to 300-425 g/s to mix the pool water totally. Depending on the used steam flow rate and initial pool water temperature it took 150-500 s to achieve total mixing. If the test was continued long enough the water pool began to stratify again after the water bulk temperature had reached ∼50 deg. C despite of steam mass flux belonging to the chugging region of the

  7. PPOOLEX experiments on the dynamics of free water surface in the blowdown pipe

    Energy Technology Data Exchange (ETDEWEB)

    Laine, J.; Puustinen, M.; Raesaenen, A. [Lappeenranta Univ. of Technology, Lappeenranta (Finland)

    2013-04-15

    This report summarizes the results of the thermal stratification and mixing experiments carried out with the scaled down PPOOLEX test facility designed and constructed at Lappeenranta University of Technology. Steam was blown into the dry well compartment and from there through the vertical DN200 blowdown pipe to the condensation pool filled with sub-cooled water. The main objective of the experiments was to obtain verification data for the development of the Effective Momentum Source (EMS) and Effective Heat Source (EHS) models to be implemented in GOTHIC code by KTH. A detailed test matrix and procedure put together on the basis of pre-test calculations was provided by KTH before the experiments. Altogether six experiments were carried out. The experiments consisted of a small steam flow rate stratification period and of a higher flow rate mixing period. The dry well structures were heated up to approximately 130 deg. C before the stratification period was initiated. The initial water bulk temperature in the condensation pool was 13-16 deg. C. During the low steam flow rate (85-105 g/s) period steam condensed mainly inside the blowdown pipe. As a result temperatures remained constant below the blowdown pipe outlet while they increased towards the pool surface layers indicating strong thermal stratification of the wet well pool water. In the end of the stratification period the temperature difference between the pool bottom and surface was 15-30 deg. C depending on the test parameters and the duration of the low flow rate period. In the beginning of the mixing phase the steam flow rate was increased rapidly to 300-425 g/s to mix the pool water totally. Depending on the used steam flow rate and initial pool water temperature it took 150-500 s to achieve total mixing. If the test was continued long enough the water pool began to stratify again after the water bulk temperature had reached {approx}50 deg. C despite of steam mass flux belonging to the chugging region

  8. A study on the boiler efficiency influenced by the boiler operation parameter in fossil power plant

    International Nuclear Information System (INIS)

    Kwon, Y. S.; Suh, J. S.

    2002-01-01

    The main reason to analyze the boiler operation parameter in fossil power plant is to increase boiler high efficiency and energy saving movement in the government. This study intends to have trend and analyze the boiler efficiency influenced by the boiler parameter in sub-critical and super-critical type boiler

  9. Boiler for combustion fuel in a fluidized bed

    Directory of Open Access Journals (Sweden)

    Laković Mirjana S.

    2015-01-01

    Full Text Available Fuel combustion in fluidized bed combustion is a process that is current and which every day gives more attention and there are many studies that have been closely associated with this technology. This combustion technology is widespread and constantly improving the range of benefits it provides primarily due to reduced emissions. This paper presents the boilers for combustion in a fluidized bed, whit characteristics and advantages. Also is shown the development of this type of boilers in Republic of Serbia. In this paper is explained the concept of fluidized bed combustion. Boilers for this type of combustion can be improved and thereby increase their efficiency level. More detailed characteristics are given for boilers with bubbling and circulating fluidized bed as well as their mutual comparison.

  10. Numerical modelling of a straw-fired grate boiler

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen

    2004-01-01

    The paper presents a computational fluid dynamics (CFD) analysis of a 33 MW straw-fired grate boiler. Combustion on the grate plays akey-role in the analysis of these boilers and in this work a stand-alone code was used to provide inlet conditions for the CFD analysis. Modelpredictions were...... compared with available gas temperature and species concentration measurements showing good agreement. Combustionof biomass in grate-based boilers is often associated with high emission levels and relatively high amounts of unburnt carbon in the fly ash.Based on the CFD analysis, it is suggested that poor...

  11. OPTIMIZATION OF TRANSIEN PROCESSES OF WATER LEVEL VARIATION IN DRUM OF STEAM BOILERS

    Directory of Open Access Journals (Sweden)

    G. T. Kulakov

    2014-01-01

    Full Text Available The work of regulator in general three-impulse automatic control system of water level in drum of boiler doesn’t supply quality of internal and external disturbance attack (presentation of regulation mistakes. That is why it is needed to improve. Different methods of proportional plus reset controller regulation of three-phase automatic feed control system are considered. There were suggested new methods to improve the quality of regulation of water level in boilers. Here the step system of automatic regulation was determined, on the base of transfer function.It is noticed that optimal transient processes supply calculation of numerical value of transmission factor of regulator at g =2,618, it is more then was recommended, but statistic mistakes remain. The transient simulation method in fast-time scale is recommended, this allow to determine early the value of statistic mistake of regulation by disturbances of reheated steam consumption and properly change the task to compensating device of step automatic control system. And numerical value of time constant criteria  should be calculated on the base of numbers of golden section(Phi, taking into account the definite time constant of lead section and time-lag, time-lag on controlled influence channel, and also taking into account maximum value of controlled influence. This method allow to reduce in two times the total time of regulation, to decrease absolute mistake of regulation in three times, and maximum value of regulation influence by feedwater in 1,7 times.

  12. The orificing of once-through boilers for gas-cooled reactors

    International Nuclear Information System (INIS)

    Collier, J.G.; Whitmarsh-Everiss, M.J.

    1986-01-01

    The boilers at Hinkley Point B, Hunterston B (which are built to a common design) and Hartlepool and Heysham (which are identical to each other although different from Hinkley B/Hunterston B) are discussed. Heysham II and Torness have boilers developed from the Hinkley B/Hunterston B design. The boiler design is explained and the problems encountered are presented. The study presented in this address highlights the potential sensitivity of the performance of once-through boilers to the following factors - the uniformity of the gas inlet temperature profile, the choice of the operating point on the boiler characteristic (preferably this should be where the performance of the unit is not too sensitive to the primary side temperature and flow distribution); this can be achieved by greater levels of orificing reducing the steady state gains, and the various plant operating states which introduce asymmetries into the boundary conditions for the boiler. A number of computer codes have been used to model boiler performance. Using these, a new design was proposed for boiler feed regulating orifices and these revised orifices were installed during outages on the two Heysham reactors in 1985. (U.K.)

  13. Recovery Act: Oxy-Combustion Technology Development for Industrial-Scale Boiler Applications

    Energy Technology Data Exchange (ETDEWEB)

    Levasseur, Armand

    2014-01-01

    This Topical Report outlines guidelines and key considerations for design and operation of pulverized coal-fired boilers for oxy-combustion. The scope addressed includes only the boiler island, not the entire oxy-fired CO{sub 2} capture plant. These guidelines are primarily developed for tangential-fired boilers and focus on designs capable of dual air and oxy-fired operation. The guidelines and considerations discussed are applicable to both new units and existing boiler retrofits. These guidelines are largely based on the findings from the extensive 15 MW{sub th} pilot testing and design efforts conducted under this project. A summary level description is provided for each major aspect of boiler design impacted by oxy-combustion, and key considerations are discussed for broader application to different utility and industrial designs. Guidelines address the boiler system arrangement, firing system, boiler thermal design, ducting, materials, control system, and other key systems.

  14. Boiler water regime

    Science.gov (United States)

    Khavanov, Pavel; Chulenyov, Anatoly

    2017-10-01

    Active development of autonomous heating the past 25 years has led to the widespread use of hot-water boilers of small capacity up to 2.5 MW. Rational use of the design of autonomous sources of heating boilers design features significantly improve their technical, economic and operational performance. This publication reviewed and analyzed a number of features of the design, operation and exploitation of boilers of small capacity, significantly affecting the efficiency and reliability of their application.

  15. 30 CFR 77.413 - Boilers.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Boilers. 77.413 Section 77.413 Mineral... Mechanical Equipment § 77.413 Boilers. (a) Boilers shall be equipped with guarded, well-maintained water... the gages shall be kept clean and free of scale and rust. (b) Boilers shall be equipped with automatic...

  16. LOFT reactor vessel 290/sup 0/ downcomer stalk instrument penetration flange stress analysis

    Energy Technology Data Exchange (ETDEWEB)

    Finicle, D.P.

    1978-06-06

    The LOFT Reactor Vessel 290/sup 0/ Downcomer Stalk Instrument Penetration Flange Stress Analysis has been completed using normal operational and blowdown loading. A linear elastic analysis was completed using simplified hand analysis techniques. The analysis was in accordance with the 1977 ASME Boiler and Pressure Vessel Code, Section III, for a Class 1 component. Loading included internal pressure, bolt preload, and thermal gradients due to normal operating and blowdown.

  17. Process for start-up and slack period operation of fully charged boilers, e. g. of coal pressure gasification plants, and boiler system to carry out the process

    Energy Technology Data Exchange (ETDEWEB)

    Meyer-Kahrweg, H

    1978-10-19

    For the start-up and slack period of fully charged boilers hot water of e.g. 180/sup 0/C from a high pressure heater which is fed by a start-up boiler is used. In the first instance the boiler, its preheater and the vaporizer are filled with hot water from the start-up boiler until a medium water level is obtained. Subsequently water from the water separator is recycled through the preheater and the boiler by forced circulation and it is heated up to the hot water temperature by the start-up boiler. After the desired temperature has been reached the pressure combustion is ignited and the circulation through the preheater is interrupted by reversing to direct feed back. A considerable shortening of the start-up time is achieved because no heat is released to the condensation water in the boiler system as is done usually.

  18. Numerical simulation of a small-scale biomass boiler

    International Nuclear Information System (INIS)

    Collazo, J.; Porteiro, J.; Míguez, J.L.; Granada, E.; Gómez, M.A.

    2012-01-01

    Highlights: ► Simplified model for biomass combustion was developed. ► Porous zone conditions are used in the bed. ► Model is fully integrated in a commercial CFD code to simulate a small scale pellet boiler. ► Pollutant emissions are well predicted. ► Simulation provides extensive information about the behaviour of the boiler. - Abstract: This paper presents a computational fluid dynamic simulation of a domestic pellet boiler. Combustion of the solid fuel in the burner is an important issue when discussing the simulation of this type of system. A simplified method based on a thermal balance was developed in this work to introduce the effects provoked by pellet combustion in the boiler simulation. The model predictions were compared with the experimental measurements, and a good agreement was found. The results of the boiler analysis show that the position of the water tubes, the distribution of the air inlets and the air infiltrations are the key factors leading to the high emission levels present in this type of system.

  19. Structured Mathematical Modeling of Industrial Boiler

    Directory of Open Access Journals (Sweden)

    Abdullah Nur Aziz

    2014-04-01

    Full Text Available As a major utility system in industry, boilers consume a large portion of the total energy and costs. Significant reduction of boiler cost operation can be gained through improvements in efficiency. In accomplishing such a goal, an adequate dynamic model that comprehensively reflects boiler characteristics is required. This paper outlines the idea of developing a mathematical model of a water-tube industrial boiler based on first principles guided by the bond graph method in its derivation. The model describes the temperature dynamics of the boiler subsystems such as economizer, steam drum, desuperheater, and superheater. The mathematical model was examined using industrial boiler performance test data.It can be used to build a boiler simulator or help operators run a boiler effectively.

  20. Modelling, simulating and optimizing boiler heating surfaces and evaporator circuits

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    A model for optimizing the dynamic performance of boiler have been developed. Design variables related to the size of the boiler and its dynamic performance have been defined. The object function to be optimized takes the weight of the boiler and its dynamic capability into account. As constraints...... for the optimization a dynamic model for the boiler is applied. Furthermore a function for the value of the dynamic performance is included in the model. The dynamic models for simulating boiler performance consists of a model for the flue gas side, a model for the evaporator circuit and a model for the drum....... The dynamic model has been developed for the purpose of determining boiler material temperatures and heat transfer from the flue gas side to the water-/steam side in order to simulate the circulation in the evaporator circuit and hereby the water level fluctuations in the drum. The dynamic model has been...

  1. Criteria of choosing building structures for rooftop boiler rooms

    Directory of Open Access Journals (Sweden)

    Plotnikov Artyom

    2018-01-01

    Full Text Available The paper investigates parameters of noise and vibration distribution in the territory of residential area depending on the structural materials and power of independent heat supply systems. Rooftop boiler rooms are decentralized heat supply systems in buildings. Today, residential areas are strongly affected by noise and vibrations. Adverse effects are isolated by buildings materials, protective shields and floating floors. Rooftop boiler rooms located in Tyumen city were investigated within this research. Structures of rooftop boiler rooms were analyzed. Acoustic analysis results and the parameters of equivalent continuous sound level are presented. An option for improvement of rooftop boiler rooms structures is suggested. Comparison of capital investments in construction and installation activities is carried out. Conclusion on capital investments required for noise protection is made.

  2. Singular and interactive effects of blowdown, salvage logging, and wildfire in sub-boreal pine systems

    Science.gov (United States)

    D'Amato, A.W.; Fraver, S.; Palik, B.J.; Bradford, J.B.; Patty, L.

    2011-01-01

    The role of disturbance in structuring vegetation is widely recognized; however, we are only beginning to understand the effects of multiple interacting disturbances on ecosystem recovery and development. Of particular interest is the impact of post-disturbance management interventions, particularly in light of the global controversy surrounding the effects of salvage logging on forest ecosystem recovery. Studies of salvage logging impacts have focused on the effects of post-disturbance salvage logging within the context of a single natural disturbance event. There have been no formal evaluations of how these effects may differ when followed in short sequence by a second, high severity natural disturbance. To evaluate the impact of this management practice within the context of multiple disturbances, we examined the structural and woody plant community responses of sub-boreal Pinus banksiana systems to a rapid sequence of disturbances. Specifically, we compared responses to Blowdown (B), Fire (F), Blowdown-Fire, and Blowdown-Salvage-Fire (BSF) and compared these to undisturbed control (C) stands. Comparisons between BF and BSF indicated that the primary effect of salvage logging was a decrease in the abundance of structural legacies, such as downed woody debris and snags. Both of these compound disturbance sequences (BF and BSF), resulted in similar woody plant communities, largely dominated by Populus tremuloides; however, there was greater homogeneity in community composition in salvage logged areas. Areas experiencing solely fire (F stands) were dominated by P. banksiana regeneration, and blowdown areas (B stands) were largely characterized by regeneration from shade tolerant conifer species. Our results suggest that salvage logging impacts on woody plant communities are diminished when followed by a second high severity disturbance; however, impacts on structural legacies persist. Provisions for the retention of snags, downed logs, and surviving trees as part

  3. Electric utility CFB boilers

    International Nuclear Information System (INIS)

    Fairbanks, D.A.

    1991-01-01

    This paper reports on Circulating Fluidized Bed (CFB) boiler technology which caught the attention of boiler users: first for its technical advantages of reduced air emissions and low grade fuel tolerance, then later for its problems in becoming a reliable process. Refractory longevity and fuel feed reliability plagued a number of new installations. The efficacy of CFB technology is now more assured with the recent success of Texas-New Mexico Power Company's 160 MWe CFB based units, the world's largest operating CFB boilers. Most of the more notable CFB development problems have been successfully addressed by these units. The TNP units have demonstrated that CFB's can reliable produce high capacity factors at low emission rates using a fuel that has traditionally hampered the operation of pulverized coal (PC) boilers and without the attendant problems associated with sulfur scrubbers required by PC boilers

  4. Oxy-Combustion Boiler Material Development

    Energy Technology Data Exchange (ETDEWEB)

    Gagliano, Michael; Seltzer, Andrew; Agarwal, Hans; Robertson, Archie; Wang, Lun

    2012-01-31

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO2 level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year

  5. Oxy-Combustion Boiler Material Development

    Energy Technology Data Exchange (ETDEWEB)

    Michael Gagliano; Andrew Seltzer; Hans Agarwal; Archie Robertson; Lun Wang

    2012-01-31

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO{sub 2} level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to

  6. Condensing boiler applications in the process industry

    International Nuclear Information System (INIS)

    Chen, Qun; Finney, Karen; Li, Hanning; Zhang, Xiaohui; Zhou, Jue; Sharifi, Vida; Swithenbank, Jim

    2012-01-01

    Major challenging issues such as climate change, energy prices and fuel security have focussed the attention of process industries on their energy efficiency and opportunities for improvement. The main objective of this research study was to investigate technologies needed to exploit the large amount of low grade heat available from a flue gas condensing system through industrial condensing boilers. The technology and application of industrial condensing boilers in various heating systems were extensively reviewed. As the condensers require site-specific engineering design, a case study was carried out to investigate the feasibility (technically and economically) of applying condensing boilers in a large scale district heating system (40 MW). The study showed that by recovering the latent heat of water vapour in the flue gas through condensing boilers, the whole heating system could achieve significantly higher efficiency levels than conventional boilers. In addition to waste heat recovery, condensing boilers can also be optimised for emission abatement, especially for particle removal. Two technical barriers for the condensing boiler application are corrosion and return water temperatures. Highly corrosion-resistant material is required for condensing boiler manufacture. The thermal design of a 'case study' single pass shell-and-tube condensing heat exchanger/condenser showed that a considerable amount of thermal resistance was on the shell-side. Based on the case study calculations, approximately 4900 m 2 of total heat transfer area was required, if stainless steel was used as a construction material. If the heat transfer area was made of carbon steel, then polypropylene could be used as the corrosion-resistant coating material outside the tubes. The addition of polypropylene coating increased the tube wall thermal resistance, hence the required heat transfer area was approximately 5800 m 2 . Net Present Value (NPV) calculations showed that the choice of a carbon

  7. Model-based Control of a Bottom Fired Marine Boiler

    DEFF Research Database (Denmark)

    Solberg, Brian; Karstensen, Claus M. S.; Andersen, Palle

    2005-01-01

    This paper focuses on applying model based MIMO control to minimize variations in water level for a specific boiler type. A first principles model is put up. The model is linearized and an LQG controller is designed. Furthermore the benefit of using a steam °ow measurement is compared to a strategy...... relying on estimates of the disturbance. Preliminary tests at the boiler system show that the designed controller is able to control the boiler process. Furthermore it can be concluded that relying on estimates of the steam flow in the control strategy does not decrease the controller performance...

  8. Model-based Control of a Bottom Fired Marine Boiler

    DEFF Research Database (Denmark)

    Solberg, Brian; Karstensen, Claus M. S.; Andersen, Palle

    This paper focuses on applying model based MIMO control to minimize variations in water level for a specific boiler type. A first principles model is put up. The model is linearized and an LQG controller is designed. Furthermore the benefit of using a steam °ow measurement is compared to a strategy...... relying on estimates of the disturbance. Preliminary tests at the boiler system show that the designed controller is able to control the boiler process. Furthermore it can be concluded that relying on estimates of the steam flow in the control strategy does not decrease the controller performance...

  9. Results of the first nuclear blowdown test on single fuel rods (LOC-11 Series in PBF)

    International Nuclear Information System (INIS)

    Larson, J.R.; Evans, D.R.; McCardell, R.K.

    1978-01-01

    This paper presents results of the first nuclear blowdown tests (LOC-11A, LOC-11B, LOC-11C) ever conducted. The Loss-of-Coolant Accident (LOCA) Test Series is being conducted in the Power Burst Facility (PBF) reactor at the Idaho National Engineering Laboratory, near Idaho Falls, Idaho, for the Nuclear Regulatory Commission. The objective of the LOC-11 tests was to obtain data on the behavior of pressurized and unpressurized rods when exposed to a blowdown similar to that expected in a pressurized water reactor (PWR) during a hypothesized double-ended cold-leg break. The data are being used for the development and verification of analytical models that are used to predict coolant and fuel rod pressure during a LOCA in a PWR

  10. Calculations of Edwards' pipe blowdown tests using the code TRAC P1

    International Nuclear Information System (INIS)

    O'Mahoney, R.

    1979-05-01

    The paper describes the results obtained using the non-thermal equilibrium LOCA code TRAC-P1 for two of a series of Pipe Blowdown Tests. Comparisons are made with the experimental values and RELAP-UK Mark IV predictions. Some discrepancies between prediction and experiment are observed, and certain aspects of the model are considered to warrant possible further attention. (U.K.)

  11. 49 CFR 230.47 - Boiler number.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Boiler number. 230.47 Section 230.47..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.47 Boiler number. (a) Generally. The builder's number of the boiler, if known, shall...

  12. Fouling control in biomass boilers

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, Luis M.; Gareta, Raquel [Centro de Investigacion de Recursos y Consumos Energeticos (CIRCE), Universidad de Zaragoza, Centro Politecnico Superior, Maria de Luna, 3, 50018 Zaragoza (Spain)

    2009-05-15

    One of the important challenges for biomass combustion in industrial applications is the fouling tendency and how it affects to the boiler performance. The classical approach for this question is to activate sootblowing cycles with different strategies to clean the boiler (one per shift, one each six hours..). Nevertheless, it has been often reported no effect on boiler fouling or an excessive steam consumption for sootblowing. This paper illustrates the methodology and the application to select the adequate time for activating sootblowing in an industrial biomass boiler. The outcome is a control strategy developed with artificial intelligence (Neural Network and Fuzzy Logic Expert System) for optimizing the biomass boiler cleaning and maximizing heat transfer along the time. Results from an optimize sootblowing schedule show savings up to 12 GWh/year in the case-study biomass boiler. Extra steam generation produces an average increase of turbine power output of 3.5%. (author)

  13. a Study of Using Hydrogen Gas for Steam Boiler in CHOLOR- Alkali Manufacturing

    Science.gov (United States)

    Peantong, Sasitorn; Tangjitsitcharoen, Somkiat

    2017-06-01

    Main products of manufacturing of Cholor - Alkali, which commonly known as industrial chemical, are chlorine gas (Cl2), Sodium Hydroxide (NaOH) and hydrogen gas (H2). Chorine gas and sodium hydroxide are two main products for commercial profit; where hydrogen gas is by product. Most industries release hydrogen gas to atmosphere as it is non-profitable and less commercial scale. This study aims to make the most use of hydrogen as a substitute energy of natural gas for steam boiler to save energy cost. The second target of this study is to reduce level of CO2 release to air as a consequence of boiler combustion. This study suggests to install boiler that bases on hydrogen as main power with a high turndown ratio of at least 1:6. However, this case study uses boiler with two mode such as natural gas (NG) mode and mixed mode as they need to be flexible for production. Never the less, the best boiler selection is to use single mode energy of hydrogen. The most concerned issue about hydrogen gas is explosion during combustion stage. Stabilization measures at emergency stop is introduced to control H2 pressure to protect the explosion. This study varies ratio of natural gas to hydrogen gas to find the optimal level of two energy sources for boiler and measure total consumption through costing model; where CO2 level is measured at the boiler stack. The result of this study shows that hydrogen gas can be a substitute energy with natural gas and can reduce cost. Natural gas cost saving is 248,846 baht per month and reduce level of NOx is 80 ppm 7% O2 and 2 % of CO2 release to air as a consequence of boiler combustion.

  14. Atmospheric emission of nitrogen oxide from kraft recovery boilers in Sweden

    International Nuclear Information System (INIS)

    Kjoerk, Anders; Herstad Swaerd, Solvie

    2000-05-01

    Recovery boiler NO x emissions are low compared with those from power boilers. However tighter environmental requirements to decrease the acidic emissions implies that all sources have to be addressed. There are an ongoing evaluation and development of NO x control technologies in the pulp industry. Basically air staging, selective catalytic reduction, SCR, and selective noncatalytic reduction, SNCR, have been discussed. Other NO x control options may be available as a result of ongoing research and development. As a background in the work to reduce the acid rain it has been considered necessary to have a good picture of the NO x emission from recovery boilers, and the Thermal Engineering Research Institute in Sweden have therefore sponsored this study. The intention is to give a good general view and try to explain the reasons for the large differences between boilers. Data from the 30 kraft recovery boilers which were in operation in Sweden during 1999 have been collected. Both NO x levels and specific conditions which could have an influence on the level have been included. The evaluation show a clear correlation between the nitrogen content in the liquor and the NO x level. It seams also that a long retention time in the furnace give an opportunity to reduce the amount of nitrogen oxide. For most boilers in Sweden the NO x levels are reported in mg/MJ and comparison could be done between different types of boilers. However for recovery boilers there could be a large uncertainty in the calculation which gives the amount (mg) of NO x , the definition of the heat input to be used (MJ) is either not clear. As a base for the study the measured concentration in ppm is used instead. The reported values are in the range of 30 - 100 ppm, however the majority of the boilers operate in a more narrow range 60-80 ppm. Air staging and other combustion methods could not reasonably reduce the NO x emission with more than 20% in the next decade. If the goal is higher other

  15. Stress-Assisted Corrosion in Boiler Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Preet M Singh; Steven J Pawel

    2006-05-27

    A number of industrial boilers, including in the pulp and paper industry, needed to replace their lower furnace tubes or decommission many recovery boilers due to stress-assisted corrosion (SAC) on the waterside of boiler tubes. More than half of the power and recovery boilers that have been inspected reveal SAC damage, which portends significant energy and economic impacts. The goal of this project was to clarify the mechanism of stress-assisted corrosion (SAC) of boiler tubes for the purpose of determining key parameters in its mitigation and control. To accomplish this in-situ strain measurements on boiler tubes were made. Boiler water environment was simulated in the laboratory and effects of water chemistry on SAC initiation and growth were evaluated in terms of industrial operations. Results from this project have shown that the dissolved oxygen is single most important factor in SAC initiation on carbon steel samples. Control of dissolved oxygen can be used to mitigate SAC in industrial boilers. Results have also shown that sharp corrosion fatigue and bulbous SAC cracks have similar mechanism but the morphology is different due to availability of oxygen during boiler shutdown conditions. Results are described in the final technical report.

  16. Project description: ORNL PWR blowdown heat transfer separate-effects program, Thermal-Hydraulic Test Facility (THTF)

    International Nuclear Information System (INIS)

    1976-02-01

    The ORNL Pressurized-Water Reactor Blowdown Heat Transfer (PWR-BDHT) Program is an experimental separate-effects study of the relations among the principal variables that can alter the rate of blowdown, the presence of flow reversal and rereversal, time delay to critical heat flux, the rate at which dryout progresses, and similar time-related functions that are important to LOCA analysis. Primary test results will be obtained from the Thermal-Hydraulic Test Facility (THTF), a large nonnuclear pressurized-water loop that incorporates a 49-rod electrically heated bundle. Supporting experiments will be carried out in two additional test loops - the Forced Convection Test Facility (FCTF), a small high-pressure facility in which single heater rods can be tested in annular geometry; and an air-water loop which is used to evaluate two-phase flow-measuring instrumentation

  17. The Development of Computer Code for Safety Injection Tank (SIT) with Fluidic Device(FD) Blowdown Test

    International Nuclear Information System (INIS)

    Lee, Joo Hee; Kim, Tae Han; Choi, Hae Yun; Lee, Kwang Won; Chung, Chang Kyu

    2007-01-01

    Safety Injection Tanks (SITs) with the Fluidic Device (FD) of APR1400 provides a means of rapid reflooding of the core following a large break Loss Of Coolant Accident (LOCA), and keeping it covered until flow from the Safety Injection Pump (SIP) becomes available. A passive FD can provide two operation stages of a safety water injection into the RCS and allow more effective use of borated water in case of LOCA. Once a large break LOCA occurs, the system will deliver a high flow rate of cooling water for a certain period of time, and thereafter, the flow rate is reduced to a lower flow rate. The conventional computer code 'TURTLE' used to simulate the blowdown of OPR1000 SIT can not be directly applied to simulate a blowdown process of the SIT with FD. A new computer code is needed to be developed for the blowdown test evaluation of the APR1400 SIT with FD. Korea Power Engineering Company (KOPEC) has developed a new computer code to analyze the characteristics of the SIT with FD and validated the code through the comparison of the calculation results with the test results obtained by Ulchin 5 and 6 units pre-operational test and VAlve Performance Evaluation Rig (VAPER) tests performed by The Korea Atomic Energy Research Institute (KAERI)

  18. Serpentine tube heat transfer characteristic under accident condition in gas cooled reactors

    International Nuclear Information System (INIS)

    Abouhadra, D.S.; Byrne, J.E.

    2004-01-01

    In nuclear reactors of the Magnox or advanced gas Cooled type, serpentine tubing is used in some designs to generate steam in a once through arrangement. The calculation of accident conditions using two phase flow codes requires knowledge of the heat transfer behavior of the boiler steam side. A series of experiments to study the blowdown characteristics of a typical serpentine boiler section was devised in order to validate the MARTHA section of the MACE code used by nuclear Electric. The tests were carried out on the Thermal Hydraulics Experimental Research Assembly (THERA) loop at Manchester University. The Thermal Hydraulic Experimental Research Assembly was designed to operate with pressures up to 180 bar and temperatures of 450degC. The geometry and dimensions of this test section were similar to part of a gas cooled reactor boiler of the Hinkley Point design. Blowdown from a pressure of 60 bar with subcoolings of 5degC, 50degC, 100degC formed the main part of the programme. A set of tests was conducted using discharge orifices of different sizes to produce depressurization times from 30 s to 10 mins, and in a few cases, the duration of blowdown approached 1 hour. These times were defined using the criterion of blowdown end as a final pressure of 10% of the initial pressure. Pressures, wall and fluid temperatures were all measured at average time intervals of 1.1s during the excursion and an inventory of the remaining water content in the serpentine was taken when the blowdown ended. Some tests were also conducted at an initial pressure of 30 bar. The results obtained show interesting stratification effects for the relatively fast discharge, with substantial wall circumferential temperature variations. For these tests, a relatively small water inventory remained after blowdown. The discharge characteristics of the serpentine in terms of orifice size have been mapped, and tests at 30 bar show the equivalence in terms of orifice size have been mapped

  19. 46 CFR 61.05-10 - Boilers in service.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Boilers in service. 61.05-10 Section 61.05-10 Shipping... INSPECTIONS Tests and Inspections of Boilers § 61.05-10 Boilers in service. (a) Each boiler, including superheater, reheater, economizer, auxiliary boiler, low-pressure heating boiler, and unfired steam boiler...

  20. Computer control for the Tampella double-grate boiler. Tampella-kaksoisarinan toiminnan ja arinapolton ohjaustutkimus

    Energy Technology Data Exchange (ETDEWEB)

    Imelaeinen, K; Petaenen, P; Koskela, O; Sutinen, R

    1986-01-01

    Most of the new boilers recently installed in Finland are multifuel boilers using woodwastes and peat as the main fuel. Although burning of woodwastes and peat is economically most attractive, noticeable difficulties are encountered in the combustion control due to such fuel characteristics as varying physical properties, moisture value etc. In this project a control strategy was developed for the Tampella double-grate boiler. Special attention was paid to the grate burning properties and the function of the mechanical grate. The control system consists of the optimization of the Tampella multifuel boiler (K10) and the steam levelling control system of the power plant. Because of the rapid load fluctuations caused by boarding machine web breaks or fluctuations in digester house steam demand, a steam network levelling system was installed in the power plant. The main object of the project was to minimize oil burning in the K10-boiler and the whole power plant and the optimization of grate burning. The practical results of the mechanical grate function control and air distribution optimization are very encouraging. During normal operation boiler pressure and excess oxygen are very stable compared with other grate boilers. The response time of boiler load changes is also very fast compared to other boilers of this type. The main object of the whole boiler installation project was to decrease oil consumption by effective burning of domestic fuels. This object was attained better than was predicted.

  1. A simple blowdown code for SUPER-SARA loop conditions

    International Nuclear Information System (INIS)

    Fritz, G.

    1981-01-01

    The Super Sara test programme (SSTP) is aimed to study in pile the fuel and cluster behaviour under two types of accident conditions: - the ''Large break loss of coolant'' condition (LB-Loca), - the ''Severe fuel damage'' (SFD) in a boildown caused by a small break. BIVOL was developed for the LB-Loca situation. This code is made for a loop where essentially two volumes define the thermohydraulics during the blowdown. In the SUPERSARA loop these two volumes are represented by the hot leg and cold leg pipings together with the respective upper and lower plenum of the test section

  2. PIV measurement at the blowdown pipe outlet. [Particle Image Velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Puustinen, M.; Laine, J.; Raesaenen, A.; Pyy, L.; Telkkae, J. [Lappeenranta Univ. of Technology, Lappeenranta (Finland)

    2013-04-15

    This report summarizes the findings of the PIV measurement tests carried out in January - February 2013 with the scaled down PPOOLEX test facility at LUT. The main objective of the tests was to find out the operational limits of the PIV system regarding suitable test conditions and correct values of different adjustable PIV parameters. An additional objective was to gather CFD grade data for verification/validation of numerical models. Both water and steam injection tests were carried out. PIV measurements with cold water injection succeeded well. Raw images were of high quality, averaging over the whole measurement period could be done and flow fields close to the blowdown pipe outlet could be determined. In the warm water injection cases the obtained averaged velocity field images were harder to interpret, especially if the blowdown pipe was also filled with warm water in the beginning of the measurement period. The absolute values of the velocity vectors seemed to be smaller than in the cold water injection cases. With very small steam flow rates the steam/water interface was inside the blowdown pipe and quite stable in nature. The raw images were of good quality but due to some fluctuation in the velocity field averaging of the velocity images over the whole measured period couldn't be done. Condensation of steam in the vicinity of the pipe exit probably caused these fluctuations. A constant outflow was usually followed by a constant inflow towards the pipe exit. Vector field images corresponding to a certain phase of the test could be extracted and averaged but this would require a very careful analysis so that the images could be correctly categorized. With higher steam flow rates rapid condensation of large steam bubbles created small gas bubbles which were in front of the measurement area of the PIV system. They disturbed the measurements by reflecting laser light like seeding particles and therefore the raw images were of poor quality and they couldn

  3. CECIL lances Bruce's boilers

    International Nuclear Information System (INIS)

    Malaugh, J.; Monaghan, D.

    1994-01-01

    Over the past few years Ontario Hydro has become increasingly concerned about accumulations of sludge in its nuclear plant boilers, so a comprehensive sludge management programme has been instituted to combat build-up. This included developing the tele-operated robot CECIL (Consolidated Edison Combined Inspection and Lancing) equipment, originally designed for work in PWRs, for CANDU boilers. This required a significantly reconfigured robotic system as well as modifications to the boilers themselves. Work on the Bruce A reactor is described. (4 figures). (author)

  4. Charting the boiler market

    International Nuclear Information System (INIS)

    2003-01-01

    The ''boiler market'' of electricity, sometimes called unsecured transmission, is electric power consumption that in public statistics is restricted by the obligation of the customers to cut their consumption at short notice and therefore are granted some discount on the network lease. The present document is part of a project that aims to provide a better understanding of the flexibility in the Norwegian power market, limited by the power-intensive industry and the boiler market. It discusses the boiler market. It begins with a discusses of the available statistics, where different sources show very dissimilar consumption figures. Then it examines how the consumption in the boiler market developed during the winter 2002/2003. Finally, there is a description of the regulations of unsecured transmission and how the various network owners adapt to the regulations.

  5. Effects of the Pressurized Water Reactor Main Steam Line Break Location on the Blowdown Loading

    International Nuclear Information System (INIS)

    Jo, Jong Chull; Kang, Soon Ho; Chan, Won Joon

    2016-01-01

    The thermal hydraulic analysis has been performed generally using a simple lumped model or one dimensional numerical model. However, those models have limitations in predicting the transient variations of the steam velocity, pressure and hydrodynamic load at a local point and the most conservative condition. Furthermore, it cannot be confirmed if the blowdown loads predicted by either of the models are conservative to evaluate every part of the SG internal structures. In this study, the transient hydraulic response of the SG secondary side to the MSLB case where the pipe break is assumed to occur at the SG outlet nozzle end, another weld point on the MSL, was numerically simulated using a CFD code. The present CFD calculation results was compared with those in ref. to investigate the effect of break location (friction loss) on the blowdown load in the SG secondary side. The result shows that the friction loss along the steam line span between the SG nozzle end and the MSIV would cause reduction in steam velocity disturbance or dynamic pressure. It implies that the consequence of the MSLB at the SG nozzle end would be much severer that those of other MSLB cases where the break locations are far from the SG. Therefore, to assure a conservative safety evaluation of the SG structural integrity, the blowdown loading on the SG internal structures including tubes during a MSLB accident in terms of the transient steam velocity, dynamic pressure and decompression wave fluctuations should be assessed for the MSLB case where the break is assumed to occur at the SG nozzle end.

  6. Effects of the Pressurized Water Reactor Main Steam Line Break Location on the Blowdown Loading

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jong Chull; Kang, Soon Ho; Chan, Won Joon [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The thermal hydraulic analysis has been performed generally using a simple lumped model or one dimensional numerical model. However, those models have limitations in predicting the transient variations of the steam velocity, pressure and hydrodynamic load at a local point and the most conservative condition. Furthermore, it cannot be confirmed if the blowdown loads predicted by either of the models are conservative to evaluate every part of the SG internal structures. In this study, the transient hydraulic response of the SG secondary side to the MSLB case where the pipe break is assumed to occur at the SG outlet nozzle end, another weld point on the MSL, was numerically simulated using a CFD code. The present CFD calculation results was compared with those in ref. to investigate the effect of break location (friction loss) on the blowdown load in the SG secondary side. The result shows that the friction loss along the steam line span between the SG nozzle end and the MSIV would cause reduction in steam velocity disturbance or dynamic pressure. It implies that the consequence of the MSLB at the SG nozzle end would be much severer that those of other MSLB cases where the break locations are far from the SG. Therefore, to assure a conservative safety evaluation of the SG structural integrity, the blowdown loading on the SG internal structures including tubes during a MSLB accident in terms of the transient steam velocity, dynamic pressure and decompression wave fluctuations should be assessed for the MSLB case where the break is assumed to occur at the SG nozzle end.

  7. Thermal-hydraulically controlled blowdown tests in the experimental facility COSIMA to study PWR fuel behavior: experimental and theoretical results

    International Nuclear Information System (INIS)

    Class, G.; Hain, K.; Meyder, R.

    1978-01-01

    The fuel behavior in the blow-down phase of a LOCA is of importance for fuel rods with high internal pressure and high rod power, because of the effects on clad failure of the small cladding deformations occurring. The operating results of the COSIMA facility show that, on the basis of the new developments for measuring technique and fuel rod simulators performed, reactor relevant blow-down performances can be conducted in a controlled and reproduceable manner. The mechanical and thermal-hydraulic states occurring in the test bed may be subject to computational checking. This permits on one hand to improve the computing models and on the other yields a confirmation of the high state of development of the available computer codes. Therefore it appears that, with the results from COSIMA and the associated theoretical work in the field of the blow-down process, difficult to treat experimentally, an essential contribution to verifying the models for accident calculations is given. The work scheduled for the next about 1 1/2 years will serve to further support the rather preliminary results and to extend the range of then application. (orig.) [de

  8. Ash transformation in suspension fired boilers co-firing coal and straw

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    In this literature report is provided a status for the present knowledge level on ash properties when co-firing coal and biomass. The fly ash formed in boilers using co-firing of coal and straw do have a large influence on ash deposit formation, boiler corrosion, fly ash utilization and operation...

  9. Environmental performance assessment of utility boiler energy conversion systems

    International Nuclear Information System (INIS)

    Li, Changchun; Gillum, Craig; Toupin, Kevin; Park, Young Ho; Donaldson, Burl

    2016-01-01

    Highlights: • Sustainability analyses of utility boilers are performed. • Natural gas fired boilers have the least CO_2 emissions in fossil fueled boilers. • Solar boilers rank last with an emergy yield ratio of 1.2. • Biomass boilers have the best emergy sustainability index. - Abstract: A significant amount of global electric power generation is produced from the combustion of fossil fuels. Steam boilers are one of the most important components for steam and electricity production. The objective of this paper is to establish a theoretical framework for the sustainability analysis of a utility boiler. These analyses can be used by decision-makers to diagnose and optimize the sustainability of a utility boiler. Seven utility boiler systems are analyzed using energy and embodied solar energy (emergy) principles in order to evaluate their environmental efficiencies. They include a subcritical coal fired boiler, a supercritical coal fired boiler, an oil fired boiler, a natural gas fired boiler, a concentrating solar power boiler utilizing a tower configuration, a biomass boiler, and a refuse derived fuel boiler. Their relative environmental impacts were compared. The results show that the natural gas boiler has significantly lower CO_2 emission than an equivalent coal or oil fired boiler. The refuse derived fuel boiler has about the same CO_2 emissions as the natural gas boiler. The emergy sustainability index of a utility boiler system is determined as the measure of its sustainability from an environmental perspective. Our analyses results indicate that the natural gas boiler has a relatively high emergy sustainability index compared to other fossil fuel boilers. Converting existing coal boilers to natural gas boilers is a feasible option to achieve better sustainability. The results also show that the biomass boiler has the best emergy sustainability index and it will remain a means to utilize the renewable energy within the Rankine steam cycle. Before

  10. Chemical cleaning of UK AGR boilers

    International Nuclear Information System (INIS)

    Rudge, A.; Turner, P.; Ghosh, A.; Clary, W.; Tice, D.

    2002-01-01

    For the first time in their operational lives, UK advanced gas-cooled reactor once-through boilers have been chemically cleaned. Chemical cleaning was necessary to avoid lost output resulting from boiler pressure drops, which had been increasing for a number of years. Chemical cleaning of these boilers presents a number of unique difficulties. These include lack of access to the boilers, highly sensitised 316H superheater sections that cannot be excluded from the cleaning flow path, relatively thin boiler tube walls and an intolerance to boiler tube failure because of the role of the boilers in nuclear decay heat removal. The difficulties were overcome by implementing the clean in a staged manner, starting with an extensive materials testwork programme to select and then to substantiate the cleaning process. The selected process was based on ammoniated citric acid plus formic acid for the principal acid cleaning stage. Materials testwork was followed by an in-plant trial clean of six boiler tubes, further materials testwork and the clean of a boiler tube in a full-scale test rig. An overview is presented of the work that was carried out to demonstrate that the clean could be carried out safely, effectively and without leading to unacceptable corrosion losses. Full-scale chemical cleaning was implemented by using as much of the existing plant as possible. Careful control and monitoring was employed to ensure that the cleaning was implemented according to the specified design, thus ensuring that a safe and effective clean was carried out. Full-scale cleaning has resulted in significant boiler pressure drop recovery, even though the iron burden was relatively low and cleaning was completed in a short time. (orig.)

  11. Overview PWR-Blowdown Heat Transfer Separate-Effects Program

    International Nuclear Information System (INIS)

    White, J.D.

    1978-01-01

    The ORNL Pressurized Water Reactor Blowdown Heat Transfer Program (PWR-BDHT) is a separate-effects experimental study of thermal-hydraulic phenomena occurring during the first 20 sec of a hypothetical LOCA. Specific objectives include the determination, for a wide range of parameters, of time to CHF and the following variables for both pre- and post-CHF: heat fluxes, ΔT (temperature difference between pin surface and fluid), heat transfer coefficients, and local fluid properties. A summary of the most interesting results from the program obtained during the past year is presented. These results are in the area of: (1) RELAP verification, (2) electric pin calibration, (3) time to critical heat flux (CHF), (4) heat transfer coefficient comparisons, and (5) nuclear fuel pin simulation

  12. Optimal Switching Control of Burner Setting for a Compact Marine Boiler Design

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Maciejowski, Jan M.

    2010-01-01

    This paper discusses optimal control strategies for switching between different burner modes in a novel compact  marine boiler design. The ideal behaviour is defined in a performance index the minimisation of which defines an ideal trade-off between deviations in boiler pressure and water level...... approach is based on a generalisation of hysteresis control. The strategies are verified on a simulation model of the compact marine boiler for control of low/high burner load switches.  ...

  13. Techno-economic analysis of wood biomass boilers for the greenhouse industry

    International Nuclear Information System (INIS)

    Chau, J.; Sowlati, T.; Sokhansanj, S.; Preto, F.; Melin, S.; Bi, X.

    2009-01-01

    The objective of this study is to perform a techno-economic analysis on a typical wood pellet and wood residue boiler for generation of heat to an average-sized greenhouse in British Columbia. The variables analyzed included greenhouse size and structure, boiler efficiency, fuel types, and source of carbon dioxide (CO 2 ) for crop fertilization. The net present value (NPV) show that installing a wood pellet or a wood residue boiler to provide 40% of the annual heat demand is more economical than using a natural gas boiler to provide all the heat at a discount rate of 10%. For an assumed lifespan of 25 years, a wood pellet boiler system could generate NPV of C$259,311 without electrostatic precipitator (ESP) and C$74,695 with ESP, respectively. While, installing a wood residue boiler with or without an ESP could provide NPV of C$919,922 or C$1,104,538, respectively. Using a wood biomass boiler could also eliminate over 3000 tonne CO 2 equivalents of greenhouse gases annually. Wood biomass combustion generates more particulate matters than natural gas combustion. However, an advanced emission control system could significantly reduce particulate matters emission from wood biomass combustion which would bring the particulate emission to a relatively similar level as for natural gas

  14. TA-2 Water Boiler Reactor Decommissioning Project

    International Nuclear Information System (INIS)

    Durbin, M.E.; Montoya, G.M.

    1991-06-01

    This final report addresses the Phase 2 decommissioning of the Water Boiler Reactor, biological shield, other components within the biological shield, and piping pits in the floor of the reactor building. External structures and underground piping associated with the gaseous effluent (stack) line from Technical Area 2 (TA-2) Water Boiler Reactor were removed in 1985--1986 as Phase 1 of reactor decommissioning. The cost of Phase 2 was approximately $623K. The decommissioning operation produced 173 m 3 of low-level solid radioactive waste and 35 m 3 of mixed waste. 15 refs., 25 figs., 3 tabs

  15. Maximising safety in the boiler house.

    Science.gov (United States)

    Derry, Carr

    2013-03-01

    Last month's HEJ featured an article, the second in our new series of guidance pieces aimed principally at Technician-level engineers, highlighting some of the key steps that boiler operators can take to maximise system performance and efficiency, and thus reduce running both costs and carbon footprint. In the third such article, Derry Carr, C.Env, I.Eng, BSc (Hons), M.I.Plant.E., M.S.O.E., technical manager & group gas manager at Dalkia, who is vice-chairman of the Combustion Engineering Association, examines the key regulatory and safety obligations for hospital energy managers and boiler technicians, a number of which have seen changes in recent years with revision to guidance and other documentation.

  16. Structured Mathematical Modeling of Industrial Boiler

    OpenAIRE

    Aziz, Abdullah Nur; Nazaruddin, Yul Yunazwin; Siregar, Parsaulian; Bindar, Yazid

    2014-01-01

    As a major utility system in industry, boilers consume a large portion of the total energy and costs. Significant reduction of boiler cost operation can be gained through improvements in efficiency. In accomplishing such a goal, an adequate dynamic model that comprehensively reflects boiler characteristics is required. This paper outlines the idea of developing a mathematical model of a water-tube industrial boiler based on first principles guided by the bond graph method in its derivation. T...

  17. New controls spark boiler efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Engels, T. (Monsanto, University Park, IL (United States))

    1993-09-01

    Monsanto's NutraSweet plant in University Park, IL, produces aspartame, the patented NutraSweet artificial sweetener product. Until recently, boiler control was managed by a '60s-era Fireye jackshaft system in which air and natural gas were mechanically linked with an offset to compensate for oxygen trim. The interlocking devices on the Fireye system were becoming obsolete, and the boiler needed a new front end retrofitted for low emissions. In order to improve boiler control efficiency, we decided to modernize and automate the entire boiler control system. We replaced the original jackshaft system, and installed a Gordon-Piet burner system, including gas valves, air dampers, blowers, and burner. The upgrade challenges included developing a control strategy and selecting and implementing a process control system. Since our plant has standardized on the PROVOX process management information system from Fisher Controls (now Fisher-Rosemount Systems) to support most of our process, it was a natural and logical choice for boiler controls as well. 2 figs.

  18. 46 CFR 52.25-20 - Exhaust gas boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Exhaust gas boilers. 52.25-20 Section 52.25-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-20 Exhaust gas boilers. Exhaust gas boilers with a maximum allowable working pressure...

  19. Prediction of LOFT core fluid conditions during blowdown and refill

    International Nuclear Information System (INIS)

    Grush, W.H.; White, J.R.

    1978-01-01

    One of the primary objectives of the LOFT (Loss-of-Fluid Test) Program is to provide data required to evaluate and improve the analytical methods currently used to predict the LOCA (Loss-of-Coolant Accident) response of large pressurized water reactors. The purpose of the paper is to describe the computer modeling methods used in predicting the fluid conditions in the LOFT core during the blowdown and refill phases of a nuclear LOCE (Loss-of-Coolant Experiment). Prediction results for a LOFT nonnuclear isothermal LOCE are compared to the experimental data to illustrate the validity of the modeling choices

  20. Comparison of vibration and noise level on the boiler during operation of fuel heavy oil (mazut) and on natural gas in TO 'Istok' - Toplifikacija - Joint-Stock Co. for district heating Skopje (Macedonia)

    International Nuclear Information System (INIS)

    Kirovski, Hristo; Ninevski, Gjorgji; Sekovanikj, Ivica; Dzhingov, Gjorgji

    1999-01-01

    In the beginning of the heat season 1997/98, we started to use natural gas as a second fuel (the basic fuel is heavy fuel oil). Preparations were made for the use of natural gas in half of the TO 'Istok' Plant capacity (147 MW) in Skopje (Macedonia). During operation on natural gas, we noted that the levels of vibration and noise are higher when operating on heavy fuel oil. This was the reason why an investigation was carried out through a special company working on that issue. The investigation was made by measurement of vibration levels and noise at the boiler furnace in various orientation and levels. This material gives the results and conclusions from that investigation. A comparison has been made of the dynamic conditions and noise levels of the same boilers during operation on heavy fuel oil and on natural gas. We also compared the dynamic conditions and noise levels of different boilers during operations on natural gas, with different equipment for the atomizing of the natural gas. Conclusions on the dynamic conditions of the investigated boilers while operating on heavy fuel oil and on natural gas are given at the end of this material. (Author)

  1. Identification of boiler tube leak in PHWR by measuring short lived radioisotope Iodine-134 in boiler water using gamma spectrometric techniques

    International Nuclear Information System (INIS)

    Pal, P.K.; Bohra, R.C.

    2015-01-01

    The boiler tube made up of Monel-400 of RAPS-2 has failed on few occasions. Due to the failure of boiler tube, the active heavy water enters into boiler and feed water leading to contamination of radioactivity in secondary water circuit. The identification of boiler tube failure was done by measuring gamma ray activity of Iodine-134 in the boiler water with sample using gamma spectrometry with high purity germanium detector. In order to increase the sensitivity of the method 5 liters of Boiler water sample was passed through a plastic column containing 40 ml of anion resin and 10 ml of activated charcoal to capture the isotopes of Iodine in the anionic form and molecular form. Samples were collected from all 8 Boilers of RAPS-2. The activity of 134 I was shown only by Boiler - 5. No other boilers showed any activity of 134 I. This indicated that Boiler - 5 had leaky tubes. The leaky hairpin of boiler - 5 was identified by measuring Tritium and IP in the riser and down comer of all 10 HXs. On the basis of Tritium and IP result, HX-7 was identified as leaky hairpin. (author)

  2. Mod increases AGR boiler output

    International Nuclear Information System (INIS)

    Jones, W.K.C.; Rider, G.; Taylor, D.E.

    1986-01-01

    During the commissioning runs of the first reactor units at Heysham I and Hartlepool Advanced Gas-cooled Reactors (AGRs), non-uniform temperature distributions were observed across individual boiler units which were more severe than those predicted from the design analysis. This article describes the re-orificing (referruling) of the boilers to overcome this problem. The referruling has reduced boiler sensitivity and resulted in an increase of load of 7 or 8%. (U.K.)

  3. Failure Analysis of 600 MW Supercritical Boiler Water Wall

    OpenAIRE

    Fu Huilin; Cai Zhengchun; Yan Xiaozhong; He Jinqiao; Zhou Yucai

    2013-01-01

    Boiler tube often causes abnormal boiler outage, bringing greater economic losses. This thesis mainly comes from the dynamics of boiler water, boiler furnace accident location of wall temperature distribution to explore the cause of the accident boiler. Calculation results show that the deformation will seriously reduce the boiler allowable maximum temperature difference between the screens. And the boiler is not over-temperature, low temperature difference between the screens, which have bur...

  4. Catalytic burners in larger boiler appliances

    Energy Technology Data Exchange (ETDEWEB)

    Silversand, Fredrik; Persson, Mikael (Catator AB, Lund (Sweden))

    2009-02-15

    This project focuses on the scale up of a Catator's catalytic burner technology to enable retrofit installation in existing boilers and the design of new innovative combinations of catalytic burners and boilers. Different design approaches are discussed and evaluated in the report and suggestions are made concerning scale-up. Preliminary test data, extracted from a large boiler installation are discussed together with an accurate analysis of technical possibilities following an optimization of the boiler design to benefit from the advantages of catalytic combustion. The experimental work was conducted in close collaboration with ICI Caldaie (ICI), located in Verona, Italy. ICI is a leading European boiler manufacturer in the effect segment ranging from about 20 kWt to several MWt. The study shows that it is possibly to scale up the burner technology and to maintain low emissions. The boilers used in the study were designed around conventional combustion and were consequently not optimized for implementation of catalytic burners. From previous experiences it stands clear that the furnace volume can be dramatically decreased when applying catalytic combustion. In flame combustion, this volume is normally dimensioned to avoid flame impingement on cold surfaces and to facilitate completion of the gas-phase reactions. The emissions of nitrogen oxides can be reduced by decreasing the residence time in the furnace. Even with the over-dimensioned furnace used in this study, we easily reached emission values close to 35 mg/kWh. The emissions of carbon monoxide and unburned hydrocarbons were negligible (less than 5 ppmv). It is possible to decrease the emissions of nitrogen oxides further by designing the furnace/boiler around the catalytic burner, as suggested in the report. Simultaneously, the size of the boiler installation can be reduced greatly, which also will result in material savings, i.e. the production cost can be reduced. It is suggested to optimize the

  5. Two-dimensional numerical experiments with DRIX-2D on two-phase-water-flows referring to the HDR-blowdown-experiments

    International Nuclear Information System (INIS)

    Moesinger, H.

    1979-08-01

    The computer program DRIX-2D has been developed from SOLA-DF. The essential elements of the program structure are described. In order to verify DRIX-2D an Edwards-Blowdown-Experiment is calculated and other numerical results are compared with steady state experiments and models. Numerical experiments on transient two-phase flow, occurring in the broken pipe of a PWR in the case of a hypothetic LOCA, are performed. The essential results of the two-dimensional calculations are: 1. The appearance of a radial profile of void-fraction, velocity, sound speed and mass flow-rate inside the blowdown nozzle. The reason for this is the flow contraction at the nozzle inlet leading to more vapour production in the vicinity of the pipe wall. 2. A comparison between modelling in axisymmetric and Cartesian coordinates and calculations with and without the core barrel show the following: a) The three-dimensional flow pattern at the nozzle inlet is poorly described using Cartesian coordinates. In consequence a considerable difference in pressure history results. b) The core barrel alters the reflection behaviour of the pressure waves oscillating in the blowdown-nozzle. Therefore, the core barrel should be modelled as a wall normal to the nozzle axis. (orig./HP) [de

  6. Inception report and gap analysis. Boiler inspection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-06-01

    This inception and gap analysis report on boilers in Latvia, has been prepared in the framework of the 'Implementation of the EU directive on energy performance of buildings: development of the Latvian Scheme for energy auditing of building and inspection of boilers'. The report is the basis for the establishment of training of boiler inspectors; it develops a gap analysis for better understanding and estimating the number of installations in Latvia and develops suggestions for the institutional set up. In particular includes information on existing standard and regulation on boiler, suggestion for the content of the training material of experts for boiler inspections and a syllabus of the training course. A specific section is dedicated to the suggestion for certification system of trained boiler inspectors. (au)

  7. Further development of recovery boiler; Soodakattilan kehitystyoe

    Energy Technology Data Exchange (ETDEWEB)

    Janka, K.; Siiskonen, P.; Sundstroem, K. [Tampella Power Oy, Tampere (Finland)] [and others

    1996-12-01

    The global model of a recovery boiler was further developed. The aim is to be able to model the velocity, temperature and concentration fields in a boiler. At this moment the model includes submodels for: droplet drying, pyrolysis, char burning, gas burning and for droplet trajectory. The preliminary study of NO{sub x} and fly ash behaviour in a boiler was carried out. The study concerning flow field in the superheater area was carried out a 2-dimensional case in which the inflow parameters were taken from global model of a recovery boiler. Further the prediction methods of fouling in a recovery boiler were developed based on theoretical calculations of smelting behaviour of multicomponent mixtures and measurements at operating recovery boilers. (author)

  8. Factors affecting stress assisted corrosion cracking of carbon steel under industrial boiler conditions

    Science.gov (United States)

    Yang, Dong

    Failure of carbon steel boiler tubes from waterside has been reported in the utility boilers and industrial boilers for a long time. In industrial boilers, most waterside tube cracks are found near heavy attachment welds on the outer surface and are typically blunt, with multiple bulbous features indicating a discontinuous growth. These types of tube failures are typically referred to as stress assisted corrosion (SAC). For recovery boilers in the pulp and paper industry, these failures are particularly important as any water leak inside the furnace can potentially lead to smelt-water explosion. Metal properties, environmental variables, and stress conditions are the major factors influencing SAC crack initation and propagation in carbon steel boiler tubes. Slow strain rate tests (SSRT) were conducted under boiler water conditions to study the effect of temperature, oxygen level, and stress conditions on crack initation and propagation on SA-210 carbon steel samples machined out of boiler tubes. Heat treatments were also performed to develop various grain size and carbon content on carbon steel samples, and SSRTs were conducted on these samples to examine the effect of microstructure features on SAC cracking. Mechanisms of SAC crack initation and propagation were proposed and validated based on interrupted slow strain tests (ISSRT). Water chemistry guidelines are provided to prevent SAC and fracture mechanics model is developed to predict SAC failure on industrial boiler tubes.

  9. 7 CFR 1767.20 - Plant accounts.

    Science.gov (United States)

    2010-01-01

    ... line wholly identified with items included herein. 11. Retaining walls. 12. Water conductors and... settings, water walls, arches, grates, insulation, blowdown system, drying out of new boilers, also... disassembly machinery. 12. Reactor fuel element failure detection system. 13. Reactor emergency poison...

  10. CFD Simulation On CFBC Boiler

    Directory of Open Access Journals (Sweden)

    Amol S. Kinkar

    2015-02-01

    Full Text Available Abstract Heavy industrialization amp modernization of society demands in increasing of power cause to research amp develop new technology amp efficient utilization of existing power units. Variety of sources are available for power generation such as conventional sources like thermal hydro nuclear and renewable sources like wind tidal biomass geothermal amp solar. Out of these most common amp economical way for producing the power is by thermal power stations. Various industrial boilers plays an important role to complete the power generation cycle such as CFBC Circulating Fluidized Bed Combustion FBC Fluidized Bed Combustion AFBC Atmospheric Fluidized Bed Combustion Boiler CO Boiler RG amp WHR Boiler Waster heat recovery Boiler. This paper is intended to comprehensively give an account of knowledge related to refractory amp its failure in CFBC boiler with due effect of flue gas flow during operation on refractory by using latest technology of CAD Computer aided Design amp CAE Computer aided Engineering. By conceptual application of these technology the full scale model is able to analyze in regards the flow of flue gas amp bed material flow inside the CFBC loop via CFD Computational Fluid Dynamics software. The results obtained are helpful to understand the impact of gas amp particles on refractory in different areas amp also helped to choose suitable refractory material in different regions.

  11. Inception report and gap analysis. Boiler inspection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-06-01

    This inception and gap analysis report on boilers in Latvia, has been prepared in the framework of the 'Implementation of the EU directive on energy performance of buildings: development of the Latvian Scheme for energy auditing of building and inspection of boilers'. The report is the basis for the establishment of training of boiler inspectors; it develops a gap analysis for better understanding and estimating the number of installations in Latvia and develops suggestions for the institutional set up. In particular includes information on existing standard and regulation on boiler, suggestion for the content of the training material of experts for boiler inspections and a syllabus of the training course. A specific section is dedicated to the suggestion for certification system of trained boiler inspectors. (au)

  12. Demonstration of coal reburning for cyclone boiler NO{sub x} control. Appendix, Book 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    Based on the industry need for a pilot-scale cyclone boiler simulator, Babcock Wilcox (B&W) designed, fabricated, and installed such a facility at its Alliance Research Center (ARC) in 1985. The project involved conversion of an existing pulverized coal-fired facility to be cyclone-firing capable. Additionally, convective section tube banks were installed in the upper furnace in order to simulate a typical boiler convection pass. The small boiler simulator (SBS) is designed to simulate most fireside aspects of full-size utility boilers such as combustion and flue gas emissions characteristics, fireside deposition, etc. Prior to the design of the pilot-scale cyclone boiler simulator, the various cyclone boiler types were reviewed in order to identify the inherent cyclone boiler design characteristics which are applicable to the majority of these boilers. The cyclone boiler characteristics that were reviewed include NO{sub x} emissions, furnace exit gas temperature (FEGT) carbon loss, and total furnace residence time. Previous pilot-scale cyclone-fired furnace experience identified the following concerns: (1) Operability of a small cyclone furnace (e.g., continuous slag tapping capability). (2) The optimum cyclone(s) configuration for the pilot-scale unit. (3) Compatibility of NO{sub x} levels, carbon burnout, cyclone ash carryover to the convection pass, cyclone temperature, furnace residence time, and FEGT.

  13. DBSSP - A computer program for simulation of controlled circulation boiler and natural circulation boiler start up behavior

    International Nuclear Information System (INIS)

    Li Bin; Chen Tingkuan; Yang Dong

    2005-01-01

    In this paper, a computer program, Drum Boiler Start-up Simulation Program (DBSSP), is developed for simulating the start up behavior of controlled circulation and natural circulation boilers. The mathematical model developed here is based on the first principles of mass, energy and momentum conservations. In the boiler model, heat transfer in the waterwall, the superheater, the reheater and the economizer is simulated by the distributing parameter method, while heat transfer in the drum and the downcomer is simulated by lumped parameter analysis. The program can provide detailed flow and thermodynamic characteristics of the boiler components. The development of this program is based only on design data, so it can be used for any subcritical, controlled or natural circulation boiler. The simulation results were compared with experimental measurements, and good agreements between them were found. This program is expected to be useful for predicting the characteristics and the performance of controlled circulation and natural circulation boilers during the start up process. It also can be used to optimize a start up system for minimum start up time

  14. The NRU blowdown test facility commissioning program

    Energy Technology Data Exchange (ETDEWEB)

    Walsworth, J A; Zanatta, R J; Yamazaki, A R; Semeniuk, D D; Wong, W; Dickson, L W; Ferris, C E; Burton, D H [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.

    1990-12-31

    A major experimental program has been established at the Chalk River Nuclear Laboratories (CRL) that will provide essential data on the thermal and mechanical behaviour of nuclear fuel under abnormal reactor operating conditions and on the transient release, transport and deposition of fission product activity from severely degraded fuel. A number of severe fuel damage (SFD) experiments will be conducted within the Blowdown Test Facility (BTF) at CRL. A series of experiments are being conducted to commission this new facility prior to the SFD program. This paper describes the features and the commissioning program for the BTF. A development and testing program is described for critical components used on the reactor test section. In-reactor commissioning with a fuel assembly simulator commenced in 1989 June and preliminary results are given. The paper also outlines plans for future all-effects, in-reactor tests of CANDU-designed fuel. (author). 11 refs., 3 tabs., 7 figs.

  15. Developing Boiler Concepts as Integrated Units

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2004-01-01

    - consisting of pressure part, burner and control system. The Technical University of Denmark, MEK - Energy Engineering Section [12] has participated in the modelling process. The project has included static and dynamic modelling of the boiler concept. For optimization of operation, verication of performance......With the objective to be able to optimize the design and operation of steam boiler concepts Aalborg Industries A/S [1] has together with Aalborg University, Institute of Energy Technology [9] carried out a development project paying special attention to the boiler concept as an integrated unit......, emissions and to obtain long time operation experiences with the boiler concept, a full scale prototype has been built and these tests have been accomplished on the prototype. By applying this integrated unit approach to the boiler concept development it has been possible to optimize the different building...

  16. Desulphurization in peat-fired circulating and bubbling fluidized bed boilers

    Energy Technology Data Exchange (ETDEWEB)

    Kouvo, P. [Imatran Voima Oy, Vantaa (Finland); Salmenoja, K. [Kvaerner Pulping Oy, Tampere (Finland)

    1997-12-31

    The new emission limit values for large combustion plants are under consideration both at the EU level and in Finland. Peat and wood are the only indigenous fuels of Finland. In 1995 appr. 8 % of electricity was produced with peat. The lower heating value of peat is around 10 MJ/kg. The moisture content varies between 35-55 % and sulphur content in dry solids between 0.15-0.35 %. The total peat power capacity of Finland in 1995 was 1400 MW. Because there was not enough information available about the desulphurization of the flue gases from peat-fired fluidized bed boilers, a group of Finnish companies and Ministry of Trade and Industry decided to carry out the full-scale desulphurisation study. In the project the desulphurization with limestone injection into the furnace of two types of peat-fired boilers were studied. The goal of the project was to investigate: what the technically and economically feasible emission level is by limestone injection in the fluidized bed combustion; how the limestone injection affects the other flue gas emissions and the fouling of the boiler and, what the economy of desulphurisation is. The tests were carried out at Kokkola and Kemi power plants in Finland. At Kokkola (108 MW{sub f}) circulating fluidized bed boiler, the emission limit of 200 mg/m{sup 3}n was leached at a Ca/S-molar ratio of appr. 10, with limestone containing 92 % of calcium carbonate, CaCO{sub 3}. At Kemi (267 MW{sub f}) bubbling fluidized bed boiler, the emission limit of 280 mg/m{sup 3}n with limestone containing appr. 95 % of CaCO{sub 3} was reached at a Ca/S-molar ratio of appr. 7.0. Emissions of NO{sub x}, N{sub 2}O, NH{sub 3} and dust after the ESP were not elevated due to the limestone feed. At the Kokkola power plant the NO{sub x} emissions varied from 300 to 400 mg/m{sup 3}n, and, at the Kemi power station the NO{sub x} emissions were around 200 mg/m{sup 3}n. The fouling of the Kemi boiler was found to be significant in the scheduled outage after the test

  17. Sootblowing optimization for improved boiler performance

    Science.gov (United States)

    James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J.

    2012-12-25

    A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.

  18. B and W model boiler tests: effect of temperature on IGA rate. Initial and post-1878 operating conditions of the model boilers

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The Babcock and Wilcox (B and W) model boiler operated with 10 ppm weekly injections of NaOH for 41,900 hours (4.8 years). The model boiler operating conditions are given. Tube No. 24 failed by caustic intergranular attack/stress corrosion cracking (IGA/SCC) at the steam-water zone. IGA defect depths on tube 24 is compared at different locations, which also have different temperature conditions. The specific locations are: steam/water zone, drilled baffle plate, and lower tube sheet crevice. In all locations caustic will concentrate (although to different concentration levels). Nevertheless, an effect of temperature on IGA rate can be estimated. The degree of attack relative to the location and environment is shown. SEM fractographs illustrate the completely intergranular failure of Tube 24. A summary of the estimated results is presented. These results show the estimated IGA rate as a function of primary/secondary temperature and estimated caustic concentration. Details of the failure analysis of the model boiler can be found in the final report Destructive Examination of Babcock and Wilcox's Model Boiler for Intergranular Attack (IGA) on Tubes, EPRI S302-6, J.L.; Barna and L.W. Sarver

  19. 49 CFR 230.30 - Lap-joint seam boilers.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Lap-joint seam boilers. 230.30 Section 230.30..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal seams...

  20. Failure analysis of boiler tube

    International Nuclear Information System (INIS)

    Mehmood, K.; Siddiqui, A.R.

    2007-01-01

    Boiler tubes are energy conversion components where heat energy is used to convert water into high pressure superheated steam, which is then delivered to a turbine for electric power generation in thermal power plants or to run plant and machineries in a process or manufacturing industry. It was reported that one of the tubes of a fire-tube boiler used in a local industry had leakage after the formation of pits at the external surface of the tube. The inner side of the fire tube was working with hot flue gasses with a pressure of 10 Kg/cm/sup 2/ and temperature 225 degree C. The outside of the tube was surrounded by feed water. The purpose of this study was to determine the cause of pits developed at the external surface of the failed boiler tube sample. In the present work boiler tube samples of steel grade ASTM AI61/ASTM A192 were analyzed using metallographic analysis, chemical analysis, and mechanical testing. It was concluded that the appearance of defects on the boiler tube sample indicates cavitation type corrosion failure. Cavitation damage superficially resembled pitting, but surface appeared considerably rougher and had many closely spaced pits. (author)

  1. Hybrid model of steam boiler

    International Nuclear Information System (INIS)

    Rusinowski, Henryk; Stanek, Wojciech

    2010-01-01

    In the case of big energy boilers energy efficiency is usually determined with the application of the indirect method. Flue gas losses and unburnt combustible losses have a significant influence on the boiler's efficiency. To estimate these losses the knowledge of the operating parameters influence on the flue gases temperature and the content of combustible particles in the solid combustion products is necessary. A hybrid model of a boiler developed with the application of both analytical modelling and artificial intelligence is described. The analytical part of the model includes the balance equations. The empirical models express the dependence of the flue gas temperature and the mass fraction of the unburnt combustibles in solid combustion products on the operating parameters of a boiler. The empirical models have been worked out by means of neural and regression modelling.

  2. Life extension of boilers using weld overlay protection

    Energy Technology Data Exchange (ETDEWEB)

    Lai, G; Hulsizer, P [Welding Services Inc., Norcross, GA (United States); Brooks, R [Welding Services Inc., Welding Services Europe, Spijkenisse (Netherlands)

    1999-12-31

    The presentation describes the status of modern weld overlay technology for refurbishment, upgrading and life extension of boilers. The approaches to life extension of boilers include field overlay application, shop-fabricated panels for replacement of the worn, corroded waterwall and shop-fabricated overlay tubing for replacement of individual tubes in superheaters, generating banks and other areas. The characteristics of weld overlay products are briefly described. Also discussed are successful applications of various corrosion-resistant overlays for life extension of boiler tubes in waste-to-energy boilers, coal-fired boilers and chemical recovery boilers. Types of corrosion and selection of weld overlay alloys in these systems are also discussed. (orig.) 14 refs.

  3. Life extension of boilers using weld overlay protection

    Energy Technology Data Exchange (ETDEWEB)

    Lai, G.; Hulsizer, P. [Welding Services Inc., Norcross, GA (United States); Brooks, R. [Welding Services Inc., Welding Services Europe, Spijkenisse (Netherlands)

    1998-12-31

    The presentation describes the status of modern weld overlay technology for refurbishment, upgrading and life extension of boilers. The approaches to life extension of boilers include field overlay application, shop-fabricated panels for replacement of the worn, corroded waterwall and shop-fabricated overlay tubing for replacement of individual tubes in superheaters, generating banks and other areas. The characteristics of weld overlay products are briefly described. Also discussed are successful applications of various corrosion-resistant overlays for life extension of boiler tubes in waste-to-energy boilers, coal-fired boilers and chemical recovery boilers. Types of corrosion and selection of weld overlay alloys in these systems are also discussed. (orig.) 14 refs.

  4. METHANE de-NOX FOR UTILITY PC BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Rabovitser

    2000-07-05

    The overall project objective is the development and validation of an innovative combustion system, based on a novel coal preheating concept prior to combustion, that can reduce NO{sub x} emissions to 0.15 lb/million Btu or less on utility pulverized coal (PC) boilers. This NO{sub x} reduction should be achieved without loss of boiler efficiency or operating stability, and at more than 25% lower levelized cost than state-of-the-art SCR technology. A further objective is to make this technology ready for full-scale commercial deployment by 2002-2003 in order to meet an anticipated market demand for NO{sub x} reduction technologies resulting from the EPA's NO{sub x} SIP call.

  5. 46 CFR 63.25-7 - Exhaust gas boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Exhaust gas boilers. 63.25-7 Section 63.25-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING AUTOMATIC AUXILIARY BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-7 Exhaust gas boilers. (a) Construction...

  6. Boiler plants completed in record time

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    Bubbling fluidised bed (BFB) combustion has steadily increased its share of the boiler market in recent years, particularly in the Nordic region, where it is particularly well-suited to handling the high moisture content biofuels produced and used by the forest products industry. Foster Wheeler is the world's leading supplier of fluidised bed combustion technology. Over 200 of the more than 300 fluidised bed boilers supplied by the company are circulating fluidised bed (CFB) designs, a market in which Foster Wheeler has more than a 40% share. Foster Wheeler Energia Oy supplied the Myllykoski project at Anjalankoski with a fluidised bed boiler, auxiliary steam boilers, and flue gas scrubber systems

  7. Experiment data report for semiscale Mod-1 Test S-01-5 (isothermal blowdown with core resistance simulator)

    International Nuclear Information System (INIS)

    Zender, S.N.; Crapo, H.S.; Jensen, M.F.; Sackett, K.E.

    1975-04-01

    Recorded test data are presented for Test S-01-5 of the semiscale Mod-1 isothermal blowdown test series. Test S-01-5 is one of several semiscale Mod-1 experiments which are counterparts of the LOFT nonnuclear experiments. System hardware is representative of LOFT with the design based on volumetric scaling methods and with initial conditions duplicating those identified for LOFT nonnuclear tests. Test S-01-5 was conducted with the secondary side of the steam generator pressurized with nitrogen gas in order to effectively eliminate heat transfer from the steam generator during blowdown and thereby to investigate the effect on overall system behavior of heat transfer from the steam generator. An orificed structure was used in the pressure vessel to simulate the LOFT core simulator. The test was initiated at isothermal conditions of 2270 psig and 540 0 F by a simulated offset shear of the cold leg broken loop piping. During system depressurization, coolant was injected into the cold leg of the operating loop to simulate emergency core cooling (ECC). Following the blowdown portion of the test, coolant spray was introduced into the pressure suppression tank to determine the response of the pressure suppression system. The uninterpreted data from Test S-01-5 and the reference material needed for future data analysis and test results reporting activities are presented. The data, presented in the form of graphs in engineering units, have been analyzed only to the extent necessary to assure that they are reasonable and consistent. (U.S.)

  8. The pressure cold wind system on the impact of industrial boiler economy and security

    Science.gov (United States)

    Li, Henan; Qian, Hongli; Jiang, Lei; Yu, Dekai; Li, Guannan; Yuan, Hong

    2017-05-01

    Industrial boiler is one of the most energy-consuming equipment in china, the annual consumption of energy accounts for about one-third of the national energy consumption.Industrial boiler in service at present have several severe problems such as small capacity, low efficiency, high energy consumption and causing severe pollution on environment, the average industrial boiler operation efficiency is only 65%. If the efficiency increased by 15% ∼ 20%, which meet the international advanced level, each year 70 million tons of coal saving and reduce environmental pollution[1]. As energy conservation and emissions reduction becomes the basic national policy of our country, improving the efficiency of industrial boiler energy is facing opportunities and challenges, optimizing the operation mode of the existing units, it is necessary to increase the flexibility of the boiler control.

  9. Emission analysis of the best available wood-fired central heating boilers on the market

    International Nuclear Information System (INIS)

    Axell, M.; Gustavsson, Lennart; Persson, Henrik; Leckner, B.

    1998-01-01

    The purpose of the present project is to study the emissions from some of the best available wood-fired central heating boilers on the market. The aim is to identify the critical factors which determine the emission levels by means of emission measurements as well as temperature measurements in the combustion chamber. Four boilers with different design characteristics have been included in the project. All boilers use reversed combustion and fan-assisted combustion air supply, and have shown low tar emissions in earlier environmental tests. Boiler A is a boiler with a rather large mass of ceramics in the grate and in the burn-out zone, and a large volume of water. Boiler B has a smaller mass in the cast-iron grate and in the burn-out zone and a small water volume. Boiler C is a boiler with tertiary air and an incorporated accumulator tank. Boiler D has a zirconia-cell probe for continuous control of the air-excess ratio. The measurements have been made with the boilers in accumulator operation, i.e. at maximum heat output, since they are intended for this type of operation. Tests have, in addition to normal operating conditions, been made with high fuel moisture contents, high draught and a low boiler temperature at the start of the test. Measurements have been made of excess-air ratios, contents of CO, total hydrocarbons (THC), NO x and a number of volatile organic compounds (VOC) in the flue gases as well as of combustion temperatures below the grate

  10. 46 CFR 63.25-1 - Small automatic auxiliary boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Small automatic auxiliary boilers. 63.25-1 Section 63.25... AUXILIARY BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-1 Small automatic auxiliary boilers. Small automatic auxiliary boilers defined as having heat-input ratings of 400,000 Btu/hr...

  11. Improvement of efficiency by proportional and integral control for compact boiler; Shoyoryo boiler no renzoku seigyo (P.I seigyo) ni yoru seino kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, T. [Kawasaki Thermal Engineering Co. Ltd., Shiga (Japan)

    1998-10-01

    Efficiency of a compact boiler is improved by the introduction of a continuous P.I. control. It is controlled by the following procedure. The proportional control, which controls magnitude of combustion in proportion to a load requirement, is combined with an integral control function which keeps steam pressure at a given level, in order to stabilize steam pressure at a level comparable to that of a large, water-tube type boiler. A stable steam pressure is realized by including control of make-up water supply, to minimize the effects of water supply on steam pressure. The effects of characteristics of the combustion valve on control are relaxed by programming. In addition to the above, rotational speed of the motor for the forced draft fan is controlled for each load level, to reduce power consumption. These bring improved quality of steam, i.e., stabilized steam pressure, improved follow-up characteristics of the steam and secured dryness of the steam. Energy-saving is also achieved, i.e., reduction of noise and power consumption at a low combustion load are achieved by improved real boiler efficiency and inverter-aided control of the forced draft fan. Low-NOx burners are adopted, to abate NOx content to 60ppm or less at any load. 16 figs.

  12. Fluid-structure-interaction of the pressurized water reactor core internals during blowdown - numerical simulation with a homogenization model

    International Nuclear Information System (INIS)

    Benner, J.

    1984-03-01

    A method for the numerical simulation of the Pressurized Water Reactor (PWR) core internal's behaviour during a blowdown accident is described, by which the motion of the reactor core and the interaction of the fuel elements with the core barrel and the coolant medium is calculated. Furthermore, some simple models for the support columns, lower and upper core support and the grid plate are provided. All these models have been implemented into the code Flux-4. For the solution of the very complex, coupled equations of motions for fluid and fuel rods an efficient numerical solution technique has been developed. With the new code-version Flux-5 the PWR-blowdown is parametically investigated. The calculated core barrel loadings are compared with Flux-4 results, simulating the core's inertia by a mass ring of HDR type. (orig.) [de

  13. The development and chemistry of high efficiency combined cycle plants

    International Nuclear Information System (INIS)

    Svoboda, Robert

    1999-01-01

    This paper presents a boiler concept based on the combination of a low-pressure drum-type boiler with high-pressure once-through boiler and the appropriate water/steam cycle. An all volatile treatment is used in the low-pressure boiler and oxygenated treatment for the once-through high pressure system. Impurity control is achieved by adapted system design and materials, high quality make-up, an appropriate cleanliness concept and clean-up procedures for a cold start. Cycle refreshing is realized by blowdown from the high-pressure water-separator. This concept utilizes simper and less equipment than traditional solutions, resulting in increased power plant reliability and less requirement on maintenance and on capital cost [it

  14. EFFICIENCY IMPROVEMENT IN INDUSTRIAL BOILER BY FLUE GAS DUCT INSULATION

    OpenAIRE

    Sanjay H. Zala

    2017-01-01

    Now a days in industry major losses are find out so here we calculate these losses and find out efficiency of boiler. Boiler efficiency and energy losses from boiler are important parameter for any industry using boiler. In this work a detailed analysis was carried out for boiler at Anish Chemicals Bhavnagar. It is a combined water and fire tube boiler using biomass coal as fuel. Boiler efficiency calculated by direct method is in range of (78.5% to 81.6%). Major losses from boiler are heat ...

  15. The load structure of electro boilers

    International Nuclear Information System (INIS)

    Feilberg, N.; Livik, K.

    1995-01-01

    Load measurements have been performed on 24 electro boilers with a time resolution of one hour throughout a period of one year. The boilers are used for space heating and heating of tap water in office buildings, shopping centres and apartment buildings. All boilers have tariffs with disconnection agreements. This report presents load analyses of the measurements from each boiler, and typical load profiles are calculated and presented. It also analyses how boilers are used in relation to the outdoor temperature and the power price on the spot market. All the measurements are performed in Bergen, Norway, in the period August 1993 - August 1994. Typical load profiles are shown, both annual and daily, as well as specific load parameters in addition to key figures used in calculating the total power load on the distribution network. The climate impact on energy and power load is evaluated. The report also shows examples of how the results may be applied in various special fields. 8 figs., 9 tabs

  16. Assessment of physical workload in boiler operations.

    Science.gov (United States)

    Rodrigues, Valéria Antônia Justino; Braga, Camila Soares; Campos, Julio César Costa; Souza, Amaury Paulo de; Minette, Luciano José; Sensato, Guilherme Luciano; Moraes, Angelo Casali de; Silva, Emília Pio da

    2012-01-01

    The use of boiler wood-fired is fairly common equipment utilized in steam generation for energy production in small industries. The boiler activities are considered dangerous and heavy, mainly due to risks of explosions and the lack of mechanization of the process. This study assessed the burden of physical labor that operators of boilers are subjected during the workday. Assessment of these conditions was carried out through quantitative and qualitative measurements. A heart rate monitor, a wet-bulb globe thermometer (WBGT), a tape-measure and a digital infrared camera were the instruments used to collect the quantitative data. The Nordic Questionnaire and the Painful Areas Diagram were used to relate the health problems of the boiler operator with activity. With study, was concluded that the boiler activity may cause pains in the body of intensity different, muscle fatigue and diseases due to excessive weight and the exposure to heat. The research contributed to improve the boiler operator's workplace and working conditions.

  17. Electrical design requirements for electrode boilers for nuclear plants

    International Nuclear Information System (INIS)

    Kempker, M.J.

    1979-01-01

    Medium-voltage steam electrode boilers, in the 20- to 50-MW range, have become an attractive alternative to comparable fossil-fueled boilers as a source of auxiliary steam during the startup and normal shutdown of nuclear power plants. The electrode boiler represents a favorable option because of environmental, fire protection, and licensing considerations. However, this electrical option brings some difficult design problems for which solutions are required in order to integrate the electrode boiler into the plant low resistance grounded power system. These considerations include the effects of an unbalanced electrode boiler on the performance of polyphase induction motors, boiler grounding for personnel safety, boiler neutral grounding, and ground relaying

  18. Comparative analysis of heat pump and biomass boiler for small detached house heating

    Directory of Open Access Journals (Sweden)

    Olkowski Tomasz

    2017-01-01

    Full Text Available The purpose of the work is to answer the question - which of the two selected heat sources is more economically beneficial for small detached house: heat pump or biomass boiler fuelled with wood-pellets? The comparative analysis of these sources was carried out to discuss the issue. First, cost of both, equipment and operation of selected heat systems were analysed. Additionally, CO2 emission levels associated with these heat systems were determined. The comparative analysis of the costs of both considered heat systems showed that equipment cost of heat pump system is considerably bigger than the cost of biomass boiler system. The comparison of annual operation costs showed that heat pump operation cost is slightly lower than operation cost of biomass boiler. The analysis of above results shows that lower operation cost of heat pump in comparison with biomass boiler cost lets qualify heat pump as more economically justified only after 38 years of work. For both analysed devices, CO2 emission levels were determined. The considerations take into account the fact that heat pump consumes electricity. It is mostly generated through combustion of coal in Poland. The results show that in Poland biomass boiler can be described as not only more economically justified system but also as considerably more ecological.

  19. Comparative analysis of heat pump and biomass boiler for small detached house heating

    Science.gov (United States)

    Olkowski, Tomasz; Lipiński, Seweryn; Olędzka, Aneta

    2017-10-01

    The purpose of the work is to answer the question - which of the two selected heat sources is more economically beneficial for small detached house: heat pump or biomass boiler fuelled with wood-pellets? The comparative analysis of these sources was carried out to discuss the issue. First, cost of both, equipment and operation of selected heat systems were analysed. Additionally, CO2 emission levels associated with these heat systems were determined. The comparative analysis of the costs of both considered heat systems showed that equipment cost of heat pump system is considerably bigger than the cost of biomass boiler system. The comparison of annual operation costs showed that heat pump operation cost is slightly lower than operation cost of biomass boiler. The analysis of above results shows that lower operation cost of heat pump in comparison with biomass boiler cost lets qualify heat pump as more economically justified only after 38 years of work. For both analysed devices, CO2 emission levels were determined. The considerations take into account the fact that heat pump consumes electricity. It is mostly generated through combustion of coal in Poland. The results show that in Poland biomass boiler can be described as not only more economically justified system but also as considerably more ecological.

  20. 40 CFR 761.71 - High efficiency boilers.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false High efficiency boilers. 761.71... PROHIBITIONS Storage and Disposal § 761.71 High efficiency boilers. (a) To burn mineral oil dielectric fluid containing a PCB concentration of ≥50 ppm, but boiler shall comply with the following...

  1. ENVIRONMENTAL ASPECTS OF MODERNIZATION OF HIGH POWER WATER-HEATING BOILERS

    Directory of Open Access Journals (Sweden)

    P. M. Glamazdin

    2016-01-01

    related to the identification of dependency of the emission level on the shape of the temperature field in the furnace, in particular, – on the intensity of twist of gas-air mixture at the exit from the burner. We studied two extreme cases, i.e. the case of the maximum achievable level of burner twist that is equal to 45° and the case of no twist. As a result of experiments, it was observed that if a decrease of the twist rate takes place the emission of nitrogen oxides is reduced. The methods of further reduction of emissions of nitrogen oxides have been determined, viz. the device recirculation of flue gases by mixing them in a blast air; conducting the process at low excess of air with controlled chemical underburning when complete oxidation of carbon to CO2 accomplishes outside the furnace at the initial section of the convection part; hydration of blowing air into the humidification amount of 1.5–2.0 % of the nominal output of the boiler.

  2. Biomass boiler still best choice

    International Nuclear Information System (INIS)

    Wallace, Paula

    2014-01-01

    Full text: The City of Mount Gambier upgraded its boiler in September after analysis showed that biomass was still the optimal energy option. The Mount Gambier Aquatic Centre was built by the local city council in the 1980s as an outdoor pool facility for the public. The complex has three pools — an Olympic-sized, toddler and a learner pool — for a total volume of 1.38ML (including balance tanks). The large pool is heated to 27-28°C, the smaller one 30-32°C. From the very beginning, the pool water was heated by a biomass boiler, and via two heat exchangers whose combined capacity is 520 kW. The original biomass boiler ran on fresh sawdust from a local timber mill. After thirty years of dedicated service the original boiler had become unreliable and difficult to operate. Replacement options were investigated and included a straight gas boiler, a combined solar hot water and gas option, and biomass boilers. The boiler only produces heat, not electricity. All options were subjected to a triple bottom line assessment, which included potential capital costs, operating costs, community and environmental benefits and costs. The project was also assessed using a tool developed by Mount Gambier City Council that considers the holistic benefits — the CHAT Tool, which stands for Comprehensive Holistic Assessment Tool. “Basically it is a survey that covers environmental, social, economic and governance factors,” the council's environmental sustainability officer, Aaron Izzard told WME. In relation to environmental considerations, the kinds of questions explored by the CHAT Tool included: Sustainable use of resources — objective is to reduce council's dependence on non-renewable resources; Greenhouse emissions — objective is to reduce council's contribution of GHG into the atmosphere; Air quality — objective is to improve local air quality. The conclusion of these analyses was that while a biomass boiler would have a higher capital cost than a straight gas

  3. CFB boilers in multifuel application

    International Nuclear Information System (INIS)

    Goral, D.; Krzton, B.

    2007-01-01

    Fuel flexibility characteristic for CFB boilers plays an important rule in industrial and utility size applications. Possibility to use wider range of fuels that has been long time considered as by-products or wastes and possibility to design boilers able to operate with alternative fuels is an important factor that improves fuel delivery security and plant economy. Presented article is based on similar publications that present Foster Wheeler's experience in design and delivery of the CFB boilers for wide range of coals and cofiring by- products of crude oil refining and coal processing. Aspects of biomass cofiring will be also presented. (author)

  4. 46 CFR 61.05-20 - Boiler safety valves.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Boiler safety valves. 61.05-20 Section 61.05-20 Shipping... INSPECTIONS Tests and Inspections of Boilers § 61.05-20 Boiler safety valves. Each safety valve for a drum, superheater, or reheater of a boiler shall be tested at the interval specified by table 61.05-10. [CGD 95-028...

  5. Field Test of Boiler Primary Loop Temperature Controller

    Energy Technology Data Exchange (ETDEWEB)

    Glanville, P. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Rowley, P. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Schroeder, D. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Brand, L. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States)

    2014-09-01

    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and, in some cases, return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential.

  6. Optimizing the Integrated Design of Boilers - Simulation

    DEFF Research Database (Denmark)

    Sørensen, K.; Karstensen, C.; Condra, T.

    2004-01-01

    Boilers can be considered as consisting of three main components: (i) the pressure part, (ii) the burner and (iii) the control system. To be able to develop the boilers of the future (i.e. the boilers with the lowest emissions, the highest efciency, the best dynamic performance etc.) it is import...

  7. On-line monitoring system for utility boiler diagnostics

    International Nuclear Information System (INIS)

    Radovanovic, P.M.; Afgan, N.H.; Caralho, M.G.

    1997-01-01

    The paper deals with the new developed modular type Monitoring System for Utility Boiler Diagnostics. Each module is intended to assess the specific process and can be used as a stand alone application. Four modules are developed, namely: LTC - module for the on-line monitoring of parameters related to the life-time consumption of selected boiler components; TRD - module for the tube rupture detection by the position and working fluid Ieakage quantity; FAM - module for the boiler surfaces fouling (slagging) assessment and FLAP - module for visualization of the boiler furnace flame position. All four modules are tested on respective pilot plants built oil the 200 and 300 MWe utility boilers. Monitoring System is commercially available and can be realized in any combination of its modules depending on demands induced by the operational problems of specific boiler. Further development of Monitoring System is performed in accordance with the respective EU project on development of Boiler Expert System. (Author)

  8. Curbing Air Pollution and Greenhouse Gas Emissions from Industrial Boilers in China

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Lynn K [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Liu, Xu [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tsen, Katherine [Univ. of California, Berkeley, CA (United States); Xiangyang, Wei [National Energy Conservation Center (China); Yunpeng, Zhang [National Energy Conservation Center (China); Jian, Guan [China Special Equipment Inspection & Test Inst. (China); Rui, Hou [China Machinery Industry Conservation & Resource Utilization Center (China); Junfeng, Zhang [China National Offshore Oil Corp. (China); Yuqun, Zhuo [Tsinghua Univ., Beijing (China); Shumao, Xia [China Energy Conservation & Environmental Protection Group (China); Yafeng, Han [Xi' an Jiatong Univ. (China); Manzhi, Liu [China Univ. of Mining and Technology (China)

    2015-10-28

    China’s industrial boiler systems consume 700 million tons of coal annually, accounting for 18% of the nation’s total coal consumption. Together these boiler systems are one of the major sources of China’s greenhouse gas (GHG) emissions, producing approximately 1.3 gigatons (Gt) of carbon dioxide (CO2) annually. These boiler systems are also responsible for 33% and 27% of total soot and sulfur dioxide (SO2) emissions in China, respectively, making a substantial contribution to China’s local environmental degradation. The Chinese government - at both the national and local level - is taking actions to mitigate the significant greenhouse gas (GHG) emissions and air pollution related to the country’s extensive use of coal-fired industrial boilers. The United States and China are pursuing a collaborative effort under the U.S.-China Climate Change Working Group to conduct a comprehensive assessment of China’s coal-fired industrial boilers and to develop an implementation roadmap that will improve industrial boiler efficiency and maximize fuel-switching opportunities. Two Chinese cities – Ningbo and Xi’an – have been selected for the assessment. These cities represent coastal areas with access to liquefied natural gas (LNG) imports and inland regions with access to interprovincial natural gas pipelines, respectively.

  9. A Main Steam Safety Valve (MSSV) With Fixed Blowdown According to ASME Section III,Part NC-7512

    International Nuclear Information System (INIS)

    Follmer, Bernhard; Schnettler, Armin

    2002-01-01

    In 1986, the NRC issued the Information Notice (IN) 86-05 'Main Steam Safety Valve test failures and ring setting adjustments'. Shortly after this IN was issued, the Code was revised to require that a full flow test has to be performed on each CL.2 MSSV by the manufacturer to verify that the valve was adjusted so that it would reach full lift and thus full relieving capacity and would re-close at a pressure as specified in the valve Design Specification. In response to the concern discussed in the IN, the Westinghouse Owners Group (WOG) performed extensive full flow testing on PWR MSSVs and found that each valve required a unique setting of a combination of two rings in order to achieve full lift at accumulation of 3% and re-closing at a blowdown of 5%. The Bopp and Reuther MSSV type SiZ 2507 has a 'fixed blowdown' i.e. without any adjusting rings to adjust the 'blowdown' so that the blowdown is 'fixed'. More than 1000 pieces of this type are successfully in nuclear power plants in operation. Many of them since about 25 years. Therefore it can be considered as a proven design. It is new that an optimization of this MSSV type SiZ 2507 fulfill the requirements of part NC-7512 of the ASME Section III although there are still no adjusting rings in the flow part. In 2000, for the Qinshan Candu unit 1 and 2 full flow tests were performed with 32 MSSV type SiZ 2507 size 8'' x 12'' at 51 bar saturated steam in only 6 days. In all tests the functional performance was very stable. It was demonstrated by recording the signals lift and system pressure that all valves had acceptable results to achieve full lift at accumulation of 3% and to re-close at blowdown of 5%. This is an advantage which gives a reduction in cost for flow tests and which gives more reliability after maintenance work during outage compared to the common MSSV design with an individual required setting of the combination of the two rings. The design of the type SiZ 2507 without any adjusting rings in the

  10. A novel direct-fired porous-medium boiler

    Science.gov (United States)

    Prasartkaew, Boonrit

    2018-01-01

    Nowadays, power and heat generation systems pay an important role in all economic sectors. These systems are mainly based on combustion reaction and operated under the second law of thermodynamics. A conventional boilers, a main component of heat and power generators, have thermal efficiency in the range of 70 to 85%, mainly owing to they have flue gas heat loss. This paper proposes a novel type of boiler, called a Direct-fired Porous-medium Boiler (DPB). Due to being operated without flue gas heat loss, its thermal efficiency cloud be approximately close to 100%. The steam produced from the proposed boiler; however, is not pure water steam. It is the composite gases of steam and combustion-product-gases. This paper aims at presenting the working concept and reporting the experimental results on the performance of the proposed boiler. The experiments of various operating parameters were performed and collected data were used for the performance analysis. The experimental results demonstrated that the proposed boiler can be operated as well as the conceptual design and then it is promising. It can be possibly further developed to be a high efficiency boiler by means of reducing or suppressing the surface heat loss with better insulator and/or refractory lined.

  11. PKL-tests, test series IIB (end of blowdown). Vol. 2

    International Nuclear Information System (INIS)

    Umminger, K.; Mandl, R.; Nopper, H.; Siemens AG Unternehmensbereich KWU, Erlangen

    1987-01-01

    As part of the federally subsidized research project 1500 287/A0, the system behavior of a 1300 MWe pressurized water reactor (PWR) was investigated during the depressurization phase (end-of-blowdown, EOB), as well as during the refill and reflood phases of a loss of coolant accident involving a large break in the reactor coolant loop. Appropriate modifications to the system and supplementary instrumentation have made it possible to simulate the EOB (as of 26 bar), the refill phase and reflood phase in sequence. This report includes a detailed description of the instrumentation and the data acquisition system used in Test Series PKL IIB. (orig.) With 6 refs., 2 tabs., 60 figs [de

  12. Mitigation of caustic stress corrosion cracking of steam generator tube materials by blowdown -a case study

    International Nuclear Information System (INIS)

    Dutta, Anu; Patwegar, I.A.; Chaki, S.K.; Venkat Raj, V.

    2000-01-01

    The vertical U-tube steam generators are among the most important equipment in nuclear power plants as they form the vital link between the reactor and the turbogenerator. Over ∼ 35 years of operating experience of water cooled reactor has demonstrated that steam generator tubes are susceptible to various forms of degradation. This degradation leads to failure and outages of the power plant. A majority of these failures have been attributed to concentrated alkali attacks in the low flow areas such as crevices in the tube to tube sheet joints, baffle plate location and the areas of sludge deposits. Free hydroxides can be produced by improper maintenance of phosphate chemical control in the secondary side of the steam generators and also by the thermal decomposition of impurities present in the condenser cooling water which may leak into the feed water through the condenser tubes. The free hydroxides concentrate in the low flow areas. This buildup of free hydroxide in combination with residual stress leads to caustic stress corrosion cracking. In order to mitigate caustic stress corrosion cracking of Inconel 600 tubes, the trend is to avoid phosphate dosing. Instead All Volatile Treatment (AVT) for secondary water is used backed by full flow condensate polishing. Sodium hydroxide concentration is now being considered as the basis for steam generator blowdown. A methodology has been established for determining the blowdown requirement in order to mitigate caustic stress corrosion cracking in the secondary side of the vertical U-tube natural circulation steam generator. A case study has been carried out for zero solid treatment (AVT coupled with full flow condensate polishing plant) water chemistry. Only continuous blowdown schemes have been studied based on maximum caustic concentration permissible in the secondary side of the steam generator. The methodology established can also be used for deciding concentration of any other impurities

  13. Staged fluidized-bed coal combustor for boiler retrofit

    International Nuclear Information System (INIS)

    Rehmat, A.; Dorfman, L.; Shibayama, G.; Waibel, R.

    1991-01-01

    The Advanced Staged Fluidized-Bed Coal Combustion System (ASC) is a novel clean coal technology for either coal-fired repowering of existing boilers or for incremental power generation using combined-cycle gas turbines. This new technology combines staged combustion for gaseous emission control, in-situ sulfur capture, and an ash agglomeration/vitrification process for the agglomeration/vitrification of ash and spent sorbent, thus rendering solid waste environmentally benign. The market for ASC is expected to be for clean coal-fired repowering of generating units up to 250 MW, especially for units where space is limited. The expected tightening of the environmental requirements on leachable solids residue by-products could considerably increase the marketability for ASC. ASC consists of modular low-pressure vessels in which coal is partially combusted and gasified using stacked fluidized-bed processes to produce low-to-medium-Btu, high-temperature gas. This relatively clean fuel gas is used to repower/refuel existing pulverized-coal, natural gas, or oil-fired boilers using bottom firing and reburning techniques. The benefits of ASC coal-fired repowering include the ability to repower boilers without obtaining additional space while meeting the more stringent environmental requirements of the future. Low NO x , SO x , and particulate levels are expected while a nonleachable solid residue with trace metal encapsulation is produced. ASC also minimizes boiler modification and life-extension expenditures. Repowered efficiencies can be restored to the initial operating plant efficiency, and the existing boiler capacity can be increased by 10%. Preliminary cost estimates indicate that ASC will have up to a $250/kW capital cost advantage over existing coal-fired repowering options. 4 figs., 4 tabs

  14. Application of 1-hydroxyethylidene-1, 1-diphosphonic acid in boiler water for industrial boilers.

    Science.gov (United States)

    Zeng, Bin; Li, Mao-Dong; Zhu, Zhi-Ping; Zhao, Jun-Ming; Zhang, Hui

    2013-01-01

    The primary method used for boiler water treatment is the addition of chemicals to industrial boilers to prevent corrosion and scaling. The static scale inhibition method was used to evaluate the scale inhibition performance of 1-hydroxyethylidene-1, 1-diphosphonic acid (HEDP). Autoclave static experiments were used to study the corrosion inhibition properties of the main material for industrial boilers (20# carbon steel) with an HEDP additive in the industrial boiler water medium. The electrochemical behavior of HEDP on carbon steel corrosion control was investigated using electrochemical impedance spectroscopy and Tafel polarization techniques. Experimental results indicate that HEDP can have a good scale inhibition effect when added at a quantity of 5 to 7 mg/L at a test temperature of not more than 100 °C. To achieve a high scale inhibition rate, the HEDP dosage must be increased when the test temperature exceeds 100 °C. Electrochemical and autoclave static experimental results suggest that HEDP has a good corrosion inhibition effect on 20# carbon steel at a concentration of 25 mg/L. HEDP is an excellent water treatment agent.

  15. Modeling study of droplet behavior during blowdown period of large break LOCA based on experimental data

    International Nuclear Information System (INIS)

    Sakaba, Hiroshi; Umezawa, Shigemitsu; Teramae, Tetsuya; Furukawa, Yuji

    2004-01-01

    During LOCA (Loss Of Coolant Accident) in PWR, droplets behavior during blowdown period is one of the important phenomena. For example, the spattering from falling liquid film that flows from upper plenum generates those droplets in core region. The behavior of droplets in such flow has strong effect for cladding temperature behavior because these droplets are able to remove heat from a reactor core by its direct contact on fuel rods and its evaporation at the surface. For safety analysis of LOCA in PWR, it is necessary to evaluate droplet diameter precisely in order to predict fuel cladding temperature changing by the calculation code. Based on the test results, a new droplet behavior model was developed for the MCOBRA/TRC code that predicts the droplet behavior during such LOCA events. Furthermore, the verification calculations that simulated some blowdown tests were performed using by the MCOBRA/TRAC code. These results indicated the validity of this droplet model during blow down cooling period. The experiment was focused on investigating the Weber number of steady droplet in the blow down phenomenon of large break LOCA. (author)

  16. NOx PREDICTION FOR FBC BOILERS USING EMPIRICAL MODELS

    Directory of Open Access Journals (Sweden)

    Jiří Štefanica

    2014-02-01

    Full Text Available Reliable prediction of NOx emissions can provide useful information for boiler design and fuel selection. Recently used kinetic prediction models for FBC boilers are overly complex and require large computing capacity. Even so, there are many uncertainties in the case of FBC boilers. An empirical modeling approach for NOx prediction has been used exclusively for PCC boilers. No reference is available for modifying this method for FBC conditions. This paper presents possible advantages of empirical modeling based prediction of NOx emissions for FBC boilers, together with a discussion of its limitations. Empirical models are reviewed, and are applied to operation data from FBC boilers used for combusting Czech lignite coal or coal-biomass mixtures. Modifications to the model are proposed in accordance with theoretical knowledge and prediction accuracy.

  17. Materials and boiler rig testing to support chemical cleaning of once-through AGR boilers

    International Nuclear Information System (INIS)

    Tice, D.R.; Platts, N.; Raffel, A.S.; Rudge, A.

    2002-01-01

    An extensive programme of work has been carried out to evaluate two candidate inhibited cleaning solutions for possible implementation on plant, which would be the first chemical clean of an AGR boiler. The two candidate cleaning solutions considered were a Stannine-inhibited citric acid/formic acid mixture (GOM106) and inhibited hydrofluoric acid. Citric acid-based cleaning processes are widely used within the UK Power Industry. The GOM106 solution, comprising a mixture of 3% citric acid, 0.5% formic acid and 0.05% Stannine LTP inhibitor, buffered with ammonia to pH 3.5, was developed specifically for the AGR boilers during the 1970's. Although a considerable amount of materials testing work was carried out by British Energy's predecessor companies to produce a recommended cleaning procedure there were some remaining concerns with the use of GOM106, from these earlier studies, for example, an increased risk of pitting attack associated with the removal of thick 9Cr oxide deposits and a risk of unacceptable damage in critical locations such as the upper transition joints and other weld locations. Hence, additional testing was still required to validate the solution for use on plant. Inhibited hydrofluoric acid (HFA) was also evaluated as an alternative reagent to GOM106. HFA has been used extensively for cleaning mild and low'alloy steel boiler tubes in fossil-fired plant in the UK and elsewhere in Europe and is known to remove oxide quickly. Waste treatment is also easier than for the GOM106 process and some protection against damage to the boiler tube materials is provided by complexing of fluoride with ferric ion. Validation of the potential reagents and inhibitors was achieved by assessing the rate and effectiveness of oxide removal from specimens of helical boiler tubing and welds, together with establishing the extent of any metal loss or localised damage. The initial materials testing resulted in the inhibited ammoniated citric / formic acid reagent being

  18. Establishing an energy efficiency recommendation for commercial boilers

    International Nuclear Information System (INIS)

    Ware, Michelle J.

    2000-01-01

    To assist the federal government in meeting its energy reduction goals, President Clinton's Executive Order 12902 established the Procurement Challenge, which directed all federal agencies to purchase equipment within the top 25th percentile of efficiency. Under the direction of DOE's Federal Energy Management Program (FEMP), the Procurement Challenge's goal is to create efficiency recommendations for all energy-using products that could substantially impact the government's energy reduction goals, like commercial boilers. A typical 5,000,000 Btuh boiler, with a thermal efficiency of 83.2%, can have lifetime energy cost savings of$40,000 when compared to a boiler with a thermal efficiency of 78%. For the federal market, which makes up 2% of the boiler market, this means lifetime energy cost savings of over$25,600,000. To establish efficiency recommendations, FEMP uses standardized performance ratings for products sold in the marketplace. Currently, the boiler industry uses combustion efficiency and, sometimes, thermal efficiency performance measures when specifying a commercial boiler. For many years, the industry has used these efficiency measures interchangeably, causing confusion about boiler performance measurements, and making it difficult for FEMP to establish the top 25th percentile of efficiency. This paper will illustrate the method used to establish FEMP's recommendation for boilers. The method involved defining a correlation between thermal and combustion efficiency among boiler classifications; using the correlation to model a data set of all the boiler types available in the market; and identifying how the correlation affected the top 25th percentile analysis. The paper also will discuss the applicability of this method for evaluating other equipment for which there are limited data on performance ratings

  19. Field Test of Boiler Primary Loop Temperature Controller

    Energy Technology Data Exchange (ETDEWEB)

    Glanville, P.; Rowley, P.; Schroeder, D.; Brand, L.

    2014-09-01

    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and in some cases return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential. PARR installed and monitored the performance of one type of ALM controller, the M2G from Greffen Systems, at multifamily sites in the city of Chicago and its suburb Cary, IL, both with existing OTR control. Results show that energy savings depend on the degree to which boilers are over-sized for their load, represented by cycling rates. Also savings vary over the heating season with cycling rates, with greater savings observed in shoulder months. Over the monitoring period, over-sized boilers at one site showed reductions in cycling and energy consumption in line with prior laboratory studies, while less over-sized boilers at another site showed muted savings.

  20. Elevated temperature failures in boiler tubes - case studies

    International Nuclear Information System (INIS)

    Gowrisankar, I.; Bandyopadhyay, G.

    1989-01-01

    Metallurgical investigation of boiler tube failures enables identification of failure mechanisms and the underlying cause related to boiler conditions. Some case studies in short term overheating, prolonged overheating and low cycle fatigue failures in boiler tubes are discussed. (author)

  1. Computer simulation of the fire-tube boiler hydrodynamics

    Directory of Open Access Journals (Sweden)

    Khaustov Sergei A.

    2015-01-01

    Full Text Available Finite element method was used for simulating the hydrodynamics of fire-tube boiler with the ANSYS Fluent 12.1.4 engineering simulation software. Hydrodynamic structure and volumetric temperature distribution were calculated. The results are presented in graphical form. Complete geometric model of the fire-tube boiler based on boiler drawings was considered. Obtained results are suitable for qualitative analysis of hydrodynamics and singularities identification in fire-tube boiler water shell.

  2. Improving boiler unit performance using an optimum robust minimum-order observer

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Hamed; Bakhtiari-Nejad, Firooz [Energy and Control Centre of Excellence, Department of Mechanical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2011-03-15

    To achieve a good performance of the utility boiler, dynamic variables such as drum pressure, steam temperature and water level of drum must be controlled. In this paper, a linear time invariant (LTI) model of a boiler system is considered in which the input variables are feed-water and fuel mass rates. Due to the inaccessibility of some state variables of boiler system, a minimum-order observer is designed based on Luenberger's model to gain an estimate state x of the true state x. Low cost of design and high accuracy of states estimation are the main advantages of the minimum-order observer; in comparison with previous designed full-order observers. By applying the observer on the closed-loop system, a regulator system is designed. Using an optimal functional code developed in MATLAB environment, desired observer poles are found such that suitable time response specifications of the boiler system are achieved and the gain and phase margin values are adjusted in an acceptable range. However, the real dynamic model may associate with parametric uncertainties. In that case, optimum region of poles of observer-based controller are found such that the robust performance of the boiler system against model uncertainties is guaranteed. (author)

  3. Efficiency assessment of bi-radiated screens and improved convective set of tubes during the modernization of PTVM-100 tower hot-water boiler based on controlled all-mode mathematic models of boilers on Boiler Designer software

    Science.gov (United States)

    Orumbayev, R. K.; Kibarin, A. A.; Khodanova, T. V.; Korobkov, M. S.

    2018-03-01

    This work contains analysis of technical values of tower hot-water boiler PTVM-100 when operating on gas and oil residual. After the test it became clear that due to the construction deficiency during the combustion of oil residual, it is not possible to provide long-term production of heat. There is also given a short review on modernization of PTVM-100 hot-water boilers. With the help of calculations based on controlled all-mode mathematic modules of hot-water boilers in BOILER DESIGNER software, it was shown that boiler modernization by use of bi-radiated screens and new convective set of tubes allows decreasing sufficiently the temperature of combustor output gases and increase reliability of boiler operation. Constructive changes of boiler unit suggested by authors of this work, along with increase of boiler’s operation reliability also allow to improve it’s heat production rates and efficiency rate up to 90,5% when operating on fuel oil and outdoor installation option.

  4. Assessing the emission factors of low-pour-fuel-oil and diesel in steam boilers

    Directory of Open Access Journals (Sweden)

    Ohijeagbon, I.O.

    2012-12-01

    Full Text Available The purpose of this study is to examine the emissions effects resulting from the use of low pour fuel oil (LPFO and diesel fuels in industrial steam boilers operation. The method of ultimate analysis of the products of combustion and emissions of pollutant analysis were used to estimate the annual rate of emissions of boilers. The results shows that the levels of uncontrolled boiler emissions on the environment can lead to increased greenhouse effects, global warming, and pollution and toxilogical impacts on human health. Only carbon monoxide emission was found to vary with the levels of oxygen generation in the products of combustion, while other substances were generally in relation to constituents and rates of consumption of fuel.

  5. Installations of SNCR on bark-fired boilers

    International Nuclear Information System (INIS)

    Hjalmarsson, A.K.; Hedin, K.; Andersson, Lars

    1997-01-01

    Experience has been collected from the twelve bark-fired boilers in Sweden with selective non catalytic reduction (SNCR) installations to reduce emissions of nitrogen oxides. Most of the boilers have slope grates, but there are also two boilers with cyclone ovens and two fluidized bed boilers. In addition to oil there are also possibilities to burn other fuel types in most boilers, such as sludge from different parts of the pulp and paper mills, saw dust and wood chips. The SNCR installations seems in general to be of simple design. In most installations the injection nozzles are located in existing holes in the boiler walls. The availability is reported to be good from several of the SNCR installations. There has been tube leakage in several boilers. The urea system has resulted in corrosion and in clogging of one oil burner. This incident has resulted in a decision not to use SNCR system with the present design of the system. The fuel has also caused operational problems with the SNCR system in several of the installations due to variations in the moisture content and often high moisture content in bark and sludge, causing temperature variations. The availability is presented to be high for the SNCR system at several of the plants, in two of them about 90 %. The results in NO x reduction vary between the installations depending on boiler, fuel and operation. The emissions are between 45 and 100 mg NO 2 /MJ fuel input and the NO x reduction rates are in most installations between 30 and 40 %, the lowest 20 and the highest 70 %. 13 figs, 3 tabs

  6. Increasing the thermal efficiency of boiler plant

    Directory of Open Access Journals (Sweden)

    Uyanchinov Evgeniy

    2017-01-01

    Full Text Available The thermal efficiency increase of boiler plant is actual task of scientific and technical researches. The optimization of boiler operating conditions is task complex, which determine by most probable average load of boiler, operating time and characteristics of the auxiliary equipment. The work purpose – the determination of thermodynamic efficiency increase ways for boiler plant with a gas-tube boiler. The tasks, solved at the research are the calculation of heat and fuel demand, the exergetic analysis of boilerhouse and heat network equipment, the determination of hydraulic losses and exergy losses due to restriction. The calculation was shown that the exergy destruction can be reduced by 2.39% due to excess air reducing to 10%; in addition the oxygen enrichment of air can be used that leads to reducing of the exergy destruction rate. The processes of carbon deposition from the side of flame and processes of scale formation on the water side leads to about 4.58% losses of fuel energy at gas-tube boiler. It was shown that the exergy losses may be reduced by 2.31% due to stack gases temperature reducing to 148 °C.

  7. Singular and combined effects of blowdown, salvage logging, and wildfire on forest floor and soil mercury pools

    Science.gov (United States)

    Carl P.J. Mitchell; Randall K. Kolka; Shawn. Fraver

    2012-01-01

    A number of factors influence the amount of mercury (Hg) in forest floors and soils, including deposition, volatile emission, leaching, and disturbances such as fire. Currently the impact on soil Hg pools from other widespread forest disturbances such as blowdown and management practices like salvage logging are unknown. Moreover, ecological and biogeochemical...

  8. Water side corrosion prevention in boilers

    International Nuclear Information System (INIS)

    Zeid, A.

    1993-01-01

    Corrosion may be defined as a naturally occurring physical and chemical deterioration of a material due to reaction with the environment or surrounding atmosphere. In boilers the material is subjected on both sides to two different media which may cause severe corrosion. At the water side the content of O 2 considered one of the principal factors which determine the extent of corrosion in the boiler tubes. This paper deals with certain conditions that result in the increase of O 2 in the boiler water and hence increase the corrosion rate, to minimize the effect of these conditions a chemical treatment was carried out the results obtained indicated the success of the treatment procedure in corrosion prevention and boiler material protection. The treatment is traditional. But the study indicates how a simple mean could be applied to solve a serious problem. 4 tab

  9. A statistical estimator for the boiler power and its related parameters

    International Nuclear Information System (INIS)

    Tang, H.

    2001-01-01

    To determine the boiler power accurately is important for both controlling the plant and maximizing the plant productivity. There are two computed boiler powers for each boiler. They are steam based boiler power and feedwater based boiler power. The steam based boiler power is computed as the enthalpy difference between the feedwater enthalpy and the boiler steam enthalpy. The feedwater based boiler power is computed as enthalpy absorbed by the feedwater. The steam based boiler power is computed in RRS program and used in calibrating the measured reactor power, while the feedwater based boiler power is computed in CSTAT program and used for indication. Since the steam based boiler power is used as feedback in the reactor control, it is chosen to be the one estimated in this work. Because the boiler power employs steam flow, feedwater flow and feedwater temperature measurements, and because any measurement contains constant or drifting noise and bias, the reconciliation and rectification procedures are needed to determine the boiler power more accurately. A statistic estimator is developed to perform the function of data reconciliation, gross error detection and instruments performance monitoring

  10. 46 CFR 61.05-15 - Boiler mountings and attachments.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Boiler mountings and attachments. 61.05-15 Section 61.05... TESTS AND INSPECTIONS Tests and Inspections of Boilers § 61.05-15 Boiler mountings and attachments. (a....05-10. (b) Each stud or bolt for each boiler mounting that paragraph (c) of this section requires to...

  11. Aspects of new material application for boilers construction

    International Nuclear Information System (INIS)

    Czerniawski, R.

    1996-01-01

    Review of steel types commonly used for energetic boilers construction has been done. The worldwide trends in new materials application for improvement of boilers quality have been discussed. The mechanical properties of boiler construction steels have been shown and compared. 3 refs, 5 figs, 1 tab

  12. Dynamic Simulation of the Water-steam System in Once-through Boilers - Sub-critical Power Boiler Case -

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seongil; Choi, Sangmin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2017-05-15

    The dynamics of a water-steam system in a once-through boiler was simulated based on the physics-based modeling approach, representing the system in response to large load change or scale disturbance simulations. The modeling considered the mass, energy conservation, and momentum equation in the water pipe and the focus was limited to the sub-critical pressure region. An evaporator tube modeling was validated against the reference data. A simplified boiler system consisting of economizer, evaporator, and superheater was constructed to match a 500 MW power boiler. The dynamic response of the system following a disturbance was discussed along with the quantitative response characteristics. The dynamic response of the boiler system was further evaluated by checking the case of an off-design point operation of the feedwater-to-fuel supply ratio. The results re-emphasized the significance of controlling the feedwater-to-fuel supply ratio and additional design requirements of the water-steam separator and spray attemperator.

  13. Dynamic Simulation of the Water-steam System in Once-through Boilers - Sub-critical Power Boiler Case -

    International Nuclear Information System (INIS)

    Kim, Seongil; Choi, Sangmin

    2017-01-01

    The dynamics of a water-steam system in a once-through boiler was simulated based on the physics-based modeling approach, representing the system in response to large load change or scale disturbance simulations. The modeling considered the mass, energy conservation, and momentum equation in the water pipe and the focus was limited to the sub-critical pressure region. An evaporator tube modeling was validated against the reference data. A simplified boiler system consisting of economizer, evaporator, and superheater was constructed to match a 500 MW power boiler. The dynamic response of the system following a disturbance was discussed along with the quantitative response characteristics. The dynamic response of the boiler system was further evaluated by checking the case of an off-design point operation of the feedwater-to-fuel supply ratio. The results re-emphasized the significance of controlling the feedwater-to-fuel supply ratio and additional design requirements of the water-steam separator and spray attemperator.

  14. MODELLING, SIMULATING AND OPTIMIZING BOILERS

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    , and the total stress level (i.e. stresses introduced due to internal pressure plus stresses introduced due to temperature gradients) must always be kept below the allowable stress level. In this way, the increased water-/steam space that should allow for better dynamic performance, in the end causes limited...... freedom with respect to dynamic operation of the plant. By means of an objective function including as well the price of the plant as a quantification of the value of dynamic operation of the plant an optimization is carried out. The dynamic model of the boiler plant is applied to define parts...

  15. Fluid and structural dynamics calculations to determine core barrel loads during blowdown (EV 3,000)

    International Nuclear Information System (INIS)

    Krieg, R.; Schlechtendahl, E.G.

    1977-01-01

    To begin with, the main physical phenomena in connection with blowdown loads on the care barrel and the computer models used are briefly described. These models have also been used in the design of the HTR test care barrel. The fluid dynamics part of the calculations was carried out using the WHAMMOD and DAPSY codes; for the structural dynamics part, the STRUDL/Dynal code was employed. (orig./RW) [de

  16. Boiler-turbine life extension

    Energy Technology Data Exchange (ETDEWEB)

    Natzkov, S. [TOTEMA, Ltd., Sofia (Bulgaria); Nikolov, M. [CERB, Sofia (Bulgaria)

    1995-12-01

    The design life of the main power equipment-boilers and turbines is about 105 working hours. The possibilities for life extension are after normatively regulated control tests. The diagnostics and methodology for Boilers and Turbines Elements Remaining Life Assessment using up to date computer programs, destructive and nondestructive control of metal of key elements of units equipment, metal creep and low cycle fatigue calculations. As well as data for most common damages and some technical decisions for elements life extension are presented.

  17. CHARACTERIZATION OF AIR TOXICS FROM AN OIL-FIRED FIRETUBE BOILER

    Science.gov (United States)

    Tests were conducted on a commercially available firetube package boiler running on #2 through #6 oils to determine the emissions levels of hazardous air pollutants (HAPs) from the combustion of four fuel oils. Flue gas was sampled to determine levels of volatile and semivolatile...

  18. Improving boiler unit performance using an optimum robust minimum-order observer

    International Nuclear Information System (INIS)

    Moradi, Hamed; Bakhtiari-Nejad, Firooz

    2011-01-01

    Research highlights: → Multivariable model of a boiler unit with uncertainty. → Design of a robust minimum-order observer. → Developing an optimal functional code in MATLAB environment. → Finding optimum region of observer-based controller poles. → Guarantee of robust performance in the presence of parametric uncertainties. - Abstract: To achieve a good performance of the utility boiler, dynamic variables such as drum pressure, steam temperature and water level of drum must be controlled. In this paper, a linear time invariant (LTI) model of a boiler system is considered in which the input variables are feed-water and fuel mass rates. Due to the inaccessibility of some state variables of boiler system, a minimum-order observer is designed based on Luenberger's model to gain an estimate state x-tilde of the true state x. Low cost of design and high accuracy of states estimation are the main advantages of the minimum-order observer; in comparison with previous designed full-order observers. By applying the observer on the closed-loop system, a regulator system is designed. Using an optimal functional code developed in MATLAB environment, desired observer poles are found such that suitable time response specifications of the boiler system are achieved and the gain and phase margin values are adjusted in an acceptable range. However, the real dynamic model may associate with parametric uncertainties. In that case, optimum region of poles of observer-based controller are found such that the robust performance of the boiler system against model uncertainties is guaranteed.

  19. Numerical simulation of a 374 tons/h water-tube steam boiler following a feedwater line break

    International Nuclear Information System (INIS)

    Deghal Cheridi, Amina Lyria; Chaker, Abla; Loubar, Ahcène

    2016-01-01

    Highlights: • We simulate the behavior of a steam boiler during feed-water line break accident. • To perform accident analysis of the steam boiler, Relap5/Mod3.2 system code is used. • A Relap5 model of the boiler is developed and qualified at the steady state level. • A good agreement between Relap5 results and available experimental data. • The Relap5 model predicts well the main transient features of the boiler. - Abstract: To ensure the operational safety of an industrial water-tube steam boiler it is very important to assess various accident scenarios in real plant working conditions. One of the most challenging scenarios is the loss of feedwater to the steam boiler. In this paper, a simulation of the behavior of an industrial water-tube radiant steam boiler during feedwater line break accident is discussed. The simulation is carried out using the RELAP5 system code. The steam boiler is installed in an Algerian natural gas liquefaction complex. The simulation shows the capabilities of RELAP5 system code in predicting the behavior of the steam boiler at both steady state and transient working conditions. From another side, the behavior of the steam boiler following the accident shows how the control system can successfully mitigate the effects and consequences of such accident and how the evaporator tubes can undergo a severe damage due to an uncontrolled increase of the wall temperature in case of failure of this system.

  20. Calculation of sample problems related to two-phase flow blowdown transients in pressure relief piping of a PWR pressurizer

    International Nuclear Information System (INIS)

    Shin, Y.W.; Wiedermann, A.H.

    1984-02-01

    A method was published, based on the integral method of characteristics, by which the junction and boundary conditions needed in computation of a flow in a piping network can be accurately formulated. The method for the junction and boundary conditions formulation together with the two-step Lax-Wendroff scheme are used in a computer program; the program in turn, is used here in calculating sample problems related to the blowdown transient of a two-phase flow in the piping network downstream of a PWR pressurizer. Independent, nearly exact analytical solutions also are obtained for the sample problems. Comparison of the results obtained by the hybrid numerical technique with the analytical solutions showed generally good agreement. The good numerical accuracy shown by the results of our scheme suggest that the hybrid numerical technique is suitable for both benchmark and design calculations of PWR pressurizer blowdown transients

  1. 46 CFR 176.812 - Pressure vessels and boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Pressure vessels and boilers. 176.812 Section 176.812... TONS) INSPECTION AND CERTIFICATION Material Inspections § 176.812 Pressure vessels and boilers. (a.... (b) Periodic inspection and testing requirements for boilers are contained in § 61.05 in subchapter F...

  2. 49 CFR 230.36 - Hydrostatic testing of boilers.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Hydrostatic testing of boilers. 230.36 Section 230... Appurtenances Pressure Testing of Boilers § 230.36 Hydrostatic testing of boilers. (a) Time of test. The... to any hydrostatic pressure. Hydrostatic testing required by these rules shall be conducted at 25...

  3. Hybrid system for fouling control in biomass boilers

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, Luis M.; Gareta, Raquel [Centro de Investigacin de Recursos y Consumos Energeticos (CIRCE), Universidad de Zaragoza, Centro Politecnico Superior, Mareda de Luna, 3, Zaragoza 50018, (Spain)

    2006-12-15

    Renewable energy sources are essential paths towards sustainable development and CO{sub 2} emission reduction. For example, the European Union has set the target of achieving 22% of electricity generation from renewable sources by 2010. However, the extensive use of this energy source is being avoided by some technical problems as fouling and slagging in the surfaces of boiler heat exchangers. Although these phenomena were extensively studied in the last decades in order to optimize the behaviour of large coal power boilers, a simple, general and effective method for fouling control has not been developed. For biomass boilers, the feedstock variability and the presence of new components in ash chemistry increase the fouling influence in boiler performance. In particular, heat transfer is widely affected and the boiler capacity becomes dramatically reduced. Unfortunately, the classical approach of regular sootblowing cycles becomes clearly insufficient for them. Artificial Intelligence (AI) provides new means to undertake this problem. This paper illustrates a methodology based on Neural Networks (NNs) and Fuzzy-Logic Expert Systems to select the moment for activating sootblowing in an industrial biomass boiler. The main aim is to minimize the boiler energy and efficiency losses with a proper sootblowing activation. Although the NN type used in this work is well-known and the Hybrid Systems had been extensively used in the last decade, the excellent results obtained in the use of AI in industrial biomass boilers control with regard to previous approaches makes this work a novelty. (Author)

  4. The Technology Introduction of Chain Boiler Energy Conservation Transformation

    Science.gov (United States)

    Li, Henan; Liu, Xiwen; Yuan, Hong; Lin, Jiadai; Zhang, Yu

    2017-12-01

    Introduced the present status of chain boiler efficiency is low, the system analysis of the chain boiler optimization and upgrading of technology, for the whole progress of chain boiler to provide some ideas and reference.

  5. Speed control of boiler feed water pump turbine based on gray correlation compensation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yun Long; Wang, Di; Zhou, Hai Chun [Northeast Dianli UniversityJilin (China)

    2017-01-15

    One of the most important controlled parameters of thermal power units is the boiler drum water level. Disturbances of feed water flow rate could cause instability of the drum water level. This study proposes the Gray correlation compensation (GCC) control technology for the Boiler feed water pump turbine (BFPT) to solve this problem. Simulation results indicate that the GCC controller outperforms the traditional proportional-integral-derivative controller when it encounters different disturbances. Furthermore, the GCC controller can rapidly switch to the high-pressure steam source to ensure that the drum water level is in the secure range during steam source switching of the BFPT.

  6. 46 CFR 115.812 - Pressure vessels and boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Pressure vessels and boilers. 115.812 Section 115.812... CERTIFICATION Material Inspections § 115.812 Pressure vessels and boilers. (a) Pressure vessels must be tested... testing requirements for boilers are contained in § 61.05 in subchapter F of this chapter. [CGD 85-080, 61...

  7. 46 CFR 56.50-30 - Boiler feed piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Boiler feed piping. 56.50-30 Section 56.50-30 Shipping... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-30 Boiler feed piping. (a) General... least two separate means of supplying feed water for the boilers. All feed pumps shall be fitted with...

  8. Stationary Engineers Apprenticeship. Related Training Modules. 12.1-12.9. Boilers.

    Science.gov (United States)

    Lane Community Coll., Eugene, OR.

    This learning module, one in a series of 20 related training modules for apprentice stationary engineers, deals with boilers. Addressed in the individual instructional packages included in the module are the following topics: firetube and watertube boilers; boiler construction; procedures for operating and cleaning boilers; and boiler fittings,…

  9. New materials for boilers in USC power plants

    International Nuclear Information System (INIS)

    Hong, Sung Ho; Hong, Seok Joo

    2003-01-01

    The efficiency of boiler in fossil power plants is a strong function of steam temperature and pressure. Thus, the main technology of increasing boiler efficiency is the development of stronger high temperature materials, capable of operating under high stresses at ever increasing temperature. This paper will presents the new material relating to boiler of USC power plant

  10. Thermomechanical finite element analysis of hot water boiler structure

    Directory of Open Access Journals (Sweden)

    Živković Dragoljub S.

    2012-01-01

    Full Text Available The paper presents an application of the Finite Elements Method for stress and strain analysis of the hot water boiler structure. The aim of the research was to investigate the influence of the boiler scale on the thermal stresses and strains of the structure of hot water boilers. Results show that maximum thermal stresses appear in the zone of the pipe carrying wall of the first reversing chamber. This indicates that the most critical part of the boiler are weld spots of the smoke pipes and pipe carrying plate, which in the case of significant scale deposits can lead to cracks in the welds and water leakage from the boiler. The nonlinear effects were taken into account by defining the bilinear isotropic hardening model for all boiler elements. Temperature dependency was defined for all relevant material properties, i. e. isotropic coefficient of thermal expansion, Young’s modulus, and isotropic thermal conductivity. The verification of the FEA model was performed by comparing the measured deformations of the hot water boiler with the simulation results. As a reference object, a Viessmann - Vitomax 200 HW boiler was used, with the installed power of 18.2 MW. CAD modeling was done within the Autodesk Inventor, and stress and strain analysis was performed in the ANSYS Software.

  11. Assessment of the candidate markets for liquid boiler fuels

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-12-01

    Liquid fuels can be produced from coal in a number of indirect and direct liquefaction processes. While indirect coal liquefaction has been proved commercially outside the United States, most attention in this country has focused on the direct liquefaction processes, which include the processes under examination in this report; namely, the Exxon Donor Solvent (EDS), the H-Coal, and the Solvent Refined Coal (SRC) II processes. The objectives of the study were to: compare the boiler fuels of direct coal liquefaction with residual fuel oil (No. 6 fuel oil) including physical characteristics and environmental hazards, such as carcinogenic characteristics and toxic hazard characteristics; determine whether a boiler fuel market would exist for the coal liquefaction products given their physical characteristics and potential environmental hazards; determine the advantages of utilizing methanol as a boiler fuel on a continuous basis in commercial boilers utilizing existing technology; identify the potential regional candidate markets for direct coal liquefaction products as liquid boiler fuels; determine the distributing and handling costs associated with marketing coal liquefaction products as liquid boiler fuels; determine the current regulatory issues associated with the marketing of coal liquefaction products as boiler fuels; and determine and evaluate other institutional issues associated with the marketing of direct coal liquefaction products as boiler fuels.

  12. Behavioral study solar boilers 1994. Summary. Part 2 (households)

    International Nuclear Information System (INIS)

    Visser, J.M.

    1995-04-01

    The aim of the Dutch national solar boiler campaign of NOVEM and Holland Solar is to realize the installation of 300,000 solar boilers in the Netherlands in the year 2010. In 1995 10,000 boilers were installed. More knowledge of the decision making process and the backgrounds and motives of (potential) buyers is required. From September 1994 to March 1995 a survey has been carried out of the decision making processes in households and housing corporations. The most important results, conclusions and recommendations of the survey are summarized in this report. The parameters that can influence the decision whether to purchase a solar boiler or not are knowledge about the solar boiler, the attitude towards the solar boiler and towards the use of energy and the environment, risk perception, social aspects, information retrieval behavior, constraints, and socio-economic aspects. 44 tabs

  13. Improved NOx emissions and combustion characteristics for a retrofitted down-fired 300-MWe utility boiler.

    Science.gov (United States)

    Li, Zhengqi; Ren, Feng; Chen, Zhichao; Liu, Guangkui; Xu, Zhenxing

    2010-05-15

    A new technique combining high boiler efficiency and low-NO(x) emissions was employed in a 300MWe down-fired boiler as an economical means to reduce NO(x) emissions in down-fired boilers burning low-volatile coals. Experiments were conducted on this boiler after the retrofit with measurements taken of gas temperature distributions along the primary air and coal mixture flows and in the furnace, furnace temperatures along the main axis and gas concentrations such as O(2), CO and NO(x) in the near-wall region. Data were compared with those obtained before the retrofit and verified that by applying the combined technique, gas temperature distributions in the furnace become more reasonable. Peak temperatures were lowered from the upper furnace to the lower furnace and flame stability was improved. Despite burning low-volatile coals, NO(x) emissions can be lowered by as much as 50% without increasing the levels of unburnt carbon in fly ash and reducing boiler thermal efficiency.

  14. 46 CFR 109.555 - Propulsion boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Propulsion boilers. 109.555 Section 109.555 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.555 Propulsion boilers. The master or person in charge and the engineer in charge shall...

  15. Model-free adaptive control of supercritical circulating fluidized-bed boilers

    Science.gov (United States)

    Cheng, George Shu-Xing; Mulkey, Steven L

    2014-12-16

    A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  16. New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement

    International Nuclear Information System (INIS)

    Qu, Ming; Abdelaziz, Omar; Yin, Hongxi

    2014-01-01

    Highlights: • Thermal and heat transfer models of absorption heat pumps driven by exhaust gas, hot water, or natural gas. • Natural gas boiler combustion model. • Heat exchanger for condensing. • Experimental data of a hot water absorption heat pump. • Economic assessment of heat recovery absorption heat pump for improving natural gas boilers. - Abstract: Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150–200 °C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50–60 °C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural

  17. Evaluation of iron aluminide weld overlays for erosion - corrosion resistant boiler tube coatings in low NO{sub x} boilers

    Energy Technology Data Exchange (ETDEWEB)

    DuPont, J.N.; Banovic, S.W.; Marder, A.R. [Lehigh Univ., Bethlehem, PA (United States)

    1996-08-01

    Low NOx burners are being installed in many fossil fired power plants in order to comply with new Clean Air Regulations. Due to the operating characteristics of these burners, boiler tube sulfidation corrosion is often enhanced and premature tube failures can occur. Failures due to oxidation and solid particle erosion are also a concern. A program was initiated in early 1996 to evaluate the use of iron aluminide weld overlays for erosion/corrosion protection of boiler tubes in Low NOx boilers. Composite iron/aluminum wires will be used with the Gas Metal Arc Welding (GMAW) process to prepare overlays on boiler tubes steels with aluminum contents from 8 to 16wt%. The weldability of the composite wires will be evaluated as a function of chemical composition and welding parameters. The effect of overlay composition on corrosion (oxidation and sulfidation) and solid particle erosion will also be evaluated. The laboratory studies will be complemented by field exposures of both iron aluminide weld overlays and co-extruded tubing under actual boiler conditions.

  18. Chemical cleaning of UK AGR boilers

    International Nuclear Information System (INIS)

    Rudge, A.; Turner, P.; Ghosh, S.; Clary, W.; Tice, D.R.

    2002-01-01

    For a number of years, the waterside pressure drops across the advanced gas-cooled reactor (AGR) pod boilers have been increasing. The pressure drop increases have accelerated with time, which is the converse behaviour to that expected for rippled magnetite formation (rapid initial increase slowing down with time). Nonetheless, magnetite deposition remains the most likely cause for the increasing boiler resistances. A number of potential countermeasures have been considered in response to the boiler pressure drop increases. However, there was no detectable reduction in the rate of pressure drop increase. Chemical cleaning was therefore considered and a project to substantiate and then implement chemical cleaning was initiated. (authors)

  19. Creep-Rupture Behavior of Ni-Based Alloy Tube Bends for A-USC Boilers

    Science.gov (United States)

    Shingledecker, John

    Advanced ultrasupercritical (A-USC) boiler designs will require the use of nickel-based alloys for superheaters and reheaters and thus tube bending will be required. The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code Section II PG-19 limits the amount of cold-strain for boiler tube bends for austenitic materials. In this summary and analysis of research conducted to date, a number of candidate nickel-based A-USC alloys were evaluated. These alloys include alloy 230, alloy 617, and Inconel 740/740H. Uniaxial creep and novel structural tests and corresponding post-test analysis, which included physical measurements, simplified analytical analysis, and detailed microscopy, showed that different damage mechanisms may operate based on test conditions, alloy, and cold-strain levels. Overall, creep strength and ductility were reduced in all the alloys, but the degree of degradation varied substantially. The results support the current cold-strain limits now incorporated in ASME for these alloys for long-term A-USC boiler service.

  20. 10 CFR 431.82 - Definitions concerning commercial packaged boilers.

    Science.gov (United States)

    2010-01-01

    ... gases. Manufacturer of a commercial packaged boiler means any person who manufactures, produces... 10 Energy 3 2010-01-01 2010-01-01 false Definitions concerning commercial packaged boilers. 431.82... COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Packaged Boilers § 431.82 Definitions concerning commercial...

  1. Quality and generation rate of solid residues in the boiler of a waste-to-energy plant

    International Nuclear Information System (INIS)

    Allegrini, E.; Boldrin, A.; Jansson, S.; Lundtorp, K.; Fruergaard Astrup, T.

    2014-01-01

    Highlights: • Ash was sampled at 10 different points of the boiler of a waste-to-energy plant. • Samples were analysed for the chemical composition, PCDD/F and leaching behaviour. • Enrichment trends of elements were investigated in relation to boiler conditions. • No significant differences were found between boiler ash samples. - Abstract: The Danish waste management system relies significantly on waste-to-energy (WtE) plants. The ash produced at the energy recovery section (boiler ash) is classified as hazardous waste, and is commonly mixed with fly ash and air pollution control residues before disposal. In this study, a detailed characterization of boiler ash from a Danish grate-based mass burn type WtE was performed, to evaluate the potential for improving ash management. Samples were collected at 10 different points along the boiler's convective part, and analysed for grain size distribution, content of inorganic elements, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD and PCDF), and leaching of metals. For all samples, PCDD and PCDF levels were below regulatory limits, while high pH values and leaching of e.g. Cl were critical. No significant differences were found between boiler ash from individual sections of the boiler, in terms of total content and leaching, indicating that separate management of individual ash fractions may not provide significant benefits

  2. Quality and generation rate of solid residues in the boiler of a waste-to-energy plant

    Energy Technology Data Exchange (ETDEWEB)

    Allegrini, E., E-mail: elia@env.dtu.dk [Technical University of Denmark, Department of Environmental Engineering, Building 115, Lyngby 2800 (Denmark); Boldrin, A. [Technical University of Denmark, Department of Environmental Engineering, Building 115, Lyngby 2800 (Denmark); Jansson, S. [Umeå University, Department of Chemistry, Umeå SE-901 87 (Sweden); Lundtorp, K. [Babcock and Wilcox Vølund A/S, Göteborg (Sweden); Fruergaard Astrup, T. [Technical University of Denmark, Department of Environmental Engineering, Building 115, Lyngby 2800 (Denmark)

    2014-04-01

    Highlights: • Ash was sampled at 10 different points of the boiler of a waste-to-energy plant. • Samples were analysed for the chemical composition, PCDD/F and leaching behaviour. • Enrichment trends of elements were investigated in relation to boiler conditions. • No significant differences were found between boiler ash samples. - Abstract: The Danish waste management system relies significantly on waste-to-energy (WtE) plants. The ash produced at the energy recovery section (boiler ash) is classified as hazardous waste, and is commonly mixed with fly ash and air pollution control residues before disposal. In this study, a detailed characterization of boiler ash from a Danish grate-based mass burn type WtE was performed, to evaluate the potential for improving ash management. Samples were collected at 10 different points along the boiler's convective part, and analysed for grain size distribution, content of inorganic elements, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD and PCDF), and leaching of metals. For all samples, PCDD and PCDF levels were below regulatory limits, while high pH values and leaching of e.g. Cl were critical. No significant differences were found between boiler ash from individual sections of the boiler, in terms of total content and leaching, indicating that separate management of individual ash fractions may not provide significant benefits.

  3. Boiling process modelling peculiarities analysis of the vacuum boiler

    Science.gov (United States)

    Slobodina, E. N.; Mikhailov, A. G.

    2017-06-01

    The analysis of the low and medium powered boiler equipment development was carried out, boiler units possible development directions with the purpose of energy efficiency improvement were identified. Engineering studies for the vacuum boilers applying are represented. Vacuum boiler heat-exchange processes where boiling water is the working body are considered. Heat-exchange intensification method under boiling at the maximum heat- transfer coefficient is examined. As a result of the conducted calculation studies, heat-transfer coefficients variation curves depending on the pressure, calculated through the analytical and numerical methodologies were obtained. The conclusion about the possibility of numerical computing method application through RPI ANSYS CFX for the boiling process description in boiler vacuum volume was given.

  4. 29 CFR 1915.162 - Ship's boilers.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Ship's boilers. 1915.162 Section 1915.162 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Ship's Machinery and Piping Systems § 1915.162 Ship's boilers. (a) Before...

  5. Gas chromatographic determination of residual hydrazine and morpholine in boiler feed water and steam condensates

    International Nuclear Information System (INIS)

    Vatsala, S.; Bansal, V.; Tuli, D.K.; Rai, M.M.; Jain, S.K.; Srivastava, S.P.; Bhatnagar, A.K.

    1994-01-01

    Hydrazine, an oxygen scavenger in boiler water, was derivatised to the corresponding acetone azine and determined at the ng ml -1 level by gas chromatography. Morpholine, a corrosion inhibitor used in steam boilers, was estimated either directly (if >2.0 μg ml -1 ) or by quantitative preconcentration (0.1 ng-2.0 μg ml -1 ). To obtain symmetrical peaks for these amines, the column packing was coated with KOH. Use of a nitrogen-specific detector improved accuracy of estimation of hydrazine and morpholine, giving a RSD of 1.9-3.6%. Chromatographic analysis of these amines in boiler feed water and steam condensate samples collected from boilers servicing a pertroleum refinery is described. Environmental safety regulations calls for monitoring of hydrazine and the methods developed can easily be adapted for this purpose. (orig.)

  6. Experimental investigation of void distribution in Suppression Pool during the initial blowdown period of a Loss of Coolant Accident using air–water two-phase mixture

    International Nuclear Information System (INIS)

    Rassame, Somboon; Griffiths, Matthew; Yang, Jun; Lee, Doo Yong; Ju, Peng; Choi, Sung Won; Hibiki, Takashi; Ishii, Mamoru

    2014-01-01

    Highlights: • Basic understanding of the venting phenomena in the SP during a LOCA was obtained. • A series of experiment is carried out using the PUMA-E test facility. • Two phases of experiments, namely, an initial and a quasi-steady phase were observed. • The maximum void penetration depth was experienced during the initial phase. - Abstract: During the initial blowdown period of a Loss of Coolant Accident (LOCA), the non-condensable gas initially contained in the BWR containment is discharged to the pressure suppression chamber through the blowdown pipes. The performance of Emergency Core Cooling System (ECCS) can be degraded due to the released gas ingestion into the suction intakes of the ECCS pumps. The understanding of the relevant phenomena in the pressure suppression chamber is important in analyzing potential gas intrusion into the suction intakes of ECCS pumps. To obtain the basic understanding of the relevant phenomena and the generic data of void distribution in the pressure suppression chamber during the initial blowdown period of a LOCA, tests with various blowdown conditions were conducted using the existing Suppression Pool (SP) tank of the integral test facility, called Purdue University Multi-Dimensional Integral Test Assembly for ESBWR applications (PUMA-E) facility, a scaled downcomer pipe installed in the PUMA-E SP, and air discharge pipe system. Two different diameter sizes of air injection pipe (0.076 and 0.102 m), a range of air volumetric flux (7.9–24.7 m/s), initial void conditions in an air injection pipe (fully void, partially void, and fully filled with water) and different air velocity ramp rates (1.0, 1.5, and 2.0 s) are used to investigate the impact of the blowdown conditions to the void distribution in the SP. Two distinct phases of experiments, namely, an initial and a quasi-steady phase were observed. The maximum void penetration depth was experienced during the initial phase. The quasi-steady phase provided less void

  7. The behavior of ash species in suspension fired biomass boilers

    DEFF Research Database (Denmark)

    Jensen, Peter Arendt

    While fluid bed and grate fired boilers initially was the choice of boilers used for power production from both wood and herbaceous biomass, in recent years suspension fired boilers have been increasingly used for biomass based power production. In Denmark several large pulverized fuel boilers have...... been converted from coal to biomass combustion in the last 15 years. This have included co-firing of coal and straw, up to 100% firing of wood or straw andthe use of coal ash as an additive to remedy problems with wood firing. In parallel to the commercialization of the pulverized biomass firing...... technology a long range of research studies have been conducted, to improve our understanding of the influence and behavior of biomass ash species in suspension fired boilers. The fuel ash plays a key role with respect tooptimal boiler operation and influences phenomena’s as boiler chamber deposit formation...

  8. Steam generators and waste heat boilers for process and plant engineers

    CERN Document Server

    Ganapathy, V

    2014-01-01

    Incorporates Worked-Out Real-World ProblemsSteam Generators and Waste Heat Boilers: For Process and Plant Engineers focuses on the thermal design and performance aspects of steam generators, HRSGs and fire tube, water tube waste heat boilers including air heaters, and condensing economizers. Over 120 real-life problems are fully worked out which will help plant engineers in evaluating new boilers or making modifications to existing boiler components without assistance from boiler suppliers. The book examines recent trends and developments in boiler design and technology and presents novel idea

  9. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Incinerators, boilers, and process... Routing to a Fuel Gas System or a Process § 63.988 Incinerators, boilers, and process heaters. (a) Equipment and operating requirements. (1) Owners or operators using incinerators, boilers, or process...

  10. Ultrasonic boiler inspection and economic analysis guidelines

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Boiler tube failures cause approximately 6% availability loss of large fossil-fired power generating plants. This loss can be reduced by systematic approaches using ultrasonic examination and root cause failure analysis methods. Two projects sponsored by EPRI have provided utility engineers with guidelines for performing ultrasonic examinations and with details on 22 types of tube failure mechanisms. A manual has been published that provides descriptions of typical locations, superficial appearances, damage mechanisms, metallurgy, microstructural changes, likely root causes, and potential corrective actions. Application of the principles in the manual is being demonstrated in an EPRI-funded project at 10 electric utilities over the next two years. Guidelines have been published that prescribe the activities necessary for ultrasonic examinations of boiler tubes. Eight essential elements of a boiler examination should be performed to assure that possible economic benefits are obtained. Work was supported by EPRI under RP 1890 and RP 1865. A software package has been developed for effectively planning inspections for wall thinning in fossil-fired boiler tubing. The software assists in minimizing costs associated with maintenance, such as inspection and repair, while the life of the boiler is maximized

  11. Up-date on cyclone combustion and cyclone boilers

    Energy Technology Data Exchange (ETDEWEB)

    Carmo, Felipe Alfaia do; Nogueira, Manoel Fernandes Martins; Rocha, Rodrigo Carnera Castro da; Gazel, Hussein Felix; Martins, Diego Henrique dos Reis [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Campus Universitario Jose da Silveira Netto], E-mails: mfmn@ufpa.br, mfmn@ufpa.br

    2010-07-01

    The boiler concept has been around for more than 70 years, and there are many types available. Boilers provide steam or hot water for industrial and commercial use. The Federal University of Para (UFPA) through the research group EBMA (Energy,Biomass and Environment) has been developing cyclonic furnace with a water wall, a boiler, aiming to use regional timbers (sawdust) and agro-industries residues as fuel to produce steam to be used in industrial processes as well as in power generation,. The use of cyclonic combustion for burning waste instead of burning in a fixed bed is mainly due to two factors efficiency improvement causing a more compact boiler and less risk of explosion, since their process does not generate an accumulation of volatile. Present state-of-art for commercial cyclone boilers has as set up a cyclone combustor with two combustion chambers, in fluid communication, where there ducts for supplying air and fuel directly into the first chamber and for forming a cyclonic flow pattern and a heat exchanger surrounding the second chamber for keeping low combustion temperature in both chambers. This paper shows the results of a literature review about design, construction and operation of cyclonic boilers using solid, liquid or gaseous fuel. This information has been used for the design of a cyclone boiler to be constructed at UFPA for research purposes and its basic concept is presented at the end of this article. (author)

  12. Modelling and simulating fire tube boiler performance

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    A model for a flue gas boiler covering the flue gas and the water-/steam side has been formulated. The model has been formulated as a number of sub models that are merged into an overall model for the complete boiler. Sub models have been defined for the furnace, the convection zone (split in 2......: a zone submerged in water and a zone covered by steam), a model for the material in the boiler (the steel) and 2 models for resp. the water/steam zone (the boiling) and the steam. The dynamic model has been developed as a number of Differential-Algebraic-Equation system (DAE). Subsequently Mat......Lab/Simulink has been applied for carrying out the simulations. To be able to verify the simulated results experiments has been carried out on a full scale boiler plant....

  13. Effect of Uncertainty Parameters in Blowdown and Reflood Models for OPR1000 LBLOCA Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Byung Gil; Jin, Chang Yong; Seul, Kwangwon; Hwang, Taesuk [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2014-05-15

    KINS(Korea Institute of Nuclear Safety) has also performed the audit calculation with the KINS Realistic Evaluation Methodology(KINS-REM) to confirm the validity of licensee's calculation. In the BEPU method, it is very important to quantify the code and model uncertainty. It is referred in the following requirement: BE calculations in Regulatory Guide 1.157 - 'the code and models used are acceptable and applicable to the specific facility over the intended operating range and must quantify the uncertainty in the specific application'. In general, the uncertainty of model/code should be obtained through the data comparison with relevant integral- and separate-effect tests at different scales. However, it is not easy to determine these kinds of uncertainty because of the difficulty for evaluating accurately various experiments. Therefore, the expert judgment has been used in many cases even with the limitation that the uncertainty range of important parameters can be wide and inaccurate. In the KINS-REM, six heat transfer parameters in the blowdown phase have been used to consider the uncertainty of models. Recently, MARS-KS code was modified to consider the uncertainty of the five heat transfer parameters in the reflood phase. Accordingly, it is required that the uncertainty range for parameters of reflood models is determined and the effect of these ranges is evaluated. In this study, the large break LOCA (LBLOCA) analysis for OPR1000 was performed to identify the effect of uncertainty parameters in blowdown and reflood models.

  14. Test of a small domestic boiler using different pellets

    International Nuclear Information System (INIS)

    Dias, J.; Costa, M.; Azevedo, J.L.T.

    2004-01-01

    This paper presents results from an experimental study performed on a 13 kW th commercial domestic boiler using pellets as fuel. Four different types of pellets were used and, for each one, the boiler was tested as a function of its capacity and the fan regulation affecting excess air. Measurements were performed for boiler heat load, pellet consumption rate, flue-gas temperature and composition. Mass balances allowed the calculation of the flue-gas flow rate and associated heat losses. Losses from incomplete combustion have also been quantified. Under boiler steady-state conditions the flue-gas O 2 concentration changes with boiler load and ventilation due to the regulation scheme of the boiler. Flue-gas CO shows a minimum for values of O 2 in the flue-gases of about 13%. NO x emissions are independent of excess air for low values of nitrogen in the fuel whereas, for larger values, NO x emissions increase with the O 2 present in the combustion products. The fractional conversion of the pellet nitrogen into NO x is in line with literature data. The boiler start-up was characterised by the temperature evolution inside and above the bed showing the propagation of combustion in the bed during about 10 min. During boiler start-up, a maximum in CO emissions was observed which is associated with the maximum combustion intensity, as typified by the flue-gas O 2 concentration and temperature, regardless the pellet type. (Author)

  15. RELAP5 progress summary: simulation of semiscale isothermal blowdown (Test S-01-4A)

    International Nuclear Information System (INIS)

    Kuo, H.H.; Wagner, R.J.; Carlson, K.E.; Kiser, D.M.; Trapp, J.A.; Ransom, V.H.

    1978-07-01

    The RELAP5/MOD''O'' LOCA analysis code has been applied to Simulation of the Semiscale Isothermal Blowdown Test (S-01-4A) from initiation to 60 seconds. Subcooled ECC injection was simulated from 23 seconds until accumulator emptying. The calculated results are in very good agreement with the experimental data. This is the first full system application of the RELAP5 code and only the pressurizer surge line resistance was modified to achieve the results reported. An analysis of the code execution time using a time-step statistical edit is included

  16. Boiler: lossy compression of RNA-seq alignments using coverage vectors.

    Science.gov (United States)

    Pritt, Jacob; Langmead, Ben

    2016-09-19

    We describe Boiler, a new software tool for compressing and querying large collections of RNA-seq alignments. Boiler discards most per-read data, keeping only a genomic coverage vector plus a few empirical distributions summarizing the alignments. Since most per-read data is discarded, storage footprint is often much smaller than that achieved by other compression tools. Despite this, the most relevant per-read data can be recovered; we show that Boiler compression has only a slight negative impact on results given by downstream tools for isoform assembly and quantification. Boiler also allows the user to pose fast and useful queries without decompressing the entire file. Boiler is free open source software available from github.com/jpritt/boiler. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. 30 CFR 57.13001 - General requirements for boilers and pressure vessels.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false General requirements for boilers and pressure... NONMETAL MINES Compressed Air and Boilers § 57.13001 General requirements for boilers and pressure vessels. All boilers and pressure vessels shall be constructed, installed, and maintained in accordance with...

  18. 30 CFR 56.13001 - General requirements for boilers and pressure vessels.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false General requirements for boilers and pressure... MINES Compressed Air and Boilers § 56.13001 General requirements for boilers and pressure vessels. All boilers and pressure vessels shall be constructed, installed, and maintained in accordance with the...

  19. 7 CFR 51.2833 - U.S. No. 1 Boilers.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false U.S. No. 1 Boilers. 51.2833 Section 51.2833 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards...) Grades § 51.2833 U.S. No. 1 Boilers. U.S. No. 1 Boilers consists of onions which meet all the...

  20. 46 CFR 109.205 - Inspection of boilers and machinery.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Inspection of boilers and machinery. 109.205 Section 109... OPERATIONS Tests, Drills, and Inspections § 109.205 Inspection of boilers and machinery. The chief engineer or engineer in charge, before he assumes charge of the boilers and machinery of a unit shall inspect...

  1. Control of boiler temperature with explicit MPC; Panntemperaturreglering med explicit MPC

    Energy Technology Data Exchange (ETDEWEB)

    Slaetteke, Ola; Velut, Stefan; Raaberg, Martin

    2012-02-15

    MPC is the multivariable controller that has been most successful in the process industry and particularly the petrochemical industry. It has been described as one of the most significant developments in process control and the main reasons for this are: 1. It handles multivariable control problems in a natural manner. 2. It is relative easy to understand the structure of the controller, which is the same whether it is a simple loop or a multivariable system. 3. It handles limitations of both the process and other practical constraints in a systematic way. Examples of this is that a valve can only work between 0 and 100 %, but also that the CO-level in the flue gas must not exceed a certain level. 4. It allows for operating conditions near critical process boundaries, which in many cases is synonymous with increased production rates, reduced raw material consumption, better energy utilization, and faster process transitions. The aim of the project is to evaluate the potential of multivariable control in the form of explicit MPC in a boiler at Stora Enso Hylte Bruk. This research task can be divided into two sub-tasks: 1. General evaluation of explicit MPC. 2. Evaluation of multivariable control of boiler temperature The purpose of subtask one is to evaluate what is required of a facility owner to implement explicit MPC in a control system. This includes everything from available calculation tools, what is important to consider during the design phase of the controller, different pitfalls that exist, management of different operating modes, to how the controller should be implemented and commissioned. Subtask two is intended to evaluate the multivariable control of a boiler of CFB type (circulating fluidized bed). MPC controller will regulate the temperature in the boiler. In order to maintain the waste incineration directive, the temperature in the upper part of the boiler is controlled. This is done by means of changes in the flow of natural gas injection and

  2. SRC burn test in 700-hp oil-designed boiler. Annex Volume C. Boiler emission report. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    1983-09-01

    The Solvent-Refined Coal (SRC) test burn program was conducted at the Pittsburgh Energy Technology Center (PETC) located in Bruceton, Pa. One of the objectives of the study was to determine the feasibility of burning SRC fuels in boilers set up for fuel oil firing and to characterize emissions. Testing was conducted on the 700-hp oil-fired boiler used for research projects. No. 6 fuel oil was used for baseline data comparison, and the following SRC fuels were tested: SRC Fuel (pulverized SRC), SRC Residual Oil, and SRC-Water Slurry. Uncontrolled particulate emission rates averaged 0.9243 lb/10/sup 6/ Btu for SRC Fuel, 0.1970 lb/10/sup 6/ Btu for SRC Residual Oil, and 0.9085 lb/10/sup 6/ Btu for SRC-Water Slurry. On a lb/10/sup 6/ Btu basis, emissions from SRC Residual Oil averaged 79 and 78%, respectively, lower than the SRC Fuel and SRC-Water Slurry. The lower SRC Residual Oil emissions were due, in part, to the lower ash content of the oil and more efficient combustion. The SRC Fuel had the highest emission rate, but only 2% higher than the SRC-Water Slurry. Each fuel type was tested under variable boiler operating parameters to determine its effect on boiler emissions. The program successfully demonstrated that the SRC fuels could be burned in fuel oil boilers modified to handle SRC fuels. This report details the particulate emission program and results from testing conducted at the boiler outlet located before the mobile precipitator take-off duct. The sampling method was EPA Method 17, which uses an in-stack filter.

  3. 46 CFR 62.35-20 - Oil-fired main boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Oil-fired main boilers. 62.35-20 Section 62.35-20... AUTOMATION Requirements for Specific Types of Automated Vital Systems § 62.35-20 Oil-fired main boilers. (a) General. (1) All main boilers, regardless of intended mode of operation, must be provided with the...

  4. 40 CFR 266.110 - Waiver of DRE trial burn for boilers.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waiver of DRE trial burn for boilers... HAZARDOUS WASTE MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.110 Waiver of DRE trial burn for boilers. Boilers that operate under the special requirements of this section...

  5. Solved and unsolved problems in boiler systems. Learning from accidents

    International Nuclear Information System (INIS)

    Ozawa, Mamoru

    2000-01-01

    This paper begins with a brief review on the similarity law of conventional fossil-fuel-fired boilers. The concept is based on the fact that the heat release due to combustion in the furnace is restricted by the furnace volume but the heat absorption is restricted by the heat transfer surface area. This means that a small-capacity boiler has relatively high specific furnace heat release rate, about 10 MW/m 3 , and on the contrary a large-capacity boiler has lower value. The surface-heat-flux limit is mainly dominated by the CHF inside the water-wall tubes of the boiler furnace, about 350 kW/m 2 . This heat-flux limit is almost the same order independently on the capacity of boilers. For the safety of water-walls, it is essential to retain suitable water circulation, i.e. circulation ratio and velocity of water. This principle is a common knowledge of boiler designer, but actual situation is not the case. Newly designed boilers often suffer from similar accidents, especially burnout due to circulation problems. This paper demonstrates recent accidents encountered in practical boilers, and raises problems of rather classical but important two-phase flow and heat transfer. (author)

  6. Slagging in a pulverised-coal-fired boiler

    Energy Technology Data Exchange (ETDEWEB)

    Devir, G.P.; Pohl, J.H.; Creelman, R.A. [University of Queensland, St. Lucia, Qld. (Australia). Dept. of Chemical Engineering

    2000-07-01

    This paper describes a technique to evaluate the severity of slagging of a coal in a pulverised-coal-fired boiler. There are few data in the literature on the nature of in-situ boiler slags, their rate of growth and/or their strength properties relevant to sootblowing. The latter is thought to be of more concern to boiler operators and gives rise to the significance of selecting suitable strength tests. As well as standardised methods for characterising pulverised coal performance in a boiler, several novel and less popular techniques are discussed in detail. A suite of three sub-bituminous coals from the Callide Coalfields, Biloela (600 km north of Brisbane), has been selected for slagging tests in the 350 MW{sub e} units of Callide 'B' power station. Disposable air-cooled mild steel slagging probes have been constructed to simulate the conditions for deposit formation in the boiler region. To date, tests for one of these coals has been completed and preliminary results are presented. Once testing for the remaining coals has been completed, it is anticipated that the differences exhibited in deposit growth and strength may be correlated with typical variations in physical and chemical properties of the pulverised coal.

  7. Sulphur recirculation for reduced boiler corrosion; Minskad pannkorrosion med svavelrecirkulation

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Sven; Karlsson, Martin (Goetaverken Miljoe AB, Goeteborg (Sweden)); Blomqvist, Evalena; Baefver, Linda; Claesson, Frida; Davidsson, Kent (SP Sveriges Tekniska Forskningsinstitut, Boraas (Sweden)); Froitzheim, Jan; Pettersson, Jesper; Steenari, Britt-Marie (Chalmers Tekniska Hoegskola, Oorganisk miljoekemi, Goeteborg (Sweden))

    2010-03-15

    Sulphur recirculation is a new technology for reducing boiler corrosion and dioxin formation, which was demonstrated in full-scale tests performed at the Renova Waste to Energy plant at Saevenaes in Goeteborg (Sweden). Sulphur is recirculated from the flue gas cleaning back to the boiler, which reduces the chloride content of the deposits, which in turn reduces boiler corrosion and dioxin formation. Sulphur dioxide was separated from the flue gas in a wet scrubber by adding hydrogen peroxide, producing sulphuric acid. The sulphuric acid was injected into the furnace using nozzles with atomization air, surrounded by recirculated flue gas for improved mixing. By recirculating the sulphur, the sulphur dioxide concentration was increased in the boiler. Each sulphur atom passed the boiler several times and no external sulphur had to be added. Dioxin, ash, deposits and particle samplings together with 1000 h corrosion probe measurements were performed for normal operation (reference) and with sulphur recirculation respectively. During spring 2009, reference measurements were made and the recirculation system was installed and tested. During autumn 2009, a long term test with sulphur recirculation was made. An SO{sub 2} concentration of approximately 800 mg/m3 (n, d.g.) was maintained in the boiler by the system except during a period of extremely low sulphur content in the waste. The sulphur dioxide stack concentrations have been far below the emission limit. Sulphuric acid dew point measurements have shown that the sulphuric acid dosage did not lead to elevated SO{sub 3} concentrations, which may otherwise lead to low temperature corrosion. The chlorine content of both fly ash and boiler ash decreased and the sulphur content increased during the sulphur recirculation tests. The molar chlorine/sulphur ratio (Cl/S) decreased by two thirds in the fly ash as well as in the boiler ash, except for one sample. With sulphur recirculation in operation, the deposit growth was

  8. Nitrogen oxide emissions - one of the most important characteristics of power generating boilers

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R. (Vsesoyuznyi Teplotekhnicheskii Institut (USSR))

    1989-05-01

    Discusses in some detail optimum locations, equipment and sequence for measuring NO{sub x} emissions and, with specific reference to operational factors and structural features, examines ways to achieve efficient and cost effective reduction in emissions. One method for reducing NO{sub x} concentrations with solid fuel combustion, e.g. Kuznetsk black coal combustion, is to alter the proportion of primary air and the output flow rates of the secondary and primary air. Graph demonstrates the successful result of coarsening the pulverized Ekhibastuz coal burnt in the BKZ-420-140 boiler in the Karaganda TEhTs-3 power plant. Suggested structural measures include modifying burners, two- and three-stage combustion, conversion to solid slag removal or to circulating fluidized bed combustion. Also mentions the need to reduce NO{sub x} emissions in unfavorable weather conditions. Finally suggests converting pulverized coal boilers to burn gas, disconnecting or reducing the load of boilers with low exhaust-gas stacks and increasing the number of boilers with high exhaust-gas stacks to reduce ground level NO{sub x} concentrations. 4 refs.

  9. Lower price for solar boilers must improve market penetration

    International Nuclear Information System (INIS)

    Koevoet, J.B.J.

    1999-01-01

    The Dutch government aims at 1.7 PJ thermal energy for the year 2007 to be supplied by solar water heaters. For that target the number of installed solar boilers must increase seven times the number of installed solar boilers in 1998. This can be stimulated by a considerable reduction of the market price for such boilers

  10. 46 CFR 52.25-5 - Miniature boilers (modifies PMB-1 through PMB-21).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Miniature boilers (modifies PMB-1 through PMB-21). 52.25... ENGINEERING POWER BOILERS Other Boiler Types § 52.25-5 Miniature boilers (modifies PMB-1 through PMB-21). Miniature boilers must meet the applicable provisions in this part for the boiler type involved and the...

  11. Coal reburning technology for cyclone boilers

    International Nuclear Information System (INIS)

    Yagiela, A.S.; Maringo, G.J.; Newell, R.J.; Farzan, H.

    1990-01-01

    Babcock and Wilcox has obtained encouraging results from engineering feasibility and pilot-scale proof-of-concept studies of coal reburning for cyclone boiler NO x control. Accordingly, B and W completed negotiations for a clean coal cooperative agreement with the Department of Energy to demonstrate coal reburning technology for cyclone boilers. The host site for the demonstration is the Wisconsin Power and Light (WP and L) Company's 100MWe Nelson Dewey Station. Reburning involves the injection of a supplemental fuel (natural gas, oil, or coal) into the main furnace to produce locally reducing stoichiometric conditions which convert the NO x produced therein to molecular nitrogen, thereby reducing overall NO x emissions. There are currently no commercially-demonstrated combustion modification techniques for cyclone boilers which reduce NO x emissions. The emerging reburning technology offers cyclone boiler operators a promising alternative to expensive flue gas cleanup techniques for NO x emission reduction. This paper reviews baseline testing results at the Nelson Dewey Station and pilot-scale results simulating Nelson Dewey operation using pulverized coal (PC) as the reburning fuel. Outcomes of the model studies as well as the full-scale demonstration preliminary design are discussed

  12. A rule-based industrial boiler selection system

    NARCIS (Netherlands)

    Tan, C.F.; Khalil, S.N.; Karjanto, J.; Tee, B.T.; Wahidin, L.S.; Chen, W.; Rauterberg, G.W.M.; Sivarao, S.; Lim, T.L.

    2015-01-01

    Boiler is a device used for generating the steam for power generation, process use or heating, and hot water for heating purposes. Steam boiler consists of the containing vessel and convection heating surfaces only, whereas a steam generator covers the whole unit, encompassing water wall tubes,

  13. Model boiler studies on deposition and corrosion

    International Nuclear Information System (INIS)

    Balakrishnan, P.V.; McVey, E.G.

    1977-09-01

    Deposit formation was studied in a model boiler, with sea-water injections to simulate the in-leakage which could occur from sea-water cooled condensers. When All Volatile Treatment (AVT) was used for chemistry control the deposits consisted of the sea-water salts and corrosion products. With sodium phosphate added to the boiler water, the deposits also contained the phosphates derived from the sea-water salts. The deposits were formed in layers of differing compositions. There was no significant corrosion of the Fe-Ni-Cr alloy boiler tube under deposits, either on the open area of the tube or in crevices. However, carbon steel that formed a crevice around the tube was corroded severely when the boiler water did not contain phosphate. The observed corrosion of carbon steel was caused by the presence of acidic, highly concentrated chloride solution produced from the sea-water within the crevice. Results of theoretical calculations of the composition of the concentrated solution are presented. (author)

  14. Increase of efficiency and reliability of liquid fuel combustion in small-sized boilers

    Science.gov (United States)

    Roslyakov, P. V.; Proskurin, Yu V.; Ionkin, I. L.

    2017-11-01

    One of the ways to increase the efficiency of using fuels is to create highly efficient domestic energy equipment, in particular small-sized hot-water boilers in autonomous heating systems. Increasing the efficiency of the boiler requires a reduction in the temperature of the flue gases leaving, which, in turn, can be achieved by installing additional heating surfaces. The purpose of this work was to determine the principal design solutions and to develop a draft design for a high-efficiency 3-MW hot-water boiler using crude oil as its main fuel. Ensuring a high efficiency of the boiler is realized through the use of an external remote economizer, which makes it possible to reduce the dimensions of the boiler, facilitate the layout of equipment in a limited size block-modular boiler house and virtually eliminate low-temperature corrosion of boiler heat exchange surfaces. In the article the variants of execution of the water boiler and remote economizer are considered and the preliminary design calculations of the remote economizer for various schemes of the boiler layout in the Boiler Designer software package are made. Based on the results of the studies, a scheme was chosen with a three-way boiler and a two-way remote economizer. The design of a three-way fire tube hot water boiler and an external economizer with an internal arrangement of the collectors, providing for its location above the boiler in a block-modular boiler house and providing access for servicing both a remote economizer and a hot water boiler, is proposed. Its mass-dimensional and design parameters are determined. In the software package Boiler Designer thermal, hydraulic and aerodynamic calculations of the developed fire tube boiler have been performed. Optimization of the boiler design was performed, providing the required 94% efficiency value for crude oil combustion. The description of the developed flue and fire-tube hot water boiler and the value of the main design and technical and

  15. Erosion-corrosion behaviour of Ni-based superalloy Superni-75 in the real service environment of the boiler

    Energy Technology Data Exchange (ETDEWEB)

    Sidhu, T.S.; Prakash, S.; Agrawal, R.D.; Bhagat, R. [Shaheed Bhagat Singh College of Engineering & Technology, Ferozepur (India)

    2009-04-15

    The super-heater and re-heater tubes of the boilers used in thermal power plants are subjected to unacceptable levels of surface degradation by the combined effect of erosion-corrosion mechanism, resulting in the tube wall thinning and premature failure. The nickel-based superalloys can be used as boiler tube materials to increase the service life of the boilers, especially for the new generation ultra-supercritical boilers. The aim of the present investigation is to evaluate the erosion-corrosion behaviour of Ni-based superalloy Superni-75 in the real service environment of the coal-fired boiler of a thermal power plant. The cyclic experimental study was performed for 1000 h in the platen superheater zone of the coal-fired boiler where the temperature was around 900{sup o}C. The corrosion products have been characterized with respect to surface morphology, phase composition and element concentration using the combined techniques of X-ray diffractometry (XRD), scanning electron microscopy/energy-dispersive analysis (SEM/EDAX) and electron probe micro analyser (EPMA). The Superni-75 performed well in the coal-fired boiler environment, which has been attributed mainly to the formation of a thick band of chromium in scale due to selective oxidation of the chromium.

  16. Application of GPRS and GIS in Boiler Remote Monitoring System

    OpenAIRE

    Hongchao Wang; Yifeng Wu

    2012-01-01

    Application of GPRS and GIS in boiler remote monitoring system was designed in this paper by combining the advantage of GPRS and GIS in remote data transmission with configuration monitoring technology. The detail information of the operating conditions of the industrial boiler can be viewed by marking the location of boiler on the electronic map dynamically which can realize the unified management for industrial boiler of a region or city conveniently. Experimental application show that the ...

  17. Core thermal response during Semiscale Mod-1 blowdown heat transfer tests

    International Nuclear Information System (INIS)

    Larson, T.K.

    1976-06-01

    Selected experimental data and results calculated from experimental data obtained from the Semiscale Mod-1 PWR blowdown heat transfer test series are analyzed. These tests were designed primarily to provide information on the core thermal response to a loss-of-coolant accident. The data are analyzed to determine the effect of core flow on the heater rod thermal response. The data are also analyzed to determine the effects of initial operating conditions on the rod cladding temperature behavior during the transient. The departure from nucleate boiling and rewetting characteristics of the rod surfaces are examined for radial and axial patterns in the response. Repeatability of core thermal response data is also investigated. The test data and the core thermal response calculated with the RELAP4 code are compared

  18. Economic evaluation of a coal fired boiler

    International Nuclear Information System (INIS)

    Briem, J.J.

    1983-01-01

    This paper provides basic information on boiler economics which will assist steam users in analyzing the feasibility of using coal to generate steam - in either new or existing facilities. The information presented covers boilers ranging in size from 10,000 to 100,000 pounds per hour steaming capacity

  19. Biomass boiler conversion potential in the eastern United States

    Science.gov (United States)

    Charles D. Ray; Li Ma; Thomas Wilson; Daniel Wilson; Lew McCreery; Janice K. Wiedenbeck

    2013-01-01

    The U.S. is the world's leading consumer of primary energy. A large fraction of this energy is used in boiler installations to generate steam and hot water for heating applications. It is estimated there are total 163,000 industrial and commercial boilers in use in the United States of all sizes. This paper characterizes the commercial and industrial boilers in...

  20. 9 CFR 91.22 - Protection from heat of boilers and engines.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Protection from heat of boilers and... Protection from heat of boilers and engines. No animals shall be stowed along the alleyways leading to the engine or boiler rooms unless the sides of said engine or boiler rooms are covered by a tongue and groove...

  1. The Toshiba Blow-Down MHD Test Facility, and Experiments on Non-Equilibrium Ionization

    International Nuclear Information System (INIS)

    Yamamoto, Y.; Ogiwara, H.; Shioda, S.; Miyata, M.; Goto, M.; Kasahara, E.

    1968-01-01

    The Toshiba blow-down MHD test facility, which was constructed in 1966 and has operated successfully in many experiments, is described. Operating conditions achieved are: the working gas is helium seeded with potassium, the maximum mass flow being 80 g/sec, the maximum seed fraction 0.1%; the gas static lies between temperature 1200 and 1700°K, the static pressure between 2.0 ∼ 1.2 atm, the velocity of gas in the generator channel between 1000 and 200 m/sec; the duration is up to 30 sec; the magnetic field is 2.7 T; the impurity of working gas is below 150 ppm. (author)

  2. Thermal-hydraulic analysis of the semiscale Mod-1 blowdown heat transfer test series

    International Nuclear Information System (INIS)

    Cozzuol, J.M.

    1976-06-01

    Selected experimental thermal-hydraulic data from the recent Semiscale Mod-1 blowdown heat transfer test series are analyzed from an experimental viewpoint with emphasis on explaining those phenomena which influence core fluid behavior. Comparisons are made between the trends measured by the system instrumentation and the trends predicted by the RELAP4 computer code to aid in obtaining an understanding of the interactions between phenomena occurring in different parts of the system. The analyses presented in this report are valuable for evaluating the adequacy and improving the predictive capability of analytical models developed to predict the system response of a pressurized water reactor during a postulated loss-of-coolant accident

  3. [Emission characteristics of fine particles from grate firing boilers].

    Science.gov (United States)

    Wang, Shu-Xiao; Zhao, Xiu-Juan; Li, Xing-Hua; Wei, Wei; Hao, Ji-Ming

    2009-04-15

    Grate firing boilers are the main type of Chinese industrial boilers, which accounts for 85% of the industrial boilers and is one of the most important emission sources of primary air pollutants in China. In this study, five boilers in three cities were selected and tested to measure the emission characteristics of PM2.5, and gaseous pollutants were applied by a compact dilution sampling system, which was developed for this field study. Results showed that particles mass size distributions for the five industrial boilers presented single peak or double peak, former peaks near 0.14 microm and the later peaks after 1.0 microm; the cyclone dust remover and wet scrubber dust remover had effective removal efficiencies not only to PM2.5, but also to PM1.0; and under the condition of same control techniques, grate firing boiler with high capacity has less PM2.5 emission than the boiler with low capacity. In the PM2.5 collected from flue gases, SO4(2-) was the most abundant ion, accounted for 20%-40% of the PM2.5; and C was the most abundant element (7.5%-31.8%), followed by S (8.4%-18.7%). Carbon balance method was applied to calculate the emission factors of these pollutants. The emission factors of PM2.5, NO, and SO2 were in the range of 0.046-0.486 g x kg(-1), 1.63-2.47 g x kg(-1), 1.35-9.95 g x kg(-1) respectively. The results are useful for the emission inventory development of industrial boilers and the source analysis of PM2.5 in atmospheric environment.

  4. Fracture analysis of tube boiler for physical explosion accident.

    Science.gov (United States)

    Kim, Eui Soo

    2017-09-01

    Material and failure analysis techniques are key tools for determining causation in case of explosive and bursting accident result from material and process defect of product in the field of forensic science. The boiler rupture generated by defect of the welding division, corrosion, overheating and degradation of the material have devastating power. If weak division of boiler burner is fractured by internal pressure, saturated vapor and water is vaporized suddenly. At that time, volume of the saturated vapor and water increases up to thousands of volume. This failure of boiler burner can lead to a fatal disaster. In order to prevent an explosion and of the boiler, it is critical to introduce a systematic investigation and prevention measures in advance. In this research, the cause of boiler failure is investigated through forensic engineering method. Specifically, the failure mechanism will be identified by fractography using scanning electron microscopes (SEM) and Optical Microscopes (OM) and mechanical characterizations. This paper presents a failure analysis of household welding joints for the water tank of a household boiler burner. Visual inspection was performed to find out the characteristics of the fracture of the as-received material. Also, the micro-structural changes such as grain growth and carbide coarsening were examined by optical microscope. Detailed studies of fracture surfaces were made to find out the crack propagation on the weld joint of a boiler burner. It was concluded that the rupture may be caused by overheating induced by insufficient water on the boiler, and it could be accelerated by the metal temperature increase. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Static stability characteristics of the boilers at Oldbury nuclear power station

    International Nuclear Information System (INIS)

    Paynter, R.J.; Rea, J.

    1986-01-01

    The cause of an intermittent load loss at Oldbury Nuclear Power Station is shown to be the high sensitivity of boiler performance to the imposed spatial distribution of boiler gas inlet temperature. This high sensitivity is demonstrated to be a function of the inherent static stability characteristics of the boilers. The installation of orifice plates with a high flow resistance into the feed pipework to the half boilers has greatly reduced the boiler sensitivity and eliminated the intermittent load loss so that, on average, higher electrical generation is obtained from the station. (author)

  6. Feasibility of recovery boiler in paper and pulp industry

    International Nuclear Information System (INIS)

    Rashid, H.

    2010-01-01

    in this paper feasibility of recovery boiler in terms of economics and environmental impacts in studied. Recovery boilers are employed in the pulp and paper industry where the cooking agent is recovered by burning black liquor. Cooking agent is exhausted due to the absorption of lignin (a burnable component) in cooking agent in the process of straw cooking. The process of recovery boiler is to remove lignin by combustion from black liquor, and heat is produced during the combustion of lignin which is used to produce steam. Recovery boiler is economical as it is recovering valuable chemicals and steam is produced as a byproduct. Steam from recovery boiler is also used for concentrating weak black liquor to concentrated black liquor recovering 50% of the utility water being used at the plant. The regenerated water in the form of foul condensate is reused in the process. The recovery of hazardous chemicals also reduces load of environmental pollution. Which otherwise can pollute the water reservoirs, and regeneration of water makes it environmentally friendly plant. Construction and challenges in operation of recovery boiler such as smelt-water explosion are also discussed in this paper. (author)

  7. Multi-unit shutdown due to boiler feedwater chemical excursion

    International Nuclear Information System (INIS)

    Diebel, M.E.

    1991-01-01

    Ontario Hydro's Bruce Nuclear Generating Station 'B' consists of four 935 W CANDU units located on the east shore of Lake Huron in the province of Ontario, Canada. On July 25 and 26, 1989 three of the four operating units were shutdown due to boiler feedwater chemical excursions initiated by a process upset in the Water Treatment Plant that provides demineralized make-up water to all four units. The chemicals that escaped from an ion exchange vessel during a routine regeneration very quickly spread through the condensate make-up system and into the boiler feedwater systems. This resulted in boiler sulfate levels exceeding shutdown limits. A total of 260 GWH of electrical generation was unexpectedly made unavailable to the grid at a time of peak seasonal demand. This event exposed several unforeseen deficiencies and vulnerabilities in the automatic demineralized water make-up quality protection scheme, system designs, operating procedures and the ability of operating personnel to recognize and appropriately respond to such an event. The combination of these factors contributed towards turning a minor system upset into a major multi-unit shutdown. This paper provides the details of the actual event initiation in the Water Treatment Plant and describes the sequence of events that led to the eventual shutdown of three units and near shutdown of the fourth. The design inadequacies, procedural deficiencies and operating personnel responses and difficulties are described. The process of recovering from this event, the flushing out of system piping, boilers and the feedwater train is covered as well as our experiences with setting up supplemental demineralized water supplies including trucking in water and the use of rental trailer mounted demineralizing systems. System design, procedural and operational changes that have been made and that are still being worked on in response to this event are described. The latest evidence of the effect of this event on boiler tube

  8. High Efficiency - Reduced Emissions Boiler Systems for Steam, Heat, and Processing

    Science.gov (United States)

    2012-07-01

    enable energy saving necessary for obtaining Energy Star certification for the whole boiler system. Widespread boiler control updates could be possible...adaptability to different boiler and oil/gas burner configurations, and extensibility to operation with nonconventional fuels (e.g., biogas and syngas...typically operating below or slightly above 80%. Higher efficiency improvements can certainly be obtained via boiler replacement and adoption of

  9. Boiler burden reduced at Bedford site.

    Science.gov (United States)

    Horsley, Chris

    2011-10-01

    With the NHS aiming to reduce its 2007 carbon footprint by 10% by 2015, Chris Horsley, managing director of Babcock Wanson UK, a provider of industrial boilers and burners, thermal oxidisers, air treatment, water treatment, and associated services, looks at how one NHS Trust has approached the challenge, and considerably reduced its carbon emissions, by refurbishing its boiler house and moving from oil to gas-fired steam generation.

  10. Increasing the efficiency of the condensing boiler

    Science.gov (United States)

    Zaytsev, ON; Lapina, EA

    2017-11-01

    Analysis of existing designs of boilers with low power consumption showed that the low efficiency of the latter is due to the fact that they work in most cases when the heating period in the power range is significantly less than the nominal power. At the same time, condensing boilers do not work in the most optimal mode (in condensing mode) in the central part of Russia, a significant part of their total operating time during the heating season. This is due to existing methods of equipment selection and joint operation with heating systems with quantitative control of the coolant. It was also revealed that for the efficient operation of the heating system, it is necessary to reduce the inertia of the heat generating equipment. Theoretical patterns of thermal processes in the furnace during combustion gas at different radiating surfaces location schemes considering the influence of the very furnace configuration, characterized in that to reduce the work condensing boiler in conventional gas boiler operation is necessary to maintain a higher temperature in the furnace (in the part where spiral heat exchangers are disposed), which is possible when redistributing heat flow - increase the proportion of radiant heat from the secondary burner emitter allow Perey For the operation of the condensing boiler in the design (condensation) mode practically the entire heating period.

  11. Apparatus and method of controlling the thermal performance of an oxygen-fired boiler

    Science.gov (United States)

    Levasseur, Armand A.; Kang, Shin G.; Kenney, James R.; Edberg, Carl D.

    2017-09-05

    Disclosed herein is a method of controlling the operation of an oxy-fired boiler; the method comprising combusting a fuel in a boiler; producing a heat absorption pattern in the boiler; discharging flue gases from the boiler; recycling a portion of the flue gases to the boiler; combining a first oxidant stream with the recycled flue gases to form a combined stream; splitting the combined stream into several fractions; and introducing each fraction of the combined stream to the boiler at different points of entry to the boiler.

  12. Quality and generation rate of solid residues in the boiler of a waste-to-energy plant

    DEFF Research Database (Denmark)

    Allegrini, Elisa; Boldrin, Alessio; Jansson, S.

    2014-01-01

    The Danish waste management system relies significantly on waste-to-energy (WtE) plants. The ash produced at the energy recovery section (boiler ash) is classified as hazardous waste, and is commonly mixed with fly ash and air pollution control residues before disposal. In this study, a detailed...... characterization of boiler ash from a Danish grate-based mass burn type WtE was performed, to evaluate the potential for improving ash management. Samples were collected at 10 different points along the boiler's convective part, and analysed for grain size distribution, content of inorganic elements......, polychlorinated dibenzo-. p-dioxins and dibenzofurans (PCDD and PCDF), and leaching of metals. For all samples, PCDD and PCDF levels were below regulatory limits, while high pH values and leaching of e.g. Cl were critical. No significant differences were found between boiler ash from individual sections...

  13. Influence of boiler load on water tubes burnout

    Energy Technology Data Exchange (ETDEWEB)

    Said, S.A.M.; Habib, M.A.; Badr, H.M.; Mansour, R. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia). Dept. of Mechanical Engineering

    2009-07-01

    The influence of boiler loads on water tube burnout was investigated. The in-service boiler had 2 burners at different levels located in the front of the burner's wall. Homogenous-flow and separated-flow models were designed to simulate the water circulation and combustion processes inside the boiler tubes. Heat flux calculations were derived by solving the conservation of mass, momentum, and energy equations and species concentration as well as by solving turbulence, reaction rate, and radiation model equations. Results of the study showed that heat flux during full loads ranged from close to 0 to 270 kW/m2. The right side screen wall of the burner exhibited higher heat flux values in the middle region of the wall where large areas were subjected to heat flux close to a maximum of 270 kW/m2. Results also included reductions in heat flux values at partial loads. Maximum values were reduced from 270 kW/m2 ato 230 kW/m2 at 75 per cent capacity and 200 kW/m2 at 60 per cent capacity. The rate of steam generation increased from 0.1 kg/s to 0.153 kg/s when the distance from the burner wall increased from 2 meters to 12 meters. 10 refs., 10 figs.

  14. Quality and generation rate of solid residues in the boiler of a waste-to-energy plant.

    Science.gov (United States)

    Allegrini, E; Boldrin, A; Jansson, S; Lundtorp, K; Fruergaard Astrup, T

    2014-04-15

    The Danish waste management system relies significantly on waste-to-energy (WtE) plants. The ash produced at the energy recovery section (boiler ash) is classified as hazardous waste, and is commonly mixed with fly ash and air pollution control residues before disposal. In this study, a detailed characterization of boiler ash from a Danish grate-based mass burn type WtE was performed, to evaluate the potential for improving ash management. Samples were collected at 10 different points along the boiler's convective part, and analysed for grain size distribution, content of inorganic elements, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD and PCDF), and leaching of metals. For all samples, PCDD and PCDF levels were below regulatory limits, while high pH values and leaching of e.g. Cl were critical. No significant differences were found between boiler ash from individual sections of the boiler, in terms of total content and leaching, indicating that separate management of individual ash fractions may not provide significant benefits. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Application of signature analysis for determining the operational readiness of motor-operated valves under blowdown test conditions

    International Nuclear Information System (INIS)

    Haynes, H.D.

    1988-01-01

    In support of the NRC-funded Nuclear Plant Aging Research (NPAR) program, Oak Ridge National Laboratory (ORNL) has carried out a comprehensive aging assessment of Motor-Operated Valves (MOVs). As part of this work, ORNL participated in the Gate Valve Flow Interruption Blowdown (GVFIB) tests carried out in Huntsville, Alabama. The GVFIB tests were intended primarily to determine the behavior of motor-operated gate valves under the temperature, pressure, and flow conditions expected to be experienced by isolation valves in Boiling Water Reactors (BWRs) during a high energy line break (blowdown) outside of containment. In addition, the tests provided an excellent opportunity to evaluate signature analysis methods for determining the operational readiness of the MOVs under those accident conditions. ORNL acquired motor current and torque switch shaft angular position data on two test MOVs during various times of the GVFIB tests. The reduction in operating ''margin'' of both MOVs due to the presence of additional valve running loads imposed by high flow was clearly observed in motor current and torque switch angular position signatures. In addition, the effects of differential pressure, fluid temperature, and line voltage on MOV operations were observed and more clearly understood as a result of utilizing signature analysis techniques. 1 ref.; 16 figs

  16. Cross connecting absorber module inlets of multiple boiler units

    International Nuclear Information System (INIS)

    Cirillo, A.J.; Sperber, P.K.; Belavadi, V.N.; Mukherji, A.

    1991-01-01

    The retrofitting of scrubbers downstream of existing balanced draft boilers is often accomplished by the addition of induced draft (ID) booster fans. By creating a common plenum between the ID fans and the ID booster fans of two or more boiler-absorber trains, absorber module capacity may be shared among multiple boiler units. At Harrison Power Station, three (3) 4,900,000 lb/hour boilers (640 MWe Gross) will be linked through a common plenum. This sharing capability precludes the need to add standby module capacity, thereby saving capital dollars and keeping project critical path schedules, which typically run through absorber procurement and construction, to a minimum. Through damper placement in the ductwork cross connections, unitized boiler-absorber module operation or common plenum operation may be obtained, thus providing both operational flexibility and reliability. Additionally, open plenum operation allows the removal of an absorber unit from service, while keeping its associated boiler on line, thereby precluding 'cold starts' and maintaining overall unit availabilities. As either unitized or common plenum operation is possible with the cross connection, the furnace draft control systems of each boiler must be examined for varying load operation and trip conditions. This paper addresses the means by which to analyze such cross connection operational scenarios while maintaining compliance with furnace flame out safety guidelines, and will discuss the physical design considerations, ramifications and benefits of same, with select emphasis on what is being implemented at the Harrison Power Station

  17. Supercritical boiler material selection using fuzzy analytic network process

    Directory of Open Access Journals (Sweden)

    Saikat Ranjan Maity

    2012-08-01

    Full Text Available The recent development of world is being adversely affected by the scarcity of power and energy. To survive in the next generation, it is thus necessary to explore the non-conventional energy sources and efficiently consume the available sources. For efficient exploitation of the existing energy sources, a great scope lies in the use of Rankin cycle-based thermal power plants. Today, the gross efficiency of Rankin cycle-based thermal power plants is less than 28% which has been increased up to 40% with reheating and regenerative cycles. But, it can be further improved up to 47% by using supercritical power plant technology. Supercritical power plants use supercritical boilers which are able to withstand a very high temperature (650-720˚C and pressure (22.1 MPa while producing superheated steam. The thermal efficiency of a supercritical boiler greatly depends on the material of its different components. The supercritical boiler material should possess high creep rupture strength, high thermal conductivity, low thermal expansion, high specific heat and very high temperature withstandability. This paper considers a list of seven supercritical boiler materials whose performance is evaluated based on seven pivotal criteria. Given the intricacy and difficulty of this supercritical boiler material selection problem having interactions and interdependencies between different criteria, this paper applies fuzzy analytic network process to select the most appropriate material for a supercritical boiler. Rene 41 is the best supercritical boiler material, whereas, Haynes 230 is the worst preferred choice.

  18. Modelling transition states of a small once-through boiler

    Energy Technology Data Exchange (ETDEWEB)

    Talonpoika, T [Lappeenranta Univ. of Technology (Finland). Dept. of Energy Technology

    1998-12-31

    This article presents a model for the unsteady dynamic behaviour of a once-through counter flow boiler that uses an organic working fluid. The boiler is a compact waste-heat boiler without a furnace and it has a preheater, a vaporiser and a superheater. The relative lengths of the boiler parts vary with the operating conditions since they are all parts of a single tube. The boiler model is presented using a selected example case that uses toluene as the process fluid and flue gas from natural gas combustion as the heat source. The dynamic behaviour of the boiler means transition from the steady initial state towards another steady state that corresponds to the changed process conditions. The solution method chosen is to find such a pressure of the process fluid that the mass of the process fluid in the boiler equals the mass calculated using the mass flows into and out of the boiler during a time step, using the finite difference method. A special method of fast calculation of the thermal properties is used, because most of the calculation time is spent in calculating the fluid properties. The boiler is divided into elements. The values of the thermodynamic properties and mass flows are calculated in the nodes that connect the elements. Dynamic behaviour is limited to the process fluid and tube wall, and the heat source is regarded as to be steady. The elements that connect the preheater to the vaporiser and the vaporiser to the superheater are treated in a special way that takes into account a flexible change from one part to the other. The initial state of the boiler is received from a steady process model that is not a part of the boiler model. The known boundary values that may vary during the dynamic calculation were the inlet temperature and mass flow rates of both the heat source fluid and the process fluid. The dynamic boiler model is analysed for linear and step charges of the entering fluid temperatures and flow rates. The heat source side tests show that

  19. Modelling transition states of a small once-through boiler

    Energy Technology Data Exchange (ETDEWEB)

    Talonpoika, T. [Lappeenranta Univ. of Technology (Finland). Dept. of Energy Technology

    1997-12-31

    This article presents a model for the unsteady dynamic behaviour of a once-through counter flow boiler that uses an organic working fluid. The boiler is a compact waste-heat boiler without a furnace and it has a preheater, a vaporiser and a superheater. The relative lengths of the boiler parts vary with the operating conditions since they are all parts of a single tube. The boiler model is presented using a selected example case that uses toluene as the process fluid and flue gas from natural gas combustion as the heat source. The dynamic behaviour of the boiler means transition from the steady initial state towards another steady state that corresponds to the changed process conditions. The solution method chosen is to find such a pressure of the process fluid that the mass of the process fluid in the boiler equals the mass calculated using the mass flows into and out of the boiler during a time step, using the finite difference method. A special method of fast calculation of the thermal properties is used, because most of the calculation time is spent in calculating the fluid properties. The boiler is divided into elements. The values of the thermodynamic properties and mass flows are calculated in the nodes that connect the elements. Dynamic behaviour is limited to the process fluid and tube wall, and the heat source is regarded as to be steady. The elements that connect the preheater to the vaporiser and the vaporiser to the superheater are treated in a special way that takes into account a flexible change from one part to the other. The initial state of the boiler is received from a steady process model that is not a part of the boiler model. The known boundary values that may vary during the dynamic calculation were the inlet temperature and mass flow rates of both the heat source fluid and the process fluid. The dynamic boiler model is analysed for linear and step charges of the entering fluid temperatures and flow rates. The heat source side tests show that

  20. Ultra-Supercritical Pressure CFB Boiler Conceptual Design Study

    Energy Technology Data Exchange (ETDEWEB)

    Zhen Fan; Steve Goidich; Archie Robertson; Song Wu

    2006-06-30

    Electric utility interest in supercritical pressure steam cycles has revived in the United States after waning in the 1980s. Since supercritical cycles yield higher plant efficiencies than subcritical plants along with a proportional reduction in traditional stack gas pollutants and CO{sub 2} release rates, the interest is to pursue even more advanced steam conditions. The advantages of supercritical (SC) and ultra supercritical (USC) pressure steam conditions have been demonstrated in the high gas temperature, high heat flux environment of large pulverized coal-fired (PC) boilers. Interest in circulating fluidized bed (CFB) combustion, as an alternative to PC combustion, has been steadily increasing. Although CFB boilers as large as 300 MWe are now in operation, they are drum type, subcritical pressure units. With their sizes being much smaller than and their combustion temperatures much lower than those of PC boilers (300 MWe versus 1,000 MWe and 1600 F versus 3500 F), a conceptual design study was conducted herein to investigate the technical feasibility and economics of USC CFB boilers. The conceptual study was conducted at 400 MWe and 800 MWe nominal plant sizes with high sulfur Illinois No. 6 coal used as the fuel. The USC CFB plants had higher heating value efficiencies of 40.6 and 41.3 percent respectively and their CFB boilers, which reflect conventional design practices, can be built without the need for an R&D effort. Assuming construction at a generic Ohio River Valley site with union labor, total plant costs in January 2006 dollars were estimated to be $1,551/kW and $1,244/kW with costs of electricity of $52.21/MWhr and $44.08/MWhr, respectively. Based on the above, this study has shown that large USC CFB boilers are feasible and that they can operate with performance and costs that are competitive with comparable USC PC boilers.

  1. On the design of residential condensing gas boilers

    Energy Technology Data Exchange (ETDEWEB)

    Naeslund, M.

    1997-02-01

    Two main topics are dealt with in this thesis. Firstly, the performance of condensing boilers with finned tube heat exchangers and premix burners is evaluated. Secondly, ways of avoiding condensate formation in the flue system are evaluated. In the first investigation, a transient heat transfer approach is used to predict performance of different boiler configurations connected to different heating systems. The smallest efficiency difference between heat loads and heating systems is obtained when the heat exchanger gives a small temperature difference between flue gases and return water, the heat transfer coefficient is low and the thermostat hysteresis is large. Taking into account heat exchanger size, the best boiler is one with higher heat transfer per unit area which only causes a small efficiency loss. The total heating cost at part load, including gas and electricity, has a maximum at the lowest simulated heat load. The heat supplied by the circulation heat pump is responsible for this. The second investigation evaluates methods of drying the flue gases. Reheating the flue gases in different ways and water removal in an adsorbent bed are evaluated. Reheating is tested in two specially designed boilers. The necessary reheating is calculated to approximately 100-150 deg C if an uninsulated masonry chimney is used. The tested boilers show that it is possible to design a proper boiler. The losses, stand-by and convective/radiative, must be kept at a minimum in order to obtain a high efficiency. 86 refs, 70 figs, 16 tabs

  2. Studies Concerning Water-Surface Deposits in Recovery Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Strandberg, O; Arvesen, J; Dahl, L

    1971-11-15

    The Feed-water Committee of the Stiftelsen Svensk Cellulosaforskning (Foundation for Swedish Cellulose Research) has initiated research and investigations which aim to increase knowledge about water-surface deposits in boiler tubes, and the resulting risks of gas-surface corrosion in chemical recovery boilers (sulphate pulp industry). The Committee has arranged with AB Atomenergi, Studsvik, for investigations into the water-surface deposits on tubes from six Scandinavian boilers. These investigations have included direct measurements of the thermal conductivity of the deposits, and determinations of their quantity, thickness and structure have been carried out. Previous investigations have shown that gas-surface corrosion can occur at tube temperatures above 330 deg C. The measured values for the thermal conductivity of the deposits indicate that even with small quantities of deposit (c. 1 g/dm2 ) and a moderate boiler pressure (40 atm), certain types of deposit can give rise to the above-mentioned surface temperature, at which the risk of gas-surface corrosion becomes appreciable. For higher boiler pressures the risk is great even with a minimal layer of deposit. The critical deposit thickness can be as low as 0.1 mm

  3. Energy efficiency in boilers; Eficiencia energetica em caldeiras

    Energy Technology Data Exchange (ETDEWEB)

    Ponte, Ricardo Silva The [Universidade Federal do Ceara (UFCE), Fortaleza, CE (Brazil). Dept. de Engenharia Eletrica], email: ricthe@dee.ufc.br; Barbosa, Marcos Antonio Pinheiro; Rufino, Maria da Gracas [Universidade de Fortaleza (UNIFOR), CE (Brazil). Dept. de Engenharia Eletrica], emails: marcos_apb@unifor.br, gsrufino@unifor.br

    2010-07-01

    The boiler is vapor generator equipment that has been widely used in industrial milieu as in electric energy generation in thermoelectric plants. Since their first conception, the boilers have been changed in order to provide security and energetic efficiency. They can present high losses of energy if they don't be operated according to some criteria. A considerable part of boilers operation cost include fuel expenses. So, the adoption of effective steps in order to reduce fuel consumption is important to industry economy, besides it brings environmental benefits through the reduction of pollution liberation. The present article has the objective of emphasizing the effective steps for the economy of energy in boilers, such as, the regulation of combustion; the control of soot and incrustations; the installation of economizers, air heaters and super heaters; the reduction in purges and reintroduction of condensed steam. (author)

  4. Utilization of coal-water fuels in fire-tube boilers

    International Nuclear Information System (INIS)

    Sommer, T.M.; Melick, T.A.

    1991-01-01

    The Energy and Environmental Research Corporation (EER), in cooperation with the University of Alabama and Jim Walter Resources, has been awarded a DOE contract to retrofit an existing fire-tube boiler with a coal-water slurry firing system. Recognizing that combustion efficiency is the principle concern when firing slurry in fire-tube boilers, EER has focused the program on innovative approaches for improving carbon burnout without major modifications to the boiler. This paper reports on the program which consists of five tasks. Task 1 provides for the design and retrofit of the host boiler to fire coal-water slurry. Task 2 is a series of optimization tests that will determine the effects of adjustable parameters on boiler performance. Task 3 will perform about 1000 hours of proof-of-concept system tests. Task 4 will be a comprehensive review of the test data in order to evaluate the economics of slurry conversions. Task 5 will be the decommissioning of the test facility if required

  5. Air emissions of small-scale (< 10 MW) biomass boilers. Review of three field tests

    International Nuclear Information System (INIS)

    Autret, E.

    2011-01-01

    Objectives of greenhouse gases emission reduction, which encourages bio-energy development for heat purposes, are compatible with air-quality policies if the concept of clean biomass combustion is applied. This paper presents actual emission levels of atmospheric pollutants of small-scale ( 2 , NO x , fine particulate matters, metallic compounds. Installation design (power, flue-gas cleaning techno logy) also has a major impact on organic pollutants and fine particulate matter emissions. A large majority of boilers have very low emission levels. Guidelines are finally stated to keep on promoting small-scale biomass boilers in order to be air-quality compatible and efficient to fight climate change. (author)

  6. Model technique for aerodynamic study of boiler furnace

    Energy Technology Data Exchange (ETDEWEB)

    1966-02-01

    The help of the Division was recently sought to improve the heat transfer and reduce the exit gas temperature in a pulverized-fuel-fired boiler at an Australian power station. One approach adopted was to construct from Perspex a 1:20 scale cold-air model of the boiler furnace and to use a flow-visualization technique to study the aerodynamic patterns established when air was introduced through the p.f. burners of the model. The work established good correlations between the behaviour of the model and of the boiler furnace.

  7. Gas fired boilers and atmospheric pollution

    International Nuclear Information System (INIS)

    Chiaranello, J.M.

    1991-01-01

    A general analysis concerning atmospheric pollution is presented: chemical composition and vertical distribution of atmosphere and pollutants, chemical reactions, ozone destruction and production cycles, COx, NOx and SOx pollutions. The gas fired boiler number and repartition in France are presented and the associated pollution is analyzed (CO2, CO, NOx) and quantified. Various pollution control technics concerning gas fired boiler pollutants are described and a pollution criterion for clean gas fired generators is proposed

  8. 49 CFR 230.20 - Alteration and repair report for steam locomotive boilers.

    Science.gov (United States)

    2010-10-01

    ... boilers. 230.20 Section 230.20 Transportation Other Regulations Relating to Transportation (Continued... boilers. (a) Alterations. When an alteration is made to a steam locomotive boiler, the steam locomotive... maintained for the life of the boiler. (See appendix B of this part.) (b) Welded and riveted repairs to...

  9. Hybrid Intelligent Warning System for Boiler tube Leak Trips

    Directory of Open Access Journals (Sweden)

    Singh Deshvin

    2017-01-01

    Full Text Available Repeated boiler tube leak trips in coal fired power plants can increase operating cost significantly. An early detection and diagnosis of boiler trips is essential for continuous safe operations in the plant. In this study two artificial intelligent monitoring systems specialized in boiler tube leak trips have been proposed. The first intelligent warning system (IWS-1 represents the use of pure artificial neural network system whereas the second intelligent warning system (IWS-2 represents merging of genetic algorithms and artificial neural networks as a hybrid intelligent system. The Extreme Learning Machine (ELM methodology was also adopted in IWS-1 and compared with traditional training algorithms. Genetic algorithm (GA was adopted in IWS-2 to optimize the ANN topology and the boiler parameters. An integrated data preparation framework was established for 3 real cases of boiler tube leak trip based on a thermal power plant in Malaysia. Both the IWSs were developed using MATLAB coding for training and validation. The hybrid IWS-2 performed better than IWS-1.The developed system was validated to be able to predict trips before the plant monitoring system. The proposed artificial intelligent system could be adopted as a reliable monitoring system of the thermal power plant boilers.

  10. 46 CFR 52.25-7 - Electric boilers (modifies PEB-1 through PEB-19).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Electric boilers (modifies PEB-1 through PEB-19). 52.25... ENGINEERING POWER BOILERS Other Boiler Types § 52.25-7 Electric boilers (modifies PEB-1 through PEB-19). Electric boilers required to comply with this part must meet the applicable provisions in this part and the...

  11. The early operation of the helical once-through boilers at Heysham 1 and Hartlepool

    International Nuclear Information System (INIS)

    Mathews, A.J.

    1988-01-01

    The Heysham 1 and Hartlepool AGR Reactors are equipped with 'pod' boilers set into the walls of the Pre-stressed Concrete Pressure Vessel. Each Reactor unit has eight pod boilers, which are of a somewhat unique single pressure, once through, helically wound type incorporating a reheater. The pods are provided with a limited amount of strain gauge and thermocouple instrumentation concentrated mainly in two specially instrumented boilers at each site. During Commissioning prior to power raising, extensive noise and vibration tests utilising the special attain gauge instrumented boilers, gave encouraging results. This has led to an increase in coolant gas mass flow of 5% above the design level. Following power raising in 1983 and 1984, detailed boiler performance testing, mainly using the special thermocouple instrumented boilers, showed that the actual behaviour differed from the computer design predictions. A major temperature tilt existed across the boiler tubes resulting in higher than predicted temperatures in the outer radius rows of tubes and the reverse situation in the inner tubes. The effect differed in magnitude between Hartlepool Reactor 1 and the other three Reactors probably due to construction differences. As a result output was initially limited to approximately 58% of design (380 MW (Generated)). A major programme of altering the flow control ferrules was carried out during the first statutory overhauls in 1985 and 1986. The initial results from Heysham 1 were not very encouraging (a gain of 70 MW(e)) but further computer model correlations led to revised patterns in Heysham and Hartlepool Reactor 2 which have since yielded improvements in output potential of up to 200 MW(e). The paper discusses the commissioning test results described above and describes the details of the extensive work carried out to achieve higher output. (author)

  12. Investigation of fuel lean reburning process in a 1.5 MW boiler

    International Nuclear Information System (INIS)

    Kim, Hak Young; Baek, Seung Wook; Kim, Se Won

    2012-01-01

    Highlights: → We examine a detailed study of fuel lean reburning process in a 1.5 MW gas-fired boiler. → Experimental and numerical researches are conducted. → We investigate change in the level of NO X and CO emission. → The recirculation flow is important in the fuel lean reburning process. -- Abstract: This paper examines a detailed study of fuel lean reburning process applied to a 1.5 MW gas-fired boiler. Experimental and numerical studies were carried out to investigate the effect of the fuel lean reburning process on the NO X reduction and CO emission. Natural gas (CH 4 ) was used as the reburn as well as the main fuel. The amount of the reburn fuel, injection location and thermal load of boiler were considered as experimental parameters. The flue gas data revealed that the fuel lean reburning process led to NO X reduction up to 43%, while CO emission was limited to less than 30 ppm for the 100% thermal load condition. The commercial computational fluid dynamics code FLUENT 6.3, which included turbulence, chemical reaction, radiation and NO modeling, was used to predict the fluid flow and heat transfer characteristics under various operational conditions in the boiler. Subsequently, predicted results were validated with available measured data such as gas temperature distributions and local mean NO X concentrations. The detailed numerical results showed that the recirculation flow developed inside the boiler was found to play an important role in improving the effectiveness of fuel lean reburning process.

  13. Exergy analysis on industrial boiler energy conservation and emission evaluation applications

    Science.gov (United States)

    Li, Henan

    2017-06-01

    Industrial boiler is one of the most energy-consuming equipments in china, the annual consumption of energy accounts for about one-third of the national energy consumption. Industrial boilers in service at present have several severe problems such as small capacity, low efficiency, high energy consumption and causing severe pollution on environment. In recent years, our country in the big scope, long time serious fog weather, with coal-fired industrial boilers is closely related to the regional characteristics of high strength and low emissions [1]. The energy-efficient and emission-reducing of industry boiler is of great significance to improve China’s energy usage efficiency and environmental protection. Difference in thermal equilibrium theory is widely used in boiler design, exergy analysis method is established on the basis of the first law and second law of thermodynamics, by studying the cycle of the effect of energy conversion and utilization, to analyze its influencing factors, to reveal the exergy loss of location, distribution and size, find out the weak links, and a method of mining system of the boiler energy saving potential. Exergy analysis method is used for layer combustion boiler efficiency and pollutant emission characteristics analysis and evaluation, and can more objectively and accurately the energy conserving potential of the mining system of the boiler, find out the weak link of energy consumption, and improve equipment performance to improve the industrial boiler environmental friendliness.

  14. 46 CFR 97.15-15 - Examination of boilers and machinery.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Examination of boilers and machinery. 97.15-15 Section... VESSELS OPERATIONS Tests, Drills, and Inspections § 97.15-15 Examination of boilers and machinery. It shall be the duty of the chief engineer when assuming charge of the boilers and machinery of a vessel to...

  15. 46 CFR 32.35-1 - Boilers and machinery-TB/ALL.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Boilers and machinery-TB/ALL. 32.35-1 Section 32.35-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Main and Auxiliary Machinery § 32.35-1 Boilers and machinery—TB/ALL. Boilers, main and auxiliary...

  16. 46 CFR 78.17-30 - Examination of boilers and machinery.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Examination of boilers and machinery. 78.17-30 Section... OPERATIONS Tests, Drills, and Inspections § 78.17-30 Examination of boilers and machinery. It shall be the duty of the chief engineer when assuming charge of the boilers and machinery of a vessel to examine...

  17. 46 CFR 63.25-3 - Electric hot water supply boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Electric hot water supply boilers. 63.25-3 Section 63.25... water supply boilers. (a) Electric hot water supply boilers that have a capacity not greater than 454... section except the periodic testing required by paragraph (j) of this section. Electric hot water supply...

  18. Boiler house modernization through shared savings program

    Energy Technology Data Exchange (ETDEWEB)

    Breault, R.W. [Tecogen, Waltham, MA (United States)

    1995-12-31

    Throughout Poland as well as the rest of Eastern Europe, communities and industries rely on small heat only boilers to provide district and process heat. Together these two sectors produce about 85,000 MW from boilers in the 2 to 35 MW size range. The bulk of these units were installed prior to 1992 and must be completely overhauled to meet the emission regulations which will be coming into effect on January 1, 1998. Since the only practical fuel is coal in most cases, these boilers must be either retrofit with emission control technology or be replaced entirely. The question that arises is how to accomplish this given the current tight control of capital in Poland and other East European countries. A solution that we have for this problem is shared savings. These boilers are typically operating with a quiet low efficiency as compared to western standards and with excessive manual labor. Installing modernization equipment to improve the efficiency and to automate the process provides savings. ECOGY provides the funds for the modernization to improve the efficiency, add automation and install emission control equipment. The savings that are generated during the operation of the modernized boiler system are split between the client company and ECOGY for a number of years and then the system is turned over in entirety to the client. Depending on the operating capacity, the shared savings agreement will usually span 6 to 10 years.

  19. Advanced process control for solid fuel boilers. Phase 2; Avancerad processtyrning av fastbraensleeldade rostpannor. Etapp 2

    Energy Technology Data Exchange (ETDEWEB)

    Ehleskog, Rickard; Lundborg, Rickard; Schuster, Robert; Wrangensten, Lars [AaF-Energikonsult AB, Stockholm (Sweden)

    2002-04-01

    AaF-Energikonsult AB runs within the research programme 'Applied combustion technology' a bigger project under the title 'Possibilities to improved operation of forest-industrial bark boilers by optimised combustion control'. In the project several measures have been identified, that can help to improve the conditions favourable for the combustion and fluid dynamic, for four selected reference grate boilers and grate boilers in general. The boiler at Billerud's paper mill, which is underlying to this project in several ways, is now being rebuilt. During the modifications of the boiler the existing control system will be modified with modern technique to enable operation with low emissions. The new control system consists of several parts, of witch the IR-based ones for fuel input and grate feeding are two totally separated systems. The pressure of the dome, i.e. the effect of the boiler, is the most superior parameter, and is regulated with the combustion air. Amounts of secondary and tertiary air are quoted to the total combustion airflow. The primary oxygen level is primarily regulated with the tertiary air. But if this won't be done without the tertiary air to diverge from de defined working area, the secondary air will assist. The oxygen set point is constantly decreasing until the CO-level exceeds a defined level. Then, the set point will be momentary increased. CFD-calculations have been performed for the modified boiler in Karlsborg for two different loads. The simulations clearly show that the flue gases have a more even retention time in the modified boiler and that the flow pattern is significantly improved. However, concentration gradients of oxygen and temperature gradients still exist. The conclusion is that there is a potential for further improving of the air and flue gas control strategies. The following new control strategies are proposed in the project based on conventional analyse technology; If the furnace

  20. Failure analysis of boiler tubes in lakhra coal power plant

    International Nuclear Information System (INIS)

    Shah, A.; Baluch, M.M.; Ali, A.

    2010-01-01

    Present work deals with the failure analysis of a boiler tube in Lakhra fluidized bed combustion power station. Initially, visual inspection technique was adopted to analyse the fractured surface. Detailed microstructural investigations of the busted boiler tube were carried out using light optical microscope and scanning electron microscope. The hardness tests were also performed. A 50 percent decrease in hardness of intact portion of the tube material and from area adjacent to failure was measured, which was found to be in good agreement with the wall thicknesses measured of the busted boiler tube i.e. 4 mm and 2 mm from unaffected portion and ruptured area respectively. It was concluded that the major cause of failure of boiler tube is erosion of material which occurs due the coal particles strike at the surface of the tube material. Since the temperature of boiler is not maintained uniformly. The variations in boiler temperature can also affect the material and could be another reason for the failure of the tube. (author)

  1. Multi-objective Optimization of Coal-fired Boiler Combustion Based on NSGA-II

    OpenAIRE

    Tingfang Yu; Hongzhen Zhu; Chunhua Peng

    2013-01-01

    NOx emission characteristics and overall heat loss model for a 300MW coal-fired boiler were established by Back Propagation (BP) neural network, by which the the functional relationship between outputs (NOx emissions & overall heat loss of the boiler) and inputs (operational parameters of the boiler) of a coal-fired boiler can be predicted. A number of field test data from a full-scale operating 300MWe boiler were used to train and verify the BP model. The NOx emissions & heat loss pr...

  2. Characteristics of particulate-bound polycyclic aromatic hydrocarbons emitted from industrial grade biomass boilers.

    Science.gov (United States)

    Yang, Xiaoyang; Geng, Chunmei; Sun, Xuesong; Yang, Wen; Wang, Xinhua; Chen, Jianhua

    2016-02-01

    Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic or mutagenic and are important toxic pollutants in the flue gas of boilers. Two industrial grade biomass boilers were selected to investigate the characteristics of particulate-bound PAHs: one biomass boiler retro-fitted from an oil boiler (BB1) and one specially designed (BB2) biomass boiler. One coal-fired boiler was also selected for comparison. By using a dilution tunnel system, particulate samples from boilers were collected and 10 PAH species were analyzed by gas chromatography-mass spectrometry (GC-MS). The total emission factors (EFs) of PAHs ranged from 0.0064 to 0.0380 mg/kg, with an average of 0.0225 mg/kg, for the biomass boiler emission samples. The total PAH EFs for the tested coal-fired boiler were 1.8 times lower than the average value of the biomass boilers. The PAH diagnostic ratios for wood pellets and straw pellets were similar. The ratio of indeno(1,2,3-cd)pyrene/[indeno(1,2,3-cd)pyrene+benzo(g,h,i)perylene] for the two biomass boilers was lower than those of the reference data for other burning devices, which can probably be used as an indicator to distinguish the emission of biomass boilers from that of industrial coal-fired boilers and residential stoves. The toxic potential of the emission from wood pellet burning was higher than that from straw pellet burning, however both of them were much lower than residential stove exhausts. Copyright © 2015. Published by Elsevier B.V.

  3. Ecological boiler modernization, feasible energy solutions

    International Nuclear Information System (INIS)

    Krcek, F.; Matev, M.; Sykora, J.; Chladek, J.

    2005-01-01

    Alstom Power, s.r.o., ALSTOM GROUP in Brno, Czech Republic is a successor of PBS (First Brno Machine Works). PBS was a well-known company in Bulgaria - mainly as Heating Power Plant (HPP) and Industrial Plant supplier of boilers, industrial steam turbines, milling systems, heat exchangers Btc. PBS has been privatised in two stages starting at1993 year. Alstom recently deals with boiler and heat exchanger products. Industrial turbine but has been sold to Siemens in 2004

  4. 46 CFR 196.15-15 - Examination of boilers and machinery.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Examination of boilers and machinery. 196.15-15 Section... VESSELS OPERATIONS Test, Drills, and Inspections § 196.15-15 Examination of boilers and machinery. (a) It shall be the duty of the chief engineer when he assumes charge of the boilers and machinery of a vessel...

  5. Occurrence and prevention of enhanced oxide deposition in boiler flow control orifices

    International Nuclear Information System (INIS)

    Woolsey, I.S.; Thomas, D.M.; Garbett, K.; Bignold, G.J.

    1989-10-01

    Once-through boilers, such as those of the AGRs, incorporate flow control orifices at the boiler inlet to ensure a satisfactory flow distribution and stability in the parallel flow paths of the boiler. Deposition of corrosion products in the flow control orifice leads to changes in the orifice pressure loss characteristics, which could lead to problems of flow maldistribution within the boiler, and any adverse consequences resulting from this, such as tube overheating. To date, AGR boiler inlet orifices have not suffered significant fouling due to corrosion products in the boiler feedwater. However, oxide deposition in orifices has been observed in other plants, and in experimental loops operating under conditions very similar to those at inlet to AGR boilers. The lack of deposition in AGR flow control orifices is therefore somewhat surprising. This Report describes studies carried out to examine the factors controlling oxide deposition in flow control orifices, the intention of the work being to explain why deposition has not occurred in AGR boilers to date, and to provide means of preventing deposition in the future should this prove necessary. (author)

  6. Exergetic Modelling of Oil-Fired Steam Boilers | Ohijeagbon ...

    African Journals Online (AJOL)

    The performance variables and potential for energy savings in oil-fired industrial steam boilers were studied. Operational parameters of steam boilers using low pour fuel oil (LPFO) and diesel were used to determine thermodynamic properties of material streams and exergetic parameters. Analysis of thermodynamic ...

  7. Combining satellite imagery with forest inventory data to assess damage severity following a major blowdown event in northern Minnesota, USA

    Science.gov (United States)

    Mark D. Nelson; Sean P. Healey; W. Keith Moser; Mark H. Hansen

    2009-01-01

    Effects of a catastrophic blowdown event in northern Minnesota, USA were assessed using field inventory data, aerial sketch maps and satellite image data processed through the North American Forest Dynamics programme. Estimates were produced for forest area and net volume per unit area of live trees pre- and post-disturbance, and for changes in volume per unit area and...

  8. Economic valuation of heat pumps and electric boilers in the Danish energy system

    International Nuclear Information System (INIS)

    Nielsen, Maria Grønnegaard; Morales, Juan Miguel; Zugno, Marco; Pedersen, Thomas Engberg; Madsen, Henrik

    2016-01-01

    Highlights: • We assess the economic value of heat pumps and electric boilers in Denmark. • The daily operation of a heat and power system is modeled by stochastic programming. • Deterministic models overestimate the value of heat pumps and electric boilers. • Heat pumps and electric boilers can reduce the cost of operating the Danish system. • Falling power prices may boost the future value of heat pumps and electric boilers. - Abstract: Heat pumps (HP) and electric immersion boilers (EB) have great potential to increase flexibility in energy systems. In parallel, decreasing taxes on electricity-based heat production are creating a more favorable economic environment for the deployment of these units in Denmark. In this paper, the economic value of heat pumps and electric boilers is assessed by simulating their day-to-day market performance using a novel operational strategy based on two-stage stochastic programming. This stochastic model is employed to optimize jointly the daily operation of HPs and EBs along with the Combined Heat and Power (CHP) units in the system. Uncertainty in the heat demand and power price is modeled via scenarios representing different plausible paths for their future evolution. A series of case-studies are performed using real-world data for the heat and power systems in the Copenhagen area during four representative weeks of 2013. We show that the use of stochastic operational models is critical, as standard deterministic models provide an overestimation of the added benefits from the installation of HPs and EBs, thus leading to over-investment in capacity. Furthermore, we perform sensitivity studies to investigate the effect on market performance of varying capacity and efficiency for these units, as well as of different levels of prices in the electricity market. We find that these parameters substantially affect the profitability of heat pumps and electric boilers, hence, they must be carefully assessed by potential

  9. 46 CFR 61.05-5 - Preparation of boilers for inspection and test.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Preparation of boilers for inspection and test. 61.05-5... PERIODIC TESTS AND INSPECTIONS Tests and Inspections of Boilers § 61.05-5 Preparation of boilers for... preparing the boilers for the hydrostatic test, they shall be filled with water at not less than 70 °F. and...

  10. Modeling N2O Reduction and Decomposition in a Circulating Fluidized bed Boiler

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Åmand, Lars-Erik; Dam-Johansen, Kim

    1996-01-01

    The N2O concentration was measured in a circulating fluidized bed boiler of commercial size. Kinetics for N2O reduction by char and catalytic reduction and decomposition over bed material from the combustor were determined in a laboratory fixed bed reactor. The destruction rate of N2O in the comb......The N2O concentration was measured in a circulating fluidized bed boiler of commercial size. Kinetics for N2O reduction by char and catalytic reduction and decomposition over bed material from the combustor were determined in a laboratory fixed bed reactor. The destruction rate of N2O...... in the combustion chamber and the cyclone was calculated taking three mechanisms into account: Reduction by char, catalytic decomposition over bed material and thermal decomposition. The calculated destruction rate was in good agreement with the measured destruction of N2O injected at different levels in the boiler...

  11. Deposit Probe Measurements in Danish Grate and Pulverized Fuel Biomass Power Boilers

    DEFF Research Database (Denmark)

    Hansen, Stine Broholm; Jensen, Peter Arendt; Jappe Frandsen, Flemming

    2012-01-01

    . Corresponding samples of fuels, ash deposits and fly ash have provided information on the transformation of inorganics in the boiler. Generally, grate fired boilers provide a fly ash containing high contents of K, Cl and S compared to the fuel ash, while suspension fired boilers fly ash has a composition nearly...... similar to the fuel ash. Inner most biomass deposits are always salt-rich, while thicker deposit layers also contain some Si and Ca. Deposit probe formation rate measurements have been performed in different ways on several boilers. Grate and suspension fired boilers seems to cause similar deposit...... formation rates. Suspension fired boilers generate more fly ash, while grate boilers form a fly ash with a higher fraction of melt formation (and thereby a higher sticking probability) at similar temperatures. For suspension fired units it is observed that wood with a lower ash content than straw gives rise...

  12. [Emission characteristics of PM10 from coal-fired industrial boiler].

    Science.gov (United States)

    Li, Chao; Li, Xing-Hua; Duan, Lei; Zhao, Meng; Duan, Jing-Chun; Hao, Ji-Ming

    2009-03-15

    Through ELPI (electrical low-pressure impactor) based dilution sampling system, the emission characteristics of PM10 and PM2.5 was studied experimentally at the inlet and outlet of dust catchers at eight different coal-fired industrial boilers. Results showed that a peak existed at around 0.12-0.20 microm of particle size for both number size distribution and mass size distribution of PM10 emitted from most of the boilers. Chemical composition analysis indicated that PM2.5 was largely composed of organic carbon, elementary carbon, and sulfate, with mass fraction of 3.7%-21.4%, 4.2%-24.6%, and 1.5%-55.2% respectively. Emission factors of PM10 and PM2.5 measured were 0.13-0.65 kg x t(-1) and 0.08-0.49 kg x t(-1) respectively for grate boiler using raw coal, and 0.24 kg x t(-1) and 0.22 kg x t(-1) for chain-grate boiler using briquette. In comparison, the PM2.5 emission factor of fluidized bed boiler is 1.14 kg x t(-1), much her than that of grate boiler. Due to high coal consumption and low efficiency of dust separator, coal-fired industrial boiler may become the most important source of PM10, and should be preferentially controlled in China.

  13. Research, Development and Demonstration of Bio-Mass Boiler for Food Industry

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Steve [Burns & McDonnell, Inc., Kansas City, MO (United States); Knapp, David [Burns & McDonnell, Inc., Kansas City, MO (United States)

    2012-07-01

    Frito-Lay is working to reduce carbon emissions from their manufacturing plants. As part of this effort, they invested in a biomass-fired boiler at the Topeka, Kansas, plant. Frito-Lay partnered with Burns & McDonnell Engineering, Inc. and CPL Systems, Inc., to design and construct a steam producing boiler using carbon neutral fuels such as wood wastes (e.g. tree bark), shipping pallets, and used rubber vehicle tires. The U.S. Department of Energy (DOE) joined with Frito-Lay, Burns & McDonnell, and CPL to analyze the reductions in carbon dioxide (CO2) emissions that result from use of biomass-fired boilers in the food manufacturing environment. DOE support provided for the data collection and analysis, and reporting necessary to evaluate boiler efficiencies and reductions in CO2 emissions. The Frito-Lay biomass-fired boiler has resulted in significant reductions in CO2 emissions from the Topeka production facility. The use of natural gas has been reduced by 400 to 420 million standard cubic feet per year with corresponding reductions of 24,000 to 25,000 tons of CO2. The boiler does require auxiliary functions, however, that are unnecessary for a gas-fired boiler. These include heavy motors and fans for moving fuel and firing the boiler, trucks and equipment for delivering the fuel and moving at the boiler plant, and chippers for preparing the fuel prior to delivery. Each of these operations requires the combustion of fossil fuels or electricity and has associated CO2 emissions. Even after accounting for each of these auxiliary processes, however, the biomass-fired boiler results in net emission reductions of 22,500 to 23,500 tons of CO2 per year.

  14. Analysis of a waste-heat boiler by CFD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yongziang; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland)

    1996-12-31

    Waste-heat boilers play important roles in the continuous operation of a smelter and in the conservation of energy. However, the fluid flow and heat transfer behaviour has not been well studied, concerning the boiler performance and design. This presentation describes simulated gas flow and heat transfer of a waste-heat boiler in the Outokumpu copper flash smelting process. The governing transport equations for the conservation of mass, momentum and enthalpy were solved with a commercial CFD-code PHOENICS. The standard k-{epsilon} turbulence model and a composite-flux radiation model were used in the computations. The computational results show that the flow is strongly recirculating and distinctly three-dimensional in most part of the boiler, particularly in the radiation section. The predicted flow pattern and temperature distribution were in a good agreement with laboratory models and industrial measurements. The results provide detailed information of flow pattern, the temperature distribution and gas cooling efficiency. The CFD proved to be a useful tool in analysing the boiler operation. (author)

  15. Analysis of a waste-heat boiler by CFD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yongziang; Jokilaakso, A [Helsinki Univ. of Technology, Otaniemi (Finland)

    1997-12-31

    Waste-heat boilers play important roles in the continuous operation of a smelter and in the conservation of energy. However, the fluid flow and heat transfer behaviour has not been well studied, concerning the boiler performance and design. This presentation describes simulated gas flow and heat transfer of a waste-heat boiler in the Outokumpu copper flash smelting process. The governing transport equations for the conservation of mass, momentum and enthalpy were solved with a commercial CFD-code PHOENICS. The standard k-{epsilon} turbulence model and a composite-flux radiation model were used in the computations. The computational results show that the flow is strongly recirculating and distinctly three-dimensional in most part of the boiler, particularly in the radiation section. The predicted flow pattern and temperature distribution were in a good agreement with laboratory models and industrial measurements. The results provide detailed information of flow pattern, the temperature distribution and gas cooling efficiency. The CFD proved to be a useful tool in analysing the boiler operation. (author)

  16. Electrostatic precipitator performance and trace element emissions from two Kraft recovery boilers.

    Science.gov (United States)

    Lind, Terttaliisa; Hokkinen, Jouni; Jokiniemi, Jorma K; Hillamo, Risto; Makkonen, Ulla; Raukola, Antti; Rintanen, Jaakko; Saviharju, Kari

    2006-01-15

    Fine particle emissions from combustion sources have gained attention recently due to their adverse effects on human health. The emission depends on the combustion process, fuel, and particulate removal technology. Particle concentrations at Kraft recovery boiler exits are very high, and the boilers are typically equipped with electrostatic precipitators (ESP). However, little data are available on the ESP performance in recovery boilers. Particle concentrations and size distributions were determined at two modern, operating recovery boilers. In addition, we determined the fractional collection efficiency of the ESPs by simultaneous measurements at the ESP inlet and outlet and the particulate emissions of trace metals. The particle mass concentration atthe ESP inlet was 11-24 g/Nm3 at the two boilers. Particle emissions were 30-40 mg/ Nm3 at boiler A and 12-15 mg/Nm3 at boiler B. The particle size distributions had a major particle mode at around 1 microm. These fume particles contained most of the particle mass. The main components in the particles were sodium and sulfate with minor amounts of chloride, potassium, and presumably some carbonate. The ESP collection efficiency was 99.6-99.8% at boiler A and 99.9% at boiler B. The particle penetration through the ESP was below 0.6% in the entire fume particle size range of 0.3-3 microm. Trace element emissions from both boilers were well below the limit values set by EU directive for waste incineration.

  17. Novel partial-subsidence tower-type boiler design in an ultra-supercritical power plant

    International Nuclear Information System (INIS)

    Xu, Gang; Xu, Cheng; Yang, Yongping; Fang, Yaxiong; Zhou, Luyao; Zhang, Kai

    2014-01-01

    Highlights: • The two-pass type and tower-type boilers were compared. • A novel partial-subsidence tower-type boiler design was proposed. • Thermodynamic and economic analyses were quantitatively conducted. • The application of the partial-subsidence boiler to a 700 °C stage unit was further analyzed. - Abstract: An increasing number of tower-type boilers have been applied to ultra-supercritical power plants because of the simple design of the membrane walls and the smooth increase in temperature of such boilers. Nevertheless, the significant height and long steam pipelines of this boiler type will expand the power plant investment cost and increase steam-side pressure losses, especially for higher parameters units requiring high costs of nickel-based alloy materials. Thus, a novel partial-subsidence tower-type boiler design was proposed. In this boiler type, nearly 1/2–2/3 of the boiler height was embedded underground to reduce the height of the boiler and the length of the steam pipelines significantly. Thermodynamic and economic analyses were conducted on a state-of-the-art 1000 MW ultra-supercritical power plant and a prospective 700 °C-stage double reheat power plant. Results showed that the proposed tower-type boiler design could result in a 0.1% point increase in net efficiency and a $0.56/MW h reduction in the cost of electricity in a 1000 MW power plant. This economic benefit was enhanced for power plants with higher steam parameters and larger capacity. The concept of the proposed boiler design may provide a promising method for tower-type boiler applications, especially in new-generation double reheat plants with higher parameters

  18. 46 CFR 167.25-1 - Boilers, pressure vessels, piping and appurtenances.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Boilers, pressure vessels, piping and appurtenances. 167... SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Marine Engineering § 167.25-1 Boilers, pressure vessels, piping and... the following standards for boilers, pressure vessels, piping and appurtenances: (1) Marine...

  19. Numerical simulation of a biomass fired grate boiler

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen

    2006-01-01

    Computational fluid dynamic (CFD) analysis of the thermal flow in the combustion furnace of a biomass-fired grate boiler provides crucial insight into the boiler's performance. Quite a few factors play important roles in a general CFD analysis, such as grid, models, discretization scheme and so on....... For a grate boiler, the modeling the interaction of the fuel bed and the gas phase above the bed is also essential. Much effort can be found in literature on developing bed models whose results are introduced into CFD simulations of freeboard as inlet conditions. This paper presents a CFD analysis...... of the largest biomass-fired grate boiler in Denmark. The focus of this paper is to study how significantly an accurate bed model can affect overall CFD results, i.e., how necessarily it is to develop an accurate bed model in terms of the reliability of CFD results. The ultimate purpose of the study is to obtain...

  20. ENERGY STAR Certified Boilers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Boilers that are effective as of October 1,...

  1. Recovery Act: Oxy-Combustion Technology Development for Industrial-Scale Boiler Applications. Task 4 - Testing in Alstom's 15 MWth Boiler Simulation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Levasseur, Armand

    2014-04-30

    Alstom Power Inc. (Alstom), under U.S. DOE/NETL Cooperative Agreement No. DE-NT0005290, is conducting a development program to generate detailed technical information needed for application of oxy-combustion technology. The program is designed to provide the necessary information and understanding for the next step of large-scale commercial demonstration of oxy combustion in tangentially fired boilers and to accelerate the commercialization of this technology. The main project objectives include: Design and develop an innovative oxyfuel system for existing tangentially-fired boiler units that minimizes overall capital investment and operating costs; Evaluate performance of oxyfuel tangentially fired boiler systems in pilot scale tests at Alstom’s 15 MWth tangentially fired Boiler Simulation Facility (BSF); Address technical gaps for the design of oxyfuel commercial utility boilers by focused testing and improvement of engineering and simulation tools; Develop the design, performance and costs for a demonstration scale oxyfuel boiler and auxiliary systems; Develop the design and costs for both industrial and utility commercial scale reference oxyfuel boilers and auxiliary systems that are optimized for overall plant performance and cost; and, Define key design considerations and develop general guidelines for application of results to utility and different industrial applications. The project was initiated in October 2008 and the scope extended in 2010 under an ARRA award. The project is scheduled for completion by April 30, 2014. Central to the project is 15 MWth testing in the BSF, which provided in-depth understanding of oxy-combustion under boiler conditions, detailed data for improvement of design tools, and key information for application to commercial scale oxy-fired boiler design. Eight comprehensive 15 MWth oxy-fired test campaigns were performed with different coals, providing detailed data on combustion, emissions, and thermal behavior over a matrix of

  2. Methodology for the physical and chemical exergetic analysis of steam boilers

    International Nuclear Information System (INIS)

    Ohijeagbon, Idehai O.; Waheed, M. Adekojo; Jekayinfa, Simeon O.

    2013-01-01

    This paper presents a framework of thermodynamic, energy and exergy, analyses of industrial steam boilers. Mass, energy, and exergy analysis were used to develop a methodology for evaluating thermodynamic properties, energy and exergy input and output resources in industrial steam boilers. Determined methods make available an analytic procedure for the physical and chemical exergetic analysis of steam boilers for appropriate applications. The energy and exergy efficiencies obtained for the entire boiler was 69.56% and 38.57% at standard reference state temperature of 25 °C for an evaporation ratio of 12. Chemical exergy of the material streams was considered to offer a more comprehensive detail on energy and exergy resource allocation and losses of the processes in a steam boiler. - Highlights: ► We evaluated thermodynamic properties and performance variables associated with material streams. ► We analysed resources allocation, and magnitude of exergetic losses in steam boilers. ► Chemical exergy of material streams contributed to improved exergy values. ► High operational parameter will lead to higher boiler exergy. ► Exergy destroyed was higher in the combustion as against the heat exchanging unit

  3. Influence of feedwater and blowdown systems on the mineral distribution in WWER steam generators

    International Nuclear Information System (INIS)

    Pappx, L.

    1994-01-01

    After modification of Dukovany NPP steam generator feedwater system, the increased concentration of minerals was measured in the cold leg of modified steam generator. Some modifications were performed on operating WWER 1000 steam generators with aim to optimize the water chemistry in the collectors area. Since the distribution of minerals can substantially affect on corrosion processes in steam generators, VITKOVICE, as a producer of WWER steam generators, has focused this attention on the optimizing of these systems. To predict the mineral distribution on the secondary side of steam generators for considered feedwater/blowdown systems, the simple model of flow distribution in the secondary side of SG was developed. (Author)

  4. Influence of feedwater and blowdown systems on the mineral distribution in WWER steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Papp, L. [Inst. of Material Engineering, Ostrava (Switzerland)

    1995-12-31

    After modification of Dukovany NPP steam generator (SG) feedwater system, the increased concentration of minerals was measured in the cold leg of modified SG. Some modifications were performed on operating WWER 1000 steam generators with aim to optimize the water chemistry in the collectors area. Since the distribution of minerals can substantially affect on corrosion processes in steam generators, VITKOVICE, as a producer of WWER steam generators has focused the attention to the optimizing of these systems. To predict the mineral distribution on the secondary side of steam generators for considered feedwater/blowdown systems, the simple model of the flow distribution in the secondary side of SG was developed.

  5. Influence of feedwater and blowdown systems on the mineral distribution in WWER steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Papp, L [Inst. of Material Engineering, Ostrava (Switzerland)

    1996-12-31

    After modification of Dukovany NPP steam generator (SG) feedwater system, the increased concentration of minerals was measured in the cold leg of modified SG. Some modifications were performed on operating WWER 1000 steam generators with aim to optimize the water chemistry in the collectors area. Since the distribution of minerals can substantially affect on corrosion processes in steam generators, VITKOVICE, as a producer of WWER steam generators has focused the attention to the optimizing of these systems. To predict the mineral distribution on the secondary side of steam generators for considered feedwater/blowdown systems, the simple model of the flow distribution in the secondary side of SG was developed.

  6. Influence of feedwater and blowdown systems on the mineral distribution in WWER steam generators

    International Nuclear Information System (INIS)

    Papp, L.

    1995-01-01

    After modification of Dukovany NPP steam generator (SG) feedwater system, the increased concentration of minerals was measured in the cold leg of modified SG. Some modifications were performed on operating WWER 1000 steam generators with aim to optimize the water chemistry in the collectors area. Since the distribution of minerals can substantially affect on corrosion processes in steam generators, VITKOVICE, as a producer of WWER steam generators has focused the attention to the optimizing of these systems. To predict the mineral distribution on the secondary side of steam generators for considered feedwater/blowdown systems, the simple model of the flow distribution in the secondary side of SG was developed

  7. Experiment data report for semiscale Mod-1 test S-01-1B (isothermal blowdown with core resistance simulator)

    International Nuclear Information System (INIS)

    Crapo, H.S.; Jensen, M.F.; Sackett, K.E.; Zender, S.N.

    1975-05-01

    Recorded test data are presented for Test S-01-1B of the semiscale Mod-1 isothermal blowdown test series. System hardware is representative of the LOFT design, selected using volumetric scaling methods, and initial conditions duplicate those identified for the LOFT nonnuclear tests. Test S-01-1B is a repeat of Test S-01-1 with the exception that simulated ECC was injected into the cold leg of the intact loop rather than into the inlet annulus of the downcomer. The principal objective of Test S-01-1B was to determine whether a different ECC injection would significantly alter the system response during the period of ECC injection. Test S-01-1B was conducted from an initial temperature of 541 0 F and an initial pressure of 1630 psig. A simulated intermediate size double-ended hot leg break (0.00145 ft 2 break area on each end) was used to investigate the system response to a slow de-pressurization transient. An orificed structure was used in the pressure vessel to simulate the LOFT core simulator. Following the blowdown portion of Test S-01-1B, coolant spray was introduced into the pressure suppression tank to determine the response of the pressure suppression system. (U.S.)

  8. Real-time monitoring energy efficiency and performance degradation of condensing boilers

    NARCIS (Netherlands)

    Baldi, S.; Le, Q.T.; Holub, O.; Endel, P

    2017-01-01

    Condensing boilers achieve higher efficiency than traditional boilers by using waste heat in flue gases to preheat cold return water entering the boiler. Water vapor produced during combustion is condensed into liquid form, thus recovering its latent heat of vaporization, leading to around 10–12%

  9. Water Boiler Change-Over in Mini-TPP Mode

    Directory of Open Access Journals (Sweden)

    B. A. Bayrashevsky

    2011-01-01

    Full Text Available The paper considers water boiler modernization by its change-over in mini-TPP mode with an expansion tank and a heating turbine of small capacity.  A software complex permitting to evaluate competitive ability of such water boiler modernization in comparison with a cogeneration plant.

  10. LOFT transient thermal analysis for 10 inch primary coolant blowdown piping weld

    International Nuclear Information System (INIS)

    Howell, S.K.

    1978-01-01

    A flaw in a weld in the 10 inch primary coolant blowdown piping was discovered by LOFT personnel. As a result of this, a thermal analysis and fracture mechanics analysis was requested by LOFT personnel. The weld and pipe section were analyzed for a complete thermal cycle, heatup and Loss of Coolant Experiment (LOCE), using COUPLE/MOD2, a two-dimensional finite element heat conduction code. The finite element representation used in this analysis was generated by the Applied Mechanics Branch. The record of nodal temperatures for the entire transient was written on tape VSN=T9N054, and has been forwarded to the Applied Mechanics Branch for use in their mechanical analysis. Specific details and assumptions used in this analysis are found in appropriate sections of this report

  11. Design of Boiler Welding for Improvement of Lifetime and Cost Control.

    Science.gov (United States)

    Thong-On, Atcharawadi; Boonruang, Chatdanai

    2016-11-03

    Fe-2.25Cr-1Mo a widely used material for headers and steam tubes of boilers. Welding of steam tube to header is required for production of boiler. Heat affected zone of the weld can have poor mechanical properties and poor corrosion behavior leading to weld failure. The cost of material used for steam tube and header of boiler should be controlled. This study propose a new materials design for boiler welding to improve the lifetime and cost control, using tungsten inert gas (TIG) welding of Fe-2.25Cr-1Mo tube to carbon steel pipe with chromium-containing filler. The cost of production could be reduced by the use of low cost material such as carbon steel pipe for boiler header. The effect of chromium content on corrosion behavior of the weld was greater than that of the microstructure. The lifetime of the welded boiler can be increased by improvement of mechanical properties and corrosion behavior of the heat affected zone.

  12. Design of Boiler Welding for Improvement of Lifetime and Cost Control

    Directory of Open Access Journals (Sweden)

    Atcharawadi Thong-On

    2016-11-01

    Full Text Available Fe-2.25Cr-1Mo a widely used material for headers and steam tubes of boilers. Welding of steam tube to header is required for production of boiler. Heat affected zone of the weld can have poor mechanical properties and poor corrosion behavior leading to weld failure. The cost of material used for steam tube and header of boiler should be controlled. This study propose a new materials design for boiler welding to improve the lifetime and cost control, using tungsten inert gas (TIG welding of Fe-2.25Cr-1Mo tube to carbon steel pipe with chromium-containing filler. The cost of production could be reduced by the use of low cost material such as carbon steel pipe for boiler header. The effect of chromium content on corrosion behavior of the weld was greater than that of the microstructure. The lifetime of the welded boiler can be increased by improvement of mechanical properties and corrosion behavior of the heat affected zone.

  13. India's first 100,000 lbs/hr atmospheric bed boiler

    International Nuclear Information System (INIS)

    Mahajan, S.K.

    1991-01-01

    This paper covers the operating experience at the Petrochemical Complex of Hindustan Polymers, a Member Company of the UB Group, India, on the India's first 100,000 Lbs/hr atmospheric fluidized bed boiler supplied by Bharat Heavy Electricals Ltd., India. This atmospheric fluidized bed boiler is in operation for over 7 years with over 51,000 operating hours. The paper covers the details of onstream hours, actual thermal efficiency achieved, type of coal used and operational advantages of such boilers as per experience of Hindustan Polymers. Paper also highlights the maintenance and equipment problems as well as the developments which have taken place to overcome such problems. Details of experience in the operation of this boiler with baghouse system using abrasive and high ash coal are also covered

  14. The present status of the blowdown code BRUCH

    International Nuclear Information System (INIS)

    Karwat, H.

    1975-01-01

    The present status and the important features of the blowdown code for a PWR, BRUCH-D version 04 which is presently in use, are described. The code is to investigate the depressurization process, fluid dynamic situation in the core, the fuel temperature and the core mass flow as influenced by important primary system components such as steam generators, pumps etc. The code is a multinode point model with a fixed node arrangement. It makes use of the basic fluid dynamic equations describing the mass, energy and volume conservation as well as the momentum equation and the equation of state with appropriate assumptions. The core heat generation and heat transfer to the fluid is simulated by a given number of average fuel rods with up to 20 axial segmentation independent of the axial subdivision of the core fluid region. In parallel up to 5 types of the fuel rods can be studied. The pump behaviour is specified by input. For the break flow, the code provides three models; Bernoulli, homogenous and moody. The implicit-explicit method IMEX is used for the integration of the differential equations. An example for application of BRUCH-S to an experiment which is for a BWR but has some basis of BRUCH-D is also shown in the paper

  15. Experiment data report for semiscale MOD-1 test S-01-3 (isothermal blowdown with core resistance simulator)

    International Nuclear Information System (INIS)

    Zender, S.N.

    1975-03-01

    Recorded test data are presented for Test S-01-3 of the semiscale Mod-1 isothermal blowdown test series. Test S-01-3 is one of several semiscale Mod-1 experiments which are counterparts of the planned Loss-of-Fluid Test (LOFT) nonnuclear experiments. System hardware is of the LOFT design, selected using volumetric scaling methods, and initial conditions duplicate those identified for the LOFT nonnuclear tests. Test S-01-3 employed an intact loop resistance that was low relative to that of the first test in the series (Test S-01-2) to establish the importance of intact loop resistance on system response during blowdown. An orificed structure was used in the pressure vessel to simulate the LOFT core simulator. The test was initiated at isothermal conditions of 2245 psig and 538 0 F by a simulated offset shear of the cold-leg broken loop piping. During system depressurization, coolant was injected into the lower plenum of the pressure vessel to provide data on the effects of emergency core cooling on system response. Additionally, to aid in determination of the effects of accumulator gas on pressure suppression system response, the nitrogen used to charge the accumulator systems for Test S-01-3 was allowed to vent into the lower plenum following depletion of the coolant. (U.S.)

  16. Hot and steamy (but untrue) stories of the boiler emergency cooling system (BECS)

    International Nuclear Information System (INIS)

    Lorencez, C.; Bramble, A.

    2004-01-01

    The PNGS 'B' Boiler Emergency Cooling System (BECS) has been designed to provide interim makeup inventory to the boilers following a Loss of Feedwater, Steam Balance Header or Main Steam Line break event. Its objective is to operate as an interim heat sink to remove the excess energy in the Heat Transport System until a long term heat sink can be placed in service. The effectiveness of BECS has been assessed for a range of BECS tank water levels and pressure at the ambient Boiler Room (BR) temperature. Currently, BECS operates at a pressure of 160 kPa(g) and a water level of 2.2 m, and it is assumed that the water temperature is similar to that of the BR because there is no temperature instrumentation in tanks. However, it has been suggested that the coolant temperature in the BECS tanks may be much higher than the BR temperature in several PNGS 'B' units; this is attributed to in-leakage of high pressure and temperature water (at 4.7 Mpa(g) and 250 o C) from the Reheater Drains system into the BECS tanks, as observed by an increasing water tank levels in several units. Thus, to predict and assess the effect of the current in-leakage on the BECS water temperature, a numerical model of the BECS tanks was developed. (author)

  17. Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Bradley [Univ. of Utah, Salt Lake City, UT (United States); Davis, Kevin [Univ. of Utah, Salt Lake City, UT (United States); Senior, Constance [Univ. of Utah, Salt Lake City, UT (United States); Shim, Hong Shim [Univ. of Utah, Salt Lake City, UT (United States); Otten, Brydger Van [Univ. of Utah, Salt Lake City, UT (United States); Fry, Andrew [Univ. of Utah, Salt Lake City, UT (United States); Wendt, Jost [Univ. of Utah, Salt Lake City, UT (United States); Eddings, Eric [Univ. of Utah, Salt Lake City, UT (United States); Paschedag, Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shaddix, Christopher [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cox, William [Brigham Young Univ., Provo, UT (United States); Tree, Dale [Brigham Young Univ., Provo, UT (United States)

    2013-09-30

    ) Assessment of oxy-combustion impacts in two full-scale coal-fired utility boiler retrofits based on computational fluid dynamics (CFD) modeling of air-fired and oxygen-fired operation. This research determined that it is technically feasible to retrofit the combustion system in an air-fired boiler for oxy-fired operation. The impacts of CO{sub 2} flue gas recycle and burner design on flame characteristics (burnout, NO{sub x}, SO{sub x}, mercury and fine particle emissions, heat transfer) and operational concerns (fouling, slagging and corrosion) were minimal, with the exception of high sulfur levels resulting from untreated flue gas recycle with medium and high-sulfur coals. This work focused on combustion in the radiant and convective sections of the boiler and did not address boiler system integration issues, plant efficiencies, impacts on downstream air pollution control devices, or CO{sub 2} capture and compression. The experimental data, oxy-firing system principles and oxy-combustion process mechanisms provided by this work can be used by electric utilities, boiler OEMs, equipment suppliers, design firms, software vendors, consultants and government agencies to assess retrofit applications of oxy-combustion technologies to existing boilers and to guide development of new designs.

  18. Cracking and corrosion recovery boiler

    Energy Technology Data Exchange (ETDEWEB)

    Suik, H [Tallinn Technical University, Horizon Pulp and Paper, Tallinn (Estonia)

    1999-12-31

    The corrosion of heat surfaces and the cracking the drums are the main problems of the recovery boiler. These phenomena have been appeared during long-term operation of boiler `Mitsubishi - 315` erected at 1964. Depth of the crack is depending on the number of shutdowns and on operation time. Corrosion intensity of different heat surfaces is varying depend on the metal temperature and the conditions at place of positioning of tube. The lowest intensity of corrosion is on the bank tubes and the greatest is on the tubes of the second stage superheater and on the tubes at the openings of air ports. (orig.) 5 refs.

  19. Cracking and corrosion recovery boiler

    Energy Technology Data Exchange (ETDEWEB)

    Suik, H. [Tallinn Technical University, Horizon Pulp and Paper, Tallinn (Estonia)

    1998-12-31

    The corrosion of heat surfaces and the cracking the drums are the main problems of the recovery boiler. These phenomena have been appeared during long-term operation of boiler `Mitsubishi - 315` erected at 1964. Depth of the crack is depending on the number of shutdowns and on operation time. Corrosion intensity of different heat surfaces is varying depend on the metal temperature and the conditions at place of positioning of tube. The lowest intensity of corrosion is on the bank tubes and the greatest is on the tubes of the second stage superheater and on the tubes at the openings of air ports. (orig.) 5 refs.

  20. 46 CFR 91.15-1 - Standards in inspection of hulls, boilers, and machinery.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Standards in inspection of hulls, boilers, and machinery... hulls, boilers, and machinery. In the inspection of hulls, boilers, and machinery of vessels, the..., respecting material and inspection of hulls, boilers, and machinery, and the certificate of classification...

  1. 46 CFR 189.15-1 - Standards in inspection of hulls, boilers, and machinery.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Standards in inspection of hulls, boilers, and machinery... inspection of hulls, boilers, and machinery. In the inspection of hulls, boilers, and machinery of vessels... chapter, respecting material and construction of hulls, boilers, and machinery, and certificate of...

  2. 46 CFR 71.15-1 - Standards in inspection of hulls, boilers, and machinery.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Standards in inspection of hulls, boilers, and machinery..., boilers, and machinery. In the inspection of hulls, boilers, and machinery of vessels, the standards... and inspection of hulls, boilers, and machinery, and the certificate of classification referring...

  3. Use of the modal superposition technique for piping system blowdown analyses

    International Nuclear Information System (INIS)

    Ware, A.G.; Macek, R.W.

    1983-01-01

    A standard method of solving for the seismic response of piping systems is the modal superposition technique. Only a limited number of structural modes are considered (typically those up to 33 Hz in the U.S.), since the effect on the calculated response due to higher modes is generally small, and the method can result in considerable computer cost savings over the direct integration method. The modal superposition technique has also been applied to piping response problems in which the forcing functions are due to fluid excitation. Application of the technique to this case is somewhat more difficult, because a well defined cutoff frequency for determining structural modes to be included has not been established. This paper outlines a method for higher mode corrections, and suggests methods to determine suitable cutoff frequencies for piping system blowdown analyses. A numerical example illustrates how uncorrected modal superposition results can produce erroneous stress results

  4. Toxic trace elements in solid airborne particles and ecological risk assessment in the vicinity of local boiler house plants

    Science.gov (United States)

    Talovskaya, Anna V.; Osipova, Nina A.; Yazikov, Egor G.; Shakhova, Tatyana S.

    2017-11-01

    The article deals with assessment of anthropogenic pollution in vicinity of local boilers using the data on microelement composition of solid airborne particles deposited in snow. The anthropogenic feature of elevated accumulation levels of solid airborne particles deposited in snow in the vicinity of coal-fired boiler house is revealed in elevated concentrations (3-25 higher than background) of Cd, Sb, Mo, Pb, Sr, Ba, Ni, Mo, Zn and Co. In the vicinity oil-fired boiler house the specific elements as parts of solid airborne particles deposited in snow are V, Ni and Sb, as their content exceeds the background from 3 to 8 times. It is determined that the maximum shares in non-carcinogenic human health risk from chronic inhalation of trace elements to the human body in the vicinity of coal-fired boiler house belong to Al, Mn, Cu, Ba, Co, Pb, whereas in the vicinity of oil-fired boiler house - Al, Mn, Cu, Ni, V.

  5. 40 CFR 63.7506 - Do any boilers or process heaters have limited requirements?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 13 2010-07-01 2010-07-01 false Do any boilers or process heaters have..., and Institutional Boilers and Process Heaters General Compliance Requirements § 63.7506 Do any boilers or process heaters have limited requirements? (a) New or reconstructed boilers and process heaters in...

  6. 40 CFR 63.7499 - What are the subcategories of boilers and process heaters?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 13 2010-07-01 2010-07-01 false What are the subcategories of boilers..., and Institutional Boilers and Process Heaters Emission Limits and Work Practice Standards § 63.7499 What are the subcategories of boilers and process heaters? The subcategories of boilers and process...

  7. Recovery Act: Oxy-Combustion Techology Development for Industrial-Scale Boiler Applications

    Energy Technology Data Exchange (ETDEWEB)

    Levasseur, Armand

    2014-04-30

    Alstom Power Inc. (Alstom), under U.S. DOE/NETL Cooperative Agreement No. DE-NT0005290, is conducting a development program to generate detailed technical information needed for application of oxy-combustion technology. The program is designed to provide the necessary information and understanding for the next step of large-scale commercial demonstration of oxy combustion in tangentially fired boilers and to accelerate the commercialization of this technology. The main project objectives include: • Design and develop an innovative oxyfuel system for existing tangentially-fired boiler units that minimizes overall capital investment and operating costs. • Evaluate performance of oxyfuel tangentially fired boiler systems in pilot scale tests at Alstom’s 15 MWth tangentially fired Boiler Simulation Facility (BSF). • Address technical gaps for the design of oxyfuel commercial utility boilers by focused testing and improvement of engineering and simulation tools. • Develop the design, performance and costs for a demonstration scale oxyfuel boiler and auxiliary systems. • Develop the design and costs for both industrial and utility commercial scale reference oxyfuel boilers and auxiliary systems that are optimized for overall plant performance and cost. • Define key design considerations and develop general guidelines for application of results to utility and different industrial applications. The project was initiated in October 2008 and the scope extended in 2010 under an ARRA award. The project completion date was April 30, 2014. Central to the project is 15 MWth testing in the BSF, which provided in-depth understanding of oxy-combustion under boiler conditions, detailed data for improvement of design tools, and key information for application to commercial scale oxy-fired boiler design. Eight comprehensive 15 MWth oxy-fired test campaigns were performed with different coals, providing detailed data on combustion, emissions, and thermal behavior over a

  8. Analysis on effects of energy efficiency regulations & standards for industrial boilers in China

    Science.gov (United States)

    Liu, Ren; Chen, Lili; Zhao, Yuejin; Liu, Meng

    2017-11-01

    The industrial boilers in China are featured by large quantity, wide distribution, high energy consumption and heavy environmental pollution, which are key problems faced by energy conservation and environmental protection in China. Meanwhile, industrial boilers are important equipment for national economy and people’s daily life, and energy conservation gets through all segments from type selection, purchase, installation and acceptance to fuel management, operation, maintenance and service. China began to implement such national mandatory standards and regulations for industrial boiler as GB24500-2009 The Minimum Allowable Values of Energy Efficiency and Energy Efficiency Grades of Industrial Boilers and TSG G002-2010 Supervision Regulation on Energy-Saving Technology for Boilers since 2009, which obviously promote the development of energy conservation of industrial boilers, but there are also some problems with the rapid development of technologies for energy conservation of industrial boilers. In this paper, the implementation of energy efficiency standards for industrial boilers in China and the significance are analyzed based on survey data, and some suggestions are proposed for the energy efficiency standards for industrial boilers. Support by Project 2015424050 of Special Fund for quality control Research in the Public Interest

  9. Analysis of residual swirl in tangentially-fired natural gas-boiler

    International Nuclear Information System (INIS)

    Hasril Hasini; Muhammad Azlan Muad; Mohd Zamri Yusoff; Norshah Hafeez Shuaib

    2010-01-01

    This paper describes the investigation on residual swirl flow in a 120 MW natural gas, full-scale, tangential-fired boiler. Emphasis is given towards the understanding of the behavior of the combustion gas flow pattern and temperature distribution as a result of the tangential firing system of the boiler. The analysis was carried out based on three-dimensional computational modeling on full scale boiler with validation from key design parameter as well as practical observation. Actual operating parameters of the actual boiler are taken as the boundary conditions for this modeling. The prediction of total heat flux was found to be in agreement with the key design parameter while the residual swirl predicted at the upper furnace agrees qualitatively with the practical observation. Based on this comparison, detail analysis was carried out for comprehensive understanding on the generation and destruction of the residual swirl behavior in boiler especially those with high capacity. (author)

  10. LCA of a condensing boiler according to EuP Directive

    International Nuclear Information System (INIS)

    Tremonti, M.; Breedvelt, L.; Padovan, G.; Bosio, S.; Corsini, M.

    2008-01-01

    In the light of the EuP Directive (2005/32/EC), producers of Energy using Product (EuP) are obliged to initiate eco design activities. Fourteen product groups are currently under study, one being the preparatory EC study Eco Boiler, and will result in a EuP Working Plan. The LCA of a condensing boiler, commissionated by an Italian SME in the Lombardy Region, has been conducted to support its environmental strategy and communication, to start implementing eco design activities and to anticipate implications to the EuP Directive. In line with the Eco Boiler study, no detailed LCA has been applied, instead a simplified LCA proves to be a strategic tool to support the company environmental objectives. Specifically, the condensing boiler (the option with the best environmental performance and the lowest life cycle costs for the final consumer) has been internally compared to other boilers, resulting in useful eco design recommendations

  11. The structure and behavior of salts in kraft recovery boilers

    Energy Technology Data Exchange (ETDEWEB)

    Backman, R.; Badoi, R.D.; Enestam, S. [Aabo Akademi Univ., Turku (Finland). Combustion Chemistry Research Group

    1997-10-01

    The melting behavior in the salt system (Na,K)(CO{sub 3},SO{sub 4},S,Cl,OH) is investigated by laboratory methods to enhance and further develop a chemical model for salt mixtures with compositions relevant for recovery boilers. The model, based on both literature data and experimental work can be used as (a) submodel in models for the over-all chemistry in recovery boilers and to estimate (b) deposit formation on heat transfer surfaces (fouling), (c) the melting properties of the fly ash, and (d) the smelt bed in recovery boilers. Experimental techniques used are thermal analysis, high temperature microscopy` and scanning electron microscopy. The model is implemented in a global calculation model which can handle both gas phases and condensed phases in the recovery boiler. The model gives a detailed description of the chemical reactions involved in the fume and dust formation in different locations of the flue gas channel in the boiler. (orig.)

  12. Performance of a pellet boiler fired with agricultural fuels

    International Nuclear Information System (INIS)

    Carvalho, Lara; Wopienka, Elisabeth; Pointner, Christian; Lundgren, Joakim; Verma, Vijay Kumar; Haslinger, Walter; Schmidl, Christoph

    2013-01-01

    Highlights: ► Performance evaluation of a pellet boiler operated with different agricultural fuels. ► Agricultural fuels could be burn in the tested boiler for a certain period of time. ► All the fuels (except straw and Sorghum) satisfied the European legal requirements. ► Boilers for burning agricultural fuels should have a flexible control system. - Abstract: The increasing demand for woody biomass increases the price of this limited resource, motivating the growing interest in using woody materials of lower quality as well as non-woody biomass fuels for heat production in Europe. The challenges in using non-woody biomass as fuels are related to the variability of the chemical composition and in certain fuel properties that may induce problems during combustion. The objective of this work has been to evaluate the technical and environmental performance of a 15 kW pellet boiler when operated with different pelletized biomass fuels, namely straw (Triticum aestivum), Miscanthus (Miscanthus × giganteus), maize (Zea mays), wheat bran, vineyard pruning (from Vitis vinifera), hay, Sorghum (Sorghum bicolor) and wood (from Picea abies) with 5% rye flour. The gaseous and dust emissions as well as the boiler efficiency were investigated and compared with the legal requirements defined in the FprEN 303-5 (final draft of the European standard 303-5). It was found that the boiler control should be improved to better adapt the combustion conditions to the different properties of the agricultural fuels. Additionally, there is a need for a frequent cleaning of the heat exchangers in boilers operated with agricultural fuels to avoid efficiency drops after short term operation. All the agricultural fuels satisfied the legal requirements defined in the FprEN 303-5, with the exception of dust emissions during combustion of straw and Sorghum. Miscanthus and vineyard pruning were the best fuels tested showing comparable emission values to wood combustion

  13. Increase of energy efficiency in proportional adjusting of flow rate in the boiler circuit

    OpenAIRE

    Artamonov Pavel A.; Kurilenko Nikolai I.; Mamontov Gennady Ya.

    2017-01-01

    The article presents the results of theoretical studies in the field of the boiler circuit operating modes for the boiler rooms operating by the independent heat supply scheme. The 3D model of a boiler circuit for a boiler room with 3 MW rated output was developed, based on which there was made an estimation of the boiler pump performance indicators. There is proposed a method for reducing energy costs for the operation of the pumping equipment of the boiler circuit.

  14. Design of Boiler Welding for Improvement of Lifetime and Cost Control

    OpenAIRE

    Thong-On, Atcharawadi; Boonruang, Chatdanai

    2016-01-01

    Fe-2.25Cr-1Mo a widely used material for headers and steam tubes of boilers. Welding of steam tube to header is required for production of boiler. Heat affected zone of the weld can have poor mechanical properties and poor corrosion behavior leading to weld failure. The cost of material used for steam tube and header of boiler should be controlled. This study propose a new materials design for boiler welding to improve the lifetime and cost control, using tungsten inert gas (TIG) welding of F...

  15. Numerical investigation of ash deposition in straw-fired boilers

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen

    in the design phase of straw-fired boilers. Some of the primary model outputs include improved heat transfer rate predictions and detailed information about local deposit formation rates. This information is essential when boiler availability and efficiency is to be estimated. A stand-alone program has been...... accumulation rates encountered during straw combustion in grate-fired boilers. The sub-models have been based on information about the combustion and deposition properties of straw gathered from the literature and combined into a single Computational Fluid Dynamics (CFD) based analysis tool which can aid...... transfer mechanisms have a pronounced influence on the combustion pattern. The combined set of sub-models has been evaluated using the straw-fired boiler at Masnedø CHP plant as a test case. The predicted grate combustion and KCl release patterns are in qualitative agreement with experimental findings...

  16. 46 CFR 97.30-1 - Repairs to boilers and pressure vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Repairs to boilers and pressure vessels. 97.30-1 Section... VESSELS OPERATIONS Reports of Accidents, Repairs, and Unsafe Equipment § 97.30-1 Repairs to boilers and pressure vessels. (a) Before making any repairs to boilers or unfired pressure vessels, the chief engineer...

  17. 46 CFR 196.30-1 - Repairs to boilers and pressure vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Repairs to boilers and pressure vessels. 196.30-1... VESSELS OPERATIONS Reports of Accidents, Repairs, and Unsafe Equipment § 196.30-1 Repairs to boilers and pressure vessels. (a) Before making any repairs to boilers or unfired pressure vessels, the Chief Engineer...

  18. 46 CFR 78.33-1 - Repairs of boiler and pressure vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Repairs of boiler and pressure vessels. 78.33-1 Section... OPERATIONS Reports of Accidents, Repairs, and Unsafe Equipment § 78.33-1 Repairs of boiler and pressure vessels. (a) Before making any repairs to boilers or unfired pressure vessels, the chief engineer shall...

  19. Real-time monitoring energy efficiency and performance degradation of condensing boilers

    International Nuclear Information System (INIS)

    Baldi, Simone; Quang, Thuan Le; Holub, Ondrej; Endel, Petr

    2017-01-01

    Highlights: • Fully-fledged set of fault detection and diagnosis tools for condensing boilers. • Detection of boiler performance degradation in condensing and noncondensing mode. • Virtual sensing for estimation of water mass flow rate. • Optimal Kalman detection of actuator and sensor faults. • Structural properties for detection and isolation of faults. - Abstract: Condensing boilers achieve higher efficiency than traditional boilers by using waste heat in flue gases to preheat cold return water entering the boiler. Water vapor produced during combustion is condensed into liquid form, thus recovering its latent heat of vaporization, leading to around 10–12% increased efficiency. Many countries have encouraged the use of condensing boilers with financial incentives. It is thus important to develop software tools to assess the correct functioning of the boiler and eventually detect problems. Current monitoring tools are based on boiler static maps and on large sets of historical data, and are unable to assess timely loss of performance due to degradation of the efficiency curve or water leakages. This work develops a set of fault detection and diagnosis tools for dynamic energy efficiency monitoring and assessment in condensing boilers, i.e. performance degradation and faults can be detected using real-time measurements: this real-time feature is particularly relevant because of the limited amount of data that can be stored by state-of-the-art building energy management systems. The monitoring tools are organized as follows: a bimodal parameter estimator to detect deviations of the efficiency of the boiler from nominal values in both condensing and noncondensing mode; a virtual sensor for the estimation of the water mass flow rate; filters to detect actuator and sensor faults, possibly due to control and sensing problems. Most importantly, structural properties for detection and isolation of actuators and sensing faults are given: these properties are

  20. An optimising controller for Hinkley Point B AGR boilers

    International Nuclear Information System (INIS)

    Wells, C.

    1986-01-01

    The improvements to the control system at Hinkley Point 'B' Power Station has as one of its objectives the provision of a half unit valve controller. This will enable the asymmetry between the boiler half units, which is a feature of current operation, to be reduced. The use of an on-line boiler model in conjunction with this facility will allow the risk to the boilers from corrosion, creep, and vibration to be assessed and held at the minimum attainable value, thereby prolonging plant life whilst maximising output and efficiency. (author)

  1. PAH emissions from old and new types of domestic hot water boilers.

    Science.gov (United States)

    Horak, Jiri; Kubonova, Lenka; Krpec, Kamil; Hopan, Frantisek; Kubesa, Petr; Motyka, Oldrich; Laciok, Vendula; Dej, Milan; Ochodek, Tadeas; Placha, Daniela

    2017-06-01

    Five different domestic heating boilers (automatic, over-fire, with down-draft combustion and gasification) and three types of fuel (lignite, wood and mixed fuel) were examined in 25 combustion tests and correlated with the emissions of particulate matter (PM), carbon monoxide (CO), total organic carbon (TOC) and 12 polycyclic aromatic hydrocarbons (PAHs with MW = 178-278 g/mol) focusing on particle phase. However, the distribution of 12 PAHs in gas phase was considered as well due to the presence mainly of lighter PAHs in gas phase. The PAHs, as well as the CO and TOC, are the indicators of incomplete combustion, and in this study PAH emission increased significantly with increasing emissions of CO and TOC. The PAHs were mainly detected on PM 2.5 , their contents were increasing linearly with increasing PM 2.5 emissions. The highest emission factors of PAHs were measured for boilers of old construction, such as over-fire boiler (5.8-929 mg/kg) and boiler with down-draft combustion (3.1-54.1 mg/kg). Modern types of boilers produced much lower emissions of PAHs, in particular, automatic boiler (0.3-3.3 mg/kg) and gasification boilers (0.2-6.7 mg/kg). In general, the inefficient combustion at reduced output of boilers generated 1.4-17.7 times more emissions of PAHs than the combustion at nominal output of boilers. It is recommended to operate boilers at nominal output with sufficient air supply and to use the proper fuel to minimise PAHs emissions from domestic heating appliances. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Advanced char burnout models for the simulation of pulverized coal fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    T. Severin; S. Wirtz; V. Scherer [Ruhr-University, Bochum (Germany). Institute of Energy Plant Technology (LEAT)

    2005-07-01

    The numerical simulation of coal combustion processes is widely used as an efficient means to predict burner or system behaviour. In this paper an approach to improve CFD simulations of pulverized coal fired boilers with advanced coal combustion models is presented. In simple coal combustion models, first order Arrhenius rate equations are used for devolatilization and char burnout. The accuracy of such simple models is sufficient for the basic aspects of heat release. The prediction of carbon-in-ash is one aspect of special interest in the simulation of pulverized coal fired boilers. To determine the carbon-in-ash levels in the fly ash of coal fired furnaces, the char burnout model has to be more detailed. It was tested, in how far changing operating conditions affect the carbon-in-ash prediction of the simulation. To run several test cases in a short time, a simplified cellnet model was applied. To use a cellnet model for simulations of pulverized coal fired boilers, it was coupled with a Lagrangian particle model, used in CFD simulations, too. 18 refs., 5 figs., 5 tabs.

  3. ANALISA KEHILANGAN ENERGI PADA FIRE TUBE BOILER KAPASITAS 10 TON

    Directory of Open Access Journals (Sweden)

    Aditio Primayudi Aji Nugroho

    2015-06-01

    Full Text Available Tujuan dari penulisan ini adalah menghitung kinerja boiler dengan mengetahui kerugian energi pada saat produksi steam. Analisa teknis pada boiler sangat diperlukan, sebagai upaya peningkatan efisiensi dan mengetahui banyaknya energi yang terbuang sebagai kerugian. Faktorfaktor penyebab kehilangan panas/heat loss terbesar pada boiler antara lain : “kehilangan panas akibat gas buang kering, kandungan steam dalam gas buang, kandungan air dalam bahan bakar, kandungan air dalam suplai udara dan lain-lain”.Kehilangan panas/heat loss atau juga bisa disebut kehilangan energi merupakan salah satu faktor penting yang sangat berpengaruh dalam mengidentifikasi efisiensi pada boiler.Untuk itu dilakukan studi analisa dengan perhitungan kehilangan panas dengan tujuan untuk mengetahui besarnya penurunan performance dan penyebab dari penurunan performance. Berdasarkan data dan analisa metode direct diketahui penurunan sebesar 21% pada kondisi normal (operasi 79% dan dari hasil perhitungan kehilangan panas indirect sebesar 16.68% efisiensi boiler sebesar 83.32% maka dari itu adanya kehilangan panas, perlu adanya perbaikan dalam control pengaturan bahan bakar dan udara yang masuk secara optimum dengan cara menggunakan Oxygen Trim Control yang berfungsi untuk mengukur konsentrasi oksigen pada cerobong dan secara otomatis mengatur oksigen pada udara yang masuk burner sehingga dihasilkan pembakaran dengan efisiensi yang optimal.dan dengan menggunakan economizer pada pemanasan awal suhu air umpan dapat menaikan efisiensi boiler.

  4. Assessment of Some Performance Characteristics of Refuse Boiler ...

    African Journals Online (AJOL)

    A pioneer palm oil boiler unit, in an immense power self-contained oil mill, impaired by many years of accumulated depreciation, was rebuilt in the pattern of a design-out scheme aimed primarily at rehabilitating the entire boiler system to a state of functionality. The research work studied the pre-maintenance and post ...

  5. Application of analytical capability to predict rapid cladding cooling and quench during the blowdown phase of a large break loss-of-coolant accident

    International Nuclear Information System (INIS)

    Aksan, S.N.; Tolman, E.L.; Nelson, R.A.

    1983-01-01

    Large-break Experiments L2-2 and L2-3 conducted in the Loss-of-Fluid Test (LOFT) facility experienced core-wide rapid quenches early in the blowdown transients. To further investigate rapid cladding quenches, separate effects experiments using Semiscale solid-type electric heater rods were conducted in the LOFT Test Support Facility (LTSF) over a wide range of inlet coolant conditions. The analytical capability to predict the cladding temperature response from selected LTSF experiments estimated to bound the hydraulic conditions causing the LOFT early blowdown quenches was investigated using the RELAP4 computer code and was shown to be acceptable over the film boiling cooldown phase. This analytical capability was then used to investigate the behavior of nuclear fuel rods under the same hydraulic conditions. The calculations show that, under rapid cooling conditions, the behaviors of nuclear and electrical heater rods are significantly different because the nuclear rods are conduction limited, while the electrical rods are convection limited

  6. Questions about the reliability of recovery boilers of steel smelting units

    Energy Technology Data Exchange (ETDEWEB)

    Sazykin, Yu K; Mukhametzyanov, N K

    1979-01-01

    Because the main reason for failure of recovery boilers is contamination of the heating surfaces, the operational conditions of individual elements of boiler units, equipped with vibrational and pulsed cleaning are analyzed and the reliability of the cleaning systems in use today is evaluated. The recovery boilers from open hearth furnaces and two bath steel smelting units from the Magnitogorsk Metallurgic Combine were selected as the subjects of the study. It is established that the boiler heating surface cleaning system has a quite large number of failures. The vibrational cleaning readiness factor is rated at 0.9323 and that of the pulsed cleaning system, 0.9698. For the KU-100 recovery boilers with a mean productivity of 18-20 t/h, the losses caused by failures during operation with vibration and pulsed cleaning were 3,200 and 1,700 rubles per year, respectively. With reconstruction of the boilers, which is associated with an increase in their reliability, the vibration cleaning of the heating surface was replaced by pulsed cleaning.

  7. Investigations on the Behavior of HVOF and Cold Sprayed Ni-20Cr Coating on T22 Boiler Steel in Actual Boiler Environment

    Science.gov (United States)

    Bala, Niraj; Singh, Harpreet; Prakash, Satya; Karthikeyan, J.

    2012-01-01

    High temperature corrosion accompanied by erosion is a severe problem, which may result in premature failure of the boiler tubes. One countermeasure to overcome this problem is the use of thermal spray protective coatings. In the current investigation high velocity oxy-fuel (HVOF) and cold spray processes have been used to deposit commercial Ni-20Cr powder on T22 boiler steel. To evaluate the performance of the coatings in actual conditions the bare as well as the coated steels were subjected to cyclic exposures, in the superheater zone of a coal fired boiler for 15 cycles. The weight change and thickness loss data were used to establish kinetics of the erosion-corrosion. X-ray diffraction, surface and cross-sectional field emission scanning electron microscope/energy dispersive spectroscopy (FE-SEM/EDS) and x-ray mapping techniques were used to analyse the as-sprayed and corroded specimens. The HVOF sprayed coating performed better than its cold sprayed counterpart in actual boiler environment.

  8. Pencegahan Korosi Dengan Boiler Water Treatment (Bwt) Pada Ketel Uap Kapal.

    OpenAIRE

    Suleman, Suleman

    2007-01-01

    This paper explained about a using of Boiler Water Treatment (BWT) as corrosion protection for boiler on ship. BWT used as addition on boiler water, which used destilat water. As experiment results, BWT used on destilat water and destilat - seawater mixed given not koagulan patch on. The simulation given not satisfied results, caused by good not equipment.

  9. Optimization of feed water control for auxiliary boiler

    International Nuclear Information System (INIS)

    Li Lingmao

    2004-01-01

    This paper described the feed water control system of the auxiliary boiler steam drum in Qinshan Phase III Nuclear Power Plant, analyzed the deficiency of the original configuration, and proposed the optimized configuration. The optimized feed water control system can ensure the stable and safe operation of the auxiliary boiler, and the normal operation of the users. (author)

  10. Increased combustion stability in modulating biomass boilers for district heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Gunnar; Hermansson, Roger (eds.) [Lulea Univ. of Technology (Sweden)

    2002-09-01

    One of the problems in small district heating systems is the large load variation that must be handled by the system. If the boiler is designed to cover the needs during the coldest day in winter time in northern Europe it would have to run at loads as low as 10% of full load during summer time, when heat is needed only for tap water production. Load variations in small networks are quite fast and earlier investigations have shown that existing biomass boilers give rise to large amounts of harmful emissions at fast load variations and at low loads. The problem has been addressed in different ways: Three new boiler concepts have been realized and tested: A prototype of a 500 kW boiler with partitioned primary combustion chamber and supplied with a water heat store. A 10 kW bench scale combustor and a 500 kW prototype boiler based on pulsating combustion. Bench scale boilers to test the influence from applied sound on emissions and a 150 kW prototype boiler with a two-stage secondary vortex combustion chamber. Development of control and regulating equipment: Glow Guard, a control system using infra-red sensors to detect glowing char on the grate, has been constructed and tested. A fast prediction model that can be used in control systems has been developed. Simulation of the combustion process: Code to simulate pyrolysis/gasification of fuel on the grate has been developed. Combustion of the gas phase inside the combustion chamber has been simulated. The two models have been combined to describe the combustion process inside the primary chamber of a prototype boiler. A fast simulation code based on statistical methods that can predict the environmental performance of boilers has been developed. One of the boiler concepts matches the desired load span from 10 to 100% of full load with emissions far below the set limits for CO and THC and close to the set limits for NO{sub x}. The other boilers had a bit more narrow load range, one with very low emissions except for NO

  11. Knowledge based system for fouling assessment of power plant boiler

    International Nuclear Information System (INIS)

    Afgan, N.H.; He, X.; Carvalho, M.G.; Azevedo, J.L.T.

    1999-01-01

    The paper presents the design of an expert system for fouling assessment in power plant boilers. It is an on-line expert system based on selected criteria for the fouling assessment. Using criteria for fouling assessment based on 'clean' and 'not-clean' radiation heat flux measurements, the diagnostic variable are defined for the boiler heat transfer surface. The development of the prototype knowledge-based system for fouling assessment in power plants boiler comprise the integrations of the elements including knowledge base, inference procedure and prototype configuration. Demonstration of the prototype knowledge-based system for fouling assessment was performed on the Sines power plant. It is a 300 MW coal fired power plant. 12 fields are used with 3 on each side of boiler

  12. Preliminary condensation pool experiments with steam using DN80 and DN100 blowdown pipes

    International Nuclear Information System (INIS)

    Laine, J.; Puustinen, M.

    2004-03-01

    The report summarizes the results of the preliminary steam blowdown experiments. Altogether eight experiment series, each consisting of several steam blows, were carried out in autumn 2003 with a scaled-down condensation pool test rig designed and constructed at Lappeenranta University of Technology. The main purpose of the experiments was to evaluate the capabilities of the test rig and the needs for measurement and visualization devices. The experiments showed that a high-speed video camera is essential for visual observation due to the rapid condensation of steam bubbles. Furthermore, the maximum measurement frequency of the current combination of instrumentation and data acquisition system is inadequate for the actual steam tests in 2004. (au)

  13. CFD simulation of the combustion process of the low-emission vortex boiler

    Science.gov (United States)

    Chernov, A. A.; Maryandyshev, P. A.; Pankratov, E. V.; Lubov, V. K.

    2017-11-01

    Domestic heat and power engineering needs means and methods for optimizing the existing boiler plants in order to increase their technical, economic and environmental work. The development of modern computer technology, methods of numerical modeling and specialized software greatly facilitates the solution of many emerging problems. CFD simulation allows to obtaine precise results of thermochemical and aerodynamic processes taking place in the furnace of boilers in order to optimize their operation modes and develop directions for their modernization. The paper presents the results of simulation of the combustion process of a low-emission vortex coal boiler of the model E-220/100 using the software package Ansys Fluent. A hexahedral grid with a number of 2 million cells was constructed for the chosen boiler model. A stationary problem with a two-phase flow was solved. The gaseous components are air, combustion products and volatile substances. The solid phase is coal particles at different burnup stages. The Euler-Lagrange approach was taken as a basis. Calculation of the coal particles trajectories was carried out using the Discrete Phase Model which distribution of the size particle of coal dust was accounted for using the Rosin-Rammler equation. Partially Premixed combustion model was used as the combustion model which take into account elemental composition of the fuel and heat analysis. To take turbulence into account, a two-parameter k-ε model with a standard wall function was chosen. Heat transfer by radiation was calculated using the P1-approximation of the method of spherical harmonics. The system of spatial equations was numerically solved by the control volume method using the SIMPLE algorithm of Patankar and Spaulding. Comparison of data obtained during the industrial-operational tests of low-emission vortex boilers with the results of mathematical modeling showed acceptable convergence of the tasks of this level, which confirms the adequacy of the

  14. Thermo-hydraulic consequence of pressure suppression containment vessel during blowdown, 2

    International Nuclear Information System (INIS)

    Aya, Izuo; Nariai, Hideki; Kobayashi, Michiyuki

    1980-01-01

    As a part of the safety research works for the integral-type marine reactor, an analytical code SUPPAC-2V was developed to simulate the thermo-hydraulic consequence of a pressure suppression containment system during blowdown and the code was applied to the Model Experimental Facility of the Safety of Integral Type Marine Reactors (explained already in Part 1). SUPPAC-2V is much different from existing codes in the following points. A nonhomogeneous model for the gaseous region in the drywell, a new correlation for condensing heat transfer coefficient at drywell wall based on existing data and approximation of air bubbles in wetwell water by one dimensional bubble rising model are adopted in this code. In comparing calculational results with experimental results, values of predominant input parameters were evaluated and discussed. Moreover, the new code was applied also to the NSR-7 marine reactor, conceptually designed at the Shipbuilding Research Association in Japan, of which suppression system had been already analysed by CONTEMPT-PS. (author)

  15. A simplified dynamic analysis for reactor piping systems under blowdown conditions

    International Nuclear Information System (INIS)

    Chen, M.M.

    1975-01-01

    In the design of pipelines in a nuclear power plant for blowdown conditions, is it customary to conduct dynamic analysis of the piping system to obtain the responses and the resulting stresses. Calculations are repeated for each design modification in piping geometry or supporting system until the design codes are met. The numerical calculations are, in general, very costly and time consuming. Until now, there have been no simple means for calculating the dynamic responses for the design. The proposed method reduces the dynamic calculation to a quasi-static one, and can be beneficially used for the preliminary design. The method is followed by a complete dynamical analysis to improve the final results. The new formulations greatly simplify the numerical computation and provide design guides. When used to design a given piping system, the method saved approximately one order of magnitude of computer time. The approach can also be used for other types of structures

  16. Evaluation of SG blowdown demineralizer performance by replacement of ammonia with ethanolamine as a PWR secondary pH control agent

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, I.H. [Department of Materials and Chemical Engineering, Soonchunhyang Univ. (Korea, Republic of); Yim, S.J. [Operation Management Team, Korea Hydro and Nuclear Power Co. Ltd., Seoul (Korea, Republic of)

    2002-07-01

    Four Korean PWR plants have adopted ethanolamine (ETA) as a secondary pH control agent to increase the pH at the liquid phase, which raises the pH in the SG blowdown system. The run time of the SG blowdown demineralizer can be reduced by the increased number of ionic chemical species primarily due to ETA. Contrary to the possible prevention of SG degradation, the replacement of ammonia with ETA results in the water chemistry difficulties and more frequent generation of spent resin. A comprehensive experimental data set for binary, ternary, quaternary, and quinary cation and anion adsorption was developed from small-volume batch tests at total cation or anion concentrations of 0.01 and 0.05 N to obtain the selectivity coefficients of many cations and anions normally present in the PWR secondary system water. In addition, the kinetic study using the bench-scale column was performed to examine the breakthrough point of an ion and to calculate the ratio of inlet to outlet concentration at the column, so called Decontamination Factor, in the different background electrolyte. The batch equilibrium tests indicated that the ion selectivity is higher for an ion of higher valence and is not uniform in the different composition and ionic strength. The preference of an ion on ion exchange resin rather tends to be lower with higher ionic strength. The leakage of an ion from the ion exchange column is not also uniform in time in the various composition and total concentration. Therefore the ion selectivity and breakthrough time are different in ammonia and ethanolamine background electrolytes. The run time of SG blowdown demineralizer can be shorter than it can be expected due to the elevated ionic strength as well as the increased dissolved solids. The quantitative run time can be estimated by such ion exchange models as semi-empirical mass action and surface complexation models. The demineralizer can be used longer by increasing the ratios of cation to anion exchange resins in

  17. Evaluation of SG blowdown demineralizer performance by replacement of ammonia with ethanolamine as a PWR secondary pH control agent

    International Nuclear Information System (INIS)

    Rhee, I.H.; Yim, S.J.

    2002-01-01

    Four Korean PWR plants have adopted ethanolamine (ETA) as a secondary pH control agent to increase the pH at the liquid phase, which raises the pH in the SG blowdown system. The run time of the SG blowdown demineralizer can be reduced by the increased number of ionic chemical species primarily due to ETA. Contrary to the possible prevention of SG degradation, the replacement of ammonia with ETA results in the water chemistry difficulties and more frequent generation of spent resin. A comprehensive experimental data set for binary, ternary, quaternary, and quinary cation and anion adsorption was developed from small-volume batch tests at total cation or anion concentrations of 0.01 and 0.05 N to obtain the selectivity coefficients of many cations and anions normally present in the PWR secondary system water. In addition, the kinetic study using the bench-scale column was performed to examine the breakthrough point of an ion and to calculate the ratio of inlet to outlet concentration at the column, so called Decontamination Factor, in the different background electrolyte. The batch equilibrium tests indicated that the ion selectivity is higher for an ion of higher valence and is not uniform in the different composition and ionic strength. The preference of an ion on ion exchange resin rather tends to be lower with higher ionic strength. The leakage of an ion from the ion exchange column is not also uniform in time in the various composition and total concentration. Therefore the ion selectivity and breakthrough time are different in ammonia and ethanolamine background electrolytes. The run time of SG blowdown demineralizer can be shorter than it can be expected due to the elevated ionic strength as well as the increased dissolved solids. The quantitative run time can be estimated by such ion exchange models as semi-empirical mass action and surface complexation models. The demineralizer can be used longer by increasing the ratios of cation to anion exchange resins in

  18. Agglomeration of bed material: Influence on efficiency of biofuel fluidized bed boiler

    Directory of Open Access Journals (Sweden)

    Ryabov Georgy A.

    2003-01-01

    Full Text Available The successful design and operation of a fluidized bed combustor requires the ability to control and mitigate ash-related problems. The main ash-related problem of biomass filing boiler is agglomeration. The fluidized bed boiler with steam capacity of 66 t/h (4 MPa, 440 °C was started up at the Arkhangelsk Paper-Pi dp-Plant in 2001. This boiler was manufactured by the Russian companies "Energosofin" and "Belenergomash" and installed instead of the existing boiler with mechanical grate. Some constructional elements and steam drum of existing boiler remained unchanged. The primary air fan was installed past the common air fan, which supply part of the air into 24 secondary airports. First operating period shows that the bed material is expanded and then operator should increase the primary air rate, and the boiler efficiency dramatically decreases. Tills paper presents some results of our investigations of fuel, bed and fly ash chemical compositions and other characteristics. Special experiments were carried out to optimize the bed drain flow rate. The influence of secondly air supply improvement on mixing with the main flow and boiler efficiency are given.

  19. Energy and emission aspects of co-combustion solid recovered fuel with coal in a stoker boiler

    Science.gov (United States)

    Wasielewski, Ryszard; Głód, Krzysztof; Telenga-Kopyczyńska, Jolanta

    2018-01-01

    The results of industrial research on co-combustion of solid recovered fuel (SRF) with hard coal in a stoker boiler type WR-25 has been presented. The share of SRF in the fuel mixture was 10%. During the co-combustion of SRF, no technological disturbances or significant reduction in energy efficiency of the boiler were noted. Obtained SO2, NOx and CO emissions were comparable with coal combustion but dust emissions increased. During combustion of the coal mixture with a 10% share of SRF in the test boiler WR-25, the emission standards established for the combustion of the dedicated fuel were met. However, comparison of obtained emission results with the emission standards established for co-incineration of waste, revealed the exceedance of permissible levels of HCl, dust, heavy metals, dioxins and furans. Additionally, the residence time of flue gases in over 850°C conditions for the test boiler WR-25 was too short (1.3 seconds) in refer to the legislative requirements (2 seconds) for the thermal conversion of waste.

  20. Energy and emission aspects of co-combustion solid recovered fuel with coal in a stoker boiler

    Directory of Open Access Journals (Sweden)

    Wasielewski Ryszard

    2018-01-01

    Full Text Available The results of industrial research on co-combustion of solid recovered fuel (SRF with hard coal in a stoker boiler type WR-25 has been presented. The share of SRF in the fuel mixture was 10%. During the co-combustion of SRF, no technological disturbances or significant reduction in energy efficiency of the boiler were noted. Obtained SO2, NOx and CO emissions were comparable with coal combustion but dust emissions increased. During combustion of the coal mixture with a 10% share of SRF in the test boiler WR-25, the emission standards established for the combustion of the dedicated fuel were met. However, comparison of obtained emission results with the emission standards established for co-incineration of waste, revealed the exceedance of permissible levels of HCl, dust, heavy metals, dioxins and furans. Additionally, the residence time of flue gases in over 850°C conditions for the test boiler WR-25 was too short (1.3 seconds in refer to the legislative requirements (2 seconds for the thermal conversion of waste.

  1. Bed-To-Wall Heat Transfer in a Supercritical Circulating Fluidised Bed Boiler

    Directory of Open Access Journals (Sweden)

    Błaszczuk Artur

    2014-06-01

    Full Text Available The purpose of this work is to find a correlation for heat transfer to walls in a 1296 t/h supercritical circulating fluidised bed (CFB boiler. The effect of bed-to-wall heat transfer coefficient in a long active heat transfer surface was discussed, excluding the radiation component. Experiments for four different unit loads (i.e. 100% MCR, 80% MCR, 60% MCR and 40% MCR were conducted at a constant excess air ratio and high level of bed pressure (ca. 6 kPa in each test run. The empirical correlation of the heat transfer coefficient in a large-scale CFB boiler was mainly determined by two key operating parameters, suspension density and bed temperature. Furthermore, data processing was used in order to develop empirical correlation ranges between 3.05 to 5.35 m·s-1 for gas superficial velocity, 0.25 to 0.51 for the ratio of the secondary to the primary air, 1028 to 1137K for bed temperature inside the furnace chamber of a commercial CFB boiler, and 1.20 to 553 kg·m-3 for suspension density. The suspension density was specified on the base of pressure measurements inside the boiler’s combustion chamber using pressure sensors. Pressure measurements were collected at the measuring ports situated on the front wall of the combustion chamber. The obtained correlation of the heat transfer coefficient is in agreement with the data obtained from typical industrial CFB boilers.

  2. A cost-benefit analysis of a pellet boiler with electrostatic precipitator versus conventional biomass technology: A case study of an institutional boiler in Syracuse, New York.

    Science.gov (United States)

    Levy, Jonathan I; Biton, Leiran; Hopke, Philip K; Zhang, K Max; Rector, Lisa

    2017-07-01

    patterns of health benefits given non-uniform age distributions and air pollution levels. The incremental investment in a lower-emitting staged combustion pellet boiler with an electrostatic precipitator was well justified by the population health improvements over the conventional wood chip technology with a multicyclone, even given the focus on only primary PM 2.5 within a small spatial domain. Our analytical framework could be generalized to other settings to inform optimal strategies for proposed new facilities or populations. Copyright © 2017. Published by Elsevier Inc.

  3. Firewood boiler operators and heat exposure

    Directory of Open Access Journals (Sweden)

    Vilson Bernardo Stollmeier

    2017-12-01

    Full Text Available This article presents an analysis of heat exposure work in boiler industry wood from a company in the industrial sector, focusing on the analysis of the environmental burden of the activity. Therefore, the methodological procedures consisted of document analysis, interviews, filming, evaluation problems of the effects of the hot environment and its prevention. The results show that the fuel to the boiler operators are exposed to heat and need guidance on their daily activities with prevention of diseases affected by excessive heat. Are also suggested training in technical and health to improve working conditions and the operator's health.

  4. A bottom-up method to develop pollution abatement cost curves for coal-fired utility boilers

    International Nuclear Information System (INIS)

    Vijay, Samudra; DeCarolis, Joseph F.; Srivastava, Ravi K.

    2010-01-01

    This paper illustrates a new method to create supply curves for pollution abatement using boiler-level data that explicitly accounts for technology cost and performance. The Coal Utility Environmental Cost (CUECost) model is used to estimate retrofit costs for five different NO x control configurations on a large subset of the existing coal-fired, utility-owned boilers in the US. The resultant data are used to create technology-specific marginal abatement cost curves (MACCs) and also serve as input to an integer linear program, which minimizes system-wide control costs by finding the optimal distribution of NO x controls across the modeled boilers under an emission constraint. The result is a single optimized MACC that accounts for detailed, boiler-specific information related to NO x retrofits. Because the resultant MACCs do not take into account regional differences in air-quality standards or pre-existing NO x controls, the results should not be interpreted as a policy prescription. The general method as well as NO x -specific results presented here should be of significant value to modelers and policy analysts who must estimate the costs of pollution reduction.

  5. Study on Laws, Regulations and Standards on Energy Efficiency, Energy Conserving and Emission Reduction of Industrial Boilers in EU

    Science.gov (United States)

    Liu, Ren; Zhao, Yuejin; Chen, Haihong; Liang, Xiuying; Yang, Ming

    2017-12-01

    Industrial boilers are widely applied in such fields as factory power, building heating, and people’s lives; China is the world’s largest producer and user of industrial boilers, with very high annual energy consumption; clear requirements have been put forward by China on the energy efficiency since the “11th Five-year Plan” with the hope to save energy and reduce emission by means of energy efficiency standards and regulations on the supervision and control of various special equipment. So far, the energy efficiency of industrial boilers in China has been improved significantly but there is still a gap with the EU states. This paper analyzes the policies of energy efficiency, implementation models and methods of supervision and implementation at the EU level from laws, regulations, directives as well as standards; the paper also puts forward suggestions of energy conserving and emission reduction on the improvement of energy conserving capacity of industrial boilers in China through studying the legislations and measures of the developed countries in energy conserving of boilers.

  6. Study of flue-gas temperature difference in supercritical once-through boiler

    Science.gov (United States)

    Kang, Yanchang; Li, Bing; Song, Ang

    2018-02-01

    The 600 MW coal-fired once-through Boilers with opposed firing at a power plant are found to experience marked temperature variation and even overtemperature on the wall of the heating surface as a result of flue-gas temperature (FGT) variation in the boiler. In this study, operational adjustments were made to the pulverizing, combustion, and secondary air box systems in these boilers, in order to solve problems in internal combustion. The adjustments were found to reduce FGT difference and optimize the boiler’ combustion conditions. The results of this study can provide a reference for optimization of coal-fired boiler of the same type in similar conditions.

  7. Effect of Water Quality on the Performance of Boiler in Nigerian Petroleum Industry

    Directory of Open Access Journals (Sweden)

    J. O. ODIGURE

    2005-06-01

    Full Text Available This work investigates quality of water used in boilers of Refinery Company in Nigeria. The results shows that the quality of water fed to boilers are off specification. Low water quality used in boilers led to frequent failure of the boilers as a result of tube rupture. This has resulted into low capacity utilization and loss of processing fees. The poor performance of the boiler feed treatment plant is attributable to the deplorable condition of water intake plant, raw water treatment, demineralization plant, change in raw water quality and non-functioning of the polisher unit.

  8. Status and Analysis on Effects of Energy Efficiency Standards for Industrial Boilers in China

    Science.gov (United States)

    Liu, Ren; Chen, Lili; Liu, Meng; Ding, Qing; Zhao, Yuejin

    2017-11-01

    Energy conservation and environmental protection is the basic policy of China, and is an important part of ecological civilization construction. The industrial boilers in China are featured by large quantity, wide distribution, high energy consumption and heavy environmental pollution, which are key problems faced by energy conservation and environmental protection in China. Meanwhile, industrial boilers are important equipment for national economy and people’s daily life, and energy conservation gets through all segments from type selection, purchase, installation and acceptance to fuel management, operation, maintenance and service. China began to implement such national mandatory standards and regulations for industrial boiler as GB24500-2009 The Minimum Allowable Values of Energy Efficiency and Energy Efficiency Grades of Industrial Boilers and TSG G002-2010 Supervision Regulation on Energy-Saving Technology for Boilers since 2009, which obviously promote the development of energy conservation of industrial boilers, but there are also some problems with the rapid development of technologies for energy conservation of industrial boilers. In this paper, the implementation of energy efficiency standards for industrial boilers in China and the significance are analyzed based on survey data, and some suggestions are proposed for the energy efficiency standards for industrial boilers.

  9. METHANE de-NOX for Utility PC Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Bryan; Serguei Nester; Joseph Rabovitser; Stan Wohadlo

    2005-09-30

    The overall project objective is the development and validation of an innovative combustion system, based on a novel coal preheating concept prior to combustion, that can reduce NO{sub x} emissions to 0.15 lb/million Btu or less on utility pulverized coal (PC) boilers. This NO{sub x} reduction should be achieved without loss of boiler efficiency or operating stability, and at more than 25% lower levelized cost than state-of-the-art SCR technology. A further objective is to ready technology for full-scale commercial deployment to meet the market demand for NO{sub x} reduction technologies. Over half of the electric power generated in the U.S. is produced by coal combustion, and more than 80% of these units utilize PC combustion technology. Conventional measures for NOx reduction in PC combustion processes rely on combustion and post-combustion modifications. A variety of combustion-based NO{sub x} reduction technologies are in use today, including low-NO{sub x} burners (LNBs), flue gas recirculation (FGR), air staging, and natural gas or other fuel reburning. Selective non-catalytic reduction (SNCR) and selective catalytic reduction (SCR) are post-combustion techniques. NO{sub x} reduction effectiveness from these technologies ranges from 30 to 60% and up to 90-93% for SCR. Typically, older wall-fired PC burner units produce NO{sub x} emissions in the range of 0.8-1.6 lb/million Btu. Low-NO{sub x} burner systems, using combinations of fuel staging within the burner and air staging by introduction of overfire air in the boiler, can reduce NO{sub x} emissions by 50-60%. This approach alone is not sufficient to meet the desired 0.15 lb/million Btu NO{sub x} standard with a range of coals and boiler loads. Furthermore, the heavy reliance on overfire air can lead to increased slagging and corrosion in furnaces, particularly with higher-sulfur coals, when LNBs are operated at sub-stoichiometric conditions to reduce fuel-derived NOx in the flame. Therefore, it is desirable

  10. Life cycle analysis of small scale pellet boilers characterized by high efficiency and low emissions

    International Nuclear Information System (INIS)

    Monteleone, B.; Chiesa, M.; Marzuoli, R.; Verma, V.K.; Schwarz, M.; Carlon, E.; Schmidl, C.; Ballarin Denti, A.

    2015-01-01

    Highlights: • LCA was performed on innovative small scale pellet boilers. • Pellet boilers impacts were compared to oil and natural gas boilers impacts. • Both literature and experimental data were used for life cycle analysis. • The environmental impact due to all life cycle phases was envisaged. • Sensitivity tests evidenced realistic ways for pellet boilers impact reduction. - Abstract: This study focuses on the environmental impact assessment through Life Cycle Analysis (LCA) of two innovative 10 kW pellet boilers. In particular, the second boiler represents a technological evolution of the first one developed to improve its performance in terms of efficiency and environmental impact. For both boilers, emission factors measured during laboratory tests (full load tests and specific load cycle tests representative of real life boiler operation) have been used as input data in the life cycle analysis. The SimaPro software (v.8.0.4.30) was used for the LCA and the ReCiPe Midpoint method (European version H) was chosen to assess the environmental impact of all boilers (according to LCA ISO standards). In addition, the ReCiPe Endpoint method was used to compare the final results of all 5 boilers with literature data. The pelletisation process represented the most relevant share of the overall environmental impact followed by the operational phase, the manufacturing phase and the disposal phase. A sensitivity analysis performed on the most efficient pellet boiler evidenced the variation of the boiler’s environmental impact as a function of PM10 and NO X emission factors with respect to emission factors monitored during boiler full load operation. Moreover, the reduction of the boiler’s weight and the adoption of new electronic components led to a consistent reduction (−18%) of its environmental impact with respect to the previous technology. A second LCA has been carried on for a 15 kW oil boiler, a 15 kW natural gas boiler and a 15 kW pellet boiler

  11. 30 CFR 77.411 - Compressed air and boilers; general.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compressed air and boilers; general. 77.411 Section 77.411 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Safeguards for Mechanical Equipment § 77.411 Compressed air and boilers; general. All...

  12. 46 CFR 109.421 - Report of repairs to boilers and pressure vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Report of repairs to boilers and pressure vessels. 109... Report of repairs to boilers and pressure vessels. Before making repairs, except normal repairs and maintenance such as replacement of valves or pressure seals, to boilers or unfired pressure vessels in...

  13. COAL-FIRED UTILITY BOILERS: SOLVING ASH DEPOSITION PROBLEMS; TOPICAL

    International Nuclear Information System (INIS)

    Christopher J. Zygarlicke; Donald P. McCollor; Steven A. Benson; Jay R. Gunderson

    2001-01-01

    The accumulation of slagging and fouling ash deposits in utility boilers has been a source of aggravation for coal-fired boiler operators for over a century. Many new developments in analytical, modeling, and combustion testing methods in the past 20 years have made it possible to identify root causes of ash deposition. A concise and comprehensive guidelines document has been assembled for solving ash deposition as related to coal-fired utility boilers. While this report accurately captures the current state of knowledge in ash deposition, note that substantial research and development is under way to more completely understand and mitigate slagging and fouling. Thus, while comprehensive, this document carries the title ''interim,'' with the idea that future work will provide additional insight. Primary target audiences include utility operators and engineers who face plant inefficiencies and significant operational and maintenance costs that are associated with ash deposition problems. Pulverized and cyclone-fired coal boilers are addressed specifically, although many of the diagnostics and solutions apply to other boiler types. Logic diagrams, ash deposit types, and boiler symptoms of ash deposition are used to aid the user in identifying an ash deposition problem, diagnosing and verifying root causes, determining remedial measures to alleviate or eliminate the problem, and then monitoring the situation to verify that the problem has been solved. In addition to a step-by-step method for identifying and remediating ash deposition problems, this guideline document (Appendix A) provides descriptions of analytical techniques for diagnostic testing and gives extensive fundamental and practical literature references and addresses of organizations that can provide help in alleviating ash deposition problems

  14. French studies on blow-down accident in light water reactors

    International Nuclear Information System (INIS)

    Pelce, J.

    1977-01-01

    The effects on fuel elements and containment buildings resulting from a rapid blow-down accident and the effectiveness of proposed emergency systems are currently being evaluated in France, using the so-called first generation computer codes. Some of these were developed by the constructing organization Framatome for the design of actual power plants; others were developed by the Nuclear Safety Division to back-up related safety studies. These codes are considered to be inadequate and for several years a large effort has been made jointly by EDF and safety authorities, and with the technical assistance of CEA, to make a significant improvement in the methods of assessment. Framatome also participates in this work to some extent. A more physical method is proposed. In particular, selected models are supported by a quite comprehensive experimental programme which is mainly analytical in nature, as follows: (1) Basic analysis, using experiments which are planned or in progress, such as CANON, MOBY-DICK, SUPER MOBY-DICK, REBECA (critical flow at the break and between sub-compartments of the containment building), ECOTRA (condensation on inner walls), TAPIOCA (phase separation at small cracks), EPIS (water and steam mixing during emergency injection), EDGAR (fuel cladding behavior). (2) More intricate or semi-integral analysis such as OMEGA and ERSEC (tests on in-core heat transfer during blow-down and rewetting), both of which are in progress, in-pile PHEBUS loop due to start operating in 1977 (fuel behavior during the accident), pump tests (EVA, POMPE). Future methods of assessing the reactor itself will include the physical models thus perfected: A first code, (CLYSTERE) has been written and can be used. Although it has not been validated experimentally, it can already evaluate the effect of some physical phenomena on the development of the accident. Work is being done on reconstructing the general flow chart of this code in order to improve the conditions of use, in

  15. CEGB research on boiler leaks and their detection in service

    International Nuclear Information System (INIS)

    Hayes, D.J.

    1978-01-01

    The penalty in loss of output to an electricity generation organisation as a consequence of failure to deal effectively with small LMFBR boiler leaks would be large. There is therefore a considerable incentive for these organisations to satisfy themselves that proper provisions are made to ensure that both the incidence and the severity of boiler leaks are minimised. In the UK, responsibility for the research, development and design work for this and indeed for most aspects of future nuclear power plant rests with the UKAEA and NPC; nevertheless as a consequence of its 'informed operator' policy the Central Electricity Generating Board has devoted some research effort to this field in recent years. o date, research work has been put in hand with the objective of achieving an understanding of the basic behaviour of boiler leaks. In addition, attention has been given to leak detection by monitoring the sodium for increases in oxygen and hydrogen levels. In both cases leaks into liquid sodium rather than into the gas space have been considered. In the course of the work hydrogen and oxygen meters based on the galvanic cell principle have been constructed and evaluated. The former is a new device which is comparable in performance with hydrogen meters based on the ion pump. The present state of the work is briefly described in this paper

  16. CEGB research on boiler leaks and their detection in service

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, D J [Berkeley Nuclear Laboratories, Berkeley, Gloucestershire (United Kingdom)

    1978-10-01

    The penalty in loss of output to an electricity generation organisation as a consequence of failure to deal effectively with small LMFBR boiler leaks would be large. There is therefore a considerable incentive for these organisations to satisfy themselves that proper provisions are made to ensure that both the incidence and the severity of boiler leaks are minimised. In the UK, responsibility for the research, development and design work for this and indeed for most aspects of future nuclear power plant rests with the UKAEA and NPC; nevertheless as a consequence of its 'informed operator' policy the Central Electricity Generating Board has devoted some research effort to this field in recent years. o date, research work has been put in hand with the objective of achieving an understanding of the basic behaviour of boiler leaks. In addition, attention has been given to leak detection by monitoring the sodium for increases in oxygen and hydrogen levels. In both cases leaks into liquid sodium rather than into the gas space have been considered. In the course of the work hydrogen and oxygen meters based on the galvanic cell principle have been constructed and evaluated. The former is a new device which is comparable in performance with hydrogen meters based on the ion pump. The present state of the work is briefly described in this paper.

  17. 46 CFR 52.20-17 - Opening between boiler and safety valve (modifies PFT-44).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Opening between boiler and safety valve (modifies PFT-44). 52.20-17 Section 52.20-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Firetube Boilers § 52.20-17 Opening between boiler and safety valve...

  18. Economical analyses of construction of a biomass boiler house

    International Nuclear Information System (INIS)

    Normak, A.

    2002-01-01

    To reduce the energy costs we can use cheaper fuel to fire our boiler. One of the cheapest fuels is wood biomass. It is very actual issue how to use cheaper wood biomass in heat generation to decrease energy costs and to increase biomass share in our energy balance. Before we decide to build biomass boiler house it is recommendable to analyse the economical situation and work out most profitable, efficient, reliable and ecological boiler plant design on particular conditions. The best way to perform the analyses is to use the economical model presented. It saves our time and gives objective evaluation to the project. (author)

  19. Advanced, Low/Zero Emission Boiler Design and Operation

    Energy Technology Data Exchange (ETDEWEB)

    Babcock/Wilcox; Illinois State Geological; Worley Parsons; Parsons Infrastructure/Technology Group

    2007-06-30

    In partnership with the U.S. Department of Energy's National Energy Technology Laboratory, B&W and Air Liquide are developing and optimizing the oxy-combustion process for retrofitting existing boilers as well as new plants. The main objectives of the project is to: (1) demonstrate the feasibility of the oxy-combustion technology with flue gas recycle in a 5-million Btu/hr coal-fired pilot boiler, (2) measure its performances in terms of emissions and boiler efficiency while selecting the right oxygen injection and flue gas recycle strategies, and (3) perform technical and economic feasibility studies for application of the technology in demonstration and commercial scale boilers. This document summarizes the work performed during the period of performance of the project (Oct 2002 to June 2007). Detailed technical results are reported in corresponding topical reports that are attached as an appendix to this report. Task 1 (Site Preparation) has been completed in 2003. The experimental pilot-scale O{sub 2}/CO{sub 2} combustion tests of Task 2 (experimental test performance) has been completed in Q2 2004. Process simulation and cost assessment of Task 3 (Techno-Economic Study) has been completed in Q1 2005. The topical report on Task 3 has been finalized and submitted to DOE in Q3 2005. The calculations of Task 4 (Retrofit Recommendation and Preliminary Design of a New Generation Boiler) has been completed in 2004. In Task 6 (engineering study on retrofit applications), the engineering study on 25MW{sub e} unit has been completed in Q2, 2008 along with the corresponding cost assessment. In Task 7 (evaluation of new oxy-fuel power plants concepts), based on the design basis document prepared in 2005, the design and cost estimate of the Air Separation Units, the boiler islands and the CO{sub 2} compression and trains have been completed, for both super and ultra-supercritical case study. Final report of Task-7 is published by DOE in Oct 2007.

  20. Effect of Thermal Storage on the Performance of a Wood Pellet-fired Residential Boiler

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Butcher [Brookhaven National Laboratory (BNL), Upton, NY (United States). Sustainable Energy Technologies Dept.

    2017-08-31

    Interest in the direct use of biomass for thermal applications as a renewable technology is increasing as is also focus on air pollutant emissions from these sources and methods to minimize the impact. This work has focused on wood pellet-fired residential boilers, which are the cleanest fuel in this category. In the residential application the load varies strongly over the course of a year and a high fraction of the load is typically under 15% of the maximum boiler capacity. Thermal storage can be used even with boilers which have modulation capacity typically to 30% of the boiler maximum. One common pellet boiler was tested at full load and also at the minimum load used in the U.S. certification testing (15%). In these tests the load was steady over the test period. Testing was also done with an emulated load profile for a home in Albany, N.Y. on a typical January, March, and April day. In this case the load imposed on the boiler varied hourly under computer control, based on the modeled load for the example case used. The boiler used has a nominal output of 25 kW and a common mixed hardwood/softwood commercial pellet was used. Moisture content was 3.77%. A dilution tunnel approach was used for the measurement of particulate emissions, in accordance with U.S. certification testing requirements. The test results showed that the use of storage strongly reduces cycling rates under part load conditions. The transients which occur as these boilers cycle contribute to increased particulate emissions and reduced efficiency. The time period of a full cycle at a given load condition can be increased by increasing the storage tank volume and/or increasing the control differential range. It was shown that increasing the period strongly increased the measured efficiency and reduced the particulate emission (relative to the no storage case). The impact was most significant at the low load levels. Storage tank heat loss is shown to be a significant factor in thermal efficiency

  1. ENERGY STAR Certified Commercial Boilers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Commercial Boilers that are effective as of...

  2. Condensing gas boilers for energy efficiency and reduction of CO2 and NOx

    International Nuclear Information System (INIS)

    Stewardson, E.

    1994-01-01

    The objectives of the study are: 1) to demonstrate the effectiveness of condensing gas boiler hot water system in reducing energy costs and pollution; 2) to illustrate the importance of marketing this technology to uninformed end users. The development of condensing boilers in the European Community, the materials used, product designs, key performance measures, and the types of applications suited to these products are outlined. Using calculations from a body of work produced by the Chartered Institute of Building Service Engineers in Britain, it is demonstrated how seasonal efficiency differs from combustion efficiency, and how the added capital cost for these boilers may be recovered within an acceptable commercial pay back period from fuel cost savings. Applying current NO x and CO 2 information from a body of the CE Technical Committees, the author show how these products can reduce pollution levels both from CO 2 and NO x . An example of marketing these products to a largely uninformed end user customer market is cited. 2 refs., 3 tabs., 12 figs. (orig.)

  3. Exergy analysis of a circulating fluidized bed boiler cogeneration power plant

    International Nuclear Information System (INIS)

    Gürtürk, Mert; Oztop, Hakan F.

    2016-01-01

    Highlights: • Analysis of energy and exergy for a cogeneration power plant have been performed. • This plant has circulating fluidized bed boiler. • Energy and exergy efficiencies of the boiler are obtained as 84.65% and 29.43%, respectively. • Exergy efficiency of the plant was calculated as 20%. - Abstract: In this study, energy and exergy analysis of a cogeneration power plant have been performed. The steam which is produced by the cogeneration power plant is used for salt production and most important part of the cogeneration power plant is the circulation fluidized bed boiler. Energy and exergy efficiency of the circulation fluidized bed boiler were found as 84.65% and 29.43%, respectively. Exergy destruction of the circulation fluidized bed boiler was calculated as 21789.39 kW and 85.89% of exergy destruction in the plant. The automation system of the cogeneration power plant is insufficient. Exergy efficiency of the plant was calculated as 20%. Also, some design parameters increasing energy losses were determined.

  4. 46 CFR 50.05-5 - Existing boilers, pressure vessels or piping systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Existing boilers, pressure vessels or piping systems. 50... ENGINEERING GENERAL PROVISIONS Application § 50.05-5 Existing boilers, pressure vessels or piping systems. (a) Whenever doubt exists as to the safety of an existing boiler, pressure vessel, or piping system, the marine...

  5. Evaluation of thermal overload in boiler operators.

    Science.gov (United States)

    Braga, Camila Soares; Rodrigues, Valéria Antônia Justino; Campos, Julio César Costa; de Souza, Amaury Paulo; Minette, Luciano José; de Moraes, Angêlo Casali; Sensato, Guilherme Luciano

    2012-01-01

    The Brazilians educational institutions need a large energy demand for the operation of laundries, restaurants and accommodation of students. Much of that energy comes from steam generated in boilers with wood fuel. The laboral activity in boiler may present problems for the operator's health due to exposure to excessive heat, and its operation has a high degree of risk. This paper describes an analysis made the conditions of thermal environment in the operation of a B category boiler, located at a Higher Education Institution, located in the Zona da Mata Mineira The equipments used to collect data were Meter WBGT of the Heat Index; Meter of Wet Bulb Index and Globe Thermometer (WBGT); Politeste Instruments, an anemometer and an Infrared Thermometer. By the application of questionnaires, the second phase consisted of collecting data on environmental factors (temperature natural environment, globe temperature, relative humidity and air velocity). The study concluded that during the period evaluated, the activity had thermal overload.

  6. Mineralogical composition of boiler fouling and slagging deposits and their relation to fly ashes: the case of Kardia power plant.

    Science.gov (United States)

    Kostakis, George

    2011-01-30

    Slagging and fouling deposits from a pulverized lignite fired steam generating unit of the Kardia power plant (West Macedonia, Greece) were mineralogically investigated. The structure and cohesion of these deposits varied, usually depending on the level height of the boiler unit where they were formed. Some of the deposits had complex phase composition. The dominant components of the deposits of the burner zone and of the lower and intermediate boiler zones were the amorphous, anhydrite and hematite, while those of the highest levels contained amorphous, and anhydrite. Furthermore, in deposits formed in various other boiler areas gehlenite, anorthite, diopside, quartz, Ca(2)SiO(4), brownmillerite and other crystalline phases were also identified, usually in low amounts or in traces. The major part of the phases constituting the deposits were formed in the boiler, since only a minor part derived from the unreacted minerals present in lignite. Anhydrite was generated from the reaction of SO(2) with CaO formed mainly by the calcination of calcite as well as from dehydration of gypsum contained in lignite, while hematite was produced mainly from the oxidation of pyrite. The calcium-containing silicates formed in the boiler were mainly the products of reactions between CaO and minerals contained in the lignite. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Lagisza, world's largest CFB boiler, begins commercial operation

    Energy Technology Data Exchange (ETDEWEB)

    Nuortimo, K. [Foster Wheeler, Varkaus (Finland)

    2010-04-15

    Early operating experience with the Lagisza circulating fluidised bed (CFB) boiler in Poland - the world's largest such boiler to date, and also the first one with supercritical steam conditions - has been positive. 3 figs., 4 tabs.

  8. Emission Characteristics of Gas-Fired Boilers based on Category-Specific Emission Factor from Field Measurements in Beijing, China

    Science.gov (United States)

    Itahashi, S.; Yan, X.; Song, G.; Yan, J.; Xue, Y.

    2017-12-01

    Gas-fired boilers will become the main stationary sources of NOx in Beijing. However, the knowledge of gas-fired boilers in Beijing is limited. In the present study, the emission characteristics of NOx, SO2, and CO from gas-fired boilers in Beijing were established using category-specific emission factors (EFs) from field measurements. In order to obtain category-specific EFs, boilers were classified through influence analysis. Factors such as combustion mode, boiler type, and installed capacity were considered critical for establishing EFs because they play significant roles in pollutant formation. The EFs for NOx, CO, and SO2 ranged from 1.42-6.86 g m-3, 0.05-0.67 g m-3 and 0.03-0.48 g m-3. The emissions of NOx, SO2, and CO for gas-fired boilers in Beijing were 11121 t, 468 t, and 222 t in 2014, respectively. The emissions were spatially allocated into grid cells with a resolution of 1 km × 1 km, and the results indicated that top emitters were in central Beijing. The uncertainties were quantified using a Monte Carlo simulation. The results indicated high uncertainties in CO (-157% to 154%) and SO2 (-127% to 182%) emissions, and relatively low uncertainties (-34% to 34%) in NOx emission. Furthermore, approximately 61.2% and 96.8% of the monitored chamber combustion boilers (CCBs) met the standard limits for NOx and SO2, respectively. Concerning NOx, low-NOx burners and NOx emission control measures are urgently needed for implementing of stricter standards. Adopting terminal control measures is unnecessary for SO2, although its concentration occasionally exceeds standard limits, because reduction of its concentration can be achieved thorough control of the sulfur content of natural gas at a stable low level. Furthermore, the atmospheric combustion boilers (ACBs) should be substituted with CCBs, because ACBs have a higher emission despite lower gross installed capacity. The results of this study will enable in understanding and controlling emissions from gas

  9. Development and test of small-scale batch-fired straw boilers in Denmark

    International Nuclear Information System (INIS)

    Kristensen, E.F.; Kristensen, J.K.

    2004-01-01

    In Denmark, government subsidies for the testing and installation of biomass-fired boilers were available for the period from 1995 until 2002. Each boiler type had to pass an official approval test to achieve subsidy. The combustion abilities of the boiler were optimized prior to the test. The main aim of this subsidy was to encourage the development of energy-efficient and environmentally friendly boilers. The scheme was therefore organized in such a way that the greatest subsidies were awarded for boilers with high efficiency and low emissions. This goal has in effect been achieved for batch-fired straw boilers, where the typical efficiency has been increased from about 75% in 1995 to about 87% in 2002. Similarly, the carbon monoxide emissions have been reduced from 5000 ppm (reference value 10% O 2 ) in 1995 to less than 1000 ppm in 2002. These improvements are mainly due to better insulation inside the combustion chamber, more efficient techniques for supplying air to the combustion process, improved cooling of the flue gas, and optimization of the electronic control unit for the air supply

  10. Leak detection evaluation of boiler tube for power plant using acoustic emission

    International Nuclear Information System (INIS)

    Lee, Sang Guk; Chung, Min Hwa; Nam, Ki Woo

    2001-01-01

    Main equipment of thermal power plant, such as boiler and turbine, are designed and manufactured by domestic techniques. And also the automatic control facilities controlling the main equipment are at the applying step of the localization. and many parts of BOP(Balance Of Plant) equipment are utilizing, localized. But because the special equipment monitoring the operation status of the main facilities such as boiler and turbine are still dependent upon foreign technology and especially boiler tube leak detection system is under the initial step of first application to newly-constructed plants and the manufacturing and application are done by foreign techniques mostly, fast localization development is required. Therefore, so as to study and develop boiler tube leak detection system, we performed studying on manufacturing, installation in site, acoustic emission(AE) signal analysis and discrimination etc. As a result of studying on boiler tube leak detection using AE, we conformed that diagnosis for boiler tube and computerized their trend management is possible, and also it is expected to contribute to safe operation of power generation facilities.

  11. Vacuum boilers developed heating surfaces technic and economic efficiency evaluation

    Science.gov (United States)

    Slobodina, E. N.; Mikhailov, A. G.; Semenov, B. A.

    2018-01-01

    The vacuum boilers as manufacturing proto types application analysis was carried out, the possible directions for the heating surfaces development are identified with a view to improving the energy efficiency. Economic characteristics to evaluate the vacuum boilers application efficiency (Net Discounted Income (NDI), Internal Rate of Return (IRR), Profitability Index (PI) and Payback Period) are represented. The given type boilers application technic and economic efficiency criteria were established. NDI changing curves depending on the finning coefficient and operating pressure were obtained as a result of the conducted calculation studies.

  12. Numerical modelling of a straw-fired grate boiler

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen

    2004-01-01

    The paper presents a computational fluid dynamics (CFD) analysis of a 33 MW straw-fired grate boiler. Combustion on the grate plays akey-role in the analysis of these boilers and in this work a stand-alone code was used to provide inlet conditions for the CFD analysis. Modelpredictions were compa...... mixing in the furnace is a key issue leading to these problems. q 2003 Elsevier Ltd. All rights reserved....

  13. Steam generation: fossil-fired systems: utility boilers; industrial boilers; boiler auxillaries; nuclear systems: boiling water; pressurized water; in-core fuel management; steam-cycle systems: condensate/feedwater; circulating water; water treatment

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    A survey of development in steam generation is presented. First, fossil-fired systems are described. Progress in the design of utility and industrial boilers as well as in boiler auxiliaries is traced. Improvements in coal pulverizers, burners that cut pollution and improve efficiency, fans, air heaters and economisers are noted. Nuclear systems are then described, including the BWR and PWR reactors, in-core fuel management techniques are described. Finally, steam-cycle systems for fossil-fired and nuclear power plants are reviewed. Condensate/feedwater systems, circulating water systems, cooling towers, and water treatment systems are discussed

  14. Numerical investigation of heat transfer characteristics in utility boilers of oxy-coal combustion

    International Nuclear Information System (INIS)

    Hu, Yukun; Li, Hailong; Yan, Jinyue

    2014-01-01

    Highlights: • Air-coal and oxy-coal combustion in an industrial scale PF boiler were simulated in ANSYS FLUENT. • The O 2 concentration of 33 vol% in the oxy-coal combustion case matches the air-coal combustion case most closely. • The moisture in the flue gas has little impact on flame temperature, but positive impact on surface incident radiation. - Abstract: Oxy-coal combustion has different flue gas composition from the conventional air-coal combustion. The different composition further results in different properties, such as the absorption coefficient, emissivity, and density, which can directly affect the heat transfer in both radiation and convection zones of utility boilers. This paper numerically studied a utility boiler of oxy-coal combustion and compares with air-coal combustion in terms of flame profile and heat transferred through boiler side walls in order to understand the effects of different operating conditions on oxy-coal boiler retrofitting and design. Based on the results, it was found that around 33 vol% of effective O 2 concentration ([O 2 ] effective ) the highest flame temperature and total heat transferred through boiler side walls in the oxy-coal combustion case match to those in the air-coal combustion case most; therefore, the 33 vol% of [O 2 ] effective could result in the minimal change for the oxy-coal combustion retrofitting of the existing boiler. In addition, the increase of the moisture content in the flue gas has little impact on the flame temperature, but results in a higher surface incident radiation on boiler side walls. The area of heat exchangers in the boiler was also investigated regarding retrofitting. If boiler operates under a higher [O 2 ] effective , to rebalance the load of each heat exchanger in the boiler, the feed water temperature after economizer can be reduced or part of superheating surfaces can be moved into the radiation zone to replace part of the evaporators

  15. Enviro-exergy sustainability analysis of boiler evolution in district energy system

    International Nuclear Information System (INIS)

    Compton, M.; Rezaie, B.

    2017-01-01

    Investigations into energy resources are important from the point of energy sustainability. The principal objective of this study is to investigate the evolution of the operating boilers at the University of Idaho (UI) district energy plant through an exergy analysis. The biomass boiler uses western red cedar chips from nearby lumber mills and provides 95% of the steam requirements of the main campus of UI in Moscow, ID, USA. Thermodynamic analysis reveals a thermal efficiency of 76% and an exergy efficiency of 24% for the biomass boiler. A combustion model is developed to determine the primary emissions products of both the bone dry wood chips and natural gas fuels. CO 2 comprises 26% of the bone dry biomass emissions and 8% of the natural gas emissions products. Testing results of the biomass boiler exhaust stack show CO 2 emissions of 14% when an average moisture content of 33% is accounted for. An overview of the evolution of the energy plant is discussed, showing the generational differences in each boiler. By using a biomass fuel source, the cost per 1000 kg of steam produced is on average 63% lower than using natural gas, resulting in savings of over $1 million annually. - Highlights: • Exergy efficiency comparison of biomass and natural gas boilers. • Moisture content in biomass reduces average heating value and exergy efficiency. • Local sustainable energy sources can result in economic savings over fossil fuels. • Older boilers can have comparable efficiencies with newer ones after improvements.

  16. Optimising boiler performance.

    Science.gov (United States)

    Mayoh, Paul

    2009-01-01

    Soaring fuel costs continue to put the squeeze on already tight health service budgets. Yet it is estimated that combining established good practice with improved technologies could save between 10% and 30% of fuel costs for boilers. Paul Mayoh, UK technical manager at Spirax Sarco, examines some of the practical measures that healthcare organisations can take to gain their share of these potential savings.

  17. Calculation of reaction forces in the boiler supports using the method of equivalent stiffness of membrane wall.

    Science.gov (United States)

    Sertić, Josip; Kozak, Dražan; Samardžić, Ivan

    2014-01-01

    The values of reaction forces in the boiler supports are the basis for the dimensioning of bearing steel structure of steam boiler. In this paper, the application of the method of equivalent stiffness of membrane wall is proposed for the calculation of reaction forces. The method of equalizing displacement, as the method of homogenization of membrane wall stiffness, was applied. On the example of "Milano" boiler, using the finite element method, the calculation of reactions in the supports for the real geometry discretized by the shell finite element was made. The second calculation was performed with the assumption of ideal stiffness of membrane walls and the third using the method of equivalent stiffness of membrane wall. In the third case, the membrane walls are approximated by the equivalent orthotropic plate. The approximation of membrane wall stiffness is achieved using the elasticity matrix of equivalent orthotropic plate at the level of finite element. The obtained results were compared, and the advantages of using the method of equivalent stiffness of membrane wall for the calculation of reactions in the boiler supports were emphasized.

  18. Evaluation of pressure drop across area changes during blowdown. Quarterly progress report for period ending June 30, 1976

    International Nuclear Information System (INIS)

    Weisman, J.

    1976-11-01

    Transient pressure drops across abrupt area changes are being determined in a series of blowdown experiments. These tests are being conducted with Freon 113 as the test fluid in a well instrumented apparatus. During this period, test runs were obtained with the first abrupt expansion test section. Test data from two typical runs are included in this report. Additional progress was made in developing the computer programs which were to be used in analyzing this data but funding of this analytical effort has been suspended

  19. Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-07-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NO, reduction (70VO) could be achieved. Sponsors of the project included the U.S. Depatiment of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was petformed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado bituminous, low-sulfur coal. It had a baseline NO, emission level of 0.73 lb/1 OG Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50Y0. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NO, in the flue gas by staged fuel combustion. This technology involves the introduction of' natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NO, emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX

  20. A study on the leak monitoring of boiler tube in power plants

    International Nuclear Information System (INIS)

    Lee, Sang Guk

    2002-01-01

    Main equipment of thermal power plant, such as boiler and turbine, are designed and manufactured by domestic techniques. But the special equipments monitoring the operation status of these main facilities are still dependent upon foreign technology. Therefore, so as to develop boiler tube leak detection system, we performed studying on manufacturing, installation in site, Acoustic Emission (AE) signal analysis and discrimination etc. As result of studying on boiler tube leak detection using AE, we conformed that diagnosis for boiler tube and computerized their trend management is possible, and also it is expected to contribute to safe operation of power plant facilities

  1. Robust H(infinity) tracking control of boiler-turbine systems.

    Science.gov (United States)

    Wu, J; Nguang, S K; Shen, J; Liu, G; Li, Y G

    2010-07-01

    In this paper, the problem of designing a fuzzy H(infinity) state feedback tracking control of a boiler-turbine is solved. First, the Takagi and Sugeno fuzzy model is used to model a boiler-turbine system. Next, based on the Takagi and Sugeno fuzzy model, sufficient conditions for the existence of a fuzzy H(infinity) nonlinear state feedback tracking control are derived in terms of linear matrix inequalities. The advantage of the proposed tracking control design is that it does not involve feedback linearization technique and complicated adaptive scheme. An industrial boiler-turbine system is used to illustrate the effectiveness of the proposed design as compared with a linearized approach. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  2. APPLICATION OF REBURNING TO COAL-FIRED INDUSTRIAL BOILERS IN TAIWAN

    Science.gov (United States)

    The paper gives an overview of the characteristics of coal-fired industrial boilers in Taiwan and projections of the cost and performance data for retrofitting several boilers with reburning. The impacts of reburning fuel type on the reburning system design and cost effectivenes...

  3. Boiler inspection manipulator for Torness Power Station

    International Nuclear Information System (INIS)

    Carrey, R.T.A.; Yule, I.Y.; Sibson, S.; Playle, M.J.

    1996-01-01

    The Advanced Gas-cooled Reactors at Torness and Heysham 2 are provided with dedicated access for remote inspection equipment. These in-service inspection (ISI) accesses comprise 12 penetrations above the core for inspection of the above core area and boilers, 12 below core penetrations for inspection of the lower boiler area and access through any of the 8 gas circulator penetrations for inspection of the sub-diagrid area. This paper describes a manipulator which will access the reactor from above the core via any of the 8 peripheral penetrations. (UK)

  4. Report on research results of the development of high efficient boilers in fiscal 1996. Research development of high efficient industrial furnaces, etc; Koseino boiler no kaihatsu ni kansuru kenkyu seika hokokusho. Koseino kogyoro nado ni kansuru kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Out of the developments of high efficient boilers which have been continued since fiscal 1993, the paper reported the result of the development conducted in fiscal 1996. The oxygen combustion (the oxygen enrichment combustion including 100% oxygen combustion) decreases the amount of flue gas and reduces heat loss of the flue gas, and is also effective as NOx reduction measures. The experiment was conducted using testing furnace. The boiler efficiency rapidly increased with the increasing concentration of oxygen enrichment. In the pure oxygen combustion, the overall boiler efficiency of a 106% level (low heating value standard) is expected. Since the boiler wet flue gas is decreased, the NOx emission is reduced. The boiler can raise the combustion temperature with no fear of NOx and can be reduced in size. CO2 decreases in proportion to the energy saving effect. The development of a condensation flue gas heat exchanger is aimed at recovering heat down to the low temperature. Prediction of heat transfer in the steam condensation region becomes possible, and the size reduction can be expected. Dew point corrosion resistant materials were also selected. As to the high speed combustion control, a simple type using micro-processor was developed. Obtained were high speed, compactness, electric power saving, and high controllability. 14 refs., 306 figs., 88 tabs.

  5. CFD investigation of flow through internally riffled boiler tubes

    DEFF Research Database (Denmark)

    Rasmussen, Christian; Houbak, Niels; Sørensen, Jens Nørkær

    1997-01-01

    In this paper we show how to model the swirling flow in an internally riffled boiler tube. The flow field is visualized and the results are compared with measurements.......In this paper we show how to model the swirling flow in an internally riffled boiler tube. The flow field is visualized and the results are compared with measurements....

  6. Overheating failure of superheater suspension tubes of a captive thermal power plant boiler

    International Nuclear Information System (INIS)

    Bhattacharya, Sova; Amir, Q.M.; Kannan, C.; Mahapatra, S.B.

    2000-01-01

    Failure of boiler tubes is the foremost cause of forced boiler outages. One of the predominant failure mechanism of boiler tubes is the stress rupture failure in the form of either short term overheating or long term overheating which are normally encountered in superheater and reheater sections working in the creep range. The strength of the boiler tube depends on the stress level as well on the temperature of exposure in the creep range. An increase in either can reduce the time to rupture. Time at the exposure temperature is an important factor based on which the failures are categorised as either short term or long term. Though there is no established time duration criteria demarcating the short or long term stress rupture failures, depending on the various manifestations on the failed samples, one can categorise the failure. This paper addresses one such stress rupture failure in the superheater section of a captive thermal power plant of a refinery. Multiple failures on the suspension coil of a superheater section was investigated for the cause of failure. Laboratory investigation of the failed sample involved visual inspection, dimensional measurements, chemical analysis of internal deposits and microstructural study. On the basis of these, the failure was attributed to deposition of trisodium phosphate carried over by the feed water into the superheater section resulting in chokage and increase in local operating hoop stresses of the tube. The ultimate failure was thus categorised as long term overheating failure. (author)

  7. 46 CFR 167.25-5 - Inspection of boilers, pressure vessels, piping and appurtenances.

    Science.gov (United States)

    2010-10-01

    ...) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Marine Engineering § 167.25-5 Inspection of boilers, pressure vessels, piping and appurtenances. The inspection of boilers, pressure vessels, piping and appurtenances... 46 Shipping 7 2010-10-01 2010-10-01 false Inspection of boilers, pressure vessels, piping and...

  8. Reduction of NOx and particulate emissions from coal-fired boilers by modification of coal nozzles and combustion tuning

    Energy Technology Data Exchange (ETDEWEB)

    Chudnovsky, B.; Talanker, A.; Mugenstein, A.; Shpon, G.; Vikhansky, A.; Elperin, T.; Bar-Ziv, E.; Bockelie, M.; Eddings, E.; Sarofim, A.F. [Israel Electric Corporation, Haifa (Israel). Engineering Division

    2001-07-01

    In the present paper two issues are discussed: the effect of the burner replacement on boiler performance and NOx emissions and the effect of the burner replacement on performance and efficiency of electrostatic precipitators (ESP). We also have experimented with different coal types and found the coals that together with combustion tuning met commonly accepted emission limits for NOx (less than 600 mg/dNm{sup 3}) and levels of carbon in fly ash (LOI) (approximately 5-6%) for existing boilers without low NOx burners. Our measurements were accompanied by computer simulations of the combustion of the combustion process in the boiler. Special attention was paid to detailed simulation of the flow and ignition in the near-burner zone. 7 refs., 12 figs., 5 tabs.

  9. Black liquor combustion validated recovery boiler modeling, five-year report

    Energy Technology Data Exchange (ETDEWEB)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1996-08-01

    The objective of this project was to develop a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The project originated in October 1990 and was scheduled to run for four years. At that time, there was considerable emphasis on developing accurate predictions of the physical carryover of macroscopic particles of partially burnt black liquor and smelt droplets out of the furnace, since this was seen as the main cause of boiler plugging. This placed a major emphasis on gas flow patterns within the furnace and on the mass loss rates and swelling and shrinking rates of burning black liquor drops. As work proceeded on developing the recovery boiler furnace model, it became apparent that some recovery boilers encounter serious plugging problems even when physical carryover was minimal. After the original four-year period was completed, the project was extended to address this issue. The objective of the extended project was to improve the utility of the models by including the black liquor chemistry relevant to air emissions predictions and aerosol formation, and by developing the knowledge base and computational tools to relate furnace model outputs to fouling and plugging of the convective sections of the boilers. The work done to date includes CFD model development and validation, acquisition of information on black liquor combustion fundamentals and development of improved burning models, char bed model development, and model application and simplification.

  10. A CFD study on the dust behaviour in a metallurgical waste-heat boiler

    Energy Technology Data Exchange (ETDEWEB)

    Yongxiang, Yang; Jokilaakso, A [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy

    1998-12-31

    A waste-heat boiler forms an essential part for the treatment of high temperature flue-gases in most metallurgical processes. Flue-dust carried by the furnace off-gas has to be captured efficiently in the waste-heat boilers before entering the downstream gas purification equipment. Flue dust may accumulate and foul on the heat transfer surfaces such as tube-walls, narrow conjunctions between the boiler and the furnace uptake, and thus may cause smelter shutdown, and interrupt the production. A commercial CFD package is used as the major tool on modelling the dust flow and settling in the waste-heat boiler of an industrial copper flash smelter. In the presentation, dust settling behaviour is illustrated for a wide range of particle sizes, and dust capture efficiency in the radiation section of the boiler for different particle sizes has been shown with the transient simulation. The simulation aims at providing detailed information of dust behaviour in the waste-heat boiler in sulphide smelting. (author) 11 refs.

  11. A CFD study on the dust behaviour in a metallurgical waste-heat boiler

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yongxiang; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy

    1997-12-31

    A waste-heat boiler forms an essential part for the treatment of high temperature flue-gases in most metallurgical processes. Flue-dust carried by the furnace off-gas has to be captured efficiently in the waste-heat boilers before entering the downstream gas purification equipment. Flue dust may accumulate and foul on the heat transfer surfaces such as tube-walls, narrow conjunctions between the boiler and the furnace uptake, and thus may cause smelter shutdown, and interrupt the production. A commercial CFD package is used as the major tool on modelling the dust flow and settling in the waste-heat boiler of an industrial copper flash smelter. In the presentation, dust settling behaviour is illustrated for a wide range of particle sizes, and dust capture efficiency in the radiation section of the boiler for different particle sizes has been shown with the transient simulation. The simulation aims at providing detailed information of dust behaviour in the waste-heat boiler in sulphide smelting. (author) 11 refs.

  12. The ASME Boiler and Pressure Vessel Code: overview

    International Nuclear Information System (INIS)

    Farr, J.R.

    1987-01-01

    To become familiar with the Boiler and Pressure Vessel Code of the American Society of Mechanical Engineers, it is necessary to understand the history, organization, and operation of the Boiler Code Committee as well as to become familiar with the important aspects of each Section of the Code. This chapter will review the background and contents of the Code as well as give a review of the salient contents of most sections. (author)

  13. Final stage of first supercritical 460MW{sub e} CFB boiler construction. First experience

    Energy Technology Data Exchange (ETDEWEB)

    Goral, Damian [Foster Wheeler Energia Polska (Poland); Ostrowski, Waldemar [PKE (Poland)

    2009-07-01

    Circulating fluidized bed (CFB) boiler technology has been growing in size and number over the past two decades and it has established its position as utility scale boiler technology. Plant sizes up to 300 MW{sub e} are in operation today and designs for larger boilers are being developed. The next natural step for CFB technology is to go for supercritical steam parameters and larger boiler sizes. A Polish utility company Poludniowy Koncern Energetyczny SA (PKE) placed an order to Foster Wheeler Energia Oy for a 460 MW{sub e} supercritical CFB boiler for their Lagisza power plant. Contract was signed at the end of year 2002 and the engineering work is now ongoing. This will be the first supercritical once-through CFB boiler in the world. A modern power plant is designed for high efficiency not only for economical reasons but also for enhanced environmental performance in terms of reduced emissions and quantity of ash generated due to lower fuel consumption. Cutting CO{sub 2} emissions is one of the main drivers. To achieve these goals, supercritical steam parameters have been applied. Now this technology is available also for CFB technology. This combines a high plant efficiency with the other well known benefits of CFB technology, such as: fuel flexibility, low emissions and high availability. The boiler design for 460 MW{sub e} Lagisza power plant utilizes low mass flux BENSON Vertical once-through technology developed and licensed by Siemens AG, Germany. CFB boiler with low and uniform furnace heat flux is extremely well suited for the Benson technology providing a stable operation of the boiler also during load changes and abnormal operation conditions. The paper describes the 460 MW{sub e} supercritical CFB boiler concept and presents the technical solutions of the boiler design with auxiliary equipment, as well as first experiences from boiler erection period and commissioning. In spite of achieving this remarkable milestone the development of the CFB

  14. Experiment data report for semiscale Mod-1 test S-01-1 (isothermal blowdown with core resistance simulator)

    International Nuclear Information System (INIS)

    Zender, S.N.; Crapo, H.S.; Jensen, M.F.; Sackett, K.E.

    1975-04-01

    Recorded test data are presented for Test S-01-1 of the semiscale Mod-1 isothermal blowdown test series. Test S-01-1 is one of several semiscale Mod-1 experiments which are counterparts of the planned Loss-of-Fluid Test (LOFT) nonnuclear experiments. System hardware is representative of the LOFT design, selected using volumetric scaling methods, and initial conditions duplicate those identified for the LOFT nonnuclear tests. Test S-01-1 was conducted from an initial temperature of 540 0 F and an initial pressure of 1596 psig. A simulated intermediate size double-ended hot leg break (0.00145 ft 2 break area on each end) was used to investigate the system response to a slow depressurization transient. An orificed structure was used in the pressure vessel to simulate the LOFT core simulator. During system depressurization, coolant was injected into the vessel downcomer inlet annulus to investigate the effectiveness of injection into the inlet annulus with respect to delivery of coolant to the lower plenum. Following the blowdown portion of Test S-01-1, coolant spray was introduced into the pressure suppression tank to determine the response of the pressure suppression system. The purpose of this report is to make available the uninterpreted data from Test S-01-1 for future data analysis and test results reporting activities. The data, presented in the form of graphs in engineering units, have been analyzed only to the extent necessary to assure that they are reasonable and consistent. (U.S.)

  15. Pickering G.S. boiler repair: an example of planned maintenance

    International Nuclear Information System (INIS)

    Dalrymple, D.G.

    1976-04-01

    The first application of boiler repair tools and procedures is estimated to have yielded a four-fold return on the development investment. The need to develop such technology is a result of the environment in which boiler repairs must be made. As nuclear technology evolves and plants and components get bigger, equipment will increasingly have to be repaired in situ with minimum plant downtime and minimum exposure of repair personnel to radiation. This lecture traces development of the Pickering A boiler repair capability which is seen as an example of how utility and contractor should interact to anticipate and meet maintenance requirements. (author)

  16. Maintenance of immersion ultrasonic testing on the water tube boiler

    International Nuclear Information System (INIS)

    Ishiyama, Toru; Kawasaki, Ichio; Miura, Hirohito

    2014-01-01

    There are 4-boiler in nuclear fuel cycle engineering laboratories (NCL). These boilers have been operated in the long term over 20 years. One of them, the leakage of boiler water was found at one of the generating tubes, and 2 adjoining generating tubes were corroded in Dec, 2011. These generating tubes were investigated by immersion ultrasonic testing (UT) for measure thickness of the tube. As a result, thinner tube was found in a part of a bend and near the water drum. These parts are covered with sulfide deposit, it seems that the generating tubes were corroded by sulfide. (author)

  17. Comparison of different testing methods for gas fired domestic boiler efficiency determination

    International Nuclear Information System (INIS)

    De Paepe, M.; T'Joen, C.; Huisseune, H.; Van Belleghem, M.; Kessen, V.

    2013-01-01

    As the Energy Performance of Buildings Directive is being implemented throughout the European Union, a clear need for certification of boiler and domestic heating devices has arisen. Several ‘Notified Bodies’ exist, spread around the different member states. They are acting as the notified body of that member state and focus on local certification. A boiler manufacturer has its equipment tested according to the ‘Boiler Efficiency directive 92/42/EC’. Recently, tests done by several notified bodies in sequence on an identical unit of a manufacturer showed that results could differ depending on which notified body performed the test. In cooperation with ‘Technigas’ (Notified Body in Belgium) a detailed study was done of the measurement setup and devices for determining boiler efficiencies. Several aspects were studied: measurement devices (absolute or differential types), their location within the test setup (focussing on accuracy and their overall impact on the result) and the measurement strategy (measuring on the primary or the secondary water side). The study was performed for both full load and part load scenarios of a gas fired domestic boiler (smaller than 70 kW [4]). The results clearly indicate that temperature measurements arecritical for assessing boiler efficiency. Secondly the test setup using secondary circuit measurements should be preferred. Tests were performed at ‘Technigas’ on different setups in order to validate the findings. - Highlights: ► Labelling of boiler is now obliged by European standards. ► Error propagation is analysed for different methods of boiler performance testing. ► Secondary water side measurement with separate calibration of has highest quality. ► A sensitivity analysis showed that the water temperatures are important factors.

  18. Regulation of hazardous air pollutants emitted from fossil-fired boilers

    International Nuclear Information System (INIS)

    Hendrickson, P.L.; Daellenbach, K.K.

    1993-01-01

    The changes made in section 112 of the Clean Air Act by the 1990 Amendments to the Act will affect the regulation of hazardous air pollutants (HAPs) emitted by fossil-fired boilers. The 1990 Amendments designated 189 chemicals/compounds as HAPS. Major and area sources of these pollutants in categories designated by the Environmental Protection Agency (EPA) will be subject to emission standards set by EPA. Industrial and institutional/commercial boilers are two such categories of HAPs designated by EPA for which emission standards will be issued. Fossil-fired boilers can emit a variety of HAPS. All or a portion of such emissions that exceed designated thresholds are likely to be regulated. This paper discusses how the 1990 amendments impact fossil-fired boilers. The steps are outlined which can be taken by owners of industrial and institutional/commercial boilers before the final emission standards are issued. These steps include participation in EPA's standard setting process, participation in EPA's early reduction program to delay the time when compliance with the maximum achievable control technology (MACT) standard is required, and consideration of any planned modifications to a facility which might subject that facility to a MACT standard set in advance of the EPA-set standard

  19. Investing in efficient industrial boiler systems in China and Vietnam

    International Nuclear Information System (INIS)

    Yang Ming; Dixon, Robert K.

    2012-01-01

    Energy efficiency in industrial boiler steam systems can be very low due to old technologies, improper design and non-optimal operation of the steam systems. Solutions include efficiency assessments and investments in steam system optimizations, education and training for operators of the systems. This paper presents case studies on assessing and investing in boiler steam systems in China and Vietnam. Methodologies and approaches for data collection and analyses were designed specifically for each of the two countries. This paper concludes: (1) investing in energy efficiency in industrial boiler steam system in China and Vietnam are cost effective; (2) government should not sent national energy efficiency standards lower than that of energy companies or energy equipment manufactures. - Highlights: ► GEF successfully catalyzed investment in industrial energy efficiency boilers in China in 1990s. ► With about $100 million of investment by the GEF/World Bank/Chinese government, the project will mitigate 40 million tons of CO 2 by 2019. ► This generated lowest unit cost of carbon reduction in the world: about $2.5 per ton of CO 2 mitigation. ► Investing in energy efficiency in industrial boiler steam system today in Vietnam will be the same cost effective as in China: $2.1 per ton of CO 2 mitigation.

  20. Composite tube cracking in kraft recovery boilers: A state-of-the-art review

    Energy Technology Data Exchange (ETDEWEB)

    Singbeil, D.L.; Prescott, R. [Pulp and Paper Research Inst. of Canada, Vancouver, British Columbia (Canada); Keiser, J.R.; Swindeman, R.W. [Oak Ridge National Lab., TN (United States)

    1997-07-01

    Beginning in the mid-1960s, increasing energy costs in Finland and Sweden made energy recovery more critical to the cost-effective operation of a kraft pulp mill. Boiler designers responded to this need by raising the steam operating pressure, but almost immediately the wall tubes in these new boilers began to corrode rapidly. Test panels installed in the walls of the most severely corroding boiler identified austenitic stainless steel as sufficiently resistant to the new corrosive conditions, and discussions with Sandvik AB, a Swedish tube manufacturer, led to the suggestion that coextruded tubes be used for water wall service in kraft recovery boilers. Replacement of carbon steel by coextruded tubes has solved most of the corrosion problems experienced by carbon steel wall tubes, however, these tubes have not been problem-free. Beginning in early 1995, a multidisciplinary research program funded by the US Department of Energy was established to investigate the cause of cracking in coextruded tubes and to develop improved materials for use in water walls and floors of kraft recovery boilers. One portion of that program, a state-of-the-art review of public- and private-domain documents related to coextruded tube cracking in kraft recovery boilers is reported here. Sources of information that were consulted for this review include the following: tube manufacturers, boiler manufacturers, public-domain literature, companies operating kraft recovery boilers, consultants and failure analysis laboratories, and failure analyses conducted specifically for this project. Much of the information contained in this report involves cracking problems experienced in recovery boiler floors and those aspects of spout and air-port-opening cracking not readily attributable to thermal fatigue. 61 refs.

  1. Technical support to the Nuclear Regulatory Commission for the boiling water reactor blowdown heat transfer program

    International Nuclear Information System (INIS)

    Rice, R.E.

    1976-09-01

    Results are presented of studies conducted by Aerojet Nuclear Company (ANC) in FY 1975 to support the Nuclear Regulatory Commission (NRC) on the boiling water reactor blowdown heat transfer (BWR-BDHT) program. The support provided by ANC is that of an independent assessor of the program to ensure that the data obtained are adequate for verification of analytical models used for predicting reactor response to a postulated loss-of-coolant accident. The support included reviews of program plans, objectives, measurements, and actual data. Additional activity included analysis of experimental system performance and evaluation of the RELAP4 computer code as applied to the experiments

  2. Use of Neural Networks for modeling and predicting boiler's operating performance

    International Nuclear Information System (INIS)

    Kljajić, Miroslav; Gvozdenac, Dušan; Vukmirović, Srdjan

    2012-01-01

    The need for high boiler operating performance requires the application of improved techniques for the rational use of energy. The analysis presented is guided by an effort to find possibilities for ways energy resources can be used wisely to secure a more efficient final energy supply. However, the biggest challenges are related to the variety and stochastic nature of influencing factors. The paper presents a method for modeling, assessing, and predicting the efficiency of boilers based on measured operating performance. The method utilizes a neural network approach to analyze and predict boiler efficiency and also to discover possibilities for enhancing efficiency. The analysis is based on energy surveys of 65 randomly selected boilers located at over 50 sites in the northern province of Serbia. These surveys included a representative range of industrial, public and commercial users of steam and hot water. The sample covered approximately 25% of all boilers in the province and yielded reliable and relevant results. By creating a database combined with soft computing assistance a wide range of possibilities are created for identifying and assessing factors of influence and making a critical evaluation of practices used on the supply side as a source of identified inefficiency. -- Highlights: ► We develop the model for assessing and predicting efficiency of boilers. ► The method implies the use of Artificial Neural Network approach for analysis. ► The results obtained correspond well to collected and measured data. ► Findings confirm and present good abilities of preventive or proactive approach. ► Analysis reveals and specifies opportunities for increasing efficiency of boilers.

  3. Influence of burner form and pellet type on domestic pellet boiler performance

    Science.gov (United States)

    Rastvorov, D. V.; Osintsev, K. V.; Toropov, E. V.

    2017-10-01

    The study presents combustion and emission results obtained using two serial pellet boilers of the same heating capacity 40 kW. These boilers have been designed by producers for domestic conditions of exploitation. The principal difference between boilers was the type of the burner. The study concerns the efficiency and ecological performance difference between burners of circular and rectangular forms. The features of the combustion process in both types of burners were studied when boiler operated with different sorts of pellets. The results suggest that the burner of circular form excels the rectangular form burner. However, there is some difference of NOx emission between circular and rectangular burners.

  4. CFD Modelling of Biomass Combustion in Small-Scale Boilers. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Xue-Song Bai; Griselin, Niklas; Klason, Torbern; Nilsson, Johan [Lund Inst. of Tech. (Sweden). Dept. of Heat and Power Engineering

    2002-10-01

    This project deals with CFD modeling of combustion of wood in fixed bed boilers. A flamelet model for the interaction between turbulence and chemical reactions is developed and applied to study small-scale boiler. The flamelet chemistry employs 43 reactive species and 174 elementary reactions. It gives detailed distributions of important species such as CO and NO{sub x} in the flow field and flue gas. Simulation of a small-scale wood fired boiler measured at SP Boraas (50 KW) shows that the current flamelet model yields results agreeable to the available experimental data. A detailed chemical kinetic model is developed to study the bed combustion process. This model gives boundary conditions for the CFD analysis of gas phase volatile oxidation in the combustion chambers. The model combines a Functional Group submodel with a Depolymerisation, Vaporisation and Crosslinking submodel. The FG submodel simulates how functional groups decompose and form light gas species. The DVC submodell predicts depolymerisation and vaporisation of the macromolecular network and this includes bridge breaking and crosslinking processes, where the wood structure breaks down to fragments. The light fragments form tar and the heavy ones form metaplast. Two boilers firing wood log/chips are studied using the FG-DVC model, one is the SP Boraas small-scale boiler (50 KW) and the other is the Sydkraft Malmoe Vaerme AB's Flintraennan large-scale boiler (55 MW). The fix bed is assumed to be two zones, a partial equilibrium drying/devolatilisation zone and an equilibrium zone. Three typical biomass conversion modes are simulated, a lean fuel combustion mode, a near-stoichiometric combustion and a fuel rich gasification mode. Detailed chemical species and temperatures at different modes are obtained. Physical interpretation is provided. Comparison of the computational results with experimental data shows that the model can reasonably simulate the fixed bed biomass conversion process. CFD

  5. Biomass Cofiring in Coal-Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    2004-06-01

    Cofiring biomass-for example, forestry residues such as wood chips-with coal in existing boilers is one of the easiest biomass technologies to implement in a federal facility. The current practice is to substitute biomass for up to 20% of the coal in the boiler. Cofiring has many benefits: it helps to reduce fuel costs as well as the use of landfills, and it curbs emissions of sulfur oxide, nitrogen oxide, and the greenhouse gases associated with burning fossil fuels. This Federal Technology Alert was prepared by the Department of Energy's Federal Energy Management Program to give federal facility managers the information they need to decide whether they should pursue biomass cofiring at their facilities.

  6. 40 CFR 63.7491 - Are any boilers or process heaters not subject to this subpart?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 13 2010-07-01 2010-07-01 false Are any boilers or process heaters not..., and Institutional Boilers and Process Heaters What This Subpart Covers § 63.7491 Are any boilers or process heaters not subject to this subpart? The types of boilers and process heaters listed in paragraphs...

  7. Mekanisme Proses Pemanasan Air Di Dalam Boiler Dengan Mempergunakan Heater Tambahan Untuk Efisiensi Pembakaran

    OpenAIRE

    Helmon Sihombing

    2010-01-01

    Pada proses pemanasan air, air yang berasal dari raw water (air tanah) tidak langsung dibakar didalam boiler. dalam hal ini digunakan peralatan instrumen Deaerator dan economizer yang berfungsi untuk pemanasan awal sebelum dibakar didalam boiler. Fungsi deaerator dan economizer ini adalah sebagai komponen pembantu untuk memanaskan air sebelum dibakar didalam boiler. Apabila pemanasan air langsung dilakukan didalam boiler maka akan membutuhkan waktu yang cukup lama dan menggunakan bahan b...

  8. Millwright Apprenticeship. Related Training Modules. 7.1-7.9 Boilers.

    Science.gov (United States)

    Lane Community Coll., Eugene, OR.

    This packet, part of the instructional materials for the Oregon apprenticeship program for millwright training, contains nine modules covering boilers. The modules provide information on the following topics: fire and water tube types of boilers, construction, fittings, operation, cleaning, heat recovery systems, instruments and controls, and…

  9. A Pulverized Coal-Fired Boiler Optimized for Oxyfuel Combustion Technology

    Directory of Open Access Journals (Sweden)

    Tomáš Dlouhý

    2012-01-01

    Full Text Available This paper presents the results of a study on modifying a pulverized coal-fired steam boiler in a 250 MWe power plant for oxygen combustion conditions. The entry point of the study is a boiler that was designed for standard air combustion. It has been proven that simply substituting air by oxygen as an oxidizer is not sufficient for maintaining a satisfactory operating mode, not even with flue gas recycling. Boiler design optimization aggregating modifications to the boiler’s dimensions, heating surfaces and recycled flue gas flow rate, and specification of a flue gas recycling extraction point is therefore necessary in order to achieve suitable conditions for oxygen combustion. Attention is given to reducing boiler leakage, to which external pre-combustion coal drying makes a major contribution. The optimization is carried out with regard to an overall power plant conception for which a decrease in efficiency due to CO2 separation is formulated.

  10. Optimal Combustion Conditions for a Small-scale Biomass Boiler

    Directory of Open Access Journals (Sweden)

    Viktor Plaček

    2012-01-01

    Full Text Available This paper reports on an attempt to achieve maximum efficiency and lowest possible emissions for a small-scale biomass boiler. This aim can be attained only by changing the control algorithm of the boiler, and in this way not raising the acquisition costs for the boiler. This paper describes the experimental facility, the problems that arose while establishing the facility, and how we have dealt with them. The focus is on discontinuities arising after periodic grate sweeping, and on finding the parameters of the PID control loops. Alongside these methods, which need a lambda probe signal for proper functionality, we inroduce another method, which is able to intercept the optimal combustion working point without the need to use a lambda sensor.

  11. Electric boilers for nuclear power plant in Liebstadt

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    A type of electric boiler, two of which are to be supplied to the Liebstadt nuclear power plant by Sulzer, is described. They are to be used for start-up and as reserve for the normal steam supply. The mode of operation is that feed water is sprayed into a high tension electrode such that the falling water conducts the current to the earthed electrode. This type of boiler presents advantages in space requrements and enviromental factors. (JIW)

  12. Electric boilers for nuclear power plant in Liebstadt

    Energy Technology Data Exchange (ETDEWEB)

    1977-11-29

    A type of electric boiler, two of which are to be supplied to the Liebstadt nuclear power plant by Sulzer, is described. They are to be used for start-up and as reserve for the normal steam supply. The mode of operation is that feedwater is sprayed into a high tension electrode such that the falling water conducts the current to the earthed electrode. This type of boiler presents advantages in space requrements and enviromental factors.

  13. Thermal-hydraulic analysis of a 600 MW supercritical CFB boiler with low mass flux

    International Nuclear Information System (INIS)

    Pan Jie; Yang Dong; Chen Gongming; Zhou Xu; Bi Qincheng

    2012-01-01

    Supercritical Circulating Fluidized Bed (CFB) boiler becomes an important development trend for coal-fired power plant and thermal-hydraulic analysis is a key factor for the design and operation of water wall. According to the boiler structure and furnace-sided heat flux, the water wall system of a 600 MW supercritical CFB boiler is treated in this paper as a flow network consisting of series-parallel loops, pressure grids and connecting tubes. A mathematical model for predicting the thermal-hydraulic characteristics in boiler heating surface is based on the mass, momentum and energy conservation equations of these components, which introduces numerous empirical correlations available for heat transfer and hydraulic resistance calculation. Mass flux distribution and pressure drop data in the water wall at 30%, 75% and 100% of the boiler maximum continuous rating (BMCR) are obtained by iteratively solving the model. Simultaneity, outlet vapor temperatures and metal temperatures in water wall tubes are estimated. The results show good heat transfer performance and low flow resistance, which implies that the water wall design of supercritical CFB boiler is applicable. - Highlights: → We proposed a model for thermal-hydraulic analysis of boiler heating surface. → The model is applied in a 600 MW supercritical CFB boiler. → We explore the pressure drop, mass flux and temperature distribution in water wall. → The operating safety of boiler is estimated. → The results show good heat transfer performance and low flow resistance.

  14. Simulation study on the maximum continuous working condition of a power plant boiler

    Science.gov (United States)

    Wang, Ning; Han, Jiting; Sun, Haitian; Cheng, Jiwei; Jing, Ying'ai; Li, Wenbo

    2018-05-01

    First of all, the boiler is briefly introduced to determine the mathematical model and the boundary conditions, then the boiler under the BMCR condition numerical simulation study, and then the BMCR operating temperature field analysis. According to the boiler actual test results and the hot BMCR condition boiler output test results, the simulation results are verified. The main conclusions are as follows: the position and size of the inscribed circle in the furnace and the furnace temperature distribution and test results under different elevation are compared and verified; Accuracy of numerical simulation results.

  15. Possibility analysis of combustion of torrefied biomass in 140 t/h PC boiler

    Directory of Open Access Journals (Sweden)

    Jagodzińska Katarzyna

    2016-01-01

    Full Text Available The study attempts to evaluate the impact of combustion of torrefied willow (Latin: Salix viminalis and palm kernel shell (Latin: Elaeis guineensis on the heat exchange in a 140 t/h PC boiler through an analysis of 6 cases for different boiler loads (60 %, 75 % and 100 % and a comparison with coal combustion. The analysis is premised on a 0-dimensional model based on the method presented in [15, 16, 17] and long-standing experimental measurements. Inter alia, the following results are presented: the temperature distribution of flue gases and the working medium (water/steam in characteristic points of the boiler as well as heat transfer coefficients for each element thereof. The temperature distribution of both fluids and the heat transfer coefficients are similar for all analysed fuels for each boiler load. However, the flue gas temperature at the outlet is higher in the case of torrefied biomass combustion. Due to that, there is an increase in the stack loss, which involves a decrease in the boiler efficiency. The conclusion is that torrefied biomass combustion is possible in a PC boiler without the need to change the boiler construction. However, it would be less effective than coal combustion.

  16. Fuel quality and its effect on the design of power boilers in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.

    1984-05-01

    Statistical data, taken from Power, Proceedings of the American Power Conference and others, on developments since the 1950s in boiler design caused by the increasing use of lower quality fuel (subbituminous and lignite coals) are presented. The effect of pollution regulations in the USA on boiler design is discussed. The results of a 16 year study by the TVA on the decrease in coal quality fired in its boilers and its effect on boiler efficiency are presented. Methods of transport are surveyed. Descriptions and characteristics of several modern boilers designed by Babcock and Wilcox, Combustion Engineering, Foster-Wheeler and Riley Stoker are given. 13 references.

  17. Experimental validation of a thermodynamic boiler model under steady state and dynamic conditions

    International Nuclear Information System (INIS)

    Carlon, Elisa; Verma, Vijay Kumar; Schwarz, Markus; Golicza, Laszlo; Prada, Alessandro; Baratieri, Marco; Haslinger, Walter; Schmidl, Christoph

    2015-01-01

    Highlights: • Laboratory tests on two commercially available pellet boilers. • Steady state and a dynamic load cycle tests. • Pellet boiler model calibration based on data registered in stationary operation. • Boiler model validation with reference to both stationary and dynamic operation. • Validated model suitable for coupled simulation of building and heating system. - Abstract: Nowadays dynamic building simulation is an essential tool for the design of heating systems for residential buildings. The simulation of buildings heated by biomass systems, first of all needs detailed boiler models, capable of simulating the boiler both as a stand-alone appliance and as a system component. This paper presents the calibration and validation of a boiler model by means of laboratory tests. The chosen model, i.e. TRNSYS “Type 869”, has been validated for two commercially available pellet boilers of 6 and 12 kW nominal capacities. Two test methods have been applied: the first is a steady state test at nominal load and the second is a load cycle test including stationary operation at different loads as well as transient operation. The load cycle test is representative of the boiler operation in the field and characterises the boiler’s stationary and dynamic behaviour. The model had been calibrated based on laboratory data registered during stationary operation at different loads and afterwards it was validated by simulating both the stationary and the dynamic tests. Selected parameters for the validation were the heat transfer rates to water and the water temperature profiles inside the boiler and at the boiler outlet. Modelling results showed better agreement with experimental data during stationary operation rather than during dynamic operation. Heat transfer rates to water were predicted with a maximum deviation of 10% during the stationary operation, and a maximum deviation of 30% during the dynamic load cycle. However, for both operational regimes the

  18. Experience of implementation of in-furnace methods of decreasing NO x in E-320-13.8-560GM boilers: Problems and ways for their solution

    Science.gov (United States)

    Tugov, A. N.; Supranov, V. M.; Izyumov, M. A.; Vereshchetin, V. A.; Usman, Yu. M.; Natal'in, A. S.

    2017-12-01

    During natural gas combustion, the content of nitrogen oxides in combustion products is approximately 450 mg/m3 in many E-320-13.8-560GM boilers in service, which is more than 3.5 times higher than the established maximum NO x concentrations in flue gases for such boilers. Estimates according to the existing techniques have shown that gas combustion on the basis of in-furnace techniques (the feeding of combustion products to burners together with air in the volume of 15% and two-stage combustion with 20% air feeding through the nozzles upstream of the burners) enables one to decrease NO x emissions to the level of concentrations of less than 100 mg/m3, which is lower than the maximum allowable values. However, the application of any of the proposed measures with respect to a boiler makes its operation under normal load significantly difficult, since the thermal capacity of the superheater is higher in both cases, which leads to an increase in the temperature of superheated steam above the maximum allowable temperature. On the basis of the developed adapted boiler model, which was created using the Boiler Designer software, we performed numerical studies to determine the required boiler reconstruction volume; the implementation of this reconstruction will provide reliable boiler operation at all working loads and ensure the normative values of NO x emissions. According to the results of thermal calculations, it was proposed to reduce the surface of the cold stage of the superheater circuit and increase the size of the economizer. It is noted that the implementation of environmental protection measures usually decreases the boiler efficiency. At the same time, it has been established that the technical and economic performance of the E-320-13.8-560GM boiler does not decrease owing to an increase in the economizer surface and a decrease in air inflows and overflows in regenerative air heaters and remains at the same level if the air inflow volume decreases from the

  19. Studies, Transport and Treatment Concept for Boilers from Berkeley NPP, England - 13599

    International Nuclear Information System (INIS)

    Wirendal, Bo; Saul, David; Robinson, Joe; Davidson, Gavin

    2013-01-01

    In November 2011 Studsvik was awarded a contract to transport five decommissioned boilers from the Berkeley Nuclear Licensed Site in the UK to the Studsvik Nuclear Site in Sweden for metal treatment and recycling. A key objective of the project was to remove the boilers from the site by 31 March 2012 and this was successfully achieved with all boilers off site by 22 March and delivered to Studsvik on 6 April. Four boilers have been processed and the fifth is planned for completion by end of December 2012.The project had many challenges including a very tight timescale and has been successfully delivered to cost and ahead of the baseline programme. This paper describes the project and the experience gained from treatment of the first four boilers. It is the first UK project to send large components overseas for recycling and provides new insight into the processing of Magnox gas-circuit components. (authors)

  20. Sampling practices and analytical techniques used in the monitoring of steam and water in CEGB nuclear boilers

    International Nuclear Information System (INIS)

    Goodfellow, G.I.

    1978-01-01

    The steam and water in CEGB Magnox and AGR nuclear boilers are continuously monitored, using both laboratory techniques and on-line instrumentation, in order to maintain the chemical quality within pre-determined limits. The sampling systems in use and some of the difficulties associated with sampling requirements are discussed. The relative merits of chemical instruments installed either locally in various parts of the plant or in centralized instrument rooms are reviewed. The quality of water in nuclear boilers, as with all high-pressure steam-raising plant, is extremely high; consequently very sensitive analytical procedures are required, particularly for monitoring the feed-water of 'once-through boiler' systems. Considerable progress has been made in this field and examples are given of some of the techniques developed for analyses at the 'μ/kg' level together with some of the current problems.(author)

  1. Developing trends with boiler operation and management

    Energy Technology Data Exchange (ETDEWEB)

    Stark, J.M. [Occupational Safety and Health Service, Wellington (New Zealand). Dept. of Labour, Engineering Safety Branch

    1993-12-31

    Over recent years there have been many improvements in boiler control and safety management systems. Technology has made major advances and is now regarded as being well proven in Australia, Europe and the United Kingdom and these changes have been examined by a project committee, convened for the purpose, to establish whether they are equally applicable in New Zealand. The result of the committee`s findings and experience is contained in the `Draft Code of Practice`. This paper explains the development of the `Code of Practice`, the reasoning behind some of the decisions taken and the implications of these changes to boiler owners.

  2. Control Properties of Bottom Fired Marine Boilers

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Karstensen, Claus M. S.

    2005-01-01

    This paper focuses on model analysis of a dynamic model of a bottom fired one-pass smoke tube boiler. Linearised versions of the model are analysed to determine how gain, time constants and right half plane zeros (caused by the shrink-and-swell phenomenon) depend on the steam flow load. Furthermore...... the interactions in the system are inspected to analyse potential benefit from using a multivariable control strategy in favour of the current strategy based on single loop theory. An analysis of the nonlinear model is carried out to further determine the nonlinear characteristics of the boiler system...

  3. High Temperature Corrosion in Biomass-Fired Boilers

    DEFF Research Database (Denmark)

    Henriksen, Niels; Montgomery, Melanie; Hede Larsen, Ole

    2002-01-01

    condense on superheater components. This gives rise to specific corrosion problems not previously encountered in coal-fired power plants. The type of corrosion attack can be directly ascribed to the composition of the deposit and the metal surface temperature. To avoid such high corrosion rates, woodchip...... has also been utilised as a fuel. Combustion of woodchip results in a smaller amount of ash, and potassium and chlorine are present in lesser amounts. However, significant corrosion rates were still seen. A case study of a woodchip fired boiler is described. The corrosion mechanisms in both straw-fired...... and woodchip fired boilers are discussed....

  4. Experiment data report for Semiscale Mod-1 test S-02-5 (blowdown heat transfer test)

    International Nuclear Information System (INIS)

    1975-12-01

    Recorded test data are presented for Test S-02-5 of the Semiscale Mod-1 blowdown heat transfer test series. Test S-02-5 is one of several Semiscale Mod-1 experiments conducted to investigate the thermal and hydraulic phenomena accompanying a hypothesized loss-of-coolant accident in a water-cooled nuclear reactor system and to provide data for the assessment of the Loss-of-Fluid Test (LOFT) design basis. Test S-02-5 was conducted from an initial cold leg fluid temperature of 544 0 F and an initial pressure of 2,253 psia. A simulated double-ended offset shear cold leg break was used to investigate the system response to a depressurization transient with full core power (1.6 MW). An electrically heated core was used in the pressure vessel to simulate the effects of a nuclear core. System flow was set to achieve the full design core temperature differential of 66 0 F. The flow resistance of the intact loop was based on core area scaling. During system depressurization, core power was reduced from the initial level of 1.6 MW in such a manner as to simulate the surface heat flux response of the LOFT nuclear fuel rods until such time that departure from nucleate boiling occurs

  5. Boiler corrosion (citations from the NTIS data base). Report for 1964-Jul 76

    International Nuclear Information System (INIS)

    Smith, M.F.

    1976-07-01

    Research on design, improved efficiency, materials, cathodic protection, corrosion inhibiting additives and combustion in coal and fuel oil fired boilers are cited. Corrosion from limestone injection for pollution control, magnetohydrodynamics, ship boilers, and nuclear power plant boilers are included. (This updated bibliography contains 86 abstracts, 9 of which are new entries to the previous edition.)

  6. Computational intelligence approach for NOx emissions minimization in a coal-fired utility boiler

    International Nuclear Information System (INIS)

    Zhou Hao; Zheng Ligang; Cen Kefa

    2010-01-01

    The current work presented a computational intelligence approach used for minimizing NO x emissions in a 300 MW dual-furnaces coal-fired utility boiler. The fundamental idea behind this work included NO x emissions characteristics modeling and NO x emissions optimization. First, an objective function aiming at estimating NO x emissions characteristics from nineteen operating parameters of the studied boiler was represented by a support vector regression (SVR) model. Second, four levels of primary air velocities (PA) and six levels of secondary air velocities (SA) were regulated by using particle swarm optimization (PSO) so as to achieve low NO x emissions combustion. To reduce the time demanding, a more flexible stopping condition was used to improve the computational efficiency without the loss of the quality of the optimization results. The results showed that the proposed approach provided an effective way to reduce NO x emissions from 399.7 ppm to 269.3 ppm, which was much better than a genetic algorithm (GA) based method and was slightly better than an ant colony optimization (ACO) based approach reported in the earlier work. The main advantage of PSO was that the computational cost, typical of less than 25 s under a PC system, is much less than those required for ACO. This meant the proposed approach would be more applicable to online and real-time applications for NO x emissions minimization in actual power plant boilers.

  7. 46 CFR 52.01-2 - Adoption of section I of the ASME Boiler and Pressure Vessel Code.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Adoption of section I of the ASME Boiler and Pressure...) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-2 Adoption of section I of the ASME Boiler and Pressure Vessel Code. (a) Main power boilers and auxiliary boilers shall be designed, constructed...

  8. Mass spectra features of biomass burning boiler and coal burning boiler emitted particles by single particle aerosol mass spectrometer.

    Science.gov (United States)

    Xu, Jiao; Li, Mei; Shi, Guoliang; Wang, Haiting; Ma, Xian; Wu, Jianhui; Shi, Xurong; Feng, Yinchang

    2017-11-15

    In this study, single particle mass spectra signatures of both coal burning boiler and biomass burning boiler emitted particles were studied. Particle samples were suspended in clean Resuspension Chamber, and analyzed by ELPI and SPAMS simultaneously. The size distribution of BBB (biomass burning boiler sample) and CBB (coal burning boiler sample) are different, as BBB peaks at smaller size, and CBB peaks at larger size. Mass spectra signatures of two samples were studied by analyzing the average mass spectrum of each particle cluster extracted by ART-2a in different size ranges. In conclusion, BBB sample mostly consists of OC and EC containing particles, and a small fraction of K-rich particles in the size range of 0.2-0.5μm. In 0.5-1.0μm, BBB sample consists of EC, OC, K-rich and Al_Silicate containing particles; CBB sample consists of EC, ECOC containing particles, while Al_Silicate (including Al_Ca_Ti_Silicate, Al_Ti_Silicate, Al_Silicate) containing particles got higher fractions as size increase. The similarity of single particle mass spectrum signatures between two samples were studied by analyzing the dot product, results indicated that part of the single particle mass spectra of two samples in the same size range are similar, which bring challenge to the future source apportionment activity by using single particle aerosol mass spectrometer. Results of this study will provide physicochemical information of important sources which contribute to particle pollution, and will support source apportionment activities. Copyright © 2017. Published by Elsevier B.V.

  9. Development of combined low-emissions burner devices for low-power boilers

    Science.gov (United States)

    Roslyakov, P. V.; Proskurin, Yu. V.; Khokhlov, D. A.

    2017-08-01

    Low-power water boilers are widely used for autonomous heat supply in various industries. Firetube and water-tube boilers of domestic and foreign manufacturers are widely represented on the Russian market. However, even Russian boilers are supplied with licensed foreign burner devices, which reduce their competitiveness and complicate operating conditions. A task of developing efficient domestic low-emissions burner devices for low-power boilers is quite acute. A characteristic property of ignition and fuel combustion in such boilers is their flowing in constrained conditions due to small dimensions of combustion chambers and flame tubes. These processes differ significantly from those in open combustion chambers of high-duty power boilers, and they have not been sufficiently studied yet. The goals of this paper are studying the processes of ignition and combustion of gaseous and liquid fuels, heat and mass transfer and NO x emissions in constrained conditions, and the development of a modern combined low-emissions 2.2 MW burner device that provides efficient fuel combustion. A burner device computer model is developed and numerical studies of its operation on different types of fuel in a working load range from 40 to 100% of the nominal are carried out. The main features of ignition and combustion of gaseous and liquid fuels in constrained conditions of the flame tube at nominal and decreased loads are determined, which differ fundamentally from the similar processes in steam boiler furnaces. The influence of the burner devices design and operating conditions on the fuel underburning and NO x formation is determined. Based on the results of the design studies, a design of the new combined low-emissions burner device is proposed, which has several advantages over the prototype.

  10. Innovative clean coal technology (ICCT): demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NOx) emission from high-sulfur, coal-fired boilers - economic evaluation of commercial-scale SCR applications for utility boilers

    International Nuclear Information System (INIS)

    Healy, E.C.; Maxwell, J.D.; Hinton, W.S.

    1996-09-01

    This report presents the results of an economic evaluation produced as part of the Innovative Clean Coal Technology project, which demonstrated selective catalytic reduction (SCR) technology for reduction of NO x emissions from utility boilers burning U.S. high-sulfur coal. The document includes a commercial-scale capital and O ampersand M cost evaluation of SCR technology applied to a new facility, coal-fired boiler utilizing high-sulfur U.S. coal. The base case presented herein determines the total capital requirement, fixed and variable operating costs, and levelized costs for a new 250-MW pulverized coal utility boiler operating with a 60-percent NO x removal. Sensitivity evaluations are included to demonstrate the variation in cost due to changes in process variables and assumptions. This report also presents the results of a study completed by SCS to determine the cost and technical feasibility of retrofitting SCR technology to selected coal-fired generating units within the Southern electric system

  11. Firetube boiler with high efficiency for producing saturated or superheated steam

    Energy Technology Data Exchange (ETDEWEB)

    Carosso, V J; Carosso, J Y

    1976-10-07

    This boiler for producing saturated or super-heated steam is to be manufactured in one piece or in units which can be assembled at site without skilled workers, at the factory. It is to have a high efficiency and dimensions which permit the transport of the completely assembled boiler by road transport. The relatively small water-steam vessel lies across the longitudinal axis of the boiler in the rear boiler space over a battery of preheater tubes. By these measures and by a very detailed and appropriately described rational arrangement of other parts, such as convection bundles, primary and secondary superheater, evaporation tubes, which form an 'evaporation shield', upper and lower longitudinal chambers with vertical connecting pipes of different crossections, the above mentioned condition for space requirement is fulfilled and a high efficiency should be achieved, but with considerable expense.

  12. Experimental investigation on a 0.35 MWth coal-fired horizontal circulating fluidized bed boiler

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Aihong; Li, Qinghai; Zhang, Yanguo; Wang, Zhaojun; Dang, Wenda [Tsinghua Univ., Beijing (China); Ministry of Education, Beijing (China). Key Lab. for Thermal Science and Power Engineering

    2013-07-01

    The capacities of industrial coal-fired boilers are normally less than 20-30 MWe. And these coal-fired boilers of low capacity are facing the severe situation of low efficiency and heavy environmental pollution. Hence, an innovative horizontal circulating fluidized bed (HCFB) boiler was developed to enhance heat efficiency and reduce pollutant emission of industrial boilers in China. The chamber in the HCFB boiler consists of primary combustion chamber, secondary combustion chamber and burnout chamber, which were combined horizontally side by side. To verify the conception of horizontal fluidized circulation and to obtain the characteristic data, a 0.35 MWth coal-combustion HCFB boiler was designed and installed to perform some experiments of combustion and mass circulation. In the boiler there were two mass circulating paths, one is inner circulating through the inertia separator and another was external circulating through the cyclone separator. The connection bottom of the secondary chamber and the burnout chamber was designed as an inertia separator, in which separated and collected solid materials were returned to the primary combustion. In fact the secondary separator was a small cyclone separator connecting to the exit of the burnout chamber. Heat efficiency and separating efficiency of the experimental boiler were measured and analyzed. Furthermore, mass and temperature distribution along the chambers height were also investigated. The results showed that the heat efficiency of the bare boiler was 82%. The mass balance based on ash content was measured and analyzed. Separating efficiency of the inertia separator and cyclone separator was 60 and 99.9%, respectively. It showed that the two stage material separation and circulation enhanced coal combustion in the HCFB boiler and help to minimize the height of the furnace.

  13. Investigation of transient behaviour of combi boiler type appliances for domestic hot water

    International Nuclear Information System (INIS)

    Atmaca, Ayşe Uğurcan; Erek, Aytunç; Altay, Hürrem Murat

    2015-01-01

    Combi boiler type appliances heating both space and water demanded for use and consuming natural gas as the energy source are one of the most common branches of the household goods. This study touches mainly on two types of combi boiler concepts to investigate only domestic hot water (DHW) heating function since highly efficient condensing appliances have been manufactured in terms of space heating. First concept has the normal working configuration of the heat exchangers of a standard combi boiler; whereas, the second has the opposite operation order of the heat exchangers. 1D transient energy equations have been constructed with the help of the laws of thermodynamics in order to model the heat exchangers in a standard combi boiler. After obtaining a general mathematical model for the standard combi boiler, the energy equations have been discretised with finite difference scheme, and solved numerically in Matlab ® . Subsequently, numerical results are validated experimentally in different working modes of a standard appliance. As the last step, similar results are obtained for the second proposed concept using the related equations of the standard combi model to compare both concepts on a numerical basis. - Highlights: • 1D theoretical model of a combi boiler was constructed and verified experimentally. • Preliminary estimations will be obtained from the model about the laboratory tests. • Number of the laboratory tests will be decreased thanks to the theoretical model. • The model was used to compare the transient behaviour of two kinds of combi boilers. • The second combi boiler alternative to standard one has a higher comfort potential

  14. Computational Modeling and Assessment Of Nanocoatings for Ultra Supercritical Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Gandy, David W. [Electric Power Research Institute, Inc., Palo Alto, CA (United States); Shingledecker, John P. [Electric Power Research Institute, Inc., Palo Alto, CA (United States)

    2011-05-11

    Coal-fired power plants are a significant part of the nation's power generating capacity, currently accounting for more than 55% of the country's total electricity production. Extending the reliable lifetimes of fossil fired boiler components and reducing the maintenance costs are essential for economic operation of power plants. Corrosion and erosion are leading causes of superheater and reheater boiler tube failures leading to unscheduled costly outages. Several types of coatings and weld overlays have been used to extend the service life of boiler tubes; however, the protection afforded by such materials was limited approximately one to eight years. Power companies are more recently focused in achieving greater plant efficiency by increasing steam temperature and pressure into the advanced-ultrasupercritical (A-USC) condition with steam temperatures approaching 760°C (1400°F) and operating pressures in excess of 35MPa (5075 psig). Unfortunately, laboratory and field testing suggests that the resultant fireside environment when operating under A-USC conditions can potentially cause significant corrosion to conventional and advanced boiler materials1-2. In order to improve reliability and availability of fossil fired A-USC boilers, it is essential to develop advanced nanostructured coatings that provide excellent corrosion and erosion resistance without adversely affecting the other properties such as toughness and thermal fatigue strength of the component material.

  15. How much Energy is Embodied in your Central Heating Boiler?

    Science.gov (United States)

    Koubogiannis, D.; Nouhou, C.

    2016-11-01

    Life Cycle Analysis (LCA) is an important tool in current research to quantitatively assess energy consumption and environmental impact of a building. In the context of LCA, the Embodied Energy (EE) related to the building and the corresponding Embodied CO2 emissions are valuable data. In such a case, these data concern the constitutive materials of the building and any subsystem, component or equipment in it. Usually, after calculating the mass of these materials, embodied energy values are estimated multiplying them by the corresponding EE coefficients concerning the production of these materials (EEMP). However, apart from transportation energy costs, another part of EE is that consumed for the manufacturing of any item as a finished product. The present work focuses on the manufacturing EE (EEMFG) of central heating boilers in Hellenic dwellings. Six typical boilers of different types are studied. Each of them is analyzed to its constitutive materials and its EEMP is estimated. For four of them, the boiler house where it was constructed in Greece was visited and data were collected. Based on them the corresponding boiler EEMFG values are estimated. The results concerning the EE for material production and manufacturing, as well as the results concerning the corresponding ECO2 values are discussed and assessed. Benchmark values correlating EE and ECO2 with the mass or the heat rate of the boiler are extracted.

  16. Calculation of Reaction Forces in the Boiler Supports Using the Method of Equivalent Stiffness of Membrane Wall

    Directory of Open Access Journals (Sweden)

    Josip Sertić

    2014-01-01

    Full Text Available The values of reaction forces in the boiler supports are the basis for the dimensioning of bearing steel structure of steam boiler. In this paper, the application of the method of equivalent stiffness of membrane wall is proposed for the calculation of reaction forces. The method of equalizing displacement, as the method of homogenization of membrane wall stiffness, was applied. On the example of “Milano” boiler, using the finite element method, the calculation of reactions in the supports for the real geometry discretized by the shell finite element was made. The second calculation was performed with the assumption of ideal stiffness of membrane walls and the third using the method of equivalent stiffness of membrane wall. In the third case, the membrane walls are approximated by the equivalent orthotropic plate. The approximation of membrane wall stiffness is achieved using the elasticity matrix of equivalent orthotropic plate at the level of finite element. The obtained results were compared, and the advantages of using the method of equivalent stiffness of membrane wall for the calculation of reactions in the boiler supports were emphasized.

  17. 40 CFR 270.22 - Specific part B information requirements for boilers and industrial furnaces burning hazardous...

    Science.gov (United States)

    2010-07-01

    ... requirements for boilers and industrial furnaces burning hazardous waste. 270.22 Section 270.22 Protection of... requirements for boilers and industrial furnaces burning hazardous waste. When an owner or operator of a cement kiln, lightweight aggregate kiln, solid fuel boiler, liquid fuel boiler, or hydrochloric acid...

  18. Project recovers free wasted energy from an OSB dryer while eliminating a hog boiler

    Energy Technology Data Exchange (ETDEWEB)

    Normandin, A.; Levesque, S.; Laflamme, Y.; Charron, R. [Mesar-Environair Inc., Quebec, PQ (Canada)

    2008-09-15

    This article described how a mill producing oriented strand board (OSB) in Quebec optimized its energy balance with the installation of a flue gas heat recovery (FGHR) system developed by Mesar-Environair Inc. Many OSB mills produce enough wood waste heat to supply their hog boilers with valuable, yet inexpensive, fuel. The objective of this project was to recover waste heat and to find an application in the milling process to re-valorize it. The plant was using 3 hog boilers to heat thermal oil for their process, but only the newest hog boiler was in compliance for particulate emissions levels. The solution involved the use of a direct contact heat exchanger to meet the mill's requirements. The process consisted of pumping the log pond water in a counter-current direction to the humid OSB dryer flue gas. The energy was transferred from the gas to the water via vapor condensation. The customized equipment recovered most of the wasted heat and transferred it to the plant's log ponds. Cool process water from the log ponds was then recirculated through the condenser to trap the wasted energy. The efficiency of the main hog boiler and the chip dry was about 80 per cent. The FGHR process was designed to recover 85 per cent of the wasted energy that was directed to the atmosphere. The heat recovery unit can typically generate temperatures of 70 to 80 degrees C. In addition to fewer emissions of carbon dioxide and nitrogen oxides going out the stack, the FGHR system offers the advantages of heating the process water without additional fuel, and shutting down an old hog boiler. 1 tabs., 3 figs.

  19. Wythenshawe boiler rig. Thirty years of support to the UK nuclear power industry

    International Nuclear Information System (INIS)

    Rudge, Andy; Woolsey, Ian S.; Moore, Andrew

    2010-01-01

    The Wythenshawe Boiler Rig in Manchester, UK, recently celebrated thirty years of operation in support of the UK nuclear power industry. The Boiler Rig, owned by EDF Energy and operated on EDF Energy's behalf by Serco plc, is a full scale once-through boiler test facility for the investigation of chemistry and corrosion related topics. This paper presents an overview of the design and operation of the Boiler Rig together with some of the technical highlights from its thirty years of operation, many of which have relevance to power plant operations beyond those plants for which the work was performed. (orig.)

  20. Characterization and quantification of deposits build up and removal in straw suspension fired boilers

    DEFF Research Database (Denmark)

    Jensen, Peter Arendt; Shafique Bashir, Muhammad; Wedel, Stig

    This project deals with ash deposit formation in suspension fired biomass power plant boilers. The project has been conducted in a tight collaboration between Vattenfall and the CHEC Research Centre at DTU Department of Chemical Engineering. A large part of the project has been performed by condu......This project deals with ash deposit formation in suspension fired biomass power plant boilers. The project has been conducted in a tight collaboration between Vattenfall and the CHEC Research Centre at DTU Department of Chemical Engineering. A large part of the project has been performed...... by conducting advanced probe measurements at the Amagerværkets Vattenfall owed boilers. It was the objective of the project to provide an improved understanding of ash deposit formation and removal in biomass suspension fired boilers. The project have provided a large amount of knowledge on the following issues......: 1) The influence of local boiler conditions on deposit formation in suspension fired boilers using wood or co-firing straw and wood, 2) quantification of deposit removal in biomass suspension firing boilers with regards both to natural shedding and soot blower induced shedding, 3) established...