WorldWideScience

Sample records for leukocyte cell adhesion

  1. Allogeneic hematopoietic stem-cell transplantation for leukocyte adhesion deficiency

    DEFF Research Database (Denmark)

    Qasim, Waseem; Cavazzana-Calvo, Marina; Davies, E Graham

    2009-01-01

    OBJECTIVES: Leukocyte adhesion deficiency is a rare primary immune disorder caused by defects of the CD18 beta-integrin molecule on immune cells. The condition usually presents in early infancy and is characterized by deep tissue infections, leukocytosis with impaired formation of pus, and delayed...... of leukocyte adhesion deficiency who underwent hematopoietic stem-cell transplantation between 1993 and 2007 was retrospectively analyzed. Data were collected by the registries of the European Society for Immunodeficiencies/European Group for Blood and Marrow Transplantation, and the Center for International......, with full donor engraftment in 17 cases, mixed multilineage chimerism in 7 patients, and mononuclear cell-restricted chimerism in an additional 3 cases. CONCLUSIONS: Hematopoietic stem-cell transplantation offers long-term benefit in leukocyte adhesion deficiency and should be considered as an early...

  2. Leukocyte adhesion deficiencies

    NARCIS (Netherlands)

    van de Vijver, Edith; van den Berg, Timo K.; Kuijpers, Taco W.

    2013-01-01

    During inflammation, leukocytes play a key role in maintaining tissue homeostasis through elimination of pathogens and removal of damaged tissue. Leukocytes migrate to the site of inflammation by crawling over and through the blood vessel wall, into the tissue. Leukocyte adhesion deficiencies (ie,

  3. Glycocalyx Degradation Induces a Proinflammatory Phenotype and Increased Leukocyte Adhesion in Cultured Endothelial Cells under Flow.

    Directory of Open Access Journals (Sweden)

    Karli K McDonald

    Full Text Available Leukocyte adhesion to the endothelium is an early step in the pathogenesis of atherosclerosis. Effective adhesion requires the binding of leukocytes to their cognate receptors on the surface of endothelial cells. The glycocalyx covers the surface of endothelial cells and is important in the mechanotransduction of shear stress. This study aimed to identify the molecular mechanisms underlying the role of the glycocalyx in leukocyte adhesion under flow. We performed experiments using 3-D cell culture models, exposing human abdominal aortic endothelial cells to steady laminar shear stress (10 dynes/cm2 for 24 hours. We found that with the enzymatic degradation of the glycocalyx, endothelial cells developed a proinflammatory phenotype when exposed to uniform steady shear stress leading to an increase in leukocyte adhesion. Our results show an up-regulation of ICAM-1 with degradation compared to non-degraded controls (3-fold increase, p<0.05 and we attribute this effect to a de-regulation in NF-κB activity in response to flow. These results suggest that the glycocalyx is not solely a physical barrier to adhesion but rather plays an important role in governing the phenotype of endothelial cells, a key determinant in leukocyte adhesion. We provide evidence for how the destabilization of this structure may be an early and defining feature in the initiation of atherosclerosis.

  4. Passive acquisition of leukocyte proteins is associated with changes in phosphorylation of cellular proteins and cell-cell adhesion properties.

    OpenAIRE

    Tabibzadeh, S. S.; Kong, Q. F.; Kapur, S.

    1994-01-01

    In this report, we show that interaction of neoplastic epithelial cells with vesicles derived from leukocytes results in passive acquisition by tumor cells of a diverse group of leukocyte proteins. Vesicles shed from leukocytes were heterogeneous and exhibited the specific proteins expressed on leukocyte subsets. Accordingly, epithelial cells differentially acquired leukocyte proteins associated with vesicles. Ultrastructural localization demonstrated that acquired proteins were associated wi...

  5. Mechanisms of transcriptional regulation and prognostic significance of activated leukocyte cell adhesion molecule in cancer

    Directory of Open Access Journals (Sweden)

    Chen Hairu

    2010-10-01

    Full Text Available Abstract Background Activated leukocyte cell adhesion molecule (ALCAM is implicated in the prognosis of multiple cancers with low level expression associated with metastasis and early death in breast cancer. Despite this significance, mechanisms that regulate ALCAM gene expression and ALCAM's role in adhesion of pre-metastatic circulating tumor cells have not been defined. We studied ALCAM expression in 20 tumor cell lines by real-time PCR, western blot and immunochemistry. Epigenetic alterations of the ALCAM promoter were assessed using methylation-specific PCR and bisulfite sequencing. ALCAM's role in adhesion of tumor cells to the vascular wall was studied in isolated perfused lungs. Results A common site for transcription initiation of the ALCAM gene was identified and the ALCAM promoter sequenced. The promoter contains multiple cis-active elements including a functional p65 NF-κB motif, and it harbors an extensive array of CpG residues highly methylated exclusively in ALCAM-negative tumor cells. These CpG residues were modestly demethylated after 5-aza-2-deoxycytidine treatment. Restoration of high-level ALCAM expression using an ALCAM cDNA increased clustering of MDA-MB-435 tumor cells perfused through the pulmonary vasculature of ventilated rat lungs. Anti-ALCAM antibodies reduced the number of intravascular tumor cell clusters. Conclusion Our data suggests that loss of ALCAM expression, due in part to DNA methylation of extensive segments of the promoter, significantly impairs the ability of circulating tumor cells to adhere to each other, and may therefore promote metastasis. These findings offer insight into the mechanisms for down-regulation of ALCAM gene expression in tumor cells, and for the positive prognostic value of high-level ALCAM in breast cancer.

  6. Evaluation of Activated Leukocyte Cell Adhesion Molecule as a Biomarker for Breast Cancer in Egyptian Patients

    International Nuclear Information System (INIS)

    El-Shepiny, M.S.E.M.

    2013-01-01

    In this study, serum activated leukocyte cell adhesion molecule (ALCAM) levels were evaluated in 41 primary breast cancer patients and 20 healthy females, and its diagnostic value was quantified, and compared with those of carbohydrate antigen 15-3 (CA15-3) and carcinoembryonic antigen (CEA). Also, its prognostic value was examined. Serum ALCAM levels were also evaluated before and after surgical treatment. Serum levels of ALCAM and CA 15-3 were significantly higher in breast cancer patients than healthy controls (P=0.002, P=0.043 respectively), but the difference in serum CEA levels did not reach statistical significance. Serum ALCAM levels had significant area under the curve (AUC) (P=0.002), but serum levels of CA 15-3 and CEA had nonsignificant AUCs, and various combinations between them did not result in any improvement. A significant association was found between serum levels of ALCAM and CEA with age and menopausal status in breast cancer patients. Non-significant difference was shown in serum levels of ALCAM, CA 15-3 and CEA before and after surgical treatment. In conclusion, this study suggests that serum ALCAM may represent a novel diagnostic bio marker for breast cancer

  7. Role of flexural stiffness of leukocyte microvilli in adhesion dynamics

    Science.gov (United States)

    Wu, Tai-Hsien; Qi, Dewei

    2018-03-01

    Previous work reported that microvillus deformation has an important influence on dynamics of cell adhesion. However, the existing studies were limited to the extensional deformation of microvilli and did not consider the effects of their bending deformation on cell adhesion. This Rapid Communication investigates the effects of flexural stiffness of microvilli on the rolling process related to adhesion of leukocytes by using a lattice-Boltzmann lattice-spring method (LLM) combined with adhesive dynamics (AD) simulations. The simulation results reveal that the flexural stiffness of microvilli and their bending deformation have a profound effect on rolling velocity and adhesive forces. As the flexural stiffness of the microvilli decreases, their bending angles increase, resulting in an increase in the number of receptor-ligand bonds and adhesive bonding force and a decrease in the rolling velocity of leukocytes. The effects of flexural stiffness on deformation and adhesion represent crucial factors involved in cell adhesion.

  8. Biologic role of activated leukocyte cell adhesion molecule overexpression in breast cancer cell lines and clinical tumor tissue.

    Science.gov (United States)

    Hein, Sibyll; Müller, Volkmar; Köhler, Nadine; Wikman, Harriet; Krenkel, Sylke; Streichert, Thomas; Schweizer, Michaela; Riethdorf, Sabine; Assmann, Volker; Ihnen, Maike; Beck, Katrin; Issa, Rana; Jänicke, Fritz; Pantel, Klaus; Milde-Langosch, Karin

    2011-09-01

    The activated leukocyte cell adhesion molecule (ALCAM) is overexpressed in many mammary tumors, but controversial results about its role and prognostic impact in breast cancer have been reported. Therefore, we evaluated the biologic effects of ALCAM expression in two breast cancer cell lines and a larger cohort of mammary carcinomas. By stable transfections, MCF7 cells with ALCAM overexpression and MDA-MB231 cells with reduced ALCAM levels were generated and analyzed in functional assays and cDNA microarrays. In addition, an immunohistochemical study on 347 patients with breast cancer with long-term follow-up and analysis of disseminated tumor cells (DTCs) was performed. In both cell lines, high ALCAM expression was associated with reduced cell motility. In addition, ALCAM silencing in MDA-MB231 cells resulted in lower invasive potential, whereas high ALCAM expression was associated with increased apoptosis in both cell lines. Among genes which were differentially expressed in clones with altered ALCAM expression, there was an overlap of 15 genes between both cell lines, among them cathepsin D, keratin 7, gelsolin, and ets2 whose deregulation was validated by western blot analysis. In MDA-MB231 cells, we observed a correlation with VEGF expression which was validated by enzyme-linked immuno sorbent assay (ELISA). Our IHC results on primary breast carcinomas showed that ALCAM expression was associated with an estrogen receptor-positive phenotype. In addition, strong ALCAM immunostaining correlated with nodal involvement and the presence of tumor cells in bone marrow. By Kaplan-Meier analysis, strong ALCAM expression in ductal carcinomas correlated with shorter recurrence-free intervals (P=0.048) and overall survival (OAS, P=0.003). Our results indicate that the biologic role of ALCAM in breast cancer is complex, but overexpression might be relevant for outcome in ductal carcinomas.

  9. Activated leukocyte cell adhesion molecule expression in oral squamus cell carcinoma and its association with clinical and histopathologic parameters

    Directory of Open Access Journals (Sweden)

    Omid Mirmohammadkhani

    2013-03-01

    Full Text Available Introduction: The aim of the present research was to study the expression of activated-leukocyte cell adhesion molecule (ALCAM in oral squamus cell carcinoma (OSCC and its association with histopathological and prognostic parameters.Materials and Methods: In a cross-sectional study, samples of OSCC tumors from tongue and oral mucosa available in Institute of Cancer of Imam Hospital in Tehran were simultaneously studied in term of tumor size, lymph node metastasis, and differentiation and ALCAM expression. Analysis was performed using multiple logistic regression models. Results: 39 samples of tongue and 19 samples of oral medusa belonged to 35 men and 23 women with mean (Standard deviation of age 58(15.69 years of old were studied. More than half of lesions had good differentiation and lymph node metastasis. From all, 42 (72.4% of samples were positive of ALCAM. Odds of ALCAM total expression in tumors with size of at least 20 mm was more (OR=3.9, p=0.001. Odds ratios for membranous and cytoplasmic expression of ALCAM in positive samples of lymph node metastasis (OR=0.4, p=0.03 and in patients with age 40 and more (OR=2.7, p=0.002 were respectively significant.Conclusion: The study confirmed positive relationship between ALCAM expression and tumor size as while as ambiguity of ALCAM role as a "Paradox" indicator. Next researches may make the role of ALCAM in different phases of tumor developing clearer

  10. Expression Levels of Activated Leukocyte Cell Adhesion Molecule (ALCAM/CD166 in Primary Breast Carcinoma and Distant Breast Cancer Metastases

    Directory of Open Access Journals (Sweden)

    M. Ihnen

    2010-01-01

    Full Text Available Introduction: Activated Leukocyte Cell Adhesion Molecule (ALCAM/CD166 gained increasing attention regarding tumorprogression and metastatic spread in breast cancer. The aim of this study was to examine ALCAM expression levels in primary breast cancer and distant metastases of the same patient within 29 autopsy cases to better understand the underlying mechanisms of metastases and the role of adhesion molecules in this process.

  11. West Nile virus-induced cell adhesion molecules on human brain microvascular endothelial cells regulate leukocyte adhesion and modulate permeability of the in vitro blood-brain barrier model.

    Directory of Open Access Journals (Sweden)

    Kelsey Roe

    Full Text Available Characterizing the mechanisms by which West Nile virus (WNV causes blood-brain barrier (BBB disruption, leukocyte infiltration into the brain and neuroinflammation is important to understand the pathogenesis of WNV encephalitis. Here, we examined the role of endothelial cell adhesion molecules (CAMs in mediating the adhesion and transendothelial migration of leukocytes across human brain microvascular endothelial cells (HBMVE. Infection with WNV (NY99 strain significantly induced ICAM-1, VCAM-1, and E-selectin in human endothelial cells and infected mice brain, although the levels of their ligands on leukocytes (VLA-4, LFA-1and MAC-1 did not alter. The permeability of the in vitro BBB model increased dramatically following the transmigration of monocytes and lymphocytes across the models infected with WNV, which was reversed in the presence of a cocktail of blocking antibodies against ICAM-1, VCAM-1, and E-selectin. Further, WNV infection of HBMVE significantly increased leukocyte adhesion to the HBMVE monolayer and transmigration across the infected BBB model. The blockade of these CAMs reduced the adhesion and transmigration of leukocytes across the infected BBB model. Further, comparison of infection with highly neuroinvasive NY99 and non-lethal (Eg101 strain of WNV demonstrated similar level of virus replication and fold-increase of CAMs in HBMVE cells suggesting that the non-neuropathogenic response of Eg101 is not because of its inability to infect HBMVE cells. Collectively, these results suggest that increased expression of specific CAMs is a pathological event associated with WNV infection and may contribute to leukocyte infiltration and BBB disruption in vivo. Our data further implicate that strategies to block CAMs to reduce BBB disruption may limit neuroinflammation and virus-CNS entry via 'Trojan horse' route, and improve WNV disease outcome.

  12. Cerebrospinal fluid and plasma concentration of soluble intercellular adhesion molecule1, vascular cell adhesion molecule1 and endothelial leukocyte adhesion molecule in patients with acute ischemic b

    Directory of Open Access Journals (Sweden)

    Selaković Vesna M.

    2003-01-01

    Full Text Available Background. Leukocyte migration into the ischemic area is a complex process controlled by adhesion molecules (AM in leukocytes and endothelium, by migratory capacity of leukocytes and the presence of hemotaxic agents in the tissue. In this research it was supposed that in the blood and cerebrospinal fluid (CSF of patients in the acute phase of ischemic brain disease (IBD there were relevant changes in the concentration of soluble AM (sICAM-1 sVCAM-1 and sE-selectin, that could have been the indicators of the intensity of damaging processes in central nervous system (CNS. Methods. The study included 45 IBD patients, 15 with transient ischemic attack (TIA 15 with reversible ischemic attack (RIA, and 15 with brain infarction (BI of both sexes, mean age 66±7. Control group consisted of 15 patients with radicular lesions of discal origin, subjected to diagnostic radiculography without the signs of interruption in the passage of CSF. Changes of selected biochemical parameters were determined in all patients in frame 72 hours since the occurence of an ischemic episode. Concentrations of soluble AM were determined in plasma and CSF by ELISA. Total number of leukocytes (TNL in peripheral blood was determined by hematological analyzer. Results. The results showed that during the first 72 hrs of IBD significant increases occured in TNL and that the increase was progressive compared to the severeness of the disease. Significant increase of soluble AM concentration was shown in plasma of IBD patients. The increase was highest in BI somewhat lower in RIA and the lowest in TIA patients compared to the control. In CSF concentrations of sICAM-1, sVCAM-1 and sE-selectin demonstrated similar increasing trend as in plasma. Conclusion. TNL, as well as the soluble AM concentrations in plasma and CSF, were increased during the acute IBD phase and progressive in relation to the severeness of the disease, so that they might have been the indicators of CNS inflammatory

  13. LANGERHANS CELL HISTIOCYTOSIS - EXPRESSION OF LEUKOCYTE CELLULAR ADHESION MOLECULES SUGGESTS ABNORMAL HOMING AND DIFFERENTIATION

    NARCIS (Netherlands)

    DEGRAAF, JH; TAMMINGA, RYJ; KAMPS, WA; TIMENS, W

    Langerhans' cell histiocytosis (LCH) is characterized by an accumulation of cells with a Langerhans' cell (LC) phenotype. Most patients present with solitary skin or bone lesions, but multi-organ lesions may appear Twenty-two LCH-tissue sections from 13 children and adolescents, with lesions at

  14. Serum activated leukocyte cell adhesion molecule and intercellular adhesion molecule-1 in patients with gastric cancer: Can they be used as biomarkers?

    Science.gov (United States)

    Erturk, Kayhan; Tastekin, Didem; Bilgin, Elif; Serilmez, Murat; Bozbey, Hamza Ugur; Sakar, Burak

    2016-02-01

    Cellular adhesion molecules might be used as markers in diagnosis and prognosis in some types of malignant tumors. The purpose of this study was to determine the clinical significance of the serum levels of activated leukocyte cell adhesion molecule-1 (ALCAM) and intercellular adhesion molecule-1 (ICAM-1) in gastric cancer (GC) patients. Fifty-eight GC patients and 20 age- and sex-matched healthy controls were enrolled into this study. Pretreatment serum markers were determined by the solid-phase sandwich enzyme-linked immunosorbent assay (ELISA). The median age at diagnosis was 59.5 years (range 32-82 years). Tumor localizations of the majority of the patients were antrum (n=42, 72.4%) and tumor histopathologies of the majority of the patients were diffuse (n=43, 74.1%). The majority of the patients had stage IV disease (n=41, 70.7%). Thirty six (62.1%) patients had lymph node involvement. The median follow-up time was 66 months (range 1-97.2 months). At the end of the observation period, 26 patients (44.8%) were dead. The median survival for all patients was 21.4±5 months (%95 CI, 11.5-31.3). The 1-year survival rates were 66.2%. The baseline serum ALCAM levels of the patients were significantly higher than those of the controls (p=0.001). There was no significant difference in the serum levels of ICAM-1 between the patients and controls (p=0.232). No significant correlation was detected between the levels of the serum markers and other clinical parameters (p>0.05). Tumor localization (p=0.03), histopathology (p=0.05), and response to chemotherapy (p=0.003) had prognostic factors on survival. Neither serum ALCAM levels nor serum ICAM-1 levels were identified to have a prognostic role on overall survival (ICAM-1 p=0.6, ALCAM p=0.25). In conclusion, serum levels of ALCAM were found to have diagnostic value in GC patients. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. CD97-decay-accelerating factor interaction is not involved in leukocyte adhesion to endothelial cells

    NARCIS (Netherlands)

    Boulday, Gwénola; Hamann, Jörg; Soulillou, Jean-Paul; Charreau, Béatrice

    2002-01-01

    Background. Effective improvement in xenograft survival is achieved using transplants from transgenic pigs expressing human complement (C) regulatory proteins, including decay-accelerating factor (DAF), CD59, and CD46 on endothelial cells (ECs). The aim of this study was to investigate whether human

  16. CD44 antibody stimulates adhesion of peripheral blood T cells to keratinocytes through the leukocyte function-associated antigen-1/intercellular adhesion molecule-1 pathway

    NARCIS (Netherlands)

    Bruynzeel, I.; Koopman, G.; van der Raaij, L. M.; Pals, S. T.; Willemze, R.

    1993-01-01

    Close contact between T lymphocytes and keratinocytes is an important feature of many inflammatory skin diseases. In vitro studies showed that stimulation of keratinocytes with interferon-gamma or tumor necrosis factor-alpha and of T cells with phorbol esters results in a leukocyte

  17. Identifying the rules of engagement enabling leukocyte rolling, activation, and adhesion.

    Directory of Open Access Journals (Sweden)

    Jonathan Tang

    2010-02-01

    Full Text Available The LFA-1 integrin plays a pivotal role in sustained leukocyte adhesion to the endothelial surface, which is a precondition for leukocyte recruitment into inflammation sites. Strong correlative evidence implicates LFA-1 clustering as being essential for sustained adhesion, and it may also facilitate rebinding events with its ligand ICAM-1. We cannot challenge those hypotheses directly because it is infeasible to measure either process during leukocyte adhesion following rolling. The alternative approach undertaken was to challenge the hypothesized mechanisms by experimenting on validated, working counterparts: simulations in which diffusible, LFA1 objects on the surfaces of quasi-autonomous leukocytes interact with simulated, diffusible, ICAM1 objects on endothelial surfaces during simulated adhesion following rolling. We used object-oriented, agent-based methods to build and execute multi-level, multi-attribute analogues of leukocytes and endothelial surfaces. Validation was achieved across different experimental conditions, in vitro, ex vivo, and in vivo, at both the individual cell and population levels. Because those mechanisms exhibit all of the characteristics of biological mechanisms, they can stand as a concrete, working theory about detailed events occurring at the leukocyte-surface interface during leukocyte rolling and adhesion experiments. We challenged mechanistic hypotheses by conducting experiments in which the consequences of multiple mechanistic events were tracked. We quantified rebinding events between individual components under different conditions, and the role of LFA1 clustering in sustaining leukocyte-surface adhesion and in improving adhesion efficiency. Early during simulations ICAM1 rebinding (to LFA1 but not LFA1 rebinding (to ICAM1 was enhanced by clustering. Later, clustering caused both types of rebinding events to increase. We discovered that clustering was not necessary to achieve adhesion as long as LFA1 and

  18. Human T-Lymphotropic Virus Type 1-Induced Overexpression of Activated Leukocyte Cell Adhesion Molecule (ALCAM) Facilitates Trafficking of Infected Lymphocytes through the Blood-Brain Barrier.

    Science.gov (United States)

    Curis, Céline; Percher, Florent; Jeannin, Patricia; Montange, Thomas; Chevalier, Sébastien A; Seilhean, Danielle; Cartier, Luis; Couraud, Pierre-Olivier; Gout, Olivier; Gessain, Antoine; Ceccaldi, Pierre-Emmanuel; Afonso, Philippe V

    2016-08-15

    Human T-lymphotropic virus type 1 (HTLV-1) is the etiological agent of a slowly progressive neurodegenerative disease, HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). This disease develops upon infiltration of HTLV-1-infected lymphocytes into the central nervous system, mostly the thoracic spinal cord. The central nervous system is normally protected by a physiological structure called the blood-brain barrier (BBB), which consists primarily of a continuous endothelium with tight junctions. In this study, we investigated the role of activated leukocyte cell adhesion molecule (ALCAM/CD166), a member of the immunoglobulin superfamily, in the crossing of the BBB by HTLV-1-infected lymphocytes. We demonstrated that ALCAM is overexpressed on the surface of HTLV-1-infected lymphocytes, both in chronically infected cell lines and in primary infected CD4(+) T lymphocytes. ALCAM overexpression results from the activation of the canonical NF-κB pathway by the viral transactivator Tax. In contrast, staining of spinal cord sections of HAM/TSP patients showed that ALCAM expression is not altered on the BBB endothelium in the context of HTLV-1 infection. ALCAM blockade or downregulation of ALCAM levels significantly reduced the migration of HTLV-1-infected lymphocytes across a monolayer of human BBB endothelial cells. This study suggests a potential role for ALCAM in HAM/TSP pathogenesis. Human T-lymphotropic virus type 1 (HTLV-1) is the etiological agent of a slowly progressive neurodegenerative disease, HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). This disease is the consequence of the infiltration of HTLV-1-infected lymphocytes into the central nervous system (CNS), mostly the thoracic spinal cord. The CNS is normally protected by a physiological structure called the blood-brain barrier (BBB), which consists primarily of a continuous endothelium with tight junctions. The mechanism of migration of lymphocytes into the CNS is unclear

  19. Osteomyelitis in leukocyte adhesion deficiency type 1 syndrome

    DEFF Research Database (Denmark)

    Jabbari Azad, Farahzad; Ardalan, Maryam; H.Rafati, Ali

    2010-01-01

    Leukocyte adhesion deficiency type 1 (LAD-1) is a rare, inherited immunodeficiency that affects one per million people yearly and usually presents with recurrent, indolent bacterial infections of the skin, mouth, and respiratory tract and impaired pus formation and wound healing. A 13-year-old girl...

  20. Dark chocolate consumption improves leukocyte adhesion factors and vascular function in overweight men.

    Science.gov (United States)

    Esser, Diederik; Mars, Monica; Oosterink, Els; Stalmach, Angelique; Müller, Michael; Afman, Lydia A

    2014-03-01

    Flavanol-enriched chocolate consumption increases endothelium-dependent vasodilation. Most research so far has focused on flow-mediated dilation (FMD) only; the effects on other factors relevant to endothelial health, such as inflammation and leukocyte adhesion, have hardly been addressed. We investigated whether consumption of regular dark chocolate also affects other markers of endothelial health, and whether chocolate enrichment with flavanols has additional benefits. In a randomized double-blind crossover study, the effects of acute and of 4 wk daily consumption of high flavanol chocolate (HFC) and normal flavanol chocolate (NFC) on FMD, augmentation index (AIX), leukocyte count, plasma cytokines, and leukocyte cell surface molecules in overweight men (age 45-70 yr) were investigated. Sensory profiles and motivation scores to eat chocolate were also collected. Findings showed that a 4 wk chocolate intake increased FMD by 1%, which was paralleled by a decreased AIX of 1%, decreased leukocyte cell count, decreased plasma sICAM1 and sICAM3, and decreased leukocyte adhesion marker expression (Peffect), with no difference between HFC and NFC consumption. Flavanol enrichment did affect taste and negatively affected motivation to consume chocolate. This study provides new insights on how chocolate affects endothelial health by demonstrating that chocolate consumption, besides improving vascular function, also lowers the adherence capacity of leukocytes in the circulation.

  1. The recognition of adsorbed and denatured proteins of different topographies by β2 integrins and effects on leukocyte adhesion and activation

    DEFF Research Database (Denmark)

    Brevig, T.; Holst, B.; Ademovic, Z.

    2005-01-01

    Leukocyte beta(2) integrins Mac-1 and p150,95 are promiscuous cell-surface receptors that recognise and mediate cell adhesion to a variety of adsorbed and denatured proteins. We used albumin as a model protein to study whether leukocyte adhesion and activation depended on the nm-scale topography...

  2. Leukocyte Adhesion Deficiency: Report of Two Family Related Newborn Infants

    Directory of Open Access Journals (Sweden)

    Zohreh Kavehmanesh

    2010-07-01

    Full Text Available "nLeukocyte adhesion deficiency type 1 (LAD 1 is an autosomal recessive hereditary disorder resulting from deficiency of CD18, characterized by recurrent bacterial infections. We report two consanguineous patients with Leukocyte adhesion deficiency type 1( LAD1. These two infant boy patients were referred to us, within a short period of time, with the complaints of recurrent infections at the age of 38 and 75 days -old, respectively. Parents of two patients were first cousins and their grandmothers also were first cousins. The history of delayed umbilical cord separation was shown in both patients. Patient 1 had history of omphalitis, conjunctivitis, skin lesion of groin area and abscess formation of vaccination site, and had infective wound of eye-lid at the last admission. Patient 2 had history of omphalitis and soft tissue infection of right wrist at the last admission. Laboratory findings showed marked leukocytosis and low CD18 levels (6.6% in Patient 1 and 2.4 % in Patient 2. In Patient 1 recurrent infections were treated with antibiotic regimens and received bone marrow transplantation but Patient 2 died because of septicemia, generalized edema, ascites and progression to acute renal failure at 4 months of age. Due to considerable rate of consanguineous marriages in parents of Leukocyte adhesion deficiency patients, sequence analysis especially for prenatal diagnosis in subsequent pregnancies and genetic counseling is recommended.

  3. Increased Expression of Intercellular Adhesion Molecule-1, Vascular Cellular Adhesion Molecule-1 and Leukocyte Common Antigen in Diabetic Rat Retina

    Institute of Scientific and Technical Information of China (English)

    Ningyan Bai; Shibo Tang; Jing Ma; Yan Luo; Shaofeng Lin

    2003-01-01

    Purpose: To understand the expression and distribution of intercellular adhesion molecule- 1(ICAM- 1),vascular cellular adhesion molecule- 1 (VCAM- 1)and CD45 (Leukocyte Common Antigen) in the control nondiabetic and various courses of diabetic rats retina. To explore the role of adhesion molecules (Ams) and the adhesion of leukocytes to vascular endothelial cells via Ams in diabetic retinopathy(DR).Methods: Sixty healthy adult male Wistar rats were randomly divided into diabetic groups(induced by Streptozotocin, STZ) and normal control groups. Rats in these two groups were further randomly divided into 3, 7, 14, 30, 90 and 180 days-group,including 5 rats respectively. The immunohistochemical studies of ICAM-1, VCAM-1 and CD45 were carried out in the retinal digest preparations or retinal paraffin sections, and the results were analyzed qualitatively, semi-quantitatively.Results: No positive reaction of VCAM-1 was found, and weak reactions of ICAM-1,CD45 were found in nondiabetic rats retina. The difference of 6 control groups had no statistical significance(P > 0.05). The increased ICAM-1 and CD45 staining pattern were detectable 3 days after diabetes induction, and a few VCAM-1 positive cells were observed in the retinal blood capillaries. The difference of diabetes and control is significant( P < 0.05).Following the course, the expressions of ICAM-1, VCAM-1 and CD45 were increasingly enhanced, reaching a peak at the 14th day.Conclusion: Increased expression of ICAM-1, VCAM-1 and leukocytes adhering and stacking in retinal capillaries are the very early events in DR. Coherence of expression and distribution of the three further accounts for it is the key point for the onset of DR that Ams mediates leukocytes adhesion and endothelial cell injury.

  4. Inhibition of nitric oxide synthesis enhances leukocyte rolling and adhesion in human microvasculature

    Directory of Open Access Journals (Sweden)

    Hossain Mokarram

    2012-07-01

    Full Text Available Abstract Background Nitric oxide (NO is a multifunctional signaling molecule that regulates important cellular events in inflammation including leukocyte recruitment. Previous studies have shown that pharmacological inhibition of NO synthesis induces leukocyte recruitment in various in vitro and animal models. However, it is not known whether NO modulation has similar effects on leukocyte-endothelial cell interactions within the human microvasculature. The present study explored the effect of systemic L-NAME treatment on leukocyte recruitment in the SCID-hu mouse model. Methods Human skin xenografts were transplanted in SCID mice to study human leukocyte dynamics in human vasculature. Early events of human leukocyte recruitment in human vasculature were studied using intravital microscopy. NO synthesis was pharmacologically inhibited using NG-nitro-L-arginine methyl ester (L-NAME. Immunohistochemical analysis was performed to elucidate E-selectin expression in human xenograft skin. Human neutrophil-endothelial cell interactions were also studied in an in vitro flow chamber assay system. P- and E-selectin expression on cultured human umbilical vein endothelial cells (HUVECs was measured using ELISA. Platelet-activating factor (PAF synthesis was detected using a TLC-based assay. Results L-NAME treatment significantly enhanced the rolling and adhesion of human leukocytes to the human vasculature. Functional blocking of P- and E-selectins significantly inhibited rolling but not adhesion induced by inhibition of NO synthesis. Systemic L-NAME treatment enhanced E-selectin expression in human xenograft skin. L-NAME treatment significantly enhanced P- and E-selectin expression on HUVECs. L-NAME treatment did not significantly modify neutrophil rolling or adhesion to HUVECs indicating that L-NAME−induced subtle P- and E-selectin expression was insufficient to elicit dynamic neutrophil-HUVEC interactions in vitro. Moreover, synthesis of endothelial

  5. Adhesion of leukocytes under oscillating stagnation point conditions: a numerical study.

    Science.gov (United States)

    Walker, P G; Alshorman, A A; Westwood, S; David, T

    2002-01-01

    Leukocyte recruitment from blood to the endothelium plays an important role in atherosclerotic plaque formation. Cells show a primary and secondary adhesive process with primary bonds responsible for capture and rolling and secondary bonds for arrest. Our objective was to investigate the role played by this process on the adhesion of leukocytes in complex flow. Cells were modelled as rigid spheres with spring like adhesion molecules which formed bonds with endothelial receptors. Models of bond kinetics and Newton's laws of motion were solved numerically to determine cell motion. Fluid force was obtained from the local shear rate obtained from a CFD simulation of the flow over a backward facing step.In stagnation point flow the shear rate near the stagnation point has a large gradient such that adherent cells in this region roll to a high shear region preventing permanent adhesion. This is enhanced if a small time dependent perturbation is imposed upon the stagnation point. For lower shear rates the cell rolling velocity may be such that secondary bonds have time to form. These bonds resist the lower fluid forces and consequently there is a relatively large permanent adhesion region.

  6. Effect of streptavidin-biotin on endothelial vasoregulation and leukocyte adhesion.

    Science.gov (United States)

    Chan, Bernard P; Reichert, William M; Truskey, George A

    2004-08-01

    The current study examines whether the adhesion promoting arginine-glycine-aspartate-streptavidin mutant (RGD-SA) also affects two important endothelial cell (EC) functions in vitro: vasoregulation and leukocyte adhesion. EC adherent to surfaces via fibronectin (Fn) or Fn plus RGD-SA were subjected to laminar shear flow and media samples were collected over a period of 4h to measure the concentration of nitric oxide (NO), prostacyclin (PGI(2)), and endothelin-1 (ET-1). Western blot analysis was used to quantify the levels of endothelial-derived nitric oxide synthase (eNOS) and cyclooxygenase II (COX II). In a separate set of experiments, fluorescent polymorphonuclear leukocyte (PMN) adhesion to EC was quantified for EC with and without exposure to flow preconditioning. When cell adhesion was supplemented with the SA-biotin system, flow-induced production of NO and PGI(2) increased significantly relative to cells adherent on Fn alone. Previous exposure of EC to shear flow also significantly decreased PMN attachment to SA-biotin supplemented EC, but only after 2h of exposure to shear flow. The observed decrease in PMN-EC adhesion was negated by NG-nitro-L-arginine methyl ester (L-NAME), an antagonist of NO synthesis, but not by indomethacin, an inhibitor to PGI(2) synthesis, indicating the induced effect of PMN-EC interaction is primarily NO-dependent. Results from this study suggest that the use of SA-biotin to supplement EC adhesion encourages vasodilation and PMN adhesion in vitro under physiological shear-stress conditions. We postulate that the presence of SA-biotin more efficiently transmits the shear-stress signal and amplifies the downstream events including the NO and PGI(2) release and leukocyte-EC inhibition. These results may have ramifications for reducing thrombus-induced vascular graft failure.

  7. Endothelial adhesion molecules and leukocyte integrins in preeclamptic patients.

    Science.gov (United States)

    Haller, H; Ziegler, E M; Homuth, V; Drab, M; Eichhorn, J; Nagy, Z; Busjahn, A; Vetter, K; Luft, F C

    1997-01-01

    Endothelial cell activation is important in the pathogenesis of preeclampsia; however, the nature of the activation is unknown. We investigated 22 patients with preeclampsia. 29 normotensive pregnancies, and 18 nonpregnant women to test the hypothesis that serum from preeclamptic patients induces expression of intercellular adhesion molecule-1 (ICAM-1) and vascular adhesion molecule-1 (VCAM-1) and stimulates intracellular free calcium concentrations [Ca2+]i in cultured endothelial cells. We then asked whether the corresponding integrin adhesive counter receptors lymphocyte function-associated antigen-1 (CD11a/CD18), macrophage-1 antigen (CD11b/CD18), p150,95 (CD11c/CD18), and very late activation antigen-4 (CD49/CD29) are increased in patients with preeclampsia. In the pregnant women, the measurements were conducted both before and after delivery. Integrin expression was measured by fluorescent antibody cell sorting analysis using monoclonal antibodies. ICAM-1 and VCAM-1 were analyzed on endothelial cells by enzyme-linked immunosorbent assay. [Ca2+]i was measured with fura 2. Serum from preeclamptic patients increased endothelial cell ICAM-1 expression but not VCAM-1 expression. Preeclamptic patients' serum also increased [Ca2+]i in endothelial cells compared with serum from normal nonpregnant or normal pregnant women. Endothelial cell [Ca2+]i concentrations were correlated with the ICAM-1 expression in preeclamptic patients (r = .80, P preclampsia and normal pregnancy compared with the nonpregnant state. The expression decreased significantly after delivery in both groups. Our results demonstrate that serum from preeclamptic women induces increased ICAM-1 surface expression on endothelial cells, while the expression of the integrin counterreceptors was not different. The effect on endothelial cells may be related to an increase in [Ca2+]i. The effect on cultured endothelial cells and the rapid decrease after delivery suggests the presence of a circulating serum

  8. Distribution of cytoskeletal proteins, integrins, leukocyte adhesion molecules and extracellular matrix proteins in plastic-embedded human and rat kidneys

    NARCIS (Netherlands)

    van Goor, H; Coers, W; van der Horst, MLC; Suurmeijer, AJH

    2001-01-01

    OBJECTIVE: To study the distribution of cytoskeletal proteins (actin, alpha -actinin, vinculin, beta -tubulin, keratin, vimentin, desmin), adhesion molecules for cell-matrix interations (very later antigens [VLA1-6], beta1, beta2 [CD18], vitronectin receptor [alphav beta3], CD 11b), leukocyte

  9. Role of bacteria in leukocyte adhesion deficiency-associated periodontitis.

    Science.gov (United States)

    Hajishengallis, George; Moutsopoulos, Niki M

    2016-05-01

    Leukocyte adhesion deficiency Type I (LAD-I)-associated periodontitis is an aggressive form of inflammatory bone loss that has been historically attributed to lack of neutrophil surveillance of the periodontal infection. However, this form of periodontitis has proven unresponsive to antibiotics and/or mechanical removal of the tooth-associated biofilm. Recent studies in LAD-I patients and relevant animal models have shown that the fundamental cause of LAD-I periodontitis involves dysregulation of a granulopoietic cytokine cascade. This cascade includes interleukin IL-23 (IL-23) and IL-17 that drive inflammatory bone loss in LAD-I patients and animal models and, moreover, foster a nutritionally favorable environment for bacterial growth and development of a compositionally unique microbiome. Although the lack of neutrophil surveillance in the periodontal pockets might be expected to lead to uncontrolled bacterial invasion of the underlying connective tissue, microbiological analyses of gingival biopsies from LAD-I patients did not reveal tissue-invasive infection. However, bacterial lipopolysaccharide was shown to translocate into the lesions of LAD-I periodontitis. It is concluded that the bacteria serve as initial triggers for local immunopathology through translocation of bacterial products into the underlying tissues where they unleash the dysregulated IL-23-IL-17 axis. Subsequently, the IL-23/IL-17 inflammatory response sustains and shapes a unique local microbiome which, in turn, can further exacerbate inflammation and bone loss in the susceptible host. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Insulin Resistance in PCOS Patients Enhances Oxidative Stress and Leukocyte Adhesion: Role of Myeloperoxidase

    Science.gov (United States)

    Victor, Victor M.; Rovira-Llopis, Susana; Bañuls, Celia; Diaz-Morales, Noelia; Martinez de Marañon, Arantxa; Rios-Navarro, Cesar; Alvarez, Angeles; Gomez, Marcelino; Rocha, Milagros; Hernández-Mijares, Antonio

    2016-01-01

    Cardiovascular diseases and oxidative stress are related to polycystic ovary syndrome (PCOS) and insulin resistance (IR). We have evaluated the relationship between myeloperoxidase (MPO) and leukocyte activation in PCOS patients according to homeostatic model assessment of IR (HOMA-IR), and have explored a possible correlation between these factors and endocrine and inflammatory parameters. This was a prospective controlled study conducted in an academic medical center. The study population consisted of 101 PCOS subjects and 105 control subjects. We divided PCOS subjects into PCOS non-IR (HOMA-IRPCOS IR (HOMA-IR>2.5). Metabolic and anthropometric parameters, total and mitochondrial reactive oxygen species (ROS) production, MPO levels, interactions between human umbilical vein endothelial cells and leukocytes, adhesion molecules (E-selectin, ICAM-1 and VCAM-1) and proinflammatory cytokines (IL-6 and TNF-α) were evaluated. Oxidative stress was observed in PCOS patients, in whom there was an increase in total and mitochondrial ROS production and MPO levels. Enhanced rolling flux and adhesion, and a decrease in polymorphonuclear cell rolling velocity were also detected in PCOS subjects. Increases in IL-6 and TNF-α and adhesion molecules (E-selectin, ICAM-1 and VCAM-1) were also observed, particularly in the PCOS IR group, providing evidence that inflammation and oxidative stress are related in PCOS patients. HOMA-IR was positively correlated with hsCRP (pPCOS patients in general, and particularly in those with IR. Inflammation in PCOS induces leukocyte-endothelium interactions and a simultaneous increase in IL-6, TNF-α, E-selectin, ICAM-1 and VCAM-1. These conditions are aggravated by the presence of IR. PMID:27007571

  11. Synaptic Cell Adhesion

    OpenAIRE

    Missler, Markus; Südhof, Thomas C.; Biederer, Thomas

    2012-01-01

    Chemical synapses are asymmetric intercellular junctions that mediate synaptic transmission. Synaptic junctions are organized by trans-synaptic cell adhesion molecules bridging the synaptic cleft. Synaptic cell adhesion molecules not only connect pre- and postsynaptic compartments, but also mediate trans-synaptic recognition and signaling processes that are essential for the establishment, specification, and plasticity of synapses. A growing number of synaptic cell adhesion molecules that inc...

  12. Cell adhesion during bullet motion in capillaries.

    Science.gov (United States)

    Takeishi, Naoki; Imai, Yohsuke; Ishida, Shunichi; Omori, Toshihiro; Kamm, Roger D; Ishikawa, Takuji

    2016-08-01

    A numerical analysis is presented of cell adhesion in capillaries whose diameter is comparable to or smaller than that of the cell. In contrast to a large number of previous efforts on leukocyte and tumor cell rolling, much is still unknown about cell motion in capillaries. The solid and fluid mechanics of a cell in flow was coupled with a slip bond model of ligand-receptor interactions. When the size of a capillary was reduced, the cell always transitioned to "bullet-like" motion, with a consequent decrease in the velocity of the cell. A state diagram was obtained for various values of capillary diameter and receptor density. We found that bullet motion enables firm adhesion of a cell to the capillary wall even for a weak ligand-receptor binding. We also quantified effects of various parameters, including the dissociation rate constant, the spring constant, and the reactive compliance on the characteristics of cell motion. Our results suggest that even under the interaction between P-selectin glycoprotein ligand-1 (PSGL-1) and P-selectin, which is mainly responsible for leukocyte rolling, a cell is able to show firm adhesion in a small capillary. These findings may help in understanding such phenomena as leukocyte plugging and cancer metastasis. Copyright © 2016 the American Physiological Society.

  13. Th1-Induced CD106 Expression Mediates Leukocytes Adhesion on Synovial Fibroblasts from Juvenile Idiopathic Arthritis Patients.

    Science.gov (United States)

    Maggi, Laura; Margheri, Francesca; Luciani, Cristina; Capone, Manuela; Rossi, Maria Caterina; Chillà, Anastasia; Santarlasci, Veronica; Mazzoni, Alessio; Cimaz, Rolando; Liotta, Francesco; Maggi, Enrico; Cosmi, Lorenzo; Del Rosso, Mario; Annunziato, Francesco

    2016-01-01

    This study tested the hypothesis that subsets of human T helper cells can orchestrate leukocyte adhesion to synovial fibroblasts (SFbs), thus regulating the retention of leukocytes in the joints of juvenile idiopathic arthritis (JIA) patients. Several cell types, such as monocytes/macrophages, granulocytes, T and B lymphocytes, SFbs and osteoclasts participate in joint tissue damage JIA. Among T cells, an enrichment of classic and non-classic Th1 subsets, has been found in JIA synovial fluid (SF), compared to peripheral blood (PB). Moreover, it has been shown that IL-12 in the SF of inflamed joints mediates the shift of Th17 lymphocytes towards the non-classic Th1 subset. Culture supernatants of Th17, classic and non-classic Th1 clones, have been tested for their ability to stimulate proliferation, and to induce expression of adhesion molecules on SFbs, obtained from healthy donors. Culture supernatants of both classic and non-classic Th1, but not of Th17, clones, were able to induce CD106 (VCAM-1) up-regulation on SFbs. This effect, mediated by tumor necrosis factor (TNF)-α, was crucial for the adhesion of circulating leukocytes on SFbs. Finally, we found that SFbs derived from SF of JIA patients expressed higher levels of CD106 than those from healthy donors, resembling the phenotype of SFbs activated in vitro with Th1-clones supernatants. On the basis of these findings, we conclude that classic and non-classic Th1 cells induce CD106 expression on SFbs through TNF-α, an effect that could play a role in leukocytes retention in inflamed joints.

  14. Dark chocolate consumption improves leukocyte adhesion factors and vascular function in overweight men

    NARCIS (Netherlands)

    Esser, D.; Mars, M.; Oosterink, E.; Stalmach, A.; Müller, M.R.; Afman, L.A.

    2014-01-01

    Flavanol-enriched chocolate consumption increases endothelium-dependent vasodilation. Most research so far has focused on flow-mediated dilation (FMD) only; the effects on other factors relevant to endothelial health, such as inflammation and leukocyte adhesion, have hardly been addressed. We

  15. Altered expression of adhesion molecules on peripheral blood leukocytes in feline infectious peritonitis.

    Science.gov (United States)

    Olyslaegers, Dominique A J; Dedeurwaerder, Annelike; Desmarets, Lowiese M B; Vermeulen, Ben L; Dewerchin, Hannah L; Nauwynck, Hans J

    2013-10-25

    Feline infectious peritonitis (FIP) is a fatal, coronavirus-induced systemic disease in domestic and wild felids. The pathology associated with FIP (multifocal granulomatous vasculitis) is considered to be elicited by exaggerated activation and subsequent extravasation of leukocytes. As changes in the expression of adhesion molecules on circulating leukocytes precede their margination and emigration, we reasoned that the expression of leukocyte adhesion molecules may be altered in FIP. In present study, the expression of principal adhesion molecules involved in leukocyte transmigration (CD15s, CD11a, CD11b, CD18, CD49d, and CD54) on peripheral blood leukocytes from cats with naturally occurring FIP (n=15) and controls (n=12) was quantified by flow cytometry using a formaldehyde-based rapid leukocyte preparation technique. T- and B-lymphocytes from FIP patients exhibit higher expression of both subunits (CD11a and CD18) composing the β2 integrin lymphocyte function-associated antigen (LFA)-1. In addition, the expression of the α4 subunit (CD49d) of the β1 integrin very late antigen (VLA)-4 was elevated on B-lymphocytes from FIP patients. The expression of CD11b and CD18, that combine to form the β2 integrin macrophage-1 antigen (Mac-1), was elevated on monocytes, whereas the density of CD49d was reduced on this population in FIP. Granulocytes of FIP cats displayed an increased expression of the α chain of Mac-1 (CD11b). These observations suggest that leukocytes from FIP patients show signs of systemic activation causing them to extravasate into surrounding tissues and ultimately contribute to pyogranuloma formation seen in FIP. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. [Effects of HiLo for two weeks on erythrocyte immune adhesion and leukocyte count of swimmers].

    Science.gov (United States)

    Zhao, Yong-Cai; Gao, Bing-Hong; Wu, Ge-Lin; Zhang, Jiu-Li

    2012-07-01

    To investigate the effects of living high-training low (HiLo) on innate immunity in blood of elite swimmers. Six female swimmers undertook HiLo for two weeks, erythrocyte adhesion function and counts of leukocyte were tested in different time of training period. Red blood cell C3b receptor ring rate (RBC-C3bRR) decreased and red blood cell immune complex matter ring rate (RBC-ICR) increased significantly (P < 0.05), the two markers returned to base line 1 week after training. Counts of leukocyte and granulocyte decreased significantly (P < 0.05), and they recovered 1 week after training; Counts of lymphocyte and monocyte decreased without significance during training and did not recovered after training. Immunity of erythrocyte and granulocyte decreased quickly, but lymphocyte and monocyte recovered slowly, swimmers were adaptive to the training.

  17. Increased endothelial cell-leukocyte interaction in murine schistosomiasis: possible priming of endothelial cells by the disease.

    Directory of Open Access Journals (Sweden)

    Suellen D S Oliveira

    Full Text Available BACKGROUND AND AIMS: Schistosomiasis is an intravascular parasitic disease associated with inflammation. Endothelial cells control leukocyte transmigration and vascular permeability being modulated by pro-inflammatory mediators. Recent data have shown that endothelial cells primed in vivo in the course of a disease keep the information in culture. Herein, we evaluated the impact of schistosomiasis on endothelial cell-regulated events in vivo and in vitro. METHODOLOGY AND PRINCIPAL FINDINGS: The experimental groups consisted of Schistosoma mansoni-infected and age-matched control mice. In vivo infection caused a marked influx of leukocytes and an increased protein leakage in the peritoneal cavity, characterizing an inflamed vascular and cellular profile. In vitro leukocyte-mesenteric endothelial cell adhesion was higher in cultured cells from infected mice as compared to controls, either in the basal condition or after treatment with the pro-inflammatory cytokine tumor necrosis factor (TNF. Nitric oxide (NO donation reduced leukocyte adhesion to endothelial cells from control and infected groups; however, in the later group the effect was more pronounced, probably due to a reduced NO production. Inhibition of control endothelial NO synthase (eNOS increased leukocyte adhesion to a level similar to the one observed in the infected group. Besides, the adhesion of control leukocytes to endothelial cells from infected animals is similar to the result of infected animals, confirming that schistosomiasis alters endothelial cells function. Furthermore, NO production as well as the expression of eNOS were reduced in cultured endothelial cells from infected animals. On the other hand, the expression of its repressor protein, namely caveolin-1, was similar in both control and infected groups. CONCLUSION/SIGNIFICANCE: Schistosomiasis increases vascular permeability and endothelial cell-leukocyte interaction in vivo and in vitro. These effects are partially

  18. Syndecans and cell adhesion

    DEFF Research Database (Denmark)

    Couchman, J R; Chen, L; Woods, A

    2001-01-01

    Now that transmembrane signaling through primary cell-matrix receptors, integrins, is being elucidated, attention is turning to how integrin-ligand interactions can be modulated. Syndecans are transmembrane proteoglycans implicated as coreceptors in a variety of physiological processes, including...... cell adhesion, migration, response to growth factors, development, and tumorigenesis. This review will describe this family of proteoglycans in terms of their structures and functions and their signaling in conjunction with integrins, and indicate areas for future research....

  19. Drug-induced in vitro inhibition of neutrophil-endothelial cell adhesion.

    Science.gov (United States)

    Pellegatta, F.; Lu, Y.; Radaelli, A.; Zocchi, M. R.; Ferrero, E.; Chierchia, S.; Gaja, G.; Ferrero, M. E.

    1996-01-01

    1. Leukocyte-endothelial cell interactions play an important role during ischaemia-reperfusion events. Adhesion molecules are specifically implicated in this interaction process. 2. Since defibrotide has been shown to be an efficient drug in reducing damage due to ischaemia-reperfusion in many experimental models, we analysed the effect of defibrotide in vitro on leukocyte adhesion to endothelial cells in basal conditions and after their stimulation. 3. In basal conditions, defibrotide (1000 micrograms ml-1) partially inhibited leukocyte adhesion to endothelial cells by 17.3% +/- 3.6 (P defibrotide. 5. This result was confirmed in NIH/3T3-ICAM-1 transfected cells. 6. We conclude that defibrotide is able to interfere with leukocyte adhesion to endothelial cells mainly in activated conditions and that the ICAM-1/LFA-1 adhesion system is involved in the defibrotide mechanism of action. PMID:8762067

  20. The neural cell adhesion molecule

    DEFF Research Database (Denmark)

    Berezin, V; Bock, E; Poulsen, F M

    2000-01-01

    During the past year, the understanding of the structure and function of neural cell adhesion has advanced considerably. The three-dimensional structures of several of the individual modules of the neural cell adhesion molecule (NCAM) have been determined, as well as the structure of the complex...... between two identical fragments of the NCAM. Also during the past year, a link between homophilic cell adhesion and several signal transduction pathways has been proposed, connecting the event of cell surface adhesion to cellular responses such as neurite outgrowth. Finally, the stimulation of neurite...

  1. Bone Marrow Transplantation for Leukocyte Adhesion Deficiency-I: Case Report

    International Nuclear Information System (INIS)

    Al-wahadneh, A.M.; Haddadin, I.; Hamouri, M.; Omari, K.; Ajellat, F.

    2006-01-01

    Leukocyte Adhesion Deficiency type-I (LAD-I) is a rare autosomal recessive immunodeficiency syndrome leading recurrent bacterial and fungal infections. Bone marrow transplantation offers the only cure. In this report, we describe the course and outcome of bone marrow transplant in a 4-month-old female infant with LAD-I at King Hussein Medical Center, Jordan. A successful matched HLA-I related allogeneic bone marrow transplantation was performed. Engraftment was demonstrated on the 12th day. The patient developed GradeIII grafts versus host disease (GVHD), veno-occlusive disease of the liver and late onset hemorrhagic cystitis. She recovered with appropriate immune reconstitution. (author)

  2. Syndecan proteoglycans and cell adhesion

    DEFF Research Database (Denmark)

    Woods, A; Oh, E S; Couchman, J R

    1998-01-01

    It is now becoming clear that a family of transmembrane proteoglycans, the syndecans, have important roles in cell adhesion. They participate through binding of matrix ligand to their glycosaminoglycan chains, clustering, and the induction of signaling cascades to modify the internal microfilament...... organization. Syndecans can modulate the type of adhesive responses induced by other matrix ligand-receptor interactions, such as those involving the integrins, and so contribute to the control of cell morphology, adhesion and migration....

  3. Leukocyte adhesion deficiency syndrome: report on the first case in Chile and South America

    Directory of Open Access Journals (Sweden)

    Rodrigo Vásquez-De Kartzow

    Full Text Available CONTEXT: Adhesion molecule deficiency type 1 is a rare disease that should be suspected in any patient whose umbilical cord presents delay in falling off, and who presents recurrent severe infections. Early diagnostic suspicion and early treatment improve the prognosis. CASE REPORT: The case of a four-month-old boy with recurrent hospitalizations because of severe bronchopneumonia and several episodes of acute otitis media with non-purulent drainage of mucus and positive bacterial cultures is presented. His medical history included neonatal sepsis and delayed umbilical cord detachment. Laboratory studies showed marked leukocytosis with predominance of neutrophils and decreased CD11b and CD18. These were all compatible with a diagnosis of leukocyte adhesion deficiency type I [LAD type 1].

  4. Syndecans, signaling, and cell adhesion

    DEFF Research Database (Denmark)

    Couchman, J R; Woods, A

    1996-01-01

    structures within the heparan sulfate chains, leaving the roles of chondroitin sulfate chains and extracellular portion of the core proteins to be elucidated. Evidence that syndecans are a class of receptor involved in cell adhesion is mounting, and their small cytoplasmic domains may link...... transmembrane signaling from matrix to cytoskeleton, as proposed for other classes of adhesion receptors....

  5. The effect of gentamicin-induced readthrough on a novel premature termination codon of CD18 leukocyte adhesion deficiency patients.

    Directory of Open Access Journals (Sweden)

    Amos J Simon

    2010-11-01

    Full Text Available Leukocyte adhesion deficiency 1 (LAD1 is an inherited disorder of neutrophil function. Nonsense mutations in the affected CD18 (ITB2 gene have rarely been described. In other genes containing such mutations, treatments with aminoglycoside types of antibiotics (e.g., gentamicin were reported to partially correct the premature protein termination, by induction of readthrough mechanism.Genetic analysis was performed on 2 LAD1 patients. Expression, functional and immunofluorescence assays of CD18 in the patients were used to determine the in-vivo and in-vitro effects of gentamicin-induced readthrough. A theoretical modeling of the corrected CD18 protein was developed to predict the protein function.We found a novel premature termination codon, C562T (R188X, in exon 6 of the CD18 gene that caused a severe LAD1 phenotype in two unrelated Palestinian children. In-vivo studies on these patients' cells after gentamicin treatment showed abnormal adhesion and chemotactic functions, while in-vitro studies showed mislocalization of the corrected protein to the cytoplasm and not to the cell surface. A theoretical modeling of the corrected CD18 protein suggested that the replacement of the wild type arginine by gentamicin induced tryptophan at the position of the nonsense mutation, although enabled the expression of the entire CD18 protein, this was not sufficient to stabilize the CD18/11 heterodimer at the cell surface.A novel nonsense mutation in the CD18 gene causing a complete absence of CD18 protein and severe LAD1 clinical phenotype is reported. Both in vivo and in vitro treatments with gentamicin resulted in the expression of a corrected full-length dysfunctional or mislocalized CD18 protein. However, while the use of gentamicin increased the expression of CD18, it did not improve leukocyte adhesion and chemotaxis. Moreover, the integrity of the CD18/CD11 complex at the cell surface was impaired, due to abnormal CD18 protein and possibly lack of CD11a

  6. PECAM-1 polymorphism affects monocyte adhesion to endothelial cells.

    Science.gov (United States)

    Goodman, Reyna S; Kirton, Christopher M; Oostingh, Gertie J; Schön, Michael P; Clark, Michael R; Bradley, J Andrew; Taylor, Craig J

    2008-02-15

    Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) plays an important role in leukocyte-endothelial cell adhesion and transmigration. Single nucleotide polymorphisms of PECAM-1 encoding amino acid substitutions at positions 98 leucine/valine (L/V), 536 serine/asparagine (S/N), and 643 arginine/glycine (R/G) occur in strong genetic linkage resulting in two common haplotypes (LSR and VNG). These PECAM-1 polymorphisms are associated with graft-versus-host disease after hematopoietic stem cell transplantation and with cardiovascular disease, but whether they influence PECAM-1 function is unknown. We examined the effect of homozygous and heterozygous expression of the PECAM-1 LSR and VNG genotypes on the adhesive interactions of peripheral blood monocytes and activated endothelial cell monolayers under shear stress in a flow-based cell adhesion assay. There was no difference in monocyte adhesion between the two homozygous genotypes of PECAM-1 but when monocytes expressed both alleles in heterozygous form, firm adhesion of monocytes to endothelial cells was markedly increased. PECAM-1 polymorphism expressed in homozygous or heterozygous form by endothelial cells did not influence monocyte adhesion. This is, to our knowledge, the first demonstration that PECAM-1 genotype can alter the level of monocyte binding to endothelial cells and a demonstration that heterozygous expression of a polymorphic protein may lead to altered function.

  7. Leukocyte adhesion-GPCR EMR2 is aberrantly expressed in human breast carcinomas and is associated with patient survival

    NARCIS (Netherlands)

    Davies, John Q.; Lin, Hsi-Hsien; Stacey, Martin; Yona, Simon; Chang, Gin-Wen; Gordon, Siamon; Hamann, Jörg; Campo, Leticia; Han, Cheng; Chan, Peter; Fox, Stephen B.

    2011-01-01

    EGF-like module containing mucin-like hormone receptor 2 (EMR2) is a leukocyte-restricted adhesion G protein-coupled receptor. Aberrant expression of EMR2 and its highly homologous molecule CD97 have been reported in various human cancers. Herein, we investigate the expression of EMR2 in neoplastic

  8. LFA-1-mediated leukocyte adhesion regulated by interaction of CD43 with LFA-1 and CD147

    Czech Academy of Sciences Publication Activity Database

    Khunkaewla, P.; Schiller, H.B.; Paster, W.; Leksa, V.; Čermák, Lukáš; Anděra, Ladislav; Hořejší, Václav; Stockinger, H.

    2008-01-01

    Roč. 45, č. 6 (2008), s. 1703-1711 ISSN 0161-5890 R&D Projects: GA MŠk 1M0506 Institutional research plan: CEZ:AV0Z50520514 Keywords : leukocyte adhesion and aggregation * monoclonal antibodies * receptor signaling Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.555, year: 2008

  9. Single cell adhesion assay using computer controlled micropipette.

    Directory of Open Access Journals (Sweden)

    Rita Salánki

    Full Text Available Cell adhesion is a fundamental phenomenon vital for all multicellular organisms. Recognition of and adhesion to specific macromolecules is a crucial task of leukocytes to initiate the immune response. To gain statistically reliable information of cell adhesion, large numbers of cells should be measured. However, direct measurement of the adhesion force of single cells is still challenging and today's techniques typically have an extremely low throughput (5-10 cells per day. Here, we introduce a computer controlled micropipette mounted onto a normal inverted microscope for probing single cell interactions with specific macromolecules. We calculated the estimated hydrodynamic lifting force acting on target cells by the numerical simulation of the flow at the micropipette tip. The adhesion force of surface attached cells could be accurately probed by repeating the pick-up process with increasing vacuum applied in the pipette positioned above the cell under investigation. Using the introduced methodology hundreds of cells adhered to specific macromolecules were measured one by one in a relatively short period of time (∼30 min. We blocked nonspecific cell adhesion by the protein non-adhesive PLL-g-PEG polymer. We found that human primary monocytes are less adherent to fibrinogen than their in vitro differentiated descendants: macrophages and dendritic cells, the latter producing the highest average adhesion force. Validation of the here introduced method was achieved by the hydrostatic step-pressure micropipette manipulation technique. Additionally the result was reinforced in standard microfluidic shear stress channels. Nevertheless, automated micropipette gave higher sensitivity and less side-effect than the shear stress channel. Using our technique, the probed single cells can be easily picked up and further investigated by other techniques; a definite advantage of the computer controlled micropipette. Our experiments revealed the existence of a

  10. Cell Adhesion Molecules of the Immunoglobulin Superfamily in the Nervous System

    DEFF Research Database (Denmark)

    Walmod, Peter Schledermann; Pedersen, Martin Volmer; Berezin, Vladimir

    2007-01-01

    Cell adhesion molecules (CAMs) are proteins mediating cell-cell or cell-extracellular matrix (ECM) interactions. CAMs are traditionally divided into four groups, the cadherins, the selectins, the integrins and CAMs belonging to the immunoglobulin superfamily (IgSF). The present chapter describes...... CAMs belonging to IgSF, that exclusively or in part, are expressed in the nervous system. The chapter includes descriptions of myelin protein zero (P0), integrin-associated protein (CD47), neuroplastin, activated leukocyte-cell adhesion molecule (ALCAM), melanoma cell adhesion molecule (MCAM......), myelinassociated glycoprotein (MAG), the neural cell adhesion molecules 1 and 2 (NCAM, NCAM2), Down Syndrome cell adhesion molecule (DSCAM) and Down Syndrome cell adhesion molecule-like-1 (DSCAML1), sidekick 1 and 2 (SDK1, SDK2), signal-regulatory proteins (SIRPs), nectins, nectin-like proteins (necls...

  11. αMβ2-integrin-intercellular adhesion molecule-1 interactions drive the flow-dependent trafficking of Guillain-Barré syndrome patient derived mononuclear leukocytes at the blood-nerve barrier in vitro

    Science.gov (United States)

    Yosef, Nejla; Ubogu, Eroboghene E.

    2012-01-01

    The mechanisms of hematogenous leukocyte trafficking at the human blood-nerve barrier (BNB) are largely unknown. Intercellular adhesion molecule-1 (ICAM-1) has been implicated in the pathogenesis of Guillain-Barré syndrome (GBS). We developed a cytokine-activated human in vitro BNB model using primary endoneurial endothelial cells. Endothelial treatment with 10 U/mL tissue necrosis factor-α and 20 U/mL interferon-γ resulted in de novo expression of proinflammatory chemokines CCL2, CXCL9, CXCL11 and CCL20, with increased expression of CXCL2-3, CXCL8 and CXCL10 relative to basal levels. Cytokine treatment induced/ enhanced ICAM-1, E- and P-selectin, vascular cell adhesion molecule-1 and the alternatively spliced pro-adhesive fibronectin variant, fibronectin connecting segment-1 expression in a time-dependent manner, without alterations in junctional adhesion molecule-A expression. Lymphocytes and monocytes from untreated GBS patients express ICAM-1 counterligands, αM- and αL-integrin, with differential regulation of αM-integrin expression compared to healthy controls. Under flow conditions that mimic capillary hemodynamics in vivo, there was a >3-fold increase in total GBS patient and healthy control mononuclear leukocyte adhesion/ migration at the BNB following cytokine treatment relative to the untreated state. Function neutralizing monoclonal antibodies against human αM-integrin (CD11b) and ICAM-1 reduced untreated GBS patient mononuclear leukocyte trafficking at the BNB by 59% and 64.2% respectively. Monoclonal antibodies against αL-integrin (CD11a) and human intravenous immunoglobulin reduced total leukocyte adhesion/migration by 22.8% and 17.6% respectively. This study demonstrates differential regulation of αM-integrin on circulating mononuclear cells in GBS, as well as an important role for αM-integrin-ICAM-1 interactions in pathogenic GBS patient leukocyte trafficking at the human BNB in vitro. PMID:22552879

  12. A hot water extract of Curcuma longa inhibits adhesion molecule protein expression and monocyte adhesion to TNF-α-stimulated human endothelial cells.

    Science.gov (United States)

    Kawasaki, Kengo; Muroyama, Koutarou; Yamamoto, Norio; Murosaki, Shinji

    2015-01-01

    The recruitment of arterial leukocytes to endothelial cells is an important step in the progression of various inflammatory diseases. Therefore, its modulation is thought to be a prospective target for the prevention or treatment of such diseases. Adhesion molecules on endothelial cells are induced by proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), and contribute to the recruitment of leukocytes. In the present study, we investigated the effect of hot water extract of Curcuma longa (WEC) on the protein expression of adhesion molecules, monocyte adhesion induced by TNF-α in human umbilical vascular endothelial cells (HUVECs). Treatment of HUVECs with WEC significantly suppressed both TNF-α-induced protein expression of adhesion molecules and monocyte adhesion. WEC also suppressed phosphorylation and degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) induced by TNF-α in HUVECs, suggesting that WEC inhibits the NF-κB signaling pathway.

  13. Angiogenesis mediated by soluble forms of E-selectin and vascular cell adhesion molecule-1

    Science.gov (United States)

    Koch, Alisa E.; Halloran, Margaret M.; Haskell, Catherine J.; Shah, Manisha R.; Polverini, Peter J.

    1995-08-01

    ENDOTHELIAL adhesion molecules facilitate the entry of leukocytes into inflamed tissues. This in turn promotes neovascularization, a process central to the progression of rheumatoid arthritis, tumour growth and wound repair1. Here we test the hypothesis that soluble endothelial adhesion molecules promote angiogenesis2á¤-4. Human recombinant soluble E-selectin and soluble vascular cell adhesion molecule-1 induced chemotaxis of human endothelial cells in vitro and were angiogenic in rat cornea. Soluble E-selectin acted on endothelial cells in part through a sialyl Lewis-X-dependent mechanism, while soluble vascular cell adhesion molecule-1 acted on endothelial cells in part through a very late antigen (VLA)-4 dependent mechanism. The chemotactic activity of rheumatoid synovial fluid for endothelial cells, and also its angiogenic activity, were blocked by antibodies to either soluble E-selectin or soluble vascular cell adhesion molecule-1. These results suggest a novel function for soluble endothelial adhesion molecules as mediators of angiogenesis.

  14. Focal adhesions and cell-matrix interactions

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    1988-01-01

    Focal adhesions are areas of cell surfaces where specializations of cytoskeletal, membrane and extracellular components combine to produce stable cell-matrix interactions. The morphology of these adhesions and the components identified in them are discussed together with possible mechanisms...

  15. Regulation of endothelial cell adhesion molecule expression by mast cells, macrophages, and neutrophils.

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2011-01-01

    Full Text Available Leukocyte adhesion to the vascular endothelium and subsequent transendothelial migration play essential roles in the pathogenesis of cardiovascular diseases such as atherosclerosis. The leukocyte adhesion is mediated by localized activation of the endothelium through the action of inflammatory cytokines. The exact proinflammatory factors, however, that activate the endothelium and their cellular sources remain incompletely defined.Using bone marrow-derived mast cells from wild-type, Tnf(-/-, Ifng(-/-, Il6(-/- mice, we demonstrated that all three of these pro-inflammatory cytokines from mast cells induced the expression of vascular cell adhesion molecule-1 (VCAM-1, intercellular adhesion molecule-1 (ICAM-1, P-selectin, and E-selectin in murine heart endothelial cells (MHEC at both mRNA and protein levels. Compared with TNF-α and IL6, IFN-γ appeared weaker in the induction of the mRNA levels, but at protein levels, both IL6 and IFN-γ were weaker inducers than TNF-α. Under physiological shear flow conditions, mast cell-derived TNF-α and IL6 were more potent than IFN-γ in activating MHEC and in promoting neutrophil adhesion. Similar observations were made when neutrophils or macrophages were used. Neutrophils and macrophages produced the same sets of pro-inflammatory cytokines as did mast cells to induce MHEC adhesion molecule expression, with the exception that macrophage-derived IFN-γ showed negligible effect in inducing VCAM-1 expression in MHEC.Mast cells, neutrophils, and macrophages release pro-inflammatory cytokines such as TNF-α, IFN-γ, and IL6 that induce expression of adhesion molecules in endothelium and recruit of leukocytes, which is essential to the pathogenesis of vascular inflammatory diseases.

  16. CD13 is a novel mediator of monocytic/endothelial cell adhesion

    DEFF Research Database (Denmark)

    Mina-Osorio, Paola; Winnicka, Beata; O'Conor, Catherine

    2008-01-01

    During inflammation, cell surface adhesion molecules guide the adhesion and migration of circulating leukocytes across the endothelial cells lining the blood vessels to access the site of injury. The transmembrane molecule CD13 is expressed on monocytes and endothelial cells and has been shown...... to mediate homotypic cell adhesion, which may imply a role for CD13 in inflammatory monocyte trafficking. Here, we show that ligation and clustering of CD13 by mAb or viral ligands potently induce myeloid cell/endothelial adhesion in a signal transduction-dependent manner involving monocytic cytoskeletal...... rearrangement and filopodia formation. Treatment with soluble recombinant (r)CD13 blocks this CD13-dependent adhesion, and CD13 molecules from monocytic and endothelial cells are present in the same immunocomplex, suggesting a direct participation of CD13 in the adhesive interaction. This concept...

  17. Subgingival microbial communities in Leukocyte Adhesion Deficiency and their relationship with local immunopathology.

    Science.gov (United States)

    Moutsopoulos, Niki M; Chalmers, Natalia I; Barb, Jennifer J; Abusleme, Loreto; Greenwell-Wild, Teresa; Dutzan, Nicolas; Paster, Bruce J; Munson, Peter J; Fine, Daniel H; Uzel, Gulbu; Holland, Steven M

    2015-03-01

    Leukocyte Adhesion Deficiency I (LAD-I) is a primary immunodeficiency caused by single gene mutations in the CD18 subunit of β2 integrins which result in defective transmigration of neutrophils into the tissues. Affected patients suffer from recurrent life threatening infections and severe oral disease (periodontitis). Microbial communities in the local environment (subgingival plaque) are thought to be the triggers for inflammatory periodontitis, yet little is known regarding the microbial communities associated with LAD-I periodontitis. Here we present the first comprehensive characterization of the subgingival communities in LAD-I, using a 16S rRNA gene-based microarray, and investigate the relationship of this tooth adherent microbiome to the local immunopathology of periodontitis. We show that the LAD subgingival microbiome is distinct from that of health and Localized Aggressive Periodontitits. Select periodontitis-associated species in the LAD microbiome included Parvimonas micra, Porphyromonas endodontalis, Eubacterium brachy and Treponema species. Pseudomonas aeruginosa, a bacterium not typically found in subgingival plaque is detected in LAD-I. We suggest that microbial products from LAD-associated communities may have a role in stimulating the local inflammatory response. We demonstrate that bacterial LPS translocates into the lesions of LAD-periodontitis potentially triggering immunopathology. We also show in in vitro assays with human macrophages and in vivo in animal models that microbial products from LAD-associated subgingival plaque trigger IL-23-related immune responses, which have been shown to dominate in patient lesions. In conclusion, our current study characterizes the subgingival microbial communities in LAD-periodontitis and supports their role as triggers of disease pathogenesis.

  18. Subgingival microbial communities in Leukocyte Adhesion Deficiency and their relationship with local immunopathology.

    Directory of Open Access Journals (Sweden)

    Niki M Moutsopoulos

    2015-03-01

    Full Text Available Leukocyte Adhesion Deficiency I (LAD-I is a primary immunodeficiency caused by single gene mutations in the CD18 subunit of β2 integrins which result in defective transmigration of neutrophils into the tissues. Affected patients suffer from recurrent life threatening infections and severe oral disease (periodontitis. Microbial communities in the local environment (subgingival plaque are thought to be the triggers for inflammatory periodontitis, yet little is known regarding the microbial communities associated with LAD-I periodontitis. Here we present the first comprehensive characterization of the subgingival communities in LAD-I, using a 16S rRNA gene-based microarray, and investigate the relationship of this tooth adherent microbiome to the local immunopathology of periodontitis. We show that the LAD subgingival microbiome is distinct from that of health and Localized Aggressive Periodontitits. Select periodontitis-associated species in the LAD microbiome included Parvimonas micra, Porphyromonas endodontalis, Eubacterium brachy and Treponema species. Pseudomonas aeruginosa, a bacterium not typically found in subgingival plaque is detected in LAD-I. We suggest that microbial products from LAD-associated communities may have a role in stimulating the local inflammatory response. We demonstrate that bacterial LPS translocates into the lesions of LAD-periodontitis potentially triggering immunopathology. We also show in in vitro assays with human macrophages and in vivo in animal models that microbial products from LAD-associated subgingival plaque trigger IL-23-related immune responses, which have been shown to dominate in patient lesions. In conclusion, our current study characterizes the subgingival microbial communities in LAD-periodontitis and supports their role as triggers of disease pathogenesis.

  19. Priming by Chemokines Restricts Lateral Mobility of the Adhesion Receptor LFA-1 and Restores Adhesion to ICAM-1 Nano-Aggregates on Human Mature Dendritic Cells

    NARCIS (Netherlands)

    Borgman, K.J.; van Zanten, T.S.; Manzo, C.; Cabezon, R.; Cambi, A.; Benitez-Ribas, D.; Garcia Parajo, M.F.

    2014-01-01

    LFA-1 is a leukocyte specific β2 integrin that plays a major role in regulating adhesion and migration of different immune cells. Recent data suggest that LFA-1 on mature dendritic cells (mDCs) may function as a chemokine-inducible anchor during homing of DCs through the afferent lymphatics into the

  20. Leukocyte integrins and their ligand interactions

    Science.gov (United States)

    Hyun, Young-Min; Lefort, Craig T.; Kim, Minsoo

    2010-01-01

    Although critical for cell adhesion and migration during normal immune-mediated reactions, leukocyte integrins are also involved in the pathogenesis of diverse clinical conditions including autoimmune diseases and chronic inflammation. Leukocyte integrins therefore have been targets for anti-adhesive therapies to treat the inflammatory disorders. Recently, the therapeutic potential of integrin antagonists has been demonstrated in psoriasis and multiple sclerosis. However, current therapeutics broadly affect integrin functions and, thus, yield unfavorable side effects. This review discusses the major leukocyte integrins and the anti-adhesion strategies for treating immune diseases. PMID:19184539

  1. Bacterial reduction by cell salvage washing and leukocyte depletion filtration.

    Science.gov (United States)

    Waters, Jonathan H; Tuohy, Marion J; Hobson, Donna F; Procop, Gary

    2003-09-01

    Blood conservation techniques are being increasingly used because of the increased cost and lack of availability of allogeneic blood. Cell salvage offers great blood savings opportunities but is thought to be contraindicated in a number of areas (e.g., blood contaminated with bacteria). Several outcome studies have suggested the safety of this technique in trauma and colorectal surgery, but many practitioners are still hesitant to apply cell salvage in the face of frank bacterial contamination. This study was undertaken to assess the efficacy of bacterial removal when cell salvage was combined with leukocyte depletion filtration. Expired packed erythrocytes were obtained and inoculated with a fixed amount of a stock bacteria (Escherichia coli American Type Culture Collections [ATCC] 25922, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 29213, or Bacteroides fragilis ATCC 25285) in amounts ranging from 2,000 to 4,000 colony forming units/ml. The blood was processed via a cell salvage machine. The washed blood was then filtered using a leukocyte reduction filter. The results for blood taken during each step of processing were compared using a repeated-measures design. Fifteen units of blood were contaminated with each of the stock bacteria. From the prewash sample to the postfiltration sample, 99.0%, 99.6%, 100%, and 97.6% of E. coli, S. aureus, P. aeruginosa, and B. fragilis were removed, respectively. Significant but not complete removal of contaminating bacteria was seen. An increased level of patient safety may be added to cell salvage by including a leukocyte depletion filter when salvaging blood that might be grossly contaminated with bacteria.

  2. Susceptibility of different leukocyte cell types to Vaccinia virus infection

    Directory of Open Access Journals (Sweden)

    Sánchez-Puig Juana M

    2004-11-01

    Full Text Available Abstract Background Vaccinia virus, the prototype member of the family Poxviridae, was used extensively in the past as the Smallpox vaccine, and is currently considered as a candidate vector for new recombinant vaccines. Vaccinia virus has a wide host range, and is known to infect cultures of a variety of cell lines of mammalian origin. However, little is known about the virus tropism in human leukocyte populations. We report here that various cell types within leukocyte populations have widely different susceptibility to infection with vaccinia virus. Results We have investigated the ability of vaccinia virus to infect human PBLs by using virus recombinants expressing green fluorescent protein (GFP, and monoclonal antibodies specific for PBL subpopulations. Flow cytometry allowed the identification of infected cells within the PBL mixture 1–5 hours after infection. Antibody labeling revealed that different cell populations had very different infection rates. Monocytes showed the highest percentage of infected cells, followed by B lymphocytes and NK cells. In contrast to those cell types, the rate of infection of T lymphocytes was low. Comparison of vaccinia virus strains WR and MVA showed that both strains infected efficiently the monocyte population, although producing different expression levels. Our results suggest that MVA was less efficient than WR in infecting NK cells and B lymphocytes. Overall, both WR and MVA consistently showed a strong preference for the infection of non-T cells. Conclusions When infecting fresh human PBL preparations, vaccinia virus showed a strong bias towards the infection of monocytes, followed by B lymphocytes and NK cells. In contrast, very poor infection of T lymphocytes was detected. These finding may have important implications both in our understanding of poxvirus pathogenesis and in the development of improved smallpox vaccines.

  3. Functional groups grafted nonwoven fabrics for blood filtration-The effects of functional groups and wettability on the adhesion of leukocyte and platelet

    Energy Technology Data Exchange (ETDEWEB)

    Yang Chao [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Cao Ye [Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610081 (China); Sun Kang, E-mail: ksun@sjtu.edu.cn [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Liu Jiaxin; Wang Hong [Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610081 (China)

    2011-01-15

    In this work, the effects of grafted functional groups and surface wettability on the adhesion of leukocyte and platelet were investigated by the method of blood filtration. The filter materials, poly(butylene terephthalate) nonwoven fabrics bearing different functional groups including hydroxyl (OH), carboxyl (COOH), sulfonic acid group (SO{sub 3}H) and zwitterionic sulfobetaine group ({sup +}N((CH{sub 3}){sub 2})(CH{sub 2}){sub 3}SO{sub 3}{sup Circled-Minus }) with controllable wettability were prepared by UV radiation grafting vinyl monomers with these functional groups. Our results emphasized that both surface functional groups and surface wettability had significant effects on the adhesion of leukocyte and platelet. In the case of filter materials with the same wettability, leukocytes adhering to filter materials decreased in the order: the surface bearing OH only > the surface bearing both OH and COOH > the surface bearing sulfobetaine group > the surface bearing SO{sub 3}H, while platelets adhering to filter materials decreased as the following order: the surface bearing SO{sub 3}H > the surface bearing both OH and COOH > the surface bearing OH only > the surface bearing sulfobetaine group. As the wettability of filter materials increased, both leukocyte and platelet adhesion to filter materials declined, except that leukocyte adhesion to the surface bearing OH only remained unchanged.

  4. Syndecans: synergistic activators of cell adhesion

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    1998-01-01

    Cell-surface proteoglycans participate in cell adhesion, growth-factor signalling, lipase activity and anticoagulation. Until recently, only the roles of the glycosaminoglycan chains were investigated. Now, with molecular characterization of several core proteins, the roles of each individual...... molecules modulating integrin-based adhesion....

  5. The Drosophila cell adhesion molecule Neuroglian regulates Lissencephaly-1 localisation in circulating immunosurveillance cells

    Directory of Open Access Journals (Sweden)

    Williams Michael J

    2009-03-01

    Full Text Available Abstract Background When the parasitoid wasp Leptopilina boulardi lays its eggs in Drosophila larvae phagocytic cells called plasmatocytes and specialized cells known as lamellocytes encapsulate the egg. This requires these circulating immunosurveillance cells (haemocytes to change from a non-adhesive to an adhesive state enabling them to bind to the invader. Interestingly, attachment of leukocytes, platelets, and insect haemocytes requires the same adhesion complexes as epithelial and neuronal cells. Results Here evidence is presented showing that the Drosophila L1-type cell adhesion molecule Neuroglian (Nrg is required for haemocytes to encapsulate L. boulardi wasp eggs. The amino acid sequence FIGQY containing a conserved phosphorylated tyrosine is found in the intracellular domain of all L1-type cell adhesion molecules. This conserved tyrosine is phosphorylated at the cell periphery of plasmatocytes and lamellocytes prior to parasitisation, but dephosphorylated after immune activation. Intriguingly, another pool of Nrg located near the nucleus of plasmatocytes remains phosphorylated after parasitisation. In mammalian neuronal cells phosphorylated neurofascin, another L1-type cell adhesion molecule interacts with a nucleokinesis complex containing the microtubule binding protein lissencephaly-1 (Lis1 1. Interestingly in plasmatocytes from Nrg mutants the nucleokinesis regulating protein Lissencephaly-1 (Lis1 fails to localise properly around the nucleus and is instead found diffuse throughout the cytoplasm and at unidentified perinuclear structures. After attaching to the wasp egg control plasmatocytes extend filopodia laterally from their cell periphery; as well as extending lateral filopodia plasmatocytes from Nrg mutants also extend many filopodia from their apical surface. Conclusion The Drosophila cellular adhesion molecule Neuroglian is expressed in haemocytes and its activity is required for the encapsulation of L. boularli eggs. At

  6. Tetraspanin CD9: A Key Regulator of Cell Adhesion in the Immune System

    Directory of Open Access Journals (Sweden)

    Raquel Reyes

    2018-04-01

    Full Text Available The tetraspanin CD9 is expressed by all the major subsets of leukocytes (B cells, CD4+ T cells, CD8+ T cells, natural killer cells, granulocytes, monocytes and macrophages, and immature and mature dendritic cells and also at a high level by endothelial cells. As a typical member of the tetraspanin superfamily, a prominent feature of CD9 is its propensity to engage in a multitude of interactions with other tetraspanins as well as with different transmembrane and intracellular proteins within the context of defined membranal domains termed tetraspanin-enriched microdomains (TEMs. Through these associations, CD9 influences many cellular activities in the different subtypes of leukocytes and in endothelial cells, including intracellular signaling, proliferation, activation, survival, migration, invasion, adhesion, and diapedesis. Several excellent reviews have already covered the topic of how tetraspanins, including CD9, regulate these cellular processes in the different cells of the immune system. In this mini-review, however, we will focus particularly on describing and discussing the regulatory effects exerted by CD9 on different adhesion molecules that play pivotal roles in the physiology of leukocytes and endothelial cells, with a particular emphasis in the regulation of adhesion molecules of the integrin and immunoglobulin superfamilies.

  7. Circulating vascular cell adhesion molecule-1 in pre-eclampsia, gestational hypertension, and normal pregnancy: evidence of selective dysregulation of vascular cell adhesion molecule-1 homeostasis in pre-eclampsia.

    Science.gov (United States)

    Higgins, J R; Papayianni, A; Brady, H R; Darling, M R; Walshe, J J

    1998-08-01

    Our purpose was to investigate circulating levels of vascular cell adhesion molecule-1 in the peripheral and uteroplacental circulations during normotensive and hypertensive pregnancies. This prospective observational study involved 2 patient groups. Group 1 consisted of 22 women with pre-eclampsia and 30 normotensive women followed up longitudinally through pregnancy and post partum. There were an additional 13 women with established gestational hypertension. Group 2 consisted of 20 women with established pre-eclampsia and 19 normotensive control subjects undergoing cesarean delivery. Plasma levels of vascular cell adhesion molecule-1 were measured in blood drawn from the antecubital vein (group 1) and from both the antecubital and uterine veins (group 2). Data were analyzed by analysis of variance. In group 1 vascular cell adhesion molecule-1 levels did not change significantly throughout normal pregnancy and post partum. Women with established pre-eclampsia had increased vascular cell adhesion molecule-1 levels compared with the normotensive pregnancy group (P = .01). Vascular cell adhesion molecule-1 levels were not elevated in women with established gestational hypertension. In group 2 significantly higher levels of vascular cell adhesion molecule-1 were detected in the uteroplacental (P post partum, is not a feature of nonproteinuric gestational hypertension, and is not observed with other major leukocyte adhesion molecules. Induction of vascular cell adhesion molecule-1 expression in pre-eclampsia may contribute to leukocyte-mediated tissue injury in this condition or may reflect perturbation of other, previously unrecognized, functions of this molecule in pregnancy.

  8. Reduced antibody-dependent cellular cytotoxicity to herpes simplex virus-infected cells of salivary polymorphonuclear leukocytes and inhibition of peripheral blood polymorphonuclear leukocyte cytotoxicity by saliva.

    Science.gov (United States)

    Ashkenazi, M; Kohl, S

    1990-06-15

    Blood polymorphonuclear leukocytes (BPMN) have been shown to mediate antibody-dependent cellular cytotoxicity (ADCC) against HSV-infected cells. Although HSV infections are frequently found in the oral cavity, the ADCC capacity of salivary PMN (SPMN) has not been studied, mainly because methods to isolate SPMN were not available. We have recently developed a method to isolate SPMN, and in this study have evaluated their ADCC activity against HSV-infected cells. SPMN were obtained by repeated washings of the oral cavity, and separated from epithelial cells by nylon mesh filtration. ADCC was quantitatively determined by 51Cr release from HSV-infected Chang liver cells. SPMN in the presence of antibody were able to destroy HSV-infected cells, but SPMN were much less effective in mediating ADCC than BPMN (3.4% vs 40.7%, p less than 0.0001). In the presence of antiviral antibody, SPMN were able to adhere to HSV-infected cells, but less so than BPMN (34% vs 67%), and specific antibody-induced adherence was significantly lower in SPMN (p less than 0.04). The spontaneous adherence to HSV-infected cells was higher for SPMN than BPMN. SPMN demonstrated up-regulation of the adhesion glycoprotein CD18, but down-regulation of the FcRIII receptor. Incubation with saliva decreased ADCC capacity of BPMN, up-regulated CD18 expression, and down-regulated FcRIII expression.

  9. Molecular cloning of the α subunit of human and guinea pig leukocyte adhesion glycoprotein Mo1: Chromosomal localization and homology to the α subunits of integrins

    International Nuclear Information System (INIS)

    Arnaout, M.A.; Remold-O'Donnell, E.; Pierce, M.W.; Harris, P.; Tenen, D.G.

    1988-01-01

    The cell surface-glycoprotein Mo1 is a member of the family of leukocyte cell adhesion molecules (Leu-CAMs) that includes lymphocyte function-associated antigen 1 (LFA-1) and p150,95. Each Leu-CAM is a heterodimer with a distinct α subunit noncovalently associated with a common β subunit. The authors describe the isolation and analysis of two partial cDNA clones encoding the α subunit of the Leu-CAM Mo1 in humans and guinea pigs. A monoclonal antibody directed against an epitope in the carboxyl-terminal portion of the guinea pig α chain was used for immunoscreening a λgt11 expression library. The sequence of a 378-base-pair insert from one immunoreactive clone revealed a single continuous open reading frame encoding 126 amino acids including a 26-amino acid tryptic peptide isolated from the purified guinea pig α subunit. A cDNA clone of identical size was isolated from a human monocyte/lymphocyte cDNA library by using the guinea pig clone as a probe. The human clone also encoded a 126-amino acid peptide including the sequence of an additional tryptic peptide present in purified human Mo1α chain. Southern analysis of DNA from hamster-human hybrids localized the human Mo1α chain to chromosome 16, which has been shown to contain the gene for the α chain of lymphocyte function-associated antigen 1. These data suggest that the α subunits of Leu-CAMs evolved by gene duplication from a common ancestral gene and strengthen the hypothesis that the α subunits of these heterodimeric cell adhesion molecules on myeloid and lymphoid cells, platelets, and fibroblasts are evolutionary related

  10. Differential expression of cell adhesion genes

    DEFF Research Database (Denmark)

    Stein, Wilfred D; Litman, Thomas; Fojo, Tito

    2005-01-01

    that compare cells grown in suspension to similar cells grown attached to one another as aggregates have suggested that it is adhesion to the extracellular matrix of the basal membrane that confers resistance to apoptosis and, hence, resistance to cytotoxins. The genes whose expression correlates with poor...... in cell adhesion and the cytoskeleton. If the proteins involved in tethering cells to the extracellular matrix are important in conferring drug resistance, it may be possible to improve chemotherapy by designing drugs that target these proteins....

  11. Structural basis of cell-cell adhesion by NCAM

    DEFF Research Database (Denmark)

    Kasper, C; Rasmussen, H; Kastrup, Jette Sandholm Jensen

    2000-01-01

    The neural cell adhesion molecule NCAM, a member of the immunoglobulin superfamily, mediates cell-cell recognition and adhesion via a homophilic interaction. NCAM plays a key role during development and regeneration of the nervous system and is involved in synaptic plasticity associated with memory...

  12. Endothelial cell adhesion to ion implanted polymers

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Y; Kusakabe, M [SONY Corp., Tokyo (Japan); Lee, J S; Kaibara, M; Iwaki, M; Sasabe, H [RIKEN (Inst. of Physical and Chemical Research), Saitama (Japan)

    1992-03-01

    The biocompatibility of ion implanted polymers has been studied by means of adhesion measurements of bovine aorta endothelial cells in vitro. The specimens used were polystyrene (PS) and segmented polyurethane (SPU). Na{sup +}, N{sub 2}{sup +}, O{sub 2}{sup +} and Kr{sup +} ion implantations were performed at an energy of 150 keV with fluences ranging from 1x10{sup 15} to 3x10{sup 17} ions/cm{sup 2} at room temperature. The chemical and physical structures of ion-implanted polymers have been investigated in order to analyze their tissue compatibility such as improvement of endothelial cell adhesion. The ion implanted SPU have been found to exhibit remarkably higher adhesion and spreading of endothelial cells than unimplanted specimens. By contrast, ion implanted PS demonstrated a little improvement of adhesion of cells in this assay. Results of FT-IR-ATR showed that ion implantation broke the original chemical bond to form new radicals such as OH, ....C=O, SiH and condensed rings. The results of Raman spectroscopy showed that ion implantation always produced a peak near 1500 cm{sup -1}, which indicated that these ion implanted PS and SPU had the same carbon structure. This structure is considered to bring the dramatic increase in the extent of cell adhesion and spreading to these ion implanted PS and SPU. (orig.).

  13. A novel method for rapid and reliable detection of complex vertebral malformation and bovine leukocyte adhesion deficiency in Holstein cattle

    Directory of Open Access Journals (Sweden)

    Zhang Yi

    2012-07-01

    Full Text Available Abstract Background Complex vertebral malformation (CVM and bovine leukocyte adhesion deficiency (BLAD are two autosomal recessive lethal genetic defects frequently occurring in Holstein cattle, identifiable by single nucleotide polymorphisms. The objective of this study is to develop a rapid and reliable genotyping assay to screen the active Holstein sires and determine the carrier frequency of CVM and BLAD in Chinese dairy cattle population. Results We developed real-time PCR-based assays for discrimination of wild-type and defective alleles, so that carriers can be detected. Only one step was required after the DNA extraction from the sample and time consumption was about 2 hours. A total of 587 Chinese Holstein bulls were assayed, and fifty-six CVM-carriers and eight BLAD-carriers were identified, corresponding to heterozygote carrier frequencies of 9.54% and 1.36%, respectively. The pedigree analysis showed that most of the carriers could be traced back to the common ancestry, Osborndale Ivanhoe for BLAD and Pennstate Ivanhoe Star for CVM. Conclusions These results demonstrate that real-time PCR is a simple, rapid and reliable assay for BLAD and CVM defective allele detection. The high frequency of the CVM allele suggests that implementing a routine testing system is necessary to gradually eradicate the deleterious gene from the Chinese Holstein population.

  14. Successful treatment of fusarium solani ecthyma gangrenosum in a patient affected by leukocyte adhesion deficiency type 1 with granulocytes transfusions

    Directory of Open Access Journals (Sweden)

    Hassen Assia

    2010-10-01

    Full Text Available Abstract Background Ecthyma gangrenosum (EG manifests as a skin lesion affecting patients suffering extreme neutropenia and is commonly associated with Pseudomonas aeruginosa in immunocompromised patients. Leukocyte adhesion deficiency I (LAD I which count among primary immunodeficiency syndromes of the innate immunity, is an autosomal recessive disorder characterized in its severe phenotype by a complete defect in CD18 expression on neutrophils, delayed cord separation, chronic skin ulcers mainly due to recurrent bacterial and fungal infections, leucocytosis with high numbers of circulating neutrophils and an accumulation of abnormally low number of neutrophils at sites of infection. Case Presentation We report at our knowledge the first case of a child affected by LAD-1, who experienced during her disease course a multi-bacterial and fungal EG lesion caused by fusarium solani. Despite targeted antibiotics and anti-fungi therapy, the lesion extended for as long as 18 months and only massive granulocytes pockets transfusions in association with G-CSF had the capacity to cure this lesion. Conclusion We propose that granulocytes pockets transfusions will be beneficial to heal EG especially in severely immunocompromised patients.

  15. Single Cell Force Spectroscopy for Quantification of Cellular Adhesion on Surfaces

    Science.gov (United States)

    Christenson, Wayne B.

    Cell adhesion is an important aspect of many biological processes. The atomic force microscope (AFM) has made it possible to quantify the forces involved in cellular adhesion using a technique called single cell force spectroscopy (SCFS). AFM based SCFS offers versatile control over experimental conditions for probing directly the interaction between specific cell types and specific proteins, surfaces, or other cells. Transmembrane integrins are the primary proteins involved in cellular adhesion to the extra cellular matix (ECM). One of the chief integrins involved in the adhesion of leukocyte cells is alpha Mbeta2 (Mac-1). The experiments in this dissertation quantify the adhesion of Mac-1 expressing human embryonic kidney (HEK Mac-1), platelets, and neutrophils cells on substrates with different concentrations of fibrinogen and on fibrin gels and multi-layered fibrinogen coated fibrin gels. It was shown that multi-layered fibrinogen reduces the adhesion force of these cells considerably. A novel method was developed as part of this research combining total internal reflection microscopy (TIRFM) with SCFS allowing for optical microscopy of HEK Mac-1 cells interacting with bovine serum albumin (BSA) coated glass after interacting with multi-layered fibrinogen. HEK Mac-1 cells are able to remove fibrinogen molecules from the multi-layered fibrinogen matrix. An analysis methodology for quantifying the kinetic parameters of integrin-ligand interactions from SCFS experiments is proposed, and the kinetic parameters of the Mac-1 fibrinogen bond are quantified. Additional SCFS experiments quantify the adhesion of macrophages and HEK Mac-1 cells on functionalized glass surfaces and normal glass surfaces. Both cell types show highest adhesion on a novel functionalized glass surface that was prepared to induce macrophage fusion. These experiments demonstrate the versatility of AFM based SCFS, and how it can be applied to address many questions in cellular biology offering

  16. NADPH oxidase and lipid raft-associated redox signaling are required for PCB153-induced upregulation of cell adhesion molecules in human brain endothelial cells

    International Nuclear Information System (INIS)

    Eum, Sung Yong; Andras, Ibolya; Hennig, Bernhard; Toborek, Michal

    2009-01-01

    Exposure to persistent organic pollutants, such as polychlorinated biphenyls (PCBs), can lead to chronic inflammation and the development of vascular diseases. Because cell adhesion molecules (CAMs) of the cerebrovascular endothelium regulate infiltration of inflammatory cells into the brain, we have explored the molecular mechanisms by which ortho-substituted polychlorinated biphenyls (PCBs), such as PCB153, can upregulate CAMs in brain endothelial cells. Exposure to PCB153 increased expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), as well as elevated adhesion of leukocytes to brain endothelial cells. These effects were impeded by inhibitors of EGFR, JAKs, or Src activity. In addition, pharmacological inhibition of NADPH oxidase or disruption of lipid rafts by cholesterol depleting agents blocked PCB153-induced phosphorylation of JAK and Src kinases and upregulation of CAMs. In contrast, silencing of caveolin-1 by siRNA interference did not affect upregulation of ICAM-1 and VCAM-1 in brain endothelial cells stimulated by PCB153. Results of the present study indicate that lipid raft-dependent NADPH oxidase/JAK/EGFR signaling mechanisms regulate the expression of CAMs in brain endothelial cells and adhesion of leukocytes to endothelial monolayers. Due to its role in leukocyte infiltration, induction of CAMs may contribute to PCB-induced cerebrovascular disorders and neurotoxic effects in the CNS.

  17. Comprehensive evaluation of leukocyte lineage derived from human hematopoietic cells in humanized mice.

    Science.gov (United States)

    Takahashi, Masayuki; Tsujimura, Noriyuki; Otsuka, Kensuke; Yoshino, Tomoko; Mori, Tetsushi; Matsunaga, Tadashi; Nakasono, Satoshi

    2012-04-01

    Recently, humanized animals whereby a part of the animal is biologically engineered using human genes or cells have been utilized to overcome interspecific differences. Herein, we analyzed the detail of the differentiation states of various human leukocyte subpopulations in humanized mouse and evaluated comprehensively the similarity of the leukocyte lineage between humanized mice and humans. Humanized mice were established by transplanting human CD34(+) cord blood cells into irradiated severely immunodeficient NOD/Shi-scid/IL2Rγ(null) (NOG) mice, and the phenotypes of human cells contained in bone marrow, thymus, spleen and peripheral blood from the mice were analyzed at monthly intervals until 4 months after cell transplantation. The analysis revealed that transplanted human hematopoietic stem cells via the caudal vein homed and engrafted themselves successfully at the mouse bone marrow. Subsequently, the differentiated leukocytes migrated to the various tissues. Almost all of the leukocytes within the thymus were human cells. Furthermore, analysis of the differentiation states of human leukocytes in various tissues and organs indicated that it is highly likely that the human-like leukocyte lineage can be developed in mice. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Collective cell streams in epithelial monolayers depend on cell adhesion

    International Nuclear Information System (INIS)

    Czirók, András; Varga, Katalin; Méhes, Előd; Szabó, András

    2013-01-01

    We report spontaneously emerging, randomly oriented, collective streaming behavior within a monolayer culture of a human keratinocyte cell line, and explore the effect of modulating cell adhesions by perturbing the function of calcium-dependent cell adhesion molecules. We demonstrate that decreasing cell adhesion induces narrower and more anisotropic cell streams, reminiscent of decreasing the Taylor scale of turbulent liquids. To explain our empirical findings, we propose a cell-based model that represents the dual nature of cell–cell adhesions. Spring-like connections provide mechanical stability, while a cellular Potts model formalism represents surface-tension driven attachment. By changing the relevance and persistence of mechanical links between cells, we are able to explain the experimentally observed changes in emergent flow patterns. (paper)

  19. Abscisic acid ameliorates experimental IBD by downregulating cellular adhesion molecule expression and suppressing immune cell infiltration.

    Science.gov (United States)

    Guri, Amir J; Hontecillas, Raquel; Bassaganya-Riera, Josep

    2010-12-01

    Abscisic acid (ABA) has shown effectiveness in ameliorating inflammation in obesity, diabetes and cardiovascular disease models. The objective of this study was to determine whether ABA prevents or ameliorates experimental inflammatory bowel disease (IBD). C57BL/6J mice were fed diets with or without ABA (100mg/kg) for 35 days prior to challenge with 2.5% dextran sodium sulfate (DSS). The severity of clinical disease was assessed daily. Colonic mucosal lesions were evaluated by histopathology, and cellular adhesion molecular and inflammatory markers were assayed by real-time quantitative PCR. Flow cytometry was used to quantify leukocyte populations in the blood, spleen, and mesenteric lymph nodes (MLN). The effect of ABA on cytotoxic T-lymphocyte antigen 4 (CTLA-4) expression in splenocytes was also investigated. ABA significantly ameliorated disease activity, colitis and reduced colonic leukocyte infiltration and inflammation. These improvements were associated with downregulation in vascular cell adhesion marker-1 (VCAM-1), E-selectin, and mucosal addressin adhesion marker-1 (MAdCAM-1) expression. ABA also increased CD4(+) and CD8(+) T-lymphocytes in blood and MLN and regulatory T cells in blood. In vitro, ABA increased CTLA-4 expression through a PPAR γ-dependent mechanism. We conclude that ABA ameliorates gut inflammation by modulating T cell distribution and adhesion molecule expression. Copyright © 2010 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  20. Film adhesion in amorphous silicon solar cells

    Indian Academy of Sciences (India)

    TECS

    Film adhesion in amorphous silicon solar cells. A R M YUSOFF*, M N SYAHRUL and K HENKEL. Malaysia Energy Centre, 8th Floor, North Wing, Sapura @ Mines, 7, Jalan Tasik, The Mines Resort City,. 43300 Seri Kembangan, Selangor Darul Ehsan. MS received 11 April 2007. Abstract. A major issue encountered ...

  1. Endothelial cell SHP-2 negatively regulates neutrophil adhesion and promotes transmigration by enhancing ICAM-1-VE-cadherin interaction.

    Science.gov (United States)

    Yan, Meiping; Zhang, Xinhua; Chen, Ao; Gu, Wei; Liu, Jie; Ren, Xiaojiao; Zhang, Jianping; Wu, Xiaoxiong; Place, Aaron T; Minshall, Richard D; Liu, Guoquan

    2017-11-01

    Intercellular adhesion molecule-1 (ICAM-1) mediates the firm adhesion of leukocytes to endothelial cells and initiates subsequent signaling that promotes their transendothelial migration (TEM). Vascular endothelial (VE)-cadherin plays a critical role in endothelial cell-cell adhesion, thereby controlling endothelial permeability and leukocyte transmigration. This study aimed to determine the molecular signaling events that originate from the ICAM-1-mediated firm adhesion of neutrophils that regulate VE-cadherin's role as a negative regulator of leukocyte transmigration. We observed that ICAM-1 interacts with Src homology domain 2-containing phosphatase-2 (SHP-2), and SHP-2 down-regulation via silencing of small interfering RNA in endothelial cells enhanced neutrophil adhesion to endothelial cells but inhibited neutrophil transmigration. We also found that VE-cadherin associated with the ICAM-1-SHP-2 complex. Moreover, whereas the activation of ICAM-1 leads to VE-cadherin dissociation from ICAM-1 and VE-cadherin association with actin, SHP-2 down-regulation prevented ICAM-1-VE-cadherin association and promoted VE-cadherin-actin association. Furthermore, SHP-2 down-regulation in vivo promoted LPS-induced neutrophil recruitment in mouse lung but delayed neutrophil extravasation. These results suggest that SHP-2- via association with ICAM-1-mediates ICAM-1-induced Src activation and modulates VE-cadherin switching association with ICAM-1 or actin, thereby negatively regulating neutrophil adhesion to endothelial cells and enhancing their TEM.-Yan, M., Zhang, X., Chen, A., Gu, W., Liu, J., Ren, X., Zhang, J., Wu, X., Place, A. T., Minshall, R. D., Liu, G. Endothelial cell SHP-2 negatively regulates neutrophil adhesion and promotes transmigration by enhancing ICAM-1-VE-cadherin interaction. © FASEB.

  2. Signaling through intercellular adhesion molecule 1 (ICAM-1) in a B cell lymphoma line

    DEFF Research Database (Denmark)

    Holland, J; Owens, T

    1997-01-01

    Intercellular adhesion molecule 1 (ICAM-1) (CD54) is an adhesion molecule of the immunoglobulin superfamily. The interaction between ICAM-1 on B lymphocytes and leukocyte function-associated antigen 1 on T cells plays a major role in several aspects of the immune response, including T-dependent B...... cell activation. While it was originally believed that ICAM-1 played a purely adhesive role, recent evidence suggests that it can itself transduce biochemical signals. We demonstrate that cross-linking of ICAM-1 results in the up-regulation of class II major histocompatibility complex, and we...... investigate the biochemical mechanism for the signaling role of ICAM-1. We show that cross-linking of ICAM-1 on the B lymphoma line A20 induces an increase in tyrosine phosphorylation of several cellular proteins, including the Src family kinase p53/p56(lyn). In vitro kinase assays showed that Lyn kinase...

  3. The Role of Immunoglobulin Superfamily Cell Adhesion Molecules in Cancer Metastasis

    Directory of Open Access Journals (Sweden)

    Chee Wai Wong

    2012-01-01

    Full Text Available Metastasis is a major clinical problem and results in a poor prognosis for most cancers. The metastatic pathway describes the process by which cancer cells give rise to a metastatic lesion in a new tissue or organ. It consists of interconnecting steps all of which must be successfully completed to result in a metastasis. Cell-cell adhesion is a key aspect of many of these steps. Adhesion molecules belonging to the immunoglobulin superfamily (Ig-SF commonly play a central role in cell-cell adhesion, and a number of these molecules have been associated with cancer progression and a metastatic phenotype. Surprisingly, the contribution of Ig-SF members to metastasis has not received the attention afforded other cell adhesion molecules (CAMs such as the integrins. Here we examine the steps in the metastatic pathway focusing on how the Ig-SF members, melanoma cell adhesion molecule (MCAM, L1CAM, neural CAM (NCAM, leukocyte CAM (ALCAM, intercellular CAM-1 (ICAM-1 and platelet endothelial CAM-1 (PECAM-1 could play a role. Although much remains to be understood, this review aims to raise the profile of Ig-SF members in metastasis formation and prompt further research that could lead to useful clinical outcomes.

  4. Radiolabeled leukocytes

    International Nuclear Information System (INIS)

    Datz, F.L.; Taylor, A.T.

    1986-01-01

    Leukocytes are a heterogeneous group of nucleated cells that follow similar patterns of differentiation in the bone marrow. Although the various leukocyte cell types perform somewhat different functions, they act as a group to protect the host from hazards of the internal and external environment, such as infection and neoplasia, and they assist in the repair of damaged tissue. Leukocytes spend a small fraction of their life in the peripheral blood, using it only for transportation to sites where they are needed to perform their defensive functions. In adults, the mature types of leukocytes are neutrophils (59 percent of the leukocyte population), lymphocytes (34 percent), monocytes (four percent), eosinophils (three percent), and basophils (0.5 percent). Neutrophils, eosinophils, and basophils all contain nuclei with finitely granular, evenly distributed chromatin and are collectively called granulocytes. In addition to the main categories of leukocytes listed above, there are subsets of many of these classes of cells; for example, natural killer cells are a subset of lymphocytes

  5. Cell adhesion on nanotextured slippery superhydrophobic substrates.

    Science.gov (United States)

    Di Mundo, Rosa; Nardulli, Marina; Milella, Antonella; Favia, Pietro; d'Agostino, Riccardo; Gristina, Roberto

    2011-04-19

    In this work, the response of Saos2 cells to polymeric surfaces with different roughness/density of nanometric dots produced by a tailored plasma-etching process has been studied. Topographical features have been evaluated by atomic force microscopy, while wetting behavior, in terms of water-surface adhesion energy, has been evaluated by measurements of drop sliding angle. Saos2 cytocompatibility has been investigated by scanning electron microscopy, fluorescent microscopy, and optical microscopy. The similarity in outer chemical composition has allowed isolation of the impact of the topographical features on cellular behavior. The results indicate that Saos2 cells respond differently to surfaces with different nanoscale topographical features, clearly showing a certain inhibition in cell adhesion when the nanoscale is particularly small. This effect appears to be attenuated in surfaces with relatively bigger nanofeatures, though these express a more pronounced slippery/dry wetting character. © 2011 American Chemical Society

  6. Chemokines in the corpus luteum: Implications of leukocyte chemotaxis

    Directory of Open Access Journals (Sweden)

    Liptak Amy R

    2003-11-01

    Full Text Available Abstract Chemokines are small molecular weight peptides responsible for adhesion, activation, and recruitment of leukocytes into tissues. Leukocytes are thought to influence follicular atresia, ovulation, and luteal function. Many studies in recent years have focused attention on the characterization of leukocyte populations within the ovary, the importance of leukocyte-ovarian cell interactions, and more recently, the mechanisms of ovarian leukocyte recruitment. Information about the role of chemokines and leukocyte trafficking (chemotaxis during ovarian function is important to understanding paracrine-autocrine relationships shared between reproductive and immune systems. Recent advances regarding chemokine expression and leukocyte accumulation within the ovulatory follicle and the corpus luteum are the subject of this mini-review.

  7. Cell adhesion pattern created by OSTE polymers.

    Science.gov (United States)

    Liu, Wenjia; Li, Yiyang; Ding, Xianting

    2017-04-24

    Engineering surfaces with functional polymers is a crucial issue in the field of micro/nanofabrication and cell-material interface studies. For many applications of surface patterning, it does not need cells to attach on the whole surface. Herein, we introduce a novel polymer fabrication protocol of off-stoichiometry thiol-ene (OSTE) polymers to create heterogeneity on the surface by utilizing 3D printing and soft-lithography. By choosing two OSTE polymers with different functional groups, we create a pattern where only parts of the surface can facilitate cell adhesion. We also study the hydrophilic property of OSTE polymers by mixing poly(ethylene glycol) (PEG) directly with pre-polymers and plasma treatments afterwards. Moreover, we investigate the effect of functional groups' excess ratio and hydrophilic property on the cell adhesion ability of OSTE polymers. The results show that the cell adhesion ability of OSTE materials can be tuned within a wide range by the coupling effect of functional groups' excess ratio and hydrophilic property. Meanwhile, by mixing PEG with pre-polymers and undergoing oxygen plasma treatment afterward can significantly improve the hydrophilic property of OSTE polymers.

  8. Optical biosensors for cell adhesion.

    Science.gov (United States)

    Ramsden, Jeremy J; Horvath, Robert

    2009-01-01

    Planar optical waveguides offer an ideal substratum for cells on which to reside. The materials from which the waveguides are made--high refractive index transparent dielectrics--correspond to the coatings of medical implants (e.g., the oxides of niobium, tantalum, and titanium) or the high molecular weight polymers used for culture flasks (e.g., polystyrene). The waveguides can furthermore be modified both chemically and morphologically while retaining their full capability for generating an evanescent optical field that has its greatest strength at the interface between the solid substratum and the liquid phase with which it is invariably in contact (i.e., the culture medium bathing the cells), decaying exponentially perpendicular to the interface at a rate controllable by varying the material parameters of the waveguide. Analysis of the perturbation of the evanescent field by the presence of living cells within it enables their size, number density, shape, refractive index (linked to their constitution) and so forth to be determined, the number of parameters depending on the number of waveguide lightmodes analyzed. No labeling of any kind is necessary, and convenient measurement setups are fully compatible with maintaining the cells in their usual environment. If the temporal evolution of the perturbation is analyzed, even more information can be obtained, such as the amount of material (microexudate) secreted by the cell while residing on the surface. Separation of parallel effects simultaneously contributing to the perturbation of the evanescent field can be accomplished by analysis of coupling peak shape when a grating coupler is used to measure the propagation constants of the waveguide lightmodes.

  9. Monoclonal antibodies and coupling reagents to cell membrane proteins for leukocyte labeling

    International Nuclear Information System (INIS)

    McAfee, J.G.; Gagne, G.; Subramanian, G.; Schneider, R.F.

    1984-01-01

    Current gamma-emitting agents for tagging leukocytes, In-111 oxine or tropolone, label all cell types indiscriminantly, and nuclear localization in lymphocytes results in radiation damage. Coupling reagents and murine monoclonal antibodies (Mab) specific for cell surface antigens of human leukocytes were tried as cell labeling agents to avoid nuclear localization. 10/sup 8/ mixed human leukocytes in Hepes buffer were added to tubes coated with 5 mg of dry cyclic dianhydride of DTPA for 15 minutes at room temperature. After washing, 0.1 ml of In-111 Cl in ACD (pH 6.8) was added. After 30 minutes, a cell labeling yield of 23% was obtained. Washing the cells in an elutriation centrifuge showed that this label was irreversible. Mab for cell surface antigens of human granulocytes were labeled with 300 μCi of I-125 using the Iodobead technic and unbound activity was removed by gel column chromatography. 1-10 μg were added to 10/sup 8/ mixed leukocytes in 0.5 ml plasma or saline for 1 hr. With Mab anti-leu M4 (clone G7 E11), an IgM, the cell labeling yield was 21%, irreversible, and specific for granulocytes. With anti-human leukocyte Mab NEI-042 (clone 9.4), and IgG2a, and anti-granulocyte Mab MAS-065 (clone FMCl1) an IgG1, the cell labeling was relatively unstable. Labeling of leukocyte subpopulations with Mab is feasible, and the binding of multivalent IgM is stronger than that of other immunoglobulins. DTPA cyclic anhydride is firmly bound to cell membranes, but the labeling is non-specific

  10. Cancer Cell Adhesion and Metastasis: Selectins, Integrins, and the Inhibitory Potential of Heparins

    Directory of Open Access Journals (Sweden)

    Gerd Bendas

    2012-01-01

    Full Text Available Cell adhesion molecules play a significant role in cancer progression and metastasis. Cell-cell interactions of cancer cells with endothelium determine the metastatic spread. In addition, direct tumor cell interactions with platelets, leukocytes, and soluble components significantly contribute to cancer cell adhesion, extravasation, and the establishment of metastatic lesions. Clinical evidence indicates that heparin, commonly used for treatment of thromboembolic events in cancer patients, is beneficial for their survival. Preclinical studies confirm that heparin possesses antimetastatic activities that lead to attenuation of metastasis in various animal models. Heparin contains several biological activities that may affect several steps in metastatic cascade. Here we focus on the role of cellular adhesion receptors in the metastatic cascade and discuss evidence for heparin as an inhibitor of cell adhesion. While P- and L-selectin facilitation of cellular contacts during hematogenous metastasis is being accepted as a potential target of heparin, here we propose that heparin may also interfere with integrin activity and thereby affect cancer progression. This review summarizes recent findings about potential mechanisms of tumor cell interactions in the vasculature and antimetastatic activities of heparin.

  11. Vaginal epithelial cells regulate membrane adhesiveness to co-ordinate bacterial adhesion.

    Science.gov (United States)

    Younes, Jessica A; Klappe, Karin; Kok, Jan Willem; Busscher, Henk J; Reid, Gregor; van der Mei, Henny C

    2016-04-01

    Vaginal epithelium is colonized by different bacterial strains and species. The bacterial composition of vaginal biofilms controls the balance between health and disease. Little is known about the relative contribution of the epithelial and bacterial cell surfaces to bacterial adhesion and whether and how adhesion is regulated over cell membrane regions. Here, we show that bacterial adhesion forces with cell membrane regions not located above the nucleus are stronger than with regions above the nucleus both for vaginal pathogens and different commensal and probiotic lactobacillus strains involved in health. Importantly, adhesion force ratios over membrane regions away from and above the nucleus coincided with the ratios between numbers of adhering bacteria over both regions. Bacterial adhesion forces were dramatically decreased by depleting the epithelial cell membrane of cholesterol or sub-membrane cortical actin. Thus, epithelial cells can regulate membrane regions to which bacterial adhesion is discouraged, possibly to protect the nucleus. © 2015 John Wiley & Sons Ltd.

  12. Leukocyte Adhesion Deficiency (LAD)

    Science.gov (United States)

    ... Relations Cyber Infrastructure Computational Biology Equal Employment Opportunity Ethics Global Research Office of Mission Integration and Financial Management Strategic Planning Workforce Effectiveness Workplace Solutions Technology Transfer Intellectual Property Division of AIDS ...

  13. Characterizing phenolformaldehyde adhesive cure chemistry within the wood cell wall

    Science.gov (United States)

    Daniel J. Yelle; John Ralph

    2016-01-01

    Adhesive bonding of wood using phenol-formaldehyde remains the industrial standard in wood product bond durability. Not only does this adhesive infiltrate the cell wall, it also is believed to form primary bonds with wood cell wall polymers, particularly guaiacyl lignin. However, the mechanism by which phenol-formaldehyde adhesive intergrally interacts and bonds to...

  14. Kindlin-3 Is Essential for the Resting α4β1 Integrin-mediated Firm Cell Adhesion under Shear Flow Conditions.

    Science.gov (United States)

    Lu, Ling; Lin, ChangDong; Yan, ZhanJun; Wang, Shu; Zhang, YouHua; Wang, ShiHui; Wang, JunLei; Liu, Cui; Chen, JianFeng

    2016-05-06

    Integrin-mediated rolling and firm cell adhesion are two critical steps in leukocyte trafficking. Integrin α4β1 mediates a mixture of rolling and firm cell adhesion on vascular cell adhesion molecule-1 (VCAM-1) when in its resting state but only supports firm cell adhesion upon activation. The transition from rolling to firm cell adhesion is controlled by integrin activation. Kindlin-3 has been shown to bind to integrin β tails and trigger integrin activation via inside-out signaling. However, the role of kindlin-3 in regulating resting α4β1-mediated cell adhesion is not well characterized. Herein we demonstrate that kindlin-3 was required for the resting α4β1-mediated firm cell adhesion but not rolling adhesion. Knockdown of kindlin-3 significantly decreased the binding of kindlin-3 to β1 and down-regulated the binding affinity of the resting α4β1 to soluble VCAM-1. Notably, it converted the resting α4β1-mediated firm cell adhesion to rolling adhesion on VCAM-1 substrates, increased cell rolling velocity, and impaired the stability of cell adhesion. By contrast, firm cell adhesion mediated by Mn(2+)-activated α4β1 was barely affected by knockdown of kindlin-3. Structurally, lack of kindlin-3 led to a more bent conformation of the resting α4β1. Thus, kindlin-3 plays an important role in maintaining a proper conformation of the resting α4β1 to mediate both rolling and firm cell adhesion. Defective kindlin-3 binding to the resting α4β1 leads to a transition from firm to rolling cell adhesion on VCAM-1, implying its potential role in regulating the transition between integrin-mediated rolling and firm cell adhesion. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Kindlin-3 Is Essential for the Resting α4β1 Integrin-mediated Firm Cell Adhesion under Shear Flow Conditions*

    Science.gov (United States)

    Lu, Ling; Lin, ChangDong; Yan, ZhanJun; Wang, Shu; Zhang, YouHua; Wang, ShiHui; Wang, JunLei; Liu, Cui; Chen, JianFeng

    2016-01-01

    Integrin-mediated rolling and firm cell adhesion are two critical steps in leukocyte trafficking. Integrin α4β1 mediates a mixture of rolling and firm cell adhesion on vascular cell adhesion molecule-1 (VCAM-1) when in its resting state but only supports firm cell adhesion upon activation. The transition from rolling to firm cell adhesion is controlled by integrin activation. Kindlin-3 has been shown to bind to integrin β tails and trigger integrin activation via inside-out signaling. However, the role of kindlin-3 in regulating resting α4β1-mediated cell adhesion is not well characterized. Herein we demonstrate that kindlin-3 was required for the resting α4β1-mediated firm cell adhesion but not rolling adhesion. Knockdown of kindlin-3 significantly decreased the binding of kindlin-3 to β1 and down-regulated the binding affinity of the resting α4β1 to soluble VCAM-1. Notably, it converted the resting α4β1-mediated firm cell adhesion to rolling adhesion on VCAM-1 substrates, increased cell rolling velocity, and impaired the stability of cell adhesion. By contrast, firm cell adhesion mediated by Mn2+-activated α4β1 was barely affected by knockdown of kindlin-3. Structurally, lack of kindlin-3 led to a more bent conformation of the resting α4β1. Thus, kindlin-3 plays an important role in maintaining a proper conformation of the resting α4β1 to mediate both rolling and firm cell adhesion. Defective kindlin-3 binding to the resting α4β1 leads to a transition from firm to rolling cell adhesion on VCAM-1, implying its potential role in regulating the transition between integrin-mediated rolling and firm cell adhesion. PMID:26994136

  16. Focal adhesion kinase maintains, but not increases the adhesion of dental pulp cells.

    Science.gov (United States)

    Qian, Yuyan; Shao, Meiying; Zou, Wenlin; Wang, Linyan; Cheng, Ran; Hu, Tao

    2017-04-01

    Focal adhesion kinase (FAK) functions as a key enzyme in the integrin-mediated adhesion-signalling pathway. Here, we aimed to investigate the effects of FAK on adhesion of human dental pulp (HDP) cells. We transfected lentiviral vectors to silence or overexpress FAK in HDP cells ex vivo. Early cell adhesion, cell survival and focal contacts (FCs)-related proteins (FAK and paxillin) were examined. By using immunofluorescence, the formation of FCs and cytoskeleton was detected, respectively. We found that both adhesion and survival of HDP cells were suppressed by FAK inhibition. However, FAK overexpression slightly inhibited cell adhesion and exhibited no change in cell survival compared with the control. A thick rim of cytoskeleton accumulated and smaller dot-shaped FCs appeared in FAK knockdown cells. Phosphorylation of paxillin (p-paxillin) was inhibited in FAK knockdown cells, verifying that the adhesion was inhibited. Less cytoskeleton and elongated FCs were observed in FAK-overexpressed cells. However, p-paxillin had no significant difference compared with the control. In conclusion, the data suggest that FAK maintains cell adhesion, survival and cytoskeleton formation, but excessive FAK has no positive effects on these aspects.

  17. Maternal T-Cell Engraftment Interferes With Human Leukocyte Antigen Typing in Severe Combined Immunodeficiency.

    Science.gov (United States)

    Liu, Chang; Duffy, Brian; Bednarski, Jeffrey J; Calhoun, Cecelia; Lay, Lindsay; Rundblad, Barrett; Payton, Jacqueline E; Mohanakumar, Thalachallour

    2016-02-01

    To report the laboratory investigation of a case of severe combined immunodeficiency (SCID) with maternal T-cell engraftment, focusing on the interference of human leukocyte antigen (HLA) typing by blood chimerism. HLA typing was performed with three different methods, including sequence-specific primer (SSP), sequence-specific oligonucleotide, and Sanger sequencing on peripheral blood leukocytes and buccal cells, from a 3-month-old boy and peripheral blood leukocytes from his parents. Short tandem repeat (STR) testing was performed in parallel. HLA typing of the patient's peripheral blood leukocytes using the SSP method demonstrated three different alleles for each of the HLA-B and HLA-C loci, with both maternal alleles present at each locus. Typing results from the patient's buccal cells showed a normal pattern of inheritance for paternal and maternal haplotypes. STR enrichment testing of the patient's CD3+ T lymphocytes and CD15+ myeloid cells confirmed maternal T-cell engraftment, while the myeloid cell profile matched the patient's buccal cells. Maternal T-cell engraftment may interfere with HLA typing in patients with SCID. Selection of the appropriate typing methods and specimens is critical for accurate HLA typing and immunologic assessment before allogeneic hematopoietic stem cell transplantation. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. KHYG-1 and NK-92 represent different subtypes of LFA-1-mediated NK cell adhesiveness.

    Science.gov (United States)

    Suck, Garnet; Tan, Suet-Mien; Chu, Sixian; Niam, Madelaine; Vararattanavech, Ardcharaporn; Lim, Tsyr Jong; Koh, Mickey B C

    2011-01-01

    Novel cancer cellular therapy approaches involving long-term ex vivo IL-2 stimulated highly cytotoxic natural killer (NK) cells are emerging. However, adhesion properties of such NK cells are not very well understood. Herein, we describe the novel observation of permanently activated alphaLbeta2 integrin leukocyte function-associated antigen (LFA)-1 adhesion receptor in long-term IL-2 activated NK cells and the permanent NK cell lines KHYG-1 and NK-92. We show that such cytokine activated NK effectors constitutively adhered to the LFA-1-ligand ICAM-1, whereas binding to the lower affinity ligand ICAM-3 required additional exogenous activating conditions. The results demonstrate an extended conformation and an intermediate affinity state for the LFA-1 population expressed by the NK cells. Interestingly, adhesion to ICAM-1 or K562 induced pronounced cell spreading in KHYG-1, but not in NK-92, and partially in long-term IL-2 stimulated primary NK cells. It is conceivable that such differential adhesion characteristics may impact motility potential of such NK effectors with relevance to clinical tumor targeting. KHYG-1 could be a useful model in planning future targeted therapeutic approaches involving NK effectors with augmented functions.

  19. Amperometric Adhesion Signals of Liposomes, Cells and Droplets

    OpenAIRE

    Ivošević DeNardis, N.; Žutić, V.; Svetličić, V.; Frkanec, R.

    2009-01-01

    Individual soft microparticles (liposomes, living cells and organic droplets) in aqueous media are characterized by their adhesion signals using amperometry at the dropping mercury electrode. We confirmed that the general mechanism established for adhesion of hydrocarbon droplets and cells is valid as well for liposome adhesion within a wide range of surface charge densities. Incidents and shape of adhesion signals in liposome suspensions reflect liposome polydispersity, surface charge den...

  20. Extract of corn silk (stigma of Zea mays) inhibits the tumour necrosis factor-alpha- and bacterial lipopolysaccharide-induced cell adhesion and ICAM-1 expression.

    Science.gov (United States)

    Habtemariam, S

    1998-05-01

    Treatment of human endothelial cells with cytokines such as tumour necrosis factor-alpha (TNF) or E. coli lipopolysaccharide (LPS) induces the expression of several adhesion molecules and enhances leukocyte adhesion to endothelial cell surface. Interfering with this leukocyte adhesion or adhesion molecules upregulation is an important therapeutic target for the treatment of bacterial sepsis and various inflammatory diseases. In the course of screening marketed European anti-inflammatory herbal drugs for TNF antagonistic activity, a crude ethanolic extract of corn silk (stigma of Zea mays) exhibited significant activity. The extract at concentrations of 9-250 micrograms/ml effectively inhibited the TNF- and LPS-induced adhesiveness of EAhy 926 endothelial cells to monocytic U937 cells. Similar concentration ranges of corn silk extract did also block the TNF and LPS but not the phorbol 12-myristate 13-acetate-induced ICAM-1 expression on EAhy 926 endothelial cell surface. The extract did not alter the production of TNF by LPS-activated macrophages and failed to inhibit the cytotoxic activity of TNF. It is concluded that corn silk possesses important therapeutic potential for TNF- and LPS-mediated leukocyte adhesion and trafficking.

  1. Probing bacterial adhesion at the single-cell level

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Müller, Torsten; Meyer, Rikke Louise

    be considered. We have developed a simple and versatile method to make single-cell bacterial probes for measuring single cell adhesion by force spectroscopy using atomic force microscopy (AFM). A single-cell probe was readily made by picking up a bacterial cell from a glass surface by approaching a tipless AFM...... cantilever coated with the commercial cell adhesive CellTakTM. We applied the method to study adhesion of living cells to abiotic surfaces at the single-cell level. Immobilisation of single bacterial cells to the cantilever was stable for several hours, and viability was confirmed by Live/Dead staining...... on the adhesion force, we explored the bond formation and adhesive strength of four different bacterial strains towards three abiotic substrates with variable hydrophobicity and surface roughness. The adhesion force and final rupture length were dependent on bacterial strains, surfaces properties, and time...

  2. Cell Adhesion on Surface-Functionalized Magnesium.

    Science.gov (United States)

    Wagener, Victoria; Schilling, Achim; Mainka, Astrid; Hennig, Diana; Gerum, Richard; Kelch, Marie-Luise; Keim, Simon; Fabry, Ben; Virtanen, Sannakaisa

    2016-05-18

    The biocompatibility of commercially pure magnesium-based (cp Mg) biodegradable implants is compromised of strong hydrogen evolution and surface alkalization due to high initial corrosion rates of cp Mg in the physiological environment. To mitigate this problem, the addition of corrosion-retarding alloying elements or coating of implant surfaces has been suggested. In the following work, we explored the effect of organic coatings on long-term cell growth. cp Mg was coated with aminopropyltriehtoxysilane + vitamin C (AV), carbonyldiimidazole (CDI), or stearic acid (SA). All three coatings have been previously suggested to reduce initial corrosion and to enhance protein adsorption and hence cell adhesion on magnesium surfaces. Endothelial cells (DH1+/+) and osteosarcoma cells (MG63) were cultured on coated samples for up to 20 days. To quantify Mg corrosion, electrochemical impedance spectroscopy (EIS) was measured after 1, 3, and 5 days of cell culture. We also investigated the speed of initial cell spreading after seeding using fluorescently labeled fibroblasts (NIH/3T3). Hydrogen evolution after contact with cell culture medium was markedly decreased on AV- and SA-coated Mg compared to uncoated Mg. These coatings also showed improved cell adhesion and spreading after 24 h of culture comparable to tissue-treated plastic surfaces. On AV-coated cp Mg, a confluent layer of endothelial cells formed after 5 days and remained intact for up to 20 days. Together, these data demonstrate that surface coating with AV is a viable strategy for improving long-term biocompatibility of cp Mg-based implants. EIS measurements confirmed that the presence of a confluent cell layer increased the corrosion resistance.

  3. Donor exosomes rather than passenger leukocytes initiate alloreactive T cell responses after transplantation

    Science.gov (United States)

    Marino, Jose; Babiker-Mohamed, Mohamed H.; Crosby-Bertorini, Patrick; Paster, Joshua T.; LeGuern, Christian; Germana, Sharon; Abdi, Reza; Uehara, Mayuko; Kim, James I.; Markmann, James F.; Tocco, Georges; Benichou, Gilles

    2016-01-01

    Transplantation of allogeneic organs and tissues represents a lifesaving procedure for a variety of patients affected with end-stage diseases. Although current immunosuppressive therapy prevents early acute rejection, it is associated with nephrotoxicity and increased risks for infection and neoplasia. This stresses the need for selective immune-based therapies relying on manipulation of lymphocyte recognition of donor antigens. The passenger leukocyte theory states that allograft rejection is initiated by recipient T cells recognizing donor major histocompatibility complex (MHC) molecules displayed on graft leukocytes migrating to the host’s lymphoid organs. We revisited this concept in mice transplanted with allogeneic skin, heart, or islet grafts using imaging flow cytometry. We observed no donor cells in the lymph nodes and spleen of skin-grafted mice, but we found high numbers of recipient cells displaying allogeneic MHC molecules (cross-dressed) acquired from donor microvesicles (exosomes). After heart or islet transplantation, we observed few donor leukocytes (100 per million) but large numbers of recipient cells cross-dressed with donor MHC (>90,000 per million). Last, we showed that purified allogeneic exosomes induced proinflammatory alloimmune responses by T cells in vitro and in vivo. Collectively, these results suggest that recipient antigen-presenting cells cross-dressed with donor MHC rather than passenger leukocytes trigger T cell responses after allotransplantation. PMID:27942611

  4. The role of adhesion energy in controlling cell?cell contacts

    OpenAIRE

    Ma?tre, Jean-L?on; Heisenberg, Carl-Philipp

    2011-01-01

    Recent advances in microscopy techniques and biophysical measurements have provided novel insight into the molecular, cellular and biophysical basis of cell adhesion. However, comparably little is known about a core element of cell?cell adhesion?the energy of adhesion at the cell?cell contact. In this review, we discuss approaches to understand the nature and regulation of adhesion energy, and propose strategies to determine adhesion energy between cells in vitro and in vivo.

  5. Tuning cell adhesion by direct nanostructuring silicon into cell repulsive/adhesive patterns

    International Nuclear Information System (INIS)

    Premnath, Priyatha; Tavangar, Amirhossein; Tan, Bo; Venkatakrishnan, Krishnan

    2015-01-01

    Developing platforms that allow tuning cell functionality through incorporating physical, chemical, or mechanical cues onto the material surfaces is one of the key challenges in research in the field of biomaterials. In this respect, various approaches have been proposed and numerous structures have been developed on a variety of materials. Most of these approaches, however, demand a multistep process or post-chemical treatment. Therefore, a simple approach would be desirable to develop bio-functionalized platforms for effectively modulating cell adhesion and consequently programming cell functionality without requiring any chemical or biological surface treatment. This study introduces a versatile yet simple laser approach to structure silicon (Si) chips into cytophobic/cytophilic patterns in order to modulate cell adhesion and proliferation. These patterns are fabricated on platforms through direct laser processing of Si substrates, which renders a desired computer-generated configuration into patterns. We investigate the morphology, chemistry, and wettability of the platform surfaces. Subsequently, we study the functionality of the fabricated platforms on modulating cervical cancer cells (HeLa) behaviour. The results from in vitro studies suggest that the nanostructures efficiently repel HeLa cells and drive them to migrate onto untreated sites. The study of the morphology of the cells reveals that cells evade the cytophobic area by bending and changing direction. Additionally, cell patterning, cell directionality, cell channelling, and cell trapping are achieved by developing different platforms with specific patterns. The flexibility and controllability of this approach to effectively structure Si substrates to cell-repulsive and cell-adhesive patterns offer perceptible outlook for developing bio-functionalized platforms for a variety of biomedical devices. Moreover, this approach could pave the way for developing anti-cancer platforms that selectively repel

  6. Tuning cell adhesion by direct nanostructuring silicon into cell repulsive/adhesive patterns

    Energy Technology Data Exchange (ETDEWEB)

    Premnath, Priyatha, E-mail: priyatha.premnath@ryerson.ca [Micro/Nanofabrication Laboratory, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3 (Canada); Tavangar, Amirhossein, E-mail: atavanga@ryerson.ca [Micro/Nanofabrication Laboratory, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3 (Canada); Tan, Bo, E-mail: tanbo@ryerson.ca [Nanocharacterization Laboratory, Department of Aerospace Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3 (Canada); Venkatakrishnan, Krishnan, E-mail: venkat@ryerson.ca [Micro/Nanofabrication Laboratory, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3 (Canada)

    2015-09-10

    Developing platforms that allow tuning cell functionality through incorporating physical, chemical, or mechanical cues onto the material surfaces is one of the key challenges in research in the field of biomaterials. In this respect, various approaches have been proposed and numerous structures have been developed on a variety of materials. Most of these approaches, however, demand a multistep process or post-chemical treatment. Therefore, a simple approach would be desirable to develop bio-functionalized platforms for effectively modulating cell adhesion and consequently programming cell functionality without requiring any chemical or biological surface treatment. This study introduces a versatile yet simple laser approach to structure silicon (Si) chips into cytophobic/cytophilic patterns in order to modulate cell adhesion and proliferation. These patterns are fabricated on platforms through direct laser processing of Si substrates, which renders a desired computer-generated configuration into patterns. We investigate the morphology, chemistry, and wettability of the platform surfaces. Subsequently, we study the functionality of the fabricated platforms on modulating cervical cancer cells (HeLa) behaviour. The results from in vitro studies suggest that the nanostructures efficiently repel HeLa cells and drive them to migrate onto untreated sites. The study of the morphology of the cells reveals that cells evade the cytophobic area by bending and changing direction. Additionally, cell patterning, cell directionality, cell channelling, and cell trapping are achieved by developing different platforms with specific patterns. The flexibility and controllability of this approach to effectively structure Si substrates to cell-repulsive and cell-adhesive patterns offer perceptible outlook for developing bio-functionalized platforms for a variety of biomedical devices. Moreover, this approach could pave the way for developing anti-cancer platforms that selectively repel

  7. Bacteria-induced histamine release from human bronchoalveolar cells and blood leukocytes

    DEFF Research Database (Denmark)

    Clementsen, P; Milman, N; Struve-Christensen, E

    1991-01-01

    23187 resulted in histamine release. S. aureus-induced histamine release from basophils was examined in leukocyte suspensions obtained from the same individuals, and in all experiments release was found. The dose-response curves were similar to those obtained with BAL cells. The bacteria...

  8. Biomechanics of P-selectin PSGL-1 bonds: Shear threshold and integrin-independent cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Zhihua; Goldsmith, Harry L.; MacIntosh, Fiona A.; Shankaran, Harish; Neelamegham, Sriram

    2006-03-01

    Platelet-leukocyte adhesion may contribute to thrombosis and inflammation. We examined the heterotypic interaction between unactivated neutrophils and either thrombin receptor activating peptide (TRAP) stimulated platelets or P-selectin bearing beads (Ps-beads) in suspension. Cone-plate viscometers were used to apply controlled shear rates from 14-3000/s. Platelet-neutrophil and bead-neutrophil adhesion analysis was performed using both flow cytometry and high-speed videomicroscopy. We observed that while blocking antibodies against either P-selectin or P-selectin glycoprotein ligand-1 (PSGL-1) alone inhibited platelet-neutrophil adhesion by ~60% at 140/s, these reagents completely blocked adhesion at 3000/s. Anti-Mac-1 alone did not alter platelet-neutrophil adhesion rates at any shear rate, though in synergy with selectin antagonists it abrogated cell binding. Unstimulated neutrophils avidly bound Ps-beads and activated platelets in an integrin-independent manner, suggesting that purely selectin-dependent cell adhesion is possible. In support of this, antagonists against P-selectin or PSGL-1 dissociated previously formed platelet-neutrophil and Ps-bead neutrophil aggregates under shear in a variety of experimental systems, including in assays performed with whole blood. In studies where medium viscosity and shear rate were varied, a subtle shear threshold for P-selectin PSGL-1 binding was also noted at shear rates<100/s and at force loading rates of ~300pN/sec. Results are discussed in light of biophysical computations that characterize the collision between unequal size particles in linear shear flow. Overall, our studies reveal an integrin-independent regime for cell adhesion that may be physiologically relevant.

  9. The intercellular cell adhesion molecule-1 (icam-1) in lung cancer: implications for disease progression and prognosis.

    Science.gov (United States)

    Kotteas, Elias A; Boulas, Panagiotis; Gkiozos, Ioannis; Tsagkouli, Sofia; Tsoukalas, George; Syrigos, Konstantinos N

    2014-09-01

    The intercellular cell-adhesion molecule-1 (ICAM-1) is a transmembrane molecule and a distinguished member of the Immunoglobulin superfamily of proteins that participates in many important processes, including leukocyte endothelial transmigration, cell signaling, cell-cell interaction, cell polarity and tissue stability. ICAM-1and its soluble part are highly expressed in inflammatory conditions, chronic diseases and a number of malignancies. In the present article we present the implications of ICAM-1 in the progression and prognosis of one of the major global killers of our era: lung cancer. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  10. Hug tightly and say goodbye: role of endothelial ICAM-1 in leukocyte transmigration.

    Science.gov (United States)

    Rahman, Arshad; Fazal, Fabeha

    2009-04-01

    Stable adhesion of leukocytes to endothelium is crucial for transendothelial migration (TEM) of leukocytes evoked during inflammatory responses, immune surveillance, and homing and mobilization of hematopoietic progenitor cells. The basis of stable adhesion involves expression of intercellular adhesion molecule-1 (ICAM-1), an inducible endothelial adhesive protein that serves as a counter-receptor for beta(2)-integrins on leukocytes. Interaction of ICAM-1 with beta(2)-integrins enables leukocytes to adhere firmly to the vascular endothelium and subsequently, to migrate across the endothelial barrier. The emerging paradigm is that ICAM-1, in addition to firmly capturing leukocytes, triggers intracellular signaling events that may contribute to active participation of the endothelium in facilitating the TEM of adherent leukocytes. The nature, duration, and intensity of ICAM-1-dependent signaling events may contribute to the determination of the route (paracellular vs. transcellular) of leukocyte passage; these aspects of ICAM-1 signaling may in turn be influenced by density and distribution of ICAM-1 on the endothelial cell surface, the source of endothelial cells it is present on, and the type of leukocytes with which it is engaged. This review summarizes our current understanding of the "ICAM-1 paradigm" of TEM with an emphasis on the signaling events mediating ICAM-1 expression and activated by ICAM-1 engagement in endothelial cells.

  11. iTRAQ quantitative proteomics-based identification of cell adhesion as a dominant phenotypic modulation in thrombin-stimulated human aortic endothelial cells.

    Science.gov (United States)

    Wang, Huang-Joe; Chen, Sung-Fang; Lo, Wan-Yu

    2015-05-01

    The phenotypic changes in thrombin-stimulated endothelial cells include alterations in permeability, cell shape, vasomotor tone, leukocyte trafficking, migration, proliferation, and angiogenesis. Previous studies regarding the pleotropic effects of thrombin on the endothelium used human umbilical vein endothelial cells (HUVECs)-cells derived from fetal tissue that does not exist in adults. Only a few groups have used screening approaches such as microarrays to profile the global effects of thrombin on endothelial cells. Moreover, the proteomic changes of thrombin-stimulated human aortic endothelial cells (HAECs) have not been elucidated. HAECs were stimulated with 2 units/mL thrombin for 5h and their proteome was investigated using isobaric tags for the relative and absolute quantification (iTRAQ) and the MetaCore(TM) software. A total of 627 (experiment A) and 622 proteins (experiment B) were quantified in the duplicated iTRAQ analyses. MetaCore(TM) pathway analysis identified cell adhesion as a dominant phenotype in thrombin-stimulated HAECs. Replicated iTRAQ data revealed that "Cell adhesion_Chemokines and adhesion," "Cell adhesion_Histamine H1 receptor signaling in the interruption of cell barrier integrity," and "Cell adhesion_Integrin-mediated cell adhesion and migration" were among the top 10 statistically significant pathways. The cell adhesion phenotype was verified by increased THP-1 adhesion to thrombin-stimulated HAECs. In addition, the expression of ICAM-1, VCAM-1, and SELE was significantly upregulated in thrombin-stimulated HAECs. Several regulatory pathways are altered in thrombin-stimulated HAECs, with cell adhesion being the dominant altered phenotype. Our findings show the feasibility of the iTRAQ technique for evaluating cellular responses to acute stimulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Cell Adhesion Molecule CD166/ALCAM Functions Within the Crypt to Orchestrate Murine Intestinal Stem Cell HomeostasisSummary

    Directory of Open Access Journals (Sweden)

    Nicholas R. Smith

    2017-05-01

    Full Text Available Background & Aims: Intestinal epithelial homeostasis is maintained by active-cycling and slow-cycling stem cells confined within an instructive crypt-based niche. Exquisite regulating of these stem cell populations along the proliferation-to-differentiation axis maintains a homeostatic balance to prevent hyperproliferation and cancer. Although recent studies focus on how secreted ligands from mesenchymal and epithelial populations regulate intestinal stem cells (ISCs, it remains unclear what role cell adhesion plays in shaping the regulatory niche. Previously we have shown that the cell adhesion molecule and cancer stem cell marker, CD166/ALCAM (activated leukocyte cell adhesion molecule, is highly expressed by both active-cycling Lgr5+ ISCs and adjacent Paneth cells within the crypt base, supporting the hypothesis that CD166 functions to mediate ISC maintenance and signal coordination. Methods: Here we tested this hypothesis by analyzing a CD166–/– mouse combined with immunohistochemical, flow cytometry, gene expression, and enteroid culture. Results: We found that animals lacking CD166 expression harbored fewer active-cycling Lgr5+ ISCs. Homeostasis was maintained by expansion of the transit-amplifying compartment and not by slow-cycling Bmi1+ ISC stimulation. Loss of active-cycling ISCs was coupled with deregulated Paneth cell homeostasis, manifested as increased numbers of immature Paneth progenitors due to decreased terminal differentiation, linked to defective Wnt signaling. CD166–/– Paneth cells expressed reduced Wnt3 ligand expression and depleted nuclear β-catenin. Conclusions: These data support a function for CD166 as an important cell adhesion molecule that shapes the signaling microenvironment by mediating ISC–niche cell interactions. Furthermore, loss of CD166 expression results in decreased ISC and Paneth cell homeostasis and an altered Wnt microenvironment. Keywords: Intestinal Stem Cell, Homeostasis

  13. Cell-Cell Adhesion and Breast Cancer.

    Science.gov (United States)

    1998-01-01

    Lodish, H., Baltimore, D., Berk, A., Zipurski, S. L, Matsudaira, P., and J. Darnell. (1995). Molecular Cell Biology. Scientific American Books , New...Bruhn, L., Wedlich, D., Grosschedl, R., and Birchmeier, W. (1996) Nature 382, 638-642 6. Molenaar , M., van de Wetering, M., Oosterwegel, M., Peterson

  14. Genotoxicity of waterpipe smoke in buccal cells and peripheral blood leukocytes as determined by comet assay.

    Science.gov (United States)

    Al-Amrah, Hadba Jar-Allah; Aboznada, Osama Abdullah; Alam, Mohammad Zubair; ElAssouli, M-Zaki Mustafa; Mujallid, Mohammad Ibrahim; ElAssouli, Sufian Mohamad

    2014-12-01

    Waterpipe smoke causes DNA damage in peripheral blood leukocytes and in buccal cells of smokers. To determine the exposure effect of waterpipe smoke on buccal cells and peripheral blood leukocytes in regard to DNA damage using comet assay. The waterpipe smoke condensates were analyzed by gas chromatography-mass spectrometry (GC-MS). The study was performed on 20 waterpipe smokers. To perform comet assay on bucaal cells of smokers, 10 µl of cell suspension was mixed with 85 µl of pre-warmed 1% low melting agarose, applied to comet slide and electrophoresed. To analyze the effect of smoke condensate in vitro, 1 ml of peripheral blood was mixed with 10 µl of smoke condensate and subjected for comet assay. The GC-MS analysis revealed the presence of 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4on, nicotine, hydroxymethyl furancarboxaldehyde and 3-ethoxy-4-hydroxybenzaldehyde in the smoke condensates. Waterpipe smoking caused DNA damage in vivo in buccal cells of smokers. The tail moment and tail length in buccal cells of smokers were 186 ± 26 and 456 ± 71, respectively, which are higher than control. The jurak and moassel smoke condensates were found to cause DNA damage in peripheral blood leukocytes. The moassel smoke condensate was more damaging. There is wide misconception that waterpipe smoking is not as harmful as cigarette smoking. This study demonstrated that waterpipe smoke induced DNA damage in exposed cells. Waterpipe smokes cause DNA damage in buccal cells. The smoke condensate of both jurak and moassel caused comet formation suggesting DNA damage in peripheral blood leukocytes.

  15. Cell Adhesions: Actin-Based Modules that Mediate Cell-Extracellular Matrix and Cell-Cell Interactions

    Science.gov (United States)

    Bachir, Alexia; Horwitz, Alan Rick; Nelson, W. James; Bianchini, Julie M.

    2018-01-01

    Cell adhesions link cells to the extracellular matrix (ECM) and to each other, and depend on interactions with the actin cytoskeleton. Both cell-ECM and cell-cell adhesion sites contain discrete, yet overlapping functional modules. These modules establish physical association with the actin cytoskeleton, locally modulate actin organization and dynamics, and trigger intracellular signaling pathways. Interplay between these modules generates distinct actin architectures that underlie different stages, types, and functions of cell-ECM and cell-cell adhesions. Actomyosin contractility is required to generate mature, stable adhesions, as well as sense and translate the mechanical properties of the cellular environment to changes in cell organization and behavior. In this chapter we discuss the organization and function of different adhesion modules and how they interact with the actin cytoskeleton. We highlight the molecular mechanisms of mechanotransduction in adhesions, and how adhesion molecules mediate crosstalk between cell-ECM and cell-cell adhesion sites. PMID:28679638

  16. Mechanisms of adhesion and subsequent actions of a haematopoietic stem cell line, HPC-7, in the injured murine intestinal microcirculation in vivo.

    Directory of Open Access Journals (Sweden)

    Dean P J Kavanagh

    Full Text Available Although haematopoietic stem cells (HSCs migrate to injured gut, therapeutic success clinically remains poor. This has been partially attributed to limited local HSC recruitment following systemic injection. Identifying site specific adhesive mechanisms underpinning HSC-endothelial interactions may provide important information on how to enhance their recruitment and thus potentially improve therapeutic efficacy. This study determined (i the integrins and inflammatory cyto/chemokines governing HSC adhesion to injured gut and muscle (ii whether pre-treating HSCs with these cyto/chemokines enhanced their adhesion and (iii whether the degree of HSC adhesion influenced their ability to modulate leukocyte recruitment.Adhesion of HPC-7, a murine HSC line, to ischaemia-reperfused (IR injured mouse gut or cremaster muscle was monitored intravitally. Critical adhesion molecules were identified by pre-treating HPC-7 with blocking antibodies to CD18 and CD49d. To identify cyto/chemokines capable of recruiting HPC-7, adhesion was monitored following tissue exposure to TNF-α, IL-1β or CXCL12. The effects of pre-treating HPC-7 with these cyto/chemokines on surface integrin expression/clustering, adhesion to ICAM-1/VCAM-1 and recruitment in vivo was also investigated. Endogenous leukocyte adhesion following HPC-7 injection was again determined intravitally.IR injury increased HPC-7 adhesion in vivo, with intestinal adhesion dependent upon CD18 and muscle adhesion predominantly relying on CD49d. Only CXCL12 pre-treatment enhanced HPC-7 adhesion within injured gut, likely by increasing CD18 binding to ICAM-1 and/or CD18 surface clustering on HPC-7. Leukocyte adhesion was reduced at 4 hours post-reperfusion, but only when local HPC-7 adhesion was enhanced using CXCL12.This data provides evidence that site-specific molecular mechanisms govern HPC-7 adhesion to injured tissue. Importantly, we show that HPC-7 adhesion is a modulatable event in IR injury and

  17. Dynamic pattern of endothelial cell adhesion molecule expression in muscle and perineural vessels from patients with classic polyarteritis nodosa.

    Science.gov (United States)

    Coll-Vinent, B; Cebrián, M; Cid, M C; Font, C; Esparza, J; Juan, M; Yagüe, J; Urbano-Márquez, A; Grau, J M

    1998-03-01

    To investigate endothelial cell adhesion molecule expression in vessels from patients with classic polyarteritis nodosa (PAN). Frozen sections of 21 muscle and 16 nerve samples from 30 patients with biopsy-proven PAN and 12 histologically normal muscle and 2 histologically normal nerve samples from 12 controls were studied immunohistochemically, using specific monoclonal antibodies (MAb) that recognize adhesion molecules. Adhesion molecules identified were intercellular adhesion molecule 1 (ICAM-1), ICAM-2, ICAM-3, vascular cell adhesion molecule 1 (VCAM-1), platelet endothelial cell adhesion molecule 1 (PECAM-1), E-selectin, P-selectin, L-selectin, lymphocyte function-associated antigen 1 (LFA-1), and very late activation antigen 4 (VLA-4). Neutrophils were identified with a MAb recognizing neutrophil elastase. Endothelial cells were identified with the lectin ulex europaeus. In early lesions, expression of PECAM-1, ICAM-1, ICAM-2, and P-selectin was similar to that in control samples, and VCAM-1 and E-selectin were induced in vascular endothelium. In advanced lesions, immunostaining for adhesion molecules diminished or disappeared in luminal endothelium, whereas these molecules were clearly expressed in microvessels within and surrounding inflamed vessels. Staining in endothelia from vessels in a healing stage tended to be negative. A high proportion of infiltrating leukocytes expressed LFA-1 and VLA-4, and only a minority expressed L-selectin. No relationship between the expression pattern of adhesion molecules and clinical features, disease duration, or previous corticosteroid treatment was observed. Endothelial adhesion molecule expression in PAN is a dynamic process that varies according to the histopathologic stage of the vascular lesions. The preferential expression of constitutive and inducible adhesion molecules in microvessels suggests that angiogenesis contributes to the persistence of inflammatory infiltration in PAN.

  18. Lignans From Forsythia x Intermedia Leaves and Flowers Attenuate the Pro-inflammatory Function of Leukocytes and Their Interaction With Endothelial Cells

    Science.gov (United States)

    Michalak, Barbara; Filipek, Agnieszka; Chomicki, Piotr; Pyza, Małgorzata; Woźniak, Marta; Żyżyńska-Granica, Barbara; Piwowarski, Jakub P.; Kicel, Agnieszka; Olszewska, Monika A.; Kiss, Anna K.

    2018-01-01

    Aim of the study: Taking into account that overactivated leukocytes are an important factor in the development of many chronic diseases, we investigated the activity of phytochemically characterized (HPLC-DAD-MSn) extracts from forsythia leaves and flowers on the pro- and anti-inflammatory functions of leukocytes (effects on IL-1β, IL-8, TNF-α, and TGFβ release) and their adherence to endothelial cells. Using bio-guided fractionation, we isolated the active compounds and determined their biological activity, and we included the positive control quercetin. Methods: The effect on IL-1β, TNF-α, IL-8, and TGF-α production by leukocytes was measured by enzyme-linked immunosorbent assay (ELISA). The surface expression of adhesion molecules was analyzed with flow cytometry, and the neutrophil attachment to the endothelial cells was assessed fluorimetrically. The effects on p38MAPK, ERK1/2 and JNK phosphorylation were determined using western blots. Results: Leaf extracts had the effect of decreasing TNF-α production in neutrophils and monocyte/macrophage cells. The bio-guided fractionation led to the isolation of the following lignan aglycones: (+)-pinoresinol, (+)-epipinoresinol, (−)-matairesinol, (+)-phillygenin, and (−)-arctigenin. Only phillygenin was able to stimulate the anti-inflammatory function of macrophages by inducing TGF-β release and IL-10 receptor surface expression. Arctigenin, phillygenin, and a metabolite produced by the gut microbiota, enterolactone, decreased TNF-α and IL-1β production and neutrophil adhesion to endothelial cells, probably by attenuating the p38 and ERK kinase pathways. Conclusion: Forsythia x intermedia is a valuable source of active lignans, which may be potential candidates for treating inflammatory diseases that are associated with the excessive production of cytokines such as TNF-α and IL-1β. PMID:29740324

  19. Lignans From Forsythia x Intermedia Leaves and Flowers Attenuate the Pro-inflammatory Function of Leukocytes and Their Interaction With Endothelial Cells.

    Science.gov (United States)

    Michalak, Barbara; Filipek, Agnieszka; Chomicki, Piotr; Pyza, Małgorzata; Woźniak, Marta; Żyżyńska-Granica, Barbara; Piwowarski, Jakub P; Kicel, Agnieszka; Olszewska, Monika A; Kiss, Anna K

    2018-01-01

    Aim of the study: Taking into account that overactivated leukocytes are an important factor in the development of many chronic diseases, we investigated the activity of phytochemically characterized (HPLC-DAD-MS n ) extracts from forsythia leaves and flowers on the pro- and anti-inflammatory functions of leukocytes (effects on IL-1β, IL-8, TNF-α, and TGFβ release) and their adherence to endothelial cells. Using bio-guided fractionation, we isolated the active compounds and determined their biological activity, and we included the positive control quercetin. Methods: The effect on IL-1β, TNF-α, IL-8, and TGF-α production by leukocytes was measured by enzyme-linked immunosorbent assay (ELISA). The surface expression of adhesion molecules was analyzed with flow cytometry, and the neutrophil attachment to the endothelial cells was assessed fluorimetrically. The effects on p38MAPK, ERK1/2 and JNK phosphorylation were determined using western blots. Results: Leaf extracts had the effect of decreasing TNF-α production in neutrophils and monocyte/macrophage cells. The bio-guided fractionation led to the isolation of the following lignan aglycones: (+)-pinoresinol, (+)-epipinoresinol, (-)-matairesinol, (+)-phillygenin, and (-)-arctigenin. Only phillygenin was able to stimulate the anti-inflammatory function of macrophages by inducing TGF-β release and IL-10 receptor surface expression. Arctigenin, phillygenin, and a metabolite produced by the gut microbiota, enterolactone, decreased TNF-α and IL-1β production and neutrophil adhesion to endothelial cells, probably by attenuating the p38 and ERK kinase pathways. Conclusion: Forsythia x intermedia is a valuable source of active lignans, which may be potential candidates for treating inflammatory diseases that are associated with the excessive production of cytokines such as TNF-α and IL-1β.

  20. Lignans From Forsythia x Intermedia Leaves and Flowers Attenuate the Pro-inflammatory Function of Leukocytes and Their Interaction With Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Barbara Michalak

    2018-04-01

    Full Text Available Aim of the study: Taking into account that overactivated leukocytes are an important factor in the development of many chronic diseases, we investigated the activity of phytochemically characterized (HPLC-DAD-MSn extracts from forsythia leaves and flowers on the pro- and anti-inflammatory functions of leukocytes (effects on IL-1β, IL-8, TNF-α, and TGFβ release and their adherence to endothelial cells. Using bio-guided fractionation, we isolated the active compounds and determined their biological activity, and we included the positive control quercetin.Methods: The effect on IL-1β, TNF-α, IL-8, and TGF-α production by leukocytes was measured by enzyme-linked immunosorbent assay (ELISA. The surface expression of adhesion molecules was analyzed with flow cytometry, and the neutrophil attachment to the endothelial cells was assessed fluorimetrically. The effects on p38MAPK, ERK1/2 and JNK phosphorylation were determined using western blots.Results: Leaf extracts had the effect of decreasing TNF-α production in neutrophils and monocyte/macrophage cells. The bio-guided fractionation led to the isolation of the following lignan aglycones: (+-pinoresinol, (+-epipinoresinol, (−-matairesinol, (+-phillygenin, and (−-arctigenin. Only phillygenin was able to stimulate the anti-inflammatory function of macrophages by inducing TGF-β release and IL-10 receptor surface expression. Arctigenin, phillygenin, and a metabolite produced by the gut microbiota, enterolactone, decreased TNF-α and IL-1β production and neutrophil adhesion to endothelial cells, probably by attenuating the p38 and ERK kinase pathways.Conclusion:Forsythia x intermedia is a valuable source of active lignans, which may be potential candidates for treating inflammatory diseases that are associated with the excessive production of cytokines such as TNF-α and IL-1β.

  1. [In-line leukocyte depletion ov thrombocytapheresis concentrates with the Fresenius-AS-104 cell separator].

    Science.gov (United States)

    Zeiler, T; Kretschmer, V

    1997-01-01

    This study reports on in-line filtration of 72 platelet concentrates (PC) collected by the Fresenius AS 104 cell separator, using the new C4F sets with integrated leukocyte filters (Biofil P plus). 72 volunteer donors, automatic counts of platelets, microscopical counting of residual leukocytes with the Nageotte chamber, GMP-140 by flow cytometrie, beta-thromboglobulin release, platelet aggregation (ADP, collagen). Filtration reduced leukocytes by 98.5%. Residual leukocyte contamination remained clearly below 5 x 10(6) (mean 0.5 +/- 0.6 x 10(6), maximum 2.8 x 10(6). Platelet loss by filtration was found to be between 27.4 and 0.7% (median 8.5%). Filtration caused a significant decrease of platelet aggregability (p < 0.005), but no significant increase of beta-thromboglobulin release and only a slight decrease of GMP-140 expression. From these data can be concluded that in-line filtration was highly efficient with acceptable platelet retention. No significant platelet activation could be observed in the PC. The decrease of platelet aggregability have been due to the reduction of activated platelets which are believed to show reduced in vivo survival.

  2. Cleavage and Cell Adhesion Properties of Human Epithelial Cell Adhesion Molecule (HEPCAM)*

    Science.gov (United States)

    Tsaktanis, Thanos; Kremling, Heidi; Pavšič, Miha; von Stackelberg, Ricarda; Mack, Brigitte; Fukumori, Akio; Steiner, Harald; Vielmuth, Franziska; Spindler, Volker; Huang, Zhe; Jakubowski, Jasmine; Stoecklein, Nikolas H.; Luxenburger, Elke; Lauber, Kirsten; Lenarčič, Brigita; Gires, Olivier

    2015-01-01

    Human epithelial cell adhesion molecule (HEPCAM) is a tumor-associated antigen frequently expressed in carcinomas, which promotes proliferation after regulated intramembrane proteolysis. Here, we describe extracellular shedding of HEPCAM at two α-sites through a disintegrin and metalloprotease (ADAM) and at one β-site through BACE1. Transmembrane cleavage by γ-secretase occurs at three γ-sites to generate extracellular Aβ-like fragments and at two ϵ-sites to release human EPCAM intracellular domain HEPICD, which is efficiently degraded by the proteasome. Mapping of cleavage sites onto three-dimensional structures of HEPEX cis-dimer predicted conditional availability of α- and β-sites. Endocytosis of HEPCAM warrants acidification in cytoplasmic vesicles to dissociate protein cis-dimers required for cleavage by BACE1 at low pH values. Intramembrane cleavage sites are accessible and not part of the structurally important transmembrane helix dimer crossing region. Surprisingly, neither chemical inhibition of cleavage nor cellular knock-out of HEPCAM using CRISPR-Cas9 technology impacted the adhesion of carcinoma cell lines. Hence, a direct function of HEPCAM as an adhesion molecule in carcinoma cells is not supported and appears to be questionable. PMID:26292218

  3. Cell Adhesion to Plasma-Coated PVC

    Directory of Open Access Journals (Sweden)

    Elidiane C. Rangel

    2014-01-01

    Full Text Available To produce environments suitable for cell culture, thin polymer films were deposited onto commercial PVC plates from radiofrequency acetylene-argon plasmas. The proportion of argon in the plasmas, PAr, was varied from 5.3 to 65.8%. The adhesion and growth of Vero cells on the coated surfaces were examined for different incubation times. Cytotoxicity tests were performed using spectroscopic methods. Carbon, O, and N were detected in all the samples using XPS. Roughness remained almost unchanged in the samples prepared with 5.3 and 28.9% but tended to increase for the films deposited with PAr between 28.9 and 55.3%. Surface free energy increased with increasing PAr, except for the sample prepared at 28.9% of Ar, which presented the least reactive surface. Cells proliferated on all the samples, including the bare PVC. Independently of the deposition condition there was no evidence of cytotoxicity, indicating the viability of such coatings for designing biocompatible devices.

  4. Upregulation of endothelial cell adhesion molecules characterizes veins close to granulomatous infiltrates in the renal cortex of cats with feline infectious peritonitis and is indirectly triggered by feline infectious peritonitis virus-infected monocytes in vitro.

    Science.gov (United States)

    Acar, Delphine D; Olyslaegers, Dominique A J; Dedeurwaerder, Annelike; Roukaerts, Inge D M; Baetens, Wendy; Van Bockstael, Sebastiaan; De Gryse, Gaëtan M A; Desmarets, Lowiese M B; Nauwynck, Hans J

    2016-10-01

    One of the most characteristic pathological changes in cats that have succumbed to feline infectious peritonitis (FIP) is a multifocal granulomatous phlebitis. Although it is now well established that leukocyte extravasation elicits the inflammation typically associated with FIP lesions, relatively few studies have aimed at elucidating this key pathogenic event. The upregulation of adhesion molecules on the endothelium is a prerequisite for stable leukocyte-endothelial cell (EC) adhesion that necessarily precedes leukocyte diapedesis. Therefore, the present work focused on the expression of the EC adhesion molecules and possible triggers of EC activation during the development of FIP. Immunofluorescence analysis revealed that the endothelial expression of P-selectin, E-selectin, intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) was elevated in veins close to granulomatous infiltrates in the renal cortex of FIP patients compared to non-infiltrated regions and specimens from healthy cats. Next, we showed that feline venous ECs become activated when exposed to supernatant from feline infectious peritonitis virus (FIPV)-infected monocytes, as indicated by increased adhesion molecule expression. Active viral replication seemed to be required to induce the EC-stimulating activity in monocytes. Finally, adhesion assays revealed an increased adhesion of naive monocytes to ECs treated with supernatant from FIPV-infected monocytes. Taken together, our results strongly indicate that FIPV activates ECs to increase monocyte adhesion by an indirect route, in which proinflammatory factors released from virus-infected monocytes act as key intermediates.

  5. Interstitial cell migration: integrin-dependent and alternative adhesion mechanisms.

    NARCIS (Netherlands)

    Schmidt, S.; Friedl, P.H.A.

    2010-01-01

    Adhesion and migration are integrated cell functions that build, maintain and remodel the multicellular organism. In migrating cells, integrins are the main transmembrane receptors that provide dynamic interactions between extracellular ligands and actin cytoskeleton and signalling machineries. In

  6. The cancer cell adhesion resistome: mechanisms, targeting and translational approaches.

    Science.gov (United States)

    Dickreuter, Ellen; Cordes, Nils

    2017-06-27

    Cell adhesion-mediated resistance limits the success of cancer therapies and is a great obstacle to overcome in the clinic. Since the 1990s, where it became clear that adhesion of tumor cells to the extracellular matrix is an important mediator of therapy resistance, a lot of work has been conducted to understand the fundamental underlying mechanisms and two paradigms were deduced: cell adhesion-mediated radioresistance (CAM-RR) and cell adhesion-mediated drug resistance (CAM-DR). Preclinical work has evidently demonstrated that targeting of integrins, adapter proteins and associated kinases comprising the cell adhesion resistome is a promising strategy to sensitize cancer cells to both radiotherapy and chemotherapy. Moreover, the cell adhesion resistome fundamentally contributes to adaptation mechanisms induced by radiochemotherapy as well as molecular drugs to secure a balanced homeostasis of cancer cells for survival and growth. Intriguingly, this phenomenon provides a basis for synthetic lethal targeted therapies simultaneously administered to standard radiochemotherapy. In this review, we summarize current knowledge about the cell adhesion resistome and highlight targeting strategies to override CAM-RR and CAM-DR.

  7. Cellular adhesion molecules on endothelial cells participate in radiation-mediated inflammation

    International Nuclear Information System (INIS)

    Hallahan, Dennis; Clark, Elizabeth T.; Kuchibhotla, Jaya; Gewertz, Bruce L.

    1995-01-01

    Purpose: The acute and subacute clinical manifestations of ionizing radiation mimic the inflammatory response to a number of stimuli. During the early stages of the inflammatory response, endothelial cells rapidly and transiently express a number of glycoproteins such as E-selectin, P-selectin, ICAM-1 and VCAM-1 which influence leucocyte adhesion. We quantified the expression of these cellular adhesion molecules (CAMs) in irradiated endothelial cells in order to determine whether these glycoproteins participate in radiation-mediated inflammation. Methods: Primary cultures of human umbilical vein endothelial cells (HUVEC) and HMEC cells were grown to 90% confluence and irradiated with a GE Maxitron x-ray generator. The cells were incubated with primary IgG1 antibody (mouse anti-human ICAM-1, VCAM-1, P-selectin and E-selectin and incubated with FITC-conjugated secondary antibody (goat anti-mouse IgG1). Fluorescence-activated cell sorting (FACS) analysis was utilized for quantitation of receptor expression of each CAM on irradiated endothelial cells. Electrophoretic mobility gel shift assays of nuclear protein extracts from irradiated HUVEC cells were performed using the E-selectin NFkB binding sequence (5'AGCTTAGAGGGGATTTCCGAGAGGA-3'). The E-selectin promoter was ligated to the growth hormone reporter. Plasmids pE-sel(-587 +35)GH or pE-sel(-587 +35)GH Δ NFκB (5 μg) was transfected into HMEC or HUVEC cells by use of lipofection. Transfectants were incubated for 16 h after transfection followed by treatment with 10 Gy (1 Gy/min, GE Maxitron) of ionizing radiation, and or with TNF or IL-1. Leukocyte adhesion to irradiated endothelial cells was quantified by HL-60 binding. Results: The log fluorescence of cells incubated with the antibody to E-selectin shifted by 32% at 4 h after irradiation. In comparison, a shift of 35% occurred 20 h after irradiation for cells incubated with the antibody to ICAM. However, there was no significant increase in P-selectin or VCAM

  8. Cell penetrating peptides to dissect host-pathogen protein-protein interactions in Theileria -transformed leukocytes

    KAUST Repository

    Haidar, Malak

    2017-09-08

    One powerful application of cell penetrating peptides is the delivery into cells of molecules that function as specific competitors or inhibitors of protein-protein interactions. Ablating defined protein-protein interactions is a refined way to explore their contribution to a particular cellular phenotype in a given disease context. Cell-penetrating peptides can be synthetically constrained through various chemical modifications that stabilize a given structural fold with the potential to improve competitive binding to specific targets. Theileria-transformed leukocytes display high PKA activity, but PKAis an enzyme that plays key roles in multiple cellular processes; consequently genetic ablation of kinase activity gives rise to a myriad of confounding phenotypes. By contrast, ablation of a specific kinase-substrate interaction has the potential to give more refined information and we illustrate this here by describing how surgically ablating PKA interactions with BAD gives precise information on the type of glycolysis performed by Theileria-transformed leukocytes. In addition, we provide two other examples of how ablating specific protein-protein interactions in Theileria-infected leukocytes leads to precise phenotypes and argue that constrained penetrating peptides have great therapeutic potential to combat infectious diseases in general.

  9. Adhesion

    Science.gov (United States)

    ... Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Adhesion URL of this page: //medlineplus.gov/ency/article/001493.htm Adhesion To use the sharing features on this page, please enable JavaScript. Adhesions are bands of scar-like tissue that form between two ...

  10. Physically based principles of cell adhesion mechanosensitivity in tissues

    International Nuclear Information System (INIS)

    Ladoux, Benoit; Nicolas, Alice

    2012-01-01

    The minimal structural unit that defines living organisms is a single cell. By proliferating and mechanically interacting with each other, cells can build complex organization such as tissues that ultimately organize into even more complex multicellular living organisms, such as mammals, composed of billions of single cells interacting with each other. As opposed to passive materials, living cells actively respond to the mechanical perturbations occurring in their environment. Tissue cell adhesion to its surrounding extracellular matrix or to neighbors is an example of a biological process that adapts to physical cues. The adhesion of tissue cells to their surrounding medium induces the generation of intracellular contraction forces whose amplitude adapts to the mechanical properties of the environment. In turn, solicitation of adhering cells with physical forces, such as blood flow shearing the layer of endothelial cells in the lumen of arteries, reinforces cell adhesion and impacts cell contractility. In biological terms, the sensing of physical signals is transduced into biochemical signaling events that guide cellular responses such as cell differentiation, cell growth and cell death. Regarding the biological and developmental consequences of cell adaptation to mechanical perturbations, understanding mechanotransduction in tissue cell adhesion appears as an important step in numerous fields of biology, such as cancer, regenerative medicine or tissue bioengineering for instance. Physicists were first tempted to view cell adhesion as the wetting transition of a soft bag having a complex, adhesive interaction with the surface. But surprising responses of tissue cell adhesion to mechanical cues challenged this view. This, however, did not exclude that cell adhesion could be understood in physical terms. It meant that new models and descriptions had to be created specifically for these biological issues, and could not straightforwardly be adapted from dead matter

  11. Bacterial Vaginosis Bacterial and Epithelial Cell Adhesion Molecules

    Directory of Open Access Journals (Sweden)

    Şayeste Demirezen

    2016-05-01

    molecules. The most important adhesion molecules of epithelium are cadherins, fibronectins, Toll like receptors and carbohydrates. In bacteria, pilis, lypopolysaccaharide and biofilm have primary importance. In this review, the adhesion molecules are discussed in detail and their roles in formation of clue cell are clarified.

  12. Adhesive Micropatterns for Cells: A Microcontact Printing Protocol

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Manuel Théry and Matthieu Piel Corresponding authors ([](); []()) ### INTRODUCTION This protocol describes a simple, fast, and efficient method for making adhesive micropatterns that can be used to control individual cell shape and adhesion patterns. It is based on the use of an elastomeric stamp containing microfeatures to print proteins on the substrate of choice. The process can be subdiv...

  13. Nanostructured Surfaces to Target and Kill Circulating Tumor Cells While Repelling Leukocytes

    Directory of Open Access Journals (Sweden)

    Michael J. Mitchell

    2012-01-01

    Full Text Available Hematogenous metastasis, the process of cancer cell migration from a primary to distal location via the bloodstream, typically leads to a poor patient prognosis. Selectin proteins hold promise in delivering drug-containing nanocarriers to circulating tumor cells (CTCs in the bloodstream, due to their rapid, force-dependent binding kinetics. However, it is challenging to deliver such nanocarriers while avoiding toxic effects on healthy blood cells, as many possess ligands that adhesively interact with selectins. Herein, we describe a nanostructured surface to capture flowing cancer cells, while preventing human neutrophil adhesion. Microtube surfaces with immobilized halloysite nanotubes (HNTs and E-selectin functionalized liposomal doxorubicin (ES-PEG L-DXR significantly increased the number of breast adenocarcinoma MCF7 cells captured from flow, yet also significantly reduced the number of captured neutrophils. Neutrophils firmly adhered and projected pseudopods on surfaces coated only with liposomes, while neutrophils adherent to HNT-liposome surfaces maintained a round morphology. Perfusion of both MCF7 cells and neutrophils resulted in primarily cancer cell adhesion to the HNT-liposome surface, and induced significant cancer cell death. This work demonstrates that nanostructured surfaces consisting of HNTs and ES-PEG L-DXR can increase CTC recruitment for chemotherapeutic delivery, while also preventing healthy cell adhesion and uptake of therapeutic intended for CTCs.

  14. Telomere length of circulating leukocyte subpopulations and buccal cells in patients with ischemic heart failure and their offspring.

    Directory of Open Access Journals (Sweden)

    Liza S M Wong

    Full Text Available BACKGROUND: We aimed to find support for the hypothesis that telomere length (TL is causally involved in the pathogenesis of ischemic heart failure (IHF. We measured TL in IHF patients and their high-risk offspring and determined whether mean leukocyte TL reflects TL in CD34+ progenitor. We additionally measured TL of offspring of patients and controls to examine heritability throughout different cell types. METHODS AND RESULTS: TL was measured by qPCR in overall leukocytes, CD34+ progenitor cells, mononuclear cells (MNCs, and buccal cells in 27 IHF patients, 24 healthy controls and 60 offspring. TL in IHF patients was shorter than healthy controls in leukocytes (p = 0.002, but not in CD34+ cells (p = 0.39, MNCs (p = 0.31 or buccal cells (p = 0.19. Offspring of IHF patients had shorter TL in leukocytes than offspring of healthy subjects (p = 0.04 but not in other cell types. Controls and offspring showed a good within person correlation between leukocytes and CD34+ cells (r 0.562; p = 0.004 and r 0.602; p = 0.001, respectively. In IHF patients and offspring the correlation among cell types was blunted. Finally, we found strong correlations between parent and offspring TL in all four cell types. CONCLUSIONS: Reduced leukocyte TL in offspring of IHF subjects suggests a potential causal link of TL in ischemic heart disease. However, this causality is unlikely to originate from exhaustion of TL in CD34+ progenitor or MNC cells as their lengths are not well captured by overall leukocyte TL. Additionally, we found strong correlations between parent and offspring TL in all examined cell types, suggesting high heritability of TL among cell types.

  15. The Effect of Physical Activity agains the Telomere Length in the Leukocytes Cells of KONI Athletes

    Directory of Open Access Journals (Sweden)

    Endang Purwaningsih

    2017-07-01

    Full Text Available Telomeres are strands of non coding DNA at the ends of chromosomes that have the primary function to protect DNA from damage and maintain chromosomal stability. Physical exercise will increase the antioxidant activity can increase telomere proteins, lengthen telomeres and or protein networks associated with telomere so that the telomere remains long, or stopping telomere shortening. Telomere length was also associated with age. The purpose of the research was to determine telomere length of leukocyte cells in the KONI (Indonesian National Sports Committee athletes in Jakarta. The research method is descriptive, by measuring telomere length using quantitative PCR on leukocyte cells. Samples are KONI athletes from several sports, including men and women athletes, with ages between 15-20 years. Used a control group (not athletes is students of the Faculty of Medicine, University of YARSI. The results showed that there was no significant difference (p> 0.05 between telomere length group of athletes with the control group in both sexes. Similarly, telomere length between athlete male with female athletes also showed no significant difference (p> 0.05. It was concluded that physical exercise in athletes KONI at the age of 15- 20 years had no effect on telomere length in leukocytes. The results of this study provide information about the telomere length in Indonesian athletes at an early age.

  16. Functionalization of CoCr surfaces with cell adhesive peptides to promote HUVECs adhesion and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos, Maria Isabel, E-mail: maria.isabel.castellanos@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC), ETSEIB, 08028 Barcelona (Spain); Centre for Research in Nanoengineering (CRNE), UPC, 08028 Barcelona (Spain); Mas-Moruno, Carlos, E-mail: carles.mas.moruno@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC), ETSEIB, 08028 Barcelona (Spain); Centre for Research in Nanoengineering (CRNE), UPC, 08028 Barcelona (Spain); Grau, Anna, E-mail: agraugar@gmail.com [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC), ETSEIB, 08028 Barcelona (Spain); Centre for Research in Nanoengineering (CRNE), UPC, 08028 Barcelona (Spain); Serra-Picamal, Xavier, E-mail: xserrapicamal@gmail.com [Institute for Bioengineering of Catalonia (IBEC), 08028 Barcelona (Spain); University of Barcelona and CIBER-BBN, 08036 Barcelona (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona (Spain); Trepat, Xavier, E-mail: xtrepat@ub.edu [Institute for Bioengineering of Catalonia (IBEC), 08028 Barcelona (Spain); University of Barcelona and CIBER-BBN, 08036 Barcelona (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona (Spain); Albericio, Fernando, E-mail: fernando.albericio@irbbarcelona.org [Department of Chemistry, University of Barcelona, CIBER-BBN, 08028 Barcelona (Spain); Joner, Michael, E-mail: michaeljoner@me.com [Department of Cardiology, Deutsches Herzzentrum München, 80636 Munich (Germany); CVPath Institute, Gaithersburg, MD 20878 (United States); and others

    2017-01-30

    Highlights: • We immobilized peptides on CoCr alloy through physisorption and covalent bonding. • Surface activation is an essential step prior to silanization to enhance peptide attachment. • Biofunctionalized surface characteristics were discussed. • RGDS, YIGSR and combination peptides display an improved HUVECs adhesion and proliferation. - Abstract: Biomimetic surface modification with peptides that have specific cell-binding moieties is a promising approach to improve endothelialization of metal-based stents. In this study, we functionalized CoCr surfaces with RGDS, REDV, YIGSR peptides and their combinations to promote endothelial cells (ECs) adhesion and proliferation. An extensive characterization of the functionalized surfaces was performed by XPS analysis, surface charge and quartz crystal microbalance with dissipation monitoring (QCM-D), which demonstrated the successful immobilization of the peptides to the surface. Cell studies demonstrated that the covalent functionalization of CoCr surfaces with an equimolar combination of RGDS and YIGSR represents the most powerful strategy to enhance the early stages of ECs adhesion and proliferation, indicating a positive synergistic effect between the two peptide motifs. Although these peptide sequences slightly increased smooth muscle cells (SMCs) adhesion, these values were ten times lower than those observed for ECs. The combination of RGDS with the REDV sequence did not show synergistic effects in promoting the adhesion or proliferation of ECs. The strategy presented in this study holds great potential to overcome clinical limitations of current metal stents by enhancing their capacity to support surface endothelialization.

  17. Measurement of leukocyte rheology in vascular disease: clinical rationale and methodology. International Society of Clinical Hemorheology.

    Science.gov (United States)

    Wautier, J L; Schmid-Schönbein, G W; Nash, G B

    1999-01-01

    The measurement of leukocyte rheology in vascular disease is a recent development with a wide range of new opportunities. The International Society of Clinical Hemorheology has asked an expert panel to propose guidelines for the investigation of leukocyte rheology in clinical situations. This article first discusses the mechanical, adhesive and related functional properties of leukocytes (especially neutrophils) which influence their circulation, and establishes the rationale for clinically-related measurements of parameters which describe them. It is concluded that quantitation of leukocyte adhesion molecules, and of their endothelial receptors may assist understanding of leukocyte behaviour in vascular disease, along with measurements of flow resistance of leukocytes, free radical production, degranulation and gene expression. For instance, vascular cell adhesion molecule (VCAM-1) is abnormally present on endothelial cells in atherosclerosis, diabetes mellitus and inflammatory conditions. Soluble forms of intercellular adhesion molecule (ICAM-1) or VCAM can be found elevated in the blood of patients with rheumatoid arthritis or infections disease. In the second part of the article, possible technical approaches are presented and possible avenues for leukocyte rheological investigations are discussed.

  18. Adhesion of mesenchymal stem cells to biomimetic polymers: A review

    Energy Technology Data Exchange (ETDEWEB)

    Shotorbani, Behnaz Banimohamad [Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz (Iran, Islamic Republic of); Alizadeh, Effat, E-mail: Alizadehe@tbzmed.ac.ir [Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Drug Applied Research Center and Faculty of advanced Medical Science, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); The Umbilical Cord Stem Cell Research Center (UCSRC), Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Salehi, Roya [Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Drug Applied Research Center and Faculty of advanced Medical Science, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); The Umbilical Cord Stem Cell Research Center (UCSRC), Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Barzegar, Abolfazl [Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz (Iran, Islamic Republic of); Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of)

    2017-02-01

    The mesenchymal stem cells (MSCs) are promising candidates for cell therapy due to the self-renewal, multi-potency, ethically approved state and suitability for autologous transplantation. However, key issue for isolation and manipulation of MSCs is adhesion in ex-vivo culture systems. Biomaterials engineered for mimicking natural extracellular matrix (ECM) conditions which support stem cell adhesion, proliferation and differentiation represent a main area of research in tissue engineering. Some of them successfully enhanced cells adhesion and proliferation because of their biocompatibility, biomimetic texture, and chemistry. However, it is still in its infancy, therefore intensification and optimization of in vitro, in vivo, and preclinical studies is needed to clarify efficacies as well as applicability of those bioengineered constructs. The aim of this review is to discuss mechanisms related to the in-vitro adhesion of MSCs, surfaces biochemical, biophysical, and other factors (of cell's natural and artificial micro-environment) which could affect it and a review of previous research attempting for its bio-chemo-optimization. - Highlights: • The main materials utilized for fabrication of biomimetic polymers are presented. • MSCs cell-material adhesion mechanism and involved molecules are reviewed. • Surface modifications of polymers in terms of MSC adhesion improving are discussed.

  19. Single-cell force spectroscopy of pili-mediated adhesion

    Science.gov (United States)

    Sullan, Ruby May A.; Beaussart, Audrey; Tripathi, Prachi; Derclaye, Sylvie; El-Kirat-Chatel, Sofiane; Li, James K.; Schneider, Yves-Jacques; Vanderleyden, Jos; Lebeer, Sarah; Dufrêne, Yves F.

    2013-12-01

    Although bacterial pili are known to mediate cell adhesion to a variety of substrates, the molecular interactions behind this process are poorly understood. We report the direct measurement of the forces guiding pili-mediated adhesion, focusing on the medically important probiotic bacterium Lactobacillus rhamnosus GG (LGG). Using non-invasive single-cell force spectroscopy (SCFS), we quantify the adhesion forces between individual bacteria and biotic (mucin, intestinal cells) or abiotic (hydrophobic monolayers) surfaces. On hydrophobic surfaces, bacterial pili strengthen adhesion through remarkable nanospring properties, which - presumably - enable the bacteria to resist high shear forces under physiological conditions. On mucin, nanosprings are more frequent and adhesion forces larger, reflecting the influence of specific pili-mucin bonds. Interestingly, these mechanical responses are no longer observed on human intestinal Caco-2 cells. Rather, force curves exhibit constant force plateaus with extended ruptures reflecting the extraction of membrane nanotethers. These single-cell analyses provide novel insights into the molecular mechanisms by which piliated bacteria colonize surfaces (nanosprings, nanotethers), and offer exciting avenues in nanomedicine for understanding and controlling the adhesion of microbial cells (probiotics, pathogens).

  20. Adhesion of mesenchymal stem cells to biomimetic polymers: A review

    International Nuclear Information System (INIS)

    Shotorbani, Behnaz Banimohamad; Alizadeh, Effat; Salehi, Roya; Barzegar, Abolfazl

    2017-01-01

    The mesenchymal stem cells (MSCs) are promising candidates for cell therapy due to the self-renewal, multi-potency, ethically approved state and suitability for autologous transplantation. However, key issue for isolation and manipulation of MSCs is adhesion in ex-vivo culture systems. Biomaterials engineered for mimicking natural extracellular matrix (ECM) conditions which support stem cell adhesion, proliferation and differentiation represent a main area of research in tissue engineering. Some of them successfully enhanced cells adhesion and proliferation because of their biocompatibility, biomimetic texture, and chemistry. However, it is still in its infancy, therefore intensification and optimization of in vitro, in vivo, and preclinical studies is needed to clarify efficacies as well as applicability of those bioengineered constructs. The aim of this review is to discuss mechanisms related to the in-vitro adhesion of MSCs, surfaces biochemical, biophysical, and other factors (of cell's natural and artificial micro-environment) which could affect it and a review of previous research attempting for its bio-chemo-optimization. - Highlights: • The main materials utilized for fabrication of biomimetic polymers are presented. • MSCs cell-material adhesion mechanism and involved molecules are reviewed. • Surface modifications of polymers in terms of MSC adhesion improving are discussed.

  1. The FRIABLE1 gene product affects cell adhesion in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Lutz Neumetzler

    Full Text Available Cell adhesion in plants is mediated predominantly by pectins, a group of complex cell wall associated polysaccharides. An Arabidopsis mutant, friable1 (frb1, was identified through a screen of T-DNA insertion lines that exhibited defective cell adhesion. Interestingly, the frb1 plants displayed both cell and organ dissociations and also ectopic defects in organ separation. The FRB1 gene encodes a Golgi-localized, plant specific protein with only weak sequence similarities to known proteins (DUF246. Unlike other cell adhesion deficient mutants, frb1 mutants do not have reduced levels of adhesion related cell wall polymers, such as pectins. Instead, FRB1 affects the abundance of galactose- and arabinose-containing oligosaccharides in the Golgi. Furthermore, frb1 mutants displayed alteration in pectin methylesterification, cell wall associated extensins and xyloglucan microstructure. We propose that abnormal FRB1 action has pleiotropic consequences on wall architecture, affecting both the extensin and pectin matrices, with consequent changes to the biomechanical properties of the wall and middle lamella, thereby influencing cell-cell adhesion.

  2. Increased ICAM-1 Expression in Transformed Human Oral Epithelial Cells: Molecular Mechanism and Functional Role in Peripheral Blood Mononuclear Cell Adhesion and Lymphokine-Activated-Killer Cell Cytotoxicity

    Science.gov (United States)

    Huang, George T.-J.; Zhang, Xinli; Park, No-Hee

    2012-01-01

    The intercellular adhesion molecule-1 (ICAM-1, CD54) serves as a counter-receptor for the β2-integrins, LFA-1 and Mac-1, which are expressed on leukocytes. Although expression of ICAM-1 on tumor cells has a role in tumor progression and development, information on ICAM-1 expression and its role in oral cancer has not been established. Normal human oral keratinocytes (NHOK), human papilloma virus (HPV)-immortalized human oral keratinocyte lines (HOK-16B, HOK-18A, and HOK-18C), and six human oral neoplastic cell lines (HOK-16B-BaP-T1, SCC-4, SCC-9, HEp-2, Tu-177 and 1483) were used to study ICAM-1 expression and its functional role in vitro. Our results demonstrated that NHOK express negligible levels of ICAM-1, whereas immortalized human oral keratinocytes and cancer cells express significantly higher levels of ICAM-1, except for HOK-16B-BaP-T1 and HEp-2. Altered mRNA half-lives did not fully account for the increased accumulation of ICAM-1 mRNA. Adhesion of peripheral blood mononuclear cells (PBMC) to epithelial cells correlated with cell surface ICAM-1 expression levels. This adhesion was inhibited by antibodies specific for either ICAM-1 or LFA-1/Mac-1, suggesting a role for these molecules in adhesion. In contrast, lymphokine-activated-killer (LAK) cell cytotoxic killing of epithelial cells did not correlate with ICAM-1 levels or with adhesion. Nonetheless, within each cell line, blocking of ICAM-1 or LFA-1/Mac-1 reduced LAK cells killing, suggesting that ICAM-1 is involved in mediating this killing. PMID:10938387

  3. EMMPRIN regulates cytoskeleton reorganization and cell adhesion in prostate cancer.

    Science.gov (United States)

    Zhu, Haining; Zhao, Jun; Zhu, Beibei; Collazo, Joanne; Gal, Jozsef; Shi, Ping; Liu, Li; Ström, Anna-Lena; Lu, Xiaoning; McCann, Richard O; Toborek, Michal; Kyprianou, Natasha

    2012-01-01

    Proteins on cell surface play important roles during cancer progression and metastasis via their ability to mediate cell-to-cell interactions and navigate the communication between cells and the microenvironment. In this study a targeted proteomic analysis was conducted to identify the differential expression of cell surface proteins in human benign (BPH-1) versus malignant (LNCaP and PC-3) prostate epithelial cells. We identified EMMPRIN (extracellular matrix metalloproteinase inducer) as a key candidate and shRNA functional approaches were subsequently applied to determine the role of EMMPRIN in prostate cancer cell adhesion, migration, invasion as well as cytoskeleton organization. EMMPRIN was found to be highly expressed on the surface of prostate cancer cells compared to BPH-1 cells, consistent with a correlation between elevated EMMPRIN and metastasis found in other tumors. No significant changes in cell proliferation, cell cycle progression, or apoptosis were detected in EMMPRIN knockdown cells compared to the scramble controls. Furthermore, EMMPRIN silencing markedly decreased the ability of PC-3 cells to form filopodia, a critical feature of invasive behavior, while it increased expression of cell-cell adhesion and gap junction proteins. Our results suggest that EMMPRIN regulates cell adhesion, invasion, and cytoskeleton reorganization in prostate cancer cells. This study identifies a new function for EMMPRIN as a contributor to prostate cancer cell-cell communication and cytoskeleton changes towards metastatic spread, and suggests its potential value as a marker of prostate cancer progression to metastasis. Copyright © 2011 Wiley Periodicals, Inc.

  4. Quantifying cell adhesion through impingement of a controlled microjet

    NARCIS (Netherlands)

    Visser, C.W.; Gielen, Marise V.; Gielen, Marise Vera; Hao, Zhenxia; le Gac, Severine; Lohse, Detlef; Sun, Chao

    2015-01-01

    The impingement of a submerged, liquid jet onto a cell-covered surface allows assessing cell attachment on surfaces in a straightforward and quantitative manner and in real time, yielding valuable information on cell adhesion. However, this approach is insufficiently characterized for reliable and

  5. Fetal human airway smooth muscle cell production of leukocyte chemoattractants is differentially regulated by fluticasone.

    Science.gov (United States)

    Pearson, Helen; Britt, Rodney D; Pabelick, Christine M; Prakash, Y S; Amrani, Yassine; Pandya, Hitesh C

    2015-12-01

    Adult human airway smooth muscle (ASM) produce cytokines involved in recruitment and survival of leukocytes within airway walls. Cytokine generation by adult ASM is glucocorticoid-sensitive. Whether developing lung ASM produces cytokines in a glucocorticoid-sensitive fashion is unknown. Cultured fetal human ASM cells stimulated with TNF-α (0-20 ng/ml) were incubated with TNF-α receptor-blocking antibodies, fluticasone (1 and 100 nm), or vehicle. Supernatants and cells were assayed for the production of CCL5, CXCL10, and CXCL8 mRNA and protein and glucocorticoid receptor phosphorylation. CCL5, CXCL10, and CXCL8 mRNA and protein production by fetal ASM cell was significantly and dose-dependently following TNF-α treatment. Cytokine mRNA and protein production were effectively blocked by TNF-α R1 and R2 receptor neutralizing antibodies but variably inhibited by fluticasone. TNF-α-induced TNF-R1 and R2 receptor mRNA expression was only partially attenuated by fluticasone. Glucocorticoid receptor phosphorylation at serine (Ser) 211 but not at Ser 226 was enhanced by fluticasone. Production of CCL5, CXCL10, and CXCL8 by fetal ASM appears to involve pathways that are both qualitatively and mechanistically distinct to those described for adult ASM. The findings imply developing ASM has potential to recruit leukocyte into airways and, therefore, of relevance to childhood airway diseases.

  6. Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule Are Induced by Ionizing Radiation on Lymphatic Endothelium

    International Nuclear Information System (INIS)

    Rodriguez-Ruiz, María E.; Garasa, Saray; Rodriguez, Inmaculada; Solorzano, Jose Luis; Barbes, Benigno; Yanguas, Alba; Teijeira, Alvaro; Etxeberria, Iñaki; Aristu, José Javier; Halin, Cornelia; Melero, Ignacio; Rouzaut, Ana

    2017-01-01

    Purpose/Objectives: The goal of this study was to assess the effects of ionizing radiation on the expression of the integrin ligands ICAM-1 and VCAM that control leucocyte transit by lymphatic endothelial cells. Materials/Methods: Confluent monolayers of primary human lymphatic endothelial cells (LEC) were irradiated with single dose of 2, 5, 10 or 20 Gy, with 6 MeV-x-rays using a Linear-Accelerator. ICAM-1 and VCAM expression was determined by flow cytometry. Human tissue specimens received a single dose of 20 Gy with 15 MeV-x-rays. MC38, B16-OVA or B16-VEGF-C tumors grown in C57BL/6 mice were irradiated with single dose of 20Gy using a Linear-Accelerator fitted with a 10mm Radiosurgery collimator. Clinical samples were obtained from patients previous and 4 weeks after complete standard radiotherapy. ICAM-1 and VCAM expression was detected in all tissue specimens by confocal microscopy. To understand the role of TGFβ in this process anti-TGFβ blocking mAb were injected i.p. 30min before radiotherapy. Cell adhesion to irradiated LEC was analyzed in adhesion experiments performed in the presence or in the absence of anti- TGFβ and /or anti-ICAM1 blocking mAb. Results: We demonstrate that lymphatic endothelial cells in tumor samples experience induction of surface ICAM-1 and VCAM when exposed to ionizing radiation in a dose- and time-dependent manner. These effects can be recapitulated in cultured LEC, and are in part mediated by TGFβ. These data are consistent with increases in ICAM-1 and VCAM expression on LYVE-1+ endothelial cells in freshly explanted human tumor tissue and in mouse transplanted tumors after radiotherapy. Finally, ICAM-1 and VCAM expression accounts for enhanced adherence of human T lymphocytes to irradiated LEC. Conclusion: Our results show induction of ICAM-1 and VCAM on LVs in irradiated lesions and offer a starting point for elucidating the biological and therapeutic implications of targeting leukocyte traffic in combination to

  7. Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule Are Induced by Ionizing Radiation on Lymphatic Endothelium

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Ruiz, María E., E-mail: mrruiz@unav.es [Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona (Spain); Radiation Oncology, University Clinic, University of Navarra, Pamplona (Spain); Garasa, Saray; Rodriguez, Inmaculada [Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona (Spain); Solorzano, Jose Luis; Barbes, Benigno [Radiation Oncology, University Clinic, University of Navarra, Pamplona (Spain); Yanguas, Alba [Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona (Spain); Department of Biochemistry and Genetics, University of Navarra, Pamplona (Spain); Teijeira, Alvaro; Etxeberria, Iñaki [Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona (Spain); Aristu, José Javier [Radiation Oncology, University Clinic, University of Navarra, Pamplona (Spain); Halin, Cornelia [Pharmaceutical Immunology, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich (Switzerland); Melero, Ignacio [Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona (Spain); Radiation Oncology, University Clinic, University of Navarra, Pamplona (Spain); Rouzaut, Ana [Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona (Spain); Department of Biochemistry and Genetics, University of Navarra, Pamplona (Spain)

    2017-02-01

    Purpose/Objectives: The goal of this study was to assess the effects of ionizing radiation on the expression of the integrin ligands ICAM-1 and VCAM that control leucocyte transit by lymphatic endothelial cells. Materials/Methods: Confluent monolayers of primary human lymphatic endothelial cells (LEC) were irradiated with single dose of 2, 5, 10 or 20 Gy, with 6 MeV-x-rays using a Linear-Accelerator. ICAM-1 and VCAM expression was determined by flow cytometry. Human tissue specimens received a single dose of 20 Gy with 15 MeV-x-rays. MC38, B16-OVA or B16-VEGF-C tumors grown in C57BL/6 mice were irradiated with single dose of 20Gy using a Linear-Accelerator fitted with a 10mm Radiosurgery collimator. Clinical samples were obtained from patients previous and 4 weeks after complete standard radiotherapy. ICAM-1 and VCAM expression was detected in all tissue specimens by confocal microscopy. To understand the role of TGFβ in this process anti-TGFβ blocking mAb were injected i.p. 30min before radiotherapy. Cell adhesion to irradiated LEC was analyzed in adhesion experiments performed in the presence or in the absence of anti- TGFβ and /or anti-ICAM1 blocking mAb. Results: We demonstrate that lymphatic endothelial cells in tumor samples experience induction of surface ICAM-1 and VCAM when exposed to ionizing radiation in a dose- and time-dependent manner. These effects can be recapitulated in cultured LEC, and are in part mediated by TGFβ. These data are consistent with increases in ICAM-1 and VCAM expression on LYVE-1+ endothelial cells in freshly explanted human tumor tissue and in mouse transplanted tumors after radiotherapy. Finally, ICAM-1 and VCAM expression accounts for enhanced adherence of human T lymphocytes to irradiated LEC. Conclusion: Our results show induction of ICAM-1 and VCAM on LVs in irradiated lesions and offer a starting point for elucidating the biological and therapeutic implications of targeting leukocyte traffic in combination to

  8. Epithelial cell adhesion molecule - More than a carcinoma marker and adhesion molecule

    NARCIS (Netherlands)

    Trzpis, Monika; McLaughlin, Pamela M. J.; de Leij, Lou M. F. H.; Harmsen, Martin C.

    The epithetial cell adhesion molecule (EpCAM, CD326) is a glycoprotein of similar to 40 kd that was originally identified as a marker for carcinoma, attributable to its high expression on rapidly proliferating tumors of epithelial origin. Normal epithelia express EpCAM at a variable but generally

  9. Vaginal epithelial cells regulate membrane adhesiveness to co-ordinate bacterial adhesion

    NARCIS (Netherlands)

    Younes, Jessica A.; Klappe, Karin; Kok, Jan Willem; Busscher, Henk J.; Reid, Gregor; van der Mei, Henny C.

    Vaginal epithelium is colonized by different bacterial strains and species. The bacterial composition of vaginal biofilms controls the balance between health and disease. Little is known about the relative contribution of the epithelial and bacterial cell surfaces to bacterial adhesion and whether

  10. Isolation of αL I domain mutants mediating firm cell adhesion using a novel flow-based sorting method.

    Science.gov (United States)

    Pepper, Lauren R; Parthasarathy, Ranganath; Robbins, Gregory P; Dang, Nicholas N; Hammer, Daniel A; Boder, Eric T

    2013-08-01

    The inserted (I) domain of αLβ2 integrin (LFA-1) contains the entire binding site of the molecule. It mediates both rolling and firm adhesion of leukocytes at sites of inflammation depending on the activation state of the integrin. The affinity change of the entire integrin can be mimicked by the I domain alone through mutations that affect the conformation of the molecule. High-affinity mutants of the I domain have been discovered previously using both rational design and directed evolution. We have found that binding affinity fails to dictate the behavior of I domain adhesion under shear flow. In order to better understand I domain adhesion, we have developed a novel panning method to separate yeast expressing a library of I domain variants on the surface by adhesion under flow. Using conditions analogous to those experienced by cells interacting with the post-capillary vascular endothelium, we have identified mutations supporting firm adhesion that are not found using typical directed evolution techniques that select for tight binding to soluble ligands. Mutants isolated using this method do not cluster with those found by sorting with soluble ligand. Furthermore, these mutants mediate shear-driven cell rolling dynamics decorrelated from binding affinity, as previously observed for I domains bearing engineered disulfide bridges to stabilize activated conformational states. Characterization of these mutants supports a greater understanding of the structure-function relationship of the αL I domain, and of the relationship between applied force and bioadhesion in a broader context.

  11. Amphiphilic cationic peptides mediate cell adhesion to plastic surfaces.

    Science.gov (United States)

    Rideout, D C; Lambert, M; Kendall, D A; Moe, G R; Osterman, D G; Tao, H P; Weinstein, I B; Kaiser, E T

    1985-09-01

    Four amphiphilic peptides, each with net charges of +2 or more at neutrality and molecular weights under 4 kilodaltons, were found to mediate the adhesion of normal rat kidney fibroblasts to polystyrene surfaces. Two of these peptides, a model for calcitonin (peptide 1, MCT) and melittin (peptide 2, MEL), form amphiphilic alpha-helical structures at aqueous/nonpolar interfaces. The other two, a luteinizing hormone-releasing hormone model (peptide 3, LHM) and a platelet factor model (peptide 4, MPF) form beta-strand structures in amphiphilic environments. Although it contains only 10 residues, LHM mediated adhesion to surfaces coated with solutions containing as little as 10 pmoles/ml of peptide. All four of these peptides were capable of forming monolayers at air-buffer interfaces with collapse pressures greater than 20 dynes/cm. None of these four peptides contains the tetrapeptide sequence Arg-Gly-Asp-Ser, which has been associated with fibronectin-mediated cell adhesion. Ten polypeptides that also lacked the sequence Arg-Gly-Asp-Ser but were nonamphiphilic and/or had net charges less than +2 at neutrality were all incapable of mediating cell adhesion (Pierschbacher and Ruoslahti, 1984). The morphologies of NRK cells spread on polystyrene coated with peptide LHM resemble the morphologies on fibronectin-coated surfaces, whereas cells spread on surfaces coated with MCT or MEL exhibit strikingly different morphologies. The adhesiveness of MCT, MEL, LHM, and MPF implies that many amphiphilic cationic peptides could prove useful as well defined adhesive substrata for cell culture and for studies of the mechanism of cell adhesion.

  12. Effect of irradiation and leukocyte filtration on red cell transfusion for premature infants in an incubator

    Energy Technology Data Exchange (ETDEWEB)

    Sawa, Fumihiro; Iwasita, Yoichi; Motegi, Saori; Nakajima, Tomoko; Sawai, Kiyoshi; Sawada, Ken [Toho Univ., Chiba (Japan). Sakura Hospital

    1999-06-01

    We investigated the effect of irradiation and leukocyte filtration on red cells in MAP solution (RC-MAP) for premature infants. RC-MAPs were stored for 3 or 7 days and pretreated with 15-Gy irradiation and a leukocyte depletion filter, with either the irradiation or filtration performed first. Infusion was performed using an infusion pump for 8 hr at a speed of 2 ml/hr through a 4 ml, 100 cm tube and a 24 G needle passing into an infant incubator warmed to 34degC. Free hemoglobin concentration in the supernatant of tested RC-MAP stored 7 days and irradiated after filtration was increased to the maximum level of 42.6 mg/dl. Potassium ion level in the supernatants and ATP and 2, 3-DPG concentration in red cells from tested RC-MAP were similar to pretreated values. Maximum potassium ion level was increased to 23.5 mEq/l. Our results showed that both irradiation and filtration against RC-MAP solutions stored for 3 or 7 days is safe for use with premature infants in warmed incubators. However, further investigation is necessary to clarify the risk of bacterial contamination in such transfusion situations. (author)

  13. Cell Adhesion Molecules and Ubiquitination—Functions and Significance

    Science.gov (United States)

    Homrich, Mirka; Gotthard, Ingo; Wobst, Hilke; Diestel, Simone

    2015-01-01

    Cell adhesion molecules of the immunoglobulin (Ig) superfamily represent the biggest group of cell adhesion molecules. They have been analyzed since approximately 40 years ago and most of them have been shown to play a role in tumor progression and in the nervous system. All members of the Ig superfamily are intensively posttranslationally modified. However, many aspects of their cellular functions are not yet known. Since a few years ago it is known that some of the Ig superfamily members are modified by ubiquitin. Ubiquitination has classically been described as a proteasomal degradation signal but during the last years it became obvious that it can regulate many other processes including internalization of cell surface molecules and lysosomal sorting. The purpose of this review is to summarize the current knowledge about the ubiquitination of cell adhesion molecules of the Ig superfamily and to discuss its potential physiological roles in tumorigenesis and in the nervous system. PMID:26703751

  14. INFLUENCE OF SOLUBLE PLACENTAL TISSUE-DERIVED MOLECULES UPON EXPRESSION OF ADHESION MOLECULES BY EA.HY926 ENDOTHELIAL CELLS

    Directory of Open Access Journals (Sweden)

    O. I. Stepanova

    2011-01-01

    Full Text Available Abstract.  Leukocyte  recruitment  to  placental  tissue  is  an  important  factor  of  its  development.  In  this respect, adhesion molecules at the endothelial cell surface represent a key determining factor of leukocyte adhesion and their trans-endothelial migration. The goal of investigation was to evaluate changed expression of adhesion molecules on the endothelial cells induced by supernates of placental tissue cultures. Placental tissue supernatants produced by the first- and third-trimester placental tissue from normal pregnancy, as well as from women with gestosis, induced higher expression of CD31, CD9, CD62E, CD62P, CD34, CD54, CD51/61, CD49d  and  integrin  β7  expression  by  endothelial  cells,  as  compared  with  their  baseline  levels.  However, the  supernates  from  pre-eclamptic  placental  tissue (3rd  trimester  caused  an  increased  CD9  expression by  endothelial  cells,  as  compared  with  effects  of placental  supernates  from  eclampsia-free  cases.  Our data  contribute  to  understanding  a  possible  role  of endothelial cell adhesion molecules in recruitment of leukocytes to placental tissue and possible participation of adhesion molecules in pathogenesis of pre-eclampsia. The work was supported by a grant from Russian Ministry of Education and Science ГК №02.740.11.0711 and Presidential grant № НШ-3594.2010.7 and МД-150.2011.7. (Med. Immunol., 2011, vol. 13, N 6, pp 589-596

  15. Opto-acoustic microscopy reveals adhesion mechanics of single cells

    Science.gov (United States)

    Abi Ghanem, Maroun; Dehoux, Thomas; Liu, Liwang; Le Saux, Guillaume; Plawinski, Laurent; Durrieu, Marie-Christine; Audoin, Bertrand

    2018-01-01

    Laser-generated GHz-ultrasonic-based technologies have shown the ability to image single cell adhesion and stiffness simultaneously. Using this new modality, we here demonstrate quantitative indicators to investigate contact mechanics and adhesion processes of the cell. We cultured human cells on a rigid substrate, and we used an inverted pulsed opto-acoustic microscope to generate acoustic pulses containing frequencies up to 100 GHz in the substrate. We map the reflection of the acoustic pulses at the cell-substrate interface to obtain images of the acoustic impedance of the cell, Zc, as well as of the stiffness of the interface, K, with 1 μm lateral resolution. Our results show that the standard deviation ΔZc reveals differences between different cell types arising from the multiplicity of local conformations within the nucleus. From the distribution of K-values within the nuclear region, we extract a mean interfacial stiffness, Km, that quantifies the average contact force in areas of the cell displaying weak bonding. By analogy with classical contact mechanics, we also define the ratio of the real to nominal contact areas, Sr/St. We show that Km can be interpreted as a quantitative indicator of passive contact at metal-cell interfaces, while Sr/St is sensitive to active adhesive processes in the nuclear region. The ability to separate the contributions of passive and active adhesion processes should allow gaining insight into cell-substrate interactions, with important applications in tissue engineering.

  16. Prostaglandins in Cancer Cell Adhesion, Migration, and Invasion

    Directory of Open Access Journals (Sweden)

    David G. Menter

    2012-01-01

    Full Text Available Prostaglandins exert a profound influence over the adhesive, migratory, and invasive behavior of cells during the development and progression of cancer. Cyclooxygenase-2 (COX-2 and microsomal prostaglandin E2 synthase-1 (mPGES-1 are upregulated in inflammation and cancer. This results in the production of prostaglandin E2 (PGE2, which binds to and activates G-protein-coupled prostaglandin E1-4 receptors (EP1-4. Selectively targeting the COX-2/mPGES-1/PGE2/EP1-4 axis of the prostaglandin pathway can reduce the adhesion, migration, invasion, and angiogenesis. Once stimulated by prostaglandins, cadherin adhesive connections between epithelial or endothelial cells are lost. This enables cells to invade through the underlying basement membrane and extracellular matrix (ECM. Interactions with the ECM are mediated by cell surface integrins by “outside-in signaling” through Src and focal adhesion kinase (FAK and/or “inside-out signaling” through talins and kindlins. Combining the use of COX-2/mPGES-1/PGE2/EP1-4 axis-targeted molecules with those targeting cell surface adhesion receptors or their downstream signaling molecules may enhance cancer therapy.

  17. Cell-substrate impedance fluctuations of single amoeboid cells encode cell-shape and adhesion dynamics.

    Science.gov (United States)

    Leonhardt, Helmar; Gerhardt, Matthias; Höppner, Nadine; Krüger, Kirsten; Tarantola, Marco; Beta, Carsten

    2016-01-01

    We show systematic electrical impedance measurements of single motile cells on microelectrodes. Wild-type cells and mutant strains were studied that differ in their cell-substrate adhesion strength. We recorded the projected cell area by time-lapse microscopy and observed irregular oscillations of the cell shape. These oscillations were correlated with long-term variations in the impedance signal. Superposed to these long-term trends, we observed fluctuations in the impedance signal. Their magnitude clearly correlated with the adhesion strength, suggesting that strongly adherent cells display more dynamic cell-substrate interactions.

  18. Cell-substrate impedance fluctuations of single amoeboid cells encode cell-shape and adhesion dynamics

    Science.gov (United States)

    Leonhardt, Helmar; Gerhardt, Matthias; Höppner, Nadine; Krüger, Kirsten; Tarantola, Marco; Beta, Carsten

    2016-01-01

    We show systematic electrical impedance measurements of single motile cells on microelectrodes. Wild-type cells and mutant strains were studied that differ in their cell-substrate adhesion strength. We recorded the projected cell area by time-lapse microscopy and observed irregular oscillations of the cell shape. These oscillations were correlated with long-term variations in the impedance signal. Superposed to these long-term trends, we observed fluctuations in the impedance signal. Their magnitude clearly correlated with the adhesion strength, suggesting that strongly adherent cells display more dynamic cell-substrate interactions.

  19. Cytotoxicity of four denture adhesives on human gingival fibroblast cells.

    Science.gov (United States)

    Lee, Yoon; Ahn, Jin-Soo; Yi, Young-Ah; Chung, Shin-Hye; Yoo, Yeon-Jee; Ju, Sung-Won; Hwang, Ji-Yun; Seo, Deog-Gyu

    2015-02-01

    The purpose of this study was to compare the cytotoxicity of four denture adhesives on human gingival fibroblast cells. Immortalized human gingival fibroblasts were cultured with one of four different denture adhesives, Polident, Protefix, Staydent or Denfix-A, which was placed in insert dishes (10% w/v concentration) for 48 h. The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and flow cytometric apoptosis assay were used to evaluate cell viability and apoptosis rates. The fibroblasts were also examined under a scanning electron microscope. The MTT assay showed that all denture adhesives resulted in a significantly lower cell viability compared to the control cells propagated in normal culture medium (p 0.05). Staydent showed the highest apoptosis rate. Scanning electron microscopy showed that the cells of the Staydent group underwent cytoplasmic membrane shrinkage, with cell free areas containing residual fragments of the membrane of dead cells. The four denture adhesives evaluated in this study imparted cytotoxic effects on human gingival fibroblast cells. Staydent showed the highest toxicity.

  20. Quantitative measurement of changes in adhesion force involving focal adhesion kinase during cell attachment, spread, and migration

    International Nuclear Information System (INIS)

    Wu, C.-C.; Su, H.-W.; Lee, C.-C.; Tang, M.-J.; Su, F.-C.

    2005-01-01

    Focal adhesion kinase (FAK) is a critical protein for the regulation of integrin-mediated cellular functions and it can enhance cell motility in Madin-Darby canine kidney (MDCK) cells by hepatocyte growth factor (HGF) induction. We utilized optical trapping and cytodetachment techniques to measure the adhesion force between pico-Newton and nano-Newton (nN) for quantitatively investigating the effects of FAK on adhesion force during initial binding (5 s), beginning of spreading (30 min), spreadout (12 h), and migration (induced by HGF) in MDCK cells with overexpressed FAK (FAK-WT), FAK-related non-kinase (FRNK), as well as normal control cells. Optical tweezers was used to measure the initial binding force between a trapped cell and glass coverslide or between a trapped bead and a seeded cell. In cytodetachment, the commercial atomic force microscope probe with an appropriate spring constant was used as a cyto-detacher to evaluate the change of adhesion force between different FAK expression levels of cells in spreading, spreadout, and migrating status. The results demonstrated that FAK-WT significantly increased the adhesion forces as compared to FRNK cells throughout all the different stages of cell adhesion. For cells in HGF-induced migration, the adhesion force decreased to almost the same level (∼600 nN) regardless of FAK levels indicating that FAK facilitates cells to undergo migration by reducing the adhesion force. Our results suggest FAK plays a role of enhancing cell adhesive ability in the binding and spreading, but an appropriate level of adhesion force is required for HGF-induced cell migration

  1. Adhesion signaling promotes protease‑driven polyploidization of glioblastoma cells.

    Science.gov (United States)

    Mercapide, Javier; Lorico, Aurelio

    2014-11-01

    An increase in ploidy (polyploidization) causes genomic instability in cancer. However, the determinants for the increased DNA content of cancer cells have not yet been fully elucidated. In the present study, we investigated whether adhesion induces polyploidization in human U87MG glioblastoma cells. For this purpose, we employed expression vectors that reported transcriptional activation by signaling networks implicated in cancer. Signaling activation induced by intercellular integrin binding elicited both extracellular signal‑regulated kinase (ERK) and Notch target transcription. Upon the prolonged activation of both ERK and Notch target transcription induced by integrin binding to adhesion protein, cell cultures accumulated polyploid cells, as determined by cell DNA content distribution analysis and the quantification of polynucleated cells. This linked the transcriptional activation induced by integrin adhesion to the increased frequency of polyploidization. Accordingly, the inhibition of signaling decreased the extent of polyploidization mediated by protease‑driven intracellular invasion. Therefore, the findings of this study indicate that integrin adhesion induces polyploidization through the stimulation of glioblastoma cell invasiveness.

  2. Suppression of complement regulatory protein C1 inhibitor in vascular endothelial activation by inhibiting vascular cell adhesion molecule-1 action

    International Nuclear Information System (INIS)

    Zhang, Haimou; Qin, Gangjian; Liang, Gang; Li, Jinan; Chiu, Isaac; Barrington, Robert A.; Liu, Dongxu

    2007-01-01

    Increased expression of adhesion molecules by activated endothelium is a critical feature of vascular inflammation associated with the several diseases such as endotoxin shock and sepsis/septic shock. Our data demonstrated complement regulatory protein C1 inhibitor (C1INH) prevents endothelial cell injury. We hypothesized that C1INH has the ability of an anti-endothelial activation associated with suppression of expression of adhesion molecule(s). C1INH blocked leukocyte adhesion to endothelial cell monolayer in both static assay and flow conditions. In inflammatory condition, C1INH reduced vascular cell adhesion molecule (VCAM-1) expression associated with its cytoplasmic mRNA destabilization and nuclear transcription level. Studies exploring the underlying mechanism of C1INH-mediated suppression in VCAM-1 expression were related to reduction of NF-κB activation and nuclear translocation in an IκBα-dependent manner. The inhibitory effects were associated with reduction of inhibitor IκB kinase activity and stabilization of the NF-κB inhibitor IκB. These findings indicate a novel role for C1INH in inhibition of vascular endothelial activation. These observations could provide the basis for new therapeutic application of C1INH to target inflammatory processes in different pathologic situations

  3. Proteoglycans, ion channels and cell-matrix adhesion

    DEFF Research Database (Denmark)

    Mitsou, Ioli; Multhaupt, Hinke A.B.; Couchman, John R.

    2017-01-01

    , maintenance, repair and disease.The cytoplasmic domains of syndecans, while having no intrinsic kinase activity, can nevertheless signal through binding proteins.All syndecans appear to be connected to the actin cytoskeleton and can therefore contribute to cell adhesion, notably to the ECM and migration.......Recent data now suggest that syndecans can regulate stretchactivated ion channels.The structure and function of the syndecans and the ion channels are reviewed here, along with an analysis of ion channel functions in cell-matrix adhesion.This area sheds new light on the syndecans, not least since evidence...

  4. The structure of cell-matrix adhesions: the new frontier.

    Science.gov (United States)

    Hanein, Dorit; Horwitz, Alan Rick

    2012-02-01

    Adhesions between the cell and the extracellular matrix (ECM) are mechanosensitive multi-protein assemblies that transmit force across the cell membrane and regulate biochemical signals in response to the chemical and mechanical environment. These combined functions in force transduction, signaling and mechanosensing contribute to cellular phenotypes that span development, homeostasis and disease. These adhesions form, mature and disassemble in response to actin organization and physical forces that originate from endogenous myosin activity or external forces by the extracellular matrix. Despite advances in our understanding of the protein composition, interactions and regulation, our understanding of matrix adhesion structure and organization, how forces affect this organization, and how these changes dictate specific signaling events is limited. Insights across multiple structural levels are acutely needed to elucidate adhesion structure and ultimately the molecular basis of signaling and mechanotransduction. Here we describe the challenges and recent advances and prospects for unraveling the structure of cell-matrix adhesions and their response to force. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Cell adhesion in Drosophila: versatility of cadherin and integrin complexes during development

    OpenAIRE

    Bulgakova, Natalia A.; Klapholz, Benjamin; Brown, Nicholas H.

    2012-01-01

    We highlight recent progress in understanding cadherin and integrin function in the model organism Drosophila. New functions for these adhesion receptors continue to be discovered in this system, emphasising the importance of cell adhesion within the developing organism and showing that the requirement for cell adhesion changes between cell types. New ways to control adhesion have been discovered, including controlling the expression and recruitment of adhesion components, their posttranslati...

  6. Glutamine Supplementation Attenuates Expressions of Adhesion Molecules and Chemokine Receptors on T Cells in a Murine Model of Acute Colitis

    Directory of Open Access Journals (Sweden)

    Yu-Chen Hou

    2014-01-01

    Full Text Available Background. Migration of T cells into the colon plays a major role in the pathogenesis in inflammatory bowel disease. This study investigated the effects of glutamine (Gln supplementation on chemokine receptors and adhesion molecules expressed by T cells in mice with dextran sulfate sodium- (DSS- induced colitis. Methods. C57BL/6 mice were fed either a standard diet or a Gln diet replacing 25% of the total nitrogen. After being fed the diets for 5 days, half of the mice from both groups were given 1.5% DSS in drinking water to induce colitis. Mice were killed after 5 days of DSS exposure. Results. DSS colitis resulted in higher expression levels of P-selectin glycoprotein ligand- (PSGL- 1, leukocyte function-associated antigen- (LFA- 1, and C-C chemokine receptor type 9 (CCR9 by T helper (Th and cytotoxic T (Tc cells, and mRNA levels of endothelial adhesion molecules in colons were upregulated. Gln supplementation decreased expressions of PSGL-1, LFA-1, and CCR9 by Th cells. Colonic gene expressions of endothelial adhesion molecules were also lower in Gln-colitis mice. Histological finding showed that colon infiltrating Th cells were less in the DSS group with Gln administration. Conclusions. Gln supplementation may ameliorate the inflammation of colitis possibly via suppression of T cell migration.

  7. Dystroglycan versatility in cell adhesion: a tale of multiple motifs

    Directory of Open Access Journals (Sweden)

    Winder Steve J

    2010-02-01

    Full Text Available Abstract Dystroglycan is a ubiquitously expressed heterodimeric adhesion receptor. The extracellular α-subunit makes connections with a number of laminin G domain ligands including laminins, agrin and perlecan in the extracellular matrix and the transmembrane β-subunit makes connections to the actin filament network via cytoskeletal linkers including dystrophin, utrophin, ezrin and plectin, depending on context. Originally discovered as part of the dystrophin glycoprotein complex of skeletal muscle, dystroglycan is an important adhesion molecule and signalling scaffold in a multitude of cell types and tissues and is involved in several diseases. Dystroglycan has emerged as a multifunctional adhesion platform with many interacting partners associating with its short unstructured cytoplasmic domain. Two particular hotspots are the cytoplasmic juxtamembrane region and at the very carboxy terminus of dystroglycan. Regions which between them have several overlapping functions: in the juxtamembrane region; a nuclear localisation signal, ezrin/radixin/moesin protein, rapsyn and ERK MAP Kinase binding function, and at the C terminus a regulatory tyrosine governing WW, SH2 and SH3 domain interactions. We will discuss the binding partners for these motifs and how their interactions and regulation can modulate the involvement of dystroglycan in a range of different adhesion structures and functions depending on context. Thus dystroglycan presents as a multifunctional scaffold involved in adhesion and adhesion-mediated signalling with its functions under exquisite spatio-temporal regulation.

  8. Oligonol Supplementation Affects Leukocyte and Immune Cell Counts after Heat Loading in Humans

    Directory of Open Access Journals (Sweden)

    Jeong Beom Lee

    2014-06-01

    Full Text Available Oligonol is a low-molecular-weight form of polyphenol and has antioxidant and anti-inflammatory activity, making it a potential promoter of immunity. This study investigates the effects of oligonol supplementation on leukocyte and immune cell counts after heat loading in 19 healthy male volunteers. The participants took a daily dose of 200 mg oligonol or a placebo for 1 week. After a 2-week washout period, the subjects were switched to the other study arm. After each supplement, half-body immersion into hot water was made, and blood was collected. Then, complete and differential blood counts were performed. Flow cytometry was used to enumerate and phenotype lymphocyte subsets. Serum concentrations of interleukin (IL-1β and IL-6 in blood samples were analyzed. Lymphocyte subpopulation variables included counts of total T cells, B cells, and natural killer (NK cells. Oligonol intake attenuated elevations in IL-1β (an 11.1-fold change vs. a 13.9-fold change immediately after heating; a 12.0-fold change vs. a 12.6-fold change 1h after heating and IL-6 (an 8.6-fold change vs. a 9.9-fold change immediately after heating; a 9.1-fold change vs. a 10.5-fold change 1h after heating immediately and 1 h after heating in comparison to those in the placebo group. Oligonol supplementation led to significantly higher numbers of leukocytes (a 30.0% change vs. a 21.5% change immediately after heating; a 13.5% change vs. a 3.5% change 1h after heating and lymphocytes (a 47.3% change vs. a 39.3% change immediately after heating; a 19.08% change vs. a 2.1% change 1h after heating relative to those in the placebo group. Oligonol intake led to larger increases in T cells, B cells, and NK cells at rest (p < 0.05, p < 0.05, and p < 0.001, respectively and immediately after heating (p < 0.001 in comparison to those in the placebo group. In addition, levels of T cells (p < 0.001 and B cells (p < 0.001 were significantly higher 1 h after heating in comparison to those in

  9. The effect of varying type and volume of sedimenting agents on leukocyte harvesting and labelling in sickle cell patients

    International Nuclear Information System (INIS)

    Webber, D.; Nunan, T.O.; O'Doherty, M.J.

    1994-01-01

    Leukocyte labelling in patients with sickle cell anaemia has been reported as difficult if not impossible due to the slow erythrocyte sedimentation rate (ESR) in these patients. This study investigated standard sedimentation methods in patients with sickle cell disease (n=16) and compared the results obtained with those following changes in the amount and type of sedimenting agent used. Labelling with either 111 In-oxine or 99 Tc m -exametazime was attempted in only five patients. Replacement of the commonly used 6% Hetastarch (Hespan) with Dextran or Haemaccel did not improve leukocyte harvesting, even when the proportions used of these agents were increased. In most cases where standard procedures for leukocyte collection did not lead to harvesting of viable samples, it was possible to collect reasonably pure samples by increasing the proportion of Hespan used. It is possible to obtain adequate leukocyte labelling in the majority of sickle cell patients using a minor modification of standard techniques. In this group of patients a ratio of 8 ml of Hespan to 16 ml of blood should be used for cell separation. If this fails then donor cells, anti-granulocyte antibody labelling or HIG should be considered. (author)

  10. Selective suppression of leukocyte recruitment in allergic inflammation

    Directory of Open Access Journals (Sweden)

    CL Weller

    2005-03-01

    Full Text Available Allergic diseases result in a considerable socioeconomic burden. The incidence of allergic diseases, notably allergic asthma, has risen to high levels for reasons that are not entirely understood. With an increasing knowledge of underlying mechanisms, there is now more potential to target the inflammatory process rather than the overt symptoms. This focuses attention on the role of leukocytes especially Th2 lymphocytes that regulate allergic inflammation and effector cells where eosinophils have received much attention. Eosinophils are thought to be important based on the high numbers that are recruited to sites of allergic inflammation and the potential of these cells to effect both tissue injury and remodelling. It is hoped that future therapy will be directed towards specific leukocyte types, without overtly compromising essential host defence responses. One obvious target is leukocyte recruitment. This necessitates a detailed understanding of underlying mechanisms, particularly those involving soluble che-moattractants signals and cell-cell adhesion molecules.

  11. Cell adhesion signaling regulates RANK expression in osteoclast precursors.

    Directory of Open Access Journals (Sweden)

    Ayako Mochizuki

    Full Text Available Cells with monocyte/macrophage lineage expressing receptor activator of NF-κB (RANK differentiate into osteoclasts following stimulation with the RANK ligand (RANKL. Cell adhesion signaling is also required for osteoclast differentiation from precursors. However, details of the mechanism by which cell adhesion signals induce osteoclast differentiation have not been fully elucidated. To investigate the participation of cell adhesion signaling in osteoclast differentiation, mouse bone marrow-derived macrophages (BMMs were used as osteoclast precursors, and cultured on either plastic cell culture dishes (adherent condition or the top surface of semisolid methylcellulose gel loaded in culture tubes (non-adherent condition. BMMs cultured under the adherent condition differentiated into osteoclasts in response to RANKL stimulation. However, under the non-adherent condition, the efficiency of osteoclast differentiation was markedly reduced even in the presence of RANKL. These BMMs retained macrophage characteristics including phagocytic function and gene expression profile. Lipopolysaccharide (LPS and tumor necrosis factor -αTNF-α activated the NF-κB-mediated signaling pathways under both the adherent and non-adherent conditions, while RANKL activated the pathways only under the adherent condition. BMMs highly expressed RANK mRNA and protein under the adherent condition as compared to the non-adherent condition. Also, BMMs transferred from the adherent to non-adherent condition showed downregulated RANK expression within 24 hours. In contrast, transferring those from the non-adherent to adherent condition significantly increased the level of RANK expression. Moreover, interruption of cell adhesion signaling by echistatin, an RGD-containing disintegrin, decreased RANK expression in BMMs, while forced expression of either RANK or TNFR-associated factor 6 (TRAF6 in BMMs induced their differentiation into osteoclasts even under the non

  12. Cell division orientation is coupled to cell-cell adhesion by the E-cadherin/LGN complex

    NARCIS (Netherlands)

    Gloerich, Martijn; Bianchini, Julie M.; Siemers, Kathleen A.; Cohen, Daniel J.; Nelson, W. James

    2017-01-01

    Both cell-cell adhesion and oriented cell division play prominent roles in establishing tissue architecture, but it is unclear how they might be coordinated. Here, we demonstrate that the cell-cell adhesion protein E-cadherin functions as an instructive cue for cell division orientation. This is

  13. Cell type-specific variations in the induction of hsp70 in human leukocytes by feverlike whole body hyperthermia.

    Science.gov (United States)

    Oehler, R; Pusch, E; Zellner, M; Dungel, P; Hergovics, N; Homoncik, M; Eliasen, M M; Brabec, M; Roth, E

    2001-10-01

    Fever has been associated with shortened duration and improved survival in infectious disease. The mechanism of this beneficial response is still poorly understood. The heat-inducible 70-kDa heat shock protein (Hsp70) has been associated with protection of leukocytes against the cytotoxicity of inflammatory mediators and with improved survival of severe infections. This study characterizes the induction of Hsp70 by feverlike temperatures in human leukocytes in vitro and in vivo. Using flow cytometry, Hsp70 expression was determined in whole blood samples. This approach eliminated cell isolation procedures that would greatly affect the results. Heat treatment of whole blood in vitro for 2 hours at different temperatures revealed that Hsp70 expression depends on temperature and cell type; up to 41 degrees C, Hsp70 increased only slightly in lymphocytes and polymorphonuclear leukocytes. However, in monocytes a strong induction was already seen at 39 degrees C, and Hsp70 levels at 41 degrees C were 10-fold higher than in the 37 degrees C control. To be as close as possible to the physiological situation during fever, we immersed healthy volunteers in a hot water bath, inducing whole body hyperthermia (39 degrees C), and measured leukocyte Hsp70 expression. Hsp70 was induced in all leukocytes with comparable but less pronounced cell type-specific variations as observed in vitro. Thus, a systemic increase of body temperature as triggered by fever stimulates Hsp70 expression in peripheral leukocytes, especially in monocytes. This fever-induced Hsp70 expression may protect monocytes when confronted with cytotoxic inflammatory mediators, thereby improving the course of the disease.

  14. Adhesion and internalization differences of COM nanocrystals on Vero cells before and after cell damage

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Qiong-Zhi; Sun, Xin-Yuan; Ouyang, Jian-Ming, E-mail: toyjm@jnu.edu.cn

    2016-02-01

    The adhesion and internalization between African green monkey kidney epithelial (Vero) cells (before and after oxidative damage by hydrogen peroxide) and calcium oxalate monohydrate (COM) nanocrystals (97 ± 35 nm) were investigated so as to discuss the molecular and cellular mechanism of kidney stone formation. Scanning electron microscope (SEM) was used to observe the Vero–COM nanocrystal adhesion; the nanocrystal-cell adhesion was evaluated by measuring the content of malonaldehyde (MDA), the activity of superoxide dismutase (SOD), the expression level of cell surface osteopontin (OPN) and the change of Zeta potential. Confocal microscopy and flow cytometry were used for the observation and quantitative analysis of crystal internalization. In the process of adhesion, the cell viability and the SOD activity declined, the MDA content, Zeta potential, and the OPN expression level increased. The adhesive capacity of injured Vero was obviously stronger than normal cells; in addition the injured cells promoted the aggregation of COM nanocrystals. The capacity of normal cells to internalize crystals was obviously stronger than that of injured cells. Cell injury increased adhesive sites on cell surface, thereby facilitating the aggregation of COM nanocrystals and their attachment, which results in enhanced risk of calcium oxalate stone formation. - Graphical abstract: The adhesion and internalization differences between Vero cells before and after oxidative damage and calcium oxalate monohydrate nanocrystals were comparatively studied. - Highlights: • Adhesion capacity of injured Vero cells was stronger than normal cells. • Internalization capacity of injured Vero cells was weaker than normal cells. • Injured cells promoted the aggregation of COM nanocrystals. • COM adhesion could aggravate cell injury in both normal and injured cells.

  15. Pharmacology of cell adhesion molecules of the nervous system

    DEFF Research Database (Denmark)

    Kiryushko, Darya; Bock, Elisabeth; Berezin, Vladimir

    2007-01-01

    Cell adhesion molecules (CAMs) play a pivotal role in the development and maintenance of the nervous system under normal conditions. They also are involved in numerous pathological processes such as inflammation, degenerative disorders, and cancer, making them attractive targets for drug...

  16. Unsupervised explorative data analysis of normal human leukocytes and BCR/ABL positive leukemic cells mid-infrared spectra

    NARCIS (Netherlands)

    Bellisola, G.; Bolomini-Vittori, M.; Cinque, G.; Dumas, P.; Fiorini, Z.; Laudanna, C.; Mirenda, M.; Sandt, C.; Silvestri, G.; Tomasello, L.; Vezzalini, M.; Wehbe, K.; Sorio, C.

    2015-01-01

    We proved the ability of Fourier Transform Infrared microspectroscopy (microFTIR) complemented by Principal Component Analysis (PCA) to detect protein phosphorylation/de-phosphorylation in mammalian cells. We analyzed by microFTIR human polymorphonuclear neutrophil (PMNs) leukocytes, mouse-derived

  17. Insulin resistance in vascular endothelial cells promotes intestinal tumour formation

    DEFF Research Database (Denmark)

    Wang, X; Häring, M-F; Rathjen, Thomas

    2017-01-01

    in vascular endothelial cells. Strikingly, these mice had 42% more intestinal tumours than controls, no change in tumour angiogenesis, but increased expression of vascular cell adhesion molecule-1 (VCAM-1) in primary culture of tumour endothelial cells. Insulin decreased VCAM-1 expression and leukocyte...... adhesion in quiescent tumour endothelial cells with intact insulin receptors and partly prevented increases in VCAM-1 and leukocyte adhesion after treatment with tumour necrosis factor-α. Knockout of insulin receptors in endothelial cells also increased leukocyte adhesion in mesenteric venules...

  18. Opto-acoustic microscopy reveals adhesion mechanics of single cells.

    Science.gov (United States)

    Abi Ghanem, Maroun; Dehoux, Thomas; Liu, Liwang; Le Saux, Guillaume; Plawinski, Laurent; Durrieu, Marie-Christine; Audoin, Bertrand

    2018-01-01

    Laser-generated GHz-ultrasonic-based technologies have shown the ability to image single cell adhesion and stiffness simultaneously. Using this new modality, we here demonstrate quantitative indicators to investigate contact mechanics and adhesion processes of the cell. We cultured human cells on a rigid substrate, and we used an inverted pulsed opto-acoustic microscope to generate acoustic pulses containing frequencies up to 100 GHz in the substrate. We map the reflection of the acoustic pulses at the cell-substrate interface to obtain images of the acoustic impedance of the cell, Z c , as well as of the stiffness of the interface, K, with 1 μm lateral resolution. Our results show that the standard deviation ΔZ c reveals differences between different cell types arising from the multiplicity of local conformations within the nucleus. From the distribution of K-values within the nuclear region, we extract a mean interfacial stiffness, K m , that quantifies the average contact force in areas of the cell displaying weak bonding. By analogy with classical contact mechanics, we also define the ratio of the real to nominal contact areas, S r /S t . We show that K m can be interpreted as a quantitative indicator of passive contact at metal-cell interfaces, while S r /S t is sensitive to active adhesive processes in the nuclear region. The ability to separate the contributions of passive and active adhesion processes should allow gaining insight into cell-substrate interactions, with important applications in tissue engineering.

  19. Micromechanical and surface adhesive properties of single saccharomyces cerevisiae cells

    Science.gov (United States)

    Farzi, Bahman; Cetinkaya, Cetin

    2017-09-01

    The adhesion and mechanical properties of a biological cell (e.g. cell membrane elasticity and adhesiveness) are often strong indicators for the state of its health. Many existing techniques for determining mechanical properties of cells require direct physical contact with a single cell or a group of cells. Physical contact with the cell can trigger complex mechanotransduction mechanisms, leading to cellular responses, and consequently interfering with measurement accuracy. In the current work, based on ultrasonic excitation and interferometric (optical) motion detection, a non-contact method for characterizing the adhesion and mechanical properties of single cells is presented. It is experimentally demonstrated that the rocking (rigid body) motion and internal vibrational resonance frequencies of a single saccharomyces cerevisiae (SC) (baker’s yeast) cell can be acquired with the current approach, and the Young’s modulus and surface tension of the cell membrane as well as surface adhesion energy can be extracted from the values of these acquired resonance frequencies. The detected resonance frequency ranges for single SC cells include a rocking (rigid body) frequency of 330  ±  70 kHz and two breathing resonance frequencies of 1.53  ±  0.12 and 2.02  ±  0.31 MHz. Based on these values, the average work-of-adhesion of SC cells on a silicon substrate in aqueous medium is extracted, for the first time, as WASC-Si=16.2+/- 3.8 mJ {{m}-2} . Similarly, the surface tension and the Young’s modulus of the SC cell wall are predicted as {{σ }SC}=0.16+/- 0.02 N {{m}-1} and {{E}SC}= 9.20  ±  2.80 MPa, respectively. These results are compared to those reported in the literature by utilizing various methods, and good agreements are found. The current approach eliminates the measurement inaccuracies associated with the physical contact. Exciting and detecting cell dynamics at micro-second time-scales is significantly faster than the

  20. Hybrid cell adhesive material for instant dielectrophoretic cell trapping and long-term cell function assessment.

    Science.gov (United States)

    Reyes, Darwin R; Hong, Jennifer S; Elliott, John T; Gaitan, Michael

    2011-08-16

    Dielectrophoresis (DEP) for cell manipulation has focused, for the most part, on approaches for separation/enrichment of cells of interest. Advancements in cell positioning and immobilization onto substrates for cell culture, either as single cells or as cell aggregates, has benefited from the intensified research efforts in DEP (electrokinetic) manipulation. However, there has yet to be a DEP approach that provides the conditions for cell manipulation while promoting cell function processes such as cell differentiation. Here we present the first demonstration of a system that combines DEP with a hybrid cell adhesive material (hCAM) to allow for cell entrapment and cell function, as demonstrated by cell differentiation into neuronlike cells (NLCs). The hCAM, comprised of polyelectrolytes and fibronectin, was engineered to function as an instantaneous cell adhesive surface after DEP manipulation and to support long-term cell function (cell proliferation, induction, and differentiation). Pluripotent P19 mouse embryonal carcinoma cells flowing within a microchannel were attracted to the DEP electrode surface and remained adhered onto the hCAM coating under a fluid flow field after the DEP forces were removed. Cells remained viable after DEP manipulation for up to 8 d, during which time the P19 cells were induced to differentiate into NLCs. This approach could have further applications in areas such as cell-cell communication, three-dimensional cell aggregates to create cell microenvironments, and cell cocultures.

  1. Decreased UV-induced DNA repair synthesis in peripheral leukocytes from patients with the nevoid basal cell carcinoma syndrome

    International Nuclear Information System (INIS)

    Ringborg, U.; Lambert, B.; Landergen, J.; Lewensohn, R.

    1981-01-01

    The uv-induced DNA repair synthesis in peripheral leukocytes from 7 patients with the nevoid basal cell carcinoma syndrome was compared to that in peripheral leukocytes from 5 patients with basal cell carcinomas and 39 healthy subjects. A dose response curve was established for each individual, and maximum DNA repair synthesis was used as a measure of the capacity for DNA repair. The patients with the nevoid basal cell carcinoma syndrome had about 25% lower level of maximum DNA repair synthesis as compared to the patients with basal cell carcinomas and control individuals. The possibility that DNA repair mechanisms may be involved in the etiology to the nevoid basal cell carcinoma syndrome is discussed

  2. Suppression of leukocyte inhibitory factor (LIF) production and [3H]thymidine incorporation by concanavalin A-activated mononuclear cells

    International Nuclear Information System (INIS)

    Lomnitzer, R.; Rabson, A.R.

    1979-01-01

    The capacity of human mononuclear (MN) cells pretreated with concanavalin A (Con A) to suppress the activity of fresh phytohemagglutinin (PHA)-pulsed mononuclear cells was assessed. Con A-pretreated MN cells suppressed leukocyte inhibitory factor (LIF) activity in supernatants of PHA-pulsed cell cultures and [ 3 H]thymidine incorporation by these cells. Suppression was obtained in both allogeneic and autologous systems with mitomycin-treated, irradiated, or untreated Con A-induced cells. Lymphocytes from two patients that, following treatment with Con A, did not suppress mitogen-induced proliferative response of normal cells also did not suppress LIF production

  3. Hypertonic saline impedes tumor cell-endothelial cell interaction by reducing adhesion molecule and laminin expression.

    LENUS (Irish Health Repository)

    Shields, Conor J

    2012-02-03

    BACKGROUND: Hypertonic saline infusion dampens inflammatory responses and suppresses neutrophil-endothelial interaction by reducing adhesion molecule expression. This study tested the hypothesis that hypertonic saline attenuates tumor cell adhesion to the endothelium through a similar mechanism. METHODS: Human colon cancer cells (LS174T) were transfected with green fluorescent protein and exposed to lipopolysaccharide, tumor necrosis factor-alpha, and interleukin-6 under hypertonic and isotonic conditions for 1 and 4 hours. Confluent human umbilical vein endothelial cells were similarly exposed. Cellular apoptosis and expression of adhesion molecules and laminin were measured by flow cytometry. Tumor cell adhesion to endothelium and laminin was assessed with fluorescence microscopy. Data are represented as mean +\\/- standard error of mean, and an ANOVA test was performed to gauge statistical significance, with P <.05 considered significant. RESULTS: Hypertonic exposure significantly reduced tumor cell adhesion despite the presence of the perioperative cell stressors (42 +\\/- 2.9 vs 172.5 +\\/- 12.4, P <.05), attenuated tumor cell beta-1 integrin (14.43 vs 23.84, P <.05), and endothelial cell laminin expression (22.78 +\\/- 2.2 vs 33.74 +\\/- 2.4, P <.05), but did not significantly alter cell viability. CONCLUSION: Hypertonic saline significantly attenuates tumor cell adhesion to endothelium by inhibiting adhesion molecule and laminin expression. This may halt the metastatic behavior of tumor cells shed at surgery.

  4. A Review of Cell Adhesion Studies for Biomedical and Biological Applications

    Science.gov (United States)

    Ahmad Khalili, Amelia; Ahmad, Mohd Ridzuan

    2015-01-01

    Cell adhesion is essential in cell communication and regulation, and is of fundamental importance in the development and maintenance of tissues. The mechanical interactions between a cell and its extracellular matrix (ECM) can influence and control cell behavior and function. The essential function of cell adhesion has created tremendous interests in developing methods for measuring and studying cell adhesion properties. The study of cell adhesion could be categorized into cell adhesion attachment and detachment events. The study of cell adhesion has been widely explored via both events for many important purposes in cellular biology, biomedical, and engineering fields. Cell adhesion attachment and detachment events could be further grouped into the cell population and single cell approach. Various techniques to measure cell adhesion have been applied to many fields of study in order to gain understanding of cell signaling pathways, biomaterial studies for implantable sensors, artificial bone and tooth replacement, the development of tissue-on-a-chip and organ-on-a-chip in tissue engineering, the effects of biochemical treatments and environmental stimuli to the cell adhesion, the potential of drug treatments, cancer metastasis study, and the determination of the adhesion properties of normal and cancerous cells. This review discussed the overview of the available methods to study cell adhesion through attachment and detachment events. PMID:26251901

  5. A Review of Cell Adhesion Studies for Biomedical and Biological Applications

    Directory of Open Access Journals (Sweden)

    Amelia Ahmad Khalili

    2015-08-01

    Full Text Available Cell adhesion is essential in cell communication and regulation, and is of fundamental importance in the development and maintenance of tissues. The mechanical interactions between a cell and its extracellular matrix (ECM can influence and control cell behavior and function. The essential function of cell adhesion has created tremendous interests in developing methods for measuring and studying cell adhesion properties. The study of cell adhesion could be categorized into cell adhesion attachment and detachment events. The study of cell adhesion has been widely explored via both events for many important purposes in cellular biology, biomedical, and engineering fields. Cell adhesion attachment and detachment events could be further grouped into the cell population and single cell approach. Various techniques to measure cell adhesion have been applied to many fields of study in order to gain understanding of cell signaling pathways, biomaterial studies for implantable sensors, artificial bone and tooth replacement, the development of tissue-on-a-chip and organ-on-a-chip in tissue engineering, the effects of biochemical treatments and environmental stimuli to the cell adhesion, the potential of drug treatments, cancer metastasis study, and the determination of the adhesion properties of normal and cancerous cells. This review discussed the overview of the available methods to study cell adhesion through attachment and detachment events.

  6. Leukocyte infiltration and tumor cell plasticity are parameters of aggressiveness in primary cutaneous melanoma.

    NARCIS (Netherlands)

    Hillen, F.; Baeten, C.I.M.; Winkel, van de A.; Creytens, D.; Schaft, van der D.W.J.; Winnepenninckx, V.; Griffioen, A.W.

    2008-01-01

    Various clinical and experimental observations detected an immunological host defense in cutaneous melanoma. In order to investigate the prognostic value of leukocyte effector mechanisms, we examined the presence of different subsets of leukocytes in tumor samples of 58 patients diagnosed with

  7. Leukocyte removal efficiency of cell-washed and unwashed whole blood: an in vitro study.

    NARCIS (Netherlands)

    Brinke, M. ten; Weerwind, P.W.; Teerenstra, S.; Feron, JC; Meer, W. van der; Brouwer, René

    2005-01-01

    Leukocyte filtration of the cardiopulmonary bypass (CPB) perfusate after cardiac surgery has evolved as an important technique to prevent effector functions mediated by activated leukocytes. However, little is known about the filtration efficiency. Therefore, an in vitro study was conducted to

  8. Chemokine expression by glial cells directs leukocytes to sites of axonal injury in the CNS

    DEFF Research Database (Denmark)

    Babcock, Alicia A; Kuziel, William A; Rivest, Serge

    2003-01-01

    Innate responses in the CNS are critical to first line defense against infection and injury. Leukocytes migrate to inflammatory sites in response to chemokines. We studied leukocyte migration and glial chemokine expression within the denervated hippocampus in response to axonal injury caused by e...

  9. Adhesion and migration of cells responding to microtopography.

    Science.gov (United States)

    Estévez, Maruxa; Martínez, Elena; Yarwood, Stephen J; Dalby, Matthew J; Samitier, Josep

    2015-05-01

    It is known that cells respond strongly to microtopography. However, cellular mechanisms of response are unclear. Here, we study wild-type fibroblasts responding to 25 µm(2) posts and compare their response to that of FAK(-/-) fibroblasts and fibroblasts with PMA treatment to stimulate protein kinase C (PKC) and the small g-protein Rac. FAK knockout cells modulated adhesion number and size in a similar way to cells on topography; that is, they used more, smaller adhesions, but migration was almost completely stalled demonstrating the importance of FAK signaling in contact guidance and adhesion turnover. Little similarity, however, was observed to PKC stimulated cells and cells on the topography. Interestingly, with PKC stimulation the cell nuclei became highly deformable bringing focus on these surfaces to the study of metastasis. Surfaces that aid the study of cellular migration are important in developing understanding of mechanisms of wound healing and repair in aligned tissues such as ligament and tendon. © 2014 Wiley Periodicals, Inc.

  10. The effect of soy protein beverages on serum cell adhesion molecule concentrations in prehypertensive/stage 1 hypertensive individuals.

    Science.gov (United States)

    Dettmer, Michelle; Alekel, D Lee; Lasrado, Joanne A; Messina, Mark; Carriquiry, Alicia; Heiberger, Kevin; Stewart, Jeanne W; Franke, Warren

    2012-04-01

    Prehypertensive and hypertensive individuals are at increased risk of atherosclerotic cardiovascular disease (CVD), in part because hypertension contributes to endothelial dysfunction and increased cell adhesion molecule expression. Soy protein and isoflavones may favorably alter CVD risk factors, and hence the aim of this study was to determine whether intake of cow's milk compared with soy beverage prepared from whole soy bean (WSB) or soy protein isolate (SPI) would lower soluble cell adhesion molecule concentrations as a means of decreasing CVD risk. We enrolled healthy prehypertensive/stage 1 hypertensive men (n = 60; 18-63 years) and premenopausal women (n = 8; 20-48 years). Participants were randomized to 1 of 3 groups for 8 weeks: cow's milk (600 mL/d), SPI beverage (840 mL/d; 30.1 mg total isoflavones/d), or WSB beverage (840 mL/d; 91.4 mg total isoflavones/d). We measured soluble vascular cell adhesion molecule-1 (VCAM-1), intercellular cell adhesion molecule-1 (ICAM-1), and endothelial-leukocyte adhesion molecule-1 (E-selectin) concentrations at baseline and week 8. Soluble CAM concentrations were not altered by treatment and did not differ between prehypertensive and hypertensive participants. However, analysis of variance indicated a treatment × gender interaction (gender effect) for ICAM-1 (p = 0.0037) but not for E-selectin (p = 0.067) or VCAM-1 (p = 0.16). Men had higher concentrations of ICAM-1 and E-selectin, respectively, at baseline (p = 0.0071, p = 0.049) and week 8 (p = 0.0054, p = 0.038) than women did. Neither intake of cow's milk nor soy beverage for 8 weeks altered soluble CAM concentrations in prehypertensive/stage 1 hypertensive individuals, suggesting that neither type of beverage diminished atherosclerotic CVD risk in mildly hypertensive individuals by way of improving circulating CAM concentrations.

  11. Understanding dynamic changes in live cell adhesion with neutron reflectometry

    Science.gov (United States)

    Junghans, Ann

    Understanding the structure and functionality of biological systems on a nanometer-resolution and short temporal scales is important for solving complex biological problems, developing innovative treatment, and advancing the design of highly functionalized biomimetic materials. For example, adhesion of cells to an underlying substrate plays a crucial role in physiology and disease development, and has been investigated with great interest for several decades. In the talk, we would like to highlight recent advances in utilizing neutron scattering to study bio-related structures in dynamic conditions (e . g . under the shear flow) including in-situ investigations of the interfacial properties of living cells. The strength of neutron reflectometry is its non-pertubative nature, the ability to probe buried interfaces with nanometer resolution and its sensitivity to light elements like hydrogen and carbon. That allows us to study details of cell - substrate interfaces that are not accessible with any other standard techniques. We studied the adhesion of human brain tumor cells (U251) to quartz substrates and their responses to the external mechanical forces. Such cells are isolated within the central nervous system which makes them difficult to reach with conventional therapies and therefore making them highly invasive. Our results reveal changes in the thickness and composition of the adhesion layer (a layer between the cell lipid membrane and the quartz substrate), largely composed of hyaluronic acid and associated proteoglycans, when the cells were subjected to shear stress. Further studies will allow us to determine more conditions triggering changes in the composition of the bio-material in the adhesion layer. This, in turn, can help to identify changes that correlate with tumor invasiveness, which can have significant medical impact for the development of targeted anti-invasive therapies.

  12. The Neural Cell Adhesion Molecule NCAM2/OCAM/RNCAM, a Close Relative to NCAM

    DEFF Research Database (Denmark)

    Kulahin, Nikolaj; Walmod, Peter

    2008-01-01

    molecule (NCAM) is a well characterized, ubiquitously expressed CAM that is highly expressed in the nervous system. In addition to mediating cell adhesion, NCAM participates in a multitude of cellular events, including survival, migration, and differentiation of cells, outgrowth of neurites, and formation......Cell adhesion molecules (CAMs) constitute a large class of plasma membrane-anchored proteins that mediate attachment between neighboring cells and between cells and the surrounding extracellular matrix (ECM). However, CAMs are more than simple mediators of cell adhesion. The neural cell adhesion...... and plasticity of synapses. NCAM shares an overall sequence identity of approximately 44% with the neural cell adhesion molecule 2 (NCAM2), a protein also known as olfactory cell adhesion molecule (OCAM) and Rb-8 neural cell adhesion molecule (RNCAM), and the region-for-region sequence homology between the two...

  13. Growth hormone increases vascular cell adhesion molecule 1 expression

    DEFF Research Database (Denmark)

    Hansen, Troels Krarup; Fisker, Sanne; Dall, Rolf

    2004-01-01

    We investigated the impact of GH administration on endothelial adhesion molecules, vascular cell adhesion molecule-1 (VCAM-1) and E-selectin, in vivo and in vitro. Soluble VCAM-1, E-selectin, and C-reactive protein concentrations were measured before and after treatment in 25 healthy subjects...... and 25 adult GH-deficient (GHD) patients randomized to GH treatment or placebo. Furthermore, we studied the direct effect of GH and IGF-I and serum from GH-treated subjects on basal and TNF alpha-stimulated expression of VCAM-1 and E-selectin on cultured human umbilical vein endothelial cells. Baseline......% confidence interval: 95.0-208.7 microg/liter); P cells, there was no direct stimulatory effect of either GH or IGF-I on the expression of VCAM-1 and E-selectin, but serum from GH-treated healthy subjects significantly increased the expression of VCAM-1 (P

  14. RNA-binding IMPs promote cell adhesion and invadopodia formation

    DEFF Research Database (Denmark)

    Vikesaa, Jonas; Hansen, Thomas V O; Jønson, Lars

    2006-01-01

    Oncofetal RNA-binding IMPs have been implicated in mRNA localization, nuclear export, turnover and translational control. To depict the cellular actions of IMPs, we performed a loss-of-function analysis, which showed that IMPs are necessary for proper cell adhesion, cytoplasmic spreading and inva......Oncofetal RNA-binding IMPs have been implicated in mRNA localization, nuclear export, turnover and translational control. To depict the cellular actions of IMPs, we performed a loss-of-function analysis, which showed that IMPs are necessary for proper cell adhesion, cytoplasmic spreading...... and invadopodia formation. Loss of IMPs was associated with a coordinate downregulation of mRNAs encoding extracellular matrix and adhesion proteins. The transcripts were present in IMP RNP granules, implying that IMPs were directly involved in the post-transcriptional control of the transcripts. In particular......-mediated invadopodia formation. Taken together, our results indicate that RNA-binding proteins exert profound effects on cellular adhesion and invasion during development and cancer formation....

  15. Rapid and Localized Mechanical Stimulation and Adhesion Assay: TRPM7 Involvement in Calcium Signaling and Cell Adhesion.

    Directory of Open Access Journals (Sweden)

    Wagner Shin Nishitani

    Full Text Available A cell mechanical stimulation equipment, based on cell substrate deformation, and a more sensitive method for measuring adhesion of cells were developed. A probe, precisely positioned close to the cell, was capable of a vertical localized mechanical stimulation with a temporal frequency of 207 Hz, and strain magnitude of 50%. This setup was characterized and used to probe the response of Human Umbilical Endothelial Vein Cells (HUVECs in terms of calcium signaling. The intracellular calcium ion concentration was measured by the genetically encoded Cameleon biosensor, with the Transient Receptor Potential cation channel, subfamily M, member 7 (TRPM7 expression inhibited. As TRPM7 expression also regulates adhesion, a relatively simple method for measuring adhesion of cells was also developed, tested and used to study the effect of adhesion alone. Three adhesion conditions of HUVECs on polyacrylamide gel dishes were compared. In the first condition, the substrate is fully treated with Sulfo-SANPAH crosslinking and fibronectin. The other two conditions had increasingly reduced adhesion: partially treated (only coated with fibronectin, with no use of Sulfo-SANPAH, at 5% of the normal amount and non-treated polyacrylamide gels. The cells showed adhesion and calcium response to the mechanical stimulation correlated to the degree of gel treatment: highest for fully treated gels and lowest for non-treated ones. TRPM7 inhibition by siRNA on HUVECs caused an increase in adhesion relative to control (no siRNA treatment and non-targeting siRNA, but a decrease to 80% of calcium response relative to non-targeting siRNA which confirms the important role of TRPM7 in mechanotransduction despite the increase in adhesion.

  16. Strong adhesion by regulatory T cells induces dendritic cell cytoskeletal polarization and contact-dependent lethargy.

    Science.gov (United States)

    Chen, Jiahuan; Ganguly, Anutosh; Mucsi, Ashley D; Meng, Junchen; Yan, Jiacong; Detampel, Pascal; Munro, Fay; Zhang, Zongde; Wu, Mei; Hari, Aswin; Stenner, Melanie D; Zheng, Wencheng; Kubes, Paul; Xia, Tie; Amrein, Matthias W; Qi, Hai; Shi, Yan

    2017-02-01

    Dendritic cells are targeted by regulatory T (T reg) cells, in a manner that operates as an indirect mode of T cell suppression. In this study, using a combination of single-cell force spectroscopy and structured illumination microscopy, we analyze individual T reg cell-DC interaction events and show that T reg cells exhibit strong intrinsic adhesiveness to DCs. This increased DC adhesion reduces the ability of contacted DCs to engage other antigen-specific cells. We show that this unusually strong LFA-1-dependent adhesiveness of T reg cells is caused in part by their low calpain activities, which normally release integrin-cytoskeleton linkage, and thereby reduce adhesion. Super resolution imaging reveals that such T reg cell adhesion causes sequestration of Fascin-1, an actin-bundling protein essential for immunological synapse formation, and skews Fascin-1-dependent actin polarization in DCs toward the T reg cell adhesion zone. Although it is reversible upon T reg cell disengagement, this sequestration of essential cytoskeletal components causes a lethargic state of DCs, leading to reduced T cell priming. Our results reveal a dynamic cytoskeletal component underlying T reg cell-mediated DC suppression in a contact-dependent manner. © 2017 Chen et al.

  17. Combinational Effect of Cell Adhesion Biomolecules and Their Immobilized Polymer Property to Enhance Cell-Selective Adhesion

    Directory of Open Access Journals (Sweden)

    Rio Kurimoto

    2016-01-01

    Full Text Available Although surface immobilization of medical devices with bioactive molecules is one of the most widely used strategies to improve biocompatibility, the physicochemical properties of the biomaterials significantly impact the activity of the immobilized molecules. Herein we investigate the combinational effects of cell-selective biomolecules and the hydrophobicity/hydrophilicity of the polymeric substrate on selective adhesion of endothelial cells (ECs, fibroblasts (FBs, and smooth muscle cells (SMCs. To control the polymeric substrate, biomolecules are immobilized on thermoresponsive poly(N-isopropylacrylamide-co-2-carboxyisopropylacrylamide (poly(NIPAAm-co-CIPAAm-grafted glass surfaces. By switching the molecular conformation of the biomolecule-immobilized polymers, the cell-selective adhesion performances are evaluated. In case of RGDS (Arg-Gly-Asp-Ser peptide-immobilized surfaces, all cell types adhere well regardless of the surface hydrophobicity. On the other hand, a tri-Arg-immobilized surface exhibits FB-selectivity when the surface is hydrophilic. Additionally, a tri-Ile-immobilized surface exhibits EC-selective cell adhesion when the surface is hydrophobic. We believe that the proposed concept, which is used to investigate the biomolecule-immobilized surface combination, is important to produce new biomaterials, which are highly demanded for medical implants and tissue engineering.

  18. Evaluation of cell responses toward adhesives with different photoinitiating systems.

    Science.gov (United States)

    Van Landuyt, Kirsten L; Krifka, Stephanie; Hiller, Karl-Anton; Bolay, Carola; Waha, Claudia; Van Meerbeek, Bart; Schmalz, Gottfried; Schweikl, Helmut

    2015-08-01

    The photoinitiator diphenyl-(2,4,6-trimethylbenzoyl)phosphine oxide (TPO) is more reactive than a camphorquinone/amine (CQ) system, and TPO-based adhesives obtained a higher degree of conversion (DC) with fewer leached monomers. The hypothesis tested here is that a TPO-based adhesive is less toxic than a CQ-based adhesive. A CQ-based adhesive (SBU-CQ) (Scotchbond Universal, 3M ESPE) and its experimental counterpart with TPO (SBU-TPO) were tested for cytotoxicity in human pulp-derived cells (tHPC). Oxidative stress was analyzed by the generation of reactive oxygen species (ROS) and by the expression of antioxidant enzymes. A dentin barrier test (DBT) was used to evaluate cell viability in simulated clinical circumstances. Unpolymerized SBU-TPO was significantly more toxic than SBU-CQ after a 24h exposure, and TPO alone (EC50=0.06mM) was more cytotoxic than CQ (EC50=0.88mM), EDMAB (EC50=0.68mM) or CQ/EDMAB (EC50=0.50mM). Cultures preincubated with BSO (l-buthionine sulfoximine), an inhibitor of glutathione synthesis, indicated a minor role of glutathione in cytotoxic responses toward the adhesives. Although the generation of ROS was not detected, a differential expression of enzymatic antioxidants revealed that cells exposed to unpolymerized SBU-TPO or SBU-CQ are subject to oxidative stress. Polymerized SBU-TPO was more cytotoxic than SBU-CQ under specific experimental conditions only, but no cytotoxicity was detected in a DBT with a 200μm dentin barrier. Not only DC and monomer-release determine the biocompatibility of adhesives, but also the cytotoxicity of the (photo-)initiator should be taken into account. Addition of TPO rendered a universal adhesive more toxic compared to CQ; however, this effect could be annulled by a thin dentin barrier. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Anandamide inhibits Theiler's virus induced VCAM-1 in brain endothelial cells and reduces leukocyte transmigration in a model of blood brain barrier by activation of CB1 receptors

    Directory of Open Access Journals (Sweden)

    Loría Frida

    2011-08-01

    Full Text Available Abstract Background VCAM-1 represents one of the most important adhesion molecule involved in the transmigration of blood leukocytes across the blood-brain barrier (BBB that is an essential step in the pathogenesis of MS. Several evidences have suggested the potential therapeutic value of cannabinoids (CBs in the treatment of MS and their experimental models. However, the effects of endocannabinoids on VCAM-1 regulation are poorly understood. In the present study we investigated the effects of anandamide (AEA in the regulation of VCAM-1 expression induced by Theiler's virus (TMEV infection of brain endothelial cells using in vitro and in vivo approaches. Methods i in vitro: VCAM-1 was measured by ELISA in supernatants of brain endothelial cells infected with TMEV and subjected to AEA and/or cannabinoid receptors antagonist treatment. To evaluate the functional effect of VCAM-1 modulation we developed a blood brain barrier model based on a system of astrocytes and brain endothelial cells co-culture. ii in vivo: CB1 receptor deficient mice (Cnr1-/- infected with TMEV were treated with the AEA uptake inhibitor UCM-707 for three days. VCAM-1 expression and microglial reactivity were evaluated by immunohistochemistry. Results Anandamide-induced inhibition of VCAM-1 expression in brain endothelial cell cultures was mediated by activation of CB1 receptors. The study of leukocyte transmigration confirmed the functional relevance of VCAM-1 inhibition by AEA. In vivo approaches also showed that the inhibition of AEA uptake reduced the expression of brain VCAM-1 in response to TMEV infection. Although a decreased expression of VCAM-1 by UCM-707 was observed in both, wild type and CB1 receptor deficient mice (Cnr1-/-, the magnitude of VCAM-1 inhibition was significantly higher in the wild type mice. Interestingly, Cnr1-/- mice showed enhanced microglial reactivity and VCAM-1 expression following TMEV infection, indicating that the lack of CB1 receptor

  20. Heparin Interaction with the Primed Polymorphonuclear Leukocyte CD11b Induces Apoptosis and Prevents Cell Activation

    Directory of Open Access Journals (Sweden)

    Meital Cohen-Mazor

    2015-01-01

    Full Text Available Heparin is known to have anti-inflammatory effects, yet the mechanisms are not completely understood. In this study, we tested the hypothesis that heparin has a direct effect on activated polymorphonuclear leukocytes (PMNLs, changing their activation state, and can explain its anti-inflammatory effect. To test our hypothesis, we designed both in vitro and ex vivo studies to elucidate the mechanism by which heparin modulates PMNL functions and therefore the inflammatory response. We specifically tested the hypothesis that priming of PMNLs renders them more susceptible to heparin. Amplified levels of CD11b and increased rate of superoxide release manifested PMNL priming. Increase in cell priming resulted in a dose-dependent increase in heparin binding to PMNLs followed by augmented apoptosis. Blocking antibodies to CD11b inhibited heparin binding and abolished the apoptotic response. Moreover, heparin caused a significant dose-dependent decrease in the rate of superoxide release from PMNLs, which was blunted by blocking antibodies to CD11b. Altogether, this study shows that the interaction of heparin with the PMNL CD11b results in cell apoptosis and explains heparin’s anti-inflammatory effects.

  1. Human Leukocyte Antigen-G and Regulatory T Cells during Specific Immunotherapy for Pollen Allergy

    DEFF Research Database (Denmark)

    Sørensen, Anja Elaine; Johnsen, Claus R; Dalgaard, Louise Torp

    2013-01-01

    of the cytokine profile towards a TH1-polarized immune response. We investigated the effects of SIT on T cells, on immunomodulation of human leukocyte antigen (HLA)-G, which has been associated with allergy, on regulatory cytokine expression, and on serum allergen-specific antibody subclasses (IgE and IgG4......). Methods: Eleven birch and/or grass pollen-allergic patients and 10 healthy nonatopic controls were studied before and during SIT. Tregs, chemokine receptors, soluble HLA-G (sHLA-G), Ig-like transcript (ILT) 2, specific IgE, and IgG4 were studied. Peripheral blood mononuclear cells (PBMCs) were stimulated...... with pollen extract in vitro and immune factors were evaluated. Results: During SIT, the main changes in the peripheral blood were an increase in CXCR3+CD4+CD25+CD127low/- Tregs and a decrease in CCR4+CD4+CD25+CD127low/- Tregs, an increase in allergen-specific IgG4, and a decrease in sHLA-G during the first...

  2. Dendritic cells take up and present antigens from viable and apoptotic polymorphonuclear leukocytes.

    Directory of Open Access Journals (Sweden)

    Carlos Alfaro

    Full Text Available Dendritic cells (DC are endowed with the ability to cross-present antigens from other cell types to cognate T cells. DC are poised to meet polymorphonuclear leukocytes (PMNs as a result of being co-attracted by interleukin-8 (IL-8, for instance as produced by tumor cells or infected tissue. Human monocyte-derived and mouse bone marrow-derived DC can readily internalize viable or UV-irradiated PMNs. Such internalization was abrogated at 4°C and partly inhibited by anti-CD18 mAb. In mice, DC which had internalized PMNs containing electroporated ovalbumin (OVA protein, were able to cross-present the antigen to CD8 (OT-1 and CD4 (OT-2 TCR-transgenic T cells. Moreover, in humans, tumor cell debris is internalized by PMNs and the tumor-cell material can be subsequently taken up from the immunomagnetically re-isolated PMNs by DC. Importantly, if human neutrophils had endocytosed bacteria, they were able to trigger the maturation program of the DC. Moreover, when mouse PMNs with E. coli in their interior are co-injected in the foot pad with DC, many DC loaded with fluorescent material from the PMNs reach draining lymph nodes. Using CT26 (H-2(d mouse tumor cells, it was observed that if tumor cells are intracellularly loaded with OVA protein and UV-irradiated, they become phagocytic prey of H-2(d PMNs. If such PMNs, that cannot present antigens to OT-1 T cells, are immunomagnetically re-isolated and phagocytosed by H-2(b DC, such DC productively cross-present OVA antigen determinants to OT-1 T cells. Cross-presentation to adoptively transferred OT-1 lymphocytes at draining lymph nodes also take place when OVA-loaded PMNs (H-2(d are coinjected in the footpad of mice with autologous DC (H-2(b. In summary, our results indicate that antigens phagocytosed by short-lived PMNs can be in turn internalized and productively cross-presented by DC.

  3. Anandamide inhibits adhesion and migration of breast cancer cells

    International Nuclear Information System (INIS)

    Grimaldi, Claudia; Pisanti, Simona; Laezza, Chiara; Malfitano, Anna Maria; Santoro, Antonietta; Vitale, Mario; Caruso, Maria Gabriella; Notarnicola, Maria; Iacuzzo, Irma; Portella, Giuseppe; Di Marzo, Vincenzo; Bifulco, Maurizio

    2006-01-01

    The endocannabinoid system regulates cell proliferation in human breast cancer cells. We reasoned that stimulation of cannabinoid CB 1 receptors could induce a non-invasive phenotype in breast mtastatic cells. In a model of metastatic spreading in vivo, the metabolically stable anandamide analogue, 2-methyl-2'-F-anandamide (Met-F-AEA), significantly reduced the number and dimension of metastatic nodes, this effect being antagonized by the selective CB 1 antagonist SR141716A. In MDA-MB-231 cells, a highly invasive human breast cancer cell line, and in TSA-E1 cells, a murine breast cancer cell line, Met-F-AEA inhibited adhesion and migration on type IV collagen in vitro without modifying integrin expression: both these effects were antagonized by SR141716A. In order to understand the molecular mechanism involved in these processes, we analyzed the phosphorylation of FAK and Src, two tyrosine kinases involved in migration and adhesion. In Met-F-AEA-treated cells, we observed a decreased tyrosine phosphorylation of both FAK and Src, this effect being attenuated by SR141716A. We propose that CB 1 receptor agonists inhibit tumor cell invasion and metastasis by modulating FAK phosphorylation, and that CB 1 receptor activation might represent a novel therapeutic strategy to slow down the growth of breast carcinoma and to inhibit its metastatic diffusion in vivo

  4. Focal adhesion kinase-dependent focal adhesion recruitment of SH2 domains directs SRC into focal adhesions to regulate cell adhesion and migration.

    Science.gov (United States)

    Wu, Jui-Chung; Chen, Yu-Chen; Kuo, Chih-Ting; Wenshin Yu, Helen; Chen, Yin-Quan; Chiou, Arthur; Kuo, Jean-Cheng

    2015-12-18

    Directed cell migration requires dynamical control of the protein complex within focal adhesions (FAs) and this control is regulated by signaling events involving tyrosine phosphorylation. We screened the SH2 domains present in tyrosine-specific kinases and phosphatases found within FAs, including SRC, SHP1 and SHP2, and examined whether these enzymes transiently target FAs via their SH2 domains. We found that the SRC_SH2 domain and the SHP2_N-SH2 domain are associated with FAs, but only the SRC_SH2 domain is able to be regulated by focal adhesion kinase (FAK). The FAK-dependent association of the SRC_SH2 domain is necessary and sufficient for SRC FA targeting. When the targeting of SRC into FAs is inhibited, there is significant suppression of SRC-mediated phosphorylation of paxillin and FAK; this results in an inhibition of FA formation and maturation and a reduction in cell migration. This study reveals an association between FAs and the SRC_SH2 domain as well as between FAs and the SHP2_N-SH2 domains. This supports the hypothesis that the FAK-regulated SRC_SH2 domain plays an important role in directing SRC into FAs and that this SRC-mediated FA signaling drives cell migration.

  5. Ion implantation induced nanotopography on titanium and bone cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Braceras, Iñigo, E-mail: inigo.braceras@tecnalia.com [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Vera, Carolina; Ayerdi-Izquierdo, Ana [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Muñoz, Roberto [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); Lorenzo, Jaione; Alvarez, Noelia [Tecnalia, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina (Ciber-BBN) (Spain); Maeztu, Miguel Ángel de [Private Practice, P° San Francisco, 43 A-1°, 20400 Tolosa (Spain)

    2014-08-15

    Graphical abstract: Titanium surfaces modified by inert ion implantation affect cell adhesion through modification of the nanotopography in the same dimensional range of that of human bone inorganic phases. - Highlights: • Inert ion implantation on Ti modifies surface nanotopography and bone cell adhesion. • Ion implantation can produce nanostructured surfaces on titanium in the very same range as of those of the mineral phase of the human bone. • Appropriate tool for studying the relevance of nanostructured surfaces on bone mineralization and implant osseointegration. • Ion implantation induced nanotopography have a statistically significant influence on bone cell adhesion. - Abstract: Permanent endo-osseous implants require a fast, reliable and consistent osseointegration, i.e. intimate bonding between bone and implant, so biomechanical loads can be safely transferred. Among the parameters that affect this process, it is widely admitted that implant surface topography, surface energy and composition play an important role. Most surface treatments to improve osseointegration focus on micro-scale features, as few can effectively control the effects of the treatment at nanoscale. On the other hand, ion implantation allows controlling such nanofeatures. This study has investigated the nanotopography of titanium, as induced by different ion implantation surface treatments, its similarity with human bone tissue structure and its effect on human bone cell adhesion, as a first step in the process of osseointegration. The effect of ion implantation treatment parameters such as energy (40–80 keV), fluence (1–2 e17 ion/cm{sup 2}) and ion species (Kr, Ar, Ne and Xe) on the nanotopography of medical grade titanium has been measured and assessed by AFM and contact angle. Then, in vitro tests have been performed to assess the effect of these nanotopographies on osteoblast adhesion. The results have shown that the nanostructure of bone and the studied ion implanted

  6. Ion implantation induced nanotopography on titanium and bone cell adhesion

    International Nuclear Information System (INIS)

    Braceras, Iñigo; Vera, Carolina; Ayerdi-Izquierdo, Ana; Muñoz, Roberto; Lorenzo, Jaione; Alvarez, Noelia; Maeztu, Miguel Ángel de

    2014-01-01

    Graphical abstract: Titanium surfaces modified by inert ion implantation affect cell adhesion through modification of the nanotopography in the same dimensional range of that of human bone inorganic phases. - Highlights: • Inert ion implantation on Ti modifies surface nanotopography and bone cell adhesion. • Ion implantation can produce nanostructured surfaces on titanium in the very same range as of those of the mineral phase of the human bone. • Appropriate tool for studying the relevance of nanostructured surfaces on bone mineralization and implant osseointegration. • Ion implantation induced nanotopography have a statistically significant influence on bone cell adhesion. - Abstract: Permanent endo-osseous implants require a fast, reliable and consistent osseointegration, i.e. intimate bonding between bone and implant, so biomechanical loads can be safely transferred. Among the parameters that affect this process, it is widely admitted that implant surface topography, surface energy and composition play an important role. Most surface treatments to improve osseointegration focus on micro-scale features, as few can effectively control the effects of the treatment at nanoscale. On the other hand, ion implantation allows controlling such nanofeatures. This study has investigated the nanotopography of titanium, as induced by different ion implantation surface treatments, its similarity with human bone tissue structure and its effect on human bone cell adhesion, as a first step in the process of osseointegration. The effect of ion implantation treatment parameters such as energy (40–80 keV), fluence (1–2 e17 ion/cm 2 ) and ion species (Kr, Ar, Ne and Xe) on the nanotopography of medical grade titanium has been measured and assessed by AFM and contact angle. Then, in vitro tests have been performed to assess the effect of these nanotopographies on osteoblast adhesion. The results have shown that the nanostructure of bone and the studied ion implanted

  7. LINE-1 methylation levels in leukocyte DNA and risk of renal cell cancer.

    Directory of Open Access Journals (Sweden)

    Linda M Liao

    Full Text Available Leukocyte global DNA methylation levels are currently being considered as biomarkers of cancer susceptibility and have been associated with risk of several cancers. In this study, we aimed to examine the association between long interspersed nuclear elements (LINE-1 methylation levels, as a biomarker of global DNA methylation in blood cell DNA, and renal cell cancer risk.LINE-1 methylation of bisulfite-converted genomic DNA isolated from leukocytes was quantified by pyrosequencing measured in triplicate, and averaged across 4 CpG sites. A total of 328 RCC cases and 654 controls frequency-matched(2∶1 on age(±5years, sex and study center, from a large case-control study conducted in Central and Eastern Europe were evaluated.LINE-1 methylation levels were significantly higher in RCC cases with a median of 81.97% (interquartile range[IQR]: 80.84-83.47 compared to 81.67% (IQR: 80.35-83.03 among controls (p = 0.003, Wilcoxon. Compared to the lowest LINE-1 methylation quartile(Q1, the adjusted ORs for increasing methylation quartiles were as follows: OR(Q2 = 1.84(1.20-2.81, OR(Q3 = 1.72(1.11-2.65 and OR(Q4 = 2.06(1.34-3.17, with a p-trend = 0.004. The association was stronger among current smokers (p-trend<0.001 than former or never smokers (p-interaction = 0.03. To eliminate the possibility of selection bias among controls, the relationship between LINE-1 methylation and smoking was evaluated and confirmed in a case-only analysis, as well.Higher levels of LINE-1 methylation appear to be positively associated with RCC risk, particularly among current smokers. Further investigations using both post- and pre-diagnostic genomic DNA is warranted to confirm findings and will be necessary to determine whether the observed differences occur prior to, or as a result of carcinogenesis.

  8. Activation of the canonical Wnt/β-catenin pathway enhances monocyte adhesion to endothelial cells

    International Nuclear Information System (INIS)

    Lee, Dong Kun; Nathan Grantham, R.; Trachte, Aaron L.; Mannion, John D.; Wilson, Colleen L.

    2006-01-01

    Monocyte adhesion to vascular endothelium has been reported to be one of the early processes in the development of atherosclerosis. In an attempt to develop strategies to prevent or delay atherosclerosis progression, we analyzed effects of the Wnt/β-catenin signaling pathway on monocyte adhesion to various human endothelial cells. Adhesion of fluorescein-labeled monocytes to various human endothelial cells was analyzed under a fluorescent microscope. Unlike sodium chloride, lithium chloride enhanced monocyte adhesion to endothelial cells in a dose-dependent manner. We further demonstrated that inhibitors for glycogen synthase kinase (GSK)-3β or proteosome enhanced monocyte-endothelial cell adhesion. Results of semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) indicated that activation of Wnt/β-catenin pathway did not change expression levels of mRNA for adhesion molecules. In conclusion, the canonical Wnt/β-catenin pathway enhanced monocyte-endothelial cell adhesion without changing expression levels of adhesion molecules

  9. Using cell-substrate impedance and live cell imaging to measure real-time changes in cellular adhesion and de-adhesion induced by matrix modification.

    Science.gov (United States)

    Rees, Martin D; Thomas, Shane R

    2015-02-19

    Cell-matrix adhesion plays a key role in controlling cell morphology and signaling. Stimuli that disrupt cell-matrix adhesion (e.g., myeloperoxidase and other matrix-modifying oxidants/enzymes released during inflammation) are implicated in triggering pathological changes in cellular function, phenotype and viability in a number of diseases. Here, we describe how cell-substrate impedance and live cell imaging approaches can be readily employed to accurately quantify real-time changes in cell adhesion and de-adhesion induced by matrix modification (using endothelial cells and myeloperoxidase as a pathophysiological matrix-modifying stimulus) with high temporal resolution and in a non-invasive manner. The xCELLigence cell-substrate impedance system continuously quantifies the area of cell-matrix adhesion by measuring the electrical impedance at the cell-substrate interface in cells grown on gold microelectrode arrays. Image analysis of time-lapse differential interference contrast movies quantifies changes in the projected area of individual cells over time, representing changes in the area of cell-matrix contact. Both techniques accurately quantify rapid changes to cellular adhesion and de-adhesion processes. Cell-substrate impedance on microelectrode biosensor arrays provides a platform for robust, high-throughput measurements. Live cell imaging analyses provide additional detail regarding the nature and dynamics of the morphological changes quantified by cell-substrate impedance measurements. These complementary approaches provide valuable new insights into how myeloperoxidase-catalyzed oxidative modification of subcellular extracellular matrix components triggers rapid changes in cell adhesion, morphology and signaling in endothelial cells. These approaches are also applicable for studying cellular adhesion dynamics in response to other matrix-modifying stimuli and in related adherent cells (e.g., epithelial cells).

  10. Encapsulant Adhesion to Surface Metallization on Photovoltaic Cells

    Energy Technology Data Exchange (ETDEWEB)

    Tracy, Jared; Bosco, Nick; Dauskardt, Reinhold

    2017-11-01

    Delamination of encapsulant materials from PV cell surfaces often appears to originate at regions with metallization. Using a fracture mechanics based metrology, the adhesion of ethylene vinyl acetate (EVA) encapsulant to screen-printed silver metallization was evaluated. At room temperature, the fracture energy Gc [J/m2] of the EVA/silver interface (952 J/m2) was ~70% lower than that of the EVA/antireflective (AR) coating (>2900 J/m2) and ~60% lower than that of the EVA to the surface of cell (2265 J/m2). After only 300 h of damp heat aging, the adhesion energy of the silver interface dropped to and plateaued at ~50-60 J/m2 while that of the EVA/AR coating and EVA/cell remained mostly unchanged. Elemental surface analysis showed that the EVA separates from the silver in a purely adhesive manner, indicating that bonds at the interface were likely displaced in the presence of humidity and chemical byproducts at elevated temperature, which in part accounts for the propensity of metalized surfaces to delaminate in the field.

  11. Irradiation induces increase of adhesion molecules and accumulation of β2-integrin-expressing cells in humans

    International Nuclear Information System (INIS)

    Handschel, Joerg; Prott, Franz-Josef; Sunderkoetter, Cord; Metze, Dieter; Meyer, Ulrich; Joos, Ulrich

    1999-01-01

    Purpose: The purpose of our investigation was to describe the dose- and time-dependent histomorphologic alterations of the irradiated tissue, the composition of the infiltrate, and the expression patterns of various adhesion molecules. Methods and Materials: We analyzed immunohistochemically alterations in oral mucosa in 13 head and neck cancer patients before radiotherapy and with 30 Gy and 60 Gy. All had oral mucosa irradiation, with a final dose of 60 Gy using conventional fractionation. Snap-frozen specimens were stained using the indirect immunoperoxidase technique. Histomorphology was studied in paraffin-embedded sections. In addition, we determined the clinical degree of oral mucositis. Results: Histomorphologic evaluation showed no vascular damage. Irradiation caused a steep increase of β 2 -integrin-bearing cells (p 1 -integrin-positive cells remained at low levels. Additionally we found an increase in the expression of endothelial intercellular adhesion molecule-1 (ICAM-1) (p 2 is more involved than β 1 . Pharmaceuticals that block leukocyte adhesion to E-selectin or ICAM-1 may prevent radiation-mediated inflammation in oral mucosa

  12. The hemostatic agent ethamsylate promotes platelet/leukocyte aggregate formation in a model of vascular injury.

    Science.gov (United States)

    Hernandez, Maria Rosa; Alvarez-Guerra, Miriam; Escolar, Ginés; Chiavaroli, Carlo; Hannaert, Patrick; Garay, Ricardo P

    2004-08-01

    The hemostatic agent ethamsylate enhances membrane expression of P-selectin in human platelets, but whether this promotes platelet-leukocyte aggregate formation is unknown. Here we investigated this point by flow cytometry determination of human platelet-leukocyte aggregates under basal conditions and after whole-blood perfusion through a damaged rabbit aorta segment. Actions of ethamsylate on adhesive molecules of platelets and leukocytes were investigated in parallel. Under basal conditions, ethamsylate was unable to modify whole-blood platelet-leukocyte aggregation, but following whole-blood perfusion through a damaged vessel, ethamsylate produced a modest, but significant increase in platelet-leukocyte aggregates (48+/-21 and 45+/-26% above control levels at ethamsylate 20 and 40 microm respectively). In isolated leukocyte plasma membranes, 14C-ethamsylate specifically bound up to an amount of 660 pmol/mg protein. Moreover, at concentrations > or =1 microm, ethamsylate induced an important (100-200%) and significant increase in the P-selectin glycoprotein ligand 1 (PSGL-1) fluorescence signal in isolated leukocytes and was unable to significantly modify the percentage of CD11b-positive cells. However, no significant changes in aggregate formation were found when ethamsylate was incubated with isolated leukocytes and blood was reconstituted and perfused. In isolated platelet cell membranes, anti-P-selectin antibody and the anti-integrin RGD-containing pentapeptide (GRDGS) were unable to displace 14C-ethamsylate binding. In conclusion, ethamsylate specifically binds to plasma membranes of leukocytes, enhances membrane PSGL-1 expression and promotes leukocyte-platelet aggregation in whole-blood perfused through a damaged vascular segment. These results together with the previously observed enhancement of platelet P-selectin membrane expression [Thromb. Res. (2002)107:329-335] confirms and extends the view that ethamsylate acts on the first step of hemostasis, by

  13. Cell-substrate interaction with cell-membrane-stress dependent adhesion.

    Science.gov (United States)

    Jiang, H; Yang, B

    2012-01-10

    Cell-substrate interaction is examined in a two-dimensional mechanics model. The cell and substrate are treated as a shell and an elastic solid, respectively. Their interaction through adhesion is treated using nonlinear springs. Compared to previous cell mechanics models, the present model introduces a cohesive force law that is dependent not only on cell-substrate distance but also on internal cell-membrane stress. It is postulated that a living cell would establish focal adhesion sites with density dependent on the cell-membrane stress. The formulated mechanics problem is numerically solved using coupled finite elements and boundary elements for the cell and the substrate, respectively. The nodes in the adhesion zone from either side are linked by the cohesive springs. The specific cases of a cell adhering to a homogeneous substrate and a heterogeneous bimaterial substrate are examined. The analyses show that the substrate stiffness affects the adhesion behavior significantly and regulates the direction of cell adhesion, in good agreement with the experimental results in the literature. By introducing a reactive parameter (i.e., cell-membrane stress) linking biological responses of a living cell to a mechanical environment, the present model offers a unified mechanistic vehicle for characterization and prediction of living cell responses to various kinds of mechanical stimuli including local extracellular matrix and neighboring cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Inhibition of neuronal cell–cell adhesion measured by the microscopic aggregation assay and impedance sensing

    NARCIS (Netherlands)

    Wiertz, Remy; Marani, Enrico; Rutten, Wim

    2010-01-01

    Microscopic aggregation assay and impedance sensing (IS) were used to monitor a change in in vitro neuron–neuron adhesion in response to blocking of cell adhesion molecules. By blocking neuron–neuron adhesion, migration and aggregation of neuronal cells can be inhibited. This leads to better control

  15. Interlayer adhesion in roll-to-roll processed flexible inverted polymer solar cells

    KAUST Repository

    Dupont, Stephanie R.; Oliver, Mark; Krebs, Frederik C.; Dauskardt, Reinhold H.

    2012-01-01

    The interlayer adhesion of roll-to-roll processed flexible inverted P3HT:PCBM bulk heterojunction (BHJ) polymer solar cells is reported. Poor adhesion between adjacent layers may result in loss of device performance from delamination driven

  16. Platelet endothelial cell adhesion molecule 1 deficiency misguides venous thrombus resolution.

    Science.gov (United States)

    Kellermair, Joerg; Redwan, Bassam; Alias, Sherin; Jabkowski, Joerg; Panzenboeck, Adelheid; Kellermair, Lukas; Winter, Max P; Weltermann, Ansgar; Lang, Irene M

    2013-11-07

    Platelet endothelial cell adhesion molecule 1 (PECAM-1) is involved in leukocyte migration and angiogenesis, which are key components of venous thrombus resolution. This study investigated the effect of PECAM-1 deficiency on thrombus resolution in FVB/n mice and the extent to which levels of soluble PECAM-1 (sPECAM-1) correlate with delayed thrombus resolution in humans after acute symptomatic deep vein thrombosis (DVT). In a mouse stagnant flow venous thrombosis model Pecam-1(-/-) thrombi were larger, persisted for longer periods of time, and displayed attenuated macrophage invasion and decreased vessel formation in the presence of increased fibrosis. In humans, higher levels of truncated plasma sPECAM-1 possibly cleaved from cell surfaces, were found in patients with delayed thrombus resolution (assessed via duplex-based thrombus scoring) relative to those whose thrombi resolved (median, 25th/75th percentile): 92.5 (87.7/103.4) ng/mL vs 71.5 (51.1/81.0) ng/mL; P deep vein thrombus specimens stained positively with antibodies specific for the extracellular, but not the cytoplasmic domain of PECAM-1, consistent with accumulation of cleaved PECAM-1. Our data suggest a regulatory role of PECAM-1 in venous thrombus resolution and suggest a predictive value of sPECAM-1 for postthrombotic syndrome (PTS) after acute DVT.

  17. A tritherapy combination of inactivated allogeneic leukocytes infusion and cell vaccine with cyclophosphamide in a sequential regimen enhances antitumor immunity

    OpenAIRE

    Yishu Tang; Wenbo Ma; Chunxia Zhou; Dongmei Wang; Shuren Zhang

    2018-01-01

    Background: Tumor-induced immunosuppression can impede tumor-specific immune responses and limit the effects of cancer immunotherapy. The aim of this study was to investigate the possible effects of sequential chemoimmunotherapeutic strategies to enhance antitumor immune responses. Methods: Using the E7-expressing tumor TC-1 as the tumor model, the treatment groups were divided into the following groups: (1) inactivated allogeneic leukocyte infusion (ALI), (2) ALI + MMC-inactivated TC-1 cell ...

  18. ZDHHC3 Tyrosine Phosphorylation Regulates Neural Cell Adhesion Molecule Palmitoylation

    Science.gov (United States)

    Lievens, Patricia Marie-Jeanne; Kuznetsova, Tatiana; Kochlamazashvili, Gaga; Cesca, Fabrizia; Gorinski, Natalya; Galil, Dalia Abdel; Cherkas, Volodimir; Ronkina, Natalia; Lafera, Juri; Gaestel, Matthias

    2016-01-01

    The neural cell adhesion molecule (NCAM) mediates cell-cell and cell-matrix adhesion. It is broadly expressed in the nervous system and regulates neurite outgrowth, synaptogenesis, and synaptic plasticity. Previous in vitro studies revealed that palmitoylation of NCAM is required for fibroblast growth factor 2 (FGF2)-stimulated neurite outgrowth and identified the zinc finger DHHC (Asp-His-His-Cys)-containing proteins ZDHHC3 and ZDHHC7 as specific NCAM-palmitoylating enzymes. Here, we verified that FGF2 controlled NCAM palmitoylation in vivo and investigated molecular mechanisms regulating NCAM palmitoylation by ZDHHC3. Experiments with overexpression and pharmacological inhibition of FGF receptor (FGFR) and Src revealed that these kinases control tyrosine phosphorylation of ZDHHC3 and that ZDHHC3 is phosphorylated by endogenously expressed FGFR and Src proteins. By site-directed mutagenesis, we found that Tyr18 is an FGFR1-specific ZDHHC3 phosphorylation site, while Tyr295 and Tyr297 are specifically phosphorylated by Src kinase in cell-based and cell-free assays. Abrogation of tyrosine phosphorylation increased ZDHHC3 autopalmitoylation, enhanced interaction with NCAM, and upregulated NCAM palmitoylation. Expression of ZDHHC3 with tyrosine mutated in cultured hippocampal neurons promoted neurite outgrowth. Our findings for the first time highlight that FGFR- and Src-mediated tyrosine phosphorylation of ZDHHC3 modulates ZDHHC3 enzymatic activity and plays a role in neuronal morphogenesis. PMID:27247265

  19. Cancer cell metastasis; perspectives from the focal adhesion

    Directory of Open Access Journals (Sweden)

    Lefteris C Zacharia

    2015-10-01

    Full Text Available In almost all cancers, most patients die from metastatic disease and not from the actual primary tumor. That is why addressing the problem of metastasis is of utmost importance for the successful treatment and improved survival of cancer patients. Metastasis is a complex process that ultimately leads to cancer cells spreading from the tumor to distant sites of the body. During this process, cancer cells tend to lose contact with the extracellular matrix (ECM and neighboring cells within the primary tumor, and are thus able to invade surrounding tissues. Hence, ECM, and the ECM-associated adhesion proteins play a critical role in the metastatic process. This review will focus on recent literature regarding interesting and novel molecules at the cell-ECM adhesion sites, namely migfilin, mitogen-inducible gene-2 (Mig-2 and Ras suppressor-1 (RSU-1, that are also critically involved in cancer cell metastasis, emphasizing on data from experiments performed in vitro in breast cancer and hepatocellular carcinoma cell lines as well as human breast cancer tissue samples.

  20. Hakai reduces cell-substratum adhesion and increases epithelial cell invasion

    International Nuclear Information System (INIS)

    Rodríguez-Rigueiro, Teresa; Valladares-Ayerbes, Manuel; Haz-Conde, Mar; Aparicio, Luis A; Figueroa, Angélica

    2011-01-01

    The dynamic regulation of cell-cell adhesions is crucial for developmental processes, including tissue formation, differentiation and motility. Adherens junctions are important components of the junctional complex between cells and are necessary for maintaining cell homeostasis and normal tissue architecture. E-cadherin is the prototype and best-characterized protein member of adherens junctions in mammalian epithelial cells. Regarded as a tumour suppressor, E-cadherin loss is associated with poor prognosis in carcinoma. The E3 ubiquitin-ligase Hakai was the first reported posttranslational regulator of the E-cadherin complex. Hakai specifically targetted E-cadherin for internalization and degradation and thereby lowered epithelial cell-cell contact. Hakai was also implicated in controlling proliferation, and promoted cancer-related gene expression by increasing the binding of RNA-binding protein PSF to RNAs encoding oncogenic proteins. We sought to investigate the possible implication of Hakai in cell-substratum adhesions and invasion in epithelial cells. Parental MDCK cells and MDCK cells stably overexpressing Hakai were used to analyse cell-substratum adhesion and invasion capabilities. Western blot and immunofluoresecence analyses were performed to assess the roles of Paxillin, FAK and Vinculin in cell-substratum adhesion. The role of the proteasome in controlling cell-substratum adhesion was studied using two proteasome inhibitors, lactacystin and MG132. To study the molecular mechanisms controlling Paxillin expression, MDCK cells expressing E-cadherin shRNA in a tetracycline-inducible manner was employed. Here, we present evidence that implicate Hakai in reducing cell-substratum adhesion and increasing epithelial cell invasion, two hallmark features of cancer progression and metastasis. Paxillin, an important protein component of the cell-matrix adhesion, was completely absent from focal adhesions and focal contacts in Hakai-overexpressing MDCK cells. The

  1. Forced-rupture of cell-adhesion complexes reveals abrupt switch between two brittle states

    Science.gov (United States)

    Toan, Ngo Minh; Thirumalai, D.

    2018-03-01

    Cell adhesion complexes (CACs), which are activated by ligand binding, play key roles in many cellular functions ranging from cell cycle regulation to mediation of cell extracellular matrix adhesion. Inspired by single molecule pulling experiments using atomic force spectroscopy on leukocyte function-associated antigen-1 (LFA-1), expressed in T-cells, bound to intercellular adhesion molecules (ICAM), we performed constant loading rate (rf) and constant force (F) simulations using the self-organized polymer model to describe the mechanism of ligand rupture from CACs. The simulations reproduce the major experimental finding on the kinetics of the rupture process, namely, the dependence of the most probable rupture forces (f*s) on ln rf (rf is the loading rate) exhibits two distinct linear regimes. The first, at low rf, has a shallow slope, whereas the slope at high rf is much larger, especially for a LFA-1/ICAM-1 complex with the transition between the two occurring over a narrow rf range. Locations of the two transition states (TSs) extracted from the simulations show an abrupt change from a high value at low rf or constant force, F, to a low value at high rf or F. This unusual behavior in which the CACs switch from one brittle (TS position is a constant over a range of forces) state to another brittle state is not found in forced-rupture in other protein complexes. We explain this novel behavior by constructing the free energy profiles, F(Λ)s, as a function of a collective reaction coordinate (Λ), involving many key charged residues and a critical metal ion (Mg2+). The TS positions in F(Λ), which quantitatively agree with the parameters extracted using the Bell-Evans model, change abruptly at a critical force, demonstrating that it, rather than the molecular extension, is a good reaction coordinate. Our combined analyses using simulations performed in both the pulling modes (constant rf and F) reveal a new mechanism for the two loading regimes observed in the

  2. Alloactivated HLA class II-positive T-cell lines induce IL-2 reactivity but lack accessory cell function in mixed leukocyte culture

    DEFF Research Database (Denmark)

    Odum, N; Dickmeiss, E; Hofmann, B

    1989-01-01

    in the primary mixed leukocyte reaction (median counts per minute (cpm) 5.5 x 10(3] was significantly lower than that of peripheral blood mononuclear cells (cpm: 44.0 x 10(3]. The stimulation by Ta was almost only seen when the Ta were specifically directed against the class II antigens of the responder...... peripheral blood mononuclear cells (i.e., in combinations with "backstimulation") (median cpm: 21,000). In mixed leukocyte reaction combinations without backstimulation, significantly weaker reactions were seen (median cpm: 1,000). This observation may explain previous controversies concerning...

  3. Low Doses of Curcuma longa Modulates Cell Migration and Cell-Cell Adhesion.

    Science.gov (United States)

    de Campos, Paloma Santos; Matte, Bibiana Franzen; Diel, Leonardo Francisco; Jesus, Luciano Henrique; Bernardi, Lisiane; Alves, Alessandro Menna; Rados, Pantelis Varvaki; Lamers, Marcelo Lazzaron

    2017-09-01

    Cell invasion and metastasis are involved in clinical failures in cancer treatment, and both events require the acquisition of a migratory behavior by tumor cells. Curcumin is a promising natural product with anti-proliferative activity, but its effects on cell migration are still unclear. We evaluated the effects of curcumin on the proliferation, apoptosis, migration, and cell-cell adhesion of keratinocyte, oral squamous cell carcinoma (OSCC), and fibroblast cell lines, as well as in a xenograft model of OSCC. Curcumin (2 μM) decreased cell proliferation in cell lines with mesenchymal characteristics, while cell death was detected only at 50 μM. We observed that highly migratory cells showed a decrease on migration speed and directionality when treated with 2 or 5 μM of curcumin (50% and 40%, respectively, p curcumin dose dependently decreased cell-cell adhesion, especially on tumor-derived spheroids. Also, in a xenograft model with patient-derived OSCC cells, the administration of curcumin decreased tumor growth and aggressiveness when compared with untreated tumors, indicating the potential antitumor effect in oral cancer. These results suggest that lower doses of curcumin can influence several steps involved in tumorigenesis, including migration properties, suggesting a possible use in cancer therapy. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials

    Science.gov (United States)

    Lee, Ted T.; García, José R.; Paez, Julieta I.; Singh, Ankur; Phelps, Edward A.; Weis, Simone; Shafiq, Zahid; Shekaran, Asha; Del Campo, Aránzazu; García, Andrés J.

    2015-03-01

    Materials engineered to elicit targeted cellular responses in regenerative medicine must display bioligands with precise spatial and temporal control. Although materials with temporally regulated presentation of bioadhesive ligands using external triggers, such as light and electric fields, have recently been realized for cells in culture, the impact of in vivo temporal ligand presentation on cell-material responses is unknown. Here, we present a general strategy to temporally and spatially control the in vivo presentation of bioligands using cell-adhesive peptides with a protecting group that can be easily removed via transdermal light exposure to render the peptide fully active. We demonstrate that non-invasive, transdermal time-regulated activation of cell-adhesive RGD peptide on implanted biomaterials regulates in vivo cell adhesion, inflammation, fibrous encapsulation, and vascularization of the material. This work shows that triggered in vivo presentation of bioligands can be harnessed to direct tissue reparative responses associated with implanted biomaterials.

  5. Adhesion defective BHK cell mutant has cell surface heparan sulfate proteoglycan of altered properties

    DEFF Research Database (Denmark)

    Couchman, J R; Austria, R; Woods, A

    1988-01-01

    In the light of accumulating data that implicate cell surface heparan sulfate proteoglycans (HSPGs) with a role in cell interactions with extracellular matrix molecules such as fibronectin, we have compared the properties of these molecules in wild-type BHK cells and an adhesion-defective ricin......-resistant mutant (RicR14). Our results showed that the mutant, unlike BHK cells, cannot form focal adhesions when adherent to planar substrates in the presence of serum. Furthermore, while both cell lines possess similar amounts of cell surface HSPG with hydrophobic properties, that of RicR14 cells had decreased...... sulfation, reduced affinity for fibronectin and decreased half-life on the cell surface when compared to the normal counterpart. Our conclusions based on this data are that these altered properties may, in part, account for the adhesion defect in the ricin-resistant mutant. Whether this results from...

  6. CADM1 controls actin cytoskeleton assembly and regulates extracellular matrix adhesion in human mast cells.

    Directory of Open Access Journals (Sweden)

    Elena P Moiseeva

    Full Text Available CADM1 is a major receptor for the adhesion of mast cells (MCs to fibroblasts, human airway smooth muscle cells (HASMCs and neurons. It also regulates E-cadherin and alpha6beta4 integrin in other cell types. Here we investigated a role for CADM1 in MC adhesion to both cells and extracellular matrix (ECM. Downregulation of CADM1 in the human MC line HMC-1 resulted not only in reduced adhesion to HASMCs, but also reduced adhesion to their ECM. Time-course studies in the presence of EDTA to inhibit integrins demonstrated that CADM1 provided fast initial adhesion to HASMCs and assisted with slower adhesion to ECM. CADM1 downregulation, but not antibody-dependent CADM1 inhibition, reduced MC adhesion to ECM, suggesting indirect regulation of ECM adhesion. To investigate potential mechanisms, phosphotyrosine signalling and polymerisation of actin filaments, essential for integrin-mediated adhesion, were examined. Modulation of CADM1 expression positively correlated with surface KIT levels and polymerisation of cortical F-actin in HMC-1 cells. It also influenced phosphotyrosine signalling and KIT tyrosine autophosphorylation. CADM1 accounted for 46% of surface KIT levels and 31% of F-actin in HMC-1 cells. CADM1 downregulation resulted in elongation of cortical actin filaments in both HMC-1 cells and human lung MCs and increased cell rigidity of HMC-1 cells. Collectively these data suggest that CADM1 is a key adhesion receptor, which regulates MC net adhesion, both directly through CADM1-dependent adhesion, and indirectly through the regulation of other adhesion receptors. The latter is likely to occur via docking of KIT and polymerisation of cortical F-actin. Here we propose a stepwise model of adhesion with CADM1 as a driving force for net MC adhesion.

  7. Cryopreservation of Human Mucosal Leukocytes.

    Directory of Open Access Journals (Sweden)

    Sean M Hughes

    Full Text Available Understanding how leukocytes in the cervicovaginal and colorectal mucosae respond to pathogens, and how medical interventions affect these responses, is important for developing better tools to prevent HIV and other sexually transmitted infections. An effective cryopreservation protocol for these cells following their isolation will make studying them more feasible.To find an optimal cryopreservation protocol for mucosal mononuclear leukocytes, we compared cryopreservation media and procedures using human vaginal leukocytes and confirmed our results with endocervical and colorectal leukocytes. Specifically, we measured the recovery of viable vaginal T cells and macrophages after cryopreservation with different cryopreservation media and handling procedures. We found several cryopreservation media that led to recoveries above 75%. Limiting the number and volume of washes increased the fraction of cells recovered by 10-15%, possibly due to the small cell numbers in mucosal samples. We confirmed that our cryopreservation protocol also works well for both endocervical and colorectal leukocytes. Cryopreserved leukocytes had slightly increased cytokine responses to antigenic stimulation relative to the same cells tested fresh. Additionally, we tested whether it is better to cryopreserve endocervical cells on the cytobrush or in suspension.Leukocytes from cervicovaginal and colorectal tissues can be cryopreserved with good recovery of functional, viable cells using several different cryopreservation media. The number and volume of washes has an experimentally meaningful effect on the percentage of cells recovered. We provide a detailed, step-by-step protocol with best practices for cryopreservation of mucosal leukocytes.

  8. The random co-polymer glatiramer acetate rapidly kills primary human leukocytes through sialic-acid-dependent cell membrane damage

    DEFF Research Database (Denmark)

    Christiansen, Stig Hill; Zhang, Xianwei; Juul-Madsen, Kristian

    2017-01-01

    in innate immunity. It shares the positive charge and amphipathic character of GA, and, as shown here, also the ability to kill human leukocyte. The cytotoxicity of both compounds depends on sialic acid in the cell membrane. The killing was associated with the generation of CD45 + debris, derived from cell...... membrane deformation. Nanoparticle tracking analysis confirmed the formation of such debris, even at low GA concentrations. Electric cell-substrate impedance sensing measurements also recorded stable alterations in T lymphocytes following such treatment. LL-37 forms oligomers through weak hydrophobic...

  9. Self-adhesive microculture system for extended live cell imaging.

    Science.gov (United States)

    Skommer, J; McGuinness, D; Wlodkowic, D

    2011-06-01

    Gas permeable and biocompatible soft polymers are convenient for biological applications. Using the soft polymer poly(dimethylsiloxane) (PDMS), we established a straightforward technique for in-house production of self-adhesive and optical grade microculture devices. A gas permeable PDMS layer effectively protects against medium evaporation, changes in osmolarity, contamination and drug diffusion. These chip-based devices can be used effectively for long term mammalian cell culture and support a range of bioassays used in pharmacological profiling of anti-cancer drugs. Results obtained on a panel of hematopoietic and solid tumor cell lines during screening of investigative anti-cancer agents corresponded well to those obtained in a conventional cell culture on polystyrene plates. The cumulative correlation analysis of multiple cell lines and anti-cancer drugs showed no adverse effects on cell viability or cell growth retardation during microscale static cell culture. PDMS devices also can be custom modified for many bio-analytical purposes and are interfaced easily with both inverted and upright cell imaging platforms. Moreover, PDMS microculture devices are suitable for extended real time cell imaging. Data from the multicolor, real time analysis of apoptosis on human breast cancer MCF-7 cells provided further evidence that elimination of redundant centrifugation/washing achieved during microscale real time analysis facilitates preservation of fragile apoptotic cells and provides dynamic cellular information at high resolution. Because only small reaction volumes are required, such devices offer reduced use of consumables as well as simplified manipulations during all stages of live cell imaging.

  10. Cellular Adhesion Promotes Prostate Cancer Cells Escape from Dormancy.

    Science.gov (United States)

    Ruppender, Nazanin; Larson, Sandy; Lakely, Bryce; Kollath, Lori; Brown, Lisha; Coleman, Ilsa; Coleman, Roger; Nguyen, Holly; Nelson, Peter S; Corey, Eva; Snyder, Linda A; Vessella, Robert L; Morrissey, Colm; Lam, Hung-Ming

    2015-01-01

    Dissemination of prostate cancer (PCa) cells to the bone marrow is an early event in the disease process. In some patients, disseminated tumor cells (DTC) proliferate to form active metastases after a prolonged period of undetectable disease known as tumor dormancy. Identifying mechanisms of PCa dormancy and reactivation remain a challenge partly due to the lack of in vitro models. Here, we characterized in vitro PCa dormancy-reactivation by inducing cells from three patient-derived xenograft (PDX) lines to proliferate through tumor cell contact with each other and with bone marrow stroma. Proliferating PCa cells demonstrated tumor cell-cell contact and integrin clustering by immunofluorescence. Global gene expression analyses on proliferating cells cultured on bone marrow stroma revealed a downregulation of TGFB2 in all of the three proliferating PCa PDX lines when compared to their non-proliferating counterparts. Furthermore, constitutive activation of myosin light chain kinase (MLCK), a downstream effector of integrin-beta1 and TGF-beta2, in non-proliferating cells promoted cell proliferation. This cell proliferation was associated with an upregulation of CDK6 and a downregulation of E2F4. Taken together, our data provide the first clinically relevant in vitro model to support cellular adhesion and downregulation of TGFB2 as a potential mechanism by which PCa cells may escape from dormancy. Targeting the TGF-beta2-associated mechanism could provide novel opportunities to prevent lethal PCa metastasis.

  11. Interlayer adhesion in roll-to-roll processed flexible inverted polymer solar cells

    DEFF Research Database (Denmark)

    Dupont, Stephanie R.; Oliver, Mark; Krebs, Frederik C

    2012-01-01

    demonstrate how a thin-film adhesion technique can be applied to flexible organic solar cells to obtain quantitative adhesion values. For the P3HT:PCBM-based BHJ polymer solar cells, the interface of the BHJ with the conductive polymer layer PEDOT:PSS was found to be the weakest. The adhesion fracture energy......The interlayer adhesion of roll-to-roll processed flexible inverted P3HT:PCBM bulk heterojunction (BHJ) polymer solar cells is reported. Poor adhesion between adjacent layers may result in loss of device performance from delamination driven by the thermomechanical stresses in the device. We...... energies was observed....

  12. Cell adhesion to cathodic arc plasma deposited CrAlSiN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Kyu, E-mail: skim@ulsan.ac.kr [School of Materials Science and Engineering, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Pham, Vuong-Hung [Department of Materials Science and Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Kim, Chong-Hyun [Department of Food Science, Cornell University, Ithaca, NY 14853 (United States)

    2012-07-01

    Osteoblast cell response (cell adhesion, actin cytoskeleton and focal contact adhesion as well as cell proliferation) to CrN, CrAlSiN and Ti thin films was evaluated in vitro. Cell adhesion and actin stress fibers organization depended on the film composition significantly. Immunofluorescent staining of vinculin in osteoblast cells showed good focal contact adhesion on the CrAlSiN and Ti thin films but not on the CrN thin films. Cell proliferation was significantly greater on the CrAlSiN thin films as well as on Ti thin films than on the CrN thin films.

  13. Study of the time effect on the strength of cell-cell adhesion force by a novel nano-picker

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yajing, E-mail: shen@robo.mein.naogya-u.ac.jp [Dept. of Micro-Nano Systems Engineering, Nagoya University, Nagoya 464-8603 (Japan); Nakajima, Masahiro [Center for Micro-Nano Mechatronics, Nagoya University, Nagoya 464-8603 (Japan); Kojima, Seiji; Homma, Michio [Division of Biological Science, Nagoya University, Nagoya 464-8603 (Japan); Fukuda, Toshio [Dept. of Micro-Nano Systems Engineering, Nagoya University, Nagoya 464-8603 (Japan); Center for Micro-Nano Mechatronics, Nagoya University, Nagoya 464-8603 (Japan)

    2011-06-03

    Highlights: {yields} A nano-picker is developed for single cell adhesion force measurement. {yields} The adhesion of picker-cell has no influence to the cell-cell measurement result. {yields} Cell-cell adhesion force has a rise at the first few minutes and then becomes constant. -- Abstract: Cell's adhesion is important to cell's interaction and activates. In this paper, a novel method for cell-cell adhesion force measurement was proposed by using a nano-picker. The effect of the contact time on the cell-cell adhesion force was studied. The nano-picker was fabricated from an atomic force microscopy (AFM) cantilever by nano fabrication technique. The cell-cell adhesion force was measured based on the deflection of the nano-picker beam. The result suggests that the adhesion force between cells increased with the increasing of contact time at the first few minutes. After that, the force became constant. This measurement methodology was based on the nanorobotic manipulation system inside an environmental scanning electron microscope. It can realize both the observation and manipulation of a single cell at nanoscale. The quantitative and precise cell-cell adhesion force result can be obtained by this method. It would help us to understand the single cell interaction with time and would benefit the research in medical and biological fields potentially.

  14. Analysis of Swine Leukocyte Antigen Peptide Binding Profiles and the Identification of T cell Epitopes by Tetramer Staining

    DEFF Research Database (Denmark)

    Pedersen, Lasse Eggers

    class I peptide binding characteristics in relation to immune responses to vaccination or infection. Applying proven technologies to newly produced, recombinant swine leukocyte antigen (SLA) class I proteins yielded a body of data for peptide:SLA:β2m (pSLA) complex affinity and stability. Mapping...... system to specifically identify and react upon non-self peptide fragments unique only to the foreign intruder. The polymorphism of the MHC molecule effectively individualizes the immune response of each member of any given species. Moreover, responding T cells recognize antigen ligands, only...... in the context of peptide:MHC:β2m (pMHC) complex. The gene encoding the MHC is one of the most polymorphic regions of the genome known. Despite thousands of different human leukocyte antigen (HLA) variants identified, each member of a species only inherits and expresses a few of these MHC alleles. The “MHC...

  15. The cell adhesion molecule Fasciclin2 regulates brush border length and organization in Drosophila renal tubules

    DEFF Research Database (Denmark)

    Halberg, Kenneth Agerlin; Rainey, Stephanie M.; Veland, Iben Rønn

    2016-01-01

    Multicellular organisms rely on cell adhesion molecules to coordinate cell-cell interactions, and to provide navigational cues during tissue formation. In Drosophila, Fasciclin 2 (Fas2) has been intensively studied due to its role in nervous system development and maintenance; yet, Fas2 is most...... role for this well-known cell adhesion molecule, and propose that Fas2-mediated intermicrovillar homophilic adhesion complexes help stabilize the brush border....

  16. Inflammation determines the pro-adhesive properties of high extracellular d-glucose in human endothelial cells in vitro and rat microvessels in vivo.

    Directory of Open Access Journals (Sweden)

    Verónica Azcutia

    Full Text Available BACKGROUND: Hyperglycemia is acknowledged as an independent risk factor for developing diabetes-associated atherosclerosis. At present, most therapeutic approaches are targeted at a tight glycemic control in diabetic patients, although this fails to prevent macrovascular complications of the disease. Indeed, it remains highly controversial whether or not the mere elevation of extracellular D-glucose can directly promote vascular inflammation, which favors early pro-atherosclerotic events. METHODS AND FINDINGS: In the present work, increasing extracellular D-glucose from 5.5 to 22 mmol/L was neither sufficient to induce intercellular adhesion molecule-1 (ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1 expression, analyzed by flow cytometry, nor to promote leukocyte adhesion to human umbilical vein endothelial cells (HUVEC in vitro, measured by flow chamber assays. Interestingly, the elevation of D-glucose levels potentiated ICAM-1 and VCAM-1 expression and leukocyte adhesion induced by a pro-inflammatory stimulus, such as interleukin (IL-1beta (5 ng/mL. In HUVEC, high D-glucose augmented the activation of extracellular signal-regulated kinase 1/2 (ERK 1/2 and nuclear transcription factor-kappaB (NF-kappaB elicited by IL-1beta, measured by Western blot and electromobility shift assay (EMSA, respectively, but had no effect by itself. Both ERK 1/2 and NF-kappaB were necessary for VCAM-1 expression, but not for ICAM-1 expression. In vivo, leukocyte trafficking was evaluated in the rat mesenteric microcirculation by intravital microscopy. In accordance with the in vitro data, the acute intraperitoneal injection of D-glucose increased leukocyte rolling flux, adhesion and migration, but only when IL-1beta was co-administered. CONCLUSIONS: These results indicate that the elevation of extracellular D-glucose levels is not sufficient to promote vascular inflammation, and they highlight the pivotal role of a pro-inflammatory environment in diabetes, as

  17. Adhesion of yeast cells on surface of polymers produced by radiation polymerization

    International Nuclear Information System (INIS)

    Lu, Zhaoxin; Takehisa, Masaaki; Xie Zongchuan.

    1995-01-01

    The adhesion of yeast (Saccharomyces formesences) cells on polymers was studied thermodynamically. The polymers were laminally prepared by means of radiation polymerization. By measuring contact angles, we calculated dispersion component and polar component of surface free energy of the polymers and the cells, and interfacial free energy between the polymer and the cells. Then interfacial free energy change of the cell adhesion to surface of the polymer was evaluated. The adhesion behavior of yeast cells on the polymers was observed by optical microscope. From above results, we conclude that the initial adhesion of the cells is related to the surface free energy of the polymer, but the irreversible adhesion may be close to the polar component in surface free energy. The high polar component is favourable the irreversible adhesion of yeast cells. (author)

  18. Laminin-dependent and laminin-independent adhesion of human melanoma cells to sulfatides

    DEFF Research Database (Denmark)

    Roberts, D D; Wewer, U M; Liotta, L A

    1988-01-01

    Sulfatides (galactosylceramide-I3-sulfate) but not neutral glycolipids or gangliosides adsorbed on plastic promote adhesion of the human melanoma cell line G361. Direct adhesion of G361 cells requires densities of sulfatide greater than 1 pmol/mm2. In the presence of laminin, however, specific...... adhesion of G361 cells to sulfatide or seminolipid (galactosylalkylacyl-glycerol-I3-sulfate) but not to other lipids is strongly stimulated and requires only 25 fmol/mm2 of adsorbed lipid. The effects of laminin and sulfatide on adhesion are synergistic, suggesting that laminin is mediating adhesion...... by cross-linking receptors on the melanoma cell surface to sulfatide adsorbed on the plastic. Although thrombospondin binds to sulfatides and G361 cells, it does not enhance, but rather inhibits direct and laminin-dependent G361 cell adhesion to sulfatide. In contrast, C32 melanoma cells also adhere...

  19. Llgl1 Connects Cell Polarity with Cell-Cell Adhesion in Embryonic Neural Stem Cells.

    Science.gov (United States)

    Jossin, Yves; Lee, Minhui; Klezovitch, Olga; Kon, Elif; Cossard, Alexia; Lien, Wen-Hui; Fernandez, Tania E; Cooper, Jonathan A; Vasioukhin, Valera

    2017-06-05

    Malformations of the cerebral cortex (MCCs) are devastating developmental disorders. We report here that mice with embryonic neural stem-cell-specific deletion of Llgl1 (Nestin-Cre/Llgl1 fl/fl ), a mammalian ortholog of the Drosophila cell polarity gene lgl, exhibit MCCs resembling severe periventricular heterotopia (PH). Immunohistochemical analyses and live cortical imaging of PH formation revealed that disruption of apical junctional complexes (AJCs) was responsible for PH in Nestin-Cre/Llgl1 fl/fl brains. While it is well known that cell polarity proteins govern the formation of AJCs, the exact mechanisms remain unclear. We show that LLGL1 directly binds to and promotes internalization of N-cadherin, and N-cadherin/LLGL1 interaction is inhibited by atypical protein kinase C-mediated phosphorylation of LLGL1, restricting the accumulation of AJCs to the basolateral-apical boundary. Disruption of the N-cadherin-LLGL1 interaction during cortical development in vivo is sufficient for PH. These findings reveal a mechanism responsible for the physical and functional connection between cell polarity and cell-cell adhesion machineries in mammalian cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Cell-extracellular matrix and cell-cell adhesion are linked by syndecan-4

    DEFF Research Database (Denmark)

    Pakideeri Karat, Sandeep Gopal; Multhaupt, Hinke A B; Pocock, Roger

    2017-01-01

    Cell-extracellular matrix (ECM) and cell-cell junctions that employ microfilaments are sites of tension. They are important for tissue repair, morphogenetic movements and can be emblematic of matrix contraction in fibrotic disease and the stroma of solid tumors. One cell surface receptor, syndecan...... calcium. While it is known that cell-ECM and cell-cell junctions may be linked, possible roles for syndecans in this process are not understood. Here we show that wild type primary fibroblasts and those lacking syndecan-4 utilize different cadherins in their adherens junctions and that tension is a major...... factor in this differential response. This corresponds to the reduced ability of fibroblasts lacking syndecan-4 to exert tension on the ECM and we now show that this may extend to reduced tension in cell-cell adhesion....

  1. A new technical approach to quantify cell-cell adhesion forces by AFM

    International Nuclear Information System (INIS)

    Puech, Pierre-Henri; Poole, Kate; Knebel, Detlef; Muller, Daniel J.

    2006-01-01

    Cell-cell adhesion is a complex process that is involved in the tethering of cells, cell-cell communication, tissue formation, cell migration and the development and metastasis of tumors. Given the heterogeneous and complex nature of cell surfaces it has previously proved difficult to characterize individual cell-cell adhesion events. Force spectroscopy, using an atomic force microscope, is capable of resolving such individual cell-cell binding events, but has previously been limited in its application due to insufficient effective pulling distances. Extended pulling range is critical in studying cell-cell interactions due to the potential for large cell deformations. Here we describe an approach to such experiments, where the sample stage can be moved 100 μm in the z-direction, by closed loop, linearized piezo elements. Such an approach enables an increase in pulling distance sufficient for the observation of long-distance cell-unbinding events without reducing the imaging capabilities of the atomic force microscope. The atomic force microscope head and the piezo-driven sample stage are installed on an inverted optical microscope fitted with a piezo-driven objective, to allow the monitoring of cell morphology by conventional light microscopy, concomitant with force spectroscopy measurements. We have used the example of the WM115 melanoma cell line binding to human umbilical vein endothelial cells to demonstrate the capabilities of this system and the necessity for such an extended pulling range when quantifying cell-cell adhesion events

  2. Embryonic cell-cell adhesion: a key player in collective neural crest migration.

    Science.gov (United States)

    Barriga, Elias H; Mayor, Roberto

    2015-01-01

    Cell migration is essential for morphogenesis, adult tissue remodeling, wound healing, and cancer cell migration. Cells can migrate as individuals or groups. When cells migrate in groups, cell-cell interactions are crucial in order to promote the coordinated behavior, essential for collective migration. Interestingly, recent evidence has shown that cell-cell interactions are also important for establishing and maintaining the directionality of these migratory events. We focus on neural crest cells, as they possess extraordinary migratory capabilities that allow them to migrate and colonize tissues all over the embryo. Neural crest cells undergo an epithelial-to-mesenchymal transition at the same time than perform directional collective migration. Cell-cell adhesion has been shown to be an important source of planar cell polarity and cell coordination during collective movement. We also review molecular mechanisms underlying cadherin turnover, showing how the modulation and dynamics of cell-cell adhesions are crucial in order to maintain tissue integrity and collective migration in vivo. We conclude that cell-cell adhesion during embryo development cannot be considered as simple passive resistance to force, but rather participates in signaling events that determine important cell behaviors required for cell migration. © 2015 Elsevier Inc. All rights reserved.

  3. Adhesion behavior of endothelial progenitor cells to endothelial cells in simple shear flow

    Science.gov (United States)

    Gong, Xiao-Bo; Li, Yu-Qing; Gao, Quan-Chao; Cheng, Bin-Bin; Shen, Bao-Rong; Yan, Zhi-Qiang; Jiang, Zong-Lai

    2011-12-01

    The adhesion of endothelial progenitor cells (EPCs) on endothelial cells (ECs) is one of the critical physiological processes for the regenesis of vascular vessels and the prevention of serious cardiovascular diseases. Here, the rolling and adhesion behavior of EPCs on ECs was studied numerically. A two-dimensional numerical model was developed based on the immersed boundary method for simulating the rolling and adhesion of cells in a channel flow. The binding force arising from the catch bond of a receptor and ligand pair was modeled with stochastic Monte Carlo method and Hookean spring model. The effect of tumor necrosis factor alpha (TNF- α) on the expression of the number of adhesion molecules in ECs was analyzed experimentally. A flow chamber system with CCD camera was set up to observe the top view of the rolling of EPCs on the substrate cultivated with ECs. Numerical results prove that the adhesion of EPC on ECs is closely related to membrane stiffness of the cell and shear rate of the flow. It also suggests that the adhesion force between EPC and EC by P-selectin glycoprotein ligand-1 only is not strong enough to bond the cell onto vessel walls unless contributions of other catch bond are considered. Experimental results demonstrate that TNF- α enhanced the expressions of VCAM, ICAM, P-selectin and E-selectin in ECs, which supports the numerical results that the rolling velocity of EPC on TNF- α treated EC substrate decreases obviously compared with its velocity on the untreated one. It is found that because the adhesion is affected by both the rolling velocity and the deformability of the cell, an optimal stiffness of EPC may exist at a given shear rate of flow for achieving maximum adhesion rates.

  4. Exposure to ultrafine particles, intracellular production of reactive oxygen species in leukocytes and altered levels of endothelial progenitor cells

    International Nuclear Information System (INIS)

    Jantzen, Kim; Møller, Peter; Karottki, Dorina Gabriela; Olsen, Yulia; Bekö, Gabriel; Clausen, Geo; Hersoug, Lars-Georg; Loft, Steffen

    2016-01-01

    Exposure to particles in the fine and ultrafine size range has been linked to induction of low-grade systemic inflammation, oxidative stress and development of cardiovascular diseases. Declining levels of endothelial progenitor cells within systemic circulation have likewise been linked to progression of cardiovascular diseases. The objective was to determine if exposure to fine and ultrafine particles from indoor and outdoor sources, assessed by personal and residential indoor monitoring, is associated with altered levels of endothelial progenitor cells, and whether such effects are related to leukocyte-mediated oxidative stress. The study utilized a cross sectional design performed in 58 study participants from a larger cohort. Levels of circulating endothelial progenitor cells, defined as either late (CD34 + KDR + cells) or early (CD34 + CD133 + KDR + cells) subsets were measured using polychromatic flow cytometry. We additionally measured production of reactive oxygen species in leukocyte subsets (lymphocytes, monocytes and granulocytes) by flow cytometry using intracellular 2′,7′-dichlorofluoroscein. The measurements encompassed both basal levels of reactive oxygen species production and capacity for reactive oxygen species production for each leukocyte subset. We found that the late endothelial progenitor subset was negatively associated with levels of ultrafine particles measured within the participant residences and with reactive oxygen species production capacity in lymphocytes. Additionally, the early endothelial progenitor cell levels were positively associated with a personalised measure of ultrafine particle exposure and negatively associated with both basal and capacity for reactive oxygen species production in lymphocytes and granulocytes, respectively. Our results indicate that exposure to fine and ultrafine particles derived from indoor sources may have adverse effects on human vascular health.

  5. Mechanism of mast cell adhesion to human tenocytes in vitro.

    Science.gov (United States)

    Behzad, Hayedeh; Tsai, Shu-Huei; Nassab, Paulina; Mousavizadeh, Rouhollah; McCormack, Robert G; Scott, Alex

    2015-01-01

    Mast cells and fibroblasts are two key players involved in many fibrotic and degenerative disorders. In the present study we examined the nature of binding interactions between human mast cells and tendon fibroblasts (tenocytes). In the mast cell-fibroblast co-culture model, mast cells were shown to spontaneously bind to tenocytes, in a process that was partially mediated by α5β1 integrin receptors. The same receptors on mast cells significantly mediated binding of these cells to tissue culture plates in the presence of tenocyte-conditioned media; the tenocyte-derived fibronectin in the media was shown to also play a major role in these binding activities. Upon binding to tenocytes or tissue culture plates, mast cells acquired an elongated phenotype, which was dependent on α5β1 integrin and tenocyte fibronectin. Additionally, tenocyte-derived fibronectin significantly enhanced mRNA expression of the adhesion molecule, THY1, by mast cells. Our data suggests that α5β1 integrin mediates binding of mast cells to human tenocyte and to tenocyte-derived ECM proteins, in particular fibronectin. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  6. In Vivo Chemoprotective Activity of Bovine Dialyzable Leukocyte Extract in Mouse Bone Marrow Cells against Damage Induced by 5-Fluorouracil

    Science.gov (United States)

    Coronado-Cerda, Erika Evangelina; Franco-Molina, Moisés Armides; Mendoza-Gamboa, Edgar; Prado-García, Heriberto; Rivera-Morales, Lydia Guadalupe; Zapata-Benavides, Pablo; Rodríguez-Salazar, María del Carmen; Caballero-Hernandez, Diana; Tamez-Guerra, Reyes Silvestre; Rodríguez-Padilla, Cristina

    2016-01-01

    Chemotherapy treatments induce a number of side effects, such as leukopenia neutropenia, peripheral erythropenia, and thrombocytopenia, affecting the quality of life for cancer patients. 5-Fluorouracil (5-FU) is wieldy used as myeloablative model in mice. The bovine dialyzable leukocyte extract (bDLE) or IMMUNEPOTENT CRP® (ICRP) is an immunomodulatory compound that has antioxidants and anti-inflammatory effects. In order to investigate the chemoprotection effect of ICRP on bone marrow cells in 5-FU treated mice, total bone marrow (BM) cell count, bone marrow colony forming units-granulocyte/macrophage (CFU-GM), cell cycle, immunophenotypification, ROS/superoxide and Nrf2 by flow cytometry, and histological and hematological analyses were performed. Our results demonstrated that ICRP increased BM cell count and CFU-GM number, arrested BM cells in G0/G1 phase, increased the percentage of leukocyte, granulocytic, and erythroid populations, reduced ROS/superoxide formation and Nrf2 activation, and also improved hematological levels and weight gain in 5-FU treated mice. These results suggest that ICRP has a chemoprotective effect against 5-FU in BM cells that can be used in cancer patients. PMID:27191003

  7. In Vivo Chemoprotective Activity of Bovine Dialyzable Leukocyte Extract in Mouse Bone Marrow Cells against Damage Induced by 5-Fluorouracil

    Directory of Open Access Journals (Sweden)

    Erika Evangelina Coronado-Cerda

    2016-01-01

    Full Text Available Chemotherapy treatments induce a number of side effects, such as leukopenia neutropenia, peripheral erythropenia, and thrombocytopenia, affecting the quality of life for cancer patients. 5-Fluorouracil (5-FU is wieldy used as myeloablative model in mice. The bovine dialyzable leukocyte extract (bDLE or IMMUNEPOTENT CRP® (ICRP is an immunomodulatory compound that has antioxidants and anti-inflammatory effects. In order to investigate the chemoprotection effect of ICRP on bone marrow cells in 5-FU treated mice, total bone marrow (BM cell count, bone marrow colony forming units-granulocyte/macrophage (CFU-GM, cell cycle, immunophenotypification, ROS/superoxide and Nrf2 by flow cytometry, and histological and hematological analyses were performed. Our results demonstrated that ICRP increased BM cell count and CFU-GM number, arrested BM cells in G0/G1 phase, increased the percentage of leukocyte, granulocytic, and erythroid populations, reduced ROS/superoxide formation and Nrf2 activation, and also improved hematological levels and weight gain in 5-FU treated mice. These results suggest that ICRP has a chemoprotective effect against 5-FU in BM cells that can be used in cancer patients.

  8. Human Brain Microvascular Endothelial Cells and Umbilical Vein Endothelial Cells Differentially Facilitate Leukocyte Recruitment and Utilize Chemokines for T Cell Migration

    Directory of Open Access Journals (Sweden)

    Shumei Man

    2008-01-01

    Full Text Available Endothelial cells that functionally express blood brain barrier (BBB properties are useful surrogates for studying leukocyte-endothelial cell interactions at the BBB. In this study, we compared two different endothelial cellular models: transfected human brain microvascular endothelial cells (THBMECs and human umbilical vein endothelial cells (HUVECs. With each grow under optimal conditions, confluent THBMEC cultures showed continuous occludin and ZO-1 immunoreactivity, while HUVEC cultures exhibited punctate ZO-1 expression at sites of cell-cell contact only. Confluent THBMEC cultures on 24-well collagen-coated transwell inserts had significantly higher transendothelial electrical resistance (TEER and lower solute permeability than HUVECs. Confluent THBMECs were more restrictive for mononuclear cell migration than HUVECs. Only THBMECs utilized abluminal CCL5 to facilitate T-lymphocyte migration in vitro although both THBMECs and HUVECs employed CCL3 to facilitate T cell migration. These data establish baseline conditions for using THBMECs to develop in vitro BBB models for studying leukocyte-endothelial interactions during neuroinflammation.

  9. Vascular cell adhesion molecule-1 is a key adhesion molecule in melanoma cell adhesion to the leptomeninges

    NARCIS (Netherlands)

    Brandsma, Dieta; Reijneveld, Jaap C.; Taphoorn, Martin J. B.; de Boer, Hetty C.; Gebbink, Martijn F. B. G.; Ulfman, Laurien H.; Zwaginga, Jaap-Jan; Voest, Emile E.

    2002-01-01

    Leptomeningeal metastases occur in up to 8% of patients with systemic malignancies and have a poor prognosis. A better understanding of the pathophysiologic processes underlying leptomeningeal metastases is needed for more effective treatment strategies. We hypothesized that tumor cells will have to

  10. Integrin and glycocalyx mediated contributions to cell adhesion identified by single cell force spectroscopy

    International Nuclear Information System (INIS)

    Boettiger, D; Wehrle-Haller, B

    2010-01-01

    The measurement of cell adhesion using single cell force spectroscopy methods was compared with earlier methods for measuring cell adhesion. This comparison provided a means and rationale for separating components of the measurement retract curve that were due to interactions between the substrate and the glycocalyx, and interactions that were due to cell surface integrins binding to a substrate-bound ligand. The glycocalyx adhesion was characterized by multiple jumps with dispersed jump sizes that extended from 5 to 30 μm from the origin. The integrin mediated adhesion was represented by the F max (maximum detachment force), was generally within the first 5 μm and commonly detached with a single rupture cascade. The integrin peak (F max ) increases with time and the rate of increase shows large cell to cell variability with a peak ∼ 50 nN s -1 and an average rate of increase of 75 pN s -1 . This is a measure of the rate of increase in the number of adhesive integrin-ligand bonds/cell as a function of contact time.

  11. Long-term leukocyte reconstitution in NSG mice transplanted with human cord blood hematopoietic stem and progenitor cells.

    Science.gov (United States)

    Audigé, Annette; Rochat, Mary-Aude; Li, Duo; Ivic, Sandra; Fahrny, Audrey; Muller, Christina K S; Gers-Huber, Gustavo; Myburgh, Renier; Bredl, Simon; Schlaepfer, Erika; Scherrer, Alexandra U; Kuster, Stefan P; Speck, Roberto F

    2017-05-30

    Humanized mice (hu mice) are based on the transplantation of hematopoietic stem and progenitor cells into immunodeficient mice and have become important pre-clinical models for biomedical research. However, data about their hematopoiesis over time are scarce. We therefore characterized leukocyte reconstitution in NSG mice, which were sublethally irradiated and transplanted with human cord blood-derived CD34+ cells at newborn age, longitudinally in peripheral blood and, for more detailed analyses, cross-sectionally in peripheral blood, spleen and bone marrow at different time points. Human cell chimerism and absolute human cell count decreased between week 16 and 24 in the peripheral blood of hu mice, but were stable thereafter as assessed up to 32 weeks. Human cell chimerism in spleen and bone marrow was maintained over time. Notably, human cell chimerism in peripheral blood and spleen as well as bone marrow positively correlated with each other. Percentage of B cells decreased between week 16 and 24, whereas percentage of T cells increased; subsequently, they levelled off with T cells clearly predominating at week 32. Natural killer cells, monocytes and plasmacytoid dendritic cells (DCs) as well as CD1c + and CD141+ myeloid DCs were all present in hu mice. Proliferative responses of splenic T cells to stimulation were preserved over time. Importantly, the percentage of more primitive hematopoietic stem cells (HSCs) in bone marrow was maintained over time. Overall, leukocyte reconstitution was maintained up to 32 weeks post-transplantation in our hu NSG model, possibly explained by the maintenance of HSCs in the bone marrow. Notably, we observed great variation in multi-lineage hematopoietic reconstitution in hu mice that needs to be taken into account for the experimental design with hu mice.

  12. Basal cell adhesion molecule/lutheran protein. The receptor critical for sickle cell adhesion to laminin.

    Science.gov (United States)

    Udani, M; Zen, Q; Cottman, M; Leonard, N; Jefferson, S; Daymont, C; Truskey, G; Telen, M J

    1998-01-01

    Sickle red cells bind significant amounts of soluble laminin, whereas normal red cells do not. Solid phase assays demonstrate that B-CAM/LU binds laminin on intact sickle red cells and that red cell B-CAM/LU binds immobilized laminin, whereas another putative laminin binding protein, CD44, does not. Ligand blots also identify B-CAM/LU as the only erythrocyte membrane protein(s) that binds laminin. Finally, transfection of murine erythroleukemia cells with human B-CAM cDNA induces binding of both soluble and immobilized laminin. Thus, B-CAM/LU appears to be the major laminin-binding protein of sickle red cells. Previously reported overexpression of B-CAM/LU by epithelial cancer cells suggests that this protein may also serve as a laminin receptor in malignant tumors. PMID:9616226

  13. Cell-contact-dependent activation of CD4+ T cells by adhesion molecules on synovial fibroblasts.

    Science.gov (United States)

    Mori, Masato; Hashimoto, Motomu; Matsuo, Takashi; Fujii, Takao; Furu, Moritoshi; Ito, Hiromu; Yoshitomi, Hiroyuki; Hirose, Jun; Ito, Yoshinaga; Akizuki, Shuji; Nakashima, Ran; Imura, Yoshitaka; Yukawa, Naoichiro; Yoshifuji, Hajime; Ohmura, Koichiro; Mimori, Tsuneyo

    2017-05-01

    To determine how cell-cell contact with synovial fibroblasts (SF) influence on the proliferation and cytokine production of CD4 +  T cells. Naïve CD4 +  T cells were cultured with SF from rheumatoid arthritis patients, stimulated by anti-CD3/28 antibody, and CD4 +  T cell proliferation and IFN-γ/IL-17 production were analyzed. To study the role of adhesion molecules, cell contact was blocked by transwell plate or anti-intracellular adhesion molecule-1 (ICAM-1)/vascular cell adhesion molecule-1(VCAM-1) antibody. To study the direct role of adhesion molecules for CD4 +  T cells, CD161 +  or CD161 - naïve CD4 +  T cells were stimulated on plastic plates coated by recombinant ICAM-1 or VCAM-1, and the source of IFN-γ/IL-17 were analyzed. SF enhanced naïve CD4 +  T cell proliferation and IFN-γ/IL-17 production in cell-contact and in part ICAM-1-/VCAM-1-dependent manner. Plate-coated ICAM-1 and VCAM-1 enhanced naïve CD4 +  T cell proliferation and IFN-γ production, while VCAM-1 efficiently promoting IL-17 production. CD161 +  naïve T cells upregulating LFA-1 and VLA-4 were the major source of IFN-γ/IL-17 upon interaction with ICAM-1/VCAM-1. CD4 +  T cells rapidly expand and secrete IFN-γ/IL-17 upon cell-contact with SF via adhesion molecules. Interfering with ICAM-1-/VCAM-1 may be beneficial for inhibiting RA synovitis.

  14. Single-cell Raman and fluorescence microscopy reveal the association of lipid bodies with phagosomes in leukocytes

    Science.gov (United States)

    van Manen, Henk-Jan; Kraan, Yvonne M.; Roos, Dirk; Otto, Cees

    2005-01-01

    Cellular imaging techniques based on vibrational spectroscopy have become powerful tools in cell biology because the molecular composition of subcellular compartments can be visualized without the need for labeling. Using high-resolution, nonresonant confocal Raman microscopy on individual cells, we demonstrate here that lipid bodies (LBs) rich in arachidonate as revealed by their Raman spectra associate with latex bead-containing phagosomes in neutrophilic granulocytes. This finding was corroborated in macrophages and in PLB-985 cells, which can be induced to differentiate into neutrophil-like cells, by selective staining of LBs and visualization by confocal fluorescence microscopy. We further show that the accumulation of LBs near phagosomes is mediated at least in part by the flavohemoprotein gp91phox (in which “phox” is phagocyte oxidase), because different LB distributions around phagocytosed latex beads were observed in WT and gp91phox-deficient PLB-985 cells. gp91phox, which accumulates in the phagosomal membrane, is the catalytic subunit of the leukocyte NADPH oxidase, a critical enzyme in the innate immune response. Finally, time-lapse fluorescence microscopy experiments on neutrophils revealed that the LB-phagosome association is transient, similar to the “kiss-and-run” behavior displayed by endosomes involved in phagosome maturation. Because arachidonic acid (AA) has been shown to be involved in NADPH oxidase activation and phagosome maturation in neutrophils and macrophages, respectively, the findings reported here suggest that LBs may provide a reservoir of AA for local activation of these essential leukocyte functions. PMID:16002471

  15. Role of early growth response 1 in arteriogenesis: impact on vascular cell proliferation and leukocyte recruitment in vivo.

    Science.gov (United States)

    Pagel, Judith-Irina; Ziegelhoeffer, Tibor; Heil, Matthias; Fischer, Silvia; Fernández, Borja; Schaper, Wolfgang; Preissner, Klaus T; Deindl, Elisabeth

    2012-03-01

    Based on previous findings that early growth response 1 (Egr-1) participates in leukocyte recruitment and cell proliferation in vitro, this study was designed to investigate its mode of action during arteriogenesis in vivo. In a model of peripheral arteriogenesis, Egr-1 was significantly upregulated in growing collaterals of wild-type (WT) mice, both on mRNA and protein level. Egr-1(-/-) mice demonstrated delayed arteriogenesis after femoral artery ligation. They further showed increased levels of monocytes and granulocytes in the circulation, but reduced levels in adductor muscles under baseline conditions. After femoral artery ligation, elevated numbers of macrophages were detected in the perivascular zone of collaterals in Egr-1(-/-) mice and mRNA of leukocyte recruitment mediators was upregulated. Other Egr family members (Egr-2 to -4) were significantly upregulated only in Egr-1(-/-) mice, suggesting a mechanism of counterbalancing Egr-1 deficiency. Moreover, splicing factor-1, downregulated in WT mice after femoral artery ligation in the process of increased vascular cell proliferation, was upregulated in Egr-1(-/-) mice. αSM-actin on the other hand, significantly downregulated in WT mice, showed no differential expression in Egr-1(-/-) mice. While cell cycle regulator cyclin E and cdc20 were upregulated in Egr-1(-/-) mice, cyclin D1 expression decreased below the detection limit in collaterals, and the proliferation marker ki67 was not differentially expressed. In conclusion, compensation for deficiency in Egr-1 function in leukocyte recruitment can presumably be mediated by other transcription factors; however, Egr-1 is indispensable for effective vascular cell cycle progression in arteriogenesis.

  16. Lignans From Forsythia x Intermedia Leaves and Flowers Attenuate the Pro-inflammatory Function of Leukocytes and Their Interaction With Endothelial Cells

    OpenAIRE

    Barbara Michalak; Agnieszka Filipek; Piotr Chomicki; Małgorzata Pyza; Marta Woźniak; Barbara Żyżyńska-Granica; Jakub P. Piwowarski; Agnieszka Kicel; Monika A. Olszewska; Anna K. Kiss

    2018-01-01

    Aim of the study: Taking into account that overactivated leukocytes are an important factor in the development of many chronic diseases, we investigated the activity of phytochemically characterized (HPLC-DAD-MSn) extracts from forsythia leaves and flowers on the pro- and anti-inflammatory functions of leukocytes (effects on IL-1β, IL-8, TNF-α, and TGFβ release) and their adherence to endothelial cells. Using bio-guided fractionation, we isolated the active compounds and determined their biol...

  17. MHC class II ligation induces CD58 (LFA-3)-mediated adhesion in human T cells

    DEFF Research Database (Denmark)

    Nielsen, M; Gerwien, J; Geisler, C

    1998-01-01

    ligation induces homotypic adhesion in both beta2-integrin-positive and negative, CD4-positive T cell lines. Anti-CD18 monoclonal antibody (mAb) weakly inhibited the adhesion response in beta2-integrin-positive T cells and had no effect on beta2-integrin-negative T cells. In contrast, an anti-CD58 (LFA-3...

  18. A simplified model for dynamics of cell rolling and cell-surface adhesion

    International Nuclear Information System (INIS)

    Cimrák, Ivan

    2015-01-01

    We propose a three dimensional model for the adhesion and rolling of biological cells on surfaces. We study cells moving in shear flow above a wall to which they can adhere via specific receptor-ligand bonds based on receptors from selectin as well as integrin family. The computational fluid dynamics are governed by the lattice-Boltzmann method. The movement and the deformation of the cells is described by the immersed boundary method. Both methods are fully coupled by implementing a two-way fluid-structure interaction. The adhesion mechanism is modelled by adhesive bonds including stochastic rules for their creation and rupture. We explore a simplified model with dissociation rate independent of the length of the bonds. We demonstrate that this model is able to resemble the mesoscopic properties, such as velocity of rolling cells

  19. Exendin-4 induces cell adhesion and differentiation and counteracts the invasive potential of human neuroblastoma cells.

    Science.gov (United States)

    Luciani, Paola; Deledda, Cristiana; Benvenuti, Susanna; Squecco, Roberta; Cellai, Ilaria; Fibbi, Benedetta; Marone, Ilaria Maddalena; Giuliani, Corinna; Modi, Giulia; Francini, Fabio; Vannelli, Gabriella Barbara; Peri, Alessandro

    2013-01-01

    Exendin-4 is a molecule currently used, in its synthetic form exenatide, for the treatment of type 2 diabetes mellitus. Exendin-4 binds and activates the Glucagon-Like Peptide-1 Receptor (GLP-1R), thus inducing insulin release. More recently, additional biological properties have been associated to molecules that belong to the GLP-1 family. For instance, Peptide YY and Vasoactive Intestinal Peptide have been found to affect cell adhesion and migration and our previous data have shown a considerable actin cytoskeleton rearrangement after exendin-4 treatment. However, no data are currently available on the effects of exendin-4 on tumor cell motility. The aim of this study was to investigate the effects of this molecule on cell adhesion, differentiation and migration in two neuroblastoma cell lines, SH-SY5Y and SK-N-AS. We first demonstrated, by Extra Cellular Matrix cell adhesion arrays, that exendin-4 increased cell adhesion, in particular on a vitronectin substrate. Subsequently, we found that this molecule induced a more differentiated phenotype, as assessed by i) the evaluation of neurite-like protrusions in 3D cell cultures, ii) the analysis of the expression of neuronal markers and iii) electrophysiological studies. Furthermore, we demonstrated that exendin-4 reduced cell migration and counteracted anchorage-independent growth in neuroblastoma cells. Overall, these data indicate for the first time that exendin-4 may have anti-tumoral properties.

  20. CD147-targeting siRNA inhibits cell-matrix adhesion of human malignant melanoma cells by phosphorylating focal adhesion kinase.

    Science.gov (United States)

    Nishibaba, Rie; Higashi, Yuko; Su, Juan; Furukawa, Tatsuhiko; Kawai, Kazuhiro; Kanekura, Takuro

    2012-01-01

    CD147/basigin, highly expressed on the surface of malignant tumor cells including malignant melanoma (MM) cells, plays a critical role in the invasiveness and metastasis of MM. Metastasis is an orchestrated process comprised of multiple steps including adhesion and invasion. Integrin, a major adhesion molecule, co-localizes with CD147/basigin on the cell surface. Using the human MM cell line A375 that highly expresses CD147/basigin, we investigated whether CD147/basigin is involved in adhesion in association with integrin. CD147/basigin was knocked-down using siRNA targeting CD147 to elucidate the role of CD147/basigin. Cell adhesion was evaluated by adhesion assay on matrix-coated plates. The localization of integrin was inspected under a confocal microscope and the expression and phosphorylation of focal adhesion kinase (FAK), a downstream kinase of integrin, were examined by western blot analysis. Silencing of CD147/basigin in A375 cells by siRNA induced the phosphorylation of FAK at Y397. Integrin identified on the surface of parental cells was distributed in a speckled fashion in the cytoplasm of CD147 knockdown cells, resulting in morphological changes from a round to a polygonal shape with pseudopodial protrusions. Silencing of CD147/basigin in A375 cells clearly weakened their adhesiveness to collagen I and IV. Our results suggest that CD147/basigin regulates the adhesion of MM cells to extracellular matrices and of integrin β1 signaling via the phosphorylation of FAK. © 2011 Japanese Dermatological Association.

  1. A mucus adhesion promoting protein, MapA, mediates the adhesion of Lactobacillus reuteri to Caco-2 human intestinal epithelial cells.

    Science.gov (United States)

    Miyoshi, Yukihiro; Okada, Sanae; Uchimura, Tai; Satoh, Eiichi

    2006-07-01

    Lactobacillus reuteri is one of the dominant lactobacilli found in the gastrointestinal tract of various animals. A surface protein of L. reuteri 104R, mucus adhesion promoting protein (MapA), is considered to be an adhesion factor of this strain. We investigated the relation between MapA and adhesion of L. reuteri to human intestinal (Caco-2) cells. Quantitative analysis of the adhesion of L. reuteri strains to Caco-2 cells showed that various L. reuteri strains bind not only to mucus but also to intestinal epithelial cells. In addition, purified MapA bound to Caco-2 cells, and this binding inhibited the adhesion of L. reuteri in a concentration-dependent manner. Based on these observations, the adhesion of L. reuteri appears due to the binding of MapA to receptor-like molecules on Caco-2 cells. Further, far-western analysis indicated the existence of multiple receptor-like molecules in Caco-2 cells.

  2. Tuning cell adhesion on polymeric and nanocomposite surfaces: Role of topography versus superhydrophobicity

    Energy Technology Data Exchange (ETDEWEB)

    Zangi, Sepideh [Department of Chemical Engineering, Shahrood Branch, Islamic Azad University, P.O. Box 36155-163, Shahrood (Iran, Islamic Republic of); Hejazi, Iman [Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Seyfi, Javad, E-mail: Jseyfi@gmail.com [Department of Chemical Engineering, Shahrood Branch, Islamic Azad University, P.O. Box 36155-163, Shahrood (Iran, Islamic Republic of); Hejazi, Ehsan [Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Khonakdar, Hossein Ali [Department of Polymer Engineering, Faculty of Engineering, South Tehran Branch, Islamic Azad University, P.O. Box 19585-466, Tehran (Iran, Islamic Republic of); Davachi, Seyed Mohammad [School of Chemical Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of)

    2016-06-01

    Development of surface modification procedures which allow tuning the cell adhesion on the surface of biomaterials and devices is of great importance. In this study, the effects of different topographies and wettabilities on cell adhesion behavior of polymeric surfaces are investigated. To this end, an improved phase separation method was proposed to impart various wettabilities (hydrophobic and superhydrophobic) on polypropylene surfaces. Surface morphologies and compositions were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. Cell culture was conducted to evaluate the adhesion of 4T1 mouse mammary tumor cells. It was found that processing conditions such as drying temperature is highly influential in cell adhesion behavior due to the formation of an utterly different surface topography. It was concluded that surface topography plays a more significant role in cell adhesion behavior rather than superhydrophobicity since the nano-scale topography highly inhibited the cell adhesion as compared to the micro-scale topography. Such cell repellent behavior could be very useful in many biomedical devices such as those in drug delivery and blood contacting applications as well as biosensors. - Highlights: • A novel method is presented for fabrication of superhydrophobic surfaces. • The presence of nanoparticles in non-solvent bath notably promoted phase separation. • Topography had a more notable impact on cell adhesion than superhydrophobicity. • Nano-scale topographical features highly impeded cell adhesion on polymer surfaces.

  3. Tuning cell adhesion on polymeric and nanocomposite surfaces: Role of topography versus superhydrophobicity

    International Nuclear Information System (INIS)

    Zangi, Sepideh; Hejazi, Iman; Seyfi, Javad; Hejazi, Ehsan; Khonakdar, Hossein Ali; Davachi, Seyed Mohammad

    2016-01-01

    Development of surface modification procedures which allow tuning the cell adhesion on the surface of biomaterials and devices is of great importance. In this study, the effects of different topographies and wettabilities on cell adhesion behavior of polymeric surfaces are investigated. To this end, an improved phase separation method was proposed to impart various wettabilities (hydrophobic and superhydrophobic) on polypropylene surfaces. Surface morphologies and compositions were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. Cell culture was conducted to evaluate the adhesion of 4T1 mouse mammary tumor cells. It was found that processing conditions such as drying temperature is highly influential in cell adhesion behavior due to the formation of an utterly different surface topography. It was concluded that surface topography plays a more significant role in cell adhesion behavior rather than superhydrophobicity since the nano-scale topography highly inhibited the cell adhesion as compared to the micro-scale topography. Such cell repellent behavior could be very useful in many biomedical devices such as those in drug delivery and blood contacting applications as well as biosensors. - Highlights: • A novel method is presented for fabrication of superhydrophobic surfaces. • The presence of nanoparticles in non-solvent bath notably promoted phase separation. • Topography had a more notable impact on cell adhesion than superhydrophobicity. • Nano-scale topographical features highly impeded cell adhesion on polymer surfaces.

  4. Modeling cell adhesion and proliferation: a cellular-automata based approach.

    Science.gov (United States)

    Vivas, J; Garzón-Alvarado, D; Cerrolaza, M

    Cell adhesion is a process that involves the interaction between the cell membrane and another surface, either a cell or a substrate. Unlike experimental tests, computer models can simulate processes and study the result of experiments in a shorter time and lower costs. One of the tools used to simulate biological processes is the cellular automata, which is a dynamic system that is discrete both in space and time. This work describes a computer model based on cellular automata for the adhesion process and cell proliferation to predict the behavior of a cell population in suspension and adhered to a substrate. The values of the simulated system were obtained through experimental tests on fibroblast monolayer cultures. The results allow us to estimate the cells settling time in culture as well as the adhesion and proliferation time. The change in the cells morphology as the adhesion over the contact surface progress was also observed. The formation of the initial link between cell and the substrate of the adhesion was observed after 100 min where the cell on the substrate retains its spherical morphology during the simulation. The cellular automata model developed is, however, a simplified representation of the steps in the adhesion process and the subsequent proliferation. A combined framework of experimental and computational simulation based on cellular automata was proposed to represent the fibroblast adhesion on substrates and changes in a macro-scale observed in the cell during the adhesion process. The approach showed to be simple and efficient.

  5. Transfection of glioma cells with the neural-cell adhesion molecule NCAM

    DEFF Research Database (Denmark)

    Edvardsen, K; Pedersen, P H; Bjerkvig, R

    1994-01-01

    The tumor growth and the invasive capacity of a rat glioma cell line (BT4Cn) were studied after transfection with the human transmembrane 140-kDa isoform of the neural-cell adhesion molecule, NCAM. After s.c. injection, the NCAM-transfected cells showed a slower growth rate than the parent cell...... of the injection site, with a sharply demarcated border between the tumor and brain tissue. In contrast, the parental cell line showed single-cell infiltration and more pronounced destruction of normal brain tissue. Using a 51Cr-release assay, spleen cells from rats transplanted with BT4Cn tumor cells generally...

  6. Gastrin-releasing peptide induces monocyte adhesion to vascular endothelium by upregulating endothelial adhesion molecules

    International Nuclear Information System (INIS)

    Kim, Mi-Kyoung; Park, Hyun-Joo; Kim, Yeon; Kim, Hyung Joon; Bae, Soo-Kyung; Bae, Moon-Kyoung

    2017-01-01

    Gastrin-releasing peptide (GRP) is a neuropeptide that plays roles in various pathophysiological conditions including inflammatory diseases in peripheral tissues; however, little is known about whether GRP can directly regulate endothelial inflammatory processes. In this study, we showed that GRP promotes the adhesion of leukocytes to human umbilical vein endothelial cells (HUVECs) and the aortic endothelium. GRP increased the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) by activating nuclear factor-κB (NF-κB) in endothelial cells. In addition, GRP activated extracellular signal-regulated kinase 1/2 (ERK1/2), p38MAPK, and AKT, and the inhibition of these signaling pathways significantly reduced GRP-induced monocyte adhesion to the endothelium. Overall, our results suggested that GRP may cause endothelial dysfunction, which could be of particular relevance in the development of vascular inflammatory disorders. - Highlights: • GRP induces adhesion of monocytes to vascular endothelium. • GRP increases the expression of endothelial adhesion molecules through the activation of NF-κB. • ERK1/2, p38MAPK, and Akt pathways are involved in the GRP-induced leukocyte adhesiveness to endothelium.

  7. Effects of Uptake of Hydroxyapatite Nanoparticles into Hepatoma Cells on Cell Adhesion and Proliferation

    Directory of Open Access Journals (Sweden)

    Meizhen Yin

    2014-01-01

    Full Text Available Hydroxyapatite nanoparticles (nano-HAPs were prepared by homogeneous precipitation, and size distribution and morphology of these nanoparticles were determined by laser particle analysis and transmission electron microscopy, respectively. Nano-HAPs were uniformly distributed, with rod-like shapes sizes ranging from 44.6 to 86.8 nm. Attached overnight, suspended, and proliferating Bel-7402 cells were repeatedly incubated with nano-HAPs. Inverted microscopy, transmission electron microscopy, and fluorescence microscopy were used to observe the cell adhesion and growth, the culture medium containing nano-HAPs, the cell ultrastructure, and intracellular Ca2+ labeled with a fluo-3 calcium fluorescent probe. The results showed that nano-HAPs inhibited proliferation of Bel-7402 cells and, caused an obvious increase in the concentration of intracellular Ca2+, along with significant changes in the cell ultrastructure. Moreover, nano-HAPs led suspended cells and proliferating cells after trypsinized that did not attach to the bottom of the culture bottle died. Nano-HAPs continuously entered these cells. Attached, suspended, and proliferating cells endocytosed nano-HAPs, and nanoparticle-filled vesicles were in the cytoplasm. Therefore, hepatoma cellular uptake of nano-HAPs through endocytosis was very active and occurred continuously. Nano-HAPs affected proliferation and adhesion of hepatoma cells probably because uptake of nano-HAPs blocked integrin-mediated cell adhesion, which may have potential significance in inhibiting metastatic cancer cells to their target organ.

  8. Studies on the mechanism of endogenous pyrogen production. II. Role of cell products in the regulation of pyrogen release from blood leukocytes.

    Science.gov (United States)

    Bodel, P

    1974-09-01

    Some characteristics of the process by which endogenous pyrogen (EP), the mediator of fever, is released from cells were examined by using human blood leukocytes incubated in vitro. Studies were designed to examine a possible role for leukocyte products, including EP, in the induction, augmentation, or suppression of pyrogen release by blood leukocytes. Products of stimulated leukocytes, including a partially purified preparation of EP, did not induce significant activation of nonstimulated cells. Also, no evidence was obtained that stimulated cell products either augment or inhibit pyrogen production by other stimulated cells. A feedback control of EP production was thus not observed. A crude preparation of EP, containing other products of activated cells, maintained its pyrogenicity when incubated at pH 7.4 but not at pH 5.0. These studies thus provide no support for hypothesized control mechanisms regulating production of EP by blood leukocytes. By contrast, local inactivation of EP at inflammatory sites may modify the amount of EP entering the blood, and hence fever.

  9. Differential Cell Adhesion of Breast Cancer Stem Cells on Biomaterial Substrate with Nanotopographical Cues

    Directory of Open Access Journals (Sweden)

    Kenneth K.B. Tan

    2015-04-01

    Full Text Available Cancer stem cells are speculated to have the capability of self-renewal and re-establishment of tumor heterogeneity, possibly involved in the potential relapse of cancer. CD44+CD24−/lowESA+ cells have been reported to possess tumorigenic properties, and these biomarkers are thought to be highly expressed in breast cancer stem cells. Cell behavior can be influenced by biomolecular and topographical cues in the natural microenvironment. We hypothesized that different cell populations in breast cancer tissue exhibit different adhesion characteristics on substrates with nanotopography. Adhesion characterizations were performed using human mammary epithelial cells (HMEC, breast cancer cell line MCF7 and primary invasive ductal carcinoma (IDC cells obtained from patients’ samples, on micro- and nano-patterned poly-L-lactic acid (PLLA films. Topography demonstrated a significant effect on cell adhesion, and the effect was cell type dependent. Cells showed elongation morphology on gratings. The CD44+CD24−/lowESA+ subpopulation in MCF7 and IDC cells showed preferential adhesion on 350-nm gratings. Flow cytometry analysis showed that 350-nm gratings captured a significantly higher percentage of CD44+CD24− in MCF7. A slightly higher percentage of CD44+CD24−/lowESA+ was captured on the 350-nm gratings, although no significant difference was observed in the CD44+CD24−ESA+ in IDC cells across patterns. Taken together, the study demonstrated that the cancer stem cell subpopulation could be enriched using different nanopatterns. The enriched population could subsequently aid in the isolation and characterization of cancer stem cells.

  10. Expression of MLN64 influences cellular matrix adhesion of breast cancer cells, the role for focal adhesion kinase.

    Science.gov (United States)

    Cai, Wei; Ye, Lin; Sun, Jiabang; Mansel, Robert E; Jiang, Wen G

    2010-04-01

    The metastatic lymph node 64 (MLN64) gene was initially identified as highly expressed in the metastatic lymph node from breast cancer. It is localized in q12-q21 of the human chromosome 17 and is often co-amplified with erbB-2. However, the role played by MLN64 in breast cancer remains unclear. In the present study, the expression of MLN64 was examined in a breast cancer cohort using quantitative real-time PCR and immunohistochemical staining. It demonstrated that MLN64 was highly expressed in breast tumours compared to corresponding background tissues at both transcript level and protein level. The elevated level of MLN64 transcripts was correlated with the poor prognosis and overall survival of the patients. A panel of breast cancer cell sublines was subsequently developed by knockdown of MLN64 expression. Loss of MLN64 expression in MCF-7 cells resulted in a significant reduction of cell growth (absorbance for MCF-7DeltaMLN64 being 0.87+/-0.07, Padhesion assay, MDA-MB-231DeltaMLN64 cells showed a significant increase in adhesion (86+/-14), padhesion kinase (FAK) in MDA-MB-231DeltaMLN64 cells using Western blot analysis and immunofluorescent staining of FAK. Moreover, addition of FAK inhibitor to these cells diminished the effect of MLN64 on cell-matrix adhesion, suggesting that FAK contributed to the increased adhesion in MDA-MB-231DeltaMLN64 cells. In conclusion, MLN64 is overexpressed in breast cancer, and its level correlates with poor prognosis and patient survival. MLN64 contributes to the development and progression of breast cancer through the regulation of cell proliferation and adhesive capacity.

  11. Flagellin based biomimetic coatings: From cell-repellent surfaces to highly adhesive coatings.

    Science.gov (United States)

    Kovacs, Boglarka; Patko, Daniel; Szekacs, Inna; Orgovan, Norbert; Kurunczi, Sandor; Sulyok, Attila; Khanh, Nguyen Quoc; Toth, Balazs; Vonderviszt, Ferenc; Horvath, Robert

    2016-09-15

    Biomimetic coatings with cell-adhesion-regulating functionalities are intensively researched today. For example, cell-based biosensing for drug development, biomedical implants, and tissue engineering require that the surface adhesion of living cells is well controlled. Recently, we have shown that the bacterial flagellar protein, flagellin, adsorbs through its terminal segments to hydrophobic surfaces, forming an oriented monolayer and exposing its variable D3 domain to the solution. Here, we hypothesized that this nanostructured layer is highly cell-repellent since it mimics the surface of the flagellar filaments. Moreover, we proposed flagellin as a carrier molecule to display the cell-adhesive RGD (Arg-Gly-Asp) peptide sequence and induce cell adhesion on the coated surface. The D3 domain of flagellin was replaced with one or more RGD motifs linked by various oligopeptides modulating flexibility and accessibility of the inserted segment. The obtained flagellin variants were applied to create surface coatings inducing cell adhesion and spreading to different levels, while wild-type flagellin was shown to form a surface layer with strong anti-adhesive properties. As reference surfaces synthetic polymers were applied which have anti-adhesive (PLL-g-PEG poly(l-lysine)-graft-poly(ethylene glycol)) or adhesion inducing properties (RGD-functionalized PLL-g-PEG). Quantitative adhesion data was obtained by employing optical biochips and microscopy. Cell-adhesion-regulating coatings can be simply formed on hydrophobic surfaces by using the developed flagellin-based constructs. The developed novel RGD-displaying flagellin variants can be easily obtained by bacterial production and can serve as alternatives to create cell-adhesion-regulating biomimetic coatings. In the present work, we show for the first time that. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. MICROBIAL CELL-SURFACE HYDROPHOBICITY - THE INVOLVEMENT OF ELECTROSTATIC INTERACTIONS IN MICROBIAL ADHESION TO HYDROCARBONS (MATH)

    NARCIS (Netherlands)

    GEERTSEMADOORNBUSCH, GI; VANDERMEI, HC; BUSSCHER, HJ

    Microbial adhesion to hydrocarbons (MATH) is the most commonly used method to determine microbial cell surface hydrophobicity. Since, however, the assay is based on adhesion, it is questionable whether the results reflect only the cell surface hydrophobicity or an interplay of hydrophobicity and

  13. Ceramic hydroxyapatite coating on titanium implants drives selective bone marrow stromal cell adhesion.

    NARCIS (Netherlands)

    Torensma, R.; Brugge, P.J. ter; Jansen, J.A.; Figdor, C.G.

    2003-01-01

    The aim of this study was to determine the cell characteristics that regulate implant osseointegration. The heterogeneity of bone marrow stromal cells obtained from 11 donors was assessed by measuring the expression of a large panel of adhesion molecules. Large differences in expression of adhesion

  14. Combined effects of PEG hydrogel elasticity and cell-adhesive coating on fibroblast adhesion and persistent migration.

    Science.gov (United States)

    Missirlis, Dimitris; Spatz, Joachim P

    2014-01-13

    The development and use of synthetic, cross-linked, macromolecular substrates with tunable elasticity has been instrumental in revealing the mechanisms by which cells sense and respond to their mechanical microenvironment. We here describe a hydrogel based on radical-free, cross-linked poly(ethylene glycol) to study the effects of both substrate elasticity and type of adhesive coating on fibroblast adhesion and migration. Hydrogel elasticity was controlled through the structure and concentration of branched precursors, which efficiently react via Michael-type addition to produce the polymer network. We found that cell spreading and focal adhesion characteristics are dependent on elasticity for all types of coatings (RGD peptide, fibronectin, vitronectin), albeit with significant differences in magnitude. Importantly, fibroblasts migrated slower but more persistently on stiffer hydrogels, with the effects being more pronounced on fibronectin-coated substrates. Therefore, our results validate the hydrogels presented in this study as suitable for future mechanosensing studies and indicate that cell adhesion, polarity, and associated migration persistence are tuned by substrate elasticity and biochemical properties.

  15. The adaptor protein SAP directly associates with PECAM-1 and regulates PECAM-1-mediated-cell adhesion in T-like cell lines.

    Science.gov (United States)

    Proust, Richard; Crouin, Catherine; Gandji, Leslie Yewakon; Bertoglio, Jacques; Gesbert, Franck

    2014-04-01

    SAP is a small cytosolic adaptor protein expressed in hematopoietic lineages whose main function is to regulate intracellular signaling pathways induced by the triggering of members of the SLAM receptor family. In this paper, we have identified the adhesion molecule PECAM-1 as a new partner for SAP in a conditional yeast two-hybrid screen. PECAM-1 is an immunoglobulin-like molecule expressed by endothelial cells and leukocytes, which possesses both pro- and anti-inflammatory properties. However, little is known about PECAM-1 functions in T cells. We show that SAP directly and specifically interacts with the cytosolic tyrosine 686 of PECAM-1. We generated different T-like cell lines in which SAP or PECAM-1 are expressed or down modulated and we demonstrate that a diminished SAP expression correlates with a diminished PECAM-1-mediated adhesion. Although SAP has mainly been shown to associate with SLAM receptors, we evidence here that SAP is a new actor downstream of PECAM-1. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Capillary network formation from dispersed endothelial cells: Influence of cell traction, cell adhesion, and extracellular matrix rigidity

    Science.gov (United States)

    Ramos, João R. D.; Travasso, Rui; Carvalho, João

    2018-01-01

    The formation of a functional vascular network depends on biological, chemical, and physical processes being extremely well coordinated. Among them, the mechanical properties of the extracellular matrix and cell adhesion are fundamental to achieve a functional network of endothelial cells, able to fully cover a required domain. By the use of a Cellular Potts Model and Finite Element Method it is shown that there exists a range of values of endothelial traction forces, cell-cell adhesion, and matrix rigidities where the network can spontaneously be formed, and its properties are characterized. We obtain the analytical relation that the minimum traction force required for cell network formation must obey. This minimum value for the traction force is approximately independent on the considered cell number and cell-cell adhesion. We quantify how these two parameters influence the morphology of the resulting networks (size and number of meshes).

  17. Data on the putative role of p53 in breast cancer cell adhesion: Technical information for adhesion assay

    Directory of Open Access Journals (Sweden)

    Kallirroi Voudouri

    2016-12-01

    Full Text Available In this data article, the potential role of p53 tumor suppressor gene (p53 on the attachment ability of MCF-7 breast cancer cells was investigated. In our main article, “IGF-I/ EGF and E2 signaling crosstalk through IGF-IR conduit point affect breast cancer cell adhesion” (K. Voudouri, D. Nikitovic, A. Berdiaki, D. Kletsas, N.K. Karamanos, G.N. Tzanakakis, 2016 [1], we describe the key role of IGF-IR in breast cancer cell adhesion onto fibronectin (FN. p53 tumor suppressor gene is a principal regulator of cancer cell proliferation. Various data have demonstrated an association between p53 and IGF-IR actions on cell growth through its’ putative regulation of IGF-IR expression. According to our performed experiments, p53 does not modify IGF-IR expression and does not affect basal MCF-7 cells adhesion onto FN. Moreover, technical details about the performance of adhesion assay onto the FN substrate were provided.

  18. Protein kinase C, focal adhesions and the regulation of cell migration

    DEFF Research Database (Denmark)

    Fogh, Betina S; Multhaupt, Hinke A B; Couchman, John Robert

    2014-01-01

    in their intracellular compartment. Among these are tyrosine kinases, which have received a great deal of attention, whereas the serine/threonine kinase protein kinase C has received much less. Here the status of protein kinase C in focal adhesions and cell migration is reviewed, together with discussion of its roles...... and adhesion turnover. Focal adhesions, or focal contacts, are widespread organelles at the cell-matrix interface. They arise as a result of receptor interactions with matrix ligands, together with clustering. Recent analysis shows that focal adhesions contain a very large number of protein components...

  19. Fermented soya bean (tempe) extracts reduce adhesion of enterotoxigenic Escherichia coli to intestinal epithelial cells.

    Science.gov (United States)

    Roubos-van den Hil, P J; Nout, M J R; Beumer, R R; van der Meulen, J; Zwietering, M H

    2009-03-01

    This study aimed to investigate the effect of processed soya bean, during the successive stages of tempe fermentation and different fermentation times, on adhesion of enterotoxigenic Escherichia coli (ETEC) K88 to intestinal brush border cells as well as Caco-2 intestinal epithelial cells; and to clarify the mechanism of action. Tempe was prepared at controlled laboratory scale using Rhizopus microsporus var. microsporus as the inoculum. Extracts of raw, soaked and cooked soya beans reduced ETEC adhesion to brush border cells by 40%. Tempe extracts reduced adhesion by 80% or more. ETEC adhesion to Caco-2 cells reduced by 50% in the presence of tempe extracts. ETEC K88 bacteria were found to interact with soya bean extracts, and this may contribute to the observed decrease of ETEC adhesion to intestinal epithelial cells. Fermented soya beans (tempe) reduce the adhesion of ETEC to intestinal epithelial cells of pig and human origin. This reduced adhesion is caused by an interaction between ETEC K88 bacteria and soya bean compounds. The results strengthen previous observations on the anti-diarrhoeal effect of tempe. This effect indicates that soya-derived compounds may reduce adhesion of ETEC to intestinal cells in pigs as well as in humans and prevent against diarrhoeal diseases.

  20. Effects of babassu nut oil on ischemia/reperfusion-induced leukocyte adhesion and macromolecular leakage in the microcirculation: Observation in the hamster cheek pouch

    Directory of Open Access Journals (Sweden)

    Barbosa Maria do

    2012-11-01

    Full Text Available Abstract Background The babassu palm tree is native to Brazil and is most densely distributed in the Cocais region of the state of Maranhão, in northeastern Brazil. In addition to the industrial use of refined babassu oil, the milk, the unrefined oil and the nuts in natura are used by families from several communities of African descendants as one of the principal sources of food energy. The objective of this study was to evaluate the effects of babassu oil on microvascular permeability and leukocyte-endothelial interactions induced by ischemia/reperfusion using the hamster cheek pouch microcirculation as experimental model. Methods Twice a day for 14 days, male hamsters received unrefined babassu oil (0.02 ml/dose [BO-2 group], 0.06 ml/dose [BO-6 group], 0.18 ml/dose [BO-18 group] or mineral oil (0.18 ml/dose [MO group]. Observations were made in the cheek pouch and macromolecular permeability increase induced by ischemia/reperfusion (I/R or topical application of histamine, as well as leukocyte-endothelial interaction after I/R were evaluated. Results The mean value of I/R-induced microvascular leakage, determined during reperfusion, was significantly lower in the BO-6 and BO-18 groups than in the MO one (P Conclusions Our findings suggest that unrefined babassu oil reduced microvascular leakage and protected against histamine-induced effects in postcapillary venules and highlights that these almost unexploited nut and its oil might be secure sources of food energy.

  1. Protein adhesives

    Science.gov (United States)

    Charles R. Frihart; Linda F. Lorenz

    2018-01-01

    Nature uses a wide variety of chemicals for providing adhesion internally (e.g., cell to cell) and externally (e.g., mussels to ships and piers). This adhesive bonding is chemically and mechanically complex, involving a variety of proteins, carbohydrates, and other compounds.Consequently,the effect of protein structures on adhesive properties is only partially...

  2. Regulation of epithelial and lymphocyte cell adhesion by adenosine deaminase-CD26 interaction.

    Science.gov (United States)

    Ginés, Silvia; Mariño, Marta; Mallol, Josefa; Canela, Enric I; Morimoto, Chikao; Callebaut, Christian; Hovanessian, Ara; Casadó, Vicent; Lluis, Carmen; Franco, Rafael

    2002-01-01

    The extra-enzymic function of cell-surface adenosine deaminase (ADA), an enzyme mainly localized in the cytosol but also found on the cell surface of monocytes, B cells and T cells, has lately been the subject of numerous studies. Cell-surface ADA is able to transduce co-stimulatory signals in T cells via its interaction with CD26, an integral membrane protein that acts as ADA-binding protein. The aim of the present study was to explore whether ADA-CD26 interaction plays a role in the adhesion of lymphocyte cells to human epithelial cells. To meet this aim, different lymphocyte cell lines (Jurkat and CEM T) expressing endogenous, or overexpressing human, CD26 protein were tested in adhesion assays to monolayers of colon adenocarcinoma human epithelial cells, Caco-2, which express high levels of cell-surface ADA. Interestingly, the adhesion of Jurkat and CEM T cells to a monolayer of Caco-2 cells was greatly dependent on CD26. An increase by 50% in the cell-to-cell adhesion was found in cells containing higher levels of CD26. Incubation with an anti-CD26 antibody raised against the ADA-binding site or with exogenous ADA resulted in a significant reduction (50-70%) of T-cell adhesion to monolayers of epithelial cells. The role of ADA-CD26 interaction in the lymphocyte-epithelial cell adhesion appears to be mediated by CD26 molecules that are not interacting with endogenous ADA (ADA-free CD26), since SKW6.4 (B cells) that express more cell-surface ADA showed lower adhesion than T cells. Adhesion stimulated by CD26 and ADA is mediated by T cell lymphocyte function-associated antigen. A role for ADA-CD26 interaction in cell-to-cell adhesion was confirmed further in integrin activation assays. FACS analysis revealed a higher expression of activated integrins on T cell lines in the presence of increasing amounts of exogenous ADA. Taken together, these results suggest that the ADA-CD26 interaction on the cell surface has a role in lymphocyte-epithelial cell adhesion. PMID

  3. The Molecular Architecture of Cell Adhesion: Dynamic Remodeling Revealed by Videonanoscopy

    Directory of Open Access Journals (Sweden)

    Arnauld eSergé

    2016-05-01

    Full Text Available The plasma membrane delimits the cell, which is the basic unit of living organisms, and is also a privileged site for cell communication with the environment. Cell adhesion can occur through cell-cell and cell-matrix contacts. Adhesion proteins such as integrins and cadherins also constitute receptors for inside-out and outside-in signaling within proteolipidic platforms. Adhesion molecule targeting and stabilization relies on specific features such as preferential segregation by the sub-membrane cytoskeleton meshwork and within membrane proteolipidic microdomains. This review presents an overview of the recent insights brought by the latest developments in microscopy, to unravel the molecular remodeling occurring at cell contacts. The dynamic aspect of cell adhesion was recently highlighted by super-resolution videomicroscopy, also named videonanoscopy. By circumventing the diffraction limit of light, nanoscopy has allowed the monitoring of molecular localization and behavior at the single-molecule level, on fixed and living cells. Accessing molecular-resolution details such as quantitatively monitoring components entering and leaving cell contacts by lateral diffusion and reversible association has revealed an unexpected plasticity. Adhesion structures can be highly specialized, such as focal adhesion in motile cells, as well as immune and neuronal synapses. Spatiotemporal reorganization of adhesion molecules, receptors and adaptors directly relates to structure/function modulation. Assembly of these supramolecular complexes is continuously balanced by dynamic events, remodeling adhesions on various timescales, notably by molecular conformation switches, lateral diffusion within the membrane and endo/exocytosis. Pathological alterations in cell adhesion are involved in cancer evolution, through cancer stem cell interaction with stromal niches, growth, extravasation and metastasis.

  4. Strong adhesion of Saos-2 cells to multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Matsuoka, Makoto; Akasaka, Tsukasa; Totsuka, Yasunori; Watari, Fumio

    2010-01-01

    In recent years, carbon nanotubes (CNTs) have been considered potential biomedical materials because of their unique character. The aim of this study was to investigate the response of a human osteoblast-like cell line - Saos-2 - on single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs). The surface of a culture dish was coated with CNTs, and Saos-2 cells were cultured for three days. Cell morphology, viability, alkaline phosphatase (ALP) activity, adhesion, and vinculin expression were evaluated. The result showed high cell viability and strong adhesion to MWCNTs. Saos-2 cultured on MWCNTs exhibited vinculin expression throughout the cell body, while the cells attached to SWCNTs and glass were mostly limited to their periphery. Our results suggest that CNT coatings promote cell activity and adhesiveness. These findings indicate that MWCNTs could be used as surface coating materials to promote cell adhesion.

  5. Failure to demonstrate a major role for Kupffer cells and radiosensitive leukocytes in immunoglobulin-mediated elimination of Trypanosoma musculi

    International Nuclear Information System (INIS)

    Kongshavn, P.A.; Shaw, K.; Ghadirian, E.; Ulczak, O.

    1990-01-01

    Previous studies have indicated that elimination of parasitemia in Trypanosoma musculi infection is brought about by immunoglobulin G2a antibodies, C3, and an effector cell. Experiments were designed to identify the putative effector cell by using several approaches. Infected C5-deficient or C5-sufficient mice treated with silica particles or given 900 rads of radiation 3 days earlier effectively eliminated trypanosomes following administration of immune plasma (IP). Silica-treated, noninfected mice given T. musculi preincubated with IP also cleared the parasites. Radiolabeling studies revealed that uptake of the cleared trypanosomes by the liver in normal mice was relatively low and fell only slightly (19%) in silica-treated mice. In contrast, uptake of radiolabeled sheep erythrocytes by the liver was normally much higher and fell drastically (7%) in silica-treated mice. Mice were then immunocompromised by 900 rads of radiation, silica particles, and anti-platelet serum combined before IP-sensitized trypanosomes were given. Leukocyte and platelet counts were both reduced by 95% and sheep erythrocyte uptake by the liver fell from 77 to 5%; however, greater than 99% of the injected trypanosomes were cleared in these mice and uptake of radiolabeled trypanosomes by the liver was similar to that of normal mice. Lastly, in anesthetized mice in which Kupffer cells were excluded surgically from the circulation, greater than 99% of the IP-sensitized trypanosomes disappeared rapidly from the blood. Only 7% of the radiolabel was found in the liver versus 60% in sham-operated mice. The results are interpreted as showing that hepatic Kupffer cells play a minor role in the immune elimination of T. musculi. Likewise, radiosensitive leukocytes and platelets are unlikely to be sole candidates for the putative effector cell that mediates a cure of murine trypanosomiasis

  6. Syndecan-4 and integrins: combinatorial signaling in cell adhesion

    DEFF Research Database (Denmark)

    Couchman, J R; Woods, A

    1999-01-01

    It is now becoming clear that additional transmembrane components can modify integrin-mediated adhesion. Syndecan-4 is a transmembrane heparan sulfate proteoglycan whose external glycosaminoglycan chains can bind extracellular matrix ligands and whose core protein cytoplasmic domain can signal...... during adhesion. Two papers in this issue of JCS demonstrate, through transfection studies, that syndecan-4 plays roles in the formation of focal adhesions and stress fibers. Overexpression of syndecan-4 increases focal adhesion formation, whereas a partially truncated core protein that lacks the binding...... site for protein kinase C(&agr;) and phosphatidylinositol 4, 5-bisphosphate acts as a dominant negative inhibitor of focal adhesion formation. Focal adhesion induction does not require interaction between heparan sulfate glycosaminoglycan and ligand but can occur when non-glycanated core protein...

  7. Modulation of gap junctional intercellular communication between human smooth muscle cells by leukocyte-derived growth factors and cytokines in relation to atherogenesis

    NARCIS (Netherlands)

    Mensink, A.

    1997-01-01


    In this thesis, the effect of leukocyte-derived growth factors and cytokines on GJIC between SMC was investigated. GJIC is regarded as an important mechanism in the control of cell growth, cell differentiation and tissue homeostasis. Disturbance of SMC growth control is regarded to be a

  8. The coffee diterpene kahweol inhibits tumor necrosis factor-α-induced expression of cell adhesion molecules in human endothelial cells

    International Nuclear Information System (INIS)

    Kim, Hyung Gyun; Kim, Ji Young; Hwang, Yong Pil; Lee, Kyung Jin; Lee, Kwang Youl; Kim, Dong Hee; Kim, Dong Hyun; Jeong, Hye Gwang

    2006-01-01

    Endothelial cells produce adhesion molecules after being stimulated with various inflammatory cytokines. These adhesion molecules play an important role in the development of atherogenesis. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of kahweol, a coffee-specific diterpene. This study examined the effects of kahweol on the cytokine-induced monocyte/human endothelial cell interaction, which is a crucial early event in atherogenesis. Kahweol inhibited the adhesion of TNFα-induced monocytes to endothelial cells and suppressed the TNFα-induced protein and mRNA expression of the cell adhesion molecules, VCAM-1 and ICAM-1. Furthermore, kahweol inhibited the TNFα-induced JAK2-PI3K/Akt-NF-κB activation pathway in these cells. Overall, kahweol has anti-inflammatory and anti-atherosclerotic activities, which occurs partly by down-regulating the pathway that affects the expression and interaction of the cell adhesion molecules on endothelial cells

  9. Feasibility analysis of treating severe intrauterine adhesions by transplanting menstrual blood-derived stem cells.

    Science.gov (United States)

    Zheng, Sheng-Xia; Wang, Jian; Wang, Xue-Li; Ali, Asim; Wu, Li-Min; Liu, Yu-Sheng

    2018-04-01

    Intrauterine adhesions (IUA) are associated with the loss of stem cells in the endometrium. Menstrual blood‑derived stem cells (MenSCs) can be isolated from the menstrual blood and differentiated into endometrial cells. To check the transplantation feasibility of MenSCs for the treatment of severe IUA, MenSCs were isolated from menstrual blood, cultured in Dulbecco's modified Eagle's medium (DMEM), identified by immunocytochemistry and flow cytometry, differentiated into endometrial cells in vitro, and finally transplanted into the axillary subcutaneous tissue of non‑obese diabetic/severe combined immunodeficiency (NOD‑SCID) mice to create endometrial tissue. Additionally, the cloning efficiency and POU domain class 5 transcription factor 1 (OCT‑4) positivity of MenSCs from patients with severe IUA were compared with those from healthy women. Immunocytochemistry and flow cytometry results showed that 95.1±0.8% cells were OCT‑4‑positive, 0.9±0.4% were cluster of differentiation (CD)45‑positive, 1.8±0.9% were STRO‑1‑positive and 1.0±0.4% were human leukocyte antigen‑antigen D related‑positive. Following differentiation in vitro, the results of immunocytochemistry, reverse transcription‑polymerase chain reaction and western blot analysis showed that the expression of cytokeratin (CK) and vimentin (VIM) was increased in MenSCs compared with that in control subjects. Subsequent to transplantation in mice administered with sequential 17β‑estradiol and progesterone, CK, VIM, estrogen receptor and progesterone receptor were expressed in the transplantation regions, suggesting that MenSCs could differentiate into endometrial tissues in vivo. The cloning efficiency and OCT‑4 positivity of MenSCs from patients with severe IUA was significantly decreased. In conclusion, to the best of our knowledge, this is the first study in which MenSCs could differentiate into endometrial cells in vitro and create endometrial tissue in NOD‑SCID mice

  10. Alefacept and Allogeneic Hematopoietic Stem Cell Transplantation

    Science.gov (United States)

    2017-07-24

    Thalassemia; Sickle Cell Disease; Glanzmann Thrombasthenia; Wiskott-Aldrich Syndrome; Chronic-granulomatous Disease; Severe Congenital Neutropenia; Leukocyte Adhesion Deficiency; Schwachman-Diamond Syndrome; Diamond-Blackfan Anemia; Fanconi Anemia; Dyskeratosis-congenita; Chediak-Higashi Syndrome; Severe Aplastic Anemia

  11. Homophilic and Heterophilic Interactions of Type II Cadherins Identify Specificity Groups Underlying Cell-Adhesive Behavior

    Directory of Open Access Journals (Sweden)

    Julia Brasch

    2018-05-01

    Full Text Available Summary: Type II cadherins are cell-cell adhesion proteins critical for tissue patterning and neuronal targeting but whose molecular binding code remains poorly understood. Here, we delineate binding preferences for type II cadherin cell-adhesive regions, revealing extensive heterophilic interactions between specific pairs, in addition to homophilic interactions. Three distinct specificity groups emerge from our analysis with members that share highly similar heterophilic binding patterns and favor binding to one another. Structures of adhesive fragments from each specificity group confirm near-identical dimer topology conserved throughout the family, allowing interface residues whose conservation corresponds to specificity preferences to be identified. We show that targeted mutation of these residues converts binding preferences between specificity groups in biophysical and co-culture assays. Our results provide a detailed understanding of the type II cadherin interaction map and a basis for defining their role in tissue patterning and for the emerging importance of their heterophilic interactions in neural connectivity. : Type II cadherins are a family of vertebrate cell adhesion proteins expressed primarily in the CNS. Brasch et al. measure binding between adhesive fragments, revealing homophilic and extensive selective heterophilic binding with specificities that define groups of similar cadherins. Structures reveal common adhesive dimers, with residues governing cell-adhesive specificity. Keywords: cell adhesion, crystal structure, hemophilic specificity, heterophilic specificity, neural patterning, synaptic targeting, cadherin

  12. Cell surface heparan sulfate proteoglycans control adhesion and invasion of breast carcinoma cells

    DEFF Research Database (Denmark)

    Lim, Hooi Ching; Multhaupt, Hinke A. B.; Couchman, John R.

    2015-01-01

    breast carcinoma. This may derive from their regulation of cell adhesion, but roles for specific syndecans are unresolved. Methods: The MDA-MB231 human breast carcinoma cell line was exposed to exogenous glycosaminoglycans and changes in cell behavior monitored by western blotting, immunocytochemistry......, invasion and collagen degradation assays. Selected receptors including PAR-1 and syndecans were depleted by siRNA treatments to assess cell morphology and behavior. Immunohistochemistry for syndecan-2 and its interacting partner, caveolin-2 was performed on human breast tumor tissue arrays. Two......-tailed paired t-test and one-way ANOVA with Tukey¿s post-hoc test were used in the analysis of data. Results: MDA-MB231 cells were shown to be highly sensitive to exogenous heparan sulfate or heparin, promoting increased spreading, focal adhesion and adherens junction formation with concomitantly reduced...

  13. Integrative systems and synthetic biology of cell-matrix adhesion sites.

    Science.gov (United States)

    Zamir, Eli

    2016-09-02

    The complexity of cell-matrix adhesion convolves its roles in the development and functioning of multicellular organisms and their evolutionary tinkering. Cell-matrix adhesion is mediated by sites along the plasma membrane that anchor the actin cytoskeleton to the matrix via a large number of proteins, collectively called the integrin adhesome. Fundamental challenges for understanding how cell-matrix adhesion sites assemble and function arise from their multi-functionality, rapid dynamics, large number of components and molecular diversity. Systems biology faces these challenges in its strive to understand how the integrin adhesome gives rise to functional adhesion sites. Synthetic biology enables engineering intracellular modules and circuits with properties of interest. In this review I discuss some of the fundamental questions in systems biology of cell-matrix adhesion and how synthetic biology can help addressing them.

  14. Adhesion, biofilm formation, cell surface hydrophobicity, and antifungal planktonic susceptibility: relationship among Candida spp.

    OpenAIRE

    Silva-Dias, Ana; Miranda, Isabel M.; Branco, Joana; Monteiro-Soares, Matilde; Pina-Vaz, Cid?lia; Rodrigues, Ac?cio G.

    2015-01-01

    We have performed the characterization of the adhesion profile, biofilm formation, cell surface hydrophobicity (CSH) and antifungal susceptibility of 184 Candida clinical isolates obtained from different human reservoirs. Adhesion was quantified using a flow cytometric assay and biofilm formation was evaluated using two methodologies: XTT and crystal violet assay. CSH was quantified with the microbial adhesion to hydrocarbons test while planktonic susceptibility was assessed accordingly the C...

  15. Glycosynapses: microdomains controlling carbohydrate-dependent cell adhesion and signaling

    Directory of Open Access Journals (Sweden)

    Senitiroh Hakomori

    2004-09-01

    Full Text Available The concept of microdomains in plasma membranes was developed over two decades, following observation of polarity of membrane based on clustering of specific membrane components. Microdomains involved in carbohydrate-dependent cell adhesion with concurrent signal transduction that affect cellular phenotype are termed "glycosynapse". Three types of glycosynapse have been distinguished: "type 1" having glycosphingolipid associated with signal transducers (small G-proteins, cSrc, Src family kinases and proteolipids; "type 2" having O-linked mucin-type glycoprotein associated with Src family kinases; and "type 3" having N-linked integrin receptor complexed with tetraspanin and ganglioside. Different cell types are characterized by presence of specific types of glycosynapse or their combinations, whose adhesion induces signal transduction to either facilitate or inhibit signaling. E.g., signaling through type 3 glycosynapse inhibits cell motility and differentiation. Glycosynapses are distinct from classically-known microdomains termed "caveolae", "caveolar membrane", or more recently "lipid raft", which are not involved in carbohydrate-dependent cell adhesion. Type 1 and type 3 glycosynapses are resistant to cholesterol-binding reagents, whereas structure and function of "caveolar membrane" or "lipid raft" are disrupted by these reagents. Various data indicate a functional role of glycosynapses during differentiation, development, and oncogenic transformation.O conceito de microdomínios em membrana plasmática foi desenvolvido há mais de duas décadas, após a observação da polaridade da membrana baseada no agrupamento de componentes específicos da membrana. Microdomínios envolvidos na adesão celular dependente de carboidrato, com transdução de sinal que afeta o fenótipo celular são denominados ''glicosinapses''. Três tipos de glicosinapse foram observados: ''tipo 1'' que possue glicoesfingolipídio associado com transdutores de sinal

  16. Th17 Cell Induction by Adhesion of Microbes to Intestinal Epithelial Cells.

    Science.gov (United States)

    Atarashi, Koji; Tanoue, Takeshi; Ando, Minoru; Kamada, Nobuhiko; Nagano, Yuji; Narushima, Seiko; Suda, Wataru; Imaoka, Akemi; Setoyama, Hiromi; Nagamori, Takashi; Ishikawa, Eiji; Shima, Tatsuichiro; Hara, Taeko; Kado, Shoichi; Jinnohara, Toshi; Ohno, Hiroshi; Kondo, Takashi; Toyooka, Kiminori; Watanabe, Eiichiro; Yokoyama, Shin-Ichiro; Tokoro, Shunji; Mori, Hiroshi; Noguchi, Yurika; Morita, Hidetoshi; Ivanov, Ivaylo I; Sugiyama, Tsuyoshi; Nuñez, Gabriel; Camp, J Gray; Hattori, Masahira; Umesaki, Yoshinori; Honda, Kenya

    2015-10-08

    Intestinal Th17 cells are induced and accumulate in response to colonization with a subgroup of intestinal microbes such as segmented filamentous bacteria (SFB) and certain extracellular pathogens. Here, we show that adhesion of microbes to intestinal epithelial cells (ECs) is a critical cue for Th17 induction. Upon monocolonization of germ-free mice or rats with SFB indigenous to mice (M-SFB) or rats (R-SFB), M-SFB and R-SFB showed host-specific adhesion to small intestinal ECs, accompanied by host-specific induction of Th17 cells. Citrobacter rodentium and Escherichia coli O157 triggered similar Th17 responses, whereas adhesion-defective mutants of these microbes failed to do so. Moreover, a mixture of 20 bacterial strains, which were selected and isolated from fecal samples of a patient with ulcerative colitis on the basis of their ability to cause a robust induction of Th17 cells in the mouse colon, also exhibited EC-adhesive characteristics. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Constitutive activation of BMP signalling abrogates experimental metastasis of OVCA429 cells via reduced cell adhesion

    Directory of Open Access Journals (Sweden)

    Shepherd Trevor G

    2010-02-01

    Full Text Available Abstract Background Activation of bone morphogenetic protein (BMP4 signalling in human ovarian cancer cells induces a number of phenotypic changes in vitro, including altered cell morphology, adhesion, motility and invasion, relative to normal human ovarian surface epithelial cells. From these in vitro analyses, we had hypothesized that active BMP signalling promotes the metastatic potential of ovarian cancer. Methods To test this directly, we engineered OVCA429 human ovarian cancer cells possessing doxycycline-inducible expression of a constitutively-active mutant BMP receptor, ALK3QD, and administered these cells to immunocompromised mice. Further characterization was performed in vitro to address the role of activated BMP signalling on the EOC phenotype, with particular emphasis on epithelial-mesenchymal transition (EMT and cell adhesion. Results Unexpectedly, doxycycline-induced ALK3QD expression in OVCA429 cells reduced tumour implantation on peritoneal surfaces and ascites formation when xenografted into immunocompromised mice by intraperitoneal injection. To determine the potential mechanisms controlling this in vivo observation, we followed with several cell culture experiments. Doxycycline-induced ALK3QD expression enhanced the refractile, spindle-shaped morphology of cultured OVCA429 cells eliciting an EMT-like response. Using in vitro wound healing assays, we observed that ALK3QD-expressing cells migrated with long, cytoplasmic projections extending into the wound space. The phenotypic alterations of ALK3QD-expressing cells correlated with changes in specific gene expression patterns of EMT, including increased Snail and Slug and reduced E-cadherin mRNA expression. In addition, ALK3QD signalling reduced β1- and β3-integrin expression, critical molecules involved in ovarian cancer cell adhesion. The combination of reduced E-cadherin and β-integrin expression correlates directly with the reduced EOC cell cohesion in spheroids and

  18. A role for cell adhesion in beryllium-mediated lung disease

    Energy Technology Data Exchange (ETDEWEB)

    Hong-geller, Elizabeth [Los Alamos National Laboratory

    2008-01-01

    Chronic beryllium disease (CBD) is a debilitating lung disorder in which exposure to the lightweight metal beryllium (Be) causes the accumulation of beryllium-specific CD4+ T cells in the lung and formation of noncaseating pulmonary granulomas. Treatment for CBD patients who exhibit progressive pulmonary decline is limited to systemic corticosteroids, which suppress the severe host inflammatory response. Studies in the past several years have begun to highlight cell-cell adhesion interactions in the development of Be hypersensitivity and CBD. In particular, the high binding affinity between intercellular adhesion molecule 1 (I-CAM1) on lung epithelial cells and the {beta}{sub 2} integrin LFA-1 on migrating lymphocytes and macrophages regulates the concerted rolling of immune cells to sites of inflammation in the lung. In this review, we discuss the evidence that implicates cell adhesion processes in onset of Be disease and the potential of cell adhesion as an intervention point for development of novel therapies.

  19. Probing cellular mechanoadaptation using cell-substrate de-adhesion dynamics: experiments and model.

    Science.gov (United States)

    S S, Soumya; Sthanam, Lakshmi Kavitha; Padinhateeri, Ranjith; Inamdar, Mandar M; Sen, Shamik

    2014-01-01

    Physical properties of the extracellular matrix (ECM) are known to regulate cellular processes ranging from spreading to differentiation, with alterations in cell phenotype closely associated with changes in physical properties of cells themselves. When plated on substrates of varying stiffness, fibroblasts have been shown to exhibit stiffness matching property, wherein cell cortical stiffness increases in proportion to substrate stiffness up to 5 kPa, and subsequently saturates. Similar mechanoadaptation responses have also been observed in other cell types. Trypsin de-adhesion represents a simple experimental framework for probing the contractile mechanics of adherent cells, with de-adhesion timescales shown to scale inversely with cortical stiffness values. In this study, we combine experiments and computation in deciphering the influence of substrate properties in regulating de-adhesion dynamics of adherent cells. We first show that NIH 3T3 fibroblasts cultured on collagen-coated polyacrylamide hydrogels de-adhere faster on stiffer substrates. Using a simple computational model, we qualitatively show how substrate stiffness and cell-substrate bond breakage rate collectively influence de-adhesion timescales, and also obtain analytical expressions of de-adhesion timescales in certain regimes of the parameter space. Finally, by comparing stiffness-dependent experimental and computational de-adhesion responses, we show that faster de-adhesion on stiffer substrates arises due to force-dependent breakage of cell-matrix adhesions. In addition to illustrating the utility of employing trypsin de-adhesion as a biophysical tool for probing mechanoadaptation, our computational results highlight the collective interplay of substrate properties and bond breakage rate in setting de-adhesion timescales.

  20. Wet-chemical approach for the cell-adhesive modification of polytetrafluoroethylene

    International Nuclear Information System (INIS)

    Gabriel, Matthias; Dahm, Manfred; Vahl, Christian-F

    2011-01-01

    Polytetrafluoroethylene (PTFE), a frequently utilized polymer for the fabrication of synthetic vascular grafts, was surface-modified by means of a wet-chemical process. The inherently non-cell-adhesive polymer does not support cellular attachment, a prerequisite for the endothelialization of luminal surface grafts in small diameter applications. To impart the material with cell-adhesive properties a treatment with sodium-naphthalene provided a basis for the subsequent immobilization of the adhesion promoting RGD-peptide using a hydroxy- and amine-reactive crosslinker. Successful conjugation was shown with cell culture experiments which demonstrated excellent endothelial cell growth on the modified surfaces.

  1. SU-8 hollow cantilevers for AFM cell adhesion studies

    Science.gov (United States)

    Martinez, Vincent; Behr, Pascal; Drechsler, Ute; Polesel-Maris, Jérôme; Potthoff, Eva; Vörös, Janos; Zambelli, Tomaso

    2016-05-01

    A novel fabrication method was established to produce flexible, transparent, and robust tipless hollow atomic force microscopy (AFM) cantilevers made entirely from SU-8. Channels of 3 μm thickness and several millimeters length were integrated into 12 μm thick and 40 μm wide cantilevers. Connected to a pressure controller, the devices showed high sealing performance with no leakage up to 6 bars. Changing the cantilever lengths from 100 μm to 500 μm among the same wafer allowed the targeting of various spring constants ranging from 0.5 to 80 N m-1 within a single fabrication run. These hollow polymeric AFM cantilevers were operated in the optical beam deflection configuration. To demonstrate the performance of the device, single-cell force spectroscopy experiments were performed with a single probe detaching in a serial protocol more than 100 Saccharomyces cerevisiae yeast cells from plain glass and glass coated with polydopamine while measuring adhesion forces in the sub-nanoNewton range. SU-8 now offers a new alternative to conventional silicon-based hollow cantilevers with more flexibility in terms of complex geometric design and surface chemistry modification.

  2. SU-8 hollow cantilevers for AFM cell adhesion studies

    International Nuclear Information System (INIS)

    Martinez, Vincent; Behr, Pascal; Vörös, Janos; Zambelli, Tomaso; Drechsler, Ute; Polesel-Maris, Jérôme; Potthoff, Eva

    2016-01-01

    A novel fabrication method was established to produce flexible, transparent, and robust tipless hollow atomic force microscopy (AFM) cantilevers made entirely from SU-8. Channels of 3 μm thickness and several millimeters length were integrated into 12 μm thick and 40 μm wide cantilevers. Connected to a pressure controller, the devices showed high sealing performance with no leakage up to 6 bars. Changing the cantilever lengths from 100 μm to 500 μm among the same wafer allowed the targeting of various spring constants ranging from 0.5 to 80 N m −1 within a single fabrication run. These hollow polymeric AFM cantilevers were operated in the optical beam deflection configuration. To demonstrate the performance of the device, single-cell force spectroscopy experiments were performed with a single probe detaching in a serial protocol more than 100 Saccharomyces cerevisiae yeast cells from plain glass and glass coated with polydopamine while measuring adhesion forces in the sub-nanoNewton range. SU-8 now offers a new alternative to conventional silicon-based hollow cantilevers with more flexibility in terms of complex geometric design and surface chemistry modification. (paper)

  3. Adhesion molecules

    CERN Document Server

    Preedy, Victor R

    2016-01-01

    This book covers the structure and classification of adhesion molecules in relation to signaling pathways and gene expression. It discusses immunohistochemical localization, neutrophil migration, and junctional, functional, and inflammatory adhesion molecules in pathologies such as leukocyte decompression sickness and ischemia reperfusion injury. Highlighting the medical applications of current research, chapters cover diabetes, obesity, and metabolic syndrome; hypoxia; kidney disease; smoking, atrial fibrillation, and heart disease, the brain and dementia; and tumor proliferation. Finally, it looks at molecular imaging and bioinformatics, high-throughput technologies, and chemotherapy.

  4. Research on effects of ionizing radiation of human peripheral blood white cell adhesive molecules

    International Nuclear Information System (INIS)

    Li Haijun; Cheng Ying; Le Chen; Min Rui

    2008-01-01

    Objective: To investigate the links between expression and function of adhesive molecule on the surface of irradiated peripheral blood white cells. Methods: Heparinized human peripheral blood was exposed to γ rays with different dose. At the different post-radiation time adhesive molecule expression on cellular surface was determined by double fluorescence labeling antibodies which were against adhesive molecule and special mark of granulocyte or mononuclear cell respectively with flow cytometry, and cellular adhesive ability to different matrixes mediated by adhesive molecule was estimated by commercializing enzyme-linked immunosorbent assay kit and crystalviolet dying. Results: A decline pattern of CD11b on surface of mononuclear cells and CD29 on surface of granulocyte with irradiation dose increase was found. The changes of adhesive ability of mononuclear cells to substance of β1-integrin and collagen-I was well related with irradiation dose. Conclusion: Good relationship shown by the changes of adhesive molecule expression and adhesive ability mediated by the molecules on the surface of peripheral blood white cells with radiation dose was primary base of further research on indicting exposure dose by biomarker. (authors)

  5. Role of β1 integrins and bacterial adhesins for Yop injection into leukocytes in Yersinia enterocolitica systemic mouse infection.

    Science.gov (United States)

    Deuschle, Eva; Keller, Birgit; Siegfried, Alexandra; Manncke, Birgit; Spaeth, Tanja; Köberle, Martin; Drechsler-Hake, Doreen; Reber, Julia; Böttcher, Ralph T; Autenrieth, Stella E; Autenrieth, Ingo B; Bohn, Erwin; Schütz, Monika

    2016-02-01

    Injection of Yersinia outer proteins (Yops) into host cells by a type III secretion system is an important immune evasion mechanism of Yersinia enterocolitica (Ye). In this process Ye invasin (Inv) binds directly while Yersinia adhesin A (YadA) binds indirectly via extracellular matrix (ECM) proteins to β1 integrins on host cells. Although leukocytes turned out to be an important target of Yop injection by Ye, it was unclear which Ye adhesins and which leukocyte receptors are required for Yop injection. To explain this, we investigated the role of YadA, Inv and β1 integrins for Yop injection into leukocytes and their impact on the course of systemic Ye infection in mice. Ex vivo infection experiments revealed that adhesion of Ye via Inv or YadA is sufficient to promote Yop injection into leukocytes as revealed by a β-lactamase reporter assay. Serum factors inhibit YadA- but not Inv-mediated Yop injection into B and T cells, shifting YadA-mediated Yop injection in the direction of neutrophils and other myeloid cells. Systemic Ye mouse infection experiments demonstrated that YadA is essential for Ye virulence and Yop injection into leukocytes, while Inv is dispensable for virulence and plays only a transient and minor role for Yop injection in the early phase of infection. Ye infection of mice with β1 integrin-depleted leukocytes demonstrated that β1 integrins are dispensable for YadA-mediated Yop injection into leukocytes, but contribute to Inv-mediated Yop injection. Despite reduced Yop injection into leukocytes, β1 integrin-deficient mice exhibited an increased susceptibility for Ye infection, suggesting an important role of β1 integrins in immune defense against Ye. This study demonstrates that Yop injection into leukocytes by Ye is largely mediated by YadA exploiting, as yet unknown, leukocyte receptors. Copyright © 2015. Published by Elsevier GmbH.

  6. Adhesion of some probiotic and dairy Lactobacillus strains to Caco-2 cell cultures.

    Science.gov (United States)

    Tuomola, E M; Salminen, S J

    1998-05-05

    The adhesion of 12 different Lactobacillus strains was studied using Caco-2 cell line as an in vitro model for intestinal epithelium. Some of the strains tested have been used as probiotics, and most of them are used in the dairy and food industry. Human and bovine enterotoxigenic Escherichia coli strains were used as positive and negative control, respectively. Bacterial adhesion to Caco-2 cell cultures was quantitated using radiolabelled bacteria. The adherence of bacteria was also observed microscopically after Gram staining. Viability of bacteria prior to adhesion was verified using flow cytometry. Among the tested strains, L. casei (Fyos) was the most adhesive strain and L. casei var. rhamnosus (Lactophilus) was the least adhesive strain, approximately 14 and 3% of the added bacteria adhered to Caco-2 cell cultures, respectively. The corresponding values for positive and negative control E. coli strains were 14 and 4%, respectively. The Lactobacillus strains tested could not be divided into distinctly adhesive or non-adhesive strains, since there was a continuation of adhesion rates. The four most adhesive strains were L. casei (Fyos), L. acidophilus 1 (LC1), L. rhamnosus LC-705 and Lactobacillus GG (ATCC 53103). No significant differences in the percentage adhesion were observed between these strains. Adhesion of all the strains was dependent on the number of bacteria used, since an approximately constant number of Caco-2 cells was used, indicating that the Caco-2 cell binding sites were not saturated. Viability of bacteria was high since approximately 90% of the bacteria were viable with the exception of L. acidophilus 1 which was 74% viable. Microscopic evaluations agreed with the radiolabelled binding as evidenced by observing more bacteria in Gram-stained preparations of good adhering strains compared to poorly adhering strains.

  7. A Novel Centrifugation Method Using a Cell Salvage Device Offers an Alternative to the Use of Leukocyte-Depleting Filters for Autologous Blood Transfusions.

    Science.gov (United States)

    Barchilon, Michael; Gaspar, Cristina; Mexas, Angela; Nieter, Don

    2016-12-01

    Autotransfusion protocols often use the use of costly filters, such as leukocyte-depleting filters (LDFs), to minimize reinfusion of activated leukocytes and inflammatory mediators associated with reperfusion injury (RI). LDFs are used extensively in hospital settings; however, they represent an additional capital expenditure for hospitals, as well as a constraint on the reinfusion rate of blood products for health-care providers. We compared a commonly used LDF to a novel centrifugation method employing a widely used cell salvage device. Complete blood counts and enzyme-linked immunosorbent assays (ELISAs) measuring tumor necrosis factor-α (TNF-α) and interleukin-2 (IL-2) were performed to compare the efficacy of these methodologies. The LDF removed, on average, 94% of all leukocytes, including 96% of neutrophils. The centrifugation method removed, on average, 89% of all leukocytes, including 91% of neutrophils and resulted in a highly concentrated red blood cell product. Our results suggest both methods offer equivalent leukocyte reduction. TNF-α was also comparably reduced following our novel centrifugation method and the LDF method and IL-2 levels were undetectable in all samples. These results indicate our novel centrifugation method may preclude the need for a LDF during select autotransfusion applications.

  8. The evaluation of p,p'-DDT exposure on cell adhesion of hepatocellular carcinoma.

    Science.gov (United States)

    Jin, Xiaoting; Chen, Meilan; Song, Li; Li, Hanqing; Li, Zhuoyu

    2014-08-01

    Many studies have found a positive association between the progression of hepatocellular carcinoma and DDT exposure. These studies mainly focus on the effect of DDT exposure on cell proliferation and epithelial to mesenchymal transition (EMT) promotion. However, the influence of DDT on cell adhesion of hepatocellular carcinoma remains to be unclear. The aim of our study was to determine the effect of p,p'-DDT on cell adhesion of hepatocellular carcinoma in vitro and in vivo. The data showed that p,p'-DDT, exposing HepG2 cells for 6 days, decreased cell-cell adhesion and elevated cell-matrix adhesion. Strikingly, p,p'-DDT increased reactive oxygen species (ROS) content, and this was accompanied by the activation of JAK/STAT3 pathway. Moreover, ROS inhibitor supplement reversed these effects significantly. However, the addition of ER inhibitor, ICI, had no effect on the p,p'-DDT-induced effects. p,p'-DDT altered the mRNA levels of related adhesion molecules, including inhibition of E-cadherin and promotion of N-cadherin along with CD29. Interestingly, the p,p'-DDT-altered adhesion molecules could be reversed with JAK inhibitor or STAT3 inhibitor. Likewise, p,p'-DDT stimulated the JAK/STAT3 pathway in nude mice, as well as altered the mRNA levels of E-cadherin, N-cadherin, and CD29. Taken together, these results indicate that p,p'-DDT profoundly promotes the adhesion process by decreasing cell-cell adhesion and inducing cell-matrix adhesion via the ROS-mediated JAK/STAT3 pathway. All these events account for the carcinogenic potential of p,p'-DDT in liver. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. An Evolutionary-Conserved Function of Mammalian Notch Family Members as Cell Adhesion Molecules

    Science.gov (United States)

    Murata, Akihiko; Yoshino, Miya; Hikosaka, Mari; Okuyama, Kazuki; Zhou, Lan; Sakano, Seiji; Yagita, Hideo; Hayashi, Shin-Ichi

    2014-01-01

    Notch family members were first identified as cell adhesion molecules by cell aggregation assays in Drosophila studies. However, they are generally recognized as signaling molecules, and it was unclear if their adhesion function was restricted to Drosophila. We previously demonstrated that a mouse Notch ligand, Delta-like 1 (Dll1) functioned as a cell adhesion molecule. We here investigated whether this adhesion function was conserved in the diversified mammalian Notch ligands consisted of two families, Delta-like (Dll1, Dll3 and Dll4) and Jagged (Jag1 and Jag2). The forced expression of mouse Dll1, Dll4, Jag1, and Jag2, but not Dll3, on stromal cells induced the rapid and enhanced adhesion of cultured mast cells (MCs). This was attributed to the binding of Notch1 and Notch2 on MCs to each Notch ligand on the stromal cells themselves, and not the activation of Notch signaling. Notch receptor-ligand binding strongly supported the tethering of MCs to stromal cells, the first step of cell adhesion. However, the Jag2-mediated adhesion of MCs was weaker and unlike other ligands appeared to require additional factor(s) in addition to the receptor-ligand binding. Taken together, these results demonstrated that the function of cell adhesion was conserved in mammalian as well as Drosophila Notch family members. Since Notch receptor-ligand interaction plays important roles in a broad spectrum of biological processes ranging from embryogenesis to disorders, our finding will provide a new perspective on these issues from the aspect of cell adhesion. PMID:25255288

  10. Cell adhesion monitoring of human induced pluripotent stem cell based on intrinsic molecular charges

    Science.gov (United States)

    Sugimoto, Haruyo; Sakata, Toshiya

    2014-01-01

    We have shown a simple way for real-time, quantitative, non-invasive, and non-label monitoring of human induced pluripotent stem (iPS) cell adhesion by use of a biologically coupled-gate field effect transistor (bio-FET), which is based on detection of molecular charges at cell membrane. The electrical behavior revealed quantitatively the electrical contacts of integrin-receptor at the cell membrane with RGDS peptide immobilized at the gate sensing surface, because that binding site was based on cationic α chain of integrin. The platform based on the bio-FET would provide substantial information to evaluate cell/material bio-interface and elucidate biding mechanism of adhesion molecules, which could not be interpreted by microscopic observation.

  11. Osteopontin adsorption to Gram-positive cells reduces adhesion forces and attachment to surfaces under flow

    DEFF Research Database (Denmark)

    Kristensen, M F; Zeng, G; Neu, T R

    2017-01-01

    caries or medical device-related infections. It further investigated if OPN's effect on adhesion is caused by blocking the accessibility of glycoconjugates on bacterial surfaces. Bacterial adhesion was determined in a shear-controlled flow cell system in the presence of different concentrations of OPN......The bovine milk protein osteopontin (OPN) may be an efficient means to prevent bacterial adhesion to dental tissues and control biofilm formation. This study sought to determine to what extent OPN impacts adhesion forces and surface attachment of different bacterial strains involved in dental......, and interaction forces of single bacteria were quantified using single-cell force spectroscopy before and after OPN exposure. Moreover, the study investigated OPN's effect on the accessibility of cell surface glycoconjugates through fluorescence lectin-binding analysis. OPN strongly affected bacterial adhesion...

  12. Surface free energy predominates in cell adhesion to hydroxyapatite through wettability.

    Science.gov (United States)

    Nakamura, Miho; Hori, Naoko; Ando, Hiroshi; Namba, Saki; Toyama, Takeshi; Nishimiya, Nobuyuki; Yamashita, Kimihiro

    2016-05-01

    The initial adhesion of cells to biomaterials is critical in the regulation of subsequent cell behaviors. The purpose of this study was to investigate a mechanism through which the surface wettability of biomaterials can be improved and determine the effects of biomaterial surface characteristics on cellular behaviors. We investigated the surface characteristics of various types of hydroxyapatite after sintering in different atmospheres and examined the effects of various surface characteristics on cell adhesion to study cell-biomaterial interactions. Sintering atmosphere affects the polarization capacity of hydroxyapatite by changing hydroxide ion content and grain size. Compared with hydroxyapatite sintered in air, hydroxyapatite sintered in saturated water vapor had a higher polarization capacity that increased surface free energy and improved wettability, which in turn accelerated cell adhesion. We determined the optimal conditions of hydroxyapatite polarization for the improvement of surface wettability and acceleration of cell adhesion. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Short Peptides Enhance Single Cell Adhesion and Viability onMicroarrays

    Energy Technology Data Exchange (ETDEWEB)

    Veiseh, Mandana; Veiseh, Omid; Martin, Michael C.; Asphahani,Fareid; Zhang, Miqin

    2007-01-19

    Single cell patterning holds important implications forbiology, biochemistry, biotechnology, medicine, and bioinformatics. Thechallenge for single cell patterning is to produce small islands hostingonly single cells and retaining their viability for a prolonged period oftime. This study demonstrated a surface engineering approach that uses acovalently bound short peptide as a mediator to pattern cells withimproved single cell adhesion and prolonged cellular viabilityon goldpatterned SiO2 substrates. The underlying hypothesis is that celladhesion is regulated bythe type, availability, and stability ofeffective cell adhesion peptides, and thus covalently bound shortpeptides would promote cell spreading and, thus, single cell adhesion andviability. The effectiveness of this approach and the underlyingmechanism for the increased probability of single cell adhesion andprolonged cell viability by short peptides were studied by comparingcellular behavior of human umbilical cord vein endothelial cells on threemodelsurfaces whose gold electrodes were immobilized with fibronectin,physically adsorbed Arg-Glu-Asp-Val-Tyr, and covalently boundLys-Arg-Glu-Asp-Val-Tyr, respectively. The surface chemistry and bindingproperties were characterized by reflectance Fourier transform infraredspectroscopy. Both short peptides were superior to fibronectin inproducing adhesion of only single cells, whereas the covalently boundpeptide also reduced apoptosis and necrosisof adhered cells. Controllingcell spreading by peptide binding domains to regulate apoptosis andviability represents a fundamental mechanism in cell-materialsinteraction and provides an effective strategy in engineering arrays ofsingle cells.

  14. Cell polarity, cell adhesion, and spermatogenesis: role of cytoskeletons [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Linxi Li

    2017-08-01

    Full Text Available In the rat testis, studies have shown that cell polarity, in particular spermatid polarity, to support spermatogenesis is conferred by the coordinated efforts of the Par-, Crumbs-, and Scribble-based polarity complexes in the seminiferous epithelium. Furthermore, planar cell polarity (PCP is conferred by PCP proteins such as Van Gogh-like 2 (Vangl2 in the testis. On the other hand, cell junctions at the Sertoli cell–spermatid (steps 8–19 interface are exclusively supported by adhesion protein complexes (for example, α6β1-integrin-laminin-α3,β3,γ3 and nectin-3-afadin at the actin-rich apical ectoplasmic specialization (ES since the apical ES is the only anchoring device in step 8–19 spermatids. For cell junctions at the Sertoli cell–cell interface, they are supported by adhesion complexes at the actin-based basal ES (for example, N-cadherin-β-catenin and nectin-2-afadin, tight junction (occludin-ZO-1 and claudin 11-ZO-1, and gap junction (connexin 43-plakophilin-2 and also intermediate filament-based desmosome (for example, desmoglein-2-desmocollin-2. In short, the testis-specific actin-rich anchoring device known as ES is crucial to support spermatid and Sertoli cell adhesion. Accumulating evidence has shown that the Par-, Crumbs-, and Scribble-based polarity complexes and the PCP Vangl2 are working in concert with actin- or microtubule-based cytoskeletons (or both and these polarity (or PCP protein complexes exert their effects through changes in the organization of the cytoskeletal elements across the seminiferous epithelium of adult rat testes. As such, there is an intimate relationship between cell polarity, cell adhesion, and cytoskeletal function in the testis. Herein, we critically evaluate these recent findings based on studies on different animal models. We also suggest some crucial future studies to be performed.

  15. Adhesion of cultured human endothelial cells onto methacrylate polymers with varying surface wettability and charge

    NARCIS (Netherlands)

    van Wachem, P.B.; Hogt, A.H.; Beugeling, T.; Feijen, Jan; Bantjes, A.; Detmers, J.P.; van Aken, W.G.

    1987-01-01

    The adhesion of human endothelial cells (HEC) onto a series of well-characterized methacrylate polymer surfaces with varying wettabilities and surface charges was studied either in serum-containing (CMS) or in serum-free (CM) culture medium. HEC adhesion in CMS onto (co)polymers * of hydroxyethyl

  16. Activation of AMP-activated protein kinase attenuates hepatocellular carcinoma cell adhesion stimulated by adipokine resistin

    International Nuclear Information System (INIS)

    Yang, Chen-Chieh; Chang, Shun-Fu; Chao, Jian-Kang; Lai, Yi-Liang; Chang, Wei-En; Hsu, Wen-Hsiu; Kuo, Wu-Hsien

    2014-01-01

    Resistin, adipocyte-secreting adipokine, may play critical role in modulating cancer pathogenesis. The aim of this study was to investigate the effects of resistin on HCC adhesion to the endothelium, and the mechanism underlying these resistin effects. Human SK-Hep1 cells were used to study the effect of resistin on intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expressions as well as NF-κB activation, and hence cell adhesion to human umbilical vein endothelial cells (HUVECs). 5-Aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR), an AMP-activated protein kinase (AMPK) activator, was used to determine the regulatory role of AMPK on HCC adhesion to the endothelium in regard to the resistin effects. Treatment with resistin increased the adhesion of SK-Hep1 cells to HUVECs and concomitantly induced NF-κB activation, as well as ICAM-1 and VCAM-1 expressions in SK-Hep1 cells. Using specific blocking antibodies and siRNAs, we found that resistin-induced SK-Hep1 cell adhesion to HUVECs was through NF-κB-regulated ICAM-1 and VCAM-1 expressions. Moreover, treatment with AICAR demonstrated that AMPK activation in SK-Hep1 cells significantly attenuates the resistin effect on SK-Hep1 cell adhesion to HUVECs. These results clarify the role of resistin in inducing HCC adhesion to the endothelium and demonstrate the inhibitory effect of AMPK activation under the resistin stimulation. Our findings provide a notion that resistin play an important role to promote HCC metastasis and implicate AMPK may be a therapeutic target to against HCC metastasis

  17. The evaluation of p,p′-DDT exposure on cell adhesion of hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Jin, Xiaoting; Chen, Meilan; Song, Li; Li, Hanqing; Li, Zhuoyu

    2014-01-01

    Graphical abstract: - Highlights: • Low doses p,p′-DDT exposure disrupts cell–cell adhesion and cell–matrix adhesion in HepG2 cells. • Both oxidative stress and JAK/STAT3 pathway are activated in p,p′-DDT-treated HepG2 cells. • The stimulation of JAK/STAT3 pathway is mediated by oxidative stress. • p,p′-DDT regulates adhesion molecules via the JAK/STAT3 pathway. • p,p′-DDT stimulates JAK/STAT3 signal pathway and disrupts the expressions of cell adhesion molecules in nude mice models. - Abstract: Many studies have found a positive association between the progression of hepatocellular carcinoma and DDT exposure. These studies mainly focus on the effect of DDT exposure on cell proliferation and epithelial to mesenchymal transition (EMT) promotion. However, the influence of DDT on cell adhesion of hepatocellular carcinoma remains to be unclear. The aim of our study was to determine the effect of p,p′-DDT on cell adhesion of hepatocellular carcinoma in vitro and in vivo. The data showed that p,p′-DDT, exposing HepG2 cells for 6 days, decreased cell–cell adhesion and elevated cell–matrix adhesion. Strikingly, p,p′-DDT increased reactive oxygen species (ROS) content, and this was accompanied by the activation of JAK/STAT3 pathway. Moreover, ROS inhibitor supplement reversed these effects significantly. However, the addition of ER inhibitor, ICI, had no effect on the p,p′-DDT-induced effects. p,p′-DDT altered the mRNA levels of related adhesion molecules, including inhibition of E-cadherin and promotion of N-cadherin along with CD29. Interestingly, the p,p′-DDT-altered adhesion molecules could be reversed with JAK inhibitor or STAT3 inhibitor. Likewise, p,p′-DDT stimulated the JAK/STAT3 pathway in nude mice, as well as altered the mRNA levels of E-cadherin, N-cadherin, and CD29. Taken together, these results indicate that p,p′-DDT profoundly promotes the adhesion process by decreasing cell–cell adhesion and inducing cell

  18. Cellular contractility and substrate elasticity: a numerical investigation of the actin cytoskeleton and cell adhesion.

    Science.gov (United States)

    Ronan, William; Deshpande, Vikram S; McMeeking, Robert M; McGarry, J Patrick

    2014-04-01

    Numerous experimental studies have established that cells can sense the stiffness of underlying substrates and have quantified the effect of substrate stiffness on stress fibre formation, focal adhesion area, cell traction, and cell shape. In order to capture such behaviour, the current study couples a mixed mode thermodynamic and mechanical framework that predicts focal adhesion formation and growth with a material model that predicts stress fibre formation, contractility, and dissociation in a fully 3D implementation. Simulations reveal that SF contractility plays a critical role in the substrate-dependent response of cells. Compliant substrates do not provide sufficient tension for stress fibre persistence, causing dissociation of stress fibres and lower focal adhesion formation. In contrast, cells on stiffer substrates are predicted to contain large amounts of dominant stress fibres. Different levels of cellular contractility representative of different cell phenotypes are found to alter the range of substrate stiffness that cause the most significant changes in stress fibre and focal adhesion formation. Furthermore, stress fibre and focal adhesion formation evolve as a cell spreads on a substrate and leading to the formation of bands of fibres leading from the cell periphery over the nucleus. Inhibiting the formation of FAs during cell spreading is found to limit stress fibre formation. The predictions of this mutually dependent material-interface framework are strongly supported by experimental observations of cells adhered to elastic substrates and offer insight into the inter-dependent biomechanical processes regulating stress fibre and focal adhesion formation.

  19. Ochratoxim A alters cell adhesion and gap junction intercellular communication in MDCK cells

    International Nuclear Information System (INIS)

    Mally, Angela; Decker, Martina; Bekteshi, Michaela; Dekant, Wolfgang

    2006-01-01

    Ochratoxin A (OTA) is one of the most potent renal carcinogens studied to date, but the mechanism of tumor formation by ochratoxin A remains largely unknown. Cell adhesion and cell-cell communication participate in the regulation of signaling pathways involved in cell proliferation and growth control and it is therefore not surprising that modulation of cell-cell signaling has been implicated in cancer development. Several nephrotoxicants and renal carcinogens have been shown to alter cell-cell signaling by interference with gap junction intercell communication (GJIC) and/or cell adhesion, and the aim of this study was to determine if disruption of cell-cell interactions occurs in kidney epithelial cells in response to OTA treatment. MDCK cells were treated with OTA (0-50 μM) for up to 24 h and gap junction function was analyzed using the scrape-load/dye transfer assay. In addition, expression and intracellular localization of Cx43, E-cadherin and β-catenin were determined by immunoblot and immunofluorescence analysis. A clear decrease in the distance of dye transfer was evident following treatment with OTA at concentrations/incubation times which did not affect cell viability. Consistent with the functional inhibition of GJIC, treatment with OTA resulted in a dose-dependent decrease in Cx43 expression. In contrast to Cx43, OTA did not alter total amount of the adherens junction proteins E-cadherin and β-catenin. Moreover, Western blot analysis of Triton X-100 soluble and insoluble protein fractions did not indicate translocation of cell adhesion molecules from the membrane to the cytoplasm. However, a ∼78 kDa fragment of β-catenin was detected in the detergent soluble fraction, indicating proteolytic cleavage of β-catenin. Immunofluorescence analysis also revealed changes in the pattern of both β-catenin and E-cadherin labeling, suggesting that OTA may alter cell-adhesion. Taken together, these data support the hypothesis that disruption of cell-cell

  20. Heparanase facilitates cell adhesion and spreading by clustering of cell surface heparan sulfate proteoglycans.

    Directory of Open Access Journals (Sweden)

    Flonia Levy-Adam

    2008-06-01

    Full Text Available Heparanase is a heparan sulfate (HS degrading endoglycosidase participating in extracellular matrix degradation and remodeling. Apart of its well characterized enzymatic activity, heparanase was noted to exert also enzymatic-independent functions. Non-enzymatic activities of heparanase include enhanced adhesion of tumor-derived cells and primary T-cells. Attempting to identify functional domains of heparanase that would serve as targets for drug development, we have identified heparin binding domains of heparanase. A corresponding peptide (residues Lys(158-Asp(171, termed KKDC was demonstrated to physically associate with heparin and HS, and to inhibit heparanase enzymatic activity. We hypothesized that the pro-adhesive properties of heparanase are mediated by its interaction with cell surface HS proteoglycans, and utilized the KKDC peptide to examine this possibility. We provide evidence that the KKDC peptide interacts with cell membrane HS, resulting in clustering of syndecan-1 and syndecan-4. We applied classical analysis of cell morphology, fluorescent and time-lapse microscopy and demonstrated that the KKDC peptide efficiently stimulates the adhesion and spreading of various cell types, mediated by PKC, Src, and the small GTPase Rac1. These results support, and further substantiate the notion that heparanase function is not limited to its enzymatic activity.

  1. Alleviation of lipopolysaccharide/d-galactosamine-induced liver injury in leukocyte cell-derived chemotaxin 2 deficient mice

    Directory of Open Access Journals (Sweden)

    Akinori Okumura

    2017-12-01

    Full Text Available Leukocyte cell-derived chemotaxin 2 (LECT2 is a secreted pleiotropic protein that is mainly produced by the liver. We have previously shown that LECT2 plays an important role in the pathogenesis of inflammatory liver diseases. Lipopolysaccharide/d-galactosamine (LPS/d-GalN-induced acute liver injury is a known animal model of fulminant hepatic failure. Here we found that this hepatic injury was alleviated in LECT2-deficient mice. The levels of TNF-α and IFN-γ, which mediate this hepatitis, had significantly decreased in these mice, with the decrease in IFN-γ production notably greater than that in TNF-α. We therefore analyzed IFN-γ-producing cells in liver mononuclear cells. Flow cytometric analysis showed significantly reduced IFN-γ production in hepatic NK and NKT cells in LECT2-deficient mice compared with in wild-type mice. We also demonstrated a decrease in IFN-γ production in LECT2-deficient mice after systemic administration of recombinant IL-12, which is known to induce IFN-γ in NK and NKT cells. These results indicate that a decrease of IFN-γ production in NK and NKT cells was involved in the alleviation of LPS/d-GalN-induced liver injury in LECT2-deficient mice.

  2. [Mechanisms of leukocyte formation of endogenous pyrogen].

    Science.gov (United States)

    Rybakina, E G; Sorokin, A V

    1982-06-01

    A study was made of the kinetics of endogenous pyrogen production by rabbit blood and exudate leukocytes and possible role played by the products of activated leukocytes in autoregulation of the process. It was established that accumulation of endogenous pyrogen in the cell precedes its release by stimulated cells. Then the processes of active pyrogen formation and release gel interdependent: pyrogen formed releases from the cell; the lowering of pyrogen concentration in the cell is accompanied by the decrease of its content in the medium. No stimulating effect of the products activated during leukocyte inflammation on pyrogen formation by blood leukocytes was discovered.

  3. Single-cell force spectroscopy as a technique to quantify human red blood cell adhesion to subendothelial laminin.

    Science.gov (United States)

    Maciaszek, Jamie L; Partola, Kostyantyn; Zhang, Jing; Andemariam, Biree; Lykotrafitis, George

    2014-12-18

    Single-cell force spectroscopy (SCFS), an atomic force microscopy (AFM)-based assay, enables quantitative study of cell adhesion while maintaining the native state of surface receptors in physiological conditions. Human healthy and pathological red blood cells (RBCs) express a large number of surface proteins which mediate cell-cell interactions, or cell adhesion to the extracellular matrix. In particular, RBCs adhere with high affinity to subendothelial matrix laminin via the basal cell adhesion molecule and Lutheran protein (BCAM/Lu). Here, we established SCFS as an in vitro technique to study human RBC adhesion at baseline and following biochemical treatment. Using blood obtained from healthy human subjects, we recorded adhesion forces from single RBCs attached to AFM cantilevers as the cell was pulled-off of substrates coated with laminin protein. We found that an increase in the overall cell adhesion measured via SCFS is correlated with an increase in the resultant total force measured on 1 µm(2) areas of the RBC membrane. Further, we showed that SCFS can detect significant changes in the adhesive response of RBCs to modulation of the cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) pathway. Lastly, we identified variability in the RBC adhesion force to laminin amongst the human subjects, suggesting that RBCs maintain diverse levels of active BCAM/Lu adhesion receptors. By using single-cell measurements, we established a powerful new method for the quantitative measurement of single RBC adhesion with specific receptor-mediated binding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Protein Profiling of Isolated Leukocytes, Myofibroblasts, Epithelial, Basal, and Endothelial Cells from Normal, Hyperplastic, Cancerous, and Inflammatory Human Prostate Tissues

    Directory of Open Access Journals (Sweden)

    Zahraa I. Khamis, Kenneth A. Iczkowski, Ziad J. Sahab, Qing-Xiang Amy Sang

    2010-01-01

    Full Text Available In situ neoplastic prostate cells are not lethal unless they become invasive and metastatic. For cells to become invasive, the prostate gland must undergo degradation of the basement membrane and disruption of the basal cell layer underneath the luminal epithelia. Although the roles of proteinases in breaking down the basement membrane have been well-studied, little is known about the factors that induce basal cell layer disruption, degeneration, and its eventual disappearance in invasive cancer. It is hypothesized that microenvironmental factors may affect the degradation of the basal cell layer, which if protected may prevent tumor progression and invasion. In this study, we have revealed differential protein expression patterns between epithelial and stromal cells isolated from different prostate pathologies and identified several important epithelial and stromal proteins that may contribute to inflammation and malignant transformation of human benign prostate tissues to cancerous tissues using matrix-assisted laser desorption ionization time-of-flight mass spectrometry and proteomics methods. Cellular retinoic acid-binding protein 2 was downregulated in basal cells of benign prsotate. Caspase-1 and interleukin-18 receptor 1 were highly expressed in leukocytes of prostate cancer. Proto-oncogene Wnt-3 was downregulated in endothelial cells of prostatitis tissue and tyrosine phosphatase non receptor type 1 was only found in normal and benign endothelial cells. Poly ADP-ribose polymerase 14 was downregulated in myofibroblasts of prostatitis tissue. Interestingly, integrin alpha-6 was upregulated in epithelial cells but not detected in myofibroblasts of prostate cancer. Further validation of these proteins may generate new strategies for the prevention of basal cell layer disruption and subsequent cancer invasion.

  5. Redundant control of migration and adhesion by ERM proteins in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Baeyens, Nicolas; Latrache, Iman; Yerna, Xavier; Noppe, Gauthier; Horman, Sandrine; Morel, Nicole

    2013-01-01

    Highlights: •The three ERM proteins are expressed in vascular smooth muscle cell. •ERM depletion inhibited PDGF-evoked migration redundantly. •ERM depletion increased cell adhesion redundantly. •ERM depletion did not affect PDGF-evoked Ca signal, Rac1 activation, proliferation. •ERM proteins control PDGF-induced migration by regulating adhesion. -- Abstract: Ezrin, radixin, and moesin possess a very similar structure with a C-terminal actin-binding domain and a N-terminal FERM interacting domain. They are known to be involved in cytoskeleton organization in several cell types but their function in vascular smooth muscle cells (VSMC) is still unknown. The aim of this study was to investigate the role of ERM proteins in cell migration induced by PDGF, a growth factor involved in pathophysiological processes like angiogenesis or atherosclerosis. We used primary cultured VSMC obtained from rat aorta, which express the three ERM proteins. Simultaneous depletion of the three ERM proteins with specific siRNAs abolished the effects of PDGF on cell architecture and migration and markedly increased cell adhesion and focal adhesion size, while these parameters were only slightly affected by depletion of ezrin, radixin or moesin alone. Rac1 activation, cell proliferation, and Ca 2+ signal in response to PDGF were unaffected by ERM depletion. These results indicate that ERM proteins exert a redundant control on PDGF-induced VSMC migration by regulating focal adhesion turn-over and cell adhesion to substrate

  6. Redundant control of migration and adhesion by ERM proteins in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Baeyens, Nicolas; Latrache, Iman; Yerna, Xavier [Laboratory of Cell Physiology, IoNS, Université Catholique de Louvain (Belgium); Noppe, Gauthier; Horman, Sandrine [Pôle de Recherche Cardiovasculaire, IREC, Université Catholique de Louvain (Belgium); Morel, Nicole, E-mail: nicole.morel@uclouvain.be [Laboratory of Cell Physiology, IoNS, Université Catholique de Louvain (Belgium)

    2013-11-22

    Highlights: •The three ERM proteins are expressed in vascular smooth muscle cell. •ERM depletion inhibited PDGF-evoked migration redundantly. •ERM depletion increased cell adhesion redundantly. •ERM depletion did not affect PDGF-evoked Ca signal, Rac1 activation, proliferation. •ERM proteins control PDGF-induced migration by regulating adhesion. -- Abstract: Ezrin, radixin, and moesin possess a very similar structure with a C-terminal actin-binding domain and a N-terminal FERM interacting domain. They are known to be involved in cytoskeleton organization in several cell types but their function in vascular smooth muscle cells (VSMC) is still unknown. The aim of this study was to investigate the role of ERM proteins in cell migration induced by PDGF, a growth factor involved in pathophysiological processes like angiogenesis or atherosclerosis. We used primary cultured VSMC obtained from rat aorta, which express the three ERM proteins. Simultaneous depletion of the three ERM proteins with specific siRNAs abolished the effects of PDGF on cell architecture and migration and markedly increased cell adhesion and focal adhesion size, while these parameters were only slightly affected by depletion of ezrin, radixin or moesin alone. Rac1 activation, cell proliferation, and Ca{sup 2+} signal in response to PDGF were unaffected by ERM depletion. These results indicate that ERM proteins exert a redundant control on PDGF-induced VSMC migration by regulating focal adhesion turn-over and cell adhesion to substrate.

  7. Fibronectin Modulates Cell Adhesion and Signaling to Promote Single Cell Migration of Highly Invasive Oral Squamous Cell Carcinoma

    Science.gov (United States)

    Ramos, Grasieli de Oliveira; Bernardi, Lisiane; Lauxen, Isabel; Sant’Ana Filho, Manoel; Horwitz, Alan Rick; Lamers, Marcelo Lazzaron

    2016-01-01

    Cell migration is regulated by adhesion to the extracellular matrix (ECM) through integrins and activation of small RhoGTPases, such as RhoA and Rac1, resulting in changes to actomyosin organization. During invasion, epithelial-derived tumor cells switch from laminin-enriched basal membrane to collagen and fibronectin-enriched connective tissue. How this switch affects the tumor migration is still unclear. We tested the hypothesis that ECM dictates the invasiveness of Oral Squamous Cell Carcinoma (OSCC). We analyzed the migratory properties of two OSCC lines, a low invasive cell line with high e-cadherin levels (Linv/HE-cad) or a highly invasive cell line with low e-cadherin levels (Hinv/LE-cad), plated on different ECM components. Compared to laminin, fibronectin induced non-directional collective migration and decreased RhoA activity in Linv/HE-cad OSCC. For Hinv/LE-cad OSCC, fibronectin increased Rac1 activity and induced smaller adhesions, resulting in a fast single cell migration in both 2D and 3D environments. Consistent with these observations, human OSCC biopsies exhibited similar changes in cell-ECM adhesion distribution at the invasive front of the tumor, where cells encounter fibronectin. Our results indicate that ECM composition might induce a switch from collective to single cell migration according to tumor invasiveness due to changes in cell-ECM adhesion and the resulting signaling pathways that alter actomyosin organization. PMID:26978651

  8. Fibronectin Modulates Cell Adhesion and Signaling to Promote Single Cell Migration of Highly Invasive Oral Squamous Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Grasieli de Oliveira Ramos

    Full Text Available Cell migration is regulated by adhesion to the extracellular matrix (ECM through integrins and activation of small RhoGTPases, such as RhoA and Rac1, resulting in changes to actomyosin organization. During invasion, epithelial-derived tumor cells switch from laminin-enriched basal membrane to collagen and fibronectin-enriched connective tissue. How this switch affects the tumor migration is still unclear. We tested the hypothesis that ECM dictates the invasiveness of Oral Squamous Cell Carcinoma (OSCC. We analyzed the migratory properties of two OSCC lines, a low invasive cell line with high e-cadherin levels (Linv/HE-cad or a highly invasive cell line with low e-cadherin levels (Hinv/LE-cad, plated on different ECM components. Compared to laminin, fibronectin induced non-directional collective migration and decreased RhoA activity in Linv/HE-cad OSCC. For Hinv/LE-cad OSCC, fibronectin increased Rac1 activity and induced smaller adhesions, resulting in a fast single cell migration in both 2D and 3D environments. Consistent with these observations, human OSCC biopsies exhibited similar changes in cell-ECM adhesion distribution at the invasive front of the tumor, where cells encounter fibronectin. Our results indicate that ECM composition might induce a switch from collective to single cell migration according to tumor invasiveness due to changes in cell-ECM adhesion and the resulting signaling pathways that alter actomyosin organization.

  9. Targeting Endothelial Adhesion Molecule Transcription for Treatment of Inflammatory Disease: A Proof-of-Concept Study

    Directory of Open Access Journals (Sweden)

    Liam M. Ashander

    2016-01-01

    Full Text Available Targeting the endothelial adhesion molecules that control leukocyte trafficking into a tissue has been explored as a biological therapy for inflammatory diseases. However, these molecules also participate in leukocyte migration for immune surveillance, and inhibiting the physiological level of an adhesion molecule might promote infection or malignancy. We explored the concept of targeting endothelial adhesion molecule transcription during inflammation in a human system. Intercellular adhesion molecule 1 (ICAM-1 mediates leukocyte migration across the retinal endothelium in noninfectious posterior uveitis. We observed an increase in the transcription factor, nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NF-κB1, in parallel with ICAM-1, in human retinal endothelial cells treated with tumor necrosis factor-alpha (TNF-α, and identified putative binding sites for NF-κB1 within the ICAM-1 regulatory region. We targeted induced NF-κB1 expression in endothelial cells with small interfering (siRNA. Knockdown of NF-κB1 significantly decreased cell surface expression of ICAM-1 protein induced by TNF-α but did not reduce constitutive ICAM-1 expression. Consistently, NF-κB1 knockdown significantly reduced leukocyte binding to cell monolayers in the presence of TNF-α but did not impact baseline binding. Findings of this proof-of-concept study indicate that induced transcription of endothelial adhesion molecules might be targeted therapeutically for inflammatory disease in humans.

  10. Adhesion of Two Lactobacillus gasseri Probiotic Strains on Caco-2 Cells

    Directory of Open Access Journals (Sweden)

    Mojca Narat

    2003-01-01

    Full Text Available Previous in vitro and in vivo studies showed that two human isolates of Lactobacillus gasseri, LF221 and K7 are able to survive the passage through the gastrointestinal tract and to colonise intestines of pigs at least temporarily. The aim of this study was to examine the adhesion ability of LF221 and K7 strains to Caco-2 cells. Adhesion of lactobacilli from early stationary growth phase was examined at two pH values of DMEM buffer (4.5 and 7. Lactobacillus rhamnosus GG, a widely used strain with clinical evidences of its efficiency, served as a positive control. The number of lactobacilli added to each well was found to be crucial in the adhesion assay. When added, lactobacilli were in range of 2.5 · 106 to 2.5 · 108 cfu/well, the linear correlation between the number of adhered cells (log cfu and the number of added cells (log cfu was found for all three strains (R2 > 0.99 at both pH values (4.5 and 7. At the highest concentration of added K7 and GG cells tested (app. 109 cfu/well, the efficiency of adhesion was reduced. pH value of the medium strongly affected the adhesion, which was promoted in acidic conditions (pH=4.5. The adhesion of K7 strain was slightly weaker compared to GG strain at both pH values, while at pH=4.5 the adhesion of LF221 strain was even better than GG adhesion, at least at lower concentration of lactobacilli. The direct comparison of these strains was possible by regression analysis. At lower concentration of lactobacilli (2.5 · 106, the best efficiency of adhesion (% of adhered bacteria was observed for the strain LF221, reaching the values of 7.8 and 1.9 % at pH=4.5 and 7, respectively, while at higher lactobacilli concentration the ration of adhesion was higher for GG strain (3.3 % at pH=4.5. In conclusion, strains LF221 and K7 were demonstrated to be adhesive, especially in acidic conditions. The level of adhesion of K7 and GG strains positively correlates with the number of added lactobacilli only up to the

  11. Modeling cell-substrate de-adhesion dynamics under fluid shear

    Science.gov (United States)

    Maan, Renu; Rani, Garima; Menon, Gautam I.; Pullarkat, Pramod A.

    2018-07-01

    Changes in cell-substrate adhesion are believed to signal the onset of cancer metastasis, but such changes must be quantified against background levels of intrinsic heterogeneity between cells. Variations in cell-substrate adhesion strengths can be probed through biophysical measurements of cell detachment from substrates upon the application of an external force. Here, we investigate, theoretically and experimentally, the detachment of cells adhered to substrates when these cells are subjected to fluid shear. We present a theoretical framework within which we calculate the fraction of detached cells as a function of shear stress for fast ramps as well as the decay in this fraction at fixed shear stress as a function of time. Using HEK and 3T3 fibroblast cells as experimental model systems, we extract characteristic force scales for cell adhesion as well as characteristic detachment times. We estimate force-scales of  ∼500 pN associated to a single focal contact, and characteristic time-scales of s representing cell-spread-area dependent mean first passage times to the detached state at intermediate values of the shear stress. Variations in adhesion across cell types are especially prominent when cell detachment is probed by applying a time-varying shear stress. These methods can be applied to characterizing changes in cell adhesion in a variety of contexts, including metastasis.

  12. Regulation of promyogenic signal transduction by cell-cell contact and adhesion

    International Nuclear Information System (INIS)

    Krauss, Robert S.

    2010-01-01

    Skeletal myoblast differentiation involves acquisition of the muscle-specific transcriptional program and morphological changes, including fusion into multinucleated myofibers. Differentiation is regulated by extracellular signaling cues, including cell-cell contact and adhesion. Cadherin and Ig adhesion receptors have been implicated in distinct but overlapping stages of myogenesis. N-cadherin signals through the Ig receptor Cdo to activate p38 MAP kinase, while the Ig receptor neogenin signals to activate FAK; both processes promote muscle-specific gene expression and myoblast fusion. M-cadherin activates Rac1 to enhance fusion. Specific Ig receptors (Kirre and Sns) are essential for myoblast fusion in Drosophila, also signaling through Rac, and vertebrate orthologs of Kirre and Sns have partially conserved function. Mice lacking specific cytoplasmic signaling factors activated by multiple receptors (e.g., Rac1) have strong muscle phenotypes in vivo. In contrast, mice lacking individual adhesion receptors that lie upstream of these factors have modest phenotypes. Redundancy among receptors may account for this. Many of the mammalian Ig receptors and cadherins associate with each other, and multivalent interactions within these complexes may require removal of multiple components to reveal dramatic defects in vivo. Nevertheless, it is possible that the murine adhesion receptors rate-limiting in vivo have not yet been identified or fully assessed.

  13. Regulation of promyogenic signal transduction by cell-cell contact and adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Robert S., E-mail: Robert.Krauss@mssm.edu [Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029 (United States)

    2010-11-01

    Skeletal myoblast differentiation involves acquisition of the muscle-specific transcriptional program and morphological changes, including fusion into multinucleated myofibers. Differentiation is regulated by extracellular signaling cues, including cell-cell contact and adhesion. Cadherin and Ig adhesion receptors have been implicated in distinct but overlapping stages of myogenesis. N-cadherin signals through the Ig receptor Cdo to activate p38 MAP kinase, while the Ig receptor neogenin signals to activate FAK; both processes promote muscle-specific gene expression and myoblast fusion. M-cadherin activates Rac1 to enhance fusion. Specific Ig receptors (Kirre and Sns) are essential for myoblast fusion in Drosophila, also signaling through Rac, and vertebrate orthologs of Kirre and Sns have partially conserved function. Mice lacking specific cytoplasmic signaling factors activated by multiple receptors (e.g., Rac1) have strong muscle phenotypes in vivo. In contrast, mice lacking individual adhesion receptors that lie upstream of these factors have modest phenotypes. Redundancy among receptors may account for this. Many of the mammalian Ig receptors and cadherins associate with each other, and multivalent interactions within these complexes may require removal of multiple components to reveal dramatic defects in vivo. Nevertheless, it is possible that the murine adhesion receptors rate-limiting in vivo have not yet been identified or fully assessed.

  14. Cell Adhesion Molecules Are Mediated by Photobiomodulation at 660 nm in Diabetic Wounded Fibroblast Cells

    Directory of Open Access Journals (Sweden)

    Nicolette N. Houreld

    2018-04-01

    Full Text Available Diabetes affects extracellular matrix (ECM metabolism, contributing to delayed wound healing and lower limb amputation. Application of light (photobiomodulation, PBM has been shown to improve wound healing. This study aimed to evaluate the influence of PBM on cell adhesion molecules (CAMs in diabetic wound healing. Isolated human skin fibroblasts were grouped into a diabetic wounded model. A diode laser at 660 nm with a fluence of 5 J/cm2 was used for irradiation and cells were analysed 48 h post-irradiation. Controls consisted of sham-irradiated (0 J/cm2 cells. Real-time reverse transcription (RT quantitative polymerase chain reaction (qPCR was used to determine the expression of CAM-related genes. Ten genes were up-regulated in diabetic wounded cells, while 25 genes were down-regulated. Genes were related to transmembrane molecules, cell–cell adhesion, and cell–matrix adhesion, and also included genes related to other CAM molecules. PBM at 660 nm modulated gene expression of various CAMs contributing to the increased healing seen in clinical practice. There is a need for new therapies to improve diabetic wound healing. The application of PBM alongside other clinical therapies may be very beneficial in treatment.

  15. Mutagenicity assessment of two herbal medicines, Urtan and Carmint in human leukocytes by single cell gel electrophoresis

    International Nuclear Information System (INIS)

    Jalili, M.; Hatami, A.; Kalantari, H.; Kalantar, E.

    2006-01-01

    The use of herbal medicine is an old and still widespread particle, which makes studies their genotoxicity essential. Urtan and Carmint are examples of herbal medicines used in Iran which used for the treatment of hyperplasia, diuretic, urinary diffusion and antispasmodic action, carminative gastrointestinal disfunction respectively. The aim of this study was to evaluate the mutagenicity of these herbal medicines in human leukocytes by Single Cell Gel Electrophoresis (SCGE). Both the herbal medicines were used at four concentrations (0.046, 0.092, 0.138 and 0.184/ 100 ml). The results were compared against positive (Cr VI) and negative (no mutagen) control groups. Fluorescence microscope was used to observe the DNA damage in randomly selected cells, which were stained with ethidium bromide. Microscopic observation of the affected cells due to Urtan and Carmint was encouraging as compared to previous studies using SCGE. Both Urtan and Carmint exhibited considerable DNA damage to the blood cells. For example, Urtan at o.184 g/100ml concentration had almost 23% mutagenic effect and as the concentration increased the mutagenic effect also increased. Similarly Carmint exhibited considerable DNA damage on blood cells. Therefore, both the herbal medicines may have some mutagenic effect. (author)

  16. Biodegradable copolymers carrying cell-adhesion peptide sequences.

    Science.gov (United States)

    Proks, Vladimír; Machová, Lud'ka; Popelka, Stepán; Rypácek, Frantisek

    2003-01-01

    Amphiphilic block copolymers are used to create bioactive surfaces on biodegradable polymer scaffolds for tissue engineering. Cell-selective biomaterials can be prepared using copolymers containing peptide sequences derived from extracellular-matrix proteins (ECM). Here we discuss alternative ways for preparation of amphiphilic block copolymers composed of hydrophobic polylactide (PLA) and hydrophilic poly(ethylene oxide) (PEO) blocks with cell-adhesion peptide sequences. Copolymers PLA-b-PEO were prepared by a living polymerisation of lactide in dioxane with tin(II)2-ethylhexanoate as a catalyst. The following approaches for incorporation of peptides into copolymers were elaborated. (a) First, a side-chain protected Gly-Arg-Gly-Asp-Ser-Gly (GRGDSG) peptide was prepared by solid-phase peptide synthesis (SPPS) and then coupled with delta-hydroxy-Z-amino-PEO in solution. In the second step, the PLA block was grafted to it via a controlled polymerisation of lactide initiated by the hydroxy end-groups of PEO in the side-chain-protected GRGDSG-PEO. Deprotection of the peptide yielded a GRGDSG-b-PEO-b-PLA copolymer, with the peptide attached through its C-end. (b) A protected GRGDSG peptide was built up on a polymer resin and coupled with Z-carboxy-PEO using a solid-phase approach. After cleavage of the delta-hydroxy-PEO-GRGDSG copolymer from the resin, polymerisation of lactide followed by deprotection of the peptide yielded a PLA-b-PEO-b-GRGDSG block copolymer, in which the peptide is linked through its N-terminus.

  17. Suppression of endothelial cell adhesion by XJP-1, a new phenolic compound derived from banana peel.

    Science.gov (United States)

    Fu, Rong; Yan, Tianhua; Wang, Qiujuan; Guo, Qinglong; Yao, Hequan; Wu, Xiaoming; Li, Yang

    2012-01-01

    The adhesion of monocytes to activated vascular endothelial cells is a critical event in the initiation of atherosclerosis. Adhesion is mediated by oxidized low-density lipoprotein (ox-LDL) which up-regulates inflammatory markers on endothelial cells. Here we report that (±) 7, 8-dihydroxy-3-methyl-isochromanone-4 (XJP-1), an inhibitor of ox-LDL-induced adhesion of monocytes to endothelial cells blocks cellular functions which are associated with adhesion. We show that XJP-1 down-regulates ox-LDL-induced over-expression of adhesion molecules (ICAM-1 and VCAM-1) in a dose-dependent manner in human umbilical vein endothelial cells (HUVECs), attenuates ox-LDL-induced up-regulation of low-density lipoprotein receptor (LOX)-1, decreases generation of reactive oxygen species (ROS), blocks translocation of nuclear factor-kappa B (NF-κB) activity, and prevents activation of c-Jun N-terminal kinase (JNK)/p38 pathways in endothelial cells. These findings suggest that XJP-1 may attenuate ox-LDL-induced endothelial adhesion of monocytes by blocking expression of adhesion molecules through suppressing ROS/NF-κB, JNK and p38 pathways. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Interlayer adhesion in roll-to-roll processed flexible inverted polymer solar cells

    KAUST Repository

    Dupont, Stephanie R.

    2012-02-01

    The interlayer adhesion of roll-to-roll processed flexible inverted P3HT:PCBM bulk heterojunction (BHJ) polymer solar cells is reported. Poor adhesion between adjacent layers may result in loss of device performance from delamination driven by the thermomechanical stresses in the device. We demonstrate how a thin-film adhesion technique can be applied to flexible organic solar cells to obtain quantitative adhesion values. For the P3HT:PCBM-based BHJ polymer solar cells, the interface of the BHJ with the conductive polymer layer PEDOT:PSS was found to be the weakest. The adhesion fracture energy varied from 1.6 J/m2 to 0.1 J/m2 depending on the composition of the P3HT:PCBM layer. Post-deposition annealing time and temperature were shown to increase the adhesion at this interface. Additionally the PEDOT:PSS cells are compared with V2O5 cells whereby adhesive failure marked by high fracture energies was observed. © 2011 Elsevier B.V.

  19. Membrane tension controls adhesion positioning at the leading edge of cells.

    Science.gov (United States)

    Pontes, Bruno; Monzo, Pascale; Gole, Laurent; Le Roux, Anabel-Lise; Kosmalska, Anita Joanna; Tam, Zhi Yang; Luo, Weiwei; Kan, Sophie; Viasnoff, Virgile; Roca-Cusachs, Pere; Tucker-Kellogg, Lisa; Gauthier, Nils C

    2017-09-04

    Cell migration is dependent on adhesion dynamics and actin cytoskeleton remodeling at the leading edge. These events may be physically constrained by the plasma membrane. Here, we show that the mechanical signal produced by an increase in plasma membrane tension triggers the positioning of new rows of adhesions at the leading edge. During protrusion, as membrane tension increases, velocity slows, and the lamellipodium buckles upward in a myosin II-independent manner. The buckling occurs between the front of the lamellipodium, where nascent adhesions are positioned in rows, and the base of the lamellipodium, where a vinculin-dependent clutch couples actin to previously positioned adhesions. As membrane tension decreases, protrusion resumes and buckling disappears, until the next cycle. We propose that the mechanical signal of membrane tension exerts upstream control in mechanotransduction by periodically compressing and relaxing the lamellipodium, leading to the positioning of adhesions at the leading edge of cells. © 2017 Pontes et al.

  20. Differential and Cooperative Cell Adhesion Regulates Cellular Pattern in Sensory Epithelia.

    Science.gov (United States)

    Togashi, Hideru

    2016-01-01

    Animal tissues are composed of multiple cell types arranged in complex and elaborate patterns. In sensory epithelia, including the auditory epithelium and olfactory epithelium, different types of cells are arranged in unique mosaic patterns. These mosaic patterns are evolutionarily conserved, and are thought to be important for hearing and olfaction. Recent progress has provided accumulating evidence that the cellular pattern formation in epithelia involves cell rearrangements, movements, and shape changes. These morphogenetic processes are largely mediated by intercellular adhesion systems. Differential adhesion and cortical tension have been proposed to promote cell rearrangements. Many different types of cells in tissues express various types of cell adhesion molecules. Although cooperative mechanisms between multiple adhesive systems are likely to contribute to the production of complex cell patterns, our current understanding of the cooperative roles between multiple adhesion systems is insufficient to entirely explain the complex mechanisms underlying cellular patterning. Recent studies have revealed that nectins, in cooperation with cadherins, are crucial for the mosaic cellular patterning in sensory organs. The nectin and cadherin systems are interacted with one another, and these interactions provide cells with differential adhesive affinities for complex cellular pattern formations in sensory epithelia, which cannot be achieved by a single mechanism.

  1. Cellular Adhesion and Adhesion Molecules

    OpenAIRE

    SELLER, Zerrin

    2014-01-01

    In recent years, cell adhesion and cell adhesion molecules have been shown to be important for many normal biological processes, including embryonic cell migration, immune system functions and wound healing. It has also been shown that they contribute to the pathogenesis of a large number of common human disorders, such as rheumatoid arthritis and tumor cell metastasis in cancer. In this review, the basic mechanisms of cellular adhesion and the structural and functional features of adhes...

  2. An agent-based model of leukocyte transendothelial migration during atherogenesis.

    Directory of Open Access Journals (Sweden)

    Rita Bhui

    2017-05-01

    Full Text Available A vast amount of work has been dedicated to the effects of hemodynamics and cytokines on leukocyte adhesion and trans-endothelial migration (TEM and subsequent accumulation of leukocyte-derived foam cells in the artery wall. However, a comprehensive mechanobiological model to capture these spatiotemporal events and predict the growth and remodeling of an atherosclerotic artery is still lacking. Here, we present a multiscale model of leukocyte TEM and plaque evolution in the left anterior descending (LAD coronary artery. The approach integrates cellular behaviors via agent-based modeling (ABM and hemodynamic effects via computational fluid dynamics (CFD. In this computational framework, the ABM implements the diffusion kinetics of key biological proteins, namely Low Density Lipoprotein (LDL, Tissue Necrosis Factor alpha (TNF-α, Interlukin-10 (IL-10 and Interlukin-1 beta (IL-1β, to predict chemotactic driven leukocyte migration into and within the artery wall. The ABM also considers wall shear stress (WSS dependent leukocyte TEM and compensatory arterial remodeling obeying Glagov's phenomenon. Interestingly, using fully developed steady blood flow does not result in a representative number of leukocyte TEM as compared to pulsatile flow, whereas passing WSS at peak systole of the pulsatile flow waveform does. Moreover, using the model, we have found leukocyte TEM increases monotonically with decreases in luminal volume. At critical plaque shapes the WSS changes rapidly resulting in sudden increases in leukocyte TEM suggesting lumen volumes that will give rise to rapid plaque growth rates if left untreated. Overall this multi-scale and multi-physics approach appropriately captures and integrates the spatiotemporal events occurring at the cellular level in order to predict leukocyte transmigration and plaque evolution.

  3. A Functional Analysis on the Interspecies Interaction between Mouse LFA-1 and Human Intercellular Adhesion Molecule-1 at the Cell Level

    Directory of Open Access Journals (Sweden)

    David Núñez

    2017-12-01

    Full Text Available The interaction between intercellular adhesion molecules (ICAM and the integrin leukocyte function-associated antigen-1 (LFA-1 is crucial for the regulation of several physiological and pathophysiological processes like cell-mediated elimination of tumor or virus infected cells, cancer metastasis, or inflammatory and autoimmune processes. Using purified proteins it was reported a species restriction for the interaction of ICAM-1 and LFA-1, being mouse ICAM-1 able to interact with human LFA-1 but not human ICAM-1 with mouse LFA-1. However, in vivo results employing tumor cells transfected with human ICAM-1 suggest that functionally mouse LFA-1 can recognize human ICAM-1. In order to clarify the interspecies cross-reactivity of the ICAM-1/LFA-1 interaction, we have performed functional studies analyzing the ability of human soluble ICAM-1 and human/mouse LFA-1 derived peptides to inhibit cell aggregation and adhesion as well as cell-mediated cytotoxicity in both mouse and human systems. In parallel, the affinity of the interaction between mouse LFA-1-derived peptides and human ICAM-1 was determined by calorimetry assays. According to the results obtained, it seems that human ICAM-1 is able to interact with mouse LFA-1 on intact cells, which should be taking into account when using humanized mice and xenograft models for the study of immune-related processes.

  4. A Functional Analysis on the Interspecies Interaction between Mouse LFA-1 and Human Intercellular Adhesion Molecule-1 at the Cell Level.

    Science.gov (United States)

    Núñez, David; Comas, Laura; Lanuza, Pilar M; Sánchez-Martinez, Diego; Pérez-Hernández, Marta; Catalán, Elena; Domingo, María Pilar; Velázquez-Campoy, Adrián; Pardo, Julián; Gálvez, Eva M

    2017-01-01

    The interaction between intercellular adhesion molecules (ICAM) and the integrin leukocyte function-associated antigen-1 (LFA-1) is crucial for the regulation of several physiological and pathophysiological processes like cell-mediated elimination of tumor or virus infected cells, cancer metastasis, or inflammatory and autoimmune processes. Using purified proteins it was reported a species restriction for the interaction of ICAM-1 and LFA-1, being mouse ICAM-1 able to interact with human LFA-1 but not human ICAM-1 with mouse LFA-1. However, in vivo results employing tumor cells transfected with human ICAM-1 suggest that functionally mouse LFA-1 can recognize human ICAM-1. In order to clarify the interspecies cross-reactivity of the ICAM-1/LFA-1 interaction, we have performed functional studies analyzing the ability of human soluble ICAM-1 and human/mouse LFA-1 derived peptides to inhibit cell aggregation and adhesion as well as cell-mediated cytotoxicity in both mouse and human systems. In parallel, the affinity of the interaction between mouse LFA-1-derived peptides and human ICAM-1 was determined by calorimetry assays. According to the results obtained, it seems that human ICAM-1 is able to interact with mouse LFA-1 on intact cells, which should be taking into account when using humanized mice and xenograft models for the study of immune-related processes.

  5. Sphingosine 1-Phosphate Induces Platelet/Endothelial Cell Adhesion Molecule-1 Tyrosine Phosphorylation in Bovine Aortic Endothelial Cells through a PP2-Inhibitable Mechanism

    Directory of Open Access Journals (Sweden)

    Yu-Ting Huang

    2007-12-01

    Full Text Available Sphingosine-1-phosphate (S1P is a low-molecular-weight phospholipid derivative released by activated platelets. S1P transduces signals through a family of G protein-coupled receptors to modulate various physiological behaviors of endothelial cells. Platelet/endothelial cell adhesion molecule-1 (PECAM-1; CD31 is a 130-kDa protein expressed on the surfaces of leukocytes, platelets, and endothelial cells. Upon PECAM-1 activation, its cytoplasmic tyrosine residues become phosphorylated and bind with SH2 domain-containing proteins, thus leading to the downstream functions mediated by PECAM-1. In the present study, we found that S1P induced PECAM-1 tyrosine phosphorylation and SHP-2 association in bovine aortic endothelial cells (BAECs by immunoprecipitation and western blotting. The pretreatment of BAECs with a series of chemical inhibitors to determine the signaling pathway showed that the PECAM-1 phosphorylation was inhibited by PP2, indicating the participation of Src family kinases. These results demonstrated that S1P induced PECAM-1 tyrosine phosphorylation in BAECs through mediation of Src family kinases, and this may regulate the physiological behaviors of endothelial cells.

  6. Ionizing radiation modulates the surface expression of human leukocyte antigen-G in a human melanoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Michelin, S.; Gallegos, C.E.; Dubner, D. [Radiopathology Laboratory, Nuclear Regulatory Authority, Buenos Aires (Argentina); Favier, B.; Carosella, E.D. [CEA, I2BM, Hopital Saint-Louis, IUH, Service de Recherches en Hemato-Immunologie, Paris (France)

    2009-07-01

    Human leukocyte antigen G (HLA-G) is a nonclassical HLA class I molecule involved in fetus protection from the maternal immune system, transplant tolerance, and viral and tumoral immune escape. Tumor-specific HLA-G expression has been described for a wide variety of malignancies, including melanomas. The aim of this study was to evaluate whether ionizing radiation (IR) could modulate the surface expression of HLA-G1 in a human melanoma cell line that expresses endogenously membrane-bound HLA-G1. For this purpose, cells were exposed to increasing doses of {gamma}-irradiation (0-20 Gy) and HLA-G1 levels at the plasma membrane were analyzed at different times postirradiation by flow cytometry. HLA-G total expression and the presence of the soluble form of HLA-G1 (sHLA-G1) in the culture medium of irradiated cells were also evaluated. IR was capable of down regulating cell surface and total HLA-G levels, with a concomitant increase of sHLA-G1 in the medium. These results could indicate that {gamma}-irradiation decreases HLA-G1 surface levels by enhancing the proteolytic cleavage of this molecule. (authors)

  7. Ionizing radiation modulates the surface expression of human leukocyte antigen-G in a human melanoma cell line

    International Nuclear Information System (INIS)

    Michelin, S.; Gallegos, C.E.; Dubner, D.; Favier, B.; Carosella, E.D.

    2009-01-01

    Human leukocyte antigen G (HLA-G) is a nonclassical HLA class I molecule involved in fetus protection from the maternal immune system, transplant tolerance, and viral and tumoral immune escape. Tumor-specific HLA-G expression has been described for a wide variety of malignancies, including melanomas. The aim of this study was to evaluate whether ionizing radiation (IR) could modulate the surface expression of HLA-G1 in a human melanoma cell line that expresses endogenously membrane-bound HLA-G1. For this purpose, cells were exposed to increasing doses of γ-irradiation (0-20 Gy) and HLA-G1 levels at the plasma membrane were analyzed at different times postirradiation by flow cytometry. HLA-G total expression and the presence of the soluble form of HLA-G1 (sHLA-G1) in the culture medium of irradiated cells were also evaluated. IR was capable of down regulating cell surface and total HLA-G levels, with a concomitant increase of sHLA-G1 in the medium. These results could indicate that γ-irradiation decreases HLA-G1 surface levels by enhancing the proteolytic cleavage of this molecule. (authors)

  8. The Role of TSC Proteins in Regulating Cell Adhesion and Motility

    National Research Council Canada - National Science Library

    Krymskaya, Vera P

    2006-01-01

    The goal of this project was to define the molecular signaling mechanisms by which TSCI and TSC2 proteins regulate cell adhesion and motility as it relates to the genetic disorder tuberous sclerosis complex (TSC...

  9. Combined modeling of cell aggregation and adhesion mediated by receptor–ligand interactions under shear flow

    Directory of Open Access Journals (Sweden)

    Yu Du

    2015-11-01

    Full Text Available Blood cell aggregation and adhesion to endothelial cells under shear flow are crucial to many biological processes such as thrombi formation, inflammatory cascade, and tumor metastasis, in which these cellular interactions are mainly mediated by the underlying receptor–ligand bindings. While theoretical modeling of aggregation dynamics and adhesion kinetics of interacting cells have been well studied separately, how to couple these two processes remains unclear. Here we develop a combined model that couples cellular aggregation dynamics and adhesion kinetics under shear flow. The impacts of shear rate (or shear stress and molecular binding affinity were elucidated. This study provides a unified model where the action of a fluid flow drives cell aggregation and adhesion under the modulations of the mechanical shear flow and receptor–ligand interaction kinetics. It offers an insight into understanding the relevant biological processes and functions.

  10. The effect of magnesium ion implantation into alumina upon the adhesion of human bone derived cells

    International Nuclear Information System (INIS)

    Howlett, C.R.; Zreiqat, H.; O'Dell, R.; Noorman, J.; Evans, P.; Dalton, B.A.; McFarland, C.; Steele, J.G.

    1994-01-01

    Our group is investigating the potential of modifying the surface atomic layers of biomaterials by ion beam implantation in order to stimulate adhesion of bone cells to these treated biomaterials. In this study alumina that had been implanted with magnesium ions (Mg)-(Al 2 O 3 ), was compared to unmodified alumina (Al 2 O 3 ) for the adhesion of cells cultured from explanted human bone. The attachment and spreading of cultured human bone derived cells onto (Mg)-(Al 2 O 3 ) was significantly enhanced as compared to Al 2 O 3 . The role of adsorption of serum adhesive glycoproteins firbronectin (Fn) and vitronectin (Vn) in the adhesion of human bone derived cells to (Mg)-(Al 2 O 3 ) was determined. (Author)

  11. Epigenetic Silencing of CXCR4 Promotes Loss of Cell Adhesion in Cervical Cancer

    Directory of Open Access Journals (Sweden)

    Suresh Singh Yadav

    2014-01-01

    Full Text Available In the network of chemokine signaling pathways, recent reports have described the SDF-1α/CXCR4 axis and its role in cancer progression and metastasis. Interestingly, we found downregulation of CXCR4 at both transcript and protein level in cervical cancer cell lines and primary tumors. We also found CXCR4 promoter hypermethylation in cervical cancer cell lines and primary biopsy samples. DNA hypomethylating drug 5-AZA-2′-deoxycytidine and histone deacetylase inhibitor Trichostatin A treatments in cell lines reactivate both CXCR4 transcription and protein expression. Cell adhesion assay demonstrated that autocrine SDF-1α promotes the loss of cell adhesion while paracrine SDF-1α predominantly protects the normal cervical cells from loss of cell adhesion. Cervical cancer cell line C-33A having increased expression of CXCR4 after TSA treatment showed increased cell adhesion by paracrine source of SDF-1α in comparison to untreated C-33A. These findings demonstrate the first evidence that epigenetic silencing of CXCR4 makes the cells inefficient to respond to the paracrine source of SDF-1α leading to loss of cell adhesion, one of the key events in metastases and progression of the disease. Our results provide novel insight of SDF-1α/CXCR4 signaling in tumor microenvironment which may be promising to further delineate molecular mechanism of cervical carcinogenesis.

  12. Micro–adhesion rings surrounding TCR microclusters are essential for T cell activation

    Science.gov (United States)

    Sakuma, Machie; Yokosuka, Tadashi

    2016-01-01

    The immunological synapse (IS) formed at the interface between T cells and antigen-presenting cells represents a hallmark of initiation of acquired immunity. T cell activation is initiated at T cell receptor (TCR) microclusters (MCs), in which TCRs and signaling molecules assemble at the interface before IS formation. We found that each TCR-MC was transiently bordered by a ring structure made of integrin and focal adhesion molecules in the early phase of activation, which is similar in structure to the IS in microscale. The micro–adhesion ring is composed of LFA-1, focal adhesion molecules paxillin and Pyk2, and myosin II (MyoII) and is supported by F-actin core and MyoII activity through LFA-1 outside-in signals. The formation of the micro–adhesion ring was transient but especially sustained upon weak TCR stimulation to recruit linker for activation of T cells (LAT) and SLP76. Perturbation of the micro–adhesion ring induced impairment of TCR-MC development and resulted in impaired cellular signaling and cell functions. Thus, the synapse-like structure composed of the core TCR-MC and surrounding micro–adhesion ring is a critical structure for initial T cell activation through integrin outside-in signals. PMID:27354546

  13. Effects of adhesion dynamics and substrate compliance on the shape and motility of crawling cells.

    Directory of Open Access Journals (Sweden)

    Falko Ziebert

    Full Text Available Computational modeling of eukaryotic cells moving on substrates is an extraordinarily complex task: many physical processes, such as actin polymerization, action of motors, formation of adhesive contacts concomitant with both substrate deformation and recruitment of actin etc., as well as regulatory pathways are intertwined. Moreover, highly nontrivial cell responses emerge when the substrate becomes deformable and/or heterogeneous. Here we extended a computational model for motile cell fragments, based on an earlier developed phase field approach, to account for explicit dynamics of adhesion site formation, as well as for substrate compliance via an effective elastic spring. Our model displays steady motion vs. stick-slip transitions with concomitant shape oscillations as a function of the actin protrusion rate, the substrate stiffness, and the rates of adhesion. Implementing a step in the substrate's elastic modulus, as well as periodic patterned surfaces exemplified by alternating stripes of high and low adhesiveness, we were able to reproduce the correct motility modes and shape phenomenology found experimentally. We also predict the following nontrivial behavior: the direction of motion of cells can switch from parallel to perpendicular to the stripes as a function of both the adhesion strength and the width ratio of adhesive to non-adhesive stripes.

  14. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions

    Science.gov (United States)

    Doyle, Andrew D.; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M.

    2015-11-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils.

  15. Nanofibers and nanoparticles from the insect-capturing adhesive of the Sundew (Drosera for cell attachment

    Directory of Open Access Journals (Sweden)

    Zhang Mingjun

    2010-08-01

    Full Text Available Abstract Background The search for naturally occurring nanocomposites with diverse properties for tissue engineering has been a major interest for biomaterial research. In this study, we investigated a nanofiber and nanoparticle based nanocomposite secreted from an insect-capturing plant, the Sundew, for cell attachment. The adhesive nanocomposite has demonstrated high biocompatibility and is ready to be used with minimal preparation. Results Atomic force microscopy (AFM conducted on the adhesive from three species of Sundew found that a network of nanofibers and nanoparticles with various sizes existed independent of the coated surface. AFM and light microscopy confirmed that the pattern of nanofibers corresponded to Alcian Blue staining for polysaccharide. Transmission electron microscopy identified a low abundance of nanoparticles in different pattern form AFM observations. In addition, energy-dispersive X-ray spectroscopy revealed the presence of Ca, Mg, and Cl, common components of biological salts. Study of the material properties of the adhesive yielded high viscoelasticity from the liquid adhesive, with reduced elasticity observed in the dried adhesive. The ability of PC12 neuron-like cells to attach and grow on the network of nanofibers created from the dried adhesive demonstrated the potential of this network to be used in tissue engineering, and other biomedical applications. Conclusions This discovery demonstrates how a naturally occurring nanofiber and nanoparticle based nanocomposite from the adhesive of Sundew can be used for tissue engineering, and opens the possibility for further examination of natural plant adhesives for biomedical applications.

  16. Cell adhesion on Ti surface with controlled roughness

    Directory of Open Access Journals (Sweden)

    Burgos-Asperilla, Laura

    2015-06-01

    Full Text Available In this report, the in situ interaction between Saos-2 osteoblast cells and a smooth Ti surface was examined over time. The adhesion kinetics and mechanisms of cellular proliferation were monitored by quartz crystal microbalance (QCM and electrochemical impedance spectroscopy (EIS. The rate of Saos-2 attachment on Ti surfaces, obtained from the measurements performed with the QCM, is a first-order reaction, with k=2.10−3 min−1. The impedance measurements indicate that in the absence of cells, the Ti resistance diminishes over time (7 days, due to the presence of amino acids and proteins from the culture medium that have been a dsorbed, while in the presence of osteoblasts, this decrease is much greater because of the compounds generated by the cells that accelerate the dissolution of Ti.En este trabajo, se ha estudiado la interacción in situ entre células osteoblásticas Saos-2 y una superficie de Ti de rugosidad controlada a lo largo del tiempo. El estudio de la cinética y los mecanismos de proliferación celular de adhesión se ha realizado a través de la microbalanza de cristal de cuarzo (QCM y espectroscopía de impedancia electroquímica (EIS. La velocidad de adhesión de los osteoblastos sobre la superficie de Ti obtenida a través de medidas con la QCM, sigue una reacción de primer orden, con k=2×10−3 min−1. Los ensayos de impedancia indican que, en ausencia de las células, la resistencia del Ti disminuye con el tiempo (7 días, debido a la presencia de aminoácidos y proteínas del medio de cultivo que se han adsorbido, mientras que en presencia de células, esta disminución es mucho mayor debido a los productos metabólicos generados por las células que aceleran la disolución del Ti.

  17. Adhesion to the host cell surface is sufficient to mediate Listeria monocytogenes entry into epithelial cells

    Science.gov (United States)

    Ortega, Fabian E.; Rengarajan, Michelle; Chavez, Natalie; Radhakrishnan, Prathima; Gloerich, Martijn; Bianchini, Julie; Siemers, Kathleen; Luckett, William S.; Lauer, Peter; Nelson, W. James; Theriot, Julie A.

    2017-01-01

    The intestinal epithelium is the first physiological barrier breached by the Gram-positive facultative pathogen Listeria monocytogenes during an in vivo infection. Listeria monocytogenes binds to the epithelial host cell receptor E-cadherin, which mediates a physical link between the bacterium and filamentous actin (F-actin). However, the importance of anchoring the bacterium to F-actin through E-cadherin for bacterial invasion has not been tested directly in epithelial cells. Here we demonstrate that depleting αE-catenin, which indirectly links E-cadherin to F-actin, did not decrease L. monocytogenes invasion of epithelial cells in tissue culture. Instead, invasion increased due to increased bacterial adhesion to epithelial monolayers with compromised cell–cell junctions. Furthermore, expression of a mutant E-cadherin lacking the intracellular domain was sufficient for efficient L. monocytogenes invasion of epithelial cells. Importantly, direct biotin-mediated binding of bacteria to surface lipids in the plasma membrane of host epithelial cells was sufficient for uptake. Our results indicate that the only requirement for L. monocytogenes invasion of epithelial cells is adhesion to the host cell surface, and that E-cadherin–mediated coupling of the bacterium to F-actin is not required. PMID:28877987

  18. Laser Phototherapy Enhances Mesenchymal Stem Cells Survival in Response to the Dental Adhesives

    Directory of Open Access Journals (Sweden)

    Ivana Márcia Alves Diniz

    2015-01-01

    Full Text Available Background. We investigated the influence of laser phototherapy (LPT on the survival of human mesenchymal stem cells (MSCs submitted to substances leached from dental adhesives. Method. MSCs were isolated and characterized. Oral mucosa fibroblasts and osteoblast-like cells were used as comparative controls. Cultured medium conditioned with two adhesive systems was applied to the cultures. Cell monolayers were exposed or not to LPT. Laser irradiations were performed using a red laser (GaAlAs, 780 nm, 0.04 cm2, 40 mW, 1 W/cm2, 0.4 J, 10 seconds, 1 point, 10 J/cm2. After 24 h, cell viability was assessed by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide reduction assay. Data were statistically compared by ANOVA followed by Tukey’s test (P<0.05. Results. Different cell types showed different viabilities in response to the same materials. Substances leached from adhesives were less cytotoxic to MSCs than to other cell types. Substances leached from Clearfil SE Bond were highly cytotoxic to all cell types tested, except to the MSCs when applied polymerized and in association with LPT. LPT was unable to significantly increase the cell viability of fibroblasts and osteoblast-like cells submitted to the dental adhesives. Conclusion. LPT enhances mesenchymal stem cells survival in response to substances leached from dental adhesives.

  19. Rapid and serial quantification of adhesion forces of yeast and Mammalian cells.

    Directory of Open Access Journals (Sweden)

    Eva Potthoff

    Full Text Available Cell adhesion to surfaces represents the basis for niche colonization and survival. Here we establish serial quantification of adhesion forces of different cell types using a single probe. The pace of single-cell force-spectroscopy was accelerated to up to 200 yeast and 20 mammalian cells per probe when replacing the conventional cell trapping cantilever chemistry of atomic force microscopy by underpressure immobilization with fluidic force microscopy (FluidFM. In consequence, statistically relevant data could be recorded in a rapid manner, the spectrum of examinable cells was enlarged, and the cell physiology preserved until approached for force spectroscopy. Adhesion forces of Candida albicans increased from below 4 up to 16 nN at 37°C on hydrophobic surfaces, whereas a Δhgc1-mutant showed forces consistently below 4 nN. Monitoring adhesion of mammalian cells revealed mean adhesion forces of 600 nN of HeLa cells on fibronectin and were one order of magnitude higher than those observed for HEK cells.

  20. Study of the adhesion interaction using 51Cr labelling method between the myeloma cell lines and the endothelial cells

    International Nuclear Information System (INIS)

    Zhang Xueguang; Wang Jiangfang; Mao Zijun

    1995-06-01

    Using 51 Cr labelled multiple myeloma (MM) cell lines U266/XG-7, the regulatory effect of cytokines on the adhesive interaction between myeloma-cell lines U266/XG-7 and the endothelial cells, and the effects of these cytokines on expression of adhesion molecules and secretion of other cytokines were studied. The experimental results were as follows: (1) IL-6 and IL-6 Rgp 130-associated growth factors (such as GM-CSF) are not only myeloma cell growth factors, but also can enhance the adhesion between MM cells and endothelial cells and thus facilitated the metastasis of tumor cells. (2) Cytokines could induce increase in the expression of CD54 and CD44 on the endothelial cells and the secretion of IL-6 and TNF by the endothelial cells. On the other hand, the adhesion could also cause the change of CD11a, CD54, CD44 and VLA-4 on surface of myeloma cells XG-7. Finally, the interaction between MM cells and stromal cells from murine bone marrow could rapidly induce autocrine of IL-6 in human IL-6-dependent MM cells. (3) The interaction between stromal cells and tumor cells regulated by the cytokines and adhesion molecules was a key element in the pathogenesis and development of human MM. Among these factors, VLA-4 might be one of the molecules involved in U266/XG-7-EC interaction. (5 tabs., 8 figs.)

  1. Impact of cell adhesion and migration on nanoparticle uptake and cellular toxicity.

    Science.gov (United States)

    Pitchaimani, Arunkumar; Nguyen, Tuyen Duong Thanh; Koirala, Mukund; Zhang, Yuntao; Aryal, Santosh

    2017-09-01

    In vitro cell-nanoparticle (NP) studies involve exposure of NPs onto the monolayer cells growing at the bottom of a culture plate, and assumed that the NPs evenly distributed for a dose-responsive effect. However, only a few proportion of the administered dose reaches the cells depending on their size, shape, surface, and density. Often the amount incubated (administered dose) is misled as a responsive dose. Herein, we proposed a cell adhesion-migration (CAM) strategy, where cells incubated with the NP coated cell culture substrate to maximize the cell-NP interaction and investigated the physiological properties of the cells. In the present study, cell adhesion and migration pattern of human breast cancer cell (MCF-7) and mouse melanoma cell (B16-F10) on cell culture substrate decorated with toxic (cetyltrimethylammonium bromide, CTAB) and biocompatible (poly (sodium 4-styrenesulphonate), PSS) gold nanoparticles (AuNPs) of different sizes (5 and 40nm) were investigated and evaluated for cellular uptake efficiency, proliferation, and toxicity. Results showed enhanced cell adhesion, migration, and nanoparticle uptake only on biocompatible PSS coated AuNP, irrespective of its size. Whereas, cytotoxic NP shows retard proliferation with reduced cellular uptake efficiency. Considering the importance of cell adhesion and migration on cellular uptake and cytotoxicity assessment of nanoparticle, CAM strategy would hold great promises in cell-NP interaction studies. Copyright © 2017. Published by Elsevier Ltd.

  2. A role for adhesion molecules in contact-dependent T help for B cells

    DEFF Research Database (Denmark)

    Owens, T

    1991-01-01

    The role of cell contact in T-dependent B cell activation was examined. Small resting B cells from C57BL/6 mice were cultured with CBA-derived, non-alloreactive cloned T helper cells in anti-T cell receptor V beta 8-coated microwells. This induced polyclonal B cell activation to enter cell cycle...... that continued cell contact involving adhesion/accessory molecules induces B cells to proliferate and to respond to T cell lymphokines. A signaling role for cell interaction molecules on B cells is proposed, similar to the role of these and analogous molecules on T cells....

  3. Engineered matrix coatings to modulate the adhesion of CD133+ human hematopoietic progenitor cells.

    Science.gov (United States)

    Franke, Katja; Pompe, Tilo; Bornhäuser, Martin; Werner, Carsten

    2007-02-01

    Interactions of hematopoietic progenitor cells (HPC) with their local microenvironments in the bone marrow are thought to control homing, differentiation, and self-renewal of the cells. To dissect the role of extracellular matrix (ECM) components of the niche microenvironment, a set of well-defined ECM coatings including fibronectin, heparin, heparan sulphate, hyaluronic acid, tropocollagen I, and co-fibrils of collagen I with heparin or hyaluronic acid was prepared and analysed with respect to the attachment of human CD133+ HPC in vitro. The extension of the adhesion areas of individual cells as well as the fraction of adherent cells were assessed by reflection interference contrast microscopy (RICM). Intense cell-matrix interactions were found on surfaces coated with fibronectin, heparin, heparan sulphate, and on the collagen I based co-fibrils. Insignificant adhesion was found for tropocollagen I and hyaluronic acid. The strongest adhesion of HPC was observed on fibronectin with contact areas of about 7 microm(2). Interaction of HPC with coatings consisting of heparin, heparan sulphate, and co-fibrils result in small circular shaped contact zones of 3 microm(2) pointing to another, less efficient, adhesion mechanism. Analysing the specificity of cell-matrix interaction by antibody blocking experiments suggests an integrin(alpha(5)beta(1))-specific adhesion on fibronectin, while adhesion on heparin was shown to be mediated by selectins (CD62L). Taken together, our data provide a basis for the design of advanced culture carriers supporting site-specific proliferation or differentiation of HPC.

  4. Effects of SOX2 on Proliferation, Migration and Adhesion of Human Dental Pulp Stem Cells.

    Directory of Open Access Journals (Sweden)

    Pengfei Liu

    Full Text Available As a key factor for cell pluripotent and self-renewing phenotypes, SOX2 has attracted scientists' attention gradually in recent years. However, its exact effects in dental pulp stem cells (DPSCs are still unclear. In this study, we mainly investigated whether SOX2 could affect some biological functions of DPSCs. DPSCs were isolated from the dental pulp of human impacted third molar. SOX2 overexpressing DPSCs (DPSCs-SOX2 were established through retroviral infection. The effect of SOX2 on cell proliferation, migration and adhesion ability was evaluated with CCK-8, trans-well system and fibronectin-induced cell attachment experiment respectively. Whole genome expression of DPSCs-SOX2 was analyzed with RNA microarray. Furthermore, a rescue experiment was performed with SOX2-siRNA in DPSC-SOX2 to confirm the effect of SOX2 overexpression in DPSCs. We found that SOX2 overexpression could result in the enhancement of cell proliferation, migration, and adhesion in DPSCs obviously. RNA microarray analysis indicated that some key genes in the signal pathways associated with cell cycle, migration and adhesion were upregulated in different degree, and the results were further confirmed with qPCR and western-blot. Finally, DPSC-SOX2 transfected with SOX2-siRNA showed a decrease of cell proliferation, migration and adhesion ability, which further confirmed the biological effect of SOX2 in human DPSCs. This study indicated that SOX2 could improve the cell proliferation, migration and adhesion ability of DPSCs through regulating gene expression about cell cycle, migration and adhesion, and provided a novel strategy to develop seed cells with strong proliferation, migration and adhesion ability for tissue engineering.

  5. Effects of SOX2 on Proliferation, Migration and Adhesion of Human Dental Pulp Stem Cells.

    Science.gov (United States)

    Liu, Pengfei; Cai, Jinglei; Dong, Delu; Chen, Yaoyu; Liu, Xiaobo; Wang, Yi; Zhou, Yulai

    2015-01-01

    As a key factor for cell pluripotent and self-renewing phenotypes, SOX2 has attracted scientists' attention gradually in recent years. However, its exact effects in dental pulp stem cells (DPSCs) are still unclear. In this study, we mainly investigated whether SOX2 could affect some biological functions of DPSCs. DPSCs were isolated from the dental pulp of human impacted third molar. SOX2 overexpressing DPSCs (DPSCs-SOX2) were established through retroviral infection. The effect of SOX2 on cell proliferation, migration and adhesion ability was evaluated with CCK-8, trans-well system and fibronectin-induced cell attachment experiment respectively. Whole genome expression of DPSCs-SOX2 was analyzed with RNA microarray. Furthermore, a rescue experiment was performed with SOX2-siRNA in DPSC-SOX2 to confirm the effect of SOX2 overexpression in DPSCs. We found that SOX2 overexpression could result in the enhancement of cell proliferation, migration, and adhesion in DPSCs obviously. RNA microarray analysis indicated that some key genes in the signal pathways associated with cell cycle, migration and adhesion were upregulated in different degree, and the results were further confirmed with qPCR and western-blot. Finally, DPSC-SOX2 transfected with SOX2-siRNA showed a decrease of cell proliferation, migration and adhesion ability, which further confirmed the biological effect of SOX2 in human DPSCs. This study indicated that SOX2 could improve the cell proliferation, migration and adhesion ability of DPSCs through regulating gene expression about cell cycle, migration and adhesion, and provided a novel strategy to develop seed cells with strong proliferation, migration and adhesion ability for tissue engineering.

  6. Nanomechanical measurement of adhesion and migration of leukemia cells with phorbol 12-myristate 13-acetate treatment.

    Science.gov (United States)

    Zhou, Zhuo Long; Ma, Jing; Tong, Ming-Hui; Chan, Barbara Pui; Wong, Alice Sze Tsai; Ngan, Alfonso Hing Wan

    The adhesion and traction behavior of leukemia cells in their microenvironment is directly linked to their migration, which is a prime issue affecting the release of cancer cells from the bone marrow and hence metastasis. In assessing the effectiveness of phorbol 12-myristate 13-acetate (PMA) treatment, the conventional batch-cell transwell-migration assay may not indicate the intrinsic effect of the treatment on migration, since the treatment may also affect other cellular behavior, such as proliferation or death. In this study, the pN-level adhesion and traction forces between single leukemia cells and their microenvironment were directly measured using optical tweezers and traction-force microscopy. The effects of PMA on K562 and THP1 leukemia cells were studied, and the results showed that PMA treatment significantly increased cell adhesion with extracellular matrix proteins, bone marrow stromal cells, and human fibroblasts. PMA treatment also significantly increased the traction of THP1 cells on bovine serum albumin proteins, although the effect on K562 cells was insignificant. Western blots showed an increased expression of E-cadherin and vimentin proteins after the leukemia cells were treated with PMA. The study suggests that PMA upregulates adhesion and thus suppresses the migration of both K562 and THP1 cells in their microenvironment. The ability of optical tweezers and traction-force microscopy to measure directly pN-level cell-protein or cell-cell contact was also demonstrated.

  7. Intracellular targeting of annexin A2 inhibits tumor cell adhesion, migration, and in vivo grafting.

    Science.gov (United States)

    Staquicini, Daniela I; Rangel, Roberto; Guzman-Rojas, Liliana; Staquicini, Fernanda I; Dobroff, Andrey S; Tarleton, Christy A; Ozbun, Michelle A; Kolonin, Mikhail G; Gelovani, Juri G; Marchiò, Serena; Sidman, Richard L; Hajjar, Katherine A; Arap, Wadih; Pasqualini, Renata

    2017-06-26

    Cytoskeletal-associated proteins play an active role in coordinating the adhesion and migration machinery in cancer progression. To identify functional protein networks and potential inhibitors, we screened an internalizing phage (iPhage) display library in tumor cells, and selected LGRFYAASG as a cytosol-targeting peptide. By affinity purification and mass spectrometry, intracellular annexin A2 was identified as the corresponding binding protein. Consistently, annexin A2 and a cell-internalizing, penetratin-fused version of the selected peptide (LGRFYAASG-pen) co-localized and specifically accumulated in the cytoplasm at the cell edges and cell-cell contacts. Functionally, tumor cells incubated with LGRFYAASG-pen showed disruption of filamentous actin, focal adhesions and caveolae-mediated membrane trafficking, resulting in impaired cell adhesion and migration in vitro. These effects were paralleled by a decrease in the phosphorylation of both focal adhesion kinase (Fak) and protein kinase B (Akt). Likewise, tumor cells pretreated with LGRFYAASG-pen exhibited an impaired capacity to colonize the lungs in vivo in several mouse models. Together, our findings demonstrate an unrecognized functional link between intracellular annexin A2 and tumor cell adhesion, migration and in vivo grafting. Moreover, this work uncovers a new peptide motif that binds to and inhibits intracellular annexin A2 as a candidate therapeutic lead for potential translation into clinical applications.

  8. Shape and Dynamics of Adhesive Cells: Mechanical Response of Open Systems

    Science.gov (United States)

    Yang, Yuehua; Jiang, Hongyuan

    2017-05-01

    Cell adhesion is an essential biological process. However, previous theoretical and experimental studies ignore a key variable, the changes of cellular volume and pressure, during the dynamic adhesion process. Here, we treat cells as open systems and propose a theoretical framework to investigate how the exchange of water and ions with the environment affects the shape and dynamics of cells adhered between two adhesive surfaces. We show that adherent cells can be either stable (convex or concave) or unstable (spontaneous rupture or collapse) depending on the adhesion energy density, the cell size, the separation of two adhesive surfaces, and the stiffness of the flexible surface. Strikingly, we find that the unstable states vanish when cellular volume and pressure are constant. We further show that the detachments of convex and concave cells are very different. The mechanical response of adherent cells is mainly determined by the competition between the loading rate and the regulation of the cellular volume and pressure. Finally, we show that as an open system the detachment of adherent cells is also significantly influenced by the loading history. Thus, our findings reveal a major difference between living cells and nonliving materials.

  9. Investigation of adhesion and mechanical properties of human glioma cells by single cell force spectroscopy and atomic force microscopy.

    Science.gov (United States)

    Andolfi, Laura; Bourkoula, Eugenia; Migliorini, Elisa; Palma, Anita; Pucer, Anja; Skrap, Miran; Scoles, Giacinto; Beltrami, Antonio Paolo; Cesselli, Daniela; Lazzarino, Marco

    2014-01-01

    Active cell migration and invasion is a peculiar feature of glioma that makes this tumor able to rapidly infiltrate into the surrounding brain tissue. In our recent work, we identified a novel class of glioma-associated-stem cells (defined as GASC for high-grade glioma--HG--and Gasc for low-grade glioma--LG) that, although not tumorigenic, act supporting the biological aggressiveness of glioma-initiating stem cells (defined as GSC for HG and Gsc for LG) favoring also their motility. Migrating cancer cells undergo considerable molecular and cellular changes by remodeling their cytoskeleton and cell interactions with surrounding environment. To get a better understanding about the role of the glioma-associated-stem cells in tumor progression, cell deformability and interactions between glioma-initiating stem cells and glioma-associated-stem cells were investigated. Adhesion of HG/LG-cancer cells on HG/LG-glioma-associated stem cells was studied by time-lapse microscopy, while cell deformability and cell-cell adhesion strengths were quantified by indentation measurements by atomic force microscopy and single cell force spectroscopy. Our results demonstrate that for both HG and LG glioma, cancer-initiating-stem cells are softer than glioma-associated-stem cells, in agreement with their neoplastic features. The adhesion strength of GSC on GASC appears to be significantly lower than that observed for Gsc on Gasc. Whereas, GSC spread and firmly adhere on Gasc with an adhesion strength increased as compared to that obtained on GASC. These findings highlight that the grade of glioma-associated-stem cells plays an important role in modulating cancer cell adhesion, which could affect glioma cell migration, invasion and thus cancer aggressiveness. Moreover this work provides evidence about the importance of investigating cell adhesion and elasticity for new developments in disease diagnostics and therapeutics.

  10. Correlation between E-cadherin-regulated cell adhesion and human osteosarcoma MG-63 cell anoikis.

    Science.gov (United States)

    Lin, Ding-Sheng; Cai, Le-Yi; Ding, Jian; Gao, Wei-Yang

    2014-01-01

    The aim of this study was to investigate the relationship between cell adhesion and anoikis evasion among human osteosarcoma cells (MG-63), and to further study the molecular mechanisms. Human osteosarcoma cells (MG-63) were assessed for apoptosis, and caspase-3, E-cadherin and β-catenin expression in EDTA and control non-EDTA groups. MG-63 cells were predominantly aggregated when in suspension, and the suspended cells were more dispersed in the EDTA group. Following culture in suspension for 24 h, 48 h, or 72 h, the rates of apoptosis were 34.88%±3.64%, 59.3%±7.22% and 78.5%±5.21% in the experimental group and 7.34%±2.13%, 14.7%±3.69%, and 21.4%±3.60% in the control group, respectively. Caspase-3 expression progressively increased and E-cadherin and β-catenin were decreased in the experimental group, whereas there was no change in the control group. MG-63 cells could avoid anoikis through cell adhesion, and E-cadherin might play a role in this process.

  11. Impairment of lymphocyte adhesion to cultured fibroblasts and endothelial cells by γ-irradiation

    International Nuclear Information System (INIS)

    Piela-Smith, T.H.; Aneiro, L.; Nuveen, E.; Korn, J.H.; Aune, T.

    1992-01-01

    A critical component of immune responsiveness is the localization of effector cells at sites of inflammatory lesions. Adhesive molecules that may play a role in this process have been described on the surfaces of both lymphocytes and connective tissue cells. Adhesive interactions of T lymphocytes with fibroblasts or endothelial cells can be inhibited by preincubation of the fibroblasts or endothelial cells with antibody to intercellular adhesion molecule 1 (CD54) or by preincubation of the T cells with antibody to lymphocyte function-associated Ag 1 (CD11a/CD18), molecules shown to be important in several other cell-cell adhesion interactions. Here the authors show that γ-irradiation of human T lymphocytes impaired their ability to adhere to both fibroblasts and endothelial cells. This impairment was not associated with a loss of cell viability or of cell surface lymphocyte function-associated Ag 1 expression. γ-Irradiation of T cells is known to result in the activation of ADP-ribosyltransferase, an enzyme involved in DNA strand-break repair, causing subsequent depletion of cellular nicotinamide adenine dinucleotide (NAD) pools by increasing NAD consumption for poly(ADP-ribose) formation. Preincubation of T cells with either nicotinamide or 3-aminobenzamide, both known inhibitors of ADP-ribosyltransferase, completely reversed the suppressive effects of γ-irradiation on T cell adhesion. The maintenance of adhesion was accompanied by inhibition of irradiation-induced depletion of cellular NAD. These experiments suggest that the impairment of cellular immune function after irradiation in vivo may be caused, in part, by defective T cell emigration and localization at inflammatory sites. 44 refs., 5 figs., 3 tabs

  12. Cell penetrating peptides to dissect host-pathogen protein-protein interactions in Theileria -transformed leukocytes

    KAUST Repository

    Haidar, Malak; de Laté , Perle Latré ; Kennedy, Eileen J.; Langsley, Gordon

    2017-01-01

    One powerful application of cell penetrating peptides is the delivery into cells of molecules that function as specific competitors or inhibitors of protein-protein interactions. Ablating defined protein-protein interactions is a refined way

  13. Quantitative analysis of dynamic adhesion properties in human hepatocellular carcinoma cells with fullerenol.

    Science.gov (United States)

    Liu, Yang; Wang, Zuobin; Wang, Xinyue; Huang, Yanhong

    2015-12-01

    In this study, the effect of fullerenol (C60(OH)24) on the cellular dynamic biomechanical behaviors of living human hepatocellular carcinoma (SMCC-7721) cancer cells were investigated by atomic force microscope (AFM) nanoindentation. As an important biomarker of cellular information, the cell adhesion is essential to maintain proper functioning as well as links with the pathogenesis and canceration. Nonetheless, it is challenging to properly evaluate the complex adhesion properties as all the biomechanical parameters interfere with each other. To investigate the dynamic adhesion changes, especially in the case of the fullerenol treatment, the detachment force and work, adhesion events, and membrane tether properties were measured and analyzed systematically with the proposed quantitative method. The statistical analyses suggest that, under the same operating parameters of AFM, the dependence of adhesion energy on the tip-cell contact area is weakened after the fullerenol treatment and the probability of adhesion decreases significantly from 30.6% to 4.2%. In addition, the disruption of the cytoskeleton resulted in a 34% decrease of the average membrane tether force and a 21% increase of the average tether length. Benefiting from the quantitative method, this work contributes to revealing the effects of fullerenol on the cellular biomechanical properties of the living SMCC-7721 cells in a precise and rigorous way and additionally is further instructive to interpret the interaction mechanism of other potential nanomedicines with living cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The relative importance of topography and RGD ligand density for endothelial cell adhesion.

    Directory of Open Access Journals (Sweden)

    Guillaume Le Saux

    Full Text Available The morphology and function of endothelial cells depends on the physical and chemical characteristics of the extracellular environment. Here, we designed silicon surfaces on which topographical features and surface densities of the integrin binding peptide arginine-glycine-aspartic acid (RGD could be independently controlled. We used these surfaces to investigate the relative importance of the surface chemistry of ligand presentation versus surface topography in endothelial cell adhesion. We compared cell adhesion, spreading and migration on surfaces with nano- to micro-scaled pyramids and average densities of 6×10(2-6×10(11 RGD/mm(2. We found that fewer cells adhered onto rough than flat surfaces and that the optimal average RGD density for cell adhesion was 6×10(5 RGD/mm(2 on flat surfaces and substrata with nano-scaled roughness. Only on surfaces with micro-scaled pyramids did the topography hinder cell migration and a lower average RGD density was optimal for adhesion. In contrast, cell spreading was greatest on surfaces with 6×10(8 RGD/mm(2 irrespectively of presence of feature and their size. In summary, our data suggest that the size of pyramids predominately control the number of endothelial cells that adhere to the substratum but the average RGD density governs the degree of cell spreading and length of focal adhesion within adherent cells. The data points towards a two-step model of cell adhesion: the initial contact of cells with a substratum may be guided by the topography while the engagement of cell surface receptors is predominately controlled by the surface chemistry.

  15. Cell adhesive affinity does not dictate primitive endoderm segregation and positioning during murine embryoid body formation.

    Science.gov (United States)

    Moore, Robert; Cai, Kathy Q; Escudero, Diogo O; Xu, Xiang-Xi

    2009-09-01

    The classical cell sorting experiments undertaken by Townes and Holtfreter described the intrinsic propensity of dissociated embryonic cells to self-organize and reconcile into their original embryonic germ layers with characteristic histotypic positioning. Steinberg presented the differential adhesion hypothesis to explain these patterning phenomena. Here, we have reappraised these issues by implementing embryoid bodies to model the patterning of epiblast and primitive endoderm layers. We have used combinations of embryonic stem (ES) cells and their derivatives differentiated by retinoic acid treatment to model epiblast and endoderm cells, and wild-type or E-cadherin null cells to represent strongly or weakly adherent cells, respectively. One cell type was fluorescently labeled and reconstituted with another heterotypically to generate chimeric embryoid bodies, and cell sorting was tracked by time-lapse video microscopy and confirmed by immunostaining. When undifferentiated wild-type and E-cadherin null ES cells were mixed, the resulting cell aggregates consisted of a core of wild-type cells surrounded by loosely associated E-cadherin null cells, consistent with the differential adhesion hypothesis. However, when mixed with undifferentiated ES cells, the differentiated primitive endoderm-like cells sorted to the surface to form a primitive endoderm layer irrespective of cell-adhesive strength, contradicting the differential adhesion hypothesis. We propose that the primitive endoderm cells reach the surface by random movement, and subsequently the cells generate an apical/basal polarity that prevents reentry. Thus, the ability to generate epithelial polarity, rather than adhesive affinity, determines the surface positioning of the primitive endoderm cells. (c) 2009 Wiley-Liss, Inc.

  16. RP1 is a phosphorylation target of CK2 and is involved in cell adhesion.

    Science.gov (United States)

    Stenner, Frank; Liewen, Heike; Göttig, Stephan; Henschler, Reinhard; Markuly, Norbert; Kleber, Sascha; Faust, Michael; Mischo, Axel; Bauer, Stefan; Zweifel, Martin; Knuth, Alexander; Renner, Christoph; Wadle, Andreas

    2013-01-01

    RP1 (synonym: MAPRE2, EB2) is a member of the microtubule binding EB1 protein family, which interacts with APC, a key regulatory molecule in the Wnt signalling pathway. While the other EB1 proteins are well characterized the cellular function and regulation of RP1 remain speculative to date. However, recently RP1 has been implicated in pancreatic cancerogenesis. CK2 is a pleiotropic kinase involved in adhesion, proliferation and anti-apoptosis. Overexpression of protein kinase CK2 is a hallmark of many cancers and supports the malignant phenotype of tumor cells. In this study we investigate the interaction of protein kinase CK2 with RP1 and demonstrate that CK2 phosphorylates RP1 at Ser(236) in vitro. Stable RP1 expression in cell lines leads to a significant cleavage and down-regulation of N-cadherin and impaired adhesion. Cells expressing a Phospho-mimicking point mutant RP1-ASP(236) show a marked decrease of adhesion to endothelial cells under shear stress. Inversely, we found that the cells under shear stress downregulate endogenous RP1, most likely to improve cellular adhesion. Accordingly, when RP1 expression is suppressed by shRNA, cells lacking RP1 display significantly increased cell adherence to surfaces. In summary, RP1 phosphorylation at Ser(236) by CK2 seems to play a significant role in cell adhesion and might initiate new insights in the CK2 and EB1 family protein association.

  17. RP1 is a phosphorylation target of CK2 and is involved in cell adhesion.

    Directory of Open Access Journals (Sweden)

    Frank Stenner

    Full Text Available RP1 (synonym: MAPRE2, EB2 is a member of the microtubule binding EB1 protein family, which interacts with APC, a key regulatory molecule in the Wnt signalling pathway. While the other EB1 proteins are well characterized the cellular function and regulation of RP1 remain speculative to date. However, recently RP1 has been implicated in pancreatic cancerogenesis. CK2 is a pleiotropic kinase involved in adhesion, proliferation and anti-apoptosis. Overexpression of protein kinase CK2 is a hallmark of many cancers and supports the malignant phenotype of tumor cells. In this study we investigate the interaction of protein kinase CK2 with RP1 and demonstrate that CK2 phosphorylates RP1 at Ser(236 in vitro. Stable RP1 expression in cell lines leads to a significant cleavage and down-regulation of N-cadherin and impaired adhesion. Cells expressing a Phospho-mimicking point mutant RP1-ASP(236 show a marked decrease of adhesion to endothelial cells under shear stress. Inversely, we found that the cells under shear stress downregulate endogenous RP1, most likely to improve cellular adhesion. Accordingly, when RP1 expression is suppressed by shRNA, cells lacking RP1 display significantly increased cell adherence to surfaces. In summary, RP1 phosphorylation at Ser(236 by CK2 seems to play a significant role in cell adhesion and might initiate new insights in the CK2 and EB1 family protein association.

  18. Controlling cell adhesion via replication of laser micro/nano-textured surfaces on polymers

    Energy Technology Data Exchange (ETDEWEB)

    Koufaki, Niki; Ranella, Anthi; Barberoglou, Marios; Psycharakis, Stylianos; Fotakis, Costas; Stratakis, Emmanuel [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), 711 10, Heraklion, Crete (Greece); Aifantis, Katerina E, E-mail: stratak@iesl.forth.gr [Lab of Mechanics and Materials, Aristotle University of Thessaloniki, Thessaloniki (Greece)

    2011-12-15

    The aim of this study is to investigate cell adhesion and viability on highly rough polymeric surfaces with gradient roughness ratios and wettabilities prepared by microreplication of laser micro/nano-textured Si surfaces. Negative replicas on polydimethylsiloxane as well as positive ones on a photocurable (organically modified ceramic) and a biodegradable (poly(lactide-co-glycolide)) polymer have been successfully reproduced. The final culture substrates comprised from forests of micron-sized conical spikes exhibiting a range of roughness ratios and wettabilities, was achieved by changing the laser fluence used to fabricate the original template surfaces. Cell culture experiments were performed with the fibroblast NIH/3T3 and PC12 neuronal cell lines in order to investigate how these surfaces are capable of modulating different types of cellular responses including, viability, adhesion and morphology. The results showed a preferential adhesion of both cell types on the microstructured surfaces compared to the unstructured ones. In particular, the fibroblast NIH/3T3 cells show optimal adhesion for small roughness ratios, independent of the surface wettability and polymer type, indicating a non-monotonic dependence of cell adhesion on surface energy. In contrast, the PC12 cells were observed to adhere well to the patterned surfaces independent of the roughness ratio and wettability. These experimental findings are correlated with micromechanical measurements performed on the unstructured and replicated surfaces and discussed on the basis of previous observations describing the relation of cell response to surface energy and rigidity.

  19. Controlling cell adhesion via replication of laser micro/nano-textured surfaces on polymers

    International Nuclear Information System (INIS)

    Koufaki, Niki; Ranella, Anthi; Barberoglou, Marios; Psycharakis, Stylianos; Fotakis, Costas; Stratakis, Emmanuel; Aifantis, Katerina E

    2011-01-01

    The aim of this study is to investigate cell adhesion and viability on highly rough polymeric surfaces with gradient roughness ratios and wettabilities prepared by microreplication of laser micro/nano-textured Si surfaces. Negative replicas on polydimethylsiloxane as well as positive ones on a photocurable (organically modified ceramic) and a biodegradable (poly(lactide-co-glycolide)) polymer have been successfully reproduced. The final culture substrates comprised from forests of micron-sized conical spikes exhibiting a range of roughness ratios and wettabilities, was achieved by changing the laser fluence used to fabricate the original template surfaces. Cell culture experiments were performed with the fibroblast NIH/3T3 and PC12 neuronal cell lines in order to investigate how these surfaces are capable of modulating different types of cellular responses including, viability, adhesion and morphology. The results showed a preferential adhesion of both cell types on the microstructured surfaces compared to the unstructured ones. In particular, the fibroblast NIH/3T3 cells show optimal adhesion for small roughness ratios, independent of the surface wettability and polymer type, indicating a non-monotonic dependence of cell adhesion on surface energy. In contrast, the PC12 cells were observed to adhere well to the patterned surfaces independent of the roughness ratio and wettability. These experimental findings are correlated with micromechanical measurements performed on the unstructured and replicated surfaces and discussed on the basis of previous observations describing the relation of cell response to surface energy and rigidity.

  20. A Metabolic Biofuel Cell: Conversion of Human Leukocyte Metabolic Activity to Electrical Currents

    Directory of Open Access Journals (Sweden)

    Cui X Tracy

    2011-05-01

    Full Text Available Abstract An investigation of the electrochemical activity of human white blood cells (WBC for biofuel cell (BFC applications is described. WBCs isolated from whole human blood were suspended in PBS and introduced into the anode compartment of a proton exchange membrane (PEM fuel cell. The cathode compartment contained a 50 mM potassium ferricyanide solution. Average current densities between 0.9 and 1.6 μA cm-2 and open circuit potentials (Voc between 83 and 102 mV were obtained, which were both higher than control values. Cyclic voltammetry was used to investigate the electrochemical activity of the activated WBCs in an attempt to elucidate the mechanism of electron transfer between the cells and electrode. Voltammograms were obtained for the WBCs, including peripheral blood mononuclear cells (PBMCs - a lymphocyte-monocyte mixture isolated on a Ficoll gradient, a B lymphoblastoid cell line (BLCL, and two leukemia cell lines, namely K562 and Jurkat. An oxidation peak at about 363 mV vs. SCE for the PMA (phorbol ester activated primary cells, with a notable absence of a reduction peak was observed. Oxidation peaks were not observed for the BLCL, K562 or Jurkat cell lines. HPLC confirmed the release of serotonin (5-HT from the PMA activated primary cells. It is believed that serotonin, among other biochemical species released by the activated cells, contributes to the observed BFC currents.

  1. Complement-Mediated Enhancement of Monocyte Adhesion to Endothelial Cells by HLA Antibodies, and Blockade by a Specific Inhibitor of the Classical Complement Cascade, TNT003

    Science.gov (United States)

    Valenzuela, Nicole M.; Thomas, Kimberly A.; Mulder, Arend; Parry, Graham C.; Panicker, Sandip; Reed, Elaine F.

    2017-01-01

    Background Antibody-mediated rejection (AMR) of most solid organs is characterized by evidence of complement activation and/or intragraft macrophages (C4d + and CD68+ biopsies). We previously demonstrated that crosslinking of HLA I by antibodies triggered endothelial activation and monocyte adhesion. We hypothesized that activation of the classical complement pathway at the endothelial cell surface by HLA antibodies would enhance monocyte adhesion through soluble split product generation, in parallel with direct endothelial activation downstream of HLA signaling. Methods Primary human aortic endothelial cells (HAEC) were stimulated with HLA class I antibodies in the presence of intact human serum complement. C3a and C5a generation, endothelial P-selectin expression, and adhesion of human primary and immortalized monocytes (Mono Mac 6) were measured. Alternatively, HAEC or monocytes were directly stimulated with purified C3a or C5a. Classical complement activation was inhibited by pretreatment of complement with an anti-C1s antibody (TNT003). Results Treatment of HAEC with HLA antibody and human complement increased the formation of C3a and C5a. Monocyte recruitment by human HLA antibodies was enhanced in the presence of intact human serum complement or purified C3a or C5a. Specific inhibition of the classical complement pathway using TNT003 or C1q-depleted serum significantly reduced adhesion of monocytes in the presence of human complement. Conclusions Despite persistent endothelial viability in the presence of HLA antibodies and complement, upstream complement anaphylatoxin production exacerbates endothelial exocytosis and leukocyte recruitment. Upstream inhibition of classical complement may be therapeutic to dampen mononuclear cell recruitment and endothelial activation characteristic of microvascular inflammation during AMR. PMID:28640789

  2. Neural cell adhesion molecule (NCAM) marks adult myogenic cells committed to differentiation

    International Nuclear Information System (INIS)

    Capkovic, Katie L.; Stevenson, Severin; Johnson, Marc C.; Thelen, Jay J.; Cornelison, D.D.W.

    2008-01-01

    Although recent advances in broad-scale gene expression analysis have dramatically increased our knowledge of the repertoire of mRNAs present in multiple cell types, it has become increasingly clear that examination of the expression, localization, and associations of the encoded proteins will be critical for determining their functional significance. In particular, many signaling receptors, transducers, and effectors have been proposed to act in higher-order complexes associated with physically distinct areas of the plasma membrane. Adult muscle stem cells (satellite cells) must, upon injury, respond appropriately to a wide range of extracellular stimuli: the role of such signaling scaffolds is therefore a potentially important area of inquiry. To address this question, we first isolated detergent-resistant membrane fractions from primary satellite cells, then analyzed their component proteins using liquid chromatography-tandem mass spectrometry. Transmembrane and juxtamembrane components of adhesion-mediated signaling pathways made up the largest group of identified proteins; in particular, neural cell adhesion molecule (NCAM), a multifunctional cell-surface protein that has previously been associated with muscle regeneration, was significant. Immunohistochemical analysis revealed that not only is NCAM localized to discrete areas of the plasma membrane, it is also a very early marker of commitment to terminal differentiation. Using flow cytometry, we have sorted physically homogeneous myogenic cultures into proliferating and differentiating fractions based solely upon NCAM expression

  3. Crossing the Vascular Wall: Common and Unique Mechanisms Exploited by Different Leukocyte Subsets during Extravasation

    Directory of Open Access Journals (Sweden)

    Michael Schnoor

    2015-01-01

    Full Text Available Leukocyte extravasation is one of the essential and first steps during the initiation of inflammation. Therefore, a better understanding of the key molecules that regulate this process may help to develop novel therapeutics for treatment of inflammation-based diseases such as atherosclerosis or rheumatoid arthritis. The endothelial adhesion molecules ICAM-1 and VCAM-1 are known as the central mediators of leukocyte adhesion to and transmigration across the endothelium. Engagement of these molecules by their leukocyte integrin receptors initiates the activation of several signaling pathways within both leukocytes and endothelium. Several of such events have been described to occur during transendothelial migration of all leukocyte subsets, whereas other mechanisms are known only for a single leukocyte subset. Here, we summarize current knowledge on regulatory mechanisms of leukocyte extravasation from a leukocyte and endothelial point of view, respectively. Specifically, we will focus on highlighting common and unique mechanisms that specific leukocyte subsets exploit to succeed in crossing endothelial monolayers.

  4. Quantifying cellular mechanics and adhesion in renal tubular injury using single cell force spectroscopy.

    Science.gov (United States)

    Siamantouras, Eleftherios; Hills, Claire E; Squires, Paul E; Liu, Kuo-Kang

    2016-05-01

    Tubulointerstitial fibrosis represents the major underlying pathology of diabetic nephropathy where loss of cell-to-cell adhesion is a critical step. To date, research has predominantly focussed on the loss of cell surface molecular binding events that include altered protein ligation. In the current study, atomic force microscopy single cell force spectroscopy (AFM-SCFS) was used to quantify changes in cellular stiffness and cell adhesion in TGF-β1 treated kidney cells of the human proximal tubule (HK2). AFM indentation of TGF-β1 treated HK2 cells showed a significant increase (42%) in the elastic modulus (stiffness) compared to control. Fluorescence microscopy confirmed that increased cell stiffness is accompanied by reorganization of the cytoskeleton. The corresponding changes in stiffness, due to F-actin rearrangement, affected the work of detachment by changing the separation distance between two adherent cells. Overall, our novel data quantitatively demonstrate a correlation between cellular elasticity, adhesion and early morphologic/phenotypic changes associated with tubular injury. Diabetes affects many patients worldwide. One of the long term problems is diabetic nephropathy. Here, the authors utilized atomic force microscopy single cell force spectroscopy (AFM- SCFS) to study cellular stiffness and cell adhesion after TGF1 treatment in human proximal tubule kidney cells. The findings would help further understand the overall disease mechanism in diabetic patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Fundamental studies on ADCC (antibody-dependent cell-mediated cytotoxicity) of human peripheral blood leukocytes using sheep red blood cells as target cells, and the effect of erythrophagocytosis

    International Nuclear Information System (INIS)

    Ichikawa, Yukinobu; Takaya, Masatoshi; Arimori, Shigeru

    1979-01-01

    We investigated antibody-dependent cell-mediated cytotoxicity (ADCC) of human peripheral blood leukocytes by using 51 Cr-labelled sheep red blood cells (SRBC) as target cells and anti-SRBC rabbit antibody. Lysis of SRBC was mediated by either human peripheral lymphoid cells or phagocytes (Monocytes and granulocytes). SRBC were useful as target cells in ADCC assay against human lymphoid cells, since decreased cytotoxic activity of phagocyte-contaminated crude lymphocyte fraction was recovered by elimination of contaminating phagocytes. The monocytes inhibited ADCC of lymphoid cells through phagocytosis of SRBC. This assay system may be useful for estimating not only Fc receptor-mediated cytotoxicity but also Fc receptor-mediated phagocytic activity of human peripheral blood leukocytes. (author)

  6. A leukocyte antigen, Leu-13, is involved in induction of resistance of human cells to x-ray cell killing by interferon-α

    International Nuclear Information System (INIS)

    Kita, Kazuko; Zhai, Ling; Sugaya, Shigeru; Suzuki, Nobuo

    2003-01-01

    We previously reported on human interferon (HuIFN)-induced resistance of human cells to X-ray and UV cell killing. In this study, we searched for the genes whose expression is responsible for the resistance, using a PCR-based mRNA differential display method and Northern blotting analysis. RSa cells were used for this analysis, because they show increased resistance to X-ray- and UV-caused cell killing by HuIFN-α treatment prior to irradiation. Messenger RNA expression levels for Leu-13, a leukocyte antigen, were markedly up-regulated in RSa cells after HuIFN-α treatment. Furthermore, pretreatment of RSa cells with antisense oligonucleotides for Leu-13 mRNA resulted in the suppression of the HuIFN-α-induced resistance of the cells to X-ray cell killing, but did not modulate HuIFN-α-induced resistance to UV cell killing. These results suggest that Leu-13 is involved in HuIFN-α-induced resistance of human cells to X-ray cell killing, but not to UV cell killing. (author)

  7. Dopaminergic enhancement of cellular adhesion in bone marrow derived mesenchymal stem cells (MSCs).

    Science.gov (United States)

    Chen, Si; Bai, Bing; Lee, Dong Joon; Diachina, Shannon; Li, Yina; Wong, Sing Wai; Wang, Zhengyan; Tseng, Henry C; Ko, Ching-Chang

    2017-08-01

    Dopamine (DA) is a well-known neurotransmitter and critical element in the mussel adhesive protein that has gained increasing attention for its role in cellular growth enhancement in biomaterials, including cellular adhesion improvement. As the mechanism underlying this remains unclear, the objective of this study was to explore the effects of DA on the adhesion properties of bone marrow derived rat mesenchymal stem cells (rMSCs) using an hydroxyapatite gelatin nanocomposite biomaterial and to test whether the effects are mediated through various endogenously expressed DA receptors. Primary rMSCs were pretreated with D1-like antagonist, D2-like antagonist, or a combination of these antagonists followed by treatment with 50 μM DA and cellular adhesion quantification at 0.5, 1, 2 and 4 hours post DA addition. DA was found to increase rMSC adhesion and spreading at the 0.5 hour time-point and the dopaminergic effect on cell adhesion was partially blocked by DA antagonists. In addition, the D1-like and D2-like antagonists appeared to have a similar effect on rMSCs. Immunofluorescent staining indicated that the rMSC spreading area was significantly increased in the DA treated group versus the control group. Treatment of the D1-like DA antagonists with DA revealed that the actin filaments of rMSCs could not connect the membrane with the nucleus. In summary, DA was found to enhance early rMSC adhesion partially via DA receptor activation.

  8. Adhesion, biofilm formation, cell surface hydrophobicity and antifungal planktonic susceptibility: relationship among Candida spp.

    Directory of Open Access Journals (Sweden)

    Ana Isabel Silva-Dias

    2015-03-01

    Full Text Available We have performed the characterization of the adhesion profile, biofilm formation, cell surface hydrophobicity (CSH and antifungal susceptibility of 184 Candida clinical isolates obtained from different human reservoirs. Adhesion was quantified using a flow cytometric assay and biofilm formation was evaluated using two methodologies: XTT and crystal violet assay. CSH was quantified with the microbial adhesion to hydrocarbons test while planktonic susceptibility was assessed accordingly the CLSI protocol for yeast M27-A3 S4.Yeast cells of non-albicans species exhibit increased ability to adhere and form biofilm. However the correlation between adhesion and biofilm formation varied according to species and also with the methodology used for biofilm assessment. No association was found between strain´s site of isolation or planktonic antifungal susceptibility and adhesion or biofilm formation. Finally CSH seemed to be a good predictor for biofilm formation but not for adhesion.Despite the marked variability registered intra and inter species, C. tropicalis and C. parapsilosis were the species exhibiting high adhesion profile. C. tropicalis, C. guilliermondii and C. krusei revealed higher biofilm formation values in terms of biomass. C. parapsilosis was the species with lower biofilm metabolic activity.

  9. Adhesion, biofilm formation, cell surface hydrophobicity, and antifungal planktonic susceptibility: relationship among Candida spp.

    Science.gov (United States)

    Silva-Dias, Ana; Miranda, Isabel M; Branco, Joana; Monteiro-Soares, Matilde; Pina-Vaz, Cidália; Rodrigues, Acácio G

    2015-01-01

    We have performed the characterization of the adhesion profile, biofilm formation, cell surface hydrophobicity (CSH) and antifungal susceptibility of 184 Candida clinical isolates obtained from different human reservoirs. Adhesion was quantified using a flow cytometric assay and biofilm formation was evaluated using two methodologies: XTT and crystal violet assay. CSH was quantified with the microbial adhesion to hydrocarbons test while planktonic susceptibility was assessed accordingly the CLSI protocol for yeast M27-A3 S4. Yeast cells of non-albicans species exhibit increased ability to adhere and form biofilm. However, the correlation between adhesion and biofilm formation varied according to species and also with the methodology used for biofilm assessment. No association was found between strain's site of isolation or planktonic antifungal susceptibility and adhesion or biofilm formation. Finally CSH seemed to be a good predictor for biofilm formation but not for adhesion. Despite the marked variability registered intra and inter species, C. tropicalis and C. parapsilosis were the species exhibiting high adhesion profile. C. tropicalis, C. guilliermondii, and C. krusei revealed higher biofilm formation values in terms of biomass. C. parapsilosis was the species with lower biofilm metabolic activity.

  10. Interactions with nanoscale topography: adhesion quantification and signal transduction in cells of osteogenic and multipotent lineage.

    Science.gov (United States)

    Biggs, Manus J P; Richards, R Geoff; Gadegaard, Nikolaj; McMurray, Rebecca J; Affrossman, Stanley; Wilkinson, Chris D W; Oreffo, Richard O C; Dalby, Mathew J

    2009-10-01

    Polymeric medical devices widely used in orthopedic surgery play key roles in fracture fixation and orthopedic implant design. Topographical modification and surface micro-roughness of these devices regulate cellular adhesion, a process fundamental in the initiation of osteoinduction and osteogenesis. Advances in fabrication techniques have evolved the field of surface modification; in particular, nanotechnology has allowed the development of nanoscale substrates for the investigation into cell-nanofeature interactions. In this study human osteoblasts (HOBs) were cultured on ordered nanoscale pits and random nano "craters" and "islands". Adhesion subtypes were quantified by immunofluorescent microscopy and cell-substrate interactions investigated via immuno-scanning electron microscopy. To investigate the effects of these substrates on cellular function 1.7 k microarray analysis was used to establish gene profiles of enriched STRO-1+ progenitor cell populations cultured on these nanotopographies. Nanotopographies affected the formation of adhesions on experimental substrates. Adhesion formation was prominent on planar control substrates and reduced on nanocrater and nanoisland topographies; nanopits, however, were shown to inhibit directly the formation of large adhesions. STRO-1+ progenitor cells cultured on experimental substrates revealed significant changes in genetic expression. This study implicates nanotopographical modification as a significant modulator of osteoblast adhesion and cellular function in mesenchymal populations.

  11. Cell adhesion to fibrillin-1: identification of an Arg-Gly-Asp-dependent synergy region and a heparin-binding site that regulates focal adhesion formation

    DEFF Research Database (Denmark)

    Bax, Daniel V; Mahalingam, Yashithra; Cain, Stuart

    2007-01-01

    We have defined the molecular basis of cell adhesion to fibrillin-1, the major structural component of extracellular microfibrils that are associated with elastic fibres. Using human dermal fibroblasts, and recombinant domain swap fragments containing the Arg-Gly-Asp motif, we have demonstrated...... a requirement for upstream domains for integrin-alpha(5)beta(1)-mediated cell adhesion and migration. An adjacent heparin-binding site, which supports focal adhesion formation, was mapped to the fibrillin-1 TB5 motif. Site-directed mutagenesis revealed two arginine residues that are crucial for heparin binding...

  12. Cell Adhesion Selectivity of Stent Material to improve Bio-functionality by Ion Beam Modification

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaesang; Park, JUngchan; Jung, Myunghwan; Kim, Yongki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Junkyu [Bio alpha., Co. Ltd., Gimhae (Korea, Republic of)

    2014-05-15

    In this study, ion implantation into collagen coated Co-Cr alloy, which is a cheaper material of the artificial stent product comparing with Ti alloy, has been studied to develop small diameter artificial stent by the cell adhesion control. The size of stent was 1.6mm of the diameter and 18mm of the length. The life-time of artificial stent depends on adhesion property of endothelial-cells. We successfully controlled cell adhesion selectivity between endothelial cell and muscle cell by using collagen coated and He{sup +} ion beam irradiated Co-Cr-alloy to apply to artificial stent. But, we did not achieve the inhibition of platelet adhesion, yet by using collagen coating and He{sup +} ion beam irradiation. Based on this study, we have plan to research about separation between collagen coating effect and ion beam effect. Also, we will have more detail analysis of the mechanism of cell attachment. In recent years, ion implantation has been applied to the surface modification of prosthesis to improve blood compatibility and tissue compatibility in field of biomedical application. As well known, bio compatibility was concerned with the cell adhesion selectivity for bio-functionality. The biomedical application of ion beam technology would be used more widely in the future such as catheter and artificial graft.

  13. Cell Adhesion Selectivity of Stent Material to improve Bio-functionality by Ion Beam Modification

    International Nuclear Information System (INIS)

    Lee, Jaesang; Park, JUngchan; Jung, Myunghwan; Kim, Yongki; Park, Junkyu

    2014-01-01

    In this study, ion implantation into collagen coated Co-Cr alloy, which is a cheaper material of the artificial stent product comparing with Ti alloy, has been studied to develop small diameter artificial stent by the cell adhesion control. The size of stent was 1.6mm of the diameter and 18mm of the length. The life-time of artificial stent depends on adhesion property of endothelial-cells. We successfully controlled cell adhesion selectivity between endothelial cell and muscle cell by using collagen coated and He + ion beam irradiated Co-Cr-alloy to apply to artificial stent. But, we did not achieve the inhibition of platelet adhesion, yet by using collagen coating and He + ion beam irradiation. Based on this study, we have plan to research about separation between collagen coating effect and ion beam effect. Also, we will have more detail analysis of the mechanism of cell attachment. In recent years, ion implantation has been applied to the surface modification of prosthesis to improve blood compatibility and tissue compatibility in field of biomedical application. As well known, bio compatibility was concerned with the cell adhesion selectivity for bio-functionality. The biomedical application of ion beam technology would be used more widely in the future such as catheter and artificial graft

  14. A protocadherin-cadherin-FLRT3 complex controls cell adhesion and morphogenesis.

    Directory of Open Access Journals (Sweden)

    Xuejun Chen

    2009-12-01

    Full Text Available Paraxial protocadherin (PAPC and fibronectin leucine-rich domain transmembrane protein-3 (FLRT3 are induced by TGFbeta signaling in Xenopus embryos and both regulate morphogenesis by inhibiting C-cadherin mediated cell adhesion.We have investigated the functional and physical relationships between PAPC, FLRT3, and C-cadherin. Although neither PAPC nor FLRT3 are required for each other to regulate C-cadherin adhesion, they do interact functionally and physically, and they form a complex with cadherins. By itself PAPC reduces cell adhesion physiologically to induce cell sorting, while FLRT3 disrupts adhesion excessively to cause cell dissociation. However, when expressed together PAPC limits the cell dissociating and tissue disrupting activity of FLRT3 to make it effective in physiological cell sorting. PAPC counteracts FLRT3 function by inhibiting the recruitment of the GTPase RND1 to the FLRT3 cytoplasmic domain.PAPC and FLRT3 form a functional complex with cadherins and PAPC functions as a molecular "governor" to maintain FLRT3 activity at the optimal level for physiological regulation of C-cadherin adhesion, cell sorting, and morphogenesis.

  15. Single cell adhesion strength assessed with variable-angle total internal reflection fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Marcelina Cardoso Dos Santos

    2017-06-01

    Full Text Available We propose a new strategy to evaluate adhesion strength at the single cell level. This approach involves variable-angle total internal reflection fluorescence microscopy to monitor in real time the topography of cell membranes, i.e. a map of the membrane/substrate separation distance. According to the Boltzmann distribution, both potential energy profile and dissociation energy related to the interactions between the cell membrane and the substrate were determined from the membrane topography. We have highlighted on glass substrates coated with poly-L-lysine and fibronectin, that the dissociation energy is a reliable parameter to quantify the adhesion strength of MDA-MB-231 motile cells.

  16. Coupling biochemistry and mechanics in cell adhesion: a model for inhomogeneous stress fiber contraction

    International Nuclear Information System (INIS)

    Besser, Achim; Schwarz, Ulrich S

    2007-01-01

    Biochemistry and mechanics are closely coupled in cell adhesion. At sites of cell-matrix adhesion, mechanical force triggers signaling through the Rho-pathway, which leads to structural reinforcement and increased contractility in the actin cytoskeleton. The resulting force acts back to the sites of adhesion, resulting in a positive feedback loop for mature adhesion. Here, we model this biochemical-mechanical feedback loop for the special case when the actin cytoskeleton is organized in stress fibers, which are contractile bundles of actin filaments. Activation of myosin II molecular motors through the Rho-pathway is described by a system of reaction-diffusion equations, which are coupled into a viscoelastic model for a contractile actin bundle. We find strong spatial gradients in the activation of contractility and in the corresponding deformation pattern of the stress fiber, in good agreement with experimental findings

  17. [Effects of selenium compounds on proliferation, migration and adhesion of HeLa cells].

    Science.gov (United States)

    Sun, Licui; Lu, Jiaxi; Wang, Qin; Liu, Yiqun; Han, Feng; Yang, Yanhua; Zhang, Hongkun; Huang, Zhenwu

    2015-03-01

    To explore the effects of methylseleninic acid (MeSeA), selenomethionine (SeMet) and methylselenocysteine (MeSeCys) on proliferation, migration and adhesion of HeLa cells. HeLa cells were cultured and treated with MeSeA, SeMet and MeSeCys for 12 - 72 h respectively. MTT assay, healing assay and in vitro cell Matrigel adhesion assay were used to detect the proliferation, migration and adhesion of HeLa cells. Compared to the control group, the proliferation of HeLa cells was remarkably inhibited by MeSeA (P HeLa cells in MeSeA group was inhibited by 34% (P HeLa cells with inhibitions of 18% and 13% was in SeMet group in 4 h and 8 h. The inhibitions of HeLa cell migration in MeSeCys group was 28% (P HeLa cells in the MeSeA group, the SeMet group as well as the MeSeCys group were inhibited by 36% (P HeLa cell were effectively inhibited by MeSeA, while the adhesive function of HeLa cell was remarkably inhibited by MeSeCys.

  18. Cell adhesion and EGFR activation regulate EphA2 expression in cancer

    DEFF Research Database (Denmark)

    Larsen, Alice Bjerregaard; Stockhausen, Marie-Thérése; Poulsen, Hans Skovgaard

    2010-01-01

    largely unknown. Here we show that the expression of EphA2 in in vitro cultured cells, is restricted to cells growing adherently and that adhesion-induced EphA2 expression is dependent upon activation of the epidermal growth factor receptor (EGFR), mitogen activated protein kinase kinase (MEK) and Src...... family kinases (SRC). Moreover, the results show that adhesion-induced EGFR activation and EphA2 expression is affected by interactions with extracellular matrix (ECM) proteins working as integrin ligands. Stimulation with the EphA2 ligand, ephrinA1 inhibited ERK phosphorylation and cancer cell viability....... These effects were however abolished by activation of the EGF-receptor ligand system favoring Ras/MAPK signaling and cell proliferation. Based on our results, we propose a regulatory mechanism where cell adhesion induces EGFR kinase activation and EphA2 expression; and where the effect of ephrinA1 mediated...

  19. Preparation and regulating cell adhesion of anion-exchangeable layered double hydroxide micropatterned arrays.

    Science.gov (United States)

    Yao, Feng; Hu, Hao; Xu, Sailong; Huo, Ruijie; Zhao, Zhiping; Zhang, Fazhi; Xu, Fujian

    2015-02-25

    We describe a reliable preparation of MgAl-layered double hydroxide (MgAl-LDH) micropatterned arrays on gold substrate by combining SO3(-)-terminated self-assembly monolayer and photolithography. The synthesis route is readily extended to prepare LDH arrays on the SO3(-)-terminated polymer-bonded glass substrate amenable for cell imaging. The anion-exchangeable MgAl-LDH micropattern can act both as bioadhesive region for selective cell adhesion and as nanocarrier for drug molecules to regulate cell behaviors. Quantitative analysis of cell adhesion shows that selective HepG2 cell adhesion and spreading are promoted by the micropatterned MgAl-LDH, and also suppressed by methotrexate drug released from the LDH interlayer galleries.

  20. Functional Elements on SIRPα IgV domain Mediate Cell Surface Binding to CD47

    OpenAIRE

    Liu, Yuan; Tong, Qiao; Zhou, Yubin; Lee, Hsiau-Wei; Yang, Jenny J.; Bühring, Hans-Jörg; Chen, Yi-Tien; Ha, Binh; Chen, Celia X-J.; Zen, Ke

    2006-01-01

    SIRPα and SIRPβ1, the two major isoforms of the signal regulatory protein (SIRP) family, are co-expressed in human leukocytes but mediate distinct extracellular binding interactions and divergent cell signaling responses. Previous studies have demonstrated that binding of SIRPα with CD47, another important cell surface molecule, through the extracellular IgV domain regulates important leukocyte functions including macrophage recognition, leukocyte adhesion and transmigration. Although SIRPβ1 ...

  1. Kinetics of leukocytes and myeloid cell traffic in the murine corneal allograft response

    Czech Academy of Sciences Publication Activity Database

    Kuffová, L.; Lumsden, L.; Veselá, V.; Taylor, J. A.; Filipec, M.; Holáň, Vladimír; Dick, A. D.; Forrester, J. V.

    2001-01-01

    Roč. 72, č. 7 (2001), s. 1292-1298 ISSN 0041-1337 R&D Projects: GA MZd NI6019 Keywords : corneal transplantation * dendritic cells * cell trafic Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.184, year: 2001

  2. Aging effects of plasma polymerized ethylenediamine (PPEDA) thin films on cell-adhesive implant coatings

    International Nuclear Information System (INIS)

    Testrich, H.; Rebl, H.; Finke, B.; Hempel, F.; Nebe, B.; Meichsner, J.

    2013-01-01

    Thin plasma polymer films from ethylenediamine were deposited on planar substrates placed on the powered electrode of a low pressure capacitively coupled 13.56 MHz discharge. The chemical composition of the plasma polymer films was analyzed by Fourier Transform Infrared Reflection Absorption Spectroscopy (FT-IRRAS) as well as by X-ray photoelectron spectroscopy (XPS) after derivatization of the primary amino groups. The PPEDA films undergo an alteration during the storage in ambient air, particularly, due to reactions with oxygen. The molecular changes in PPEDA films were studied over a long-time period of 360 days. Simultaneously, the adhesion of human osteoblast-like cells MG-63 (ATCC) was investigated on PPEDA coated corundum blasted titanium alloy (Ti-6Al-4V), which is applied as implant material in orthopedic surgery. The cell adhesion was determined by flow cytometry and the cell shape was analyzed by scanning electron microscopy. Compared to uncoated reference samples a significantly enhanced cell adhesion and proliferation were measured for PPEDA coated samples, which have been maintained after long-time storage in ambient air and additional sterilization by γ−irradiation. - Highlights: • Development of cell-adhesive nitrogen-rich coatings for biomedical applications. • Plasma polymer films from low pressure 13.56 MHz discharge in argon-ethylenediamine. • Enhanced osteoblast adhesion/proliferation on coated implant material (Ti-6Al-4V). • Despite film aging over 360 days the enhanced cell adhesion of the coating remains. • No influence of additional y-sterilization on the enhanced cell adhesion

  3. Bio-active molecules modified surfaces enhanced mesenchymal stem cell adhesion and proliferation

    International Nuclear Information System (INIS)

    Mobasseri, Rezvan; Tian, Lingling; Soleimani, Masoud; Ramakrishna, Seeram; Naderi-Manesh, Hossein

    2017-01-01

    Surface modification of the substrate as a component of in vitro cell culture and tissue engineering, using bio-active molecules including extracellular matrix (ECM) proteins or peptides derived ECM proteins can modulate the surface properties and thereby induce the desired signaling pathways in cells. The aim of this study was to evaluate the behavior of human bone marrow mesenchymal stem cells (hBM-MSCs) on glass substrates modified with fibronectin (Fn), collagen (Coll), RGD peptides (RGD) and designed peptide (R-pept) as bio-active molecules. The glass coverslips were coated with fibronectin, collagen, RGD peptide and R-peptide. Bone marrow mesenchymal stem cells were cultured on different substrates and the adhesion behavior in early incubation times was investigated using scanning electron microscopy (SEM) and confocal microscopy. The MTT assay was performed to evaluate the effect of different bio-active molecules on MSCs proliferation rate during 24 and 72 h. Formation of filopodia and focal adhesion (FA) complexes, two steps of cell adhesion process, were observed in MSCs cultured on bio-active molecules modified coverslips, specifically in Fn coated and R-pept coated groups. SEM image showed well adhesion pattern for MSCs cultured on Fn and R-pept after 2 h incubation, while the shape of cells cultured on Coll and RGD substrates indicated that they might experience stress condition in early hours of culture. Investigation of adhesion behavior, as well as proliferation pattern, suggests R-peptide as a promising bio-active molecule to be used for surface modification of substrate in supporting and inducing cell adhesion and proliferation. - Highlights: • Bioactive molecules modified surface is a strategy to design biomimicry scaffold. • Bi-functional Tat-derived peptide (R-pept) enhanced MSCs adhesion and proliferation. • R-pept showed similar influences to fibronectin on FA formation and attachment.

  4. Vascular smooth muscle cell stiffness and adhesion to collagen I modified by vasoactive agonists.

    Directory of Open Access Journals (Sweden)

    Zhongkui Hong

    Full Text Available In vascular smooth muscle cells (VSMCs integrin-mediated adhesion to extracellular matrix (ECM proteins play important roles in sustaining vascular tone and resistance. The main goal of this study was to determine whether VSMCs adhesion to type I collagen (COL-I was altered in parallel with the changes in the VSMCs contractile state induced by vasoconstrictors and vasodilators. VSMCs were isolated from rat cremaster skeletal muscle arterioles and maintained in primary culture without passage. Cell adhesion and cell E-modulus were assessed using atomic force microscopy (AFM by repetitive nano-indentation of the AFM probe on the cell surface at 0.1 Hz sampling frequency and 3200 nm Z-piezo travelling distance (approach and retraction. AFM probes were tipped with a 5 μm diameter microbead functionalized with COL-I (1 mg\\ml. Results showed that the vasoconstrictor angiotensin II (ANG-II; 10-6 significantly increased (p<0.05 VSMC E-modulus and adhesion probability to COL-I by approximately 35% and 33%, respectively. In contrast, the vasodilator adenosine (ADO; 10-4 significantly decreased (p<0.05 VSMC E-modulus and adhesion probability by approximately -33% and -17%, respectively. Similarly, the NO donor (PANOate, 10-6 M, a potent vasodilator, also significantly decreased (p<0.05 the VSMC E-modulus and COL-I adhesion probability by -38% and -35%, respectively. These observations support the hypothesis that integrin-mediated VSMC adhesion to the ECM protein COL-I is dynamically regulated in parallel with VSMC contractile activation. These data suggest that the signal transduction pathways modulating VSMC contractile activation and relaxation, in addition to ECM adhesion, interact during regulation of contractile state.

  5. Cell surface clustering of Cadherin adhesion complex induced by antibody coated beads

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Cadherin receptors mediate cell-cell adhesion, signal transduction and assembly of cytoskeletons. How a single transmembrane molecule Cadherin can be involved in multiple functions through modulating its binding activities with many membrane adhesion molecules and cytoskeletal components is an unanswered question which can be elucidated by clues from bead experiments. Human lung cells expressing N-Cadherin were examined. After co-incubation with anti-N-Cadherin monoclonal antibody coated beads, cell surface clustering of N-Cadherin was induced. Immunofluorescent detection demonstrated that in addition to Cadherin, β-Catenin, α-Catenin, α-Actinin and Actin fluorescence also aggregated respectively at the membrane site of bead attachment. Myosin heavy chain (MHC), another major component of Actin cytoskeleton, did not aggregate at the membrane site of bead attachment. Adhesion unrelated protein Con A and polylysine conjugated beads did not induce the clustering of adhesion molecules. It is indicated that the Cadherin/Catenins/α-Actinin/Actin complex is formed at Cadherin mediated cell adherens junction; occupancy and cell surface clustering of Cadherin is crucial for the formation of Cadherin adhesion protein complexes.

  6. Mesenchymal stem cell adhesion but not plasticity is affected by high substrate stiffness

    Directory of Open Access Journals (Sweden)

    Janice Kal Van Tam, Koichiro Uto, Mitsuhiro Ebara, Stefania Pagliari, Giancarlo Forte and Takao Aoyagi

    2012-01-01

    Full Text Available The acknowledged ability of synthetic materials to induce cell-specific responses regardless of biological supplies provides tissue engineers with the opportunity to find the appropriate materials and conditions to prepare tissue-targeted scaffolds. Stem and mature cells have been shown to acquire distinct morphologies in vitro and to modify their phenotype when grown on synthetic materials with tunable mechanical properties. The stiffness of the substrate used for cell culture is likely to provide cells with mechanical cues mimicking given physiological or pathological conditions, thus affecting the biological properties of cells. The sensitivity of cells to substrate composition and mechanical properties resides in multiprotein complexes called focal adhesions, whose dynamic modification leads to cytoskeleton remodeling and changes in gene expression. In this study, the remodeling of focal adhesions in human mesenchymal stem cells in response to substrate stiffness was followed in the first phases of cell–matrix interaction, using poly-ε-caprolactone planar films with similar chemical composition and different elasticity. As compared to mature dermal fibroblasts, mesenchymal stem cells showed a specific response to substrate stiffness, in terms of adhesion, as a result of differential focal adhesion assembly, while their multipotency as a bulk was not significantly affected by matrix compliance. Given the sensitivity of stem cells to matrix mechanics, the mechanobiology of such cells requires further investigations before preparing tissue-specific scaffolds.

  7. Corneal cell adhesion to contact lens hydrogel materials enhanced via tear film protein deposition.

    Directory of Open Access Journals (Sweden)

    Claire M Elkins

    Full Text Available Tear film protein deposition on contact lens hydrogels has been well characterized from the perspective of bacterial adhesion and viability. However, the effect of protein deposition on lens interactions with the corneal epithelium remains largely unexplored. The current study employs a live cell rheometer to quantify human corneal epithelial cell adhesion to soft contact lenses fouled with the tear film protein lysozyme. PureVision balafilcon A and AirOptix lotrafilcon B lenses were soaked for five days in either phosphate buffered saline (PBS, borate buffered saline (BBS, or Sensitive Eyes Plus Saline Solution (Sensitive Eyes, either pure or in the presence of lysozyme. Treated contact lenses were then contacted to a live monolayer of corneal epithelial cells for two hours, after which the contact lens was sheared laterally. The apparent cell monolayer relaxation modulus was then used to quantify the extent of cell adhesion to the contact lens surface. For both lens types, lysozyme increased corneal cell adhesion to the contact lens, with the apparent cell monolayer relaxation modulus increasing up to an order of magnitude in the presence of protein. The magnitude of this increase depended on the identity of the soaking solution: lenses soaked in borate-buffered solutions (BBS, Sensitive Eyes exhibited a much greater increase in cell attachment upon protein addition than those soaked in PBS. Significantly, all measurements were conducted while subjecting the cells to moderate surface pressures and shear rates, similar to those experienced by corneal cells in vivo.

  8. The common lavender (Lavandula angustifolia Mill.) pectic polysaccharides modulate phagocytic leukocytes and intestinal Peyer's patch cells

    Czech Academy of Sciences Publication Activity Database

    Georgiev, Y.N.; Paulsen, B.S.; Kiyohara, H.; Číž, Milan; Ognyanov, M.H.; Vašíček, Ondřej; Rise, F.; Denev, P.; Yamada, H.; Lojek, Antonín; Kussovski, V.; Barsett, H.; Krastanov, A.I.; Yanakieva, I.Z.; Kratchanova, M.

    2017-01-01

    Roč. 174, oct2017 (2017), s. 948-959 ISSN 0144-8617 Institutional support: RVO:68081707 Keywords : Lavender * Pectin * Immunomodulation Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Cell biology Impact factor: 4.811, year: 2016

  9. Conjugates of Cell Adhesion Peptides for Therapeutics and Diagnostics Against Cancer and Autoimmune Diseases.

    Science.gov (United States)

    Moral, Mario E G; Siahaan, Teruna J

    2017-01-01

    Overexpressed cell-surface receptors are hallmarks of many disease states and are often used as markers for targeting diseased cells over healthy counterparts. Cell adhesion peptides, which are often derived from interacting regions of these receptor-ligand proteins, mimic surfaces of intact proteins and, thus, have been studied as targeting agents for various payloads to certain cell targets for cancers and autoimmune diseases. Because many cytotoxic agents in the free form are often harmful to healthy cells, the use of cell adhesion peptides in targeting their delivery to diseased cells has been studied to potentially reduce required effective doses and associated harmful side-effects. In this review, multiple cell adhesion peptides from extracellular matrix and ICAM proteins were used to selectively direct drug payloads, signal-inhibitor peptides, and diagnostic molecules, to diseased cells over normal counterparts. RGD constructs have been used to improve the selectivity and efficacy of diagnostic and drug-peptide conjugates against cancer cells. From this precedent, novel conjugates of antigenic and cell adhesion peptides, called Bifunctional Peptide Inhibitors (BPIs), have been designed to selectively regulate immune cells and suppress harmful inflammatory responses in autoimmune diseases. Similar peptide conjugations with imaging agents have delivered promising diagnostic methods in animal models of rheumatoid arthritis. BPIs have also been shown to generate immune tolerance and suppress autoimmune diseases in animal models of type-1 diabetes, rheumatoid arthritis, and multiple sclerosis. Collectively, these studies show the potential of cell adhesion peptides in improving the delivery of drugs and diagnostic agents to diseased cells in clinical settings. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Early cell adhesion events differ between osteoporotic and non-osteoporotic osteoblasts.

    Science.gov (United States)

    Perinpanayagam, H; Zaharias, R; Stanford, C; Brand, R; Keller, J; Schneider, G

    2001-11-01

    In osteoporosis, the regenerative capacity of bone is compromised, which may involve altered osteoblast (OB) activity. This could be attributed to an inappropriate synthesis and assembly of an extracellular matrix (ECM), altered cell adhesion to the ECM, or be due to inappropriate downstream activation of adhesion-mediated signaling cascades through proteins such as focal adhesion kinase (FAK). The purpose of our study was to compare early adhesion-mediated events using previously described and characterized clinically derived OBs obtained from human patients undergoing major joint arthroplasty for osteoporosis or osteoarthritis. The presence or absence of osteoporosis was established with a radiographic index. Using light microscopy and crystal violet staining, we show that OB cells derived from sites of osteoporosis do not attach and spread as well as non-osteoporotic (OP) OB cells. OP cells initially have a more rounded morphology, and show significantly less (P attachment to serum-coated tissue culture plastic over a 24 h time period. Immunofluorescent labeling after 24 h of attachment showed that OP OB focal adhesions (FAs) and stress fibers were less defined, and that the OP cells were smaller and had a more motile phenotype. When normalized protein lysates were Western blotted for phosphotyrosine (PY) a band corresponding to pp125FAK was identified. FAK tyrosine phosphorylation was evident at 6 h in both the OP and non-OP OBs, but decreased or was absent through 24 h in OP OBs. These results suggest early adhesion-mediated events, such as cell adhesion, attachment, and FAK signaling via PY may be altered in OP OBs.

  11. Photocrosslinked nanocomposite hydrogels from PEG and silica nanospheres: Structural, mechanical and cell adhesion characteristics

    International Nuclear Information System (INIS)

    Gaharwar, Akhilesh K.; Rivera, Christian; Wu, Chia-Jung; Chan, Burke K.; Schmidt, Gudrun

    2013-01-01

    Photopolymerized hydrogels are extensively investigated for various tissue engineering applications, primarily due to their ability to form hydrogels in a minimally invasive manner. Although photocrosslinkable hydrogels provide necessary biological and chemical characteristics to mimic cellular microenvironments, they often lack sufficient mechanical properties. Recently, nanocomposite approaches have demonstrated potential to overcome these deficits by reinforcing the hydrogel network with. In this study, we investigate some physical, chemical, and biological properties of photocrosslinked poly(ethylene glycol) (PEG)-silica hydrogels. The addition of silica nanospheres significantly suppresses the hydration degree of the PEG hydrogels, indicating surface interactions between the silica nanospheres and the polymer chains. No significant change in hydrogel microstructure or average pore size due to the addition of silica nanospheres was observed. However, addition of silica nanospheres significantly increases both the mechanical strength and the toughness of the hydrogel networks. The biological properties of these nanocomposite hydrogels were evaluated by seeding fibroblast cells on the hydrogel surface. While the PEG hydrogels showed minimum cell adhesion, spreading and proliferation, the addition of silica nanospheres enhanced initial cell adhesion, promoted cell spreading and increased the metabolic activity of the cells. Overall, results indicate that the addition of silica nanospheres improves the mechanical stiffness and cell adhesion properties of PEG hydrogels and can be used for biomedical applications that required controlled cell adhesion. - Graphical abstract: Structural, mechanical and biological properties of photocrosslinked nanocomposite hydrogels from silica and poly(ethylene oxide) are investigated. Silica reinforce the hydrogel network and improved mechanical strength. Addition of induces cell adhesion characteristic properties for various

  12. Quantal concept of T-cell activation: adhesion domains as immunological synapses

    International Nuclear Information System (INIS)

    Sackmann, Erich

    2011-01-01

    Adhesion micro-domains (ADs) formed during encounters of lymphocytes with antigen-presenting cells (APC) mediate the genetic expression of quanta of cytokines interleukin-2 (IL-2). The IL-2-induced activation of IL-2 receptors promotes the stepwise progression of the T-cells through the cell cycle, hence their name, immunological synapses. The ADs form short-lived reaction centres controlling the recruitment of activators of the biochemical pathway (the kinases Lck and ZAP) while preventing the access of inhibitors (phosphatase CD45) through steric repulsion forces. CD45 acts as the generator of adhesion domains and, through its role as a spacer protein, also as the promoter of the reaction. In a second phase of T-cell-APC encounters, long-lived global reaction spaces (called supramolecular activation complexes (SMAC)) form by talin-mediated binding of the T-cell integrin (LFA-1) to the counter-receptor ICAM-1, resulting in the formation of ring-like tight adhesion zones (peripheral SMAC). The ADs move to the centre of the intercellular adhesion zone forming the central SMAC, which serve in the recycling of the AD. We propose that cell stimulation is triggered by integrating the effect evoked by the short-lived adhesion domains. Similar global reaction platforms are formed by killer cells to destruct APC. We present a testable mechanical model showing that global reaction spaces (SMAC or dome-like contacts between cytotoxic cells and APC) form by self-organization through delayed activation of the integrin-binding affinity and stabilization of the adhesion zones by F-actin recruitment. The mechanical stability and the polarization of the adhering T-cells are mediated by microtubule-actin cross-talk.

  13. BRICHOS domain-containing leukocyte cell-derived chemotaxin 1-like cDNA from disk abalone Haliotis discus discus.

    Science.gov (United States)

    Kim, Yucheol; De Zoysa, Mahanama; Lee, Youngdeuk; Whang, Ilson; Lee, Jehee

    2010-11-01

    A BRICHOS domain-containing leukocyte cell-derived chemotaxin 1-like cDNA was cloned from the disk abalone (Haliotis discus discus) and designated as AbLECT-1. A full-length (705 bp) of AbLECT-1 cDNA was composed of a 576 bp open reading frame that translates into a putative peptide of 192 amino acids. Deduced amino acid sequence of AbLECT-1 had 15.5- and 27.8% identity and similarity to human LECT-1, respectively. Quantitative real-time PCR analysis results showed that the mRNA of AbLECT-1 was constitutively expressed in abalone hemocytes, gills, mantle, muscle, digestive tract and hepatopancreas in a tissue-specific manner. Moreover, the AbLECT-1 transcription level was induced in hemocytes after challenge with Vibrio alginolyticus, Vibrio parahemolyticus, and Listeria monocytogenes suggesting that it may be involved in immune response reactions in abalone. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Cytoskeletal proteins from human skin fibroblasts, peripheral blood leukocytes, and a lymphoblastoid cell line compared by two-dimensional gel electrophoresis

    International Nuclear Information System (INIS)

    Giometti, C.S.; Willard, K.E.; Anderson, N.L.

    1982-01-01

    Differences in proteins between cells grown as suspension cultures and those grown as attached cultures were studied by comparing the proteins of detergent-resistant cytoskeletons prepared from peripheral blood leukocytes and a lymphoblastoid cell line (GM607) (both grown as suspension cultures) and those of human skin fibroblasts (grown as attached cultures) by two-dimensional gel electrophoresis. The major cytoskeletal proteins of the leukocytes were also present in the protein pattern of GM607 cytoskeletons. In contrast, the fibroblast cytoskeletal protein pattern contained four groups of proteins that differed from the patterns of the leukocytes and GM607. In addition, surface labeling of GM607 and human fibroblasts with 125 I demonstrated that substantial amounts of vimentin and actin are exposed at the surface of the attached fibroblasts, but there is little evidence of similar exposure at the surface of the suspension-grown GM607. These results demonstrate some differences in cytoskeletal protein composition between different types of cells could be related to their ability or lack of ability to grow as attached cells in tissue culture

  15. Enhanced adhesion of early endothelial progenitor cells to radiation-induced senescence-like vascular endothelial cells in vitro

    International Nuclear Information System (INIS)

    Sermsathanasawadi, N.; Inoue, Yoshinori; Iwai, Takehisa; Ishii, Hideto; Yoshida, Masayuki; Igarashi, Kaori; Miura, Masahiko

    2009-01-01

    The effects of ionizing radiation (IR) on tumor neovascularization are still unclear. We previously reported that vascular endothelial cells (ECs) expressing the IR-induced senescence-like (IRSL) phenotype exhibit a significant decrease in angiogenic activity in vitro. In this study, we examined the effects of the IRSL phenotype on adhesion to early endothelial progenitor cells (early EPCs). Adhesion of human peripheral blood-derived early EPCs to human umbilical vein endothelial cells (HUVECs) expressing the IRSL phenotype was evaluated by an adhesion assay under static conditions. It was revealed that the IRSL HUVECs supported significantly more adhesion of early EPCs than normal HUVECs. Expressions of ICAM-1, VCAM-1 and E-selectin were up-regulated in IRSL HUVECs. Pre-treatment of IRSL HUVECs with adhesion-blocking monoclonal antibodies against E-selectin and VCAM-1 significantly reduced early EPC adhesion to IRSL HUVECs, suggesting a potential role for the E-selectin and VCAM-1 in the adhesion between IRSL ECs and early EPCs. Therefore, the IRSL phenotype expressed in ECs may enhance neovascularization via increased homing of early EPCs. Our findings are first to implicate the complex effects of this phenotype on tumor neovascularization following irradiation. (author)

  16. Cell adhesion of F{sup +} ion implantation of intraocular lens

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.J. E-mail: dejunli@hotmail.com; Cui, F.Z.; Gu, H.Q

    1999-04-01

    The cell adhesion of ion implanted polymethylmethacrylate (PMMA) intraocular lens was studied using cultured cells in vitro. F{sup +} ion implantation was performed at the energies of 40, 60, 80, 100 keV with the fluences ranging from 5x10{sup 13} to 1x10{sup 15} ions/cm{sup 2} at room temperature. The cell adhesion tests gave interesting results that the number of the neutral granulocytes and the macrophages adhering on surface were reduced significantly after ion implantation. The optimal fluence was about 4x10{sup 14} ions/cm{sup 2}. The hydrophobicity imparted to the lens surface was also enhanced. The results of X-ray photoelectron spectroscopy analysis indicated that ion implantation resulted in the cleavage of some pendant groups, the oxidation of the surface, and the formation of some new chemical bonds, which was probably the main reason for the cell adhesion change.

  17. Cell adhesion and EGFR activation regulate EphA2 expression in cancer

    DEFF Research Database (Denmark)

    Larsen, Alice Bjerregaard; Stockhausen, Marie-Thérése; Poulsen, Hans Skovgaard

    2010-01-01

    family kinases (SRC). Moreover, the results show that adhesion-induced EGFR activation and EphA2 expression is affected by interactions with extracellular matrix (ECM) proteins working as integrin ligands. Stimulation with the EphA2 ligand, ephrinA1 inhibited ERK phosphorylation and cancer cell viability...... largely unknown. Here we show that the expression of EphA2 in in vitro cultured cells, is restricted to cells growing adherently and that adhesion-induced EphA2 expression is dependent upon activation of the epidermal growth factor receptor (EGFR), mitogen activated protein kinase kinase (MEK) and Src...

  18. Smooth muscle cell rigidity and extracellular matrix organization influence endothelial cell spreading and adhesion formation in coculture.

    Science.gov (United States)

    Wallace, Charles S; Strike, Sophie A; Truskey, George A

    2007-09-01

    Efforts to develop functional tissue-engineered blood vessels have focused on improving the strength and mechanical properties of the vessel wall, while the functional status of the endothelium within these vessels has received less attention. Endothelial cell (EC) function is influenced by interactions between its basal surface and the underlying extracellular matrix. In this study, we utilized a coculture model of a tissue-engineered blood vessel to evaluate EC attachment, spreading, and adhesion formation to the extracellular matrix on the surface of quiescent smooth muscle cells (SMCs). ECs attached to and spread on SMCs primarily through the alpha(5)beta(1)-integrin complex, whereas ECs used either alpha(5)beta(1)- or alpha(v)beta(3)-integrin to spread on fibronectin (FN) adsorbed to plastic. ECs in coculture lacked focal adhesions, but EC alpha(5)beta(1)-integrin bound to fibrillar FN on the SMC surface, promoting rapid fibrillar adhesion formation. As assessed by both Western blot analysis and quantitative real-time RT-PCR, coculture suppressed the expression of focal adhesion proteins and mRNA, whereas tensin protein and mRNA expression were elevated. When attached to polyacrylamide gels with similar elastic moduli as SMCs, focal adhesion formation and the rate of cell spreading increased relative to ECs in coculture. Thus, the elastic properties are only one factor contributing to EC spreading and focal adhesion formation in coculture. The results suggest that the softness of the SMCs and the fibrillar organization of FN inhibit focal adhesions and reduce cell spreading while promoting fibrillar adhesion formation. These changes in the type of adhesions may alter EC signaling pathways in tissue-engineered blood vessels.

  19. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion

    International Nuclear Information System (INIS)

    Takabe, Piia; Bart, Geneviève; Ropponen, Antti; Rilla, Kirsi; Tammi, Markku; Tammi, Raija; Pasonen-Seppänen, Sanna

    2015-01-01

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells. - Highlights: • Inducible HAS3-MV3 melanoma cell line was generated using Lentiviral transduction. • HAS3 overexpression inhibits MV3 cell migration via hyaluronan–receptor interaction. • HAS3 overexpression decreases MV3 melanoma cell proliferation and adhesion. • ERK1/2 phosphorylation is downregulated by 50% in HAS3 overexpressing cells. • The results suggest that hyaluronan has anti-cancer like effects in melanoma

  20. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Takabe, Piia, E-mail: piia.takabe@uef.fi [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland); Bart, Geneviève [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland); Ropponen, Antti [University of Eastern Finland, Institute of Clinical Medicine, 70211 Kuopio (Finland); Rilla, Kirsi; Tammi, Markku; Tammi, Raija; Pasonen-Seppänen, Sanna [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland)

    2015-09-10

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells. - Highlights: • Inducible HAS3-MV3 melanoma cell line was generated using Lentiviral transduction. • HAS3 overexpression inhibits MV3 cell migration via hyaluronan–receptor interaction. • HAS3 overexpression decreases MV3 melanoma cell proliferation and adhesion. • ERK1/2 phosphorylation is downregulated by 50% in HAS3 overexpressing cells. • The results suggest that hyaluronan has anti-cancer like effects in melanoma.

  1. Cell Adhesion Molecule and Lymphocyte Activation Marker Expression during Experimental Vaginal Candidiasis

    Science.gov (United States)

    Wormley, Floyd L.; Chaiban, Joseph; Fidel, Paul L.

    2001-01-01

    Cell-mediated immunity by Th1-type CD4+ T cells is the predominant host defense mechanism against mucosal candidiasis. However, studies using an estrogen-dependent murine model of vaginal candidiasis have demonstrated little to no change in resident vaginal T cells during infection and no systemic T-cell infiltration despite the presence of Candida-specific systemic Th1-type responses in infected mice. The present study was designed to further investigate these observations by characterizing T-cell activation and cell adhesion molecule expression during primary and secondary C. albicans vaginal infections. While flow cytometry analysis of activation markers showed some evidence for activation of CD3+ draining lymph node and/or vaginal lymphocytes during both primary and secondary vaginal Candida infection, CD3+ cells expressing the homing receptors and integrins α4β7, αM290β7, and α4β1 in draining lymph nodes of mice with primary and secondary infections were reduced compared to results for uninfected mice. At the local level, few vaginal lymphocytes expressed integrins, with only minor changes observed during both primary and secondary infections. On the other hand, immunohistochemical analysis of vaginal cell adhesion molecule expression showed increases in mucosal addressin cell adhesion molecule 1 and vascular cell adhesion molecule 1 expression during both primary and secondary infections. Altogether, these data suggest that although the vaginal tissue is permissive to cellular infiltration during a vaginal Candida infection, the reduced numbers of systemic cells expressing the reciprocal cellular adhesion molecules may preempt cellular infiltration, thereby limiting Candida-specific T-cell responses against infection. PMID:11447188

  2. Epigenetic heterochromatin markers distinguish terminally differentiated leukocytes from incompletely differentiated leukemia cells in human blood

    Czech Academy of Sciences Publication Activity Database

    Popova, Evgenya Y.; Claxton, David F.; Lukášová, Emilie; Bird, Philip I.; Grigoryev, Sergei A.

    2006-01-01

    Roč. 34, č. 4 (2006), s. 453-462 ISSN 0301-472X R&D Projects: GA AV ČR(CZ) 1QS500040508 Institutional research plan: CEZ:AV0Z50040507 Keywords : terminal cell differentiation * chromatin structure * chronic myeloid leukemia Subject RIV: BO - Biophysics Impact factor: 3.408, year: 2006

  3. Initial afferent lymphatic vessels controlling outbound leukocyte traffic from skin to lymph nodes.

    Directory of Open Access Journals (Sweden)

    Ignacio eMelero

    2013-12-01

    Full Text Available Tissue drains fluid and macromolecules through lymphatic vessels, which are lined by a specialized endothelium that expresses peculiar differentiation proteins, not found in blood vessels (i.e: LYVE-1, Podoplanin, PROX-1 and VEGFR-3. Lymphatic capillaries are characteristically devoid of a continuous basal membrane and are anchored to the ECM by elastic fibers that act as pulling ropes which open the vessel to avoid oedema if tissue volume increases, as it occurs upon inflammation. Lymphatic vessels are also crucial for the transit of T lymphocytes and antigen presenting cells from tissue to draining lymph nodes. Importantly, cell traffic control across lymphatic endothelium is differently regulated under resting and inflammatory conditions. Under steady-state non-inflammatory conditions, leukocytes enter into the lymphatic capillaries through basal membrane gaps (portals. This entrance is integrin-independent and seems to be mainly guided by CCL21 chemokine gradients acting on leukocytes expressing CCR7. In contrast, inflammatory processes in lymphatic capillaries involve a plethora of cytokines, chemokines, leukocyte integrins and other adhesion molecules. Importantly, under inflammation a role for integrins and their ligands becomes apparent and, as a consequence, the number of leukocytes entering the lymphatic capillaries multiplies several-fold. Enhancing transmigration of dendritic cells en route to lymph nodes is conceivably useful for vaccination and cancer immunotherapy, whereas interference with such key mechanisms may ameliorate autoimmunity or excessive inflammation. Recent findings illustrate how, transient cell-to-cell interactions between lymphatic endothelial cells and leukocytes contribute to shape the subsequent behaviour of leukocytes and condition the lymphatic vessel for subsequent trans-migratory events.

  4. Involvement of JAK2 upstream of the PI 3-kinase in cell-cell adhesion regulation by gastrin

    International Nuclear Information System (INIS)

    Ferrand, Audrey; Kowalski-Chauvel, Aline; Bertrand, Claudine; Pradayrol, Lucien; Fourmy, Daniel; Dufresne, Marlene; Seva, Catherine

    2004-01-01

    The Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling pathway has been implicated in cell transformation and proliferation. Besides aberrant cell proliferation, loss of cell-cell adhesion during epithelial-mesenchymal transition (EMT) is an important event which occurs during development of epithelial cancers. However, the role of JAK-dependent pathways in this process is not known. We analyzed the involvement of these pathways in the regulation of E-cadherin-dependent cell-cell adhesion by gastrin, a mitogenic factor for gastrointestinal (GI) tract. We identified JAK2/STAT3 as a new pathway in gastrin signaling. We demonstrated that JAK2 functions as an upstream mediator of the phosphatidylinositol 3 (PI 3)-kinase activity in gastrin signaling. Indeed, we observed a coprecipitation of both kinases and an inhibition of gastrin-induced PI 3-kinase activation when JAK2 activity is blocked. We also demonstrated that loss of cell-cell adhesion and the increase in cell motility induced by gastrin required the activation of JAK2 and the PI 3-kinase. Indeed, the modifications in localization of adherens junctions proteins and the migration, observed in gastrin-stimulated cells, were reversed by inhibition of both kinases. These results described the involvement of JAK2 in the modulation of cell-cell adhesion in epithelial cells. They support a possible role of JAK2 in the epithelial-mesenchymal transition which occurs during malignant development

  5. Fermented soya bean (tempe) extracts reduce adhesion of enterotoxigenic Escherichia coli to intestinal epithelial cells

    NARCIS (Netherlands)

    Roubos-van den Hil, P.J.; Nout, M.J.R.; Beumer, R.R.; Meulen, van der J.; Zwietering, M.H.

    2009-01-01

    Aims: This study aimed to investigate the effect of processed soya bean, during the successive stages of tempe fermentation and different fermentation times, on adhesion of enterotoxigenic Escherichia coli (ETEC) K88 to intestinal brush border cells as well as Caco-2 intestinal epithelial cells; and

  6. Corrugated round fibers to improve cell adhesion and proliferation in tissue engineering scaffolds

    NARCIS (Netherlands)

    Bettahalli Narasimha, M.S.; Arkesteijn, I.T.M.; Wessling, Matthias; Poot, Andreas A.; Stamatialis, Dimitrios

    2013-01-01

    Optimal cell interaction with biomaterial scaffolds is one of the important requirements for the development of successful in vitro tissue-engineered tissues. Fast, efficient and spatially uniform cell adhesion can improve the clinical potential of engineered tissue. Three-dimensional (3-D) solid

  7. Mechanical Entrapment Is Insufficient and Intercellular Adhesion Is Essential for Metastatic Cell Arrest in Distant Organs

    Directory of Open Access Journals (Sweden)

    Olga V. Glinskii

    2005-05-01

    Full Text Available In this report, we challenge a common perception that tumor embolism is a size-limited event of mechanical arrest, occurring in the first capillary bed encountered by blood-borne metastatic cells. We tested the hypothesis that mechanical entrapment alone, in the absence of tumor cell adhesion to blood vessel walls, is not sufficient for metastatic cell arrest in target organ microvasculature. The in vivo metastatic deposit formation assay was used to assess the number and location of fluorescently labeled tumor cells lodged in selected organs and tissues following intravenous inoculation. We report that a significant fraction of breast and prostate cancer cells escapes arrest in a lung capillary bed and lodges successfully in other organs and tissues. Monoclonal antibodies and carbohydrate-based compounds (anti-Thomsen-Friedenreich antigen antibody, anti-galectin-3 antibody, modified citrus pectin, and lactulosyl-L-leucine, targeting specifically β-galactoside-mediated tumor-endothelial cell adhesive interactions, inhibited by >90% the in vivo formation of breast and prostate carcinoma metastatic deposits in mouse lung and bones. Our results indicate that metastatic cell arrest in target organ microvessels is not a consequence of mechanical trapping, but is supported predominantly by intercellular adhesive interactions mediated by cancer-associated Thomsen-Friedenreich glycoantigen and β-galactoside-binding lectin galectin-3. Efficient blocking of β-galactoside-mediated adhesion precludes malignant cell lodging in target organs.

  8. QUANTIFICATION OF GLOMERULAR EPITHELIAL-CELL ADHESION BY USING ANTI-DNA ANTIBODIES IN ELISA

    NARCIS (Netherlands)

    COERS, W; SMEENK, RJT; SALANT, DJ; WEENING, JJ

    A sensitive and reproducible microassay is described for quantification of adhesion of cells to matrix-coated 96-wells plates under different experimental conditions. For this purpose glomerular visceral epithelial cells (GVEC) were used. Attached GVEC were fixed with methanol and incubated with a

  9. Induction of gastric cancer cell adhesion through transforming growth factor-beta1-mediated peritoneal fibrosis

    Directory of Open Access Journals (Sweden)

    Ma Xiao-Yang

    2010-10-01

    Full Text Available Abstract Background Peritoneal dissemination is one of the main causes of death in gastric cancer patients. Transforming growth factor-beta1 (TGF-β1, one of the most potent fibrotic stimuli for mesothelial cells, may play a key role in this processing. The purpose of this study is to elucidate the effects of TGF-β1 on regulation of gastric cancer adhesion to mesothelial cells. Methods Peritoneal tissues and peritoneal wash fluid were obtained for hematoxylin and eosin staining or ELISA to measure fibrosis and TGF-β1 levels, respectively. The peritoneal mesothelial cell line, HMrSV5, was used to determine the role of TGF-β1 in regulation of gastric cancer cell adhesion to mesothelial cells and expression of collagen, fibronectin, and Smad 2/3 by using adhesion assay, western blot, and RT-PCR. Results The data showed that TGF-β1 treatment was able to induce collagen III and fibronectin expression in the mesothelial cells, which was associated with an increased adhesion ability of gastric cancer cells, but knockdown of minimal sites of cell binding domain of extracellular matrix can partially inhibit these effects. Conclusion Peritoneal fibrosis induced by TGF-β1 may provide a favorable environment for the dissemination of gastric cancer.

  10. Inhibiting focal adhesion kinase (FAK) blocks IL-4 induced VCAM-1 expression and eosinophil recruitment in vitro and in vivo.

    Science.gov (United States)

    Aulakh, Gurpreet K; Petri, Björn; Wojcik, Katarzyna M; Colarusso, Pina; Lee, James J; Patel, Kamala D

    2018-04-06

    Leukocyte recruitment plays a critical role during both normal inflammation and chronic inflammatory diseases, and ongoing studies endeavor to better understand the complexities of this process. Focal adhesion kinase (FAK) is well known for its role in cancer, yet it also has been shown to regulate aspects of neutrophil and B16 melanoma cell recruitment by rapidly influencing endothelial cell focal adhesion dynamics and junctional opening. Recently, we found that FAK related non-kinase (FRNK), a protein that is often used as a FAK dominant negative, blocked eosinophil transmigration by preventing the transcription of vascular cell adhesion molecule-1 (VCAM-1) and eotaxin-3 (CCL26). Surprisingly, the blocking occurred even in the absence of endogenous FAK. To better understand the role of FAK in leukocyte recruitment, we used a FAK-specific inhibitor (PF-573228) and determined the effect on IL-4 induced eosinophil recruitment in vitro and in vivo. PF-573228 prevented the expression of VCAM-1 and CCL26 expression in IL-4-stimulated human endothelial cells in vitro. As a result, eosinophil adhesion and transmigration were blocked. PF-572338 also prevented IL-4-induced VCAM-1 expression in vivo. Using brightfield intravital microscopy, we found that PF-573228 decreased leukocyte rolling flux, adhesion, and emigration. We specifically examined eosinophil recruitment in vivo by using an eosinophil-GFP reporter mouse and found PF-573228 attenuated eosinophil emigration. This study reveals that a FAK inhibitor influences inflammation through its action on eosinophil recruitment. ©2018 Society for Leukocyte Biology.

  11. An evidence for adhesion-mediated acquisition of acute myeloid leukemic stem cell-like immaturities

    International Nuclear Information System (INIS)

    Funayama, Keiji; Shimane, Miyuki; Nomura, Hitoshi; Asano, Shigetaka

    2010-01-01

    For long-term survival in vitro and in vivo of acute myeloid leukemia cells, their adhesion to bone marrow stromal cells is indispensable. However, it is still unknown if these events are uniquely induced by the leukemic stem cells. Here we show that TF-1 human leukemia cells, once they have formed a cobblestone area by adhering to mouse bone marrow-derived MS-5 cells, can acquire some leukemic stem cell like properties in association with a change in the CD44 isoform-expression pattern and with an increase in a set of related microRNAs. These findings strongly suggest that at least some leukemia cells can acquire leukemic stem cell like properties in an adhesion-mediated stochastic fashion.

  12. Adhesion and Proliferation of Human Periodontal Ligament Cells on Poly(2-methoxyethyl acrylate

    Directory of Open Access Journals (Sweden)

    Erika Kitakami

    2014-01-01

    Full Text Available Human periodontal ligament (PDL cells obtained from extracted teeth are a potential cell source for tissue engineering. We previously reported that poly(2-methoxyethyl acrylate (PMEA is highly biocompatible with human blood cells. In this study, we investigated the adhesion, morphology, and proliferation of PDL cells on PMEA and other types of polymers to design an appropriate scaffold for tissue engineering. PDL cells adhered and proliferated on all investigated polymer surfaces except for poly(2-hydroxyethyl methacrylate and poly[(2-methacryloyloxyethyl phosphorylcholine-co-(n-butyl methacrylate]. The initial adhesion of the PDL cells on PMEA was comparable with that on polyethylene terephthalate (PET. In addition, the PDL cells on PMEA spread well and exhibited proliferation behavior similar to that observed on PET. In contrast, platelets hardly adhered to PMEA. PMEA is therefore expected to be an excellent scaffold for tissue engineering and for culturing tissue-derived cells in a blood-rich environment.

  13. An evidence for adhesion-mediated acquisition of acute myeloid leukemic stem cell-like immaturities

    Energy Technology Data Exchange (ETDEWEB)

    Funayama, Keiji; Shimane, Miyuki; Nomura, Hitoshi [Department of Integrative Bioscience and Biomedical Engineering, Waseda University, 4-3-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Asano, Shigetaka, E-mail: asgtkmd@waseda.jp [Department of Integrative Bioscience and Biomedical Engineering, Waseda University, 4-3-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2010-02-12

    For long-term survival in vitro and in vivo of acute myeloid leukemia cells, their adhesion to bone marrow stromal cells is indispensable. However, it is still unknown if these events are uniquely induced by the leukemic stem cells. Here we show that TF-1 human leukemia cells, once they have formed a cobblestone area by adhering to mouse bone marrow-derived MS-5 cells, can acquire some leukemic stem cell like properties in association with a change in the CD44 isoform-expression pattern and with an increase in a set of related microRNAs. These findings strongly suggest that at least some leukemia cells can acquire leukemic stem cell like properties in an adhesion-mediated stochastic fashion.

  14. Fetuin-A associates with histones intracellularly and shuttles them to exosomes to promote focal adhesion assembly resulting in rapid adhesion and spreading in breast carcinoma cells.

    Science.gov (United States)

    Nangami, Gladys; Koumangoye, Rainelli; Shawn Goodwin, J; Sakwe, Amos M; Marshall, Dana; Higginbotham, James; Ochieng, Josiah

    2014-11-01

    The present analyses were undertaken to define the mechanisms by which fetuin-A modulates cellular adhesion. FLAG-tagged fetuin-A was expressed in breast carcinoma and HEK-293T cells. We demonstrated by confocal microscopy that fetuin-A co-localizes with histone H2A in the cell nucleus, forms stable complexes with histones such as H2A and H3 in solution, and shuttles histones to exosomes. The rate of cellular adhesion and spreading to either fibronectin or laminin coated wells was accelerated significantly in the presence of either endogenous fetuin-A or serum derived protein. More importantly, the formation of focal adhesion complexes on surfaces coated by laminin or fibronectin was accelerated in the presence of fetuin-A or histone coated exosomes. Cellular adhesion mediated by histone coated exosomes was abrogated by heparin and heparinase III. Heparinase III cleaves heparan sulfate from cell surface heparan sulfate proteoglycans. Lastly, the uptake of histone coated exosomes and subsequent cellular adhesion, was abrogated by heparin. Taken together, the data suggest a mechanism where fetuin-A, either endogenously synthesized or supplied extracellularly can extract histones from the nucleus or elsewhere in the cytosol/membrane and load them on cellular exosomes which then mediate adhesion by interacting with cell surface heparan sulfate proteoglycans via bound histones. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. High expression of carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 6 and 8 in primary myelofibrosis

    DEFF Research Database (Denmark)

    Riley, Caroline Hasselbalch; Skov, Vibe; Larsen, Thomas Stauffer

    2011-01-01

    for the egress of CD34+ cells from the bone marrow. Carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 6 has been implicated in cell adhesion, cellular invasiveness, angiogenesis, and inflammation, which are all key processes in the pathophysiology of PMF. Accordingly, CEACAMs may play an important...

  16. In vitro effects of ATG-Fresenius on immune cell adhesion.

    Science.gov (United States)

    Kanzler, I; Seitz-Merwald, I; Schleger, S; Kaczmarek, I; Kur, F; Beiras-Fernandez, A

    2013-06-01

    ATG-Fresenius, a purified rabbit polyclonal anti-human T-lymphocyte immunoglobulin is used for induction immunosuppression as well as prevention and treatment of acute rejection episodes among patients receiving solid organ transplants. The aim of this study was to investigate the in vitro activity of ATG-Fresenius upon immune cell adhesion, which may explain its activity to mitigate ischemia-reperfusion injury. Human vascular endothelial cells (HUVEC) and peripheral blood mononuclear cells (PBMCs) isolated from umbilical vein or peripheral blood were incubated 20 to 24 hours before analysis. HUVEC were incubated with 10 and 100 μg/mL ATG-Fresenius or reference polyclonal rabbit immunoglobulin G. Analysis of immune cell adhesion to endothelial cells was studied in cocultures of PBMCs and adherent HUVEC. Endothelial cell expression of adhesion molecules CD62E and CD54 was determined by flow cytometry. The numbers of T-, B- and natural killer cells attached to HUVEC were also determined by flow cytometry. Groups were compared using one-way analysis of variance. We showed that ATG-Fresenius binds to endothelial cells particularly activated ones expressing increased levels of E-selectin and ICAM-1. The increased binding of ATG-Fresenius to activated endothelial cells was consistent with its known binding to Intercellular Adhesion Molecule 1 (ICAM-1) and selectins. We also showed that ATG-Fresenius inhibited adhesion of prestimulated immune cells to activated endothelium. We demonstrated dose-dependent binding of ATG-Fresenius to activated endothelial cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis

    International Nuclear Information System (INIS)

    Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T.; Pierre, Philippe; Chadee, Deborah N.; Pizza, Francis X.

    2015-01-01

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast–myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube–myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube–myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. - Highlights: • We examined mechanisms through which skeletal muscle cell expression of ICAM-1 facilitates events of in vitro myogenesis. • Expression of ICAM-1 by cultured myoblasts did not influence their ability to proliferate or differentiate. • Skeletal muscle cell expression of ICAM-1 augmented myoblast fusion, myotube alignment, myotube–myotube fusion, and myotube size. • ICAM-1 augmented myogenic processes through

  18. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T. [Department of Kinesiology, The University of Toledo, Toledo, OH (United States); Pierre, Philippe [Centre d’Immunologie de Marseille-Luminy U2M, Aix-Marseille Université, Marseille (France); INSERM U631, Institut National de la Santé et Recherche Médicale, Marseille (France); CNRS UMR6102, Centre National de la Recherche Scientifique, Marseille (France); Chadee, Deborah N. [Department of Biological Sciences, The University of Toledo, Toledo, OH (United States); Pizza, Francis X., E-mail: Francis.Pizza@utoledo.edu [Department of Kinesiology, The University of Toledo, Toledo, OH (United States)

    2015-02-15

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast–myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube–myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube–myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. - Highlights: • We examined mechanisms through which skeletal muscle cell expression of ICAM-1 facilitates events of in vitro myogenesis. • Expression of ICAM-1 by cultured myoblasts did not influence their ability to proliferate or differentiate. • Skeletal muscle cell expression of ICAM-1 augmented myoblast fusion, myotube alignment, myotube–myotube fusion, and myotube size. • ICAM-1 augmented myogenic processes through

  19. Hyperbaric environment up-regulates CD15s expression on leukocytes, down-regulates CD77 expression on renal cells and up-regulates CD34 expression on pulmonary and cardiac cells in rat

    Directory of Open Access Journals (Sweden)

    Danka Đevenica

    2016-08-01

    Full Text Available Objective(s: The aim of this study was to estimate effects of hyperbaric (HB treatment by determination of CD15s and CD11b leukocyte proinflammatory markers expression.  In addition, this study describes changes in CD77 and CD34 expression on rat endothelial cells in renal, pulmonary and cardiac tissue following exposure to hyperbaric pressure. Materials and Methods:Expression of CD11b and CD15s on leukocytes, as well as CD77 and CD34 expression on endothelial cells in cell suspensions of renal, pulmonary and cardiac tissue in rats after hyperbaric treatment and in control rats were determined by flow cytometry. Results: Hyperbaric treatment significantly increased percentage of leukocytes expressing CD15s+CD11b- (from 1.71±1.11 to 23.42±2.85, P

  20. Signaling mechanisms of neurite outgrowth induced by the cell adhesion molecules NCAM and N-cadherin

    DEFF Research Database (Denmark)

    Hansen, S M; Berezin, V; Bock, E

    2008-01-01

    Formation of appropriate neural circuits depends on a complex interplay between extracellular guiding cues and intracellular signaling events that result in alterations of cytoskeletal dynamics and a neurite growth response. Surface-expressed cell adhesion molecules (CAMs) interact with the surro......Formation of appropriate neural circuits depends on a complex interplay between extracellular guiding cues and intracellular signaling events that result in alterations of cytoskeletal dynamics and a neurite growth response. Surface-expressed cell adhesion molecules (CAMs) interact...... extracellular guidance cues to intracellular events and thereby regulating neurite outgrowth. In this review, we focus on two CAMs, the neural cell adhesion molecule (NCAM) and N-cadherin, and their ability to mediate signaling associated with a neurite outgrowth response. In particular, we will focus on direct...