WorldWideScience

Sample records for leuteinizing hormone-releasing hormone

  1. Exaggerated gonadotropin response to luteinizing hormone-releasing hormone in amenorrheic runners.

    Science.gov (United States)

    Yahiro, J; Glass, A R; Fears, W B; Ferguson, E W; Vigersky, R A

    1987-03-01

    Most studies of exercise-induced amenorrhea have compared amenorrheic athletes (usually runners) with sedentary control subjects. Such comparisons will identify hormonal changes that develop as a result of exercise training but cannot determine which of these changes play a role in causing amenorrhea. To obviate this problem, we assessed reproductive hormone status in a group of five amenorrheic runners and compared them to a group of six eumenorrheic runners matched for body fatness, training intensity, and exercise performance. Compared to the eumenorrheic runners, the amenorrheic runners had lower serum estradiol concentrations, similar basal serum luteinizing hormone and follicle-stimulating hormone concentrations, and exaggerated responses of serum gonadotropins after administration of luteinizing hormone-releasing hormone (100 micrograms intravenous bolus). Serum prolactin levels, both basally and after thyrotropin-releasing hormone administration (500 micrograms intravenous bolus) or treadmill exercise, was similar in the two groups, as were serum thyroid function tests (including thyrotropin response to thyrotropin-releasing hormone). Changes in serum cortisol levels after short-term treadmill exercise were similar in both groups, and serum testosterone levels increased after exercise only in the eumenorrheic group. In neither group did such exercise change serum luteinizing hormone, follicle-stimulating hormone, or thyrotropin levels. We concluded that exercise-induced amenorrhea is not solely related to the development of increased prolactin output after exercise training. The exaggerated gonadotropin response to luteinizing hormone-releasing hormone seen in amenorrheic runners in comparison with matched eumenorrheic runners is consistent with a hypothalamic etiology for the menstrual dysfunction, analogous to that previously described in "stress-induced" or "psychogenic" amenorrhea.

  2. Antimüllerian hormone in gonadotropin releasing-hormone antagonist cycles

    DEFF Research Database (Denmark)

    Arce, Joan-Carles; La Marca, Antonio; Mirner Klein, Bjarke

    2013-01-01

    To assess the relationships between serum antimüllerian hormone (AMH) and ovarian response and treatment outcomes in good-prognosis patients undergoing controlled ovarian stimulation using a gonadotropin-releasing hormone (GnRH) antagonist protocol....

  3. Estradiol potentiation of gonadotropin-releasing hormone responsiveness in the anterior pituitary is mediated by an increase in gonadotropin-releasing hormone receptors

    International Nuclear Information System (INIS)

    Menon, M.; Peegel, H.; Katta, V.

    1985-01-01

    In order to investigate the mechanism by which 17 beta-estradiol potentiates the action of gonadotropin-releasing hormone on the anterior pituitary in vitro, cultured pituitary cells from immature female rats were used as the model system. Cultures exposed to estradiol at concentrations ranging from 10(-10) to 10(-6) mol/L exhibited a significant augmentation of luteinizing hormone release in response to a 4-hour gonadotropin-releasing hormone (10 mumol/L) challenge at a dose of 10(-9) mol/L compared to that of control cultures. The estradiol augmentation of luteinizing hormone release was also dependent on the duration of estradiol exposure. When these cultures were incubated with tritium-labeled L-leucine, an increase in incorporation of radiolabeled amino acid into total proteins greater than that in controls was observed. A parallel stimulatory effect of estradiol on iodine 125-labeled D-Ala6 gonadotropin-releasing hormone binding was observed. Cultures incubated with estradiol at different concentrations and various lengths of time showed a significant increase in gonadotropin-releasing hormone binding capacity and this increase was abrogated by cycloheximide. Analysis of the binding data showed that the increase in gonadotropin-releasing hormone binding activity was due to a change in the number of gonadotropin-releasing hormone binding sites rather than a change in the affinity. These results suggest that (1) estradiol treatment increases the number of pituitary receptors for gonadotropin-releasing hormone, (2) the augmentary effect of estradiol on luteinizing hormone release at the pituitary level might be mediated, at least in part, by the increase in the number of binding sites of gonadotropin-releasing hormone, and (3) new protein synthesis may be involved in estradiol-mediated gonadotropin-releasing hormone receptor induction

  4. The interrelationships of thyroid and growth hormones: effect of growth hormone releasing hormone in hypo- and hyperthyroid male rats.

    Science.gov (United States)

    Root, A W; Shulman, D; Root, J; Diamond, F

    1986-01-01

    Growth hormone (GH) and the thyroid hormones interact in the hypothalamus, pituitary and peripheral tissues. Thyroid hormone exerts a permissive effect upon the anabolic and metabolic effects of GH, and increases pituitary synthesis of this protein hormone. GH depresses the secretion of thyrotropin and the thyroid hormones and increases the peripheral conversion of thyroxine to triiodothyronine. In the adult male rat experimental hypothyroidism produced by ingestion of propylthiouracil depresses the GH secretory response to GH-releasing hormone in vivo and in vitro, reflecting the lowered pituitary stores of GH in the hypothyroid state. Short term administration of large amounts of thyroxine with induction of the hyperthyroid state does not affect the in vivo GH secretory response to GH-releasing hormone in this animal.

  5. Corticotropin-releasing hormone and pituitary-adrenal hormones in pregnancies complicated by chronic hypertension.

    Science.gov (United States)

    Warren, W B; Gurewitsch, E D; Goland, R S

    1995-02-01

    We hypothesized that maternal plasma corticotropin-releasing hormone levels are elevated in chronic hypertension and that elevations modulate maternal and fetal pituitary-adrenal function. Venous blood samples and 24-hour urine specimens were obtained in normal and hypertensive pregnancies at 21 to 40 weeks of gestation. Corticotropin-releasing hormone, corticotropin, cortisol, dehydroepiandrosterone sulfate, and total estriol levels were measured by radioimmunoassay. Mean hormone levels were compared by unpaired t test or two-way analysis of variance. Plasma corticotropin-releasing hormone levels were elevated early in hypertensive pregnancies but did not increase after 36 weeks. Levels of pituitary and adrenal hormones were not different in normal and hypertensive women. However, maternal plasma estriol levels were lower in hypertensive pregnancies compared with normal pregnancies. Fetal 16-hydroxy dehydroepiandrosterone sulfate, the major precursor to placental estriol production, has been reported to be lower than normal in hypertensive pregnancies, possibly explaining the decreased plasma estriol levels reported here. Early stimulation of placental corticotropin-releasing hormone production or secretion may be related to accelerated maturation of placental endocrine function in pregnancies complicated by chronic hypertension.

  6. Effects of hyperthyroidism and hypothyroidism on rat growth hormone release induced by thyrotropin-releasing hormone.

    Science.gov (United States)

    Chihara, K; Kato, Y; Ohgo, S; Iwasaki, Y; Maeda, K

    1976-06-01

    The effect of synthetic thyrotropin-releasing hormone (TRH) on the release of growth hormone (GH) and thyroid-stimulating hormone (TSH) was investigated in euthyroid, hypothyroid, and hyperthyroid rats under urethane anesthesia. In euthyroid control rats, intravenous injection of TRH (200 ng/100 g BW) resulted in a significant increase in both plasma GH and TSH. In rats made hypothyroid by treatment with propylthiouracil or by thyroidectomy, basal GH and TSH levels were significantly elevated with exaggerated responses to TRH. In contrast, plasma GH and TSH responses to TRH were both significantly inhibited in rats made hyperthyroid by L-thyroxine (T4) treatment. These results suggest that altered thyroid status influences GH release as well as TSH secretion induced by TRH in rats.

  7. Growth hormone (GH)-releasing activity of chicken GH-releasing hormone (GHRH) in chickens.

    Science.gov (United States)

    Harvey, S; Gineste, C; Gaylinn, B D

    2014-08-01

    Two peptides with sequence similarities to growth hormone releasing hormone (GHRH) have been identified by analysis of the chicken genome. One of these peptides, chicken (c) GHRH-LP (like peptide) was previously found to poorly bind to chicken pituitary membranes or to cloned and expressed chicken GHRH receptors and had little, if any, growth hormone (GH)-releasing activity in vivo or in vitro. In contrast, a second more recently discovered peptide, cGHRH, does bind to cloned and expressed cGHRH receptors and increases cAMP activity in transfected cells. The possibility that this peptide may have in vivo GH-releasing activity was therefore assessed. The intravenous (i.v.) administration of cGHRH to immature chickens, at doses of 3-100 μg/kg, significantly increased circulating GH concentrations within 10 min of injection and the plasma GH levels remained elevated for at least 30 min after the injection of maximally effective doses. The plasma GH responses to cGHRH were comparable with those induced by human (h) or porcine (p) GHRH preparations and to that induced by thyrotropin releasing hormone (TRH). In marked contrast, the i.v. injection of cGHRH-LP had no significant effect on circulating GH concentrations in immature chicks. GH release was also increased from slaughterhouse chicken pituitary glands perifused for 5 min with cGHRH at doses of 0.1 μg/ml or 1.0 μg/ml, comparable with GH responses to hGHRH1-44. In contrast, the perifusion of chicken pituitary glands with cGHRH-LP had no significant effect on GH release. In summary, these results demonstrate that cGHRH has GH-releasing activity in chickens and support the possibility that it is the endogenous ligand of the cGHRH receptor. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. New trends in combined use of gonadotropin-releasing hormone antagonists with gonadotropins or pulsatile gonadotropin-releasing hormone in ovulation induction and assisted reproductive technologies.

    Science.gov (United States)

    Gordon, K; Danforth, D R; Williams, R F; Hodgen, G D

    1992-10-01

    The use of gonadotropin-releasing hormone agonists as adjunctive therapy with gonadotropins for ovulation induction in in vitro fertilization and other assisted reproductive technologies has become common clinical practice. With the recent advent of potent gonadotropin-releasing hormone antagonists free from the marked histamine-release effects that stymied earlier compounds, an attractive alternative method may be available. We have established the feasibility of combining gonadotropin-releasing hormone antagonist-induced inhibition of endogenous gonadotropins with exogenous gonadotropin therapy for ovulation induction in a nonhuman primate model. Here, the principal benefits to be gained from using the gonadotropin-releasing hormone antagonist rather than the gonadotropin-releasing hormone agonist are the immediate inhibition of pituitary gonadotropin secretion without the "flare effect," which brings greater safety and convenience for patients and the medical team and saves time and money. We have also recently demonstrated the feasibility of combining gonadotropin-releasing hormone antagonist with pulsatile gonadotropin-releasing hormone therapy for the controlled restoration of gonadotropin secretion and gonadal steroidogenesis culminating in apparently normal (singleton) ovulatory cycles. This is feasible only with gonadotropin-releasing hormone antagonists because, unlike gonadotropin-releasing hormone agonists, they achieve control of the pituitary-ovarian axis without down regulation of the gonadotropin-releasing hormone receptor system. This capacity to override gonadotropin-releasing hormone antagonist-induced suppression of pituitary-ovarian function may allow new treatment modalities to be employed for women who suffer from chronic hyperandrogenemia with polycystic ovarian disease.

  9. A regulator of G Protein signaling, RGS3, inhibits gonadotropin-releasing hormone (GnRH-stimulated luteinizing hormone (LH secretion

    Directory of Open Access Journals (Sweden)

    Musgrove Lois C

    2001-11-01

    Full Text Available Abstract Background Luteinizing hormone secreted by the anterior pituitary gland regulates gonadal function. Luteinizing hormone secretion is regulated both by alterations in gonadotrope responsiveness to hypothalamic gonadotropin releasing hormone and by alterations in gonadotropin releasing hormone secretion. The mechanisms that determine gonadotrope responsiveness are unknown but may involve regulators of G protein signaling (RGSs. These proteins act by antagonizing or abbreviating interaction of Gα proteins with effectors such as phospholipase Cβ. Previously, we reported that gonadotropin releasing hormone-stimulated second messenger inositol trisphosphate production was inhibited when RGS3 and gonadotropin releasing hormone receptor cDNAs were co-transfected into the COS cell line. Here, we present evidence for RGS3 inhibition of gonadotropin releasing hormone-induced luteinizing hormone secretion from cultured rat pituitary cells. Results A truncated version of RGS3 (RGS3T = RGS3 314–519 inhibited gonadotropin releasing hormone-stimulated inositol trisphosphate production more potently than did RSG3 in gonadotropin releasing hormone receptor-bearing COS cells. An RSG3/glutathione-S-transferase fusion protein bound more 35S-Gqα than any other member of the G protein family tested. Adenoviral-mediated RGS3 gene transfer in pituitary gonadotropes inhibited gonadotropin releasing hormone-stimulated luteinizing hormone secretion in a dose-related fashion. Adeno-RGS3 also inhibited gonadotropin releasing hormone stimulated 3H-inositol phosphate accumulation, consistent with a molecular site of action at the Gqα protein. Conclusions RGS3 inhibits gonadotropin releasing hormone-stimulated second messenger production (inositol trisphosphate as well as luteinizing hormone secretion from rat pituitary gonadotropes apparently by binding and suppressing the transduction properties of Gqα protein function. A version of RGS3 that is amino

  10. Growth Hormone-Releasing Hormone in Diabetes

    Directory of Open Access Journals (Sweden)

    Leonid Evsey Fridlyand

    2016-10-01

    Full Text Available Growth hormone-releasing hormone (GHRH is produced by the hypothalamus and stimulates growth hormone synthesis and release in the anterior pituitary gland. In addition GHRH is an important regulator of cellular functions in many cells and organs. Expression of GHRH G-Protein Coupled Receptor (GHRHR has been demonstrated in different peripheral tissues and cell types including pancreatic islets. Among the peripheral activities, recent studies demonstrate a novel ability of GHRH analogs to increase and preserve insulin secretion by beta-cells in isolated pancreatic islets, which makes them potentially useful for diabetes treatment. This review considers the role of GHRHR in the beta-cell and addresses the unique engineered GHRH agonists and antagonists for treatment of Type 2 diabetes mellitus. We discuss the similarity of signaling pathways activated by GHRHR in pituitary somatotrophs and in pancreatic beta-cells and possible ways as to how the GHRHR pathway can interact with glucose and other secretagogues to stimulate insulin secretion. We also consider the hypothesis that novel GHRHR agonists can improve glucose metabolism in Type 2 diabetes by preserving the function and survival of pancreatic beta-cells. Wound healing and cardioprotective action with new GHRH agonists suggesting that they may prove useful in ameliorating certain diabetic complications. These findings highlight the future potential therapeutic effectiveness of modulators of GHRHR activity for the development of new therapeutic approaches in diabetes and its complications.

  11. Pituitary mammosomatotroph adenomas develop in old mice transgenic for growth hormone-releasing hormone

    DEFF Research Database (Denmark)

    Asa, S L; Kovacs, K; Stefaneanu, L

    1990-01-01

    It has been shown that mice transgenic for human growth hormone-releasing hormone (GRH) develop hyperplasia of pituitary somatotrophs and mammosomatotrophs, cells capable of producing both growth hormone and prolactin, by 8 months of age. We now report for the first time that old GRH-transgenic...

  12. Overnight Levels of Luteinizing Hormone, Follicle-Stimulating Hormone and Growth Hormone before and during Gonadotropin-Releasing Hormone Analogue Treatment in Short Boys Born Small for Gestational Age

    NARCIS (Netherlands)

    van der Kaay, Danielle C. M.; de Jong, Frank H.; Rose, Susan R.; Odink, Roelof J. H.; Bakker-van Waarde, Willie M.; Sulkers, Eric J.; Hokken-Koelega, Anita C. S.

    2009-01-01

    Aims: To evaluate if 3 months of gonadotropin-releasing hormone analogue (GnRHa) treatment results in sufficient suppression of pubertal luteinizing hormone (LH) and follicle-stimulating hormone (FSH) profile patterns in short pubertal small for gestational age (SGA) boys. To compare growth hormone

  13. Radioimmunological and clinical studies with luteinizing hormone releasing hormone (LRH)

    International Nuclear Information System (INIS)

    Dahlen, H.G.

    1986-01-01

    Radioimmunoassay for Luteinizing Hormone Releasing Hormone (LRH) has been established, tested and applied. Optimal conditions for the performance with regards to incubation time, incubation temperature, concentration of antiserum and radiolabelled LRH have been established. The specificity of the LRH immunoassay was investigated. Problems with direct measurement of LRH in plasmas of radioimmunoassay are encountered. The LRH distribution in various tissues of the rat are investigated. By means of a system for continuous monitoring of LH and FSH in women the lowest effective dose of LRH causing a significant release of LH and FSH could be established. (Auth.)

  14. Cerebrospinal fluid levels of corticotropin-releasing hormone in women with functional hypothalamic amenorrhea.

    Science.gov (United States)

    Berga, S L; Loucks-Daniels, T L; Adler, L J; Chrousos, G P; Cameron, J L; Matthews, K A; Marcus, M D

    2000-04-01

    Women with functional hypothalamic amenorrhea are anovulatory because of reduced gonadotropin-releasing hormone drive. Several studies have documented hypercortisolemia, which suggests that functional hypothalamic amenorrhea is stress-induced. Further, with recovery (resumption of ovulation), cortisol decreased and gonadotropin-releasing hormone drive increased. Corticotropin-releasing hormone can increase cortisol and decrease gonadotropin-releasing hormone. To determine its role in functional hypothalamic amenorrhea, we measured corticotropin-releasing hormone in cerebrospinal fluid along with arginine vasopressin, another potent adrenocorticotropic hormone secretagog, and beta-endorphin, which is released by corticotropin-releasing hormone and can inhibit gonadotropin-releasing hormone. Corticotropin-releasing hormone, vasopressin, and beta-endorphin levels were measured in cerebrospinal fluid from 14 women with eumenorrhea and 15 women with functional hypothalamic amenorrhea. Levels of corticotropin-releasing hormone in cerebrospinal fluid and of vasopressin were comparable and beta-endorphin levels were lower in women with functional hypothalamic amenorrhea. In women with established functional hypothalamic amenorrhea, increased cortisol and reduced gonadotropin-releasing hormone are not sustained by elevated cerebrospinal-fluid corticotropin-releasing hormone, vasopressin, or beta-endorphin. These data do not exclude a role for these factors in the initiation of functional hypothalamic amenorrhea.

  15. Synthesis and in vitro anti-cancer evaluation of luteinizing hormone-releasing hormone-conjugated peptide.

    Science.gov (United States)

    Deng, Xin; Qiu, Qianqian; Ma, Ke; Huang, Wenlong; Qian, Hai

    2015-11-01

    Luteinizing hormone-releasing hormone (LHRH) is a decapeptide hormone released from the hypothalamus and shows high affinity binding to the LHRH receptors. It is reported that several cancer cells also express LHRH receptors such as breast, ovarian, prostatic, bladder and others. In this study, we linked B1, an anti-cancer peptide, to LHRH and its analogs to improve the activity against cancer cells with LHRH receptor. Biological evaluation revealed that TB1, the peptide contains triptorelin sequence, present favorable anti-cancer activity as well as plasma stability. Further investigations disclosed that TB1 trigger apoptosis by activating the mitochondria-cytochrome c-caspase apoptotic pathway, it also exhibited the anti-migratory effect on cancer cells.

  16. Hypothalamic regulation of thyroid-stimulating hormone and prolactin release : the role of thyrotrophin-releasing hormone

    NARCIS (Netherlands)

    G.A.C. van Haasteren (Goedele)

    1995-01-01

    textabstractThyrotrophin-releasing-hormone (TRH), a tripeptide, is produced by hypothalamic neurons and transported along their axons to the median eminence (ME). From there it is released at nerve terminals into hypophyseal portal blood. It is then transported to the anterior pituitary gland where

  17. Highly potent metallopeptide analogues of luteinizing hormone-releasing hormone

    International Nuclear Information System (INIS)

    Bajusz, S.; Janaky, T.; Csernus, V.J.; Bokser, L.; Fekete, M.; Srkalovic, G.; Redding, T.W.; Schally, A.V.

    1989-01-01

    Metal complexes related to the cytotoxic complexes cisplatin [cis-diamminedichloroplatinum(II)] and transbis(salicylaldoximato)copper(II) were incorporated into suitably modified luteinizing hormone-releasing hormone (LH-RH) analogues containing D-lysine at position 6. Some of the metallopeptides thus obtained proved to be highly active LH-RH agonists or antagonists. Most metallopeptide analogues of LH-RH showed high affinities for the membrane receptors of rat pituitary and human breast cancer cells. Some of these metallopeptides had cytotoxic activity against human breast cancer and prostate cancer and prostate cancer cell lines in vitro. Such cytostatic metallopeptides could be envisioned as targeted chemotherapeutic agents in cancers that contain receptors for LH-RH-like peptides

  18. Interleukin 1α inhibits prostaglandin E2 release to suppress pulsatile release of luteinizing hormone but not follicle-stimulating hormone

    International Nuclear Information System (INIS)

    Rettori, V.; McCann, S.M.; Gimeno, M.F.; Karara, A.; Gonzalez, M.C.

    1991-01-01

    Interleukin 1α (IL-1α), a powerful endogenous pyrogen released from monocytes and macrophages by bacterial endotoxin, stimulates corticotropin, prolactin, and somatotropin release and inhibits thyrotropin release by hypothalamic action. The authors injected recombinant human IL-1α into the third cerebral ventricle, to study its effect on the pulsatile release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in conscious, freely moving, ovariectomized rats. Intraventricular injection of 0.25 pmol of IL-1α caused an almost immediate reduction of plasma LH concentration. To determine the mechanism of the suppression of LH release, mediobasal hypothalamic fragments were incubated in vitro with IL-1α (10 pM) and the release of LH-releasing hormone (LHRH) and prostaglandin E 2 into the medium was measured by RIA in the presence or absence of nonrepinephrine. 1α reduced basal LHRH release and blocked LHRH release induced by nonrepinephrine. In conclusion, IL-1α suppresses LH but not FSH release by an almost complete cessation of pulsatile release of LH in the castrated rat. The mechanism of this effect appears to be by inhibition of prostaglandin E 2 -mediated release of LHRH

  19. The role of releasing hormones in the diagnosis of hypopituitarism ...

    African Journals Online (AJOL)

    Luteinising hormone-releasing factor and thyrotrophinreleasing factor were used in conjunction with the insulin tolerance test in 9 patients with known or suspected panhypopituitarism. It appears that growth hormone and luteinising hormone fail early in panhypopituitarism. Cortisol and thyroid-stimulating hormone ...

  20. Corticotropin-releasing hormone: Mediator of vertebrate life stage transitions?

    Science.gov (United States)

    Watanabe, Yugo; Grommen, Sylvia V H; De Groef, Bert

    2016-03-01

    Hormones, particularly thyroid hormones and corticosteroids, play critical roles in vertebrate life stage transitions such as amphibian metamorphosis, hatching in precocial birds, and smoltification in salmonids. Since they synergistically regulate several metabolic and developmental processes that accompany vertebrate life stage transitions, the existence of extensive cross-communication between the adrenal/interrenal and thyroidal axes is not surprising. Synergies of corticosteroids and thyroid hormones are based on effects at the level of tissue hormone sensitivity and gene regulation. In addition, in representative nonmammalian vertebrates, corticotropin-releasing hormone (CRH) stimulates hypophyseal thyrotropin secretion, and thus functions as a common regulator of both the adrenal/interrenal and thyroidal axes to release corticosteroids and thyroid hormones. The dual function of CRH has been speculated to control or affect the timing of vertebrate life history transitions across taxa. After a brief overview of recent insights in the molecular mechanisms behind the synergic actions of thyroid hormones and corticosteroids during life stage transitions, this review examines the evidence for a possible role of CRH in controlling vertebrate life stage transitions. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Prolonged inhibition of luteinizing hormone and testosterone levels in male rats with the luteinizing hormone-releasing hormone antagonist SB-75.

    Science.gov (United States)

    Bokser, L; Bajusz, S; Groot, K; Schally, A V

    1990-09-01

    Inhibitory effects of the potent antagonist of luteinizing hormone-releasing hormone N-Ac-[3-(2-naphthyl)-D-alanine1,4-chloro-D-phenylalanine2,3- (3-pyridyl)-D- alanine3,D-citrulline6,D-alanine10]luteinizing hormone-releasing hormone (SB-75) free of edematogenic effects were investigated in male rats. In a study to determine the effect on luteinizing hormone levels in castrated male rats, SB-75 was injected s.c. in doses of 0.625, 1.25, 2.5, 5.0, and 10 micrograms. Blood samples were taken at different intervals for 48 hr. All doses of SB-75 significantly decreased luteinizing hormone levels for greater than 6 hr (P less than 0.01); this inhibition lasted for greater than 24 hr (P less than 0.01) with a dose of 5.0 micrograms and greater than 48 hr with 10 micrograms (P less than 0.05). Serum testosterone levels were also measured in intact male rats injected with SB-75 in doses of 25, 50, and 100 micrograms. All doses produced a dramatic fall in testosterone to castration levels 6 hr after injection (P less than 0.01); this inhibition of serum testosterone was maintained for greater than 72 hr, but only the 100-micrograms dose could keep testosterone in the castration range for greater than 24 hr (P less than 0.01). In another study using a specific RIA, we obtained the pharmacokinetic release pattern of SB-75 from two sustained delivery formulations of SB-75 pamoate microgranules and examined their effect on serum testosterone. After a single i.m. injection of 20 mg of one batch of microgranules, a large peak corresponding to SB-75 at 45.8 ng/ml was observed, corresponding to the "burst" effect. Levels of the analog decreased to 19.6 ng/ml on day 2, gradually reached a concentration of 4.7 ng/ml on day 7, and kept declining thereafter. Testosterone levels were reduced on day 1 (P less than 0.01) and were maintained at low values for greater than 7 days (P less than 0.05). In rats injected with 10 mg of SB-75 pamoate microgranules of the second batch, SB-75 serum

  2. Highly potent metallopeptide analogues of luteinizing hormone-releasing hormone.

    Science.gov (United States)

    Bajusz, S; Janaky, T; Csernus, V J; Bokser, L; Fekete, M; Srkalovic, G; Redding, T W; Schally, A V

    1989-08-01

    Metal complexes related to the cytotoxic complexes cisplatin [cis-diamminedichloroplatinum(II)] and transbis(salicylaldoximato)copper(II) were incorporated into suitably modified luteinizing hormone-releasing hormone (LH-RH) analogues containing D-lysine at position 6. Some of the metallopeptides thus obtained proved to be highly active LH-RH agonists or antagonists. For instance, SB-40, a PtCl2-containing metallopeptide in which platinum is coordinated to an N epsilon-(DL-2,3-diaminopropionyl)-D-lysine residue [D-Lys(DL-A2pr] at position 6, showed 50 times higher LH-releasing potency than the native hormone. SB-95, [Ac-D-Nal(2)1,D-Phe(pCl)2, D-Pal(3)2, Arg5,D-Lys[DL-A2pr(Sal2Cu)]6,D-Ala10]LH-RH, where Nal(2) is 3-(2-naphthyl)alanine, Pal(3) is 3-(3-pyridyl)alanine, and copper(II) is coordinated to the salicylideneimino moieties resulting from condensation of salicylaldehyde with D-Lys(DL-A2pr)6, caused 100% inhibition of ovulation at a dose of 3 micrograms in rats. Most metallopeptide analogues of LH-RH showed high affinities for the membrane receptors of rat pituitary and human breast cancer cells. Some of these metallopeptides had cytotoxic activity against human breast cancer and prostate cancer cell lines in vitro (this will be the subject of a separate paper on cytotoxicity evaluation). Such cytostatic metallopeptides could be envisioned as targeted chemotherapeutic agents in cancers that contain receptors for LH-RH-like peptides.

  3. Highly potent antagonists of luteinizing hormone-releasing hormone free of edematogenic effects.

    Science.gov (United States)

    Bajusz, S; Kovacs, M; Gazdag, M; Bokser, L; Karashima, T; Csernus, V J; Janaky, T; Guoth, J; Schally, A V

    1988-03-01

    To eliminate the undesirable edematogenic effect of the luteinizing hormone-releasing hormone (LH-RH) antagonists containing basic D amino acids at position 6, exemplified by [Ac-D-Phe(pCl)1,2,D-Trp3,D-Arg6,D-Ala10]LH-RH [Phe(pCl) indicates 4-chlorophenylalanine], analogs with D-ureidoalkyl amino acids such as D-citrulline (D-Cit) or D-homocitrulline (D-Hci) at position 6 were synthesized and tested in several systems in vitro and in vivo. HPLC analysis revealed that the overall hydrophobicity of the D-Cit/D-Hci6 analogs was similar to that of the basic D-Arg6 antagonists. In vitro, most of the analogs completely inhibited LH-RH-mediated luteinizing hormone release in perfused rat pituitary cell systems at an antagonist to LH-RH molar ratio of 5:1. In vivo, the most active peptides, [Ac-D-Nal(2)1,D-Phe(pCl)2,D-Trp3,D-Cit6,D-Ala10]LH-RH [Nal(2) indicates 3-(2-naphthyl)alanine] and its D-Hci6 analog, caused 100% inhibition of ovulation in cycling rats in doses of 3 micrograms and suppressed the luteinizing hormone level in ovariectomized female rats for 47 hr when administered at doses of 25 micrograms. Characteristically, these peptides did not exert any edematogenic effects even at 1.5 mg/kg. These properties of the D-Cit/D-Hci6 antagonists may make them useful clinically.

  4. Algorithmic complexity of growth hormone release in humans

    Energy Technology Data Exchange (ETDEWEB)

    Prank, K.; Wagner, M.; Brabant, G. [Medical School Hannover (Germany)

    1996-12-31

    Most hormones are secreted in an pulsatile rather than in a constant manner. This temporal pattern of pulsatile hormone release plays an important role in the regulation of cellular function and structure. In healthy humans growth hormone (GH) secretion is characterized by distinct pulses whereas patients bearing a GH producing tumor accompanied with excessive secretion (acromegaly) exhibit a highly irregular pattern of GH release. It has been hypothesized that this highly disorderly pattern of GH release in acromegaly arises from random events in the GH-producing tumor under decreased normal control of GH secretion. Using a context-free grammar complexity measure (algorithmic complexity) in conjunction with random surrogate data sets we demonstrate that the temporal pattern of GH release in acromegaly is not significantly different from a variety of stochastic processes. In contrast, normal subjects clearly exhibit deterministic structure in their temporal patterns of GH secretion. Our results support the hypothesis that GH release in acromegaly is due to random events in the GH-producing tumorous cells which might become independent from hypothalamic regulation. 17 refs., 1 fig., 2 tabs.

  5. Preliminary studies of plasma growth hormone releasing activity during medical therapy of acromegaly

    International Nuclear Information System (INIS)

    Hagen, T.C.; Lawrence, A.M.; Kirsteins, L.

    1978-01-01

    The in vitro growth hormone releasing activity of plasma obtained from six acromegalic subjects was measured before and during therapy. In five subjects, plasmas were obtained before and during successful medical therapy with medroxyprogesterone acetate (MPA). The sixth subject was sampled before and after transphenoidal Sr 90 -induced hypopituitarism. All subjects had a decrement in fasting growth hormone levels with respective therapies (29-88%). The in vitro growth hormone released from Rhesus monkey anterior pituitaries was assessed after incubating one lateral half in control plasma (pre-therapy) and the contralateral pituitary half in plasma obtained during or after therapy. Studies with plasmas obtained from the five patients successfully treated with MPA showed a decrease in growth hormone releasing activity during therapy in all (18-57%). Plasma obtained after Sr 90 pituitary ablation in the sixth subject had 35% more growth hormone releasing activity than obtained before therapy. These results suggest that active acromegalics who respond to MPA with significantly lowered growth hormone levels may actually achieve this response because of a decrease in growth hormone releasing factor measured peripherally. The opposite response in one acromegalic subject, following Sr 90 pituitary ablation and hypopituitarism, suggests that growth hormone releasing factor secretion may increase when growth hormone levels are lowered by ablative therapy. (orig.) [de

  6. Effects of growth hormone deficiency and recombinant growth hormone therapy on postprandial gallbladder motility and cholecystokinin release.

    NARCIS (Netherlands)

    Moschetta, A.; Twickler, M.; Rehfeld, J.F.; Ooteghem, N.A. van; Castro Cabezas, M.; Portincasa, P.; Berge-Henegouwen, G.P. van; Erpecum, K.J. van

    2004-01-01

    In addition to cholecystokinin, other hormones have been suggested to be involved in regulation of postprandial gallbladder contraction. We aimed to evaluate effects of growth hormone (GH) on gallbladder contractility and cholecystokinin release. Gallbladder and gastric emptying (by ultrasound) and

  7. Diseases associated with growth hormone-releasing hormone receptor (GHRHR) mutations.

    Science.gov (United States)

    Martari, Marco; Salvatori, Roberto

    2009-01-01

    The growth hormone (GH)-releasing hormone (GHRH) receptor (GHRHR) belongs to the G protein-coupled receptors family. It is expressed almost exclusively in the anterior pituitary, where it is necessary for somatotroph cells proliferation and for GH synthesis and secretion. Mutations in the human GHRHR gene (GHRHR) can impair ligand binding and signal transduction, and have been estimated to cause about 10% of autosomal recessive familial isolated growth hormone deficiency (IGHD). Mutations reported to date include five splice donor site mutations, two microdeletions, two nonsense mutations, seven missense mutations, and one mutation in the promoter. These mutations have an autosomal recessive mode of inheritance, and heterozygous individuals do not show signs of IGHD, although the presence of an intermediate phenotype has been hypothesized. Conversely, patients with biallelic mutations have low serum insulin-like growth factor-1 and GH levels (with absent or reduced GH response to exogenous stimuli), resulting--if not treated--in proportionate dwarfism. This chapter reviews the biology of the GHRHR, the mutations that affect its gene and their effects in homozygous and heterozygous individuals. Copyright © 2009 Elsevier Inc. All rights reserved.

  8. Mathematical modeling of gonadotropin-releasing hormone signaling.

    Science.gov (United States)

    Pratap, Amitesh; Garner, Kathryn L; Voliotis, Margaritis; Tsaneva-Atanasova, Krasimira; McArdle, Craig A

    2017-07-05

    Gonadotropin-releasing hormone (GnRH) acts via G-protein coupled receptors on pituitary gonadotropes to control reproduction. These are G q -coupled receptors that mediate acute effects of GnRH on the exocytotic secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), as well as the chronic regulation of their synthesis. GnRH is secreted in short pulses and GnRH effects on its target cells are dependent upon the dynamics of these pulses. Here we overview GnRH receptors and their signaling network, placing emphasis on pulsatile signaling, and how mechanistic mathematical models and an information theoretic approach have helped further this field. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. In vitro effect of Δ9-tetrahydrocannabinol to stimulate somatostatin release and block that of luteinizing hormone-releasing hormone by suppression of the release of prostaglandin E2

    International Nuclear Information System (INIS)

    Rettori, V.; Aguila, M.C.; McCann, S.M.; Gimeno, M.F.; Franchi, A.M.

    1990-01-01

    Previous in vivo studies have shown that Δ 9 -tetrahydrocannabinol (THC), the principal active ingredient in marijuana, can suppress both luteinizing hormone (LH) and growth hormone (GH) secretion after its injection into the third ventricle of conscious male rats. The present studies were deigned to determine the mechanism of these effects. Various doses of THC were incubated with either stalk median eminence fragments (MEs) or mediobasal hypothalamic (MBH) fragments in vitro. Although THC (10 nM) did not alter basal release of LH-releasing hormone (LHRH) from MEs in vitro, it completely blocked the stimulatory action of dopamine or nonrepinephrine on LHRH release. The effective doses to block LHRH release were associated with a blockade of synthesis and release of prostaglandin E 2 (PGE 2 ) from MBH in vitro. In contrast to the suppressive effect of THC on LHRH release, somatostatin release from MEs was enhanced in a dose-related manner with a minimal effective dose of 1 nM. Since PGE 2 suppresses somatostatin release, this enhancement may also be related to the suppressive effect of THC on PGE 2 synthesis and release. The authors speculate that these actions are mediated by the recently discovered THC receptors in the tissue. The results indicate that the suppressive effect of THC on LH release is mediated by a blockade of LHRH release, whereas the suppressive effect of the compound on growth hormone release is mediated, at least in part, by a stimulation of somatostatin release

  10. A role for central nervous growth hormone-releasing hormone signaling in the consolidation of declarative memories.

    Directory of Open Access Journals (Sweden)

    Manfred Hallschmid

    Full Text Available Contributions of somatotropic hormonal activity to memory functions in humans, which are suggested by clinical observations, have not been systematically examined. With previous experiments precluding a direct effect of systemic growth hormone (GH on acute memory formation, we assessed the role of central nervous somatotropic signaling in declarative memory consolidation. We examined the effect of intranasally administered growth hormone releasing-hormone (GHRH; 600 µg that has direct access to the brain and suppresses endogenous GHRH via an ultra-short negative feedback loop. Twelve healthy young men learned word-pair associates at 2030 h and were administered GHRH and placebo, respectively, at 2100 h. Retrieval was tested after 11 hours of wakefulness. Compared to placebo, intranasal GHRH blunted GH release within 3 hours after substance administration and reduced the number of correctly recalled word-pairs by ∼12% (both P<0.05. The impairment of declarative memory consolidation was directly correlated to diminished GH concentrations (P<0.05. Procedural memory consolidation as examined by the parallel assessment of finger sequence tapping performance was not affected by GHRH administration. Our findings indicate that intranasal GHRH, by counteracting endogenous GHRH release, impairs hippocampal memory processing. They provide first evidence for a critical contribution of central nervous somatotropic activity to hippocampus-dependent memory consolidation.

  11. Effects of ionizing radiation and pretreatment with [D-Leu6,des-Gly10] luteinizing hormone-releasing hormone ethylamide on developing rat ovarian follicles

    International Nuclear Information System (INIS)

    Jarrell, J.; YoungLai, E.V.; McMahon, A.; Barr, R.; O'Connell, G.; Belbeck, L.

    1987-01-01

    To assess the effects of a gonadotropin-releasing hormone agonist, [D-Leu6,des-Gly10] luteinizing hormone-releasing hormone ethylamide, in ameliorating the damage caused by ionizing radiation, gonadotropin-releasing hormone agonist was administered to rats from day 22 to 37 of age in doses of 0.1, 0.4, and 1.0 microgram/day or vehicle and the rats were sacrificed on day 44 of age. There were no effects on estradiol, progesterone, luteinizing, or follicle-stimulating hormone, nor an effect on ovarian follicle numbers or development. In separate experiments, rats treated with gonadotropin-releasing hormone agonist in doses of 0.04, 0.1, 0.4, or 1.0 microgram/day were either irradiated or sham irradiated on day 30 and all groups sacrificed on day 44 of age. Irradiation produced a reduction in ovarian weight and an increase in ovarian follicular atresia. Pretreatment with the agonist prevented the reduction in ovarian weight and numbers of primordial and preantral follicles but not healthy or atretic antral follicles. Such putative radioprotection should be tested on actual reproductive performance

  12. Melatonin improves memory acquisition under stress independent of stress hormone release

    OpenAIRE

    Rimmele, U; Spillmann, M; Bärtschi, C; Wolf, O T; Weber, C S; Ehlert, Ulrike; Wirtz, P H

    2009-01-01

    RATIONALE: Animal studies suggest that the pineal hormone melatonin influences basal stress hormone levels and dampens hormone reactivity to stress. OBJECTIVES: We investigated whether melatonin also has a suppressive effect on stress-induced catecholamine and cortisol release in humans. As stress hormones affect memory processing, we further examined a possible accompanying modulation of memory function. MATERIALS AND METHODS: Fifty healthy young men received a single oral dose of either 3...

  13. Decapeptides as effective agonists from L-amino acids biologically equivalent to the luteinizing hormone-releasing hormone

    International Nuclear Information System (INIS)

    Folkers, K.; Bowers, C.Y.; Tang, P.L.; Kubota, M.

    1986-01-01

    Apparently, no agonist has been found that is comparable in potency to the luteinizing hormone-releasing hormone (LHRH) for release of LH and follicle-stimulating hormone (FSH) without substitutions with unnatural or D forms of natural amino acids. Of 139 known agonist analogs of LHRH, two were active in the range of 65%. The four LHRHs known to occur in nature involve a total of six amino acids (Tyr, His, Leu, Trp, Arg, Gln) in positions 5, 7, and 8. There are 16 possible peptides with these six amino acids in positions 5, 7, and 8, of which 4 are the known LHRHs, and 2 more were synthesized. The authors have synthesized the 10 new peptides and assayed 11 in vivo and in vitro, and they found not only 1 but a total of 5 that have activity equivalent to or greater than that of LHRH for the release of LH and/or FSH under at least one assay condition. These five are as follows: [His 5 ,Trp 7 ,Gln 8 ]LHRH; [His 5 ,Trp 7 ,Leu 8 ]LHRH; [His 5 ,Trp 7 ]LHRH; [Trp 7 ]LHRH; [His 5 ]LHRH. These structures are a basis for the design of antagonists without Arg 8 toward avoiding histamine release. Complete inhibition of LH and FSH release in vivo may be induced by joint use of Arg 8 and Gln 8 or Leu 8 antagonists. These potent agonists, related to LHRH, may be therapeutically useful in disorders of reproduction, the central nervous system, and for the control of hormone-dependent carcinomas. Radioreceptor assays and radioimmunoassays were utilized

  14. Growth hormone-releasing factor stimulates proliferation of somatotrophs in vitro

    DEFF Research Database (Denmark)

    Billestrup, Nils; Swanson, L W; Vale, W

    1986-01-01

    The mitogenic effect of the hypothalamic peptides growth hormone-releasing factor (GRF) and somatostatin on cultured growth hormone (GH)-producing cells (somatotrophs) was studied. Using autoradiographic detection of [3H]thymidine uptake and immunocytochemical identification of GH-producing cells...

  15. In vitro effect of. Delta. sup 9 -tetrahydrocannabinol to stimulate somatostatin release and block that of luteinizing hormone-releasing hormone by suppression of the release of prostaglandin E sub 2

    Energy Technology Data Exchange (ETDEWEB)

    Rettori, V.; Aguila, M.C.; McCann, S.M. (Univ. of Texas Southwestern Medical Center at Dallas (United States)); Gimeno, M.F.; Franchi, A.M. (Centro de Estudios Farmacologicos y de Principios Naturales, Buenos Aires (Argentina))

    1990-12-01

    Previous in vivo studies have shown that {Delta}{sup 9}-tetrahydrocannabinol (THC), the principal active ingredient in marijuana, can suppress both luteinizing hormone (LH) and growth hormone (GH) secretion after its injection into the third ventricle of conscious male rats. The present studies were deigned to determine the mechanism of these effects. Various doses of THC were incubated with either stalk median eminence fragments (MEs) or mediobasal hypothalamic (MBH) fragments in vitro. Although THC (10 nM) did not alter basal release of LH-releasing hormone (LHRH) from MEs in vitro, it completely blocked the stimulatory action of dopamine or nonrepinephrine on LHRH release. The effective doses to block LHRH release were associated with a blockade of synthesis and release of prostaglandin E{sub 2} (PGE{sub 2}) from MBH in vitro. In contrast to the suppressive effect of THC on LHRH release, somatostatin release from MEs was enhanced in a dose-related manner with a minimal effective dose of 1 nM. Since PGE{sub 2} suppresses somatostatin release, this enhancement may also be related to the suppressive effect of THC on PGE{sub 2} synthesis and release. The authors speculate that these actions are mediated by the recently discovered THC receptors in the tissue. The results indicate that the suppressive effect of THC on LH release is mediated by a blockade of LHRH release, whereas the suppressive effect of the compound on growth hormone release is mediated, at least in part, by a stimulation of somatostatin release.

  16. alpha-difluoromethylornithine modifies gonadotropin-releasing hormone release and follicle-stimulating hormone secretion in the immature female rat.

    Science.gov (United States)

    Thyssen, S M; Becú-Villalobos, D; Lacau-Mengido, I M; Libertun, C

    1997-06-01

    Polyamines play an essential role in tissue growth and differentiation, in body weight increment, in brain organization, and in the molecular mechanisms of hormonal action, intracellular signaling, and cell-to-cell communication. In a previous study, inhibition of their synthesis by alpha-difluoromethylornithine (DFMO), a specific and irreversible inhibitor of ornithine decarboxylase, during development in female rats, was followed by prolonged high follicle-stimulating hormone (FSH) serum level and a delayed puberty onset. Those changes were relatively independent of body mass and did not impair posterior fertility. The present work studies the mechanisms and site of action of polyamine participation in FSH secretion during development. DFMO was injected in female rats between Days 1 and 9 on alternate days. At 10 days of age, hypothalami from control and DFMO rats were perifused in vitro, and basal and potassium-induced gonadotropin-releasing hormone (GnRH) release were measured. The response to membrane depolarization was altered in DFMO hypothalami. Increased GnRH release in response to a low K+ concentration was evidenced. Adenohypophyses of the same treated prepubertal rats were perifused in vitro and the response to GnRH pulses was checked. In DFMO-treated rats, higher FSH release was observed, with no changes in LH or PRL secretion. Finally, pituitary GnRH receptor number in adenohypophyseal membranes from treated and control groups was quantified. A significant reduction in specific binding was evident in hypophyses from DFMO-treated rats when compared with binding in the control group. In summary, DFMO treatment in a critical developmental period in the female rat impacts the immature GnRH neuronal network and immature gonadotropes. A delay in maturation is evidenced by a higher sensitivity to secretagogs in both pituitary glands and hypothalamic explants. These events could explain the prolonged high FSH serum levels and delayed puberty onset seen in

  17. Action of luteinizing hormone-releasing hormone in rat ovarian cells: Hormone production and signal transduction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian.

    1989-01-01

    The present study was conducted to investigate the hypothesis that the breakdown of membrane phosphoinositides may participate in the actions of luteinizing hormone-releasing hormone (LHRH) on hormone production in rat granulosa cells. In cells prelabeled with ({sup 3}H)inositol or ({sup 3}H)arachidonic acid (AA), treatment with LHRH increased the formation of radiolabeled inositol 1,4,5-trisphosphate (IP{sub 3}) and diacylglycerol (DG), and the release of radiolabeled AA. Since IP{sub 3} induces intracellular Ca{sup 2+} mobilization, changes in the cytosolic free calcium ion concentrations ((Ca{sup 2+})i) induced by LHRH were studied in individual cells using fura-2 microspectrofluorimetry. Alterations in (Ca{sup 2+})i induced by LHRH were rapid and transient, and could be completely blocked by a LHRH antagonist. Sustained perifusion of LHRH resulted in a desensitization of the (Ca{sup 2+})i response to LHRH. LHRH treatment accelerated (Ca{sup 2+})i depletion in the cells perifused with Ca{sup 2+} free medium, indicating the involvement of intracellular Ca{sup 2+} pool(s) in (Ca{sup 2+})i changes. The actions of LHRH on the regulation of progesterone (P{sub 4}) and prostaglandin E{sub 2} (PGE{sub 2}) production were also examined. LHRH increased basal P{sub 4} production and attenuated FSH induced P{sub 4} production. Both basal and FSH stimulated PGE{sub 2} formation were increased by LHRH. Since LHRH also increased the formation of DG that stimulates the activity of protein kinase C, an activator of protein kinase C (12-0-tetradecanolyphorbol-13-acetate: TPA) was used with the Ca{sup 2+} ionophore A23187 and melittin (an activator of phospholipase A{sub 2}) to examine the roles of protein kinase C, Ca{sup 2+} and free AA, respectively, in LHRH action.

  18. Lower testosterone levels with luteinizing hormone-releasing hormone agonist therapy than with surgical castration: new insights attained by mass spectrometry

    NARCIS (Netherlands)

    van der Sluis, Tim M.; Bui, Hong N.; Meuleman, Eric J. H.; Heijboer, Annemieke C.; Hartman, Jeroen F.; van Adrichem, Nick; Boevé, Egbert; de Ronde, Willem; van Moorselaar, R. Jeroen A.; Vis, André N.

    2012-01-01

    Androgen deprivation therapy by bilateral orchiectomy (surgical castration) or luteinizing hormone-releasing hormone agonist therapy (medical castration) is recommended for advanced or metastatic prostate cancer. Both methods aim at reducing serum testosterone concentrations to a castrate level

  19. Effect of growth hormone-releasing factor on growth hormone release in children with radiation-induced growth hormone deficiency

    International Nuclear Information System (INIS)

    Lustig, R.H.; Schriock, E.A.; Kaplan, S.L.; Grumbach, M.M.

    1985-01-01

    Five male children who received cranial irradiation for extrahypothalamic intracranial neoplasms or leukemia and subsequently developed severe growth hormone (GH) deficiency were challenged with synthetic growth hormone-releasing factor (GRF-44), in an attempt to distinguish hypothalamic from pituitary dysfunction as a cause of their GH deficiency, and to assess the readily releasable GH reserve in the pituitary. In response to a pulse of GRF-44 (5 micrograms/kg intravenously), mean peak GH levels rose to values higher than those evoked by the pharmacologic agents L-dopa or arginine (6.4 +/- 1.3 ng/mL v 1.5 +/- 0.4 ng/mL, P less than .05). The peak GH value occurred at a mean of 26.0 minutes after administration of GRF-44. These responses were similar to those obtained in children with severe GH deficiency due to other etiologies (peak GH 6.3 +/- 1.7 ng/mL, mean 28.0 minutes). In addition, there was a trend toward an inverse relationship between peak GH response to GRF-44 and the postirradiation interval. Prolactin and somatomedin-C levels did not change significantly after the administration of a single dose of GRF-44. The results of this study support the hypothesis that cranial irradiation in children can lead to hypothalamic GRF deficiency secondary to radiation injury of hypothalamic GRF-secreting neurons. This study also lends support to the potential therapeutic usefulness of GRF-44 or an analog for GH deficiency secondary to cranial irradiation

  20. Active immunization against gonadotropin-releasing hormone : an effective tool to block the fertility axis in mammals

    NARCIS (Netherlands)

    Turkstra, Jouwert Anne

    2005-01-01

    Gonadotropin releasing hormone (GnRH) plays a pivotal role in fertility and reproduction in mammals. It induces the release of luteinising hormone (LH) en follicle stimulating hormone (FSH) from the pituitary. These hormones are responsible for gonadal steroid production and indirectly for

  1. Hormone assay

    International Nuclear Information System (INIS)

    Eisentraut, A.M.

    1977-01-01

    An improved radioimmunoassay is described for measuring total triiodothyronine or total thyroxine levels in a sample of serum containing free endogenous thyroid hormone and endogenous thyroid hormone bound to thyroid hormone binding protein. The thyroid hormone is released from the protein by adding hydrochloric acid to the serum. The pH of the separated thyroid hormone and thyroid hormone binding protein is raised in the absence of a blocking agent without interference from the endogenous protein. 125 I-labelled thyroid hormone and thyroid hormone antibodies are added to the mixture, allowing the labelled and unlabelled thyroid hormone and the thyroid hormone antibody to bind competitively. This results in free thyroid hormone being separated from antibody bound thyroid hormone and thus the unknown quantity of thyroid hormone may be determined. A thyroid hormone test assay kit is described for this radioimmunoassay. It provides a 'single tube' assay which does not require blocking agents for endogenous protein interference nor an external solid phase sorption step for the separation of bound and free hormone after the competitive binding step; it also requires a minimum number of manipulative steps. Examples of the assay are given to illustrate the reproducibility, linearity and specificity of the assay. (UK)

  2. Prolactin, thyrotropin, and growth hormone release during stress associated with parachute jumping.

    Science.gov (United States)

    Noel, G L; Dimond, R C; Earll, J M; Frantz, A G

    1976-05-01

    Prolactin, growth hormone, and thyrotropin (TSH) release during the stress of parachute jumping has been evaluated in 14 male subjects. Subjects were studied at several times before and immediately after their first military parachute jump. All three hormones had risen significantly 1 to 14 min after the jump, compared to mean levels measured immediately beforehand. Earlier studies of physical exercise by ourselves and others would suggest that emotional stress played a role in producing changes of this magnitude. We conclude that prolactin, TSH, and growth hormone are released in physiologically significant amounts in association with the stress of parachute jumping.

  3. Bone Mass in Young Adulthood Following Gonadotropin-Releasing Hormone Analog Treatment and Cross-Sex Hormone Treatment in Adolescents With Gender Dysphoria

    NARCIS (Netherlands)

    Klink, D.T.; Caris, M.G.; Heijboer, A.C.; van Trotsenburg, M.; Rotteveel, J.

    2015-01-01

    Context: Sex steroids are important for bone mass accrual. Adolescents with gender dysphoria (GD) treated with gonadotropin-releasing hormone analog (GnRHa) therapy are temporarily sex-steroid deprived until the addition of cross-sex hormones (CSH). The effect of this treatment on bone mineral

  4. Pituitary adenomas in mice transgenic for growth hormone-releasing hormone

    DEFF Research Database (Denmark)

    Asa, S L; Kovacs, K; Stefaneanu, L

    1992-01-01

    It has been shown that mice transgenic for human GH-releasing hormone (GRH) develop hyperplasia of pituitary somatotrophs, lactotrophs, and mammosomatotrophs, cells capable of producing both GH and PRL, by 8 months of age. We now report that GRH transgenic mice 10-24 months of age develop pituitary...... adenomas, which we characterized by histology, immunohistochemistry, in situ hybridization, and electron microscopy. Of 13 animals examined, all developed GH-immunoreactive neoplasms that had diffuse positivity for GH mRNA by in situ hybridization. Eleven also contained PRL immunoreactivity; in situ...

  5. Development of New Gonadotropin-Releasing Hormone-Modified Dendrimer Platforms with Direct Antiproliferative and Gonadotropin Releasing Activity.

    Science.gov (United States)

    Varamini, Pegah; Rafiee, Amirreza; Giddam, Ashwini Kumar; Mansfeld, Friederike M; Steyn, Frederik; Toth, Istvan

    2017-10-26

    Gonadotropin-releasing hormone (GnRH) agonists (e.g., triptorelin) are used for androgen suppression therapy. They possess improved stability as compared to the natural GnRH, yet they suffer from a poor pharmacokinetic profile. To address this, we used a GnRH peptide-modified dendrimer platform with and without lipidation strategy. Dendrimers were synthesized on a polylysine core and bore either native GnRH (1, 2, and 5) or lipid-modified GnRH (3 and 4). Compound 3, which bore a lipidic moiety in a branched tetramer structure, showed approximately 10-fold higher permeability and metabolic stability and 39 times higher antitumor activity against hormone-resistant prostate cancer cells (DU145) relative to triptorelin. In gonadotropin-release experiments, dendrimer 3 was shown to be the most potent construct. Dendrimer 3 showed similar luteinizing hormone (LH)-release activity to triptorelin in mice. Our findings indicate that dendrimer 3 is a promising analog with higher potency for the treatment of hormone-resistant prostate cancer than the currently available GnRH agonists.

  6. Omnigen-AF reduces basal plasma cortisol, AWA cortisol release to adrencocorticotropic hormone or corticotrophin releasing hormone & vasopressin in lactating dairy cows under thermoneutral or acute heat stress conditions.

    Science.gov (United States)

    Differences in the adrenal cortisol response of OmniGen-AF (OG) supplemented dairy cows to a corticotrophin releasing hormone (CRH) and vasopressin (VP) or an adrenocorticotropic hormone (ACTH) challenge when housed at different temperature-humidity indices (THI) were studied. Holstein cows (n=12; 1...

  7. Pulsatile luteinising hormone releasing hormone for ovulation induction in subfertility associated with polycystic ovary syndrome

    NARCIS (Netherlands)

    Bayram, N.; van Wely, M.; Vandekerckhove, P.; Lilford, R.; van der Veen, F.

    2000-01-01

    BACKGROUND: In normal menstrual cycles, gonadotrophin releasing hormone (GnRH) secretion is pulsatile, with intervals of 60-120 minutes in the follicular phase. Treatment with pulsatile GnRH infusion by the intra-venous or subcutaneous route using a portable pump has been used successfully in

  8. The Dwarfs of Sindh: severe growth hormone (GH) deficiency caused by a mutation in the GH-releasing hormone receptor gene.

    Science.gov (United States)

    Baumann, G; Maheshwari, H

    1997-11-01

    We report the discovery of a cluster of severe familial dwarfism in two villages in the Province of Sindh in Pakistan. Dwarfism is proportionate and occurs in members of a kindred with a high degree of consanguinity. Only the last generation is affected, with the oldest dwarf being 28 years old. The mode of inheritance is autosomal recessive. Phenotype analysis and endocrine testing revealed isolated growth hormone deficiency (GHD) as the reason for growth failure. Linkage analysis for the loci of several candidate genes yielded a high lod score for the growth hormone-releasing hormone receptor (GHRH-R) locus on chromosome 7. Amplification and sequencing of the GHRH-R gene in affected subjects demonstrated an amber nonsense mutation (GAG-->TAG; Glu50-->Stop) in exon 3. The mutation, in its homozygous form, segregated 100% with the dwarf phenotype. It predicts a truncation of the GHRH-R in its extracellular domain, which is likely to result in a severely disabled or non-existent receptor protein. Subjects who are heterozygous for the mutation show mild biochemical abnormalities in the growth hormone-releasing hormone (GHRH)--growth hormone--insulin-like growth factor axis, but have only minimal or no growth retardation. The occurrence of an offspring of two dwarfed parents indicates that the GHRH-R is not necessary for fertility in either sex. We conclude that Sindh dwarfism is caused by an inactivating mutation in the GHRH-R gene, resulting in the inability to transmit a GHRH signal and consequent severe isolated GHD.

  9. The effect of short-term cortisol changes on growth hormone responses to the pyridostigmine-growth-hormone-releasing-hormone test in healthy adults and patients with suspected growth hormone deficiency

    DEFF Research Database (Denmark)

    Andersen, M; Støving, R K; Hangaard, J

    1998-01-01

    BACKGROUND AND AIMS: The interaction between cortisol and growth hormone (GH)-levels may significantly influence GH-responses to a stimulation test. In order to systematically analyse the interaction in a paired design, it is necessary to use a test, which has been proven safe and reliable...... such as the pyridostigmine-growth-hormone-releasing-hormone (PD-GHRH) test. Three groups of subjects with a different GH-secretory capacity were included. STUDY A: Eight healthy adults were tested seven times, once with placebo throughout the examination and six times with the PD-GHRH test following no glucocorticoid......-responses to a PD-GHRH test were reduced in all individuals during acute stress-appropriate cortisol levels and the percentage reduction in GH-levels was independent of the GH-secretory capacity. Clinically, we found that peak GH-responses were not significantly affected by a short break in conventional HC therapy...

  10. Potent agonists of growth hormone-releasing hormone. Part I.

    Science.gov (United States)

    Zarandi, M; Serfozo, P; Zsigo, J; Bokser, L; Janaky, T; Olsen, D B; Bajusz, S; Schally, A V

    1992-03-01

    Analogs of the 29 amino acid sequence of growth hormone-releasing hormone (GH-RH) with agmatine (Agm) in position 29 have been synthesized by the solid phase method, purified, and tested in vitro and in vivo. The majority of the analogs contained desaminotyrosine (Dat) in position 1, but a few of them had Tyr1, or N-MeTyr1. Some peptides contained one or more additional L- or D-amino acid substitutions in positions 2, 12, 15, 21, 27, and/or 28. Compared to the natural sequence of GH-RH(1-29)NH2, [Dat1,Ala15]GH-RH(1-28)Agm (MZ-3-191) and [D-Ala2,Ala15]GH-RH(1-28)Agm (MZ-3-201) were 8.2 and 7.1 times more potent in vitro, respectively. These two peptides contained Met27. Their Nle27 analogs, [Dat1,Ala15,Nle27]GH-RH(1-28)Agm(MZ-2-51), prepared previously (9), and [D-Ala2,Ala15,Nle28]GH-RH(1-28)Agm(MZ-3-195) showed relative in vitro potencies of 10.5 and 2.4, respectively. These data indicate that replacement of Met27 by Nle27 enhanced the GH-releasing activity of the analog when the molecule contained Dat1-Ala2 residues at the N-terminus, but peptides containing Tyr1-D-Ala2 in addition to Nle27 showed decreased potencies. Replacement of Ser28 with Asp in multi-substituted analogs of GH-RH(1-28)Agm resulted in a decrease in in vitro potencies compared to the parent compound. Thus, the Ser28-containing MZ-2-51, and [Dat1,Ala15,D-Lys21,Nle27]GH-RH(1-28)Agm, its Asp28 homolog (MZ-3-149), possessed relative activities of 10.5 and 5.6, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Radioimmunoassay of thyrotropin releasing hormone in plasma and urine

    International Nuclear Information System (INIS)

    Saito, Shiro; Musa, Kimitaka; Yamamoto, Suzuyo; Oshima, Ichiyo; Funato, Toyohiko

    1975-01-01

    A sensitive and specific radioimmunoassay has been developed capable of measuring thyrotropin releasing hormone (TRH) in extracted human plasma and urine. All of three TRH analogues tested had little cross-reactivity to antibody. Luteinizing hormone releasing hormone, lysine vasopressin, rat growth hormone and bovine albumin were without effect, but rat hypothalamic extract produced a displacement curve which was parallel to that obtained with the synthetic TRH. Sensitivity of the radioimmunoassay was 4 pg per tube with intraassay coefficient of variation of 6.2-9.7%. Synthetic TRH could be quantitatively extracted by methanol when added to human plasma in concentration of 25, 50 and 100 pg/ml. TRH immunoreactivity was rapidly reduced in plasma at 20 0 C than at 0 0 C, but addition of peptidase inhibitors, FOY-007 and BAL, prevented the inactivation of TRH for 3 hr at 0 0 C. The TRH in urine was more stable at 0 0 C than 20 0 C, and recovered 75+-4.6% at 24 hr after being added. The plasma levels of TRH were 19 pg/ml or less in normal adults and no sex difference was observed. The rate of disappearance of TRH administered i.v. from the blood could be represented as half-times of 4-12 min. Between 5.3-12.3% of the injected dose was excreted into urine within 1 hr as an immunoreactive TRH. These results indicate the usefulness of TRH radioimmunoassay for clinical investigation. (auth.)

  12. The effect of ovarian steroid feedback upon radioimmunoreactive luteinizing hormone releasing hormone in the hypothalamus

    International Nuclear Information System (INIS)

    Yanaihara, Takumi; Arai, Kiyoshi; Kanazawa, Motomi; Okinaga, Shoichi; Yanaihara, Noboru

    1975-01-01

    A radioimmunoassay (RIA) method for luteinizing hormone (LH) releasing hormone (RH) utilizing rabbit antiserum against synthetic (Glu 1 )-LH-RH coupled with human serum albumin at the N-terminus, is described. This assay system for LH-RH also cross-reacted with several LH-RH analogues or fragments, but not with pituitary trophic hormones. The assay was performed on the hypothalamic extracts of adult ovariectomized rats and female immature rats which had been treated with estradiol. The FSH and LH levels in the pituitary gland and serum of the same animals were determined by RIA. The radioimmunoreactive LH-RH content of the stalk median eminence markedly increased seven days after ovariectomy. The serum levels and the pituitary contents of FSH and LH of the same rats were also significantly augmented. In immature rats, the hypothalamic content of LH-RH, as measured by RIA, was significantly increased one hour after the injection of estradiol. The FSH and LH levels in the pituitary showed a significant rise after 7 hours. (auth.)

  13. Up-regulation of corticotropin releasing hormone is associated with ...

    African Journals Online (AJOL)

    Purpose: To determine the expression of corticotropin-releasing hormone (CRH) in psoriasis and ... Methods: Psoriasis and normal skin biopsy samples were obtained from three psoriatic and ... established in literature that stress signals such.

  14. contribution of growth hormone-releasing hormone and

    African Journals Online (AJOL)

    The strategy used was to stimulate GH secretion in 8 young ... treatment with two oral doses of 50 mg atenolol (to inhibit .... had normal baseline thyroid-stimulating hormone (TSH) ..... production rate of 14% per decade has been documented.'".

  15. Gastrointestinal hormones and their targets

    DEFF Research Database (Denmark)

    Rehfeld, Jens F.

    2014-01-01

    Gastrointestinal hormones are peptides released from endocrine cells and neurons in the digestive tract. More than 30 hormone genes are currently known to be expressed in the gastrointestinal tract, which makes the gut the largest hormone producing organ in the body. Modern biology makes...... it feasible to conceive the hormones under five headings: The structural homology groups a majority of the hormones into nine families, each of which is assumed to originate from one ancestral gene. The individual hormone gene often has multiple phenotypes due to alternative splicing, tandem organization......, or differentiated maturation of the prohormone. By a combination of these mechanisms, more than 100 different hormonally active peptides are released from the gut. Gut hormone genes are also widely expressed in cells outside the gut, some only in extraintestinal endocrine cells and neurons but others also in other...

  16. The growth hormone (GH) response to GH-releasing peptide (His-DTrp-Ala-Trp-DPhe-Lys-NH2), GH-releasing hormone, and thyrotropin-releasing hormone in acromegaly.

    Science.gov (United States)

    Alster, D K; Bowers, C Y; Jaffe, C A; Ho, P J; Barkan, A L

    1993-09-01

    In patients with acromegaly, GH-producing pituitary tumors release GH in response to specific stimuli such as GH-releasing hormone (GHRH) and are also responsive to a variety of nonspecific stimuli, such as TRH or GnRH, and may exhibit paradoxical responses to glucose and dopamine. In healthy humans, the synthetic peptide GH-releasing peptide (GHRP) (His-D-Trp-Ala-Trp-D-Phe-Lys-NH2) releases GH by a putative mechanism of action that is independent of GHRH. How these tumors respond to GHRP is not well characterized. We studied the GH responses to GHRH, GHRP, and TRH stimulation in 11 patients with active acromegaly. The peak GH responses to GHRP and GHRH were not correlated (r = 0.57; P = 0.066). In contrast, the peak GH responses to GHRP and TRH were highly correlated (r = 0.95; P < 0.001). In conclusion, in patients with acromegaly, the GH response to GHRP is qualitatively normal and does not appear to depend on GHRH.

  17. A nonpeptidyl growth hormone secretagogue.

    Science.gov (United States)

    Smith, R G; Cheng, K; Schoen, W R; Pong, S S; Hickey, G; Jacks, T; Butler, B; Chan, W W; Chaung, L Y; Judith, F

    1993-06-11

    A nonpeptidyl secretagogue for growth hormone of the structure 3-amino-3-methyl-N-(2,3,4,5-tetrahydro-2-oxo-1-([2'-(1H-tetrazol-5 -yl) (1,1'-biphenyl)-4-yl]methyl)-1H-1-benzazepin-3(R)-yl)-butanamid e (L-692,429) has been identified. L-692,429 synergizes with the natural growth hormone secretagogue growth hormone-releasing hormone and acts through an alternative signal transduction pathway. The mechanism of action of L-692,429 and studies with peptidyl and nonpeptidyl antagonists suggest that this molecule is a mimic of the growth hormone-releasing hexapeptide His-D-Trp-Ala-Trp-D-Phe-Lys-NH2 (GHRP-6). L-692,429 is an example of a nonpeptidyl specific secretagogue for growth hormone.

  18. Short-chain analogs of luteinizing hormone-releasing hormone containing cytotoxic moieties.

    Science.gov (United States)

    Janáky, T; Juhász, A; Rékási, Z; Serfözö, P; Pinski, J; Bokser, L; Srkalovic, G; Milovanovic, S; Redding, T W; Halmos, G

    1992-11-01

    Five hexapeptide and heptapeptide analogs of luteinizing hormone-releasing hormone (LH-RH) were synthesized for use as carriers for cytotoxic compounds. These short analogs were expected to enhance target selectivity of the antineoplastic agents linked to them. Native LH-RH-(3-9) and LH-RH-(4-9) containing D-lysine and D-ornithine at position 6 were amidated with ethylamine and acylated on the N terminus. The receptor-binding affinity of one hexapeptide carrier AJ-41 (Ac-Ser-Tyr-D-Lys-Leu-Arg-Pro-NH-Et) to human breast cancer cell membranes was similar to that of [D-Trp6]LH-RH. Alkylating nitrogen mustards (melphalan, Ac-melphalan), anthraquinone derivatives including anticancer antibiotic doxorubicin, antimetabolite (methotrexate), and cisplatin-like platinum complex were linked to these peptides through their omega-amino group at position 6. The hybrid molecules showed no LH-RH agonistic activity in vitro and in vivo but had nontypical antagonistic effects on pituitary cells in vitro at the doses tested. These analogs showed a wide range of receptor-binding affinities to rat pituitaries and cell membranes of human breast cancer and rat Dunning prostate cancer. Several of these conjugates exerted some cytotoxic effects on MCF-7 breast cancer cell line.

  19. Luteinizing hormone-releasing hormone analogue (Buserelin) treatment for central precocious puberty: a multi-centre trial.

    Science.gov (United States)

    Werther, G A; Warne, G L; Ennis, G; Gold, H; Silink, M; Cowell, C T; Quigley, C; Howard, N; Antony, G; Byrne, G C

    1990-02-01

    A multi-centre open trial of Buserelin, a luteinizing hormone-releasing hormone (LHRH) analogue, was conducted in 13 children with central precocious puberty. Eleven children (eight girls and three boys), aged 3.4-10.2 years at commencement, completed the required 12 month period of treatment. Initially all patients received the drug by intranasal spray in a dose of 1200 micrograms/day, but by the end of the 12 month period two were having daily subcutaneous injections and three were receiving an increased dose intranasally. The first month of treatment was associated in one boy with increased aggression and masturbation, and in the girls with an increase in the prevalence of vaginal bleeding. Thereafter, however, both behavioural abnormalities and menstruation were suppressed. Median bone age increased significantly during the study, but without any significant change in the ratio of height age to bone age. The median predicted adult height for the group therefore did not alter significantly over the twelve months of the study. Buserelin treatment caused a reduction in the peak luteinizing hormone and follicle-stimulating hormone (FSH) responses to LHRH, mostly to prepubertal levels, and also suppressed basal FSH. In the first weeks of treatment, the girls' serum oestradiol levels rose significantly and then fell to prepubertal or early pubertal levels. A similar pattern was seen for serum testosterone levels. Serum somatomedin-C levels, however, showed little fluctuation over the course of the study. Buserelin treatment was safe and well accepted, and offers the promise of improved linear growth potential in precocious puberty.

  20. Highly potent analogues of luteinizing hormone-releasing hormone containing D-phenylalanine nitrogen mustard in position 6.

    Science.gov (United States)

    Bajusz, S; Janaky, T; Csernus, V J; Bokser, L; Fekete, M; Srkalovic, G; Redding, T W; Schally, A V

    1989-08-01

    The nitrogen mustard derivatives of 4-phenylbutyric acid and L-phenylalanine, called chlorambucil (Chl) and melphalan (Mel), respectively, have been incorporated into several peptide hormones, including luteinizing hormone-releasing hormone (LH-RH). The alkylating analogues of LH-RH were prepared by linking Chl, as an N-acyl moiety, to the complete amino acid sequence of agonistic and antagonistic analogues. These compounds, in particular the antagonistic analogues, showed much lower potency than their congeners carrying other acyl groups. To obtain highly potent alkylating analogues of LH-RH, the D enantiomer of Mel was incorporated into position 6 of the native hormone and some of its antagonistic analogues. Of the peptides prepared, [D-Mel6]LH-RH (SB-05) and [Ac-D-Nal(2)1,D-Phe(pCl)2,D-Pal(3)3,Arg5,D-Mel6,D-Ala10++ +]LH-RH [SB-86, where Nal(2) is 3-(2-naphthyl)alanine and Pal(3) is 3-(3-pyridyl)alanine] possessed the expected high agonistic and antagonistic activities, respectively, and also showed high affinities for the membrane receptors of rat pituitary cells, human breast cancer cells, human prostate cancer cells, and rat Dunning R-3327 prostate tumor cells. These two analogues exerted cytotoxic effects on human and rat mammary cancer cells in vitro. Thus these two D-Mel6 analogues seem to be particularly suitable for the study of how alkylating analogues of LH-RH could interfere with intracellular events in certain cancer cells.

  1. Highly potent analogues of luteinizing hormone-releasing hormone containing D-phenylalanine nitrogen mustard in position 6

    International Nuclear Information System (INIS)

    Bajusz, S.; Janaky, T.; Csernus, V.J.; Bokser, L.; Fekete, M.; Srkalovic, G.; Redding, T.W.; Schally, A.V.

    1989-01-01

    The nitrogen mustard derivatives of 4-phenylbutyric acid and L-phenylalanine, called chlorambucil (Chl) and melphalan (Mel), respectively, have been incorporated into several peptide hormones, including luteinizing hormone-releasing hormone (LH-RH). The alkylating analogues of LH-RH were prepared by linking Chl, as an N-acyl moiety, to the complete amino acid sequence of agonistic and antagonistic analogues. These compounds, in particular the antagonistic analogues, showed much lower potency than their congeners carrying other acyl groups. To obtain highly potent alkylating analogues of LH-RH, the D enantiomer of Mel was incorporated into position 6 of the native hormone and some of its antagonistic analogues. Of the peptides prepared, [D-Mel 6 ]LH-RH (SB-05) and [Ac-D-Nal(2) 1 ,D-Phe(pCl) 2 ,D-Pal(3) 3 ,Arg 5 ,D-Mel 6 ,D-Ala 10 ]LH-RH [SB-86, where Nal(2) is 3-(2-naphthyl)alanine and Pal(3) is 3-(3-pyridyl)alanine] possessed the expected high agonistic and antagonistic activities, respectively, and also showed high affinities for the membrane receptors of rat pituitary cells, human breast cancer cells, human prostate cancer cells, and rat Dunning R-3327 prostate tumor cells. These two analogues exerted cytotoxic effects on human and rat mammary cancer cells in vitro. Thus these two D-Mel 6 analogues seem to be particularly suitable for the study of how alkylating analogues of LH-RH could interfere with intracellular events in certain cancer cells

  2. Nervus terminalis, olfactory nerve, and optic nerve representation of luteinizing hormone-releasing hormone in primates.

    Science.gov (United States)

    Witkin, J W

    1987-01-01

    The luteinizing hormone-releasing hormone (LHRH) system was examined immunocytochemically in olfactory bulbs of adult monkeys, including two New World species (squirrel monkey, Saimiri sciureus and owl monkey, Aotus trivirgatus) and one Old World species (cynomolgus macaque, Macaca fasciculata), and in the brain and nasal region of a fetal rhesus macaque Macaca mulatta. LHRH neurons and fibers were found sparsely distributed in the olfactory bulbs in all adult monkeys. There was more LHRH in the accessory olfactory bulb (which is absent in Old World monkeys). In the fetal macaque there was a rich distribution of LHRH neurons and fibers along the pathway of the nervus terminalis, anterior and ventral to the olfactory bulb, and in the nasal septum, with fibers branching into the olfactory epithelium. In addition, there were LHRH neurons and fibers in the optic nerve.

  3. Corticotropin-releasing hormone induces depression-like changes of sleep electroencephalogram in healthy women.

    Science.gov (United States)

    Schüssler, P; Kluge, M; Gamringer, W; Wetter, T C; Yassouridis, A; Uhr, M; Rupprecht, R; Steiger, A

    2016-12-01

    We reported previously that repetitive intravenous injections of corticotropin-releasing hormone (CRH) around sleep onset prompt depression-like changes in certain sleep and endocrine activity parameters (e.g. decrease of slow-wave sleep during the second half of the night, blunted growth hormone peak, elevated cortisol concentration during the first half of the night). Furthermore a sexual dimorphism of the sleep-endocrine effects of the hormones growth hormone-releasing hormone and ghrelin was observed. In the present placebo-controlled study we investigated the effect of pulsatile administration of 4×50μg CRH on sleep electroencephalogram (EEG) and nocturnal cortisol and GH concentration in young healthy women. After CRH compared to placebo, intermittent wakefulness increased during the total night and the sleep efficiency index decreased. During the first third of the night, REM sleep and stage 2 sleep increased and sleep stage 3 decreased. Cortisol concentration was elevated throughout the night and during the first and second third of the night. GH secretion remained unchanged. Our data suggest that after CRH some sleep and endocrine activity parameters show also depression-like changes in healthy women. These changes are more distinct in women than in men. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Up-regulation of corticotropin releasing hormone is associated with ...

    African Journals Online (AJOL)

    Purpose: To determine the expression of corticotropin-releasing hormone (CRH) in psoriasis and normal skin biopsy samples, and to correlate the expression of CRH with the expression of CRHBP and inflammatory cytokines IL-8 and IL-33. Methods: Psoriasis and normal skin biopsy samples were obtained from three ...

  5. Analogues of luteinizing hormone-releasing hormone containing cytotoxic groups.

    Science.gov (United States)

    Janáky, T; Juhász, A; Bajusz, S; Csernus, V; Srkalovic, G; Bokser, L; Milovanovic, S; Redding, T W; Rékási, Z; Nagy, A

    1992-02-01

    In an attempt to produce better cytotoxic analogues, chemotherapeutic antineoplastic radicals including an alkylating nitrogen mustard derivative of D-phenylalanine (D-melphalan), reactive cyclopropane, anthraquinone derivatives [2-(hydroxymethyl)anthraquinone and the anticancer antibiotic doxorubicin], and an antimetabolite (methotrexate) were coupled to suitably modified agonists and antagonists of luteinizing hormone-releasing hormone (LH-RH). Analogues with D-lysine6 and D-ornithine6 or N epsilon-(2,3-diaminopropionyl)-D-lysine and N delta-(2,3-diaminopropionyl)-D-ornithine were used as carriers for one or two cytotoxic moieties. The enhanced biological activities produced by the incorporation of D amino acids into position 6 of the agonistic analogues were further increased by the attachment of hydrophobic cytotoxic groups, resulting in compounds with 10-50 times higher activity than LH-RH. Most of the monosubstituted agonistic analogues showed high affinities for the membrane receptors of human breast cancer cells, while the receptor binding affinities of peptides containing two cytotoxic side chains were lower. Antagonistic carriers [Ac-D-Nal(2)1,D-Phe(4Cl)2,D-Trp3,Arg5,D-Lys6,D-Ala10] LH-RH [where Nal(2) is 3-(2-naphthyl)alanine], [Ac-D-Nal(2)1,D-Phe(4Cl)2,D-Trp3,Arg5,N epsilon-(2,3-diaminopropionyl)-D-Lys6,D-Ala10]LH-RH, and their D-Pal(3)3 homologs [Pal(3) is 3-(3-pyridyl)alanine] as well as [Ac-D-Nal(2)1,D-Phe(4Cl)2,D-Pal(3)3,Tyr5,N epsilon-(2,3-diamino-propionyl)-D-Lys6,D-Ala10]LH-RH were linked to cytotoxic compounds. The hybrid molecules inhibited ovulation in rats at doses of 10 micrograms and suppressed LH release in vitro. The receptor binding of cytotoxic analogues was decreased compared to the precursor peptides, although analogues with 2-(hydroxymethyl)anthraquinone hemiglutarate had high affinities. All of the cytotoxic analogues tested inhibited [3H]thymidine incorporation into DNA in cultures of human breast and prostate cancer cell lines

  6. Ontogenesis of neurons producing luteinizing hormone-releasing hormone (LHRH) in the nervus terminalis of the rat.

    Science.gov (United States)

    Schwanzel-Fukuda, M; Morrell, J I; Pfaff, D W

    1985-08-15

    Immunoreactive luteinizing hormone-releasing hormone (LHRH) was first detected at 15 days of gestation in ganglion cells associated with the peripheral, intracranial, and central parts of the nervus terminalis of the rat. LHRH was not detected in any other structure of the central nervous system at this age. In the 17-day-old fetal rat, 62% of the total LHRH-reactive neuronal population was found in ganglion cells of the nervus terminalis. At this same age, immunoreactive beta-luteinizing hormone (beta-LH) was first seen in gonadotropes of the anterior pituitary gland. At 19 days of gestation, 31% of the total number of LHRH-reactive neurons observed in the rat brain was found in the nervus terminalis, and immunoreactive processes were first seen in the organum vasculosum of the lamina terminalis and in the median eminence. Our data indicate that from 15 to 19 days of gestation the nervus terminalis is a principal source of LHRH in the fetal rat. Presence of the decapeptide in the nervus terminalis prior to appearance of beta-LH in the anterior pituitary suggests a possible role for LHRH in this system on maturation of the gonadotropes and differentiation of the brain-pituitary-gonadal axis.

  7. Acute effects of clonidine and growth-hormone-releasing hormone on growth hormone secretion in patients with hyperthyroidism.

    Science.gov (United States)

    Giustina, A; Buffoli, M G; Bussi, A R; Wehrenberg, W B

    1991-01-01

    Patients with hyperthyroidism have reduced growth hormone (GH) responses to pharmacological stimuli and reduced spontaneous nocturnal GH secretion. The stimulatory effect of clonidine on GH secretion has been suggested to depend on an enhancement of hypothalamic GH-releasing hormone (GHRH) release. The aim of our study was to evaluate the effects of clonidine and GHRH on GH secretion in patients with hyperthyroidism. Eight hyperthyroid females with recent diagnosis of Graves' disease (age range 20-55 years, body mass index range 19.2-26.2 kg/m2) and 6 healthy female volunteers (age range 22-35 years, body mass index range 19-25 kg/m2) underwent two experimental trials at no less than 7-day intervals: (a) an intravenous infusion of clonidine 150 micrograms in 10 ml of saline, or (b) a bolus intravenous injection of human GHRH (1-29)NH2, 100 micrograms in 1 ml of saline. Hyperthyroid patients showed blunted GH peaks after clonidine (7.1 +/- 1.7 micrograms/l) as compared to normal subjects receiving clonidine (28.5 +/- 4.9 micrograms/l, p less than 0.05). GH peaks after GHRH were also significantly lower in hyperthyroid subjects (8.0 +/- 1.7 micrograms/l) as compared to normal subjects receiving GHRH (27.5 +/- 4.4 micrograms/l, p less than 0.05). No significant differences in the GH values either after clonidine or GHRH were observed in the two groups of subjects examined. Our data demonstrate that the GH responses to clonidine as well as to GHRH in patients with hyperthyroidism are inhibited in a similar fashion with respect to normal subjects.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Endurance exercise modulates levodopa induced growth hormone release in patients with Parkinson's disease.

    Science.gov (United States)

    Müller, Thomas; Welnic, Jacub; Woitalla, Dirk; Muhlack, Siegfried

    2007-07-11

    Acute levodopa (LD) application and exercise release human growth hormone (GH). An earlier trial showed, that combined stimulus of exercise and LD administration is the best provocative test for GH response in healthy participants. Objective was to show this combined effect of LD application and exercise on GH response and to investigate the impact on LD metabolism in 20 previously treated patients with Parkinson's disease (PD). We measured GH- and LD plasma concentrations following soluble 200 mg LD/50 mg benserazide administration during endurance exercise and rest on two separate consecutive days. GH concentrations significantly increased on both days, but GH release was significantly delayed during rest. LD metabolism was not altered due to exercise in a clinical relevant manner. Exercise induced a significant faster LD stimulated GH release in comparison with the rest condition. We did not find the supposed increase of LD induced GH release by endurance exercise. We assume, that only a limited amount of GH is available for GH release in the anterior pituitary following an acute 200 mg LD administration. GH disposal also depends on growth hormone releasing hormone (GHRH), which is secreted into hypothalamic portal capillaries. During the exercise condition, the resulting higher blood pressure supports blood flow and thus GHRH transport towards the GH producing cells in the pituitary. This might additionally have caused the significant faster GH release during exercise.

  9. Kisspeptin stimulates growth hormone release by utilizing Neuropeptide Y pathways and is dependent on the presence of ghrelin

    Science.gov (United States)

    Although kisspeptin is the primary stimulator of gonadotropin releasing hormone secretion and therefore the hypothalamic-pituitary gonadal axis, new findings suggest kisspeptin can also regulate additional neuroendocrine processes including release of growth hormone (GH). Central delivery of kisspep...

  10. Salmonella Typhi sense host neuroendocrine stress hormones and release the toxin haemolysin E

    Science.gov (United States)

    Karavolos, Michail H; Bulmer, David M; Spencer, Hannah; Rampioni, Giordano; Schmalen, Ira; Baker, Stephen; Pickard, Derek; Gray, Joe; Fookes, Maria; Winzer, Klaus; Ivens, Alasdair; Dougan, Gordon; Williams, Paul; Khan, C M Anjam

    2011-01-01

    Salmonella enterica serovar Typhi (S. typhi) causes typhoid fever. We show that exposure of S. typhi to neuroendocrine stress hormones results in haemolysis, which is associated with the release of haemolysin E in membrane vesicles. This effect is attributed to increased expression of the small RNA micA and RNA chaperone Hfq, with concomitant downregulation of outer membrane protein A. Deletion of micA or the two-component signal-transduction system, CpxAR, abolishes the phenotype. The hormone response is inhibited by the β-blocker propranolol. We provide mechanistic insights into the basis of neuroendocrine hormone-mediated haemolysis by S. typhi, increasing our understanding of inter-kingdom signalling. PMID:21331094

  11. Hormone action. Part I. Peptide hormones

    International Nuclear Information System (INIS)

    Birnbaumer, L.; O'Malley, B.W.

    1985-01-01

    The major sections of this book on the hormonal action of peptide hormones cover receptor assays, identification of receptor proteins, methods for identification of internalized hormones and hormone receptors, preparation of hormonally responsive cells and cell hybrids, purification of membrane receptors and related techniques, assays of hormonal effects and related functions, and antibodies in hormone action

  12. Ghrelin: much more than a hunger hormone

    Science.gov (United States)

    Ghrelin is a multifaceted gut hormone that activates its receptor, growth hormone secretagogue receptor (GHS-R). Ghrelin's hallmark functions are its stimulatory effects on growth hormone release, food intake and fat deposition. Ghrelin is famously known as the 'hunger hormone'. However, ample recen...

  13. Effect of priming injections of luteinizing hormone-releasing hormone on spermiation and ovulation in Gϋnther's Toadlet, Pseudophryne guentheri

    Directory of Open Access Journals (Sweden)

    Silla Aimee J

    2011-05-01

    Full Text Available Abstract Background In the majority of vertebrates, gametogenesis and gamete-release depend on the pulsatile secretion of luteinizing hormone-releasing hormone (LHRH from the hypothalamus. Studies attempting to artificially stimulate ovulation and spermiation may benefit from mimicking the naturally episodic secretion of LHRH by administering priming injections of a synthetic analogue (LHRHa. This study investigated the impact of low-dose priming injections of LHRHa on gamete-release in the Australian toadlet Pseudophryne guentheri. Methods Toadlets were administered a single dose of two micrograms per. gram LHRHa without a priming injection (no priming, or preceded by one (one priming or two (two priming injections of 0.4 micrograms per. gram LHRHa. Spermiation responses were evaluated at 3, 7 and 12 hrs post hormone administration (PA, and sperm number and viability were quantified using fluorescent microscopy. Oocyte yields were evaluated by stripping females at 10-11 hrs PA. A sub-sample of twenty eggs per female was then fertilised (with sperm obtained from testis macerates and fertilisation success determined. Results No priming induced the release of the highest number of spermatozoa, with a step-wise decrease in the number of spermatozoa released in the one and two priming treatments respectively. Peak sperm-release occurred at 12 hrs PA for all priming treatments and there was no significant difference in sperm viability. Females in the control treatment failed to release oocytes, while those administered an ovulatory dose without priming exhibited a poor ovulatory response. The remaining two priming treatments (one and two priming successfully induced 100% of females to expel an entire clutch. Oocytes obtained from the no, or two priming treatments all failed to fertilise, however oocytes obtained from the one priming treatment displayed an average fertilisation success of 97%. Conclusion Spermiation was most effectively induced in

  14. Estradiol-Dependent Stimulation and Suppression of Gonadotropin-Releasing Hormone Neuron Firing Activity by Corticotropin-Releasing Hormone in Female Mice.

    Science.gov (United States)

    Phumsatitpong, Chayarndorn; Moenter, Suzanne M

    2018-01-01

    Gonadotropin-releasing hormone (GnRH) neurons are the final central regulators of reproduction, integrating various inputs that modulate fertility. Stress typically inhibits reproduction but can be stimulatory; stress effects can also be modulated by steroid milieu. Corticotropin-releasing hormone (CRH) released during the stress response may suppress reproduction independent of downstream glucocorticoids. We hypothesized CRH suppresses fertility by decreasing GnRH neuron firing activity. To test this, mice were ovariectomized (OVX) and either implanted with an estradiol capsule (OVX+E) or not treated further to examine the influence of estradiol on GnRH neuron response to CRH. Targeted extracellular recordings were used to record firing activity from green fluorescent protein-identified GnRH neurons in brain slices before and during CRH treatment; recordings were done in the afternoon when estradiol has a positive feedback effect to increase GnRH neuron firing. In OVX mice, CRH did not affect the firing rate of GnRH neurons. In contrast, CRH exhibited dose-dependent stimulatory (30 nM) or inhibitory (100 nM) effects on GnRH neuron firing activity in OVX+E mice; both effects were reversible. The dose-dependent effects of CRH appear to result from activation of different receptor populations; a CRH receptor type-1 agonist increased firing activity in GnRH neurons, whereas a CRH receptor type-2 agonist decreased firing activity. CRH and specific agonists also differentially regulated short-term burst frequency and burst properties, including burst duration, spikes/burst, and/or intraburst interval. These results indicate that CRH alters GnRH neuron activity and that estradiol is required for CRH to exert both stimulatory and inhibitory effects on GnRH neurons. Copyright © 2018 Endocrine Society.

  15. Childhood lead toxicity and impaired release of thyrotropin-stimulating hormone

    International Nuclear Information System (INIS)

    Huseman, C.A.; Moriarty, C.M.; Angle, C.R.

    1987-01-01

    Decreased stature of children is epidemiologically associated with increased blood lead independent of multiple socioeconomic and nutritional variables. Since endocrine dysfunction occurs in adult lead workers, they studied two girls, 2 years of age, before and after calcium disodium edetate chelation for blood leads (PbB) of 19-72 μg/dl. The height of both children had crossed from the 50th to below the 10th percentile during the course of chronic lead toxicity. Basal free T 4 , T 4 , T 3 , cortisol, somatomedin C, and sex steroids were normal. A decrease in the growth hormone response and elevation of basal prolcatin and gonadotropins were noted in one. Both children demonstrated blunted thyrotropin-stimulating hormone (TSH) responses to thyrotropin-releasing hormone (TRH) in six of seven challenges. This prompted in vitro studies of cultured cells from rat pituitarities. After incubation of pituitary cells with 0.1-10 μM Pb 2+ for 2 hr, followed by the addition of TRH, there was a dose-dependent inhibition of TSH release Lead did not interfere with the assay of TSH. To investigate the interaction of lead and calcium, 45 Ca 2+ kinetic analyses were done on rat pituitary slices after 1 hr incubation with 1.0 μM lead. The impaired late efflux was consistent with a decrease in the size and exchangeability of the tightly bound pool of intracellular microsomal or mitochondrial calcium. The rat pituitary cell model provides a model for the decreased TSH release of lead poisoning, supports the biological plausibility of a neuroendocrine effect on growth, and suggests that interference with calcium-mediated intracellular responses is a basic mechanism of lead toxicity

  16. Pituitary response to thyrotropin releasing hormone in children with overweight and obesity.

    Science.gov (United States)

    Rijks, Jesse; Penders, Bas; Dorenbos, Elke; Straetemans, Saartje; Gerver, Willem-Jan; Vreugdenhil, Anita

    2016-08-03

    Thyroid stimulating hormone (TSH) concentrations in the high normal range are common in children with overweight and obesity, and associated with increased cardiovascular disease risk. Prior studies aiming at unravelling the mechanisms underlying these high TSH concentrations mainly focused on factors promoting thyrotropin releasing hormone (TRH) production as a cause for high TSH concentrations. However, it is unknown whether TSH release of the pituitary in response to TRH is affected in children with overweight and obesity. Here we describe TSH release of the pituitary in response to exogenous TRH in 73 euthyroid children (39% males) with overweight or (morbid) obesity. Baseline TSH concentrations (0.9-5.5 mU/L) were not associated with BMI z score, whereas these concentrations were positively associated with TSH concentrations 20 minutes after TRH administration (r(2) = 0.484, p obesity. The clinical significance and the intermediate factors contributing to pituitary TSH release need to be elucidated in future studies.

  17. Consensus statement on the use of gonadotropin-releasing hormone analogs in children

    DEFF Research Database (Denmark)

    Carel, Jean-Claude; Eugster, Erica A; Rogol, Alan

    2009-01-01

    , an equal male/female ratio, and a balanced spectrum of professional seniority and expertise. EVIDENCE: Preference was given to articles written in English with long-term outcome data. The US Public Health grading system was used to grade evidence and rate the strength of conclusions. When evidence......OBJECTIVE: Gonadotropin-releasing hormone analogs revolutionized the treatment of central precocious puberty. However, questions remain regarding their optimal use in central precocious puberty and other conditions. The Lawson Wilkins Pediatric Endocrine Society and the European Society...... for Pediatric Endocrinology convened a consensus conference to review the clinical use of gonadotropin-releasing hormone analogs in children and adolescents. PARTICIPANTS: When selecting the 30 participants, consideration was given to equal representation from North America (United States and Canada) and Europe...

  18. Growth hormone-releasing hormone as an agonist of the ghrelin receptor GHS-R1a.

    Science.gov (United States)

    Casanueva, Felipe F; Camiña, Jesus P; Carreira, Marcos C; Pazos, Yolanda; Varga, Jozsef L; Schally, Andrew V

    2008-12-23

    Ghrelin synergizes with growth hormone-releasing hormone (GHRH) to potentiate growth hormone (GH) response through a mechanism not yet fully characterized. This study was conducted to analyze the role of GHRH as a potential ligand of the ghrelin receptor, GHS-R1a. The results show that hGHRH(1-29)NH(2) (GHRH) induces a dose-dependent calcium mobilization in HEK 293 cells stably transfected with GHS-R1a an effect not observed in wild-type HEK 293 cells. This calcium rise is also observed using the GHRH receptor agonists JI-34 and JI-36. Radioligand binding and cross-linking studies revealed that calcium response to GHRH is mediated by the ghrelin receptor GHS-R1a. GHRH activates the signaling route of inositol phosphate and potentiates the maximal response to ghrelin measured in inositol phosphate turnover. The presence of GHRH increases the binding capacity of (125)I-ghrelin in a dose dependent-fashion showing a positive binding cooperativity. In addition, confocal microscopy in CHO cells transfected with GHS-R1a tagged with enhanced green fluorescent protein shows that GHRH activates the GHS-R1a endocytosis. Furthermore, the selective GHRH-R antagonists, JV-1-42 and JMR-132, act also as antagonists of the ghrelin receptor GHS-R1a. Our findings suggest that GHRH interacts with ghrelin receptor GHS-R1a, and, in consequence, modifies the ghrelin-associated intracellular signaling pathway. This interaction may represent a form of regulation, which could play a putative role in the physiology of GH regulation and appetite control.

  19. Peptide Hormones in the Gastrointestinal Tract

    DEFF Research Database (Denmark)

    Rehfeld, Jens F.

    2015-01-01

    Gastrointestinal hormones are peptides released from endocrine cells and neurons in the digestive tract. More than 30 hormone genes are currently known to be expressed in the gastrointestinal tract, which makes the gut the largest hormone-producing organ in the body. Modern biology makes it feasi...

  20. Hyperthyroidism and acromegaly due to a thyrotropin- and growth hormone-secreting pituitary tumor. Lack of hormonal response to bromocriptine.

    Science.gov (United States)

    Carlson, H E; Linfoot, J A; Braunstein, G D; Kovacs, K; Young, R T

    1983-05-01

    A 47-year-old woman with acromegaly and hyperthyroidism was found to have an inappropriately normal serum thyrotropin level (1.5 to 2.5 microU/ml) that responded poorly to thyrotropin-releasing hormone but showed partial responsiveness to changes in circulating thyroid hormones. Serum alpha-subunit levels were high-normal and showed a normal response to thyrotropin-releasing hormone. Growth hormone and thyrotropin hypersecretion persisted despite radiotherapy and bromocriptine treatment. Selective trans-sphenoidal removal of a pituitary adenoma led to normalization of both growth hormone and thyrotropin levels. Both thyrotropes and somatotropes were demonstrated in the adenoma by the immunoperoxidase technique and electron microscopy.

  1. Glucocorticoid stimulates expression of corticotropin-releasing hormone gene in human placenta

    International Nuclear Information System (INIS)

    Robinson, B.G.; Emanuel, R.L.; Frim, D.M.; Majzoub, J.A.

    1988-01-01

    Primary cultures of purified human cytotrophoblasts have been used to examine the expression of the corticotropin-releasing hormone (CRH) gene in placenta. The authors report here that glucocorticoids stimulate placental CRH synthesis and secretion in primary cultures of human placenta. This stimulation is in contrast to the glucocorticoid suppression of CRH expression in hypothalamus. The positive regulation of CRH by glucocorticoids suggests that the rise in CRH preceding parturition could result from the previously described rise in fetal glucocorticoids. Furthermore, this increase in placental CRH could stimulate, via adrenocorticotropic hormone, a further rise in fetal glucocorticoids, completing a positive feedback loop that would be terminated by delivery

  2. Gastrointestinal hormone research - with a Scandinavian annotation

    DEFF Research Database (Denmark)

    Rehfeld, Jens F

    2015-01-01

    Gastrointestinal hormones are peptides released from neuroendocrine cells in the digestive tract. More than 30 hormone genes are currently known to be expressed in the gut, which makes it the largest hormone-producing organ in the body. Modern biology makes it feasible to conceive the hormones...... as a blood-borne hormone, a neurotransmitter, a local growth factor or a fertility factor. The targets of gastrointestinal hormones are specific G-protein-coupled receptors that are expressed in the cell membranes also outside the digestive tract. Thus, gut hormones not only regulate digestive functions...

  3. Gonadotropin-releasing hormone analogues inhibit leiomyoma extracellular matrix despite presence of gonadal hormones.

    Science.gov (United States)

    Malik, Minnie; Britten, Joy; Cox, Jeris; Patel, Amrita; Catherino, William H

    2016-01-01

    To determine the effect of GnRH analogues (GnRH-a) leuprolide acetate (LA) and cetrorelix acetate on gonadal hormone-regulated expression of extracellular matrix in uterine leiomyoma three-dimensional (3D) cultures. Laboratory study. University research laboratory. Women undergoing hysterectomy for symptomatic leiomyomas. The 3D cell cultures, protein analysis, Western blot, immunohistochemistry. Expression of extracellular matrix proteins, collagen 1, fibronectin, and versican in leiomyoma cells 3D cultures exposed to E2, P, LA, cetrorelix acetate, and combinations for 24- and 72-hour time points. The 3D leiomyoma cultures exposed to E2 for 24 hours demonstrated an increased expression of collagen-1 and fibronectin, which was maintained for up to 72 hours, a time point at which versican was up-regulated significantly. Although P up-regulated collagen-1 protein (1.29 ± 0.04) within 24 hours of exposure, significant increase in all extracellular matrix (ECM) proteins was observed when the gonadal hormones were used concomitantly. Significant decrease in the amount of ECM proteins was observed on use of GnRH-a, LA and cetrorelix, with 24-hour exposure. Both the compounds also significantly decreased ECM protein concentration despite the presence of E2 or both gonadal hormones. This study demonstrates that GnRH-a directly affect the gonadal hormone-regulated collagen-1, fibronectin, and versican production in their presence. These findings suggest that localized therapy with GnRH-a may inhibit leiomyoma growth even in the presence of endogenous gonadal hormone exposure, thereby providing a mechanism to eliminate the hypoestrogenic side effects associated with GnRH-a therapy. Published by Elsevier Inc.

  4. Simultaneous measurement of hormone release and secretagogue binding by individual pituitary cells

    International Nuclear Information System (INIS)

    Smith, P.F.; Neill, J.D.

    1987-01-01

    The quantitative relationship between receptor binding and hormone secretion at the single-cell level was investigated in the present study by combining a reverse hemolytic plaque assay for measurement of luteinizing hormone (LH) secretion from individual pituitary cells with an autoradiographic assay of 125 I-labeled gonadontropin-releasing hormone (GnRH) agonist binding to the same cells. In the plaque assay, LH secretion induces complement-mediated lysis of the LH-antibody-coated erythrocytes around the gonadotropes, resulting in areas of lysis (plaques). LH release from individual gonadotropes was quantified by comparing radioimmunoassayable LH release to hemolytic area in similarly treated cohort groups of cells; plaque area was linearly related to the amount of LH secreted. Receptor autoradiography was performed using 125 I-labeled GnRH-A (a superagonist analog of GnRH) both as the ligand and as the stimulant for LH release in the plaque assay. The grains appeared to represent specific and high-affinity receptors for GnRH because (i) no pituitary cells other than gonadotropes bound the labeled ligand and (ii) grain development was progressively inhibited by coincubation with increasing doses of unlabeled GnRH-A. The authors conclude that GnRH receptor number for any individual gonadotrope is a weak determinant of the amount of LH it can secrete; nevertheless, full occupancy of all its GnRH receptors is required for any gonadotrope to reach its full LH-secretory capacity. Apparently the levels of other factors comprising the steps along the secretory pathway determine the secretory capacity of an individual cell

  5. Treatment of idiopathic hypogonadotropic hypogonadism in men with luteinizing hormone-releasing hormone: a comparison of treatment with daily injections and with the pulsatile infusion pump.

    Science.gov (United States)

    Shargil, A A

    1987-03-01

    Thirty husbands in childless couples, aged 24 to 35 years, were treated with luteinizing hormone-releasing hormone (LH-RH) for idiopathic hypogonadotropic hypogonadism (IHH) of peripubertal (incomplete) type. They were azoospermic or oligospermic, with less than 1.5 X 10(6)/ml nonmotile spermatozoa. The diagnosis of IHH was based on clinical and laboratory features and testicular biopsy specimen study and was further supported by results of stimulation tests and gonadotropin-releasing hormone (GnRH) test. Two treatment modalities were used: subcutaneous injections of 500 micrograms LH-RH twice daily; and perpetual subcutaneous injection, via portable infusion pump, of 25 ng/kg LH-RH, at 90-minute intervals. Two patients required a short second period of pulsatile treatment to cause a second pregnancy of their spouses. The pump proved to yield better results, compared with intermittent injections, in respect to endocrine responses, spermatogenesis, and fertility capacity. Normal levels of luteinizing hormone and follicle-stimulating hormone were reached in 2 to 3 weeks and normal testosterone levels in 8 to 10 weeks from the start of treatment. Sperm counts rose to greater than 60 X 10(6)/ml viable spermatozoa with less than 15% of abnormal forms in 3 to 5 months, and the wives conceived. Of a total of 18 deliveries of healthy infants, 12 offspring were identified genetically with their fathers. Four women were still pregnant at the conclusion of the study. The pump was well tolerated, without special operational problems to the patients. Pulsatile treatment is therefore recommended in the treatment of well-diagnosed and carefully selected cases of incomplete IHH.

  6. Different growth hormone (GH) response to GH-releasing peptide and GH-releasing hormone in hyperthyroidism.

    Science.gov (United States)

    Ramos-Dias, J C; Pimentel-Filho, F; Reis, A F; Lengyel, A M

    1996-04-01

    Altered GH responses to several pharmacological stimuli, including GHRH, have been found in hyperthyroidism. The mechanisms underlying these disturbances have not been fully elucidated. GH-releasing peptide-6 (GHRP-6) is a synthetic hexapeptide that specifically stimulates GH release both in vitro and in vivo. The mechanism of action of GHRP-6 is unknown, but it probably acts by inhibiting the effects of somatostatin on GH release. The aim of this study was to evaluate the effects of GHRP-6 on GH secretion in patients with hyperthyroidism (n = 9) and in control subjects (n = 9). Each subject received GHRP-6 (1 microg/kg, iv), GHRH (100 microg, iv), and GHRP-6 plus GHRH on 3 separate days. GH peak values (mean +/- SE; micrograms per L) were significantly lower in hyperthyroid patients compared to those in control subjects after GHRH alone (9.0 +/- 1.3 vs. 27.0 +/- 5.2) and GHRP-6 plus GHRH (22.5 +/- 3.5 vs. 83.7 +/- 15.2); a lack of the normal synergistic effect of the association of both peptides was observed in thyrotoxicosis. However, a similar GH response was seen in both groups after isolated GHRP-6 injection (31.9 +/- 5.7 vs. 23.2 +/- 3.9). In summary, we have shown that hyperthyroid patients have a normal GH response to GHRP-6 together with a blunted GH responsiveness to GHRH. Our data suggest that thyroid hormones modulate GH release induced by these two peptides in a differential way.

  7. Addition of sucralose enhances the release of satiety hormones in combination with pea protein.

    Science.gov (United States)

    Geraedts, Maartje C P; Troost, Freddy J; Saris, Wim H M

    2012-03-01

    Exposing the intestine to proteins or tastants, particularly sweet, affects satiety hormone release. There are indications that each sweetener has different effects on this release, and that combining sweeteners with other nutrients might exert synergistic effects on hormone release. STC-1 cells were incubated with acesulfame-K, aspartame, saccharine, sucralose, sucrose, pea, and pea with each sweetener. After a 2-h incubation period, cholecystokinin(CCK) and glucagon-like peptide 1 (GLP-1) concentrations were measured. Using Ussing chamber technology, the mucosal side of human duodenal biopsies was exposed to sucrose, sucralose, pea, and pea with each sweetener. CCK and GLP-1 levels were measured in basolateral secretions. In STC-1 cells, exposure to aspartame, sucralose, sucrose, pea, and pea with sucralose increased CCK levels, whereas GLP-1 levels increased after addition of all test products. Addition of sucrose and sucralose to human duodenal biopsies did not affect CCK and GLP-1 release; addition of pea stimulated CCK and GLP-1 secretion. Combining pea with sucrose and sucralose induced even higher levels of CCK and GLP-1. Synchronous addition of pea and sucralose to enteroendocrine cells induced higher levels of CCK and GLP-1 than addition of each compound alone. This study shows that combinations of dietary compounds synergize to enhance satiety hormone release. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Twice-weekly administration of kisspeptin-54 for 8 weeks stimulates release of reproductive hormones in women with hypothalamic amenorrhea.

    Science.gov (United States)

    Jayasena, C N; Nijher, G M K; Abbara, A; Murphy, K G; Lim, A; Patel, D; Mehta, A; Todd, C; Donaldson, M; Trew, G H; Ghatei, M A; Bloom, S R; Dhillo, W S

    2010-12-01

    Kisspeptin is a novel therapeutic target for infertility. A single kisspeptin-54 (KP-54) injection acutely stimulates the release of reproductive hormones in women with hypothalamic amenorrhea (HA), a commonly occurring condition characterized by absence of menstruation; however, twice-daily administration of KP-54 results in tachyphylaxis. We determined the time course of desensitization to twice-daily KP-54 injections, compared the effects of twice-daily and twice-weekly administration regimens of KP-54, and studied the effects of long-term twice-weekly administration of KP-54 on the release of reproductive hormones in women with HA. When KP-54 was administered twice daily, responsiveness to luteinizing hormone (LH) diminished gradually, whereas responsiveness to follicle-stimulating hormone (FSH) was nearly abolished by day 2. Twice-weekly KP-54 administration resulted in only partial desensitization, in contrast to the complete tolerance achieved with twice-daily administration. Women with HA who were treated with twice-weekly KP-54 injections had significantly elevated levels of reproductive hormones after 8 weeks as compared with treatment with saline. No adverse effects were observed. This study provides novel pharmacological data on the effects of KP-54 on the release of reproductive hormones in women with HA.

  9. Growth hormone stimulation test - series (image)

    Science.gov (United States)

    The growth hormone (GH) is a protein hormone released from the anterior pituitary gland under the control of the hypothalamus. In children, GH has growth-promoting effects on the body. It stimulates the ...

  10. [The changes of ghrelin, growth hormone, growth hormone releasing hormone and their clinical significances in patients with chronic obstructive pulmonary disease].

    Science.gov (United States)

    Xu, Zhi-song; Bao, Zi-yu; Wang, Zhi-ying; Yang, Guo-jun; Zhu, Dong-fang; Zhang, Li; Tan, Rong-mei

    2012-07-01

    To investigate the changes of plasma ghrelin, growth hormone (GH) and growth hormone releasing hormone (GHRH) and gastric ghrelin in patients with chronic obstructive pulmonary disease (COPD) and to explore their clinical significances. Plasma ghrelin, GH, GHRH, TNFα, IL-6 and C reactive protein (CRP) were measured in 40 COPD patients and 20 controls with chronic bronchitis. Correlated factors of plasma ghrelin, TNFα, IL-6, CRP were analyzed. Body composition was assessed with bioelectrical impedance analysis. The expression of gastric ghrelin in patients with COPD was detected. Plasma ghrelin was higher in the underweight patients than in the normal weight patients and in the controls [(1.78 ± 0.46) ng/L, (1.39 ± 0.46) ng/L, (1.36 ± 0.39) ng/L, respectively]. Plasma GH was lower in the underweight patients than in the normal weight patients and in the controls [(4.12 ± 0.83) µg/L, (5.17 ± 0.72)µg/L, (6.49 ± 1.13) µg/L, respectively]. Plasma GHRH was lower in the underweight patients than in the normal weight patients and in the controls [(20.43 ± 4.41) ng/L, (23.47 ± 3.97) ng/L, (27.48 ± 10.06) ng/L, respectively]. Plasma ghrelin was higher in the underweight patients than in the controls (P 0.05). Plasma ghrelin was positively correlated with TNFα and IL-6 in the underweight patients. The gastric expression of ghrelin showed no evident difference between the patients with COPD and the controls. The plasma GH in COPD patients may not be correlated with ghrelin. The plasma ghrelin level may be a useful indicator for malnutrition in COPD patients. Plasma ghrelin might be involved in the pathogenesis of CODP by affecting the body energy metabolism.

  11. Hormonal induction of gamete release, and in-vitro fertilisation, in the critically endangered Southern Corroboree Frog, Pseudophryne corroboree

    Directory of Open Access Journals (Sweden)

    Silla Aimee J

    2010-11-01

    Full Text Available Abstract Background Conservation Breeding Programs (CBP's are playing an important role in the protection of critically endangered anuran amphibians, but for many species recruitment is not successful enough to maintain captive populations, or provide individuals for release. In response, there has been an increasing focus on the use of Assisted Reproductive Technologies (ART, including the administration of reproductive hormones to induce gamete release followed by in vitro fertilisation. The objective of this study was to test the efficacy of two exogenous hormones to induce gamete release, for the purpose of conducting in vitro fertilisation (IVF, in one of Australia's most critically endangered frog species, Pseudophryne corroboree. Methods Male frogs were administered a single dose of either human chorionic gonadotropin (hCG or luteinizing hormone-releasing hormone (LHRHa, while female frogs received both a priming and ovulatory dose of LHRHa. Spermiation responses were evaluated at 3, 7, 12, 24, 36, 48, 60 and 72 h post hormone administration (PA, and sperm number and viability were quantified using fluorescent microscopy. Ovulation responses were evaluated by stripping females every 12 h PA for 5 days. Once gametes were obtained, IVF was attempted by combining spermic urine with oocytes in a dilute solution of simplified amphibian ringer (SAR. Results Administration of both hCG and LHRHa induced approximately 80% of males to release sperm over 72 h. Peak sperm release occurred at 12 h PA for hCG treated males and 36 h PA for LHRHa treated males. On average, LHRHa treated males released a significantly higher total number of live sperm, and a higher concentration of sperm, over a longer period. In female frogs, administration of LHRHa induced approximately 30% of individuals to release eggs. On average, eggs were released between 24 and 48 h PA, with a peak in egg release at 36 h PA. IVF resulted in a moderate percentage (54.72% of eggs

  12. Gonadotropin-releasing hormone radioimmunoassay and its measurement in normal human plasma, secondary amenorrhea, and postmenopausal syndrome

    International Nuclear Information System (INIS)

    Rosenblum, N.G.; Schlaff, S.

    1976-01-01

    A sensitive and specific double antibody radioimmunoassay for gonadotropin-releasing hormone (GnRH) has been developed for measurement in ethanol extracts of human plasma. Iodinated hormone was prepared with the use of the chloramine-T method, and antibodies were developed in rabbits over a six-month period with a GnRH synthetic copolymer immunogen. A Scatchard plot revealed at least three species of antibody. The assay can measure conservatively at the 5 pg. per milliliter level and shows no cross-reactivity with other available hypothalamic and pituitary hormones. The releasing hormone was quantitatively recovered from human plasma with immunologic identity to native hormone. Unextracted plasma could not be used because of nonspecific displacement. The measurement of GnRH in individuals receiving 100 μg of intravenous bolus infusions of the synthetic decapeptide show extremely elevated values with two half-lives: one of two to four minutes and another of 35 to 40 minutes. In our experiments, we have found measurable GnRH in patients with secondary amenorrhea and at the midcycle in normal women. In the normal cycling woman during the follicular and luteal phases, GnRH was undetectable. In postmenopausal women with extreme hypoestrogenism and markedly elevated luteinizing hormone values, GnRH was also undetectable. No bursts of GnRH could be detected in normal men when sampled every ten minutes over a two-hour period and every two hours throughout the day

  13. Neurokinin B and serum albumin limit copper binding to mammalian gonadotropin releasing hormone.

    Science.gov (United States)

    Gul, Ahmad Samir; Tran, Kevin K; Jones, Christopher E

    2018-02-26

    Gonadotropin releasing hormone (GnRH) triggers secretion of luteinizing hormone and follicle stimulating hormone from gonadotropic cells in the anterior pituitary gland. GnRH is able to bind copper, and both in vitro and in vivo studies have suggested that the copper-GnRH complex is more potent at triggering gonadotropin release than GnRH alone. However, it remains unclear whether copper-GnRH is the active species in vivo. To explore this we have estimated the GnRH-copper affinity and have examined whether GnRH remains copper-bound in the presence of serum albumin and the neuropeptide neurokinin B, both copper-binding proteins that GnRH will encounter in vivo. We show that GnRH has a copper dissociation constant of ∼0.9 × 10 -9  M, however serum albumin and neurokinin B can extract metal from the copper-GnRH complex. It is therefore unlikely that a copper-GnRH complex will survive transit through the pituitary portal circulation and that any effect of copper must occur outside the bloodstream in the absence of neurokinin B. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Gonadotropin-releasing hormone agonist trigger in oocyte donors co-treated with a gonadotropin-releasing hormone antagonist

    DEFF Research Database (Denmark)

    Vuong, T. N. L.; Ho, M. T.; Ha, T. D.

    2016-01-01

    -35 years, body mass index [BMI] hormone level >1.25 ng/mL, and antral follicle count >= 6). Intervention(s): Ovulation trigger with 0.2, 0.3, or 0.4 mg triptorelin in a GnRH antagonist cycle. Main Outcome Measure(s): The primary end point was number of metaphase II oocytes...... to number of metaphase II oocytes (16.0 +/- 8.5, 15.9 +/- 7.8, and 14.7 +/- 8.4, respectively), embryos (13.2 +/- 7.8, 11.7 +/- 6.9, 11.8 +/- 7.0), and number of top-quality embryos (3.8 +/- 2.9, 3.6 +/- 3.0, 4.1 +/- 3.0). Luteinizing hormone levels at 24 hours and 36 hours after trigger was significantly...

  15. Regulation of gonadotropin-releasing hormone neurons by glucose

    Science.gov (United States)

    Roland, Alison V.; Moenter, Suzanne M.

    2011-01-01

    Reproduction is influenced by energy balance, but the physiological pathways mediating their relationship have not been fully elucidated. As the central regulators of fertility, gonadotropin-releasing hormone (GnRH) neurons integrate numerous physiological signals, including metabolic cues. Circulating glucose levels regulate GnRH release and may in part mediate the effects of negative energy balance on fertility. Existing evidence suggests that neural pathways originating in the hindbrain, as well as in the hypothalamic feeding nuclei, transmit information concerning glucose availability to GnRH neurons. Here we review recent evidence suggesting that GnRH neurons may directly sense changes in glucose availability by a mechanism involving adenosine monophosphate-activated protein kinase (AMPK). These findings expand our understanding of how metabolic signaling in the brain regulates reproduction. PMID:21855365

  16. Ovulation induction with pulsatile gonadotropin-releasing hormone (GnRH) or gonadotropins in a case of hypothalamic amenorrhea and diabetes insipidus.

    Science.gov (United States)

    Georgopoulos, N A; Markou, K B; Pappas, A P; Protonatariou, A; Vagenakis, G A; Sykiotis, G P; Dimopoulos, P A; Tzingounis, V A

    2001-12-01

    Hypothalamic amenorrhea is a treatable cause of infertility. Our patient was presented with secondary amenorrhea and diabetes insipidus. Cortisol and prolactin responded normally to a combined insulin tolerance test (ITT) and thyrotropin-releasing hormone (TRH) challenge, while thyroid-stimulating hormone (TSH) response to TRH was diminished, and no response of growth hormone to ITT was detected. Both luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels increased following gonadotropin-releasing hormone (GnRH) challenge. No response of LH to clomiphene citrate challenge was detected. Magnetic resonance imaging findings demonstrated a midline mass occupying the inferior hypothalamus, with posterior lobe not visible and thickened pituitary stalk. Ovulation induction was carried out first with combined human menopausal gonadotropins (hMG/LH/FSH) (150 IU/day) and afterwards with pulsatile GnRH (150 ng/kg/pulse). Ovulation was achieved with both pulsatile GnRH and combine gonadotropin therapy. Slightly better results were achieved with the pulsatile GnRH treatment.

  17. Asprosin, a fasting-induced glucogenic protein hormone

    Science.gov (United States)

    Hepatic glucose release into the circulation is vital for brain function and survival during periods of fasting and is modulated by an array of hormones that precisely regulate plasma glucose levels. We have identified a fasting-induced protein hormone that modulates hepatic glucose release. It is t...

  18. Synthesis and release of luteinizing hormone in vitro: manipulations of Ca2+ environment

    International Nuclear Information System (INIS)

    Liu, T.C.; Jackson, G.L.

    1985-01-01

    The authors determined if luteinizing hormone (LH) synthesis is Ca2+ dependent and coupled to LH release. They monitored LH synthesis when LH release was stimulated either by specific [gonadotropin-releasing hormone (GnRH)] or nonspecific stimuli (50 mM K+ and 2 or 20 microM Ca2+ ionophore A23187) and inhibited by Ca2+-reduced medium. LH synthesis was estimated by measuring incorporation of [ 3 H]glucosamine (glycosylation) and [ 14 C]alanine (translation) into total (cell and medium) immunoprecipitable LH by cultured rat anterior pituitary cells. Both GnRH (1 nM) and 50 mM K+ significantly stimulated LH release and glycosylation, but had no effect on LH translation. A23187 also stimulated LH release, but significantly depressed glycosylation of LH and total protein and [ 14 C]alanine uptake. Deletion of Ca2+ from the medium depressed both GnRH-induced LH release and glycosylation. Addition of 0.1 mM EGTA to Ca2+-free medium not only inhibited GnRH-induced release and glycosylation of LH but also uptake of precursors and glycosylation and translation of total protein. Thus, glycosylation and release of LH are Ca2+ dependent. Whether parallel changes in LH release and glycosylation reflect a cause and effect relationship remains to be determined

  19. Premenstrual Exacerbation of Life-Threatening Asthma: Effect of Gonadotrophin Releasing Hormone Analogue Therapy

    Directory of Open Access Journals (Sweden)

    Alun L Edwards

    1996-01-01

    Full Text Available Variability in the severity of asthma during various phases of the menstrual cycle has been frequently suspected. However, the hormonal changes that might affect mediators of bronchospasm have yet to be elucidated. The case of a 41-year-old woman suffering from longstanding asthma with life-threatening exacerbations is reported. The patient was treated with buserelin, a gonadotropin releasing hormone (GnRH analogue, which created a temporary chemical menopause and thus permitted diagnosis of a premenstrual exacerbation of asthma and offered insight into potential therapy. GnRH analogues may therefore be of value in assessing women with severe asthma suspected to vary with the menstrual cycle. The addition of estrogens and progestins at the same time as treatment with GnRH analogue may be of value in determining the role of these hormones in the pathogenesis of menstrually related exacerbations of asthma.

  20. Biosynthesis and the conjugation of magnetite nanoparticles with luteinizing hormone releasing hormone (LHRH)

    Energy Technology Data Exchange (ETDEWEB)

    Obayemi, J.D. [Department of Materials Science and Engineering, African University of Science and Technology (AUST) Abuja, Federal Capital Territory (Nigeria); Department of Materials Science and Engineering, Kwara State University, Malete, Kwara State (Nigeria); Dozie-Nwachukwu, S. [Department of Materials Science and Engineering, African University of Science and Technology (AUST) Abuja, Federal Capital Territory (Nigeria); Sheda Science and Technology Complex (SHESTCO) Abuja, Federal Capital Territory (Nigeria); Danyuo, Y. [Department of Materials Science and Engineering, African University of Science and Technology (AUST) Abuja, Federal Capital Territory (Nigeria); Department of Electronics and Electricals Engineering, Nigerian Turkish Nile University, Abuja (Nigeria); Odusanya, O.S. [Department of Materials Science and Engineering, African University of Science and Technology (AUST) Abuja, Federal Capital Territory (Nigeria); Sheda Science and Technology Complex (SHESTCO) Abuja, Federal Capital Territory (Nigeria); Anuku, N. [Department of Chemistry, Bronx Community College, New York, NY 10453 (United States); Princeton Institute of Science and Technology of Materials (PRISM), Princeton, NJ 08544 (United States); Malatesta, K. [Princeton Institute of Science and Technology of Materials (PRISM), Princeton, NJ 08544 (United States); Department of Mechanical and Aerospace Engineering, Princeton University, NJ 08544 (United States); Soboyejo, W.O., E-mail: soboyejo@princeton.edu [Department of Materials Science and Engineering, African University of Science and Technology (AUST) Abuja, Federal Capital Territory (Nigeria); Princeton Institute of Science and Technology of Materials (PRISM), Princeton, NJ 08544 (United States); Department of Mechanical and Aerospace Engineering, Princeton University, NJ 08544 (United States)

    2015-01-01

    This paper presents the results of an experimental study of the biosynthesis of magnetite nanoparticles (BMNPs) with particle sizes between 10 nm and 60 nm. The biocompatible magnetic nanoparticles are produced from Magnetospirillum magneticum (M.M.) bacteria that respond to magnetic fields. M.M. bacteria were cultured and used to synthesize magnetite nanoparticles. This was done in an enriched magnetic spirillum growth medium (EMSGM) at different pH levels. The nanoparticle concentrations were characterized with UV–Visible (UV–Vis) spectroscopy, while the particle shapes were elucidated via transmission electron microscopy (TEM). The structure of the particles was studied using X-ray diffraction (XRD), while the hydrodynamic radii, particle size distributions and polydispersity of the nanoparticles were characterized using dynamic light scattering (DLS). Carbodiimide reduction was also used to functionalize the BMNPs with a molecular recognition unit (luteinizing hormone releasing hormone, LHRH) that attaches specifically to receptors that are over-expressed on the surfaces of most breast cancer cell types. The resulting nanoparticles were examined using Fourier Transform Infrared (FTIR) spectroscopy and quantitative image analysis. The implications of the results are then discussed for the potential development of magnetic nanoparticles for the specific targeting and treatment of breast cancer. - Highlights: • Biosynthesis of MNPs with clinically relevant sizes between 10 and 60 nm. • New insights into the effects of pH and processing time on nanoparticle shapes and sizes. • Successful conjugation of biosynthesized magnetite nanoparticles to LHRH ligands. • Conjugated BMNPs that are monodispersed with potential biomedical relevance. • Magnetic properties of biosynthesized MNPs suggest potential for MRI enhancement.

  1. Biosynthesis and the conjugation of magnetite nanoparticles with luteinizing hormone releasing hormone (LHRH)

    International Nuclear Information System (INIS)

    Obayemi, J.D.; Dozie-Nwachukwu, S.; Danyuo, Y.; Odusanya, O.S.; Anuku, N.; Malatesta, K.; Soboyejo, W.O.

    2015-01-01

    This paper presents the results of an experimental study of the biosynthesis of magnetite nanoparticles (BMNPs) with particle sizes between 10 nm and 60 nm. The biocompatible magnetic nanoparticles are produced from Magnetospirillum magneticum (M.M.) bacteria that respond to magnetic fields. M.M. bacteria were cultured and used to synthesize magnetite nanoparticles. This was done in an enriched magnetic spirillum growth medium (EMSGM) at different pH levels. The nanoparticle concentrations were characterized with UV–Visible (UV–Vis) spectroscopy, while the particle shapes were elucidated via transmission electron microscopy (TEM). The structure of the particles was studied using X-ray diffraction (XRD), while the hydrodynamic radii, particle size distributions and polydispersity of the nanoparticles were characterized using dynamic light scattering (DLS). Carbodiimide reduction was also used to functionalize the BMNPs with a molecular recognition unit (luteinizing hormone releasing hormone, LHRH) that attaches specifically to receptors that are over-expressed on the surfaces of most breast cancer cell types. The resulting nanoparticles were examined using Fourier Transform Infrared (FTIR) spectroscopy and quantitative image analysis. The implications of the results are then discussed for the potential development of magnetic nanoparticles for the specific targeting and treatment of breast cancer. - Highlights: • Biosynthesis of MNPs with clinically relevant sizes between 10 and 60 nm. • New insights into the effects of pH and processing time on nanoparticle shapes and sizes. • Successful conjugation of biosynthesized magnetite nanoparticles to LHRH ligands. • Conjugated BMNPs that are monodispersed with potential biomedical relevance. • Magnetic properties of biosynthesized MNPs suggest potential for MRI enhancement

  2. Sustained Administration of Hormones Exploiting Nanoconfined Diffusion through Nanochannel Membranes

    Directory of Open Access Journals (Sweden)

    Thomas Geninatti

    2015-08-01

    Full Text Available Implantable devices may provide a superior means for hormone delivery through maintaining serum levels within target therapeutic windows. Zero-order administration has been shown to reach an equilibrium with metabolic clearance, resulting in a constant serum concentration and bioavailability of released hormones. By exploiting surface-to-molecule interaction within nanochannel membranes, it is possible to achieve a long-term, constant diffusive release of agents from implantable reservoirs. In this study, we sought to demonstrate the controlled release of model hormones from a novel nanochannel system. We investigated the delivery of hormones through our nanochannel membrane over a period of 40 days. Levothyroxine, osteocalcin and testosterone were selected as representative hormones based on their different molecular properties and structures. The release mechanisms and transport behaviors of these hormones within 3, 5 and 40 nm channels were characterized. Results further supported the suitability of the nanochannels for sustained administration from implantable platforms.

  3. Growth hormone-releasing hormone promotes survival of cardiac myocytes in vitro and protects against ischaemia-reperfusion injury in rat heart.

    Science.gov (United States)

    Granata, Riccarda; Trovato, Letizia; Gallo, Maria Pia; Destefanis, Silvia; Settanni, Fabio; Scarlatti, Francesca; Brero, Alessia; Ramella, Roberta; Volante, Marco; Isgaard, Jorgen; Levi, Renzo; Papotti, Mauro; Alloatti, Giuseppe; Ghigo, Ezio

    2009-07-15

    The hypothalamic neuropeptide growth hormone-releasing hormone (GHRH) stimulates GH synthesis and release in the pituitary. GHRH also exerts proliferative effects in extrapituitary cells, whereas GHRH antagonists have been shown to suppress cancer cell proliferation. We investigated GHRH effects on cardiac myocyte cell survival and the underlying signalling mechanisms. Reverse transcriptase-polymerase chain reaction analysis showed GHRH receptor (GHRH-R) mRNA in adult rat ventricular myocytes (ARVMs) and in rat heart H9c2 cells. In ARVMs, GHRH prevented cell death and caspase-3 activation induced by serum starvation and by the beta-adrenergic receptor agonist isoproterenol. The GHRH-R antagonist JV-1-36 abolished GHRH survival action under both experimental conditions. GHRH-induced cardiac cell protection required extracellular signal-regulated kinase (ERK)1/2 and phosphoinositide-3 kinase (PI3K)/Akt activation and adenylyl cyclase/cAMP/protein kinase A signalling. Isoproterenol strongly upregulated the mRNA and protein of the pro-apoptotic inducible cAMP early repressor, whereas GHRH completely blocked this effect. Similar to ARVMs, in H9c2 cardiac cells, GHRH inhibited serum starvation- and isoproterenol-induced cell death and apoptosis through the same signalling pathways. Finally, GHRH improved left ventricular recovery during reperfusion and reduced infarct size in Langendorff-perfused rat hearts, subjected to ischaemia-reperfusion (I/R) injury. These effects involved PI3K/Akt signalling and were inhibited by JV-1-36. Our findings suggest that GHRH promotes cardiac myocyte survival through multiple signalling mechanisms and protects against I/R injury in isolated rat heart, indicating a novel cardioprotective role of this hormone.

  4. Non-invasive treatments of luteinizing hormone-releasing hormone for inducing spermiation in American (Bufo americanus) and Gulf Coast (Bufo valliceps) toads.

    Science.gov (United States)

    Rowson, Angela D.; Obringer, Amy R.; Roth, Terri L.

    2001-01-01

    As many as 20% of all assessed amphibian species are threatened with extinction, and captive breeding programs are becoming important components of conservation strategies for this taxon. For some species, exogenous hormone administration has been integrated into breeding protocols to improve propagation. However, most treatments are administered by an intraperitoneal injection that can be associated with some risks. The general goal of this study was to identify a non-invasive method of applying luteinizing hormone-releasing hormone (LHRH), which reliably induces sperm release in toads. Specific objectives were to 1) test the spermiation response after topical application of different LHRH doses to the abdominal seat region, 2) evaluate the effects of adding the absorption enhancers dimethyl sulfoxide (DMSO), acetone, and glyceryl monocaprylate (GMC) to the LHRH, 3) assess the spermiation response after oral delivery of LHRH in a mealworm vehicle, and 4) compare sperm characteristics and spermiation responses to treatments in two different toad species. Male American (n = 9) and Gulf Coast (n = 7) toads were rotated systematically through a series of treatments. Urine was collected and evaluated for the presence of sperm at 0, 3, 7, 12, and 24 hours post-treatment. There were no statistical differences in spermiation induction or sperm characteristics between American and Gulf Coast toads after the treatments. Oral administration of 100 &mgr;g LHRH was occasionally successful in inducing spermiation, but results appeared largely unreliable. Ventral dermal application of 100 or 10 &mgr;g LHRH in 40% DMSO were more effective (P Zoo Biol 20:63-74, 2001. Copyright 2001 Wiley-Liss, Inc.

  5. Radioimmunoassay for 6-D-tryptophan analog of luteinizing hormone-releasing hormone: measurement of serum levels after administration of long-acting microcapsule formulations

    International Nuclear Information System (INIS)

    Mason-Garcia, M.; Vigh, S.; Comaru-Schally, A.M.; Redding, T.W.; Somogyvari-Vigh, A.; Horvath, J.; Schally, A.V.

    1985-01-01

    A sensitive and specific radioimmunoassay for [6-D-tryptophan]luteinizing hormone-releasing hormone ([D-Trp 6 ]LH-RH) was developed and used for following the rate of liberation of [D-Trp 6 ]LH-RH from a long-acting delivery systems based on a microcapsule formulation. Rabbit antibodies were generated against [D-Trp 6 ]LH-RH conjugated to bovine serum albumin with glutaraldehyde. Crossreactivity with LH-RH was less than 1%; there was no significant cross-reactivity with other peptides. The minimal detectable dose of [D-Trp 6 ]LH-RH was 2 pg per tube. In tra- and interassay coefficients of variation were 8% and 10%, respectively. The radioimmunoassay was suitable for direct determination of [D-Trp 6 ]LH-RH in serum, permitting the study of blood levels of the analog after single injections into normal men and after one-a-month administration of microcapsules to rats. In men, 90 min after subcutaneous injection of 250 μg of the peptide, serum [D-Trp 6 ]LH-RH rose to 6-12 ng/ml. Luteinizing hormone was increased 90 min and 24 hr after the administration of the analog. Several batches of microcapsules were tested in rats and the rate of release of [D-Trp 6 ]LH-RH was followed. The improved batch of microcapsules of [D-Trp 6 ]LH-RH increased serum concentrations of the analog for 30 days or longer after intramuscular injection

  6. Protective effects of D-Trp6-luteinising hormone-releasing hormone microcapsules against cyclophosphamide-induced gonadotoxicity in female rats.

    Science.gov (United States)

    Bokser, L; Szende, B; Schally, A V

    1990-06-01

    The possible protective effect of an agonist of luteinising hormone-releasing hormone (LH-RH) against the ovarian damage caused by cyclophosphamide was investigated in rats. D-Trp6-LH-RH microcapsules were injected once a month for 3 months, in a dose calculated to release 25 micrograms day-1. Control animals received the injection vehicle. Sixty days after the first injection of microcapsules, cyclophosphamide was given at a loading dose of 50 mg kg-1 followed by 5 mg kg-1 day-1 for 30 days, while the treatment with D-Trp6-LH-RH was continued. When the ovaries were examined 3 months and 5 months after discontinuation of treatment, a significant reduction in the total number of follicles (P less than 0.01) was found in non-pretreated animals given cyclophosphamide. This reduction affected mainly follicles larger than 100 microns. An irreversible disintegration and destruction of granulosa cells was also observed in this group. In animals pretreated with D-Trp6-LH-RH, administration of cyclophosphamide caused no reduction in the number and diameter of follicles. Thus, the treatment with D-Trp6-LH-RH microcapsules before and during chemotherapy prevented the ovarian injury inflicted by cyclophosphamide. The suppression of gonadal function by LH-RH analogues could be possibly utilised for the protection of the ovaries against damage caused by cytotoxic drugs.

  7. Evaluation of growth hormone release and human growth hormone treatment in children with cranial irradiation-associated short stature

    International Nuclear Information System (INIS)

    Romshe, C.A.; Zipf, W.B.; Miser, A.; Miser, J.; Sotos, J.F.; Newton, W.A.

    1984-01-01

    We studied nine children who had received cranial irradiation for various malignancies and subsequently experienced decreased growth velocity. Their response to standard growth hormone stimulation and release tests were compared with that in seven children with classic GH deficiency and in 24 short normal control subjects. With arginine and L-dopa stimulation, six of nine patients who received radiation had a normal GH response (greater than 7 ng/ml), whereas by design none of the GH deficient and all of the normal children had a positive response. Only two of nine patients had a normal response to insulin hypoglycemia, with no significant differences in the mean maximal response of the radiation and the GH-deficient groups. Pulsatile secretion was not significantly different in the radiation and GH-deficient groups, but was different in the radiation and normal groups. All subjects in the GH-deficient and radiation groups were given human growth hormone for 1 year. Growth velocity increased in all, with no significant difference in the response of the two groups when comparing the z scores for growth velocity of each subject's bone age. We recommend a 6-month trial of hGH in children who have had cranial radiation and are in prolonged remission with a decreased growth velocity, as there is no completely reliable combination of GH stimulation or release tests to determine their response

  8. Radioimmunoassay for luteinizing hormone releasing hormone in plasma

    International Nuclear Information System (INIS)

    Saito, Shiro; Musa, Kimitaka; Oshima, Ichiyo; Yamamoto, Suzuyo; Funato, Toyohiko

    1975-01-01

    A sensitive and specific double antibody radioimmunoassay has been developed capable of measuring LH-RH in extracted human plasma. Thyrotropin releasing hormone, lysine vasopressin and most of LH-RH analogues did not appear to affect the assay. Hypothalamic extract and some of the LH-RH analogues produced displacement curves which were parallel to the curve obtained with the synthetic LH-RH. Sensitivity of the radioimmunoassay was about 3 pg per assay tube. The coefficient of variation of intraassays was 6.4%, while that of interassays was 9.6%. Exogenous LH-RH could be quantitatively extracted by acidic ethanol when varying amounts of synthetic LH-RH were added to the plasma. Immunoreactivity of LH-RH was preserved in plasma for 2 hrs in the cold but was gradually reduced thereafter. The plasma levels of LH-RH were 20 pg/ml or less in normal adults and not detectable in children. Aged males over 60 yr and postmenopausal women showed a tendency to have higher levels of plasma LH-RH. The plasma LH-RH level was significantly higher in midcycle than in the follicular or luteal stages. The disappearance rate of LH-RH from the circulation after intravenous injection could be represented as half-times of 4-6 min. Between 0.2-0.4% of the injected dose was excreted into urine within 1 hr. These results indicate that the determination of LH-RH might be a useful tool for elucidating hypothalamic-pituitary-gonad interactions. (auth.)

  9. Effects of thyrotropin-releasing hormone on regional cerebral blood flow in man

    DEFF Research Database (Denmark)

    Oturai, P S; Friberg, L; Sam, I

    1992-01-01

    emission computerized tomograph and inhalation of 133Xe. Thyrotropin-releasing hormone caused a significant mean increase of 3.7% (range -8.8-22.7) in blood flow in a region consistent with the left thalamus compared to placebo (3.2% decrease). In 25 other regions no significant change was detected...

  10. Colocalization of connexin 36 and corticotropin-releasing hormone in the mouse brain

    Directory of Open Access Journals (Sweden)

    Ribeiro Ana C

    2009-04-01

    Full Text Available Abstract Background Gap junction proteins, connexins, are expressed in most endocrine and exocrine glands in the body and are at least in some glands crucial for the hormonal secretion. To what extent connexins are expressed in neurons releasing hormones or neuropeptides from or within the central nervous system is, however, unknown. Previous studies provide indirect evidence for gap junction coupling between subsets of neuropeptide-containing neurons in the paraventricular nucleus (PVN of the hypothalamus. Here we employ double labeling and retrograde tracing methods to investigate to what extent neuroendocrine and neuropeptide-containing neurons of the hypothalamus and brainstem express the neuronal gap junction protein connexin 36. Results Western blot analysis showed that connexin 36 is expressed in the PVN. In bacterial artificial chromosome transgenic mice, which specifically express the reporter gene Enhanced Green Fluorescent Protein (EGFP under the control of the connexin 36 gene promoter, EGFP expression was detected in magnocellular (neuroendocrine and in parvocellular neurons of the PVN. Although no EGFP/connexin36 expression was seen in neurons containing oxytocin or vasopressin, EGFP/connexin36 was found in subsets of PVN neurons containing corticotropin-releasing hormone (CRH, and in somatostatin neurons located along the third ventricle. Moreover, CRH neurons in brainstem areas, including the lateral parabrachial nucleus, also expressed EGFP/connexin 36. Conclusion Our data indicate that connexin 36 is expressed in subsets of neuroendocrine and CRH neurons in specific nuclei of the hypothalamus and brainstem.

  11. Growth hormone releasing hormone (GHRH) signaling modulates intermittent hypoxia-induced oxidative stress and cognitive deficits in mouse.

    Science.gov (United States)

    Nair, Deepti; Ramesh, Vijay; Li, Richard C; Schally, Andrew V; Gozal, David

    2013-11-01

    Intermittent hypoxia (IH) during sleep, such as occurs in obstructive sleep apnea (OSA), leads to degenerative changes in the hippocampus, and is associated with spatial learning deficits in adult mice. In both patients and murine models of OSA, the disease is associated with suppression of growth hormone (GH) secretion, which is actively involved in the growth, development, and function of the central nervous system (CNS). Recent work showed that exogenous GH therapy attenuated neurocognitive deficits elicited by IH during sleep in rats. Here, we show that administration of the Growth Hormone Releasing Hormone (GHRH) agonist JI-34 attenuates IH-induced neurocognitive deficits, anxiety, and depression in mice along with reduction in oxidative stress markers such as MDA and 8-hydroxydeoxyguanosine, and increases in hypoxia inducible factor-1α DNA binding and up-regulation of insulin growth factor-1 and erythropoietin expression. In contrast, treatment with a GHRH antagonist (MIA-602) during intermittent hypoxia did not affect any of the IH-induced deleterious effects in mice. Thus, exogenous GHRH administered as the formulation of a GHRH agonist may provide a viable therapeutic intervention to protect IH-vulnerable brain regions from OSA-associated neurocognitive dysfunction. Sleep apnea, characterized by chronic intermittent hypoxia (IH), is associated with substantial cognitive and behavioral deficits. Here, we show that administration of a GHRH agonist (JI-34) reduces oxidative stress, increases both HIF-1α nuclear binding and downstream expression of IGF1 and erythropoietin (EPO) in hippocampus and cortex, and markedly attenuates water maze performance deficits in mice exposed to intermittent hypoxia during sleep. © 2013 International Society for Neurochemistry.

  12. Effects of methimazole treatment on growth hormone (GH) response to GH-releasing hormone in patients with hyperthyroidism.

    Science.gov (United States)

    Giustina, A; Ferrari, C; Bodini, C; Buffoli, M G; Legati, F; Schettino, M; Zuccato, F; Wehrenberg, W B

    1990-12-01

    In vitro studies have demonstrated that thyroid hormones can enhance basal and stimulated growth hormone secretion by cultured pituitary cells. However, both in man and in the rat the effects of high thyroid hormone levels on GH secretion are unclear. The aim of our study was to test the GH response to human GHRH in hyperthyroid patients and to evaluate the effects on GH secretion of short- and long-term pharmacological decrease of circulating thyroid hormones. We examined 10 hyperthyroid patients with recent diagnosis of Graves' disease. Twelve healthy volunteers served as controls. All subjects received a bolus iv injection of GHRH(1-29)NH2, 100 micrograms. Hyperthyroid patients underwent a GHRH test one and three months after starting antithyroid therapy with methimazole, 10 mg/day po. GH levels at 15, 30, 45, 60 min and GH peak after stimulus were significantly lower in hyperthyroid patients than in normal subjects. The GH peak was also delayed in hyperthyroid patients. After one month of methimazole therapy, most of the hyperthyroid patients had thyroid hormone levels in the normal range, but they did not show significant changes in GH levels after GHRH, and the GH peak was again delayed. After three months of therapy with methimazole, the hyperthyroid patients did not show a further significant decrease in serum thyroid hormone levels. However, mean GH levels from 15 to 60 min were significantly increased compared with the control study. The GH peak after GHRH was also earlier than in the pre-treatment study.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Variability of Hormonal Stress Markers Collected from a Managed Dolphin Population

    Science.gov (United States)

    2013-09-30

    presence of thyroid stimulating hormone (TSH), which is a peptide hormone produced in the anterior pituitary gland . Thyroid stimulating hormone is 4...releasing hormone (TRH) challenges to characterize the activation of the hypothalamic- pituitary -adrenal (HPA) and hypothalamic- pituitary - thyroid (HPT...triiodothyronine, T3) are released from the thyroid gland and are responsible for regulating the metabolism of an animal and affect the activity of other stress

  14. Preparation of slowly released male sex hormone drug by radiation polymerization technique and its evaluation in vivo

    International Nuclear Information System (INIS)

    Liu Rueizhi; Lei Shaoqiong; Li Ximing

    1992-01-01

    The radiation polymerization technique was used for immobilization testosterone propionate into crosslinked network of poly hydroxyethyl methacrylate to prepare slowly released male sex hormone drug which is used for testicular prosthesis. The testicular prosthesis was transplanted into the scrotum of male rabbit whose testes was excised 2 months before the transplantation. Then the level of male sex hormone in serum was measured by radioimmunoassay once a week after transplantation. The results of measurement in a period of 6 months were shown that the testicular prosthesis has a stable release of male sex hormone. The testosterone level in serum of the castrated male rabbits rises markedly and finally stabilizes at the level of 429 ± 36 ng/100 ml after transplantation. Macroscopic examination of biopsies taken from the tissues around the testicular prosthesis showed that tissue compatibility was revealed well

  15. Inhibition of rat pituitary growth hormone (GH) release by subclinical levels of lead

    International Nuclear Information System (INIS)

    Camoratto, A.M.; White, L.M.; Lau, Y.S.; Moriarty, C.M.

    1990-01-01

    Lead toxicity has been associated with short stature in children. Since growth hormone is a major regulator of growth, the effects of chronic exposure to subclinical lead levels on pituitary function were assessed. Timed pregnant rats were given 125 ppm lead (as lead nitrate) in their drinking water beginning on day 5 of gestation. After weaning, pups were continued on lead until sacrifice at 7 weeks of age. The average blood lead level at this time was 18.9 ug/dl (range 13.7-27.8). On the day of sacrifice the pituitary was removed, hemisected and incubated with vehicle or 40 nM hGRH (human growth hormone releasing hormone). Pituitaries from chronically lead-treated pups were 64% less responsive to GRH than controls. In contrast, no difference in responsiveness was observed in pituitaries from the dams. The specific binding of GRH was also examined. Control animals showed a dose-dependent displacement of 125I-GRH by unlabeled ligand (10-1000 nM). In the pituitaries of lead-treated pups binding of labeled ligand was markedly reduced by unlabeled GRH (less than 100 nM). Chronic exposure to lead had no effect on serum GH or prolactin levels or on pituitary content of GH. These data suggest that one mechanism by which lead can affect growth is by inhibition of GH release

  16. Corticotropine-releasing hormone and/or corticosterone differentially affect behavior of rat

    Czech Academy of Sciences Publication Activity Database

    Valeš, Karel; Řezáčová, Lenka; Stuchlík, Aleš

    2008-01-01

    Roč. 11, Suppl.1 (2008), s. 118-118 ISSN 1461-1457. [CINP Congress /26./. 13.07.2008-17.07.2008, Munich] R&D Projects: GA MŠk(CZ) 1M0517; GA MZd NR9180; GA ČR(CZ) GA309/07/0341 Institutional research plan: CEZ:AV0Z50110509 Keywords : cpo1 * corticotropine-releasing hormone * corticosterone * behavior Subject RIV: FH - Neurology

  17. Towards more physiological manipulations of hormones in field studies: comparing the release dynamics of three kinds of testosterone implants, silastic tubing, time-release pellets and beeswax.

    Science.gov (United States)

    Quispe, Rene; Trappschuh, Monika; Gahr, Manfred; Goymann, Wolfgang

    2015-02-01

    Hormone manipulations are of increasing interest in the areas of physiological ecology and evolution, because hormones are mediators of complex phenotypic changes. Often, however, hormone manipulations in field settings follow the approaches that have been used in classical endocrinology, potentially using supra-physiological doses. To answer ecological and evolutionary questions, it may be important to manipulate hormones within their physiological range. We compare the release dynamics of three kinds of implants, silastic tubing, time-release pellets, and beeswax pellets, each containing 3mg of testosterone. These implants were placed into female Japanese quail, and plasma levels of testosterone measured over a period of 30 days. Testosterone in silastic tubing led to supraphysiological levels. Also, testosterone concentrations were highly variable between individuals. Time-release pellets led to levels of testosterone that were slightly supraphysiological during the first days. Over the period of 30 days, however, testosterone concentrations were more consistent. Beeswax implants led to a physiological increase in testosterone and a relatively constant release. The study demonstrated that hormone implants in 10mm silastic tubing led to a supraphysiological peak in female quail. Thus, the use of similar-sized or even larger silastic implants in males or in other smaller vertebrates needs careful assessment. Time-release pellets and beeswax implants provide a more controlled release and degrade within the body. Thus, it is not necessary to recapture the animal to remove the implant. We propose beeswax implants as an appropriate procedure to manipulate testosterone levels within the physiological range. Hence, such implants may be an effective alternative for field studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Development of new radioactive labelling methods (3H and 11C) in luteizing hormone (LH) and its releasing hormone (LRF). Study of physico-chemical properties of LRF by circular dichroism and emission spectroscopy

    International Nuclear Information System (INIS)

    Marche, Pierre.

    1975-01-01

    After a brief review of present knowledge on the hypothalamus-hypophysis this thesis falls into three parts. The first situates the peptide hormones studied in their biological context. Research on the radioactive labelling of hormonal peptides is dealt with in part two which includes, besides the application of already known tritiation methods to particular problems, the description of a new tritium labelling method and the use of carbon 11 for the kinetic distribution study of a hormone. Part three concerns the physico-chemical study of a hypothalamic hormone. As a contribution towards research on the hypophysary gonadotrophic function regulation, the work involved in all the above three sections was directed towards the luteinising hormone (LH) and its hypothalamic release factor (LRF). During the study of this latter the problem of peptides containing tryptophane arose and was consequently investigated [fr

  19. Hormone-refractory prostate cancer and the skeleton

    NARCIS (Netherlands)

    Soerdjbalie-Maikoe, Vidija

    2006-01-01

    Prostate cancer is the second most common cancer in men in the UK. Androgen ablation with luteinising hormone-releasing hormone agonists (LHRH agonists) alone, or in combination with anti-androgens is the standard treatment for men with metastatic prostate cancer. Unfortunately, despite maximal

  20. Internalization and recycling of receptor-bound gonadotropin-releasing hormone agonist in pituitary gonadotropes

    International Nuclear Information System (INIS)

    Schvartz, I.; Hazum, E.

    1987-01-01

    The fate of cell surface gonadotropin-releasing hormone (GnRH) receptors on pituitary cells was studied utilizing lysosomotropic agents and monensin. Labeling of pituitary cells with a photoreactive GnRH derivative, [azidobenzoyl-D-Lys6]GnRH, revealed a specific band of Mr = 60,000. When photoaffinity-labeled cells were exposed to trypsin immediately after completion of the binding, the radioactivity incorporated into the Mr = 60,000 band decreased, with a concomitant appearance of a proteolytic fragment (Mr = 45,000). This fragment reflects cell surface receptors. Following GnRH binding, the hormone-receptor complexes underwent internalization, partial degradation, and recycling. The process of hormone-receptor complex degradation was substantially prevented by lysosomotropic agents, such as chloroquine and methylamine, or the proton ionophore, monensin. Chloroquine and monensin, however, did not affect receptor recycling, since the tryptic fragment of Mr = 45,000 was evident after treatment with these agents. This suggests that recycling of GnRH receptors in gonadotropes occurs whether or not the internal environment is acidic. Based on these findings, we propose a model describing the intracellular pathway of GnRH receptors

  1. Review: Regulatory mechanisms of gonadotropin-inhibitory hormone (GnIH synthesis and release in photoperiodic animals

    Directory of Open Access Journals (Sweden)

    Kazuyoshi eTsutsui

    2013-04-01

    Full Text Available Gonadotropin-inhibitory hormone (GnIH is a novel hypothalamic neuropeptide that was discovered in quail as an inhibitory factor for gonadotropin release. GnIH inhibits gonadotropin synthesis and release in birds through actions on gonadotropin-releasing hormone (GnRH neurons and gonadotropes, mediated via the GnIH receptor (GnIH-R, GPR147. Subsequently, GnIH was identified in mammals and other vertebrates. As in birds, mammalian GnIH inhibits gonadotropin secretion, indicating a conserved role for this neuropeptide in the control of the hypothalamic-pituitary-gonadal (HPG axis across species. Identification of the regulatory mechanisms governing GnIH expression and release is important in understanding the physiological role of the GnIH system. A nocturnal hormone, melatonin, appears to act directly on GnIH neurons through its receptor to induce expression and release of GnIH in quail, a photoperiodic bird. Recently, a similar, but opposite, action of melatonin on the inhibition of expression of mammalian GnIH was shown in hamsters and sheep, photoperiodic mammals. These results in photoperiodic animals demonstrate that GnIH expression is photoperiodically modulated via a melatonin-dependent process. Recent findings indicate that GnIH may be a mediator of stress-induced reproductive disruption in birds and mammals, pointing to a broad role for this neuropeptide in assessing physiological state and modifying reproductive effort accordingly. This paper summarizes the advances made in our knowledge regarding the regulation of GnIH synthesis and release in photoperiodic birds and mammals. This paper also discusses the neuroendocrine integration of environmental signals, such as photoperiods and stress, and internal signals, such as GnIH, melatonin and glucocorticoids, to control avian and mammalian reproduction.

  2. Hormonal influences on growth of the fetal pig

    International Nuclear Information System (INIS)

    Spencer, G.S.

    1986-01-01

    Although there is considerable information on hormonal systems regulating growth postnatally, little is known about hormonal influences on growth in the fetuw. It has long been postulated that insulin is the major fetal growth promoting hormone. However, chronic administration of insulin to the fetal pig during 14 days in utero, although producing hyperinsulinaemia and elevated somatomedin levels, did not stimulate an increase in length, weight or cell number. Postnatally the principal growth promoting hormones are the growth hormone dependent somatomedins. It is thought that multiplication stimulating activity (MSA) is the fetal somatomedin. However, under similar conditions to those used for insulin administration, MSA did not affect growth in the fetal pig. Administration of somatostatin to chronically catheterized fetuses inhibited (p≤0.01) and thyrotrophin releasing factor stimulated (≤0.01) GH release. However, chronic administration of SRIF did not inhibit fetal growth. Thus there does seem to be some hypothalamic control over GH secretion but this may not play a major role in regulating fetal growth

  3. Levels of human and rat hypothalamic growth hormone-releasing factor as determined by specific radioimmunoassay systems

    International Nuclear Information System (INIS)

    Audhya, T.; Manzione, M.M.; Nakane, T.; Kanie, N.; Passarelli, J.; Russo, M.; Hollander, C.S.

    1985-01-01

    Polyclonal antibodies to synthetic human pancreatic growth hormone-releasing factor [hpGRF(1-44)NH 2 ] and rat hypothalamic growth hormone-releasing factor [rhGRF(1-43)OH] were produced in rabbits. A subsequent booster injection by the conventional intramuscular route resulted in high-titer antibodies, which at a 1:20,000 dilution were used to develop highly sensitive and specific radioimmunoassays for these peptides. The antibody to hpGRF(1-44)NH 2 is directed against the COOH-terminal region of the molecule, as shown by its cross reactivity with various hpGRF analogues. Serial dilutions of human and rat hypothalamic extracts demonstrated parallelism with the corresponding species-specific standard and 125 I-labeled tracer. There was no cross reactivity with other neuropeptides, gastrointestinal peptides, or hypothalamic extracts of other species. Age-related changes in hypothalamic GRF content were present in rats, with a gradual increase from 2 to 16 weeks and a correlation between increasing body weight and GRF content. These radioimmunoassays will serve as important tools for understanding the regulation of growth hormone secretion in both human and rat

  4. [Common physicochemical characteristics of endogenous hormones-- liberins and statins].

    Science.gov (United States)

    Zamiatnin, A A; Voronina, O L

    1998-01-01

    The common chemical features of oligopeptide releasing-hormones and release inhibiting hormones were investigated with the aid of computer methods. 339 regulatory molecules of such type have been extracted out of data from computer bank EROP-Moscow. They contain from 2 to 47 amino acid residues and their sequences include short sites, which play apparently a decisive role in realization of interactions with the receptors. The analysis of chemical radicals shows that all liberins and statins contain positively charged group and cyclic radical of some amino acids or hydrophobic group. Results of this study indicate that the most chemical radicals of hormones are open for the interaction with potential receptors of target-cells. The mechanism of hormone ligand and receptors binding and conceivable role of amino acid and neurotransmitter radicals in hormonal properties of liberins and statins is discussed.

  5. Sexual dimorphism of stress response and immune/ inflammatory reaction: the corticotropin releasing hormone perspective

    Directory of Open Access Journals (Sweden)

    Nicholas V. Vamvakopoulos

    1995-01-01

    Full Text Available This review higlghts key aspects of corticotropin releasing hormone (CRH biology of potential relevance to the sexual dimorphism of the stress response and immune/inflammatory reaction, and introduces two important new concepts based on the regulatory potential of the human (h CRH gene: (1 a proposed mechanism to account for the tissue-specific antithetical responses of hCRH gene expression to glucocorticolds, that may also explain the frequently observed antithetical effects of chronic glucocorticoid administration in clinical practice and (2 a heuristic diagram to illustrate the proposed modulation of the stress response and immune/ inflammatory reaction by steroid hormones, from the perspective of the CRH system.

  6. Galanin does not affect the growth hormone-releasing hormone-stimulated growth hormone secretion in patients with hyperthyroidism.

    Science.gov (United States)

    Giustina, A; Bussi, A R; Legati, F; Bossoni, S; Licini, M; Schettino, M; Zuccato, F; Wehrenberg, W B

    1992-12-01

    Patients with hyperthyroidism have reduced spontaneous and stimulated growth hormone (GH) secretion. The aim of our study was to evaluate the effects of galanin, a novel neuropeptide which stimulates GH secretion in man, on the GH response to GHRH in patients with hyperthyroidism. Eight untreated hyperthyroid patients with Graves' disease (6F, 2M, aged 25-50 years) and six healthy volunteers (3F, 3M, aged 27-76 years) underwent from -10 to 30 min in random order: (i) porcine galanin, iv, 500 micrograms in 100 ml saline; or (ii) saline, iv, 100 ml. A bolus of human GHRH(1-29)NH2, 100 micrograms, was injected iv at 0 min. Hyperthyroid patients showed blunted GH peaks after GHRH+saline (10.2 +/- 2.5 micrograms/l) compared to normal subjects (20.7 +/- 4.8 micrograms/l, p hyperthyroid subjects (12.5 +/- 3 micrograms/l) compared to normal subjects (43.8 +/- 6 micrograms/l, p hyperthyroidism suggests that hyperthyroxinemia may either increase the somatostatin release by the hypothalamus or directly affect the pituitary GH secretory capacity.

  7. Octopus gonadotrophin-releasing hormone: a multifunctional peptide in the endocrine and nervous systems of the cephalopod.

    Science.gov (United States)

    Minakata, H; Shigeno, S; Kano, N; Haraguchi, S; Osugi, T; Tsutsui, K

    2009-03-01

    The optic gland, which is analogous to the anterior pituitary in the context of gonadal maturation, is found on the upper posterior edge of the optic tract of the octopus Octopus vulgaris. In mature octopus, the optic glands enlarge and secrete a gonadotrophic hormone. A peptide with structural features similar to that of vertebrate gonadotrophin-releasing hormone (GnRH) was isolated from the brain of octopus and was named oct-GnRH. Oct-GnRH showed luteinising hormone-releasing activity in the anterior pituitary cells of the Japanese quail Coturnix coturnix. Oct-GnRH immunoreactive signals were observed in the glandular cells of the mature optic gland. Oct-GnRH stimulated the synthesis and release of sex steroids from the ovary and testis, and elicited contractions of the oviduct. Oct-GnRH receptor was expressed in the gonads and accessory organs, such as the oviduct and oviducal gland. These results suggest that oct-GnRH induces the gonadal maturation and oviposition by regulating sex steroidogenesis and a series of egg-laying behaviours via the oct-GnRH receptor. The distribution and expression of oct-GnRH in the central and peripheral nervous systems suggest that oct-GnRH acts as a multifunctional modulatory factor in feeding, memory processing, sensory, movement and autonomic functions.

  8. Serum Testosterone Levels in Prostate Cancer Patients Undergoing Luteinizing Hormone-Releasing Hormone Agonist Therapy.

    Science.gov (United States)

    Morote, Juan; Comas, Inma; Planas, Jacques; Maldonado, Xavier; Celma, Ana; Placer, José; Ferrer, Roser; Carles, Joan; Regis, Lucas

    2018-04-01

    Serum testosterone measurement is recommended to assess the efficacy of androgen deprivation therapy (ADT) and to diagnose castration resistance in patients with prostate cancer (PCa). Currently, the accepted castrate level of serum testosterone is 50 ng/dL. Liquid chromatography and tandem mass spectrometry (LC MSMS) is the appropriate method to measure testosterone, especially at low levels. However, worldwide, chemiluminescent assays (CLIAs) are used in clinical laboratories, despite their lack of accuracy and reproducibility, because they are automatable, fast, sensitive, and inexpensive. We compared serum testosterone levels measured using LC MSMS and CLIAs in 126 patients with PCa undergoing luteinizing hormone-releasing hormone (LHRH) agonist therapy. The median serum testosterone level was 14.0 ng/dL (range, 2.0-67.0 ng/dL) with LC MSMS and 31.9 ng/dL (range, 10.0-91.6 ng/dL) with CLIA (P  50 ng/dL in 3 patients (2.4%). These ranges were found in 34 (27%), 72 (57.1%), and 20 (15.9%) patients when testosterone was measured using CLIA (P < .001). The castrate level of serum testosterone using LC MSMS and CLIA was 39.8 ng/dL (95% confidence interval [CI], 37.1-43.4 ng/dL) and 66.5 ng/dL (95% CI, 62.3-71.2 ng/dL), respectively. We found that CLIA overestimated the testosterone levels in PCa patients undergoing LHRH agonist therapy. Thus, the castration level was incorrectly considered inadequate with CLIA in almost 15% of patients. The true castration level of serum testosterone using an appropriate method is < 50 ng/dL. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Development of a radioimmunoassay for circulating levels of gonadotropin releasing hormone

    International Nuclear Information System (INIS)

    Moodbidri, S.B.; Joshi, L.R.; Sheth, A.R.; Rao, S.S.

    1976-01-01

    A specific and sensitive radioimmunoassay system has been developed for measuring gonadotropin releasing hormone (GnRH) in unextracted human serum. Circulating levels of GnRH, LH and FSH were determined in 37 serum samples obtained from twenty normal healthy women on different days of the menstrual cycle. GnRH and LH but not FSH exhibited similar patterns during the menstrual cycle. 125 I-labelled GnRH was used in the RIA system. (author)

  10. Zebrafish adult-derived hypothalamic neurospheres generate gonadotropin-releasing hormone (GnRH neurons

    Directory of Open Access Journals (Sweden)

    Christian Cortés-Campos

    2015-09-01

    Full Text Available Gonadotropin-releasing hormone (GnRH is a hypothalamic decapeptide essential for fertility in vertebrates. Human male patients lacking GnRH and treated with hormone therapy can remain fertile after cessation of treatment suggesting that new GnRH neurons can be generated during adult life. We used zebrafish to investigate the neurogenic potential of the adult hypothalamus. Previously we have characterized the development of GnRH cells in the zebrafish linking genetic pathways to the differentiation of neuromodulatory and endocrine GnRH cells in specific regions of the brain. Here, we developed a new method to obtain neural progenitors from the adult hypothalamus in vitro. Using this system, we show that neurospheres derived from the adult hypothalamus can be maintained in culture and subsequently differentiate glia and neurons. Importantly, the adult derived progenitors differentiate into neurons containing GnRH and the number of cells is increased through exposure to either testosterone or GnRH, hormones used in therapeutic treatment in humans. Finally, we show in vivo that a neurogenic niche in the hypothalamus contains GnRH positive neurons. Thus, we demonstrated for the first time that neurospheres can be derived from the hypothalamus of the adult zebrafish and that these neural progenitors are capable of producing GnRH containing neurons.

  11. Evaluation of in vivo [corrected] biological activity of new agmatine analogs of growth hormone-releasing hormone (GH-RH)

    Science.gov (United States)

    Bokser, L; Zarandi, M; Schally, A V

    1990-01-01

    The effects of agmatine analogs of growth hormone releasing hormone (GH-RH) were compared to GH-RH(1-29)-NH2 after intravenous (iv) and subcutaneous (sc) administration to pentobarbital-anesthetized male rats. After the iv injection, the analogs [desNH2-Tyr1,Ala15,Nle27] GH-RH(1-28)Agm (MZ-2-51); [desNH2-Tyr1,D-Lys12,Ala15,Nle27] GH-RH(1-28)Agm (MZ-2-57); [desNH2-Tyr1,Ala15,D-Lys21,Nle27] GH-RH(1-28)Agm (MZ-2-75) and [desNH2-Tyr1, D-Lys12,21, Ala15, Nle27] GH-RH(1-28)Agm (MZ-2-87) showed a potency equivalent to 4.4, 1.9, 1.07 and 1.03 times that of GH-RH (1-29)-NH2, respectively, at 5 min and 5.6, 1.8, 1.9 and 1.8 times higher, respectively, at 15 min. After sc administration, analogs MZ-2-51, MZ-2-57 and MZ-2-75 showed to be 34.3, 14.3 and 10.5 times more potent than the parent hormone at 15 min and 179.1, 88.9 and 45.0 times more active, respectively, at 30 min. In addition, MZ-2-51 had prolonged GH-releasing activity as compared to the standard. We also compared the activity of MZ-2-51 and MZ-2-57 with their homologous L-Arg and D-Arg analogs [desNH2-Tyr1,Ala15,Nle27] GH-RH(1-29)-NH2 (MZ-2-117), [des-NH2Tyr1,D-Lys12, Ala15, Nle27] GH-RH(1-29)NH2 (MZ-2-123) and [desNH2-Tyr1,D-Lys12,Ala15, Nle27,D-Arg29] GH-RH(1-29)NH2 (MZ-2-135) after intramuscular (im) injection. MZ-2-51 induced a somewhat greater GH release than MZ-2-117 at 15 min, both responses being larger than the controls (p less than 0.01) at 15 and 30 min. MZ-2-57, MZ-2-123 and MZ-2-135 given i.m. were able to stimulate GH release only at 15 minutes (p less than 0.05). Animals injected i.m. with MZ-2-51, but not with MZ-2-117, showed GH levels significantly higher than the control group (p less than 0.05) at 60 min. GH-RH(1-29)NH2 had low activity intramuscularly when tested at a dose of 2.5 micrograms. No toxic effects were observed after the iv administration of 1 mg/kg of Agm GH-RH analogs. These results indicate that our Agm analogs are active iv, sc and im and that the substitutions made in these

  12. Pulsatile gonadotrophin releasing hormone for ovulation induction in subfertility associated with polycystic ovary syndrome

    NARCIS (Netherlands)

    Bayram, N.; van Wely, M.; van der Veen, F.

    2004-01-01

    BACKGROUND: In normal menstrual cycles, gonadotrophin releasing hormone (GnRH) secretion is pulsatile, with intervals of 60-120 minutes in the follicular phase. Treatment with pulsatile GnRH infusion by the intravenous or subcutaneous route using a portable pump has been used successfully in

  13. Expression and role of gonadotropin-releasing hormone 2 and its receptor in mammals

    Science.gov (United States)

    Gonadotropin-releasing hormone (GnRH1) and its receptor (GnRHR1) drive mammalian reproduction via regulation of the gonadotropins. Yet, a second form of GnRH (GnRH2) and its receptor (GnRHR2) also exist in some mammals. GnRH2 has been completely conserved throughout 500 million years of evolution, s...

  14. Ultradian hormone stimulation induces glucocorticoid receptor-mediated pulses of gene transcription.

    Science.gov (United States)

    Stavreva, Diana A; Wiench, Malgorzata; John, Sam; Conway-Campbell, Becky L; McKenna, Mervyn A; Pooley, John R; Johnson, Thomas A; Voss, Ty C; Lightman, Stafford L; Hager, Gordon L

    2009-09-01

    Studies on glucocorticoid receptor (GR) action typically assess gene responses by long-term stimulation with synthetic hormones. As corticosteroids are released from adrenal glands in a circadian and high-frequency (ultradian) mode, such treatments may not provide an accurate assessment of physiological hormone action. Here we demonstrate that ultradian hormone stimulation induces cyclic GR-mediated transcriptional regulation, or gene pulsing, both in cultured cells and in animal models. Equilibrium receptor-occupancy of regulatory elements precisely tracks the ligand pulses. Nascent RNA transcripts from GR-regulated genes are released in distinct quanta, demonstrating a profound difference between the transcriptional programs induced by ultradian and constant stimulation. Gene pulsing is driven by rapid GR exchange with response elements and by GR recycling through the chaperone machinery, which promotes GR activation and reactivation in response to the ultradian hormone release, thus coupling promoter activity to the naturally occurring fluctuations in hormone levels. The GR signalling pathway has been optimized for a prompt and timely response to fluctuations in hormone levels, indicating that biologically accurate regulation of gene targets by GR requires an ultradian mode of hormone stimulation.

  15. Structural and functional divergence of growth hormone-releasing hormone receptors in early sarcopterygians: lungfish and Xenopus.

    Directory of Open Access Journals (Sweden)

    Janice K V Tam

    Full Text Available The evolutionary trajectories of growth hormone-releasing hormone (GHRH receptor remain enigmatic since the discovery of physiologically functional GHRH-GHRH receptor (GHRHR in non-mammalian vertebrates in 2007. Interestingly, subsequent studies have described the identification of a GHRHR(2 in chicken in addition to the GHRHR and the closely related paralogous receptor, PACAP-related peptide (PRP receptor (PRPR. In this article, we provide information, for the first time, on the GHRHR in sarcopterygian fish and amphibians by the cloning and characterization of GHRHRs from lungfish (P. dolloi and X. laevis. Sequence alignment and phylogenetic analyses demonstrated structural resemblance of lungfish GHRHR to their mammalian orthologs, while the X. laevis GHRHR showed the highest homology to GHRHR(2 in zebrafish and chicken. Functionally, lungfish GHRHR displayed high affinity towards GHRH in triggering intracellular cAMP and calcium accumulation, while X. laevis GHRHR(2 was able to react with both endogenous GHRH and PRP. Tissue distribution analyses showed that both lungfish GHRHR and X. laevis GHRHR(2 had the highest expression in brain, and interestingly, X. laevis(GHRHR2 also had high abundance in the reproductive organs. These findings, together with previous reports, suggest that early in the Sarcopterygii lineage, GHRHR and PRPR have already established diverged and specific affinities towards their cognate ligands. GHRHR(2, which has only been found in xenopus, zebrafish and chicken hitherto, accommodates both GHRH and PRP.

  16. Calcium-independent phosphatidylinositol response in gonadotropin-releasing-hormone-stimulated pituitary cells.

    OpenAIRE

    Naor, Z; Molcho, J; Zakut, H; Yavin, E

    1985-01-01

    This paper describes the effect of gonadotropin-releasing hormone (GnRH, gonadoliberin) on phospholipid metabolism in cultured rat pituitary cells. The cells were incubated with [32P]Pi to label endogenous phospholipids (10-60 min) and then stimulated with GnRH for up to 60 min. Cellular phospholipids were separated by two-dimensional t.l.c. and the radioactivity was determined. Phosphatidylinositol (PI), a minor constituent of cellular phospholipids (7.7%), was the major labelled phospholipi...

  17. Broodstock management and hormonal manipulations of fish reproduction.

    Science.gov (United States)

    Mylonas, Constantinos C; Fostier, Alexis; Zanuy, Silvia

    2010-02-01

    Control of reproductive function in captivity is essential for the sustainability of commercial aquaculture production, and in many fishes it can be achieved by manipulating photoperiod, water temperature or spawning substrate. The fish reproductive cycle is separated in the growth (gametogenesis) and maturation phase (oocyte maturation and spermiation), both controlled by the reproductive hormones of the brain, pituitary and gonad. Although the growth phase of reproductive development is concluded in captivity in most fishes-the major exemption being the freshwater eel (Anguilla spp.), oocyte maturation (OM) and ovulation in females, and spermiation in males may require exogenous hormonal therapies. In some fishes, these hormonal manipulations are used only as a management tool to enhance the efficiency of egg production and facilitate hatchery operations, but in others exogenous hormones are the only way to produce fertilized eggs reliably. Hormonal manipulations of reproductive function in cultured fishes have focused on the use of either exogenous luteinizing hormone (LH) preparations that act directly at the level of the gonad, or synthetic agonists of gonadotropin-releasing hormone (GnRHa) that act at the level of the pituitary to induce release of the endogenous LH stores, which, in turn act at the level of the gonad to induce steroidogenesis and the process of OM and spermiation. After hormonal induction of maturation, broodstock should spawn spontaneously in their rearing enclosures, however, the natural breeding behavior followed by spontaneous spawning may be lost in aquaculture conditions. Therefore, for many species it is also necessary to employ artificial gamete collection and fertilization. Finally, a common question in regards to hormonal therapies is their effect on gamete quality, compared to naturally maturing or spawning broodfish. The main factors that may have significant consequences on gamete quality-mainly on eggs-and should be considered

  18. Is radiation-induced ovarian failure in rhesus monkeys preventable by luteinizing hormone-releasing hormone agonists?: Preliminary observations

    International Nuclear Information System (INIS)

    Ataya, K.; Pydyn, E.; Ramahi-Ataya

    1995-01-01

    With the advent of cancer therapy, increasing numbers of cancer patients are achieving long term survival. Impaired ovarian function after radiation therapy has been reported in several studies. Some investigators have suggested that luteinizing hormone-releasing hormone agonists (LHRHa) can prevent radiation-induced ovarian injury in rodents. Adult female rhesus monkeys were given either vehicle or Leuprolide acetate before, during, and after radiation. Radiation was given in a dose of 200 rads/day for a total of 4000 rads to the ovaries. Frequent serum samples were assayed for estradiol (E 2 ) and FSH. Ovariectomy was performed later. Ovaries were processed and serially sectioned. Follicle count and size distribution were determined. Shortly after radiation started, E 2 dropped to low levels, at which it remained, whereas serum FSH level, which was low before radiation, rose soon after starting radiation. In monkeys treated with a combination of LHRHa and radiation, FSH started rising soon after the LHRHa-loaded minipump was removed (after the end of radiation). Serum E 2 increased after the end of LHRHa treatment in the non-irradiated monkey, but not in the irradiated monkey. Follicle counts were not preserved in the LHRHa-treated monkeys that received radiation. The data demonstrated no protective effect of LHRHa treatment against radiation-induced ovarian injury in this rhesus monkey model. 58 refs., 2 figs., 1 tab

  19. Semi-quantitative ultrastructural analysis of the localization and neuropeptide content of gonadotropin releasing hormone nerve terminals in the median eminence throughout the estrous cycle of the rat.

    Science.gov (United States)

    Prevot, V; Dutoit, S; Croix, D; Tramu, G; Beauvillain, J C

    1998-05-01

    The ultrastructural appearance of gonadotropin releasing hormone-immunoreactive elements was studied in the external zone of the median eminence of adult female Wistar rats. On the one hand, the purpose of the study was to determine the distribution of gonadotropin releasing hormone terminals towards the parenchymatous basal lamina at the level of hypothalamo-hypophyseal portal vessels, throughout the estrous cycle. On the other hand, we have semi-quantified the gonadotropin releasing hormone content in nerve terminals or preterminals during this physiological condition. A morphometric study was coupled to a colloidal 15 mn gold postembedding immunocytochemistry procedure. Animals were killed at 09.00 on diestrus II, 0.900, 10.00, 13.00, 17.00 and 18.00 on proestrus and 09.00 on estrus (n = 4-8 rats/group). A preliminary light microscopic study was carried out to identify an antero-posterior part of median eminence strongly immunostained by anti-gonadotropin releasing hormone antibodies but which was, in addition, easily spotted. This last condition was necessary to make a good comparison between each animal. Contacts between gonadotropin releasing hormone nerve terminals and the basal lamina were observed only the day of proestrus. Such contacts, however, were rare and in the great majority of cases, gonadotropin releasing hormone terminals are separated from basal lamina by tanycytic end feet. The morphometric analysis showed no significant variation in average distance between gonadotropin releasing hormone terminals and capillaries throughout the estrous cycle. Consequently, it did not appear that a large neuroglial plasticity exists during the estrous cycle. However, the observation of contacts only on proestrus together with some ultrastructural images evoke the possibility of a slight plasticity. The semi-quantitative results show that the content of gonadotropin releasing hormone in the nerve endings presented two peaks on proestrus: one at 09.00 (23 +/- 5

  20. Paraventricular nucleus of the human hypothalamus in primary hypertension: Activation of corticotropin-releasing hormone neurons

    NARCIS (Netherlands)

    Goncharuk, Valeri D.; van Heerikhuize, Joop; Swaab, Dick F.; Buijs, Ruud M.

    2002-01-01

    By using quantitative immunohistochemical and in situ hybridization techniques, we studied corticotropin-releasing hormone (CRH)-producing neurons of the hypothalamic paraventricular nucleus (PVN) in patients who suffered from primary hypertension and died due to acute cardiac failure. The control

  1. Effects of graded doses of goitrin, a goitrogen in rapeseed, on synthesis and release of thyroid hormone in chicks

    International Nuclear Information System (INIS)

    Akiba, Yukio; Matsumoto, Tatsuro

    1977-01-01

    Intrathyroidal metabolism in synthesis and release of thyroid hormone was investigated in chicks administered three different levels of goitrin (0.0125, 0.025 and 0.05% in the diet) for 14 days. Thyroid glands were enlarged to 2-5 times as large as that of the control in proportion to the goitrin content of the diet. Typical high radioiodine uptake goiter was demonstrated in the goitrin-administered chicks. Total thyroid 125 I content increased about twice as much as that of the control in the goitrin-administered chicks though it was depressed in 0.0065% PUT-administered chicks. Decrease of plasma PB 125 I (approximately a half of the control) was ascertained by the estimation of plasma thyroxine by radiostereoassay. In the intrathyroidal metabolism of iodine, synthesis of iodothyronines and iodination of MIT were suppressed by goitrin, but monoiodination of tyrosine was rather accelerated. The elevated ratio of thyroid iodothyronines/plasma PBI (1.5-1.7 times as much as that of the control) reveals that the depression of plasma level of thyroid hormone is more striking than the decrease in thyroid hormone in the gland in the goitrin-administered chicks. It is, therefore, suggested that goitrin has inhibitory effects not only on the biosynthesis of thyroid hormone in the gland but also on the release of thyroid hormone from the gland. (auth.)

  2. Gonadotropin-releasing hormone agonist versus HCG for oocyte triggering in antagonist assisted reproductive technology cycles

    NARCIS (Netherlands)

    Youssef, Mohamed A. F. M.; van der Veen, Fulco; Al-Inany, Hesham G.; Griesinger, Georg; Mochtar, Monique H.; Aboulfoutouh, Ismail; Khattab, Sherif M.; van Wely, Madelon

    2011-01-01

    Background Gonadotropin-releasing hormone (GnRH) antagonist protocols for pituitary down regulation in in vitro fertilisation (IVF) and intracytoplasmic sperm injection (ICSI) allow the use of GnRH agonists for triggering final oocyte maturation. Currently, human chorionic gonadotropin (HCG) is

  3. Acute gonadotropin-releasing hormone agonist treatment enhances extinction memory in male rats.

    Science.gov (United States)

    Maeng, L Y; Taha, M B; Cover, K K; Glynn, S S; Murillo, M; Lebron-Milad, K; Milad, M R

    2017-08-01

    Leuprolide acetate (LEU), also known as Lupron, is commonly used to treat prostate cancer in men. As a gonadotropin-releasing hormone (GnRH) receptor agonist, it initially stimulates the release of gonadal hormones, testosterone (T) and estradiol. This surge eventually suppresses these hormones, preventing the further growth and spread of cancer cells. Individuals receiving this treatment often report anxiety and cognitive changes, but LEU's effects on the neural mechanisms that are involved in anxiety during the trajectory of treatment are not well known. In this study, we examined the acute effects of LEU on fear extinction, hypothesizing that increased T levels following a single administration of LEU will facilitate extinction recall by altering neuronal activity within the fear extinction circuitry. Two groups of naïve adult male rats underwent a 3-day fear conditioning, extinction, and recall experiment. The delayed group (n=15) received a single injection of vehicle or LEU (1.2mg/kg) 3weeks before behavioral testing. The acute group (n=25) received an injection one day after fear conditioning, 30min prior to extinction training. Following recall, the brains for all animals were collected for c-fos immunohistochemistry. Blood samples were also collected and assayed for T levels. Acute administration of LEU increased serum T levels during extinction training and enhanced extinction recall 24h later. This enhanced extinction memory was correlated with increased c-fos activity within the infralimbic cortex and amygdala, which was not observed in the delayed group. These results suggest that the elevation in T induced by acute administration of LEU can influence extinction memory consolidation, perhaps through modification of neuronal activity within the infralimbic cortex and amygdala. This may be an important consideration in clinical applications of LEU and its effects on anxiety and cognition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Double insemination and gonadotropin-releasing hormone treatment of repeat-breeding dairy cattle.

    Science.gov (United States)

    Stevenson, J S; Call, E P; Scoby, R K; Phatak, A P

    1990-07-01

    Our objective was to determine if double inseminations during the same estrous period of dairy cattle eligible for their third or fourth service (repeat breeders) would improve pregnancy rates equivalent to injections of GnRH given at the time of AI. Repeat-breeding, lactating cows from six herds (five herds in the San Joaquin Valley of central California and one herd in northeast Kansas) were assigned randomly to four treatment groups when detected in estrus: 1) single AI plus no injection, 2) single AI plus 100 micrograms GnRH at AI, 3) double AI plus no injection, or 4) double AI plus 100 micrograms of GnRH at AI. Inseminations were performed according to the a.m.-p.m. rule. The second AI for the double AI treatment was given 12 to 16 h after the first AI. Injections of GnRH were given intramuscularly immediately following the single AI or the first AI of the double AI. Pregnancy rates of cows given a single AI and hormone injection were numerically higher in all six herds than those of their herdmates given only a single AI. In five of six herds, the pregnancy rates of cows given a double AI and hormone injection were numerically higher than pregnancy rates of their herdmates given only a double AI. Overall pregnancy rates for the four treatments were 1) 112/353 (32.1%), 2) 165/406 (41.6%), 3) 119/364 (33.5%), and 4) 135/359 (37.5%). Gonadotropin-releasing hormone increased pregnancy rates of repeat breeders compared with controls given only a single AI. No further benefit beyond the single AI was accrued from the double AI treatment, with or without concurrent hormone administration.

  5. Involvement of hormones in olfactory imprinting and homing in chum salmon.

    Science.gov (United States)

    Ueda, Hiroshi; Nakamura, Shingo; Nakamura, Taro; Inada, Kaoru; Okubo, Takashi; Furukawa, Naohiro; Murakami, Reiichi; Tsuchida, Shigeo; Zohar, Yonathan; Konno, Kotaro; Watanabe, Masahiko

    2016-02-16

    The olfactory hypothesis for salmon imprinting and homing to their natal stream is well known, but the endocrine hormonal control mechanisms of olfactory memory formation in juveniles and retrieval in adults remain unclear. In brains of hatchery-reared underyearling juvenile chum salmon (Oncorhynchus keta), thyrotropin-releasing hormone gene expression increased immediately after release from a hatchery into the natal stream, and the expression of the essential NR1 subunit of the N-methyl-D-aspartate receptor increased during downstream migration. Gene expression of salmon gonadotropin-releasing hormone (sGnRH) and NR1 increased in the adult chum salmon brain during homing from the Bering Sea to the natal hatchery. Thyroid hormone treatment in juveniles enhanced NR1 gene activation, and GnRHa treatment in adults improved stream odour discrimination. Olfactory memory formation during juvenile downstream migration and retrieval during adult homing migration of chum salmon might be controlled by endocrine hormones and could be clarified using NR1 as a molecular marker.

  6. Gonadotrophin-Releasing Hormone Agonists and Other Contraceptive Medications in Exotic Companion Animals.

    Science.gov (United States)

    Schoemaker, Nico J

    2018-05-01

    The use of a gonadotrophin-releasing hormone agonist slow-release implant (GnRH A-SRI) has become increasingly popular as an alternative for surgical contraception in many species. Although these implants have proven to be very effective in some species (eg, ferrets, rats, chicken, psittacines, and iguanas), they have been found less effective in other species (eg, male guinea pigs and rabbits, veiled chameleons, slider turtles, and leopard geckos). This review provides an overview of the available literature on the effects of GnRH A-SRIs in companion exotic animals. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Effect of in ovo injection of corticotropin-releasing hormone on the timing of hatching in broiler chickens.

    Science.gov (United States)

    Watanabe, Yugo; Grommen, Sylvia V H; De Groef, Bert

    2017-09-01

    In chicken embryos, intravenous injection of corticotropin-releasing hormone (CRH) causes the release of both corticosteroids and thyroid hormones. These hormones initiate and enhance the hatching process, raising the possibility that CRH treatment of the late chicken embryo could accelerate hatching and/or decrease the spread of hatching. We performed a series of exploratory tests to investigate whether in ovo delivery methods of CRH other than intravenous injection that are more practical in a commercial setting, affect hatching time in broilers. Corticotropin-releasing hormone was injected into the air cell, albumen, or amniotic fluid of broiler breeder eggs, in the last week of embryonic development. Average incubation duration was significantly decreased by 22 h when 2 μg of CRH was injected into the air cell on embryonic day 18 (E18) of Cobb eggs. Acceleration of hatching (but only by 8 h) was also seen for Ross chicks when CRH was injected daily into the albumen between E10 and E18. However, repeats of both experiments did not show consistent effects of CRH on hatching time; in most experiments performed, CRH did not affect hatching time. We speculate that the effectiveness of CRH uptake via these delivery methods and/or the duration and magnitude of the thyroxine and corticosterone response to CRH is not sufficient to have a substantial effect on hatching time. We therefore conclude that in ovo CRH treatment does not seem a feasible option as a practical tool to increase hatchery productivity or to investigate the effects of CRH agonists and antagonists on hatching. © 2017 Poultry Science Association Inc.

  8. Role of the new growth hormone-releasing secretagogues in the diagnosis of some hypothalamopituitary pathologies.

    Science.gov (United States)

    Casanueva, F F; Micic, D; Pombo, M; Leal, A; Bokser, L; Zugaza, J L; Dieguez, C

    1996-08-01

    Growth hormone (GH)-releasing hormone (GHRH) and somatostatin have a dominant role in regulating GH secretion. However, results of studies using the new class of GH secretogogues, particularly GHRP-6, indicate that there may also be other, as yet undefined, hypothalamic mechanisms involved. Studies in adults with hypothalamopituitary disconnection (functional pituitary stalk transection), show GHRP-6-mediated GH release to be completely blocked, indicating a main action at the hypothalamic rather than the pituitary level. The synergistic effect of GHRH plus GHRP-6 administration on GH release seen in normal adults (and virtually unaffected by age, obesity, or sex) is also absent in these patients, providing further support for this conclusion. Studies of the effects of GHRP-6 in children with GH deficiency due to perinatal pituitary stalk transection have produced similar findings. It is suggested that the combined GHRH plus GHRH-6 test should be a promising tool for diagnosing GH deficiency states in both children and adults, and may identify a subgroup of patients with GH deficiency caused by interruption of the hypothalamopituitary connection.

  9. Hormones

    Science.gov (United States)

    Hormones are your body's chemical messengers. They travel in your bloodstream to tissues or organs. They work ... glands, which are special groups of cells, make hormones. The major endocrine glands are the pituitary, pineal, ...

  10. Growth hormone-releasing peptides.

    Science.gov (United States)

    Ghigo, E; Arvat, E; Muccioli, G; Camanni, F

    1997-05-01

    Growth hormone-releasing peptides (GHRPs) are synthetic, non-natural peptides endowed with potent stimulatory effects on somatotrope secretion in animals and humans. They have no structural homology with GHRH and act via specific receptors present either at the pituitary or the hypothalamic level both in animals and in humans. The GHRP receptor has recently been cloned and, interestingly, it does not show sequence homology with other G-protein-coupled receptors known so far. This evidence strongly suggests the existence of a natural GHRP-like ligand which, however, has not yet been found. The mechanisms underlying the GHRP effect are still unclear. At present, several data favor the hypothesis that GHRPs could act by counteracting somatostatinergic activity both at the pituitary and the hypothalamic level and/or, at least partially, via a GHRH-mediated mechanism. However, the possibility that GHRPs act via an unknown hypothalamic factor (U factor) is still open. GHRP-6 was the first hexapeptide to be extensively studied in humans. More recently, a heptapeptide, GHRP-1, and two other hexapeptides, GHRP-2 and Hexarelin, have been synthesized and are now available for human studies. Moreover, non-peptidyl GHRP mimetics have been developed which act via GHRP receptors and their effects have been clearly demonstrated in animals and in humans in vivo. Among non-peptidyl GHRPs, MK-0677 seems the most interesting molecule. The GH-releasing activity of GHRPs is marked and dose-related after intravenous, subcutaneous, intranasal and even oral administration. The effect of GHRPs is reproducible and undergoes partial desensitization, more during continuous infusion, less during intermittent administration: in fact, prolonged administration of GHRPs increases IGF-1 levels both in animals and in humans. The GH-releasing effect of GHRPs does not depend on sex but undergoes age-related variations. It increases from birth to puberty, persists at a similar level in adulthood and

  11. BDNF and glucocorticoids regulate corticotrophin-releasing hormone (CRH) homeostasis in the hypothalamus

    OpenAIRE

    Jeanneteau, Freddy D.; Lambert, W. Marcus; Ismaili, Naima; Bath, Kevin G.; Lee, Francis S.; Garabedian, Michael J.; Chao, Moses V.

    2012-01-01

    Regulation of the hypothalamic–pituitary–adrenal (HPA) axis is critical for adaptation to environmental changes. The principle regulator of the HPA axis is corticotrophin-releasing hormone (CRH), which is made in the parventricular nucleus and is an important target of negative feedback by glucocorticoids. However, the molecular mechanisms that regulate CRH are not fully understood. Disruption of normal HPA axis activity is a major risk factor of neuropsychiatric disorders in which decreased ...

  12. Characterization of brn1.2 and corticotropin-releasing hormone genes in zebrafish

    OpenAIRE

    Chandrasekar, Gayathri

    2007-01-01

    The zebrafish (Danio rerio), a tropical fresh water fish originally found in the rivers of India and Bangladesh has become a popular vertebrate model system over the last decade. The rapid sequencing of the zebrafish genome together with the latest advances in forward and reverse genetics has made this model organism more fascinating as it can be used to decipher the genetic mechanisms involved in the vertebrate development. Corticotropin-releasing hormone (CRH) regulates t...

  13. Gonadotropin-Releasing Hormone Stimulate Aldosterone Production in a Subset of Aldosterone-Producing Adenoma

    Science.gov (United States)

    Kishimoto, Rui; Oki, Kenji; Yoneda, Masayasu; Gomez-Sanchez, Celso E.; Ohno, Haruya; Kobuke, Kazuhiro; Itcho, Kiyotaka; Kohno, Nobuoki

    2016-01-01

    Abstract We aimed to detect novel genes associated with G protein-coupled receptors (GPCRs) in aldosterone-producing adenoma (APA) and elucidate the mechanisms underlying aldosterone production. Microarray analysis targeting GPCR-associated genes was conducted using APA without known mutations (APA-WT) samples (n = 3) and APA with the KCNJ5 mutation (APA-KCNJ5; n = 3). Since gonadotropin-releasing hormone receptor (GNRHR) was the highest expression in APA-WT by microarray analysis, we investigated the effect of gonadotropin-releasing hormone (GnRH) stimulation on aldosterone production. The quantitative polymerase chain reaction assay results revealed higher GNRHR expression levels in APA-WT samples those in APA-KCNJ5 samples (P APA-WT samples, and there was a significant and positive correlation between GNRHR and LHCGR expression in all APA samples (r = 0.476, P APA-WT (n = 9), which showed higher GNRHR and LHCGR levels, had significantly higher GnRH-stimulated aldosterone response than those with APA-KCNJ5 (n = 13) (P APA-WT, and the molecular analysis including the receptor expression associated with clinical findings of GnRH stimulation. PMID:27196470

  14. The replacement of serum by hormones in cell culture media.

    Science.gov (United States)

    Sato, G; Hayashi, I

    1976-12-01

    The replacement of serum by hormones in cell culture media. (Reemplazo del suero por hormonas en el medio de cultivo de células). Arch. Biol. Med. Exper. 10: 120-121, 1976. The serum used in cell culture media can be replaced by a mixture of hormones and some accesory blood factors. The pituitary cell line GH3 can be grown in a medium in which serum is replaced by triiodothyronine, transferrin, parathormone, tyrotrophin releasing hormone and somatomedins. Hela and BHK cell strains can also be grown in serum free medium supplemented with hormones. Each cell type appears to have different hormonal requirements yet it may found that some hormones are required for most cell types.

  15. Animal manure separation technologies diminish the environmental burden of steroid hormones

    DEFF Research Database (Denmark)

    Hansen, Martin; Björklund, Erland; Popovic, Olga

    2015-01-01

    environmental risks associated with the release of steroid hormones to adjacent waterways. To assess the potential benefit of these technologies in reducing the level of release of steroid hormones to adjacent waterways, distribution profiles of nine steroid hormones (pregnenolone, progesterone......Newly developed treatment technologies are capable of separating livestock manure into a liquid fraction and a solid fraction using sedimentation, mechanical, and/or chemical methods. These technologies offer a potential means of distributing nutrients to agricultural lands without the unwanted...

  16. Dominant dwarfism in transgenic rats by targeting human growth hormone (GH) expression to hypothalamic GH-releasing factor neurons.

    OpenAIRE

    Flavell, D M; Wells, T; Wells, S E; Carmignac, D F; Thomas, G B; Robinson, I C

    1996-01-01

    Expression of human growth hormone (hGH) was targeted to growth hormone-releasing (GRF) neurons in the hypothalamus of transgenic rats. This induced dominant dwarfism by local feedback inhibition of GRF. One line, bearing a single copy of a GRF-hGH transgene, has been characterized in detail, and has been termed Tgr (for Transgenic growth-retarded). hGH was detected by immunocytochemistry in the brain, restricted to the median eminence of the hypothalamus. Low levels were also detected in the...

  17. Effects of progesterone injection on performance, plasma hormones ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-16

    Nov 16, 2009 ... triggers gonadotropin-releasing hormone (GnRH) release ... open period has been shown to have positive effect on inducing a preovulatory ..... release, injectable levonorgestrel and depot medroxyprogesterone acetate on.

  18. Cholinergic and VIPergic effects on thyroid hormone secretion in the mouse

    International Nuclear Information System (INIS)

    Ahren, B.

    1985-01-01

    The thyroid gland is known to harbor cholinergic and VIPergic nerves. In the present study, the influences of cholinergic stimulation by carbachol, cholinergic blockade by methylatropine and stimulation with various VIP sequences on basal, TSH-induced and VIP-induced thyroid hormone secretion were investigated in vivo in mice. The mice were pretreated with 125 I and thyroxine; the subsequent release of 125 I is an estimation of thyroid hormone secretion. It was found that basal radioiodine secretion was inhibited by both carbachol and methylatropine. Furthermore, TSH-induced radioiodine secretion was inhibited already by a low dose of carbachol. Moreover, a high dose of carbachol could inhibit VIP-induced radioiodine secretion. Methylatropine did not influence TSH- or VIP-stimulated radioiodine secretion, but counteracted the inhibitory action of carbachol on TSH- and VIP-induced radioiodine release. In addition, contrary to VIP, six various synthesized VIP fragments had no effect on basal or stimulated radioiodine release. It is concluded that basal thyroid hormone secretion is inhibited by both cholinergic activation and blockade. Furthermore, TSH-induced thyroid hormone secretion is more sensitive to inhibition with cholinergic stimulation than is VIP-induced thyroid hormone secretion. In addition, the VIP stimulation of thyroid hormone secretion seems to require the full VIP sequence

  19. The estrogen myth: potential use of gonadotropin-releasing hormone agonists for the treatment of Alzheimer's disease.

    Science.gov (United States)

    Casadesus, Gemma; Garrett, Matthew R; Webber, Kate M; Hartzler, Anthony W; Atwood, Craig S; Perry, George; Bowen, Richard L; Smith, Mark A

    2006-01-01

    Estrogen and other sex hormones have received a great deal of attention for their speculative role in Alzheimer's disease (AD), but at present a direct connection between estrogen and the pathogenesis of AD remains elusive and somewhat contradictory. For example, on one hand there is a large body of evidence suggesting that estrogen is neuroprotective and improves cognition, and that hormone replacement therapy (HRT) at the onset of menopause reduces the risk of developing AD decades later. However, on the other hand, studies such as the Women's Health Initiative demonstrate that HRT initiated in elderly women increases the risk of dementia. While estrogen continues to be investigated, the disparity of findings involving HRT has led many researchers to examine other hormones of the hypothalamic-pituitary-gonadal axis such as luteinising hormone (LH) and follicle-stimulating hormone. In this review, we propose that LH, rather than estrogen, is the paramount player in the pathogenesis of AD. Notably, both men and women experience a 3- to 4-fold increase in LH with aging, and LH receptors are found throughout the brain following a regional pattern remarkably similar to those neuron populations affected in AD. With respect to disease, serum LH level is increased in women with AD relative to non-diseased controls, and levels of LH in the brain are also elevated in AD. Mechanistically, we propose that elevated levels of LH may be a fundamental instigator responsible for the aberrant reactivation of the cell cycle that is seen in AD. Based on these aforementioned aspects, clinical trials underway with leuprolide acetate, a gonadotropin-releasing hormone agonist that ablates serum LH levels, hold great promise as a ready means of treatment in individuals afflicted with AD.

  20. Effect of aging on GHRF-induced growth hormone release from anterior pituitary cells in primary culture

    International Nuclear Information System (INIS)

    Spik, K.W.; Boyd, R.L.; Sonntag, W.E.

    1991-01-01

    Five criteria were developed to validate the primary cell culture model for comparison of GRF-induced release of growth hormone in pituitary tissue from aging animals. Pituitaries from young (5-mo), middle-aged (14-mo), and old (24-mo) male Fischer 344 rats were dispersed using either trypsin/trypsin inhibitor or dispase and compared with respect to the number of pituitary cells recovered, cell viability, 3H-leucine incorporation into total protein, time course for recovery of optimal response to GRF, and the dose-relationship for GRF-induced release of growth hormone 2, 4, and 6 days after dispersal. Results indicated that direct comparison of cellular responses between tissues from young, middle-aged, and old rats in primary cell culture is confounded by variations in time for recovery of optimal responses, the effects of the enzymes used for dispersal, and the methods used to express the data

  1. Nonreproductive role of gonadotropin-releasing hormone in the control of ascidian metamorphosis.

    Science.gov (United States)

    Kamiya, Chisato; Ohta, Naoyuki; Ogura, Yosuke; Yoshida, Keita; Horie, Takeo; Kusakabe, Takehiro G; Satake, Honoo; Sasakura, Yasunori

    2014-12-01

    Gonadotropin-releasing hormones (GnRHs) are neuropeptides that play central roles in the reproduction of vertebrates. In the ascidian Ciona intestinalis, GnRHs and their receptors are expressed in the nervous systems at the larval stage, when animals are not yet capable of reproduction, suggesting that the hormones have non-reproductive roles. We showed that GnRHs in Ciona are involved in the animal's metamorphosis by regulating tail absorption and adult organ growth. Absorption of the larval tail and growth of the adult organs are two major events in the metamorphosis of ascidians. When larvae were treated with GnRHs, they completed tail absorption more frequently than control larvae. cAMP was suggested to be a second messenger for the induction of tail absorption by GnRHs. tGnRH-3 and tGnRH-5 (the "t" indicates "tunicate") inhibited the growth of adult organs by arresting cell cycle progression in parallel with the promotion of tail absorption. This study provides new insights into the molecular mechanisms of ascidian metamorphosis conducted by non-reproductive GnRHs. © 2014 Wiley Periodicals, Inc.

  2. Effect of growth hormone replacement therapy on pituitary hormone secretion and hormone replacement therapies in GHD adults

    DEFF Research Database (Denmark)

    Hubina, Erika; Mersebach, Henriette; Rasmussen, Ase Krogh

    2004-01-01

    We tested the impact of commencement of GH replacement therapy in GH-deficient (GHD) adults on the circulating levels of other anterior pituitary and peripheral hormones and the need for re-evaluation of other hormone replacement therapies, especially the need for dose changes.......We tested the impact of commencement of GH replacement therapy in GH-deficient (GHD) adults on the circulating levels of other anterior pituitary and peripheral hormones and the need for re-evaluation of other hormone replacement therapies, especially the need for dose changes....

  3. Gonadotropin-Releasing Hormone Regulates Expression of the DNA Damage Repair Gene, Fanconi anemia A, in Pituitary Gonadotroph Cells1

    OpenAIRE

    Larder, Rachel; Chang, Lynda; Clinton, Michael; Brown, Pamela

    2004-01-01

    Gonadal function is critically dependant on regulated secretion of the gonadotropin hormones from anterior pituitary gonadotroph cells. Gonadotropin biosynthesis and release is triggered by the binding of hypothalamic GnRH to GnRH receptor expressed on the gonadotroph cell surface. The repertoire of regulatory molecules involved in this process are still being defined. We used the mouse LβT2 gonadotroph cell line, which expresses both gonadotropin hormones, as a model to investigate GnRH regu...

  4. Enhanced Anti-Tumoral Activity of Methotrexate-Human Serum Albumin Conjugated Nanoparticles by Targeting with Luteinizing Hormone-Releasing Hormone (LHRH) Peptide

    Science.gov (United States)

    Taheri, Azade; Dinarvand, Rassoul; Atyabi, Fatemeh; Ahadi, Fatemeh; Nouri, Farank Salman; Ghahremani, Mohammad Hossein; Ostad, Seyed Nasser; Borougeni, Atefeh Taheri; Mansoori, Pooria

    2011-01-01

    Active targeting could increase the efficacy of anticancer drugs. Methotrexate-human serum albumin (MTX-HSA) conjugates, functionalized by luteinizing hormone-releasing hormone (LHRH) as targeting moieties, with the aim of specifically targeting the cancer cells, were prepared. Owing to the high expression of LHRH receptors in many cancer cells as compared to normal cells, LHRH was used as the targeting ligand in this study. LHRH was conjugated to MTX-HSA nanoparticles via a cross-linker. Three types of LHRH targeted nanoparticles with a mean particle size between 120–138 nm were prepared. The cytotoxicity of LHRH targeted and non-targeted nanoparticles were determined on the LHRH positive and negative cell lines. The internalization of the targeted and non-targeted nanoparticles in LHRH receptor positive and negative cells was investigated using flow cytometry analysis and fluorescence microscopy. The cytotoxicity of the LHRH targeted nanoparticles on the LHRH receptor positive cells were significantly more than non-targeted nanoparticles. LHRH targeted nanoparticles were also internalized by LHRH receptor positive cells significantly more than non-targeted nanoparticles. There were no significant differences between the uptake of targeted and non-targeted nanoparticles to the LHRH receptor negative cells. The active targeting procedure using LHRH targeted MTX-HSA nanoparticles could increase the anti-tumoral activity of MTX. PMID:21845098

  5. Menstruation recovery after chemotherapy and luteinizing hormone-releasing hormone agonist plus tamoxifen therapy for premenopausal patients with breast cancer.

    Science.gov (United States)

    Sakurai, Kenichi; Matsuo, Sadanori; Enomoto, Katsuhisa; Amano, Sadao; Shiono, Motomi

    2011-01-01

    Little is known about the period required for menstruation recovery after long-term luteinizing hormone-releasing hormone (LH-RH) agonist plus tamoxifen therapy following chemotherapy. In this study we investigated the period required for menstruation recovery after the therapy. The subjects comprised 105 premenopausal breast cancer patients who had undergone surgery. All patients were administered an LH-RH agonist for 24 months and tamoxifen for 5 years following the postoperative adjuvant chemotherapy, and the status of menstruation recovery was examined. Menstruation resumed in 16 cases (15.2%) after the last LH-RH agonist treatment session. The mean period from the last LH-RH agonist treatment to the recovery of menstruation was 6.9 months. The rate of menstruation recovery was 35.5% in patients aged 40 years or younger and 8.0% in those aged 41 years or older, and it was significantly higher in those aged 40 years or younger. The period until menstruation recovery tended to be longer in older patients at the end of treatment. This study showed that menstruation resumed after treatment at higher rates in younger patients. However, because it is highly likely that ovarian function will be destroyed by the treatment even in young patients, it is considered necessary to explain the risk to patients and obtain informed consent before introducing this treatment modality.

  6. Negative feedback governs gonadotrope frequency-decoding of gonadotropin releasing hormone pulse-frequency.

    Directory of Open Access Journals (Sweden)

    Stefan Lim

    Full Text Available The synthesis of the gonadotropin subunits is directed by pulsatile gonadotropin-releasing hormone (GnRH from the hypothalamus, with the frequency of GnRH pulses governing the differential expression of the common alpha-subunit, luteinizing hormone beta-subunit (LHbeta and follicle-stimulating hormone beta-subunit (FSHbeta. Three mitogen-activated protein kinases, (MAPKs, ERK1/2, JNK and p38, contribute uniquely and combinatorially to the expression of each of these subunit genes. In this study, using both experimental and computational methods, we found that dual specificity phosphatase regulation of the activity of the three MAPKs through negative feedback is required, and forms the basis for decoding the frequency of pulsatile GnRH. A fourth MAPK, ERK5, was shown also to be activated by GnRH. ERK5 was found to stimulate FSHbeta promoter activity and to increase FSHbeta mRNA levels, as well as enhancing its preference for low GnRH pulse frequencies. The latter is achieved through boosting the ultrasensitive behavior of FSHbeta gene expression by increasing the number of MAPK dependencies, and through modulating the feedforward effects of JNK activation on the GnRH receptor (GnRH-R. Our findings contribute to understanding the role of changing GnRH pulse-frequency in controlling transcription of the pituitary gonadotropins, which comprises a crucial aspect in regulating reproduction. Pulsatile stimuli and oscillating signals are integral to many biological processes, and elucidation of the mechanisms through which the pulsatility is decoded explains how the same stimulant can lead to various outcomes in a single cell.

  7. Chromosomal localization of the gonadotropin-releasing hormone receptor gene to human chromosome 4q13. 1-q21. 1 and mouse chromosome 5

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, U.B.; Dushkin, H.; Beier, D.R.; Chin, W.W. (Harvard Medical School, Boston, MA (United States)); Altherr, M.R. (Los Alamos National Lab., NM (United States))

    1994-04-01

    The gonadotropin-releasing hormone receptor (GRHR) is a G-protein-coupled receptor on the cell surface of pituitary gonadotropes, where it serves to transduce signals from the extracellular ligand, the hypothalamic factor gonadotropin-releasing hormone, and to modulate the synthesis and secretion of luteinizing hormone and follicle-stimulating hormone. The authors have localized the GRHR gene to the q13.1-q21.1 region of the human chromosome 4 using mapping panels of human/rodent somatic cell hybrids containing different human chromosomes or different regions of human chromosome 4. Furthermore, using linkage analysis of single-strand conformational polymorphisms, the murine GRHR gene was localized to mouse chromosome 5, linked to the endogenous retroviral marker Pmv-11. This is consistent with the evolutionary conservation of homology between these two regions, as has been previously suggested from comparative mapping of several other loci. The localization of the GRHR gene may be useful in the study of disorders of reproduction. 22 refs., 2 figs.

  8. Bioidentical Hormones and Menopause

    Science.gov (United States)

    ... Endocrinologist Search Featured Resource Menopause Map™ View Bioidentical Hormones January 2012 Download PDFs English Espanol Editors Howard ... take HT for symptom relief. What are bioidentical hormones? Bioidentical hormones are identical to the hormones that ...

  9. Influence of gonadotropin-releasing hormone and timing of insemination relative to estrus on pregnancy rates of dairy cattle at first service.

    Science.gov (United States)

    Mee, M O; Stevenson, J S; Scoby, R K; Folman, Y

    1990-06-01

    The objective was to determine the influence of gonadotropin-releasing hormone on pregnancy rates of dairy cattle at first services, when both the timing of hormone injection and insemination were altered relative to the onset of estrus. Cows (n = 325) were assigned randomly to six groups making up a 2 X 2 X 2 incomplete factorial experiment; dose of GnRH (100 micrograms versus saline), timing [1 h (early) or 12 to 16 h (late) after first detected estrus] of AI, and timing of hormone injection (early versus late) were the three main effects. Cows were observed for estrus 4 times daily. Treatments and resulting pregnancy rates were: 1) hormone injection early plus AI early (35%), 2) hormone injection late plus AI early (34%), 3) saline injection early plus AI early (30%), 4) hormone injection late plus AI late (30%), 5) hormone injection early plus AI late (46%), and 6) saline injection late plus AI late (43%). Pregnancy rate in the first four groups (32%) was less than that in the latter two groups (44%). Concentrations of LH in serum were greater for cows given hormone or saline injections in early estrus than for cows injected with either hormone of saline during late estrus. Concentrations of LH in serum 2 h after GnRH were elevated above those of controls, whether GnRH was injected during early or late estrus. Neither concentrations of LH during estrus nor concentrations of progesterone 8 to 14 d after estrus explained the possible antifertility effect of GnRH given during late estrus.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Fresh versus frozen embryo transfer after gonadotropin-releasing hormone agonist trigger in gonadotropin-releasing hormone antagonist cycles among high responder women: A randomized, multi-center study

    Directory of Open Access Journals (Sweden)

    Abbas Aflatoonian

    2018-02-01

    Full Text Available Background: The use of embryo cryopreservation excludes the possible detrimental effects of ovarian stimulation on the endometrium, and higher reproductive outcomes following this policy have been reported. Moreover, gonadotropin-releasing hormone agonist trigger in gonadotropin-releasing hormone (GnRH antagonist cycles as a substitute for standard human chorionic gonadotropin trigger, minimizes the risk of ovarian hyperstimulation syndrome (OHSS in fresh as well as frozen embryo transfer cycles (FET. Objective: To compare the reproductive outcomes and risk of OHSS in fresh vs frozen embryo transfer in high responder patients, undergoing in vitro fertilization triggered with a bolus of GnRH agonist. Materials and Methods: In this randomized, multi-centre study, 121 women undergoing FET and 119 women undergoing fresh ET were investigated as regards clinical pregnancy as the primary outcome and the chemical pregnancy, live birth, OHSS development, and perinatal data as secondary outcomes. Results: There were no significant differences between FET and fresh groups regarding chemical (46.4% vs. 40.2%, p=0.352, clinical (35.8% vs. 38.3%, p=0.699, and ongoing (30.3% vs. 32.7%, p=0.700 pregnancy rates, also live birth (30.3% vs. 29.9%, p=0.953, perinatal outcomes, and OHSS development (35.6% vs. 42.9%, p=0.337. No woman developed severe OHSS and no one required admission to hospital. Conclusion: Our findings suggest that GnRHa trigger followed by fresh transfer with modified luteal phase support in terms of a small human chorionic gonadotropin bolus is a good strategy to secure good live birth rates and a low risk of clinically relevant OHSS development in in vitro fertilization patients at risk of OHSS.

  11. Benefits and risks of hormonal contraception for women

    Directory of Open Access Journals (Sweden)

    Hagen, Anja

    2007-08-01

    contraception. Headache appeared mostly only at the beginning of the use of combined oral contraceptives. Progestogen-only contraceptives worsened the results of the glucose tolerance test. A review of low evidence reported further risks of hormonal contraceptives (concerning menstrual problems, ovarian cysts, bone density, thyroid diseases and rheumatoid arthritis as well as further benefits (concerning blood pressure and Crohn’s disease. Hormonal spirals were shown to be more effective than spirals which do not release hormones. In emergency contraception, Levonorgestrel was more effective than the Yuzpe method. Most other proven differences between hormonal contraceptives were related to menstrual problems. After spirals with or without hormone release, the other hormonal contraceptives were shown in typical use to be the second most cost-effective reversible methods of contraception. Discussion: The addressed questions could be answered only on relatively low evidence level, partly only for applications with estrogen doses which are not used in Germany any more. The transferability of the results of the analysed primary health-economics studies on the current situation in Germany is limited (clinical assumptions from out-dated information sources of low evidence levels, cost assumptions from the American health system. Conclusions: In perfect use, hormonal contraceptives have to be classified as the most effective reversible contraceptive methods. For the individual decision concerning the use of hormonal contraception, benefits should be related to the additional risks. Alternative methods such as spirals should be prioritised if perfect use seems to be impossible. In this case, spirals are also preferable from health-economics perspective. No ethical-social or legal conclusions can be derived from the available data.

  12. Total Androgen Blockade Versus a Luteinizing Hormone-Releasing Hormone Agonist Alone in Men With High-Risk Prostate Cancer Treated With Radiotherapy

    International Nuclear Information System (INIS)

    Nanda, Akash; Chen, M.-H.; Moran, Brian J.; Braccioforte, Michelle H.; Dosoretz, Daniel; Salenius, Sharon; Katin, Michael; Ross, Rudi; D'Amico, Anthony V.

    2010-01-01

    Purpose: To assess whether short-course total androgen blockade vs. a luteinizing hormone-releasing hormone (LHRH) agonist alone affects the risk of prostate cancer-specific mortality (PCSM) in men with localized but high-risk disease treated with radiotherapy. Methods and Materials: The study cohort comprised 628 men with T1-T4, N0, M0 prostate cancer with high-risk disease (prostate-specific antigen level >20 ng/mL, Gleason score ≥8, or clinical category ≥T3) treated with 45 Gy of external beam radiotherapy followed by a brachytherapy boost in addition to receiving a median of 4.3 (interquartile range [IQR], 3.6-6.4) months of hormonal blockade with an LHRH agonist plus an antiandrogen or monotherapy with an LHRH agonist. Fine and Gray's multivariable regression analysis was used to determine whether combination androgen suppression therapy (AST) vs. monotherapy affected the risk of PCSM, adjusting for treatment year, duration of AST, age, and known prognostic factors. Results: After a median follow-up of 4.9 (IQR, 3.5-6.5) years, men receiving combination AST had a lower risk of PCSM than those treated with monotherapy (adjusted hazard ratio [AHR], 0.18; 95% confidence interval [CI], 0.04-0.90; p = 0.04). An increasing prostate-specific antigen level (AHR, 2.70; 95% CI, 1.64-4.45; p < 0.001) and clinical category T3/4 disease (AHR, 29.6; 95% CI, 2.88-303.5; p = 0.004) were also associated with an increased risk of PCSM. Conclusions: In men with localized but high-risk prostate cancer treated with external beam radiotherapy and brachytherapy, short-course AST with an LHRH agonist plus an antiandrogen is associated with a decreased risk of PCSM when compared with monotherapy with an LHRH agonist.

  13. Hormones and absence epilepsy

    NARCIS (Netherlands)

    Luijtelaar, E.L.J.M. van; Tolmacheva, E.A.; Budziszewska, B.; Stein, J.

    2017-01-01

    Hormones have an extremely large impact on seizures and epilepsy. Stress and stress hormones are known to reinforce seizure expression, and gonadal hormones affect the number of seizures and even the seizure type. Moreover, hormonal concentrations change drastically over an individual's lifetime,

  14. Effects of corticotropin-releasing hormone and its antagonist on the gene expression of gonadotrophin-releasing hormone (GnRH) and GnRH receptor in the hypothalamus and anterior pituitary gland of follicular phase ewes.

    Science.gov (United States)

    Ciechanowska, Magdalena; Łapot, Magdalena; Malewski, Tadeusz; Mateusiak, Krystyna; Misztal, Tomasz; Przekop, Franciszek

    2011-01-01

    There is no information in the literature regarding the effect of corticotropin-releasing hormone (CRH) on genes encoding gonadotrophin-releasing hormone (GnRH) and the GnRH receptor (GnRHR) in the hypothalamus or on GnRHR gene expression in the pituitary gland in vivo. Thus, the aim of the present study was to investigate, in follicular phase ewes, the effects of prolonged, intermittent infusion of small doses of CRH or its antagonist (α-helical CRH 9-41; CRH-A) into the third cerebral ventricle on GnRH mRNA and GnRHR mRNA levels in the hypothalamo-pituitary unit and on LH secretion. Stimulation or inhibition of CRH receptors significantly decreased or increased GnRH gene expression in the hypothalamus, respectively, and led to different responses in GnRHR gene expression in discrete hypothalamic areas. For example, CRH increased GnRHR gene expression in the preoptic area, but decreased it in the hypothalamus/stalk median eminence and in the anterior pituitary gland. In addition, CRH decreased LH secretion. Blockade of CRH receptors had the opposite effect on GnRHR gene expression. The results suggest that activation of CRH receptors in the hypothalamus of follicular phase ewes can modulate the biosynthesis and release of GnRH through complex changes in the expression of GnRH and GnRHR genes in the hypothalamo-anterior pituitary unit. © CSIRO 2011 Open Access

  15. Diagnostic challenges and management of a patient with acromegaly due to ectopic growth hormone-releasing hormone secretion from a bronchial carcinoid tumour

    Directory of Open Access Journals (Sweden)

    Nikolaos Kyriakakis

    2017-01-01

    Full Text Available A male patient presented at the age of 30 with classic clinical features of acromegaly and was found to have elevated growth hormone levels, not suppressing during an oral glucose tolerance test. His acromegaly was originally considered to be of pituitary origin, based on a CT scan, which was interpreted as showing a pituitary macroadenoma. Despite two trans-sphenoidal surgeries, cranial radiotherapy and periods of treatment with bromocriptine and octreotide, his acromegaly remained active clinically and biochemically. A lung mass was discovered incidentally on a chest X-ray performed as part of a routine pre-assessment for spinal surgery 5 years following the initial presentation. This was confirmed to be a bronchial carcinoid tumour, which was strongly positive for growth hormone-releasing hormone (GHRH and somatostatin receptor type 2 by immunohistochemistry. The re-examination of the pituitary specimens asserted the diagnosis of pituitary GH hyperplasia. Complete resolution of the patient’s acromegaly was achieved following right lower and middle lobectomy. Seventeen years following the successful resection of the bronchial carcinoid tumour the patient remains under annual endocrine follow-up for monitoring of the hypopituitarism he developed after the original interventions to his pituitary gland, while there has been no evidence of active acromegaly or recurrence of the carcinoid tumour. Ectopic acromegaly is extremely rare, accounting for <1% of all cases of acromegaly. Our case highlights the diagnostic challenges differentiating between ectopic acromegaly and acromegaly of pituitary origin and emphasises the importance of avoiding unnecessary pituitary surgery and radiotherapy. The role of laboratory investigations, imaging and histology as diagnostic tools is discussed.

  16. Association between thyroid hormones and TRAIL.

    Science.gov (United States)

    Bernardi, Stella; Bossi, Fleur; Toffoli, Barbara; Giudici, Fabiola; Bramante, Alessandra; Furlanis, Giulia; Stenner, Elisabetta; Secchiero, Paola; Zauli, Giorgio; Carretta, Renzo; Fabris, Bruno

    2017-11-01

    Recent studies suggest that a circulating protein called TRAIL (TNF-related apoptosis-inducing ligand) might have a role in the regulation of body weight and metabolism. Interestingly, thyroid hormones seem to increase TRAIL tissue expression. This study aimed at evaluating whether overt thyroid disorders affected circulating TRAIL levels. TRAIL circulating levels were measured in euthyroid, hyperthyroid, and hypothyroid patients before and after thyroid function normalization. Univariate and multivariate analyses were performed to evaluate the correlation between thyroid hormones and TRAIL. Then, the stimulatory effect of both triiodothyronine (T3) and thyroxine (T4) on TRAIL was evaluated in vitro on peripheral blood mononuclear cells. Circulating levels of TRAIL significantly increased in hyperthyroid and decreased in hypothyroid patients as compared to controls. Once thyroid function was restored, TRAIL levels normalized. There was an independent association between TRAIL and both fT3 and fT4. Consistent with these findings, T3 and T4 stimulated TRAIL release in vitro. Here we show that thyroid hormones are associated with TRAIL expression in vivo and stimulate TRAIL expression in vitro. Given the overlap between the metabolic effects of thyroid hormones and TRAIL, this work sheds light on the possibility that TRAIL might be one of the molecules mediating thyroid hormones peripheral effects. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Thyrotropic Activity of Various Adenohypophyseal Hormones of the Bullfrog(Endocrinology)

    OpenAIRE

    MAKOTO, SAKAI; YOICHI, HANAOKA; SHIGEYASU, TANAKA; HIROAKI, HAYASHI; SAKAE, KIKUYAMA; Department of Biology, School of Education, Waseda University; Institute of Endocrinology, Gunma University; Institute of Endocrinology, Gunma University; Institute of Endocrinology, Gunma University; Department of Biology, School of Education, Waseda University

    1991-01-01

    The effects of adenohypophyseal hormones of the bullfrog (Rana catesbeiana) origin on the in vitro release of thyroxine (T_4) from the thyroid of prometamorphic larvae were studied. The bullfrog thyrotropin (TSH) preparation was 4 times as potent as bovine TSH in this model. Bullfrog luteinizing hormones (LHS) (I-IV) and follicle-stimulating hormones (FSHS) (I-IV), which were classified according to their isoelectric points, were tested for their thyrotropic activity and demons-trated about 1...

  18. A radioimmunoassay of chicken growth hormone using growth hormone produced by recombinant DNA technology: validation and observations of plasma hormone variations in genetically fat and lean chickens

    International Nuclear Information System (INIS)

    Picaper, G.; Leclercq, B.; Saadoun, A.; Mongin, P.

    1986-01-01

    A radioimmunoassay (RIA) of chicken growth hormone (c-GH) has been developed using growth hormone produced by recombinant DNA technology. The best rabbit antiserum was used at 1/300,000 final dilution. Hormone labelling by iodine-125, achieved by chloramine T, allowed a specific activity of 3.7 MBq/μg. The equilibrium curves show that optimal conditions of incubation were reached at room temperature for 24h. This RIA used a second sheep antibody which precipitated the whole c-GH bound to the first antibody in the presence of polyethylene glycol solution (6%) at room temperature for 30 min. In our conditions, sensitivity was about 30 pg of c-GH per tube. Coefficient of variation was around 10%. No cross reaction was found with avian LH and prolactin. Thyrotrophin-releasing hormone (TRH) injection to young chickens induced 20-fold higher plasma c-GH concentrations. Simultaneous injection of somatostatin and TRH slightly reduced these concentrations. Hypoglycemia induced by insulin led to a drop of the plasma c-GH concentration. Conversely, refeeding or glucose load induced slight increases of the c-GH level. Genetically fat chickens tended to exhibit higher plasma c-GH concentrations than lean chickens

  19. Negative regulation of parathyroid hormone-related protein expression by steroid hormones

    International Nuclear Information System (INIS)

    Kajitani, Takashi; Tamamori-Adachi, Mimi; Okinaga, Hiroko; Chikamori, Minoru; Iizuka, Masayoshi; Okazaki, Tomoki

    2011-01-01

    Highlights: → Steroid hormones repress expression of PTHrP in the cell lines where the corresponding nuclear receptors are expressed. → Nuclear receptors are required for suppression of PTHrP expression by steroid hormones, except for androgen receptor. → Androgen-induced suppression of PTHrP expression appears to be mediated by estrogen receptor. -- Abstract: Elevated parathyroid hormone-related protein (PTHrP) is responsible for humoral hypercalcemia of malignancy (HHM), which is of clinical significance in treatment of terminal patients with malignancies. Steroid hormones were known to cause suppression of PTHrP expression. However, detailed studies linking multiple steroid hormones to PTHrP expression are lacking. Here we studied PTHrP expression in response to steroid hormones in four cell lines with excessive PTHrP production. Our study established that steroid hormones negatively regulate PTHrP expression. Vitamin D receptor, estrogen receptor α, glucocorticoid receptor, and progesterone receptor, were required for repression of PTHrP expression by the cognate ligands. A notable exception was the androgen receptor, which was dispensable for suppression of PTHrP expression in androgen-treated cells. We propose a pathway(s) involving nuclear receptors to suppress PTHrP expression.

  20. Stressor-specific effects of sex on HPA axis hormones and activation of stress-related neurocircuitry.

    Science.gov (United States)

    Babb, Jessica A; Masini, Cher V; Day, Heidi E W; Campeau, Serge

    2013-11-01

    Experiencing stress can be physically and psychologically debilitating to an organism. Women have a higher prevalence of some stress-related mental illnesses, the reasons for which are unknown. These experiments explore differential HPA axis hormone release in male and female rats following acute stress. Female rats had a similar threshold of HPA axis hormone release following low intensity noise stress as male rats. Sex did not affect the acute release, or the return of HPA axis hormones to baseline following moderate intensity noise stress. Sensitive indices of auditory functioning obtained by modulation of the acoustic startle reflex by weak pre-pulses did not reveal any sexual dimorphism. Furthermore, male and female rats exhibited similar c-fos mRNA expression in the brain following noise stress, including several sex-influenced stress-related regions. The HPA axis response to noise stress was not affected by stage of estrous cycle, and ovariectomy significantly increased hormone release. Direct comparison of HPA axis hormone release to two different stressors in the same animals revealed that although female rats exhibit robustly higher HPA axis hormone release after restraint stress, the same effect was not observed following moderate and high intensity loud noise stress. Finally, the differential effect of sex on HPA axis responses to noise and restraint stress cannot readily be explained by differential social cues or general pain processing. These studies suggest the effect of sex on acute stress-induced HPA axis hormone activity is highly dependent on the type of stressor.

  1. Effects of long-term treatment with growth hormone-releasing peptide-2 in the GHRH knockout mouse.

    Science.gov (United States)

    Alba, Maria; Fintini, Danilo; Bowers, Cyril Y; Parlow, A F; Salvatori, Roberto

    2005-11-01

    Growth hormone (GH) secretagogues (GHS) stimulate GH secretion in vivo in humans and in animals. They act on the ghrelin receptor, expressed in both the hypothalamus and the pituitary. It is unknown whether GHSs act predominantly by increasing the release of hypothalamic GH-releasing hormone (GHRH) or by acting directly on the somatotroph cells. We studied whether a potent GHS could stimulate growth in the absence of endogenous GHRH. To this end, we used GHRH knockout (GHRH-KO) mice. These animals have proportionate dwarfism due to severe GH deficiency (GHD) and pituitary hypoplasia due to reduced somatotroph cell mass. We treated male GHRH-KO mice for 6 wk (from week 1 to week 7 of age) with GH-releasing peptide-2 (GHRP-2, 10 microg s.c. twice a day). Chronic treatment with GHRP-2 failed to stimulate somatotroph cell proliferation and GH secretion and to promote longitudinal growth. GHRP-2-treated mice showed an increase in total body weight compared with placebo-treated animals, due to worsening of the body composition alterations typical of GHD animals. These data demonstrate that GHRP-2 failed to reverse the severe GHD caused by lack of GHRH.

  2. Linkage of congenital isolated adrenocorticotropic hormone deficiency to the corticotropin releasing hormone locus using simple sequence repeat polymorphisms

    Energy Technology Data Exchange (ETDEWEB)

    Kyllo, J.H.; Collins, M.M.; Vetter, K.L. [Univ. of Iowa College of Medicine, Iowa City, IA (United States)] [and others

    1996-03-29

    Genetic screening techniques using simple sequence repeat polymorphisms were applied to investigate the molecular nature of congenital isolated adrenocorticotropic hormone (ACTH) deficiency. We hypothesize that this rare cause of hypocortisolism shared by a brother and sister with two unaffected sibs and unaffected parents is inherited as an autosomal recessive single gene mutation. Genes involved in the hypothalamic-pituitary axis controlling cortisol sufficiency were investigated for a causal role in this disorder. Southern blotting showed no detectable mutations of the gene encoding pro-opiomelanocortin (POMC), the ACTH precursor. Other candidate genes subsequently considered were those encoding neuroendocrine convertase-1, and neuroendocrine convertase-2 (NEC-1, NEC-2), and corticotropin releasing hormone (CRH). Tests for linkage were performed using polymorphic di- and tetranucleotide simple sequence repeat markers flanking the reported map locations for POMC, NEC-1, NEC-2, and CRH. The chromosomal haplotypes determined by the markers flanking the loci for POMC, NEC-1, and NEC-2 were not compatible with linkage. However, 22 individual markers defining the chromosomal haplotypes flanking CRH were compatible with linkage of the disorder to the immediate area of this gene of chromosome 8. Based on these data, we hypothesize that the ACTH deficiency in this family is due to an abnormality of CRH gene structure or expression. These results illustrate the useful application of high density genetic maps constructed with simple sequence repeat markers for inclusion/exclusion studies of candidate genes in even very small nuclear families segregating for unusual phenotypes. 25 refs., 5 figs., 2 tabs.

  3. Acetylcholine Modulates the Hormones of the Growth Hormone/Insulinlike Growth Factor-1 Axis During Development in Mice.

    Science.gov (United States)

    Lecomte, Marie-José; Bertolus, Chloé; Ramanantsoa, Nélina; Saurini, Françoise; Callebert, Jacques; Sénamaud-Beaufort, Catherine; Ringot, Maud; Bourgeois, Thomas; Matrot, Boris; Collet, Corinne; Nardelli, Jeannette; Mallet, Jacques; Vodjdani, Guilan; Gallego, Jorge; Launay, Jean-Marie; Berrard, Sylvie

    2018-04-01

    Pituitary growth hormone (GH) and insulinlike growth factor (IGF)-1 are anabolic hormones whose physiological roles are particularly important during development. The activity of the GH/IGF-1 axis is controlled by complex neuroendocrine systems including two hypothalamic neuropeptides, GH-releasing hormone (GHRH) and somatostatin (SRIF), and a gastrointestinal hormone, ghrelin. The neurotransmitter acetylcholine (ACh) is involved in tuning GH secretion, and its GH-stimulatory action has mainly been shown in adults but is not clearly documented during development. ACh, together with these hormones and their receptors, is expressed before birth, and somatotroph cells are already responsive to GHRH, SRIF, and ghrelin. We thus hypothesized that ACh could contribute to the modulation of the main components of the somatotropic axis during development. In this study, we generated a choline acetyltransferase knockout mouse line and showed that heterozygous mice display a transient deficit in ACh from embryonic day 18.5 to postnatal day 10, and they recover normal ACh levels from the second postnatal week. This developmental ACh deficiency had no major impact on weight gain and cardiorespiratory status of newborn mice. Using this mouse model, we found that endogenous ACh levels determined the concentrations of circulating GH and IGF-1 at embryonic and postnatal stages. In particular, serum GH level was correlated with brain ACh content. ACh also modulated the levels of GHRH and SRIF in the hypothalamus and ghrelin in the stomach, and it affected the levels of these hormones in the circulation. This study identifies ACh as a potential regulator of the somatotropic axis during the developmental period.

  4. Physiological Regulation of Gut Peptide Hormone (PYY) Levels by Age, Sex, Hormonal and Nutritional Status in Rats

    International Nuclear Information System (INIS)

    Hebashy, M.I.A.; Mazen, G.M.A.

    2007-01-01

    Peptide YY hormone (PYY) was recently appreciated as an important gut hormonal regulator of appetite. PYY is produced by the gut and released into the circulation after food intake and is found to decrease appetite. The main form of PYY, both stored and circulated, is PYY(3-36), the N-terminal truncated form of the full length peptide so, peripheral injections of PYY(3-36) in rats inhibit food intake in experimental animals as well as in lean and obese human subjects. Also, this hormone has been suggested to be an attractive therapeutic option for obesity. PYY levels are influenced by age and the highest hormone level is achieved in early postnatal life (day 30) and is decreased thereafter. PYY levels were also dependent on thyroid hormone status and being decreased in hyperthyroid rats. The PYY levels observed in acute and chronic food restricted rats indicated that, in situations of decreased energy intake, the lower PYY levels could serve to regulate central pathways and facilitate food intake. Contrary, in pregnant rats, PYY levels were enhanced at late gestation. The aim of this study was to assess the influence of age, sex, thyroid status, pregnancy and food restriction on PYY levels in rats. The underling mechanisms through which PYY levels alternated as a result of sex, age, pregnancy, thyroidal and nutritional status were discussed in the light of recent research outcomes

  5. Hormonal alterations in PCOS and its influence on bone metabolism.

    Science.gov (United States)

    Krishnan, Abhaya; Muthusami, Sridhar

    2017-02-01

    According to the World Health Organization (WHO) polycystic ovary syndrome (PCOS) occurs in 4-8% of women worldwide. The prevalence of PCOS in Indian adolescents is 12.2% according to the Indian Council of Medical Research (ICMR). The National Institute of Health has documented that it affects approximately 5 million women of reproductive age in the United States. Hormonal imbalance is the characteristic of many women with polycystic ovarian syndrome (PCOS). The influence of various endocrine changes in PCOS women and their relevance to bone remains to be documented. Hormones, which include gonadotrophin-releasing hormone (GnRH), insulin, the leutinizing/follicle-stimulating hormone (LH/FSH) ratio, androgens, estrogens, growth hormones (GH), cortisol, parathyroid hormone (PTH) and calcitonin are disturbed in PCOS women. These hormones influence bone metabolism in human subjects directly as well as indirectly. The imbalance in these hormones results in increased prevalence of osteoporosis in PCOS women. Limited evidence suggests that the drugs taken during the treatment of PCOS increase the risk of bone fracture in PCOS patients through endocrine disruption. This review is aimed at the identification of the relationship between bone mineral density and hormonal changes in PCOS subjects and identifies potential areas to study bone-related disorders in PCOS women. © 2017 Society for Endocrinology.

  6. Efficacy of chemotherapy after hormone therapy for hormone receptor-positive metastatic breast cancer.

    Science.gov (United States)

    Mori, Ryutaro; Nagao, Yasuko

    2014-01-01

    According to the guidelines for metastatic breast cancer, hormone therapy for hormone receptor-positive metastatic breast cancer without life-threatening metastasis should be received prior to chemotherapy. Previous trials have investigated the sensitivity of chemotherapy for preoperative breast cancer based on the efficacy of neoadjuvant hormone therapy. In this retrospective study, we investigated the efficacy of chemotherapy for metastatic breast cancer in hormone therapy-effective and hormone therapy-ineffective cases. Patients who received chemotherapy after hormone therapy for metastatic breast cancer between 2006 and 2013 at our institution were investigated. A total of 32 patients received chemotherapy after hormone therapy for metastatic breast cancer. The median patient age was 59 years, and most of the primary tumors exhibited a T2 status. A total of 26 patients had an N(+) status, while 7 patients had human epidermal growth factor receptor 2-positive tumors. A total of 13 patients received clinical benefits from hormone therapy, with a rate of clinical benefit of subsequent chemotherapy of 30.8%, which was not significantly different from that observed in the hormone therapy-ineffective patients (52.6%). A total of 13 patients were able to continue the hormone therapy for more than 1 year, with a rate of clinical benefit of chemotherapy of 38.5%, which was not significantly different from that observed in the short-term hormone therapy patients (47.4%). The luminal A patients were able to continue hormone therapy for a significantly longer period than the non-luminal A patients (median survival time: 17.8 months vs 6.35 months, p = 0.0085). However, there were no significant differences in the response to or duration of chemotherapy. The efficacy of chemotherapy for metastatic breast cancer cannot be predicted based on the efficacy of prior hormone therapy or tumor subtype, and clinicians should administer chemotherapy in all cases of

  7. CORTICOTROPIN-RELEASING HORMONE MICROINFUSION IN THE CENTRAL AMYGDALA DIMINISHES A CARDIAC PARASYMPATHETIC OUTFLOW UNDER STRESS-FREE CONDITIONS

    NARCIS (Netherlands)

    WIERSMA, A; BOHUS, B; KOOLHAAS, JM

    1993-01-01

    The central nucleus of the amygdala (CeA) is known to be involved in the regulation of autonomic, neuroendocrine and behavioural responses in stress situations. The CeA contains large numbers of corticotropin-releasing hormone (CRH) cell bodies. Neuroanatomical studies revealed that the majority of

  8. Differential contribution of CBP:CREB binding to corticotropin-releasing hormone expression in the infant and adult hypothalamus

    NARCIS (Netherlands)

    Cope, J.L.; Regev, L.; Chen, Y.; Korosi, A.; Rice, C.J.; Ji, S.; Rogge, G.A.; Wood, M.A.; Baram, T.Z.

    2014-01-01

    Corticotropin-releasing hormone (CRH) contributes crucially to the regulation of central and peripheral responses to stress. Because of the importance of a finely-tuned stress system, CRH expression is tightly regulated in an organ- and brain region-specific manner. Thus, in hypothalamus, CRH is

  9. Interactions between the thyroid hormones and the hormones of the growth hormone axis.

    Science.gov (United States)

    Laron, Zvi

    2003-12-01

    The normal secretion and action of the thyroid hormones and the hormones of the GH/IGF-I (growth hormone/ insulin-like growth factor I) axis are interdependent. Their interactions often differ in man from animal studies in rodents and sheep. Thus neonates with congenital hypothyroidism are of normal length in humans but IUGR (intrauterine growth retardation) in sheep. Postnatally normal GH/IGF-I secretion and action depends on an euthyroid state. Present knowledge on the interactions between the two axes is reviewed in states of hypo- and hyperthyroidism, states of GH/IGF-I deprivation and hypersecretion, as well as the relationship between IGF-I and thyroid cancer. Emphasis is given to data in children and aspects of linear growth and skeletal maturation.

  10. Gonadotrophin releasing hormone antagonist in IVF/ICSI

    Directory of Open Access Journals (Sweden)

    M S Kamath

    2008-01-01

    Full Text Available Objective : To study the efficacy of gonadotrophin releasing hormone (GnRH antagonist in In-vitro-fertilization/Intracytoplasmic sperm injection (IVF/ICSI cycles. Type of Study : Observational study. Setting: Reproductive Medicine Unit, Christian Medical College Hospital, Vellore, Tamil Nadu. Materials and Methods: GnRH antagonists were introduced into our practice in November 2005. Fifty-two women undergoing the antagonist protocol were studied and information gathered regarding patient profile, treatment parameters (total gonadotrophin dosage, duration of treatment, and oocyte yield, and outcomes in terms of embryological parameters (cleavage rates, implantation rates and clinical pregnancy. These parameters were compared with 121 women undergoing the standard long protocol. The costs between the two groups were also compared. Main Outcome : Clinical pregnancy rate. Results : The clinical pregnancy rate per embryo transfer in the antagonist group was 31.7% which was comparable to the clinical pregnancy rate in women undergoing the standard long protocol (30.63%. The costs between the two groups were comparable. Conclusions : GnRH antagonist protocol was found to be effective and comparable to the standard long protocol regimen. In addition it was simple, convenient, and patient friendly.

  11. Inhibition of growth of experimental prostate cancer with sustained delivery systems (microcapsules and microgranules) of the luteinizing hormone-releasing hormone antagonist SB-75.

    Science.gov (United States)

    Korkut, E; Bokser, L; Comaru-Schally, A M; Groot, K; Schally, A V

    1991-02-01

    Inhibitory effects of the sustained delivery systems (microcapsules and microgranules) of a potent antagonist of luteinizing hormone-releasing hormone N-Ac-[3-(2-naphthyl)-D-alanine1, 4-chloro-D-phenylalanine2, 3-(3-pyridyl)-D-alanine3, D-citrulline6, D-alanine10]LH-RH (SB-75) on the growth of experimental prostate cancers were investigated. In the first experiment, three doses of a microcapsule preparation releasing 23.8, 47.6, and 71.4 micrograms of antagonist SB-75 per day were compared with microcapsules of agonist [D-Trp6]LH-RH liberating 25 micrograms/day in rats bearing Dunning R3327H transplantable prostate carcinoma. During 8 weeks of treatment, tumor growth was decreased by [D-Trp6]LH-RH and all three doses of SB-75 as compared to untreated controls. The highest dose of SB-75 (71.4 micrograms/day) caused a greater inhibition of prostate cancer growth than [D-Trp6]LH-RH as based on measurement of tumor volume and percentage change in tumor volume. Doses of 23.8 and 47.6 micrograms of SB-75 per day induced a partial and submaximal decrease, respectively, in tumor weight and volume. Tumor doubling time was the longest (50 days) with the high dose of SB-75 vs. 15 days for controls. The body weights were unchanged. The weights of testes, seminal vesicles, and ventral prostate were greatly reduced in all three groups that received SB-75, and testosterone levels were decreased to nondetectable values in the case of the two higher doses of SB-75. LH levels were also diminished. Similar results were obtained in the second experiment, in which the animals were treated for a period of 8 weeks with microgranules of SB-75. Therapy with microgranules of SB-75 significantly decreased tumor growth as measured by the final tumor volume, the percentage change from the initial tumor volume, and the reduction in tumor weight. The results indicate that antagonist SB-75, released from sustained delivery systems, can produce a state of chemical castration and effectively

  12. Plurihormonal pituitary adenoma immunoreactive for thyroid-stimulating hormone, growth hormone, follicle-stimulating hormone, and prolactin.

    Science.gov (United States)

    Luk, Cynthia T; Kovacs, Kalman; Rotondo, Fabio; Horvath, Eva; Cusimano, Michael; Booth, Gillian L

    2012-01-01

    To describe the case of a patient with an unusual plurihormonal pituitary adenoma with immunoreactivity for thyroid-stimulating hormone (TSH), growth hormone, follicle-stimulating hormone, prolactin, and α-subunit. We report the clinical, laboratory, imaging, and pathology findings of a patient symptomatic from a plurihormonal pituitary adenoma and describe her outcome after surgical treatment. A 60-year-old woman presented to the emergency department with headaches, blurry vision, fatigue, palpitations, sweaty hands, and weight loss. Her medical history was notable for hyperthyroidism, treated intermittently with methimazole. Magnetic resonance imaging disclosed a pituitary macroadenoma (2.3 by 2.2 by 2.0 cm), and preoperative blood studies revealed elevated levels of TSH at 6.11 mIU/L, free thyroxine at 3.6 ng/dL, and free triiodothyronine at 6.0 pg/mL. She underwent an uncomplicated transsphenoidal resection of the pituitary adenoma. Immunostaining of tumor tissue demonstrated positivity for not only TSH but also growth hormone, follicle-stimulating hormone, prolactin, and α-subunit. The Ki-67 index of the tumor was estimated at 2% to 5%, and DNA repair enzyme O6-methylguanine-DNA methyltransferase immunostaining was mostly negative. Electron microscopy showed the ultrastructural phenotype of a glycoprotein-producing adenoma. Postoperatively, her symptoms and hyperthyroidism resolved. Thyrotropin-secreting pituitary adenomas are rare. Furthermore, recent reports suggest that 31% to 36% of adenomas may show evidence of secretion of multiple pituitary hormones. This case emphasizes the importance of considering pituitary causes of thyrotoxicosis and summarizes the clinical and pathology findings in a patient with a plurihormonal pituitary adenoma.

  13. Gonadotropin-releasing hormone agonist triggering of oocyte maturation in assisted reproductive technology cycles

    Directory of Open Access Journals (Sweden)

    Engin Türkgeldi

    2015-06-01

    Full Text Available Gonadotropin-releasing hormone agonists (GnRHa have gained increasing attention in the last decade as an alternative trigger for oocyte maturation in patients at high risk for ovarian hyperstimulation syndrome (OHSS. They provide a short luteinizing hormone (LH peak that limits the production of vascular endothelial growth factor, which is the key mediator leading to increased vascular permeability, the hallmark of OHSS. Initial studies showed similar oocyte yield and embryo quality compared with conventional human chorionic gonadotropin (hCG triggering; however, lower pregnancy rates and higher miscarriage rates were alarming in GnRHa triggered groups. Therefore, two approaches have been implemented to rescue the luteal phase in fresh transfers. Intensive luteal phase support (iLPS involves administiration of high doses of progesterone and estrogen and active patient monitoring. iLPS has been shown to provide satisfactory fertilization and clinical pregnancy rates, and to be especially useful in patients with high endogenous LH levels, such as in polycystic ovary syndrome. The other method for luteal phase rescue is low-dose hCG administiration 35 hours after GnRHa trigger. Likewise, this method results in statistically similar ongoing pregnancy rates (although slightly lower than to those of hCG triggered cycles. GnRHa triggering decreased OHSS rates dramatically, however, none of the rescue methods prevent OHSS totally. Cases were reported even in patients who underwent cryopreservation and did not receive hCG. GnRH triggering induces a follicle stimulating hormone (FSH surge, similar to natural cycles. Its possible benefits have been investigated and dual triggering, GnRHa trigger accompanied by a simultaneous low-dose hCG injection, has produced promising results that urge further exploration. Last of all, GnRHa triggering is useful in fertility preservation cycles in patients with hormone sensitive tumors. In conclusion, GnRHa triggering

  14. Hormones and endocrine disruptors in human seminal plasma.

    Science.gov (United States)

    Hampl, R; Kubatova, J; Heracek, J; Sobotka, V; Starka, L

    2013-07-01

    Seminal plasma represents a unique environment for maturation, nutrition, and protection of male germ cells from damaging agents. It contains an array of organic as well as inorganic chemicals, encompassing a number of biologically and immunologically active compounds, including hormones. Seminal plasma contains also various pollutants transferred from outer environment known as endocrine disruptors. They interfere with hormones at the receptor level, act as inhibitors of their biosynthesis, and affect hormone regulation.In this minireview, the main groups of hormones detected in seminal plasma are summarized. Seminal gonadal steroids were investigated mostly with aim to use them as biomarkers of impaired spermatogenesis (sperm count, motility, morphology). Concentrations of hormones in the seminal plasma often differ considerably from the blood plasma levels in dependence on their origin. In some instances (dihydrotestosterone, estradiol), their informative value is higher than determination in blood.Out of peptide hormones detected in seminal plasma, peptides of transforming growth factor beta family, especially antimullerian hormone, and oligopeptides related to thyrotropin releasing hormone have the high informative value, while assessment of seminal gonadotropins and prolactin does not bring advantage over determination in blood.Though there is a large body of information about the endocrine disruptors' impact on male reproduction, especially with their potential role in decline of male reproductive functions within the last decades, there are only scarce reports on their presence in seminal plasma. Herein, the main groups of endocrine disruptors found in seminal plasma are reviewed, and the use of their determination for investigation of fertility disorders is discussed.

  15. Elevated mRNA-levels of gonadotropin-releasing hormone and its receptor in plaque-bearing Alzheimer's disease transgenic mice.

    Directory of Open Access Journals (Sweden)

    Syed Nuruddin

    Full Text Available Research on Alzheimer's disease (AD has indicated an association between hormones of the hypothalamic-pituitary-gonadal (HPG axis and cognitive senescence, indicating that post meno-/andropausal changes in HPG axis hormones are implicated in the neuropathology of AD. Studies of transgenic mice with AD pathologies have led to improved understanding of the pathophysiological processes underlying AD. The aims of this study were to explore whether mRNA-levels of gonadotropin-releasing hormone (Gnrh and its receptor (Gnrhr were changed in plaque-bearing Alzheimer's disease transgenic mice and to investigate whether these levels and amyloid plaque deposition were downregulated by treatment with a gonadotropin-releasing hormone analog (Gnrh-a; Leuprorelin acetate. The study was performed on mice carrying the Arctic and Swedish amyloid-β precursor protein (AβPP mutations (tgArcSwe. At 12 months of age, female tgArcSwe mice showed a twofold higher level of Gnrh mRNA and more than 1.5 higher level of Gnrhr mRNA than age matched controls. Male tgArcSwe mice showed the same pattern of changes, albeit more pronounced. In both sexes, Gnrh-a treatment caused significant down-regulation of Gnrh and Gnrhr mRNA expression. Immunohistochemistry combined with quantitative image analysis revealed no significant changes in the plaque load after Gnrh-a treatment in hippocampus and thalamus. However, plaque load in the cerebral cortex of treated females tended to be lower than in female vehicle-treated mice. The present study points to the involvement of hormonal changes in AD mice models and demonstrates that these changes can be effectively counteracted by pharmacological treatment. Although known to increase in normal aging, our study shows that Gnrh/Gnrhr mRNA expression increases much more dramatically in tgArcSwe mice. Treatment with Leuprorelin acetate successfully abolished the transgene specific effects on Gnrh/Gnrhr mRNA expression. The present experimental

  16. Radioimmunoassay and the hormones of thyroid function

    International Nuclear Information System (INIS)

    Stahl, R.J.

    1975-01-01

    Radioimmunoassay (RIA) has provided the tools for wide-reaching investigations that have changed and continue to change many important concepts of thyroid physiology and pathophysiology. The RIA for human thyrotropin (TSH) was developed in 1965; development of the RIA for triiodothyronine (T 3 ), thyroxine(T 4 ), thyroxine-binding globulin (TBG), and recently, thyrotropin-releasing hormone (TRH) and thyroglobulin (Tg) followed. The capacity to measure nanogram and picogram concentrations with relative ease and speed has permitted the demonstration of dynamic relationships of the intrathyroidal and circulating thyroid hormones to each other and to the pituitary and hypothalamic regulating hormones. Evidence for the presence of cross-influences between TRH and other hypothalamic regulating hormones on the secretion of pituitary hormones has accumulated. The impact of the new information on clinical practice is now becoming evident. There is new appreciation of the value of assaying serum T 3 and TSH concentrations in the clinical management of patients with disturbed function of the thyroid, pituitary, or hypothalamus. The necessary components for RIA performance can be purchased separately or in kit form from commercial sources. With appropriate quality-control procedures, precise, sensitive, and reliable data can be generated. Awareness of the specific technical problems relating to the RIA of these hormones is absolutely necessary to assure reliable results. The availability of kits or their components permits the performance of these studies in the community hospital and in reliable commercial-service laboratories. (U.S.)

  17. The relationships among acculturation, biobehavioral risk, stress, corticotropin-releasing hormone, and poor birth outcomes in Hispanic women.

    Science.gov (United States)

    Ruiz, R Jeanne; Dolbier, Christyn L; Fleschler, Robin

    2006-01-01

    To determine the predictive ability of acculturation as an antecedent of stress, biobehavioral risk, corticotropin-releasing hormone levels, and poor birth outcomes in pregnant Hispanic women. A prospective, observational design with data collected at 22-25 weeks of gestation and at birth through medical record review. Public prenatal health clinics in south Texas serving low-income women. Self-identified Hispanic women who had singleton pregnancies, no major medical risk complications, and consented to answer questionnaires as well as a venipuncture and review of their prenatal and birth medical records. Gestational age, Apgar scores, length, weight, percentile size, and head circumference of the infant at birth. Significant differences were seen in infant birth weight, head circumference, and percentile size by acculturation. English acculturation predicted stress, corticotropin-releasing hormone, biobehavioral risk, and decreased gestational age at birth. Investigation must continue to understand the circumstances that give rise to the decline in birth outcomes observed in Hispanics with acculturation to the dominant English culture in the United States.

  18. Sexual dimorphism of stress response and immune/ inflammatory reaction: the corticotropin releasing hormone perspective

    OpenAIRE

    Vamvakopoulos, Nicholas V.

    1995-01-01

    This review higlghts key aspects of corticotropin releasing hormone (CRH) biology of potential relevance to the sexual dimorphism of the stress response and immune/inflammatory reaction, and introduces two important new concepts based on the regulatory potential of the human (h) CRH gene: (1) a proposed mechanism to account for the tissue-specific antithetical responses of hCRH gene expression to glucocorticolds, that may also explain the frequently observed antithetical effects of chronic gl...

  19. [Anthology of the first clinical studies with hypothalamic hormones: a story of successful international cooperation].

    Science.gov (United States)

    Schally, Andrew V; Gual, Carlos

    2002-01-01

    Our early pioneering clinical trials in Mexico with natural and synthetic thyrotropin-releasing hormone (TRH) and luteinizing hormone releasing hormone (LH-RH) also known as gonadotropin releasing hormone (Gn-RH), were reviewed. Highly purified TRH of porcine origin was shown to stimulate Thyrotropin (TSH) release in hypothyroid cretins. Subsequent tests with synthetic TRH also demonstrated significant increases in plasma TSH in normal men and women as well as in patients with primary hypothyroidism and other endocrine disorders. Even more extensive clinical studies were carried out with highly purified natural porcine LH-RH. Subjects with normal basal serum levels of gonadotropins, low levels (men and women pretreated with steroids) and high levels (e.g. post menopausal women) all responded to LH-RH with a release of LH and FSH. The results of these early studies with the natural LH-RH were confirmed by the use of synthetic LH-RH. These investigations made in Mexico with TRH and LH-RH preceded all other clinical studies by a wide margin. Subsequently various clinical investigations with LH-RH agonists and antagonists were also carried out. All these studies played a major role in introducing hypothalamic-releasing hormones into clinical medicine.

  20. Sexual dimorphism of gonadotropin-releasing hormone type-III (GnRH3) neurons and hormonal sex reversal of male reproductive behavior in Mozambique tilapia.

    Science.gov (United States)

    Kuramochi, Asami; Tsutiya, Atsuhiro; Kaneko, Toyoji; Ohtani-Kaneko, Ritsuko

    2011-10-01

    In tilapia, hormone treatment during the period of sexual differentiation can alter the phenotype of the gonads, indicating that endocrine factors can cause gonadal sex reversal. However, the endocrine mechanism underlying sex reversal of reproductive behaviors remains unsolved. In the present study, we detected sexual dimorphism of gonadotropin-releasing hormone type III (GnRH3) neurons in Mozambique tilapia Oreochromis mossambicus. Our immunohistochemical observations showed sex differences in the number of GnRH3 immunoreactive neurons in mature tilapia; males had a greater number of GnRH3 neurons in the terminal ganglion than females. Treatment with androgen (11-ketotestosterone (11-KT) or methyltestosterone), but not that with 17β-estradiol, increased the number of GnRH3 neurons in females to a level similar to that in males. Furthermore, male-specific nest-building behavior was induced in 70% of females treated with 11-KT within two weeks after the onset of the treatment. These results indicate androgen-dependent regulation of GnRH3 neurons and nest-building behavior, suggesting that GnRH3 is importantly involved in sex reversal of male-specific reproductive behavior.

  1. Hormonal changes in secondary impotence

    International Nuclear Information System (INIS)

    Salama, F.M.; El-Shabrawy, N.O.; Nosseir, S.A.; Abo El-Azayem, Naglaa.

    1985-01-01

    Impotence is one of the problems which is still obscure both in its aetiology and treatment. The present study deals with the possible hormonal changes in cases of secondary infertility. The study involved 25 patients diagnosed as secondary impotence. Hormonal assay was performed for the following hormones: 1. Prolaction hormone. 2. Luteinising hormone (L.H.). 3. Testosterone. 4. Follicle stimulating hormone (F.S.H.). The assay was carried out by radioimmunoassay using double antibody technique. Results are discussed

  2. [Role of the Periaqueductal Gray Matter of the Midbrain in Regulation of Somatic Pain Sensitivity During Stress: Participation of Corticotropin-Releasing Factor and Glucocorticoid Hormones].

    Science.gov (United States)

    Yarushkina, N I; Filaretova, L P

    2015-01-01

    Periaqueductal gray matter of the midbrain (PAGM) plays a crucial role in the regulation of pain sensitivity under stress, involving in the stress-induced analgesia. A key hormonal system of adaptation under stress is the hypothalamic-pituitary-adrenocortical (HPA) axis. HPA axis's hormones, corticotropin-releasing factor (CRF) and glucocorticoids, are involved in stress-induced analgesia. Exogenous hormones of the HPA axis, similarly to the hormones produced under stress, may cause an analgesic effect. CRF-induced analgesia may be provided by glucocorticoid hormones. CRF and glucocorticoids-induced effects on somatic pain sensitivity may be mediated by PAGM. The aim of the review was to analyze the data of literature on the role of PAGM in the regulation of somatic pain sensitivity under stress and in providing of CRF and glucocorticoid-induced analgesia.

  3. Adipokinetic hormones and their G protein-coupled receptors emerged in Lophotrochozoa

    DEFF Research Database (Denmark)

    Li, Shizhong; Hauser, Frank; Skadborg, Signe K.

    2016-01-01

    the neuropeptide systems used by proto- or deuterostomes. An exception, however, are members of the gonadotropin-releasing hormone (GnRH) receptor superfamily, which occur in both evolutionary lineages, where GnRHs are the ligands in Deuterostomia and GnRH-like peptides, adipokinetic hormone (AKH), corazonin...

  4. Inhibition of growth hormone and prolactin secretion by a serine proteinase inhibitor

    International Nuclear Information System (INIS)

    Rappay, G.; Nagy, I.; Makara, G.B.; Horvath, G.; Karteszi, M.; Bacsy, E.; Stark, E.

    1984-01-01

    The action of the tripeptide aldehyde t-butyloxycarbonyl-DPhe-Pro-Arg-H (boc-fPR-H), belonging to a family of serine proteinase inhibitors, on the release of immunoreactive prolactin (iPRL) and growth hormone (iGH) has been studied. In rat anterior pituitary cell cultures and pituitary quarters 1 mM boc-fPR-H inhibited basal iPRL and iGH release. Thyroliberin-induced iPRL release by cultured cells was also markedly inhibited with a concomitant accumulation of intracellular iPRL. During the short- and long-term exposure of cells to boc-fPR-H there were no changes in total cell protein contents and in activities of some lysosomal marker enzymes. The marked inhibition of basal as well as stimulated hormone release in the presence of the enzyme inhibitor might suggest that at least a portion of the hormones is released via a proteolytic enzyme-dependent process

  5. Antiproliferative effect of growth hormone-releasing hormone (GHRH antagonist on ovarian cancer cells through the EGFR-Akt pathway

    Directory of Open Access Journals (Sweden)

    Varga Jozsef

    2010-05-01

    Full Text Available Abstract Background Antagonists of growth hormone-releasing hormone (GHRH are being developed for the treatment of various human cancers. Methods MTT assay was used to test the proliferation of SKOV3 and CaOV3. The splice variant expression of GHRH receptors was examined by RT-PCR. The expression of protein in signal pathway was examined by Western blotting. siRNA was used to block the effect of EGFR. Results In this study, we investigated the effects of a new GHRH antagonist JMR-132, in ovarian cancer cell lines SKOV3 and CaOV3 expressing splice variant (SV1 of GHRH receptors. MTT assay showed that JMR-132 had strong antiproliferative effects on SKOV3 and CaOV3 cells in both a time-dependent and dose-dependent fashion. JMR-132 also induced the activation and increased cleaved caspase3 in a time- and dose-dependent manner in both cell lines. In addition, JMR-132 treatments decreased significantly the epidermal growth factor receptor (EGFR level and the phosphorylation of Akt (p-Akt, suggesting that JMR-132 inhibits the EGFR-Akt pathway in ovarian cancer cells. More importantly, treatment of SKOV3 and CaOV3 cells with 100 nM JMR-132 attenuated proliferation and the antiapoptotic effect induced by EGF in both cell lines. After the knockdown of the expression of EGFR by siRNA, the antiproliferative effect of JMR-132 was abolished in SKOV3 and CaOV3 cells. Conclusions The present study demonstrates that the inhibitory effect of the GHRH antagonist JMR-132 on proliferation is due, in part, to an interference with the EGFR-Akt pathway in ovarian cancer cells.

  6. Endocrinology and the brain: corticotropin-releasing hormone signaling.

    Science.gov (United States)

    Inda, Carolina; Armando, Natalia G; Dos Santos Claro, Paula A; Silberstein, Susana

    2017-08-01

    Corticotropin-releasing hormone (CRH) is a key player of basal and stress-activated responses in the hypothalamic-pituitary-adrenal axis (HPA) and in extrahypothalamic circuits, where it functions as a neuromodulator to orchestrate humoral and behavioral adaptive responses to stress. This review describes molecular components and cellular mechanisms involved in CRH signaling downstream of its G protein-coupled receptors (GPCRs) CRHR1 and CRHR2 and summarizes recent findings that challenge the classical view of GPCR signaling and impact on our understanding of CRHRs function. Special emphasis is placed on recent studies of CRH signaling that revealed new mechanistic aspects of cAMP generation and ERK1/2 activation in physiologically relevant contexts of the neurohormone action. In addition, we present an overview of the pathophysiological role of the CRH system, which highlights the need for a precise definition of CRHRs signaling at molecular level to identify novel targets for pharmacological intervention in neuroendocrine tissues and specific brain areas involved in CRH-related disorders. © 2017 The authors.

  7. Missed hormonal contraceptives: new recommendations.

    Science.gov (United States)

    Guilbert, Edith; Black, Amanda; Dunn, Sheila; Senikas, Vyta

    2008-11-01

    To provide evidence-based guidance for women and their health care providers on the management of missed or delayed hormonal contraceptive doses in order to prevent unintended pregnancy. Medline, PubMed, and the Cochrane Database were searched for articles published in English, from 1974 to 2007, about hormonal contraceptive methods that are available in Canada and that may be missed or delayed. Relevant publications and position papers from appropriate reproductive health and family planning organizations were also reviewed. The quality of evidence is rated using the criteria developed by the Canadian Task Force on Preventive Health Care. This committee opinion will help health care providers offer clear information to women who have not been adherent in using hormonal contraception with the purpose of preventing unintended pregnancy. The Society of Obstetricians and Gynaecologists of Canada. SUMMARY STATEMENTS: 1. Instructions for what women should do when they miss hormonal contraception have been complex and women do not understand them correctly. (I) 2. The highest risk of ovulation occurs when the hormone-free interval is prolonged for more than seven days, either by delaying the start of combined hormonal contraceptives or by missing active hormone doses during the first or third weeks of combined oral contraceptives. (II) Ovulation rarely occurs after seven consecutive days of combined oral contraceptive use. (II) RECOMMENDATIONS: 1. Health care providers should give clear, simple instructions, both written and oral, on missed hormonal contraceptive pills as part of contraceptive counselling. (III-A) 2. Health care providers should provide women with telephone/electronic resources for reference in the event of missed or delayed hormonal contraceptives. (III-A) 3. In order to avoid an increased risk of unintended pregnancy, the hormone-free interval should not exceed seven days in combined hormonal contraceptive users. (II-A) 4. Back-up contraception should

  8. Chronic food restriction and the circadian rhythms of pituitary-adrenal hormones, growth hormone and thyroid-stimulating hormone.

    Science.gov (United States)

    Armario, A; Montero, J L; Jolin, T

    1987-01-01

    Adult male Sprague-Dawley rats were subjected to food restriction so that they ate 65% of food ingested by control rats. While control rats had free access to food over the 24-hour period, food-restricted rats were provided with food daily at 10 a.m. The experimental period lasted for 34 days. On day 35, rats from both experimental groups were killed at 08.00, 11.00, 14.00, 24.00 and 02.00 h. Food restriction modified the circadian rhythms of ACTH and corticosterone. In addition, total circulating corticosterone throughout the day was higher in food-restricted than in control rats. In contrast, food restriction resulted in depressed secretion of thyroid-stimulating hormone and growth hormone. The results indicate that time of food availability entrained circadian corticosterone rhythm but not thyroid-stimulating hormone and growth hormone rhythms.

  9. Gonadotropin releasing hormone agonists: Expanding vistas

    Directory of Open Access Journals (Sweden)

    Navneet Magon

    2011-01-01

    Full Text Available Gonadotropin-releasing hormone (GnRH agonists are derived from native GnRH by amino acid substitution which yields the agonist resistant to degradation and increases its half-life. The hypogonadotropic hypogonadal state produced by GnRH agonists has been often dubbed as "pseudomenopause" or "medical oophorectomy," which are both misnomers. GnRH analogues (GnRH-a work by temporarily "switching off" the ovaries. Ovaries can be "switched off" for the therapy and therapeutic trial of many conditions which include but are not limited to subfertility, endometriosis, adenomyosis, uterine leiomyomas, precocious puberty, premenstrual dysphoric disorder, chronic pelvic pain, or the prevention of menstrual bleeding in special clinical situations. Rapidly expanding vistas of usage of GnRH agonists encompass use in sex reassignment of male to female transsexuals, management of final height in cases of congenital adrenal hyperplasia, and preserving ovarian function in women undergoing cytotoxic chemotherapy. Hypogonadic side effects caused by the use of GnRH agonists can be tackled with use of "add-back" therapy. Goserelin, leuprolide, and nafarelin are commonly used in clinical practice. GnRH-a have provided us a powerful therapeutic approach to the treatment of numerous conditions in reproductive medicine. Recent synthesis of GnRH antagonists with a better tolerability profile may open new avenues for both research and clinical applications. All stakeholders who are partners in women′s healthcare need to join hands to spread awareness so that these drugs can be used to realize their full potential.

  10. Synthesis and in vitro and in vivo activity of analogs of growth hormone-releasing hormone (GH-RH) with C-terminal agmatine.

    Science.gov (United States)

    Zarandi, M; Csernus, V; Bokser, L; Bajusz, S; Groot, K; Schally, A V

    1990-12-01

    In the search for more active analogs of human growth hormone-releasing hormone (GH-RH), 37 new compounds were synthesized by solid phase methodology, purified, and tested biologically. Most of the analogs contained a sequence of 27 amino acids and N-terminal desaminotyrosine (Dat) and C-terminal agmatine (Agm), which are not amino acids. In addition to Dat in position 1 and Agm in position 29, the majority of the analogs had Ala15 and Nle27 substitutions and one or more additional L- or D-amino acid modifications. [Dat1, Ala15, Nle27]GH-RH(1-28)Agm (MZ-2-51) was the most active analog. Its in vitro GH-releasing potency was 10.5 times higher than that of GH-RH(1-29)NH2 and in the i.v. in vivo assay, MZ-2-51 was 4-5 times more active than the standard. After s.c. administration to rats. MZ-2-51 showed an activity 34 times higher at 15 min and 179 times greater at 30 min than GH-RH(1-29)NH2 and also displayed a prolonged activity. D-Tyr10, D-Lys12, and D-Lys21 homologs of MZ-2-51 also showed enhanced activities. Thus, [Dat1, D-Tyr10, Ala15, Nle27]GH-RH(1-28)Agm (MZ-2-159), [Dat1, D-Lys12, Ala15, Nle27]GH-RH(1-28)AGM (MZ-2-57), and [Dat1, Ala15, D-Lys21, Nle27]GH-RH(1-28)Agm (MZ-2-75) were 4-6 times more active in vitro than GH-RH(1-29)NH2. In vivo, after i.v. administration, analog MZ-2-75 was equipotent and analogs MZ-2-159 and MZ-2-57 about twice as potent as the standard.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Function of gonadotropin-releasing hormone in olfaction.

    Science.gov (United States)

    Wirsig-Wiechmann, C R

    2001-06-01

    Gonadotropin-releasing hormone (GnRH) is present within neurons of the nervus terminalis, the zeroeth cranial nerve. In all vertebrate species, except in sharks where it is a separate nerve, the nervus terminalis consists of a chain of neurons embedded within olfactory or vomeronasal nerves in the nasal cavity. The function of the GnRH component of the nervus terminalis is thought to be neuromodulatory. Our research on GnRH effects on olfaction confirms this hypothesis. The processes of GnRH neural cell bodies located within chemosensory nerves project centrally into the ventral forebrain and peripherally into the lamina propria of the nasal chemosensory mucosa. GnRH receptors are expressed by chemosensory neurons as shown by RT-PCR/Southern blotting and GnRH agonist binding studies. Patch-clamp studies have shown that GnRH alters the responses of isolated chemosensory neurons to natural or electrophysiological stimulation through the modulation of voltage-gated and receptor-gated channels. Behavioral experiments demonstrate that interfering with the nasal GnRH system leads to deficits in mating behavior. These studies suggest that the function of the intranasal GnRH system is to modify olfactory information, perhaps at reproductively auspicious times. We speculate that the purpose of this altered olfactory sense is to make pheromones more detectable and salient.

  12. Luteinizing hormone-releasing hormone inactivation by purified pituitary plasma membranes: effects of receptor-binding studies.

    Science.gov (United States)

    Clayton, R N; Shakespear, R A; Duncan, J A; Marshall, J C

    1979-05-01

    Inactivation of LHRH by purified bovine pituitary plasma membranes was studied in vitro. After incubation of [125I]iodo-LHRH with plasma membranes, the amount of tracer bound to the pellet was measured, and the integrity of the unbound tracer in the supernatant was assessed. Reduction in ability to bind to anti-LHRH serum and to rebind to plasma membranes together with altered electrophoretic mobility on polyacrylamide gels showed that the unbound [125I]iodo-LHRH was inactivated. LHRH inactivation occurred rapidly and was dependent upon membrane concentration and incubation temperature. These results indicate that hormone inactivation must be taken into account in the interpretation of LHRH-receptor interactions. During 37 C incubations, the apparent absence of specific LHRH binding can be explained by inactivation of tracer hormone. Significant LHRH inactivation also occurred at 0 C, which in part explains the insensitivity of LHRH receptor assays. Assessment of LHRH inactivation by different particulate subcellular fractions of pituitary tissue showed that the inactivating enzyme was associated with the plasma membranes; other organelles did not alter LHRH. The enzyme appeared to be an integral part of the plasma membrane structure, since enzymic activity could not be removed by washing without reducing specific LHRH binding. Additionally, reduction of LHRH inactivation by the inhibitors Bacitracin and Trasylol and by magnesium was also accompanied by reduced LHRH binding. Previous studies have shown that the majority of LHRH binding to pituitary plasma membranes is to the low affinity site (approximately 10(-6) M), but the significance of this binding has been uncertain. Our findings indicate that low affinity binding probably represents binding of LHRH to the inactivating enzyme. The LHRH analog, D-Ser6(TBu), des Gly10, ethylamide, has greater biological activity than LHRH and is not inactivated to a significant extent by pituitary plasma membranes. The

  13. Gut hormones and gastric bypass

    DEFF Research Database (Denmark)

    Holst, Jens J.

    2016-01-01

    Gut hormone secretion in response to nutrient ingestion appears to depend on membrane proteins expressed by the enteroendocrine cells. These include transporters (glucose and amino acid transporters), and, in this case, hormone secretion depends on metabolic and electrophysiological events elicited...... that determines hormone responses. It follows that operations that change intestinal exposure to and absorption of nutrients, such as gastric bypass operations, also change hormone secretion. This results in exaggerated increases in the secretion of particularly the distal small intestinal hormones, GLP-1, GLP-2......, oxyntomodulin, neurotensin and peptide YY (PYY). However, some proximal hormones also show changes probably reflecting that the distribution of these hormones is not restricted to the bypassed segments of the gut. Thus, cholecystokinin responses are increased, whereas gastric inhibitory polypeptide responses...

  14. Prolactin response to thyrotropin-releasing hormone in early and advanced human breast cancer

    International Nuclear Information System (INIS)

    Barni, S.; Lissoni, P.; Tancini, G.

    1986-01-01

    While prolactin (PRL) has been shown to stimulate the development of mammary carcinoma in several animal species, its role in human breast cancer remains to be established. To further investigate PRL secretion in human breast cancer, its basal levels and response to thyrotropin-releasing hormone (TRH) were evaluated in 16 patients (6 with no metastases and 10 with metastatic locations). The control group consisted of 19 healthy women. High PRL basal concentrations were seen in 2 patients only; no significant differences were found between the other patients and the normal subjects. The PRL increase induced by TRH administration was significantly higher in patients than in controls. Finally a change in the hormonal secretion was found after chemotherapy in 3 of the 5 patients in whom PRL response to TRH was evaluated either before or 10-12 days after a cycle of intravenous CMF adjuvant chemotherapy. These results demostrate the existence of an exaggerated response of PRL to TRH in patients with breast cancer, even in the presence of normal basal levels. Moreover, they would seem to suggest a possible influence of CMF on PRL response to TRH stimulation

  15. Adult growth hormone deficiency

    Directory of Open Access Journals (Sweden)

    Vishal Gupta

    2011-01-01

    Full Text Available Adult growth hormone deficiency (AGHD is being recognized increasingly and has been thought to be associated with premature mortality. Pituitary tumors are the commonest cause for AGHD. Growth hormone deficiency (GHD has been associated with neuropsychiatric-cognitive, cardiovascular, neuromuscular, metabolic, and skeletal abnormalities. Most of these can be reversed with growth hormone therapy. The insulin tolerance test still remains the gold standard dynamic test to diagnose AGHD. Growth hormone is administered subcutaneously once a day, titrated to clinical symptoms, signs and IGF-1 (insulin like growth factor-1. It is generally well tolerated at the low-doses used in adults. Pegylated human growth hormone therapy is on the horizon, with a convenient once a week dosing.

  16. Changes in gonadotropin-releasing hormone and gonadotropin-releasing hormone receptor gene expression after an increase in carbon monoxide concentration in the cavernous sinus of male wild boar and pig crossbread.

    Science.gov (United States)

    Romerowicz-Misielak, M; Tabecka-Lonczynska, A; Koziol, K; Gilun, P; Stefanczyk-Krzymowska, S; Och, W; Koziorowski, M

    2016-06-01

    Previous studies indicate that there are at least a few regulatory systems involved in photoperiodic synchronisation of reproductive activity, which starts with the retina and ends at the gonadotropin-releasing hormone (GnRH) pulse generator. Recently we have shown indicated that the amount of carbon monoxide (CO) released from the eye into the ophthalmic venous blood depends on the intensity of sunlight. The aim of this study was to test whether changes in the concentration of carbon monoxide in the ophthalmic venous blood may modulate reproductive activity, as measured by changes in GnRH and GnRH receptor gene expression. The animal model used was mature male swine crossbred from wild boars and domestic sows (n = 48). We conducted in vivo experiments to determine the effect of increased CO concentrations in the cavernous sinus of the mammalian perihypophyseal vascular complex on gene expression of GnRH and GnRH receptors as well as serum luteinizing hormone (LH) levels. The experiments were performed during long photoperiod days near the summer solstice (second half of June) and short photoperiod days near the winter solstice (second half of December). These crossbred swine demonstrated a seasonally-dependent marked variation in GnRH and GnRH receptor gene expression and systemic LH levels in response to changes in CO concentration in ophthalmic venous blood. These results seem to confirm the hypothesis of humoral phototransduction as a mechanism for some of bright light's effects in animal chronobiology and the effect of CO on GnRH and GnRH receptor gene expression.

  17. Strigolactones, a novel carotenoid-derived plant hormone

    KAUST Repository

    Al-Babili, Salim; Bouwmeester, Harro J.

    2015-01-01

    Strigolactones (SLs) are carotenoid-derived plant hormones and signaling molecules. When released into the soil, SLs indicate the presence of a host to symbiotic fungi and root parasitic plants. In planta, they regulate several developmental

  18. Thyrotropin-releasing hormone controls mitochondrial biology in human epidermis.

    Science.gov (United States)

    Knuever, Jana; Poeggeler, Burkhard; Gáspár, Erzsébet; Klinger, Matthias; Hellwig-Burgel, Thomas; Hardenbicker, Celine; Tóth, Balázs I; Bíró, Tamás; Paus, Ralf

    2012-03-01

    Mitochondrial capacity and metabolic potential are under the control of hormones, such as thyroid hormones. The most proximal regulator of the hypothalamic-pituitary-thyroid (HPT) axis, TRH, is the key hypothalamic integrator of energy metabolism via its impact on thyroid hormone secretion. Here, we asked whether TRH directly modulates mitochondrial functions in normal, TRH-receptor-positive human epidermis. Organ-cultured human skin was treated with TRH (5-100 ng/ml) for 12-48 h. TRH significantly increased epidermal immunoreactivity for the mitochondria-selective subunit I of respiratory chain complex IV (MTCO1). This resulted from an increased MTCO1 transcription and protein synthesis and a stimulation of mitochondrial biogenesis as demonstrated by transmission electron microscopy and TRH-enhanced mitochondrial DNA synthesis. TRH also significantly stimulated the transcription of several other mitochondrial key genes (TFAM, HSP60, and BMAL1), including the master regulator of mitochondrial biogenesis (PGC-1α). TRH significantly enhanced mitochondrial complex I and IV enzyme activity and enhanced the oxygen consumption of human skin samples, which shows that the stimulated mitochondria are fully vital because the main source for cellular oxygen consumption is mitochondrial endoxidation. These findings identify TRH as a potent, novel neuroendocrine stimulator of mitochondrial activity and biogenesis in human epidermal keratinocytes in situ. Thus, human epidermis offers an excellent model for dissecting neuroendocrine controls of human mitochondrial biology under physiologically relevant conditions and for exploring corresponding clinical applications.

  19. Involvement of phospholipase C and intracellular calcium signaling in the gonadotropin-releasing hormone regulation of prolactin release from lactotrophs of tilapia (Oreochromis mossambicus)

    DEFF Research Database (Denmark)

    Tipsmark, Christian Kølbæk; Weber, G M; Strom, C N

    2005-01-01

    Gonadotropin-releasing hormone (GnRH) is a potent stimulator of prolactin (PRL) secretion in various vertebrates including the tilapia, Oreochromis mossambicus. The mechanism by which GnRH regulates lactotroph cell function is poorly understood. Using the advantageous characteristics of the teleost...

  20. Silent pituitary macroadenoma co-secreting growth hormone and thyroid stimulating hormone.

    Science.gov (United States)

    Sen, Orhan; Ertorer, M Eda; Aydin, M Volkan; Erdogan, Bulent; Altinors, Nur; Zorludemir, Suzan; Guvener, Nilgun

    2005-04-01

    Silent pituitary adenomas are a group of tumors showing heterogenous morphological features with no hormonal function observed clinically. To date no explanation has been provided as to why these tumors remain "silent". We report a case of a silent macroadenoma with both growth hormone (GH) and thyroid stimulating hormone (TSH) staining and secretion but with no clinical manifestations, in particular, the absence of features of acromegaly or hyperthyroidism. The relevant literature is reviewed.

  1. Prepubertal Development of Gonadotropin-Releasing Hormone Neuron Activity Is Altered by Sex, Age, and Prenatal Androgen Exposure.

    Science.gov (United States)

    Dulka, Eden A; Moenter, Suzanne M

    2017-11-01

    Gonadotropin-releasing hormone (GnRH) neurons regulate reproduction though pulsatile hormone release. Disruption of GnRH release as measured via luteinizing hormone (LH) pulses occurs in polycystic ovary syndrome (PCOS), and in young hyperandrogenemic girls. In adult prenatally androgenized (PNA) mice, which exhibit many aspects of PCOS, increased LH is associated with increased GnRH neuron action potential firing. How GnRH neuron activity develops over the prepubertal period and whether this is altered by sex or prenatal androgen treatment are unknown. We hypothesized GnRH neurons are active before puberty and that this activity is sexually differentiated and altered by PNA. Dams were injected with dihydrotestosterone (DHT) on days 16 to 18 post copulation to generate PNA mice. Action potential firing of GFP-identified GnRH neurons in brain slices from 1-, 2-, 3-, and 4-week-old and adult mice was monitored. GnRH neurons were active at all ages tested. In control females, activity increased with age through 3 weeks, then decreased to adult levels. In contrast, activity did not change in PNA females and was reduced at 3 weeks. Activity was higher in control females than males from 2 to 3 weeks. PNA did not affect GnRH neuron firing rate in males at any age. Short-term action potential patterns were also affected by age and PNA treatment. GnRH neurons are thus typically more active during the prepubertal period than adulthood, and PNA reduces prepubertal activity in females. Prepubertal activity may play a role in establishing sexually differentiated neuronal networks upstream of GnRH neurons; androgen-induced changes during this time may contribute to the adult PNA, and possibly PCOS, phenotype. Copyright © 2017 Endocrine Society.

  2. Biosynthesis and release of thyrotropin-releasing hormone immunoreactivity in rat pancreatic islets in organ culture. Effects of age, glucose, and streptozotocin

    DEFF Research Database (Denmark)

    Dolva, L O; Welinder, B S; Hanssen, K F

    1983-01-01

    Thyrotropin-releasing hormone immunoreactivity (TRH-IR) was measured in isolated islets and in medium from rat pancreatic islets maintained in organ culture. TRH-IR in methanol extracts of both islets and culture medium was eluted in the same position as synthetic TRH by ion-exchange and gel...... chromatography and exhibited dilution curves parallel with synthetic TRH in radioimmunoassay. [3H]Histidine was incorporated into a component that reacted with TRH antiserum and had the same retention time as synthetic TRH on reversed-phase high-performance liquid chromatography. A continuous release of TRH...

  3. Menopause and Hormones

    Science.gov (United States)

    ... Consumer Information by Audience For Women Menopause and Hormones: Common Questions Share Tweet Linkedin Pin it More ... reproduction and distribution. Learn More about Menopause and Hormones Menopause--Medicines to Help You Links to other ...

  4. A different approach to the radioimmunoassay of thyrotropin releasing hormone

    International Nuclear Information System (INIS)

    Visser, T.J.; Klootwijk, W.; Docter, R.; Hennemann, G.

    1977-01-01

    Thyrotropin releasing hormone (TRH) was linked to hemocyanin by means of a dinitrophenylene moiety. TRH (pGlu-His-Pro-NH 2 ) was made to react with a large excess of 1,5-difluoro-2,4-dinitrobenzene to yield Nsup(im)-[5-fluoro-2,4-dinitrophenyl]TRH. After removal of excess reagent the derivative was coupled to hemocyanin with a minimum of side-reactions. From two rabbits out of four immunized with this material valuable antisera were obtained, which were used in the radioimmunoassay of the hypothalamic hormone at a final dilution of 1:7,500 and 1:15,000, respectively. The properties, especially with regard to specificity, of these antisera were studied and compared with another antiserum, which was obtained using a conjugate having TRH linked to thyroglobulin via a p-azophenyl-acetyl moiety. Despite the difference between the derivatives, i.e. the nature and the point of attachment of the side chains, the specificities of the assays were very similar. Deamidation of TRH, deletion of either one of the terminal residues, hydrolysis of the lactam of the pyroglutamyl residue, and replacing Pro-NH 2 by Pro-Gly-NH 2 or by an octapeptide chain yield peptides with strongly diminished cross-reactivities. However, Nsup(im)-benzyl-TRH and pGlu-Phe-Pro-NH 2 were 5-10 times as active as TRH probably due to a closer physico-chemical similarity to the arrangement of the haptens in the conjugates. This suggests that the sensitivity of the radioimmunoassay may be increased markedly by conversion of TRH into the Nsup(im)-dinitrophenyl derivative and by using a related compound for radioiodination. (orig.) [de

  5. Gonadotropin-releasing hormone regulates expression of the DNA damage repair gene, Fanconi anemia A, in pituitary gonadotroph cells.

    Science.gov (United States)

    Larder, Rachel; Chang, Lynda; Clinton, Michael; Brown, Pamela

    2004-09-01

    Gonadal function is critically dependant on regulated secretion of the gonadotropin hormones from anterior pituitary gonadotroph cells. Gonadotropin biosynthesis and release is triggered by the binding of hypothalamic GnRH to GnRH receptor expressed on the gonadotroph cell surface. The repertoire of regulatory molecules involved in this process are still being defined. We used the mouse L beta T2 gonadotroph cell line, which expresses both gonadotropin hormones, as a model to investigate GnRH regulation of gene expression and differential display reverse transcription-polymerase chain reaction (RT-PCR) to identify and isolate hormonally induced changes. This approach identified Fanconi anemia a (Fanca), a gene implicated in DNA damage repair, as a differentially expressed transcript. Mutations in Fanca account for the majority of cases of Fanconi anemia (FA), a recessively inherited disease identified by congenital defects, bone marrow failure, infertility, and cancer susceptibility. We confirmed expression and hormonal regulation of Fanca mRNA by quantitative RT-PCR, which showed that GnRH induced a rapid, transient increase in Fanca mRNA. Fanca protein was also acutely upregulated after GnRH treatment of L beta T2 cells. In addition, Fanca gene expression was confined to mature pituitary gonadotrophs and adult mouse pituitary and was not expressed in the immature alpha T3-1 gonadotroph cell line. Thus, this study extends the expression profile of Fanca into a highly specialized endocrine cell and demonstrates hormonal regulation of expression of the Fanca locus. We suggest that this regulatory mechanism may have a crucial role in the GnRH-response mechanism of mature gonadotrophs and perhaps the etiology of FA.

  6. Isotocin Regulates Growth Hormone but Not Prolactin Release From the Pituitary of Ricefield Eels

    Directory of Open Access Journals (Sweden)

    Wei Yang

    2018-04-01

    Full Text Available The neurohypophyseal hormone oxytocin (Oxt has been shown to stimulate prolactin (Prl synthesis and release from the adenohypophysis in rats. However, little is known about the functional roles of Oxt-like neuropeptides in the adenohypophysis of non-mammalian vertebrates. In this study, cDNAs encoding ricefield eel oxytocin-like receptors (Oxtlr, namely isotocin (Ist receptor 1 (Istr1 and 2 (Istr2, were isolated and specific antisera were generated, respectively. RT-PCR and Western blot analysis detected the presence of both Istr1 and Istr2 in the brain and pituitary, but differential expression in some peripheral tissues, including the liver and kidney, where only Istr1 was detected. In the pituitary, immunoreactive Istr1 and Istr2 were differentially distributed, with the former mainly in adenohypophyseal cell layers adjacent to the neurohypophysis, whereas the latter in peripheral areas of the adenohypophysis. Double immunofluorescent images showed that immunostaining of Istr1, but not Istr2 was localized to growth hormone (Gh cells, but neither of them was expressed in Prl cells. Ist inhibited Gh release in primary pituitary cells of ricefield eels and increased Gh contents in the pituitary gland of ricefield eels at 6 h after in vivo administration. Ist inhibition of Gh release is probably mediated by cAMP, PKC/DAG, and IP3/Ca2+ pathways. In contrast, Ist did not affect either prl gene expression or Prl contents in primary pituitary cells. Results of this study demonstrated that Ist may not be involved in the regulation of Prl, but inhibit Gh release via Istr1 rather than Istr2 in ricefield eels, and provided evidence for the direct regulation of Gh cells by oxytocin-like neuropeptides in the pituitary of non-mammalian vertebrates.

  7. Isotocin Regulates Growth Hormone but Not Prolactin Release From the Pituitary of Ricefield Eels

    Science.gov (United States)

    Yang, Wei; Zhang, Ning; Shi, Boyang; Zhang, Shen; Zhang, Lihong; Zhang, Weimin

    2018-01-01

    The neurohypophyseal hormone oxytocin (Oxt) has been shown to stimulate prolactin (Prl) synthesis and release from the adenohypophysis in rats. However, little is known about the functional roles of Oxt-like neuropeptides in the adenohypophysis of non-mammalian vertebrates. In this study, cDNAs encoding ricefield eel oxytocin-like receptors (Oxtlr), namely isotocin (Ist) receptor 1 (Istr1) and 2 (Istr2), were isolated and specific antisera were generated, respectively. RT-PCR and Western blot analysis detected the presence of both Istr1 and Istr2 in the brain and pituitary, but differential expression in some peripheral tissues, including the liver and kidney, where only Istr1 was detected. In the pituitary, immunoreactive Istr1 and Istr2 were differentially distributed, with the former mainly in adenohypophyseal cell layers adjacent to the neurohypophysis, whereas the latter in peripheral areas of the adenohypophysis. Double immunofluorescent images showed that immunostaining of Istr1, but not Istr2 was localized to growth hormone (Gh) cells, but neither of them was expressed in Prl cells. Ist inhibited Gh release in primary pituitary cells of ricefield eels and increased Gh contents in the pituitary gland of ricefield eels at 6 h after in vivo administration. Ist inhibition of Gh release is probably mediated by cAMP, PKC/DAG, and IP3/Ca2+ pathways. In contrast, Ist did not affect either prl gene expression or Prl contents in primary pituitary cells. Results of this study demonstrated that Ist may not be involved in the regulation of Prl, but inhibit Gh release via Istr1 rather than Istr2 in ricefield eels, and provided evidence for the direct regulation of Gh cells by oxytocin-like neuropeptides in the pituitary of non-mammalian vertebrates.

  8. Adult height in girls with central precocious puberty treated with gonadotropin-releasing hormone agonist with or without growth hormone

    Directory of Open Access Journals (Sweden)

    Mo Kyung Jung

    2014-12-01

    Full Text Available PurposeThere is controversy surrounding the growth outcomes of treatment with gonadotropin-releasing hormone agonist (GnRHa in central precocious puberty (CPP. We analyzed height preservation after treatment with GnRHa with and without growth hormone (GH in girls with CPP.MethodsWe reviewed the medical records of 82 girls with idiopathic CPP who had been treated with GnRHa at Severance Children's Hospital from 2004 to 2014. We assessed the changes in height standard deviation score (SDS for bone age (BA, and compared adult height (AH with midparental height (MPH and predicted adult height (PAH during treatment in groups received GnRHa alone (n=59 or GnRHa plus GH (n=23.ResultsIn the GnRHa alone group, the height SDS for BA was increased during treatment. AH (160.4±4.23 cm was significantly higher than the initial PAH (156.6±3.96 cm (P<0.001, and it was similar to the MPH (159.9±3.52 cm. In the GnRHa plus GH group, the height SDS for BA was also increased during treatment. AH (159.3±5.33 cm was also higher than the initial PAH (154.6±2.55 cm (P<0.001, which was similar to the MPH (158.1±3.31 cm. Height gain was slightly higher than that in the GnRHa alone group, however it statistically showed no significant correlation with GH treatment.ConclusionIn CPP girls treated with GnRHa, the height SDS for BA was increased, and the AH was higher than the initial PAH. Combined GH treatment showed a limited increase in height gain.

  9. A patient with thyrotropinoma cosecreting growth hormone and follicle-stimulating hormone with low alpha-glycoprotein: a new subentity?

    Science.gov (United States)

    Elhadd, Tarik A; Ghosh, Sujoy; Teoh, Wei Leng; Trevethick, Katy Ann; Hanzely, Zoltan; Dunn, Laurence T; Malik, Iqbal A; Collier, Andrew

    2009-08-01

    Thyrotropinomas are rare pituitary tumors. In 25 percent of cases there is autonomous secretion of a second pituitary hormone, adding to the clinical complexity. We report a patient with thyrotropin (TSH)-dependant hyperthyroidism along with growth hormone (GH) and follicle-stimulating hormone (FSH) hypersecretion but low alpha-glycoprotein (alpha-subunit) concentrations, a hitherto unique constellation of findings. A 67-year-old Scottish lady presented with longstanding ankle edema, paroxysmal atrial fibrillation, uncontrolled hypertension, fine tremors, warm peripheries, and agitation. Initial findings were a small goiter, elevated serum TSH of 7.37 mU/L (normal range, 0.30-6.0 mU/L), a free-thyroxine concentration of 34.9 pmol/L (normal range, 9.0-24.0 pmol/L), a flat TSH response to TSH-releasing hormone, and serum alpha-subunit of 3.1 IU/L (normal, hormone beta receptor by genotyping. Serum FSH was 56.8 U/L, but the luteinizing hormone (LH) was 23.6 U/L (postmenopausal FSH and LH reference ranges both >30 U/L) Basal insulin-like growth factor I was elevated to 487 microg/L with the concomitant serum GH being 14.1 mU/L, and subsequent serum GH values 30 minutes after 75 g oral glucose being 19.1 mU/L and 150 minutes later being 13.7 mU/L. An magnetic resonance imaging pituitary revealed a macroadenoma. Pituitary adenomectomy was performed with the histology confirming a pituitary adenoma, and the immunohistochemistry staining showed positive reactivity for FSH with scattered cells staining for GH and TSH. Staining for other anterior pituitary hormones was negative. After pituitary surgery she became clinically and biochemically euthyroid, the serum IFG-1 became normal, but the pattern of serum FSH and LH did not change. This case of plurihormonal thyrotropinoma is unique in having hypersecretion of TSH, GH, and FSH with low alpha-subunit. Such a combination may represent a new subentity of TSHomas.

  10. Thyroid Hormone Treatment

    Science.gov (United States)

    ... THYROID HORMONES? Desiccated ( dried and powdered ) animal thyroid ( Armour ®), now mainly obtained from pigs, was the most ... hormone can increase the risk or heart rhythm problems and bone loss making the use of thyroxine ...

  11. DYNAMIC BEHAVIOR OF A DELAY-DIFFERENTIAL EQUATION MODEL FOR THE HORMONAL REGULATION OF THE MENSTRUAL CYCLE

    Science.gov (United States)

    During the menstrual cycle, pituitary hormones stimulate the growth and development of ovarian follicles and the release of an ovum to be fertilized. The ovarian follicles secrete hormones during the cycle that regulate the production of the pituitary hormones creating positi...

  12. Characterisation of monoclonal antibodies for human luteinising hormone, and mapping of antigenic determinants on the hormone

    International Nuclear Information System (INIS)

    Soos, M.; Siddle, K.

    1983-01-01

    Twelve mouse monoclonal antibodies for human luteinising hormone were produced. The affinities varied from 4 X 10 7 to 1 X 10 10 l/mol. The specificity of each antibody was assessed by determining the relative reactivities with luteinising hormone, thyroid stimulating hormone, follicle stimulating hormone and chorionic gonadotrophin. Six antibodies bound to the α-subunit as shown by similar reactivity with all hormones, and the remainder to the β-subunit as shown by specificity for luteinising hormone. This latter group of antibodies cross-reacted only weakly with thyroid stimulating hormone (approximately 10%) and follicle stimulating hormone (approximately 3%). Three of these antibodies also showed low reactivity towards chorionic gonadotrophin (<10%), though the others did not (80-300%). The ability of different antibodies to bind simultaneously to luteinising hormone was examined and it was shown that several distinct antigenic determinants existed on both subunits. The characterisation of monoclonal binding sites is discussed in relation to the use of antibodies in two-site immunoradiometric assays. (Auth.)

  13. CHARACTERIZATION OF THE RECEPTOR FOR GONADOTROPIN-RELEASING HORMONE IN THE PITUITARY OF THE AFRICAN CATFISH, CLARIAS-GARIEPINUS

    NARCIS (Netherlands)

    de Leeuw, R.; Conn, P. M.; van't Veer, C.; Goos, H. J.; van Oordt, P. G.

    1988-01-01

    Receptors for gonadotropin-releasing hormone (GnRH) were characterized using a radioligand prepared from a superactive analog of salmon GnRH (sGnRH), D-Arg(6)-Pro(9)-sGnRH-NEt (sGnRHa). Binding of(125)I-sGnRHa to catfish pituitary membrane fractions reached equilibrium after 2 h incubation at 4°C.

  14. A radioreceptor assay of luteinizing hormone-releasing hormone receptor and characterization of LHRH binding to pituitary receptors in Shao duck

    International Nuclear Information System (INIS)

    Yang Peixin; Wu Meiwen; Chen Ziyuan

    2000-01-01

    The properties of Shao duck pituitary luteinizing hormone-releasing hormone (LHRH) receptors were analyzed in pituitary membrane preparation and isolated pituitary cells prepared by enzymatic dispersion with collagenase and trypsin, by using a super-agonist analog of (D-Lys 6 ) LHRH. High binding of 125 I-(D-Lys 6 ) LHRH to 10 6 cultured cells of Shao duck was observed after a 90 minute incubation at 4 degree C, while binding was significantly reduced after a 24h incubation. Binding of the radioligand was a function of tissue concentration of Shao duck pituitary membrane preparation, with a positive correlation over the range of 1-2 pituitary per-tube. Specific binding for 125 I-(D-Lys 6 ) LHRH increased with the increase in the amount of 125 I-(D-Lys 6 ) LHRH. The Scatchard analysis of data revealed a linear relationship between the amount of specific binding and the ratio of specific binding to free 1 '2 5 I(D-Lys 6 )LHRH, indicating a single class of high affinity sites. Equilibrium dissociation constant (Kd) was 0.34 nM in pituitary membrane preparation and 0.43 nM in isolated pituitary cells. Both Kd values were near and the maximum binding capacity (B max ) was great in isolated cells, suggesting no significant loss of the LHRH receptor population caused by the enzymatic procedure employed for cell dispersion in the present study. Addition of 9D-Lys 6 ) LHRH displaced bound 125 I-(D-Lys 6 ) LHRH. These results demonstrated the presence and provided characterization of LHRH receptors in Shao duck pituitary

  15. Heart, lipids and hormones

    Directory of Open Access Journals (Sweden)

    Peter Wolf

    2017-05-01

    Full Text Available Cardiovascular disease is the leading cause of death in general population. Besides well-known risk factors such as hypertension, impaired glucose tolerance and dyslipidemia, growing evidence suggests that hormonal changes in various endocrine diseases also impact the cardiac morphology and function. Recent studies highlight the importance of ectopic intracellular myocardial and pericardial lipid deposition, since even slight changes of these fat depots are associated with alterations in cardiac performance. In this review, we overview the effects of hormones, including insulin, thyroid hormones, growth hormone and cortisol, on heart function, focusing on their impact on myocardial lipid metabolism, cardiac substrate utilization and ectopic lipid deposition, in order to highlight the important role of even subtle hormonal changes for heart function in various endocrine and metabolic diseases.

  16. Elevation of plasma gonadotropin concentration in response to mammalian gonadotropin releasing hormone (GRH) treatment of the male brown trout as determined by radioimmunoassay

    International Nuclear Information System (INIS)

    Crim, L.W.; Cluett, D.M.

    1974-01-01

    Rapid increase of the plasma gonadotropin concentration as measured by radioimmunoassay has been demonstrated in response to GRH treatment of the sexually mature male brown trout. Peak gonadotropin values were observed within 15 minutes of GRH treatment, however, the return to baseline values was prolonged compared with the mammalian response. These data support the concept that the brain, operating via releasing hormones, plays a role in the control of pituitary hormone secretion in fish

  17. Gene expression of thyrotropin- and corticotrophin-releasing hormones is regulated by environmental salinity in the euryhaline teleost Sparus aurata.

    Science.gov (United States)

    Ruiz-Jarabo, Ignacio; Martos-Sitcha, J A; Barragán-Méndez, C; Martínez-Rodríguez, G; Mancera, J M; Arjona, F J

    2018-04-01

    In euryhaline teleosts, the hypothalamus-pituitary-thyroid and hypothalamus-pituitary-interrenal axes (HPT and HPI, respectively) are regulated in response to environmental stimuli such as salinity changes. However, the molecular players participating in this physiological process in the gilthead seabream (Sparus aurata), a species of high value for aquaculture, are still not identified and/or fully characterized in terms of gene expression regulation. In this sense, this study identifies and isolates the thyrotropin-releasing hormone (trh) mRNA sequence from S. aurata, encoding prepro-Trh, the putative factor initiating the HPT cascade. In addition, the regulation of trh expression and of key brain genes in the HPI axis, i.e., corticotrophin-releasing hormone (crh) and corticotrophin-releasing hormone-binding protein (crhbp), was studied when the osmoregulatory status of S. aurata was challenged by exposure to different salinities. The deduced amino acid structure of trh showed 65-81% identity with its teleostean orthologs. Analysis of the tissue distribution of gene expression showed that trh mRNA is, though ubiquitously expressed, mainly found in brain. Subsequently, regulation of gene expression of trh, crh, and crhbp was characterized in fish acclimated to 5-, 15-, 40-, and 55-ppt salinities. In this regard, the brain gene expression pattern of trh mRNA was similar to that found for the crh gene, showing an upregulation of gene expression in seabream acclimated to the highest salinity tested. Conversely, crhbp did not change in any of the groups tested. Our results suggest that Trh and Crh play an important role in the acclimation of S. aurata to hypersaline environments.

  18. Hedgehog signaling activation induces stem cell proliferation and hormone release in the adult pituitary gland.

    Science.gov (United States)

    Pyczek, Joanna; Buslei, Rolf; Schult, David; Hölsken, Annett; Buchfelder, Michael; Heß, Ina; Hahn, Heidi; Uhmann, Anja

    2016-04-25

    Hedgehog (HH) signaling is known to be essential during the embryonal development of the pituitary gland but the knowledge about its role in the adult pituitary and in associated tumors is sparse. In this report we investigated the effect of excess Hh signaling activation in murine pituitary explants and analyzed the HH signaling status of human adenopituitary lobes and a large cohort of pituitary adenomas. Our data show that excess Hh signaling led to increased proliferation of Sox2(+) and Sox9(+) adult pituitary stem cells and to elevated expression levels of adrenocorticotropic hormone (Acth), growth hormone (Gh) and prolactin (Prl) in the adult gland. Inhibition of the pathway by cyclopamine reversed these effects indicating that active Hh signaling positively regulates proliferative processes of adult pituitary stem cells and hormone production in the anterior pituitary. Since hormone producing cells of the adenohypophysis as well as ACTH-, GH- and PRL-immunopositive adenomas express SHH and its target GLI1, we furthermore propose that excess HH signaling is involved in the development/maintenance of hormone-producing pituitary adenomas. These findings advance the understanding of physiological hormone regulation and may open new treatment options for pituitary tumors.

  19. Human pituitary and placental hormones control human insulin-like growth factor II secretion in human granulosa cells

    International Nuclear Information System (INIS)

    Ramasharma, K.; Li, C.H.

    1987-01-01

    Human granulosa cells cultured with calf serum actively proliferated for 18-20 generations and secreted progesterone into the medium; progesterone levels appeared to decline with increase in generation number. Cells cultured under serum-free conditions secreted significant amounts of progesterone and insulin-like growth factor II (IGF-II). The progesterone secretion was enhanced by the addition of human follitropin, lutropin, and chorionic gonadotropin but not by growth hormone. These cells, when challenged to varying concentrations of human growth hormone, human chorionic somatomammotropin, human prolactin, chorionic gonadotropin, follitropin, and lutropin, secreted IGF-II into the medium as measured by specific IGF-II RIA. Among these human hormones, chorionic gonadotropin, follitropin, and lutropin were most effective in inducing IGF-II secretion from these cells. When synthetic lutropin-releasing hormone and α-inhibin-92 were tested, only lutropin-releasing hormone was effective in releasing IGF-II. The results described suggest that cultured human granulosa cells can proliferate and actively secrete progesterone and IGF-II into the medium. IGF-II production in human granulosa cells was influenced by a multi-hormonal complex including human growth hormone, human chorionic somatomammotropin, and prolactin

  20. Thyrotropin-releasing hormone (TRH) reverses hyperglycemia in rat

    International Nuclear Information System (INIS)

    Luo Luguang; Luo, John Z.Q.; Jackson, Ivor M.D.

    2008-01-01

    Hyperglycemia in thyrotropin-releasing hormone (TRH) null mice indicates that TRH is involved in the regulation of glucose homeostasis. Further, TRH levels in the pancreas peak during the stages of late embryonic and early neonatal β cell development. These observations are consistent in linking TRH to islet cell proliferation and differentiation. In this study, we examined the effect of TRH administration in damaged pancreatic rat (streptozotocin, STZ) to determine whether TRH could improve damaged pancreatic β cells function. We hypothesize that TRH is able to reverse STZ-induced hyperglycemia by increasing pancreatic islet insulin content, preventing apoptosis, and potentially induce islet regeneration. It was found that following intra-peritoneal (ip) injection, TRH (10 μg/kg body weight (bwt)) reverses STZ (65 mg/kg bwt)-induced hyperglycemia (TRH given 3 days after STZ injection). Increased circulating insulin levels and insulin content in extracted pancreas suggests that TRH reversed STZ-induced hyperglycemia through improving pancreatic islet β cell function. Further studies show a significantly lower level of apoptosis in islets treated with TRH as well as the presence of proliferation marker nestin and Brdu, suggesting that the TRH has the potential to prevent apoptosis and stimulate islet proliferation

  1. Effects of spaceflight on hypothalamic peptide systems controlling pituitary growth hormone dynamics

    Science.gov (United States)

    Sawchenko, P. E.; Arias, C.; Krasnov, I.; Grindeland, R. E.; Vale, W.

    1992-01-01

    Possible effects of reduced gravity on central hypophysiotropic systems controlling growth hormone (GH) secretion were investigated in rats flown on Cosmos 1887 and 2044 biosatellites. Immunohistochemical (IHC)staining for the growth hormone-releasing factor (GRF), somatostatin (SS), and other hypothalamic hormones was performed on hypothalami obtained from rats. IHC analysis was complemented by quantitative in situ assessments of mRNAs encoding the precursors for these hormones. Data obtained suggest that exposure to microgravity causes a preferential reduction in GRF peptide and mRNA levels in hypophysiotropic neurons, which may contribute to impared GH secretion in animals subjected to spaceflight. Effects of weightlessness are not mimicked by hindlimb suspension in this system.

  2. Role of insulin hormone in modulation of inflammatory phenomena

    Directory of Open Access Journals (Sweden)

    Antonio Di Petta

    2011-09-01

    Full Text Available Evidence demonstrates the involvement of hormones in thedevelopment of inflammatory response. Inflammation evokes markedstructural alterations of microvasculature, besides migration ofleukocytes from microcirculation to the site of lesion. These alterations are caused primarily by release or activation of endogenous mediators, in which hormones play an integral role in this regulatory system. Binding sites for many hormones may be characterized by vascular structures and hematogenous cells involved with the inflammatory response. Quantitative alterations of inflammatory events involving the decrease in microvascular response to inflammatory mediators, deficiency in the leukocyte-endothelium interaction, reduction of cell concentration in the inflammatory exudate, and failure of the phagocyte function of mononuclear cells were observed in insulindeficient states. Therefore, inflammation is not merely a local response, but rather a process controlled by hormones in which insulin plays an essential role in modulation of these phenomena, and assures tissue repair and remodeling within the limits of normality.

  3. Colocalization of corticotropin-releasing hormone and oestrogen receptor-alpha in the paraventricular nucleus of the hypothalamus in mood disorders

    NARCIS (Netherlands)

    Bao, Ai-Min; Hestiantoro, Andon; van Someren, Eus J. W.; Swaab, Dick F.; Zhou, Jiang-Ning

    2005-01-01

    Oestrogens may modulate the activity of the hypothalamic-pituitary-adrenal (HPA) axis. The present study was to investigate whether the activity of the HPA axis in mood disorders might be directly modulated by oestrogens via oestrogen receptors (ORs) in the corticotropin-releasing hormone (CRH)

  4. Hormone Use for Therapeutic Amenorrhea and Contraception During Hematopoietic Cell Transplantation

    Science.gov (United States)

    Chang, Katherine; Merideth, Melissa A.; Stratton, Pamela

    2015-01-01

    There is a growing population of women who have or will undergo hematopoietic stem cell transplant for a variety of malignant and benign conditions. Gynecologists play an important role in addressing the gynecologic and reproductive health concerns for these women throughout the transplant process. As women undergo cell transplantation, they should avoid becoming pregnant and are at risk of uterine bleeding. Thus, counseling about and implementing hormonal treatments such as gonadotropin-releasing hormone agonists, combined hormonal contraceptives, and progestin-only methods help to achieve therapeutic amenorrhea and can serve as contraception during the peritransplant period. In this commentary, we summarize the timing, risks and benefits of the hormonal options just prior, during and for the year after hematopoietic stem cell transplantation. PMID:26348182

  5. Contribution to the study of TRH (thyrotropin-releasing hormone) conformation using circular dichroism. Physico-chemical studies, radioactive labelling and biological applications

    International Nuclear Information System (INIS)

    Pradelles, Philippe.

    1977-01-01

    In an attempt to reach a better understanding at the molecular level of phenomena connected with the action of TRF the conformation and radioactive labelling of this hormone were investigated. The specific detection of a hormone at its action site is only possible if labelled substances of very high specific activity are used. TRF was tritium labelled by three methods: direct catalytic exchange; catalytic dehalogenation of mono- and di-iodo TRF; catalytic denitrogenation of mono-azo-TRF. Whatever the method used the tritiated TRF has a very high specific activity and keeps all its biological properties. Biological activity measurements carried out on labelled TRF, in vivo in rats and in vitro on a TRF-sensitive prolactine cell clone, are described. TRF tritiated by the above methods is shown to have the same biological activity as standard TRF. Some results are given concerning the application of labelled TRF to research on the hormone action mechanism. The tritiated TRF distribution kinetics were examined in vivo and in vitro. The kinetics of hormone fixation on the antehypophysary tissue match those of in vivo release of the plasma thyreotropic hormone, confirming the relationships between the hormone fixation on its target tissue and its biological effect. Finally an outline is given of work on the interaction of tritiated TRF with prolactine cell receptors and on the penetration of intact tritiated TRF into these cells. In addition the radioimmunological analysis of TRF was developed by the use of 125 I-mono-iodo-TRF at high specific activity (above 2000 Ci/mmole) [fr

  6. Effects of Thyroid Dysfunction on Reproductive Hormones in Female Rats.

    Science.gov (United States)

    Liu, Juan; Guo, Meng; Hu, Xusong; Weng, Xuechun; Tian, Ye; Xu, Kaili; Heng, Dai; Liu, Wenbo; Ding, Yu; Yang, Yanzhou; Zhang, Cheng

    2018-05-10

    Thyroid hormones (THs) play a critical role in the development of ovarian cells. Although the effects of THs on female reproduction are of great interest, the mechanism remains unclear. We investigated the effects of TH dysregulation on reproductive hormones in rats. Propylthiouracil (PTU) and L-thyroxine were administered to rats to induce hypo- and hyper-thyroidism, respectively, and the reproductive hormone profiles were analyzed by radioimmunoassay. Ovarian histology was evaluated with H&E staining, and gene protein level or mRNA content was analyzed by western blotting or RT-PCR. The serum levels of gonadotropin releasing hormone (GnRH) and follicle stimulating hormone (FSH) in both rat models were significantly decreased on day 21, although there were no significant changes at earlier time points. There were no significant differences in luteinizing hormone (LH) or progesterone levels between the treatment and the control groups. Both PTU and L-thyroxine treatments downregulated estradiol concentrations; however, the serum testosterone level was increased only in hypothyroid rats at day 21. In addition, the expression levels of FSH receptor, cholesterol side-chain cleavage enzyme (P450scc), and steroidogenic acute regulatory protein were decreased in both rat models. Moreover, the onset of puberty was significantly delayed in the hypothyroid group. These results provide evidence that TH dysregulation alters reproductive hormone profiles, and that the initiation of the estrous cycle is postponed in hypothyroidism.

  7. Thyroid Hormone Receptor Mutations in Cancer and Resistance to Thyroid Hormone: Perspective and Prognosis

    Directory of Open Access Journals (Sweden)

    Meghan D. Rosen

    2011-01-01

    Full Text Available Thyroid hormone, operating through its receptors, plays crucial roles in the control of normal human physiology and development; deviations from the norm can give rise to disease. Clinical endocrinologists often must confront and correct the consequences of inappropriately high or low thyroid hormone synthesis. Although more rare, disruptions in thyroid hormone endocrinology due to aberrations in the receptor also have severe medical consequences. This review will focus on the afflictions that are caused by, or are closely associated with, mutated thyroid hormone receptors. These include Resistance to Thyroid Hormone Syndrome, erythroleukemia, hepatocellular carcinoma, renal clear cell carcinoma, and thyroid cancer. We will describe current views on the molecular bases of these diseases, and what distinguishes the neoplastic from the non-neoplastic. We will also touch on studies that implicate alterations in receptor expression, and thyroid hormone levels, in certain oncogenic processes.

  8. Radioimmunoassay of polypeptide hormones and enzymes

    International Nuclear Information System (INIS)

    Felber, J.P.

    1974-01-01

    General principles of radioimmunoassay are reviewed. Detailed procedures are reviewed for the following hormones: insulin, pituitary hormones, gonadotropins, parathyroid hormone, ACTH, glucagon, gastrin, and peptide hormones. Radioimmunoassay of enzymes is also discussed. (U.S.)

  9. Aging changes in hormone production

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/004000.htm Aging changes in hormone production To use the sharing ... that produce hormones are controlled by other hormones. Aging also changes this process. For example, an endocrine ...

  10. Hormonal regulation of AMPA receptor trafficking and memory formation

    Directory of Open Access Journals (Sweden)

    Harmen J Krugers

    2009-10-01

    Full Text Available Humans and rodents retain memories for stressful events very well. The facilitated retention of these memories is normally very useful. However, in susceptible individuals a variety of pathological conditions may develop in which memories related to stressful events remain inappropriately present, such as in post-traumatic stress disorder. The memory enhancing effects of stress are mediated by hormones, such as norepinephrine and glucocorticoids which are released during stressful experiences. Here we review recently identified molecular mechanisms that underlie the effects of stress hormones on synaptic efficacy and learning and memory. We discuss AMPA receptors as major target for stress hormones and describe a model in which norepinephrine and glucocorticoids are able to strengthen and prolong different phases of stressful memories.

  11. Dual effect of melatonin on gonadotropin-releasing-hormone-induced Ca(2+) signaling in neonatal rat gonadotropes

    Czech Academy of Sciences Publication Activity Database

    Zemková, Hana; Vaněček, Jiří

    2001-01-01

    Roč. 74, č. 4 (2001), s. 262-269 ISSN 0028-3835 R&D Projects: GA ČR GA309/99/0213; GA ČR GA309/99/0215; GA AV ČR IAA5011103; GA AV ČR IAA5011105 Institutional research plan: CEZ:AV0Z5011922 Keywords : melatonin * gonadotropin-release hormone * calcium Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 2.144, year: 2001

  12. The "multiple hormone deficiency" theory of aging: is human senescence caused mainly by multiple hormone deficiencies?

    Science.gov (United States)

    Hertoghe, T

    2005-12-01

    In the human body, the productions, levels and cell receptors of most hormones progressively decline with age, gradually putting the body into various states of endocrine deficiency. The circadian cycles of these hormones also change, sometimes profoundly, with time. In aging individuals, the well-balanced endocrine system can fall into a chaotic condition with losses, phase-advancements, phase delays, unpredictable irregularities of nycthemeral hormone cycles, in particular in very old or sick individuals. The desynchronization makes hormone activities peak at the wrong times and become inefficient, and in certain cases health threatening. The occurrence of multiple hormone deficits and spilling through desynchronization may constitute the major causes of human senescence, and they are treatable causes. Several arguments can be put forward to support the view that senescence is mainly a multiple hormone deficiency syndrome: First, many if not most of the signs, symptoms and diseases (including cardiovascular diseases, cancer, obesity, diabetes, osteoporosis, dementia) of senescence are similar to physical consequences of hormone deficiencies and may be caused by hormone deficiencies. Second, most of the presumed causes of senescence such as excessive free radical formation, glycation, cross-linking of proteins, imbalanced apoptosis system, accumulation of waste products, failure of repair systems, deficient immune system, may be caused or favored by hormone deficiencies. Even genetic causes such as limits to cell proliferation (such as the Hayflick limit of cell division), poor gene polymorphisms, premature telomere shortening and activation of possible genetic "dead programs" may have links with hormone deficiencies, being either the consequence, the cause, or the major favoring factor of hormone deficiencies. Third, well-dosed and -balanced hormone supplements may slow down or stop the progression of signs, symptoms, or diseases of senescence and may often

  13. Functional and molecular neuroimaging of menopause and hormone replacement therapy

    Directory of Open Access Journals (Sweden)

    Erika eComasco

    2014-12-01

    Full Text Available The level of gonadal hormones to which the female brain is exposed considerably changes across the menopausal transition, which in turn, is likely to be of great relevance for neurodegenerative diseases and psychiatric disorders. However, the neurobiological consequences of these hormone fluctuations and of hormone replacement therapy in the menopause have only begun to be understood. This review summarizes the findings of thirty-four studies of human brain function, including functional magnetic resonance imaging, positron and single-photon computed emission tomography studies, in peri- and postmenopausal women treated with estrogen, or estrogen-progestagen replacement therapy. Seven studies using gonadotropin-releasing hormone agonist intervention as a model of hormonal withdrawal are also included. Cognitive paradigms are employed by the majority of studies evaluating the effect of unopposed estrogen or estrogen-progestagen treatment on peri- and postmenopausal women’s brain. In randomized-controlled trials, estrogen treatment enhances activation of fronto-cingulate regions during cognitive functioning, though in many cases no difference in cognitive performance was present. Progestagens seems to counteract the effects of estrogens. Findings on cognitive functioning during acute ovarian hormone withdrawal suggest a decrease in activation of the inferior frontal gyrus, thus essentially corroborating the findings in postmenopausal women. Studies of the cholinergic and serotonergic systems indicate these systems as biological mediators of hormonal influences on the brain. More, hormonal replacement appears to increase cerebral blood flow in cortical regions. On the other hand, studies on emotion processing in postmenopausal women are lacking. These results call for well-powered randomized-controlled multi-modal prospective neuroimaging studies as well as investigation on the related molecular mechanisms of effects of menopausal hormonal

  14. Kinetics of thyroid hormones

    International Nuclear Information System (INIS)

    Inada, Mitsuo; Nishikawa, Mitsushige; Naito, Kimikazu; Ishii, Hitoshi; Tanaka, Kiyoshi

    1980-01-01

    Kinetics of thyroid hormones were outlined, and recent progress in metabolism of these hormones was also described. Recently, not only T 4 and T 3 but also rT 3 , 3,3'-T 2 , 3',5'-T 2 , and 3,5-T 2 can be measured by RIA. To clarify metabolic pathways of these hormones, metabolic clearance rate and production rate of these hormones were calculated. As single-compartment analysis was insufficient to clarify disappearance curves of thyroid hormones in blood such as T 3 and T 2 of which metabolic speed was so fast, multi-compartment analysis or non-compartment analysis were also performed. Thyroid hormones seemed to be measured more precisely by constant infusion method. At the first step of T 4 metabolism, T 3 was formed by 5'-monodeiodination of T 4 , and rT 3 was formed by 5-monodeiodination of T 4 . As metabolic pathways of T 3 and rT 3 , conversion of them to 3,3'-T 2 or to 3',5'-T 2 and 3,5-T 2 was supposed. This subject will be an interesting research theme in future. (Tsunoda, M.)

  15. Plasma growth hormone response to human growth hormone releasing factor in rats administered with chlorpromazine and antiserum against somatostatin. Effects of hypo- and hyperthyroidism.

    Science.gov (United States)

    Wakabayashi, I; Tonegawa, Y; Ihara, T; Hattori, M; Shibasaki, T; Ling, N

    1985-10-01

    The effect of hypo- and hyperthyroidism on the plasma growth hormone (GH) response to synthetic human growth hormone releasing factor (GRF) was determined in conscious, freely moving rats pretreated with chlorpromazine and antiserum against somatostatin. Chlorpromazine plus somatostatin antiserum pretreated rats gave consistent response to GRF which was not observed in untreated rats. Chlorpromazine alone has no effect on GH secretion induced by GRF in rat pituitary monolayer culture. In rats made hypothyroid by thyroidectomy, both basal and peak plasma GH responses to a small (0.25 microgram/kg bw) and a moderate dose of GRF (1 microgram/kg bw) were significantly reduced as compared to controls. In rats made hyperthyroid by the administration of thyroxine, basal and peak plasma GH responses to a small but not to a moderate dose of GRF were significantly reduced as compared to controls. A reduced plasma GH response to a small dose of GRF was observed 8 days after the cessation of thyroxine administration. The pituitary GH reserve was markedly reduced in hypothyroid but not in hyperthyroid rats as compared to their respective controls. These results indicate that plasma GH response to GRF is reduced both in hypo- and hyperthyroidism. The mechanism involved in the phenomenon appears to be different between the two conditions.

  16. Synthesis of human pancreatic growth hormone-releasing factor and two omission analogs by segment-coupling method in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Blake, J.; Westphal, M.; Li, C.H. (Laboratory of Molecular Endocrinology, University of California, San Francisco, USA)

    1984-01-01

    The human growth hormone-releasing factor (GRF) peptides (GlyS/sup 15/)-GRF-(1-15) (IV), trifluoroacetyl-GRF-(20-44) (VI), trifluoroacetyl-GRF-(18-44) (VIII), and trifluoroacetyl-GRF-(16-44) (X) were synthesized by the solidphase method. Each of the peptides was reacted with citraconic anhydride and the trifluoroacetyl group was removed by reaction with 10% hydrazine in water. The citraconylated GRF-(1-15) peptide was coupled to the (20-44), (18-44) or (16-44) peptides by reaction with silver nitrate/N-hydroxysuccinimide to give GRF-(1-15)-(20-44) (XII), GRF-(1-15)-(18-44) (XIII), or GRF-(1-44), respectively. GRF-(1-44) was shown to stimulate the release of rat growth hormone from rat pituitary cells with an ED/sub 50/=8.8 x 10/sup -11/M. Peptides XII and XIII were inactive, either as agonists or as antagonists of the action of GRF-(1-44).

  17. Plants altering hormonal milieu: A review

    Directory of Open Access Journals (Sweden)

    Prashant Tiwari

    2017-02-01

    Full Text Available The aim of the present review article is to investigate the herbs which can alter the levels of hormones like Follicle stimulating hormone, Prolactin, Growth hormone, Insulin, Thyroxine, Estrogen, Progesterone, Testosterone, and Relaxin etc. Hormones are chemical signal agents produced by different endocrine glands for regulating our biological functions. The glands like pituitary, thyroid, adrenal, ovaries in women and testes in men all secrete a number of hormones with different actions. However, when these hormones are perfectly balanced then people become healthy and fit. But several factors like pathophysiological as well as biochemical changes, disease conditions, changes in the atmosphere, changes in the body, diet changes etc. may result in imbalance of various hormones that produce undesirable symptoms and disorders. As medicinal plants have their importance since ancient time, people have been using it in various ways as a source of medicine for regulation of hormonal imbalance. Moreover, it is observed that certain herbs have a balancing effect on hormones and have great impact on well-being of the people. So, considering these facts we expect that the article provides an overview on medicinal plants with potential of altering hormone level.

  18. Plants altering hormonal milieu: A review

    Directory of Open Access Journals (Sweden)

    Prashant Tiwari

    2017-01-01

    Full Text Available The aim of the present review article is to investigate the herbs which can alter the levels of hormones like Follicle stimulating hormone, Prolactin, Growth hormone, Insulin, Thyroxine, Estrogen, Progesterone, Testosterone, and Relaxin etc. Hormones are chemical signal agents produced by different endocrine glands for regulating our biological functions. The glands like pituitary, thyroid, adrenal, ovaries in women and testes in men all secrete a number of hormones with different actions. However, when these hormones are perfectly balanced then people become healthy and fit. But several factors like pathophysiological as well as biochemical changes, disease conditions, changes in the atmosphere, changes in the body, diet changes etc. may result in imbalance of various hormones that produce undesirable symptoms and disorders. As medicinal plants have their importance since ancient time, people have been using it in various ways as a source of medicine for regulation of hormonal imbalance. Moreover, it is observed that certain herbs have a balancing effect on hormones and have great impact on well-being of the people. So, considering these facts we expect that the article provides an overview on medicinal plants with potential of altering hormone level.

  19. Effects of an Antagonistic Analog of Growth Hormone-Releasing Hormone on Endometriosis in a Mouse Model and In Vitro.

    Science.gov (United States)

    Köster, Frank; Jin, Li; Shen, Yuanming; Schally, Andrew V; Cai, Ren-Zhi; Block, Norman L; Hornung, Daniela; Marschner, Gabriele; Rody, Achim; Engel, Jörg B; Finas, Dominique

    2017-11-01

    Endometriosis is a benign gynecologic disorder causing dysmenorrhea, pelvic pain, and subfertility. Receptors for the growth hormone-releasing hormone (GHRH) were found in endometriotic tissues. Antagonists of GHRH have been used to inhibit the growth of endometriotic endometrial stromal cells. In this study, the GHRH receptor splice variant (SV) 1 was detected in human endometrial tissue samples by Western blots and quantitative reverse transcription polymerase chain reaction (qRT-PCR). The highest messenger RNA (mRNA) and protein levels of SV1 were found in eutopic endometrium from patients with endometriosis compared to ectopic endometriotic tissues and endometrium from normal patients. The highest expression for GHRH mRNA was found by qRT-PCR in ectopic endometriosis lesions. In an in vivo mouse model with human endometrial explants from patients with endometriosis, 10 μg MIA-602 per day resulted in significantly smaller human endometrial xenotransplants after 4 weeks compared to mice treated with vehicle. The endometrial tissues expressed SV1 before and after xenotransplantation. The proliferation of endometrial stromal cells as well as the endometriosis cell lines 12-Z and 49-Z was decreased by exposure to 1 μM MIA-602 after 72 hours. The protein levels of epithelial growth factor receptors in 12-Z and 49-Z cell lines were reduced 48 and 72 hours after the administration of 1 μM MIA-602. MIA-602 decreased the activation of the MAP-kinases ERK-1/2. Our study demonstrates the presence of SV1 receptor as a target for treatment with GHRH antagonist in endometriosis. Endometrial tissues respond to MIA-602 with inhibition of proliferation in vitro and in vivo. The use of MIA-602 could be an effective supplement to the treatment strategies in endometriosis.

  20. Thyroid Hormone, Cancer, and Apoptosis.

    Science.gov (United States)

    Lin, Hung-Yun; Chin, Yu-Tan; Yang, Yu-Chen S H; Lai, Husan-Yu; Wang-Peng, Jacqueline; Liu, Leory F; Tang, Heng-Yuan; Davis, Paul J

    2016-06-13

    Thyroid hormones play important roles in regulating normal metabolism, development, and growth. They also stimulate cancer cell proliferation. Their metabolic and developmental effects and growth effects in normal tissues are mediated primarily by nuclear hormone receptors. A cell surface receptor for the hormone on integrin [alpha]vβ3 is the initiation site for effects on tumor cells. Clinical hypothyroidism may retard cancer growth, and hyperthyroidism was recently linked to the prevalence of certain cancers. Local levels of thyroid hormones are controlled through activation and deactivation of iodothyronine deiodinases in different organs. The relative activities of different deiodinases that exist in tissues or organs also affect the progression and development of specific types of cancers. In this review, the effects of thyroid hormone on signaling pathways in breast, brain, liver, thyroid, and colon cancers are discussed. The importance of nuclear thyroid hormone receptor isoforms and of the hormone receptor on the extracellular domain of integrin [alpha]vβ3 as potential cancer risk factors and therapeutic targets are addressed. We analyze the intracellular signaling pathways activated by thyroid hormones in cancer progression in hyperthyroidism or at physiological concentrations in the euthyroid state. Determining how to utilize the deaminated thyroid hormone analog (tetrac), and its nanoparticulate derivative to reduce risks of cancer progression, enhance therapeutic outcomes, and prevent cancer recurrence is also deliberated. © 2016 American Physiological Society. Compr Physiol 6:1221-1237, 2016. Copyright © 2016 John Wiley & Sons, Inc.

  1. Concordance of self-reported hormonal contraceptive use and presence of exogenous hormones in serum among African women.

    Science.gov (United States)

    Pyra, Maria; Lingappa, Jairam R; Heffron, Renee; Erikson, David W; Blue, Steven W; Patel, Rena C; Nanda, Kavita; Rees, Helen; Mugo, Nelly R; Davis, Nicole L; Kourtis, Athena P; Baeten, Jared M

    2018-04-01

    Studies that rely on self-report to investigate the relationship between hormonal contraceptive use and HIV acquisition and transmission, as well as other health outcomes, could have compromised results due to misreporting. We determined the frequency of misreported hormonal contraceptive use among African women with and at risk for HIV. We tested 1102 archived serum samples from 664 African women who had participated in prospective HIV prevention studies. Using a novel high-performance liquid chromatography-mass spectrometry assay, we quantified exogenous hormones for injectables (medroxyprogesterone acetate or norethisterone), oral contraceptives (OC) (levonorgestrel or ethinyl estradiol) and implants (levonorgestrel or etonogestrel) and compared them to self-reported use. Among women reporting hormonal contraceptive use, 258/358 (72%) of samples were fully concordant with self-report, as were 642/744 (86%) of samples from women reporting no hormonal contraceptive use. However, 42/253 (17%) of samples from women reporting injectable use, 41/66 (62%) of samples from self-reported OC users and 3/39 (8%) of samples from self-reported implant users had no quantifiable hormones. Among self-reported nonusers, 102/744 (14%) had ≥1 hormone present. Concordance between self-reported method and exogenous hormones did not differ by HIV status. Among African women with and at risk for HIV, testing of exogenous hormones revealed agreement with self-reported contraceptive use for most women. However, unexpected exogenous hormones were identified among self-reported hormonal contraceptive users and nonusers, and an important fraction of women reporting hormonal contraceptive use had no hormones detected; absence of oral contraceptive hormones could be due, at least in part, to samples taken during the hormone-free interval. Misreporting of hormonal contraceptive use could lead to biased results in observational studies of the relationship between contraceptive use and health

  2. Gonadotropin-Releasing Hormone Regulates Expression of the DNA Damage Repair Gene, Fanconi anemia A, in Pituitary Gonadotroph Cells1

    Science.gov (United States)

    Larder, Rachel; Chang, Lynda; Clinton, Michael; Brown, Pamela

    2007-01-01

    Gonadal function is critically dependant on regulated secretion of the gonadotropin hormones from anterior pituitary gonadotroph cells. Gonadotropin biosynthesis and release is triggered by the binding of hypothalamic GnRH to GnRH receptor expressed on the gonadotroph cell surface. The repertoire of regulatory molecules involved in this process are still being defined. We used the mouse LβT2 gonadotroph cell line, which expresses both gonadotropin hormones, as a model to investigate GnRH regulation of gene expression and differential display reverse transcription-polymerase chain reaction (RT-PCR) to identify and isolate hormonally induced changes. This approach identified Fanconi anemia a (Fanca), a gene implicated in DNA damage repair, as a differentially expressed transcript. Mutations in Fanca account for the majority of cases of Fanconi anemia (FA), a recessively inherited disease identified by congenital defects, bone marrow failure, infertility, and cancer susceptibility. We confirmed expression and hormonal regulation of Fanca mRNA by quantitative RT-PCR, which showed that GnRH induced a rapid, transient increase in Fanca mRNA. Fanca protein was also acutely upregulated after GnRH treatment of LβT2 cells. In addition, Fanca gene expression was confined to mature pituitary gonadotrophs and adult mouse pituitary and was not expressed in the immature αT3-1 gonadotroph cell line. Thus, this study extends the expression profile of Fanca into a highly specialized endocrine cell and demonstrates hormonal regulation of expression of the Fanca locus. We suggest that this regulatory mechanism may have a crucial role in the GnRH-response mechanism of mature gonadotrophs and perhaps the etiology of FA. PMID:15128600

  3. Hormones and the blood-brain barrier.

    Science.gov (United States)

    Hampl, Richard; Bičíková, Marie; Sosvorová, Lucie

    2015-03-01

    Hormones exert many actions in the brain, and brain cells are also hormonally active. To reach their targets in brain structures, hormones must overcome the blood-brain barrier (BBB). The BBB is a unique device selecting desired/undesired molecules to reach or leave the brain, and it is composed of endothelial cells forming the brain vasculature. These cells differ from other endothelial cells in their almost impermeable tight junctions and in possessing several membrane structures such as receptors, transporters, and metabolically active molecules, ensuring their selection function. The main ways how compounds pass through the BBB are briefly outlined in this review. The main part concerns the transport of major classes of hormones: steroids, including neurosteroids, thyroid hormones, insulin, and other peptide hormones regulating energy homeostasis, growth hormone, and also various cytokines. Peptide transporters mediating the saturable transport of individual classes of hormones are reviewed. The last paragraph provides examples of how hormones affect the permeability and function of the BBB either at the level of tight junctions or by various transporters.

  4. Endogenous incretin hormone augmentation of acute insulin secretion in normoglycemic relatives of type 2 diabetic subjects

    DEFF Research Database (Denmark)

    Alford, Frank P; Rantzau, Christian; Henriksen, Jan-Erik

    2014-01-01

    AIMS/HYPOTHESIS: The pathophysiological role of gut incretin hormone argumentation on acute insulin release in the genesis of type 2 diabetes (TDM2) is uncertain. We examined retrospectively at 0 year and 10 years the endogenous incretin hormone action (IHA) on acute insulin release and glucose...

  5. Hormonal control of euryhalinity

    Science.gov (United States)

    Takei, Yoshio; McCormick, Stephen D.; McCormick, Stephen D.; Farrell, Anthony Peter; Brauner, Colin J.

    2013-01-01

    Hormones play a critical role in maintaining body fluid balance in euryhaline fishes during changes in environmental salinity. The neuroendocrine axis senses osmotic and ionic changes, then signals and coordinates tissue-specific responses to regulate water and ion fluxes. Rapid-acting hormones, e.g. angiotensins, cope with immediate challenges by controlling drinking rate and the activity of ion transporters in the gill, gut, and kidney. Slow-acting hormones, e.g. prolactin and growth hormone/insulin-like growth factor-1, reorganize the body for long-term acclimation by altering the abundance of ion transporters and through cell proliferation and differentiation of ionocytes and other osmoregulatory cells. Euryhaline species exist in all groups of fish, including cyclostomes, and cartilaginous and teleost fishes. The diverse strategies for responding to changes in salinity have led to differential regulation and tissue-specific effects of hormones. Combining traditional physiological approaches with genomic, transcriptomic, and proteomic analyses will elucidate the patterns and diversity of the endocrine control of euryhalinity.

  6. Non-contraceptive benefits of hormonal and intrauterine reversible contraceptive methods.

    Science.gov (United States)

    Bahamondes, Luis; Valeria Bahamondes, M; Shulman, Lee P

    2015-01-01

    Most contraceptive methods present benefits beyond contraception; however, despite a large body of evidence, many healthcare professionals (HCPs), users and potential users are unaware of those benefits. This review evaluates the evidence for non-contraceptive benefits of hormonal and non-hormonal contraceptive methods. We searched the medical publications in PubMed, POPLINE, CENTRAL, EMBASE and LILACS for relevant articles, on non-contraceptive benefits of the use of hormonal and intrauterine reversible contraceptive methods, which were published in English between 1980 and July 2014. Articles were identified using the following search terms: 'contraceptive methods', 'benefits', 'cancer', 'anaemia', 'heavy menstrual bleeding (HMB)', 'endometrial hyperplasia', 'endometriosis' and 'leiomyoma'. We identified, through the literature search, evidence that some combined oral contraceptives have benefits in controlling HMB and anaemia, reducing the rate of endometrial, ovarian and colorectal cancer and ectopic pregnancy as well as alleviating symptoms of premenstrual dysphoric disorder. Furthermore, the use of the levonorgestrel-releasing intrauterine system also controls HMB and anaemia and endometrial hyperplasia and cancer, reduces rates of endometrial polyps in users of tamoxifen and alleviates pain associated with endometriosis and adenomyosis. Depot medroxyprogesterone acetate controls crises of pain associated with sickle cell disease and endometriosis. Users of the etonogestrel-releasing contraceptive implant have the benefits of a reduction of pain associated with endometriosis, and users of the copper intrauterine device have reduced rates of endometrial and cervical cancer. Despite the high contraceptive effectiveness of many hormonal and intrauterine reversible contraceptive methods, many HCPs, users and potential users are concerned mainly about side effects and safety of both hormonal and non-hormonal contraceptive methods, and there is scarce information

  7. Immunocytochemical localization of luteinizing hormone-releasing hormone (LHRH) in the nervus terminalis and brain of the big brown bat, Eptesicus fuscus.

    Science.gov (United States)

    Oelschläger, H A; Northcutt, R G

    1992-01-15

    Little is known about the immunohistochemistry of the nervous system in bats. This is particularly true of the nervus terminalis, which exerts strong influence on the reproductive system during ontogeny and in the adult. Luteinizing hormone-releasing hormone (LHRH) was visualized immunocytochemically in the nervus terminalis and brain of juvenile and adult big brown bats (Eptesicus fuscus). The peripheral LHRH-immunoreactive (ir) cells and fibers (nervus terminalis) are dispersed along the basal surface of the forebrain from the olfactory bulbs to the prepiriform cortex and the interpeduncular fossa. A concentration of peripheral LHRH-ir perikarya and fibers was found at the caudalmost part of the olfactory bulbs, near the medioventral forebrain sulcus; obviously these cells mediate between the bulbs and the remaining forebrain. Within the central nervous system (CNS), LHRH-ir perikarya and fibers were distributed throughout the olfactory tubercle, diagonal band, preoptic area, suprachiasmatic and supraoptic nuclei, the bed nuclei of stria terminalis and stria medullaris, the anterior lateral and posterior hypothalamus, and the tuber cinereum. The highest concentration of cells was found within the arcuate nucleus. Fibers were most concentrated within the median eminence, infundibular stalk, and the medial habenula. The data obtained suggest that this distribution of LHRH immunoreactivity may be characteristic for microchiropteran (insectivorous) bats. The strong projections of LHRH-containing nuclei in the basal forebrain (including the arcuate nucleus) to the habenula, may indicate close functional contact between these brain areas via feedback loops, which could be important for the processing of thermal and other environmental stimuli correlated with hibernation.

  8. Lead (Pb) attenuation of plasma growth hormone output

    Energy Technology Data Exchange (ETDEWEB)

    Berry, W.D.; Moriarty, C.M. [Auburn Univ., AL (United States); Lau, Y.S. [Univ. of Missouri, Kansas City, MO (United States); Edwards, G.L. [Univ. of Georgia, Athens, GA (United States)

    1996-03-08

    Lead (Pb) induced growth retardation may occur through disruption of the hypothalamic-pituitary-growth hormone (GH) axis. Episodic GH secretion and GH response to exogenous growth hormone releasing hormone (GHRH) were measured in rats chronically exposed to Pb. Male rats received lead nitrate (1000 ppm) in their drinking water from 21 through 49 days of age gained less weight than non-Pb treated controls (242{plus_minus}3 g vs 309{plus_minus}8 g, P{le}0.01). Mean blood Pb was 40 {plus_minus} 5 ug/dl in Pb treated rats vs. nondetectable in controls. Total food intake was increased by Pb treatment (340 vs 260 g/rat). Mean plasma GH levels were significantly reduced by Pb treatment (40.21 {plus_minus} 7 vs 71.53 {plus_minus} 11 ng/mlP= 0.025). However, the temporal pattern of episodic GH release was maintained in the Pb-treated rats. This indicates that Pb does not disrupt the timing of GHRH and somatostatin (SS) release from the hypothalamus but may alter the relative levels of GHRH and SS released. Pb treated rats also retained the ability to secrete GH in response to exogenous GHRH. However, response to GHRH tended to be lower in the Pb treated rats. The greatest effect of Pb was seen at the highest dose of GHRH 5 {mu}g/kg GHRH dose (485.6 {plus_minus} 103 vs. 870.2 {plus_minus} 317 ng/ml; P =0.2). This suggests that Pb disrupts GH synthesis, signal transduction, or secretory mechanisms in the somatotrope.

  9. Radioimmunological studies of the thyrotropic function of the hypophysis under the effect of the thyrotropin-releasing hormone in thyroid diseases

    International Nuclear Information System (INIS)

    Vakulenko, A.D.; Matveenko, E.G.; Simakova, G.M.; Sorokina, V.G.; Golubnichaya, L.P.; Dobrova, G.S.

    1979-01-01

    The synthetic thyrotropin-releasing-hormone was stream-injected intravenously to 124 patients and 16 healthy people in doses of 200 μg. It was tolerated satisfactorily at the first and repeated injections. The radioimmunologic method was used prior to the test and 30 min after it to examine thyrotropin content in blood. In normal state the stimulation would result in 3.5-fold increase in thyrotropin level on the average. The hypophysial reserve of thyrotropin was significantly lower in cases of diffuse toxic goiter in grave and semigrave forms and toxic adenoma. It was significantly higher at primary hypothyrosis and retained at nodular euthyroid goiter, neupocirculatopy dystonia and mild thyrotoxicosis. At thyroid gland disturbances the test with thyrotropin-releasing-hormone is of diagnostic value at primary hypothyrosis in the initial latent period; besides, it can be used for control of substitution therapy and as a supplementary test at thyrotoxicosis

  10. A ghrelin-growth hormone axis drives stress-induced vulnerability to enhanced fear.

    Science.gov (United States)

    Meyer, R M; Burgos-Robles, A; Liu, E; Correia, S S; Goosens, K A

    2014-12-01

    Hormones in the hypothalamus-pituitary-adrenal (HPA) axis mediate many of the bodily responses to stressors, yet there is no clear relationship between the levels of these hormones and stress-associated mental illnesses such as posttraumatic stress disorder (PTSD). Therefore, other hormones are likely to be involved in this effect of stress. Here we used a rodent model of PTSD in which rats repeatedly exposed to a stressor display heightened fear learning following auditory Pavlovian fear conditioning. Our results show that stress-related increases in circulating ghrelin, a peptide hormone, are necessary and sufficient for stress-associated vulnerability to exacerbated fear learning and these actions of ghrelin occur in the amygdala. Importantly, these actions are also independent of the classic HPA stress axis. Repeated systemic administration of a ghrelin receptor agonist enhanced fear memory but did not increase either corticotropin-releasing factor (CRF) or corticosterone. Repeated intraamygdala infusion of a ghrelin receptor agonist produced a similar enhancement of fear memory. Ghrelin receptor antagonism during repeated stress abolished stress-related enhancement of fear memory without blunting stress-induced corticosterone release. We also examined links between ghrelin and growth hormone (GH), a major downstream effector of the ghrelin receptor. GH protein was upregulated in the amygdala following chronic stress, and its release from amygdala neurons was enhanced by ghrelin receptor stimulation. Virus-mediated overexpression of GH in the amygdala was also sufficient to increase fear. Finally, virus-mediated overexpression of a GH receptor antagonist was sufficient to block the fear-enhancing effects of repeated ghrelin receptor stimulation. Thus, ghrelin requires GH in the amygdala to exert fear-enhancing effects. These results suggest that ghrelin mediates a novel branch of the stress response and highlight a previously unrecognized role for ghrelin and

  11. Sex hormones in the modulation of irritable bowel syndrome.

    Science.gov (United States)

    Mulak, Agata; Taché, Yvette; Larauche, Muriel

    2014-03-14

    Compelling evidence indicates sex and gender differences in epidemiology, symptomatology, pathophysiology, and treatment outcome in irritable bowel syndrome (IBS). Based on the female predominance as well as the correlation between IBS symptoms and hormonal status, several models have been proposed to examine the role of sex hormones in gastrointestinal (GI) function including differences in GI symptoms expression in distinct phases of the menstrual cycle, in pre- and post-menopausal women, during pregnancy, hormonal treatment or after oophorectomy. Sex hormones may influence peripheral and central regulatory mechanisms of the brain-gut axis involved in the pathophysiology of IBS contributing to the alterations in visceral sensitivity, motility, intestinal barrier function, and immune activation of intestinal mucosa. Sex differences in stress response of the hypothalamic-pituitary-adrenal axis and autonomic nervous system, neuroimmune interactions triggered by stress, as well as estrogen interactions with serotonin and corticotropin-releasing factor signaling systems are being increasingly recognized. A concept of "microgenderome" related to the potential role of sex hormone modulation of the gut microbiota is also emerging. Significant differences between IBS female and male patients regarding symptomatology and comorbidity with other chronic pain syndromes and psychiatric disorders, together with differences in efficacy of serotonergic medications in IBS patients confirm the necessity for more sex-tailored therapeutic approach in this disorder.

  12. Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods

    Directory of Open Access Journals (Sweden)

    Claudia eBarth

    2015-02-01

    Full Text Available Sex hormones have been implicated in neurite outgrowth, synaptogenesis, dendritic branching, myelination and other important mechanisms of neural plasticity. Here we review the evidence from animal experiments and human studies reporting interactions between sex hormones and the dominant neurotransmitters, such as serotonin, dopamine, GABA and glutamate. We provide an overview of accumulating data during physiological and pathological conditions and discuss currently conceptualized theories on how sex hormones potentially trigger neuroplasticity changes through these four neurochemical systems. Many brain regions have been demonstrated to express high densities for estrogen- and progesterone receptors, such as the amygdala, the hypothalamus, and the hippocampus. As the hippocampus is of particular relevance in the context of mediating structural plasticity in the adult brain, we put particular emphasis on what evidence could be gathered thus far that links differences in behavior, neurochemical patterns and hippocampal structure to a changing hormonal environment. Finally, we discuss how physiologically occurring hormonal transition periods in humans can be used to model how changes in sex hormones influence functional connectivity, neurotransmission and brain structure in vivo.

  13. A common polymorphism of the growth hormone receptor is associated with increased responsiveness to growth hormone.

    Science.gov (United States)

    Dos Santos, Christine; Essioux, Laurent; Teinturier, Cécile; Tauber, Maïté; Goffin, Vincent; Bougnères, Pierre

    2004-07-01

    Growth hormone is used to increase height in short children who are not deficient in growth hormone, but its efficacy varies largely across individuals. The genetic factors responsible for this variation are entirely unknown. In two cohorts of short children treated with growth hormone, we found that an isoform of the growth hormone receptor gene that lacks exon 3 (d3-GHR) was associated with 1.7 to 2 times more growth acceleration induced by growth hormone than the full-length isoform (P < 0.0001). In transfection experiments, the transduction of growth hormone signaling through d3-GHR homo- or heterodimers was approximately 30% higher than through full-length GHR homodimers (P < 0.0001). One-half of Europeans are hetero- or homozygous with respect to the allele encoding the d3-GHR isoform, which is dominant over the full-length isoform. These observations suggest that the polymorphism in exon 3 of GHR is important in growth hormone pharmacogenetics.

  14. Alterations in the corticotropin-releasing hormone (CRH) neurocircuitry: Insights into post stroke functional impairments.

    Science.gov (United States)

    Barra de la Tremblaye, P; Plamondon, H

    2016-07-01

    Although it is well accepted that changes in the regulation of the hypothalamic-pituitary adrenal (HPA) axis may increase susceptibility to affective disorders in the general population, this link has been less examined in stroke patients. Yet, the bidirectional association between depression and cardiovascular disease is strong, and stress increases vulnerability to stroke. Corticotropin-releasing hormone (CRH) is the central stress hormone of the HPA axis pathway and acts by binding to CRH receptors (CRHR) 1 and 2, which are located in several stress-related brain regions. Evidence from clinical and animal studies suggests a role for CRH in the neurobiological basis of depression and ischemic brain injury. Given its importance in the regulation of the neuroendocrine, autonomic, and behavioral correlates of adaptation and maladaptation to stress, CRH is likely associated in the pathophysiology of post stroke emotional impairments. The goals of this review article are to examine the clinical and experimental data describing (1) that CRH regulates the molecular signaling brain circuit underlying anxiety- and depression-like behaviors, (2) the influence of CRH and other stress markers in the pathophysiology of post stroke emotional and cognitive impairments, and (3) context and site specific interactions of CRH and BDNF as a basis for the development of novel therapeutic targets. This review addresses how the production and release of the neuropeptide CRH within the various regions of the mesocorticolimbic system influences emotional and cognitive behaviors with a look into its role in psychiatric disorders post stroke. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Diacylglycerol production induced by growth hormone in Ob1771 preadipocytes arises from phosphatidylcholine breakdown

    International Nuclear Information System (INIS)

    Catalioto, R.M.; Ailhaud, G.; Negrel, R.

    1990-01-01

    Growth Hormone has recently been shown to stimulate the formation of diacylglycerol in Ob1771 mouse preadipocyte cells without increasing inositol lipid turnover. Addition of growth hormone to Ob1771 cells prelabelled with [ 3 H]glycerol or [ 3 H]choline led to a rapid, transient and stoechiometric formation of labelled diacylglycerol and phosphocholine, respectively. In contrast, no change was observed in the level of choline and phosphatidic acid whereas the release of water-soluble metabolites in [ 3 H]ethanolamine prelabelled cells exposed to growth hormone was hardly detectable. Stimulation by growth hormone of cells prelabelled with (2-palmitoyl 9, 10 [ 3 H])phosphatidylcholine also induced the production of labelled diacyglycerol. Pertussis toxin abolished both diacylglycerol and phosphocholine formation induced by growth hormone. It is concluded that growth hormone mediates diacylglycerol production in Ob1771 cells by means of phosphatidylcholine breakdown involving a phospholipase C which is likely coupled to the growth hormone receptor via a pertussis toxin-sensitive G-protein

  16. Diacylglycerol production induced by growth hormone in Ob1771 preadipocytes arises from phosphatidylcholine breakdown

    Energy Technology Data Exchange (ETDEWEB)

    Catalioto, R.M.; Ailhaud, G.; Negrel, R. (Universite de Nice-Sophia Antipolis (France))

    1990-12-31

    Growth Hormone has recently been shown to stimulate the formation of diacylglycerol in Ob1771 mouse preadipocyte cells without increasing inositol lipid turnover. Addition of growth hormone to Ob1771 cells prelabelled with ({sup 3}H)glycerol or ({sup 3}H)choline led to a rapid, transient and stoechiometric formation of labelled diacylglycerol and phosphocholine, respectively. In contrast, no change was observed in the level of choline and phosphatidic acid whereas the release of water-soluble metabolites in ({sup 3}H)ethanolamine prelabelled cells exposed to growth hormone was hardly detectable. Stimulation by growth hormone of cells prelabelled with (2-palmitoyl 9, 10 ({sup 3}H))phosphatidylcholine also induced the production of labelled diacyglycerol. Pertussis toxin abolished both diacylglycerol and phosphocholine formation induced by growth hormone. It is concluded that growth hormone mediates diacylglycerol production in Ob1771 cells by means of phosphatidylcholine breakdown involving a phospholipase C which is likely coupled to the growth hormone receptor via a pertussis toxin-sensitive G-protein.

  17. Combined Treatment with Gonadotropin-releasing Hormone Analog and Anabolic Steroid Hormone Increased Pubertal Height Gain and Adult Height in Boys with Early Puberty for Height.

    Science.gov (United States)

    Tanaka, Toshiaki; Naiki, Yasuhiro; Horikawa, Reiko

    2012-04-01

    Twenty-one boys with a height of 135 cm or less at onset of puberty were treated with a combination of GnRH analog and anabolic steroid hormone, and their pubertal height gain and adult height were compared with those of untreated 29 boys who enter puberty below 135 cm. The mean age at the start of treatment with a GnRH analog, leuprorelin acetate depot (Leuplin(®)) was 12.3 yr, a mean of 1.3 yr after the onset of puberty, and GnRH analog was administered every 3 to 5 wk thereafter for a mean duration of 4.1 yr. The anabolic steroid hormone was started approximately 1 yr after initiation of treatment with the GnRH analog. The mean pubertal height gain from onset of puberty till adult height was significantly greater in the combination treatment group (33.9 cm) than in the untreated group (26.4 cm) (ppenis and pubic hair is promoted by the anabolic steroid hormone, no psychosocial problems arose because of delayed puberty. No clinically significant adverse events appeared. Combined treatment with GnRH analog and anabolic steroid hormone significantly increased height gain during puberty and adult height in boys who entered puberty with a short stature, since the period until epiphyseal closure was extended due to deceleration of the bone age maturation by administration of the GnRH analog and the growth rate at this time was maintained by the anabolic steroid hormone.

  18. The use of gonadotrophin-releasing hormone antagonists in polycystic ovarian disease.

    Science.gov (United States)

    Lubin, V; Charbonnel, B; Bouchard, P

    1998-12-01

    Polycystic ovarian disease (PCOD) is characterized by anovulation, eventually high luteinizing hormone (LH) levels, with increased LH pulse frequency, and hyperandrogenism. As the aetiology of the disease is still unknown, gonadotrophin-releasing hormone (GnRH) antagonists, competitive inhibitors of GnRH for its receptor, are interesting tools in order to study and treat the role of increased LH levels and pulse frequency in this disease. Their administration provokes a rapid decrease in bioactive and immunoactive LH followed by a slower decrease in follicle-stimulating hormone (FSH). In patients with PCOD, the suppression of gonadotrophin secretion eradicates the symptoms of the disease as long as the treatment lasts. Several authors have suggested that increased plasma LH levels have deleterious effects on the fertility of women with PCOD. Indeed, fewer spontaneous pregnancies with more miscarriages are observed when plasma LH levels are high. Assisted reproduction techniques such as in vitro fertilization (IVF) have provided other clues to the role of the LH secretory pattern in women with PCOD. The number of oocytes retrieved, the fertilization rate and the cleavage rate are lower in PCOD patients undergoing IVF and this is inversely correlated with FSH:LH ratio. These abnormalities are corrected when endogenous secretion of LH is suppressed. On the other hand, implantation and pregnancy rates after IVF are similar to those observed in control women. New GnRH antagonists are devoid of side effects and suppress LH secretion within a few hours without a flare-up effect. This action lasts for 10-100 hours. When GnRH antagonists are associated with i.v. pulsatile GnRH, this combination both suppresses the effect of endogenous GnRH and because of the competition for GnRH receptors restores a normal frequency of LH secretion. We have studied two women with PCOD, administering first 10 mg s.c. every 72 hours for 7 days of the GnRH antagonist Nal-Glu, then adding on

  19. BIOTECHNOLOGY OF RECOMBINANT HORMONES IN DOPING

    Directory of Open Access Journals (Sweden)

    Biljana Vitošević

    2011-09-01

    Full Text Available Recombinant DNA technology has allowed rapid progress in creating biosynthetic gene products for the treatment of many diseases. In this way it can produce large amounts of hormone, which is intended for the treatment of many pathological conditions. Recombinant hormones that are commonly used are insulin, growth hormone and erythropoietin. Precisely because of the availability of these recombinant hormones, it started their abuse by athletes. Experiments in animal models confirmed the potential effects of some of these hormones in increasing physical abilities, which attracted the attention of athletes who push the limits of their competitive capability by such manipulation. The risks of the use of recombinant hormones in doping include serious consequences for the health of athletes. Methods of detection of endogenous hormones from recombined based on the use of a monoclonal antibodies, capillary zone electrophoresis and protein biomarkers

  20. [Hormones and hair growth].

    Science.gov (United States)

    Trüeb, R M

    2010-06-01

    With respect to the relationship between hormones and hair growth, the role of androgens for androgenetic alopecia (AGA) and hirsutism is best acknowledged. Accordingly, therapeutic strategies that intervene in androgen metabolism have been successfully developed for treatment of these conditions. Clinical observations of hair conditions involving hormones beyond the androgen horizon have determined their role in regulation of hair growth: estrogens, prolactin, thyroid hormone, cortisone, growth hormone (GH), and melatonin. Primary GH resistance is characterized by thin hair, while acromegaly may cause hypertrichosis. Hyperprolactinemia may cause hair loss and hirsutism. Partial synchronization of the hair cycle in anagen during late pregnancy points to an estrogen effect, while aromatase inhibitors cause hair loss. Hair loss in a causal relationship to thyroid disorders is well documented. In contrast to AGA, senescent alopecia affects the hair in a diffuse manner. The question arises, whether the hypothesis that a causal relationship exists between the age-related reduction of circulating hormones and organ function also applies to hair and the aging of hair.

  1. Heterogeneity of protein hormones

    Energy Technology Data Exchange (ETDEWEB)

    Rosselin, G; Bataille, D; Laburthe, M; Duran-Garcia, S [Institut National de la Sante et de la Recherche Medicale (INSERM), Hopital Saint-Antoine, 75 - Paris (France)

    1975-12-01

    Radioimmunoassay measures antigenic determinants of hormonal molecules in the plasmas and tissues. These estimations carried out after fractionation in biological fluids, have revealed several immunological forms of the same hormone. The main problem is in the relationship of the various immunoreactive forms to the same hormonal sequence. The similar immunoreactive forms of high molecular weight usually have low biological activity and suggest the presence of prohormone; the suggestion of prohormonal nature depends on the chronology of the incorporation of labelled leucine and enzymatic transformation of prohormone with low biological into active hormone. The forms with high molecular weight and similar immunological activity may be of another nature. Thus, it has been shown that the biosynthetic nature of a compound such as big big insulin in the rat is doubtful owing to the absence of specific incorporation of labelled leucine into the immunoprecipitate of this fraction. The significance of low molecular weight form is still little known. An example of these forms is supplied by the existence of an alpha sub-unit of gonadotrophin present in the plasma of menopausal women. The interest of analytical methods by radio-receptor, simulation of cyclase activity in the identification of biological activity of immunoreactive forms, is discussed in relation to immunological forms ofenteroglucagon. An unusual aspect of the evolutive and adaptative character of hormonal heterogeneity is given by the gastro-intestinal hormones.

  2. Hormonal effects in newborns

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/001911.htm Hormonal effects in newborns To use the sharing features on this page, please enable JavaScript. Hormonal effects in newborns occur because in the womb, babies ...

  3. Antidiuretic hormone blood test

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003702.htm Antidiuretic hormone blood test To use the sharing features on this page, please enable JavaScript. Antidiuretic blood test measures the level of antidiuretic hormone (ADH) in ...

  4. Effects of Growth Hormone Replacement Therapy on Bone Mineral Density in Growth Hormone Deficient Adults: A Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Peng Xue

    2013-01-01

    Full Text Available Objectives. Growth hormone deficiency patients exhibited reduced bone mineral density compared with healthy controls, but previous researches demonstrated uncertainty about the effect of growth hormone replacement therapy on bone in growth hormone deficient adults. The aim of this study was to determine whether the growth hormone replacement therapy could elevate bone mineral density in growth hormone deficient adults. Methods. In this meta-analysis, searches of Medline, Embase, and The Cochrane Library were undertaken to identify studies in humans of the association between growth hormone treatment and bone mineral density in growth hormone deficient adults. Random effects model was used for this meta-analysis. Results. A total of 20 studies (including one outlier study with 936 subjects were included in our research. We detected significant overall association of growth hormone treatment with increased bone mineral density of spine, femoral neck, and total body, but some results of subgroup analyses were not consistent with the overall analyses. Conclusions. Our meta-analysis suggested that growth hormone replacement therapy could have beneficial influence on bone mineral density in growth hormone deficient adults, but, in some subject populations, the influence was not evident.

  5. Growth hormone stimulation test

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003377.htm Growth hormone stimulation test To use the sharing features on this page, please enable JavaScript. The growth hormone (GH) stimulation test measures the ability of ...

  6. Evaluation of the responsiveness of pituitary gland to thyrotropin releasing hormone (TRH) in rats in the period of 8:00 to 12:00 a.m

    International Nuclear Information System (INIS)

    Borghi, V.C.; Nicolau, W.; Bojarczuk, C.; Pieroni, R.R.

    1977-01-01

    The functional pituitary capacity for the secretion thyrotropin in rats, in relation to the period of time 8:00-12:00 a.m. was studied by means of the administration of synthetic TRH (thyrotropin releasing hormone). The highest pituitary response to the hypothalamic hormone attains its peak between 9:50 and 10:30 a.m., a time in which the gland denotes a high and practically constant level of TSH secretion [pt

  7. Protein- and tryptophan-restricted diets induce changes in rat gonadal hormone levels.

    Science.gov (United States)

    Del Angel-Meza, A R.; Feria-Velasco, A; Ontiveros-Martínez, L; Gallardo, L; Gonzalez-Burgos, I; Beas-Zárate, C

    2001-04-01

    The release of gonadotrophic hormones starts at puberty and, along with the subsequent estral cyclicity, is subject to hormonal feedback systems and to the action of diverse neuroactive substances such as gamma amino butyric acid and catecholamines. This study shows the effect of the administration during 40 days of protein-restricted and corn-based (tryptophan- and lysine-deficient) diets on the serotonin concentration in medial hypothalamic fragments as well as in follicle-stimulating luteinizing hormones, 17-beta-estradiol and progesterone serum levels, and estral cyclicity in 60- and 100-day-old rats (young, mature, and in gestation). In young rats, a delay in vaginal aperture development, and a lengthening of the estral cycle to a continuous anestral state was observed, mainly in the group fed corn. This group showed a 25% decrease in the serotonin concentration compared with the protein-restricted group, which exhibited an increase of 9% over the control group. Luteinizing hormone levels decreased in 16% and 13%, whereas follicle-stimulating hormone increased in 13% and 5% in the young animals of restricted groups, respectively, compared with the control group. Serum progesterone levels decreased only in young restricted versus control animals, and no differences were seen among adult and gestational rats. Serum levels of 17-beta-estradiol in restricted animals showed different concentration patterns, mainly in the corn group, which was higher at the 20th gestational day, falling drastically postpartum. The results obtained in this study show serotonin to be a very important factor in the release of gonadotrophic hormones and the start of puberty.

  8. Effects of long-term intraperitoneal injection of thyrotropin-releasing hormone (TRH) on aging- and obesity-related changes in body weight, lipid metabolism, and thyroid functions.

    Science.gov (United States)

    Pierpaoli, Walter; Lesnikov, Vladimir A

    2011-02-01

    Adult adipose mice, high fat diet-fed (HFD) mice, anterior hypothalamus-lesioned obese mice and genetically obese mice, were injected daily with thyrotropin releasing hormone (TRH). The treatment provoked a mobilization of triglycerides in the peripheral blood, a decrease of leptin and a loss of body weight. The weight loss did not depend on TSH-mediated stimulation of thyroid hormone secretion with consequent metabolic hyperthyroidism. The levels of blood cholesterol were not affected or even suppressed. Even at a very high dosage TRH did not affect the obesity of genetically obese mice. The ubiquitous tripeptide TRH may thus constitute a key element in the hormone-controlled regulation of body weight and fat stores in the adult and aging body.

  9. Headache And Hormones

    Directory of Open Access Journals (Sweden)

    Shukla Rakesh

    2002-01-01

    Full Text Available There are many reasons to suggest a link between headache and hormones. Migraine is three times common in women as compared to men after puberty, cyclic as well as non-cyclic fluctuations in sex hormone levels during the entire reproductive life span of a women are associated with changes in frequency or severity of migraine attack, abnormalities in the hypothalamus and pineal gland have been observed in cluster headache, oestrogens are useful in the treatment of menstrual migraine and the use of melatonin has been reported in various types of primary headaches. Headache associated with various endocrinological disorders may help us in a better understanding of the nociceptive mechanisms involved in headache disorders. Prospective studies using headache diaries to record the attacks of headache and menstrual cycle have clarified some of the myths associated with menstrual migraine. Although no change in the absolute levels of sex hormones have been reported, oestrogen withdrawal is the most likely trigger of the attacks. Prostaglandins, melatonin, opioid and serotonergic mechanisms may also have a role in the pathogenesis of menstrual migraine. Guidelines have been published by the IHS recently regarding the use of oral contraceptives by women with migraine and the risk of ischaemic strokes in migraineurs on hormone replacement therapy. The present review includes menstrual migraine, pregnancy and migraine, oral contraceptives and migraine, menopause and migraine as well as the hormonal changes in chronic migraine.

  10. Effects of a gonadotropin-releasing hormone vaccine on ovarian cyclicity and uterine morphology of an Asian elephant (Elephas maximus).

    Science.gov (United States)

    Boedeker, Nancy C; Hayek, Lee-Ann C; Murray, Suzan; de Avila, David M; Brown, Janine L

    2012-09-01

    This report describes the successful use of a gonadotropin-releasing hormone (GnRH) vaccine to suppress ovarian steroidogenic activity and to treat hemorrhage and anemia associated with reproductive tract pathology in a 59-year-old Asian elephant (Elephas maximus). The Repro-BLOC GnRH vaccine was administered subcutaneously as a series of 4 boosters of increasing dose from 3 to 30 mg of recombinant ovalbumin-GnRH fusion protein given at variable intervals after initial vaccination with 3 mg protein. Efficacy was confirmed over a year after initial vaccination based on complete ovarian cycle suppression determined by serum progestagen analyses. Estrous cycle suppression was associated with a significant increase in GnRH antibody binding and subsequent decrease in serum luteinizing hormone and follicle-stimulating hormone concentrations. Ultrasonographic examinations of the reproductive tract documented a reduction in uterine size and vascularity after immunization. The hematocrit level normalized soon after the initial intrauterine hemorrhage, and no recurrence of anemia has been detected. No substantive adverse effects were associated with GnRH vaccination. The results indicate that GnRH vaccination in elephants shows potential for contraception and management of uterine pathology in older elephants.

  11. Hormone therapy and ovarian borderline tumors

    DEFF Research Database (Denmark)

    Mørch, Lina Steinrud; Løkkegaard, Ellen; Andreasen, Anne Helms

    2012-01-01

    Little is known about the influence of postmenopausal hormone therapy on the risk of ovarian borderline tumors. We aimed at assessing the influence of different hormone therapies on this risk.......Little is known about the influence of postmenopausal hormone therapy on the risk of ovarian borderline tumors. We aimed at assessing the influence of different hormone therapies on this risk....

  12. Pathology of excessive production of growth hormone.

    Science.gov (United States)

    Scheithauer, B W; Kovacs, K; Randall, R V; Horvath, E; Laws, E R

    1986-08-01

    Since its clinical description in the last century, much progress has been made in our understanding of acromegaly. From an initial description of pituitary enlargement as just another manifestation of generalized visceromegaly, the pituitary abnormality has come to be recognized, in most instances, as the underlying aetiological factor. Gigantism and acromegaly are manifestations of disordered pituitary physiology, but the lesion responsible may be hypothalamic, adenohypophyseal or ectopic in location. The best known pathological hypothalamic basis for acromegaly is represented by a neuronal malformation or 'gangliocytoma'. It usually takes the form of an intrasellar gangliocytoma or, more rarely, a hypothalamic hamartoma. The neuronal elaboration of GHRH may play a role in the development of a growth hormone adenoma; the pituitary process may pass through an intermediate stage of somatotropic hyperplasia. When acromegaly has its basis in a pituitary abnormality, the lesion is almost exclusively an adenoma; the non-tumorous adenohypophysis shows no evidence of coexistent hyperplasia. Surprisingly, such tumours are more often engaged in the formation of multiple hormones rather than GH alone. They frequently produce not only GH and prolactin, the products characteristics of cells of the acidophil line, but also glycoprotein hormones, usually TSH. The spectrum of adenomas also varies in its degree of differentiation from a histogenetically primitive lesion, the acidophil stem cell adenoma, to well-differentiated tumours of varying cellular composition and hormone content. Each adenoma type has its clinicopathological, histochemical, immunocytological and ultrastructural characteristics. The isolation and characterization of GHRH has permitted the identification of neuroendocrine tumours, most of foregut origin, elaborating this releasing hormone. Such functional tumours induce hyperplasia of pituitary somatotrophs and may, on occasion, result in the formation of

  13. Association of Hormonal Contraception With Depression

    DEFF Research Database (Denmark)

    Skovlund, Charlotte Wessel; Mørch, Lina Steinrud; Kessing, Lars Vedel

    2016-01-01

    to those who never used hormonal contraception, the RR estimates for users of combined oral contraceptives increased to 1.7 (95% CI, 1.66-1.71). Conclusions and Relevance: Use of hormonal contraception, especially among adolescents, was associated with subsequent use of antidepressants and a first......Importance: Millions of women worldwide use hormonal contraception. Despite the clinical evidence of an influence of hormonal contraception on some women's mood, associations between the use of hormonal contraception and mood disturbances remain inadequately addressed. Objective: To investigate...... whether the use of hormonal contraception is positively associated with subsequent use of antidepressants and a diagnosis of depression at a psychiatric hospital. Design, Setting, and Participants: This nationwide prospective cohort study combined data from the National Prescription Register...

  14. In Vitro Fertilization Using Luteinizing Hormone-Releasing Hormone Injections Resulted in Healthy Triplets without Increased Attack Rates in a Hereditary Angioedema Case

    Directory of Open Access Journals (Sweden)

    Ceyda Tunakan Dalgıç

    2018-01-01

    Full Text Available Hereditary angioedema due to C1-inhibitor deficiency (C1-INH-HAE is a rare, autosomal dominant disorder. The management of pregnant patients with C1-INH-HAE is a challenge for the physician. Intravenous plasma-derived nanofiltered C1-INH (pdC1INH is the only recommended option throughout pregnancy, postpartum, and breastfeeding period. In order to increase pregnancy rates, physicians use fertilization therapies increasing endogen levels of estrogens. Therefore, these techniques can provoke an increase in the number and severity of edema attacks in C1-INH-HAE. Our patient is a 32-year-old female, diagnosed with C1-INH-HAE type 1 since 2004. She had been taking danazol 50–200 mg/day for 9 years. Due to her pregnancy plans in 2013, danazol was discontinued. PdC1INH was prescribed regularly for prophylactic purpose. Triplet pregnancy occurred by in vitro fertilization using luteinizing hormone-releasing hormone (LHRH injections. In our patient, LHRH injections were done four times without causing any severe attack during in vitro fertilization. Angioedema did not worsen during pregnancy and delivery due to the prophylactic use of intravenous pdC1INH in our patient. According to the attack frequency and severity, there was no difference between the three pregnancy trimesters. To our knowledge, this is the first published case of C1-INH-HAE receiving in vitro fertilization therapies without any angioedema attacks during pregnancy and delivery and eventually having healthy triplets with the prophylactic use of intravenous pdC1INH.

  15. Effects of Growth Hormone Replacement Therapy on Bone Mineral Density in Growth Hormone Deficient Adults: A Meta-Analysis

    OpenAIRE

    Xue, Peng; Wang, Yan; Yang, Jie; Li, Yukun

    2013-01-01

    Objectives. Growth hormone deficiency patients exhibited reduced bone mineral density compared with healthy controls, but previous researches demonstrated uncertainty about the effect of growth hormone replacement therapy on bone in growth hormone deficient adults. The aim of this study was to determine whether the growth hormone replacement therapy could elevate bone mineral density in growth hormone deficient adults. Methods. In this meta-analysis, searches of Medline, Embase, and The Cochr...

  16. The Neuroendocrine Functions of the Parathyroid Hormone 2 Receptor

    Directory of Open Access Journals (Sweden)

    Arpad eDobolyi

    2012-10-01

    Full Text Available The G-protein coupled parathyroid hormone 2 receptor (PTH2R is concentrated in endocrine and limbic regions in the forebrain. Its endogenous ligand,tuberoinfundibular peptide of 39 residues (TIP39, is synthesized in only 2 brain regions, within the posterior thalamus and the lateral pons. TIP39-expressing neurons have a widespread projection pattern, which matches the PTH2R distribution in the brain. Neuroendocrine centers including the preoptic area, the periventricular, paraventricular, and arcuate nuclei contain the highest density of PTH2R-positive networks. The administration of TIP39 and an antagonist of the PTH2R as well as the investigation of mice that lack functional TIP39 and PTH2R revealed the involvement of the PTH2R in a variety of neural and neuroendocrine functions. TIP39 acting via the PTH2R modulates several aspects of the stress response. It evokes corticosterone release by activating corticotropin-releasing hormone-containing neurons in the hypothalamic paraventricular nucleus. Block of TIP39 signaling elevates the anxiety state of animals and their fear response, and increases stress-induced analgesia. TIP39 has also been suggested to affect the release of additional pituitary hormones including arginine vasopressin and growth hormone. A role of the TIP39-PTH2R system in thermoregulation was also identified. TIP39 may play a role in maintaining body temperature in a cold environment via descending excitatory pathways from the preoptic area. Anatomical and functional studies also implicated the TIP39-PTH2R system in nociceptive information processing. Finally, TIP39 induced in postpartum dams may play a role in the release of prolactin during lactation. Potential mechanisms leading to the activation of TIP39 neurons and how they influence the neuroendocrine system are also described. The unique TIP39-PTH2R neuromodulator system provides the possibility for developing drugs with a novel mechanism of action to control

  17. PERCEPTION OF THE MOLTING HORMONE 20-HYDROXECDYSONE BY HOMARUS AMERICANUS: LOCALIZATION OF STEROID RECEPTORS AND EFFECT ON BEHAVIOR

    Science.gov (United States)

    There is growing evidence that hormones, when released from an animal into the environment, act as chemical signals to other organisms. There is also evidence to suggest that hormones are released by lobsters during sexual and agonistic encounters to signal conspecifics. The go...

  18. Recovery responses of testosterone, growth hormone, and IGF-1 after resistance exercise.

    Science.gov (United States)

    Kraemer, William J; Ratamess, Nicholas A; Nindl, Bradley C

    2017-03-01

    The complexity and redundancy of the endocrine pathways during recovery related to anabolic function in the body belie an oversimplistic approach to its study. The purpose of this review is to examine the role of resistance exercise (RE) on the recovery responses of three major anabolic hormones, testosterone, growth hormone(s), and insulin-like growth factor 1. Each hormone has a complexity related to differential pathways of action as well as interactions with binding proteins and receptor interactions. Testosterone is the primary anabolic hormone, and its concentration changes during the recovery period depending on the upregulation or downregulation of the androgen receptor. Multiple tissues beyond skeletal muscle are targeted under hormonal control and play critical roles in metabolism and physiological function. Growth hormone (GH) demonstrates differential increases in recovery with RE based on the type of GH being assayed and workout being used. IGF-1 shows variable increases in recovery with RE and is intimately linked to a host of binding proteins that are essential to its integrative actions and mediating targeting effects. The RE stress is related to recruitment of muscle tissue with the glandular release of hormones as signals to target tissues to support homeostatic mechanisms for metabolism and tissue repair during the recovery process. Anabolic hormones play a crucial role in the body's response to metabolism, repair, and adaptive capabilities especially in response to anabolic-type RE. Changes of these hormones following RE during recovery in the circulatory biocompartment of blood are reflective of the many mechanisms of action that are in play in the repair and recovery process. Copyright © 2017 the American Physiological Society.

  19. Radioimmunological determination of plasma testosterone, luteinizing hormone, folliculostimulating hormone and prolactin levels in patients with prostate cancer

    International Nuclear Information System (INIS)

    Milkov, V.; Maleeva, A.; Tsvetkov, M.; Visheva, N.

    1986-01-01

    The hormone levels were measured before and after hormonal therapy. Statistically significant changes in the levels of the hormones in this study were recognized (p<0,001) as a result of treatment with estrogen preparations. Plasma prolactin was raised before estrogen therapy (statistically significant rise, p<0,001), as compared to the levels in a control group of normal subjects. A mild tendency was observed toward its increase, depending on the duration of treatment. The results of this study show that control of the hormonal status of patients with prostate cancer may serve as reliable criterion in evaluating the effectiveness of hormonal therapy. The changes in prolactin levels are evidence of hormonal disbalance, which may be observed in these patients

  20. Radioiodinated nondegradable gonadotropin-releasing hormone analogs: new probes for the investigation of pituitary gonadotropin-releasing hormone receptors.

    Science.gov (United States)

    Clayton, R N; Shakespear, R A; Duncan, J A; Marshall, J C; Munson, P J; Rodbard, D

    1979-12-01

    Studies of pituitary plasma membrane gonadotropin-releasing hormone (GnRH) receptors using [125I]-iodo-GnRH suffer major disadvantages. Only a small (less than 25%) proportion of specific tracer binding is to high affinity sites, with more than 70% bound to low affinity sites (Ka = 1 x 10(6) M-1). [125I]Iodo-GnRH is also inactivated during incubation with pituitary plasma membrane preparations. Two superactive analongs of GnRH, substituted in positions 6 and 10, were used as the labeled ligand to overcome these problems. Both analogs bound to the same high affinity sites as GnRH on bovine pituitary plasma membranes, though the affinity of the analogs was higher than that of the natural decapeptide (Ka = 2.0 x 10(9), 6.0 x 10(9), and 3.0 x 10(8) M-1 for [D-Ser(TBu)6]des-Gly10-GnRH ethylamide, [D-Ala6]des-Gly10-GnRH ethylamide, and GnRH, respectively. The labeled analogs bound to a single class of high affinity sites with less than 15% of the specific binding being to low affinity sites (Ka approximately equal to 1 x 10(6) M-1). The labeled analogs were not inactivated during incubation with the pituitary membrane preparations. Using the analogs as tracer, a single class of high affinity sites (K1 = 4.0 x 10(9) M-1) was also demonstrated on crude 10,800 x g rat pituitary membrane preparations. Use of these analogs as both the labeled and unlabeled ligand offers substantial advantages over GnRH for investigation of GnRH receptors, allowing accurate determination of changes in their numbers and affinities under various physiological conditions.

  1. Prospective hormone study of hypothalamic-pituitary function in patients with nasopharyngeal carcinoma after high dose irradiation

    International Nuclear Information System (INIS)

    Chen, Ming-Shen; Lin, Fang-Jen; Huang, Miau-Ju; Wang, Pei-Wan; Tang, Simon; Leung, Wei-Man; Leung, Wan

    1989-01-01

    With the aim of evaluating the effect of high dose irradiation (6,500 cGy/36 fractions or higher) to pituitary fossa, a prospective study was carried out in patients with nasopharyngeal cancer by a serial determination of several hormones in the serum, before and after the course of radiation therapy (RT). The radiation treatment field was at least 1 cm above the skull base with bilateral parallel opposing fields. Hormone assays were performed three times on each patient: (1)prior to, (2)one month after, (3)15-18 months after radiation therapy. The study included determination of serum luteinizing hormone (LH), follicle-stimulating hormone (FSH), thyroid-stimulating hormone (TSH), cortisol, growth hormone (GH) and prolactin concentrations and LH-releasing hormone, thyrotrophin-releasing hormone stimulation and insulin tolerance tests were also carried out. Complete profiles were obtained in 24 patients (16 males and 8 females), aged 16-67 years. The results showed a significant decrease in the level of serum peak value of LH in males 18 months after therapy, and also in GH both one month and 18 months after therapy. A significant increase in the peak value of serum TSH was observed after therapy. Decreased serum FSH, cortisol and prolactin levels were noted, but these did not reach statistical significance. The decrease in GH level appeared earlier and was more sensitive than that found for the other hormones, and could prove to be a useful parameter for clinical evaluation. None of the patients showed any clinically recognizable symptoms or signs of hormone deficiency in the 18-33 months following completion of the radiation therapy. (author)

  2. Effect of thyrotrophin releasing hormone on opiate receptors of the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Balashov, A.M.; Shchurin, M.R.

    1987-01-01

    It has recently been shown that the hypothalamic thyrotropin releasing hormone (TRH) has the properties of a morphine antagonist, blocking its inhibitory action on respiration and, to a lesser degree, its analgesic action. This suggests that the antagonistic effects of TRH are mediated through its interaction with opiate receptors. The aim of this paper is to study this hypothesis experimentally. Tritium-labelled enkephalins in conjunction with scintillation spectroscopy were used to assess the receptor binding behavior. The results indicate the existence of interconnections between the opiate systems and TRH. Although it is too early to reach definite conclusions on the mechanisms of this mutual influence and its physiological significance it can be tentatively suggested that TRH abolishes the pharmacological effects of morphine by modulating the functional state of opiate reception.

  3. Adrenal stress hormones, amygdala activation, and memory for emotionally arousing experiences.

    Science.gov (United States)

    Roozendaal, Benno; Barsegyan, Areg; Lee, Sangkwan

    2008-01-01

    Extensive evidence indicates that stress hormones released from the adrenal glands are critically involved in memory consolidation of emotionally arousing experiences. Epinephrine or glucocorticoids administered after exposure to emotionally arousing experiences enhance the consolidation of long-term memories of these experiences. Our findings indicate that adrenal stress hormones influence memory consolidation via interactions with arousal-induced activation of noradrenergic mechanisms within the amygdala. In turn, the amygdala regulates memory consolidation via its efferent projections to many other brain regions. In contrast to the enhancing effects on consolidation, high circulating levels of stress hormones impair memory retrieval and working memory. Such effects also require noradrenergic activation of the amygdala and interactions with other brain regions.

  4. Hormones and β-Agonists

    NARCIS (Netherlands)

    Ginkel, van L.A.; Bovee, T.F.H.; Blokland, M.H.; Sterk, S.S.; Smits, N.G.E.; Pleadin, Jelka; Vulić, Ana

    2016-01-01

    This chapter provides some updated information on contemporary methods for hormone and β-agonist analyses. It deals with the classical approaches for the effective detection and identification of exogenous hormones. The chapter examines specific problems related to control strategies for natural

  5. Some theoretical aspects of hormone receptor determination

    International Nuclear Information System (INIS)

    Sluiter, W.J.

    1981-01-01

    Suitable antisera for determination of hormone receptors are not available for the majority of hormone receptors. Therefore, the determination of hormone receptors is mostly performed in terms of binding capacity for the appropriate hormone, using radioactive hormone labels. Some theoretical aspects of such a receptor determination are discussed including the length of incubation (total or unoccupied receptor concentration), single point or multiple point (Scatchard) analysis (regarding the influence of other specific binders), the correction procedure for non-specific binding and the influence of the circulating hormone level. (Auth.)

  6. Hormonal regulation of lipid metabolism in developing coho salmon, Oncorhynchus kisutch

    International Nuclear Information System (INIS)

    Sheridan, M.A.

    1985-01-01

    Lipid metabolism in juvenile coho salmon is characterized, and adaptive changes in lipid mobilization are described in relation to development and hormonal influences. The rates of lipogenesis and lipolysis were determined in selected tissues of juvenile salmon during the period of seawater preadaptive development (smoltification). Neutral lipid (sterol) and fatty acid synthesis in the liver and mesenteric fat was measured by tritium incorporation. Fatty acid synthesis in the liver and mesenteric fat decreased by 88% and 81%, respectively, between late February (parr) and early June (smolt). To assess the role of hormones in smoltification-associated lipid depletion, growth hormone, prolactin, thyroxin and cortisol were administered in vivo early in development (parr) to determine if any of these factors could initiate the metabolic responses normally seen later in development (smolt). Growth hormone stimulated lipid mobilization from coho salmon parr. Prolactin strongly stimulated lipid mobilization in coho parr. Thyroxin and cortisol also stimulated lipid mobilization for coho salmon parr. The direct effect of hormones was studied by in vitro pH-stat incubation of liver slices. These data suggest that norepinephrine stimulates fatty acid release via β-adrenergic pathways. Somatostatin and its partial analogue from the fish caudal neurosecretory system, urotensin II, also affect lipid mobilization. These results establish the presence of hormone-sensitive lipase in salmon liver and suggest that the regulation of lipid metabolism in salmon involves both long-acting and short-acting hormonal agents

  7. Sex, hormones and neurogenesis in the hippocampus: hormonal modulation of neurogenesis and potential functional implications.

    Science.gov (United States)

    Galea, L A M; Wainwright, S R; Roes, M M; Duarte-Guterman, P; Chow, C; Hamson, D K

    2013-11-01

    The hippocampus is an area of the brain that undergoes dramatic plasticity in response to experience and hormone exposure. The hippocampus retains the ability to produce new neurones in most mammalian species and is a structure that is targeted in a number of neurodegenerative and neuropsychiatric diseases, many of which are influenced by both sex and sex hormone exposure. Intriguingly, gonadal and adrenal hormones affect the structure and function of the hippocampus differently in males and females. Adult neurogenesis in the hippocampus is regulated by both gonadal and adrenal hormones in a sex- and experience-dependent way. Sex differences in the effects of steroid hormones to modulate hippocampal plasticity should not be completely unexpected because the physiology of males and females is different, with the most notable difference being that females gestate and nurse the offspring. Furthermore, reproductive experience (i.e. pregnancy and mothering) results in permanent changes to the maternal brain, including the hippocampus. This review outlines the ability of gonadal and stress hormones to modulate multiple aspects of neurogenesis (cell proliferation and cell survival) in both male and female rodents. The function of adult neurogenesis in the hippocampus is linked to spatial memory and depression, and the present review provides early evidence of the functional links between the hormonal modulation of neurogenesis that may contribute to the regulation of cognition and stress. © 2013 British Society for Neuroendocrinology.

  8. Would male hormonal contraceptives affect cardiovascular risk?

    Directory of Open Access Journals (Sweden)

    Michael Zitzmann

    2018-01-01

    Full Text Available The aim of hormonal male contraception is to prevent unintended pregnancies by suppressing spermatogenesis. Hormonal male contraception is based on the principle that exogenous administration of androgens and other hormones such as progestins suppress circulating gonadotropin concentrations, decreasing testicular Leydig cell and Sertoli cell activity and spermatogenesis. In order to achieve more complete suppression of circulating gonadotropins and spermatogenesis, a progestin has been added testosterone to the most recent efficacy trials of hormonal male contraceptives. This review focusses on the potential effects of male hormonal contraceptives on cardiovascular risk factors, lipids and body composition, mainly in the target group of younger to middle-aged men. Present data suggest that hormonal male contraception can be reasonably regarded as safe in terms of cardiovascular risk. However, as all trials have been relatively short (< 3 years, a final statement regarding the cardiovascular safety of hormonal male contraception, especially in long-term use, cannot be made. Older men with at high risk of cardiovascular event might not be good candidates for hormonal male contraception. The potential adverse effects of hormonal contraceptives on cardiovascular risk appear to depend greatly on the choice of the progestin in regimens for hormonal male contraceptives. In the development of prospective hormonal male contraception, data on longer-term cardiovascular safety will be essential.

  9. Acromegaly caused by a growth hormonereleasing hormone secreting carcinoid tumour of the lung : the effect of octreotide treatment

    NARCIS (Netherlands)

    De Heide, L. J. M.; Van den Berg, G.; Wolthuis, A.; Van Schelven, W. D.

    2007-01-01

    in acromegaly, the overproduction of growth hormone is usually caused by a pituitary adenoma. We report a 74-year-old woman with acromegaly caused by ectopic overproduction of growth hormone-releasing hormone (GHRH), a rare diagnosis. The GHRH appeared to be produced by a carcinoid tumour of the

  10. Hormone Replacement Therapy and Your Heart

    Science.gov (United States)

    Hormone replacement therapy and your heart Are you taking — or considering — hormone therapy to treat bothersome menopausal symptoms? Understand ... you. By Mayo Clinic Staff Long-term hormone replacement therapy used to be routinely prescribed for postmenopausal ...

  11. Purification and cultivation of human pituitary growth hormone secreting cells

    Science.gov (United States)

    Hymer, W. C.

    1979-01-01

    Efforts were directed towards maintenance of actively secreting human pituitary growth hormone cells (somatotrophs) in vitro. The production of human growth hormone (hGH) by this means would be of benefit for the treatment of certain human hypopituitary diseases such as dwarfism. One of the primary approaches was the testing of agents which may logically be expected to increase hGH release. The progress towards this goal is summarized. Results from preliminary experiments dealing with electrophoresis of pituitary cell for the purpose of somatotroph separation are described.

  12. Gastrointestinal Hormones Induced the Birth of Endocrinology.

    Science.gov (United States)

    Wabitsch, Martin

    2017-01-01

    The physiological studies by British physiologists William Maddock Bayliss and Ernest Henry Starling, at the beginning of the last century, demonstrated the existence of specific messenger molecules (hormones) circulating in the blood that regulate the organ function and physiological mechanisms. These findings led to the concept of endocrinology. The first 2 hormones were secretin, discovered in 1902, and gastrin, discovered in 1905. Both hormones that have been described are produced in the gut. This chapter summarizes the history around the discovery of these 2 hormones, which is perceived as the birth of endocrinology. It is noteworthy that after the discovery of these 2 gastrointestinal hormones, many other hormones were detected outside the gut, and thereafter gut hormones faded from both the clinical and scientific spotlight. Only recently, the clinical importance of the gut as the body's largest endocrine organ producing a large variety of hormones has been realized. Gastrointestinal hormones are essential regulators of metabolism, growth, development and behavior and are therefore the focus of a modern pediatric endocrinologist. © 2017 S. Karger AG, Basel.

  13. Enhancement of a robust arcuate GABAergic input to gonadotropin-releasing hormone neurons in a model of polycystic ovarian syndrome.

    Science.gov (United States)

    Moore, Aleisha M; Prescott, Mel; Marshall, Christopher J; Yip, Siew Hoong; Campbell, Rebecca E

    2015-01-13

    Polycystic ovarian syndrome (PCOS), the leading cause of female infertility, is associated with an increase in luteinizing hormone (LH) pulse frequency, implicating abnormal steroid hormone feedback to gonadotropin-releasing hormone (GnRH) neurons. This study investigated whether modifications in the synaptically connected neuronal network of GnRH neurons could account for this pathology. The PCOS phenotype was induced in mice following prenatal androgen (PNA) exposure. Serial blood sampling confirmed that PNA elicits increased LH pulse frequency and impaired progesterone negative feedback in adult females, mimicking the neuroendocrine abnormalities of the clinical syndrome. Imaging of GnRH neurons revealed greater dendritic spine density that correlated with increased putative GABAergic but not glutamatergic inputs in PNA mice. Mapping of steroid hormone receptor expression revealed that PNA mice had 59% fewer progesterone receptor-expressing cells in the arcuate nucleus of the hypothalamus (ARN). To address whether increased GABA innervation to GnRH neurons originates in the ARN, a viral-mediated Cre-lox approach was taken to trace the projections of ARN GABA neurons in vivo. Remarkably, projections from ARN GABAergic neurons heavily contacted and even bundled with GnRH neuron dendrites, and the density of fibers apposing GnRH neurons was even greater in PNA mice (56%). Additionally, this ARN GABA population showed significantly less colocalization with progesterone receptor in PNA animals compared with controls. Together, these data describe a robust GABAergic circuit originating in the ARN that is enhanced in a model of PCOS and may underpin the neuroendocrine pathophysiology of the syndrome.

  14. Pituitary-hormone secretion by thyrotropinomas

    OpenAIRE

    Roelfsema, Ferdinand; Kok, Simon; Kok, Petra; Pereira, Alberto M.; Biermasz, Nienke R.; Smit, Jan W.; Frolich, Marijke; Keenan, Daniel M.; Veldhuis, Johannes D.; Romijn, Johannes A.

    2008-01-01

    Hormone secretion by somatotropinomas, corticotropinomas and prolactinomas exhibits increased pulse frequency, basal and pulsatile secretion, accompanied by greater disorderliness. Increased concentrations of growth hormone (GH) or prolactin (PRL) are observed in about 30% of thyrotropinomas leading to acromegaly or disturbed sexual functions beyond thyrotropin (TSH)-induced hyperthyroidism. Regulation of non-TSH pituitary hormones in this context is not well understood. We there therefore ev...

  15. Headaches and Hormones: What's the Connection?

    Science.gov (United States)

    Headaches and hormones: What's the connection? Being female has some real health advantages, but not when it comes to headaches — particularly ... a relationship between headaches and hormonal changes. The hormones estrogen (ES-truh-jen) and progesterone (pro-JES- ...

  16. Interactions between hormones and epilepsy.

    Science.gov (United States)

    Taubøll, Erik; Sveberg, Line; Svalheim, Sigrid

    2015-05-01

    There is a complex, bidirectional interdependence between sex steroid hormones and epilepsy; hormones affect seizures, while seizures affect hormones thereby disturbing reproductive endocrine function. Both female and male sex steroid hormones influence brain excitability. For the female sex steroid hormones, progesterone and its metabolites are anticonvulsant, while estrogens are mainly proconvulsant. The monthly fluctuations in hormone levels of estrogen and progesterone are the basis for catamenial epilepsy described elsewhere in this issue. Androgens are mainly anticonvulsant, but the effects are more varied, probably because of its metabolism to, among others, estradiol. The mechanisms for the effects of sex steroid hormones on brain excitability are related to both classical, intracellularly mediated effects, and non-classical membrane effects due to binding to membrane receptors. The latter are considered the most important in relation to epilepsy. The different sex steroids can also be further metabolized within the brain to different neurosteroids, which are even more potent with regard to their effect on excitability. Estrogens potentiate glutamate responses, primarily by potentiating NMDA receptor activity, but also by affecting GABA-ergic mechanisms and altering brain morphology by increasing dendritic spine density. Progesterone and its main metabolite 5α-pregnan-3α-ol-20-one (3α-5α-THP) act mainly to enhance postsynaptic GABA-ergic activity, while androgens enhance GABA-activated currents. Seizures and epileptic discharges also affect sex steroid hormones. There are close anatomical connections between the temporolimbic system and the hypothalamus controlling the endocrine system. Several studies have shown that epileptic activity, especially mediated through the amygdala, alters reproductive function, including reduced ovarian cyclicity in females and altered sex steroid hormone levels in both genders. Furthermore, there is an asymmetric

  17. Acute sex hormone suppression reduces skeletal muscle sympathetic nerve activity.

    Science.gov (United States)

    Day, Danielle S; Gozansky, Wendolyn S; Bell, Christopher; Kohrt, Wendy M

    2011-10-01

    Comparisons of sympathetic nervous system activity (SNA) between young and older women have produced equivocal results, in part due to inadequate control for potential differences in sex hormone concentrations, age, and body composition. The aim of the present study was to determine the effect of a short-term reduction in sex hormones on tonic skeletal muscle sympathetic nerve activity (MSNA), an indirect measure of whole body SNA, using an experimental model of sex hormone deficiency in young women. We also assessed the independent effects of estradiol and progesterone add-back therapy on MSNA. MSNA was measured in 9 women (30±2 years; mean±SE) on three separate occasions: during the mid-luteal menstrual cycle phase, on the fifth day of gonadotropin-releasing hormone antagonist (GnRHant) administration, and after 5 days add-back of either estradiol (n=4) or progesterone (n=3) during continued GnRHant administration. In response to GnRHant, there were significant reductions in serum estradiol and progesterone (both psuppression attenuates MSNA and that this may be related to the suppression of progesterone rather than estradiol.

  18. Pancreatic hormones are expressed on the surfaces of human and rat islet cells through exocytotic sites

    DEFF Research Database (Denmark)

    Larsson, L I; Hutton, J C; Madsen, O D

    1989-01-01

    . Electron microscopy reveals the labeling to occur at sites of exocytotic granule release, involving the surfaces of extruded granule cores. The surfaces of islet cells were labeled both by polyclonal and monoclonal antibodies, excluding that receptor-interacting, anti-idiotypic hormone antibodies were...... for these results. It is concluded that the staining reflects interactions between the appropriate antibodies and exocytotic sites of hormone release....

  19. The gonadotropin-releasing hormone antagonist protocol--the protocol of choice for the polycystic ovary syndrome patient undergoing controlled ovarian stimulation

    DEFF Research Database (Denmark)

    Kol, Shahar; Homburg, Roy; Alsbjerg, Birgit

    2012-01-01

    Polycystic ovary syndrome (PCOS) patients are prone to develop ovarian hyperstimulation syndrome (OHSS), a condition which can be minimized or completely eliminated by the use of a gonadotropin-releasing hormone agonist (GnRHa) trigger. In this commentary paper, we maintain that the gonadotropin-...... ongoing pregnancy rates in the subsequent frozen-thawed transfer cycles....

  20. Epidermal growth factor (EGF) inhibits stimulated thyroid hormone secretion in the mouse

    International Nuclear Information System (INIS)

    Ahren, B.

    1987-01-01

    It is known that epidermal growth factor (EGF) inhibits iodide uptake in the thyroid follicular cells and lowers plasma levels of thyroid hormones upon infusion into sheep and ewes. In this study, the effects of EGF on basal and stimulated thyroid hormone secretion were investigated in the mouse. Mice were pretreated with 125 I and thyroxine; the subsequent release of 125 I is an estimation of thyroid hormone secretion. It was found that basal radioiodine secretion was not altered by intravenous injection of EGF (5 micrograms/animal). However, the radioiodine secretion stimulated by both TSH (120 microU/animal) and vasoactive intestinal peptide (VIP; 5 micrograms/animal) were inhibited by EGF (5 micrograms/animal). At a lower dose level (0.5 microgram/animal), EGF had no influence on stimulated radioiodine secretion. In conclusion, EGF inhibits stimulated thyroid hormone secretion in the mouse

  1. Parathyroid hormone-related protein blood test

    Science.gov (United States)

    ... ency/article/003691.htm Parathyroid hormone-related protein blood test To use the sharing features on this page, ... measures the level of a hormone in the blood, called parathyroid hormone-related protein. How the Test is Performed A blood sample is needed . How ...

  2. Thyroid hormone signaling in the hypothalamus

    NARCIS (Netherlands)

    Alkemade, Anneke; Visser, Theo J.; Fliers, Eric

    2008-01-01

    PURPOSE OF REVIEW: Proper thyroid hormone signaling is essential for brain development and adult brain function. Signaling can be disrupted at many levels due to altered thyroid hormone secretion, conversion or thyroid hormone receptor binding. RECENT FINDINGS: Mutated genes involved in thyroid

  3. Obesity, growth hormone and weight loss

    DEFF Research Database (Denmark)

    Rasmussen, Michael Højby

    2009-01-01

    Growth hormone (GH) is the most important hormonal regulator of postnatal longitudinal growth in man. In adults GH is no longer needed for longitudinal growth. Adults with growth hormone deficiency (GHD) are characterised by perturbations in body composition, lipid metabolism, cardiovascular risk...

  4. Hormone therapy and ovarian cancer

    DEFF Research Database (Denmark)

    Mørch, Lina Steinrud; Løkkegaard, Ellen; Andreasen, Anne Helms

    2009-01-01

    CONTEXT: Studies have suggested an increased risk of ovarian cancer among women taking postmenopausal hormone therapy. Data are sparse on the differential effects of formulations, regimens, and routes of administration. OBJECTIVE: To assess risk of ovarian cancer in perimenopausal and postmenopau......CONTEXT: Studies have suggested an increased risk of ovarian cancer among women taking postmenopausal hormone therapy. Data are sparse on the differential effects of formulations, regimens, and routes of administration. OBJECTIVE: To assess risk of ovarian cancer in perimenopausal...... and postmenopausal women receiving different hormone therapies. DESIGN AND SETTING: Nationwide prospective cohort study including all Danish women aged 50 through 79 years from 1995 through 2005 through individual linkage to Danish national registers. Redeemed prescription data from the National Register...... bands included hormone exposures as time-dependent covariates. PARTICIPANTS: A total of 909,946 women without hormone-sensitive cancer or bilateral oophorectomy. MAIN OUTCOME MEASURE: Ovarian cancer. RESULTS: In an average of 8.0 years of follow-up (7.3 million women-years), 3068 incident ovarian...

  5. Hormonal changes during GnRH analogue therapy in children with central precocious puberty

    DEFF Research Database (Denmark)

    Müller, J; Juul, A; Andersson, A M

    2000-01-01

    Gonadotropin releasing hormone analogues (GnRHa) have been used for treatment of central precocious puberty (CPP) for more than 15 years. They are generally considered safe although data on potential long-term side effects are scarce. However, GnRHa therapy has profound effects on both the hypoth......Gonadotropin releasing hormone analogues (GnRHa) have been used for treatment of central precocious puberty (CPP) for more than 15 years. They are generally considered safe although data on potential long-term side effects are scarce. However, GnRHa therapy has profound effects on both...

  6. Prenatal exposure to vinclozolin disrupts selective aspects of the gonadotropin-releasing hormone neuronal system of the rabbit

    OpenAIRE

    Wadas, B.C.; Hartshorn, C.A.; Aurand, E.R.; Palmer, J.S.; Roselli, C.E.; Noel, M.L.; Gore, A.C.; Veeramachaneni, D.N.R.; Tobet, S.A.

    2010-01-01

    Developmental exposure to the agricultural fungicide vinclozolin can impair reproductive function in male rabbits and was previously found to decrease the number of immunoreactive-gonadotropin-releasing hormone (ir-GnRH) neurons in the region of the organum vasculosum of the lamina terminalis (OVLT) and rostral preoptic area (rPOA) by postnatal week (PNW) 6. To further examine the disruption of GnRH neurons by fetal vinclozolin exposure, in the current study, pregnant rabbits were dosed orall...

  7. Tripeptide amide L-pyroglutamyl-histidyl-L-prolineamide (L-PHP-thyrotropin-releasing hormone, TRH) promotes insulin-producing cell proliferation.

    Science.gov (United States)

    Luo, LuGuang; Luo, John Z Q; Jackson, Ivor

    2013-02-01

    A very small tripeptide amide L-pyroglutamyl-L-histidyl-L-prolineamide (L-PHP, Thyrotropin-Releasing Hormone, TRH), was first identified in the brain hypothalamus area. Further studies found that L-PHP was expressed in pancreas. The biological role of pancreatic L-PHP is still not clear. Growing evidence indicates that L-PHP expression in the pancreas may play a pivotal role for pancreatic development in the early prenatal period. However, the role of L-PHP in adult pancreas still needs to be explored. L-PHP activation of pancreatic β cell Ca2+ flow and stimulation of β-cell insulin synthesis and release suggest that L-PHP involved in glucose metabolism may directly act on the β cell separate from any effects via the central nervous system (CNS). Knockout L-PHP animal models have shown that loss of L-PHP expression causes hyperglycemia, which cannot be reversed by administration of thyroid hormone, suggesting that the absence of L-PHP itself is the cause. L-PHP receptor type-1 has been identified in pancreas which provides a possibility for L-PHP autocrine and paracrine regulation in pancreatic function. During pancreatic damage in adult pancreas, L-PHP may protect beta cell from apoptosis and initiate its regeneration through signal pathways of growth hormone in β cells. L-PHP has recently been discovered to affect a broad array of gene expression in the pancreas including growth factor genes. Signal pathways linked between L-PHP and EGF receptor phosphorylation suggest that L-PHP may be an important factor for adult β-cell regeneration, which could involve adult stem cell differentiation. These effects suggest that L-PHP may benefit pancreatic β cells and diabetic therapy in clinic.

  8. USE OF MOLECULAR BIOLOGICAL TECHNIQUES TO EVALUATE EFFECT OF ENDOGENOUS HORMONES AND A XENOBIOTIC PESTICIDE ON GROWTH OF SHEEPSHEAD MINNOW

    Science.gov (United States)

    We have developed a teleost model to screen physiological effects of endocrine disrupting chemicals (EDCs) on somatic growth. Growth is largely controlled by the endocrine system via the growth-hormone releasing hormone (GRF) - growth hormone (GH) - insulin-like growth factor (IG...

  9. Growth hormone-mediated breakdown of body fat

    DEFF Research Database (Denmark)

    Johansen, T.; Malmlöf, K.; Richelsen, Bjørn

    2003-01-01

    regimen. Twelve-month-old rats fed first a high-fat diet or a low-fat diet for 14 weeks were injected with saline or growth hormone (4 mg/kg/d) for four days or three weeks in different combinations with either high- or low-fat diets. In adipose tissue, growth hormone generally inhibited lipoprotein...... lipase and also attenuated the inhibiting effect of insulin on hormone-sensitive lipase activity. Growth hormone treatment combined with restricted high-fat feeding reduced the activity of both lipases in adipose tissue and stimulated hormone-sensitive lipase in muscle. Generally, plasma levels of free...... fatty acids, glycerol and cholesterol were reduced by growth hormone, and in combination with restricted high-fat feeding, triglyceride levels improved too. We conclude that growth hormone inhibits lipid storage in adipose tissue by reducing both lipoprotein lipase activity and insulin's inhibitory...

  10. Ovarian hormones and obesity.

    Science.gov (United States)

    Leeners, Brigitte; Geary, Nori; Tobler, Philippe N; Asarian, Lori

    2017-05-01

    Obesity is caused by an imbalance between energy intake, i.e. eating and energy expenditure (EE). Severe obesity is more prevalent in women than men worldwide, and obesity pathophysiology and the resultant obesity-related disease risks differ in women and men. The underlying mechanisms are largely unknown. Pre-clinical and clinical research indicate that ovarian hormones may play a major role. We systematically reviewed the clinical and pre-clinical literature on the effects of ovarian hormones on the physiology of adipose tissue (AT) and the regulation of AT mass by energy intake and EE. Articles in English indexed in PubMed through January 2016 were searched using keywords related to: (i) reproductive hormones, (ii) weight regulation and (iii) central nervous system. We sought to identify emerging research foci with clinical translational potential rather than to provide a comprehensive review. We find that estrogens play a leading role in the causes and consequences of female obesity. With respect to adiposity, estrogens synergize with AT genes to increase gluteofemoral subcutaneous AT mass and decrease central AT mass in reproductive-age women, which leads to protective cardiometabolic effects. Loss of estrogens after menopause, independent of aging, increases total AT mass and decreases lean body mass, so that there is little net effect on body weight. Menopause also partially reverses women's protective AT distribution. These effects can be counteracted by estrogen treatment. With respect to eating, increasing estrogen levels progressively decrease eating during the follicular and peri-ovulatory phases of the menstrual cycle. Progestin levels are associated with eating during the luteal phase, but there does not appear to be a causal relationship. Progestins may increase binge eating and eating stimulated by negative emotional states during the luteal phase. Pre-clinical research indicates that one mechanism for the pre-ovulatory decrease in eating is a

  11. Role of Serotonin Transporter Changes in Depressive Responses to Sex-Steroid Hormone Manipulation

    DEFF Research Database (Denmark)

    Frokjaer, Vibe Gedsoe; Pinborg, Anja; Holst, Klaus Kähler

    2015-01-01

    .6 ± 2.2) and at follow-up (16.2 ± 2.6 days after intervention start). RESULTS: Sex hormone manipulation with GnRHa significantly triggered subclinical depressive symptoms within-group (p = .003) and relative to placebo (p = .02), which were positively associated with net decreases in estradiol levels (p......BACKGROUND: An adverse response to acute and pronounced changes in sex-hormone levels during, for example, the perimenopausal or postpartum period appears to heighten risk for major depression in women. The underlying risk mechanisms remain elusive but may include transiently compromised...... serotonergic brain signaling. Here, we modeled a biphasic ovarian sex hormone fluctuation using a gonadotropin-releasing hormone agonist (GnRHa) and evaluated if emergence of depressive symptoms was associated with change in cerebral serotonin transporter (SERT) binding following intervention. METHODS...

  12. Generalized resistance to thyroid hormone associated with a mutation in the ligand-binding domain of the human thyroid hormone receptor β

    International Nuclear Information System (INIS)

    Sakurai, A.; Takeda, K.; Ain, K.; Ceccarelli, P.; Nakai, A.; Seino, S.; Bell, G.I.; Refetoff, S.; DeGroot, L.J.

    1989-01-01

    The syndrome of generalized resistance to thyroid hormone is characterized by elevated circulating levels of thyroid hormone in the presence of an overall eumetabolic state and failure to respond normally to triiodothyronine. The authors have evaluated a family with inherited generalized resistance to thyroid hormone for abnormalities in the thyroid hormone nuclear receptors. A single guanine → cytosine replacement in the codon for amino acid 340 resulted in a glycine → arginine substitution in the hormone-binding domain of one of two alleles of the patient's thyroid hormone nuclear receptor β gene. In vitro translation products of this mutant human thyroid hormone nuclear receptor β gene did not bind triiodothyronine. Thus, generalized resistance to thyroid hormone can result from expression of an abnormal thyroid hormone nuclear receptor molecule

  13. Luteinizing hormone (LH) blood test

    Science.gov (United States)

    ICSH - blood test; Luteinizing hormone - blood test; Interstitial cell stimulating hormone - blood test ... to temporarily stop medicines that may affect the test results. Be sure to tell your provider about ...

  14. Variations of serum testosterone levels in prostate cancer patients under LH-releasing hormone therapy: an open question.

    Science.gov (United States)

    Reis, Leonardo Oliveira

    2012-06-01

    The hypothesis 'the lower the better when achieving castration levels of testosterone' is based on the data from second-line hormonal manipulation and its molecular basis, and on better oncological results reported for lower castration levels in prostate cancer (PCa) patients, including those achieved with maximal androgen blockade. In this regard, the equivalence of surgical and different pharmacological castrations has been controversial. The modified amino acid structure that makes LH-releasing hormone (LHRH) analogs more potent than LHRH, and the method of delivering the analogs impacts on bioavailibility and potentially causes differences in androgen levels and in its final oncological efficacy. In addition to this, there is a myriad of circumstances, such as those related to ethnic variations and co-morbidities, which uniquely impact on the pharmacological approach in a highly heterogeneous population of castration-resistant prostate cancer (CRPC) patients. Ineffective testosterone suppression through hormonal escape is currently poorly recognized and may result in increased PCa mortality. Until now, the optimal serum testosterone level in patients under castration, and the impact of its variations in patients under LHRH therapy, remain open questions and have been merged to a broad spectra of patients who are highly heterogeneous. This heterogeneity relates to a number of mechanisms regarding response to treatment, which influences the biology of the relapsing tumor and the sensitivity to subsequent therapies in the individual patient. The rationale to achieve testosterone levels below 20-50 ng/dl warrant further investigation as these levels have recently rescued CRPC patients. In the last few years and months, important advancements in prostate cancer treatment have been achieved. Nevertheless, these advances are measured in a few months of additional survival and under high costs, not available to most of the world population, compared with the benefits

  15. Adrenal Hormones in Common Bottlenose Dolphins (Tursiops truncatus): Influential Factors and Reference Intervals

    OpenAIRE

    Hart, Leslie B.; Wells, Randall S.; Kellar, Nick; Balmer, Brian C.; Hohn, Aleta A.; Lamb, Stephen V.; Rowles, Teri; Zolman, Eric S.; Schwacke, Lori H.

    2015-01-01

    Inshore common bottlenose dolphins (Tursiops truncatus) are exposed to a broad spectrum of natural and anthropogenic stressors. In response to these stressors, the mammalian adrenal gland releases hormones such as cortisol and aldosterone to maintain physiological and biochemical homeostasis. Consequently, adrenal gland dysfunction results in disruption of hormone secretion and an inappropriate stress response. Our objective herein was to develop diagnostic reference intervals (RIs) for adren...

  16. Postmenopausal hormone replacement therapy--clinical implications

    DEFF Research Database (Denmark)

    Ravn, S H; Rosenberg, J; Bostofte, E

    1994-01-01

    The menopause is defined as cessation of menstruation, ending the fertile period. The hormonal changes are a decrease in progesterone level, followed by a marked decrease in estrogen production. Symptoms associated with these hormonal changes may advocate for hormonal replacement therapy....... This review is based on the English-language literature on the effect of estrogen therapy and estrogen plus progestin therapy on postmenopausal women. The advantages of hormone replacement therapy are regulation of dysfunctional uterine bleeding, relief of hot flushes, and prevention of atrophic changes...... in the urogenital tract. Women at risk of osteoporosis will benefit from hormone replacement therapy. The treatment should start as soon after menopause as possible and it is possible that it should be maintained for life. The treatment may be supplemented with extra calcium intake, vitamin D, and maybe calcitonin...

  17. Hormone therapy and different ovarian cancers

    DEFF Research Database (Denmark)

    Mørch, Lina Steinrud; Løkkegaard, Ellen; Andreasen, Anne Helms

    2012-01-01

    Postmenopausal hormone therapy use increases the risk of ovarian cancer. In the present study, the authors examined the risks of different histologic types of ovarian cancer associated with hormone therapy. Using Danish national registers, the authors identified 909,946 women who were followed from...... 1995-2005. The women were 50-79 years of age and had no prior hormone-sensitive cancers or bilateral oophorectomy. Hormone therapy prescription data were obtained from the National Register of Medicinal Product Statistics. The National Cancer and Pathology Register provided data on ovarian cancers......, including information about tumor histology. The authors performed Poisson regression analyses that included hormone exposures and confounders as time-dependent covariates. In an average of 8.0 years of follow up, 2,681 cases of epithelial ovarian cancer were detected. Compared with never users, women...

  18. Regulation of feeding behavior and psychomotor activity by corticotropin-releasing hormone (CRH in fish

    Directory of Open Access Journals (Sweden)

    Kouhei eMatsuda

    2013-05-01

    Full Text Available Corticotropin-releasing hormone (CRH is a hypothalamic neuropeptide belonging to a family of neuropeptides that includes urocortins, urotensin I and sauvagine in vertebrates. CRH and urocortin act as anorexigenic factors for satiety regulation in fish. In a goldfish model, intracerebroventricular (ICV administration of CRH has been shown to affect not only food intake, but also locomotor and psychomotor activities. In particular, CRH elicits anxiety-like behavior as an anxiogenic neuropeptide in goldfish, as is the case in rodents. This paper reviews current knowledge of CRH and its related peptides derived from studies of teleost fish, as representative non-mammals, focusing particularly on the role of the CRH system, and examines its significance from a comparative viewpoint.

  19. Effects of growth hormone-releasing hormone on sleep and brain interstitial fluid amyloid-β in an APP transgenic mouse model.

    Science.gov (United States)

    Liao, Fan; Zhang, Tony J; Mahan, Thomas E; Jiang, Hong; Holtzman, David M

    2015-07-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by impairment of cognitive function, extracellular amyloid plaques, intracellular neurofibrillary tangles, and synaptic and neuronal loss. There is substantial evidence that the aggregation of amyloid β (Aβ) in the brain plays a key role in the pathogenesis of AD and that Aβ aggregation is a concentration dependent process. Recently, it was found that Aβ levels in the brain interstitial fluid (ISF) are regulated by the sleep-wake cycle in both humans and mice; ISF Aβ is higher during wakefulness and lower during sleep. Intracerebroventricular infusion of orexin increased wakefulness and ISF Aβ levels, and chronic sleep deprivation significantly increased Aβ plaque formation in amyloid precursor protein transgenic (APP) mice. Growth hormone-releasing hormone (GHRH) is a well-documented sleep regulatory substance which promotes non-rapid eye movement sleep. GHRHR(lit/lit) mice that lack functional GHRH receptor have shorter sleep duration and longer wakefulness during light periods. The current study was undertaken to determine whether manipulating sleep by interfering with GHRH signaling affects brain ISF Aβ levels in APPswe/PS1ΔE9 (PS1APP) transgenic mice that overexpress mutant forms of APP and PSEN1 that cause autosomal dominant AD. We found that intraperitoneal injection of GHRH at dark onset increased sleep and decreased ISF Aβ and that delivery of a GHRH antagonist via reverse-microdialysis suppressed sleep and increased ISF Aβ. The diurnal fluctuation of ISF Aβ in PS1APP/GHRHR(lit/lit) mice was significantly smaller than that in PS1APP/GHRHR(lit/+) mice. However despite decreased sleep in GHRHR deficient mice, this was not associated with an increase in Aβ accumulation later in life. One of several possibilities for the finding is the fact that GHRHR deficient mice have GHRH-dependent but sleep-independent factors which protect against Aβ deposition. Copyright © 2014

  20. Radioimmunoassay of steroid hormone

    International Nuclear Information System (INIS)

    Murakami, Tadashi

    1975-01-01

    Low acid pepsin treated gamma-globulin was applied to ammonium sulfate salting out method, which was a method to separate bound fraction from free one in radioimmunoassay of steroid hormone, and the effect of the separation and the standard curve were examined. Pepsin treated gamma-globulin was prepared in pH 1.5 to 5.5 and then the pepsin was completely removed. It had an effect to accelerate the precipitation in radioimmunoassay of steroid hormone labelled with 3 H. The effect of pepsin treated gamma-globulin to adhere free steroid hormone and to slat out bound one was compared with that of human gamma-globulin. Pepsin treated gamma-globulin, which was water soluble, could easier reach its optimal concentration, and the separation effect was better than human gamma-globulin. The standard curve of it was steeper, particularly in a small dose, and the reproducibility was also better. It could be applied not only to aldosterone and DOC, but also to the steroid hormones, such as progesterone and DHEA, and it seemed suitable for routine measurement method. (Kanao, N.)

  1. Measurement of the incretin hormones

    DEFF Research Database (Denmark)

    Kuhre, Rune Ehrenreich; Wewer Albrechtsen, Nicolai Jacob; Hartmann, Bolette

    2015-01-01

    The two incretin hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP), are secreted from the gastrointestinal tract in response to meals and contribute to the regulation of glucose homeostasis by increasing insulin secretion. Assessment of plasma concentrat......The two incretin hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP), are secreted from the gastrointestinal tract in response to meals and contribute to the regulation of glucose homeostasis by increasing insulin secretion. Assessment of plasma...... concentrations of GLP-1 and GIP is often an important endpoint in both clinical and preclinical studies and, therefore, accurate measurement of these hormones is important. Here, we provide an overview of current approaches for the measurement of the incretin hormones, with particular focus on immunological...

  2. Sex hormone-binding globulin as a marker for the thrombotic risk of hormonal contraceptives.

    NARCIS (Netherlands)

    Raps, M.; Helmerhorst, F.; Fleischer, K.; Thomassen, S.; Rosendaal, F.; Rosing, J.; Ballieux, B.; Vliet, H. van

    2012-01-01

    BACKGROUND: It takes many years to obtain reliable values for the risk of venous thrombosis of hormonal contraceptive users from clinical data. Measurement of activated protein C (APC) resistance via thrombin generation is a validated test for determining the thrombogenicity of hormonal

  3. Not all elevated hormones are toxic: A case of thyroid hormone resistance

    Directory of Open Access Journals (Sweden)

    Rajeev Philip

    2016-01-01

    Full Text Available Resistance to thyroid hormone syndrome (RTH is a rare disorder and is usually inherited as dominantly negative autosomal trait. RTH is caused by mutations in the thyroid hormone receptor beta. Patients with RTH usually do not have signs and symptoms of thyrotoxicosis, but the thyroid function test shows an elevated T3 and T4, which get misinterpreted as hyperthyroidism, resulting in unnecessary treatment.

  4. SHBG (Sex Hormone Binding Globulin)

    Science.gov (United States)

    ... Links Patient Resources For Health Professionals Subscribe Search Sex Hormone Binding Globulin (SHBG) Send Us Your Feedback ... As Testosterone-estrogen Binding Globulin TeBG Formal Name Sex Hormone Binding Globulin This article was last reviewed ...

  5. Hormone Therapy for Breast Cancer

    Science.gov (United States)

    ... Common Cancer Types Recurrent Cancer Common Cancer Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer ... sensitive breast cancer cells contain proteins called hormone receptors that become activated when hormones bind to them. ...

  6. Lateral hypothalamic thyrotropin-releasing hormone neurons: distribution and relationship to histochemically defined cell populations in the rat.

    Science.gov (United States)

    Horjales-Araujo, E; Hellysaz, A; Broberger, C

    2014-09-26

    The lateral hypothalamic area (LHA) constitutes a large component of the hypothalamus, and has been implicated in several aspects of motivated behavior. The LHA is of particular relevance to behavioral state control and the maintenance of arousal. Due to the cellular heterogeneity of this region, however, only some subpopulations of LHA cells have been properly anatomically characterized. Here, we have focused on cells expressing thyrotropin-releasing hormone (TRH), a peptide found in the LHA that has been implicated as a promoter of arousal. Immunofluorescence and in situ hybridization were used to map the LHA TRH population in the rat, and cells were observed to form a large ventral cluster that extended throughout almost the entire rostro-caudal axis of the hypothalamus. Almost no examples of coexistence were seen when sections were double-stained for TRH and markers of other LHA populations, including the peptides hypocretin/orexin, melanin-concentrating hormone and neurotensin. In the juxtaparaventricular area, however, a discrete group of TRH-immunoreactive cells were also stained with antisera against enkephalin and urocortin 3. Innervation from the metabolically sensitive hypothalamic arcuate nucleus was investigated by double-staining for peptide markers of the two centrally projecting groups of arcuate neurons, agouti gene-related peptide and α-melanocyte-stimulating hormone, respectively; both populations of terminals were observed forming close appositions on TRH cells in the LHA. The present study indicates that TRH-expressing cells form a unique population in the LHA that may serve as a link between metabolic signals and the generation of arousal. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Passive immunization of fetal rats with antiserum to luteinizing hormone-releasing hormone (LHRH) or transection of the central roots of the nervus terminalis does not affect rat pups' preference for home nest.

    Science.gov (United States)

    Schwanzel-Fukuda, M; Pfaff, D W

    1987-01-01

    Luteinizing hormone-releasing hormone (LHRH) is found immunocytochemically in cell bodies and fibers of the nervus terminalis, a cranial nerve which courses from the nasal septum through the cribriform plate of the ethmoid bone (medial to the olfactory and vomeronasal nerves) and enters the forebrain, caudal to the olfactory bulbs. Immunoreactive LHRH is first detected in the nervus terminalis of the fetal rat at 15 days of gestation, preceding its detection by immunocytochemistry in any other area of the brain, including the median eminence, and preceding detection of immunoreactive luteinizing hormone (LH) in the anterior pituitary. During development of the rat fetus, the nervus terminalis is the principal source of LHRH in the nervous system from days 15 through 19 of a 21 day gestation period. We tested the notion that the LHRH system of the nervus terminalis is important for olfactory performance by examining the effects of administration of antisera to LHRH during fetal development (versus saline controls), or medial olfactory peduncle transections, in the neonatal rat, which would sever the central projections of the nervus terminalis (versus lateral peduncle transection, complete transection of the olfactory peduncles and the central nervus terminalis or controls) on preferences of rat pups for home nest. The hypothesis that LHRH is important for this chemosensory response was not confirmed. Neither antisera to LHRH nor medical olfactory peduncle transection disrupted preference for home shavings. Only complete olfactory peduncle transection had a significant effect compared to unoperated and sham-operated controls.

  8. Determination of the concentration of thyroid hormone in dialysate and assessment of the loss of thyroid hormone during hemodialysis

    International Nuclear Information System (INIS)

    Beyer, H.K.; Schuster, P.; Pressler, H.; Bochum Univ.

    1980-01-01

    In order to determine the hormone concentration in a dialysate, the commercially available radioimmunossay test of Dow-Lepetit for determination of free thyroid hormones in serum had to be modified. The results raised the suspicion that additional protein-bound hormone had passed the membrane. This could be demonstrated by the addition of Thiomersal. In 64 patients examined 1 and 5 hrs after the beginning of hemodialysis the mean total hormone concentration in the dialysate was 12.05 pg/ml for thyroxine and 5.47 pg/ml for triiodothyronine. The resulting loss of total hormone in hemodialysis patients, calculated for 1 week, amounted to 2.25 μg triiodothyronine and 4.87 μg thyroxine. The comparison with the physiologic renal elimination of thyroid hormone shows that the hormone elimination in hemodialysis patients is negligibly small. The quantitative determination of the protein concentration in the dialysate however, that the loss of protein is without clinical relevance. (orig.) [de

  9. Pituitary-hormone secretion by thyrotropinomas

    NARCIS (Netherlands)

    Roelfsema, Ferdinand; Kok, Simon; Kok, Petra; Pereira, Alberto M.; Biermasz, Nienke R.; Smit, Jan W.; Frolich, Marijke; Keenan, Daniel M.; Veldhuis, Johannes D.; Romijn, Johannes A.

    2009-01-01

    Hormone secretion by somatotropinomas, corticotropinomas and prolactinomas exhibits increased pulse frequency, basal and pulsatile secretion, accompanied by greater disorderliness. Increased concentrations of growth hormone (GH) or prolactin (PRL) are observed in about 30% of thyrotropinomas leading

  10. Sex hormones and skeletal muscle weakness

    DEFF Research Database (Denmark)

    Sipilä, Sarianna; Narici, Marco; Kjaer, Michael

    2013-01-01

    Human ageing is accompanied with deterioration in endocrine functions the most notable and well characterized of which being the decrease in the production of sex hormones. Current research literature suggests that low sex hormone concentration may be among the key mechanism for sarcopenia...... and muscle weakness. Within the European large scale MYOAGE project, the role of sex hormones, estrogens and testosterone, in causing the aging-related loss of muscle mass and function was further investigated. Hormone replacement therapy (HRT) in women is shown to diminish age-associated muscle loss, loss...... properties. HRT influences gene expression in e.g. cytoskeletal and cell-matrix proteins, has a stimulating effect upon IGF-I, and a role in IL-6 and adipokine regulation. Despite low circulating steroid-hormone level, postmenopausal women have a high local concentration of steroidogenic enzymes in skeletal...

  11. Hormonal therapy after the operation for catamenial pneumothorax - is it always necessary?

    Science.gov (United States)

    Subotic, D; Mikovic, Z; Atanasijadis, N; Savic, M; Moskovljevic, D; Subotic, D

    2016-04-14

    Our recent clinical observations put into question the routine hormonal therapy for pneumothorax recurrence prevention, in patients operated for catamenial pneumothorax (CP). Retrospective review of the treatment of four women operated for CP in a recent 32-months period. The four presented patients with CP represent 4.8 % of the overall number of patients operated for spontaneous pneumothorax and 19 % of women operated for pneumothorax in the same period. In all patients, typical multiple diaphragm holes existed. The involved part of the diaphragm was removed with diaphragm suture in three patients, whilst in one patient, a diaphragm placation was done. Endometriosis was histologically confirmed in two patients. During the follow-up period of 6-43 months, none of the patients underwent a postoperative hormonal therapy for different reasons, and in none of them the pneumothorax recurrence occurred. The clinical course of these patients, with the absence of the pneumothorax recurrence despite the omission of the hormonal treatment, suggests that the appropriateness of the routine hormonal treatment with gonadotrophin-releasing hormone analogues for 6-12 months, should be reconsidered and re-evaluated in further studies.

  12. Hormone Replacement Therapy: MedlinePlus Health Topic

    Science.gov (United States)

    ... of hormone therapy (Medical Encyclopedia) Also in Spanish Topic Image MedlinePlus Email Updates Get Hormone Replacement Therapy ... Estrogen overdose Types of hormone therapy Related Health Topics Menopause National Institutes of Health The primary NIH ...

  13. Characterization of the hormone-binding domain of the chicken c-erbA/thyroid hormone receptor protein

    DEFF Research Database (Denmark)

    Muñoz, A; Zenke, M; Gehring, U

    1988-01-01

    mutations present in the carboxy-terminal half of P75gag-v-erbA co-operate in abolishing hormone binding, and that the ligand-binding domain resides in a position analogous to that of steroid receptors. Furthermore, a point mutation that is located between the putative DNA and ligand-binding domains of P75......To identify and characterize the hormone-binding domain of the thyroid hormone receptor, we analyzed the ligand-binding capacities of proteins representing chimeras between the normal receptor and P75gag-v-erbA, the retrovirus-encoded form deficient in binding ligand. Our results show that several......gag-v-erbA and that renders it biologically inactive fails to affect hormone binding by the c-erbA protein. These results suggest that the mutation changed the ability of P75gag-v-erbA to affect transcription since it also had no effect on DNA binding. Our data also suggest that hormone...

  14. Hypothalamic amenorrhea with normal body weight: ACTH, allopregnanolone and cortisol responses to corticotropin-releasing hormone test.

    Science.gov (United States)

    Meczekalski, B; Tonetti, A; Monteleone, P; Bernardi, F; Luisi, S; Stomati, M; Luisi, M; Petraglia, F; Genazzani, A R

    2000-03-01

    Hypothalamic amenorrhea (HA) is a functional disorder caused by disturbances in gonadotropin-releasing hormone (GnRH) pulsatility. The mechanism by which stress alters GnRH release is not well known. Recently, the role of corticotropin-releasing hormone (CRH) and neurosteroids in the pathophysiology of HA has been considered. The aim of the present study was to explore further the role of the hypothalamic-pituitary-adrenal axis in HA. We included 8 patients (aged 23.16+/-1.72 years) suffering from hypothalamic stress-related amenorrhea with normal body weight and 8 age-matched healthy controls in the follicular phase of the menstrual cycle. We measured basal serum levels of FSH, LH, and estradiol and evaluated ACTH, allopregnanolone and cortisol responses to CRH test in both HA patients and healthy women. Serum basal levels of FSH, LH, and estradiol as well as basal levels of allopregnanolone were significantly lower in HA patients than in controls (P<0.001) while basal ACTH and cortisol levels were significantly higher in amenorrheic patients with respect to controls (P<0.001). The response (area under the curve) of ACTH, allopregnanolone and cortisol to CRH was significantly lower in amenorrheic women compared with controls (P<0.001, P<0.05, P<0.05 respectively). In conclusion, women with HA, despite the high ACTH and cortisol levels and, therefore, hypothalamus-pituitary-adrenal axis hyperactivity, are characterized by low allopregnanolone basal levels, deriving from an impairment of both adrenal and ovarian synthesis. The blunted ACTH, allopregnanolone and cortisol responses to CRH indicate that, in hypothalamic amenorrhea, there is a reduced sensitivity and expression of CRH receptor. These results open new perspectives on the role of neurosteroids in the pathogenesis of hypothalamic amenorrhea.

  15. Increasing Goat Productivity Through the Improvement of Endogenous Secretion of Pregnant Hormones Using Follicle Stimulating Hormone

    Directory of Open Access Journals (Sweden)

    Andriyanto Andriyanto

    2011-05-01

    Full Text Available Abstract. Previous studies reported that the improvement of endogenous estrogen and progesterone secretions during gestation improved fetal prenatal growth, birth weight, mammary gland growth and development, milk production, litter size, pre- and post-weaning growths. An experiment was conducted to apply the improvement of endogenous secretion of pregnant hormones during pregnancy to increase goat productivity. Thirty-six female ettawah-cross does were divided into 2 groups. Group 1 (control: 18 does included does without improvement of endogenous secretion of pregnant hormones and Group 2 (treatment: 18 does included does with improvement of endogenous secretion of pregnant hormones using follicle stimulating hormones to stimulate super ovulation. The application of this technology increased total offspring born (control: 25 offspring; treatment: 42 offspring, average litter size (control: 1.88; treatment: 2.33, offspring birth weight (control: 2.85±0.50 kg; treatment: 3.82±0.40 kg, and does milk production (control: 1.36±0.34 L/does/day; treatment: 2.10±0.21 L/does/day. Offspring born to does with improved endogenous secretion of pregnant hormones had better weaning weight (control: 11.17±1.99 kg/offspring; treatment: 14.5±1.11 kg/offspring. At weaning period, does with improved endogenous secretion of pregnant hormones produced offspring with total weaning weight twice as heavy as control does (control: 189.9 kg; treatment: 403.6 kg. By a simple calculation of economic analysis, this technology application could increase gross revenue per does until weaning by Rp. 432.888,89. It was concluded that this technology is economically feasible to be applied in small-scale farm. Key Words: follicle stimulating hormone, pregnant hormones, endogenous secretion, super ovulation, ettawah-cross does

  16. Structure-activity relationship of crustacean peptide hormones.

    Science.gov (United States)

    Katayama, Hidekazu

    2016-01-01

    In crustaceans, various physiological events, such as molting, vitellogenesis, and sex differentiation, are regulated by peptide hormones. To understanding the functional sites of these hormones, many structure-activity relationship (SAR) studies have been published. In this review, the author focuses the SAR of crustacean hyperglycemic hormone-family peptides and androgenic gland hormone and describes the detailed results of our and other research groups. The future perspectives will be also discussed.

  17. Gamma irradiation effects on human growth hormone producing pituitary adenoma tissue. An analysis of morphology and hormone secretion in an in vitro model system

    Energy Technology Data Exchange (ETDEWEB)

    Anniko, M [Karolinska sjukhuset, Stockholm (Sweden). Dept. of Oto-Rhino-Laryngology; Arndt, J [Karolinska sjukhuset, Stockholm (Sweden). Dept. of Radiophysics, Radiumhemmet; Raehn, T [Karolinska sjukhuset, Stockholm (Sweden). Dept. of Neurosurgery; Werner, S [Karolinska sjukhuset, Stockholm (Sweden). Dept. of Endocrinology

    1982-01-01

    Irradiation-induced effects on pituitary cell morphology and secretion of growth hormone (GH) and prolactin (PRL) have been analysed using an in vitro system. Specimens for organ culture were were obtained from three patients with pituitary tumours causing acromegaly but with different clinical activity of disease. Specimens were followed in vitro 1 h - 6 days after single-dose gamma irradiation (/sup 60/Co) with 70 100 and 150 Gy, respectively. These doses are used in clinical work for the stereotactic radiosuregery of pituitary adenomas. Considerable fluctuations in hormone secretion/release occurred during the first 24h after irradiation. All three tumours showed individual differences concern ing irradiation-induced morphological damage. Only a minor variation occurred between specimens from the same tumour. An individual sensitivity to irradiation of pituitary tumours in vitro is documented. The great number of surviving pituitary tumour cells one week after irradiation-many with an intact ultrastructure and containing hormone granules-indicated an initial high degree of radioresistance.

  18. Network identification of hormonal regulation.

    Directory of Open Access Journals (Sweden)

    Daniel J Vis

    Full Text Available Relations among hormone serum concentrations are complex and depend on various factors, including gender, age, body mass index, diurnal rhythms and secretion stochastics. Therefore, endocrine deviations from healthy homeostasis are not easily detected or understood. A generic method is presented for detecting regulatory relations between hormones. This is demonstrated with a cohort of obese women, who underwent blood sampling at 10 minute intervals for 24-hours. The cohort was treated with bromocriptine in an attempt to clarify how hormone relations change by treatment. The detected regulatory relations are summarized in a network graph and treatment-induced changes in the relations are determined. The proposed method identifies many relations, including well-known ones. Ultimately, the method provides ways to improve the description and understanding of normal hormonal relations and deviations caused by disease or treatment.

  19. Sex Hormones and Ischemic Stroke

    DEFF Research Database (Denmark)

    Holmegard, Haya N; Nordestgaard, Børge G; Jensen, Gorm B

    2016-01-01

    CONTEXT AND OBJECTIVE: Whether endogenous sex hormones are associated with ischemic stroke (IS) is unclear. We tested the hypothesis that extreme concentrations of endogenous sex hormones are associated with risk of IS in the general population. DESIGN, SETTING, AND PARTICIPANTS: Adult men (n...... = 4615) and women (n = 4724) with measurements of endogenous sex hormones during the 1981-1983 examination of the Copenhagen City Heart Study, Denmark, were followed for up to 29 years for incident IS, with no loss to follow-up. Mediation analyses assessed whether risk of IS was mediated through...

  20. Radioimmunoassay of thyroid hormones

    International Nuclear Information System (INIS)

    Bartalena, L.; Mariotti, S.; Pinchera, A.

    1987-01-01

    For many years, methods based on iodine content determination have represented the only techniques available for the estimation of total thyroid hormone concentrations in serum. Subsequently, simple, sensitive, and specific radioligand assays for thyroid hormones have replaced these chemical methods. For the purpose of this chapter, iodometric techniques are only briefly summarized for their historical importance, whereas attention is focused on radioligand assays

  1. Surviving starvation: essential role of the ghrelin-growth hormone axis.

    Science.gov (United States)

    Goldstein, J L; Zhao, T-j; Li, R L; Sherbet, D P; Liang, G; Brown, M S

    2011-01-01

    After brief starvation, vertebrates maintain blood glucose by releasing fatty acids from adipose tissue. The fatty acids provide energy for gluconeogenesis in liver and are taken up by muscle, sparing glucose. After prolonged starvation, fat stores are depleted, yet blood glucose can be maintained at levels sufficient to preserve life. Using a new mouse model, we demonstrate that survival after prolonged starvation requires ghrelin, an octanoylated peptide hormone that stimulates growth hormone (GH) secretion. We studied wild-type mice and mice lacking ghrelin as a result of knockout of GOAT, the enzyme that attaches octanoate to ghrelin. Mice were fed 40% of their normal intake for 7 d. Fat stores in both lines of mice became depleted after 4 d. On day 7, mice were fasted for 23 h. In wild-type mice, ghrelin and GH rose massively, and blood sugar was maintained at ~60 mg/dL. In Goat(-/-) mice, ghrelin was undetectable and GH failed to rise appropriately. Blood sugar declined to ~20 mg/dL, and the animals were moribund. Infusion of ghrelin or GH prevented hypoglycemia. Our results support the following sequence: (1) Starvation lowers blood glucose; (2) glucose-sensing neurons respond by activating sympathetic neurons; (3) norepinephrine, released in the stomach, stimulates ghrelin secretion; (4) ghrelin releases GH, which maintains blood glucose. Thus, ghrelin lies at the center of a hormonal response that permits mice to survive an acute fast superimposed on chronic starvation.

  2. Free thyroid hormones in health and disease

    International Nuclear Information System (INIS)

    Bueber, V.

    1984-01-01

    Several groups of patients with normal and abnormal thyroid function as well as patients with goitre on hormone substitution are discussed with respect to the diagnostic value of the free thyroid hormone methods. The free T 3 technique under investigation separates clearly between euthyroidism and hyperthyroidism, however, during application of contraceptive pills and during pregnancy free T 3 is slightly enhanced. Free T 4 can be found in the normal range even in hypothyroidism, during T 4 substitution free T 4 is useful for control of adequate hormone substitution. Free thyroid hormones are advantageous to be performed with respect to practicability compared to the estimation of total hormone concentrations by enzyme as well as radioimmunoassay. Normally there is no additional demand for measurement of thyroid hormone binding proteins, another rather economical argument for using these parameters in thyroid diagnosis. (orig.) [de

  3. Growth hormone replacement normalizes impaired fibrinolysis: new insights into endothelial dysfunction in patients with hypopituitarism and growth hormone deficiency.

    Science.gov (United States)

    Miljic, D; Miljic, P; Doknic, M; Pekic, S; Stojanovic, M; Cvijovic, G; Micic, D; Popovic, V

    2013-12-01

    Cardiovascular morbidity in adult patients with growth hormone deficiency (GHD) and hypopituitarism is increased. Clustering of cardiovascular risk factors leading to endothelial dysfunction and impaired fibrinolysis has also been reported and may account for progression to overt vascular changes in these patients. However, effect of long lasting GH replacement therapy on fibrinolytic capacity in GH deficient patients has not been investigated so far. To investigate fibrinolysis before and after challenge with venous occlusion in GHD patients with hypopituitarism before and during one year of growth hormone replacement. Hospital based, interventional, prospective study. Twenty one patient with GHD and fourteen healthy control subjects matched for age, sex and body mass index (BMI). Anthropometric, metabolic and fibrinolytic parameters were measured at the start and after three, six and twelve months of treatment with human recombinant GH. At baseline GHD patients had significantly impaired fibrinolysis compared to healthy persons. During treatment with GH, significant changes were observed in insulin like growth factor 1(IGF-1) [from baseline 6.9(2.4-13.5) to 22.0(9.0-33.0) nmol/l after one month of treatment; p<0.01] and fibrinolysis. Improvement in fibrinolysis was mostly attributed to improvement of stimulated endothelial tissue plasminogen activator (t-PA) release in response to venous occlusion [from baseline 1.1(0.4-2.6) to 1.9(0.5-8.8) after one year of treatment; p<0.01]. Growth hormone replacement therapy has favorable effects on t-PA release from endothelium and net fibrinolytic capacity in GHD adults, which may contribute to decrease their risk of vascular complications. © 2013.

  4. Incretin hormone secretion over the day

    DEFF Research Database (Denmark)

    Ahren, B; Carr, RD; Deacon, Carolyn F.

    2010-01-01

    The two incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are key factors in the regulation of islet function and glucose metabolism, and incretin-based therapy for type 2 diabetes has gained considerable interest during recent years. Regulat......The two incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are key factors in the regulation of islet function and glucose metabolism, and incretin-based therapy for type 2 diabetes has gained considerable interest during recent years....... Regulation of incretin hormone secretion is less well characterized. The main stimulus for incretin hormone secretion is presence of nutrients in the intestinal lumen, and carbohydrate, fat as well as protein all have the capacity to stimulate GIP and GLP-1 secretion. More recently, it has been established...... that a diurnal regulation exists with incretin hormone secretion to an identical meal being greater when the meal is served in the morning compared to in the afternoon. Finally, whether incretin hormone secretion is altered in disease states is an area with, so far, controversial results in different studies...

  5. Processing of thyrotropin-releasing hormone prohormone (pro-TRH) generates a biologically active peptide, prepro-TRH-(160-169), which regulates TRH-induced thyrotropin secretion

    International Nuclear Information System (INIS)

    Bulant, M.; Vaudry, H.; Roussel, J.P.; Astier, H.; Nicolas, P.

    1990-01-01

    Rat thyrotropin-releasing hormone (TRH) prohormone contains five copies of the TRH progenitor sequence Gln-His-Pro-Gly linked together by connecting sequences whose biological activity is unknown. Both the predicted connecting peptide prepro-TRH-(160-169) (Ps4) and TRH are predominant storage forms of TRH precursor-related peptides in the hypothalamus. To determine whether Ps4 is co-released with TRH, rat median eminence slices were perfused in vitro. Infusion of depolarizing concentrations of KCl induced stimulation of release of Ps4- and TRH-like immunoreactivity. The possible effect of Ps4 on thyrotropin release was investigated in vitro using quartered anterior pituitaries. Infusion of Ps4 alone had no effect on thyrotropin secretion but potentiated TRH-induced thyrotropin release in a dose-dependent manner. In addition, the occurrence of specific binding sites for 125 I-labeled Tyr-Ps4 in the distal lobe of the pituitary was demonstrated by binding analysis and autoradiographic localization. These findings indicate that these two peptides that arise from a single multifunctional precursor, the TRH prohormone, act in a coordinate manner on the same target cells to promote hormonal secretion. These data suggest that differential processing of the TRH prohormone may have the potential to modulate the biological activity of TRH

  6. Effects of hormones on platelet aggregation.

    Science.gov (United States)

    Farré, Antonio López; Modrego, Javier; Zamorano-León, José J

    2014-04-01

    Platelets and their activation/inhibition mechanisms play a central role in haemostasis. It is well known agonists and antagonists of platelet activation; however, during the last years novel evidences of hormone effects on platelet activation have been reported. Platelet functionality may be modulated by the interaction between different hormones and their platelet receptors, contributing to sex differences in platelet function and even in platelet-mediated vascular damage. It has suggested aspects that apparently are well established should be reviewed. Hormones effects on platelet activity are included among them. This article tries to review knowledge about the involvement of hormones in platelet biology and activity.

  7. Intrauterine Zn Deficiency Favors Thyrotropin-Releasing Hormone-Increasing Effects on Thyrotropin Serum Levels and Induces Subclinical Hypothyroidism in Weaned Rats

    Directory of Open Access Journals (Sweden)

    Viridiana Alcántara-Alonso

    2017-10-01

    Full Text Available Individuals who consume a diet deficient in zinc (Zn-deficient develop alterations in hypothalamic-pituitary-thyroid axis function, i.e., a low metabolic rate and cold insensitivity. Although those disturbances are related to primary hypothyroidism, intrauterine or postnatal Zn-deficient adults have an increased thyrotropin (TSH concentration, but unchanged thyroid hormone (TH levels and decreased body weight. This does not support the view that the hypothyroidism develops due to a low Zn intake. In addition, intrauterine or postnatal Zn-deficiency in weaned and adult rats reduces the activity of pyroglutamyl aminopeptidase II (PPII in the medial-basal hypothalamus (MBH. PPII is an enzyme that degrades thyrotropin-releasing hormone (TRH. This hypothalamic peptide stimulates its receptor in adenohypophysis, thereby increasing TSH release. We analyzed whether earlier low TH is responsible for the high TSH levels reported in adults, or if TRH release is enhanced by Zn deficiency at weaning. Dams were fed a 2 ppm Zn-deficient diet in the period from one week prior to gestation and up to three weeks after delivery. We found a high release of hypothalamic TRH, which along with reduced MBH PPII activity, increased TSH levels in Zn-deficient pups independently of changes in TH concentration. We found that primary hypothyroidism did not develop in intrauterine Zn-deficient weaned rats and we confirmed that metal deficiency enhances TSH levels since early-life, favoring subclinical hypothyroidism development which remains into adulthood.

  8. Stress and hormones

    Directory of Open Access Journals (Sweden)

    Salam Ranabir

    2011-01-01

    Full Text Available In the modern environment one is exposed to various stressful conditions. Stress can lead to changes in the serum level of many hormones including glucocorticoids, catecholamines, growth hormone and prolactin. Some of these changes are necessary for the fight or flight response to protect oneself. Some of these stressful responses can lead to endocrine disorders like Graves′ disease, gonadal dysfunction, psychosexual dwarfism and obesity. Stress can also alter the clinical status of many preexisting endocrine disorders such as precipitation of adrenal crisis and thyroid storm.

  9. Thyroid hormone and the central control of homeostasis.

    Science.gov (United States)

    Warner, Amy; Mittag, Jens

    2012-08-01

    It has long been known that thyroid hormone has profound direct effects on metabolism and cardiovascular function. More recently, it was shown that the hormone also modulates these systems by actions on the central autonomic control. Recent studies that either manipulated thyroid hormone signalling in anatomical areas of the brain or analysed seasonal models with an endogenous fluctuation in hypothalamic thyroid hormone levels revealed that the hormone controls energy turnover. However, most of these studies did not progress beyond the level of anatomical nuclei; thus, the neuronal substrates as well as the molecular mechanisms remain largely enigmatic. This review summarises the evidence for a role of thyroid hormone in the central autonomic control of peripheral homeostasis and advocates novel strategies to address thyroid hormone action in the brain on a cellular level.

  10. SnapShot: Hormones of the gastrointestinal tract.

    Science.gov (United States)

    Coate, Katie C; Kliewer, Steven A; Mangelsdorf, David J

    2014-12-04

    Specialized endocrine cells secrete a variety of peptide hormones all along the gastrointestinal (GI) tract, making it one of the largest endocrine organs in the body. Nutrients and developmental and neural cues trigger the secretion of gastrointestinal (GI) hormones from specialized endocrine cells along the GI tract. These hormones act in target tissues to facilitate digestion and regulate energy homeostasis. This SnapShot summarizes the production and functions of GI hormones. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Hormone abuse in sports: the antidoping perspective.

    Science.gov (United States)

    Barroso, Osquel; Mazzoni, Irene; Rabin, Olivier

    2008-05-01

    Since ancient times, unethical athletes have attempted to gain an unfair competitive advantage through the use of doping substances. A list of doping substances and methods banned in sports is published yearly by the World Anti-Doping Agency (WADA). A substance or method might be included in the List if it fulfills at least two of the following criteria: enhances sports performance; represents a risk to the athlete's health; or violates the spirit of sports. This list, constantly updated to reflect new developments in the pharmaceutical industry as well as doping trends, enumerates the drug types and methods prohibited in and out of competition. Among the substances included are steroidal and peptide hormones and their modulators, stimulants, glucocorticosteroids, beta2-agonists, diuretics and masking agents, narcotics, and cannabinoids. Blood doping, tampering, infusions, and gene doping are examples of prohibited methods indicated on the List. From all these, hormones constitute by far the highest number of adverse analytical findings reported by antidoping laboratories. Although to date most are due to anabolic steroids, the advent of molecular biology techniques has made recombinant peptide hormones readily available. These substances are gradually changing the landscape of doping trends. Peptide hormones like erythropoietin (EPO), human growth hormone (hGH), insulin, and insulin-like growth factor I (IGF-I) are presumed to be widely abused for performance enhancement. Furthermore, as there is a paucity of techniques suitable for their detection, peptide hormones are all the more attractive to dishonest athletes. This article will overview the use of hormones as doping substances in sports, focusing mainly on peptide hormones as they represent a pressing challenge to the current fight against doping. Hormones and hormones modulators being developed by the pharmaceutical industry, which could emerge as new doping substances, are also discussed. 2008, Asian

  12. Control of Pituitary Thyroid-stimulating Hormone Synthesis and Secretion by Thyroid Hormones during Xenopus Metamorphosis

    Science.gov (United States)

    Serum thyroid hormone (TH) concentrations in anuran larvae rise rapidly during metamorphosis. Such a rise in an adult anuran would inevitably trigger a negative feedback response resulting in decreased synthesis and secretion of thyroid-stimulating hormone (TSH) by the pituitary....

  13. Relationship between thyroid functions and urinary growth hormone secretion in patients with hyper- and hypothyroidism.

    Science.gov (United States)

    Murao, K; Takahara, J; Sato, M; Tamaki, M; Niimi, M; Ishida, T

    1994-10-01

    Thyroid hormone plays an important role in growth hormone (GH) synthesis and secretion. To study the relationship between thyroid function and urinary GH secretion in the hyperthyroid and hypothyroid states, we measured thyroid hormones, simultaneously with serum and urinary GH levels, in 54 patients with thyroid diseases. GH-releasing hormone (GRH) test was performed in 18 patients in order to evaluate serum and urinary GH responses to GRH in hyper- and hypothyroid states. Serum thyroid hormone levels were strongly correlated with the urinary GH levels in the patients, and the correlation was greater than that between serum thyroid hormone and serum GH levels. Urinary GH levels were significantly higher in the hyperthyroid patients than in the euthyroid and hypothyroid patients, although serum GH levels were not significantly different among these three groups. Serum GH response to GRH was significantly decreased in hyperthyroid patients as compared to euthyroid patients. However, urinary GH levels after GRH administration were not decreased in the hyperthyroid patients. These results suggest that hyperthyroid states increase GH in urine and may accelerate the urinary clearance of GH.

  14. Impact of Triclosan on Female Reproduction through Reducing Thyroid Hormones to Suppress Hypothalamic Kisspeptin Neurons in Mice

    Directory of Open Access Journals (Sweden)

    Xin-Yuan Cao

    2018-01-01

    Full Text Available Triclosan (TCS, a broad-spectrum antimicrobial agent, is widely used in clinical settings and various personal care products. The aim of this study was to evaluate the influence of TCS on reproductive endocrine and function. Here, we show that the exposure of adult female mice to 10 or 100 mg/kg/day TCS caused prolongation of diestrus, and decreases in antral follicles and corpora lutea within 2 weeks. TCS mice showed decreases in the levels of serum luteinizing hormone (LH, follicle-stimulating hormone (FSH and progesterone, and gonadotrophin-releasing hormone (GnRH mRNA with the lack of LH surge and elevation of prolactin (PRL. TCS mice had lower kisspeptin immunoreactivity and kiss1 mRNA in anteroventral periventricular nucleus (AVPV and arcuate nucleus (ARC. Moreover, the estrogen (E2-enhanced AVPV-kisspeptin expression was reduced in TCS mice. In addition, the serum thyroid hormones (triiodothyronine (T3 and thyroxine (T4 in TCS mice were reduced with increases in levels of thyroid stimulating hormone (TSH and thyroid releasing hormone (TRH. In TCS mice, the treatment with Levothyroxine (L-T4 corrected the increases in PRL, TSH and TRH; the administration of L-T4 or type-2 dopamine receptors agonist quinpirole inhibiting PRL release could rescue the decline of kisspeptin expression in AVPV and ARC; the treatment with L-T4, quinpirole or the GPR45 agonist kisspeptin-10 recovered the levels of serum LH and FSH and progesterone, and GnRH mRNA. Furthermore, TCS mice treated with L-T4 or quinpirole resumed regular estrous cycling, follicular development and ovulation. Together, these results indicate that exposing adult female mice to TCS (≥10 mg/kg reduces thyroid hormones causing hyperprolactinemia that then suppresses hypothalamic kisspeptin expression, leading to deficits in reproductive endocrine and function.

  15. Pituitary Apoplexy After Thyrotropin-releasing Hormone Stimulation Test in a Patient with Pituitary Macroadenoma

    Directory of Open Access Journals (Sweden)

    Huei-Fang Wang

    2007-09-01

    Full Text Available Pituitary apoplexy is a rare complication of pituitary tumors. We report a case of a 41-year-old female with acromegaly due to a pituitary macroadenoma, who developed pituitary apoplexy after a thyrotropin-releasing hormone (TRH 200 mg intravenous injection stimulation test. Neither emergency computed tomography (CT scans nor magnetic resonance imaging (MRI, performed 6 hours and 12 hours, respectively, after the active episode, disclosed the evidence of acute hemorrhage or infarction. Two days later, the pituitary mass, removed by transsphenoidal approach, showed ischemic necrosis and acute hemorrhage. The TRH test is generally safe for evaluating pituitary function, but pituitary apoplexy may occur after the procedure. CT and MRI may miss the diagnosis of pituitary apoplexy, especially if performed immediately after the acute episode.

  16. Thyroid hormones and fetal brain development.

    Science.gov (United States)

    Pemberton, H N; Franklyn, J A; Kilby, M D

    2005-08-01

    Thyroid hormones are intricately involved in the developing fetal brain. The fetal central nervous system is sensitive to the maternal thyroid status. Critical amounts of maternal T3 and T4 must be transported across the placenta to the fetus to ensure the correct development of the brain throughout ontogeny. Severe mental retardation of the child can occur due to compromised iodine intake or thyroid disease. This has been reported in areas of the world with iodine insufficiency, New Guinea, and also in mother with thyroid complications such as hypothyroxinaemia and hyperthyroidism. The molecular control of thyroid hormones by deiodinases for the activation of thyroid hormones is critical to ensure the correct amount of active thyroid hormones are temporally supplied to the fetus. These hormones provide timing signals for the induction of programmes for differentiation and maturation at specific stages of development. Understanding these molecular mechanisms further will have profound implications in the clinical management of individuals affected by abnormal maternal of fetal thyroid status.

  17. The barrier within: endothelial transport of hormones.

    Science.gov (United States)

    Kolka, Cathryn M; Bergman, Richard N

    2012-08-01

    Hormones are involved in a plethora of processes including development and growth, metabolism, mood, and immune responses. These essential functions are dependent on the ability of the hormone to access its target tissue. In the case of endocrine hormones that are transported through the blood, this often means that the endothelium must be crossed. Many studies have shown that the concentrations of hormones and nutrients in blood can be very different from those surrounding the cells on the tissue side of the blood vessel endothelium, suggesting that transport across this barrier can be rate limiting for hormone action. This transport can be regulated by altering the surface area of the blood vessel available for diffusion through to the underlying tissue or by the permeability of the endothelium. Many hormones are known to directly or indirectly affect the endothelial barrier, thus affecting their own distribution to their target tissues. Dysfunction of the endothelial barrier is found in many diseases, particularly those associated with the metabolic syndrome. The interrelatedness of hormones may help to explain why the cluster of diseases in the metabolic syndrome occur together so frequently and suggests that treating the endothelium may ameliorate defects in more than one disease. Here, we review the structure and function of the endothelium, its contribution to the function of hormones, and its involvement in disease.

  18. Growth Hormone Overexpression Disrupts Reproductive Status Through Actions on Leptin

    Directory of Open Access Journals (Sweden)

    Ji Chen

    2018-03-01

    Full Text Available Growth and reproduction are closely related. Growth hormone (GH-transgenic common carp exhibit accelerated growth and delayed reproductive development, which provides an amenable model to study hormone cross talk between the growth and reproductive axes. We analyzed the energy status and reproductive development in GH-transgenic common carp by using multi-tissue RNA sequencing, real-time-PCR, Western blotting, ELISA, immunofluorescence, and in vitro incubation. The expression of gys (glycogen synthase and igfbp1 (insulin-like growth factor binding protein as well as blood glucose concentrations are lower in GH-transgenic carp. Agrp1 (agouti-related protein 1 and sla (somatolactin a, which are related to appetite and lipid catabolism, are significantly higher in GH-transgenic carp. Low glucose content and increased appetite indicate disrupted metabolic and energy deprivation status in GH-transgenic carp. Meanwhile, the expression of genes, such as gnrhr2 (gonadotropin-releasing hormone receptor 2, gthα (gonadotropin hormone, alpha polypeptide, fshβ (follicle stimulating hormone, beta polypeptide, lhβ [luteinizing hormone, beta polypeptide] in the pituitary, cyp19a1a (aromatase A in the gonad, and cyp19a1b (aromatase B in the hypothalamus, are decreased in GH-transgenic carp. In contrast, pituitary gnih (gonadotropin inhibitory hormone, drd1 (dopamine receptor D1, drd3 (dopamine receptor D3, and drd4 (dopamine receptor D4 exhibit increased expression, which were associated with the retarded reproductive development. Leptin receptor mRNA was detected by fluorescence in situ hybridization in the pituitary including the pars intermedia and proximal pars distalis, suggesting a direct effect of leptin on LH. Recombinant carp Leptin protein was shown to stimulate pituitary gthα, fshβ, lhβ expression, and ovarian germinal vesicle breakdown in vitro. In addition to neuroendocrine factors, we suggest that reduced hepatic leptin signaling to the

  19. Sexual dysfunction in premenopausal women could be related to hormonal profile.

    Science.gov (United States)

    Vale, Fabiene Bernardes Castro; Coimbra, Bruna Barbosa; Lopes, Gerson Pereira; Geber, Selmo

    2017-02-01

    Female sexual dysfunction (FSD) is a public health problem that affects women's quality of life. Although the relationship between some hormones and the FSD has been described, it is not well established for all hormones. Therefore, the aim of our study was to evaluate the association between hormonal dysfunction and sexual dysfunction in premenopausal women. We performed a cross-sectional study with 60 patients with regular menstrual cycles, with age ranging from 18 to 44 years, with previous diagnosis of FSD. All patients were evaluated using the female sexual function index (FSFI) questionnaire and had the levels of total testosterone, prolactin (PRL), thyroid-releasing hormone and free testosterone index measured. Among the 60 patients, 43 (71.7%) were diagnosed with hypoactive sexual desire disorder (HSDD), 9 (15%) had anorgasmy and 8 (3.3%) had sexual pain dysfunction. Hormonal evaluation, demonstrated that 79.1% of patients with HSDD, 78.4% of patients with anorgasmy and 50% of patients with sexual pain dysfunction had female androgen insensitivity. We can conclude that there is an important association between low levels of total and free testosterone and FSD. This finding offers a new alternative for diagnosis and treatment of HSDD. Moreover, given the potential role of androgens in sexual function, randomized controlled trials with adequate long-term follow-up are essential to confirm its possible effect.

  20. [Dynamics of hormone secretion during chronic emotional stress].

    Science.gov (United States)

    Amiragova, M G; Kovalev, S V; Svirskaia, R I

    1979-05-01

    Study of spontaneous secretion of corticosteroids and thyroid hormones and the direct hormonal response to stress revealed the pathogenic effect of chronic combined emotional stress upon the hormonal function of adrenal glands. The hippocampus takes part in formation of the emotional tension in response to stress stimulus and of the following hormonal secretion.

  1. Effect of radiation on proteo-hormones activity

    International Nuclear Information System (INIS)

    Mikulaj, L.

    1975-05-01

    Samples of pituitary hormones were irradiated by a 60 Co source. A dose rate of 1.0-1.1 Mrad/hour and the doses of 0.5, 2.5 and 12.5 Mrad were used. The hormone preparations in the dry solid state or in solution were sealed into glass ampules. After sterilization they were kept at 4 0 C until the biological activity had been tested. The biological activity of thyroid stimulating hormone TSH, subjected to a sterilizing dose of 2.5 Mrad of gamma radiation, was found to have decreased when tested 3-5 months after irradiation. TSH remained fully active for up to 1 month after sterilization. The activity of vasopressin dropped off markedly during the 3-4 week period after irradiation. Biological activity of growth hormone tested shortly after irradiation was found to be unaffected. The activities of adrenocorticotropic hormone, human menopausal gonadotropin and luteinizing hormone were not affected. The experiments can be considered promising since they show that pituitary proteohorm, one preparations in the solid state may be sterilized. The stability on storage needs, however, to be carefully checked individually for every single hormone

  2. The rationale and design of TransCon Growth Hormone for the treatment of growth hormone deficiency

    Directory of Open Access Journals (Sweden)

    Kennett Sprogøe

    2017-10-01

    Full Text Available The fundamental challenge of developing a long-acting growth hormone (LAGH is to create a more convenient growth hormone (GH dosing profile while retaining the excellent safety, efficacy and tolerability of daily GH. With GH receptors on virtually all cells, replacement therapy should achieve the same tissue distribution and effects of daily (and endogenous GH while maintaining levels of GH and resulting IGF-1 within the physiologic range. To date, only two LAGHs have gained the approval of either the Food and Drug Administration (FDA or the European Medicines Agency (EMA; both released unmodified GH, thus presumably replicating distribution and pharmacological actions of daily GH. Other technologies have been applied to create LAGHs, including modifying GH (for example, protein enlargement or albumin binding such that the resulting analogues possess a longer half-life. Based on these approaches, nearly 20 LAGHs have reached various stages of clinical development. Although most have failed, lessons learned have guided the development of a novel LAGH. TransCon GH is a LAGH prodrug in which GH is transiently bound to an inert methoxy polyethylene glycol (mPEG carrier. It was designed to achieve the same safety, efficacy and tolerability as daily GH but with more convenient weekly dosing. In phase 2 trials of children and adults with growth hormone deficiency (GHD, similar safety, efficacy and tolerability to daily GH was shown as well as GH and IGF-1 levels within the physiologic range. These promising results support further development of TransCon GH.

  3. Developments in human growth hormone preparations: sustained-release, prolonged half-life, novel injection devices, and alternative delivery routes

    Directory of Open Access Journals (Sweden)

    Cai Y

    2014-07-01

    Full Text Available Yunpeng Cai,1,2 Mingxin Xu,2 Minglu Yuan,2 Zhenguo Liu,1 Weien Yuan2 1Department of Neurology, Xinhua Hospital, School of Medicine, 2School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People’s Republic of China Abstract: Since the availability of recombinant human growth hormone (rhGH enabled the application of human growth hormone both in clinical and research use in the 1980s, millions of patients were prescribed a daily injection of rhGH, but noncompliance rates were high. To address the problem of noncompliance, numerous studies have been carried out, involving: sustained-release preparations, prolonged half-life derivatives, new injectors that cause less pain, and other noninvasive delivery methods such as intranasal, pulmonary and transdermal deliveries. Some accomplishments have been made and launched already, such as the Nutropin Depot® microsphere and injectors (Zomajet®, Serojet®, and NordiFlex®. Here, we provide a review of the different technologies and illustrate the key points of these studies to achieve an improved rhGH product. Keywords: intranasal, pulmonary, transdermal, microsphere, microneedle, hydrogel

  4. Plasma hormones facilitated the hypermotility of the colon in a chronic stress rat model.

    Directory of Open Access Journals (Sweden)

    Chengbai Liang

    Full Text Available OBJECTIVE: To study the relationship between brain-gut peptides, gastrointestinal hormones and altered motility in a rat model of repetitive water avoidance stress (WAS, which mimics the irritable bowel syndrome (IBS. METHODS: Male Wistar rats were submitted daily to 1-h of water avoidance stress (WAS or sham WAS (SWAS for 10 consecutive days. Plasma hormones were determined using Enzyme Immunoassay Kits. Proximal colonic smooth muscle (PCSM contractions were studied in an organ bath system. PCSM cells were isolated by enzymatic digestion and IKv and IBKca were recorded by the patch-clamp technique. RESULTS: The number of fecal pellets during 1 h of acute restraint stress and the plasma hormones levels of substance P (SP, thyrotropin-releasing hormone (TRH, motilin (MTL, and cholecystokinin (CCK in WAS rats were significantly increased compared with SWAS rats, whereas vasoactive intestinal peptide (VIP, calcitonin gene-related peptide (CGRP and corticotropin releasing hormone (CRH in WAS rats were not significantly changed and peptide YY (PYY in WAS rats was significantly decreased. Likewise, the amplitudes of spontaneous contractions of PCSM in WAS rats were significantly increased comparing with SWAS rats. The plasma of WAS rats (100 µl decreased the amplitude of spontaneous contractions of controls. The IKv and IBKCa of PCSMs were significantly decreased in WAS rats compared with SWAS rats and the plasma of WAS rats (100 µl increased the amplitude of IKv and IBKCa in normal rats. CONCLUSION: These results suggest that WAS leads to changes of plasma hormones levels and to disordered myogenic colonic motility in the short term, but that the colon rapidly establishes a new equilibrium to maintain the normal baseline functioning.

  5. Development of Gonadotropin-Releasing Hormone-Secreting Neurons from Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Carina Lund

    2016-08-01

    Full Text Available Gonadotropin-releasing hormone (GnRH neurons regulate human puberty and reproduction. Modeling their development and function in vitro would be of interest for both basic research and clinical translation. Here, we report a three-step protocol to differentiate human pluripotent stem cells (hPSCs into GnRH-secreting neurons. Firstly, hPSCs were differentiated to FOXG1, EMX2, and PAX6 expressing anterior neural progenitor cells (NPCs by dual SMAD inhibition. Secondly, NPCs were treated for 10 days with FGF8, which is a key ligand implicated in GnRH neuron ontogeny, and finally, the cells were matured with Notch inhibitor to bipolar TUJ1-positive neurons that robustly expressed GNRH1 and secreted GnRH decapeptide into the culture medium. The protocol was reproducible both in human embryonic stem cells and induced pluripotent stem cells, and thus provides a translational tool for investigating the mechanisms of human puberty and its disorders.

  6. Thyroid hormone-like and estrogenic activity of hydroxylated PCBs in cell culture

    International Nuclear Information System (INIS)

    Kitamura, Shigeyuki; Jinno, Norimasa; Suzuki, Tomoharu; Sugihara, Kazumi; Ohta, Shigeru; Kuroki, Hiroaki; Fujimoto, Nariaki

    2005-01-01

    The thyroid hormone-disrupting activity of hydroxylated PCBs was examined. 4-Hydroxy-2,2',3,4',5,5'-hexachlorobiphenyl (4-OH-2,2',3,4',5,5'-HxCB), 4-hydroxy-3,3',4',5-tetrachlorobiphenyl (4-OH-3,3',4',5-TCB) and 4,4'-dihydroxy-3,3',5,5'-tetrachlorobiphenyl (4,4'-diOH-3,3',5,5'-TCB), which have been detected as metabolites of PCBs in animals and humans, and six other 4-hydroxylated PCBs markedly inhibited the binding of triiodothyronine (1 x 10 -10 M) to thyroid hormone receptor (TR) in the concentration range of 1 x 10 -6 to 1 x 10 -4 M. However, 4-hydroxy-2',4',6'-trichlorobiphenyl (4-OH-2',4',6'-TCB), 3-hydroxy-2,2',5,5'-tetrachlorobiphenyl, 4-hydroxy-2,2',5,5'-tetrachlorobiphenyl, 4-hydroxy-2,3,3',4'-tetrachlorobiphenyl, 2,3',5,5'-tetrachlorobiphenyl and 2,3',4',5,5'-pentachlorodiphenyl did not show affinity for TR. The thyroid hormonal activity of PCBs was also examined using rat pituitary cell line GH3 cells, which grow and release growth hormone in a thyroid hormone-dependent manner. 4-OH-2,2',3,4',5,5'-HxCB, 4,4'-diOH-3,3',5,5'-TCB and 4-OH-3,3',4',5-TCB enhanced the proliferation of GH3 cells and stimulated their production of growth hormone in the concentration range of 1 x 10 -7 to 1 x 10 -4 M, while PCBs which had no affinity for thyroid hormone receptor were inactive. In contrast, only 4-OH-2',4',6'-TCB exhibited a significant estrogenic activity using estrogen-responsive reporter assay in MCF-7 cells. However, the 3,5-dichloro substitution of 4-hydroxylated PCBs markedly decreased the estrogenic activity. These results suggest that, at least for the 17 PCB congeners and hydroxylated metabolites tested, a 4-hydroxyl group in PCBs is essential for thyroid hormonal and estrogenic activities, and that 3,5-dichloro substitution favors thyroid hormonal activity, but not estrogenic activity

  7. Molecular mechanisms of regulation of growth hormone gene expression in cultured rat pituitary cells by thyroid and glucocorticoid hormones

    International Nuclear Information System (INIS)

    Yaffe, B.M.

    1989-01-01

    In cultured GC cells, a rat pituitary tumor cell line, growth hormone [GH] is induced in a synergistic fashion by physiologic concentrations of thyroid and glucocorticoid hormones. Abundant evidence indicates that these hormones mediate this response via their specific receptors. The purpose of this thesis is to explore the mechanisms by which these hormones affect GH production. When poly (A) + RNA was isolated from cells grown both with and without hormones and translated in a cell-free wheat germ system, the preGH translation products were shown to be proportional to immunoassayable GH production under all combinations of hormonal milieux, indicating that changes in GH production is modulated at a pretranslational level. A cDNA library was constructed from poly (A) + RNA and one clone containing GH cDNA sequences was isolated. This was used to confirm the above results by Northern dot blot analysis. This probe was also used to assess hormonal effects on GH mRNA half-life and synthetic rates as well as GH gene transcription rates in isolated nuclei. Using a pulse-chase protocol in which cellular RNA was labeled in vivo with [ 3 H]uridine, and quantitating [ 3 H]GHmRNA directly by hybridization to GH cDNA bound to nitrocellulose filters, GHmRNA was found to have a half-life of approximately 50 hours, and was not significantly altered by the presence of inducing hormones

  8. High-performance liquid chromatography of human glycoprotein hormones.

    Science.gov (United States)

    Chlenov, M A; Kandyba, E I; Nagornaya, L V; Orlova, I L; Volgin, Y V

    1993-02-12

    The chromatographic behavior of the glycoprotein hormones from human pituitary glands and of placental origin [thyroid-stimulating hormone, luteinizing hormone and chorionic gonadotropin (CG)] was studied. It was shown that hydrophobic interaction chromatography on a microparticulate packing and anion-exchange HPLC can be applied for the purification of these hormones. Reversed-phase HPLC on wide-pore C4-bonded silica at neutral pH can be applied for the determination of the above hormones and for the isolation of pure CG and its subunits.

  9. Clinical significance of suboptimal hormonal levels in men with prostate cancer treated with LHRH agonists.

    Science.gov (United States)

    Kawakami, Jun; Morales, Alvaro

    2013-01-01

    We examined the serum levels of testosterone (T) (total and bioavailable) dehydroepiandrosterone (DHEA), follicle-stimulating hormone (FSH), luteinizing hormone (LH), and prostate-specific antigen (PSA) in men receiving treatment with luteinizing hormone releasing-hormone (LHRH) agonists for metastatic prostate cancer. In doing this, we want to determine the efficacy of these agents in lowering T levels and whether a possible relationship exists between PSA values, as a surrogate measure of tumour activity, and hormone levels. This was a single centre prospective study of patients on LHRH agonists. Of all the 100 eligible patients, 31 did not qualify (10 were receiving their first injection, 13 were on intermittent hormonal therapy, 7 refused to enter the trial and 1 patient's blood sample was lost). Therefore in total, 69 patients were included in the final analysis. Each patient had their blood sample drawn immediately before the administration of a LHRH agonist. The new proposed criteria of values are more commonly found in patients with suboptimal levels of testosterone receiving LHRH analogs, but the clinical importance of this finding has not been established. There is no significant difference with respect to hormonal levels reached among patients on a variety of LHRH agonists. Total testosterone determinations should be considered in patients on LHRH agonist therapy, particularly when the PSA values begin to rise since it may lead to further beneficial hormonal manipulation.

  10. Controversies in hormone replacement therapy

    Directory of Open Access Journals (Sweden)

    A. Baziad

    2001-09-01

    Full Text Available Deficiency of estrogen hormone will result in either long-term or short-term health problems which may reduce the quality of life. There are numerous methods by which the quality of female life can be achieved. Since the problems occuring are due to the deficiency of estrogen hormone, the appropriate method to tackle the problem is by administration of estrogen hormone. The administration of hormone replacement therapy (HRT with estrogen may eliminate climacteric complaints, prevent osteoporosis, coronary heart disease, dementia, and colon cancer. Although HRT has a great deal of advantage, its use is still low and may result in controversies. These controversies are due to fact that both doctor and patient still hold on to the old, outmoded views which are not supported by numerous studies. Currently, the use of HRT is not only based on experience, or temporary observation, but more on evidence based medicine. (Med J Indones 2001; 10: 182-6Keywords: controversies, HRT

  11. Hormone Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hormones quantified from marine mammal and sea turtle tissue provide information about the status of each animal sampled, including its sex, reproductive status and...

  12. Molecular Cloning, Genomic Organization and Developmental Regulation of a Novel Receptor from Drosophila melanogaster Structurally Related to Gonadotropin-Releasing Hormone Receptors from Vertebrates

    DEFF Research Database (Denmark)

    Hauser, Frank; Søndergaard, Leif; Grimmelikhuijzen, Cornelis J.P.

    1998-01-01

    After screening the data base of the BerkeleyDrosophilaGenome Project with a sequence coding for the transmembrane region of a G protein-coupled receptor, we found thatDrosophilamight contain a gene coding for a receptor that is structurally related to the Gonadotropin-Releasing Hormone (GnRH) re...

  13. Ultradian rhythms in pituitary and adrenal hormones: their relations to sleep.

    Science.gov (United States)

    Gronfier, C; Brandenberger, G

    1998-02-01

    Sleep and circadian rhythmicity both influence the 24-h profiles of the main pituitary and adrenal hormones. From studies using experimental strategies including complete and partial sleep deprivation, acute and chronic shifts in the sleep period, or complete sleep-wake reversal as occurs with transmeridian travel or shift-work, it appears that prolactin (PRL) and growth hormone (GH) profiles are mainly sleep related, while cortisol profile is mainly controlled by the circadian clock with a weak influence of sleep processes. Thyrotropin (TSH) profile is under the dual influence of sleep and circadian rhythmicity. Recent studies, in which we used spectral analysis of sleep electroencephalogram (EEG) rather than visual scoring of sleep stages, have evaluated the temporal associations between pulsatile hormonal release and the variations in sleep EEG activity. Pulses in PRL and in GH are positively linked to increases in delta wave activity, whereas TSH and cortisol pulses are related to decreases in delta wave activity. It is yet not clear whether sleep influences endocrine secretion, or conversely, whether hormone secretion affects sleep structure. These well-defined relationships raise the question of their physiological significance and of their clinical implications.

  14. Effects of narcotics on the endocrine system

    International Nuclear Information System (INIS)

    Zil, M.

    1990-01-01

    Endocrinological assessment of group of heroin addicts (n=91) was done and those who underwent full detoxification procedure (n=31) were also followed up after treatment. Pre and post detoxification evaluation included estimation of growth hormone (GH), follicle stimulating hormone (FSH), leuteinizing hormone (LH), thyroid stimulating hormone (TSH), prolactin (PRL), testosterone (TEST), estradiol (EST), cortisol (CORT), insulin (INS) and Free Thyroxine (FT4). Factors like duration of drug abuse, polydrug addiction, hepatic function status, age of abusers and dose including cumulative dose were also assessed but no significant bearing on the results was elicited. Difference between pre and post detoxification hormonal levels was highly significant in growth hormone, Testosterone, and prolactin values and less significant for FSH, ESTRADIOL, FT4 and TSH. But for a few exceptions, our results compared well with those reported in the literature and compare with reflect the widespread hormonal and endocrinological aberrations noted in heroin addicts. (author)

  15. Discrepancies between Antimullerian Hormone and Follicle Stimulating Hormone in Assisted Reproduction

    Directory of Open Access Journals (Sweden)

    Munawar Hussain

    2013-01-01

    Full Text Available Data from 107 women undergoing their first IVF/ICSI were analyzed. Relationships between antimullerian hormone (AMH and follicle stimulating hormone (FSH were analyzed after dividing patients into four groups according to AMH/FSH levels. Concordance was noted in 57% of women (both AMH/FSH either normal or abnormal while 43%of women had discordant values (AMH/FSH one hormone normal and the other abnormal. Group 1 (AMH and FSH in normal range and group 2 (normal AMH and high FSH were younger compared to group 3 (low AMH and normal FSH and group 4 (both AMH/FSH abnormal. Group 1 showing the best oocyte yield was compared to the remaining three groups. Groups 3 and 4 required higher dose of gonadotrophins for controlled ovarian hyperstimulation showing their low ovarian reserve. There was no difference in cycle cancellation, clinical pregnancy, and live birth/ongoing pregnancy rate in all groups. These tests are useful to predict ovarian response but whether AMH is a substantially better predictor is not yet established.

  16. Oxytocin is a cardiovascular hormone

    Directory of Open Access Journals (Sweden)

    Gutkowska J.

    2000-01-01

    Full Text Available Oxytocin (OT, a nonapeptide, was the first hormone to have its biological activities established and chemical structure determined. It was believed that OT is released from hypothalamic nerve terminals of the posterior hypophysis into the circulation where it stimulates uterine contractions during parturition, and milk ejection during lactation. However, equivalent concentrations of OT were found in the male hypophysis, and similar stimuli of OT release were determined for both sexes, suggesting other physiological functions. Indeed, recent studies indicate that OT is involved in cognition, tolerance, adaptation and complex sexual and maternal behaviour, as well as in the regulation of cardiovascular functions. It has long been known that OT induces natriuresis and causes a fall in mean arterial pressure, both after acute and chronic treatment, but the mechanism was not clear. The discovery of the natriuretic family shed new light on this matter. Atrial natriuretic peptide (ANP, a potent natriuretic and vasorelaxant hormone, originally isolated from rat atria, has been found at other sites, including the brain. Blood volume expansion causes ANP release that is believed to be important in the induction of natriuresis and diuresis, which in turn act to reduce the increase in blood volume. Neurohypophysectomy totally abolishes the ANP response to volume expansion. This indicates that one of the major hypophyseal peptides is responsible for ANP release. The role of ANP in OT-induced natriuresis was evaluated, and we hypothesized that the cardio-renal effects of OT are mediated by the release of ANP from the heart. To support this hypothesis, we have demonstrated the presence and synthesis of OT receptors in all heart compartments and the vasculature. The functionality of these receptors has been established by the ability of OT to induce ANP release from perfused heart or atrial slices. Furthermore, we have shown that the heart and large vessels

  17. Complete adrenocorticotropin deficiency after radiation therapy for brain tumor with a normal growth hormone reserve

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Haruna; Yoshioka, Katsunobu; Yamagami, Keiko [Osaka City General Hospital (Japan)] (and others)

    2002-06-01

    A 34-year-old man with neurofibromatosis type 1, who had received radiation therapy after the excision of a brain tumor 5 years earlier, was admitted to our hospital with vomiting and weight loss. Cortisol and adrenocorticotropin (ACTH) were undetectable before and after administration of 100 {mu}g corticotropin releasing hormone. The level of growth hormone without stimulation was 24.7 ng/ml. We diagnosed him to have complete ACTH deficiency attributable to radiation therapy. This is the first known case of a patient with complete ACTH deficiency after radiation therapy and a growth hormone reserve that remained normal. (author)

  18. Complete adrenocorticotropin deficiency after radiation therapy for brain tumor with a normal growth hormone reserve

    International Nuclear Information System (INIS)

    Sakai, Haruna; Yoshioka, Katsunobu; Yamagami, Keiko

    2002-01-01

    A 34-year-old man with neurofibromatosis type 1, who had received radiation therapy after the excision of a brain tumor 5 years earlier, was admitted to our hospital with vomiting and weight loss. Cortisol and adrenocorticotropin (ACTH) were undetectable before and after administration of 100 μg corticotropin releasing hormone. The level of growth hormone without stimulation was 24.7 ng/ml. We diagnosed him to have complete ACTH deficiency attributable to radiation therapy. This is the first known case of a patient with complete ACTH deficiency after radiation therapy and a growth hormone reserve that remained normal. (author)

  19. Cytokine modulation by stress hormones and antagonist specific hormonal inhibition in rainbow trout (Oncorhynchus mykiss) and gilthead sea bream (Sparus aurata) head kidney primary cell culture.

    Science.gov (United States)

    Khansari, Ali Reza; Parra, David; Reyes-López, Felipe E; Tort, Lluís

    2017-09-01

    A tight interaction between endocrine and immune systems takes place mainly due to the key role of head kidney in both hormone and cytokine secretion, particularly under stress situations in which the physiological response promotes the synthesis and release of stress hormones which may lead into immunomodulation as side effect. Although such interaction has been previously investigated, this study evaluated for the first time the effect of stress-associated hormones together with their receptor antagonists on the expression of cytokine genes in head kidney primary cell culture (HKPCC) of the freshwater rainbow trout (Oncorhynchus mykiss) and the seawater gilthead sea bream (Sparus aurata). The results showed a striking difference when comparing the response obtained in trout and seabream. Cortisol and adrenocorticotropic hormone (ACTH) decreased the expression of immune-related genes in sea bream but not in rainbow trout and this cortisol effect was reverted by the antagonist mifepristone but not spironolactone. On the other hand, while adrenaline reduced the expression of pro-inflammatory cytokines (IL-1β, IL-6) in rainbow trout, the opposite effect was observed in sea bream showing an increased expression (IL-1β, IL-6). Interestingly, this effect was reverted by antagonist propranolol but not phentolamine. Overall, our results confirm the regional interaction between endocrine and cytokine messengers and a clear difference in the sensitivity to the hormonal stimuli between the two species. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Thyroid-stimulating hormone pituitary adenomas.

    Science.gov (United States)

    Clarke, Michelle J; Erickson, Dana; Castro, M Regina; Atkinson, John L D

    2008-07-01

    Thyroid-stimulating hormone (TSH)-secreting pituitary adenomas are rare, representing secreting or clinically silent TSH-immunostaining pituitary tumors among all pituitary adenomas followed at their institution between 1987 and 2003. Patient records, including clinical, imaging, and pathological and surgical characteristics were reviewed. Twenty-one patients (6 women and 15 men; mean age 46 years, range 26-73 years) were identified. Of these, 10 patients had a history of clinical hyperthyroidism, of whom 7 had undergone ablative thyroid procedures (thyroid surgery/(131)I ablation) prior to the diagnosis of pituitary adenoma. Ten patients had elevated TSH preoperatively. Seven patients presented with headache, and 8 presented with visual field defects. All patients underwent imaging, of which 19 were available for imaging review. Sixteen patients had macroadenomas. Of the 21 patients, 18 underwent transsphenoidal surgery at the authors' institution, 2 patients underwent transsphenoidal surgery at another facility, and 1 was treated medically. Patients with TSH-secreting tumors were defined as in remission after surgery if they had no residual adenoma on imaging and had biochemical evidence of hypo-or euthyroidism. Patients with TSH-immunostaining tumors were considered in remission if they had no residual tumor. Of these 18 patients, 9 (50%) were in remission following surgery. Seven patients had residual tumor; 2 of these patients underwent further transsphenoidal resection, 1 underwent a craniotomy, and 4 underwent postoperative radiation therapy (2 conventional radiation therapy, 1 Gamma Knife surgery, and 1 had both types of radiation treatment). Two patients had persistently elevated TSH levels despite the lack of evidence of residual tumor. On pathological analysis and immunostaining of the surgical specimen, 17 patients had samples that stained positively for TSH, 8 for alpha-subunit, 10 for growth hormone, 7 for prolactin, 2 for adrenocorticotrophic hormone

  1. Correlations Between Seminal Plasma Hormones and Sperm ...

    African Journals Online (AJOL)

    Context: There is a complex relationship between seminal plasma hormone levels and infertility in men. Previous studies had shown no specific pattern in the serum or seminal plasma hormone profiles of men with infertility and it is debatable whether there is a need to perform routine seminal hormone assays in the ...

  2. Some important concepts in development of radioimmunoassay (RIA) for hormones, viruses and drugs. [Peptide hormones, non-peptide hormones

    Energy Technology Data Exchange (ETDEWEB)

    Shah, K B; Mani, R S [Bhabha Atomic Research Centre, Bombay (India). Radiopharmaceuticals Section

    1981-01-01

    Radioimmunoassay (RIA) procedures for the quantitative measurement of polypeptide and steroid hormones and other substances of medical and biological interest constitute one of the most important and rapidly expanding groups of applications of radioactive tracers in analytical chemistry and the life sciences. The method consists in setting up assays wherein the isotopically tagged substance is allowed to compete with its non-radioactive counterpart for the limited binding sites of a specific antibody. The degree of competitive inhibition of binding of labelled tracer is determined by measuring the radioactivity of the bound or unbound (free) complex, and comparing with the corresponding values for standard solutions of known concentration. This paper outlines the salient features, and specific problems associated with the preparation, purification of immunoreactive labelled tracers, and other suitable RIA reagents, the stability and storage conditions and standardisation of assay procedure. The characteristics of the assay systems have been investigated in detail and regular quality control has been instituted for evaluating various statistical parameters, inter-assay and intra-assay variances, and effective shelf life of the RIA reagents, with specific reference to assays of insulin growth hormones and thyroid and pregnancy hormones.

  3. Labelling and standardizing some pituitary hormones for radioimmunoassay

    International Nuclear Information System (INIS)

    Kim, Y.S.

    1976-11-01

    Optimum conditions for efficient 125 I labelling of human follicle stimulating hormone (FSH) and human chorionic gonadotropin (HCG) using chloramine-T have been established for radioimmunoassay (RIA). The amount of the hormone, chloramine-T, 125 I, and the reaction time were, respetively, controlled evaluating the yield and the bindability of the labelled hormone to its antibody. To measure the bindability, the labelled hormone was incubated together with its antibody for a definite temperature. In the separation of the free hormone (F) from the antibody bound (B), a double antibody technique was applied comparing with the chromatoelectrophoresis. For the efficient separation of the labelled hormone, two methods of separation such as gel filtration and gel electrophoresis were compared in the sensitivity and in the immunological activity points of view. Experiments for the production of HCG antibody were also conducted. The produced antisera were tested in two ways; i.e., the incubation test with the labelled hormone, and the Ouchterlony test. Using the produced anti-HCG serum and the purchased anti-FSH serum, standard dose-response curves were plotted correlating with the international standard preparation of the hormones

  4. Strigolactones, a novel carotenoid-derived plant hormone

    KAUST Repository

    Al-Babili, Salim

    2015-04-29

    Strigolactones (SLs) are carotenoid-derived plant hormones and signaling molecules. When released into the soil, SLs indicate the presence of a host to symbiotic fungi and root parasitic plants. In planta, they regulate several developmental processes that adapt plant architecture to nutrient availability. Highly branched/tillered mutants in Arabidopsis, pea, and rice have enabled the identification of four SL biosynthetic enzymes: a cis/trans-carotene isomerase, two carotenoid cleavage dioxygenases, and a cytochrome P450 (MAX1). In vitro and in vivo enzyme assays and analysis of mutants have shown that the pathway involves a combination of new reactions leading to carlactone, which is converted by a rice MAX1 homolog into an SL parent molecule with a tricyclic lactone moiety. In this review, we focus on SL biosynthesis, describe the hormonal and environmental factors that determine this process, and discuss SL transport and downstream signaling as well as the role of SLs in regulating plant development. ©2015 by Annual Reviews. All rights reserved.

  5. Catch-up growth in early treated patients with growth hormone deficiency. Dutch Growth Hormone Working Group.

    OpenAIRE

    Boersma, B; Rikken, B; Wit, J M

    1995-01-01

    Catch-up growth of 26 children with growth hormone deficiency during four years of growth hormone treatment, which was started young (< 3 years), was compared with that of 16 children with coeliac disease on a gluten free diet. In children with growth hormone deficiency mean (SD) height SD score increased from -4.3 (1.8) to -1.9 (1.4) and in patients with coeliac disease from -1.8 (0.9) to -0.1 (0.8). Height SD score after four years correlated positively with injection frequency and height S...

  6. Why sex hormones matter for neuroscience: A very short review on sex, sex hormones, and functional brain asymmetries.

    Science.gov (United States)

    Hausmann, Markus

    2017-01-02

    Biological sex and sex hormones are known to affect functional cerebral asymmetries (FCAs). Men are generally more lateralized than women. The effect size of this sex difference is small but robust. Some of the inconsistencies in the literature may be explained by sex-related hormonal differences. Most studies focusing on neuromodulatory properties of sex hormones on FCAs have investigated women during the menstrual cycle. Although contradictions exist, these studies have typically shown that levels of estradiol and/or progesterone correlate with the degree of FCAs, suggesting that sex differences in FCAs partially depend on hormonal state and day of testing. The results indicate that FCAs are not fixed but are hormone dependent, and as such they can dynamically change within relatively short periods throughout life. Many issues raised in this Mini-Review refer not only to FCAs but also to other aspects of functional brain organization, such as functional connectivity within and between the cerebral hemispheres. Our understanding of sex differences in brain and behavior as well as their clinical relevance will improve significantly if more studies routinely take sex and sex hormones into account. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. [Human growth hormone and Turner syndrome].

    Science.gov (United States)

    Sánchez Marco, Silvia Beatriz; de Arriba Muñoz, Antonio; Ferrer Lozano, Marta; Labarta Aizpún, José Ignacio; Garagorri Otero, Jesús María

    2017-02-01

    The evaluation of clinical and analytical parameters as predictors of the final growth response in Turner syndrome patients treated with growth hormone. A retrospective study was performed on 25 girls with Turner syndrome (17 treated with growth hormone), followed-up until adult height. Auxological, analytical, genetic and pharmacological parameters were collected. A descriptive and analytical study was conducted to evaluate short (12 months) and long term response to treatment with growth hormone. A favourable treatment response was shown during the first year of treatment in terms of height velocity gain in 66.6% of cases (height-gain velocity >3cm/year). A favourable long-term treatment response was also observed in terms of adult height, which increased by 42.82±21.23cm (1.25±0.76 SDS), with an adult height gain of 9.59±5.39cm (1.68±1.51 SDS). Predictors of good response to growth hormone treatment are: A) initial growth hormone dose, B) time on growth hormone treatment until starting oestrogen therapy, C) increased IGF1 and IGFBP-3 levels in the first year of treatment, and D) height gain velocity in the first year of treatment. Copyright © 2015 Asociación Española de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Molecular and functional characterization of a novel gonadotropin-releasing-hormone receptor isolated from the common octopus (Octopus vulgaris)

    OpenAIRE

    Kanda, Atsuhiro; Takahashi, Toshio; Satake, Honoo; Minakata, Hiroyuki

    2006-01-01

    GnRH (gonadotropin-releasing hormone) plays a pivotal role in the regulation of reproduction in vertebrates through interaction with a specific receptor. Previously, we isolated a GnRH homo-logue, oct-GnRH, from the common octopus (Octopus vulgaris). In the present study, we have identified a GnRH receptor (oct-GnRHR) specific for oct-GnRH from Octopus brain. Oct-GnRHR includes domains and motifs typical of vertebrate GnRH receptors. The intron-inserted positions are conserved between oct-GnR...

  9. Should symptomatic menopausal women be offered hormone therapy?

    Science.gov (United States)

    Lobo, Rogerio A; Bélisle, Serge; Creasman, William T; Frankel, Nancy R; Goodman, Neil E; Hall, Janet E; Ivey, Susan Lee; Kingsberg, Sheryl; Langer, Robert; Lehman, Rebecca; McArthur, Donna Behler; Montgomery-Rice, Valerie; Notelovitz, Morris; Packin, Gary S; Rebar, Robert W; Rousseau, MaryEllen; Schenken, Robert S; Schneider, Diane L; Sherif, Katherine; Wysocki, Susan

    2006-01-01

    Many physicians remain uncertain about prescribing hormone therapy for symptomatic women at the onset of menopause. The American Society for Reproductive Medicine (ASRM) convened a multidisciplinary group of healthcare providers to discuss the efficacy and risks of hormone therapy for symptomatic women, and to determine whether it would be appropriate to treat women at the onset of menopause who were complaining of menopausal symptoms. Numerous controlled clinical trials consistently demonstrate that hormone therapy, administered via oral, transdermal, or vaginal routes, is the most effective treatment for vasomotor symptoms. Topical vaginal formulations of hormone therapy should be preferred when prescribing solely for the treatment of symptoms of vulvar and vaginal atrophy. Data from the Women's Health Initiative indicate that the overall attributable risk of invasive breast cancer in women receiving estrogen plus progestin was 8 more cases per 10,000 women-years. No increased risk for invasive breast cancer was detected for women who never used hormone therapy in the past or for those receiving estrogen only. Hormone therapy is not effective for the treatment of cardiovascular disease and that the risk of cardiovascular disease with hormone therapy is principally in older women who are considerably postmenopause. Healthy symptomatic women should be offered the option of hormone therapy for menopausal symptoms. Symptom relief with hormone therapy for many younger women (at the onset of menopause) with menopausal symptoms outweighs the risks and may provide an overall improvement in quality of life. Hormone therapy should be individualized for symptomatic women. This involves tailoring the regimen and dose to individual needs.

  10. Converging, Synergistic Actions of Multiple Stress Hormones Mediate Enduring Memory Impairments after Acute Simultaneous Stresses.

    Science.gov (United States)

    Chen, Yuncai; Molet, Jenny; Lauterborn, Julie C; Trieu, Brian H; Bolton, Jessica L; Patterson, Katelin P; Gall, Christine M; Lynch, Gary; Baram, Tallie Z

    2016-11-02

    Stress influences memory, an adaptive process crucial for survival. During stress, hippocampal synapses are bathed in a mixture of stress-released molecules, yet it is unknown whether or how these interact to mediate the effects of stress on memory. Here, we demonstrate novel synergistic actions of corticosterone and corticotropin-releasing hormone (CRH) on synaptic physiology and dendritic spine structure that mediate the profound effects of acute concurrent stresses on memory. Spatial memory in mice was impaired enduringly after acute concurrent stresses resulting from loss of synaptic potentiation associated with disrupted structure of synapse-bearing dendritic spines. Combined application of the stress hormones corticosterone and CRH recapitulated the physiological and structural defects provoked by acute stresses. Mechanistically, corticosterone and CRH, via their cognate receptors, acted synergistically on the spine-actin regulator RhoA, promoting its deactivation and degradation, respectively, and destabilizing spines. Accordingly, blocking the receptors of both hormones, but not each alone, rescued memory. Therefore, the synergistic actions of corticosterone and CRH at hippocampal synapses underlie memory impairments after concurrent and perhaps also single, severe acute stresses, with potential implications to spatial memory dysfunction in, for example, posttraumatic stress disorder. Stress influences memory, an adaptive process crucial for survival. During stress, adrenal corticosterone and hippocampal corticotropin-releasing hormone (CRH) permeate memory-forming hippocampal synapses, yet it is unknown whether (and how) these hormones interact to mediate effects of stress. Here, we demonstrate novel synergistic actions of corticosterone and CRH on hippocampal synaptic plasticity and spine structure that mediate the memory-disrupting effects of stress. Combined application of both hormones provoked synaptic function collapse and spine disruption

  11. SIRT1 Regulates Thyroid-Stimulating Hormone Release by Enhancing PIP5Kgamma Activity through Deacetylation of Specific Lysine Residues in Mammals.

    Directory of Open Access Journals (Sweden)

    Sayaka Akieda-Asai

    Full Text Available BACKGROUND: SIRT1, a NAD-dependent deacetylase, has diverse roles in a variety of organs such as regulation of endocrine function and metabolism. However, it remains to be addressed how it regulates hormone release there. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report that SIRT1 is abundantly expressed in pituitary thyrotropes and regulates thyroid hormone secretion. Manipulation of SIRT1 level revealed that SIRT1 positively regulated the exocytosis of TSH-containing granules. Using LC/MS-based interactomics, phosphatidylinositol-4-phosphate 5-kinase (PIP5Kgamma was identified as a SIRT1 binding partner and deacetylation substrate. SIRT1 deacetylated two specific lysine residues (K265/K268 in PIP5Kgamma and enhanced PIP5Kgamma enzyme activity. SIRT1-mediated TSH secretion was abolished by PIP5Kgamma knockdown. SIRT1 knockdown decreased the levels of deacetylated PIP5Kgamma, PI(4,5P(2, and reduced the secretion of TSH from pituitary cells. These results were also observed in SIRT1-knockout mice. CONCLUSIONS/SIGNIFICANCE: Our findings indicated that the control of TSH release by the SIRT1-PIP5Kgamma pathway is important for regulating the metabolism of the whole body.

  12. PENGARUH PEMBERIAN MONOSODIUM GLUTAMAT TERHADAP KADAR HORMON ESTRADIOL DAN KADAR HORMON PROGESTERON PADA TIKUS PUTIH BETINA (Rattus norvegicus

    Directory of Open Access Journals (Sweden)

    andri ani

    2018-03-01

    Full Text Available Perubahan pola demografi di negara maju dan negara berkembang, angka kejadian infertilitas di negara maju dilaporkan sekitar 5%-8% dan di negara berkembang sekitar 30%.WHO memperkirakan sekitar 8%-10% atau sekitar 50-80 juta pasangan suami istri di seluruh dunia mengalami masalah infertilitas, sehingga membuat infertilitas menjadi masalah mendesak. Untuk itu diperlukan pengendalian infertilitas, salah satunya adalah kewaspadaan perubahan gaya hidup, perubahan ini juga mempengaruhi pola konsumsi makanan dengan lebih banyak mengkonsumsi jenis makanan cepat saji yang banyak mengandung zat aditif (penyedap rasa. Penelitian ini bertujuan untuk mengetahui pengaruh pemberian monosodium glutamate terhadap kadar hormon estradiol dan kadar hormon progesteron pada tikus putih betina ( Rattus norvegicus .Penelitian ini menggunakan metode pendekatan post test only control group design, terhadap tikus putih betina dengan berat 200 – 250 gr. Sampel terdiri dari 24 ekor tikus yang dibagi 4 kelompok yaitu kelompok kontrol ( K , perlakuan I, II dan III . Kelompok perlakuan diberikan monosodium glutamat dengan dosis masing-masing : 45 mg, 54 mg dan 63 mg setiap hari diberikan peroral yang dilarutkan dengan aquabides 2 ml selama 20 hari yang dimulai pada awal fase proestrus. Setelah 20 hari perlakuan tikus di korbankan dan diambil darahnya. Pemeriksaan kadar hormone estradiol dan progesteron menggunakan Elisa Spectrophotometer.  Kemudian hasilnya dianalisa dengan menggunakan One Way ANOVA dan dilanjutkan dengan uji Multiple Comparison jenis Bonferroni.Hasil penelitian pemberian  monosodium glutamat dengan dosis 45 mg/ ekor/ hari, 54 mg/ekor/ hari dan 63 mg/ ekor /hari dapat menurunkan kadar hormon estradiol tikus putih betina (Rattus norvegicus secara signifikan. Dan pemberian monosodium glutamate dengan dosis 45 mg/ ekor/ hari dapat menurunkan kadar hormon progesteron tikus putih betina (Rattus norvegicus walaupun tidak berpengaruh secara signifikan , dan pada

  13. Clinical and hormonal effects of chronic gonadotropin-releasing hormone agonist treatment in polycystic ovarian disease.

    Science.gov (United States)

    Steingold, K; De Ziegler, D; Cedars, M; Meldrum, D R; Lu, J K; Judd, H L; Chang, R J

    1987-10-01

    Previously, we reported that short term administration of a highly potent GnRH agonist (GnRHa) for 1 month to patients with polycystic ovarian disease (PCO) resulted in complete suppression of ovarian steroidogenesis without measurable effects on adrenal steroid production. This new study was designed to evaluate the effects of long term GnRHa administration in PCO patients with respect to their hormone secretion patterns and clinical responses. Eight PCO patients and 10 ovulatory women with endometriosis were treated daily with sc injections of [D-His6-(imBzl]),Pro9-NEt]GnRH (GnRHa; 100 micrograms) for 6 months. Their results were compared to hormone values in 8 women who had undergone bilateral oophorectomies. In response to GnRHa, PCO and ovulatory women had rises of serum LH at 1 month, after which it gradually declined to baseline. In both groups FSH secretion was suppressed throughout treatment. Serum estradiol, estrone, progesterone, 17-hydroxyprogesterone, androstenedione, and testosterone levels markedly decreased to values found in oophorectomized women by 1 month and remained low thereafter. In contrast, serum pregnenolone and 17-hydroxypregnenolone were partially suppressed, and dehydroepiandrosterone, dehydroepiandrosterone sulfate, and cortisol levels did not change. Clinically, hyperplastic endometrial histology in three PCO patients reverted to an inactive pattern, and proliferative endometrium in two other PCO patients became inactive in one and did not change in the other. Regression of proliferative endometrial histology occurred in all ovulatory women. Vaginal bleeding occurred in all women studied during the first month of GnRHa administration, after which all but one PCO patient became amenorrheic. Hot flashes were noted by all ovulatory women and by four of eight PCO patients. All PCO patients noted subjective reduction of skin oiliness, and five had decreased hair growth. We conclude that in premenopausal women: 1) chronic Gn

  14. Thyroid Stimulating Hormone Receptor

    Directory of Open Access Journals (Sweden)

    Murat Tuncel

    2017-02-01

    Full Text Available Thyroid stimulating hormone receptor (TSHR plays a pivotal role in thyroid hormone metabolism. It is a major controller of thyroid cell function and growth. Mutations in TSHR may lead to several thyroid diseases, most commonly hyperthyroidism. Although its genetic and epigenetic alterations do not directly lead to carcinogenesis, it has a crucial role in tumor growth, which is initiated by several oncogenes. This article will provide a brief review of TSHR and related diseases.

  15. Determinants of Growth Hormone Resistance in Malnutrition

    Science.gov (United States)

    Fazeli, Pouneh K.; Klibanski, Anne

    2014-01-01

    States of under-nutrition are characterized by growth hormone resistance. Decreased total energy intake, as well as isolated protein-calorie malnutrition and isolated nutrient deficiencies result in elevated growth hormone levels and low levels of IGF-I. We review various states of malnutrition and a disease state characterized by chronic under-nutrition -- anorexia nervosa -- and discuss possible mechanisms contributing to the state of growth hormone resistance, including FGF-21 and SIRT1. We conclude by examining the hypothesis that growth hormone resistance is an adaptive response to states of under-nutrition, in order to maintain euglycemia and preserve energy. PMID:24363451

  16. Subclinical hypothyroidism diagnosed by thyrotropin-releasing hormone stimulation test in infertile women with basal thyroid-stimulating hormone levels of 2.5 to 5.0 mIU/L.

    Science.gov (United States)

    Lee, You-Jeong; Kim, Chung-Hoon; Kwack, Jae-Young; Ahn, Jun-Woo; Kim, Sung-Hoon; Chae, Hee-Dong; Kang, Byung-Moon

    2014-11-01

    To investigate the prevalence of subclinical hypothyroidism (SH) diagnosed by thyrotropin-releasing hormone (TRH) stimulating test in infertile women with basal thyroid-stimulating hormone (TSH) levels of 2.5 to 5.0 mIU/L. This study was performed in 39 infertile women with ovulatory disorders (group 1) and 27 infertile women with male infertility only (group 2, controls) who had basal serum TSH levels of 2.5 to 5.0 mIU/L and a TRH stimulating test. Serum TSH levels were measured before TRH injection (TSH0) and also measured at 20 minutes (TSH1) and 40 minutes (TSH2) following intravenous injection of 400 µg TRH. Exaggerated TSH response above 30 mIU/L following TRH injection was diagnosed as SH. Group 1 was composed of poor responders (subgroup A), patients with polycystic ovary syndrome (subgroup B) and patients with WHO group II anovulation except poor responder or polycystic ovary syndrome (subgroup C). The prevalence of SH was significantly higher in group 1 of 46.2% (18/39) compared with 7.4% (2/27) in group 2 (P=0.001). TSH0, TSH1, and TSH2 levels were significantly higher in group 1 than the corresponding values in group 2 (Pstimulation test had better be performed in infertile women with ovulatory disorders who have TSH levels between 2.5 and 5.0 mIU/L for early detection and appropriate treatment of SH.

  17. Thyroid hormones and lipid phosphorus in mice

    Energy Technology Data Exchange (ETDEWEB)

    Thakare, U R; Ganatra, R D; Shah, D H [Bhabha Atomic Research Centre, Bombay (India). Radiation Medicine Centre

    1978-04-01

    In vivo studies in mice injected intravenously with /sup 125/I-triiodothyronine (T-3) showed a linear relationship between the uptake of the labelled hormone by the tissue and the lipid phosphorous content of the same tissue. However, studies with /sup 125/I-thyroxine failed to show a similar relationship between the lipid phosphorous content of the organ and the uptake of radioactive hormone by the same organ. In vitro studies using equilibrium dialysis technique with isolated lipid extracts of various organs and radioactive thyroid hormones (T-3 and T-4) did not show any relation between the lipid P and the uptake of labelled hormone. On the basis of the observed discrepancy between in vivo and in vitro studies, it is postulated that an organized lipoprotein structure at the cell membrane may be responsible for the entry of the thyroid hormones.

  18. Social environment during egg laying: Changes in plasma hormones with no consequences for yolk hormones or fecundity in female Japanese quail, Coturnix japonica.

    Directory of Open Access Journals (Sweden)

    Esther M A Langen

    Full Text Available The social environment can have profound effects on an individual's physiology and behaviour and on the transfer of resources to the next generation, with potential consequences for fecundity and reproduction. However, few studies investigate all of these aspects at once. The present study housed female Japanese quail (Coturnix japonica in pairs or groups to examine the effects on hormone concentrations in plasma and yolk and on reproductive performance. Circulating levels of androgens (testosterone and 5-α-dihydrotestosterone and corticosterone were measured in baseline samples and after standardised challenges to assess the responsiveness of the females' endocrine axes. Effects of the social environment on female fecundity were analysed by measuring egg production, egg mass, fertilization rates, and number of hatched offspring. Counter to expectation, females housed in pairs had higher plasma androgen concentrations and slightly higher corticosterone concentrations than females housed in groups, although the latter was not statistically significant. Pair vs. group housing did not affect the females' hormonal response to standardised challenges or yolk testosterone levels. In contrast to previous studies, the females' androgen response to a gonadotropin-releasing hormone challenge was not related to yolk testosterone levels. Non-significant trends emerged for pair-housed females to have higher egg-laying rates and higher fertility, but no differences arose in egg weight or in the number, weight or size of hatchlings. We propose that our unexpected findings are due to differences in the adult sex ratio in our social treatments. In pairs, the male may stimulate female circulating hormone levels more strongly than in groups where effects are diluted due to the presence of several females. Future studies should vary both group size and sex composition to disentangle the significance of sexual, competitive and affiliative social interactions for

  19. Assessment of hormonal activity in patients with premature ejaculation

    Directory of Open Access Journals (Sweden)

    Lütfi Canat

    Full Text Available ABSTRACT Purpose Premature ejaculation is considered the most common type of male sexual dysfunction. Hormonal controls of ejaculation have not been exactly elucidated. The aim of our study is to investigate the role of hormonal factors in patients with premature ejaculation. Materials and Methods Sixty-three participants who consulted our outpatient clinics with complaints of premature ejaculation and 39 healthy men as a control group selected from volunteers were included in the study. A total of 102 sexual active men aged between 21 and 76 years were included. Premature ejaculation diagnostic tool questionnaires were used to assessment of premature ejaculation. Serum levels of follicle stimulating hormone, luteinizing hormone, prolactin, total and free testosterone, thyroid-stimulating hormone, free triiodothyronine and thyroxine were measured. Results Thyroid-stimulating hormone, luteinizing hormone, and prolactin levels were significantly lower in men with premature ejaculation according to premature ejaculation diagnostic tool (p=0.017, 0.007 and 0.007, respectively. Luteinizing hormone level (OR, 1.293; p=0.014 was found to be an independent risk factor for premature ejaculation. Conclusions Luteinizing hormone, prolactin, and thyroid-stimulating hormone levels are associated with premature ejaculation which was diagnosed by premature ejaculation diagnostic tool questionnaires. The relationship between these findings have to be determined by more extensive studies.

  20. Corticotropin-releasing hormone and mast cells in the regulation of mucosal barrier function in the human colon.

    Science.gov (United States)

    Wallon, Conny; Söderholm, Johan D

    2009-05-01

    Corticotropin-releasing hormone (CRH) is an important neuro-endocrine mediator of the stress response. Local effects of CRH in the intestinal mucosa have become evident in recent years. We showed that CRH activates CRH receptor subtypes R1 and R2 on subepithelial mast cells, thereby inducing increased transcellular uptake of protein antigens in human colonic biopsies in Ussing chambers. Ongoing studies also implicate local cholinergic signaling in regulation of macromolecular permeability in the human colon. Since increased uptake of antigenic molecules is associated with mucosal inflammation, our findings may have implications for understanding stress-related intestinal disorders.

  1. Hormone Therapy

    Science.gov (United States)

    ... it also can be a sign of endometrial cancer. All bleeding after menopause should be evaluated. Other side effects reported by women who take hormone therapy include fluid retention and breast soreness. This soreness usually lasts for a short ...

  2. Afferent neuronal control of type-I gonadotropin releasing hormone (GnRH neurons in the human

    Directory of Open Access Journals (Sweden)

    Erik eHrabovszky

    2013-09-01

    Full Text Available Understanding the regulation of the human menstrual cycle represents an important ultimate challenge of reproductive neuroendocrine research. However, direct translation of information from laboratory animal experiments to the human is often complicated by strikingly different and unique reproductive strategies and central regulatory mechanisms that can be present in even closely related animal species. In all mammals studied so far, type-I gonadotropin releasing hormone (GnRH synthesizing neurons form the final common output way from the hypothalamus in the neuroendocrine control of the adenohypophysis. Under various physiological and pathological conditions, hormonal and metabolic signals either regulate GnRH neurons directly or act on upstream neuronal circuitries to influence the pattern of pulsatile GnRH secretion into the hypophysial portal circulation. Neuronal afferents to GnRH cells convey important metabolic-, stress-, sex steroid-, lactational- and circadian signals to the reproductive axis, among other effects. This article gives an overview of the available neuroanatomical literature that described the afferent regulation of human GnRH neurons by peptidergic, monoaminergic and amino acidergic neuronal systems. Recent studies of human genetics provided evidence that central peptidergic signaling by kisspeptins and neurokinin B play particularly important roles in puberty onset and later, in the sex steroid-dependent feedback regulation of GnRH neurons. This review article places special emphasis on the topographic distribution, sexual dimorphism, aging-dependent neuroanatomical changes and plastic connectivity to GnRH neurons of the critically important human hypothalamic kisspeptin and neurokinin B systems.

  3. Follicle-stimulating hormone (FSH) blood test

    Science.gov (United States)

    ... ency/article/003710.htm Follicle-stimulating hormone (FSH) blood test To use the sharing features on this page, please enable JavaScript. The follicle stimulating hormone (FSH) blood test measures the level of FSH in blood. FSH ...

  4. Extended hormone binding site of the human thyroid stimulating hormone receptor: distinctive acidic residues in the hinge region are involved in bovine thyroid stimulating hormone binding and receptor activation.

    Science.gov (United States)

    Mueller, Sandra; Kleinau, Gunnar; Jaeschke, Holger; Paschke, Ralf; Krause, Gerd

    2008-06-27

    The human thyroid stimulating hormone receptor (hTSHR) belongs to the glycoprotein hormone receptors that bind the hormones at their large extracellular domain. The extracellular hinge region of the TSHR connects the N-terminal leucine-rich repeat domain with the membrane-spanning serpentine domain. From previous studies we reasoned that apart from hormone binding at the leucine-rich repeat domain, additional multiple hormone contacts might exist at the hinge region of the TSHR by complementary charge-charge recognition. Here we investigated highly conserved charged residues in the hinge region of the TSHR by site-directed mutagenesis to identify amino acids interacting with bovine TSH (bTSH). Indeed, the residues Glu-297, Glu-303, and Asp-382 in the TSHR hinge region are essential for bTSH binding and partially for signal transduction. Side chain substitutions showed that the negative charge of Glu-297 and Asp-382 is necessary for recognition of bTSH by the hTSHR. Multiple combinations of alanine mutants of the identified positions revealed an increased negative effect on hormone binding. An assembled model suggests that the deciphered acidic residues form negatively charged patches at the hinge region resulting in an extended binding mode for bTSH on the hTSHR. Our data indicate that certain positively charged residues of bTSH might be involved in interaction with the identified negatively charged amino acids of the hTSHR hinge region. We demonstrate that the hinge region represents an extracellular intermediate connector for both hormone binding and signal transduction of the hTSHR.

  5. Growth hormone and tesamorelin in the management of HIV-associated lipodystrophy

    Directory of Open Access Journals (Sweden)

    Bedimo R

    2011-07-01

    Full Text Available Roger BedimoInfectious Disease section, VA North Texas Health Care System, TX, USAAbstract: HIV-infected patients on highly active antiretroviral therapy (HAART develop a complex of body composition changes known, including peripheral fat loss (lipoatrophy and central fat accumulation (lipohypertrophy. These changes may cause significant patient distress, which could in turn interfere with adherence to antiretroviral therapy. Treatment options – including antiretroviral switch, insulin sensitizers, and surgical approaches – have been associated with limited success and potential complications. The observation that low growth hormone levels are associated with central fat accumulation among HIV patients has led to the development of tesamorelin (a growth hormone releasing hormone analog for the management of central fat accumulation. Randomized controlled trials have shown that administration of tesamorelin is safe and effective in reducing central fat accumulation among HIV-infected patients. This effect is transient, however, and its association with improved cardiovascular risk remains unclear.Keywords: HAART, HIV, tesamorelin, lipodystrophy

  6. Ozone Exposure Increases Circulating Stress Hormones and Lipid Metabolites in Humans

    Science.gov (United States)

    RATIONALE: Air pollution has been associated with increased prevalence of type 2 diabetes; however, the mechanisms remain unknown. We have shown that acute ozone exposure in rats induces release of stress hormones, hyperglycemia, leptinemia, and gluoose intolerance that are assoc...

  7. Hormonal Approaches to Male contraception

    Science.gov (United States)

    Wang, Christina; Swerdloff, Ronald S.

    2010-01-01

    Purpose of review Condoms and vasectomy are male controlled family planning methods but suffer from limitations in compliance (condoms) and limited reversibility (vasectomy); thus many couples desire other options. Hormonal male contraceptive methods have undergone extensive clinical trials in healthy men and shown to be efficacious, reversible and appear to be safe. Recent Findings The success rate of male hormonal contraception using injectable testosterone alone is high and comparable to methods for women. Addition of progestins to androgens improved the rate of suppression of spermatogenesis. Supported by government or non-government organizations, current studies aim to find the best combination of testosterone and progestins for effective spermatogenesis suppression and to explore other delivery methods for these hormones. Translation of these advances to widespread use in the developed world will need the manufacturing and marketing skills of the pharmaceutical industry. Availability of male contraceptives to the developing world may require commitments of governmental and non-governmental agencies. In a time when imbalance of basic resources and population needs are obvious, this may prove to be a very wise investment. Summary Male hormonal contraception is efficacious, reversible and safe for the target population of younger men in stable relationships. Suppression of spermatogenesis is achieved with a combination of an androgen and a progestin. Partnership with industry will accelerate the marketing of a male hormonal contraceptive. Research is ongoing on selective androgen and progesterone receptor modulators that suppress spermatogenesis, minimize potential adverse events while retaining the androgenic actions. PMID:20808223

  8. Regulation of Thyroid Hormone Bioactivity in Health and Disease

    NARCIS (Netherlands)

    R.P. Peeters (Robin)

    2005-01-01

    textabstractTThyroid hormone plays an essential role in a variety of metabolic processes in the human body. Examples are the effects of thyroid hormone on metabolism and on the heart. The production of thyroid hormone by the thyroid is regulated by thyroid stimulating hormone (TSH) via the TSH

  9. Hormone patterns in early human gestation

    International Nuclear Information System (INIS)

    Mishell, D.R. Jr.; Thorneycroft, I.H.; Nagata, Y.; Murata, T.; Nakamura, R.M.

    1974-01-01

    Accurate measurement of the low concentration of gonadotropins and steroid hormones present in human serum has been made possible by the development of sensitive radioimmunoassay (RIA) techniques. With the use of RIA FSH and LH, progesterone and 17OH-progesterone have been previously measured in early normal pregnancy. In order to determine the daily pattern of hormone levels in early normal pregnancy, gonadotropins as well as steroid hormone levels were measured in serum samples obtained daily from three women from the time of the last menstrual period prior to conception throughout the first few months of gestation. To further identify the steroid hormone pattern in early normal pregnancy, concentrations of estradiol, progesterone, and 17OH-progesterone were measured in individual serum samples obtained from a group of 158 women with apparently normal gestations who subsequently had therapeutic abortions. (auth)

  10. Blunted cortisol response after administration of corticotropin releasing hormone in endotoxemic dogs

    NARCIS (Netherlands)

    Moeniralam, H. S.; Endert, E.; van Lanschot, J. J.; Sauerwein, H. P.; Romijn, J. A.

    1997-01-01

    To evaluate the effects of a standard inflammatory challenge on the dynamics of the hypothalamic-pituitary-adrenal (HPA) axis, we studied the effects of low-dose endotoxin (1.0 microgram/kg) on plasma adrenocorticotropic hormone (ACTH) and cortisol concentrations in a saline-controlled study in five

  11. Gonadotropin-Releasing Hormone Modulates Vomeronasal Neuron Response to Male Salamander Pheromone

    Directory of Open Access Journals (Sweden)

    Celeste R. Wirsig-Wiechmann

    2012-01-01

    Full Text Available Electrophysiological studies have shown that gonadotropin-releasing hormone (GnRH modifies chemosensory neurons responses to odors. We have previously demonstrated that male Plethodon shermani pheromone stimulates vomeronasal neurons in the female conspecific. In the present study we used agmatine uptake as a relative measure of the effects of GnRH on this pheromone-induced neural activation of vomeronasal neurons. Whole male pheromone extract containing 3 millimolar agmatine with or without 10 micromolar GnRH was applied to the nasolabial groove of female salamanders for 45 minutes. Immunocytochemical procedures were conducted to visualize and quantify relative agmatine uptake as measured by labeling density of activated vomeronasal neurons. The relative number of labeled neurons did not differ between the two groups: pheromone alone or pheromone-GnRH. However, vomeronasal neurons exposed to pheromone-GnRH collectively demonstrated higher labeling intensity, as a percentage above background (75% as compared with neurons exposed to pheromone alone (63%, P < 0.018. Since the labeling intensity of agmatine within neurons signifies the relative activity levels of the neurons, these results suggest that GnRH increases the response of female vomeronasal neurons to male pheromone.

  12. Maintaining euthyroidism: fundamentals of thyroid hormone ...

    African Journals Online (AJOL)

    Thyroid-related pathologies, especially subclinical and clinical hypothyroidism, are commonly described in clinical practice. While illnesses related to aberrant thyroid hormone homeostasis are the most prevalent endocrinological conditions diagnosed, important aspects related to thyroid hormone physiology are often ...

  13. Certain hormonal profiles of postpartum anestrus jersey crossbred cows treated with controlled internal drug release and ovsynch protocol

    Directory of Open Access Journals (Sweden)

    Dayanidhi Jena

    2016-10-01

    Full Text Available Aim: The study was conducted to determine the serum levels of certain hormones in post-partum anestrus cows following treatment with controlled internal drug release (CIDR and Ovsynch protocol. Materials and Methods: A total of 30 postpartum anestrus cows were divided into three equal groups after thorough gynecoclinical examination. The Group 1 animals received an intravaginal progesterone device on day 0 and 2 ml of prostaglandin F2α (PGF2α on day of CIDR removal (7th day, Group 2 cows were treated with ovsynch protocol (gonadotropinreleasing hormone [GnRH]-PGF2α-GnRH on day 0, 7 and 9, respectively, and Group 3 cows were supplemented with mineral mixture and treated as control. The serum estrogen, progesterone, triiodothyronine, and thyroxine concentration were estimated using enzyme-linked immunosorbent assay kit and absorbance was read at 450 nm with Perkin Elmer Wallac 1420 Microplate Reader. Results: There was a significant increase in progesterone level in Group 1 after withdrawal of CIDR as compared to other two groups. However, the estrogen assay revealed a greater concentration in Group 2 against Group 1 on day 7 of sampling. However, there was no significant difference for serum triiodothyronine (T3 and thyroxine (T4 irrespective of treatment protocols and days of sampling. Conclusion: Treatment with CIDR based progesterone therapy and drug combinations may affect the reproductive hormonal balance like estrogen and progesterone, which is inevitable for successful return to cyclicity and subsequent fertilization and conception. However, as far as serum T3 and T4 concentration concerned it may not give an astounding result.

  14. Recent advancements in the hormonal stimulation of ovulation in swine

    Directory of Open Access Journals (Sweden)

    Knox RV

    2015-10-01

    Full Text Available Robert V Knox Department of Animal Sciences, 360 Animal Sciences Laboratory, University of Illinois, Champaign Urbana, IL, USA Abstract: Induction of ovulation for controlled breeding is available for use around the world, and conditions for practical application appear promising. Many of the hormones available, such as human chorionic gonadotropin (hCG, gonadotropin-releasing hormone (GnRH and its analogs, as well as porcine luteinizing hormone (pLH, have been shown to be effective for advancing or synchronizing ovulation in gilts and weaned sows. Each of the hormones has unique attributes with respect to the physiology of its actions, how it is administered, its efficacy, and approval for use. The timing for induction of ovulation during the follicle phase is critical as follicle maturity changes over time, and the success of the response is determined by the stage of follicle development. Female fertility is also a primary factor affecting the success of ovulation induction and fixed time insemination protocols. Approximately 80%–90% of female pigs will develop mature follicles following weaning in sows and synchronization of estrus in gilts. However, those gilts and sows with follicles that are less developed and mature, or those that develop with abnormalities, will not respond to an ovulatory surge of LH. To address this problem, some protocols induce follicle development in all females, which can improve the overall reliability of the ovulation response. Control of ovulation is practical for use with fixed time artificial insemination and should prove highly advantageous for low-dose and single-service artificial insemination and for use with frozen-thawed and sex-sorted sperm. Keywords: artificial insemination, follicle, hormone, ovulation, swine

  15. Regular Yoga Practice Improves Antioxidant Status, Immune Function, and Stress Hormone Releases in Young Healthy People: A Randomized, Double-Blind, Controlled Pilot Study.

    Science.gov (United States)

    Lim, Sung-Ah; Cheong, Kwang-Jo

    2015-09-01

    The aim of the present study is to highlight the beneficial effects of yoga practice on bio-parameters, such as oxidative stress, antioxidant components, immune functions, and secretion of stress hormones, in healthy young people. This study was conducted on healthy volunteers recruited from among university students, who were divided into two groups: a control (no yoga intervention, n=13) group and a yoga (n=12) group. Yoga practice was with an instructor for 90 minutes once a week spread over 12 weeks, with recommendations to practice daily at home for 40 minutes with the help of a DVD. The yoga program consisted of yoga body poses (asanas), exercises involving awareness, voluntary regulation of breath (pranayama), and meditational practices. Whole blood samples were collected when the volunteers had fasted for 8 hours at 0 and 12 weeks. The oxidative stress/antioxidant components, immune-related cytokines, and stress hormones were evaluated in serum or plasma. Serum levels of nitric oxide, F2-isoprostane, and lipid peroxide were significantly decreased by yoga practice (pstress and improved antioxidant levels of the body. Moreover, yoga beneficially affected stress hormone releases as well as partially improved immune function.

  16. The impact of female sex hormones on competitiveness

    NARCIS (Netherlands)

    Buser, T.

    2009-01-01

    We use fluctuations of female sex hormones occurring naturally over the menstrual cycle or induced by hormonal contraceptives to determine the importance of sex hormones in explaining gender differences in competitiveness. Participants in a laboratory experiment solve a simple arithmetics task first

  17. Role of gastrointestinal hormones in postprandial reduction of bone resorption

    DEFF Research Database (Denmark)

    Henriksen, Dennis B; Alexandersen, Peter; Bjarnason, Nina H

    2003-01-01

    Collagen type I fragments, reflecting bone resorption, and release of gut hormones were investigated after a meal. Investigations led to a dose escalation study with glucagon like peptide-2 (GLP-2) in postmenopausal women. We found a dose-dependent effect of GLP-2 on the reduction of bone...

  18. Exercise-induced changes in blood minerals, associated proteins and hormones in women athletes.

    Science.gov (United States)

    Deuster, P A; Kyle, S B; Singh, A; Moser, P B; Bernier, L L; Yu-Yahiro, J A; Schoomaker, E B

    1991-12-01

    The acute effects of prolonged exercise on the body's distribution of trace minerals in women athletes has not been examined. To this end, plasma concentrations of zinc, copper, and iron; erythrocyte zinc (EZn) and copper (ECu); and the associated proteins, ceruloplasmin and transferrin were measured in 38 highly trained women runners under resting conditions and again after running a competitive 26.2 mile marathon. The hormones, cortisol (C), estradiol (E2), prolactin (Prl), follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were also measured because of reported effects of hormones on trace mineral distribution. Menstrual status was assessed by questionnaire: 8 women were in the follicular phase, 13 in mid-cycle, 8 in the luteal phase and 9 were amenorrheic (AM). Significant post-race increases were noted for all plasma minerals, associated proteins, and the hormones C and Prl, whereas EZn decreased. No significant changes in ECu, E2, FSH or LH were noted. Menstrual status in terms of cycle phase or amenorrhea did not appear to modify the response. Exercise-induced changes in minerals may reflect release from other tissues and/or changes in the concentration of associated proteins. Whether these changes serve adaptive and/or specific functions during exercise is unknown.

  19. Growth hormone in intra-uterine growth retarded newborns.

    Science.gov (United States)

    Setia, Sajita; Sridhar, M G; Bhat, Vishnu; Chaturvedula, Latha

    2007-11-01

    To study growth hormone levels in IUGR and healthy controls and its association with birth weight and ponderal index. We studied 50 Intra uterine growth retarded (IUGR) and 50 healthy newborns born at term by vaginal delivery in JIPMER, Pondicherry, India. Cord blood was collected at the time of delivery for measurement of growth hormone. When compared with healthy newborns, IUGR newborns had higher growth hormone levels (mean +/- SD, 23.5 +/- 15.6 vs 16.2 +/- 7.61 ngm/ml, P = 0.019). A negative correlation was identified between growth hormone levels and birth weight (r2 = - 0.22, P = 0.03) and ponderal index (r2 = - 0.36, P = 0.008). Correlation of growth hormone levels was much more confident with ponderal index than with birth weight. At birth IUGR infants display increased growth hormone levels which correlate with ponderal index much more confidently than with birth weight.

  20. Differential action of glycoprotein hormones: significance in cancer progression.

    Science.gov (United States)

    Govindaraj, Vijayakumar; Arya, Swathy V; Rao, A J

    2014-02-01

    Growth of multicellular organisms depends on maintenance of proper balance between proliferation and differentiation. Any disturbance in this balance in animal cells can lead to cancer. Experimental evidence is provided to conclude with special reference to the action of follicle-stimulating hormone (FSH) on Sertoli cells, and luteinizing hormone (LH) on Leydig cells that these hormones exert a differential action on their target cells, i.e., stimulate proliferation when the cells are in an undifferentiated state which is the situation with cancer cells and promote only functional parameters when the cell are fully differentiated. Hormones and growth factors play a key role in cell proliferation, differentiation, and apoptosis. There is a growing body of evidence that various tumors express some hormones at high levels as well as their cognate receptors indicating the possibility of a role in progression of cancer. Hormones such as LH, FSH, and thyroid-stimulating hormone have been reported to stimulate cell proliferation and act as tumor promoter in a variety of hormone-dependent cancers including gonads, lung, thyroid, uterus, breast, prostate, etc. This review summarizes evidence to conclude that these hormones are produced by some cancer tissues to promote their own growth. Also an attempt is made to explain the significance of the differential action of hormones in progression of cancer with special reference to prostate cancer.

  1. Hmrbase: a database of hormones and their receptors

    Science.gov (United States)

    Rashid, Mamoon; Singla, Deepak; Sharma, Arun; Kumar, Manish; Raghava, Gajendra PS

    2009-01-01

    Background Hormones are signaling molecules that play vital roles in various life processes, like growth and differentiation, physiology, and reproduction. These molecules are mostly secreted by endocrine glands, and transported to target organs through the bloodstream. Deficient, or excessive, levels of hormones are associated with several diseases such as cancer, osteoporosis, diabetes etc. Thus, it is important to collect and compile information about hormones and their receptors. Description This manuscript describes a database called Hmrbase which has been developed for managing information about hormones and their receptors. It is a highly curated database for which information has been collected from the literature and the public databases. The current version of Hmrbase contains comprehensive information about ~2000 hormones, e.g., about their function, source organism, receptors, mature sequences, structures etc. Hmrbase also contains information about ~3000 hormone receptors, in terms of amino acid sequences, subcellular localizations, ligands, and post-translational modifications etc. One of the major features of this database is that it provides data about ~4100 hormone-receptor pairs. A number of online tools have been integrated into the database, to provide the facilities like keyword search, structure-based search, mapping of a given peptide(s) on the hormone/receptor sequence, sequence similarity search. This database also provides a number of external links to other resources/databases in order to help in the retrieving of further related information. Conclusion Owing to the high impact of endocrine research in the biomedical sciences, the Hmrbase could become a leading data portal for researchers. The salient features of Hmrbase are hormone-receptor pair-related information, mapping of peptide stretches on the protein sequences of hormones and receptors, Pfam domain annotations, categorical browsing options, online data submission, Drug

  2. An alternative look at insects hormones

    Czech Academy of Sciences Publication Activity Database

    Sláma, Karel

    2015-01-01

    Roč. 3, č. 3 (2015), s. 188-204 ISSN 2325-081X Institutional support: RVO:60077344 Keywords : juvenile hormone * ecdysteroidal vitamin D6 * corpus allatum hormone Subject RIV: ED - Physiology http://blaypublishers.com/2015/10/31/leb-33-2015/

  3. Mortality and reduced growth hormone secretion

    DEFF Research Database (Denmark)

    Stochholm, Kirstine; Christiansen, Jens; Laursen, Torben

    2007-01-01

    BACKGROUND: Data regarding the mortality rates of patients with growth hormone deficiency (GHD), whether or not treated with growth hormone (GH), are limited, but an increased mortality rate among hypopituitary patients compared with the general population has been documented. Cardiovascular dise...

  4. Endocrinology of sex steroid hormones and cell dynamics in the periodontium.

    Science.gov (United States)

    Mariotti, Angelo; Mawhinney, Michael

    2013-02-01

    Numerous scientific studies assert the existence of hormone-sensitive periodontal tissues. Tissue specificity of hormone localization, identification of hormone receptors and the metabolism of hormones are evidence that periodontal tissues are targets for sex steroid hormones. Although the etiologies of periodontal endocrinopathies are diverse, periodontal pathologies are primarily the consequence of the actions and interactions of sex steroid hormones on specific cells found in the periodontium. This review provides a broad overview of steroid hormone physiology, evidence for the periodontium being a target tissue for sex steroid hormones and theories regarding the roles of sex steroid hormones in periodontal pathogenesis. Using this information, a teleological argument for the actions of steroid hormones in the periodontium is assessed.

  5. Effects of hormones on lipids and lipoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, R.M.

    1991-12-01

    Levels of plasma lipids and lipoproteins are strong predictors for the development of atherosclerotic cardiovascular disease in postmenopausal women. In women, as in men, numerous factors contribute to variations in plasma lipoproteins that may affect cardiovascular disease risk. These include age, dietary components, adiposity, genetic traits, and hormonal changes. Each of these factors may operate to varying degrees in determining changes in plasma lipoprotein profiles accompanying menopause- Cross-sectional and longitudinal studies have suggested increases in levels of cholesterol, low density lipoproteins (LDL) and triglyceride-rich lipoproteins associated with menopause. High density lipoproteins (HDL), which are higher in women than men and are thought to contribute to relative protection of premenopausal women from cardiovascular disease, remain relatively constant in the years following menopause, although small, and perhaps transient reductions in the HDL{sub 2} subfraction have been reported in relation to reduced estradiol level following menopause. Despite these associations, it has been difficult to determine the role of endogenous hormones in influencing the plasma lipoproteins of postmenopausal women. In principle, the effects of hormone replacement should act to reverse any alterations in lipoprotein metabolism that are due to postmenopausal hormone changes. While there may be beneficial effects on lipoproteins, hormone treatment does not restore a premenopausal lipoprotein profile. Furthermore, it is not dear to what extent exogenous hormone-induced lipoprotein changes contribute to the reduced incidence of cardiovascular disease with hormone replacement therapy.

  6. Association between asthma and female sex hormones.

    Science.gov (United States)

    Baldaçara, Raquel Prudente de Carvalho; Silva, Ivaldo

    2017-01-01

    The relationship between sex hormones and asthma has been evaluated in several studies. The aim of this review article was to investigate the association between asthma and female sex hormones, under different conditions (premenstrual asthma, use of oral contraceptives, menopause, hormone replacement therapy and pregnancy). Narrative review of the medical literature, Universidade Federal do Tocantins (UFT) and Universidade Federal de São Paulo (Unifesp). We searched the CAPES journal portal, a Brazilian platform that provides access to articles in the MEDLINE, PubMed, SciELO, and LILACS databases. The following keywords were used based on Medical Subject Headings: asthma, sex hormones, women and use of oral contraceptives. The associations between sex hormones and asthma remain obscure. In adults, asthma is more common in women than in men. In addition, mortality due to asthma is significantly higher among females. The immune system is influenced by sex hormones: either because progesterone stimulates progesterone-induced blocking factor and Th2 cytokines or because contraceptives derived from progesterone and estrogen stimulate the transcription factor GATA-3. The associations between asthma and female sex hormones remain obscure. We speculate that estrogen fluctuations are responsible for asthma exacerbations that occur in women. Because of the anti-inflammatory action of estrogen, it decreases TNF-α production, interferon-γ expression and NK cell activity. We suggest that further studies that highlight the underlying physiopathological mechanisms contributing towards these interactions should be conducted.

  7. Corticotropin-Releasing Hormone As the Homeostatic Rheostat of Feto-Maternal Symbiosis and Developmental Programming In Utero and Neonatal Life

    Directory of Open Access Journals (Sweden)

    Viridiana Alcántara-Alonso

    2017-07-01

    Full Text Available A balanced interaction between the homeostatic mechanisms of mother and the developing organism during pregnancy and in early neonatal life is essential in order to ensure optimal fetal development, ability to respond to various external and internal challenges, protection from adverse programming, and safeguard maternal care availability after parturition. In the majority of pregnancies, this relationship is highly effective resulting in successful outcomes. However, in a number of pathological settings, perturbations of the maternal homeostasis disrupt this symbiosis and initiate adaptive responses with unpredictable outcomes for the fetus or even the neonate. This may lead to development of pathological phenotypes arising from developmental reprogramming involving interaction of genetic, epigenetic, and environmental-driven pathways, sometimes with acute consequences (e.g., growth impairment and sometimes delayed (e.g., enhanced susceptibility to disease that last well into adulthood. Most of these adaptive mechanisms are activated and controlled by hormones of the hypothalamo-pituitary adrenal axis under the influence of placental steroid and peptide hormones. In particular, the hypothalamic peptide corticotropin-releasing hormone (CRH plays a key role in feto-maternal communication by orchestrating and integrating a series of neuroendocrine, immune, metabolic, and behavioral responses. CRH also regulates neural networks involved in maternal behavior and this determines efficiency of maternal care and neonate interactions. This review will summarize our current understanding of CRH actions during the perinatal period, focusing on the physiological roles for both mother and offspring and also how external challenges can alter CRH actions and potentially impact on fetus/neonate health.

  8. Radioimmunoassay of antidiuretic hormone in human urine. Applications

    International Nuclear Information System (INIS)

    Zebidi, Abdelkrim.

    1977-10-01

    This work is devoted mainly to the development of a radioimmunological system of antidiuretic hormone (ADH) determination in the urine and its physiological and pathological applications. The radioimmunological method thus replaces the biological measurement of antidiuretic hormone in the urine. This new technique was not possible until specific arginine vasopressin antibodies were obtained and a labelled hormone was prepared according to the criteria set for a radioimmunoassay. The labelled hormone is lysine vasopressin (greater stability). Although 125 I-LVP has lost most of its biological activity the molecule keeps all its immunological properties, behaving in the same way as non-iodinated synthetic LVP towards anti-LVP antibodies. Once specific antivasopressin antibodies and immunologically competent labelled hormone were available, conditions were defined for the radioimmunological ADH test in the urine. This technique, relatively easy to use, allows twenty samples to be measured simultaneously. With this sensitive, specific and reproducible method, it is thus possible to estimate the urinary ADH excretion rates from a 20 ml volume of urine after previous extraction on amberlite CG 50. This extraction method is aimed at both concentrating the hormone and eliminating non-specific interferences. The hormone extraction yield is about 92%+-8 [fr

  9. [Secretion of growth hormone in hyperthyroidism].

    Science.gov (United States)

    Hervás, F; Morreale de Escobar, G; Escobar Del Rey, F; Pozuelo, V

    1976-01-01

    The authors studied growth hormone (GH) secretion in a group of adult controls and another group of hyperthyroid patients after stimulation with intravenous insulin-induced (0,1 IU/kg) hypoglycemia, aiming to clear out the problem of discrepancies in literature concerning GH secretion in hyperthyroidism. They concluded that in this syndrome, GH levels are significantly higher than those of controls. The GH releasing response is normal, though it could be expected to be decreased due to decreased pituitary GH contents as a result of permanent somatotrophic cell stimulation.

  10. Floral induction, floral hormones and flowering

    NARCIS (Netherlands)

    Pol, van de P.A.

    1972-01-01

    The factors, influencing the synthesis and action of floral hormones, and possible differences between floral hormones in different plants were studied. The experimental results are summarized in the conclusions 1-20, on pages 35-36 (Crassulaceae'); 21-39 on pages

  11. Sex Hormone Receptor Repertoire in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Gerald M. Higa

    2013-01-01

    Full Text Available Classification of breast cancer as endocrine sensitive, hormone dependent, or estrogen receptor (ER positive refers singularly to ERα. One of the oldest recognized tumor targets, disruption of ERα-mediated signaling, is believed to be the mechanistic mode of action for all hormonal interventions used in treating this disease. Whereas ERα is widely accepted as the single most important predictive factor (for response to endocrine therapy, the presence of the receptor in tumor cells is also of prognostic value. Even though the clinical relevance of the two other sex hormone receptors, namely, ERβ and the androgen receptor remains unclear, two discordant phenomena observed in hormone-dependent breast cancers could be causally related to ERβ-mediated effects and androgenic actions. Nonetheless, our understanding of regulatory molecules and resistance mechanisms remains incomplete, further compromising our ability to develop novel therapeutic strategies that could improve disease outcomes. This review focuses on the receptor-mediated actions of the sex hormones in breast cancer.

  12. New approaches to male non-hormonal contraception.

    Science.gov (United States)

    Nya-Ngatchou, Jean-Jacques; Amory, John K

    2013-03-01

    A non-hormonal male contraceptive is a contraceptive that does not involve the administration of hormones or hormone blockers. This review will focus on the use of lonidamine derivatives and inhibitors of retinoic acid biosynthesis and function as approaches to male non-hormonal contraception. Two current lonidamine derivatives, adjudin and H2-gamendazole, are in development as male contraceptives. These potent anti-spermatogenic compounds impair the integrity of the apical ectoplasmic specialization, resulting in premature spermiation and infertility. Another approach to male contraceptive development is the inhibition of retinoic acid in the testes, as retinoic acid signaling is necessary for spermatogenesis. The administration of the retinoic acid receptor antagonist BMS-189453 reversibly inhibits spermatogenesis in mice. Similarly, oral dosing of WIN 18,446, which inhibits testicular retinoic acid biosynthesis, effectively contracepts rabbits. Hopefully, one of these approaches to non-hormonal male contraception will prove to be safe and effective in future clinical trials. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Hormones, Nicotine and Cocaine: Clinical Studies

    Science.gov (United States)

    Mello, Nancy K.

    2009-01-01

    Nicotine and cocaine each stimulate hypothalamic-pituitary-adrenal and -gonadal axis hormones, and there is increasing evidence that the hormonal milieu may modulate the abuse-related effects of these drugs. This review summarizes some clinical studies of the acute effects of cigarette smoking or IV cocaine on plasma drug and hormone levels, and subjective effects ratings. The temporal covariance between these dependent measures was assessed with a rapid (two min) sampling procedure in nicotine-dependent volunteers or current cocaine users. Cigarette smoking and IV cocaine each stimulated a rapid increase in LH and ACTH, followed by gradual increases in cortisol and DHEA. Positive subjective effects ratings increased immediately after initiation of cigarette smoking or IV cocaine administration. However, in contrast to cocaine’s sustained positive effects (hormones on nicotine dependence and cocaine abuse, and implications for treatment of these addictive disorders is discussed. PMID:19835877

  14. Gonadotropin-releasing hormone immunoreactivity in the adult and fetal human olfactory system.

    Science.gov (United States)

    Kim, K H; Patel, L; Tobet, S A; King, J C; Rubin, B S; Stopa, E G

    1999-05-01

    Studies in fetal brain tissue of rodents, nonhuman primates and birds have demonstrated that cells containing gonadotropin-releasing hormone (GnRH) migrate from the olfactory placode across the nasal septum into the forebrain. The purpose of this study was to examine GnRH neurons in components of the adult and fetal human olfactory system. In the adult human brain (n=4), immunoreactive GnRH was evident within diffusely scattered cell bodies and processes in the olfactory bulb, olfactory nerve, olfactory cortex, and nervus terminalis located on the anterior surface of the gyrus rectus. GnRH-immunoreactive structures showed a similar distribution in 20-week human fetal brains (n=2), indicating that the migration of GnRH neurons is complete at this time. In 10-11-week fetal brains (n=2), more cells were noted in the nasal cavity than in the brain. Our data are consistent with observations made in other species, confirming olfactory derivation and migration of GnRH neurons into the brain from the olfactory placode. Copyright 1999 Elsevier Science B.V.

  15. Hormone replacement therapy in Denmark, 1995-2004

    DEFF Research Database (Denmark)

    Løkkegaard, Ellen; Lidegaard, Ojvind; Møller, Lisbeth Nørgaard

    2007-01-01

    Recently, the Danish National Register of Medicinal Product Statistics (NRM) was opened for research purposes, and therefore, on an individual basis, can merge with other national registers. The aim of this study was to analyse the use of hormones based on the individual data of the entire Danish...... female population, with the focus on a detailed evaluation of specific hormone regimens and factors associated with systemic hormone replacement therapy (HRT)....

  16. Growth Hormone and Craniofacial Tissues. An update

    OpenAIRE

    Litsas, George

    2015-01-01

    Growth hormone is an important regulator of bone homeostasis. In childhood, it determines the longitudinal bone growth, skeletal maturation, and acquisition of bone mass. In adulthood, it is necessary to maintain bone mass throughout life. Although an association between craniofacial and somatic development has been clearly established, craniofacial growth involves complex interactions of genes, hormones and environment. Moreover, as an anabolic hormone seems to have an important role in the ...

  17. Parathyroid Hormone Levels and Cognition

    Science.gov (United States)

    Burnett, J.; Smith, S.M.; Aung, K.; Dyer, C.

    2009-01-01

    Hyperparathyroidism is a well-recognized cause of impaired cognition due to hypercalcemia. However, recent studies have suggested that perhaps parathyroid hormone itself plays a role in cognition, especially executive dysfunction. The purpose of this study was to explore the relationship of parathyroid hormone levels in a study cohort of elders with impaied cognition. Methods: Sixty community-living adults, 65 years of age and older, reported to Adult Protective Services for self-neglect and 55 controls matched (on age, ethnicity, gender and socio-economic status) consented and participated in this study. The research team conducted in-home comprehensive geriatric assessments which included the Mini-mental state exam (MMSE), the 15-item geriatric depression scale (GDS) , the Wolf-Klein clock test and a comprehensive nutritional panel, which included parathyroid hormone and ionized calcium. Students t tests and linear regression analyses were performed to assess for bivariate associations. Results: Self-neglecters (M = 73.73, sd=48.4) had significantly higher PTH levels compared to controls (M =47.59, sd=28.7; t=3.59, df=98.94, pcognitive measures. Conclusion: Parathyroid hormone may be associated with cognitive performance.

  18. Thyroid hormone radioimmunoassay

    International Nuclear Information System (INIS)

    Rodriguez, S.; Richmond, M.; Quesada, S.; Lahaman, S.; Ramirez, A.; Herrera, J.F.

    1988-01-01

    The International Atomic Energy Agency (AIEA) is carrying out the ARCAL VIII Program 'Thiroid Hormone Readioimmunoassay'. The Immunoassay Laboratory of INCIENSA is in charge of this program, with the participation of four National Hospital System laboratories, which carried out Thyroxine (T4). Triodothyroxine (T3) and Thyroid Stimulating Hormone (TSH) assays with NETRIA Reagents (North East Thames Region Immunoassay Unit). The variability was shown to be between 9-20 per cent for T4, 12-22 per cent for TSH and 22-36 per cent for T3. The study also evaluated the quality of a tracer (T3-l125 and T4 l125) produced at INCIENSA. In this case the intrassay variability was 8,4 per cent for T3 and 6,8 per cent for T4 in 32 determinations evaluated during 6 months. It was concluded that the T4 and TSH tests but not the T3 test are valid and reproducible when NETRIA Ragents are used. The tracer made at INCIENSA can be used up to 6 weeks after the radioiodination with l125. A successful thyroid-related hormones quality control was defined in Costa Rica by taking advantage of the support of a prestigious international agency, the IAEA. (author). 13 refs, 4 figs

  19. Nonpeptide corticotropin-releasing hormone receptor type 1 antagonists and their applications in psychosomatic disorders.

    Science.gov (United States)

    Contoreggi, Carlo; Rice, Kenner C; Chrousos, George

    2004-01-01

    Overproduction of corticotropin-releasing hormone (CRH) and stress system abnormalities are seen in psychiatric diseases such as depression, anxiety, eating disorders, and addiction. Investigations of CRH type 1 receptor (CRHR1) nonpeptide antagonists suggest therapeutic potential for treatment of these and other neuropsychiatric diseases. However, overproduction of CRH in the brain and on its periphery and disruption of the hypothalamic-pituitary-adrenal axis are also found in 'somatic' disorders. Some rare forms of Cushing's disease and related pituitary/adrenal disorders are obvious applications for CRHR1 antagonists. In addition, however, these antagonists may also be effective in treating more common somatic diseases. Patients with obesity and metabolic syndrome who often have subtle, but chronic hypothalamic-pituitary-adrenal hyperactivity, which may reflect central dysregulation of CRH and consequently glucocorticoid hypersecretion, could possibly be treated by administration of CRHR1 antagonists. Hormonal, autonomic, and immune aberrations are also present in chronic inflammatory, autoimmune, and allergic diseases, with considerable evidence linking CRH with the observed abnormalities. Furthermore, autonomic dysregulation is a prominent feature of common gastrointestinal disorders, such as irritable bowel syndrome and peptic ulcer disease. Patients with irritable bowel syndrome and other gastrointestinal disorders frequently develop altered pain perception and affective symptoms. CRH acts peripherally to modulate bowel activity both directly through the autonomic system and centrally by processing viscerosensory and visceromotor neural signals. This review presents clinical and preclinical evidence for the role of CRH in the pathophysiology of these disorders and for potential diagnostic and therapeutic applications of CRHR1 antagonists. Recognition of a dysfunctional stress system in these and other diseases will alter the understanding and treatment of

  20. Mapping the human corticotropin releasing hormone binding protein gene (CRHBP) to the long arm of chromosome 5 (5q11.2-q13.3)

    Energy Technology Data Exchange (ETDEWEB)

    Vamvakopoulos, N.C. [Univ. of Thessaly School of Medicine, Larisa (Greece); Sioutopoulou, T.O. [Univ. of Athens Medical School (Greece); Durkin, S.A. [American Type Culture Collection, Rockville, MD (United States)

    1995-01-01

    Unexpected stimulation or stress activates the heat shock protein (hsp) system at the cellular level and the hypothalamic-pituitary-adrenal (HPA) axis at the level of the whole organism. At the molecular level, these two systems communicate through the functional interaction between hsp90 and glucocorticoid receptor (GR). The corticotropin releasing hormone (CRH) system regulates the mammalian stress response by coordinating the activity of the HPA axis. It consists of the 41-amino-acid-long principal hypothalamic secretagogue for pituitary adrenocorticotropic hormone (ACTH), CRH, its receptor (CRHR), and its binding protein (CRHBP). Because of its central role in the coordination of stress response and whole body homeostasis, the CRH system has been implicated in the pathogenesis of neuroendocrine and psychiatric disease. 19 refs., 1 fig.

  1. Progression from isolated growth hormone deficiency to combined pituitary hormone deficiency.

    Science.gov (United States)

    Cerbone, Manuela; Dattani, Mehul T

    2017-12-01

    Growth hormone deficiency (GHD) can present at any time of life from the neonatal period to adulthood, as a result of congenital or acquired insults. It can present as an isolated problem (IGHD) or in combination with other pituitary hormone deficiencies (CPHD). Pituitary deficits can evolve at any time from GHD diagnosis. The number, severity and timing of occurrence of additional endocrinopathies are highly variable. The risk of progression from IGHD to CPHD in children varies depending on the etiology (idiopathic vs organic). The highest risk is displayed by children with abnormalities in the Hypothalamo-Pituitary (H-P) region. Heterogeneous data have been reported on the type and timing of onset of additional pituitary hormone deficits, with TSH deficiency being most frequent and Diabetes Insipidus the least frequent additional deficit in the majority, but not all, of the studies. ACTH deficiency may gradually evolve at any time during follow-up in children or adults with childhood onset IGHD, particularly (but not only) in presence of H-P abnormalities and/or TSH deficiency. Hence there is a need in these patients for lifelong monitoring for ACTH deficiency. GH treatment unmasks central hypothyroidism mainly in patients with organic GHD, but all patients starting GH should have their thyroid function monitored closely. Main risk factors for development of CPHD include organic etiology, H-P abnormalities (in particular pituitary stalk abnormalities, empty sella and ectopic posterior pituitary), midline brain (corpus callosum) and optic nerves abnormalities, genetic defects and longer duration of follow-up. The current available evidence supports longstanding recommendations for the need, in all patients diagnosed with IGHD, of a careful and indefinite follow-up for additional pituitary hormone deficiencies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Measuring steroid hormones in avian eggs

    NARCIS (Netherlands)

    Von Engelhardt, Nikolaus; Groothuis, Ton G. G.; Bauchinger, U; Goymann, W; JenniEiermann, S

    2005-01-01

    Avian eggs contain substantial levels of various hormones of maternal origin and have recently received a lot of interest, mainly from behavioral ecologists. These studies strongly depend on the measurement of egg hormone levels, but the method of measuring these levels has received little

  3. Incretin hormones and the satiation signal

    DEFF Research Database (Denmark)

    Holst, Jens Juul

    2013-01-01

    Recent research has indicated that appetite-regulating hormones from the gut may have therapeutic potential. The incretin hormone, glucagon-like peptide-1 (GLP-1), appears to be involved in both peripheral and central pathways mediating satiation. Several studies have also indicated that GLP-1...

  4. Measuring Steroid Hormones in Avian Eggs

    NARCIS (Netherlands)

    Engelhardt, Nikolaus von; Groothuis, Ton G.G.

    2005-01-01

    Avian eggs contain substantial levels of various hormones of maternal origin and have recently received a lot of interest, mainly from behavioral ecologists. These studies strongly depend on the measurement of egg hormone levels, but the method of measuring these levels has received little

  5. Evaluation of some reproductive hormonal profile following the ...

    African Journals Online (AJOL)

    Background: This study is aimed at determining the effect of nicotine on male fertility by evaluating some reproductive hormone parameters of male Wistar rat such as serum testosterone, luteinizing hormone (LH), prolactin and follicle stimulating hormone (FSH). Methodology: A total of 20 adult male rats were randomly ...

  6. Effect of a corticotropin releasing hormone receptor antagonist on colonic sensory and motor function in patients with irritable bowel syndrome

    OpenAIRE

    Sagami, Y; Shimada, Y; Tayama, J; Nomura, T; Satake, M; Endo, Y; Shoji, T; Karahashi, K; Hongo, M; Fukudo, S

    2004-01-01

    Background and aims: Corticotropin releasing hormone (CRH) is a major mediator of the stress response in the brain-gut axis. Irritable bowel syndrome (IBS) is presumed to be a disorder of the brain-gut link associated with an exaggerated response to stress. We hypothesised that peripheral administration of α-helical CRH (αhCRH), a non-selective CRH receptor antagonist, would improve gastrointestinal motility, visceral perception, and negative mood in response to gut stimulation in IBS patient...

  7. Radioimmunoassay for thyroid-stimulating hormone (TSH)

    International Nuclear Information System (INIS)

    Blakemore, J.I.; Lewin, N.; Burgett, M.W.

    1978-01-01

    This invention provides a method for the radioimmunoassay of thyroid-stimulating hormone which utilizes a rapid and convenient version of a double antibody procedure. Highly purified second antibody is bound, by means of covalent bonds, to hydrolyzed polyacrylamide particles to produce a two-phase system. The solid phase comprises immobilized second antibody bound to the reaction product of labeled and unlabeled thyroid-stimulating hormone with the first antibody (first antibody-antigen complex) and the liquid phase comprises free (unbound) labeled and unlabeled thyroid-stimulating hormone. The two phases are separated and the radioactivity of either phase is measured

  8. Menopausia y terapia hormonal de reemplazo

    OpenAIRE

    Cobo, Edgard; Fundación Valle de Lili

    1996-01-01

    La terapia hormonal en la menopausia/ menopausia y terapia hormonal de reemplazo (THR)/¿Qué es la menopausia?/ ¿Porqué hay tanto “ruido” acerca de la menopausia, si es un evento natural en la vida de toda mujer?/ ¿Qué significa terapia hormonal de reemplazo?(THR)/ ¿Cuáles son las ventajas de recibir la THR?/ Mejoraría en la calidad de vida/ Prevención de enfermedad/ ¿Quiere esto decir que absolutamente todas las mujeres deber recibir una THR?/ ¿Cuáles son las molestias más frecuentes a las qu...

  9. Male hormonal contraception: concept proven, product in sight?

    Science.gov (United States)

    Matthiesson, Kati L; McLachlan, Robert I

    2006-01-01

    Current male hormonal contraceptive (MHC) regimens act at various levels within the hypothalamic pituitary testicular axis, principally to induce the withdrawal of the pituitary gonadotrophins and in turn intratesticular androgen production and spermatogenesis. Azoospermia or severe oligozoospermia result from the inhibition of spermatogonial maturation and sperm release (spermiation). All regimens include an androgen to maintain virilization, while in many the suppression of gonadotrophins/spermatogenesis is augmented by the addition of another anti-gonadotrophic agent (progestin, GnRH antagonist). The suppression of sperm concentration to 1 x 10(6)/ml appears to provide comparable contraceptive efficacy to female hormonal methods, but the confidence intervals around these estimates remain relatively large, reflecting the limited number of exposure years reported. Also, inconsistencies in the rapidity and depth of spermatogenic suppression, potential for secondary escape of sperm into the ejaculate and onset of fertility return not readily explainable by analysis of subject serum hormone levels, germ cell number or intratesticular steroidogenesis, are apparent. As such, a better understanding of the endocrine and genetic regulation of spermatogenesis is necessary and may allow for new treatment paradigms. The development of an effective, consumer-friendly male contraceptive remains challenging, as it requires strong translational cooperation not only between basic scientists and clinicians but also between public and private sectors. At present, a prototype MHC product using a long-acting injectable testosterone and depot progestin is well advanced.

  10. (cGnRH-II) on plasma steroid hormone, maturation and ovulation

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-01

    Dec 1, 2009 ... (LHRHa) and salmon gonadotropin-releasing hormone analogue (sGnRHa) in ..... Four out of six fish reached GVBD at 12 h after injection. Egg quality .... of the sbGnRH and cGnRH-II genes from the striped bass, Morone.

  11. Chronopharmacological effects of growth hormone on the executive function and oxidative stress response in rats.

    Science.gov (United States)

    Ferrari, Carlos K B; França, Eduardo L; Monteiro, Luciane A; Santos, Bruno L; Pereira-Junior, Alfredo; Honorio-França, Adenilda C

    2017-01-01

    To investigate the chronopharmacological effects of growth hormone on executive function and the oxidative stress response in rats. Fifty male Wistar rats (36-40 weeks old) had ad libitum access to water and food and were separated into four groups: diurnal control, nocturnal control, diurnal GH-treated, and nocturnal GH-treated animals. Levels of Cu, Zn superoxide dismutase (Cu, Zn-SOD), and superoxide release by spleen macrophages were evaluated. For memory testing, adaptation and walking in an open field platform was used. GH-treated animals demonstrated better performance in exploratory and spatial open-field tests. The latency time in both GH-treated groups was significantly lower compared with the latency time of the control groups. The diurnal GH treatment did not stimulate superoxide release but increased the CuZn-SOD enzyme levels. The nocturnal GH treatment did not influence the superoxide release and CuZn-SOD concentration. GH treatment also resulted in heart atrophy and lung hypertrophy. Growth hormone treatment improved the performance of executive functions at the cost of oxidative stress triggering, and this effect was dependent on the circadian period of hormone administration. However, GH treatment caused damaging effects such as lung hypertrophy and heart atrophy.

  12. Contracepção hormonal e sistema cardiovascular Contracepción hormonal y sistema cardiovascular Hormonal contraception and cardiovascular system

    Directory of Open Access Journals (Sweden)

    Milena Bastos Brito

    2011-04-01

    Full Text Available A contracepção hormonal é o método mais utilizado para prevenção de gestações não planejadas. A literatura tem demonstrado associação entre risco cardiovascular e uso de hormonioterapia. A fim de melhorar a orientação contraceptiva para mulheres com fatores de risco para doença cardiovascular, realizamos uma revisão da literatura em relação ao assunto. Esta revisão descreve os dados mais recentes da literatura científica acerca da influência dos contraceptivos hormonais em relação a trombose venosa, arterial e hipertensão arterial sistêmica, doenças cada dia mais prevalentes na população feminina jovem.La contracepción hormonal es el método más utilizado para la prevención de los embarazos no planificados. La literatura ha venido demostrando la asociación que existe entre el riesgo cardiovascular y el uso de la hormonoterapia. Con el objetivo de mejorar la orientación en la contracepción en mujeres con factores de riesgo para el desarrollo de enfermedad cardiovascular, realizamos una revisión de la literatura con relación a ese asunto. Esa revisión describe los datos más recientes de la literatura científica acerca de la influencia de los anticonceptivos hormonales con relación a la trombosis venosa, arterial e hipertensión arterial sistémica, enfermedades cada día más prevalentes en la población femenina joven.Hormonal contraception is the most widely used method to prevent unplanned pregnancies. The literature has shown an association between cardiovascular risk and use of hormone therapy. With the purpose of providing better guidelines on contraception methods for women with risk factors for cardiovascular disease, we have reviewed the literature on the subject. This review describes the latest data from the scientific literature concerning the influence of hormonal contraceptives on arterial thrombosis, venous thrombosis and systemic high blood pressure, which are diseases that have become

  13. Hormones and tendinopathies: the current evidence.

    Science.gov (United States)

    Oliva, Francesco; Piccirilli, Eleonora; Berardi, Anna C; Frizziero, Antonio; Tarantino, Umberto; Maffulli, Nicola

    2016-03-01

    Tendinopathies negatively affect the quality of life of millions of people, but we still do not know the factors involved in the development of tendon conditions. Published articles in English in PubMed and Google Scholar up to June 2015 about hormonal influence on tendinopathies onset. One hundred and two papers were included following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. In vitro and in vivo, tenocytes showed changes in their morphology and in their functional properties according to hormonal imbalances. Genetic pattern, sex, age and comorbidities can influence the hormonal effect on tendons. The increasing prevalence of metabolic disorders prompts to investigate the possible connection between metabolic problems and musculoskeletal diseases. The influence of hormones on tendon structure and metabolism needs to be further investigated. If found to be significant, multidisciplinary preventive and therapeutic strategies should then be developed. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Protein alterations induced by long-term agonist treatment of HEK293 cells expressing thyrotropin-releasing hormone receptor and G11alpha protein

    Czech Academy of Sciences Publication Activity Database

    Drastichová, Z.; Bouřová, Lenka; Hejnová, L.; Jedelský, P.; Svoboda, Petr; Novotný, J.

    2010-01-01

    Roč. 109, č. 1 (2010), s. 255-264 ISSN 0730-2312 R&D Projects: GA MŠk(CZ) LC554; GA ČR(CZ) GA309/06/0121; GA ČR(CZ) GD305/08/H037 Institutional research plan: CEZ:AV0Z50110509 Keywords : Thyrotropin-releasing hormone * Gq/11 protein * proteomics Subject RIV: ED - Physiology Impact factor: 3.122, year: 2010

  15. Sex Differences in Brain Thyroid Hormone Levels during Early Post-Hatching Development in Zebra Finch (Taeniopygia guttata.

    Directory of Open Access Journals (Sweden)

    Shinji Yamaguchi

    Full Text Available Thyroid hormones are closely linked to the hatching process in precocial birds. Previously, we showed that thyroid hormones in brain had a strong impact on filial imprinting, an early learning behavior in newly hatched chicks; brain 3,5,3'-triiodothyronine (T3 peaks around hatching and imprinting training induces additional T3 release, thus, extending the sensitive period for imprinting and enabling subsequent other learning. On the other hand, blood thyroid hormone levels have been reported to increase gradually after hatching in altricial species, but it remains unknown how the brain thyroid hormone levels change during post-hatching development of altricial birds. Here, we determined the changes in serum and brain thyroid hormone levels of a passerine songbird species, the zebra finch using radioimmunoassay. In the serum, we found a gradual increase in thyroid hormone levels during post-hatching development, as well as differences between male and female finches. In the brain, there was clear surge in the hormone levels during development in males and females coinciding with the time of fledging, but the onset of the surge of thyroxine (T4 in males preceded that of females, whereas the onset of the surge of T3 in males succeeded that of females. These findings provide a basis for understanding the functions of thyroid hormones during early development and learning in altricial birds.

  16. Proteome and radioimmunoassay analyses of pituitary hormones and proteins in response to feed restriction of dairy cows.

    Science.gov (United States)

    Kuhla, Björn; Albrecht, Dirk; Bruckmaier, Rupert; Viergutz, Torsten; Nürnberg, Gerd; Metges, Cornelia C

    2010-12-01

    The hypothalamic-pituitary system controls homeostasis during feed energy reduction. In order to examine which pituitary proteins and hormone variants are potentially associated with metabolic adaptation, pituitary glands from ad libitum and energy restrictively fed dairy cows were characterized using RIA and 2-DE followed by MALDI-TOF-MS. We found 64 different spots of regulatory hormones: growth hormone (44), preprolactin (16), luteinizing hormone (LH) (1), thyrotropin (1), proopiomelanocortin (1) and its cleavage product lipotropin (1), but none of these did significantly differ between feeding groups. Quantification of total pituitary LH and prolactin concentrations by RIA confirmed the results obtained by proteome analysis. Also, feed energy restriction provoked increasing non-esterified fatty acid, decreasing prolactin, but unaltered glucose, LH and growth hormone plasma concentrations. Energy restriction decreased the expression of glial fibrillary acidic protein, triosephosphate isomerase, purine-rich element-binding protein A and elongation factor Tu, whereas it increased expression of proline synthetase co-transcribed homolog, peroxiredoxin III, β-tubulin and annexin A5 which is involved in the hormone secretion process. Our results indicate that in response to feed energy restriction the pituitary reservoir of all posttranslationally modified hormone forms remains constant. Changing plasma hormone concentrations are likely attributed to a regulated releasing process from the gland into the blood. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Sex Differences in Brain Thyroid Hormone Levels during Early Post-Hatching Development in Zebra Finch (Taeniopygia guttata).

    Science.gov (United States)

    Yamaguchi, Shinji; Hayase, Shin; Aoki, Naoya; Takehara, Akihiko; Ishigohoka, Jun; Matsushima, Toshiya; Wada, Kazuhiro; Homma, Koichi J

    2017-01-01

    Thyroid hormones are closely linked to the hatching process in precocial birds. Previously, we showed that thyroid hormones in brain had a strong impact on filial imprinting, an early learning behavior in newly hatched chicks; brain 3,5,3'-triiodothyronine (T3) peaks around hatching and imprinting training induces additional T3 release, thus, extending the sensitive period for imprinting and enabling subsequent other learning. On the other hand, blood thyroid hormone levels have been reported to increase gradually after hatching in altricial species, but it remains unknown how the brain thyroid hormone levels change during post-hatching development of altricial birds. Here, we determined the changes in serum and brain thyroid hormone levels of a passerine songbird species, the zebra finch using radioimmunoassay. In the serum, we found a gradual increase in thyroid hormone levels during post-hatching development, as well as differences between male and female finches. In the brain, there was clear surge in the hormone levels during development in males and females coinciding with the time of fledging, but the onset of the surge of thyroxine (T4) in males preceded that of females, whereas the onset of the surge of T3 in males succeeded that of females. These findings provide a basis for understanding the functions of thyroid hormones during early development and learning in altricial birds.

  18. Experimental Modification of Rat Pituitary Growth Hormone Cell Function During and After Spaceflight

    Science.gov (United States)

    Hymer, W. C.; Salada, T.; Nye, P.; Grossman, E. J.; Lane, P. K.; Grindeland, R. E.

    1996-01-01

    Space-flown rats show a number of flight-induced changes in the structure and function of pituitary Growth Hormone (GH) cells after in vitro postflight testing. To evaluate the possible effects of microgravity on GH cells themselves, freshly dispersed rat anterior pituitary gland cells were seeded into vials containing serum +/- 1 micron HydroCortisone (HC) before flight. Five different cell preparations were used: the entire mixed-cell population of various hormone-producing cell types, cells of density less than 1.071 g/sq cm (band 1), cells of density greater than 1.071 g/sq cm (band 2), and cells prepared from either the dorsal or ventral part of the gland. Relative to ground control samples, bioactive GH released from dense cells during flight was reduced in HC-free medium but was increased in HC-containing medium. Band I and mixed cells usually showed opposite HC-dependent responses. Release of bioactive GH from ventral flight cells was lower; postflight responses to GH-releasing hormone challenge were reduced, and the cytoplasmic area occupied by GH in the dense cells was greater. Collectively, the data show that the chemistry and cellular makeup of the culture system modifies the response of GH cells to microgravity. As such, these cells offer a system to identify gravisensing mechanisms in secretory cells in future microgravity research.

  19. Gastric emptying, glucose metabolism and gut hormones

    DEFF Research Database (Denmark)

    Vermeulen, Mechteld A R; Richir, Milan C; Garretsen, Martijn K

    2011-01-01

    To study the gastric-emptying rate and gut hormonal response of two carbohydrate-rich beverages. A specifically designed carbohydrate-rich beverage is currently used to support the surgical patient metabolically. Fruit-based beverages may also promote recovery, due to natural antioxidant and carb......To study the gastric-emptying rate and gut hormonal response of two carbohydrate-rich beverages. A specifically designed carbohydrate-rich beverage is currently used to support the surgical patient metabolically. Fruit-based beverages may also promote recovery, due to natural antioxidant...... and carbohydrate content. However, gastric emptying of fluids is influenced by its nutrient composition; hence, safety of preoperative carbohydrate loading should be confirmed. Because gut hormones link carbohydrate metabolism and gastric emptying, hormonal responses were studied....

  20. Menopausal hormone use and ovarian cancer risk

    DEFF Research Database (Denmark)

    Beral, V; Gaitskell, K; Hermon, C

    2015-01-01

    BACKGROUND: Half the epidemiological studies with information about menopausal hormone therapy and ovarian cancer risk remain unpublished, and some retrospective studies could have been biased by selective participation or recall. We aimed to assess with minimal bias the effects of hormone therapy...... on ovarian cancer risk. METHODS: Individual participant datasets from 52 epidemiological studies were analysed centrally. The principal analyses involved the prospective studies (with last hormone therapy use extrapolated forwards for up to 4 years). Sensitivity analyses included the retrospective studies....... Adjusted Poisson regressions yielded relative risks (RRs) versus never-use. FINDINGS: During prospective follow-up, 12 110 postmenopausal women, 55% (6601) of whom had used hormone therapy, developed ovarian cancer. Among women last recorded as current users, risk was increased even with

  1. Hormonal therapy in female pattern hair loss

    Directory of Open Access Journals (Sweden)

    Kevin R. Brough

    2017-03-01

    Full Text Available Female pattern hair loss is the most common cause of hair loss in women and one of the most common problems seen by dermatologists. This hair loss is a nonscarring alopecia in which loss occurs on the vertex scalp, generally sparing the frontal hairline. Hair loss can have significant psychosocial effects on patients, and treatment can be long and difficult. The influence of hormones on the pathogenesis of female pattern hair loss is not entirely known. The purpose of this paper is to review physiology and potential hormonal mechanisms for the pathogenesis of female pattern hair loss. We also discuss the current hormonal and hormone-modifying therapies that are available to providers as they partner with patients to treat this frustrating issue.

  2. Human fear acquisition deficits in relation to genetic variants of the corticotropin releasing hormone receptor 1 and the serotonin transporter.

    Directory of Open Access Journals (Sweden)

    Ivo Heitland

    Full Text Available The ability to identify predictors of aversive events allows organisms to appropriately respond to these events, and failure to acquire these fear contingencies can lead to maladaptive contextual anxiety. Recently, preclinical studies demonstrated that the corticotropin-releasing factor and serotonin systems are interactively involved in adaptive fear acquisition. Here, 150 healthy medication-free human subjects completed a cue and context fear conditioning procedure in a virtual reality environment. Fear potentiation of the eyeblink startle reflex (FPS was measured to assess both uninstructed fear acquisition and instructed fear expression. All participants were genotyped for polymorphisms located within regulatory regions of the corticotropin releasing hormone receptor 1 (CRHR1 - rs878886 and the serotonin transporter (5HTTLPR. These polymorphisms have previously been linked to panic disorder and anxious symptomology and personality, respectively. G-allele carriers of CRHR1 (rs878886 showed no acquisition of fear conditioned responses (FPS to the threat cue in the uninstructed phase, whereas fear acquisition was present in C/C homozygotes. Moreover, carrying the risk alleles of both rs878886 (G-allele and 5HTTLPR (short allele was associated with increased FPS to the threat context during this phase. After explicit instructions regarding the threat contingency were given, the cue FPS and context FPS normalized in all genotype groups. The present results indicate that genetic variability in the corticotropin-releasing hormone receptor 1, especially in interaction with the 5HTTLPR, is involved in the acquisition of fear in humans. This translates prior animal findings to the human realm.

  3. Neuroprotective Actions of Ghrelin and Growth Hormone Secretagogues

    Science.gov (United States)

    Frago, Laura M.; Baquedano, Eva; Argente, Jesús; Chowen, Julie A.

    2011-01-01

    The brain incorporates and coordinates information based on the hormonal environment, receiving information from peripheral tissues through the circulation. Although it was initially thought that hormones only acted on the hypothalamus to perform endocrine functions, it is now known that they in fact exert diverse actions on many different brain regions including the hypothalamus. Ghrelin is a gastric hormone that stimulates growth hormone secretion and food intake to regulate energy homeostasis and body weight by binding to its receptor, growth hormone secretagogues–GH secretagogue-receptor, which is most highly expressed in the pituitary and hypothalamus. In addition, ghrelin has effects on learning and memory, reward and motivation, anxiety, and depression, and could be a potential therapeutic agent in neurodegenerative disorders where excitotoxic neuronal cell death and inflammatory processes are involved. PMID:21994488

  4. Sex and Hormonal influences on Seizures and Epilepsy

    Science.gov (United States)

    Velíšková, Jana; DeSantis, Kara A.

    2012-01-01

    Epilepsy is the third most common chronic neurological disorder. Clinical and experimental evidence supports the role of sex and influence of sex hormones on seizures and epilepsy as well as alterations of the endocrine system and levels of sex hormones by epileptiform activity. Conversely, seizures are sensitive to changes in sex hormone levels, which in turn may affect the seizure-induced neuronal damage. The effects of reproductive hormones on neuronal excitability and seizure-induced damage are complex to contradictory and depend on different mechanisms, which have to be accounted for in data interpretation. Both estradiol and progesterone/allopregnanolone may have beneficial effects for patients with epilepsy. Individualized hormonal therapy should be considered as adjunctive treatment in patients with epilepsy to improve seizure control as well as quality of life. PMID:22504305

  5. Simultaneous radioimmunoassay for luteinizing hormone and prolactin

    International Nuclear Information System (INIS)

    Steele, M.K.; Deschepper, C.F.

    1985-01-01

    A combined radioimmunoassay (RIA) for the measurement of the anterior pituitary proteins luteinizing hormone (LH) and prolactin (PRL) is described and compared with individual RIAs for these hormones. The standard curves and the sample values for LH and PRL were identical when determined in a combined or in an individual RIA. This technique may prove useful to a number of laboratories where it is desirable to determine levels of more than one hormone in limited sample volumes

  6. Response of Indian growth hormone deficient children to growth hormone therapy: association with pituitary size.

    Science.gov (United States)

    Khadilkar, Vaman V; Prasad, Hemchand Krishna; Ekbote, Veena H; Rustagi, Vaishakhi T; Singh, Joshita; Chiplonkar, Shashi A; Khadilkar, Anuradha V

    2015-05-01

    To ascertain the impact of pituitary size as judged by Magnetic Resonance Imaging (MRI), on response to Growth Hormone (GH) therapy in GH deficient children. Thirty nine children (9.1 ± 2.7 y, 22 boys) with non-acquired GH deficiency (21 Isolated GH deficiency and 18 Combined pituitary hormone deficiency) were consecutively recruited and followed up for one year. Clinical, radiological (bone age and MRI) and biochemical parameters were studied. Children with hypoplastic pituitary (pituitary height deficit (height for age Z-score -6.0 vs. -5.0) and retardation of skeletal maturation (bone age chronological age ratio of 0.59 vs. 0.48) at baseline as compared to children with normal pituitary heights (p growth hormone deficient children with hypoplastic pituitary respond better to therapy with GH in short term.

  7. Psychological stress during exercise: cardiorespiratory and hormonal responses.

    Science.gov (United States)

    Webb, Heather E; Weldy, Michael L; Fabianke-Kadue, Emily C; Orndorff, G R; Kamimori, Gary H; Acevedo, Edmund O

    2008-12-01

    The purpose of this study was to examine the cardiorespiratory (CR) and stress hormone responses to a combined physical and mental stress. Eight participants (VO2(max) = 41.24 +/- 6.20 ml kg(-1) min(-1)) completed two experimental conditions, a treatment condition including a 37 min ride at 60% of VO2(max) with participants responding to a computerized mental challenge dual stress condition (DSC) and a control condition of the same duration and intensity without the mental challenge exercise alone condition (EAC). Significant interactions across time were found for CR responses, with heart rate, ventilation, and respiration rate demonstrating higher increases in the DSC. Additionally, norepinephrine was significantly greater in the DSC at the end of the combined challenge. Furthermore, cortisol area-under-the-curve (AUC) was also significantly elevated during the DSC. These results demonstrate that a mental challenge during exercise can exacerbate the stress response, including the release of hormones that have been linked to negative health consequences (cardiovascular, metabolic, autoimmune illnesses).

  8. Association of Hormonal Contraception With Suicide Attempts and Suicides

    DEFF Research Database (Denmark)

    Skovlund, Charlotte Wessel; Mørch, Lina Steinrud; Kessing, Lars Vedel

    2017-01-01

    OBJECTIVE: The purpose of this study was to assess the relative risk of suicide attempt and suicide in users of hormonal contraception. METHOD: The authors assessed associations between hormonal contraceptive use and suicide attempt and suicide in a nationwide prospective cohort study of all women...... in Denmark who had no psychiatric diagnoses, antidepressant use, or hormonal contraceptive use before age 15 and who turned 15 during the study period, which extended from 1996 through 2013. Nationwide registers provided individually updated information about use of hormonal contraception, suicide attempt......, suicide, and potential confounding variables. Psychiatric diagnoses or antidepressant use during the study period were considered potential mediators between hormonal contraceptive use and risk of suicide attempt. Adjusted hazard ratios for suicide attempt and suicide were estimated for users of hormonal...

  9. Asp330 and Tyr331 in the C-terminal cysteine-rich region of the luteinizing hormone receptor are key residues in hormone-induced receptor activation

    NARCIS (Netherlands)

    M.W.P. Bruysters (Martijn); M. Verhoef-Post (Miriam); A.P.N. Themmen (Axel)

    2008-01-01

    textabstractThe luteinizing hormone (LH) receptor plays an essential role in male and female gonadal function. Together with the follicle-stimulating hormone (FSH) and thyroid stimulating hormone (TSH) receptors, the LH receptor forms the family of glycoprotein hormone receptors. All glycoprotein

  10. A Hormonally Active Malignant Struma Ovarii

    Directory of Open Access Journals (Sweden)

    Carolina Lara

    2016-01-01

    Full Text Available Struma ovarii is a rare monodermal variant of ovarian teratoma that contains at least 50% thyroid tissue. Less than 8% of struma ovarii cases present with clinical and biochemical evidence of thyrotoxicosis due to ectopic production of thyroid hormone and only 5% undergo malignant transformation into a papillary thyroid carcinoma. Only isolated cases of hormonally active papillary thyroid carcinoma developing within a struma ovarii have been reported in the literature. We report the case of a 36-year-old woman who presented with clinical signs and symptoms of hyperthyroidism as well as a left adnexal mass, which proved to be a thyroid hormone-producing, malignant struma ovarii.

  11. Sensitivity of anterior pituitary hormones to graded levels of psychological stress.

    Science.gov (United States)

    Armario, A; Lopez-Calderón, A; Jolin, T; Castellanos, J M

    1986-08-04

    The effect of graded levels of stressor intensity on anterior pituitary hormones was studied in adult male rats. Corticosterone, considered as a reflection of ACTH release, and prolactin responses showed a good correlation with the intensity of the stressors. On the contrary, neither LH, GH nor TSH release showed a parallelism with the intensity of the stressors in spite of the fact that they clearly responded to all the stimuli. It appears that the hormones of the anterior pituitary might be divided into two groups: those whose response is sensitive to the levels of emotional arousal elicited by stress, and those displaying a clear but stereotyped response during stress. However, other alternative explanations might exist to justify the present results. The neural mechanisms underlying the two types of response are at present unknown. These data indicate that only the pituitary-adrenal axis and prolactin have some potential utilities as quantitative indices of emotional arousal elicited by currently applied stressors in the rat.

  12. Depression related to (neo)adjuvant hormonal therapy for prostate cancer

    International Nuclear Information System (INIS)

    Tol-Geerdink, Julia J. van; Leer, Jan Willem; Lin, Emile N.J.T. van; Schimmel, Erik C.; Stalmeier, Peep F.M.

    2011-01-01

    Background: We studied whether hormonal therapy, (neo)adjuvant to radiotherapy for localized prostate cancer, is related to an increase in depression and whether this is caused by the hormonal therapy itself or by the relatively poor prognosis of patients who get (neo)adjuvant hormonal therapy. Methods: Between 2002 and 2005, 288 patients, irradiated for prostate cancer (T1-3N0M0), were studied prospectively in two clinics. In one clinic almost all patients received (neo)adjuvant androgen deprivation (Bicalutamide + Gosereline). In a second clinic hormonal therapy was prescribed mainly for high risk patients. This allowed us to separate the effects of hormonal therapy and the patient's prognosis. Results: During the course of hormonal therapy, depression was significantly heightened by both hormone use (p < 0.001) and poor prognosis (p < 0.01). After completion of hormonal therapy, poor prognosis continued to affect the depression score (p < 0.01). The increase was, however, small. Conclusions: Depression was mildly increased in patients receiving hormonal therapy. The increase appeared to be related to both the hormone therapy itself and the high risk status of patients. High risk status, with the associated poor prognosis, had a more sustained effect on depression. The rise was statistically significant, but was too small, however, to bear clinical significance.

  13. Pharmacologically Induced Sex Hormone Fluctuation Effects on Resting-State Functional Connectivity in a Risk Model for Depression

    DEFF Research Database (Denmark)

    Fisher, Patrick MacDonald; Larsen, Camilla Borgsted; Beliveau, Vincent

    2017-01-01

    Women are at relatively greater lifetime risk for depression than men. This elevated risk in women is partly due to heightened risk during time periods characterized by marked fluctuations in sex hormones, including postpartum and perimenopausal periods. How sex hormone fluctuations contribute...... to heightened risk is not fully understood but may involve intrinsic functional connectivity. We induced a biphasic ovarian sex hormone fluctuation using the gonadotropin-releasing hormone agonist (GnRHa) goserelin to determine, with a randomized placebo-controlled design, intervention effects on or Gn....... Considering the GnRHa group only, the emergence of depressive symptoms following intervention was positively associated with amygdala-right temporal cortex and negatively associated with hippocampus-cingulate rs-FC. A test for mediation suggested that rs-FC changes in these networks marginally mediated...

  14. Electrochemical biosensors for hormone analyses.

    Science.gov (United States)

    Bahadır, Elif Burcu; Sezgintürk, Mustafa Kemal

    2015-06-15

    Electrochemical biosensors have a unique place in determination of hormones due to simplicity, sensitivity, portability and ease of operation. Unlike chromatographic techniques, electrochemical techniques used do not require pre-treatment. Electrochemical biosensors are based on amperometric, potentiometric, impedimetric, and conductometric principle. Amperometric technique is a commonly used one. Although electrochemical biosensors offer a great selectivity and sensitivity for early clinical analysis, the poor reproducible results, difficult regeneration steps remain primary challenges to the commercialization of these biosensors. This review summarizes electrochemical (amperometric, potentiometric, impedimetric and conductometric) biosensors for hormone detection for the first time in the literature. After a brief description of the hormones, the immobilization steps and analytical performance of these biosensors are summarized. Linear ranges, LODs, reproducibilities, regenerations of developed biosensors are compared. Future outlooks in this area are also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Cell-Penetrating Ability of Peptide Hormones: Key Role of Glycosaminoglycans Clustering

    Directory of Open Access Journals (Sweden)

    Armelle Tchoumi Neree

    2015-11-01

    Full Text Available Over the last two decades, the potential usage of cell-penetrating peptides (CPPs for the intracellular delivery of various molecules has prompted the identification of novel peptidic identities. However, cytotoxic effects and unpredicted immunological responses have often limited the use of various CPP sequences in the clinic. To overcome these issues, the usage of endogenous peptides appears as an appropriate alternative approach. The hormone pituitary adenylate-cyclase-activating polypeptide (PACAP38 has been recently identified as a novel and very efficient CPP. This 38-residue polycationic peptide is a member of the secretin/glucagon/growth hormone-releasing hormone (GHRH superfamily, with which PACAP38 shares high structural and conformational homologies. In this study, we evaluated the cell-penetrating ability of cationic peptide hormones in the context of the expression of cell surface glycosaminoglycans (GAGs. Our results indicated that among all peptides evaluated, PACAP38 was unique for its potent efficiency of cellular uptake. Interestingly, the abilities of the peptides to reach the intracellular space did not correlate with their binding affinities to sulfated GAGs, but rather to their capacity to clustered heparin in vitro. This study demonstrates that the uptake efficiency of a given cationic CPP does not necessarily correlate with its affinity to sulfated GAGs and that its ability to cluster GAGs should be considered for the identification of novel peptidic sequences with potent cellular penetrating properties.

  16. Growth hormone insensitivity syndrome: A sensitive approach

    Directory of Open Access Journals (Sweden)

    Soumik Goswami

    2012-01-01

    Full Text Available Patients with Growth Hormone Insensitivity have characteristic phenotypic features and severe short stature. The underlying basis are mutations in the growth hormone receptor gene which gives rise to a characteristic hormonal profile. Although a scoring system has been devised for the diagnosis of this disorder, it has not been indisputably validated. The massive expense incurred in the diagnosis and treatment of this condition with suboptimal therapeutic response necessitates a judicious approach in this regard in our country.

  17. Hormones and growth factors in breast cancer

    African Journals Online (AJOL)

    Herman-Giddens M. Condylomata acuminata in children and sexual abuse. Genitourin ..... accommodated reasonably easily in the outline of hormone action referred to ... tumours may still respond to hormone manipulation with another type of ...

  18. Factors that predict a positive response on gonadotropin-releasing hormone stimulation test for diagnosing central precocious puberty in girls

    Directory of Open Access Journals (Sweden)

    Junghwan Suh

    2013-12-01

    Full Text Available PurposeThe rapid increase in the incidence of precocious puberty in Korea has clinical and social significance. Gonadotropin-releasing hormone (GnRH stimulation test is required to diagnose central precocious puberty (CPP, however this test is expensive and time-consuming. This study aimed to identify factors that can predict a positive response to the GnRH stimulation test.MethodsClinical and laboratory parameters, including basal serum luteinizing hormone (LH, follicle-stimulating hormone (FSH, and estradiol (E2, were measured in 540 girls with clinical signs of CPP.ResultsTwo hundred twenty-nine of 540 girls with suspected CPP had a peak serum LH level higher than 5 IU/L (the CPP group. The CPP group had advanced bone age (P<0.001, accelerated yearly growth rate (P<0.001, increased basal levels of LH (P=0.02, FSH (P<0.001, E2 (P=0.001, and insulin-like growth factor-I levels (P<0.001 compared to the non-CPP group. In contrast, body weight (P<0.001 and body mass index (P<0.001 were lower in the CPP group. Although basal LH was significantly elevated in the CPP group compared to the non-CPP group, there was considerable overlap between the 2 groups. Cutoff values of basal LH (0.22 IU/L detected CPP with 87.8% sensitivity and 20.9% specificity.ConclusionNo single parameter can predict a positive response on the GnRH stimulation test with both high sensitivity and specificity. Therefore, multiple factors should be considered in evaluation of sexual precocity when deciding the timing of the GnRH stimulation test.

  19. Metabolism of labeled parathyroid hormone. V. Collected biological studies

    Energy Technology Data Exchange (ETDEWEB)

    Neuman, W F; Neuman, M W; Lane, K; Miller, L; Sammon, P J

    1975-01-01

    Biologically active /sup 125/I-labeled parathyroid hormone (/sup 125/I-PTH) was used in a series of studies in dogs and chickens designed to confirm and augment earlier studies in rats. As in rats, a three exponential equation was required to describe disappearance of /sup 125/I-PTH from the blood in the dog. The first two ''half-lives'' (1.8 and 7 min) accounted for the bulk of the dose. Also as in rats, deposition of apparently intact hormone took place rapidly in kidney, liver and bone in both the dog and the chicken. Degradation occurred very rapidly in all three target organs. Three labeled hormones of different biological activities were compared in the rat. Inactive, oxidized hormone was rejected by the liver but showed markedly increased deposition in kidney and the higher the purity of the hormone the higher was its uptake by liver. Exploration of a wide range of dosages revealed few effects on distribution (smaller depositon in liver and kidney at highest dosages, 65 ..mu..g/rat). Fresh sera did not degrade hormone rapidly or extensively. There was no deposition of hormone in intestinal mucosa, marrow, and red cells. Nephrectomy increased deposition in liver and bone. Finally, the perfused liver was capable of extensive degradation of the hormone.

  20. Phosphorylation of chicken growth hormone

    International Nuclear Information System (INIS)

    Aramburo, C.; Montiel, J.L.; Donoghue, D.; Scanes, C.G.; Berghman, L.R.

    1990-01-01

    The possibility that chicken growth hormone (cGH) can be phosphorylated has been examined. Both native and biosynthetic cGH were phosphorylated by cAMP-dependent protein kinase (and γ- 32 P-ATP). The extent of phosphorylation was however less than that observed with ovine prolactin. Under the conditions employed, glycosylated cGH was not phosphorylated. Chicken anterior pituitary cells in primary culture were incubated in the presence of 32 P-phosphate. Radioactive phosphate was incorporated in vitro into the fraction immunoprecipitable with antisera against cGH. Incorporation was increased with cell number and time of incubation. The presence of GH releasing factor (GRF) increased the release of 32 P-phosphate labeled immunoprecipitable GH into the incubation media but not content of immunoprecipitable GH in the cells. The molecular weight of the phosphorylated immunoreactive cGH in the cells corresponded to cGH dimer