WorldWideScience

Sample records for leukemia aml remains

  1. Acute myeloid leukemia (AML) - children

    Science.gov (United States)

    Acute myeloid leukemia is a cancer of the blood and bone marrow. Bone marrow is the soft tissue inside ... develops quickly. Both adults and children can get acute myeloid leukemia ( AML ). This article is about AML in children.

  2. Trisomy 8 in Pediatric Acute Myeloid Leukemia. A NOPHO-AML Study

    DEFF Research Database (Denmark)

    Laursen, Anne Cathrine Lund; Sandahl, Julie Damgaard; Kjeldsen, Eigil

    2016-01-01

    Trisomy 8 (+8) is a common cytogenetic aberration in acute myeloid leukemia (AML); however, the impact of +8 in pediatric AML is largely unknown. We retrospectively investigated 609 patients from the NOPHO-AML database to determine the clinical and cytogenetic characteristics of +8 in pediatric AML...

  3. Cytogenetic findings in adult secondary acute myeloid leukemia (AML): frequency of favorable and adverse chromosomal aberrations do not differ from adult de novo AML

    DEFF Research Database (Denmark)

    Preiss, Birgitte S; Bergman, Olav J; Friis, Lone S

    2010-01-01

    During a 15-year period, 161 adult patients were diagnosed with secondary acute myeloid leukemia (s-AML) in the region of Southern Denmark. In 73 patients, the AML diagnosis was preceded by myelodysplastic syndrome (MDS-AML), in 31 patients by an antecedent hematologic disease, and in 57 patients...

  4. Successful treatment of congenital acute myeloid leukemia (AML-M6) in a premature infant.

    Science.gov (United States)

    van Dongen, Joyce C A; Dalinghaus, Michiel; Kroon, Andre A; de Vries, Andrica C H; van den Heuvel-Eibrink, Marry M

    2009-11-01

    Congenital acute myeloid leukemia (AML), and especially AML-M6 is a rare disease with a poor prognosis. Moreover, reports of treatment outcome of congenital AML-M6 in premature infants are not available. We report the first treated case of congenital AML-M6 in a premature girl, who received a full AML protocol. She presented with blueberry-muffin spots, anemia, high white blood cell count, and serious cardiopulmonary distress. Peripheral blood smears showed AML-M6 blasts. After treatment with a sequential low-dose cytarabine after birth and full-dose AML treatment according to the MRC-12 protocol at the age of 2 months, she now is in continuous complete remission for 4 years.

  5. [Initial subretinal localization of acute myeloblastic leukemia (AML5) recurrence].

    Science.gov (United States)

    Le Gall, S; François, S; Urier, N; Genevieve, F; d'Hermies, F; Rachieru, P; Ifrah, N

    2001-10-13

    Reduced visual acuity in patients with acute leucemia can result from many causes including an ocular localization. A patient previously treated for acute myeloblastic leucemia-5 (AML5) developed bilateral vision impairment related to a subretinal localization of the leucemia. Meningeal and bone marrow relapse followed. The subretinal localization responded only to massive systemic steroid treatment. Although asymptomatic, ocular localizations are frequent in leucemia. Their prognostic impact depends on the ocular structure involved and on the chronology of onset--early or late in the leucemia course. The underlying pathophysiological mechanism of ocular involvement remains unexplained but hyperleucocytosis at presentation may be a risk factor and would justify at least systematic specialized examinations and discussion of prophylactic treatment.

  6. Zosuquidar restores drug sensitivity in P-glycoprotein expressing acute myeloid leukemia (AML)

    International Nuclear Information System (INIS)

    Tang, Ruoping; Faussat, Anne-Marie; Perrot, Jean-Yves; Marjanovic, Zora; Cohen, Simy; Storme, Thomas; Morjani, Hamid; Legrand, Ollivier; Marie, Jean-Pierre

    2008-01-01

    Chemotherapeutic drug efflux via the P-glycoprotein (P-gp) transporter encoded by the MDR1/ABCB1 gene is a significant cause of drug resistance in numerous malignancies, including acute leukemias, especially in older patients with acute myeloid leukemia (AML). Therefore, the P-gp modulators that block P-gp-mediated drug efflux have been developed, and used in combination with standard chemotherapy. In this paper, the capacity of zosuquidar, a specific P-gp modulator, to reverse chemoresistance was examined in both leukemia cell lines and primary AML blasts. The transporter protein expressions were analyzed by flow cytometry using their specific antibodies. The protein functionalities were assessed by the uptake of their fluorescence substrates in presence or absence their specific modulators. The drug cytotoxicity was evaluated by MTT test. Zosuquidar completely or partially restored drug sensitivity in all P-gp-expressing leukemia cell lines tested and enhanced the cytotoxicity of anthracyclines (daunorubicin, idarubicin, mitoxantrone) and gemtuzumab ozogamicin (Mylotarg) in primary AML blasts with active P-gp. In addition, P-gp inhibition by zosuquidar was found to be more potent than cyclosporine A in cells with highly active P-gp. These in vitro studies suggest that zosuquidar may be an effective adjunct to cytotoxic chemotherapy for AML patients whose blasts express P-gp, especially for older patients

  7. Socioeconomic Status (SES) and Childhood Acute Myeloid Leukemia (AML) Mortality

    Science.gov (United States)

    Knoble, Naomi B.; Alderfer, Melissa A.; Hossain, Md Jobayer

    2016-01-01

    Socioeconomic status (SES) is a complex construct of multiple indicators, known to impact cancer outcomes, but has not been adequately examined among pediatric AML patients. This study aimed to identify the patterns of co-occurrence of multiple community-level SES indicators and to explore associations between various patterns of these indicators and pediatric AML mortality risk. A nationally representative US sample of 3,651 pediatric AML patients, aged 0–19 years at diagnosis was drawn from 17 Surveillance, Epidemiology, and End Results (SEER) database registries created between 1973 and 2012. Factor analysis, cluster analysis, stratified univariable and multivariable Cox proportional hazards models were used. Four SES factors accounting for 87% of the variance in SES indicators were identified: F1) economic/educational disadvantage, less immigration; F2) immigration-related features (foreign-born, language-isolation, crowding), less mobility F3) housing instability; and, F4) absence of moving. F1 and F3 showed elevated risk of mortality, adjusted hazards ratios (aHR) (95% CI): 1.07(1.02–1.12) and 1.05(1.00–1.10), respectively. Seven SES-defined cluster groups were identified. Cluster 1: (low economic/educational disadvantage, few immigration-related features, and residential-stability) showed the minimum risk of mortality. Compared to Cluster 1, Cluster 3: (high economic/educational disadvantage, high-mobility) and Cluster 6: (moderately-high economic/educational disadvantages, housing-instability and immigration-related features) exhibited substantially greater risk of mortality, aHR(95% CI) = 1.19(1.0–1.4) and 1.23 (1.1–1.5), respectively. Factors of correlated SES-indicators and their pattern-based groups demonstrated differential risks in the pediatric AML mortality indicating the need of special public-health attention in areas with economic-educational disadvantages, housing-instability and immigration-related features. PMID:27543948

  8. Patient-derived acute myeloid leukemia (AML) bone marrow cells display distinct intracellular kinase phosphorylation patterns

    International Nuclear Information System (INIS)

    Shults, Keith; Flye, Leanne; Green, Lisa; Daly, Thomas; Manro, Jason R; Lahn, Michael

    2009-01-01

    Multiparametric analyses of phospho-protein activation in patients with acute myeloid leukemia (AML) offers a quantitative measure to monitor the activity of novel intracellular kinase (IK) inhibitors. As recent clinical investigation with FMS-like tyrosine-3 inhibitors demonstrated, targeting IK with selective inhibitors can have a modest clinical benefit. Because multiple IKs are active in patients with AML, multikinase inhibitors may provide the necessary inhibition profile to achieve a more sustained clinical benefit. We here describe a method of assessing the activation of several IKs by flow cytometry. In 40 different samples of patients with AML we observed hyper-activated phospho-proteins at baseline, which is modestly increased by adding stem cell factor to AML cells. Finally, AML cells had a significantly different phospho-protein profile compared with cells of the lymphocyte gate. In conclusion, our method offers a way to determine the activation status of multiple kinases in AML and hence is a reliable assay to evaluate the pharmacodynamic activity of novel multikinase inhibitors

  9. Low-dose total body irradiation and G-CSF without hematopoietic stem cell support in the treatment of relapsed or refractory acute myelogenous leukemia (AML), or AML in second or subsequent remission

    International Nuclear Information System (INIS)

    Shulman, Lawrence N.; Tarbell, Nancy J.; Storen, Elizabeth; Marcus, Karen; Mauch, Peter M.

    1998-01-01

    Purpose: Patients with relapsed acute myelogenous leukemia (AML), who are not eligible for bone marrow transplantation, have a poor prognosis when treated with chemotherapy alone. Total body irradiation (TBI) is an effective modality against AML when used in doses of 1000-1400 cGy with hematopoietic stem cell support. We undertook a phase I study of TBI with granulocyte-colony-stimulating factor (G-CSF) support, without stem cell support in patients with AML either in relapse or second or subsequent remission. Methods and Materials: Patients with relapsed AML, or AML in second or subsequent remission were treated in a phase I study of TBI followed by G-CSF. The first dose level was 200 cGy. After the initial cohort of patients it was clear that patients with overt leukemia did not benefit from this treatment, and subsequent patients were required to be in remission at the time of TBI. Results: Eleven patients were treated, 4 in overt relapse, and 7 in remission. 200 cGy was used in all, and dose escalation was not possible due to prolonged thrombocytopenia in all patients but one. Neutrophil recovery was adequate in those patients who remained in remission after TBI. Patients with overt leukemia had transient reduction in blast counts, but rapid recurrence of their leukemia. Patients treated in remission had short remissions, with the exception of one patient who is in remission 32 months after treatment. Conclusion: There is some antileukemic effect of TBI even at 200 cGy, though this dose appears to be too low to help a significant number of patients. If TBI is to be escalated without stem cell support, then a thrombopoietic agent will need to be used

  10. KRAS (G12D Cooperates with AML1/ETO to Initiate a Mouse Model Mimicking Human Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Shanmin Zhao

    2014-01-01

    Full Text Available Background/Aims: It has been demonstrated that KRAS mutations represent about 90% of cancer-associated mutations, and that KRAS mutations play an essential role in neoplastic transformation. Cancer-associated RAS mutations occur frequently in acute myeloid leukemia (AML, suggesting a functional role for Ras in leukemogenesis. Methods: We successfully established a mouse model of human leukemia by transplanting bone marrow cells co-transfected with the K-ras (G12D mutation and AML1/ETO fusion protein. Results: Mice transplanted with AML/ETO+KRAS co-transduced cells had the highest mortality rate than mice transplanted with AML/ETO- or KRAS-transduced cells (115d vs. 150d. Upon reaching a terminal disease stage, EGFP-positive cells dominated their spleen, lymph nodes, peripheral blood and central nervous system tissue. Immunophenotyping, cytologic analyses revealed that AML/ETO+KRAS leukemias predominantly contained immature myeloid precursors (EGFP+/c-Kit+/Mac-1-/Gr-1-. Histologic analyses revealed that massive leukemic infiltrations were closely packed in dense sheets that effaced the normal architecture of spleen and thymus in mice transplanted with AML1/ETO + KRAS co-transduced cells. K-ras mRNA and protein expression were upregulated in bone marrow cells of the K-ras group and AML1/ETO + Kras group. The phosphorylation of MEK/ERK was significantly enhanced in the AML1/ETO + Kras group. The similar results of the AML1/ETO + Nras group were consistent with those reported previously. Conclusion: Co-transduction of KrasG12D and AML1/ETO induces acute monoblastic leukemia. Since expression of mutant K-ras alone was insufficient to induce leukemia, this model may be useful for investigating the multi-step leukemogenesis model of human leukemia.

  11. Tumor Lysis Syndrome (TLS following intrathecal chemotherapy in a child with acute myelogenous leukemia (AML

    Directory of Open Access Journals (Sweden)

    Chana L. Glasser, MD

    2017-01-01

    Full Text Available Tumor Lysis Syndrome (TLS is a well-known complication of induction therapy for hematologic malignancies. It is characterized by rapid breakdown of malignant white blood cells (WBCs leading to metabolic derangements and serious morbidity if left untreated. Most commonly, TLS is triggered by systemic chemotherapy, however, there have been case reports of TLS following intrathecal (IT chemotherapy, all in patients with acute lymphoblastic leukemia (ALL/lymphoma. Here, we report the first case of a patient with acute myelogenous leukemia (AML who developed TLS following a single dose of IT cytosine arabinoside (Ara-C.

  12. The TPO/c-MPL pathway in the bone marrow may protect leukemia cells from chemotherapy in AML Patients.

    Science.gov (United States)

    Dong-Feng, Zeng; Ting, Liu; Yong, Zhang; Cheng, Chang; Xi, Zhang; Pei-Yan, Kong

    2014-04-01

    Accumulating evidence indicates that the interaction of human LSCs (leukemic stem cells) with the hematopoietic microenvironment, mediated by the thrombopoietin (TPO)/c-MPL pathway, may be an underlying mechanism for resistance to cell cycle-dependent cytotoxic chemotherapy. However, the role of TPO/c-MPL signaling in AML (acute myelogenous leukemia) chemotherapy resistance hasn't been fully understood. The c-MPL and TPO levels in different AML samples were measured by flow cytometry and ELISA. We also assessed the TPO levels in the osteoblasts derived from bone mesenchymal stem cells (BMSCs). The survival rate of an AML cell line that had been co-cultured with different BMSC-derived osteoblasts was measured to determine the IC50 of an AML chemotherapy drug daunorubicin (DNR). The levels of TPO/c-MPL in the initial and relapse AML patients were significantly higher than that in the control (P MPL expression was found in the bone marrow mononuclear cells of the relapse AML patients. More importantly, the IC50 of DNR in the HEL + AML-derived osteoblasts was the highest among all co-culture systems. High level of TPO/c-MPL signaling may protect LSCs from chemotherapy in AML. The effects of inhibition of the TPO/c-MPL pathway on enhancing the chemotherapy sensitivity of AML cells, and on their downstream effector molecules that direct the interactions between patient-derived blasts and leukemia repopulating cells need to be further studied.

  13. DHX15 is associated with poor prognosis in acute myeloid leukemia (AML) and regulates cell apoptosis via the NF-kB signaling pathway.

    Science.gov (United States)

    Pan, Lili; Li, Yang; Zhang, Hai-Ying; Zheng, Yi; Liu, Xiao-Li; Hu, Zheng; Wang, Yi; Wang, Jing; Cai, Yuan-Hua; Liu, Qiao; Chen, Wan-Ling; Guo, Ying; Huang, Yuan-Mao; Qian, Feng; Jin, Li; Wang, Jiucun; Wang, Shao-Yuan

    2017-10-27

    The role of DHX15 , a newly identified DEAH-box RNA helicase, in leukemogenesis remains elusive. Here, we identified a recurrent mutation in DHX15 (NM_001358:c.664C>G: p.(R222G)) in one familial AML patient and 4/240 sporadic AML patients. Additionally, DHX15 was commonly overexpressed in AML patients and associated with poor overall survival (OS) (P=0.019) and relapse-free survival (RFS) (P=0.032). In addition, we found a distinct expression pattern of DHX15 . DHX15 was highly expressed in hematopoietic stem cells and leukemia cells but was lowly expressed in mature blood cells. DHX15 was down-regulated when AML patients achieved disease remission or when leukemia cell lines were induced to differentiate. DHX15 silencing greatly inhibited leukemia cell proliferation and induced cell apoptosis and G1-phase arrest. In contrast, the restoration of DHX15 expression rescued cell viability and reduced cell apoptosis. In addition, we found that DHX15 was down-regulated when cell apoptosis was induced by ATO (arsenic trioxide); overexpression of DHX15 caused dramatic resistance to ATO-induced cell apoptosis, suggesting an important role for DHX15 in cell apoptosis. We further explored the mechanism of DHX15 in apoptosis and found that overexpression of DHX15 activated NF-kB transcription. Knockdown of DHX15 inhibited the nuclear translocation and activation of the NF-kB subunit P65 in leukemia cells. Several downstream targets of the NF-kB pathway were also down-regulated, and apoptosis-associated genes CASP3 and PARP were activated. In conclusion, this study represents the first demonstration that DHX15 plays an important role in leukemogenesis via the NF-kB signaling pathway and may serve as an independent prognostic marker for AML.

  14. The TEL-AML1 fusion protein of acute lymphoblastic leukemia modulates IRF3 activity during early B-cell differentiation.

    Science.gov (United States)

    de Laurentiis, A; Hiscott, J; Alcalay, M

    2015-12-03

    The t(12;21) translocation is the most common genetic rearrangement in childhood acute lymphoblastic leukemia (ALL) and gives rise to the TEL-AML1 fusion gene. Many studies on TEL-AML1 describe specific properties of the fusion protein, but a thorough understanding of its function is lacking. We exploited a pluripotent hematopoietic stem/progenitor cell line, EML1, and generated a cell line (EML-TA) stably expressing the TEL-AML1 fusion protein. EML1 cells differentiate to mature B-cells following treatment with IL7; whereas EML-TA display an impaired differentiation capacity and remain blocked at an early stage of maturation. Global gene expression profiling of EML1 cells at different stages of B-lymphoid differentiation, compared with EML-TA, identified the interferon (IFN)α/β pathway as a primary target of repression by TEL-AML1. In particular, expression and phosphorylation of interferon-regulatory factor 3 (IRF3) was decreased in EML-TA cells; strikingly, stable expression of IRF3 restored the capacity of EML-TA cells to differentiate into mature B-cells. Similarly, IRF3 silencing in EML1 cells by siRNA was sufficient to block B-lymphoid differentiation. The ability of TEL-AML1 to block B-cell differentiation and downregulate the IRF3-IFNα/β pathway was confirmed in mouse and human primary hematopoietic precursor cells (Lin- and CD34+ cells, respectively), and in a patient-derived cell line expressing TEL-AML1 (REH). Furthermore, treatment of TEL-AML1 expressing cells with IFNα/β was sufficient to overcome the maturation block. Our data provide new insight on TEL-AML1 function and may offer a new therapeutic opportunity for B-ALL.

  15. An AML1-ETO/miR-29b-1 regulatory circuit modulates phenotypic properties of acute myeloid leukemia cells.

    Science.gov (United States)

    Zaidi, Sayyed K; Perez, Andrew W; White, Elizabeth S; Lian, Jane B; Stein, Janet L; Stein, Gary S

    2017-06-20

    Acute myeloid leukemia (AML) is characterized by an aggressive clinical course and frequent cytogenetic abnormalities that include specific chromosomal translocations. The 8;21 chromosomal rearrangement disrupts the key hematopoietic RUNX1 transcription factor, and contributes to leukemia through recruitment of co-repressor complexes to RUNX1 target genes, altered subnuclear localization, and deregulation of the myeloid gene regulatory program. However, a role of non-coding microRNAs (miRs) in t(8;21)-mediated leukemogenesis is minimally understood. We present evidence of an interplay between the tumor suppressor miR-29b-1 and the AML1-ETO (also designated RUNX1-RUNX1T1) oncogene that is encoded by the t(8;21). We find that AML1-ETO and corepressor NCoR co-occupy the miR-29a/b-1 locus and downregulate its expression in leukemia cells. Conversely, re-introduction of miR-29b-1 in leukemia cells expressing AML1-ETO causes significant downregulation at the protein level through direct targeting of the 3' untranslated region of the chimeric transcript. Restoration of miR-29b-1 expression in leukemia cells results in decreased cell growth and increased apoptosis. The AML1-ETO-dependent differentiation block and transcriptional program are partially reversed by miR-29b-1. Our findings establish a novel regulatory circuit between the tumor-suppressive miR-29b-1 and the oncogenic AML1-ETO that controls the leukemic phenotype in t(8;21)-carrying acute myeloid leukemia.

  16. Proliferative status of primitive hematopoietic progenitors from patients with acute myelogenous leukemia (AML).

    Science.gov (United States)

    Guan, Y; Hogge, D E

    2000-12-01

    One possible explanation for the competitive advantage that malignant cells in patients with acute myelogenous leukemia (AML) appear to have over normal hematopoietic elements is that leukemic progenitors proliferate more rapidly than their normal progenitor cell counterparts. To test this hypothesis, an overnight 3H-thymidine (3H-Tdr) suicide assay was used to analyze the proliferative status of malignant progenitors detected in both colony-forming cell (CFC) and long-term culture initiating cell (LTC-IC) assays from the peripheral blood of nine patients with newly diagnosed AML. Culture of AML cells in serum-free medium with 100 ng/ml Steel factor (SF), 20 ng/ml interleukin 3 (IL-3) and 20 ng/ml granulocyte colony-stimulating factor (G-CSF) for 16-24 h maintained the number of AML-CFC and LTC-IC at near input values (mean % input +/- s.d. for CFC and LTC-IC were 78 +/- 33 and 126 +/- 53, respectively). The addition of 20 muCi/ml high specific activity 3H-Tdr to these cultures reduced the numbers of both progenitor cell types from most of the patient samples substantially: mean % kill +/- s.d. for AML-CFC and LTC-IC were 64 +/- 27 and 82 +/- 16, respectively, indicating that a large proportion of both progenitor populations were actively cycling. FISH analysis of colonies from CFC and LTC-IC assays confirmed that most cytogenetically abnormal CFC and LTC-IC were actively cycling (mean % kill +/- s.d.: 68 +/- 26 and 85 +/- 13, respectively). Interestingly, in six patient samples where a significant number of cytogenetically normal LTC-ICs were detected, the % kill of these cells (74 +/- 20) was similar to that of the abnormal progenitors. These data contrast with the predominantly quiescent cell cycle status of CFC and LTC-IC previously observed in steady-state peripheral blood from normal individuals but also provide evidence that a significant proportion of primitive malignant progenitors from AML patients are quiescent and therefore may be resistant to standard

  17. Azacitidine in combination with intensive induction chemotherapy in older patients with acute myeloid leukemia: The AML-AZA trial of the Study Alliance Leukemia.

    Science.gov (United States)

    Müller-Tidow, C; Tschanter, P; Röllig, C; Thiede, C; Koschmieder, A; Stelljes, M; Koschmieder, S; Dugas, M; Gerss, J; Butterfaß-Bahloul, T; Wagner, R; Eveslage, M; Thiem, U; Krause, S W; Kaiser, U; Kunzmann, V; Steffen, B; Noppeney, R; Herr, W; Baldus, C D; Schmitz, N; Götze, K; Reichle, A; Kaufmann, M; Neubauer, A; Schäfer-Eckart, K; Hänel, M; Peceny, R; Frickhofen, N; Kiehl, M; Giagounidis, A; Görner, M; Repp, R; Link, H; Kiani, A; Naumann, R; Brümmendorf, T H; Serve, H; Ehninger, G; Berdel, W E; Krug, U

    2016-03-01

    DNA methylation changes are a constant feature of acute myeloid leukemia. Hypomethylating drugs such as azacitidine are active in acute myeloid leukemia (AML) as monotherapy. Azacitidine monotherapy is not curative. The AML-AZA trial tested the hypothesis that DNA methyltransferase inhibitors such as azacitidine can improve chemotherapy outcome in AML. This randomized, controlled trial compared the efficacy of azacitidine applied before each cycle of intensive chemotherapy with chemotherapy alone in older patients with untreated AML. Event-free survival (EFS) was the primary end point. In total, 214 patients with a median age of 70 years were randomized to azacitidine/chemotherapy (arm-A) or chemotherapy (arm-B). More arm-A patients (39/105; 37%) than arm-B (25/109; 23%) showed adverse cytogenetics (P=0.057). Adverse events were more frequent in arm-A (15.44) versus 13.52 in arm-B, (P=0.26), but early death rates did not differ significantly (30-day mortality: 6% versus 5%, P=0.76). Median EFS was 6 months in both arms (P=0.96). Median overall survival was 15 months for patients in arm-A compared with 21 months in arm-B (P=0.35). Azacitidine added to standard chemotherapy increases toxicity in older patients with AML, but provides no additional benefit for unselected patients.

  18. Renal, gastrointestinal, and hepatic late effects in survivors of childhood acute myeloid leukemia treated with chemotherapy only--a NOPHO-AML study

    DEFF Research Database (Denmark)

    Skou, Anne-Sofie; Glosli, Heidi; Jahnukainen, Kirsi

    2014-01-01

    BACKGROUND: We investigated the spectrum, frequency, and risk factors for renal, gastrointestinal, and hepatic late adverse effects in survivors of childhood acute myeloid leukemia (AML) without relapse treated with chemotherapy alone according to three consecutive AML trials by the Nordic Society...

  19. Connect MDS/AML: design of the myelodysplastic syndromes and acute myeloid leukemia disease registry, a prospective observational cohort study.

    Science.gov (United States)

    Steensma, David P; Abedi, Medrdad; Bejar, Rafael; Cogle, Christopher R; Foucar, Kathryn; Garcia-Manero, Guillermo; George, Tracy I; Grinblatt, David; Komrokji, Rami; Ma, Xiaomei; Maciejewski, Jaroslaw; Pollyea, Daniel A; Savona, Michael R; Scott, Bart; Sekeres, Mikkael A; Thompson, Michael A; Swern, Arlene S; Nifenecker, Melissa; Sugrue, Mary M; Erba, Harry

    2016-08-19

    Myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are myeloid neoplasms in which outgrowth of neoplastic clones disrupts normal hematopoiesis. Some patients with unexplained persistent cytopenias may not meet minimal diagnostic criteria for MDS but an alternate diagnosis is not apparent; the term idiopathic cytopenia of undetermined significance (ICUS) has been used to describe this state. MDS and AML occur primarily in older patients who are often treated outside the clinical trial setting. Consequently, our understanding of the patterns of diagnostic evaluation, management, and outcomes of these patients is limited. Furthermore, there are few natural history studies of ICUS. To better understand how patients who have MDS, ICUS, or AML are managed in the routine clinical setting, the Connect MDS/AML Disease Registry, a multicenter, prospective, observational cohort study of patients newly diagnosed with these conditions has been initiated. The Connect MDS/AML Disease Registry will capture diagnosis, risk assessment, treatment, and outcomes data for approximately 1500 newly diagnosed patients from approximately 150 community and academic sites in the United States in 4 cohorts: (1) lower-risk MDS (International Prognostic Scoring System [IPSS] low and intermediate-1 risk), with and without del(5q); (2) higher-risk MDS (IPSS intermediate-2 and high risk); (3) ICUS; and (4) AML in patients aged ≥ 55 years (excluding acute promyelocytic leukemia). Diagnosis will be confirmed by central review. Baseline patient characteristics, diagnostic patterns, treatment patterns, clinical outcomes, health economics outcomes, and patient-reported health-related quality of life will be entered into an electronic data capture system at enrollment and quarterly for 8 years. A tissue substudy to explore the relationship between karyotypes, molecular markers, and clinical outcomes will be conducted, and is optional for patients. The Connect MDS/AML Disease

  20. Gene expression profiling of acute myeloid leukemia samples from adult patients with AML-M1 and -M2 through boutique microarrays, real-time PCR and droplet digital PCR.

    Science.gov (United States)

    Handschuh, Luiza; Kaźmierczak, Maciej; Milewski, Marek C; Góralski, Michał; Łuczak, Magdalena; Wojtaszewska, Marzena; Uszczyńska-Ratajczak, Barbara; Lewandowski, Krzysztof; Komarnicki, Mieczysław; Figlerowicz, Marek

    2018-03-01

    Acute myeloid leukemia (AML) is the most common and severe form of acute leukemia diagnosed in adults. Owing to its heterogeneity, AML is divided into classes associated with different treatment outcomes and specific gene expression profiles. Based on previous studies on AML, in this study, we designed and generated an AML-array containing 900 oligonucleotide probes complementary to human genes implicated in hematopoietic cell differentiation and maturation, proliferation, apoptosis and leukemic transformation. The AML-array was used to hybridize 118 samples from 33 patients with AML of the M1 and M2 subtypes of the French-American‑British (FAB) classification and 15 healthy volunteers (HV). Rigorous analysis of the microarray data revealed that 83 genes were differentially expressed between the patients with AML and the HV, including genes not yet discussed in the context of AML pathogenesis. The most overexpressed genes in AML were STMN1, KITLG, CDK6, MCM5, KRAS, CEBPA, MYC, ANGPT1, SRGN, RPLP0, ENO1 and SET, whereas the most underexpressed genes were IFITM1, LTB, FCN1, BIRC3, LYZ, ADD3, S100A9, FCER1G, PTRPE, CD74 and TMSB4X. The overexpression of the CPA3 gene was specific for AML with mutated NPM1 and FLT3. Although the microarray-based method was insufficient to differentiate between any other AML subgroups, quantitative PCR approaches enabled us to identify 3 genes (ANXA3, S100A9 and WT1) whose expression can be used to discriminate between the 2 studied AML FAB subtypes. The expression levels of the ANXA3 and S100A9 genes were increased, whereas those of WT1 were decreased in the AML-M2 compared to the AML-M1 group. We also examined the association between the STMN1, CAT and ABL1 genes, and the FLT3 and NPM1 mutation status. FLT3+/NPM1- AML was associated with the highest expression of STMN1, and ABL1 was upregulated in FLT3+ AML and CAT in FLT3- AML, irrespectively of the NPM1 mutation status. Moreover, our results indicated that CAT and WT1

  1. Pubertal development and fertility in survivors of childhood acute myeloid leukemia treated with chemotherapy only: a NOPHO-AML study.

    Science.gov (United States)

    Molgaard-Hansen, Lene; Skou, Anne-Sofie; Juul, Anders; Glosli, Heidi; Jahnukainen, Kirsi; Jarfelt, Marianne; Jónmundsson, Guðmundur K; Malmros, Johan; Nysom, Karsten; Hasle, Henrik

    2013-12-01

    More than 60% of children with acute myeloid leukemia (AML) become long-term survivors. Most are cured using chemotherapy without hematopoietic stem cell transplantation (HSCT). We report on pubertal development and compare self-reported parenthood among AML survivors and their siblings. We included 137 children treated for AML according to the Nordic Society of Pediatric Hematology and Oncology (NOPHO)-AML-84, -88, and -93 trials, who were alive by June 2007. Patients with relapse or treated with HSCT were excluded. AML survivors participated in a physical and biochemical examination (n = 102) and completed a questionnaire (n = 101). One of their siblings completed an identical questionnaire (n = 84). At a median follow-up of 11 years (range 5-25) after diagnosis of AML the survivors (median age 16 years, range 5-36) were either prepubertal or had entered puberty normally. Serum levels of FSH, LH, testosterone, estradiol, sex hormone binding globulin (SHBG), inhibin A and B, and testicular volumes were within normal ranges. Anti-Müllerian hormone (AMH) levels were decreased in 5 of 40 postpubertal females. Mean reported age at menarche was 13.1 (range 11-17) years. Among survivors 15 years of age or older 31% of females reported pregnancies and 9% of males reported pregnancies in their partners, rates comparable with the frequency reported by their siblings. Most AML survivors treated with chemotherapy had normal pubertal development and fertility, however, AMH levels were decreased in 13% of postpubertal females. Longer follow-up is necessary to evaluate possible risk of premature ovarian failure. © 2013 Wiley Periodicals, Inc.

  2. Pediatric acute myeloid leukemia with t(8;16)(p11;p13), a distinct clinical and biological entity: a collaborative study by the International-Berlin-Frankfurt-Münster AML-study group

    Science.gov (United States)

    Coenen, Eva A.; Zwaan, C. Michel; Reinhardt, Dirk; Harrison, Christine J.; Haas, Oskar A.; de Haas, Valerie; Mihál, Vladimir; De Moerloose, Barbara; Jeison, Marta; Rubnitz, Jeffrey E.; Tomizawa, Daisuke; Johnston, Donna; Alonzo, Todd A.; Hasle, Henrik; Auvrignon, Anne; Dworzak, Michael; Pession, Andrea; van der Velden, Vincent H. J.; Swansbury, John; Wong, Kit-fai; Terui, Kiminori; Savasan, Sureyya; Winstanley, Mark; Vaitkeviciene, Goda; Zimmermann, Martin; Pieters, Rob; van den Heuvel-Eibrink, Marry M.

    2013-01-01

    In pediatric acute myeloid leukemia (AML), cytogenetic abnormalities are strong indicators of prognosis. Some recurrent cytogenetic abnormalities, such as t(8;16)(p11;p13), are so rare that collaborative studies are required to define their prognostic impact. We collected the clinical characteristics, morphology, and immunophenotypes of 62 pediatric AML patients with t(8;16)(p11;p13) from 18 countries participating in the International Berlin-Frankfurt-Münster (I-BFM) AML study group. We used the AML-BFM cohort diagnosed from 1995-2005 (n = 543) as a reference cohort. Median age of the pediatric t(8;16)(p11;p13) AML patients was significantly lower (1.2 years). The majority (97%) had M4-M5 French-American-British type, significantly different from the reference cohort. Erythrophagocytosis (70%), leukemia cutis (58%), and disseminated intravascular coagulation (39%) occurred frequently. Strikingly, spontaneous remissions occurred in 7 neonates with t(8;16)(p11;p13), of whom 3 remain in continuous remission. The 5-year overall survival of patients diagnosed after 1993 was 59%, similar to the reference cohort (P = .14). Gene expression profiles of t(8;16)(p11;p13) pediatric AML cases clustered close to, but distinct from, MLL-rearranged AML. Highly expressed genes included HOXA11, HOXA10, RET, PERP, and GGA2. In conclusion, pediatric t(8;16)(p11;p13) AML is a rare entity defined by a unique gene expression signature and distinct clinical features in whom spontaneous remissions occur in a subset of neonatal cases. PMID:23974201

  3. Design of the randomized, Phase III, QUAZAR AML Maintenance trial of CC-486 (oral azacitidine) maintenance therapy in acute myeloid leukemia.

    Science.gov (United States)

    Roboz, Gail J; Montesinos, Pau; Selleslag, Dominik; Wei, Andrew; Jang, Jun-Ho; Falantes, Jose; Voso, Maria T; Sayar, Hamid; Porkka, Kimmo; Marlton, Paula; Almeida, Antonio; Mohan, Sanjay; Ravandi, Farhad; Garcia-Manero, Guillermo; Skikne, Barry; Kantarjian, Hagop

    2016-02-01

    Older patients with acute myeloid leukemia (AML) have worse rates of complete remission and shorter overall survival than younger patients. The epigenetic modifier CC-486 is an oral formulation of azacitidine with promising clinical activity in patients with AML in Phase I studies. The Phase III, randomized, double-blind, placebo-controlled QUAZAR AML Maintenance trial (CC-486-AML-001) examines CC-486 maintenance therapy (300 mg/day for 14 days of 28-day treatment cycles) for patients aged ≥55 years with AML in first complete remission. The primary end point is overall survival. Secondary end points include relapse-free survival, safety, health-related quality of life and healthcare resource utilization. This trial will investigate whether CC-486 maintenance can prolong remission and improve survival for older patients with AML.

  4. A clinical trial of supervised exercise for adult inpatients with acute myeloid leukemia (AML) undergoing induction chemotherapy☆

    Science.gov (United States)

    Alibhai, Shabbir M.H.; O’Neill, Sara; Fisher-Schlombs, Karla; Breunis, Henriette; Brandwein, Joseph M.; Timilshina, Narhari; Tomlinson, George A.; Klepin, Heidi D.; Culos-Reed, S. Nicole

    2013-01-01

    Patients with acute myeloid leukemia (AML) receiving induction chemotherapy (IC) were enrolled in a supervised exercise intervention to determine safety, feasibility, and efficacy. Physical fitness measures, quality of life (QOL) and fatigue were assessed using standardized measures at baseline, post-induction, and post first consolidation. Retention was excellent, the intervention was safe, and efficacy estimates suggested benefits in physical fitness and QOL outcomes. Exercise is a safe, promising intervention for improving fitness and QOL in this patient population. These results provide a foundation for a randomized trial to better understand the impact of exercise during IC on clinically important outcomes. PMID:22726923

  5. A clinical trial of supervised exercise for adult inpatients with acute myeloid leukemia (AML) undergoing induction chemotherapy.

    Science.gov (United States)

    Alibhai, Shabbir M H; O'Neill, Sara; Fisher-Schlombs, Karla; Breunis, Henriette; Brandwein, Joseph M; Timilshina, Narhari; Tomlinson, George A; Klepin, Heidi D; Culos-Reed, S Nicole

    2012-10-01

    Patients with acute myeloid leukemia (AML) receiving induction chemotherapy (IC) were enrolled in a supervised exercise intervention to determine safety, feasibility, and efficacy. Physical fitness measures, quality of life (QOL) and fatigue were assessed using standardized measures at baseline, post-induction, and post first consolidation. Retention was excellent, the intervention was safe, and efficacy estimates suggested benefits in physical fitness and QOL outcomes. Exercise is a safe, promising intervention for improving fitness and QOL in this patient population. These results provide a foundation for a randomized trial to better understand the impact of exercise during IC on clinically important outcomes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. A Jehovah’s Witness with Acute Myeloid Leukemia Successfully Treated with an Epigenetic Drug, Azacitidine: A Clue for Development of Anti-AML Therapy Requiring Minimum Blood Transfusions

    Directory of Open Access Journals (Sweden)

    Yumi Yamamoto

    2014-01-01

    Full Text Available Therapy for acute leukemia in Jehovah’s Witnesses patients is very challenging because of their refusal to accept blood transfusions, a fundamental supportive therapy for this disease. These patients are often denied treatment for fear of treatment-related death. We present the first Jehovah’s Witness patient with acute myeloid leukemia (AML treated successfully with azacitidine. After achieving complete remission (CR with one course of azacitidine therapy, the patient received conventional postremission chemotherapy and remained in CR. In the case of patients who accept blood transfusions, there are reports indicating the treatment of AML patients with azacitidine. In these reports, azacitidine therapy was less toxic, including hematoxicity, compared with conventional chemotherapy. The CR rate in azacitidine-treated patients was inadequate; however, some characteristics could be useful in predicting azacitidine responders. The present case is useful for treating Jehovah’s Witnesses patients with AML and provides a clue for anti-AML therapy requiring minimum blood transfusions.

  7. Expression and prognostic value of hemopoietic cytokine receptors in acute myeloid leukemia (AML): implications for future therapeutical strategies.

    Science.gov (United States)

    Graf, Michaela; Hecht, Karin; Reif, Susanne; Pelka-Fleischer, Renate; Pfister, Karin; Schmetzer, Helga

    2004-02-01

    Hemopoietic cytokines regulate hemopoietic cell functions via specific cell surface receptors. There is evidence to suggest, that those receptors (R) could play a role in leukemia with respect to cell differentiations and its regulation, prognosis, and pathobiology. Knowledge of individual cytokine receptor (CKR) profiles could provide new discoveries about CKR-supported therapeutic considerations. We have studied the expression of CKR on mononuclear bone marrow (BM) cells of 89 patients with acute myeloid leukemia (AML) at first diagnosis, three patients at relapse or with persisting AML and eight healthy probands by fluorescence-activated cell sorting (FACS) analysis using directly fluorescein-conjugated antibodies: CD114 (hG-CSF-R), CD116 (hGM-CSF-R), CD117 (hSCF-R), CD123 (hIL-3-R), CD130 (gp130subunit), CD135 (hFL-R). A case was defined as positive, if more than 20% of the cells expressed the regarding CKR. All investigated CKR were more frequently expressed in AML-samples than in healthy BM-samples, except CD130, which was only expressed on 5-6% of AML-blasts in all and with only one healthy BM-sample being CD130(+). Within the French-American-British (FAB) types we observed a maturation- and lineage (granulocytic/monocytic)-committed expression profile. Monocytic subtypes (FAB-type M4/M5) showed significantly more GM-CSF-R(+) (P = 0.001) and FL-R(+) (P = 0.001) and significantly less stem cell factor-R (SCF-R(+)) (P = 0.02) cases. Highest proportions of G-CSF-R(+) blasts were observed in FAB-type M3. In undifferentiated leukemias (FAB-type M1, M2) high amounts of SCF-R(+), IL-3-R(+), and FL-R(+) blasts could be detected. FL-R was the only CKR, which was positive in FAB-type M0 (n = 2). No differences in CKR-expression were detected between primary (p) and secondary (s). Separating our patient cohorts in cytogenetic risk groups we could detect a significant higher proportion of G-CSF-R(+) blasts in the cytogenetic good risk group than in the bad risk group (P

  8. Keep your mind off negative things: coping with long-term effects of acute myeloid leukemia (AML).

    Science.gov (United States)

    Ghodraty-Jabloo, Vida; Alibhai, Shabbir M H; Breunis, Henriette; Puts, Martine T E

    2016-05-01

    Acute myeloid leukemia (AML) is characterized by sudden onset, intensive treatment, a poor prognosis, and significant relapse risk. Quality of life (QOL) and well-being among AML survivors have been extensively studied during the 6 months of active treatment. However, it is not clear what survivors experience after active treatment. The purpose of our study was to explore how AML survivors describe their longer-term physical and psychosocial well-being and how they cope with these challenges. We conducted a prospective qualitative study and interviewed 19 adult participants (11 had completed treatment, 8 were receiving maintenance chemotherapy). Data were collected using semi-structured interviews that were audio-recorded and transcribed verbatim. The grounded theory approach was used for data analysis. A marked improvement in physical health was reported; however, psychosocial well-being was compromised by enduring emotional distress. A range of emotion- and problem-focused coping strategies were reported. Keeping one's mind off negative things through engaging in formal work or informal activities and seeking control were the two most commonly used coping strategies. Seeking social support for reassurance was also common. Problem-focused strategies were frequently described by the ongoing treatment group to manage treatment side effects. Although physical symptoms improved after completion of treatment, psychosocial distress persisted over longer period of time. In addition, essential needs of AML survivors shifted across survivorship as psychological burden gradually displaced physical concerns. The integral role of coping mechanisms in the adaptation process suggests a need for effective and ongoing psychological interventions.

  9. Functionally deregulated AML1/RUNX1 cooperates with BCR-ABL to induce a blastic phase-like phenotype of chronic myelogenous leukemia in mice.

    Directory of Open Access Journals (Sweden)

    Kiyoko Yamamoto

    Full Text Available Patients in the chronic phase (CP of chronic myelogenous leukemia (CML have been treated successfully following the advent of ABL kinase inhibitors, but once they progress to the blast crisis (BC phase the prognosis becomes dismal. Although mechanisms underlying the progression are largely unknown, recent studies revealed the presence of alterations of key molecules for hematopoiesis, such as AML1/RUNX1. Our analysis of 13 BC cases revealed that three cases had AML1 mutations and the transcript levels of wild-type (wt. AML1 were elevated in BC compared with CP. Functional analysis of representative AML1 mutants using mouse hematopoietic cells revealed the possible contribution of some, but not all, mutants for the BC-phenotype. Specifically, K83Q and R139G, but neither R80C nor D171N mutants, conferred upon BCR-ABL-expressing cells a growth advantage over BCR-ABL-alone control cells in cytokine-free culture, and the cells thus grown killed mice upon intravenous transfer. Unexpectedly, wt.AML1 behaved similarly to K83Q and R139G mutants. In a bone marrow transplantation assay, K83Q and wt.AML1s induced the emergence of blast-like cells. The overall findings suggest the roles of altered functions of AML1 imposed by some, but not all, mutants, and the elevated expression of wt.AML1 for the disease progression of CML.

  10. The rarity of ALDH(+) cells is the key to separation of normal versus leukemia stem cells by ALDH activity in AML patients.

    Science.gov (United States)

    Hoang, Van T; Buss, Eike C; Wang, Wenwen; Hoffmann, Isabel; Raffel, Simon; Zepeda-Moreno, Abraham; Baran, Natalia; Wuchter, Patrick; Eckstein, Volker; Trumpp, Andreas; Jauch, Anna; Ho, Anthony D; Lutz, Christoph

    2015-08-01

    To understand the precise disease driving mechanisms in acute myeloid leukemia (AML), comparison of patient matched hematopoietic stem cells (HSC) and leukemia stem cells (LSC) is essential. In this analysis, we have examined the value of aldehyde dehydrogenase (ALDH) activity in combination with CD34 expression for the separation of HSC from LSC in 104 patients with de novo AML. The majority of AML patients (80 out of 104) had low percentages of cells with high ALDH activity (ALDH(+) cells; cells (≥1.9%; ALDH-numerous AML). In patients with ALDH-rare AML, normal HSC could be separated by their CD34(+) ALDH(+) phenotype, whereas LSC were exclusively detected among CD34(+) ALDH(-) cells. For patients with ALDH-numerous AML, the CD34(+) ALDH(+) subset consisted mainly of LSC and separation from HSC was not feasible. Functional analyses further showed that ALDH(+) cells from ALDH-numerous AML were quiescent, refractory to ARA-C treatment and capable of leukemic engraftment in a xenogenic mouse transplantation model. Clinically, resistance to chemotherapy and poor long-term outcome were also characteristic for patients with ALDH-numerous AML providing an additional risk-stratification tool. The difference in spectrum and relevance of ALDH activity in the putative LSC populations demonstrates, in addition to phenotypic and genetic, also functional heterogeneity of leukemic cells and suggests divergent roles for ALDH activity in normal HSC versus LSC. By acknowledging these differences our study provides a new and useful tool for prospective identification of AML cases in which separation of HSC from LSC is possible. © 2014 UICC.

  11. Characterization of children with FLT3-ITD acute myeloid leukemia: a report from the AIEOP AML-2002 study group.

    Science.gov (United States)

    Manara, E; Basso, G; Zampini, M; Buldini, B; Tregnago, C; Rondelli, R; Masetti, R; Bisio, V; Frison, M; Polato, K; Cazzaniga, G; Menna, G; Fagioli, F; Merli, P; Biondi, A; Pession, A; Locatelli, F; Pigazzi, M

    2017-01-01

    Recurrent molecular markers have been routinely used in acute myeloid leukemia (AML) for risk assessment at diagnosis, whereas their post-induction monitoring still represents a debated issue. We evaluated the prognostic value and biological impact of minimal residual disease (MRD) and of the allelic ratio (AR) of FLT3-internal-tandem duplication (ITD) in childhood AML. We retrospectively screened 494 children with de novo AML for FLT3-ITD mutation, identifying 54 harboring the mutation; 51% of them presented high ITD-AR at diagnosis and had worse event-free survival (EFS, 19.2 versus 63.5% for low ITD-AR, <0.05). Forty-one percent of children with high levels of MRD after the 1st induction course, measured by a patient-specific real-time-PCR, had worse EFS (22.2 versus 59.4% in low-MRD patients, P<0.05). Next, we correlated these parameters with gene expression, showing that patients with high ITD-AR or persistent MRD had characteristic expression profiles with deregulated genes involved in methylation and acetylation. Moreover, patients with high CyclinA1 expression presented an unfavorable EFS (20.3 versus 51.2% in low CyclinA1 group, P<0.01). Our results suggest that ITD-AR levels and molecular MRD should be considered in planning clinical management of FLT3-ITD patients. Different transcriptional activation of epigenetic and oncogenic profiles may explain variability in outcome among these patients, for whom novel therapeutic approaches are desirable.

  12. Acute myeloblastic leukemia with minimal myeloid differentiation (FAB AML-M0): a study of eleven cases.

    Science.gov (United States)

    Sempere, A; Jarque, I; Guinot, M; Palau, J; García, R; Sanz, G F; Gomis, F; Pérez-Sirvent, M L; Senent, L; Sanz, M A

    1993-12-01

    The main clinical, morphological, cytochemical, immunological features and therapy results of eleven patients diagnosed as acute myeloblastic leukemia M0 (AML-M0) are reported here. There were no clinical characteristics, abnormalities on physical examination or initial laboratory parameters that distinguished these eleven patients. Bone marrow aspirates were hypocellular in four patients. The leukemic cells were undifferentiated by light microscopy and myeloperoxidase (MPO) and/or Sudan Black B (SBB) stains were negative in all cases. Myeloid differentiation antigens were present on the leukemic cells of all eleven patients, whereas B and T cell markers were clearly negative except for CD4 and CD7 antigens. Whatever the treatment employed survival was very short. Eight of the eleven patients were treated and two achieved complete remission (CR) but only one of them is alive in continuous CR. Our results like those previously reported, suggest that AML-M0 patients have a very poor prognosis with standard induction therapies and should perhaps be considered for experimental therapeutic approaches.

  13. Socioeconomic status (SES) and childhood acute myeloid leukemia (AML) mortality risk: Analysis of SEER data.

    Science.gov (United States)

    Knoble, Naomi B; Alderfer, Melissa A; Hossain, Md Jobayer

    2016-10-01

    Socioeconomic status (SES) is a complex construct of multiple indicators, known to impact cancer outcomes, but has not been adequately examined among pediatric AML patients. This study aimed to identify the patterns of co-occurrence of multiple community-level SES indicators and to explore associations between various patterns of these indicators and pediatric AML mortality risk. A nationally representative US sample of 3651 pediatric AML patients, aged 0-19 years at diagnosis was drawn from 17 Surveillance, Epidemiology, and End Results (SEER) database registries created between 1973 and 2012. Factor analysis, cluster analysis, stratified univariable and multivariable Cox proportional hazards models were used. Four SES factors accounting for 87% of the variance in SES indicators were identified: F1) economic/educational disadvantage, less immigration; F2) immigration-related features (foreign-born, language-isolation, crowding), less mobility; F3) housing instability; and, F4) absence of moving. F1 and F3 showed elevated risk of mortality, adjusted hazards ratios (aHR) (95% CI): 1.07(1.02-1.12) and 1.05(1.00-1.10), respectively. Seven SES-defined cluster groups were identified. Cluster 1 (low economic/educational disadvantage, few immigration-related features, and residential-stability) showed the minimum risk of mortality. Compared to Cluster 1, Cluster 3 (high economic/educational disadvantage, high-mobility) and Cluster 6 (moderately-high economic/educational disadvantages, housing-instability and immigration-related features) exhibited substantially greater risk of mortality, aHR(95% CI)=1.19(1.0-1.4) and 1.23 (1.1-1.5), respectively. Factors of correlated SES-indicators and their pattern-based groups demonstrated differential risks in the pediatric AML mortality indicating the need of special public-health attention in areas with economic-educational disadvantages, housing-instability and immigration-related features. Copyright © 2016 Elsevier Ltd. All

  14. Infectious Complications in Children With Acute Myeloid Leukemia and Down Syndrome: Analysis of the Prospective Multicenter Trial AML-BFM 2004.

    Science.gov (United States)

    Hassler, Angela; Bochennek, Konrad; Gilfert, Julia; Perner, Corinna; Schöning, Stefan; Creutzig, Ursula; Reinhardt, Dirk; Lehrnbecher, Thomas

    2016-06-01

    Children with acute myeloid leukemia (AML) and Down syndrome have high survival rates with intensity-reduced chemotherapeutic regimens, although the optimal balance between dose intensity and treatment toxicity has not been determined. We, therefore, characterized infectious complications in children with AML and Down syndrome treated according to AML-BFM 2004 study (ClinicalTrials.gov NCT00111345; amended 2006 for Down syndrome with reduced intensity). Data on infectious complications were gathered from the medical records in the hospital where the patient was treated. Infectious complications were categorized as fever without identifiable source (FUO), or as microbiologically or clinically documented infections. A total of 157 infections occurred in 61 patients (60.5% FUO, 9.6% and 29.9% clinically and microbiologically documented infections, respectively). Almost 90% of the pathogens isolated from the bloodstream were Gram-positive bacteria, and approximately half of them were viridans group streptococci. All seven microbiologically documented episodes of pneumonia were caused by viruses. Infection-related mortality was 4.9%, and all three patients died due to viral infection. Our data demonstrate that a reduced-intensity chemotherapeutic regimen in children with AML and Down syndrome is still associated with high morbidity. Although no patient died due to bacteria or fungi, viruses were responsible for all lethal events. Future studies, therefore, have to focus on the impact of viruses on morbidity and mortality of patients with AML and Down syndrome. © 2016 Wiley Periodicals, Inc.

  15. Role of cytochemical staining in diagnosis of monocytic leukemia

    International Nuclear Information System (INIS)

    Wei Yan; Yan Chenhua; Shi Huilin; Liu Yanrong; Qiu Jingying; Jiang Bing; Wang Debing

    2005-01-01

    Objective: To explore the role of cytochemical staining in MIC(morphology ,immunology and cytogenetics) typing of acute monocytic leukemia (AML-M5) and acute myelomonocytic leukemia (AML-M4). Methods: The authors analyzed the characteristics of morphology, immunology and cytogenetics in 47 cases of diagnosed AML. Results: Eventually, they were diagnosed with MIC. There were 25 cases with AML-M5, 19 cases with AML-M4(consisted of 5 cases diagnosed AML-M4Eo), 2 cases with acute myeloid leukemia with t(8:21) and 1 case with T-ALL. Conclusions: During MIC typing of AML-M4 and AML-M5, the diagnostic value of morphology remains important, for immunophenotype, cytogenetics and morphology are interdependent. Immunophenotype and cytogenetics are necessary for improvement of the accuracy rate of diagnosis. (authors)

  16. Transformation from refractory anemia with excess of blasts (RAEB) into acute myeloid leukemia (AML) obserbed in a heavily exposed atomic bomb survivor

    Energy Technology Data Exchange (ETDEWEB)

    Iwato, Koji; Kawano, Michio; Kimura, Akiro; Kuramoto, Atsushi; Tanaka, Kimio; Kamada, Nanao

    1987-01-01

    A heavily exposed atomic bomb survivor, 59-year-old man presented refractory anemia with excess of blasts (RAEB) terminating in acute myeloid leukemia (AML) 38 years after exposure. When he manifested AML, combination chemotherapy was started. But complete remission was not obtained even by B-DOMP regimen. Cytogenetic studies were performed, and their relation to the clinical course was analyzed. Peripheral blood T lymphocytes had 41.9 % non-clonal chromosomal abnormalities suggesting over 400 rad exposure. Bone marrow cells at RAEB exhibited a presence of mosaic clones of normal and abnormal chromosomal pattern, which supported the clinical diagnosis of RAEB and corresponded to the clinical features such as steady state and a low percentage of myeloblasts. At transformation into AML, clonal chromosomal abnormality was seen in bone marrow cells. It may explain a rapid increase of abnormal cells. This abnormal clone showed a little different karyotype seen at RAEB. But it was suspected to derive from a clone at RAEB, because of the same persistent chromosomal abnormalities. Then it aquired an additional chromosomal abnormalities at clinically drug-resistant phase of AML. In vivo selection assay of these leukemic cells revealed that transforming gene took part in this leukemogenesis. These data shown in this paper contribute to investigate a mechanism of leukemogenesis in atomic bomb survivors and establishment of new therapy.

  17. Transformation from refractory anemia with excess of blasts (RAEB) into acute myeloid leukemia (AML) obserbed in a heavily exposed atomic bomb survivor

    International Nuclear Information System (INIS)

    Iwato, Koji; Kawano, Michio; Kimura, Akiro; Kuramoto, Atsushi; Tanaka, Kimio; Kamada, Nanao

    1987-01-01

    A heavily exposed atomic bomb survivor, 59-year-old man presented refractory anemia with excess of blasts (RAEB) terminating in acute myeloid leukemia (AML) 38 years after exposure. When he manifested AML, combination chemotherapy was started. But complete remission was not obtained even by B-DOMP regimen. Cytogenetic studies were performed, and their relation to the clinical course was analyzed. Peripheral blood T lymphocytes had 41.9 % non-clonal chromosomal abnormalities suggesting over 400 rad exposure. Bone marrow cells at RAEB exhibited a presence of mosaic clones of normal and abnormal chromosomal pattern, which supported the clinical diagnosis of RAEB and corresponded to the clinical features such as steady state and a low percentage of myeloblasts. At transformation into AML, clonal chromosomal abnormality was seen in bone marrow cells. It may explain a rapid increase of abnormal cells. This abnormal clone showed a little different karyotype seen at RAEB. But it was suspected to derive from a clone at RAEB, because of the same persistent chromosomal abnormalities. Then it aquired an additional chromosomal abnormalities at clinically drug-resistant phase of AML. In vivo selection assay of these leukemic cells revealed that transforming gene took part in this leukemogenesis. These data shown in this paper contribute to investigate a mechanism of leukemogenesis in atomic bomb survivors and establishment of new therapy. (author)

  18. Auger electron-emitting "1"1"1In-DTPA-NLS-CSL360 radioimmunoconjugates are cytotoxic to human acute myeloid leukemia (AML) cells displaying the CD123"+/CD131"− phenotype of leukemia stem cells

    International Nuclear Information System (INIS)

    Gao, Catherine; Leyton, Jeffrey V.; Schimmer, Aaron D.; Minden, Mark; Reilly, Raymond M.

    2016-01-01

    Chimeric IgG_1 monoclonal antibody CSL360 recognizes the CD123"+/CD131"− phenotype expressed by leukemic stem cells (LSC). Auger electron-emitting "1"1"1In-DTPA-NLS-CSL360 radioimmunoconjugates incorporating nuclear translocation sequence (NLS) peptides bound specifically to Raji cells transfected with CD123 and exhibited a K_D of 11 nmols/L in a competition receptor-binding assay using CD123-transfected CHO cells. "1"1"1In-DTPA-NLS-CSL360 was bound, internalized and transported to the nucleus of human AML-5 myeloid leukemia cells. The clonogenic survival of AML-5 cells was reduced by "1"1"1In-DTPA-NLS-CSL360 up to 3.7-fold. Isotype control "1"1"1In-DTPA-chIgG_1 was 2-fold less cytotoxic, and unlabeled CSL360, DTPA-NLS-CSL360 or free "1"1"1In acetate did not decrease cell survival. These results are promising for further evaluation of "1"1"1In-DTPA-NLS-CSL360 for Auger electron radioimmunotherapy of AML targeting the critical LSC subpopulation. - Highlights: • "1"1"1In-DTPA-NLS-CSL360 the CD123"+/CD131"− phenotype of leukemic stem cells (LSC). • "1"1"1In-DTPA-NLS-CSL360 was bound, internalized and imported into the nucleus of AML-5 leukemia cells. • "1"1"1In-DTPA-NLS-CSL360 reduced the clonogenic survival of AML-5 leukemia cells by 4-fold.

  19. [Dexamethasone and vorinostat cooperatively promote differentiation and apoptosis in Kasumi-1 leukemia cells through ubiquitination and degradation of AML1-ETO].

    Science.gov (United States)

    Chen, Li-ping; Zhang, Jian-wei; Xu, Fa-mei; Xing, Hai-yan; Tian, Zheng; Wang, Min; Wang, Jian-xiang

    2013-09-01

    To probe the effects of dexamethasone (DEX) combined with histone deacetylase (HDAC) inhibitor vorinostat on inhibiting proliferation and inducing differentiation and apoptosis in Kasumi-1 leukemia cells, and its possible mechanisms in order to provide a theoretical basis for the treatment of AML1-ETO positive AML. The cell survival, differentiation and apoptosis rates were tested by MTT or flow cytometry analysis after Kasumi-1 cells were treated by DMSO, DEX (20 nmol/L), vorinostat (1 μmol/L) or DEX (20 nmol/L) in combination with vorinostat (1 μmol/L). WB and IP-WB were performed to detect AML1-ETO and its ubiquitination. Treatment with the combination of DEX and vorinostat for 48 h led to statistically significant differences of inhibited proliferation [(42.06±8.20)%], increased differentiation [(52.83±8.97)%] and apoptosis [(52.92±2.53)%] of Kasumi-1 cells when compared with vorinostat [(33.82±9.41)%, (43.93±9.04)% and (42.98±3.01)%, respectively], DEX [(17.30±3.49)%, (22.53±4.51)% and (19.57±2.17)%, respectively] or control [(6.96±0.39)%, (21.73±2.03)% and (6.96±0.39)%, respectively]. Also significant ubiquitination and decreased AML1-ETO protein in Kasumi-1 cells after the combination treatment over single agent or control were observed. The results indicated that DEX and vorinostat could synergistically inhibit the Kasumi-1 cells proliferation, induce Kasumi-1 cells differentiation and apoptosis through ubiquitination and degradation of AML1-ETO.

  20. Phase I Trial of the Selective Inhibitor of Nuclear Export, KPT-330, in Relapsed Childhood ALL and AML

    Science.gov (United States)

    2018-03-05

    Relapsed Acute Lymphoblastic Leukemia (ALL); Refractory Acute Lymphoblastic Leukemia (ALL); Relapsed Acute Myelogenous Leukemia (AML); Refractory Acute Myelogenous Leukemia (AML); Relapsed Mixed Lineage Leukemia; Refractory Mixed Lineage Leukemia; Relapsed Biphenotypic Leukemia; Refractory Biphenotypic Leukemia; Chronic Myelogenous Leukemia (CML) in Blast Crisis

  1. A radiolabeled antibody targeting CD123+ leukemia stem cells – initial radioimmunotherapy studies in NOD/SCID mice engrafted with primary human AML

    Directory of Open Access Journals (Sweden)

    Jeffrey V. Leyton

    2015-01-01

    Full Text Available Radioimmunotherapy (RIT with anti-CD123 monoclonal antibody CSL360 modified with nuclear translocation sequence (NLS peptides and labeled with the Auger electron-emitter, 111In (111In-NLS-CSL360 was studied in the prevalent NOD/SCID mouse AML engraftment assay. Significant decreases in CD123+ leukemic cells and impairment of leukemic stem cell self-renewal were achieved with high doses of RIT. However, NOD/SCID mice were very radiosensitive to these doses. At low non-toxic treatment doses, 111In-NLS-CSL360 demonstrated a trend towards improved survival associated with decreased spleen/body weight ratio, an indicator of leukemia burden, and almost complete eradication of leukemia from the bone marrow in some mice.

  2. Outcome of children with high-risk acute myeloid leukemia given autologous or allogeneic hematopoietic cell transplantation in the aieop AML-2002/01 study.

    Science.gov (United States)

    Locatelli, F; Masetti, R; Rondelli, R; Zecca, M; Fagioli, F; Rovelli, A; Messina, C; Lanino, E; Bertaina, A; Favre, C; Giorgiani, G; Ripaldi, M; Ziino, O; Palumbo, G; Pillon, M; Pession, A; Rutella, S; Prete, A

    2015-02-01

    We analyzed the outcome of 243 children with high-risk (HR) AML in first CR1 enrolled in the AIEOP-2002/01 protocol, who were given either allogeneic (ALLO; n=141) or autologous (AUTO; n=102) hematopoietic SCT (HSCT), depending on the availability of a HLA-compatible sibling. Infants, patients with AML-M7, or complex karyotype or those with FLT3-ITD, were eligible to be transplanted also from alternative donors. All patients received a myeloablative regimen combining busulfan, cyclophosphamide and melphalan; [corrected] AUTO-HSCT patients received BM cells in most cases, while in children given ALLO-HSCT stem cell source was BM in 96, peripheral blood in 19 and cord blood in 26. With a median follow-up of 57 months (range 12-130), the probability of disease-free survival (DFS) was 73% and 63% in patients given either ALLO- or AUTO-HSCT, respectively (P=NS). Although the cumulative incidence (CI) of relapse was lower in ALLO- than in AUTO-HSCT recipients (17% vs 28%, respectively; P=0.043), the CI of TRM was 7% in both groups. Patients transplanted with unrelated donor cord blood had a remarkable 92.3% 8-year DFS probability. Altogether, these data confirm that HSCT is a suitable option for preventing leukemia recurrence in HR children with CR1 AML.

  3. Importance of No. 21 chromosome in translocation t(8:21) in acute myelocytic leukemia (AML) to the genesis of the disease

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, T; Minamihisamatsu, M

    1986-05-01

    The results are reported of the chromosome analysis of 17 cases of acute myelocytic leukemia (AML), mostly belonging to M2 of the FAB classification, especially on the translocation t(8:21) and its variant translocations. The presence of two cases with simple variant translocation not involving No. 8 chromosome seems to suggest that No. 21 chromosome is more important to the genesis of AML than the No. 8 chromosome. This assumption appears to be supported by findings on cases with complex translocation: In two cases with complex translocation, the portion translocated from No. 21 chromosome onto No. 8 was firmly maintained in the specific site (q21) on No. 8 whereas the portion translocated from No. 8 chromosome onto No. 21 was involved in further translocation with another chromosome, onto which it was re-translocated. The results of the present cytogenetic study indicate that the analysis of variant translocations in various specific chromosome translocations in leukemia and other malignant disorders is very useful to elucidate the problem as to whether the genesis of such disorders lies in either one or both of the pair of chromosomes involved in the specific translocations of the respective diseases.

  4. Rapid expansion of preexisting nonleukemic hematopoietic clones frequently follows induction therapy for de novo AML.

    Science.gov (United States)

    Wong, Terrence N; Miller, Christopher A; Klco, Jeffery M; Petti, Allegra; Demeter, Ryan; Helton, Nichole M; Li, Tiandao; Fulton, Robert S; Heath, Sharon E; Mardis, Elaine R; Westervelt, Peter; DiPersio, John F; Walter, Matthew J; Welch, John S; Graubert, Timothy A; Wilson, Richard K; Ley, Timothy J; Link, Daniel C

    2016-02-18

    There is interest in using leukemia-gene panels and next-generation sequencing to assess acute myelogenous leukemia (AML) response to induction chemotherapy. Studies have shown that patients with AML in morphologic remission may continue to have clonal hematopoiesis with populations closely related to the founding AML clone and that this confers an increased risk of relapse. However, it remains unknown how induction chemotherapy influences the clonal evolution of a patient's nonleukemic hematopoietic population. Here, we report that 5 of 15 patients with genetic clearance of their founding AML clone after induction chemotherapy had a concomitant expansion of a hematopoietic population unrelated to the initial AML. These populations frequently harbored somatic mutations in genes recurrently mutated in AML or myelodysplastic syndromes and were detectable at very low frequencies at the time of AML diagnosis. These results suggest that nonleukemic hematopoietic stem and progenitor cells, harboring specific aging-acquired mutations, may have a competitive fitness advantage after induction chemotherapy, expand, and persist long after the completion of chemotherapy. Although the clinical importance of these "rising" clones remains to be determined, it will be important to distinguish them from leukemia-related populations when assessing for molecular responses to induction chemotherapy. © 2016 by The American Society of Hematology.

  5. ERG and FLI1 binding sites demarcate targets for aberrant epigenetic regulation by AML1-ETO in acute myeloid leukemia

    NARCIS (Netherlands)

    Martens, Joost H. A.; Mandoli, Amit; Simmer, Femke; Wierenga, Bart-Jan; Saeed, Sadia; Singh, Abhishek A.; Altucci, Lucia; Vellenga, Edo; Stunnenberg, Hendrik G.

    2012-01-01

    ERG and FLI1 are closely related members of the ETS family of transcription factors and have been identified as essential factors for the function and maintenance of normal hematopoietic stem cells. Here genome-wide analysis revealed that both ERG and FLI1 occupy similar genomic regions as AML1-ETO

  6. Pediatric acute myeloid leukemia with t(8;16)(p11;p13), a distinct clinical and biological entity: A collaborative study by the International-Berlin- Frankfurt-Münster AML-study group

    NARCIS (Netherlands)

    E.A. Coenen (Eva); C.M. Zwaan (Christian Michel); D. Reinhardt (Dirk); C.J. Harrison (Christine); O.A. Haas (Oskar); V. de Haas (Valerie); V. Mihál (Vladimir); B. de Moerloose (Barbara); M. Jeison (Marta); J.E. Rubnitz (Jeffrey); D. Tomizawa (Daisuke); D. Johnston (Donna); T.A. Alonzo (Todd); H. Hasle (Henrik); A. Auvrignon (Anne); M.N. Dworzak (Michael); A. Pession (Andrea); V.H.J. van der Velden (Vincent); J. Swansbury (John); K.-F. Wong (Kit-Fai); N. Terui (Nobuhiko); S. Savasan (Sureyya); M. Winstanley (Mark); G. Vaitkeviciene (Goda); M. Zimmermann (Martin); R. Pieters (Rob); M.M. van den Heuvel-Eibrink (Marry)

    2013-01-01

    textabstractIn pediatric acute myeloid leukemia (AML), cytogenetic abnormalities are strong indicators of prognosis. Some recurrent cytogenetic abnormalities, such as t(8;16)(p11;p13), are so rare that collaborative studies are required to define their prognostic impact. We collected the clinical

  7. Osteolytic Bone Lesions - A Rare Presentation of AML M6.

    Science.gov (United States)

    Geetha, N; Sreelesh, K P; Priya, M J; Lali, V S; Rekha, N

    2015-01-01

    Acute myeloid leukemia (AML) M6 is a rare form of AML accounting for M6 before. We discuss the case of a 17 year old boy with AML M6, who presented with osteolytic lesion of right humerus. He was treated with induction and consolidation chemotherapy. The present case is the first report in literature of AML M6 presenting with skeletal lesions.

  8. Use of recombinant granulocyte-macrophage colony-stimulating factor during and after remission induction chemotherapy in patients aged 61 years and older with acute myeloid leukemia (AML) : Final report of AML-11, a phase III randomized study of the Leukemia Cooperative Group of European Organisation for the Research and Treatment of Cancer (EORTC-LCG) and the Dutch Belgian Hemato-Oncology Cooperative Group (HOVON)

    NARCIS (Netherlands)

    Lowenberg, B; Suciu, S; Archimbaud, E; Ossenkoppele, G; Verhoef, GEG; Vellenga, E; Wijermans, P; Berneman, Z; Dekker, AW; Stryckmans, P; Jehn, U; Muus, P; Sonneveld, P; Dardenne, M; Zittoun, R

    1997-01-01

    We conducted a prospective randomized multicenter clinical trial comparing the effects of granulocyte-macrophage colony-stimulating factor (GM-CSF) as an adjunct to intensive chemotherapy in patients of 61 years and older with untreated newly diagnosed acute myeloid leukemia (AML). Patients were

  9. Identification of patients with acute myeloblastic leukemia who benefit from the addition of gemtuzumab ozogamicin: results of the MRC AML15 trial

    DEFF Research Database (Denmark)

    Burnett, Alan K; Hills, Robert K; Milligan, Donald

    2011-01-01

    PURPOSE: Antibody-directed chemotherapy for acute myeloid leukemia (AML) may permit more treatment to be administered without escalating toxicity. Gemtuzumab ozogamicin (GO) is an immunoconjugate between CD33 and calicheamicin that is internalized when binding to the epitope. We previously...... established that it is feasible to combine GO with conventional chemotherapy. We now report a large randomized trial testing the addition of GO to induction and/or consolidation chemotherapy in untreated younger patients. PATIENTS AND METHODS: In this open-label trial, 1,113 patients, predominantly younger...... in toxicity. There was no overall difference in response or survival in either induction of consolidation. However, a predefined analysis by cytogenetics showed highly significant interaction with induction GO (P = .001), with significant survival benefit for patients with favorable cytogenetics, no benefit...

  10. 6-Thioguanine, cytarabine, and daunorubicin (TAD) and high-dose cytarabine and mitoxantrone (HAM) for induction, TAD for consolidation, and either prolonged maintenance by reduced monthly TAD or TAD-HAM-TAD and one course of intensive consolidation by sequential HAM in adult patients at all ages with de novo acute myeloid leukemia (AML): a randomized trial of the German AML Cooperative Group.

    Science.gov (United States)

    Büchner, Thomas; Hiddemann, Wolfgang; Berdel, Wolfgang E; Wörmann, Bernhard; Schoch, Claudia; Fonatsch, Christa; Löffler, Helmut; Haferlach, Torsten; Ludwig, Wolf-Dieter; Maschmeyer, Georg; Staib, Peter; Aul, Carlo; Gruneisen, Andreas; Lengfelder, Eva; Frickhofen, Norbert; Kern, Wolfgang; Serve, Hubert L; Mesters, Rolf M; Sauerland, Maria Cristina; Heinecke, Achim

    2003-12-15

    To examine the efficacy of prolonged maintenance chemotherapy versus intensified consolidation therapy for patients with acute myeloid leukemia (AML). Eight hundred thirty-two patients (median age, 54 years; range, 16 to 82 years) with de novo AML were randomly assigned to receive 6-thioguanine, cytarabine, and daunorubicin (TAD) plus cytarabine and mitoxantrone (HAM; cytarabine 3 g/m2 [age or = 60 years] x 6) induction, TAD consolidation, and monthly modified TAD maintenance for 3 years, or TAD-HAM-TAD and one course of intensive consolidation with sequential HAM (S-HAM) with cytarabine 1 g/m2 (age or = 60 years) x 8 instead of maintenance. A total of 69.2% patients went into complete remission (CR). Median relapse-free survival (RFS) was 19 months for patients on the maintenance arm, with 31.4% of patients relapse-free at 5 years, versus 12 months for patients on the S-HAM arm, with 24.7% of patients relapse-free at 5 years (P =.0118). RFS from maintenance was superior in patients with poor risk by unfavorable karyotype, age > or = 60 years, lactate dehydrogenase level greater than 700 U/L, or day 16 bone marrow blasts greater than 40% (P =.0061) but not in patients with good risk by complete absence of any poor risk factors. Although a survival benefit in the CR patients is not significant (P =.085), more surviving patients in the maintenance than in the S-HAM arm remain in first CR (P =.026). We conclude that TAD-HAM-TAD-maintenance first-line treatment has a higher curative potential than TAD-HAM-TAD-S-HAM and improves prognosis even among patients with poor prognosis.

  11. MPL expression on AML blasts predicts peripheral blood neutropenia and thrombocytopenia.

    Science.gov (United States)

    Rauch, Philipp J; Ellegast, Jana M; Widmer, Corinne C; Fritsch, Kristin; Goede, Jeroen S; Valk, Peter J M; Löwenberg, Bob; Takizawa, Hitoshi; Manz, Markus G

    2016-11-03

    Although the molecular pathways that cause acute myeloid leukemia (AML) are increasingly well understood, the pathogenesis of peripheral blood cytopenia, a major cause of AML mortality, remains obscure. A prevailing assumption states that AML spatially displaces nonleukemic hematopoiesis from the bone marrow. However, examining an initial cohort of 223 AML patients, we found no correlation between bone marrow blast content and cytopenia, questioning the displacement theory. Measuring serum concentration of thrombopoietin (TPO), a key regulator of hematopoietic stem cells and megakaryocytes, revealed loss of physiologic negative correlation with platelet count in AML cases with blasts expressing MPL, the thrombopoietin (scavenging) receptor. Mechanistic studies demonstrated that MPL hi blasts could indeed clear TPO, likely therefore leading to insufficient cytokine levels for nonleukemic hematopoiesis. Microarray analysis in an independent multicenter study cohort of 437 AML cases validated MPL expression as a central predictor of thrombocytopenia and neutropenia in AML. Moreover, t(8;21) AML cases demonstrated the highest average MPL expression and lowest average platelet and absolute neutrophil counts among subgroups. Our work thus explains the pathophysiology of peripheral blood cytopenia in a relevant number of AML cases. © 2016 by The American Society of Hematology.

  12. c-Jun N-terminal kinase mediates AML1-ETO protein-induced connexin-43 expression

    International Nuclear Information System (INIS)

    Gao Fenghou; Wang Qiong; Wu Yingli; Li Xi; Zhao Kewen; Chen Guoqiang

    2007-01-01

    AML1-ETO fusion protein, a product of leukemia-related chromosomal translocation t(8;21), was reported to upregulate expression of connexin-43 (Cx43), a member of gap junction-constituted connexin family. However, its mechanism(s) remains unclear. By bioinformatic analysis, here we showed that there are two putative AML1-binding consensus sequences followed by two activated protein (AP)1 sites in the 5'-flanking region upstream to Cx43 gene. AML1-ETO could directly bind to these two AML1-binding sites in electrophoretic mobility shift assay, but luciferase reporter assay revealed that the AML1 binding sites were not indispensable for Cx43 induction by AML1-ETO protein. Conversely, AP1 sites exerted an important role in this event. In agreement, AML1-ETO overexpression in leukemic U937 cells activated c-Jun N-terminal kinase (JNK), while its specific inhibitor SP600125 effectively abrogated AML1-ETO-induced Cx43 expression, indicating that JNK signaling pathway contributes to AML1-ETO induced Cx43 expression. These results would shed new insights for understanding mechanisms of AML1-ETO-associated leukemogenesis

  13. Loss of the histone methyltransferase EZH2 induces resistance to multiple drugs in acute myeloid leukemia

    DEFF Research Database (Denmark)

    Göllner, Stefanie; Oellerich, Thomas; Agrawal-Singh, Shuchi

    2017-01-01

    In acute myeloid leukemia (AML), therapy resistance frequently occurs, leading to high mortality among patients. However, the mechanisms that render leukemic cells drug resistant remain largely undefined. Here, we identified loss of the histone methyltransferase EZH2 and subsequent reduction...

  14. Azacitidine augments expansion of regulatory T cells after allogeneic stem cell transplantation in patients with acute myeloid leukemia (AML).

    Science.gov (United States)

    Goodyear, Oliver C; Dennis, Mike; Jilani, Nadira Y; Loke, Justin; Siddique, Shamyla; Ryan, Gordon; Nunnick, Jane; Khanum, Rahela; Raghavan, Manoj; Cook, Mark; Snowden, John A; Griffiths, Mike; Russell, Nigel; Yin, John; Crawley, Charles; Cook, Gordon; Vyas, Paresh; Moss, Paul; Malladi, Ram; Craddock, Charles F

    2012-04-05

    Strategies that augment a GVL effect without increasing the risk of GVHD are required to improve the outcome after allogeneic stem cell transplantation (SCT). Azacitidine (AZA) up-regulates the expression of tumor Ags on leukemic blasts in vitro and expands the numbers of immunomodulatory T regulatory cells (Tregs) in animal models. Reasoning that AZA might selectively augment a GVL effect, we studied the immunologic sequelae of AZA administration after allogeneic SCT. Twenty-seven patients who had undergone a reduced intensity allogeneic transplantation for acute myeloid leukemia were treated with monthly courses of AZA, and CD8(+) T-cell responses to candidate tumor Ags and circulating Tregs were measured. AZA after transplantation was well tolerated, and its administration was associated with a low incidence of GVHD. Administration of AZA increased the number of Tregs within the first 3 months after transplantation compared with a control population (P = .0127). AZA administration also induced a cytotoxic CD8(+) T-cell response to several tumor Ags, including melanoma-associated Ag 1, B melanoma antigen 1, and Wilm tumor Ag 1. These data support the further examination of AZA after transplantation as a mechanism of augmenting a GVL effect without a concomitant increase in GVHD.

  15. Diagnosis and management of acute myeloid leukemia in children and adolescents : recommendations from an international expert panel

    NARCIS (Netherlands)

    Creutzig, Ursula; van den Heuvel-Eibrink, Marry M.; Gibson, Brenda; Dworzak, Michael N.; Adachi, Souichi; de Bont, Eveline; Harbott, Jochen; Hasle, Henrik; Johnston, Donna; Kinoshita, Akitoshi; Lehrnbecher, Thomas; Leverger, Guy; Mejstrikova, Ester; Meshinchi, Soheil; Pession, Andrea; Raimondi, Susana C.; Sung, Lillian; Stary, Jan; Zwaan, Christian M.; Kaspers, Gertjan J. L.; Reinhardt, Dirk

    2012-01-01

    Despite major improvements in outcome over the past decades, acute myeloid leukemia (AML)remains a life-threatening malignancy in children, with current survival rates of similar to 70%. State-of-the-art recommendations in adult AML have recently been published in this journal by Dohner et al. The

  16. Atmospheric Measurements Laboratory (AML)

    Data.gov (United States)

    Federal Laboratory Consortium — The Atmospheric Measurements Laboratory (AML) is one of the nation's leading research facilities for understanding aerosols, clouds, and their interactions. The AML...

  17. Gene expression profiling in MDS and AML: potential and future avenues

    DEFF Research Database (Denmark)

    Theilgaard-Mönch, K; Boultwood, J; Ferrari, S

    2011-01-01

    Today, the classification systems for myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) already incorporate cytogenetic and molecular genetic aberrations in an attempt to better reflect disease biology. However, in many MDS/AML patients no genetic aberrations have been identified yet...... with regard to diagnosis, prediction of clinical outcome, discovery of novel subclasses and identification of novel therapeutic targets and novel drugs. As many challenges remain ahead, we discuss the pitfalls of this technology and its potential including future integrative studies with other genomics...

  18. WHO HAS THERAPY-RELATED AML?

    Directory of Open Access Journals (Sweden)

    Robert Gale

    2017-03-01

    Full Text Available Therapy-related leukemia or therapy-related myeloid neoplasm are widely-used terms to designate leukemia developing in persons who previously received anti-cancer therapy (for example, see references 1, 2, especially if the prior anti-cancer therapy included drugs such as alkylators, DNA-intercalators, topoisomerase-2-inhibitors, purines and/or ionizing radiations.   Sometimes specific genes such as AML1, EVI1, NRAS or MLL are mutated by therapy or gene variants are produced which activate mutagens or interfere with DNA repair, such FANC, NQ01 or AML2. 3-5   But how can we know if AML in someone is a therapy-related? Keywords: Therapy-related leukemia; alkylators; ionizing radiations; Topoisomerase Inhibitors; DNA Repair

  19. Use of G-CSF to hasten neutrophil recovery after auto-SCT for AML is not associated with increased relapse incidence: a report from the Acute Leukemia Working Party of the EBMT.

    Science.gov (United States)

    Czerw, T; Labopin, M; Gorin, N-C; Giebel, S; Blaise, D; Dumas, P-Y; Foa, R; Attal, M; Schaap, N; Michallet, M; Bonmati, C; Veelken, H; Mohty, M

    2014-07-01

    Application of G-CSF in AML is controversial as leukemic blasts may express receptors interacting with the cytokine, which may stimulate leukemia growth. We retrospectively analyzed the impact of G-CSF use to accelerate neutrophil recovery after auto-SCT on outcome. Adults with AML in first CR autografted between 1994 and 2010 were included. Nine hundred and seventy two patients were treated with G-CSF after auto-SCT whereas 1121 were not. BM and PB were used as a source of stem cells in 454 (22%) and 1639 (78%) cases, respectively. The incidence of relapse at 5 years in the BM-auto-SCT group was 38% for patients receiving post-transplant G-CSF and 43% for those not treated with G-CSF, P=0.46. In the PB-auto-SCT cohort, respective probabilities were 48% and 49%, P=0.49. No impact of the use of G-CSF could be demonstrated with respect to the probability of leukemia-free survival: in the BM-auto-SCT group, 51% for G-CSF(+) and 48% for G-CSF(-), P=0.73; in PB-auto-SCT group, 42% for G-CSF(+) and 43% for G-CSF(-), P=0.83. Although G-CSF administration significantly shortened the neutropenic phase, no beneficial effect was observed with regard to non-relapse mortality. In patients with AML, the use of G-CSF after auto-SCT is not associated with increased risk of relapse irrespective of the source of stem cells used.

  20. Safety and Pharmacokinetics of the Antisense Oligonucleotide (ASO) LY2181308 as a Single-Agent or in Combination with Idarubicin and Cytarabine in Patients with Refractory or Relapsed Acute Myeloid Leukemia (AML)

    Science.gov (United States)

    Erba, Harry P.; Sayar, Hamid; Juckett, Mark; Lahn, Michael; Andre, Valerie; Callies, Sophie; Schmidt, Shelly; Kadam, Sunil; Brandt, John T.; Van Bockstaele, Dirk; Andreeff, Michael

    2014-01-01

    Summary Survivin is expressed in tumor cells, including acute myeloid leukemia (AML), regulates mitosis, and prevents tumor cell death. The antisense oligonucleotide sodium LY2181308 (LY2181308) inhibits survivin expression and may cause cell cycle arrest and restore apoptosis in AML. Methods In this study, the safety, pharmacokinetics, and pharmacodynamics/efficacy of LY2181308 was examined in AML patients, first in a cohort with monotherapy (n=8) and then post-amendment in a cohort with the combination of cytarabine and idarubicin treatment (n=16). LY2181308 was administered with a loading dosage of 3 consecutive daily infusions of 750 mg followed by weekly intravenous (IV) maintenance doses of 750 mg. Cytarabine 1.5 g/m2 was administered as a 4-hour IV infusion on Days 3, 4, and 5 of Cycle 1, and idarubicin 12 mg/m2 was administered as a 30-minute IV infusion on Days 3, 4, and 5 of Cycle 1. Cytarabine and idarubicin were administered on Days 1, 2, and 3 of each subsequent 28-day cycle. Reduction of survivin was evaluated in peripheral blasts and bone marrow. Results Single-agent LY2181308 was well tolerated and survivin was reduced only in patients with a high survivin expression. In combination with chemotherapy, 4/16 patients had complete responses, 1/16 patients had incomplete responses, and 4/16 patients had cytoreduction. Nine patients died on study: 6 (monotherapy), 3 (combination). Conclusions LY2181308 alone is well tolerated in patients with AML. In combination with cytarabine and idarubicin, LY2181308 does not appear to cause additional toxicity, and has shown some clinical benefit needing confirmation in future clinical trials. PMID:23397500

  1. A non-canonical Flt3ITD/NF-κB signaling pathway represses DAPK1 in acute myeloid leukemia (AML)

    Science.gov (United States)

    Shanmugam, Rajasubramaniam; Sayar, Hamid; Suvannasankha, Attaya; Goswami, Chirayu; Li, Lang; Gupta, Sushil; Cardoso, Angelo A.; Baghdadi, Tareq Al; Sargent, Katie J.; Cripe, Larry D.; Kalvakolanu, Dhananjaya V.; Boswell, H. Scott

    2014-01-01

    Purpose DAPK1, a tumor suppressor, is a rate-limiting effector in an ER stress-dependent apoptotic pathway. Its expression is epigenetically suppressed in several tumors. A mechanistic basis for epigenetic/transcriptional repression of DAPK1 was investigated in certain forms of AML with poor prognosis, which lacked ER stress-induced apoptosis. Experimental Design Heterogeneous primary AMLs were screened to identify a subgroup with Flt3ITD in which repression of DAPK1, among NF-κB- and c- jun-responsive genes, was studied. RNAi knockdown studies were performed in Flt3ITD+ve cell line, MV-4-11, to establish genetic epistasis in the pathway Flt3ITD-TAK1-DAPK1 repression, and chromatin immunoprecipitations were performed to identify proximate effector proteins, including TAK1-activated p52NF-κB, at the DAPK1 locus. Results AMLs characterized by normal karyotype with Flt3ITD were found to have 10-100-fold lower DAPK1 transcripts normalized to the expression of c-jun, a transcriptional activator of DAPK1, as compared to a heterogeneous cytogenetic category. Meis1, a c-jun-responsive adverse AML prognostic gene signature was also measured as control. These Flt3ITD+ve AMLs over-express relB, a transcriptional repressor, which forms active heterodimers with p52NF-κB. Chromatin immunoprecipitation assays identified p52NF-κB binding to the DAPK1 promoter along with HDAC2 and HDAC6 in the Flt3ITD+ve human AML cell line MV-4-11. Knockdown of p52NF-κB or its upstream regulator, NIK, de-repressed DAPK1. DAPK1-repressed primary Flt3ITD+ve AMLs had selective nuclear activation of p52NF-κB. Conclusions Flt3ITD promotes a non-canonical pathway via TAK1 and p52NF-κB to suppress DAPK1 in association with HDACs, which explains DAPK1 repression in Flt3ITD+ve AML. PMID:22096027

  2. Therapy-related AML/MDS after treatment of low-grade B-cell lymphoma

    International Nuclear Information System (INIS)

    Yanada, Masamitsu

    2008-01-01

    Described is the therapy-related AML (acute myelogenetic leukemia)/MDS (myelo-dysplasia syndrome), which is manifested after various treatments of low-grade B-cell lymphoma and has strongly attracted attention because of the markedly improved prognosis due to recent advantages of the therapy for the disease. AML/MDS occurs several years after chemotherapy and/or radiation therapy which cause DNA damage in hematopoietic cells, and the AML/MDS risk is known increased in patients undergone especially with autologous transplantation of those cells. AML/MDS has the feature similar to that caused either by alkylating agent or by topoisomerase-2 inhibitor, and the disease by radiation belong to the former. Yet unclear is the problem whether malignant cells causing the disease after therapy are derived from the remaining cells in the graft or in the body. Although irradiations of total body and total lymphaden as well as chemotherapy are said to be related to AML/MDS and local irradiation does not contribute to its risk, the most important factor for the disease is considered to be the autotransplantation as the recurrence occurs in 50% after it. Thus the treatment history should be taken into consideration for suppressing AML/MDS, for which follow up with consideration for the disease is required particularly after autotransplantation. (R.T.)

  3. The Hematopoietic Transcription Factors RUNX1 and ERG Prevent AML1-ETO Oncogene Overexpression and Onset of the Apoptosis Program in t(8;21) AMLs

    NARCIS (Netherlands)

    Mandoli, Amit; Singh, Abhishek A.; Prange, Koen H. M.; Tijchon, Esther; Oerlemans, Marjolein; Dirks, Rene; Ter Huurne, Menno; Wierenga, Albertus T. J.; Janssen-Megens, Eva M.; Berentsen, Kim; Sharifi, Nilofar; Kim, Bowon; Matarese, Filomena; Nguyen, Luan N.; Hubner, Nina C.; Rao, Nagesha A.; van den Akker, Emile; Altucci, Lucia; Vellenga, Edo; Stunnenberg, Hendrik G.; Martens, Joost H. A.

    2016-01-01

    The t(8;21) acute myeloid leukemia (AML)-associated oncoprotein AML1-ETO disrupts normal hematopoietic differentiation. Here, we have investigated its effects on the transcriptome and epigenome in t(8,21) patient cells. AML1-ETO binding was found at promoter regions of active genes with high levels

  4. The impact of center experience on results of reduced intensity:allogeneic hematopoietic SCT for AML. An analysis from the Acute Leukemia Working Party of the EBMT

    DEFF Research Database (Denmark)

    Giebel, S; Labopin, M; Mohty, M

    2013-01-01

    Allogeneic hematopoietic SCT with reduced-intensity conditioning (RIC-HSCT) is increasingly adopted for the treatment of older adults with AML. Our goal was to verify for the first time, if center experience influences outcome of RIC-HSCT. Results of 1413 transplantations from HLA-matched related...

  5. PD-1hiTIM-3+ T cells associate with and predict leukemia relapse in AML patients post allogeneic stem cell transplantation

    International Nuclear Information System (INIS)

    Kong, Y; Zhang, J; Claxton, D F; Ehmann, W C; Rybka, W B; Zhu, L; Zeng, H; Schell, T D; Zheng, H

    2015-01-01

    Prognosis of leukemia relapse post allogeneic stem cell transplantation (alloSCT) is poor and effective new treatments are urgently needed. T cells are pivotal in eradicating leukemia through a graft versus leukemia (GVL) effect and leukemia relapse is considered a failure of GVL. T-cell exhaustion is a state of T-cell dysfunction mediated by inhibitory molecules including programmed cell death protein 1 (PD-1) and T-cell immunoglobulin domain and mucin domain 3 (TIM-3). To evaluate whether T-cell exhaustion and inhibitory pathways are involved in leukemia relapse post alloSCT, we performed phenotypic and functional studies on T cells from peripheral blood of acute myeloid leukemia patients receiving alloSCT. Here we report that PD-1 hi TIM-3 + cells are strongly associated with leukemia relapse post transplantation. Consistent with exhaustion, PD-1 hi TIM-3 + T cells are functionally deficient manifested by reduced production of interleukin 2 (IL-2), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ). In addition, these cells demonstrate a phenotype consistent with exhausted antigen-experienced T cells by losing T N and T EMRA subsets. Importantly, increase of PD-1 hi TIM-3 + cells occurs before clinical diagnosis of leukemia relapse, suggesting their predictive value. Results of our study provide an early diagnostic approach and a therapeutic target for leukemia relapse post transplantation

  6. A randomized assessment of adding the kinase inhibitor lestaurtinib to first-line chemotherapy for FLT3-mutated AML

    DEFF Research Database (Denmark)

    Knapper, Steven; Russell, Nigel; Gilkes, Amanda

    2017-01-01

    The clinical benefit of adding FMS-like tyrosine kinase-3 (FLT3)-directed small molecule therapy to standard first-line treatment of acute myeloid leukemia (AML) has not yet been established. As part of the UK AML15 and AML17 trials, patients with previously untreated AML and confirmed FLT3-activ...

  7. ent-Jungermannenone C Triggers Reactive Oxygen Species-Dependent Cell Differentiation in Leukemia Cells.

    Science.gov (United States)

    Yue, Zongwei; Xiao, Xinhua; Wu, Jinbao; Zhou, Xiaozhou; Liu, Weilong; Liu, Yaxi; Li, Houhua; Chen, Guoqiang; Wu, Yingli; Lei, Xiaoguang

    2018-02-23

    Acute myeloid leukemia (AML) is a hematologic malignancy that is characterized by clonal proliferation of myeloid blasts. Despite the progress that has been made in the treatment of various malignant hematopoietic diseases, the effective treatment of AML remains very challenging. Differentiation therapy has emerged as a promising approach for leukemia treatment, and new and effective chemical agents to trigger the differentiation of AML cells, especially drug-resistant cells, are urgently required. Herein, the natural product jungermannenone C, a tetracyclic diterpenoid isolated from liverworts, is reported to induce cell differentiation in AML cells. Interestingly, the unnatural enantiomer of jungermannenone C (1) was found to be more potent than jungermannenone C in inducing cell differentiation. Furthermore, compound 1 targets peroxiredoxins I and II by selectively binding to the conserved cysteine residues and leads to cellular reactive oxygen species accumulation. Accordingly, ent-jungermannenone C (1) shows potential for further investigation as an effective differentiation therapy against AML.

  8. Gemtuzumab ozogamicin as postremission treatment in AML at 60 years of age or more : results of a multicenter phase 3 study

    NARCIS (Netherlands)

    Lowenberg, Bob; Beck, Joachim; Graux, Carlos; van Putten, Wim; Schouten, Harry C.; Verdonck, Leo F.; Ferrant, Augustin; Sonneveld, Pieter; Jongen-Lavrencic, Mojca; von Lilienfeld-Toal, Marie; Biemond, Bart J.; Vellenga, Edo; Breems, Dimitri; de Muijnck, Hilde; Schaafsma, Ron; Verhoef, Gregor; Doehner, Hartmut; Gratwohl, Alois; Pabst, Thomas; Ossenkoppele, Gert J.; Maertens, Johan

    2010-01-01

    In older patients with acute myeloid leukemia (AML), the prevention of relapse has remained one of the major therapeutic challenges, with more than 75% relapses after complete remission. The anti-CD33 immunotoxin conjugate gemtuzumab ozogamicin (GO) has shown antileukemic remission induction

  9. An improved pre-clinical patient-derived liquid xenograft mouse model for acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Zhisheng Her

    2017-10-01

    Full Text Available Abstract Background Xenotransplantation of patient-derived AML (acute myeloid leukemia cells in NOD-scid Il2rγ null (NSG mice is the method of choice for evaluating this human hematologic malignancy. However, existing models constructed using intravenous injection in adult or newborn NSG mice have inferior engraftment efficiency, poor peripheral blood engraftment, or are difficult to construct. Methods Here, we describe an improved AML xenograft model where primary human AML cells were injected into NSG newborn pups intrahepatically. Results Introduction of primary cells from AML patients resulted in high levels of engraftment in peripheral blood, spleen, and bone marrow (BM of recipient mice. The phenotype of engrafted AML cells remained unaltered during serial transplantation. The mice developed features that are consistent with human AML including spleen enlargement and infiltration of AML cells into multiple organs. Importantly, we demonstrated that although leukemic stem cell activity is enriched and mediated by CD34+CD117+ subpopulation, CD34+CD117− subpopulation can acquire CD34+CD117+ phenotype through de-differentiation. Lastly, we evaluated the therapeutic potential of Sorafenib and Regorafenib in this AML model and found that periphery and spleen AML cells are sensitive to these treatments, whereas BM provides a protective environment to AML. Conclusions Collectively, our improved model is robust, easy-to-construct, and reliable for pre-clinical AML studies.

  10. The biology and targeting of FLT3 in pediatric leukemia

    Directory of Open Access Journals (Sweden)

    Colleen eAnnesley

    2014-09-01

    Full Text Available Despite remarkable improvement in treatment outcomes in pediatric leukemia over the past several decades, the prognosis for high risk groups of acute myeloid leukemia (AML and acute lymphoblastic leukemia (ALL, as well as for relapsed leukemia, remains poor. Intensified chemotherapy regimens have somewhat improved success rates, but at the cost of drastically increased morbidity and long term adverse effects. With the success of imatinib in Philadelphia-chromosome positive leukemia and all-trans retinoic acid in acute promyelocytic leukemia, the quest to find additional molecularly targeted therapies has generated much excitement over the past 15 years. Another such possible target in pediatric acute leukemia is FMS-like tyrosine kinase 3 (FLT3. FLT3 aberrations are among the most frequently identified transforming events in AML, and have significant clinical implications in both high risk pediatric AML and in certain high risk groups of pediatric ALL. Therefore, the successful targeting of FLT3 has tremendous potential to improve outcomes in these subsets of patients. This article will give an overview of the molecular function and signaling of the FLT3 receptor, as well as its pathogenic role in leukemia. We review the discovery of targeting FLT3, discuss currently available FLT3 inhibitors in pediatric leukemia and results of clinical trials to date, and finally, consider the future promise and challenges of FLT3 inhibitor therapy.

  11. Base excision repair deficiency in acute myeloid leukemia

    International Nuclear Information System (INIS)

    Scheer, N.M.

    2009-01-01

    Acute myeloid leukemia (AML) is an aggressive malignancy of the hematopoietic system arising from a transformed myeloid progenitor cell. Genomic instability is the hallmark of AML and characterized by a variety of cytogenetic and molecular abnormalities. Whereas 10% to 20% of AML cases reflect long-term sequelae of cytotoxic therapies for a primary disorder, the etiology for the majority of AMLs remains unknown. The integrity of DNA is under continuous attack from a variety of exogenous and endogenous DNA damaging agents. The majority of DNA damage is caused by constantly generated reactive oxygen species (ROS) resulting from metabolic by-products. Base excision repair (BER) is the major DNA repair mechanism dealing with DNA base lesions that are induced by oxidative stress or alkylation. In this study we investigated the BER in AML. Primary AML patients samples as well as AML cell lines were treated with hydrogen peroxide (H 2 O 2 ). DNA damage induction and repair was monitored by the alkaline comet assay. In 15/30 leukemic samples from patients with therapy-related AML, in 13/35 with de novo AML and 14/26 with AML following a myelodysplastic syndrome, significantly reduced single strand breaks (SSBs) representing BER intermediates were found. In contrast, normal SSB formation was seen in mononuclear cells of 30 healthy individuals and 30/31 purified hematopoietic stem- and progenitor cell preparations obtained from umbilical cord blood. Additionally, in 5/10 analyzed AML cell lines, no SSBs were formed upon H 2 O 2 treatment, either. Differences in intracellular ROS concentrations or apoptosis could be excluded as reason for this phenomenon. A significantly diminished cleavage capacity for 7,8-dihydro-8-oxoguanine as well as for Furan was observed in cell lines that exhibited no SSB formation. These data demonstrate for the first time that initial steps of BER are impaired in a proportion of AML cell lines and leukemic cells from patients with different forms of

  12. Clinical, Molecular, and Prognostic Significance of WHO Type inv(3)(q21q26.2)/t(3;3)(q21;q26.2) and Various Other 3q Abnormalities in Acute Myeloid Leukemia

    NARCIS (Netherlands)

    Lugthart, Sanne; Groschel, Stefan; Beverloo, H. Berna; Kayser, Sabine; Valk, Peter J. M.; van Zelderen-Bhola, Shama Lydia; Ossenkoppele, Gert Jan; Vellenga, Edo; van den Berg-de Ruiter, Eva; Schanz, Urs; Verhoef, Gregor; Vandenberghe, Peter; Ferrant, Augustin; Kohne, Claus-Henning; Pfreundschuh, Michael; Horst, Heinz A.; Koller, Elisabeth; von Lilienfeld-Toal, Marie; Bentz, Martin; Ganser, Arnold; Schlegelberger, Brigitte; Jotterand, Martine; Krauter, Jurgen; Pabst, Thomas; Theobald, Matthias; Schlenk, Richard F.; Delwel, Ruud; Dohner, Konstanze; Lowenberg, Bob; Doehner, Hartmut

    2010-01-01

    Purpose Acute myeloid leukemia (AML) with inv(3)(q21q26.2)/t(3; 3)(q21; q26.2) inv(3)/t(3; 3)] is recognized as a distinctive entity in the WHO classification. Risk assignment and clinical and genetic characterization of AML with chromosome 3q abnormalities other than inv(3)/t(3; 3) remain largely

  13. CD4(+)and CD8(+)T-cell reactions against leukemia-associated- or minor-histocompatibility-antigens in AML-patients after allogeneic SCT.

    Science.gov (United States)

    Steger, Brigitte; Milosevic, Slavoljub; Doessinger, Georg; Reuther, Susanne; Liepert, Anja; Braeu, Marion; Schick, Julia; Vogt, Valentin; Schuster, Friedhelm; Kroell, Tanja; Busch, Dirk H; Borkhardt, Arndt; Kolb, Hans-Jochem; Tischer, Johanna; Buhmann, Raymund; Schmetzer, Helga

    2014-04-01

    T-cells play an important role in the remission-maintenance in AML-patients (pts) after SCT, however the role of LAA- (WT1, PR1, PRAME) or minor-histocompatibility (mHag, HA1) antigen-specific CD4(+) and CD8(+)T-cells is not defined. A LAA/HA1-peptide/protein stimulation, cloning and monitoring strategy for specific CD8(+)/CD4(+)T-cells in AML-pts after SCT is given. Our results show that (1) LAA-peptide-specific CD8+T-cells are detectable in every AML-pt after SCT. CD8(+)T-cells, recognizing two different antigens detectable in 5 of 7 cases correlate with long-lasting remissions. Clonal TCR-Vβ-restriction exemplarily proven by spectratyping in PRAME-specific CD8(+)T-cells; high PRAME-peptide-reactivity was CD4(+)-associated, as shown by IFN-γ-release. (2) Two types of antigen-presenting cells (APCs) were tested for presentation of LAA/HA1-proteins to CD4(+)T-cells: miniEBV-transduced lymphoblastoid cells (B-cell-source) and CD4-depleted MNC (source for B-cell/monocyte/DC). We provide a refined cloning-system for proliferating, CD40L(+)CD4(+)T-cells after LAA/HA1-stimulation. CD4(+)T-cells produced cytokines (GM-CSF, IFN-γ) upon exposure to LAA/HA1-stimulation until after at least 7 restimulations and demonstrated cytotoxic activity against naive blasts, but not fibroblasts. Antileukemic activity of unstimulated, stimulated or cloned CD4(+)T-cells correlated with defined T-cell-subtypes and the clinical course of the disease. In conclusion we provide immunological tools to enrich and monitor LAA/HA1-CD4(+)- and CD8(+)T-cells in AML-pts after SCT and generate data with relevant prognostic value. We were able to demonstrate the presence of LAA-peptide-specific CD8(+)T-cell clones in AML-pts after SCT. In addition, we were also able to enrich specific antileukemic reactive CD4(+)T-cells without GvH-reactivity upon repeated LAA/HA1-protein stimulation and limiting dilution cloning. Copyright © 2013 Elsevier GmbH. All rights reserved.

  14. Telomerase inhibition effectively targets mouse and human AML stem cells and delays relapse following chemotherapy

    DEFF Research Database (Denmark)

    Bruedigam, Claudia; Bagger, Frederik Otzen; Heidel, Florian H.

    2014-01-01

    (-/-) LSCs express a specific gene expression signature that can be identified in human AML patient cohorts and is positively correlated with patient survival following chemotherapy. In xenografts of primary human AML, genetic or pharmacological inhibition of telomerase targets LSCs, impairs leukemia...... progression, and delays relapse following chemotherapy. Altogether, these results establish telomerase inhibition as an effective strategy for eliminating AML LSCs....

  15. [Acute myeloid leukemia].

    Science.gov (United States)

    Tabuchi, Ken

    2007-02-01

    The annual incident rate of pediatric acute myeloid leukemia (AML) is now 10 per million in Japan, against 5 to 9 per million in the USA and Europe. Overall long-term survival has now been achieved for more than 50% of pediatric patients with AML in the USA and in Europe. The prognostic factors of pediatric AML were analyzed,and patients with AML were classified according to prognostic factors. The t(15;17), inv(16) and t(8;21) have emerged as predictors of good prognosis in children with AML. Monosomy 7, monosomy 5 and del (5 q) abnormalities showed a poor prognosis. In addition to chromosomal deletions, FLT 3/ITD identifies pediatric patients with a particularly poor prognosis. Clinical trials of AML feature intensive chemotherapy with or without subsequent stem cell transplantation. Risk group stratification is becoming increasingly important in planning AML therapy. APL can be distinguished from other subtypes of AML by virtue of its excellent response and overall outcome as a result of differentiation therapy with ATRA. Children with Down syndrome and AML have been shown to have a superior prognosis to AML therapy compared to other children with AML. The results of the Japan Cooperative Study Group protocol ANLL 91 was one of the best previously reported in the literature. With the consideration of quality of life (QOL), risk-adapted therapy was introduced in the AML 99 trial conducted by the Japanese Childhood AML Cooperative Study Group. A high survival rate of 79% at 3 years was achieved for childhood de novo AML in the AML 99 trial. To evaluate the efficacy and safety of the treatment strategy according to risk stratification based on leukemia cell biology and response to the initial induction therapy in children with AML, the Japanese Pediatric Leukemia/Lymphoma Study Group (JPLSG) has organized multi-center phase II trials in children with newly diagnosed AML.

  16. Molecular Therapeutic Approaches for Pediatric Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Sarah K Tasian

    2014-03-01

    Full Text Available Approximately two thirds of children with acute myeloid leukemia (AML are cured with intensive multi-agent chemotherapy. However, primary chemorefractory and relapsed AML remains a significant source of childhood cancer mortality, highlighting the need for new therapies. Further therapy intensification with traditional cytotoxic agents is not feasible given the potential for significant toxicity to normal tissues with conventional chemotherapy and the risk for long-term end-organ dysfunction. Significant emphasis has been placed upon the development of molecularly targeted therapeutic approaches for adults and children with high-risk subtypes of AML with the goal of improving remission induction and minimizing relapse. Several promising agents are currently in clinical testing or late preclinical development for AML, including monoclonal antibodies against leukemia cell surface proteins, kinase inhibitors, proteasome inhibitors, epigenetic agents, and chimeric antigen receptor engineered T cell immunotherapies. Many of these therapies have been specifically tested in children with relapsed/refractory AML via phase 1 and 2 trials with a smaller number of new agents under phase 3 evaluation for children with de novo AML. Although successful identification and implementation of new drugs for children with AML remains a formidable challenge, enthusiasm for novel molecular therapeutic approaches is great given the potential for significant clinical benefit for children who will otherwise fail standard therapy.

  17. The complexity of interpreting genomic data in patients with acute myeloid leukemia.

    Science.gov (United States)

    Nazha, A; Zarzour, A; Al-Issa, K; Radivoyevitch, T; Carraway, H E; Hirsch, C M; Przychodzen, B; Patel, B J; Clemente, M; Sanikommu, S R; Kalaycio, M; Maciejewski, J P; Sekeres, M A

    2016-12-16

    Acute myeloid leukemia (AML) is a heterogeneous neoplasm characterized by the accumulation of complex genetic alterations responsible for the initiation and progression of the disease. Translating genomic information into clinical practice remained challenging with conflicting results regarding the impact of certain mutations on disease phenotype and overall survival (OS) especially when clinical variables are controlled for when interpreting the result. We sequenced the coding region for 62 genes in 468 patients with secondary AML (sAML) and primary AML (pAML). Overall, mutations in FLT3, DNMT3A, NPM1 and IDH2 were more specific for pAML whereas UTAF1, STAG2, BCORL1, BCOR, EZH2, JAK2, CBL, PRPF8, SF3B1, ASXL1 and DHX29 were more specific for sAML. However, in multivariate analysis that included clinical variables, only FLT3 and DNMT3A remained specific for pAML and EZH2, BCOR, SF3B1 and ASXL1 for sAML. When the impact of mutations on OS was evaluated in the entire cohort, mutations in DNMT3A, PRPF8, ASXL1, CBL EZH2 and TP53 had a negative impact on OS; no mutation impacted OS favorably; however, in a cox multivariate analysis that included clinical data, mutations in DNMT3A, ASXL1, CBL, EZH2 and TP53 became significant. Thus, controlling for clinical variables is important when interpreting genomic data in AML.

  18. Heterogeneity of acute myeloblastic leukemia without maturation: an ultrastructural study.

    Science.gov (United States)

    Hamamoto, K; Date, M; Taniguchi, H; Nagano, T; Kishimoto, Y; Kimura, T; Fukuhara, S

    1995-01-01

    We demonstrated by ultrastructural examination that the leukemic blasts of 13 patients with acute myeloblastic leukemia (AML) without maturation (M1 in the French-American-British classification) showed heterogeneous features. In 7 patients, the leukemic blasts had a high level of light microscopic myeloperoxidase positivity (> 50%). Ultrastructurally, the cells were myeloblast-promyelocytes with 100% myeloperoxidase positivity, and these 7 patients appeared to have typical AML. In contrast, the remaining 6 patients had leukemic blasts with a low myeloperoxidase positivity (undifferentiated blasts. The former group had a better prognosis than the latter, indicating that ultrastructural analysis of M1 leukemia may help predict the response to therapy.

  19. Survey of activated FLT3 signaling in leukemia.

    Directory of Open Access Journals (Sweden)

    Ting-lei Gu

    Full Text Available Activating mutations of FMS-like tyrosine kinase-3 (FLT3 are found in approximately 30% of patients with acute myeloid leukemia (AML. FLT3 is therefore an attractive drug target. However, the molecular mechanisms by which FLT3 mutations lead to cell transformation in AML remain unclear. To develop a better understanding of FLT3 signaling as well as its downstream effectors, we performed detailed phosphoproteomic analysis of FLT3 signaling in human leukemia cells. We identified over 1000 tyrosine phosphorylation sites from about 750 proteins in both AML (wild type and mutant FLT3 and B cell acute lymphoblastic leukemia (normal and amplification of FLT3 cell lines. Furthermore, using stable isotope labeling by amino acids in cell culture (SILAC, we were able to quantified over 400 phosphorylation sites (pTyr, pSer, and pThr that were responsive to FLT3 inhibition in FLT3 driven human leukemia cell lines. We also extended this phosphoproteomic analysis on bone marrow from primary AML patient samples, and identify over 200 tyrosine and 800 serine/threonine phosphorylation sites in vivo. This study showed that oncogenic FLT3 regulates proteins involving diverse cellular processes and affects multiple signaling pathways in human leukemia that we previously appreciated, such as Fc epsilon RI-mediated signaling, BCR, and CD40 signaling pathways. It provides a valuable resource for investigation of oncogenic FLT3 signaling in human leukemia.

  20. Age-related epigenetic drift in the pathogenesis of MDS and AML.

    Science.gov (United States)

    Maegawa, Shinji; Gough, Sheryl M; Watanabe-Okochi, Naoko; Lu, Yue; Zhang, Nianxiang; Castoro, Ryan J; Estecio, Marcos R H; Jelinek, Jaroslav; Liang, Shoudan; Kitamura, Toshio; Aplan, Peter D; Issa, Jean-Pierre J

    2014-04-01

    The myelodysplastic syndrome (MDS) is a clonal hematologic disorder that frequently evolves to acute myeloid leukemia (AML). Its pathogenesis remains unclear, but mutations in epigenetic modifiers are common and the disease often responds to DNA methylation inhibitors. We analyzed DNA methylation in the bone marrow and spleen in two mouse models of MDS/AML, the NUP98-HOXD13 (NHD13) mouse and the RUNX1 mutant mouse model. Methylation array analysis showed an average of 512/3445 (14.9%) genes hypermethylated in NHD13 MDS, and 331 (9.6%) genes hypermethylated in RUNX1 MDS. Thirty-two percent of genes in common between the two models (2/3 NHD13 mice and 2/3 RUNX1 mice) were also hypermethylated in at least two of 19 human MDS samples. Detailed analysis of 41 genes in mice showed progressive drift in DNA methylation from young to old normal bone marrow and spleen; to MDS, where we detected accelerated age-related methylation; and finally to AML, which markedly extends DNA methylation abnormalities. Most of these genes showed similar patterns in human MDS and AML. Repeat element hypomethylation was rare in MDS but marked the transition to AML in some cases. Our data show consistency in patterns of aberrant DNA methylation in human and mouse MDS and suggest that epigenetically, MDS displays an accelerated aging phenotype.

  1. Leukemia

    International Nuclear Information System (INIS)

    Mabuchi, Kiyohiko; Kusumi, Shizuyo

    1992-01-01

    Leukemia is the first malignant disease found among A-bomb survivors. Leukemia registration has greatly contributed to epidemiological and hematological studies on A-bomb radiation-related leukemia and other hematopoietic diseases, consisting of community population and the RERF Life Span Study (LSS) sample (approximately 120,000 persons containing A-bomb survivors). Using the fixed LSS cohort, the prevalence rate of leukemia reached the peak during the years 1950-1954, and thereafter, it has been gradually decreased. However, risk patterns for leukemia are still unsolved: has leukemia risk increased in recent years?; are serial changes in leukemia risk influenced by age at the time of exposure (ATE)?; is there variation between Hiroshima and Nagasaki?; and others. To solve these questions, leukemia data are now under analysis using the revised DS86. Relative risk for leukemia, especially chronic myelogenous leukemia and acute lymphocytic leukemia (ALL), is found to be linearly increased with increasing bone marrow doses. Serial patterns of both excess risk and excess relative risk have revealed that leukemia risk is high at 5-10 years after A-bombing in younger A-bomb survivors ATE. The influence of age ATE on serial changes is noticeable in ALL. Another factor involved in the prevalence of leukemia is background (spontaneously developed leukemia), which is the recent interest because young A-bomb survivors ATE reach the cancer-prone age. (N.K.)

  2. The prognostic significance of early treatment response in pediatric relapsed acute myeloid leukemia : results of the international study Relapsed AML 2001/01

    NARCIS (Netherlands)

    Creutzig, Ursula; Zimmermann, Martin; Dworzak, Michael N.; Gibson, Brenda; Tamminga, Rienk; Abrahamsson, Jonas; Ha, Shau-Yin; Hasle, Henrik; Maschan, Alexey; Bertrand, Yves; Leverger, Guy; von Neuhoff, Christine; Razzouk, Bassem; Rizzari, Carmelo; Smisek, Petr; Smith, Owen P.; Stark, Batia; Reinhardt, Dirk; Kaspers, Gertjan L.

    2014-01-01

    The prognostic significance of early response to treatment has not been reported in relapsed pediatric acute myeloid leukemia. In order to identify an early and easily applicable prognostic factor allowing subsequent treatment modifications, we assessed leukemic blast counts in the bone marrow by

  3. Stages of Chronic Myelogenous Leukemia

    Science.gov (United States)

    ... ALL Treatment Childhood AML Treatment Research Chronic Myelogenous Leukemia Treatment (PDQ®)–Patient Version General Information About Chronic Myelogenous Leukemia Go to Health Professional Version Key Points Chronic ...

  4. Leukemia

    Science.gov (United States)

    Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, the bone marrow produces abnormal white blood cells. ...

  5. Epidemiology and Clinical Significance of Secondary and Therapy-Related Acute Myeloid Leukemia

    DEFF Research Database (Denmark)

    Granfeldt Østgård, Lene Sofie; Medeiros, Bruno C; Sengeløv, Henrik

    2015-01-01

    PURPOSE: Secondary and therapy-related acute myeloid leukemia (sAML and tAML, respectively) remain therapeutic challenges. Still, it is unclear whether their inferior outcome compared with de novo acute myeloid leukemia (AML) varies as a result of previous hematologic disease or can be explained...... leukemia and myeloproliferative neoplasia) versus de novo AML. Limited to intensive therapy patients, we compared chance of complete remission by logistic regression analysis and used a pseudo-value approach to compare relative risk (RR) of death at 90 days, 1 year, and 3 years, overall and stratified...... myeloid disorder or prior cytotoxic exposure was associated with decreased complete remission rates and inferior survival (3-year adjusted RR for MDS-sAML, non-MDS-sAML, and tAML: RR, 1.14; 95% CI, 1.02 to 1.32; RR, 1.27; 95% CI, 1.16 to 1.34; and RR, 1.16; 95% CI, 1.03 to 1.32, respectively) compared...

  6. Osteoblasts Protect AML Cells from SDF-1-Induced Apoptosis

    Science.gov (United States)

    Kremer, Kimberly N.; Dudakovic, Amel; McGee-Lawrence, Meghan E.; Philips, Rachael L.; Hess, Allan D.; Smith, B. Douglas; van Wijnen, Andre J.; Karp, Judith E.; Kaufmann, Scott H.; Westendorf, Jennifer J.; Hedin, Karen E.

    2014-01-01

    The bone marrow provides a protective environment for acute myeloid leukemia (AML) cells that often allows leukemic stem cells to survive standard chemotherapeutic regimens. Targeting these leukemic stem cells within the bone marrow is critical for preventing relapse. We recently demonstrated that SDF-1, a chemokine abundant in the bone marrow, induces apoptosis in AML cell lines and in patient samples expressing high levels of its receptor, CXCR4. Here we show that a subset of osteoblast lineage cells within the bone marrow can protect AML cells from undergoing apoptosis in response to the SDF-1 naturally present in that location. In co-culture systems, osteoblasts at various stages of differentiation protected AML cell lines and patient isolates from SDF-1-induced apoptosis. The differentiation of the osteoblast cell lines, MC3T3 and W-20-17, mediated this protection via a cell contact-independent mechanism. In contrast, bone marrow-derived mesenchymal cells, the precursors of osteoblasts, induced apoptosis in AML cells via a CXCR4-dependent mechanism and failed to protect AML cells from exogenously added SDF-1. These results indicate that osteoblasts in the process of differentiation potently inhibit the SDF-1-driven apoptotic pathway of CXCR4-expressing AML cells residing in the bone marrow. Drugs targeting this protective mechanism could potentially provide a new approach to treating AML by enhancing the SDF-1-induced apoptosis of AML cells residing within the bone marrow microenvironment. PMID:24851270

  7. PROGRESS IN ACUTE MYELOID LEUKEMIA

    Science.gov (United States)

    Kadia, Tapan M.; Ravandi, Farhad; O’Brien, Susan; Cortes, Jorge; Kantarjian, Hagop M.

    2014-01-01

    Significant progress has been made in the treatment of acute myeloid leukemia (AML). Steady gains in clinical research and a renaissance of genomics in leukemia have led to improved outcomes. The recognition of tremendous heterogeneity in AML has allowed individualized treatments of specific disease entities within the context of patient age, cytogenetics, and mutational analysis. The following is a comprehensive review of the current state of AML therapy and a roadmap of our approach to these distinct disease entities. PMID:25441110

  8. CNS Involvement in AML Patient Treated with 5-Azacytidine

    Directory of Open Access Journals (Sweden)

    Diamantina Vasilatou

    2014-01-01

    Full Text Available Central nervous system (CNS involvement in acute myeloid leukemia (AML is a rare complication of the disease and is associated with poor prognosis. Sometimes the clinical presentation can be unspecific and the diagnosis can be very challenging. Here we report a case of CNS infiltration in a patient suffering from AML who presented with normal complete blood count and altered mental status.

  9. Osteolytic bone lesions – A rare presentation of AML M6.

    Directory of Open Access Journals (Sweden)

    Geetha N.

    2015-02-01

    Full Text Available Acute myeloid leukemia (AML M6 is a rare form of AML  accounting  for < 5 % of all AML.  Extramedullary involvement  is very rarely seen in this entity.  Skeletal lesion has not been described in AML M6 before. We discuss the case of  a 17 year old boy with AML M6 who presented with  osteolytic lesion of right humerus.  He was treated with  induction and consolidation chemotherapy. The present case is the first report in literature of AML M6 presenting with skeletal lesions.

  10. Differential effects of atomic bomb irradiation in inducing major leukemia types

    International Nuclear Information System (INIS)

    Tomonaga, Masao; Matsuo, Tatsuki; Carter, R.L.

    1993-05-01

    In this report we utilize data from the additional 517 cases from the leukemia registry together with the Life Span Study (LSS) cohort data to study the effects of atomic bomb irradiation on major leukemia types. The French-American-British classification and other improved diagnostic methods were used to reclassify cases into 21 categories, including new disease entities such as adult T-cell leukemia (ATL). These categories were then grouped into four major types for analysis: (1) acute lymphocytic leukemia (ALL), (2) acute myeloid leukemia (AML) including myelodysplastic syndromes (MDS), (3) chronic myeloid leukemia (CML), and (4) OTHER types including ATL. Analyses of radiation effects were based on the updated Dosimetry System 1986(DS86). Incidence rates of all four leukemia types increased with increasing exposure level. The effects of radiation were significantly greater on the incidence of ALL and CML than on that of AML and OTHER. In the two lowest dose categories (1-49 and 50-499 mGy), estimated incidence either remained constant or increased slightly as the population of survivors aged. In the two highest dose categories (500-1,499 and ≥ 1,500 mGy). Among unexposed persons, the estimated risk of CML in Nagasaki relative to Hiroshima was significantly less than that of AML, whereas that of OTHER types was significantly greater. The time to onset of ALL, AML, and CML declined with increasing dose. The rate of decline, however, was greater for ALL and CML than for AML. The resulting differences at high doses reflect shorter incubation times for atomic-bomb-induced ALL and CML than for AML. (J.P.N.)

  11. Access/AML -

    Data.gov (United States)

    Department of Transportation — The AccessAML is a web-based internet single application designed to reduce the vulnerability associated with several accounts assinged to a single users. This is a...

  12. Allogeneic stem cell transplantation for acute myeloid leukemia with del(7q) following untreated chronic lymphocytic leukemia.

    Science.gov (United States)

    DeFilipp, Zachariah; Huynh, Donny V; Fazal, Salman; Sahovic, Entezam

    2012-01-01

    The development of hematologic malignancy in the presence of chronic lymphocytic leukemia (CLL) is rare. We present a case of acute myeloid leukemia (AML) with del(7q) occurring in a patient with a 4-year history of untreated CLL. Application of flow cytometry and immunohistochemistry allowed for characterization of two distinct coexisting malignant cell populations. After undergoing induction and consolidation chemotherapy, the patient achieved complete remission of AML with the persistence of CLL. Allogeneic transplantation was pursued given his unfavorable cytogenetics. Subsequent matched unrelated donor allogeneic stem cell transplantation resulted in full engraftment and complete remission, with no evidence of AML or CLL. Due to a scarcity of reported cases, insight into treatment and prognosis in cases of concurrent AML and CLL is limited. However, prognosis seems dependent on the chemosensitivity of AML. CLL did not have a detrimental effect on treatment or transplant outcome in our case. This is the first reported case of concomitant de novo AML and CLL to undergo allogeneic transplantation. The patient remained in complete hematologic and cytogenetic remission of both malignancies over a year after transplantation.

  13. Transcriptome Profiling of Pediatric Core Binding Factor AML.

    Directory of Open Access Journals (Sweden)

    Chih-Hao Hsu

    Full Text Available The t(8;21 and Inv(16 translocations disrupt the normal function of core binding factors alpha (CBFA and beta (CBFB, respectively. These translocations represent two of the most common genomic abnormalities in acute myeloid leukemia (AML patients, occurring in approximately 25% pediatric and 15% of adult with this malignancy. Both translocations are associated with favorable clinical outcomes after intensive chemotherapy, and given the perceived mechanistic similarities, patients with these translocations are frequently referred to as having CBF-AML. It remains uncertain as to whether, collectively, these translocations are mechanistically the same or impact different pathways in subtle ways that have both biological and clinical significance. Therefore, we used transcriptome sequencing (RNA-seq to investigate the similarities and differences in genes and pathways between these subtypes of pediatric AMLs. Diagnostic RNA from patients with t(8;21 (N = 17, Inv(16 (N = 14, and normal karyotype (NK, N = 33 were subjected to RNA-seq. Analyses compared the transcriptomes across these three cytogenetic subtypes, using the NK cohort as the control. A total of 1291 genes in t(8;21 and 474 genes in Inv(16 were differentially expressed relative to the NK controls, with 198 genes differentially expressed in both subtypes. The majority of these genes (175/198; binomial test p-value < 10(-30 are consistent in expression changes among the two subtypes suggesting the expression profiles are more similar between the CBF cohorts than in the NK cohort. Our analysis also revealed alternative splicing events (ASEs differentially expressed across subtypes, with 337 t(8;21-specific and 407 Inv(16-specific ASEs detected, the majority of which were acetylated proteins (p = 1.5 x 10(-51 and p = 1.8 x 10(-54 for the two subsets. In addition to known fusions, we identified and verified 16 de novo fusions in 43 patients, including three fusions involving NUP98 in six

  14. Role of the Phosphorylation of mTOR in the Differentiation of AML Cells Triggered with CD44 Antigen

    KAUST Repository

    Darwish, Manar M

    2013-05-01

    Acute myeloid leukemia (AML) is a hematological disorder characterized by blockage of differentiation of myeloblasts. To date, the main therapy for AML is chemotherapy. Yet, studies are seeking a better treatment to enhance the survival rate of patients and minimize the relapsing of the disease. Since the major problem in these cells is that they are arrested in cellular differentiation, drugs that could induce their differentiation have proven to be efficient and of major interest for AML therapy. CD44 triggering appeared as a promising target for AML therapy as it has been shown that specific monoclonal antibodies, such as A3D8 and H90, reversed the blockage of differentiation, inhibited the proliferation of all AML subtypes, and in some cases, induced cell apoptosis. Studies conducted in our laboratory have added strength to these antibodies as potential treatment for AML. Indeed, our laboratory found that treating HL60 cells with A3D8 shows a decrease in the phosphorylation of the mammalian target of Rapamycin (mTOR) kinase correlated with the inhibition of proliferation/induction of differentiation of AML cells.The relationship between the induction of differentiation and the inhibition of proliferation and the decrease of mTOR phosphorylation remains to be clarified. To study the importance of the de-phosphorylation of mTOR and the observed effect of CD44 triggering on differentiation and/or proliferation, we sought to prepare phospho-mimic mutants of the mTOR kinase that will code for a constitutively phosphorylated form of mTOR and used two main methods to express this mutant in HL60 cells: lentiviral and simple transfection (cationic-liposomal transfection).

  15. SGN-CD33A: a novel CD33-targeting antibody-drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML.

    Science.gov (United States)

    Kung Sutherland, May S; Walter, Roland B; Jeffrey, Scott C; Burke, Patrick J; Yu, Changpu; Kostner, Heather; Stone, Ivan; Ryan, Maureen C; Sussman, Django; Lyon, Robert P; Zeng, Weiping; Harrington, Kimberly H; Klussman, Kerry; Westendorf, Lori; Meyer, David; Bernstein, Irwin D; Senter, Peter D; Benjamin, Dennis R; Drachman, Jonathan G; McEarchern, Julie A

    2013-08-22

    Outcomes in acute myeloid leukemia (AML) remain unsatisfactory, and novel treatments are urgently needed. One strategy explores antibodies and their drug conjugates, particularly those targeting CD33. Emerging data with gemtuzumab ozogamicin (GO) demonstrate target validity and activity in some patients with AML, but efficacy is limited by heterogeneous drug conjugation, linker instability, and a high incidence of multidrug resistance. We describe here the development of SGN-CD33A, a humanized anti-CD33 antibody with engineered cysteines conjugated to a highly potent, synthetic DNA cross-linking pyrrolobenzodiazepine dimer via a protease-cleavable linker. The use of engineered cysteine residues at the sites of drug linker attachment results in a drug loading of approximately 2 pyrrolobenzodiazepine dimers per antibody. In preclinical testing, SGN-CD33A is more potent than GO against a panel of AML cell lines and primary AML cells in vitro and in xenotransplantation studies in mice. Unlike GO, antileukemic activity is observed with SGN-CD33A in AML models with the multidrug-resistant phenotype. Mechanistic studies indicate that the cytotoxic effects of SGN-CD33A involve DNA damage with ensuing cell cycle arrest and apoptotic cell death. Together, these data suggest that SGN-CD33A has CD33-directed antitumor activity and support clinical testing of this novel therapeutic in patients with AML.

  16. Modification of the cerebral perfusion during a chemotherapy by arabinoside cytosine (A.R.A.C.) among patients suffering of an acute myelo-blastic leukemia (A.M.L.); Modification de la perfusion cerebrale au cours d'une chimiotherapie par cytosine arabinoside (ARAC) chez les patients atteints d'une leucemie aigue myeloblastique (LAM)

    Energy Technology Data Exchange (ETDEWEB)

    Modzelewski, R.; Vera, P. [Universite de Medecine de Rouen, QUANT.I.F-LITIS EA4108, departement de medecine nucleaire, 76 (France); Lepretre, S.; Tilly, H. [Centre Henri-Becquerel, departement d' hematologie, 76 - Rouen (France); Martinaud, O.; Hannequin, D. [CHU de Rouen, departement de neurologie, 76 (France); Habert, M.O. [CHU de la Pitie-Salpetriere, departement de medecine nucleaire, 75 - Paris (France)

    2010-07-01

    Cytosine arabinoside in high doses is a major treatment in acute myelo-blastic leukemia (A.M.L.). This treatment leads to neurological complications in 3-16% of cases, but the EEG, CT or MRI are normal.This prospective study examines brain perfusion in single photon emission tomography (SPECT) for patients receiving high dose arabinoside cytosine (H.D. A.R.A.C.). The SPECT of perfusion with hexamethyl propylene amine oxime (H.M.P.A.O.) for patients suffering of A.M.L. allowed to show a reduction of perfusion at the cerebellum level, of the occipito-parietal cortex and thalami, after conventional doses of A.R.A.C., while the patients had not any neurological accidents. (N.C.)

  17. Treatment Option Overview (Chronic Myelogenous Leukemia)

    Science.gov (United States)

    ... ALL Treatment Childhood AML Treatment Research Chronic Myelogenous Leukemia Treatment (PDQ®)–Patient Version General Information About Chronic Myelogenous Leukemia Go to Health Professional Version Key Points Chronic ...

  18. General Information about Chronic Myelogenous Leukemia

    Science.gov (United States)

    ... ALL Treatment Childhood AML Treatment Research Chronic Myelogenous Leukemia Treatment (PDQ®)–Patient Version General Information About Chronic Myelogenous Leukemia Go to Health Professional Version Key Points Chronic ...

  19. PROGNOSTIC SIGNIFICANCE OF CD56 EXPRESSION IN ACUTE LEUKEMIAS

    Directory of Open Access Journals (Sweden)

    B. M. Ahmed

    2014-12-01

    Conclusions. CD56 antigenic expression in AML cases represents an adverse prognostic factor. It should be regularly investigated in cases of AML for better prognostic stratification and assessment. KEY WORDS: CD56; leukemia, myeloid; prognosis

  20. Adult Acute Myeloid Leukemia Treatment (PDQ®)—Patient Version

    Science.gov (United States)

    Treatment options for adult acute myeloid leukemia (AML) include chemotherapy, radiation therapy, stem cell transplant, and other medications. Get detailed information about the treatment of new and recurrent AML in this expert-reviewed summary.

  1. Genetics of therapy-related myelodysplasia and acute myeloid leukemia

    DEFF Research Database (Denmark)

    Pedersen-Bjergaard, J.; Andersen, Mette Klarskov; Andersen, M.T.

    2008-01-01

    Myelodysplasia (MDS) and acute myeloid leukemia (AML) are heterogeneous, closely associated diseases arising de novo or following chemotherapy with alkylating agents, topoisomerase II inhibitors, or after radiotherapy. Whereas de novo MDS and AML are almost always subclassified according...

  2. Comparison of childhood myelodysplastic syndrome, AML FAB M6 or M7, CCG 2891: report from the Children's Oncology Group.

    Science.gov (United States)

    Barnard, Dorothy R; Alonzo, Todd A; Gerbing, Robert B; Lange, Beverly; Woods, William G

    2007-07-01

    Myelodysplastic syndromes (MDS), acute erythroleukemia (FAB M6), and acute megakaryocytic leukemia (FAB M7) have overlapping features. Children without Down syndrome or acute promyelocytic leukemia who were newly diagnosed with primary myelodysplastic syndrome or acute myeloid leukemia (AML) M6 or M7 were compared to children with de novo AML M0-M5. All children were entered on the Children's Cancer Group therapeutic research study CCG 2891. The presentation and outcomes of the 132 children diagnosed with MDS (60 children), AML FAB M6 (19 children), or AML FAB M7 (53 children) were similar. Children with AML FAB M7 were diagnosed at a significantly younger age (P = 0.001). Children with MDS, M6, or M7 had significantly lower white blood cell (WBC) counts (P = 0.001), lower peripheral blast counts (P M6 and AML M7 resemble MDS in presentation, poor induction success rates, and outcomes.

  3. Biting back: BiTE antibodies as a promising therapy for acute myeloid leukemia.

    Science.gov (United States)

    Walter, Roland B

    2014-06-01

    The experience with gemtuzumab ozogamicin has highlighted both the potential value and limitations of antibodies in acute myeloid leukemia (AML). Recently, bispecific T-cell engager (BiTE) antibodies have emerged as a means to harness polyclonal cytotoxic T-cells and cause highly efficient lysis of targeted tumor cells. Promising early results have been obtained with the CD19-directed BiTE antibody, blinatumomab, in patients with acute lymphoblastic leukemia. A first candidate for AML is the CD33/CD3 molecule, AMG 330, for which several recent preclinical studies demonstrated high potency and efficacy in destroying CD33(+) human AML cells. Many questions remain to be addressed, but BiTE antibodies may offer an exciting new tool in a disease for which the outcomes in many patients remain unsatisfactory.

  4. Musashi-2 Silencing Exerts Potent Activity against Acute Myeloid Leukemia and Enhances Chemosensitivity to Daunorubicin.

    Directory of Open Access Journals (Sweden)

    Yixiang Han

    Full Text Available RNA-binding protein Musashi-2 (Msi2 is known to play a critical role in leukemogenesis and contributes to poor clinical prognosis in acute myeloid leukemia (AML. However, the effect of Msi2 silencing on treatment for AML still remains poorly understood. In this study, we used lentivirus-mediated RNA interference targeting Msi2 to investigate the resulting changes in cellular processes and the underlying mechanisms in AML cell lines as well as primary AML cells isolated from AML patients. We found that Msi2 was highly expressed in AML cells, and its depletion inhibited Ki-67 expression and resulted in decreased in vitro and in vivo proliferation. Msi2 silencing induced cell cycle arrest in G0/G1 phase, with decreased Cyclin D1 and increased p21 expression. Msi2 silencing induced apoptosis through down-regulation of Bcl-2 expression and up-regulation of Bax expression. Suppression of Akt, Erk1/2 and p38 phosphorylation also contributed to apoptosis mediated by Msi2 silencing. Finally, Msi2 silencing in AML cells also enhanced their chemosensitivity to daunorubicin. Conclusively, our data suggest that Msi2 is a promising target for gene therapy to optimize conventional chemotherapeutics in AML treatment.

  5. The role of peptide and DNA vaccines in myeloid leukemia immunotherapy

    Directory of Open Access Journals (Sweden)

    Lin Chen

    2013-02-01

    Full Text Available Abstract While chemotherapy and targeted therapy are successful in inducing the remission of myeloid leukemia as acute myeloid leukemia (AML and chronic myeloid leukemia (CML, the disease remains largely incurable. This observation is likely due to the drug resistance of leukemic cells, which are responsible for disease relapse. Myeloid leukemia vaccines may most likely be beneficial for eradicating minimal residual disease after treatment with chemotherapy or targeted therapy. Several targeted immunotherapies using leukemia vaccines have been heavily investigated in clinical and preclinical trials. This review will focus on peptides and DNA vaccines in the context of myeloid leukemias, and optimal strategies for enhancing the efficacy of vaccines based on myeloid leukemia immunization are also summarized.

  6. Peptide microarray profiling identifies phospholipase C gamma 1 (PLC-γ1) as a potential target for t(8;21) AML

    NARCIS (Netherlands)

    Mahmud, Hasan; Scherpen, Frank J. G.; Meeuwsen de Boer, Tiny; Lourens, Harm-Jan; Schoenherr, Caroline; Eder, Matthias; Scherr, Michaela; Guryev, Victor; de Bont, Eveline S.

    2017-01-01

    The t(8;21) (q22;q22) chromosomal translocation is one of the most frequent genetic alterations in acute myeloid leukemia (AML) which has a need for improved therapeutic strategies. We found PLC-γ1 as one of the highest phosphorylated peptides in t(8;21) AML samples compared to NBM or CN-AML in our

  7. High Frequency of AML1/RUNX1 Point Mutations in Radiation-Associated Myelodysplastic Syndrome Around Semipalatinsk Nuclear Test Site

    OpenAIRE

    Dinara, ZHARLYGANOVA; Hironori, HARADA; Yuka, HARADA; Sergey, SHINKAREV; Zhaxybay, ZHUMADILOV; Aigul, ZHUNUSOVA; Naylya J., TCHAIZHUNUSOVA; Kazbek N., APSALIKOV; Vadim, KEMAIKIN; Kassym, ZHUMADILOV; Noriyuki, KAWANO; Akiro, KIMURA; Masaharu, HOSHI; Department of Radiation Biophysics, Research Institute for Radiation Biology and Medicine, Hiroshima University; Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University

    2008-01-01

    It is known that bone marrow is a sensitive organ to ionizing radiation, and many patients with acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS) have been diagnosed in radiation-treated cases and atomic bomb survivors in Hiroshima and Nagasaki. The AML1/RUNX1 gene has been known to be frequently mutated in MDS/AML patients among atomic bomb survivors and radiation therapy-related MDS/AML patients. In this study, we investigated the AML1 mutations in radiation-exposed patients wi...

  8. Acute Myeloid Leukemia (AML) (For Parents)

    Science.gov (United States)

    ... general public. Doctors will decide if a child is a good candidate for a clinical trial. Coping Being told that a child has cancer can be terrifying, and the stress of cancer treatment can feel overwhelming for any ...

  9. Persistence of TEL-AML1 fusion gene as minimal residual disease has no additive prognostic value in CD 10 positive B-acute lymphoblastic leukemia: a FISH study

    Directory of Open Access Journals (Sweden)

    Ezz-Eldin Azza M

    2008-10-01

    Full Text Available Abstract Objectives We have analyzed t(12;21(p13:q22 in an attempt to evaluate the frequency and prognostic significance of TEL-AML1 fusion gene in patients with childhood CD 10 positive B-ALL by fluorescence in situ hybridization (FISH. Also, we have monitored the prognostic value of this gene as a minimal residual disease (MRD. Methods All bone marrow samples of eighty patients diagnosed as CD 10 positive B-ALL in South Egypt Cancer Institute were evaluated by fluorescence in situ hybridization (FISH for t(12;21 in newly diagnosed cases and after morphological complete remission as a minimal residual disease (MRD. We determined the prognostic significance of TEL-AML1 fusion represented by disease course and survival. Results TEL-AML1 fusion gene was positive in (37.5% in newly diagnosed patients. There was a significant correlation between TEL-AML1 fusion gene both at diagnosis (r = 0.5, P = 0.003 and as a MRD (r = 0.4, P = 0.01 with favorable course. Kaplan-Meier curve for the presence of TEL-AML1 fusion at the diagnosis was associated with a better probability of overall survival (OS; mean survival time was 47 ± 1 month, in contrast to 28 ± 5 month in its absence (P = 0.006. Also, the persistence at TEL-AML1 fusion as a MRD was not significantly associated with a better probability of OS; the mean survival time was 42 ± 2 months in the presence of MRD and it was 40 ± 1 months in its absence. So, persistence of TEL-AML1 fusion as a MRD had no additive prognostic value over its measurement at diagnosis in terms of predicting the probability of OS. Conclusion For most patients, the presence of TEL-AML1 fusion gene at diagnosis suggests a favorable prognosis. The present study suggests that persistence of TEL-AML1 fusion as MRD has no additive prognostic value.

  10. Cellular origin of prognostic chromosomal aberrations in AML patients

    DEFF Research Database (Denmark)

    Mora-Jensen, H.; Jendholm, J.; Rapin, N.

    2015-01-01

    chromosomal structural rearrangements and single nucleotide variants (SNVs). Conventional AML diagnostics and recent seminal next-generation sequencing (NGS) studies have identified more than 200 recurrent genetic aberrations presenting in various combinations in individual patients. Significantly, many...... of these aberrations occur in normal hematopoietic stem and progenitor cells (HSCs/HPCs) before definitive leukemic transformation through additional acquisition of a few (that is, mostly 1 or 2) leukemia-promoting driver aberrations. NGS studies on sorted bone marrow (BM) populations of AML patients with a normal...

  11. The TAK1-NF-κB axis as therapeutic target for AML

    NARCIS (Netherlands)

    Bosman, Matthieu Cornelis Johannes; Schepers, Hein; Jaques, Jennifer; Vos, Annet; Quax, Wim Johannes; Schuringa, Jan Jacob; Vellenga, Edo

    2014-01-01

    Development and maintenance of leukemia can partially be attributed to alterations in (anti) apoptotic gene expression. Genome-wide transcriptome analyses revealed that 89 apoptosis-associated genes were differentially expressed between patient acute myeloid leukemia (AML) CD34(+) cells and normal

  12. AML with t(7;12)(q36;p13) is associated with infancy and trisomy 19. Data from NOPHO-AML and review of the literature

    DEFF Research Database (Denmark)

    Espersen, Anne Dorte Lerche; Noren-Nyström, Ulrika; Abrahamsson, Jonas

    2018-01-01

    The t(7;12)(q36;p13) (MNX1/ETV6) is not included in the WHO classification but has been described in up to 30% of acute myeloid leukemia (AML) in children ...). A literature review identified 35 patients with this translocation, published between 2000 and 2015. Outcome data were available in 22 cases. The NOPHO-AML (Nordic Society for Pediatric Hematology and Oncology) database contained 651 patients with AML from 1993 to 2014 and seven (1.1%) had the translocation...

  13. Focal Adhesion Kinase as a Potential Target in AML and MDS.

    Science.gov (United States)

    Carter, Bing Z; Mak, Po Yee; Wang, Xiangmeng; Yang, Hui; Garcia-Manero, Guillermo; Mak, Duncan H; Mu, Hong; Ruvolo, Vivian R; Qiu, Yihua; Coombes, Kevin; Zhang, Nianxiang; Ragon, Brittany; Weaver, David T; Pachter, Jonathan A; Kornblau, Steven; Andreeff, Michael

    2017-06-01

    Although overexpression/activation of focal adhesion kinase (FAK) is widely known in solid tumors to control cell growth, survival, invasion, metastasis, gene expression, and stem cell self-renewal, its expression and function in myeloid leukemia are not well investigated. Using reverse-phase protein arrays in large cohorts of newly diagnosed acute myeloid leukemia (AML) and myeloid dysplastic syndrome (MDS) samples, we found that high FAK expression was associated with unfavorable cytogenetics ( P = 2 × 10 -4 ) and relapse ( P = 0.02) in AML. FAK expression was significantly lower in patients with FLT3 -ITD ( P = 0.0024) or RAS ( P = 0.05) mutations and strongly correlated with p-SRC and integrinβ3 levels. FAK protein levels were significantly higher in CD34 + ( P = 5.42 × 10 -20 ) and CD34 + CD38 - MDS ( P = 7.62 × 10 -9 ) cells compared with normal CD34 + cells. MDS patients with higher FAK in CD34 + cells tended to have better overall survival ( P = 0.05). FAK expression was significantly higher in MDS patients who later transformed to compared with those who did not transform to AML and in AML patients who transformed from MDS compared with those with de novo AML. Coculture with mesenchymal stromal cells (MSC) increased FAK expression in AML cells. Inhibition of FAK decreased MSC-mediated adhesion/migration and viability of AML cells and prolonged survival in an AML xenograft murine model. Our results suggest that FAK regulates leukemia-stromal interactions and supports leukemia cell survival; hence, FAK is a potential therapeutic target in myeloid leukemia. Mol Cancer Ther; 16(6); 1133-44. ©2017 AACR . ©2017 American Association for Cancer Research.

  14. TARGETED NANOPARTICLES FOR PEDIATRIC LEUKEMIA THERAPY

    Directory of Open Access Journals (Sweden)

    Riyaz eBasha

    2014-05-01

    Full Text Available The two major forms of leukemia, acute lymphoblastic leukemia (ALL and acute myeloid leukemia (AML account for about one third of the malignancies diagnosed in children. Despite the marked successes in ALL and AML treatment, concerns remain regarding the occurrence of resistant disease in subsets of patients the residual effects of therapy that often persist for decades beyond the cessation of treatment. Therefore, new approaches are needed to reduce or to avoid off target toxicities, associated with chemotherapy and their long term residual effects. Recently, nanotechnology has been employed to enhance cancer therapy, via improving the bioavailability and therapeutic efficacy of anti-cancer agents. While in the last several years, numerous review articles appeared detailing the size, composition, assembly and performance evaluation of different types of drug carrying nanoparticles, the description and evaluation of lipoprotein based drug carriers have been conspicuously absent from most of these major reviews. The current review focuses on such information regarding nanoparticles with an emphasis on high density lipoprotein (HDL-based drug delivery systems to examine their potential role(s in the enhanced treatment of children with leukemia.

  15. PD-1 signaling and inhibition in AML and MDS.

    Science.gov (United States)

    Haroun, Faysal; Solola, Sade A; Nassereddine, Samah; Tabbara, Imad

    2017-09-01

    Acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) are clinically and molecularly heterogeneous clonal myeloid disorders with a poor prognosis especially in the relapsed refractory setting and in patients above the age of 60. While allogeneic hematopoietic stem cell transplantation (ASCT) is a potentially curative approach, high relapse, morbidity, and mortality rates necessitate the development of alternative therapies. Immune checkpoint inhibitors unmask tumoral immune tolerance and have demonstrated efficacy in the treatment of chemotherapy-resistant hematologic and solid malignancies. The rationale for the investigation of those agents in AML and MDS is supported by an observed increased expression of programmed cell death 1 protein (PD-1) and ligand 1 (PD-L1) in the hematopoietic microenvironment of AML and MDS, and its association with low TP53 and a poor prognosis. Early clinical experience in combination with a hypomethylating agent has shown encouraging responses; however, larger clinical trials are needed to determine the role of checkpoint inhibition in myeloid malignancies.

  16. Inhibition of histone deacetylases 1 and 6 enhances cytarabine-induced apoptosis in pediatric acute myeloid leukemia cells.

    Science.gov (United States)

    Xu, Xuelian; Xie, Chengzhi; Edwards, Holly; Zhou, Hui; Buck, Steven A; Ge, Yubin

    2011-02-16

    Pediatric acute myeloid leukemia (AML) remains a challenging disease to treat even with intensified cytarabine-based chemotherapy. Histone deacetylases (HDACs) have been reported to be promising therapeutic targets for treating AML. However, HDAC family members that are involved in chemotherapy sensitivities remain unknown. In this study, we sought to identify members of the HDAC family that are involved in cytarabine sensitivities, and to select the optimal HDACI that is most efficacious when combined with cytarabine for treating children with AML. Expression profiles of classes I, II, and IV HDACs in 4 pediatric AML cell lines were determined by Western blotting. Inhibition of class I HDACs by different HDACIs was measured post immnunoprecipitation. Individual down-regulation of HDACs in pediatric AML cells was performed with lentiviral shRNA. The effects of cytarabine and HDACIs on apoptosis were determined by flow cytometry analysis. Treatments with structurally diverse HDACIs and HDAC shRNA knockdown experiments revealed that down-regulation of both HDACs 1 and 6 is critical in enhancing cytarabine-induced apoptosis in pediatric AML, at least partly mediated by Bim. However, down-regulation of HDAC2 may negatively impact cytarabine sensitivities in the disease. At clinically achievable concentrations, HDACIs that simultaneously inhibited both HDACs 1 and 6 showed the best anti-leukemic activities and significantly enhanced cytarabine-induced apoptosis. Our results further confirm that HDACs are bona fide therapeutic targets for treating pediatric AML and suggest that pan-HDACIs may be more beneficial than isoform-specific drugs.

  17. Genomics in childhood acute myeloid leukemia comes of age | Office of Cancer Genomics

    Science.gov (United States)

    TARGET investigator’s study of nearly 1,000 pediatric acute myeloid leukemia (AML) cases reveals marked differences between the genomic landscapes of pediatric and adult AML and offers directions for future work.

  18. In vivo RNAi screening for the identification of oncogenes and tumor suppressors in acute myeloid leukemia

    DEFF Research Database (Denmark)

    Ge, Ying

    Acute myeloid leukemia (AML) is an aggressive malignancy characterized by uncontrolled expansion of immature myeloid cells in the hematopoietic tissues. Alternative splicing and epigenetic regulation are two mechanisms implicated in the pathogenesis of AML. In order to identify the essential...

  19. Adult Acute Myeloid Leukemia Treatment (PDQ®)—Health Professional Version

    Science.gov (United States)

    Acute myeloid (myelogenous) leukemia (AML) treatment options include chemotherapy, radiation therapy, stem cell transplant, and other medications. Cytogenetic analysis helps predict treatment outcomes. Get detailed information about AML in this summary for clinicians.

  20. TGIF1 is a negative regulator of MLL-rearranged acute myeloid leukemia

    DEFF Research Database (Denmark)

    Willer, Anton; Jakobsen, Janus Schou; Ohlsson, E

    2015-01-01

    orchestrates a transcriptional program required for the maintenance of MLL-rearranged acute myeloid leukemia (AML). TGIF1/TGIF2 are relatively uncharacterized TALE transcription factors, which, in contrast to the remaining family, have been shown to act as transcriptional repressors. Given the general......Members of the TALE (three-amino-acid loop extension) family of atypical homeodomain-containing transcription factors are important downstream effectors of oncogenic fusion proteins involving the mixed lineage leukemia (MLL) gene. A well-characterized member of this protein family is MEIS1, which...... influence the clinical outcome. Collectively, these findings demonstrate that TALE family members can act both positively and negatively on transcriptional programs responsible for leukemic maintenance and provide novel insights into the regulatory gene expression circuitries in MLL-rearranged AML.Leukemia...

  1. SIMILARITIES OF ELDERLY AND THERAPY-RELATED AML

    Directory of Open Access Journals (Sweden)

    Francesco D'Alò

    2011-11-01

    Full Text Available Acute myeloid leukemia (AML is a clonal disorder of the hematopoietic stem cell, typical of the elderly, with a median age of over 60 years at diagnosis. In AML, older age is one of the strongest independent adverse prognostic factor, associated with decreased complete response rate, worse disease-free and overall survival, with highest rates of treatment related mortality, resistant disease and relapse, compared to younger patients. While clinical risk factors do not significantly differ between older and younger patients, outcomes are compromised in elderly patients not only by increased comorbidities and susceptibility to toxicity from therapy, but it is now recognized that elderly AML represents a biologically distinct disease, that is itself more aggressive and less responsive to therapy. In elderly individuals prolonged exposure to environmental carcinogens may be the basis for the aggressive biology of the disease. This may also be the basis for similarities between elderly AML and therapy-related myeloid malignancies, mimicking toxic effects of previous cytotoxic treatments on hematopoietic stem cells. Age is itself a risk factor for t-MN, which are more frequent in elderly patients, where also a shorter latency between treatment of primary tumor and t-MN has been reported. Similarities between therapy-related malignancies and elderly AML include morphological aspects, as the presence of multilineage dysplasia preceding and/or concomitant to the development of leukemia, and adverse cytogenetics, including poor karyotype and chromosome 5 and/or 7 abnormalities. Looking at molecular prognosticators in elderly AML, similar to t-MN,  reduced frequency of favorable factors, as reduced number of NPM1 and CEBPA mutated cases has been observed, together with increased incidence of negative factors, as increased MDR1 expression, accelerated telomere shortening  and frequency of methylation changes. Given the unfavorable prognosis of elderly and

  2. Genome-wide analysis of histone H3 acetylation patterns in AML identifies PRDX2 as an epigenetically silenced tumor suppressor gene

    DEFF Research Database (Denmark)

    Agrawal-Singh, Shuchi; Isken, Fabienne; Agelopoulos, Konstantin

    2012-01-01

    to have lower H3Ac levels in AML compared with progenitor cells, which suggested that a large number of genes are epigenetically silenced in AML. Intriguingly, we identified peroxiredoxin 2 (PRDX2) as a novel potential tumor suppressor gene in AML. H3Ac was decreased at the PRDX2 gene promoter in AML......With the use of ChIP on microarray assays in primary leukemia samples, we report that acute myeloid leukemia (AML) blasts exhibit significant alterations in histone H3 acetylation (H3Ac) levels at > 1000 genomic loci compared with CD34+ progenitor cells. Importantly, core promoter regions tended......, which correlated with low mRNA and protein expression. We also observed DNA hypermethylation at the PRDX2 promoter in AML. Low protein expression of the antioxidant PRDX2 gene was clinically associated with poor prognosis in patients with AML. Functionally, PRDX2 acted as inhibitor of myeloid cell...

  3. Extramedullary leukemia in children with acute myeloid leukemia

    DEFF Research Database (Denmark)

    Støve, Heidi Kristine; Sandahl, Julie Damgaard; Abrahamsson, Jonas

    2017-01-01

    BACKGROUND: The prognostic significance of extramedullary leukemia (EML) in childhood acute myeloid leukemia is not clarified. PROCEDURE: This population-based study included 315 children from the NOPHO-AML 2004 trial. RESULTS: At diagnosis, 73 (23%) patients had EML: 39 (12%) had myeloid sarcoma...... the OS. No patients relapsed at the primary site of the myeloid sarcoma despite management without radiotherapy....

  4. Pure Erythroleukemia (Variant Acute Myeloid Leukemia-vAML-M6) with Deletion of Chromosome 20, Mainly Presenting as Late Erythroblasts, a Unique Case Report with Review of Literature.

    Science.gov (United States)

    Rasool, Javid; Geelani, Sajad; Khursheed; Yasir; Lone, Mohd Suhail; Shaban, Mohd

    2014-03-01

    Acute erythroleukemia is characterized by a predominant immature erythroid population and accounts for approximately 2-5 % of all cases of acute leukemia. Two subtypes are recognized based on the presence or absence of a significant myeloid component: erythroleukemia and pure erythroid leukemia. Erythroleukemia is predominantly a disease of adults, while pure erythroid leukemia can be seen in any age including children. Here is a case of pure erythroleukemia presenting mainly as late erythroblasts which was diagnosed on bone marrow examination, cytochemistry and was confirmed on immunophenotyping. Possibly this is the only case so for demonstrating deletion of long arm of chromosome 20 in pure erythroleukemia.

  5. The significance of trilineage myelodysplasia in de novo acute myeloblastic leukemia: Clinical and laboratory features

    OpenAIRE

    Lima, CSP; Vassalo, J; LorandMetze, I; Bechelli, APP; Souza, CA

    1997-01-01

    A prospective study was undertaken to elucidate the clinical and laboratory differences between tie novo acute myeloid leukemia (AML) and AML with trilineage myelodysplasia (AML-TMDS). One hundred and seven patients with AML were diagnosed at the University Hospital between January 1987 and July 1992, and were followed until July 1995. TMDS was identified in 17 of them (16%). With regard to age and sex distribution no difference was found between AML patients with and without TMDS (p = 0.43, ...

  6. Prenatal origin of childhood AML occurs less frequently than in childhood ALL

    International Nuclear Information System (INIS)

    Burjanivova, Tatiana; Zuna, Jan; Madzo, Jozef; Muzikova, Katerina; Meyer, Claus; Schneider, Bjoern; Votava, Felix; Marschalek, Rolf; Stary, Jan; Trka, Jan

    2006-01-01

    While there is enough convincing evidence in childhood acute lymphoblastic leukemia (ALL), the data on the pre-natal origin in childhood acute myeloid leukemia (AML) are less comprehensive. Our study aimed to screen Guthrie cards (neonatal blood spots) of non-infant childhood AML and ALL patients for the presence of their respective leukemic markers. We analysed Guthrie cards of 12 ALL patients aged 2–6 years using immunoglobulin (Ig) and T-cell receptor (TCR) gene rearrangements (n = 15) and/or intronic breakpoints of TEL/AML1 fusion gene (n = 3). In AML patients (n = 13, age 1–14 years) PML/RARalpha (n = 4), CBFbeta/MYH11 (n = 3), AML1/ETO (n = 2), MLL/AF6 (n = 1), MLL/AF9 (n = 1) and MLL/AF10 (n = 1) fusion genes and/or internal tandem duplication of FLT3 gene (FLT3/ITD) (n = 2) were used as clonotypic markers. Assay sensitivity determined using serial dilutions of patient DNA into the DNA of a healthy donor allowed us to detect the pre-leukemic clone in Guthrie card providing 1–3 positive cells were present in the neonatal blood spot. In 3 patients with ALL (25%) we reproducibly detected their leukemic markers (Ig/TCR n = 2; TEL/AML1 n = 1) in the Guthrie card. We did not find patient-specific molecular markers in any patient with AML. In the largest cohort examined so far we used identical approach for the backtracking of non-infant childhood ALL and AML. Our data suggest that either the prenatal origin of AML is less frequent or the load of pre-leukemic cells is significantly lower at birth in AML compared to ALL cases

  7. Biologico-clinical significance of DNMT3A variants expression in acute myeloid leukemia.

    Science.gov (United States)

    Lin, Na; Fu, Wei; Zhao, Chen; Li, Bixin; Yan, Xiaojing; Li, Yan

    2017-12-09

    DNA methyltransferase 3A (DNMT3A) catalyzes de novo DNA methylation and plays important roles in the pathogenesis of acute myeloid leukemia. However, the expression status of DNMT3A variants in acute myeloid leukemia remains obscure. This study aimed to assess the expression levels of alternative splicing of DNMT3A variants and explore their roles in acute myeloid leukemia (AML). DNMT3A variants gene expression were assessed, measuring their effects on cell proliferation. In addition, the expression of DNMT3A variants were evaluated in acute myeloid leukemia patients. Four DNMT3A variants were identified, with DNMT3A1 and DNMT3A2V found to be dominant in acute myeloid leukemia cell lines. Moreover, DNMT3A2V overexpression delayed cell proliferation; while, DNMT3A2V R882H mutation promoted cell proliferation. Further, DNMT3A1 and DNMT3A2V were detected in newly diagnosed acute myeloid leukemia (AML) patients and controls with non-malignant hematological disease, with DNMT3A2V significantly up-regulated in AML patients. The main transcript switched from DNMT3A1 to DNMT3A2V in some patients, especially the low risk group based on the NCCN 2016 guidelines. These findings suggest that DNMT3A1 and DNMT3A2V are the main variants in acute myeloid leukemia with different clinical association, and might play important roles in the pathophysiology of acute myeloid leukemia. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. High syndecan-1 levels in acute myeloid leukemia are associated with bleeding, thrombocytopathy, endothelial cell damage, and leukocytosis

    DEFF Research Database (Denmark)

    Larsen, Anne Mette Vestskov; Leinøe, Eva Birgitte; Johansson, Pär I

    2013-01-01

    The risk of hemorrhage is influenced by multiple factors in acute myeloid leukemia (AML). We investigated whether hemorrhage in AML patients was associated with endothelial perturbation, potentially caused by thrombocytopenia, platelet dysfunction and leukocytosis. Biomarkers of endothelial...

  9. Vorinostat induces reactive oxygen species and DNA damage in acute myeloid leukemia cells.

    Directory of Open Access Journals (Sweden)

    Luca A Petruccelli

    Full Text Available Histone deacetylase inhibitors (HDACi are promising anti-cancer agents, however, their mechanisms of action remain unclear. In acute myeloid leukemia (AML cells, HDACi have been reported to arrest growth and induce apoptosis. In this study, we elucidate details of the DNA damage induced by the HDACi vorinostat in AML cells. At clinically relevant concentrations, vorinostat induces double-strand breaks and oxidative DNA damage in AML cell lines. Additionally, AML patient blasts treated with vorinostat display increased DNA damage, followed by an increase in caspase-3/7 activity and a reduction in cell viability. Vorinostat-induced DNA damage is followed by a G2-M arrest and eventually apoptosis. We found that pre-treatment with the antioxidant N-acetyl cysteine (NAC reduces vorinostat-induced DNA double strand breaks, G2-M arrest and apoptosis. These data implicate DNA damage as an important mechanism in vorinostat-induced growth arrest and apoptosis in both AML cell lines and patient-derived blasts. This supports the continued study and development of vorinostat in AMLs that may be sensitive to DNA-damaging agents and as a combination therapy with ionizing radiation and/or other DNA damaging agents.

  10. Vorinostat Induces Reactive Oxygen Species and DNA Damage in Acute Myeloid Leukemia Cells

    Science.gov (United States)

    Pettersson, Filippa; Retrouvey, Hélène; Skoulikas, Sophia; Miller, Wilson H.

    2011-01-01

    Histone deacetylase inhibitors (HDACi) are promising anti-cancer agents, however, their mechanisms of action remain unclear. In acute myeloid leukemia (AML) cells, HDACi have been reported to arrest growth and induce apoptosis. In this study, we elucidate details of the DNA damage induced by the HDACi vorinostat in AML cells. At clinically relevant concentrations, vorinostat induces double-strand breaks and oxidative DNA damage in AML cell lines. Additionally, AML patient blasts treated with vorinostat display increased DNA damage, followed by an increase in caspase-3/7 activity and a reduction in cell viability. Vorinostat-induced DNA damage is followed by a G2-M arrest and eventually apoptosis. We found that pre-treatment with the antioxidant N-acetyl cysteine (NAC) reduces vorinostat-induced DNA double strand breaks, G2-M arrest and apoptosis. These data implicate DNA damage as an important mechanism in vorinostat-induced growth arrest and apoptosis in both AML cell lines and patient-derived blasts. This supports the continued study and development of vorinostat in AMLs that may be sensitive to DNA-damaging agents and as a combination therapy with ionizing radiation and/or other DNA damaging agents. PMID:21695163

  11. Functional analysis of P-glycoprotein and multidrug resistance associated protein related multidrug resistance in AML-blasts.

    Science.gov (United States)

    Brügger, D; Herbart, H; Gekeler, V; Seitz, G; Liu, C; Klingebiel, T; Orlikowsky, T; Einsele, H; Denzlinger, C; Bader, P; Niethammer, D; Beck, J F

    1999-05-01

    Despite the high effectiveness of various P-glycoprotein (P-gp) modulating substances in vitro their clinical value e.g. for combination treatment of acute myelogenous leukemias (AML) remains still unclear. This might be explainable by recent findings that other factors than P-gp (e.g. the multidrug resistance associated protein (MRP)) may also be involved in clinical occurring drug resistance. To study P-gp and MRP mediated MDR in AML blasts from patients with relapses at the functional level we measured rhodamine 123 (RHO) efflux in combination with a P-gp specific (SDZ PSC 833) or a MRP specific (MK571) modulator, respectively. Furthermore, direct antineoplastic drug action was monitored by determination of damaged cell fraction of a blast population using flow cytometry. We generally found strongly modulated RHO efflux by SDZ PSC 833 but slight RHO-efflux modulation by MK571 in blasts from relapsed states of AML expressing MDR1 or MRP mRNA at various levels. We could not demonstrate, though, significant PSC 833 or MK571 mediated modulation of the cytotoxic effects of etoposide. The results point to the possibility that combination of etoposide and a modulator might not improve responses to chemotherapy by targeting P-gp or MRP exclusively.

  12. Childhood Acute Myeloid Leukemia Treatment (PDQ®)—Health Professional Version

    Science.gov (United States)

    Acute myeloid leukemia (AML), juvenile myelomonocytic leukemia (JMML), acute promyelocytic leukemia (APL) and chronic myeloid leukemia (CML) account for about 20% of childhood myeloid leukemias. Other myeloid malignancies include transient abnormal myelopoiesis and myelodysplastic syndrome. Get detailed information about the classification, clinical presentation, diagnostic and molecular evaluation, prognosis, and treatment of newly diagnosed and recurrent disease in this summary for clinicians.

  13. IL8-CXCR2 pathway inhibition as a therapeutic strategy against MDS and AML stem cells.

    Science.gov (United States)

    Schinke, Carolina; Giricz, Orsolya; Li, Weijuan; Shastri, Aditi; Gordon, Shanisha; Barreyro, Laura; Barreryo, Laura; Bhagat, Tushar; Bhattacharyya, Sanchari; Ramachandra, Nandini; Bartenstein, Matthias; Pellagatti, Andrea; Boultwood, Jacqueline; Wickrema, Amittha; Yu, Yiting; Will, Britta; Wei, Sheng; Steidl, Ulrich; Verma, Amit

    2015-05-14

    Acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are associated with disease-initiating stem cells that are not eliminated by conventional therapies. Novel therapeutic targets against preleukemic stem cells need to be identified for potentially curative strategies. We conducted parallel transcriptional analysis of highly fractionated stem and progenitor populations in MDS, AML, and control samples and found interleukin 8 (IL8) to be consistently overexpressed in patient samples. The receptor for IL8, CXCR2, was also significantly increased in MDS CD34(+) cells from a large clinical cohort and was predictive of increased transfusion dependence. High CXCR2 expression was also an adverse prognostic factor in The Cancer Genome Atlas AML cohort, further pointing to the critical role of the IL8-CXCR2 axis in AML/MDS. Functionally, CXCR2 inhibition by knockdown and pharmacologic approaches led to a significant reduction in proliferation in several leukemic cell lines and primary MDS/AML samples via induction of G0/G1 cell cycle arrest. Importantly, inhibition of CXCR2 selectively inhibited immature hematopoietic stem cells from MDS/AML samples without an effect on healthy controls. CXCR2 knockdown also impaired leukemic growth in vivo. Together, these studies demonstrate that the IL8 receptor CXCR2 is an adverse prognostic factor in MDS/AML and is a potential therapeutic target against immature leukemic stem cell-enriched cell fractions in MDS and AML. © 2015 by The American Society of Hematology.

  14. Expression Profiling of Ribosome Biogenesis Factors Reveals Nucleolin as a Novel Potential Marker to Predict Outcome in AML Patients.

    Directory of Open Access Journals (Sweden)

    Virginie Marcel

    Full Text Available Acute myeloid leukemia (AML is a heterogeneous disease. Prognosis is mainly influenced by patient age at diagnosis and cytogenetic alterations, two of the main factors currently used in AML patient risk stratification. However, additional criteria are required to improve the current risk classification and better adapt patient care. In neoplastic cells, ribosome biogenesis is increased to sustain the high proliferation rate and ribosome composition is altered to modulate specific gene expression driving tumorigenesis. Here, we investigated the usage of ribosome biogenesis factors as clinical markers in adult patients with AML. We showed that nucleoli, the nucleus compartments where ribosome production takes place, are modified in AML by analyzing a panel of AML and healthy donor cells using immunofluorescence staining. Using four AML series, including the TCGA dataset, altogether representing a total of about 270 samples, we showed that not all factors involved in ribosome biogenesis have clinical values although ribosome biogenesis is increased in AML. Interestingly, we identified the regulator of ribosome production nucleolin (NCL as over-expressed in AML blasts. Moreover, we found in two series that high NCL mRNA expression level was associated with a poor overall survival, particular in elderly patients. Multivariate analyses taking into account age and cytogenetic risk indicated that NCL expression in blast cells is an independent marker of reduced survival. Our study identifies NCL as a potential novel prognostic factor in AML. Altogether, our results suggest that the ribosome biogenesis pathway may be of interest as clinical markers in AML.

  15. Gemtuzumab Ozogamicin Versus Best Supportive Care in Older Patients With Newly Diagnosed Acute Myeloid Leukemia Unsuitable for Intensive Chemotherapy: Results of the Randomized Phase III EORTC-GIMEMA AML-19 Trial

    NARCIS (Netherlands)

    Amadori, S.; Suciu, S.; Selleslag, D.; Aversa, F.; Gaidano, G.; Musso, M.; Annino, L.; Venditti, A.; Voso, M.T.; Mazzone, C.; Magro, D.; Fabritiis, P. De; Muus, P.; Alimena, G.; Mancini, M.; Hagemeijer, A.; Paoloni, F.; Vignetti, M.; Fazi, P.; Meert, L.; Ramadan, S.M.; Willemze, R.; Witte, T.J. de; Baron, F.

    2016-01-01

    PURPOSE: To compare single-agent gemtuzumab ozogamicin (GO) with best supportive care (BSC) including hydroxyurea as first-line therapy in older patients with acute myeloid leukemia unsuitable for intensive chemotherapy. PATIENTS AND METHODS: In this trial, patients at least 61 years old were

  16. Atomic bomb and leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Ichimaru, M; Tomonaga, M; Amenomori, T; Matsuo, T [Nagasaki Univ. (Japan). School of Medicine

    1991-12-01

    Characteristic features of the leukemia among atomic bomb survivors were studied. Dose estimates of atomic bomb radiation were based on T65D, but the new dosimetry system DS86 was used for some analyses. The ratio of a single leukemia type to all leukemias was highest for chronic myelogenous leukemia (CML) in Hiroshima, and the occurrence of CML was thought to be most characteristic to atomic bomb radiation induced leukemia. The threshold of CML occurrence in Hiroshima is likely to be between 0.5{approx}0.09 Gy. However, the threshold of acute leukemia appears to be nearly 1 Gy. In the distribution of acute myeloid leukemia (AML) subtypes by French-American-British classification, there was no M3 case in 1 Gy or more group, although several atypical AML cases of survivors were observed. Although aplastic anemia has not increased as a late effect of the atomic bomb radiation exposure, many atypical leukemia or other myeloproliferative diseases who had been diagnosed as aplastic anemia or its related diseases have been experienced among atomic bomb survivors. Chromosome study was conducted using colony forming cells induced by hemopoietic stem cells of peripheral blood of proximal survivors. Same chromosome aberrations were observed in colony forming cells and peripheral T-cells in several atomic bomb survivors. (author).

  17. Atomic bomb and leukemia

    International Nuclear Information System (INIS)

    Ichimaru, M.; Tomonaga, M.; Amenomori, T.; Matsuo, T.

    1991-01-01

    Characteristic features of the leukemia among atomic bomb survivors were studied. Dose estimates of atomic bomb radiation were based on T65D, but the new dosimetry system DS86 was used for some analyses. The ratio of a single leukemia type to all leukemias was highest for chronic myelogenous leukemia (CML) in Hiroshima, and the occurrence of CML was thought to be most characteristic to atomic bomb radiation induced leukemia. The threshold of CML occurrence in Hiroshima is likely to be between 0.5∼0.09 Gy. However, the threshold of acute leukemia appears to be nearly 1 Gy. In the distribution of acute myeloid leukemia (AML) subtypes by French-American-British classification, there was no M3 case in 1 Gy or more group, although several atypical AML cases of survivors were observed. Although aplastic anemia has not increased as a late effect of the atomic bomb radiation exposure, many atypical leukemia or other myeloproliferative diseases who had been diagnosed as aplastic anemia or its related diseases have been experienced among atomic bomb survivors. Chromosome study was conducted using colony forming cells induced by hemopoietic stem cells of peripheral blood of proximal survivors. Same chromosome aberrations were observed in colony forming cells and peripheral T-cells in several atomic bomb survivors. (author)

  18. Cytosine Arabinoside Influx and Nucleoside Transport Sites in Acute Leukemia

    OpenAIRE

    Wiley, J. S.; Jones, S. P.; Sawyer, W. H.; Paterson, A. R. P.

    1982-01-01

    Although cytosine arabinoside (araC) can induce a remission in a majority of patients presenting with acute myeloblastic leukemia (AML), a minority fail to respond and moreover the drug has less effect in acute lymphoblastic leukemia (ALL). The carrier-mediated influx of araC into purified blasts from patients with AML, ALL, and acute undifferentiated leukemia (AUL) has been compared to that of normal lymphocytes and polymorphs. Blasts showed a larger mediated influx of araC than mature cells...

  19. Massive periosteal reaction a presenting feature of acute megakaryocytic leukemia.

    Science.gov (United States)

    Ueda, Takahiro; Ito, Yasuhiko; Maeda, Miho; Fukunaga, Yoshitaka

    2007-12-01

    Acute megakaryoblastic leukemia (AML M7) is a biologically heterogeneous form of acute myeloid leukemia accounting for 14.6% of cases. In many instances in the past, AML M7 has been classified as undifferentiated leukemia, myelodysplasia, myelofibrosis or some other disease because of its complex clinical presentation or the difficulty of obtaining and interpreting bone marrow samples. However, with currently available morphological, cytochemical, cytogenetic and immunophenotypic methods, AML M7 can now be reliably diagnosed. Although the radiographic spectrum of bony changes in leukemia have been well characterized, skeletal X-ray abnormalities in the setting of AML M7 in pediatric patients have been described in few reports that were associated with bone marrow fibrosis. Here we report on a 14-month-old girl who presented with a massive periosteal reaction of the extremities and clavicles associated with myelofibrosis, a presenting feature of AML M7. The bone changes were very unusual in this case.

  20. Caspase-3 controls AML1-ETO-driven leukemogenesis via autophagy modulation in a ULK1-dependent manner.

    Science.gov (United States)

    Man, Na; Tan, Yurong; Sun, Xiao-Jian; Liu, Fan; Cheng, Guoyan; Greenblatt, Sarah M; Martinez, Camilo; Karl, Daniel L; Ando, Koji; Sun, Ming; Hou, Dan; Chen, Bingyi; Xu, Mingjiang; Yang, Feng-Chun; Chen, Zhu; Chen, Saijuan; Nimer, Stephen D; Wang, Lan

    2017-05-18

    AML1-ETO (AE), a fusion oncoprotein generated by t(8;21), can trigger acute myeloid leukemia (AML) in collaboration with mutations including c-Kit, ASXL1/2, FLT3, N-RAS, and K-RAS. Caspase-3, a key executor among its family, plays multiple roles in cellular processes, including hematopoietic development and leukemia progression. Caspase-3 was revealed to directly cleave AE in vitro, suggesting that AE may accumulate in a Caspase-3-compromised background and thereby accelerate leukemogenesis. Therefore, we developed a Caspase-3 knockout genetic mouse model of AML and found that loss of Caspase-3 actually delayed AML1-ETO9a (AE9a)-driven leukemogenesis, indicating that Caspase-3 may play distinct roles in the initiation and/or progression of AML. We report here that loss of Caspase-3 triggers a conserved, adaptive mechanism, namely autophagy (or macroautophagy), which acts to limit AE9a-driven leukemia. Furthermore, we identify ULK1 as a novel substrate of Caspase-3 and show that upregulation of ULK1 drives autophagy initiation in leukemia cells and that inhibition of ULK1 can rescue the phenotype induced by Caspase-3 deletion in vitro and in vivo. Collectively, these data highlight Caspase-3 as an important regulator of autophagy in AML and demonstrate that the balance and selectivity between its substrates can dictate the pace of disease. © 2017 by The American Society of Hematology.

  1. Hypoxia-Activated Prodrug TH-302 Targets Hypoxic Bone Marrow Niches in Preclinical Leukemia Models.

    Science.gov (United States)

    Benito, Juliana; Ramirez, Marc S; Millward, Niki Zacharias; Velez, Juliana; Harutyunyan, Karine G; Lu, Hongbo; Shi, Yue-Xi; Matre, Polina; Jacamo, Rodrigo; Ma, Helen; Konoplev, Sergej; McQueen, Teresa; Volgin, Andrei; Protopopova, Marina; Mu, Hong; Lee, Jaehyuk; Bhattacharya, Pratip K; Marszalek, Joseph R; Davis, R Eric; Bankson, James A; Cortes, Jorge E; Hart, Charles P; Andreeff, Michael; Konopleva, Marina

    2016-04-01

    To characterize the prevalence of hypoxia in the leukemic bone marrow, its association with metabolic and transcriptional changes in the leukemic blasts and the utility of hypoxia-activated prodrug TH-302 in leukemia models. Hyperpolarized magnetic resonance spectroscopy was utilized to interrogate the pyruvate metabolism of the bone marrow in the murine acute myeloid leukemia (AML) model. Nanostring technology was used to evaluate a gene set defining a hypoxia signature in leukemic blasts and normal donors. The efficacy of the hypoxia-activated prodrug TH-302 was examined in the in vitro and in vivo leukemia models. Metabolic imaging has demonstrated increased glycolysis in the femur of leukemic mice compared with healthy control mice, suggesting metabolic reprogramming of hypoxic bone marrow niches. Primary leukemic blasts in samples from AML patients overexpressed genes defining a "hypoxia index" compared with samples from normal donors. TH-302 depleted hypoxic cells, prolonged survival of xenograft leukemia models, and reduced the leukemia stem cell pool in vivo In the aggressive FLT3/ITD MOLM-13 model, combination of TH-302 with tyrosine kinase inhibitor sorafenib had greater antileukemia effects than either drug alone. Importantly, residual leukemic bone marrow cells in a syngeneic AML model remain hypoxic after chemotherapy. In turn, administration of TH-302 following chemotherapy treatment to mice with residual disease prolonged survival, suggesting that this approach may be suitable for eliminating chemotherapy-resistant leukemia cells. These findings implicate a pathogenic role of hypoxia in leukemia maintenance and chemoresistance and demonstrate the feasibility of targeting hypoxic cells by hypoxia cytotoxins. ©2015 American Association for Cancer Research.

  2. Bone marrow miR-10a overexpression is associated with genetic events but not affects clinical outcome in acute myeloid leukemia.

    Science.gov (United States)

    Zhang, Ting-Juan; Guo, Hong; Zhou, Jing-Dong; Li, Xi-Xi; Zhang, Wei; Ma, Ji-Chun; Wen, Xiang-Mei; Yao, Xin-Yu; Lin, Jiang; Qian, Jun

    2018-01-01

    Accumulating studies have linked the disruptions of microRNA-10 (miR-10) to acute myeloid leukemia (AML) with NPM1 mutation. However, miR-10 expression and its clinical implication in AML remain poorly defined. Although a recent report showed high serum level of miR-10a was associated with adverse prognosis in AML, herein, we found bone marrow (BM) miR-10 overexpression was not a prognostic biomarker in AML. BM miR-10 expression was examined by real-time quantitative PCR in BM mononuclear cells in 115 de novo AML patients and 45 controls. BM miR-10 (miR-10a/b) expression was significantly up-regulated in AML patients, and was positively correlated with each other. Overexpression of miR-10a was associated with lower percentage of BM blasts, whereas miR-10b overexpression tended to correlate with higher percentage of BM blasts. Importantly, miR-10a overexpression was significantly associated with FAB-M3/t(15;17) subtypes and NPM1 mutation, meanwhile, overexpression of miR-10b was correlated with NPM1 and DNMT3A mutations. However, miR-10a/b overexpression was not associated with complete remission rate, and did not have an impact on both leukemia free survival and overall survival time in non-M3 AML patients without NPM1 mutation. BM miR-10 overexpression is associated with genetic events but not affects clinical outcome in AML. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Acute myeloid leukemia: advancing clinical trials and promising therapeutics

    Science.gov (United States)

    Daver, Naval; Cortes, Jorge; Kantarjian, Hagop; Ravandi, Farhad

    2016-01-01

    Recent progress in understanding the biology of acute myeloid leukemia (AML) and the identification of targetable driver mutations, leukemia specific antigens and signal transduction pathways has ushered in a new era of therapy. In many circumstances the response rates with such targeted or antibody-based therapies are superior to those achieved with standard therapy and with decreased toxicity. In this review we discuss novel therapies in AML with a focus on two major areas of unmet need: (1) single agent and combination strategies to improve frontline therapy in elderly patients with AML and (2) molecularly targeted therapies in the frontline and salvage setting in all patients with AML. PMID:26910051

  4. Ploidy and clinical characteristics of childhood acute myeloid leukemia

    DEFF Research Database (Denmark)

    Sandahl, Julie Damgaard; Kjeldsen, Eigil; Abrahamsson, Jonas

    2014-01-01

    We report the first large series (n = 596) of pediatric acute myeloid leukemia (AML) focusing on modal numbers (MN) from the population-based NOPHO-AML trials. Abnormal karyotypes were present in 452 cases (76%) and numerical aberrations were present in 40% (n = 237) of all pediatric AML. Among...... with early onset (median age 2 years), female sex (57%), and a dominance of acute megakaryoblastic leukemia (AMKL) (29%). Hypodiploidy constituted 8% of all AML and was associated with older age (median age 9 years), male predominance (60%), FAB M2 (56%), and t(8;21)(q22;q22) (56%) with loss of sex...

  5. Molecular cytogenetics for acute megakaryocytic leukemia diagnosis

    Directory of Open Access Journals (Sweden)

    E. A. Matveeva

    2014-07-01

    Full Text Available Acute megakaryocytic leukemia (AML M7 – a rare disease characterized by poor treatment response, except for t(1;22 variant in infants. Cytogenetic abnormalities in AML M7 are highly heterogeneous. We collected samples from children with AML M7 to analyze the disease cytogenetic profile. During September 2009 to March 2012 20 AML M7 patients was studied using fluorescence in situ hybridization. Complex and heterogeneous chromosomal abnormalities were revealed. It was found that no recurring abnormalities and cytogenetic markers unique to each patients. Also, the 19p13 amplification described previously only in myeloid cell lines was detected.

  6. Molecular cytogenetics for acute megakaryocytic leukemia diagnosis

    Directory of Open Access Journals (Sweden)

    E. A. Matveeva

    2012-01-01

    Full Text Available Acute megakaryocytic leukemia (AML M7 – a rare disease characterized by poor treatment response, except for t(1;22 variant in infants. Cytogenetic abnormalities in AML M7 are highly heterogeneous. We collected samples from children with AML M7 to analyze the disease cytogenetic profile. During September 2009 to March 2012 20 AML M7 patients was studied using fluorescence in situ hybridization. Complex and heterogeneous chromosomal abnormalities were revealed. It was found that no recurring abnormalities and cytogenetic markers unique to each patients. Also, the 19p13 amplification described previously only in myeloid cell lines was detected.

  7. Downregulation but lack of promoter hypermethylation or somatic mutations of the potential tumor suppressor CXXC5 in MDS and AML with deletion 5q

    DEFF Research Database (Denmark)

    Treppendahl, Marianne Bach; Möllgård, L; Hellström-Lindberg, E

    2013-01-01

    During recent years mutations in epigenetic modulators have been identified in several human cancers, including acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS)[1]. CXXC5 has been found to be necessary for retinoic acid induced differentiation of myelocytic leukemia cells, identify......During recent years mutations in epigenetic modulators have been identified in several human cancers, including acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS)[1]. CXXC5 has been found to be necessary for retinoic acid induced differentiation of myelocytic leukemia cells...

  8. Associations between neutrophil recovery time, infections and relapse in pediatric acute myeloid leukemia

    DEFF Research Database (Denmark)

    Løhmann, Ditte J A; Asdahl, Peter H; Abrahamsson, Jonas

    2018-01-01

    BACKGROUND: Children with acute myeloid leukemia (AML) treated similarly show different toxicity and leukemic responses. We investigated associations between neutrophil recovery time after the first induction course, infection and relapse in children treated according to NOPHO-AML 2004 and DB AML...

  9. Inhibition of autophagy as a treatment strategy for p53 wild-type acute myeloid leukemia

    NARCIS (Netherlands)

    Folkerts, Hendrik; Hilgendorf, Susan; Wierenga, Albertus T J; Jaques, Jennifer; Mulder, André B; Coffer, Paul J; Schuringa, Jan Jacob; Vellenga, Edo

    2017-01-01

    Here we have explored whether inhibition of autophagy can be used as a treatment strategy for acute myeloid leukemia (AML). Steady-state autophagy was measured in leukemic cell lines and primary human CD34(+) AML cells with a large variability in basal autophagy between AMLs observed. The autophagy

  10. Quantitation of human thymus/leukemia-associated antigen by radioimmunoassay in different forms of leukemia.

    Science.gov (United States)

    Chechik, B E; Jason, J; Shore, A; Baker, M; Dosch, H M; Gelfand, E W

    1979-12-01

    Using a radioimmunoassay, increased levels of a human thymus/leukemia-associated antigen (HThy-L) have been detected in leukemic cells and plasma from most patients with E-rosette-positive acute lymphoblastic leukemia (ALL) and a number of patients with E-rosette-negative ALL, acute myeloblastic leukemia (AML), acute monomyelocytic leukemia (AMML), and acute undifferentiated leukemia (AVL). Low levels of HThy-L have been demonstrated in white cells from patients with chronic myelocytic leukemia (stable phase) and in mononuclear cells from patients with chronic lymphatic leukemia. The relationship between HThy-L and differentiation of hematopoietic cells is discussed.

  11. Genetic and epigenetic similarities and differences between childhood and adult AML

    DEFF Research Database (Denmark)

    Juhl-Christensen, Caroline; Ommen, Hans Beier; Aggerholm, Anni

    2012-01-01

    The biology of acute myeloid leukemia (AML) is complex and includes both genetic and epigenetic aberrations. We addressed the combined consequences of promoter hypermethylation of p15, CDH1, ER, MDR1, and RARB2 and mutation of NPM1, CEBPA, FLT3, and WT1 in a Danish cohort of 70 pediatric and 383...

  12. ASXL2 mutations are frequently found in pediatric AML patients with t(8;21)/ RUNX1-RUNX1T1 and associated with a better prognosis.

    Science.gov (United States)

    Yamato, Genki; Shiba, Norio; Yoshida, Kenichi; Shiraishi, Yuichi; Hara, Yusuke; Ohki, Kentaro; Okubo, Jun; Okuno, Haruna; Chiba, Kenichi; Tanaka, Hiroko; Kinoshita, Akitoshi; Moritake, Hiroshi; Kiyokawa, Nobutaka; Tomizawa, Daisuke; Park, Myoung-Ja; Sotomatsu, Manabu; Taga, Takashi; Adachi, Souichi; Tawa, Akio; Horibe, Keizo; Arakawa, Hirokazu; Miyano, Satoru; Ogawa, Seishi; Hayashi, Yasuhide

    2017-05-01

    ASXL2 is an epigenetic regulator involved in polycomb repressive complex regulation or recruitment. Clinical features of pediatric acute myeloid leukemia (AML) patients with ASXL2 mutations remain unclear. Thus, we investigated frequencies of ASXL1 and ASXL2 mutations, clinical features of patients with these mutations, correlations of these mutations with other genetic alterations including BCOR/BCORL1 and cohesin complex component genes, and prognostic impact of these mutations in 369 pediatric patients with de novo AML (0-17 years). We identified 9 (2.4%) ASXL1 and 17 (4.6%) ASXL2 mutations in 25 patients. These mutations were more common in patients with t(8;21)(q22;q22)/RUNX1-RUNX1T1 (ASXL1, 6/9, 67%, P = 0.02; ASXL2, 10/17, 59%, P = 0.01). Among these 25 patients, 4 (27%) of 15 patients with t(8;21) and 6 (60%) of 10 patients without t(8;21) relapsed. However, most patients with relapse were rescued using stem cell transplantation irrespective of t(8;21). The overall survival (OS) and event-free survival (EFS) rates showed no differences among pediatric AML patients with t(8;21) and ASXL1 or ASXL2 mutations and ASXL wild-type (5-year OS, 75% vs. 100% vs. 91% and 5-year EFS, 67% vs. 80% vs. 67%). In 106 patients with t(8;21) AML, the coexistence of mutations in tyrosine kinase pathways and chromatin modifiers and/or cohesin complex component genes had no effect on prognosis. These results suggest that ASXL1 and ASXL2 mutations play key roles as cooperating mutations that induce leukemogenesis, particularly in pediatric AML patients with t(8;21), and these mutations might be associated with a better prognosis than that reported previously. © 2017 Wiley Periodicals, Inc.

  13. Clinical Presentations of Acute Leukemia

    International Nuclear Information System (INIS)

    Shahab, F.; Raziq, F.

    2014-01-01

    Objective: To document the clinical presentation and epidemiology of various types of acute leukemia with their respective referral source at a tertiary level centre in Peshawar. Study Design: An observational study. Place and Duration of Study: Department of Pathology, Hayatabad Medical Complex (HMC), Peshawar, from January 2011 to May 2012. Methodology: A total of 618 bone marrow biopsy reports were reviewed. All biopsy reports labeled as acute leukemia were reviewed for age, gender, address, referring unit, diagnosis on bone marrow examination, presenting complaints, duration of illness and findings of clinical examination. Results: Ninety-two patients were diagnosed as suffering from acute leukemias (15%). ALL was most prevalent (46%), followed by AML (38%) and undifferentiated acute leukemia (16%). Males were affected more compared to females (60% vs. 40%). ALL and AML were predominant in pediatric (64%) and adults (77%) patients respectively. Patients from Afghanistan accounted for 33% of all cases followed by Peshawar (14%). Fever (77%), pallor (33%) and bleeding disorders (23%) were the main presenting complaints. Enlargement of liver, spleen and lymph nodes together was associated with ALL compared with AML (p = 0.004). Conclusion: ALL-L1 and AML-M4 were the most common sub-types. Fever, pallor and bleeding disorders were the main presenting complaints. Enlargement of liver, spleen and lymph nodes was more frequently associated with ALL compared to AML. (author)

  14. The Proteasome Inhibitor Bortezomib Sensitizes AML with Myelomonocytic Differentiation to TRAIL Mediated Apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Dijk, Marianne van; Murphy, Eoin [Apoptosis Research Center, National University of Ireland, University Road, Galway (Ireland); School of Natural Sciences, National University of Ireland, University Road, Galway (Ireland); Morrell, Ruth [Apoptosis Research Center, National University of Ireland, University Road, Galway (Ireland); School of Natural Sciences, National University of Ireland, University Road, Galway (Ireland); School of Medicine, National University of Ireland, University Road, Galway (Ireland); Knapper, Steven [Department of Haematology, School of Medicine, Cardiff University, Heath Park, CF14 4XN Cardiff (United Kingdom); O' Dwyer, Michael [Apoptosis Research Center, National University of Ireland, University Road, Galway (Ireland); School of Medicine, National University of Ireland, University Road, Galway (Ireland); Samali, Afshin; Szegezdi, Eva, E-mail: eva.szegezdi@nuigalway.ie [Apoptosis Research Center, National University of Ireland, University Road, Galway (Ireland); School of Natural Sciences, National University of Ireland, University Road, Galway (Ireland)

    2011-03-15

    Acute myeloid leukemia (AML) is an aggressive stem cell malignancy that is difficult to treat. There are limitations to the current treatment regimes especially after disease relapse, and therefore new therapeutic agents are urgently required which can overcome drug resistance whilst avoiding unnecessary toxicity. Among newer targeted agents, both tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and proteasome inhibitors show particular promise. In this report we show that a combination of the proteasome inhibitor bortezomib and TRAIL is effective against AML cell lines, in particular, AML cell lines displaying myelomonocytic/monocytic phenotype (M4/M5 AML based on FAB classification), which account for 20-30% of AML cases. We show that the underlying mechanism of sensitization is at least in part due to bortezomib mediated downregulation of c-FLIP and XIAP, which is likely to be regulated by NF-κB. Blockage of NF-κB activation with BMS-345541 equally sensitized myelomonocytic AML cell lines and primary AML blasts to TRAIL.

  15. AML (Logistics Center) Local Area Network -

    Data.gov (United States)

    Department of Transportation — The AML LAN is designed to facilitate the services and resources needed to support the operations of the FAA Logistics Center users. The AML LAN provides support for...

  16. Children's Oncology Group's 2013 blueprint for research: acute myeloid leukemia.

    Science.gov (United States)

    Gamis, Alan S; Alonzo, Todd A; Perentesis, John P; Meshinchi, Soheil

    2013-06-01

    For the 365 children diagnosed with acute myeloid leukemia in the US annually, 5-year survival for patients on COG trials with low, intermediate, and high risk disease is 83%, 62%, and 23%, respectively. Recent advances include improved therapeutic stratification, improved survival with dose intensification, and further elucidation of the heterogeneity specific to childhood AML. These discoveries now guide current strategy incorporating targeted agents to pathways specific to childhood AML as well as evaluating methods to increase the sensitivity of the leukemic stem cell, first in Phase II feasibility trials followed by Phase III efficacy trials of the most promising agents. Acute myeloid leukemia in children, though with similar subgroups to adults, remains uniquely different based upon quite different prevalence of subtypes as well as overall response to therapy. The Children's Oncology Group's research agenda builds upon earlier efforts to better elucidate the leukemogenic steps distinct to childhood AML in order to more scientifically develop and test novel therapeutic approaches to the treatment and ultimate cure for children with this disorder. Pediatr Blood Cancer 2013; 60: 964-971. © 2012 Wiley Periodicals, Inc. Copyright © 2012 Wiley Periodicals, Inc.

  17. Response-guided induction therapy in pediatric acute myeloid leukemia with excellent remission rate

    DEFF Research Database (Denmark)

    Abrahamsson, Jonas; Forestier, Erik; Heldrup, Jesper

    2011-01-01

    To evaluate the early treatment response in children with acute myeloid leukemia (AML) using a response-guided induction strategy that includes idarubicin in the first course.......To evaluate the early treatment response in children with acute myeloid leukemia (AML) using a response-guided induction strategy that includes idarubicin in the first course....

  18. CAR-T cells targeting CLL-1 as an approach to treat acute myeloid leukemia

    OpenAIRE

    Wang, Jinghua; Chen, Siyu; Xiao, Wei; Li, Wende; Wang, Liang; Yang, Shuo; Wang, Weida; Xu, Liping; Liao, Shuangye; Liu, Wenjian; Wang, Yang; Liu, Nawei; Zhang, Jianeng; Xia, Xiaojun; Kang, Tiebang

    2018-01-01

    Background Acute myeloid leukemia (AML) is one of the most common types of adult acute leukemia. Standard chemotherapies can induce complete remission in selected patients; however, a majority of patients eventually relapse and succumb to the disease. Thus, the development of novel therapeutics for AML is urgently needed. Human C-type lectin-like molecule-1 (CLL-1) is a type II transmembrane glycoprotein, and its expression is restricted to myeloid cells and the majority of AML blasts. Moreov...

  19. Association of body mass index and survival in pediatric leukemia: a meta-analysis.

    Science.gov (United States)

    Orgel, Etan; Genkinger, Jeanine M; Aggarwal, Divya; Sung, Lillian; Nieder, Michael; Ladas, Elena J

    2016-03-01

    Obesity is a worldwide epidemic in children and adolescents. Adult cohort studies have reported an association between higher body mass index (BMI) and increased leukemia-related mortality; whether a similar effect exists in childhood leukemia remains controversial. We conducted a meta-analysis to determine whether a higher BMI at diagnosis of pediatric acute lymphoblastic leukemia (ALL) or acute myeloid leukemia (AML) is associated with worse event-free survival (EFS), overall survival (OS), and cumulative incidence of relapse (CIR). We searched 4 electronic databases from inception through March 2015 without language restriction and included studies in pediatric ALL or AML (0-21 y of age) reporting BMI as a predictor of survival or relapse. Higher BMI, defined as obese (≥95%) or overweight/obese (≥85%), was compared with lower BMI [nonoverweight/obese (children with a higher BMI (RR: 1.35; 95% CI: 1.20, 1.51) than in those at a lower BMI. A higher BMI was associated with significantly increased mortality (RR: 1.31; 95% CI: 1.09, 1.58) and a statistically nonsignificant trend toward greater risk of relapse (RR: 1.17; 95% CI: 0.99, 1.38) compared with a lower BMI. In AML, a higher BMI was significantly associated with poorer EFS and OS (RR: 1.36; 95% CI: 1.16, 1.60 and RR: 1.56; 95% CI: 1.32, 1.86, respectively) than was a lower BMI. Higher BMI at diagnosis is associated with poorer survival in children with pediatric ALL or AML. © 2016 American Society for Nutrition.

  20. The Danish National Acute Leukemia Registry

    DEFF Research Database (Denmark)

    Østgård, Lene Sofie Granfeldt; Nørgaard, Jan Maxwell; Raaschou-Jensen, Klas Kræsten

    2016-01-01

    AIM OF DATABASE: The main aim of the Danish National Acute Leukemia Registry (DNLR) was to obtain information about the epidemiology of the hematologic cancers acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), and myelodysplastic syndrome (MDS). STUDY POPULATION: The registry...... was established in January 2000 by the Danish Acute Leukemia Group and has been expanded over the years. It includes adult AML patients diagnosed in Denmark since 2000, ALL patients diagnosed since 2005, and MDS patients diagnosed since 2010. The coverage of leukemia patients exceeds 99%, and the coverage of MDS...... years. To ensure this high coverage, completeness, and quality of data, linkage to the Danish Civil Registration System and the Danish National Registry of Patients, and several programmed data entry checks are used. CONCLUSION: The completeness and positive predictive values of the leukemia data have...

  1. Trisomy 10 in acute myeloid leukemia: three new cases.

    Science.gov (United States)

    Llewellyn, I E; Morris, C M; Stanworth, S; Heaton, D C; Spearing, R L

    2000-04-15

    Trisomy 10 is a rare nonrandom cytogenetic abnormality found in association with acute myeloid leukemia (AML). The hematological and clinical features associated with this finding have not yet been clearly defined. A literature review revealed 13 cases of trisomy 10 in AML, some reported as a minority component of a more comprehensive AML study and therefore lacking a full description of both clinical and hematological features. We present a summary of these reports and add three new cases to the literature.

  2. Estudo retrospectivo do tratamento de leucemia mielóide aguda com o transplante de medula óssea: a experiência brasileira Retrospective study of stem cell transplantation for acute myeloid leukemia (AML: the Brazilian experience

    Directory of Open Access Journals (Sweden)

    Nelson Hamerschlak

    2006-03-01

    Full Text Available Dados do Registro Internacional de Transplante de Medula Óssea, International Bone Marrow Transplant Registry (IBMTR contribuem para o progresso do transplante de medula óssea (TMO em todo o mundo. Neste artigo relatamos a experiência brasileira em leucemia mielóide aguda e comparamos os resultados do TMO com os dados internacionais. Foi realizado um estudo retrospectivo com dados de tratamento de LMA com o TMO de 16 instituições brasileiras. A análise estatística dos transplantes da modalidade autogênica (TMO auto e alogênica (TMO alo foi realizada com o método de Kaplan-Meier e log-rank. Todos os valores de p foram bicaudados. Foram avaliados os dados de 731 pacientes (205 TMO auto e 526 TMO alo. A mediana de sobrevida global dos pacientes submetidos ao TMO auto foi superior à dos submetidos ao TMO alo (1.035 vs 466 dias, p=0,0012. A origem das células-tronco (OCT no TMO alo em 73% dos pacientes foi de medula óssea (CTMO, em 23% de sangue periférico (CTSP e em 4% de cordão umbilical. No TMO auto, a OCT foi 63% de CTSP, 22% CTMO e 15% de ambas as fontes. A OCT não teve impacto na sobrevida global (SG. Não houve diferença na SG também entre os pacientes segundo a classificação FAB no TMO alo, mas os pacientes com LMA M3 com o TMO auto tiveram SG longa. Como esperado, a principal causa de óbito entre os pacientes do TMO auto foi relacionada à recidiva de doença (60%, enquanto no TMO alo as principais causas foram a doença enxerto versus hospedeiro e infecções (38%. Em ambos os grupos foi observada SG mais longa nos pacientes tratados em primeira remissão completa (1RC quando comparados aos de segunda remissão (2RC e outras fases (pData from the International Bone Marrow Transplant Registry (IBMTR contribute for the improvement of Bone Marrow Transplant (BMT worldwide. We studied the Brazilian experience in BMT for AML to compare this with international data. We performed a retrospective study by sending

  3. Induction of the 5S RNP-Mdm2-p53 ribosomal stress pathway delays the initiation but fails to eradicate established murine acute myeloid leukemia.

    Science.gov (United States)

    Jaako, P; Ugale, A; Wahlestedt, M; Velasco-Hernandez, T; Cammenga, J; Lindström, M S; Bryder, D

    2017-01-01

    Mutations resulting in constitutive activation of signaling pathways that regulate ribosome biogenesis are among the most common genetic events in acute myeloid leukemia (AML). However, whether ribosome biogenesis presents as a therapeutic target to treat AML remains unexplored. Perturbations in ribosome biogenesis trigger the 5S ribonucleoprotein particle (RNP)-Mdm2-p53 ribosomal stress pathway, and induction of this pathway has been shown to have therapeutic efficacy in Myc-driven lymphoma. In the current study we address the physiological and therapeutic role of the 5S RNP-Mdm2-p53 pathway in AML. By utilizing mice that have defective ribosome biogenesis due to downregulation of ribosomal protein S19 (Rps19), we demonstrate that induction of the 5S RNP-Mdm2-p53 pathway significantly delays the initiation of AML. However, even a severe Rps19 deficiency that normally results in acute bone marrow failure has no consistent efficacy on already established disease. Finally, by using mice that harbor a mutation in the Mdm2 gene disrupting its binding to 5S RNP, we show that loss of the 5S RNP-Mdm2-p53 pathway is dispensable for development of AML. Our study suggests that induction of the 5S RNP-Mdm2-p53 ribosomal stress pathway holds limited potential as a single-agent therapy in the treatment of AML.

  4. Disease evolution and outcomes in familial AML with germline CEBPA mutations

    DEFF Research Database (Denmark)

    Tawana, Kiran; Wang, Jun; Renneville, Aline

    2015-01-01

    collected from 10 CEBPA-mutated families, representing 24 members with acute myeloid leukemia (AML). Whole-exome (WES) and deep sequencing were performed to genetically profile tumors and define patterns of clonal evolution. Germline CEBPA mutations clustered within the N-terminal and were highly penetrant......, with AML presenting at a median age of 24.5 years (range, 1.75-46 years). In all diagnostic tumors tested (n = 18), double CEBPA mutations (CEBPAdm) were detected, with acquired (somatic) mutations preferentially targeting the C-terminal. Somatic CEBPA mutations were unstable throughout the disease course...

  5. AML1/ETO trans-activates c-KIT expression through the long range interaction between promoter and intronic enhancer.

    Science.gov (United States)

    Tian, Ying; Wang, Genjie; Hu, Qingzhu; Xiao, Xichun; Chen, Shuxia

    2018-04-01

    The AML1/ETO onco-fusion protein is crucial for the genesis of t(8;21) acute myeloid leukemia (AML) and is well documented as a transcriptional repressor through dominant-negative effect. However, little is known about the transactivation mechanism of AML1/ETO. Through large cohort of patient's expression level data analysis and a series of experimental validation, we report here that AML1/ETO transactivates c-KIT expression through directly binding to and mediating the long-range interaction between the promoter and intronic enhancer regions of c-KIT. Gene expression analyses verify that c-KIT expression is significantly high in t(8;21) AML. Further ChIP-seq analysis and motif scanning identify two regulatory regions located in the promoter and intronic enhancer region of c-KIT, respectively. Both regions are enriched by co-factors of AML1/ETO, such as AML1, CEBPe, c-Jun, and c-Fos. Further luciferase reporter assays show that AML1/ETO trans-activates c-KIT promoter activity through directly recognizing the AML1 motif and the co-existence of co-factors. The induction of c-KIT promoter activity is reinforced with the existence of intronic enhancer region. Furthermore, ChIP-3C-qPCR assays verify that AML1/ETO mediates the formation of DNA-looping between the c-KIT promoter and intronic enhancer region through the long-range interaction. Collectively, our data uncover a novel transcriptional activity mechanism of AML1/ETO and enrich our knowledge of the onco-fusion protein mediated transcription regulation. © 2017 Wiley Periodicals, Inc.

  6. Endometrial and acute myeloid leukemia cancer genomes characterized

    Science.gov (United States)

    Two studies from The Cancer Genome Atlas (TCGA) program reveal details about the genomic landscapes of acute myeloid leukemia (AML) and endometrial cancer. Both provide new insights into the molecular underpinnings of these cancers.

  7. Childhood Acute Myeloid Leukemia Treatment (PDQ®)—Patient Version

    Science.gov (United States)

    Childhood acute myeloid leukemia and other myeloid malignancies treatment may include chemotherapy, radiation therapy, stem cell transplant, and targeted therapy. Learn more about AML and myelodysplastic/myeloproliferative diseases in this expert-reviewed summary.

  8. Occupational exposure to solvents and acute myeloid leukemia

    DEFF Research Database (Denmark)

    Talibov, Madar; Lehtinen-Jacks, Susanna; Martinsen, Jan Ivar

    2014-01-01

    OBJECTIVE: The aim of the current study was to assess the relation between occupational exposure to solvents and the risk of acute myeloid leukemia (AML). METHODS: Altogether, this study comprises 15 332 incident cases of AML diagnosed in Finland, Norway, Sweden and Iceland from 1961-2005 and 76...

  9. The role of mutant IDH1 and IDH2 inhibitors in the treatment of acute myeloid leukemia.

    Science.gov (United States)

    Nassereddine, Samah; Lap, Coen J; Haroun, Faysal; Tabbara, Imad

    2017-12-01

    For decades, researchers have looked into the pathophysiology of acute myeloid leukemia (AML). With the advances in molecular techniques, the two-hit hypothesis was replaced by a multi-hit model, which also emphasizes the importance of aberrant epigenetic regulation in the pathogenesis of AML. IDH1 and IDH2 are two isoforms of isocitrate dehydrogenase that perform crucial roles in cellular metabolism. Somatic mutations in either of these two genes impart a neomorphic enzymatic activity upon the encoded enzymes resulting in the ability to convert α-ketoglutarate (αKG) into the oncometabolite R2-hydroxyglutarate (R2-HG), which can competitively inhibit multiple αKG-dependent dioxygenases. Inhibition of various classes of αKG-dependent dioxygenases results in dramatic epigenetic changes in hematopoietic cells, which has been found to directly impair differentiation. In addition to a global dysregulation of gene expression, other mechanisms have been described through which R2-HG promotes leukemic transformation including the induction of B cell lymphoma 2 dependency and stimulation of the EglN family of prolyl 4-hydroxylases (EglN). Due to the fact that mutations in IDH1 and IDH2 are acquired early during AML clonal evolution as well as because these mutations tend to remain stable during AML progression, the pharmaceutical industry has prompted the development of specific mutant IDH enzyme inhibitors. More recently, the FDA approved the first mutant IDH2 inhibitor, enasidenib (AG-221), for patients with relapsed or refractory IDH2-mutated AML (RR-AML). This has brought a lot of excitement to researchers, clinicians, and patients, especially because the treatment of AML remains challenging and is still associated with a high mortality.

  10. Inhibition of histone deacetylases 1 and 6 enhances cytarabine-induced apoptosis in pediatric acute myeloid leukemia cells.

    Directory of Open Access Journals (Sweden)

    Xuelian Xu

    Full Text Available BACKGROUND: Pediatric acute myeloid leukemia (AML remains a challenging disease to treat even with intensified cytarabine-based chemotherapy. Histone deacetylases (HDACs have been reported to be promising therapeutic targets for treating AML. However, HDAC family members that are involved in chemotherapy sensitivities remain unknown. In this study, we sought to identify members of the HDAC family that are involved in cytarabine sensitivities, and to select the optimal HDACI that is most efficacious when combined with cytarabine for treating children with AML. METHODOLOGY: Expression profiles of classes I, II, and IV HDACs in 4 pediatric AML cell lines were determined by Western blotting. Inhibition of class I HDACs by different HDACIs was measured post immnunoprecipitation. Individual down-regulation of HDACs in pediatric AML cells was performed with lentiviral shRNA. The effects of cytarabine and HDACIs on apoptosis were determined by flow cytometry analysis. RESULTS: Treatments with structurally diverse HDACIs and HDAC shRNA knockdown experiments revealed that down-regulation of both HDACs 1 and 6 is critical in enhancing cytarabine-induced apoptosis in pediatric AML, at least partly mediated by Bim. However, down-regulation of HDAC2 may negatively impact cytarabine sensitivities in the disease. At clinically achievable concentrations, HDACIs that simultaneously inhibited both HDACs 1 and 6 showed the best anti-leukemic activities and significantly enhanced cytarabine-induced apoptosis. CONCLUSION: Our results further confirm that HDACs are bona fide therapeutic targets for treating pediatric AML and suggest that pan-HDACIs may be more beneficial than isoform-specific drugs.

  11. Genetic Alterations in Essential Thrombocythemia Progression to Acute Myeloid Leukemia: A Case Series and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Jackline P. Ayres-Silva

    2018-02-01

    Full Text Available The genetic events associated with transformation of myeloproliferative neoplasms (MPNs to secondary acute myeloid leukemia (sAML, particularly in the subgroup of essential thrombocythemia (ET patients, remain incompletely understood. Deep studies using high-throughput methods might lead to a better understanding of genetic landscape of ET patients who transformed to sAML. We performed array-based comparative genomic hybridization (aCGH and whole exome sequencing (WES to analyze paired samples from ET and sAML phases. We investigated five patients with previous history of MPN, which four had initial diagnosis of ET (one case harboring JAK2 p.Val617Phe and the remaining three CALR type II p.Lys385fs*47, and one was diagnosed with MPN/myelodysplastic syndrome with thrombocytosis (SF3B1 p.Lys700Glu. All were homogeneously treated with hydroxyurea, but subsequently transformed to sAML (mean time of 6 years/median of 4 years to transformation. Two of them have chromosomal abnormalities, and both acquire 2p gain and 5q deletion at sAML stage. The molecular mechanisms associated with leukemic progression in MPN patients are not clear. Our WES data showed TP53 alterations recurrently observed as mutations (missense and frameshift and monoallelic loss. On the other hand, aCGH showed novel chromosome abnormalities (+2p and del5q potentially associated with disease progression. The results reported here add valuable information to the still fragmented molecular basis of ET to sAML evolution. Further studies are necessary to identify minimal deleted/amplified region and genes relevant to sAML transformation.

  12. The emerging role of immune checkpoint based approaches in AML and MDS.

    Science.gov (United States)

    Boddu, Prajwal; Kantarjian, Hagop; Garcia-Manero, Guillermo; Allison, James; Sharma, Padmanee; Daver, Naval

    2018-04-01

    The development of immune checkpoint inhibitors represents a major breakthrough in the field of cancer therapeutics. Pursuant to their success in melanoma and numerous solid tumor malignancies, these agents are being investigated in hematological malignancies including acute myelogenous leukemia (AML) and myelodysplastic syndromes (MDS). Although AML/MDS have traditionally been considered to be less immunogenic than solid tumor malignancies, recent pre-clinical models suggest a therapeutic role for immune checkpoint inhibition in these diseases. CTLA-4 inhibition may be especially effective in treating late post-allogeneic stem cell transplant relapse of AML in patients with limited or no graft versus host disease. Immune checkpoint inhibition, specifically PD-1 inhibition, demonstrated limited single agent efficacy in patients with relapsed AML and with MDS post-hypomethylating therapy. Rationally designed combinations of PD-1 inhibitors with standard anti-leukemic therapy are needed. Hypomethylating agents such as azacitidine, up-regulate PD-1, PD-L1, and PD-L2 in patients with AML/MDS and up-regulation of these genes was associated with the emergence of resistance. The combination of azacitidine and PD-1/PD-L1 inhibition may be a potential mechanism to prevent or overcome resistance to 5-azacitidine. A number of such combinations are being evaluated in clinical trials with early encouraging results. Immune checkpoint inhibition is also an attractive option to improve relapse-free survival or eliminate minimal residual disease post induction and consolidation by enhancing T-cell surveillance in patients with high-risk AML. The ongoing clinical trials with checkpoint inhibitors in AML/MDS will improve our understanding of the immunobiology of these diseases and guide us to the most appropriate application of these agents in the therapy of AML/MDS.

  13. Acute myeloid leukemia in Turkish children with Fanconi anemia. One center experience in the period between 1964-1995

    Directory of Open Access Journals (Sweden)

    Sevgi Gözdaşoğlu

    2009-09-01

    Full Text Available Objective: Fanconi’s anemia (FA is an autosomal recessive disorder characterized by a progressive pancytopenia,variable congenital abnormalities and an increased risk for the development of acute myeloid leukemia (AML. The objective of this study is to evaluate AML in the patients with FA diagnosed and followed-up in the Department of Pediatric Hematology at Ankara University School of Medicine in the period between 1964-1995. Methods: A total of 39 patients within the age range 2-14 years (mean 8.2±3.16, 28 male and 11 female were diagnosed as FA on the basis of congenital abnormalities, pancytopenia, bone marrow aplasia and diepoxybutane induced chromosomal abnormalities that observed in all patients. The hereditary and familial basis of FA was apparent in this series. Results: Common abnormalities were growth retardation, café- au- lait spots, hyperpigmentation, microcephaly, finger and thumb deformities,mental retardation and hypogenitalismus. Four AML (10.2% were observed in our series. Cytogenetic analysis of these cases revealed 46/ XX, dup(3(q22;q26 t(7;17 (p11;p11 in one where it was unsuccessful in three. Two cases could not achieve remission and died. The other two achieved complete remission and remained in remission for 2 and 6 monthsConclusion: Acute myelomonocytic leukemia in three cases and acute monocytic leukemia in one patient were diagnosed in our series. The patients with FA should be followed with regard to AML and solid tumors. AML and solid tumors should be taken into the consideration as the first manifestation of FA.

  14. Regulation of Trib2 by an E2F1-C/EBPα feedback loop in AML cell proliferation.

    LENUS (Irish Health Repository)

    Rishi, Loveena

    2014-04-10

    The loss of regulation of cell proliferation is a key event in leukemic transformation, and the oncogene tribbles (Trib)2 is emerging as a pivotal target of transcription factors in acute leukemias. Deregulation of the transcription factor E2F1, normally repressed by CCAAT enhancer-binding protein α (C\\/EBPα)-p42, occurs in acute myeloid leukemia (AML), resulting in the perturbation of cell cycle and apoptosis, emphasizing its importance in the molecular pathogenesis of AML. Here we show that E2F family members directly regulate Trib2 in leukemic cells and identify a feedback regulatory loop for E2F1, C\\/EBPα, and Trib2 in AML cell proliferation and survival. Further analyses revealed that E2F1-mediated Trib2 expression was repressed by C\\/EBPα-p42, and in normal granulocyte\\/macrophage progenitor cells, we detect C\\/EBPα bound to the Trib2 promoter. Pharmacological inhibition of the cell cycle or Trib2 knockdown resulted in a block in AML cell proliferation. Our work proposes a novel paradigm whereby E2F1 plays a key role in the regulation of Trib2 expression important for AML cell proliferation control. Importantly, we identify the contribution of dysregulated C\\/EBPα and E2F1 to elevated Trib2 expression and leukemic cell survival, which likely contributes to the initiation and maintenance of AML and may have significant implications for normal and malignant hematopoiesis.

  15. Epigenetics targeted protein-vorinostat nanomedicine inducing apoptosis in heterogeneous population of primary acute myeloid leukemia cells including refractory and relapsed cases.

    Science.gov (United States)

    Chandran, Parwathy; Kavalakatt, Anu; Malarvizhi, Giridharan Loghanathan; Vasanthakumari, Divya Rani Vikraman Nair; Retnakumari, Archana Payickattu; Sidharthan, Neeraj; Pavithran, Keechilat; Nair, Shantikumar; Koyakutty, Manzoor

    2014-05-01

    Aberrant epigenetics play a key role in the onset and progression of acute myeloid leukemia (AML). Herein we report in silico modelling based development of a novel, protein-vorinostat nanomedicine exhibiting selective and superior anti-leukemic activity against heterogeneous population of AML patient samples (n=9), including refractory and relapsed cases, and three representative cell lines expressing CD34(+)/CD38(-) stem cell phenotype (KG-1a), promyelocytic phenotype (HL-60) and FLT3-ITD mutation (MV4-11). Nano-vorinostat having ~100nm size exhibited enhanced cellular uptake rendering significantly lower IC50 in AML cell lines and patient samples, and induced enhanced HDAC inhibition, oxidative injury, cell cycle arrest and apoptosis compared to free vorinostat. Most importantly, nanomedicine showed exceptional single-agent activity against the clonogenic proliferative capability of bone marrow derived leukemic progenitors, while remaining non-toxic to healthy bone marrow cells. Collectively, this epigenetics targeted nanomedicine appears to be a promising therapeutic strategy against various French-American-British (FAB) classes of AML. Through the use of a protein-vorinostat agent, exceptional single-agent activity was demonstrated against the clonogenic proliferative capability of bone marrow derived leukemic progenitors, while remaining non-toxic to healthy bone marrow cells. The studied epigenetics targeted nanomedicine approach is a promising therapeutic strategy against various French-American-British classes of acute myeloid leukemia. © 2014 Elsevier Inc. All rights reserved.

  16. Comprehensive mutational profiling of core binding factor acute myeloid leukemia.

    Science.gov (United States)

    Duployez, Nicolas; Marceau-Renaut, Alice; Boissel, Nicolas; Petit, Arnaud; Bucci, Maxime; Geffroy, Sandrine; Lapillonne, Hélène; Renneville, Aline; Ragu, Christine; Figeac, Martin; Celli-Lebras, Karine; Lacombe, Catherine; Micol, Jean-Baptiste; Abdel-Wahab, Omar; Cornillet, Pascale; Ifrah, Norbert; Dombret, Hervé; Leverger, Guy; Jourdan, Eric; Preudhomme, Claude

    2016-05-19

    Acute myeloid leukemia (AML) with t(8;21) or inv(16) have been recognized as unique entities within AML and are usually reported together as core binding factor AML (CBF-AML). However, there is considerable clinical and biological heterogeneity within this group of diseases, and relapse incidence reaches up to 40%. Moreover, translocations involving CBFs are not sufficient to induce AML on its own and the full spectrum of mutations coexisting with CBF translocations has not been elucidated. To address these issues, we performed extensive mutational analysis by high-throughput sequencing in 215 patients with CBF-AML enrolled in the Phase 3 Trial of Systematic Versus Response-adapted Timed-Sequential Induction in Patients With Core Binding Factor Acute Myeloid Leukemia and Treating Patients with Childhood Acute Myeloid Leukemia with Interleukin-2 trials (age, 1-60 years). Mutations in genes activating tyrosine kinase signaling (including KIT, N/KRAS, and FLT3) were frequent in both subtypes of CBF-AML. In contrast, mutations in genes that regulate chromatin conformation or encode members of the cohesin complex were observed with high frequencies in t(8;21) AML (42% and 18%, respectively), whereas they were nearly absent in inv(16) AML. High KIT mutant allele ratios defined a group of t(8;21) AML patients with poor prognosis, whereas high N/KRAS mutant allele ratios were associated with the lack of KIT or FLT3 mutations and a favorable outcome. In addition, mutations in epigenetic modifying or cohesin genes were associated with a poor prognosis in patients with tyrosine kinase pathway mutations, suggesting synergic cooperation between these events. These data suggest that diverse cooperating mutations may influence CBF-AML pathophysiology as well as clinical behavior and point to potential unique pathogenesis of t(8;21) vs inv(16) AML. © 2016 by The American Society of Hematology.

  17. Self-reported fertility in long-term survivors of acute myeloid leukemia.

    Science.gov (United States)

    Brånvall, Elsa; Derolf, Asa Rangert; Johansson, Eva; Hultcrantz, Malin; Bergmark, Karin; Björkholm, Magnus

    2014-09-01

    Acute myeloid leukemia (AML) survival rates in younger patients have improved considerably since the 1970s. In order to evaluate the impact of AML and its treatment on fertility and family situation in adult long-term survivors, we used the Swedish population-based registries to identify 161 adult patients diagnosed with AML within the Leukemia Group of Middle Sweden (LGMS) 1973-2003, who survived for more than 5 years and were alive in 2010. Ninety-eight patients (61 %) completed a questionnaire including items on reproductive concerns, family situation, and infertility-related distress. After excluding women >45 years and/or postmenopausal women and men >55 years, 22 women and 38 men were included in the final analysis. Nine of the women (41 %) tried to conceive after treatment, but only three succeeded. Five (83 %) of the unwillingly childless women reported "a moderate" or "a lot" of distress caused by this. Among men in the same age group, all six who wanted children after treatment succeeded. None of the men 46-55 years old cryopreserved their sperm or tried to father a child. Among patients who wanted children after AML treatment, 46 % of the women and 40 % of the younger men reported that they were not, or not fully, informed about fertility-related issues. In contrast, among men 46-55 years, none reported they would have wanted more information. Infertility among young female AML survivors thus remains an important clinical issue, and there is a need for improved clinical counseling and education in this area.

  18. Thrombopoietin/MPL participates in initiating and maintaining RUNX1-ETO acute myeloid leukemia via PI3K/AKT signaling

    NARCIS (Netherlands)

    J.A. Pulikkan (John); D. Madera (Dmitri); L. Xue (Liting); P. Bradley (Paul); S.F. Landrette (Sean Francis); Y.-H. Kuo (Ya-Huei); S. Abbas (Saman); L.J. Zhu (Lihua Julie); P.J.M. Valk (Peter); L.H. Castilla (Lucio)

    2012-01-01

    textabstractOncogenic mutations in components of cytokine signaling pathways elicit ligand-independent activation of downstream signaling, enhancing proliferation and survival in acute myeloid leukemia (AML). The myeloproliferative leukemia virus oncogene, MPL, a homodimeric receptor activated by

  19. Clinical and prognostic implications of Roundabout 4 (robo4 in adult patients with acute myeloid leukemia.

    Directory of Open Access Journals (Sweden)

    Yin-Kai Chen

    Full Text Available Robo4 is involved in hematopoietic stem/progenitor cell homeostasis and essential for tumor angiogenesis. Expression of Robo4 was recently found in solid tumors and leukemia stem cells. However, the clinical implications of Robo4 expression in patients with acute myeloid leukemia (AML remain unclear.We investigated the clinical and prognostic relevance of mRNA expression of Robo4 in bone marrow (BM mononuclear cells from 218 adult patients with de novo AML. We also performed immunohistochemical staining to assess the Robo4 protein expression in the BM biopsy specimens from 30 selected AML patients in the cohort.Higher Robo4 expression was closely associated with lower white blood cell counts, expression of HLA-DR, CD13, CD34 and CD56 on leukemia cells, t(8;21 and ASXL1 mutation, but negatively correlated with t(15;17 and CEBPA mutation. Compared to patients with lower Robo4 expression, those with higher expression had significantly shorter disease-free survival (DFS and overall survival (OS. This result was confirmed in an independent validation cohort. Furthermore, multivariate analyses showed that higher Robo4 expression was an independent poor prognostic factor for DFS and OS in total cohort and patients with intermediate-risk cytogenetics, irrespective of age, WBC count, karyotype, and mutation status of NPM1/FLT3-ITD, and CEBPA.BM Robo4 expression can serve as a new biomarker to predict clinical outcomes in AML patients and Robo4 may serve as a potential therapeutic target in patients with higher Robo4 expression.

  20. Murine and human leukemias.

    Science.gov (United States)

    Burchenal, J H

    1975-01-01

    Essentially all the drugs which are active against human leukemias and lymphomas are active against one type or another of the rodent leukemias and lymphomas. Leukemia L1210 has been generally the most successful screening tool for clinically active compounds. Leukemia P388, however, seems to be better in detecting active antibiotics and natural products and P1534 is particularly sensitive to the Vinca alkaloids, while L5178Y, EARAD, and 6C3HED are useful in detecting the activities of various asparaginase containing fractions. Cell cultures of these leukemias can demonstrate mechanism of drug action and quantitate resistance. Spontaneous AKR leukemia is a model of the advanced human disease. In these leukemias vincristine and prednisone produce a 4 log cell kill. Cytoxan and arabinosyl cytosine (Ara-C) are also effective. On the other hand drugs such as mercaptopurine (6MP) and methotrexate which are highly active in the maintenance phase of acute lymphocytic leukemia (ALL) and in L1210 have little or no activity against the AKR spontaneous system. Mouse leukemias can also detect schedule dependence, synergistic combinations, cross resistance, oral activity, and the ability of drugs to pass the blood brain barrier. A case in point is the Ara-C analog 2,2'-anhydro-arabinofuranosyl-5-fluorocytosine (AAFC) which is not schedule dependent, is active orally, is potentiated by thioguanine, and is effective against intracerebrally inoculated mouse leukemia. AAFC and its analogs might thus be a considerable improvement over Ara-C which is at the present time the most important component of the combination treatment of acute myelogenous leukemia (AML).

  1. Unveiling the role of PAK2 in CD44 mediated inhibition of proliferation, differentiation and apoptosis in AML cells

    KAUST Repository

    Aldehaiman, Mansour M.

    2018-01-01

    the success of the differentiation agent, All-trans retinoic acid (ATRA), in the treatment of acute promyelocytic leukemia (APL), much effort has gone into trying to find agents that are able to differentiate AML cells and specifically the leukemic stem cell

  2. Defining AML and MDS second cancer risk dynamics after diagnoses of first cancers treated or not with radiation

    NARCIS (Netherlands)

    Radivoyevitch, T.; Sachs, R. K.; Gale, R. P.; Molenaar, R. J.; Brenner, D. J.; Hill, B. T.; Kalaycio, M. E.; Carraway, H. E.; Mukherjee, S.; Sekeres, M. A.; Maciejewski, J. P.

    2016-01-01

    Risks of acute myeloid leukemia (AML) and/or myelodysplastic syndromes (MDS) are known to increase after cancer treatments. Their rise-and-fall dynamics and their associations with radiation have, however, not been fully characterized. To improve risk definition we developed SEERaBomb R software for

  3. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel.

    Science.gov (United States)

    Döhner, Hartmut; Estey, Elihu; Grimwade, David; Amadori, Sergio; Appelbaum, Frederick R; Büchner, Thomas; Dombret, Hervé; Ebert, Benjamin L; Fenaux, Pierre; Larson, Richard A; Levine, Ross L; Lo-Coco, Francesco; Naoe, Tomoki; Niederwieser, Dietger; Ossenkoppele, Gert J; Sanz, Miguel; Sierra, Jorge; Tallman, Martin S; Tien, Hwei-Fang; Wei, Andrew H; Löwenberg, Bob; Bloomfield, Clara D

    2017-01-26

    The first edition of the European LeukemiaNet (ELN) recommendations for diagnosis and management of acute myeloid leukemia (AML) in adults, published in 2010, has found broad acceptance by physicians and investigators caring for patients with AML. Recent advances, for example, in the discovery of the genomic landscape of the disease, in the development of assays for genetic testing and for detecting minimal residual disease (MRD), as well as in the development of novel antileukemic agents, prompted an international panel to provide updated evidence- and expert opinion-based recommendations. The recommendations include a revised version of the ELN genetic categories, a proposal for a response category based on MRD status, and criteria for progressive disease. © 2017 by The American Society of Hematology.

  4. Therapy Related AML/MDS Following Treatment for Childhood Cancer: Experience from a Tertiary Care Centre in North India.

    Science.gov (United States)

    Vyas, Chintan; Jain, Sandeep; Kapoor, Gauri

    2018-01-01

    Therapy-related acute myeloid leukemia/myelodysplastic syndrome (t-AML/MDS) is a devastating late effect of cancer treatment. There is limited data on incidence of t-AML/MDS from India. We retrospectively studied pediatric t AML/MDS at our institute between January 1996 and December 2015. Among 1285 children, 8 patients developed t-AML with a median age of 15.5 years. Overall incidence of t-AML/MDS was 0.62% [0.99% (4/402) in solid tumours and 0.45% (4/883) in leukemia/lymphoma, P  = 0.26] with 6390 patient years of follow up. Primary malignancy included sarcoma [bone (2), soft tissue (2)], B-non-Hodgkin lymphoma (2) and acute lymphoblastic leukemia (2). The median cumulative equivalent doses of cyclophosphamide, doxorubicin and etoposide were 6.8, 270 and 2.5 gm/m 2 respectively. Two patients received radiotherapy [rhabdomyosarcoma (50 Gy), synovial sarcoma (45 Gy)]. The median latency period to develop t-AML/MDS was 24 months (range 16.5-62 months). Most common FAB morphology was M4/M5 (7/8) and cytogenetic abnormality was MLL rearrangement (4/8). Five patients opted for treatment, 4 achieved remission out of which 2 patients are alive and disease free. Short latency periods, absence of pre-leukemic phase and 11q23 translocations were characteristic in the patients with t-AML/MDS. In view of poor outcome with conventional therapy, novel strategies and prevention need to be considered.

  5. Acute myeloid leukemia in children: Current status and future directions.

    Science.gov (United States)

    Taga, Takashi; Tomizawa, Daisuke; Takahashi, Hiroyuki; Adachi, Souichi

    2016-02-01

    Acute myeloid leukemia (AML) accounts for 25% of pediatric leukemia and affects approximately 180 patients annually in Japan. The treatment outcome for pediatric AML has improved through advances in chemotherapy, hematopoietic stem cell transplantation (HSCT), supportive care, and optimal risk stratification. Currently, clinical pediatric AML studies are conducted separately according to the AML subtypes: de novo AML, acute promyelocytic leukemia (APL), and myeloid leukemia with Down syndrome (ML-DS). Children with de novo AML are treated mainly with anthracyclines and cytarabine, in some cases with HSCT, and the overall survival (OS) rate now approaches 70%. Children with APL are treated with an all-trans retinoic acid (ATRA)-combined regimen with an 80-90% OS. Children with ML-DS are treated with a less intensive regimen compared with non-DS patients, and the OS is approximately 80%. HSCT in first remission is restricted to children with high-risk de novo AML only. To further improve outcomes, it will be necessary to combine more accurate risk stratification strategies using molecular genetic analysis with assessment of minimum residual disease, and the introduction of new drugs in international collaborative clinical trials. © 2015 Japan Pediatric Society.

  6. Diagnostic and Prognostic Utility of Fluorescence In situ Hybridization (FISH) Analysis in Acute Myeloid Leukemia.

    Science.gov (United States)

    Gonzales, Patrick R; Mikhail, Fady M

    2017-12-01

    Acute myeloid leukemia (AML) is a hematologic neoplasia consisting of incompletely differentiated hematopoietic cells of the myeloid lineage that proliferate in the bone marrow, blood, and/or other tissues. Clinical implementation of fluorescence in situ hybridization (FISH) in cytogenetic laboratories allows for high-resolution analysis of recurrent structural chromosomal rearrangements specific to AML, especially in AML with normal karyotypes, which comprises approximately 33-50% of AML-positive specimens. Here, we review the use of several FISH probe strategies in the diagnosis of AML. We also review the standards and guidelines currently in place for use by clinical cytogenetic laboratories in the evaluation of AML. Updated standards and guidelines from the WHO, ACMG, and NCCN have further defined clinically significant, recurring cytogenetic anomalies in AML that are detectable by FISH. FISH continues to be a powerful technique in the diagnosis of AML, with higher resolution than conventional cytogenetic analysis, rapid turnaround time, and a considerable diagnostic and prognostic utility.

  7. Acute myeloid leukemia presenting with panhypopituitarism or diabetes insipidus: a case series with molecular genetic analysis and review of the literature.

    Science.gov (United States)

    Cull, Elizabeth H; Watts, Justin M; Tallman, Martin S; Kopp, Peter; Frattini, Mark; Rapaport, Franck; Rampal, Raajit; Levine, Ross; Altman, Jessica K

    2014-09-01

    Central diabetes insipidus (DI) is a rare finding in patients with acute myeloid leukemia (AML), usually occurring in patients with chromosome 3 or 7 abnormalities. We describe four patients with AML and concurrent DI and a fifth patient with AML and panhypopituitarism. Four of five patients had monosomy 7. Three patients had chromosome 3q21q26/EVI-1 gene rearrangements. The molecular genotype of patients with AML and DI is not known. Therefore, we performed gene sequencing of 30 genes commonly mutated in AML in three patients with available leukemia cell DNA. One patient had no identifiable mutations, and two had RUNX1 F158S mutations.

  8. A novel application of furazolidone: anti-leukemic activity in acute myeloid leukemia.

    Directory of Open Access Journals (Sweden)

    Xueqing Jiang

    Full Text Available Acute myeloid leukemia (AML is the most common malignant myeloid disorder of progenitor cells in myeloid hematopoiesis and exemplifies a genetically heterogeneous disease. The patients with AML also show a heterogeneous response to therapy. Although all-trans retinoic acid (ATRA has been successfully introduced to treat acute promyelocytic leukemia (APL, it is rather ineffective in non-APL AML. In our present study, 1200 off-patent marketed drugs and natural compounds that have been approved by the Food and Drug Administration (FDA were screened for anti-leukemia activity using the retrovirus transduction/transformation assay (RTTA. Furazolidone (FZD was shown to inhibit bone marrow transformation mediated by several leukemia fusion proteins, including AML1-ETO. Furazolidone has been used in the treatment of certain bacterial and protozoan infections in human and animals for more than sixty years. We investigated the anti-leukemic activity of FZD in a series of AML cells. FZD displayed potent antiproliferative properties at submicromolar concentrations and induced apoptosis in AML cell lines. Importantly, FZD treatment of certain AML cells induced myeloid cell differentiation by morphology and flow cytometry for CD11b expression. Furthermore, FZD treatment resulted in increased stability of tumor suppressor p53 protein in AML cells. Our in vitro results suggest furazolidone as a novel therapeutic strategy in AML patients.

  9. NANOG Expression as a Responsive Biomarker during Treatment with Hedgehog Signal Inhibitor in Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Seiji Kakiuchi

    2017-02-01

    Full Text Available Aberrant activation of the Hedgehog (Hh signaling pathway is involved in the maintenance of leukemic stem cell (LSCs populations. PF-0444913 (PF-913 is a novel inhibitor that selectively targets Smoothened (SMO, which regulates the Hh pathway. Treatment with PF-913 has shown promising results in an early phase study of acute myeloid leukemia (AML. However, a detailed mode of action for PF-913 and relevant biomarkers remain to be elucidated. In this study, we examined bone marrow samples derived from AML patients under PF-913 monotherapy. Gene set enrichment analysis (GSEA revealed that PF-913 treatment affected the self-renewal signature and cell-cycle regulation associated with LSC-like properties. We then focused on the expression of a pluripotency factor, NANOG, because previous reports showed that a downstream effector in the Hh pathway, GLI, directly binds to the NANOG promoter and that the GLI-NANOG axis promotes stemness and growth in several cancers. In this study, we found that a change in NANOG transcripts was closely associated with GLI-target genes and NANOG transcripts can be a responsive biomarker during PF-913 therapy. Additionally, the treatment of AML with PF-913 holds promise, possibly through inducing quiescent leukemia stem cells toward cell cycling.

  10. In vivo expansion of co-transplanted T cells impacts on tumor re-initiating activity of human acute myeloid leukemia in NSG mice.

    Directory of Open Access Journals (Sweden)

    Malte von Bonin

    Full Text Available Human cells from acute myeloid leukemia (AML patients are frequently transplanted into immune-compromised mouse strains to provide an in vivo environment for studies on the biology of the disease. Since frequencies of leukemia re-initiating cells are low and a unique cell surface phenotype that includes all tumor re-initiating activity remains unknown, the underlying mechanisms leading to limitations in the xenotransplantation assay need to be understood and overcome to obtain robust engraftment of AML-containing samples. We report here that in the NSG xenotransplantation assay, the large majority of mononucleated cells from patients with AML fail to establish a reproducible myeloid engraftment despite high donor chimerism. Instead, donor-derived cells mainly consist of polyclonal disease-unrelated expanded co-transplanted human T lymphocytes that induce xenogeneic graft versus host disease and mask the engraftment of human AML in mice. Engraftment of mainly myeloid cell types can be enforced by the prevention of T cell expansion through the depletion of lymphocytes from the graft prior transplantation.

  11. Emerging therapies for acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Caner Saygin

    2017-04-01

    Full Text Available Abstract Acute myeloid leukemia (AML is characterized by clinical and biological heterogeneity. Despite the advances in our understanding of its pathobiology, the chemotherapy-directed management has remained largely unchanged in the past 40 years. However, various novel agents have demonstrated clinical activity, either as single agents (e.g., isocitrate dehydrogenase (IDH inhibitors, vadastuximab or in combination with standard induction/consolidation at diagnosis and with salvage regimens at relapse. The classes of agents described in this review include novel cytotoxic chemotherapies (CPX-351 and vosaroxin, epigenetic modifiers (guadecitabine, IDH inhibitors, histone deacetylase (HDAC inhibitors, bromodomain and extraterminal (BET inhibitors, FMS-like tyrosine kinase receptor 3 (FLT3 inhibitors, and antibody-drug conjugates (vadastuximab, as well as cell cycle inhibitors (volasertib, B-cell lymphoma 2 (BCL-2 inhibitors, and aminopeptidase inhibitors. These agents are actively undergoing clinical investigation alone or in combination with available chemotherapy.

  12. Future prospects of therapeutic clinical trials in acute myeloid leukemia

    Science.gov (United States)

    Khan, Maliha; Mansoor, Armaghan-e-Rehman; Kadia, Tapan M

    2017-01-01

    Acute myeloid leukemia (AML) is a markedly heterogeneous hematological malignancy that is most commonly seen in elderly adults. The response to current therapies to AML is quite variable, and very few new drugs have been recently approved for use in AML. This review aims to discuss the issues with current trial design for AML therapies, including trial end points, patient enrollment, cost of drug discovery and patient heterogeneity. We also discuss the future directions in AML therapeutics, including intensification of conventional therapy and new drug delivery mechanisms; targeted agents, including epigenetic therapies, cell cycle regulators, hypomethylating agents and chimeric antigen receptor T-cell therapy; and detail of the possible agents that may be incorporated into the treatment of AML in the future. PMID:27771959

  13. A DNA probe combination for improved detection of MLL/11q23 breakpoints by double-color interphase-FISH in acute leukemias.

    NARCIS (Netherlands)

    Bergh, A. von; Emanuel, B.; Zelderen-Bhola, S. van; Smetsers, A.F.C.M.; Soest, R. van; Stul, M.; Vranckx, H.; Schuuring, E.; Hagemeijer, A.; Kluin, P.

    2000-01-01

    Reciprocal translocations involving the MLL gene on chromosome band 11q23 have been observed in both acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). In AML, identification of MLL breakpoints is an important prognostic factor. Breakpoints are clustered in an 8 kb DNA fragment

  14. Chromosomal minimal critical regions in therapy-related leukemia appear different from those of de novo leukemia by high-resolution aCGH.

    Directory of Open Access Journals (Sweden)

    Nathalie Itzhar

    Full Text Available Therapy-related acute leukemia (t-AML, is a severe complication of cytotoxic therapy used for primary cancer treatment. The outcome of these patients is poor, compared to people who develop de novo acute leukemia (p-AML. Cytogenetic abnormalities in t-AML are similar to those found in p-AML but present more frequent unfavorable karyotypes depending on the inducting agent. Losses of chromosome 5 or 7 are observed after alkylating agents while balanced translocations are found after topoisomerase II inhibitors. This study compared t-AML to p-AML using high resolution array CGH in order to find copy number abnormalities (CNA at a higher resolution than conventional cytogenetics. More CNAs were observed in 30 t-AML than in 36 p-AML: 104 CNAs were observed with 63 losses and 41 gains (mean number 3.46 per case in t-AML, while in p-AML, 69 CNAs were observed with 32 losses and 37 gains (mean number of 1.9 per case. In primary leukemia with a previously "normal" karyotype, 18% exhibited a previously undetected CNA, whereas in the (few t-AML with a normal karyotype, the rate was 50%. Several minimal critical regions (MCRs were found in t-AML and p-AML. No common MCRs were found in the two groups. In t-AML a 40 kb deleted MCR pointed to RUNX1 on 21q22, a gene coding for a transcription factor implicated in frequent rearrangements in leukemia and in familial thrombocytopenia. In de novo AML, a 1 Mb MCR harboring ERG and ETS2 was observed from patients with complex aCGH profiles. High resolution cytogenomics obtained by aCGH and similar techniques already published allowed us to characterize numerous non random chromosome abnormalities. This work supports the hypothesis that they can be classified into several categories: abnormalities common to all AML; those more frequently found in t-AML and those specifically found in p-AML.

  15. Ibrutinib synergizes with poly(ADP-ribose) glycohydrolase inhibitors to induce cell death in AML cells via a BTK-independent mechanism.

    Science.gov (United States)

    Rotin, Lianne E; Gronda, Marcela; MacLean, Neil; Hurren, Rose; Wang, XiaoMing; Lin, Feng-Hsu; Wrana, Jeff; Datti, Alessandro; Barber, Dwayne L; Minden, Mark D; Slassi, Malik; Schimmer, Aaron D

    2016-01-19

    Targeting Bruton's tyrosine kinase (BTK) with the small molecule BTK inhibitor ibrutinib has significantly improved patient outcomes in several B-cell malignancies, with minimal toxicity. Given the reported expression and constitutive activation of BTK in acute myeloid leukemia (AML) cells, there has been recent interest in investigating the anti-AML activity of ibrutinib. We noted that ibrutinib had limited single-agent toxicity in a panel of AML cell lines and primary AML samples, and therefore sought to identify ibrutinib-sensitizing drugs. Using a high-throughput combination chemical screen, we identified that the poly(ADP-ribose) glycohydrolase (PARG) inhibitor ethacridine lactate synergized with ibrutinib in TEX and OCI-AML2 leukemia cell lines. The combination of ibrutinib and ethacridine induced a synergistic increase in reactive oxygen species that was functionally important to explain the observed cell death. Interestingly, synergistic cytotoxicity of ibrutinib and ethacridine was independent of the inhibitory effect of ibrutinib against BTK, as knockdown of BTK did not sensitize TEX and OCI-AML2 cells to ethacridine treatment. Thus, our findings indicate that ibrutinib may have a BTK-independent role in AML and that PARG inhibitors may have utility as part of a combination therapy for this disease.

  16. Examining the Origins of Myeloid Leukemia | Center for Cancer Research

    Science.gov (United States)

    Acute myeloid leukemia or AML, a cancer of the white blood cells, is the most common type of rapidly-growing leukemia in adults. The over-production of white blood cells in the bone marrow inhibits the development of other necessary blood components including red blood cells, which carry oxygen throughout the body, and platelets, which are required for clot formation. The

  17. Reanalysis of atomic bomb survivors' leukemia based on the recent classification for leukemias

    International Nuclear Information System (INIS)

    Matsuo, Tatsuki; Tomonaga, Masao.

    1990-01-01

    Four hundred and ninety-three A-bomb survivors developing leukemia, who had been exposed within 9,000 m from the hypocenter, were entered on the study for reanalysis of their disease based on the new classification. Chronic myelocytic leukemia (CML) showed the highest concordance rate (95%) between the previous and new classifications. For 10 survivors previously diagnosed as having chronic lymphocytic leukemia (CLL), a new classification diagnosed CLL as well in 3 and adult T-cell leukemia in the other 7. None of the A-bomb survivors exposed to one Gy or more had subtype M3 of acute myelocytic leukemia (AML), although the exposed group had almost the same distribution pattern of AML subtypes as the naturally induced leukemic group. The incidence of CML was significantly lower than that of AML in Nagasaki A-bomb survivors. As A-bomb survivors were older at the time of A-bombing, the relative risk of acute lymphoblastic leukemia (ALL) was decreased; that of CML and other types of leukemia was increased. An increased relative risk of ALL and CML tended to be associated with larger doses. A significantly shortened interval between A-bomb exposure and the development of leukemia was also associated with larger doses. (N.K.)

  18. RUNX1/AML1 point mutations take part in the pathogenesis of radiation-and therapy-related myeloid neoplasms

    International Nuclear Information System (INIS)

    Harada, Yuka; Kimura, Akiro; Harada, Hironori

    2012-01-01

    High frequency of myelodysplastic syndrome (MDS) has been reported in Hiroshima A-bomb exposed survivors, in resident around Semipalatinsk Nuclear Laboratory and in exposed people by Chernobyl Nuclear Power Station Accident. MDS/acute myeloid leukemia (AML) is thought to be caused by mutation of runt-related transcription factor 1 (RUNX1) gene after a long time post exposure to relatively low dose radiation. In this study, participation of RUNX1/AML1 point mutations was examined in pathogenesis of the title neoplasms experienced in authors' facility. Subjects were 18/417 cases in whom myeloproliferative neoplasms (MPN) had switched to MDS or AML in the follow-up period of 1-25 years, and 11/124 cases in whom t-MN (therapy-related myeloid neoplasms) had developed during the remission of acute promyelocytic leukemia (APL) in the 1-9.7 years follow up. Point mutations were analyzed by PCR-single strand conformation polymorphism (PCR-SSCP) followed by base sequencing. In the former cases above, RUNX1 point mutation was found in 5/18 cases and in the latter, 4/11. When patients with persistent decrease of blood cells post therapy of APL were followed up for mutation, their RUNX1 point mutation was detected before they were diagnosed to be morbid of MDS/AML. The point mutation was thus a biomarker of myelo-hematogenic cancer, and was thought useful for early diagnosis of MDS and AML. (T.T.)

  19. Acute childhood leukemia: Nursing care

    International Nuclear Information System (INIS)

    Zietz, Hallie A

    1997-01-01

    Modern therapy for childhood acute leukemia has provided a dramatically improved prognosis over that of just 30 years ago. In the early 1960's survival rates for acute lymphocytic leukemia (ALL) and acute myelogenous leukemia (AML) were 4% and 3%, respectively. By the 1980's survival rates had risen to 72% for all and 25% to 40% for AML. Today, a diagnosis of all carries an 80% survival rate and as high as a 90% survival rate for some low-risk subtypes. Such high cure rates depend on intense and complex, multimodal therapeutic protocols. Therefore, nursing care of the child with acute leukemia must meet the demands of complicated medical therapies and balance those with the needs of a sick child and their concerned family. An understanding of disease process and principles of medical management guide appropriate and effective nursing interventions. Leukemia is a malignant disorder of the blood and blood- forming organs (bone marrow, lymph nodes and spleen). Most believe that acute leukemia results from a malignant transformation of a single early haematopoietic stem cell that is capable of indefinite self-renewal. These immature cells of blasts do not respond to normal physiologic stimuli for differentiation and gradually become the predominant cell in the bone marrow

  20. Spotlight on the Diagnosis of Acute Promyelocytic Leukemia (AML ...

    African Journals Online (AJOL)

    QR-RT-PCR demonstrated bcr1 positivity in the 4 patients diagnosed by Karyotyping with t (15;17) and in the 8 patients can not diagnosed by Cytogenetic methods. Conclusion: Despite the fact that cytogenetics permit the identification of many chromosomal changes within a sample, FISH analysis is more sensitive when ...

  1. Xenograft Models of Primary Acute Myeloid Leukemia for the Development of Imaging Strategies and Evaluation of Novel Targeted Therapies.

    Science.gov (United States)

    Gelebart, Pascal; Popa, Mihaela; McCormack, Emmet

    2016-01-01

    Despite the tremendous progress made in the comprehension of acute myeloid leukemia (AML) over the last 30 years most patients die from their disease. Our understanding of AML has relied on an intensive in-vitro research approach, based on AML cell lines as well as primary AML patient cells. However, experimental insight into the early events of AML leukemogenesis before they become clinically observable is not possible in humans. Thus, preclinical animal models have served the purpose to extend our knowledge of the disease as well as to develop innovative therapeutic strategies. Today, xenograft models using patient-derived neoplastic/leukemia cells represent the strategy of choice for preclinical studies of AML. These models exhibit several key advantages over AML cell lines. In fact, patient-derived cells, in contrast to AML cell lines, encompass the entire complexity of AML disease and can therefore provide more trustworthy results on the efficacy outcome of novel therapies. One other important aspect in the development of xenograft models of AML is the possibility to use imaging techniques to monitor in-vivo the progression of the disease. Imaging techniques also authorize the evaluation of the efficacy of an experimental treatment on tumor growth. This review will focus on the description of xenograft models of AML and will provide researchers and clinicians an overview of how these models have been used for the development of new therapeutic options and new imaging approaches to study AML in-vivo.

  2. Pharmacologic Targeting of Chromatin Modulators As Therapeutics of Acute Myeloid Leukemia

    OpenAIRE

    Rui Lu; Rui Lu; Gang Greg Wang; Gang Greg Wang

    2017-01-01

    Acute myeloid leukemia (AML), a common hematological cancer of myeloid lineage cells, generally exhibits poor prognosis in the clinic and demands new treatment options. Recently, direct sequencing of samples from human AMLs and pre-leukemic diseases has unveiled their mutational landscapes and significantly advanced the molecular understanding of AML pathogenesis. The newly identified recurrent mutations frequently “hit” genes encoding epigenetic modulators, a wide range of chromatin-modifyin...

  3. Proteasome inhibition enhances the efficacy of volasertib-induced mitotic arrest in AML in vitro and prolongs survival in vivo.

    Science.gov (United States)

    Schnerch, Dominik; Schüler, Julia; Follo, Marie; Felthaus, Julia; Wider, Dagmar; Klingner, Kathrin; Greil, Christine; Duyster, Justus; Engelhardt, Monika; Wäsch, Ralph

    2017-03-28

    Elderly and frail patients, diagnosed with acute myeloid leukemia (AML) and ineligible to undergo intensive treatment, have a dismal prognosis. The small molecule inhibitor volasertib induces a mitotic block via inhibition of polo-like kinase 1 and has shown remarkable anti-leukemic activity when combined with low-dose cytarabine. We have demonstrated that AML cells are highly vulnerable to cell death in mitosis yet manage to escape a mitotic block through mitotic slippage by sustained proteasome-dependent slow degradation of cyclin B. Therefore, we tested whether interfering with mitotic slippage through proteasome inhibition arrests and kills AML cells more efficiently during mitosis. We show that therapeutic doses of bortezomib block the slow degradation of cyclin B during a volasertib-induced mitotic arrest in AML cell lines and patient-derived primary AML cells. In a xenotransplant mouse model of human AML, mice receiving volasertib in combination with bortezomib showed superior disease control compared to mice receiving volasertib alone, highlighting the potential therapeutic impact of this drug combination.

  4. Myeloid Sarcoma Predicts Superior Outcome in Pediatric AML; Can Cytogenetics Solve the Puzzle?

    Science.gov (United States)

    Pramanik, Raja; Tyagi, Anudishi; Chopra, Anita; Kumar, Akash; Vishnubhatla, Sreenivas; Bakhshi, Sameer

    2018-06-01

    The purpose of our study was to evaluate the clinical, cytogenetic, and molecular features, and survival outcomes in patients with acute myeloid leukemia (AML) with myeloid sarcoma (MS) and compare them with patients with AML without MS. This was a retrospective analysis of de novo pediatric AML patients with or without MS diagnosed at our cancer center between June 2003 and June 2016. MS was present in 121 of 570 (21.2%), the most frequent site being the orbit. Patients with MS had a younger median age (6 years vs. 10 years) and presented with higher hemoglobin and platelet but lower white blood cell count compared with patients without MS. Further, t (8; 21) (P < .01), loss of Y chromosome (P < .01), and deletion 9q (P = .03) were significantly higher in patients with AML with MS. Event-free survival (EFS; P = .003) and overall survival (OS; P = .001) were better among patients with AML with MS (median EFS 21.0 months and median OS 37.1 months) compared with those with AML without MS (median EFS 11.2 months and median OS 16.2 months). The t (8; 21) was significantly associated with MS (odds ratio, 3.92). In a comparison of the 4 groups divided according to the presence or absence of MS and t (8; 21), the subgroup of patients having MS without concomitant t (8; 21) was the only group to have a significantly better OS (hazard ratio, 0.53; 95% confidence interval, 0.34-0.82; P = .005). Although t (8; 21) was more frequently associated with MS, it did not appear to be the reason for better outcome. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. [Detection of heterogeneity and evolution of subclones in t(8;21) AML by QM-FISH].

    Science.gov (United States)

    Wang, Ying-chan; Hu, Lin-ping; Lin, Dong; Li, Cheng-wen; Yuan, Tian; Jia, Yu-jiao; Tian, Zheng; Tang, Ke-jing; Wang, Min; Wang, Jian-xiang

    2013-10-01

    To explore the heterogeneous subclones in acute myeloid leukemia (AML) with t(8;21) by quantitative multicolor- fluorescence in situ hybridization (QM-FISH), and to figure out whether there is putative ancestral relationship among different subclones. Bacterial artificial chromosomes (BAC) clones that contain the targeted genes including AML1, ETO, WT1, p27 and c-kit were searched in the data base UCSC Genome Bioinformatics. Multicolor FISH probes were prepared by linking fluorescein labeled dUTP or dCTP to targeted genes by nick translation. Bone marrow mononuclear cells from t (8;21) AML patients are dropped on to the wet surface of glass slides after hypotonic treatment and fixation. After hybridization, the fluorescence signals were captured by Zeiss fluorescence microscope. The copy number of AML1, ETO, WT1, p27, c- kit and the AML1-ETO fusion gene in AML1-ETO positive cells was counted. The cells with same signals were defined as a subclone. Various subclones were recorded and their proportions were calculated, and their evolutionary relationship was deduced. The subclones in matched primary and relapsed samples were compared, the evolution of dominant clones were figured out and the genomic abnormality that is associated with relapse and drug resistance were speculated. In this study, 36 primary AML with t(8;21) cases and 1 relapsed case paired with the primary case were detected. In these 36 primary cases, 4 cases (11.1%) acquired additional AML1-ETO fusion signal, 3(8.3%) had additional AML1 signal, 4(11.1%) had additional ETO signal, 20(55.6%) had additional WT1 signal, 15(41.7%) had additional p27 signal and 14(38.9%) had additional c-kit signal. In addition, 10(27.8%) displayed AML1 signal deletion, and such an aberration represents statistic significance in male patients. It seems that male patients usually accompany AML1 signal deletion. Of 36 cases, 28(77.8 %) harbored at least 2 subclones (ranged from 2 to 10). According to the genetic signature of

  6. Acute myeloid leukemia in the era of precision medicine: recent advances in diagnostic classification and risk stratification

    International Nuclear Information System (INIS)

    Kansal, Rina

    2016-01-01

    Acute myeloid leukemia (AML) is a genetically heterogeneous myeloid malignancy that occurs more commonly in adults, and has an increasing incidence, most likely due to increasing age. Precise diagnostic classification of AML requires clinical and pathologic information, the latter including morphologic, immunophenotypic, cytogenetic and molecular genetic analysis. Risk stratification in AML requires cytogenetics evaluation as the most important predictor, with genetic mutations providing additional necessary information. AML with normal cytogenetics comprises about 40%-50% of all AML, and has been intensively investigated. The currently used 2008 World Health Organization classification of hematopoietic neoplasms has been proposed to be updated in 2016, also to include an update on the classification of AML, due to the continuously increasing application of genomic techniques that have led to major advances in our knowledge of the pathogenesis of AML. The purpose of this review is to describe some of these recent major advances in the diagnostic classification and risk stratification of AML

  7. Acute myeloid leukemia in the era of precision medicine: recent advances in diagnostic classification and risk stratification.

    Science.gov (United States)

    Kansal, Rina

    2016-03-01

    Acute myeloid leukemia (AML) is a genetically heterogeneous myeloid malignancy that occurs more commonly in adults, and has an increasing incidence, most likely due to increasing age. Precise diagnostic classification of AML requires clinical and pathologic information, the latter including morphologic, immunophenotypic, cytogenetic and molecular genetic analysis. Risk stratification in AML requires cytogenetics evaluation as the most important predictor, with genetic mutations providing additional necessary information. AML with normal cytogenetics comprises about 40%-50% of all AML, and has been intensively investigated. The currently used 2008 World Health Organization classification of hematopoietic neoplasms has been proposed to be updated in 2016, also to include an update on the classification of AML, due to the continuously increasing application of genomic techniques that have led to major advances in our knowledge of the pathogenesis of AML. The purpose of this review is to describe some of these recent major advances in the diagnostic classification and risk stratification of AML.

  8. The contribution of benzene to smoking-induced leukemia.

    OpenAIRE

    Korte, J E; Hertz-Picciotto, I; Schulz, M R; Ball, L M; Duell, E J

    2000-01-01

    Cigarette smoking is associated with an increased risk of leukemia; benzene, an established leukemogen, is present in cigarette smoke. By combining epidemiologic data on the health effects of smoking with risk assessment techniques for low-dose extrapolation, we assessed the proportion of smoking-induced total leukemia and acute myeloid leukemia (AML) attributable to the benzene in cigarette smoke. We fit both linear and quadratic models to data from two benzene-exposed occupational cohorts t...

  9. Effects of CD44 Ligation on Signaling and Metabolic Pathways in Acute Myeloid Leukemia

    KAUST Repository

    Madhoun, Nour Y.

    2017-01-01

    Acute myeloid leukemia (AML) is characterized by a blockage in the differentiation of myeloid cells at different stages. CD44-ligation using anti-CD44 monoclonal antibodies (mAbs) has been shown to reverse the blockage of differentiation

  10. DNA copy number analysis from mice with radiation-induced acute myeloid leukemia

    Data.gov (United States)

    National Aeronautics and Space Administration — Certain mouse strains such as CBA C3H and RFM have high incidence of radiation-induced acute myeloid leukemia (AML). The data in this series wer generated by using...

  11. Treatment of Acute Myeloid Leukemia in Adolescent and Young Adult Patients

    Directory of Open Access Journals (Sweden)

    Guldane Cengiz Seval

    2015-03-01

    Full Text Available The objectives of this review were to discuss standard and investigational treatment strategies for adolescent and young adult with acute myeloid leukemia, excluding acute promyelocytic leukemia. Acute myeloid leukemia (AML in adolescent and young adult patients (AYAs may need a different type of therapy than those currently used in children and older patients. As soon as AML is diagnosed, AYA patient should be offered to participate in well-designed clinical trials. The standard treatment approach for AYAs with AML is remission induction chemotherapy with an anthracycline/cytarabine combination, followed by either consolidation chemotherapy or stem cell transplantation, depending on the ability of the patient to tolerate intensive treatment and cytogenetic features. Presently, continuing progress of novel drugs targeting specific pathways in acute leukemia may bring AML treatment into a new era.

  12. Treatment-related Myelodysplastic Syndrome in a Child With Acute Myeloid Leukemia and TPMT Heterozygosity

    DEFF Research Database (Denmark)

    Stensman, Lars M; Kjeldsen, Eigil; Nersting, Jacob

    2015-01-01

    INTRODUCTION: We describe a patient diagnosed with acute myeloid leukemia (AML) and low activity of thiopurine methyltransferase (TPMT) who developed secondary myelodysplastic syndrome after treatment. OBSERVATION: A 10-year-old boy presented with AML-M2 with t(8;21)(q22;q22) and genotyping...

  13. Pubertal development and fertility in survivors of childhood acute myeloid leukemia treated with chemotherapy only

    DEFF Research Database (Denmark)

    Molgaard-Hansen, Lene; Skou, Anne-Sofie; Juul, Anders

    2013-01-01

    More than 60% of children with acute myeloid leukemia (AML) become long-term survivors. Most are cured using chemotherapy without hematopoietic stem cell transplantation (HSCT). We report on pubertal development and compare self-reported parenthood among AML survivors and their siblings....

  14. Interleukin-6 and interleukin-1 production in acute leukemia with monocytoid differentiation

    NARCIS (Netherlands)

    van der Schoot, C. E.; Jansen, P.; Poorter, M.; Wester, M. R.; von dem Borne, A. E.; Aarden, L. A.; van Oers, R. H.

    1989-01-01

    Several authors have reported the in vitro production of colony-stimulating factors (CSF) and interleukin-1 (IL-1) by the neoplastic cells from patients with acute myeloid leukemia (AML). Using a sensitive bioassay for IL-6, the capacity of the leukemic cells of 30 patients with AML to produce IL-6

  15. Acute leukemia in early childhood

    Directory of Open Access Journals (Sweden)

    M. Emerenciano

    2007-06-01

    Full Text Available Acute leukemia in early childhood is biologically and clinically distinct. The particular characteristics of this malignancy diagnosed during the first months of life have provided remarkable insights into the etiology of the disease. The pro-B, CD10 negative immunophenotype is typically found in infant acute leukemia, and the most common genetic alterations are the rearrangements of the MLL gene. In addition, the TEL/AML1 fusion gene is most frequently found in children older than 24 months. A molecular study on a Brazilian cohort (age range 0-23 months has detected TEL/AML1+ve (N = 9, E2A/PBX1+ve (N = 4, PML/RARA+ve (N = 4, and AML1/ETO+ve (N = 2 cases. Undoubtedly, the great majority of genetic events occurring in these patients arise prenatally. The environmental exposure to damaging agents that give rise to genetic changes prenatally may be accurately determined in infants since the window of exposure is limited and known. Several studies have shown maternal exposures that may give rise to leukemogenic changes. The Brazilian Collaborative Study Group of Infant Acute Leukemia has found that mothers exposed to dipyrone, pesticides and hormones had an increased chance to give birth to babies with infant acute leukemia [OR = 1.48 (95%CI = 1.05-2.07, OR = 2.27 (95%CI = 1.56-3.31 and OR = 9.08 (95%CI = 2.95-27.96], respectively. This review aims to summarize recent clues that have facilitated the elucidation of the biology of early childhood leukemias, with emphasis on infant acute leukemia in the Brazilian population.

  16. Fanconi anemia and the development of leukemia.

    Science.gov (United States)

    Alter, Blanche P

    2014-01-01

    Fanconi anemia (FA) is a rare autosomal recessive cancer-prone inherited bone marrow failure syndrome, due to mutations in 16 genes, whose protein products collaborate in a DNA repair pathway. The major complications are aplastic anemia, acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), and specific solid tumors. A severe subset, due to mutations in FANCD1/BRCA2, has a cumulative incidence of cancer of 97% by age 7 years; the cancers are AML, brain tumors, and Wilms tumor; several patients have multiple events. Patients with the other genotypes (FANCA through FANCQ) have cumulative risks of more than 50% of marrow failure, 20% of AML, and 30% of solid tumors (usually head and neck or gynecologic squamous cell carcinoma), by age 40, and they too are at risk of multiple adverse events. Hematopoietic stem cell transplant may cure AML and MDS, and preemptive transplant may be appropriate, but its use is a complicated decision. Published by Elsevier Ltd.

  17. Chromosome aberrations and oncogene alterations in atomic bomb related leukemias - different mechanisms from de novo leukemias

    International Nuclear Information System (INIS)

    Tanaka, K.; Tanaka, H.; Kamada, N.

    2003-01-01

    It is well known that leukemia occurred more frequently among atomic bomb survivors. In 132 atomic bomb related ( AB- related) leukemia patients during 1978-1999, 33 acute myeloid leukemia (AML)/myelodysplastic syndrome (MDS) patients had their exposure doses of more than 1Gy (DS86). Chromosome aberrations of the 33 patients were compared with those from 588 de novo AML/MDS patients who had been bone before August 1945 as control. No FAB M3 patient was observed in the exposed group. Most AB-related AML preceded a long term of MDS stage. Twenty seven of the 33 patients showed complex types of chromosome aberrations with more than three chromosomes involving chromosomes 5,7 and 11. The number of chromosomes abnormality per cell in the AB-related leukemia was 3.78 while 0.92 in de novo leukemia. Only one of the 33 patients had normal karyotype, while 44.1% in de novo leukemia patients. Translocations of chromosome 11 at 11q13 to 11q23 and deletion/ loss of chromosome 20 were frequently observed in AB-related leukemia. No leukemia-type specific translocations such as t(8;21),t(15;17) and 11q23 were found in the 33 AB-related leukemia patients. Furthermore, molecular analyses using FISH and PCR-SSCP revealed the presence of breakpoint located outside of MLL gene in the patients with translocations at 11q22-23 and DNA base derangements of RUNT domain of AML1(CBF β 2)gene with AML/MDS patients without t(8;21) and with a high dose of exposure. These results suggest that AB-related leukemia derives from an exposed pluripotent hematopoietic stem cell which has been preserved for a long time in the bone marrow, expressing high genetic instability such as microsatellite instability. On the other hand, de novo leukemia develops from a committed hematopoietic stem cell and shows simple and leukemia-type specific chromosome aberrations. These findings are important for understanding mechanisms for radiation-induced leukemia

  18. Targeting Aberrant Glutathione Metabolism to Eradicate Human Acute Myelogenous Leukemia Cells*

    Science.gov (United States)

    Pei, Shanshan; Minhajuddin, Mohammad; Callahan, Kevin P.; Balys, Marlene; Ashton, John M.; Neering, Sarah J.; Lagadinou, Eleni D.; Corbett, Cheryl; Ye, Haobin; Liesveld, Jane L.; O'Dwyer, Kristen M.; Li, Zheng; Shi, Lei; Greninger, Patricia; Settleman, Jeffrey; Benes, Cyril; Hagen, Fred K.; Munger, Joshua; Crooks, Peter A.; Becker, Michael W.; Jordan, Craig T.

    2013-01-01

    The development of strategies to eradicate primary human acute myelogenous leukemia (AML) cells is a major challenge to the leukemia research field. In particular, primitive leukemia cells, often termed leukemia stem cells, are typically refractory to many forms of therapy. To investigate improved strategies for targeting of human AML cells we compared the molecular mechanisms regulating oxidative state in primitive (CD34+) leukemic versus normal specimens. Our data indicate that CD34+ AML cells have elevated expression of multiple glutathione pathway regulatory proteins, presumably as a mechanism to compensate for increased oxidative stress in leukemic cells. Consistent with this observation, CD34+ AML cells have lower levels of reduced glutathione and increased levels of oxidized glutathione compared with normal CD34+ cells. These findings led us to hypothesize that AML cells will be hypersensitive to inhibition of glutathione metabolism. To test this premise, we identified compounds such as parthenolide (PTL) or piperlongumine that induce almost complete glutathione depletion and severe cell death in CD34+ AML cells. Importantly, these compounds only induce limited and transient glutathione depletion as well as significantly less toxicity in normal CD34+ cells. We further determined that PTL perturbs glutathione homeostasis by a multifactorial mechanism, which includes inhibiting key glutathione metabolic enzymes (GCLC and GPX1), as well as direct depletion of glutathione. These findings demonstrate that primitive leukemia cells are uniquely sensitive to agents that target aberrant glutathione metabolism, an intrinsic property of primary human AML cells. PMID:24089526

  19. Prognostic Value of RUNX1 Mutations in AML: A Meta-Analysis

    Science.gov (United States)

    Jalili, Mahdi; Yaghmaie, Marjan; Ahmadvand, Mohammad; Alimoghaddam, Kamran; Mousavi, Seyed Asadollah; Vaezi, Mohammad; Ghavamzadeh, Ardeshir

    2018-02-26

    The RUNX1 (AML1) gene is a relatively infrequent mutational target in cases of acute myeloid leukemia (AML). Previous work indicated that RUNX1 mutations can have pathological and prognostic implications. To evaluate prognostic value, we conducted a meta-analysis of 4 previous published works with data for survival according to RUNX1 mutation status. Pooled hazard ratios for overall survival and disease-free survival were 1.55 (95% confidence interval (CI) = 1.11–2.15; p-value = 0.01) and 1.76 (95% CI = 1.24–2.52; p-value = 0.002), respectively, for cases positive for RUNX1 mutations. This evidence supports clinical implications of RUNX1 mutations in the development and progression of AML cases and points to the possibility of a distinct category within the newer WHO classification. Though it must be kept in mind that the present work was based on data extracted from observational studies, the findings suggest that the RUNX1 status can contribute to risk-stratification and decision-making in management of AML. Creative Commons Attribution License

  20. Normal karyotype mosaicism in adult AML patients with adverse-risk and undefined karyotype: preliminary report of treatment outcomes after hematopoietic stem cell transplantation.

    Science.gov (United States)

    Yoon, Jae-Ho; Kim, Hee-Je; Shin, Seung-Hwan; Yahng, Seung-Ah; Cho, Byung-Sik; Eom, Ki-Seong; Kim, Yoo-Jin; Lee, Seok; Min, Chang-Ki; Cho, Seok-Goo; Kim, Dong-Wook; Lee, Jong-Wook; Min, Woo-Sung; Park, Chong-Won

    2013-06-01

    Karyotype analysis in acute myeloid leukemia (AML) is one of the powerful prognostic factors for complete remission (CR), relapse, and overall survival (OS). Cytogenetic mosaicism is considered to be one of the important characteristics in expression of phenotypic manifestations. However, it has not come into focus due to emerging molecular biological approaches and the results of a number of mutation studies. Clinical correlates and prognostic relevance of mosaicism were evaluated in 163 AML patients [adverse-risk karyotypes (n = 72) and undefined karyotypes (n = 91)]. All patients were treated by induction and consolidation chemotherapies and finally went on hematopoietic stem cell transplantations (HSCT). Patients were divided into two subgroups, either with or without normal karyotype (NK) mosaicism. Seventy patients exhibited NK mosaicism and 93 did not. There were no significant differences in age, gender, chemotherapy cycles to achieve CR, HSCT donor type, source or intensity properties between the two subgroups. We found that NK mosaicism remaining in adverse-risk and undefined karyotype at diagnosis significantly correlates with better OS (p = 0.001) and lower CIR (p = 0.021) rate after HSCT. Our data show that the poor prognostic properties of unfavorable risk karyotype can be overcome to a great extent by allogeneic HSCT and chronic GVHD, especially in the subgroup with NK mosaicism. Cytogenetic mosaicism at initial diagnosis can be an influential factor for survival outcomes, even after HSCT.

  1. Clinical impact of leukemic blast heterogeneity at diagnosis in cytogenetic intermediate-risk acute myeloid leukemia

    DEFF Research Database (Denmark)

    Hoffmann, Marianne Hutchings; Klausen, Tobias Wirenfeldt; Boegsted, Martin

    2012-01-01

    Individual cellular heterogeneity within the acute myeloid leukemia (AML) bone marrow samples can be observed by multi parametric flow cytometry analysis (MFC) indicating that immunophenotypic screening for leukemic blast subsets may have prognostic impact.......Individual cellular heterogeneity within the acute myeloid leukemia (AML) bone marrow samples can be observed by multi parametric flow cytometry analysis (MFC) indicating that immunophenotypic screening for leukemic blast subsets may have prognostic impact....

  2. A distinct epigenetic signature at targets of a leukemia protein

    Directory of Open Access Journals (Sweden)

    van der Spek Peter

    2007-02-01

    Full Text Available Abstract Background Human myelogenous leukemia characterized by either the non random t(8; 21(q22; q22 or t(16; 21(q24; q22 chromosome translocations differ for both their biological and clinical features. Some of these features could be consequent to differential epigenetic transcriptional deregulation at AML1 targets imposed by AML1-MTG8 and AML1-MTG16, the fusion proteins deriving from the two translocations. Preliminary findings showing that these fusion proteins lead to transcriptional downregulation of AML1 targets, marked by repressive chromatin changes, would support this hypothesis. Here we show that combining conventional global gene expression arrays with the power of bioinformatic genomic survey of AML1-consensus sequences is an effective strategy to identify AML1 targets whose transcription is epigenetically downregulated by the leukemia-associated AML1-MTG16 protein. Results We interrogated mouse gene expression microarrays with probes generated either from 32D cells infected with a retroviral vector carrying AML1-MTG16 and unable of granulocyte differentiation and proliferation in response to the granulocyte colony stimulating factor (G-CSF, or from 32D cells infected with the cognate empty vector. From the analysis of differential gene expression alone (using as criteria a p value 3, we were unable to conclude which of the 37 genes downregulated by AML1-MTG16 were, or not, direct AML1 targets. However, when we applied a bioinformatic approach to search for AML1-consensus sequences in the 10 Kb around the gene transcription start sites, we closed on 17 potential direct AML1 targets. By focusing on the most significantly downregulated genes, we found that both the AML1-consensus and the transcription start site chromatin regions were significantly marked by aberrant repressive histone tail changes. Further, the promoter of one of these genes, containing a CpG island, was aberrantly methylated. Conclusion This study shows that a

  3. Leukemia Mediated Endothelial Cell Activation Modulates Leukemia Cell Susceptibility to Chemotherapy through a Positive Feedback Loop Mechanism.

    Directory of Open Access Journals (Sweden)

    Bahareh Pezeshkian

    Full Text Available In acute myeloid leukemia (AML, the chances of achieving disease-free survival are low. Studies have demonstrated a supportive role of endothelial cells (ECs in normal hematopoiesis. Here we show that similar intercellular relationships exist in leukemia. We demonstrate that leukemia cells themselves initiate these interactions by directly modulating the behavior of resting ECs through the induction of EC activation. In this inflammatory state, activated ECs induce the adhesion of a sub-set of leukemia cells through the cell adhesion molecule E-selectin. These adherent leukemia cells are sequestered in a quiescent state and are unaffected by chemotherapy. The ability of adherent cells to later detach and again become proliferative following exposure to chemotherapy suggests a role of this process in relapse. Interestingly, differing leukemia subtypes modulate this process to varying degrees, which may explain the varied response of AML patients to chemotherapy and relapse rates. Finally, because leukemia cells themselves induce EC activation, we postulate a positive-feedback loop in leukemia that exists to support the growth and relapse of the disease. Together, the data defines a new mechanism describing how ECs and leukemia cells interact during leukemogenesis, which could be used to develop novel treatments for those with AML.

  4. Gemtuzumab ozogamicin for the treatment of acute myeloid leukemia.

    Science.gov (United States)

    Baron, Jeffrey; Wang, Eunice S

    2018-06-11

    Gemtuzumab ozogamicin (GO) is an antibody-drug conjugate consisting of a monoclonal antibody targeting CD33 linked to a cytotoxic derivative of calicheamicin. Despite the known clinical efficacy in relapsed/refractory acute myeloid leukemia (AML), GO was withdrawn from the market in 2010 due to increased early deaths witnessed in newly diagnosed AML patients receiving GO + intensive chemotherapy. In 2017, new data on the clinical efficacy and safety of GO administered on a fractionated-dosing schedule led to re-approval for newly diagnosed and relapsed/refractory AML. Areas covered: Addition of fractionated GO to chemotherapy significantly improved event-free survival of newly diagnosed AML patients with favorable and intermediate cytogenetic-risk disease. GO monotherapy also prolonged survival in newly diagnosed unfit patients and relapse-free survival in relapsed/refractory AML. This new dosing schedule was associated with decreased incidence of hepatotoxicity, veno-occlusive disease, and early mortality. Expert commentary: GO represents the first drug-antibody conjugate approved (twice) in the United States for AML. Its re-emergence adds a valuable agent back into the armamentarium for AML. The approval of GO as well as three other agents for AML in 2017 highlights the need for rapid cytogenetic and molecular characterization of AML and incorporation into new treatment algorithms.

  5. Long-term remission in BCR/ABL-positive AML-M6 patient treated with Imatinib Mesylate.

    Science.gov (United States)

    Pompetti, Franca; Spadano, Antonio; Sau, Antonella; Mennucci, Antonio; Russo, Rosa; Catinella, Virginia; Franchi, Paolo Guanciali; Calabrese, Giuseppe; Palka, Giandomenico; Fioritoni, Giuseppe; Iacone, Antonio

    2007-04-01

    BCR/ABL-positive acute myeloid leukemia (AML) is a rare disease, characterized by a poor prognosis, with resistance to induction chemotherapy and frequent relapses in responsive patients. Here we report a case of BCR/ABL-positive AML-M6 who, after relapse, was treated with Imatinib Mesylate (600 mg/die) and within 4 months achieved a cytogenetic and molecular complete response. After more than 4 years of continuous Imatinib therapy, nested RT-PCR for BCR/ABL is persistently negative. The case reported shows that the response obtained with Imatinib Mesylate in BCR/ABL-positive AML may be long lasting, offering a chance of successful treatment for this poor prognosis group of patients.

  6. Heterogeneity of clonogenic cells in acute myeloblastic leukemia.

    OpenAIRE

    Sabbath, K D; Ball, E D; Larcom, P; Davis, R B; Griffin, J D

    1985-01-01

    The expression of differentiation-associated surface antigens by the clonogenic leukemic cells from 20 patients with acute myeloblastic leukemia (AML) was studied with a panel of seven cytotoxic monoclonal antibodies (anti-Ia, -MY9, -PM-81, -AML-2-23, -Mol, -Mo2, and -MY3). The surface antigen phenotypes of the clonogenic cells were compared with the phenotypes of the whole leukemic cell population, and with the phenotypes of normal hematopoietic progenitor cells. In each case the clonogenic ...

  7. Activity of the hypoxia-activated prodrug, TH-302, in preclinical human acute myeloid leukemia models.

    Science.gov (United States)

    Portwood, Scott; Lal, Deepika; Hsu, Yung-Chun; Vargas, Rodrigo; Johnson, Megan K; Wetzler, Meir; Hart, Charles P; Wang, Eunice S

    2013-12-01

    Acute myeloid leukemia (AML) is an aggressive hematologic neoplasm. Recent evidence has shown the bone marrow microenvironment in patients with AML to be intrinsically hypoxic. Adaptive cellular responses by leukemia cells to survive under low oxygenation also confer chemoresistance. We therefore asked whether therapeutic exploitation of marrow hypoxia via the hypoxia-activated nitrogen mustard prodrug, TH-302, could effectively inhibit AML growth. We assessed the effects of hypoxia and TH-302 on human AML cells, primary samples, and systemic xenograft models. We observed that human AML cells and primary AML colonies cultured under chronic hypoxia (1% O2, 72 hours) exhibited reduced sensitivity to cytarabine-induced apoptosis as compared with normoxic controls. TH-302 treatment resulted in dose- and hypoxia-dependent apoptosis and cell death in diverse AML cells. TH-302 preferentially decreased proliferation, reduced HIF-1α expression, induced cell-cycle arrest, and enhanced double-stranded DNA breaks in hypoxic AML cells. Hypoxia-induced reactive oxygen species by AML cells were also diminished. In systemic human AML xenografts (HEL, HL60), TH-302 [50 mg/kg intraperitoneally (i.p.) 5 times per week] inhibited disease progression and prolonged overall survival. TH-302 treatment reduced the number of hypoxic cells within leukemic bone marrows and was not associated with hematologic toxicities in nonleukemic or leukemic mice. Later initiation of TH-302 treatment in advanced AML disease was as effective as earlier TH-302 treatment in xenograft models. Our results establish the preclinical activity of TH-302 in AML and provide the rationale for further clinical studies of this and other hypoxia-activated agents for leukemia therapy. ©2013 AACR.

  8. Cellular intrinsic mechanism affecting the outcome of AML treated with Ara-C in a syngeneic mouse model.

    Directory of Open Access Journals (Sweden)

    Wenjun Zhao

    Full Text Available The mechanisms underlying acute myeloid leukemia (AML treatment failure are not clear. Here, we established a mouse model of AML by syngeneic transplantation of BXH-2 derived myeloid leukemic cells and developed an efficacious Ara-C-based regimen for treatment of these mice. We proved that leukemic cell load was correlated with survival. We also demonstrated that the susceptibility of leukemia cells to Ara-C could significantly affect the survival. To examine the molecular alterations in cells with different sensitivity, genome-wide expression of the leukemic cells was profiled, revealing that overall 366 and 212 genes became upregulated or downregulated, respectively, in the resistant cells. Many of these genes are involved in the regulation of cell cycle, cellular proliferation, and apoptosis. Some of them were further validated by quantitative PCR. Interestingly, the Ara-C resistant cells retained the sensitivity to ABT-737, an inhibitor of anti-apoptosis proteins, and treatment with ABT-737 prolonged the life span of mice engrafted with resistant cells. These results suggest that leukemic load and intrinsic cellular resistance can affect the outcome of AML treated with Ara-C. Incorporation of apoptosis inhibitors, such as ABT-737, into traditional cytotoxic regimens merits consideration for the treatment of AML in a subset of patients with resistance to Ara-C. This work provided direct in vivo evidence that leukemic load and intrinsic cellular resistance can affect the outcome of AML treated with Ara-C, suggesting that incorporation of apoptosis inhibitors into traditional cytotoxic regimens merits consideration for the treatment of AML in a subset of patients with resistance to Ara-C.

  9. Unveiling the role of PAK2 in CD44 mediated inhibition of proliferation, differentiation and apoptosis in AML cells

    KAUST Repository

    Aldehaiman, Mansour M.

    2018-04-01

    Acute myeloid leukemia (AML) is a heterogeneous disease characterized by the accumulation of immature nonfunctional highly proliferative hematopoietic cells in the blood, due to a blockage in myeloid differentiation at various stages. Since the success of the differentiation agent, All-trans retinoic acid (ATRA), in the treatment of acute promyelocytic leukemia (APL), much effort has gone into trying to find agents that are able to differentiate AML cells and specifically the leukemic stem cell (LSC). CD44 is a cell surface receptor that is over-expressed on AML cells. When bound to anti-CD44 monoclonal antibodies (mAbs), this differentiation block is relieved in AML cells and their proliferation is reduced. The molecular mechanisms that AML cells undergo to achieve this reversal of their apparent phenotype is not fully understood. To this end, we designed a study using quantitative phosphoproteomics approaches aimed at identifying differences in phosphorylation found on proteins involved in signaling pathways post-treatment with CD44-mAbs. The Rho family of GTPases emerged as one of the most transformed pathways following the treatment with CD44-mAbs. The P21 activated kinase 2(PAK2), a target of the Rho family of GTPases, was found to be differentially phosphorylated in AML cells post-treatment with CD44-mAbs. This protein has been found to possess a role similar to that of a switch that determines whether the cell survives or undergoes apoptosis. Beyond confirming these results by various biochemical approaches, our study aimed to determine the effect of knock down of PAK2 on AML cell proliferation and differentiation. In addition, over-expression of PAK2 mutants using plasmid cloning was also explored to fully understand how levels of PAK2 as well as the alteration of specific phospohorylation sites could alter AML cell responses to CD44-mAbs. Results from this study will be important in determining whether PAK2 could be used as a potential therapeutic target

  10. Paclitaxel Induced MDS and AML: A Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Udit Bhaskar Bhatnagar

    2016-01-01

    Full Text Available Therapy related acute myelogenous leukemia (AML and myelodysplastic syndromes (MDS have been classically linked to alkylating agents and topoisomerase inhibitors. They constitute about 1% of all AMLs. There is less evidence on association of taxanes (paclitaxel and docetaxel with these myeloid neoplasms. We present a case of paclitaxel therapy related acute myelogenous leukemia after treatment of endometrial cancer with a regimen containing paclitaxel and carboplatin. A 63-year-old female underwent surgery followed by a total of 6 cycles of chemotherapy with carboplatin and paclitaxel. Six months after last cycle of chemotherapy, she was diagnosed with myelodysplastic syndrome with refractory anemia and excess blasts. Six weeks later, she had worsening anemia and thrombocytopenia which prompted a bone marrow biopsy which revealed acute myelomonocytic leukemia. A thorough literature review revealed 12 other case reports where taxanes have been implicated in the development of therapy related myeloid neoplasm. Based on the timeline of events in our patient, paclitaxel is the likely culprit in the pathogenesis of this myeloid neoplasm. This rare but significantly grave adverse effect should be kept in consideration when deciding on treatment options for gynecological malignancies.

  11. Calreticulin exposure by malignant blasts correlates with robust anticancer immunity and improved clinical outcome in AML patients

    Science.gov (United States)

    Fucikova, Jitka; Truxova, Iva; Hensler, Michal; Becht, Etienne; Kasikova, Lenka; Moserova, Irena; Vosahlikova, Sarka; Klouckova, Jana; Church, Sarah E.; Cremer, Isabelle; Kepp, Oliver; Kroemer, Guido; Galluzzi, Lorenzo; Salek, Cyril

    2016-01-01

    Cancer cell death can be perceived as immunogenic by the host only when malignant cells emit immunostimulatory signals (so-called “damage-associated molecular patterns,” DAMPs), as they die in the context of failing adaptive responses to stress. Accumulating preclinical and clinical evidence indicates that the capacity of immunogenic cell death to (re-)activate an anticancer immune response is key to the success of various chemo- and radiotherapeutic regimens. Malignant blasts from patients with acute myeloid leukemia (AML) exposed multiple DAMPs, including calreticulin (CRT), heat-shock protein 70 (HSP70), and HSP90 on their plasma membrane irrespective of treatment. In these patients, high levels of surface-exposed CRT correlated with an increased proportion of natural killer cells and effector memory CD4+ and CD8+ T cells in the periphery. Moreover, CRT exposure on the plasma membrane of malignant blasts positively correlated with the frequency of circulating T cells specific for leukemia-associated antigens, indicating that ecto-CRT favors the initiation of anticancer immunity in patients with AML. Finally, although the levels of ecto-HSP70, ecto-HSP90, and ecto-CRT were all associated with improved relapse-free survival, only CRT exposure significantly correlated with superior overall survival. Thus, CRT exposure represents a novel powerful prognostic biomarker for patients with AML, reflecting the activation of a clinically relevant AML-specific immune response. PMID:27802968

  12. NPM1 mutations in therapy-related acute myeloid leukemia with uncharacteristic features

    DEFF Research Database (Denmark)

    Andersen, Morten Tolstrup; Andersen, Mette Klarskov; Christiansen, D.H.

    2008-01-01

    Frameshift mutations of the nucleophosmin gene (NPM1) were recently reported as a frequently occurring abnormality in patients with de novo acute myeloid leukemia (AML). To evaluate the frequency of NPM1 mutations in patients with therapy-related myelodysplasia (t-MDS) and therapy-related AML (t......-/-7, the most frequent abnormalities of t-MDS/t-AML, were not observed (P=0.002). This raises the question whether some of the cases presenting NPM1 mutations were in fact cases of de novo leukemia. The close association to class I mutations and the inverse association to class II mutations suggest...

  13. Targeted immunotherapy in acute myeloblastic leukemia: from animals to humans.

    Science.gov (United States)

    Robin, Marie; Schlageter, Marie-Hélène; Chomienne, Christine; Padua, Rose-Ann

    2005-10-01

    Immunity against acute myeloid leukemia (AML) is demonstrated in humans by the graft-versus-leukemia effect in allogeneic hematopoietic stem cell transplantation. Specific leukemic antigens have progressively been discovered and circulating specific T lymphocytes against Wilms tumor antigen, proteinase peptide or fusion-proteins produced from aberrant oncogenic chromosomal translocations have been detected in leukemic patients. However, due to the fact that leukemic blasts develop various escape mechanisms, antileukemic specific immunity is not able to control leukemic cell proliferation. The aim of immunotherapy is to overcome tolerance and boost immunity to elicit an efficient immune response against leukemia. We review different immunotherapy strategies tested in preclinical animal models of AML and the human trials that spurred from encouraging results obtained in animal models, demonstrate the feasibility of immunotherapy in AML patients.

  14. Targeting FLT3 Signaling in Childhood Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Amy N. Sexauer

    2017-11-01

    Full Text Available Acute myeloid leukemia (AML is the second most common leukemia of childhood and is associated with high rates of chemotherapy resistance and relapse. Clinical outcomes for children with AML treated with maximally intensive multi-agent chemotherapy lag far behind those of children with the more common acute lymphoblastic leukemia, demonstrating continued need for new therapeutic approaches to decrease relapse risk and improve long-term survival. Mutations in the FMS-like tyrosine kinase-3 receptor gene (FLT3 occur in approximately 25% of children and adults with AML and are associated with particularly poor prognoses. Identification and development of targeted FLT3 inhibitors represents a major precision medicine paradigm shift in the treatment of patients with AML. While further development of many first-generation FLT3 inhibitors was hampered by limited potency and significant toxicity due to effects upon other kinases, the more selective second- and third-generation FLT3 inhibitors have demonstrated excellent tolerability and remarkable efficacy in the relapsed/refractory and now de novo FLT3-mutated AML settings. While these newest and most promising inhibitors have largely been studied in the adult population, pediatric investigation of FLT3 inhibitors with chemotherapy is relatively recently ongoing or planned. Successful development of FLT3 inhibitor-based therapies will be essential to improve outcomes in children with this high-risk subtype of AML.

  15. Cyclophosphamide/fludarabine nonmyeloablative allotransplant for acute myeloid leukemia.

    Science.gov (United States)

    Khawaja, Muhammad Rizwan; Perkins, Susan M; Schwartz, Jennifer E; Robertson, Michael J; Kiel, Patrick J; Sayar, Hamid; Cox, Elizabeth A; Vance, Gail H; Farag, Sherif S; Cripe, Larry D; Nelson, Robert P

    2015-02-01

    We compared survival outcomes following myeloablative allotransplant (MAT) or cyclophosphamide/fludarabine (Cy/Flu) nonmyeloablative allotransplant (NMAT) for 165 patients with acute myelogenous leukemia (AML) in remission or without frank relapse. Patients who received NMAT were more likely to be older and have secondary AML and lower performance status. At a median follow-up of 61 months, median event-free survival and overall survival survival were not different between NMAT and MAT in univariate as well as multivariate analyses. Cy/Flu NMAT may provide similar disease control and survival when compared with MAT in patients with AML in remission or without frank relapse. © 2014 Wiley Periodicals, Inc.

  16. WT1 isoform expression pattern in acute myeloid leukemia.

    Science.gov (United States)

    Luna, Irene; Such, Esperanza; Cervera, Jose; Barragán, Eva; Ibañez, Mariam; Gómez-Seguí, Inés; López-Pavía, María; Llop, Marta; Fuster, Oscar; Dolz, Sandra; Oltra, Silvestre; Alonso, Carmen; Vera, Belén; Lorenzo, Ignacio; Martínez-Cuadrón, David; Montesinos, Pau; Senent, M Leonor; Moscardó, Federico; Bolufer, Pascual; Sanz, Miguel A

    2013-12-01

    WT1 plays a dual role in leukemia development, probably due to an imbalance in the expression of the 4 main WT1 isoforms. We quantify their expression and evaluate them in a series of AML patients. Our data showed a predominant expression of isoform D in AML, although in a lower quantity than in normal CD34+ cells. We found a positive correlation between the total WT1 expression and A, B and C isoforms. The overexpression of WT1 in AML might be due to a relative increase in A, B and C isoforms, together with a relative decrease in isoform D expression. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Somatic mutations in the transcriptional corepressor gene BCORL1 in adult acute myelogenous leukemia

    OpenAIRE

    Li, Meng; Collins, Roxane; Jiao, Yuchen; Ouillette, Peter; Bixby, Dale; Erba, Harry; Vogelstein, Bert; Kinzler, Kenneth W.; Papadopoulos, Nickolas; Malek, Sami N.

    2011-01-01

    To further our understanding of the genetic basis of acute myelogenous leukemia (AML), we determined the coding exon sequences of ∼ 18 000 protein-encoding genes in 8 patients with secondary AML. Here we report the discovery of novel somatic mutations in the transcriptional corepressor gene BCORL1 that is located on the X-chromosome. Analysis of BCORL1 in an unselected cohort of 173 AML patients identified a total of 10 mutated cases (6%) with BCORL1 mutations, whereas analysis of 19 AML cell...

  18. Novel mutations of the nucleophosmin (NPM-1) gene in Egyptian patients with acute myeloid leukemia: A pilot study

    International Nuclear Information System (INIS)

    Neemat Kassem, N.; Abel Hamid, A.; Tarek Attia, T.; Mahmoud, S.; Moemen, E.; Baathallah, Sh.; Safwat, E.; Khalaf, M.; Shaker, O.

    2011-01-01

    Mutations of the nucleophosmin (NPM-1) gene have been reported in 50-60% of acute myeloid leukemia (AML) patients with normal karyotype. This work was designed to study the prevalence and nature of NPM1 gene mutations in a group of Egyptian patients with AML to get an idea about the profile of NPM1 gene mutations in our society. In 45 previously untreated patients with de novo AML, peripheral blood and/or bone marrow samples from all patients were subjected to microscopic morphologic examination, cytochemical analysis, immuno phenotyping and karyotyping. Patients with normal cytogenetic results were selected for molecular analysis of NPM1 exon 12 by PCR amplification followed by DNA sequencing of the amplified product. Twenty-one patients (46.7%) had abnormal karyotype: six cases with ;(15;17), five cases with (8;21), five cases had trisomy 8, two cases carrying inv(3) and three cases had monosomy 7. The remaining 24 patients (53.3%) had normal karyotype. These patients were then subjected to molecular analysis. Out of these 24 patients with normal karyotype, mutant NPM-1 was detected in 11 patients (45.8%) by DNA sequencing; 2 cases showed type A mutation, 2 cases were harboring [ins 1015-4019 (CACG)], with point mutation [1006C→G], while the remaining 7 cases showed heterozygous deletion of nt A [del 1178 (A)]. Conclusion: Two novel NPM1 gene mutations were detected among our study population of AML patients identified as: the insertion CACG associated with point mutation, deletion of one base, or associated with point mutation. NPM1 gene mutations may become a new tool for monitoring minimal residual disease in AML with normal karyotype. Whether these previously unreported NPM-1 mutations will confer the same better outcome as previously reported mutations is currently unknown and warrants a larger study.

  19. AML (Advanced Mud Logging: First Among Equals

    Directory of Open Access Journals (Sweden)

    T. Loermans

    2017-09-01

    Full Text Available During the past ten years an enormous development in mud logging technology has been made. Traditional mud logging was only qualitative in nature, and mudlogs could not be used for the petrophysical well evaluations which form the basis for all subsequent activities on wells and fields. AML however can provide quantitative information, logs with a reliability, trueness and precision like LWD and WLL. Hence for well evaluation programmes there are now three different logging methods available, each with its own pros and cons on specific aspects: AML, LWD and WLL. The largest improvements have been made in mud gas analysis and elemental analysis of cuttings. Mud gas analysis can yield hydrocarbon fluid composition for some components with a quality like PVT analysis, hence not only revolutionising the sampling programme so far done with only LWD/WLL, but also making it possible to geosteer on fluid properties. Elemental analysis of cuttings, e.g. with XRF, with an ability well beyond the capabilities of the spectroscopy measurements possible earlier with LWD/WLL tools, is opening up improved ways to evaluate formations, especially of course where the traditional methods are falling short of requirements, such as in unconventional reservoirs. An overview and specific examples of these AML logs is given, from which it may be concluded that AML now ought to be considered as “first among its equals”.

  20. Immunophenotypic investigation of infant acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    A. M. Popov

    2013-01-01

    Full Text Available Aim of the study – characterization of immunophenotype in infant acute myeloid leukemia (AML. 90 patients (40 boys and 50 girls with acute leukemia (AL aged up to 365 days were included in the current study. AML was found more frequently in infants than in older children (26.67 % and 10.83 % respectively; p = 0.0002. Significant immunophenotypic differences were observed in patients with and without MLL gene rearrangements. Number of cases in those tumor cells expressed CD99, CD61, CD133, CD15, NG2 varied between MLL-positive and MLL-negative groups. CD61-negativity, high CD99, CD15, CD133 and NG2 expression were immunophenotypic signatures of MLLrearranged infant AML, although CD99 and NG2 had the highest diagnostic efficacy. Thus infants’ AML immunophenotype differs significantly due to the presence of MLL gene rearrangements. Diagnostic immunophenotyping of infants’ AML allows predicting presence of MLL rearrangements by either CD99 or NG2 expression.

  1. Immunophenotypic investigation of infant acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    A. M. Popov

    2014-07-01

    Full Text Available Aim of the study – characterization of immunophenotype in infant acute myeloid leukemia (AML. 90 patients (40 boys and 50 girls with acute leukemia (AL aged up to 365 days were included in the current study. AML was found more frequently in infants than in older children (26.67 % and 10.83 % respectively; p = 0.0002. Significant immunophenotypic differences were observed in patients with and without MLL gene rearrangements. Number of cases in those tumor cells expressed CD99, CD61, CD133, CD15, NG2 varied between MLL-positive and MLL-negative groups. CD61-negativity, high CD99, CD15, CD133 and NG2 expression were immunophenotypic signatures of MLLrearranged infant AML, although CD99 and NG2 had the highest diagnostic efficacy. Thus infants’ AML immunophenotype differs significantly due to the presence of MLL gene rearrangements. Diagnostic immunophenotyping of infants’ AML allows predicting presence of MLL rearrangements by either CD99 or NG2 expression.

  2. A case of AML with preceding hypoplastic stage after oophoro-hysterectomy and 60Co-irradiation

    International Nuclear Information System (INIS)

    Yoshida, Takashi; Nakamura, Shinobu; Hattori, Kenichi; Tanimoto, Kazuo.

    1975-01-01

    A case of AML (preceded by a hypoplastic stage) which developed after oophoro-hysterectomy and 60 Co-irradiation is presented, and related literature concerning irradiation-induced leukemia and the early diagnosis of leukemia and/or preleukemia are discussed. The patient, a 47 year old female had had surgery and irradiation with a subsequent normachromic anemia necessitating transfusions 11 years prior to her presenting herself at our hospital because of anemia. Her pancytopenic peripheral blood picture combined with a relatively hypererythroid marron led to a diagnosis of atypical hypoplastic anemia. Two years after this she suddenly developed a high fever, general fatigue and a severe anemia. Hematological studies revealed acute myeloblastic leukemia. A combination therapy consisting of DM, 6MP, prednisolon and blood transfusions was given with no effect and 3 months after the onset, the patient died of asphyxia resulting from gross hemoptysis. Autopsy revealed pulmonary hemorrhage secondary to the leukemia. (J. Evans)

  3. Design and kinetic analysis of hammerhead ribozyme and DNAzyme that specifically cleave TEL-AML1 chimeric mRNA

    International Nuclear Information System (INIS)

    Choi, Woo-Hyung; Choi, Bo-Ra; Kim, Jae Hyun; Yeo, Woon-Seok; Oh, Sangtaek; Kim, Dong-Eun

    2008-01-01

    In order to develop the oligonucleotides to abolish an expression of TEL-AML1 chimeric RNA, which is a genetic aberration that causes the acute lymphoblastic leukemia (ALL), hammerhead ribozymes and deoxyoligoribozymes that can specifically cleave TEL-AML1 fusion RNA were designed. Constructs of the deoxyribozyme with an asymmetric substrate binding arm (Dz26) and the hammerhead ribozyme with a 4 nt-bulged substrate binding arm in the stem III (buRz28) were able to cleave TEL-AML1 chimeric RNA specifically at sites close to the junction in vitro, without cleaving the normal TEL and AML1 RNA. Single-turnover kinetic analysis under enzyme-excess condition revealed that the buRz28 is superior to the Dz26 in terms of substrate binding and RNA-cleavage. In conjunction with current progress in a gene-delivery technology, the designed oligonucleotides that specifically cleave the TEL-AML1 chimeric mRNA are hoped to be applicable for the treatment of ALL in vivo

  4. Effects of TLR agonists on maturation and function of 3-day dendritic cells from AML patients in complete remission

    Directory of Open Access Journals (Sweden)

    Merk Martina

    2011-09-01

    Full Text Available Abstract Background Active dendritic cell (DC immunization protocols are rapidly gaining interest as therapeutic options in patients with acute myeloid leukemia (AML. Here we present for the first time a GMP-compliant 3-day protocol for generation of monocyte-derived DCs using different synthetic Toll-like receptor (TLR agonists in intensively pretreated patients with AML. Methods Four different maturation cocktails were compared for their impact on cell recovery, phenotype, cytokine secretion, migration, and lymphocyte activation in 20 AML patients and 25 healthy controls. Results Maturation cocktails containing the TLR7/8 agonists R848 or CL075, with and without the addition of the TLR3 agonist poly(I:C, induced DCs that had a positive costimulatory profile, secreted high levels of IL-12(p70, showed chemotaxis to CCR7 ligands, had the ability to activate NK cells, and efficiently stimulated antigen-specific CD8+ T cells. Conclusions Our results demonstrate that this approach translates into biologically improved DCs, not only in healthy controls but also in AML patients. This data supports the clinical application of TLR-matured DCs in patients with AML for activation of innate and adaptive immune responses.

  5. Differences between the CD34+ and CD34- blast compartments in apoptosis resistance in acute myeloid leukemia.

    NARCIS (Netherlands)

    Stijn, van A.; Pol, van der M.A.; Kok, A.; Bontje, PM; Roemen, GM; Beelen, R.H.J.; Ossenkoppele, G.J.; Schuurhuis, G.J.

    2003-01-01

    BACKGROUND AND OBJECTIVES: Altered expression of members of the Bcl-2 family might account for the observed apoptosis resistance to chemotherapy in acute myeloid leukemia (AML). Given the poor prognosis associated with CD34+ expression in AML, we studied the role of spontaneous apoptosis and

  6. Deletion of the multidrug resistance protein MRP1 gene in acute myeloid leukemia : the impact on MRP activity

    NARCIS (Netherlands)

    Vellenga, E; van der Veen, AY; Noordhoek, L; Timmer-Bosscha, H; Ossenkoppele, GJ; Raymakers, RA; Muller, M; van den Berg, E; de Vries, EGE

    2000-01-01

    Deletion of the multidrug resistance gene MRP1 has been demonstrated in acute myeloid leukemia (AML) patients with inversion of chromosome 16 (inv[16]), These AML patients are known to have a relatively favorable prognosis, which suggests that MRP1 might play an important role In determining

  7. Leucemia mielóide aguda Ph1-positivo de novo ou crise blástica de leucemia mielóide crônica? Análise molecular e evolução clínica de um caso Molecular analysis and clinical evolution of one case of Ph1-positive acute myeloid leukemia (AML

    Directory of Open Access Journals (Sweden)

    G.W.B. Colleoni

    1998-09-01

    Full Text Available Os autores relatam um caso de leucemia mielóide aguda (LMA que apresentava, ao diagnóstico, basofilia no sangue periférico e cariótipo com presença do cromossomo Filadélfia (Ph1. Após um ano de tratamento com quimioterapia intensiva e em fase de remissão clínica e hematológica, a análise molecular pela técnica da reação em cadeia da polimerase-transcriptase reversa (RT-PCR revelou presença de doença residual (rearranjo b2-a2. A seguir, o paciente apresentou primeira recidiva como LMA e, após a remissão, evoluiu com quadro hematológico sugestivo de leucemia mielóide crônica (LMC em fase crônica. Após dez meses, apresentou nova recidiva da LMA. Os autores discutem a dificuldade do diagnóstico diferencial entre LMA Ph1-positivo de novo e crise blástica mielóide como primeira manifestação clínica da LMC, baseados nos aspectos clínicos e moleculares.A case of AML presented with basophilia in peripheral blood and Ph1 chromosome in karyotype analysis is reported. After one year of treatment with intensive chemoterapy and clinical and hematological remission, molecular analysis (RT-PCR detected minimal residual disease (b2-a2 rearrangement. Thus, the patient relapsed as AML and, after second remission, he developed a hematological picture of chronic CML. Ten months later, he relapsed again as AML. The difficulties of diagnosis between AML Ph1-positive de novo and myeloid blast crisis of CML, as the first manifestation of disease, based on clinical and molecular aspects are discussed.

  8. Heterogeneity in acute undifferentiated leukemia.

    Science.gov (United States)

    LeMaistre, A; Childs, C C; Hirsch-Ginsberg, C; Reuben, J; Cork, A; Trujillo, J M; Andersson, B; McCredie, K B; Freireich, E; Stass, S A

    1988-01-01

    From January 1985 to May 1987, we studied 256 adults with newly diagnosed acute leukemia. Acute undifferentiated leukemia (AUL) was diagnosed in 12 of the 256 (4.6%) cases when lineage could not be delineated by light microscopy and light cytochemistry. To further characterize the blasts, immunophenotyping, ultrastructural myeloperoxidase (UMPO), and ultrastructural platelet peroxidase parameters were examined in 10, 11, and 6 of the 12 cases, respectively. Five cases demonstrated UMPO and were reclassified as acute myeloblastic leukemia (AML). Of the six UMPO-negative cases, three had a myeloid and one had a mixed immunophenotype. One UMPO-negative patient with a myeloid immunophenotype was probed for the immunoglobulin heavy chain gene (JH) and the beta chain of the T-cell receptor gene (Tcr beta) with no evidence of rearrangement. Six cases were treated with standard acute lymphoblastic leukemia (ALL) chemotherapy and failed to achieve complete remission (CR). Various AML chemotherapeutic regimens produced CR in only 3 of the 12 cases. One case was treated with gamma interferon and the other 2 with high-dose Ara-C. Our findings indicate a myeloid lineage can be detected by UMPO (5/12) in some cases of AUL. A germline configuration with JH and Tcr beta in one case as well as a myeloid immunophenotype in 3 UMPO-negative cases raises the possibility that myeloid lineage commitment may occur in the absence of myeloid peroxidase (MPO) cytochemical positivity.

  9. The significance of trilineage myelodysplasia in de novo acute myeloblastic leukemia: clinical and laboratory features.

    Science.gov (United States)

    Lima, C S; Vassalo, J; Lorand-Metze, I; Bechelli, A P; Souza, C A

    1997-01-01

    A prospective study was undertaken to elucidate the clinical and laboratory differences between de novo acute myeloid leukemia (AML) and AML with trilineage myelodysplasia (AML-TMDS). One hundred and seven patients with AML were diagnosed at the University Hospital between January 1987 and July 1992, and were followed until July 1995. TMDS was identified in 17 of them (16%). With regard to age and sex distribution no difference was found between AML patients with and without TMDS (p = 0.43, p = 0.54, respectively). The duration of symptoms at presentation in AML-TMDS was similar to those observed in de novo AML (p = 0.29). Hemoglobin values and platelet counts were similar in both groups of patients (p = 0.45, p = 0.44, respectively). However, peripheral white blood cell and neutrophil counts, as well as blast counts in AML-TMDS patients were lower than those observed in AML without TMDS patients (p leukemia transformation occurs in a more undifferentiated pluripotent stem cell, leading to a dysplastic residual hemopoiesis besides the blast proliferation; 2) the incidence of TMDS in our group of patients did not influence the clinical outcome after treatment of the disease.

  10. Correlation between CD34 expression and chromosomal abnormalities but not clinical outcome in acute myeloid leukemia.

    Science.gov (United States)

    Fruchart, C; Lenormand, B; Bastard, C; Boulet, D; Lesesve, J F; Callat, M P; Stamatoullas, A; Monconduit, M; Tilly, H

    1996-11-01

    The hemopoietic stem cell marker CD34 has been reported to be a useful predictor of treatment outcome in acute myeloid leukemia (AML). Previous data suggested that CD34 expression may be associated with other poor prognosis factors in AML such as undifferentiated leukemia, secondary AML (SAML), and clonal abnormalities involving chromosome 5 and 7. In order to analyze the correlations between the clinicopathologic features, cytogenetic and CD34 expression in AML, we retrospectively investigated 99 patients with newly diagnosed AML: 85 with de novo disease and 14 with secondary AML (SAML). Eighty-six patients who received the same induction chemotherapy were available for clinical outcome. Defining a case as positive when > or = 20% of bone marrow cells collected at diagnosis expressed the CD34 antigen, forty-five patients were included in the CD34 positive group. Ninety patients had adequate cytogenetic analysis. Thirty-two patients (72%) with CD34 positive AML exhibited an abnormal karyotype whereas 15 patients (28%) with CD34 negative AML had abnormal metaphases (P /= 20% (P clinical outcome in AML should take into account the results of pretreatment karyotype.

  11. A study of sensitivity and specificity of CD64 expression in acute myeloid leukemia

    International Nuclear Information System (INIS)

    Jin Haijie; Gao Xiaoning; Chen Weihua; Li Meng; Sun Jingfen; Han Xiaopin; Yu Li

    2008-01-01

    To study the sensitivity and specificity of CD64 in immunotyping of acute myeloid leukemia(AML). The bone marrow cells from 132 patients with AML were labelled with a series of antigens and were analyzed by flow cytometry. CD64 has high sensitivity in patients with acute myelomonocytic leukemia (M4) 96.4% and acute monocytic leukemia (MS) (96.4% and 100%, respectively). The expressions of CD64 was very low on patients with other kinds of AML(M0, M1, M2, M3, M6, M7). The specificity of CD64 in patients with M4 and M5 was 56.5%. The results suggest that the CD64 is helpful in the differential diagnosis of M4 and M5 in AML patients. (authors)

  12. The role of therapeutic leukapheresis in hyperleukocytotic AML.

    Directory of Open Access Journals (Sweden)

    Friederike Pastore

    Full Text Available Hyperleukocytosis in AML with leukostasis is a serious life-threatening condition leading to a high early mortality which requires immediate cytoreductive therapy. Therapeutic leukapheresis is currently recommended by the American Society of Apheresis in patients with a WBC>100 G/l with signs of leukostasis, but the role of prophylactic leukapheresis before clinical signs of leukostasis occur is unclear.We retrospectively analyzed the role of leukapheresis in 52 patients (median age 60 years with hyperleukocytotic AML with and without clinical signs of leukostasis. Since leukapheresis was performed more frequently in patients with signs of leukostasis due to the therapeutic policy in our hospital, we developed a risk score for early death within seven days after start of therapy (EDd7 to account for this selection bias and to independently measure the effect of leukapheresis on EDd7.20 patients received leukapheresis in combination to chemotherapy compared to 32 patients who received chemotherapy only. In a multivariate logistic regression model for the estimation of the probability of EDd7 thromboplastin time and creatinine remained as independent significant parameters and were combined to create an EDd7 risk score. The effect of leukapheresis on EDd7 was evaluated in a bivariate logistic regression together with the risk score. Leukapheresis did not significantly change early mortality in all patients with a WBC≥100 G/l.Prophylactic leukapheresis in hyperleukocytotic patients with and without leukostasis did not improve early mortality in our retrospective study. Larger and prospective clinical trials are needed to validate the risk score and to further explore the role of leukapheresis in AML with hyperleukocytosis.

  13. Jab1/Csn5-Thioredoxin Signaling in Relapsed Acute Monocytic Leukemia under Oxidative Stress.

    Science.gov (United States)

    Zhou, Fuling; Pan, Yunbao; Wei, Yongchang; Zhang, Ronghua; Bai, Gaigai; Shen, Qiuju; Meng, Shan; Le, Xiao-Feng; Andreeff, Michael; Claret, Francois X

    2017-08-01

    Purpose: High levels of ROS and ineffective antioxidant systems contribute to oxidative stress, which affects the function of hematopoietic cells in acute myeloid leukemia (AML); however, the mechanisms by which ROS lead to malignant transformation in relapsed AML-M5 are not completely understood. We hypothesized that alterations in intracellular ROS would trigger AML-M5 relapse by activating the intrinsic pathway. Experimental Design: We studied ROS levels and conducted c-Jun activation domain-binding protein-1 ( JAB1/COPS5 ) and thioredoxin ( TRX ) gene expression analyses with blood samples obtained from 60 matched AML-M5 patients at diagnosis and relapse and conducted mechanism studies of Jab1's regulation of Trx in leukemia cell lines. Results: Our data showed that increased production of ROS and a low capacity of antioxidant enzymes were characteristics of AML-M5, both at diagnosis and at relapse. Consistently, increased gene expression levels of TRX and JAB1/COPS5 were associated with low overall survival rates in patients with AML-M5. In addition, stimulating AML-M5 cells with low concentrations of hydrogen peroxide led to increased Jab1 and Trx expression. Consistently, transfection of ectopic Jab1 into leukemia cells increased Trx expression, whereas silencing of Jab1 in leukemia cells reduced Trx expression. Mechanistically, Jab1 interacted with Trx and stabilized Trx protein. Moreover, Jab1 transcriptionally regulated Trx. Furthermore, depletion of Jab1 inhibited leukemia cell growth both in vitro and in vivo Conclusions: We identified a novel Jab1-Trx axis that is a key cellular process in the pathobiologic characteristics of AML-M5. Targeting the ROS/Jab1/Trx pathway could be beneficial in the treatment of AML-M5. Clin Cancer Res; 23(15); 4450-61. ©2017 AACR . ©2017 American Association for Cancer Research.

  14. Combination of cytogenetic classification and MRD status correlates with outcome of autologous versus allogeneic stem cell transplantation in adults with primary acute myeloid leukemia in first remission.

    Science.gov (United States)

    Yao, Jianfeng; Zhang, Guixin; Liang, Chen; Li, Gang; Chen, Xin; Ma, Qiaoling; Zhai, Weihua; Yang, Donglin; He, Yi; Jiang, Erlie; Feng, Sizhou; Han, Mingzhe

    2017-04-01

    Both autologous and allogeneic stem cell transplantation (auto- and allo-SCT) are treatment choice for adults with acute myeloid leukemia (AML) after complete remission (CR). However, the decision-making remains controversial in some situations. To figure out the treatment choice, we retrospectively investigated 172 consecutive patients with primary AML who received auto- (n=46) or allo-SCT (n=126) from a single transplant center. Auto- and allo-SCT group demonstrated comparable overall survival (OS) and disease-free survival (DFS) (P=0.616, P=0.559, respectively). Cytogenetic classification and minimal residual disease (MRD) after one course of consolidation were identified as independent risk factors for DFS (hazard ratio (HR), 1.800; 95% CI, 1.172-2.763; P=0.007; HR, 2.042; 95%CI, 1.003-4.154; P=0.049; respectively). We subsequently found that auto- and allo-SCT offered comparable DFS to patients with favorable or intermediate risk and were tested MRD neg after one course of consolidation (P=0.270) otherwise auto-SCT were inferior due to increased risk of leukemia relapse. Our study indicated that the combination of cytogenetic classification and MRD monitoring correlated with outcome of auto- versus allo-SCT and might help the choice between the two types of SCT for adults with primary AML, which is of significance for patients with expected intermediate prognosis in the current scenario. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Novel agents and regimens for acute myeloid leukemia: 2009 ASH annual meeting highlights

    Directory of Open Access Journals (Sweden)

    Zhu Xiongpeng

    2010-04-01

    Full Text Available Abstract Prognostic markers, such as NPM1, Flt3-ITD, and cytogenetic abnormalities have made it possible to formulate aggressive treatment plans for unfavorable acute myeloid leukemia (AML. However, the long-term survival of AML with unfavorable factors remains unsatisfactory. The latest data indicate that the standard dose of daunorubicin (DNR at 45 mg/m2 is inferior to high dose 90 mg/m2 for induction therapy. The rates of complete remission and overall survival are significantly better in the high dose induction regimen. New regimens exploring the new liposomal encapsulation of Ara-C and DNR as well as addition of gemtuzumab ozogamicin monoclonal antibody have been studied. New agents, including the nucleoside analogues (clofarabine, sapacitabine, elacytarabine, FLT3 inhibitor (sorafenib, farnesyl-transferase inhibitor (tipifarnib, histone deacetylase inhibitor (vorinostat, lenalidomide, as well as DNA methyltransferase inhibitors (decitabine, azacitidine, were recently reported for AML treatment in the 2009 ASH annual meeting. This review also summarizes the updates of the clinical trials on novel agents including voreloxin, AS1413, behenoylara-C, ARRY520, ribavirin, AZD1152, AZD6244, and terameprocol (EM-1421 from the 2009 ASH annual meeting.

  16. Chimeric antigen receptors for adoptive T cell therapy in acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Mingxue Fan

    2017-08-01

    Full Text Available Abstract Currently, conventional therapies for acute myeloid leukemia (AML have high failure and relapse rates. Thus, developing new strategies is crucial for improving the treatment of AML. With the clinical success of anti-CD19 chimeric antigen receptor (CAR T cell therapies against B-lineage malignancies, many studies have attempted to translate the success of CAR T cell therapy to other malignancies, including AML. This review summarizes the current advances in CAR T cell therapy against AML, including preclinical studies and clinical trials, and discusses the potential AML-associated surface markers that could be used for further CAR technology. Finally, we describe strategies that might address the current issues of employing CAR T cell therapy in AML.

  17. CD117 expression on blast cells in acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Goryainova N.V.

    2015-09-01

    Full Text Available The aim of the present work was to analyze the frequency of CD117 (c-KIT antigen expression on the blast cells in acute myeloid leukemia (AML, evaluation of the presence of the relationship between the expression of the c-KIT and leukemia according to the FAB classification and definition of co-expression of the antigen CD117, antigens CD33 and CD34. The data of 47 patients with AML were diagnosed. M0 AML variant was established in 3 (6% patients, M1 – in 2 (4%, M2 – in 9 (20%, M4 – in 22 (47% and M5 – in 11 (23%. For immunophenotypic stu¬dies monoclonal antibodies (mAb that detect antigens of anti-CD34, anti-CD33 and anti-CD117 (Becton Dickinson, USA were used. The presence of the antigen CD117 was detected in 39 people, accounting for 83% of all surveyed. Antigen c-KIT was present in 48.117.0% cells on average: in all 3 cases – AML M0, in2 cases of AML M1, in 6 cases – AML M2, 20 of 22 cases – AML M4 and in 8 of 11 AML M5 cases. Average levels of CD117 in investigated leukemia cases statistically differed significantly (p=0.0067. Among 39 CD117- positive patients in 25 (53% co-expression of CD117+/CD34+ was revealed. Expression of CD117+/CD34- was observed in 14 cases (30%, CD117-/CD34+ – in 4 cases (8,5%, CD117-/CD34- – in 4 cases (8.5%. CD34 had of 64% of cells of myeloid origin. A high positive cor¬relation between expression of CD117 and CD34 (r=+0,5169 was determined, being statistically significant (p0,0067.

  18. Leukomogenic factors downregulate heparanase expression in acute myeloid leukemia cells

    International Nuclear Information System (INIS)

    Eshel, Rinat; Ben-Zaken, Olga; Vainas, Oded; Nadir, Yona; Minucci, Saverio; Polliack, Aaron; Naparstek, Ella; Vlodavsky, Israel; Katz, Ben-Zion

    2005-01-01

    Heparanase is a heparan sulfate-degrading endoglycosidase expressed by mature monocytes and myeloid cells, but not by immature hematopoietic progenitors. Heparanase gene expression is upregulated during differentiation of immature myeloid cells. PML-RARα and PLZF-RARα fusion gene products associated with acute promyelocytic leukemia abrogate myeloid differentiation and heparanase expression. AML-Eto, a translocation product associated with AML FAB M2, also downregulates heparanase gene expression. The common mechanism that underlines the activity of these three fusion gene products involves the recruitment of histone deacetylase complexes to specific locations within the DNA. We found that retinoic acid that dissociates PML-RARα from the DNA, and which is used to treat acute promyelocytic leukemia patients, restores heparanase expression to normal levels in an acute promyelocytic leukemia cell line. The retinoic acid effects were also observed in primary acute promyelocytic leukemia cells and in a retinoic acid-treated acute promyelocytic leukemia patient. Histone deacetylase inhibitor reverses the downregulation of heparanase expression induced by the AML-Eto fusion gene product in M2 type AML. In summary, we have characterized a link between leukomogenic factors and the downregulation of heparanase in myeloid leukemic cells

  19. Heme oxygenase-1: A new druggable target in the management of chronic and acute myeloid leukemia.

    Science.gov (United States)

    Salerno, Loredana; Romeo, Giuseppe; Modica, Maria N; Amata, Emanuele; Sorrenti, Valeria; Barbagallo, Ignazio; Pittalà, Valeria

    2017-12-15

    Heme oxygenase-1 (HO-1) is the enzyme catalyzing the rate-limiting oxidative degradation of cellular heme into free iron, carbon monoxide (CO), and biliverdin, which is then rapidly converted into bilirubin. By means of these catabolic end-products and by removal of pro-oxidant heme, HO-1 exerts antioxidant, antiapoptotic, and immune-modulating effects, leading to overall cytoprotective and beneficial functions in mammalian cells. Therefore, HO-1 is considered a survival molecule in various stress-related conditions. By contrast, growing evidence suggests that HO-1 is a survival-enhancing molecule also in various solid and blood cancers, such as various types of leukemia, promoting carcinogenesis, tumor progression, and chemo-resistance. Among leukemias, chronic myeloid leukemia (CML) is currently therapeutically well treated with tyrosine kinase inhibitors (TKIs) such as Imatinib (IM) and its congeners; nevertheless, resistance to all kinds of current drugs persist in a number of patients. Moreover, treatment outcomes for acute myeloid leukemia (AML) remain unsatisfactory, despite progress in chemotherapy and hematopoietic stem cell transplantation. Therefore, identification of new eligible targets that may improve leukemias therapy is of general interest. Several recent papers prove that inhibition of HO-1 through HO-1 inhibitors as well as modulation of other pathways involving HO-1 by a number of different new or known molecules, are critical for leukemia treatment. This review summarizes the current understanding of the pro-tumorigenic role of HO-1 and its potential as a molecular target for the treatment of leukemias. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. MRD in AML: it is time to change the definition of remission.

    Science.gov (United States)

    Ossenkoppele, Gert J; Schuurhuis, Gerrit Jan

    2014-01-01

    The possibility of defining residual disease far below the morphological level of 5% blast cells is changing the landscape of risk classification in acute myeloid leukemia (AML). The so-called minimal residual disease (MRD) approach at this time can establish the presence of leukemia cells down to levels of 1:1000-1:10(6) white blood cells, compared to 1:20 for morphology. Availability of the newer and more sensitive technology to quantify the level of leukemic burden raises the issue of whether MRD should emerge as a new definition of complete response. This paper explores some of the issues surrounding such a change in definition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Myeloid- and lymphoid-specific breakpoint cluster regions in chromosome band 13q14 in acute leukemia.

    Science.gov (United States)

    Coignet, L J; Lima, C S; Min, T; Streubel, B; Swansbury, J; Telford, N; Swanton, S; Bowen, A; Nagai, M; Catovsky, D; Fonatsch, C; Dyer, M J

    1999-07-01

    Abnormalities of chromosome band 13q14 occur in hematologic malignancies of all lineages and at all stages of differentiation. Unlike other chromosomal translocations, which are usually specific for a given lineage, the chromosomal translocation t(12;13)(p12;q14) has been observed in both B-cell and T-cell precursor acute lymphoblastic leukemia (BCP-, TCP-ALL), in differentiated and undifferentiated acute myeloblastic leukemia (AML), and in chronic myeloid leukemia (CML) at progression to blast crisis. The nature of these translocations and their pathologic consequences remain unknown. To begin to define the gene(s) involved on chromosome 13, we have performed fluorescence in situ hybridization (FISH) using a panel of YACs from the region, on a series of 10 cases of acute leukemia with t(12;13)(p12;q14) and 1 case each with "variant" translocations including t(12;13)(q21;q14), t(10;13)(q24;q14) and t(9;13)(p21;q14). In 8/13 cases/cell lines, the 13q14 break fell within a single 1.4 Mb CEPH MegaYAC. This YAC fell immediately telomeric of the forkhead (FKHR) gene, which is disrupted in the t(2;13)(q35;q14) seen in pediatric alveolar rhabdomyosarcoma. Seven of the 8 cases with breaks in this YAC were AML. In 4/13 cases, the 13q14 break fell within a 1.7-Mb YAC located about 3 Mb telomeric of the retinoblastoma (RB1) gene: all 4 cases were ALL. One case of myelodysplastic syndrome exhibited a break within 13q12, adjacent to the BRCA2 gene. These data indicate the presence of myeloid- and lymphoid-specific breakpoint cluster regions within chromosome band 13q14 in acute leukemia.

  2. Differentiation Therapy of Acute Myeloid Leukemia

    International Nuclear Information System (INIS)

    Gocek, Elzbieta; Marcinkowska, Ewa

    2011-01-01

    Acute Myeloid Leukemia (AML) is a predominant acute leukemia among adults, characterized by accumulation of malignantly transformed immature myeloid precursors. A very attractive way to treat myeloid leukemia, which is now called ‘differentiation therapy’, was proposed as in vitro studies have shown that a variety of agents stimulate differentiation of the cell lines isolated from leukemic patients. One of the differentiation-inducing agents, all-trans retinoic acid (ATRA), which can induce granulocytic differentiation in myeloid leukemic cell lines, has been introduced into clinics to treat patients with acute promyelocytic leukemia (APL) in which a PML-RARA fusion protein is generated by a t(15;17)(q22;q12) chromosomal translocation. Because differentiation therapy using ATRA has significantly improved prognosis for patients with APL, many efforts have been made to find alternative differentiating agents. Since 1,25-dihydroxyvitamin D 3 (1,25D) is capable of inducing in vitro monocyte/macrophage differentiation of myeloid leukemic cells, clinical trials have been performed to estimate its potential to treat patients with AML or myelodysplastic syndrome (MDS). Unfortunately therapeutic concentrations of 1,25D can induce potentially fatal systemic hypercalcemia, thus limiting clinical utility of that compound. Attempts to overcome this problem have focused on the synthesis of 1,25D analogs (VDAs) which retain differentiation inducing potential, but lack its hypercalcemic effects. This review aims to discuss current problems and potential solutions in differentiation therapy of AML

  3. Differentiation Therapy of Acute Myeloid Leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Gocek, Elzbieta; Marcinkowska, Ewa, E-mail: ema@cs.uni.wroc.pl [Department of Biotechnology, University of Wroclaw, ul Tamka 2, Wroclaw 50-137 (Poland)

    2011-05-16

    Acute Myeloid Leukemia (AML) is a predominant acute leukemia among adults, characterized by accumulation of malignantly transformed immature myeloid precursors. A very attractive way to treat myeloid leukemia, which is now called ‘differentiation therapy’, was proposed as in vitro studies have shown that a variety of agents stimulate differentiation of the cell lines isolated from leukemic patients. One of the differentiation-inducing agents, all-trans retinoic acid (ATRA), which can induce granulocytic differentiation in myeloid leukemic cell lines, has been introduced into clinics to treat patients with acute promyelocytic leukemia (APL) in which a PML-RARA fusion protein is generated by a t(15;17)(q22;q12) chromosomal translocation. Because differentiation therapy using ATRA has significantly improved prognosis for patients with APL, many efforts have been made to find alternative differentiating agents. Since 1,25-dihydroxyvitamin D{sub 3} (1,25D) is capable of inducing in vitro monocyte/macrophage differentiation of myeloid leukemic cells, clinical trials have been performed to estimate its potential to treat patients with AML or myelodysplastic syndrome (MDS). Unfortunately therapeutic concentrations of 1,25D can induce potentially fatal systemic hypercalcemia, thus limiting clinical utility of that compound. Attempts to overcome this problem have focused on the synthesis of 1,25D analogs (VDAs) which retain differentiation inducing potential, but lack its hypercalcemic effects. This review aims to discuss current problems and potential solutions in differentiation therapy of AML.

  4. Therapy-related myelodysplastic syndrome after successful treatment of acute promyelocytic leukemia: case report and literature review

    Directory of Open Access Journals (Sweden)

    Cîrstea Mihaela

    2017-04-01

    Full Text Available In the 2016 revision of the World Health Organization classification the term therapy-related myeloid neoplasia (t-MN defines a subgroup of acute myeloid leukemia (AML comprising patients who develop myelodysplastic syndrome (MDS-t or acute myeloid leukemia (AML-t after treatment with cytotoxic and/or radiation therapy for various malignancies or autoimmune disorders. We report the case of a 36 year old patient with t-MN (t-MDS after achieving complete remission (CR of a PML-RARA positive acute promyelocytic leukemia (APL at 32 months after diagnosis. Initially classified as low risk APL and treated according to the AIDA protocol - induction and 3 consolidation cycles - the patient achieved a complete molecular response in September 2013 and started maintenance therapy. On follow-up PML-RARA transcript remained negative. In January 2016 leukopenia and thrombocytopenia developed and a peripheral blood smear revealed hypogranular and agranular neutrophils. Immunophenotyping in the bone marrow aspirate identified undifferentiated blast cells that did not express cytoplasmic myeloperoxidase. The cytogenetic study showed normal karyotype. The molecular biology tests not identified PMLRARA transcript. A diagnosis of t-MDS (AREB-2 - WHO 2008 was established. Treatment of AML was started with 2 “3+7” regimens and 1 MEC cycle. Two months from diagnosis, while in CR, an allogeneic HSCT from an unrelated HLA compatible donor was performed after myeloablative regimen. An unfavorable clinical evolution was followed by death on day 9 after transplantation. The occurrence of t-MNs during CR of APL represents a particular problem in terms of follow-up and differential diagnosis of relapse and constitutes a dramatic complication for a disease with a favorable prognosis.

  5. The novel AML stem cell associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells.

    Science.gov (United States)

    van Rhenen, Anna; van Dongen, Guus A M S; Kelder, Angèle; Rombouts, Elwin J; Feller, Nicole; Moshaver, Bijan; Stigter-van Walsum, Marijke; Zweegman, Sonja; Ossenkoppele, Gert J; Jan Schuurhuis, Gerrit

    2007-10-01

    In CD34(+) acute myeloid leukemia (AML), the malignant stem cells reside in the CD38(-) compartment. We have shown before that the frequency of such CD34(+)CD38(-) cells at diagnosis correlates with minimal residual disease (MRD) frequency after chemotherapy and with survival. Specific targeting of CD34(+)CD38(-) cells might thus offer therapeutic options. Previously, we found that C-type lectin-like molecule-1 (CLL-1) has high expression on the whole blast compartment in the majority of AML cases. We now show that CLL-1 expression is also present on the CD34(+)CD38(-) stem- cell compartment in AML (77/89 patients). The CD34(+)CLL-1(+) population, containing the CD34(+)CD38(-)CLL-1(+) cells, does engraft in nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice with outgrowth to CLL-1(+) blasts. CLL-1 expression was not different between diagnosis and relapse (n = 9). In remission, both CLL-1(-) normal and CLL-1(+) malignant CD34(+)CD38(-) cells were present. A high CLL-1(+) fraction was associated with quick relapse. CLL-1 expression is completely absent both on CD34(+)CD38(-) cells in normal (n = 11) and in regenerating bone marrow controls (n = 6). This AML stem-cell specificity of the anti-CLL-1 antibody under all conditions of disease and the leukemia-initiating properties of CD34(+)CLL-1(+) cells indicate that anti-CLL-1 antibody enables both AML-specific stem-cell detection and possibly antigen-targeting in future.

  6. Leukemia Associated Antigens: Their Dual Role as Biomarkers and Immunotherapeutic Targets for Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Michael Schmitt

    2007-01-01

    Full Text Available Leukemia associated antigens (LAAs are being increasingly identified by methods such as cytotoxic T-lymphocyte (CTL cloning, serological analysis of recombinant cDNA expression libraries (SEREX and mass spectrometry (MS. In additional, large scale screening techniques such as microarray, single nucleotide polymorphisms (SNPs, serial analysis of gene expression (SAGE and 2-dimensional gel electrophoresis (2-DE have expanded our understanding of the role that tumor antigens play in the biological processes which are perturbed in acute myeloid leukemia (AML. It has become increasingly apparent that these antigens play a dual role, not only as targets for immunotherapy, but also as biomarkers of disease state, stage, response to treatment and survival. We need biomarkers to enable the identification of the patients who are most likely to benefit from specific treatments (conventional and/or novel and to help clinicians and scientists improve clinical end points and treatment design. Here we describe the LAAs identified in AML, to date, which have already been shown to play a dual role as biomarkers of AML disease.Abbreviations: AML: acute myeloid leukemia; APL: acute promyelocytic leukemia; ATRA: all-trans-retinoic acid; B-CLL: B-cell chronic lymphocytic leukemia; CT: cancer-testis; CTL: cytotoxic T-lymphocyte; FAB: French-American-British; HI: hypusination inhibitors; HSP: heat shock protein; ITD: internal tandem duplication; LAA: leukemia associated antigen; MDS: myelodysplastic syndrome; MGEA6: meningioma antigen 6; MPD: myeloproliferative disease; MS: mass spectrometry; NK: natural killer; PRAME: preferentially expressed antigen of melanoma; PRTN3: proteinase 3; RAGE-1: renal antigen 1; RHAMM: receptor for hyaluronic acid-mediated motility; RQ-PCR: real-time PCR; SAGE: serial analysis of gene expression; SCT: stem cell transplant; SEREX: serological analysis of recombinant cDNA expression libraries; SNPs: single nucleotide polymorphisms; UPD

  7. Autonomous growth potential of leukemia blast cells is associated with poor prognosis in human acute leukemias

    Directory of Open Access Journals (Sweden)

    Jakubowski Ann A

    2009-12-01

    Full Text Available Abstract We have described a severe combined immunodeficiency (SCID mouse model that permits the subcutaneous growth of primary human acute leukemia blast cells into a measurable subcutaneous nodule which may be followed by the development of disseminated disease. Utilizing the SCID mouse model, we examined the growth potential of leukemic blasts from 133 patients with acute leukemia, (67 acute lymphoblastic leukemia (ALL and 66 acute myeloid leukemia (AML in the animals after subcutaneous inoculation without conditioning treatment. The blasts displayed three distinct growth patterns: "aggressive", "indolent", or "no tumor growth". Out of 133 leukemias, 45 (33.8% displayed an aggressive growth pattern, 14 (10.5% displayed an indolent growth pattern and 74 (55.6% did not grow in SCID mice. The growth probability of leukemias from relapsed and/or refractory disease was nearly 3 fold higher than that from patients with newly diagnosed disease. Serial observations found that leukemic blasts from the same individual, which did not initiate tumor growth at initial presentation and/or at early relapse, may engraft and grow in the later stages of disease, suggesting that the ability of leukemia cells for engraftment and proliferation was gradually acquired following the process of leukemia progression. Nine autonomous growing leukemia cell lines were established in vitro. These displayed an aggressive proliferation pattern, suggesting a possible correlation between the capacity of human leukemia cells for autonomous proliferation in vitro and an aggressive growth potential in SCID mice. In addition, we demonstrated that patients whose leukemic blasts displayed an aggressive growth and dissemination pattern in SClD mice had a poor clinical outcome in patients with ALL as well as AML. Patients whose leukemic blasts grew indolently or whose leukemia cells failed to induce growth had a significantly longer DFS and more favorable clinical course.

  8. Hematopoietic growth factors and human acute leukemia.

    Science.gov (United States)

    Löwenberg, B; Touw, I

    1988-10-22

    The study of myelopoietic maturation arrest in acute myeloblastic leukemia (AML) has been eased by availability of the human recombinant hemopoietic growth factors, macrophage colony stimulating factor (M-CSF), granulocyte-(G-CSF), granulocyte-macrophage-(GM-CSF) and multilineage stimulating factor (IL-3). Nonphysiological expansion of the leukemic population is not due to escape from control by these factors. Proliferation in vitro of AML cells is dependent on the presence of one or several factors in most cases. The pattern of factor-dependency does not correlate with morphological criteria in individual cases, and may thus offer a new tool for classification of AML. Overproduction of undifferentiated cells is not due to abnormal expression of receptors for the stimulating factors acting at an immature level. Rather, autocrine secretion of early acting lymphokines maintains proliferation of the leukemic clone. When looking at causes of leukemic dysregulation, yet undefined inhibitors of differentiation probably are of equal importance as dysequilibrated stimulation by lymphokines.

  9. Therapies for acute myeloid leukemia: vosaroxin.

    Science.gov (United States)

    Sayar, Hamid; Bashardoust, Parvaneh

    2017-01-01

    Vosaroxin, a quinolone-derivative chemotherapeutic agent, was considered a promising drug for the treatment of acute myeloid leukemia (AML). Early-stage clinical trials with this agent led to a large randomized double-blind placebo-controlled study of vosaroxin in combination with intermediate-dose cytarabine for the treatment of relapsed or refractory AML. The study demonstrated better complete remission rates with vosaroxin, but there was no statistically significant overall survival benefit in the whole cohort. A subset analysis censoring patients who had undergone allogeneic stem cell transplantation, however, revealed a modest but statistically significant improvement in overall survival particularly among older patients. This article reviews the data available on vosaroxin including clinical trials in AML and offers an analysis of findings of these studies as well as the current status of vosaroxin.

  10. Hif-1α and Hif-2α synergize to suppress AML development but are dispensable for disease maintenance.

    Science.gov (United States)

    Vukovic, Milica; Guitart, Amelie V; Sepulveda, Catarina; Villacreces, Arnaud; O'Duibhir, Eoghan; Panagopoulou, Theano I; Ivens, Alasdair; Menendez-Gonzalez, Juan; Iglesias, Juan Manuel; Allen, Lewis; Glykofrydis, Fokion; Subramani, Chithra; Armesilla-Diaz, Alejandro; Post, Annemarie E M; Schaak, Katrin; Gezer, Deniz; So, Chi Wai Eric; Holyoake, Tessa L; Wood, Andrew; O'Carroll, Dónal; Ratcliffe, Peter J; Kranc, Kamil R

    2015-12-14

    Leukemogenesis occurs under hypoxic conditions within the bone marrow (BM). Knockdown of key mediators of cellular responses to hypoxia with shRNA, namely hypoxia-inducible factor-1α (HIF-1α) or HIF-2α, in human acute myeloid leukemia (AML) samples results in their apoptosis and inability to engraft, implicating HIF-1α or HIF-2α as therapeutic targets. However, genetic deletion of Hif-1α has no effect on mouse AML maintenance and may accelerate disease development. Here, we report the impact of conditional genetic deletion of Hif-2α or both Hif-1α and Hif-2α at different stages of leukemogenesis in mice. Deletion of Hif-2α accelerates development of leukemic stem cells (LSCs) and shortens AML latency initiated by Mll-AF9 and its downstream effectors Meis1 and Hoxa9. Notably, the accelerated initiation of AML caused by Hif-2α deletion is further potentiated by Hif-1α codeletion. However, established LSCs lacking Hif-2α or both Hif-1α and Hif-2α propagate AML with the same latency as wild-type LSCs. Furthermore, pharmacological inhibition of the HIF pathway or HIF-2α knockout using the lentiviral CRISPR-Cas9 system in human established leukemic cells with MLL-AF9 translocation have no impact on their functions. We therefore conclude that although Hif-1α and Hif-2α synergize to suppress the development of AML, they are not required for LSC maintenance. © 2015 Vukovic et al.

  11. Rac1 GTPase Promotes Interaction of Hematopoietic Stem/Progenitor Cell with Niche and Participates in Leukemia Initiation and Maintenance in Mouse.

    Science.gov (United States)

    Chen, Shuying; Li, Huan; Li, Shouyun; Yu, Jing; Wang, Min; Xing, Haiyan; Tang, Kejing; Tian, Zheng; Rao, Qing; Wang, Jianxiang

    2016-07-01

    Interaction between hematopoietic stem/progenitor cells (HSPCs) with their niche is critical for HSPC function. The interaction also plays an important role in the multistep process of leukemogenesis. Rac1 GTPase has been found to be highly expressed and activated in leukemia patients. Here, by forced expression of constitutively active form of Rac1 (Rac1-V12) in HSPCs, we demonstrate that active Rac1 promotes interaction of HSPC with niche. We then established an active Rac1 associated acute myeloid leukemia (AML) model by expression of Rac1-V12 cooperated with AML1-ETO9a (AE9a) in mouse HSPCs. Compared with AE9a alone, Rac1-V12 cooperated with AE9a (AER) drives an AML with a short latency, demonstrating that activation of Rac1 GTPase in mice promotes AML development. The mechanism of this AML promotion is by a better homing and lodging of leukemia cells in niche, which further enhancing their colony formation, quiescence and preventing leukemia cells from apoptosis. Further study showed that an inhibitor targeting activated Rac1 can increase the efficacy of chemotherapeutic agents to leukemia cells. This study provides evidence that activation of Rac1 promotes leukemia development through enhancing leukemia cells' homing and retention in niche, and suggests that inhibition of Rac1 GTPase could be an effective way of eliminating AML cells. Stem Cells 2016;34:1730-1741. © 2016 AlphaMed Press.

  12. Trends in adult leukemia incidence and survival in Denmark, 1943-2003

    DEFF Research Database (Denmark)

    Thygesen, Lau Caspar; Nielsen, Ove Juul; Johansen, Christoffer

    2009-01-01

    The etiology of leukemia is largely unknown. Ecological data indicating trends in incidence and survival can provide information about changes in risk factors, can reflect underlying changes in diagnostic classification, and can measure therapeutic advances. From the records of the Danish Cancer...... Registry with registration starting from 1943, we calculated age-specific, period-specific, and age-standardized (world standard) incidence rates of chronic lymphoid leukemia (CLL), acute lymphoid leukemia (ALL), chronic myeloid leukemia (CML), and acute myeloid leukemia (AML) for persons above the age...... of 18. Kaplan-Meier survival curves and median survival times were calculated. Between 1943 and 2003, there were 26,036 cases of leukemia reported. The age-specific incidence rates of CLL, CML, and AML were higher for older men and women, while the incidence rates of ALL by age were more homogeneous...

  13. The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions | Office of Cancer Genomics

    Science.gov (United States)

    We present the molecular landscape of pediatric acute myeloid leukemia (AML) and characterize nearly 1,000 participants in Children’s Oncology Group (COG) AML trials. The COG–National Cancer Institute (NCI) TARGET AML initiative assessed cases by whole-genome, targeted DNA, mRNA and microRNA sequencing and CpG methylation profiling. Validated DNA variants corresponded to diverse, infrequent mutations, with fewer than 40 genes mutated in >2% of cases.

  14. Outcome of children with acute myeloid leukaemia (AML) experiencing primary induction failure in the AIEOP AML 2002/01 clinical trial.

    Science.gov (United States)

    Quarello, Paola; Fagioli, Franca; Basso, Giuseppe; Putti, Maria C; Berger, Massimo; Luciani, Matteo; Rizzari, Carmelo; Menna, Giuseppe; Masetti, Riccardo; Locatelli, Franco

    2015-11-01

    Paediatric patients with acute myeloid leukaemia (AML) who fail induction due to primary resistance to chemotherapy account for a significant proportion of cases and have a particularly dismal prognosis. We report the clinical and biological data, and final outcome of 48 paediatric patients with primary-resistant AML enrolled in the Associazione Italiana di Ematologia e Oncologia Pediatrica AML 2002/01 clinical trial. These patients had a significantly higher white blood cell count at diagnosis compared to other AML patients. Cytogenetic and molecular features did not differ between patients with primary induction failure and patients allocated to the high-risk group. For the whole patient population, the probability of overall survival, event-free survival (EFS) and disease-free survival (DFS) was 21·8% ± 6·2, 20·4% ± 5·9, and 49·5% ± 11·3, respectively. Twenty-eight (58%) patients received haematopoietic stem cell transplantation (HSCT); 3 were autologous and 25 were allogeneic. Patients who underwent HSCT had improved EFS (31·2% vs. 5%, P < 0·0001). Only one of the 20 patients who did not receive HSCT is alive and disease free. The 19 patients in complete remission at time of HSCT showed significantly better DFS than the 9 with active disease (46% vs. 0%, P = 0·02). This study represents one of the largest series with long-term follow up of paediatric AML patients with primary refractory disease. Children who underwent transplantation had an encouraging long-term outcome. Disease recurrence remains the major cause of treatment failure; a better understanding of the disease biology is desirable to develop more effective treatment strategies. © 2015 John Wiley & Sons Ltd.

  15. Collaborative Efforts Driving Progress in Pediatric Acute Myeloid Leukemia

    Science.gov (United States)

    Zwaan, C. Michel; Kolb, Edward A.; Reinhardt, Dirk; Abrahamsson, Jonas; Adachi, Souichi; Aplenc, Richard; De Bont, Eveline S.J.M.; De Moerloose, Barbara; Dworzak, Michael; Gibson, Brenda E.S.; Hasle, Henrik; Leverger, Guy; Locatelli, Franco; Ragu, Christine; Ribeiro, Raul C.; Rizzari, Carmelo; Rubnitz, Jeffrey E.; Smith, Owen P.; Sung, Lillian; Tomizawa, Daisuke; van den Heuvel-Eibrink, Marry M.; Creutzig, Ursula; Kaspers, Gertjan J.L.

    2015-01-01

    Diagnosis, treatment, response monitoring, and outcome of pediatric acute myeloid leukemia (AML) have made enormous progress during the past decades. Because AML is a rare type of childhood cancer, with an incidence of approximately seven occurrences per 1 million children annually, national and international collaborative efforts have evolved. This overview describes these efforts and includes a summary of the history and contributions of each of the main collaborative pediatric AML groups worldwide. The focus is on translational and clinical research, which includes past, current, and future clinical trials. Separate sections concern acute promyelocytic leukemia, myeloid leukemia of Down syndrome, and relapsed AML. A plethora of novel antileukemic agents that have emerged, including new classes of drugs, are summarized as well. Finally, an important aspect of the treatment of pediatric AML—supportive care—and late effects are discussed. The future is bright, with a wide range of emerging innovative therapies and with more and more international collaboration that ultimately aim to cure all children with AML, with fewer adverse effects and without late effects. PMID:26304895

  16. Tumor SHB gene expression affects disease characteristics in human acute myeloid leukemia.

    Science.gov (United States)

    Jamalpour, Maria; Li, Xiujuan; Cavelier, Lucia; Gustafsson, Karin; Mostoslavsky, Gustavo; Höglund, Martin; Welsh, Michael

    2017-10-01

    The mouse Shb gene coding for the Src Homology 2-domain containing adapter protein B has recently been placed in context of BCRABL1-induced myeloid leukemia in mice and the current study was performed in order to relate SHB to human acute myeloid leukemia (AML). Publicly available AML databases were mined for SHB gene expression and patient survival. SHB gene expression was determined in the Uppsala cohort of AML patients by qPCR. Cell proliferation was determined after SHB gene knockdown in leukemic cell lines. Despite a low frequency of SHB gene mutations, many tumors overexpressed SHB mRNA compared with normal myeloid blood cells. AML patients with tumors expressing low SHB mRNA displayed longer survival times. A subgroup of AML exhibiting a favorable prognosis, acute promyelocytic leukemia (APL) with a PMLRARA translocation, expressed less SHB mRNA than AML tumors in general. When examining genes co-expressed with SHB in AML tumors, four other genes ( PAX5, HDAC7, BCORL1, TET1) related to leukemia were identified. A network consisting of these genes plus SHB was identified that relates to certain phenotypic characteristics, such as immune cell, vascular and apoptotic features. SHB knockdown in the APL PMLRARA cell line NB4 and the monocyte/macrophage cell line MM6 adversely affected proliferation, linking SHB gene expression to tumor cell expansion and consequently to patient survival. It is concluded that tumor SHB gene expression relates to AML survival and its subgroup APL. Moreover, this gene is included in a network of genes that plays a role for an AML phenotype exhibiting certain immune cell, vascular and apoptotic characteristics.

  17. Transient spontaneous remission in congenital MLL-AF10 rearranged acute myeloid leukemia presenting with cardiorespiratory failure and meconium ileus.

    Science.gov (United States)

    Gyárfás, Tobias; Wintgens, Juergen; Biskup, Wolfgang; Oschlies, Ilske; Klapper, Wolfram; Siebert, Reiner; Bens, Susanne; Haferlach, Claudia; Meisel, Roland; Kuhlen, Michaela; Borkhardt, Arndt

    2016-12-01

    Neonatal leukemia is a rare disease with an estimated prevalence of about one to five in a million neonates. The majority being acute myeloid leukemia (AML), neonatal leukemia can present with a variety of symptoms including hyperleucocytosis, cytopenia, hepatosplenomegaly, and skin infiltrates. Chromosomal rearrangements including mixed lineage leukemia (MLL) translocations are common in neonatal AML. A female neonate born at 34 weeks gestation presented with cardiorespiratory failure, hepatosplenomegaly, pancytopenia, and coagulopathy. She required intensive care treatment including mechanical ventilation, high-dose catecholamine therapy, and multiple transfusions. Small intestinal biopsy obtained during laparotomy for meconium ileus revealed an infiltrate by an undifferentiated monoblastic, MLL-rearranged leukemia. No other manifestations of leukemia could be detected. After spontaneous clinical remission, lasting 5 months without any specific treatment, the patient presented with leukemia cutis and full-blown monoblastic leukemia. MLL-AF10-rearranged AML could be re-diagnosed and successfully treated with chemotherapy and hematopoietic stem cell transplantation. Our patient exhibited a unique manifestation of neonatal MLL-AF10 rearranged AML with cardiorespiratory failure and intestinal infiltration. It highlights the importance of leukemia in the differential diagnosis of neonatal distress, congenital hematological abnormalities, and skin lesions.

  18. Chemical Space of FLT3 Inhibitors as Potential Anti-AML Drugs.

    Science.gov (United States)

    Lan, Qing-Yuan; Zhi, Yan-Le; Heng, Hao; Tian, Jie-Yi; Guo, Xiao-Xing; Liu, Hai-Chun; Chen, Ya-Dong; Lu, Tao; Lu, Shuai

    2017-11-20

    FLT3 is a member of receptor tyrosine kinase III family, mainly expressed in hematopoietic cells. The aberrant expression and function of FLT3 are strongly related to leukemia, especially acute myeloid leukemia. Its varieties of amino-acid residues mutations, such as FLT3-ITDs and -TKDs, can induce constant proliferation of hematological tumor cells with poor prognosis. Hence FLT3 serves as a promising target in AML chemotherapy. This review focused on the progress of FLT3 inhibitors study including those that have entered clinical trials or were reported in numerous patents all over the world. Thus, we provided a useful reference for the development of new anti-leukemia drugs. Through a comprehensive retrospective study, FLT3 inhibitors in several patent applications were identified and classified into five categories, including quinolone-related, indole-related, ureas, pyrimidines and other compounds. For each category of compounds, the structural feature, SAR, biological activity and current research status were thoroughly reviewed and analyzed. Although some of those compounds expressed potent bioactivities and have reached the advanced clinical trials for the treatment of leukemia, there are still several problems need to be faced before they enter the market eventually, especially the drug resistance issue. The improvement of therapeutic potency for FLT3 inhibitors might depend on the useful combination therapy and further refinement of the intrinsic properties of FLT3 inhibitors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Clinical features and treatment outcomes of pediatric acute promyelocytic leukemia in a Mexican pediatric hospital.

    Science.gov (United States)

    Dorantes-Acosta, Elisa; Medina-Sanson, Aurora; Jaimes-García, Yanet; López-Martínez, Briceida

    2013-01-01

    Acute promyelocytic leukemia (APL) is a distinct type of acute myeloid leukemia (AML) characterized by chromosomal translocations involving the retinoid acid receptor α (RARA) gene on chromosome 17. APL is a relatively rare blood disease that is highly curable with current treatment strategies; however, patient outcomes are heterogeneous in countries with limited resources. Promyelocytic leukemia accounts for 20-25% of all AML cases in Latin American countries. We conducted a study from July 2007 to July 2012 and applied the IC-APL2006 protocol. This case study reports the results from eleven patients with AML M3 (five males and six females). In all cases, the diagnoses were made by aspirating bone marrow and evaluating the t(15:17) or t(11:17) transcript. In eight cases, the molecular biology-based diagnostics for the PLM-RARa transcript were positive, and they were negative in two cases. One patient was positive for the PLZF-RARa transcript. The mean WBC at the time of diagnosis was 10.1 x 10(9)/L, and the mean platelet count was 17.1 x 10(9)/L. The mean percentage of abnormal promyelocytes in the bone marrow aspirates was 68%. Of the eleven patients, four presented with disseminated intravascular coagulation. All of the patients began treatment with transretinoic acid (ATRA) (45 mg/m(2)/day), which led to 4 cases of ATRA syndrome. There were 2 relapses, and the patient died in one case. The remaining ten patients were alive after the median follow-up period of 33.6 months (range from 11 to 60 months). The authors report on a series of cases involving pediatric patients with AML M3 seen at a single institution; the patients were stratified and treated with a standard protocol to obtain satisfactory results. Although the number of patients is limited, the health outcomes are relevant. To our knowledge, this is the first series of pediatric APL patients in Mexico who were treated with the IC-APL2006 protocol.

  20. Expression of CD133 in acute leukemia.

    Science.gov (United States)

    Tolba, Fetnat M; Foda, Mona E; Kamal, Howyda M; Elshabrawy, Deena A

    2013-06-01

    There have been conflicting results regarding a correlation between CD133 expression and disease outcome. To assess CD133 expression in patients with acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) and to evaluate its correlation with the different clinical and laboratory data as well as its relation to disease outcome, the present study included 60 newly diagnosed acute leukemic patients; 30 ALL patients with a male to female ratio of 1.5:1 and their ages ranged from 9 months to 48 years, and 30 AML patients with a male to female ratio of 1:1 and their ages ranged from 17 to 66 years. Flow cytometric assessment of CD133 expression was performed on blast cells. In ALL, no correlations were elicited between CD133 expression and some monoclonal antibodies, but in AML group, there was a significant positive correlation between CD133 and HLA-DR, CD3, CD7 and TDT, CD13 and CD34. In ALL group, patients with negative CD133 expression achieved complete remission more than patients with positive CD133 expression. In AML group, there was no statistically significant association found between positive CD133 expression and treatment outcome. The Kaplan-Meier curve illustrated a high significant negative correlation between CD133 expression and the overall survival of the AML patients. CD133 expression is an independent prognostic factor in acute leukemia, especially ALL patients and its expression could characterize a group of acute leukemic patients with higher resistance to standard chemotherapy and relapse. CD133 expression was highly associated with poor prognosis in acute leukemic patients.

  1. The miR-223 host non-coding transcript linc-223 induces IRF4 expression in acute myeloid leukemia by acting as a competing endogenous RNA

    KAUST Repository

    Mangiavacchi, Arianna; Sorci, Melissa; Masciarelli, Silvia; Larivera, Simone; Legnini, Ivano; Iosue, Ilaria; Bozzoni, Irene; Fazi, Francesco; Fatica, Alessandro

    2016-01-01

    Alterations in genetic programs required for terminal myeloid differentiation and aberrant proliferation characterize acute myeloid leukemia (AML) cells. Here, we identify the host transcript of miR-223, linc-223, as a novel functional long non

  2. Anti-apoptotic ARC protein confers chemoresistance by controlling leukemia-microenvironment interactions through a NFκB/IL1β signaling network

    KAUST Repository

    Carter, Bing Z.; Mak, Po Yee; Chen, Ye; Mak, Duncan H.; Mu, Hong; Jacamo, Rodrigo; Ruvolo, Vivian; Arold, Stefan T.; Ladbury, John E.; Burks, Jared K.; Kornblau, Steven; Andreeff, Michael

    2016-01-01

    To better understand how the apoptosis repressor with caspase recruitment domain (ARC) protein confers drug resistance in acute myeloid leukemia (AML), we investigated the role of ARC in regulating leukemia-mesenchymal stromal cell (MSC) interactions. In addition to the previously reported effect on AML apoptosis, we have demonstrated that ARC enhances migration and adhesion of leukemia cells to MSCs both in vitro and in a novel human extramedullary bone/bone marrow mouse model. Mechanistic studies revealed that ARC induces IL1β expression in AML cells and increases CCL2, CCL4, and CXCL12 expression in MSCs, both through ARC-mediated activation of NFκB. Expression of these chemokines in MSCs increased by AML cells in an ARC/IL1β-dependent manner; likewise, IL1β expression was elevated when leukemia cells were co-cultured with MSCs. Further, cells from AML patients expressed the receptors for and migrated toward CCL2, CCL4, and CXCL12. Inhibition of IL1β suppressed AML cell migration and sensitized the cells co-cultured with MSCs to chemotherapy. Our results suggest the existence of a complex ARC-regulated circuit that maintains intimate connection of AML with the tumor microenvironment through NFκB/IL1β-regulated chemokine receptor/ligand axes and reciprocal crosstalk resulting in cytoprotection. The data implicate ARC as a promising drug target to potentially sensitize AML cells to chemotherapy.

  3. Anti-apoptotic ARC protein confers chemoresistance by controlling leukemia-microenvironment interactions through a NFκB/IL1β signaling network

    KAUST Repository

    Carter, Bing Z.

    2016-04-11

    To better understand how the apoptosis repressor with caspase recruitment domain (ARC) protein confers drug resistance in acute myeloid leukemia (AML), we investigated the role of ARC in regulating leukemia-mesenchymal stromal cell (MSC) interactions. In addition to the previously reported effect on AML apoptosis, we have demonstrated that ARC enhances migration and adhesion of leukemia cells to MSCs both in vitro and in a novel human extramedullary bone/bone marrow mouse model. Mechanistic studies revealed that ARC induces IL1β expression in AML cells and increases CCL2, CCL4, and CXCL12 expression in MSCs, both through ARC-mediated activation of NFκB. Expression of these chemokines in MSCs increased by AML cells in an ARC/IL1β-dependent manner; likewise, IL1β expression was elevated when leukemia cells were co-cultured with MSCs. Further, cells from AML patients expressed the receptors for and migrated toward CCL2, CCL4, and CXCL12. Inhibition of IL1β suppressed AML cell migration and sensitized the cells co-cultured with MSCs to chemotherapy. Our results suggest the existence of a complex ARC-regulated circuit that maintains intimate connection of AML with the tumor microenvironment through NFκB/IL1β-regulated chemokine receptor/ligand axes and reciprocal crosstalk resulting in cytoprotection. The data implicate ARC as a promising drug target to potentially sensitize AML cells to chemotherapy.

  4. Derepression of the Iroquois Homeodomain Transcription Factor Gene IRX3 Confers Differentiation Block in Acute Leukemia

    Directory of Open Access Journals (Sweden)

    Tim D.D. Somerville

    2018-01-01

    Full Text Available The Iroquois homeodomain transcription factor gene IRX3 is expressed in the developing nervous system, limb buds, and heart, and transcript levels specify obesity risk in humans. We now report a functional role for IRX3 in human acute leukemia. Although transcript levels are very low in normal human bone marrow cells, high IRX3 expression is found in ∼30% of patients with acute myeloid leukemia (AML, ∼50% with T-acute lymphoblastic leukemia, and ∼20% with B-acute lymphoblastic leukemia, frequently in association with high-level HOXA gene expression. Expression of IRX3 alone was sufficient to immortalize hematopoietic stem and progenitor cells (HSPCs in myeloid culture and induce lymphoid leukemias in vivo. IRX3 knockdown induced terminal differentiation of AML cells. Combined IRX3 and Hoxa9 expression in murine HSPCs impeded normal T-progenitor differentiation in lymphoid culture and substantially enhanced the morphologic and phenotypic differentiation block of AML in myeloid leukemia transplantation experiments through suppression of a terminal myelomonocytic program. Likewise, in cases of primary human AML, high IRX3 expression is strongly associated with reduced myelomonocytic differentiation. Thus, tissue-inappropriate derepression of IRX3 contributes significantly to the block in differentiation, which is the pathognomonic feature of human acute leukemias.

  5. Global Characteristics of Childhood Acute Promyelocytic Leukemia

    Science.gov (United States)

    Zhang, L; Samad, A; Pombo-de-Oliveira, MS; Scelo, G; Smith, MT; Feusner, J; Wiemels, JL; Metayer, C

    2014-01-01

    Acute promyelocytic leukemia (APL) comprises approximately 5–10% of childhood acute myeloid leukemia (AML) cases in the US. While variation in this percentage among other populations was noted previously, global patterns of childhood APL have not been thoroughly characterized. In this comprehensive review of childhood APL, we examined its geographic pattern and the potential contribution of environmental factors to observed variation. In 142 studies (spanning >60 countries) identified, variation was apparent—de novo APL represented from 2% (Switzerland) to >50% (Nicaragua) of childhood AML in different geographic regions. Because a limited number of previous studies addressed specific environmental exposures that potentially underlie childhood APL development, we gathered 28 childhood cases of therapy-related APL, which exemplified associations between prior exposures to chemotherapeutic drugs/radiation and APL diagnosis. Future population-based studies examining childhood APL patterns and the potential association with specific environmental exposures and other risk factors are needed. PMID:25445717

  6. Therapies for acute myeloid leukemia: vosaroxin

    Directory of Open Access Journals (Sweden)

    Sayar H

    2017-08-01

    Full Text Available Hamid Sayar,1 Parvaneh Bashardoust2 1Indiana University Simon Cancer Center, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; 2Oceania University of Medicine, OUM-North America, Indianapolis, IN, USA Abstract: Vosaroxin, a quinolone-derivative chemotherapeutic agent, was considered a promising drug for the treatment of acute myeloid leukemia (AML. Early-stage clinical trials with this agent led to a large randomized double-blind placebo-controlled study of vosaroxin in combination with intermediate-dose cytarabine for the treatment of relapsed or refractory AML. The study demonstrated better complete remission rates with vosaroxin, but there was no statistically significant overall survival benefit in the whole cohort. A subset analysis censoring patients who had undergone allogeneic stem cell transplantation, however, revealed a modest but statistically significant improvement in overall survival particularly among older patients. This article reviews the data available on vosaroxin including clinical trials in AML and offers an analysis of findings of these studies as well as the current status of vosaroxin. Keywords: AML, acute myeloid leukemia, vosaroxin, SNS-595, cytarabine

  7. Regulation of Trib2 by an E2F1-C/EBPα feedback loop in AML cell proliferation

    DEFF Research Database (Denmark)

    Rishi, Loveena; Hannon, Maura; Salomè, Mara

    2014-01-01

    α (C/EBPα)-p42, occurs in acute myeloid leukemia (AML), resulting in the perturbation of cell cycle and apoptosis, emphasizing its importance in the molecular pathogenesis of AML. Here we show that E2F family members directly regulate Trib2 in leukemic cells and identify a feedback regulatory loop......The loss of regulation of cell proliferation is a key event in leukemic transformation, and the oncogene tribbles (Trib)2 is emerging as a pivotal target of transcription factors in acute leukemias. Deregulation of the transcription factor E2F1, normally repressed by CCAAT enhancer-binding protein...... for E2F1, C/EBPα, and Trib2 in AML cell proliferation and survival. Further analyses revealed that E2F1-mediated Trib2 expression was repressed by C/EBPα-p42, and in normal granulocyte/macrophage progenitor cells, we detect C/EBPα bound to the Trib2 promoter. Pharmacological inhibition of the cell cycle...

  8. Pilot study of erlotinib in patients with acute myeloid leukemia.

    Science.gov (United States)

    Sayar, Hamid; Czader, Magdalena; Amin, Chirag; Cangany, Mary; Konig, Heiko; Cripe, Larry D

    2015-02-01

    We conducted a pilot study to investigate clinical efficacy of tyrosine kinase inhibitor erlotinib in the treatment of acute myeloid leukemia (AML). A total of 11 patients with de novo AML were treated, including 2 with relapsed and/or refractory disease and 9 older patients with previously untreated AML. Patients with high baseline leukocyte count were excluded. Erlotinib was given orally at 150 mg per day continuously in 28-day cycles. The treatment was tolerated well, and no toxicities were observed. An initial reduction in circulating blasts, followed by disease progression, was observed in 2 patients. Nine other patients did not demonstrate any response in blood or bone marrow. Baseline and post-cycle 1 flow-cytometry were performed on bone marrow blasts to investigate signs of differentiation. No immunophenotypic changes suggestive of differentiation were observed. This pilot study did not demonstrate response to standard doses of erlotinib in patients with AML. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Biology and relevance of human acute myeloid leukemia stem cells.

    Science.gov (United States)

    Thomas, Daniel; Majeti, Ravindra

    2017-03-23

    Evidence of human acute myeloid leukemia stem cells (AML LSCs) was first reported nearly 2 decades ago through the identification of rare subpopulations of engrafting cells in xenotransplantation assays. These AML LSCs were shown to reside at the apex of a cellular hierarchy that initiates and maintains the disease, exhibiting properties of self-renewal, cell cycle quiescence, and chemoresistance. This cancer stem cell model offers an explanation for chemotherapy resistance and disease relapse and implies that approaches to treatment must eradicate LSCs for cure. More recently, a number of studies have both refined and expanded our understanding of LSCs and intrapatient heterogeneity in AML using improved xenotransplant models, genome-scale analyses, and experimental manipulation of primary patient cells. Here, we review these studies with a focus on the immunophenotype, biological properties, epigenetics, genetics, and clinical associations of human AML LSCs and discuss critical questions that need to be addressed in future research. © 2017 by The American Society of Hematology.

  10. Comparison of outcomes after unrelated cord blood and unmanipulated haploidentical stem cell transplantation in adults with acute leukemia

    DEFF Research Database (Denmark)

    Ruggeri, A; Labopin, M; Sanz, G

    2015-01-01

    outcomes after UCBT and Haplo in adults with de novo acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). Median follow-up was 24 months. Analysis was performed separately for patients with AML, n=918 (Haplo=360, UCBT=558) and ALL, n=528 (Haplo=158 and UCBT=370). UCBT was associated......Outcomes after unmanipulated haploidentical stem cell transplantation (Haplo) and after unrelated cord blood transplantation (UCBT) are encouraging and have become alternative options to treat patients with high-risk acute leukemia without human leukocyte antigen (HLA) matched donor. We compared...... with delayed engraftment and higher graft failure in both AML and ALL recipients. In multivariate analysis, UCBT was associated with lower incidence of chronic graft-vs-host disease both in the AML group (hazard ratio (HR)=0.63, P=0.008) and in the ALL group (HR=0.58, P=0.01). Not statistically significant...

  11. Fournier's gangrene as first presentation of promyelocytic leukemia

    NARCIS (Netherlands)

    Faber, HJ; Girbes, ARJ; Daenen, S

    A 50-year-old male is described who presented with Fournier's gangrene as what is probably the first manifestation of a newly diagnosed acute myelogenous leukemia (AML), promyelocytic type or variant type M-3, according to the FAB classification. Despite aggressive fluid resuscitation, tuned

  12. ZRF1 controls the retinoic acid pathway and regulates leukemogenic potential in acute myeloid leukemia.

    Science.gov (United States)

    Demajo, S; Uribesalgo, I; Gutiérrez, A; Ballaré, C; Capdevila, S; Roth, M; Zuber, J; Martín-Caballero, J; Di Croce, L

    2014-11-27

    Acute myeloid leukemia (AML) is frequently linked to epigenetic abnormalities and deregulation of gene transcription, which lead to aberrant cell proliferation and accumulation of undifferentiated precursors. ZRF1, a recently characterized epigenetic factor involved in transcriptional regulation, is highly overexpressed in human AML, but it is not known whether it plays a role in leukemia progression. Here, we demonstrate that ZRF1 depletion decreases cell proliferation, induces apoptosis and enhances cell differentiation in human AML cells. Treatment with retinoic acid (RA), a differentiating agent currently used to treat certain AMLs, leads to a functional switch of ZRF1 from a negative regulator to an activator of differentiation. At the molecular level, ZRF1 controls the RA-regulated gene network through its interaction with the RA receptor α (RARα) and its binding to RA target genes. Our genome-wide expression study reveals that ZRF1 regulates the transcription of nearly half of RA target genes. Consistent with our in vitro observations that ZRF1 regulates proliferation, apoptosis, and differentiation, ZRF1 depletion strongly inhibits leukemia progression in a xenograft mouse model. Finally, ZRF1 knockdown cooperates with RA treatment in leukemia suppression in vivo. Taken together, our data reveal that ZRF1 is a key transcriptional regulator in leukemia progression and suggest that ZRF1 inhibition could be a novel strategy to be explored for AML treatment.

  13. Advancements in the management of medically less-fit and older adults with newly diagnosed acute myeloid leukemia.

    Science.gov (United States)

    Michaelis, Laura C; Klepin, Heidi D; Walter, Roland B

    2018-06-01

    Treating acute myeloid leukemia (AML) in older adults remains daunting. The unique biology often renders conventional chemotherapies less effective. Accurately predicting the toxicities of treatment is another unresolved challenge. Treatment planning thus requires a good knowledge of the current trial data and familiarity with clinical tools, including formal fitness and geriatric assessments. Both obstacles - disease biology and patient fitness - might be easier overcome with specific, AML cell-targeted agents rather than traditional cytotoxic chemotherapy. This may be the future of AML therapy, but it is not our current state. Areas covered: Herein, the authors appraise the data supporting a standard induction approach, including an outline of how to predict treatment-related mortality and a review of the most up-to-date methods of geriatric assessment. They also discuss treatment expectations with less-intense therapies and highlight novel agents in development. Finally, they provide a basic approach to choosing treatment intensity. Expert opinion: In an older and/or medically less-fit patient, treatment choice should begin with a thorough disease assessment, a formal evaluation of patient fitness and frailty. There should also be a clear communication with the patient and patient's family about the risks and anticipated benefits of either an intense or nonintense treatment approach.

  14. Deferasirox and vitamin D improves overall survival in elderly patients with acute myeloid leukemia after demethylating agents failure.

    Directory of Open Access Journals (Sweden)

    Etienne Paubelle

    Full Text Available The prognosis of acute myeloid leukemia (AML in elderly (≥65 years patients is poor and treatment remains non-consensual especially for those who are not eligible for intensive therapies. Our group has shown that in vitro the iron chelator deferasirox (DFX synergizes with vitamin D (VD to promote monocyte differentiation in primary AML cells. Herein, we present results from a retrospective case-control study in which the association of DFX (1-2 g/d and 25-hydroxycholecalciferol (100,000 IU/week (DFX/VD was proposed to patients following demethylating agents failure. Median survival of patients treated with DFX/VD combination (n = 17 was significantly increased in comparison with matched patients receiving best supportive care (BSC alone (n = 13 (10.4 versus 4 months respectively. In addition, the only factor associated to an increased overall survival in DFX/VD-treated patients was serum VD levels. We conclude that DFX/VD treatment correlated with increased overall survival of AML patients in this retrospective cohort of elderly patients.

  15. Constitutional t(5;7)(q11;p15) rearranged to acquire monosomy 7q and trisomy 1q in a patient with myelodysplastic syndrome transforming to acute myelocytic leukemia.

    Science.gov (United States)

    Ganly, Peter; McDonald, Margaret; Spearing, Ruth; Morris, Christine M

    2004-03-01

    We report the case of a 61-year-old woman who presented with a myelodysplastic syndrome (MDS) and a t(5;7)(q11.2;p15) in her bone marrow cells. Subsequent analysis of phytohemagglutinin-stimulated peripheral blood lymphocytes and cultured skin fibroblasts showed that the translocation was constitutional. Disruption of chromosome bands 5q11.2 and 7p15 has been described recurrently in MDS and acute myelocytic leukemia (AML) and, although the age of onset was not earlier than usual, it is nonetheless possible that genes interrupted by this translocation may been a predisposing factor for her condition. With progression to AML, a further rearrangement of the constitutional der(7)t(5;7) occurred, involving chromosome arm 1q. Fluorescence in situ hybridization (FISH) with whole-chromosome paints showed that the result of the second rearrangement, a t(1;7)(q32.1;q32), was observed, leading to trisomy of the segment 1q32.1 approximately qter and monosomy of the segment 7q32.1 approximately qter. The acquired imbalances, particularly loss of 7q, are commonly associated with MDS/AML and a poor prognosis; however, this patient remained in remission after treatment for more than two years before AML relapse, perhaps because the affected regions fall outside of the critical regions of imbalance.

  16. Minimal Residual Disease in Acute Myeloid Leukemia

    Science.gov (United States)

    Hourigan, Christopher S.; Karp, Judith E.

    2014-01-01

    Technological advances in the laboratory have lead to substantial improvements in clinical decision-making by the use of pre-treatment prognostic risk stratification factors in acute myeloid leukemia (AML). Unfortunately similar progress has not been made in treatment response criteria, with the definition of “complete remission” in AML largely unchanged for over half a century. Several recent clinical trials have demonstrated that higher sensitivity measurements of residual disease burden during or after treatment can be performed, that results are predictive for clinical outcome and can be used to improve outcomes by guiding additional therapeutic intervention to patients in clinical complete remission but at increased relapse risk. We review here these recent trials, the characteristics and challenges of the modalities currently used to detect minimal residual disease (MRD), and outline opportunities to both refine detection and better clinically utilize MRD measurements. MRD measurement is already the standard of care in other myeloid malignancies such as chronic myelogenous leukemia (CML) and acute promyelocytic leukemia (APL). It is our belief that response criteria for non-APL AML should be updated to include assessment for molecular complete remission (mCR) and that recommendations for post-consolidation surveillance should include regular monitoring for molecular relapse as a standard of care. PMID:23799371

  17. All-trans retinoic acid synergizes with FLT3 inhibition to eliminate FLT3/ITD+ leukemia stem cells in vitro and in vivo.

    Science.gov (United States)

    Ma, Hayley S; Greenblatt, Sarah M; Shirley, Courtney M; Duffield, Amy S; Bruner, J Kyle; Li, Li; Nguyen, Bao; Jung, Eric; Aplan, Peter D; Ghiaur, Gabriel; Jones, Richard J; Small, Donald

    2016-06-09

    FMS-like tyrosine kinase 3 (FLT3)-mutant acute myeloid leukemia (AML) portends a poor prognosis, and ineffective targeting of the leukemic stem cell (LSC) population remains one of several obstacles in treating this disease. All-trans retinoic acid (ATRA) has been used in several clinical trials for the treatment of nonpromyelocytic AML with limited clinical activity observed. FLT3 tyrosine kinase inhibitors (TKIs) used as monotherapy also achieve limited clinical responses and are thus far unable to affect cure rates in AML patients. We explored the efficacy of combining ATRA and FLT3 TKIs to eliminate FLT3/internal tandem duplication (ITD)(+) LSCs. Our studies reveal highly synergistic drug activity, preferentially inducing apoptosis in FLT3/ITD(+) cell lines and patient samples. Colony-forming unit assays further demonstrate decreased clonogenicity of FLT3/ITD(+) cells upon treatment with ATRA and TKI. Most importantly, the drug combination depletes FLT3/ITD(+) LSCs in a genetic mouse model of AML, and prolongs survival of leukemic mice. Furthermore, engraftment of primary FLT3/ITD(+) patient samples is reduced in mice following treatment with FLT3 TKI and ATRA in combination, with evidence of cellular differentiation occurring in vivo. Mechanistically, we provide evidence that the synergism of ATRA and FLT3 TKIs is at least in part due to the observation that FLT3 TKI treatment upregulates the antiapoptotic protein Bcl6, limiting the drug's apoptotic effect. However, cotreatment with ATRA reduces Bcl6 expression to baseline levels through suppression of interleukin-6 receptor signaling. These studies provide evidence of the potential of this drug combination to eliminate FLT3/ITD(+) LSCs and reduce the rate of relapse in AML patients with FLT3 mutations.

  18. Cytarabine and daunorubicin or idarubicin in induction therapy of Acute Myeloid Leukemia patients

    International Nuclear Information System (INIS)

    Eivazi-Ziaei, J.; Kermani, I.A.; Nikanfar, A.; Maljaie, H.; Mahmoudpour, A.; Dolatkhah, R.

    2010-01-01

    Objectives: Acute myeloid leukemia (AML), the most common form of acute leukemia, is treated by remission induction and post-remission therapy. Remission induction is usually achieved by administration of cytarabine along with an anthracycline such as Daunorubicin (DAU) or Idarubicin (IDA). Our objective was see the benefits if any of IDA over DAU in AML therapy. Methodology: Eighty adult AML patients were enrolled in this study, where 40 received DAU and 40 were treated with IDA. Remission status in each subject was studied and response to therapy was subsequently analyzed using SPSS. Results: Complete remission, partial remission and no responsive status were 15, 19, and 14 respectively for patients on DAU and 14, 18, and 11 for patients on IDA protocol. No significant benefit was detected for IDA compared to DAU in response to therapy. Conclusion: We found no benefit in using IDA over DAU in induction therapy for AML patients treated in northwest of Iran. (author)

  19. Pattern of Occurrence of Leukemia at a Teaching Hospital in Eastern Region of Nepal - A Six Year Study

    Directory of Open Access Journals (Sweden)

    Ritu Kulshrestha

    2009-01-01

    The data published in this study reflects the leukemia pattern in the eastern region of Nepal. The pattern and distribution of AML, CML, ALL was similar to that in the developed western countries while the lesser frequency of CLL was similar to that in Southeast Asian region Key Words:leukemia, pattern, eastern Nepal, seasonality.

  20. Profiling of histone H3 lysine 9 trimethylation levels predicts transcription factor activity and survival in acute myeloid leukemia

    DEFF Research Database (Denmark)

    Müller-Tidow, Carsten; Klein, Hans-Ulrich; Hascher, Antje

    2010-01-01

    Acute Myeloid Leukemia (AML) is commonly associated with alterations in transcription factors due to altered expression or gene mutations. These changes might induce leukemia- specific patterns of histone modifications. We used ChIP-Chip to analyze histone H3 Lysine 9 trimethylation (H3K9me3) pat...

  1. Decreased PARP and procaspase-2 protein levels are associated with cellular drug resistance in childhood acute lymphoblastic leukemia

    NARCIS (Netherlands)

    A. Holleman (Amy); M.L. den Boer (Monique); K.M. Kazemier (Karin); H.B. Beverloo (Berna); A.R.M. von Bergh (Anne); G.E. Janka-Schaub (Gritta); R. Pieters (Rob)

    2005-01-01

    textabstractDrug resistance in childhood acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) is associated with impaired ability to induce apoptosis. To elucidate causes of apoptotic defects, we studied the protein expression of Apaf-1, procaspases-2, -3, -6, -7,

  2. Cooperation between RUNX1-ETO9a and novel transcriptional partner KLF6 in upregulation of Alox5 in acute myeloid leukemia.

    Directory of Open Access Journals (Sweden)

    Russell C DeKelver

    Full Text Available Fusion protein RUNX1-ETO (AML1-ETO, RUNX1-RUNX1T1 is expressed as the result of the 8q22;21q22 translocation [t(8;21], which is one of the most common chromosomal abnormalities found in acute myeloid leukemia. RUNX1-ETO is thought to promote leukemia development through the aberrant regulation of RUNX1 (AML1 target genes. Repression of these genes occurs via the recruitment of the corepressors N-COR and SMRT due to their interaction with ETO. Mechanisms of RUNX1-ETO target gene upregulation remain less well understood. Here we show that RUNX1-ETO9a, the leukemogenic alternatively spliced transcript expressed from t(8;21, upregulates target gene Alox5, which is a gene critically required for the promotion of chronic myeloid leukemia development by BCR-ABL. Loss of Alox5 expression reduces activity of RUNX1-ETO9a, MLL-AF9 and PML-RARα in vitro. However, Alox5 is not essential for the induction of leukemia by RUNX1-ETO9a in vivo. Finally, we demonstrate that the upregulation of Alox5 by RUNX1-ETO9a occurs via the C₂H₂ zinc finger transcription factor KLF6, a protein required for early hematopoiesis and yolk sac development. Furthermore, KLF6 is specifically upregulated by RUNX1-ETO in human leukemia cells. This identifies KLF6 as a novel mediator of t(8;21 target gene regulation, providing a new mechanism for RUNX1-ETO transcriptional control.

  3. Improved treatment results in high-risk pediatric acute myeloid leukemia patients after intensification with high-dose cytarabine and mitoxantrone: results of Study Acute Myeloid Leukemia-Berlin-Frankfurt-Münster 93.

    Science.gov (United States)

    Creutzig, U; Ritter, J; Zimmermann, M; Reinhardt, D; Hermann, J; Berthold, F; Henze, G; Jürgens, H; Kabisch, H; Havers, W; Reiter, A; Kluba, U; Niggli, F; Gadner, H

    2001-05-15

    To improve outcome in high-risk patients, high-dose cytarabine and mitoxantrone (HAM) was introduced into the treatment of children with acute myelogenous leukemia (AML) in study AML-BFM 93. Patients were randomized to HAM as either the second or third therapy block, for the purpose of evaluation of efficacy and toxicity. A total of 471 children with de novo AML were entered onto the trial; 161 were at standard risk and 310 were at high risk. After the randomized induction (daunorubicin v idarubicin), further therapy, with the exception of HAM, was identical in the two risk groups and also comparable to that in study Acute Myeloid Leukemia-Berlin-Frankfurt-Münster (AML-BFM) 87. Overall, 387 (82%) of 471 patients achieved complete remission, and 5-year survival, event-free survival (EFS), and disease-free survival rates were 60%, 51%, and 62%, respectively. Idarubicin induction resulted in a significantly better blast cell reduction in the bone marrow on day 15. Estimated survival and probability of EFS were superior in study AML-BFM 93 compared with study AML-BFM 87 (P =.01, log-rank test). This improvement, however, was restricted to the 310 high-risk patients (remission rate and probability of 5-year EFS in study AML-BFM 93 v study AML-BFM 87: 78% v 68%, P =.007; and 44% v 31%, P =.01, log-rank test). Probability of 5-year EFS among standard-risk patients in study AML-BFM 93 was similar to that in study AML-BFM 87 (65% v 63%, P = not significant). Whether HAM was placed as the second or third therapy block was of minor importance. However, patients who received the less intensive daunorubicin treatment during induction benefited from early HAM. Improved treatment results in children with high-risk AML in study AML-BFM 93 must be attributed mainly to the introduction of HAM.

  4. Regulatory T cells-derived IL-35 promotes the growth of adult acute myeloid leukemia blasts.

    Science.gov (United States)

    Tao, Qianshan; Pan, Ying; Wang, Yiping; Wang, Huiping; Xiong, Shudao; Li, Qing; Wang, Jia; Tao, Lili; Wang, Zhitao; Wu, Fan; Zhang, Rui; Zhai, Zhimin

    2015-11-15

    Tumor immune escape mechanism mediated by CD4+CD25+regulatory T cells (Tregs) is a key factor in the pathogenesis of acute myeloid leukemia (AML). IL-35, as a novel inhibitory cytokine, is produced by Tregs specially and regulates functions of Tregs in murine. However, IL-35 expression of Tregs in human is still disputed, and its role in AML is yet to be elucidated. In this study, we found that IL-35 was expressed highly in peripheral blood plasma of adult patients with AML and significantly correlated with the clinical stages of malignancy. Tregs-derived from adult AML patients produced IL-35 in a stimulation-dependent manner. IL-35 promoted AML blasts immune escape by expanding Tregs and inhibiting CD4+CD25-effector T cells (Teffs). Furthermore, IL-35 directly promoted the proliferation of AML blasts and reduced the apoptosis of AML blasts. Together, our study demonstrates that IL-35-derived from Tregs promotes the growth of adult AML blasts, suggesting that IL-35 has an important role in the pathogenesis of AML. © 2015 UICC.

  5. Acquired Dependence of Acute Myeloid Leukemia on the DEAD-Box RNA Helicase DDX5

    Directory of Open Access Journals (Sweden)

    Anthony Mazurek

    2014-06-01

    Full Text Available Acute myeloid leukemia (AML therapy involves compounds that are cytotoxic to both normal and cancer cells, and relapsed AML is resistant to subsequent chemotherapy. Thus, agents are needed that selectively kill AML cells with minimal toxicity. Here, we report that AML is dependent on DDX5 and that inhibiting DDX5 expression slows AML cell proliferation in vitro and AML progression in vivo but is not toxic to cells from normal bone marrow. Inhibition of DDX5 expression in AML cells induces apoptosis via induction of reactive oxygen species (ROS. This apoptotic response can be blocked either by BCL2 overexpression or treatment with the ROS scavenger N-acetyl-L-cysteine. Combining DDX5 knockdown with a BCL2 family inhibitor cooperates to induce cell death in AML cells. By inhibiting DDX5 expression in vivo, we show that DDX5 is dispensable for normal hematopoiesis and tissue homeostasis. These results validate DDX5 as a potential target for blocking AML.

  6. Nassi-Schneiderman Diagram in HTML Based on AML

    Science.gov (United States)

    Menyhárt, László

    2013-01-01

    In an earlier work I defined an extension of XML called Algorithm Markup Language (AML) for easy and understandable coding in an IDE which supports XML editing (e.g. NetBeans). The AML extension contains annotations and native language (English or Hungarian) tag names used when coding our algorithm. This paper presents a drawing tool with which…

  7. Acute Myeloid Leukemia in Adolescents and Young Adults Treated in Pediatric and Adult Departments in the Nordic Countries

    DEFF Research Database (Denmark)

    Wennström, Lovisa; Edslev, Pernille Wendtland; Abrahamsson, Jonas

    2016-01-01

    BACKGROUND: Studies on adolescents and young adults with acute lymphoblastic leukemia suggest better results when using pediatric protocols for adult patients, while corresponding data for acute myeloid leukemia (AML) are limited. PROCEDURE: We investigated disease characteristics and outcome...... countries. RESULTS: The incidence of AML was 4.9/million/year for the age group 10-14 years, 6.5 for 15-18 years, and 6.9 for 19-30 years. Acute promyelocytic leukemia (APL) was more frequent in adults and in females of all ages. Pediatric patients with APL had similar overall survival as pediatric patients...

  8. Systematic review of health state utility values for acute myeloid leukemia

    OpenAIRE

    Forsythe, Anna; Brandt, Patricia S; Dolph, Mike; Patel, Sachin; Rabe, Adrian Paul J; Tremblay, Gabriel

    2018-01-01

    Anna Forsythe,1 Patricia S Brandt,2 Mike Dolph,1 Sachin Patel,3 Adrian Paul J Rabe,1 Gabriel Tremblay1 1Purple Squirrel Economics, New York, NY, 2Novartis Pharmaceuticals, East Hanover, NJ, USA; 3Novartis Pharmaceuticals UK Limited, Frimley, Camberley, Surrey, UK Background: Cost-utility analyses for acute myeloid leukemia (AML) require health state utility values (HSUVs) in order to calculate quality-adjusted life-years (QALYs) for each health state. Aim: This study reviewed AML-related HSU...

  9. Distinct genetic alteration profiles of acute myeloid leukemia between Caucasian and Eastern Asian population.

    Science.gov (United States)

    Wei, Hui; Wang, Ying; Zhou, Chunlin; Lin, Dong; Liu, Bingcheng; Liu, Kaiqi; Qiu, Shaowei; Gong, Benfa; Li, Yan; Zhang, Guangji; Wei, Shuning; Gong, Xiaoyuan; Liu, Yuntao; Zhao, Xingli; Gu, Runxia; Mi, Yingchang; Wang, Jianxiang

    2018-02-10

    Racial and ethnic disparities in malignancies attract extensive attention. To investigate whether there are racial and ethnic disparities in genetic alteration between Caucasian and Eastern Asian population, data from several prospective AML trials were retrospectively analyzed in this study. We found that there were more patients with core binding factor (CBF) leukemia in Eastern Asian cohorts and there were different CBF leukemia constitutions between them. The ratios of CBF leukemia are 27.7, 22.1, 21.1, and 23.4%, respectively, in our (ChiCTR-TRC-10001202), another Chinese, Korean, and Japanese Eastern Asian cohorts, which are significantly higher than those in ECOG1900, MRC AML15, UK NCRI AML17, HOVON/SAKK AML-42, and German AML2003 (15.5, 12.5, 9.3, 10.2, and 12%, respectively). And CBFbeta-MYH11 occurred more prevalently in HOVON/SAKK AML- 42 and ECOG1900 trials (50.0 and 54.3% of CBF leukemia, respectively) than in Chinese and Japanese trials (20.1 and 20.8%, respectively). The proportion of FLT3-ITD mutation is 11.2% in our cohort, which is lower than that in MRC AML15 and UK NCRI AML17 (24.6 and 17.9%, respectively). Even after excluding the age bias, there are still different incidence rates of mutation between Caucasian and Eastern Asian population. These data suggest that there are racial and ethnic disparities in genetic alteration between Caucasian and Eastern Asian population.

  10. Unusual distribution of red marrow mimicking chloroma in a patient with acute myelogenous leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, M.N.; Claussen, C.D.; Horger, M.S. [Eberhard-Karls University, Department of Diagnostic Radiology, Tuebingen (Germany); Vogel, W. [Eberhard-Karls University, Department of Internal Medicine-Oncology, Tuebingen (Germany); Bares, R. [Eberhard-Karls University, Department of Nuclear Medicine, Tuebingen (Germany); Wehrmann, M. [Eberhard-Karls University, Department of Pathology, Tuebingen (Germany)

    2007-06-15

    We present a case of unusual distribution of red marrow in a patient with extramedullary acute myelogenous leukemia (AML). In adults, hematopoietic marrow is usually located in the axial skeleton and the proximal aspects of the limbs, except for the epiphyses. Nodular islets of red marrow located in the epiphyseal and distal parts of the limbs may mimic tumoral infiltration and be mistaken for chloroma in a patient with AML. (orig.)

  11. A robust and rapid xenograft model to assess efficacy of chemotherapeutic agents for human acute myeloid leukemia

    International Nuclear Information System (INIS)

    Saland, E; Boutzen, H; Castellano, R; Pouyet, L; Griessinger, E; Larrue, C; Toni, F de; Scotland, S; David, M; Danet-Desnoyers, G; Vergez, F; Barreira, Y; Collette, Y; Récher, C; Sarry, J-E

    2015-01-01

    Relevant preclinical mouse models are crucial to screen new therapeutic agents for acute myeloid leukemia (AML). Current in vivo models based on the use of patient samples are not easy to establish and manipulate in the laboratory. Our objective was to develop robust xenograft models of human AML using well-characterized cell lines as a more accessible and faster alternative to those incorporating the use of patient-derived AML cells. Five widely used AML cell lines representing various AML subtypes were transplanted and expanded into highly immunodeficient non-obese diabetic/LtSz-severe combined immunodeficiency IL2Rγ c null mice (for example, cell line-derived xenografts). We show here that bone marrow sublethal conditioning with busulfan or irradiation has equal efficiency for the xenotransplantation of AML cell lines. Although higher number of injected AML cells did not change tumor engraftment in bone marrow and spleen, it significantly reduced the overall survival in mice for all tested AML cell lines. On the basis of AML cell characteristics, these models also exhibited a broad range of overall mouse survival, engraftment, tissue infiltration and aggressiveness. Thus, we have established a robust, rapid and straightforward in vivo model based on engraftment behavior of AML cell lines, all vital prerequisites for testing new therapeutic agents in preclinical studies

  12. Current Approaches in the Treatment of Relapsed and Refractory Acute Myeloid Leukemia

    Science.gov (United States)

    Ramos, Nestor R.; Mo, Clifton C.; Karp, Judith E.; Hourigan, Christopher S.

    2015-01-01

    The limited sensitivity of the historical treatment response criteria for acute myeloid leukemia (AML) has resulted in a different paradigm for treatment compared with most other cancers presenting with widely disseminated disease. Initial cytotoxic induction chemotherapy is often able to reduce tumor burden to a level sufficient to meet the current criteria for “complete” remission. Nevertheless, most AML patients ultimately die from their disease, most commonly as clinically evident relapsed AML. Despite a variety of available salvage therapy options, prognosis in patients with relapsed or refractory AML is generally poor. In this review, we outline the commonly utilized salvage cytotoxic therapy interventions and then highlight novel investigational efforts currently in clinical trials using both pathway-targeted agents and immunotherapy based approaches. We conclude that there is no current standard of care for adult relapsed or refractory AML other than offering referral to an appropriate clinical trial. PMID:25932335

  13. Somatic mutations in the transcriptional corepressor gene BCORL1 in adult acute myelogenous leukemia.

    Science.gov (United States)

    Li, Meng; Collins, Roxane; Jiao, Yuchen; Ouillette, Peter; Bixby, Dale; Erba, Harry; Vogelstein, Bert; Kinzler, Kenneth W; Papadopoulos, Nickolas; Malek, Sami N

    2011-11-24

    To further our understanding of the genetic basis of acute myelogenous leukemia (AML), we determined the coding exon sequences of ∼ 18 000 protein-encoding genes in 8 patients with secondary AML. Here we report the discovery of novel somatic mutations in the transcriptional corepressor gene BCORL1 that is located on the X-chromosome. Analysis of BCORL1 in an unselected cohort of 173 AML patients identified a total of 10 mutated cases (6%) with BCORL1 mutations, whereas analysis of 19 AML cell lines uncovered 4 (21%) BCORL1 mutated cell lines. The majority (87%) of the mutations in BCORL1 were predicted to inactivate the gene product as a result of nonsense mutations, splice site mutation, or out-of-frame insertions or deletions. These results indicate that BCORL1 by genetic criteria is a novel candidate tumor suppressor gene, joining the growing list of genes recurrently mutated in AML.

  14. Immunotherapy of elderly acute myeloid leukemia: light at the end of a long tunnel?

    Science.gov (United States)

    Rafelson, William M; Reagan, John L; Fast, Loren D; Lim, Seah H

    2017-11-01

    Although it is possible to induce remission in the majority of the patients with acute myeloid leukemia (AML), many patients still die due to disease relapse. Immunotherapy is an attractive option. It is more specific. The memory T cells induced by immunotherapy may also provide the long-term tumor immunosurveillance to prevent disease relapse. Although immunotherapy of AML started in the early 1970s, its clinical impact has been disappointing. Recent advances in tumor immunology and immunotherapeutic agents have rekindled interest. Here, we provide a review of the history of AML immunotherapy, discuss why AML is well suited for immunotherapeutic approaches and present the biological obstacles that affect the success of immunotherapy. Finally, we put forward a new paradigm of AML immunotherapy that utilizes a combination of immunotherapeutic agents sequentially to enhance the in vivo tumor immunogenicity and effective priming and propagation of tumor-specific cytotoxic T cells.

  15. FHL2 interacts with CALM and is highly expressed in acute erythroid leukemia

    International Nuclear Information System (INIS)

    Pašaliç, Z; Greif, P A; Jurinoviç, V; Mulaw, M; Kakadia, P M; Tizazu, B; Fröhlich-Archangelo, L; Krause, A; Bohlander, S K

    2011-01-01

    The t(10;11)(p13;q14) translocation results in the fusion of the CALM (clathrin assembly lymphoid myeloid leukemia protein) and AF10 genes. This translocation is observed in acute myeloblastic leukemia (AML M6), acute lymphoblastic leukemia (ALL) and malignant lymphoma. Using a yeast two-hybrid screen, the four and a half LIM domain protein 2 (FHL2) was identified as a CALM interacting protein. Recently, high expression of FHL2 in breast, gastric, colon, lung as well as in prostate cancer was shown to be associated with an adverse prognosis. The interaction between CALM and FHL2 was confirmed by glutathione S-transferase-pulldown assay and co-immunoprecipitation experiments. The FHL2 interaction domain of CALM was mapped to amino acids 294–335 of CALM. The transcriptional activation capacity of FHL2 was reduced by CALM, but not by CALM/AF10, which suggests that regulation of FHL2 by CALM might be disturbed in CALM/AF10-positive leukemia. Extremely high expression of FHL2 was seen in acute erythroid leukemia (AML M6). FHL2 was also highly expressed in chronic myeloid leukemia and in AML with complex aberrant karyotype. These results suggest that FHL2 may play an important role in leukemogenesis, especially in the case of AML M6

  16. Alantolactone selectively ablates acute myeloid leukemia stem and progenitor cells

    Directory of Open Access Journals (Sweden)

    Yahui Ding

    2016-09-01

    Full Text Available Abstract Background The poor outcomes for patients diagnosed with acute myeloid leukemia (AML are largely attributed to leukemia stem cells (LSCs which are difficult to eliminate with conventional therapy and responsible for relapse. Thus, new therapeutic strategies which could selectively target LSCs in clinical leukemia treatment and avoid drug resistance are urgently needed. However, only a few small molecules have been reported to show anti-LSCs activity. Methods The aim of the present study was to identify alantolactone as novel agent that can ablate acute myeloid leukemia stem and progenitor cells from AML patient specimens and evaluate the anticancer activity of alantolactone in vitro and in vivo. Results The present study is the first to demonstrate that alantolactone, a prominent eudesmane-type sesquiterpene lactone, could specifically ablate LSCs from AML patient specimens. Furthermore, in comparison to the conventional chemotherapy drug, cytosine arabinoside (Ara-C, alantolactone showed superior effects of leukemia cytotoxicity while sparing normal hematopoietic cells. Alantolactone induced apoptosis with a dose-dependent manner by suppression of NF-kB and its downstream target proteins. DMA-alantolactone, a water-soluble prodrug of alantolactone, could suppress tumor growth in vivo. Conclusions Based on these results, we propose that alantolactone may represent a novel LSCs-targeted therapy and eudesmane-type sesquiterpene lactones offer a new scaffold for drug discovery towards anti-LSCs agents.

  17. The contribution of benzene to smoking-induced leukemia.

    Science.gov (United States)

    Korte, J E; Hertz-Picciotto, I; Schulz, M R; Ball, L M; Duell, E J

    2000-04-01

    Cigarette smoking is associated with an increased risk of leukemia; benzene, an established leukemogen, is present in cigarette smoke. By combining epidemiologic data on the health effects of smoking with risk assessment techniques for low-dose extrapolation, we assessed the proportion of smoking-induced total leukemia and acute myeloid leukemia (AML) attributable to the benzene in cigarette smoke. We fit both linear and quadratic models to data from two benzene-exposed occupational cohorts to estimate the leukemogenic potency of benzene. Using multiple-decrement life tables, we calculated lifetime risks of total leukemia and AML deaths for never, light, and heavy smokers. We repeated these calculations, removing the effect of benzene in cigarettes based on the estimated potencies. From these life tables we determined smoking-attributable risks and benzene-attributable risks. The ratio of the latter to the former constitutes the proportion of smoking-induced cases attributable to benzene. Based on linear potency models, the benzene in cigarette smoke contributed from 8 to 48% of smoking-induced total leukemia deaths [95% upper confidence limit (UCL), 20-66%], and from 12 to 58% of smoking-induced AML deaths (95% UCL, 19-121%). The inclusion of a quadratic term yielded results that were comparable; however, potency models with only quadratic terms resulted in much lower attributable fractions--all models substantially overestimate low-dose risk, linear extrapolations from empirical data over a dose range of 10- to 100-fold resulted in plausible predictions.

  18. The Runt domain of AML1 (RUNX1) binds a sequence-conserved RNA motif that mimics a DNA element.

    Science.gov (United States)

    Fukunaga, Junichi; Nomura, Yusuke; Tanaka, Yoichiro; Amano, Ryo; Tanaka, Taku; Nakamura, Yoshikazu; Kawai, Gota; Sakamoto, Taiichi; Kozu, Tomoko

    2013-07-01

    AML1 (RUNX1) is a key transcription factor for hematopoiesis that binds to the Runt-binding double-stranded DNA element (RDE) of target genes through its N-terminal Runt domain. Aberrations in the AML1 gene are frequently found in human leukemia. To better understand AML1 and its potential utility for diagnosis and therapy, we obtained RNA aptamers that bind specifically to the AML1 Runt domain. Enzymatic probing and NMR analyses revealed that Apt1-S, which is a truncated variant of one of the aptamers, has a CACG tetraloop and two stem regions separated by an internal loop. All the isolated aptamers were found to contain the conserved sequence motif 5'-NNCCAC-3' and 5'-GCGMGN'N'-3' (M:A or C; N and N' form Watson-Crick base pairs). The motif contains one AC mismatch and one base bulged out. Mutational analysis of Apt1-S showed that three guanines of the motif are important for Runt binding as are the three guanines of RDE, which are directly recognized by three arginine residues of the Runt domain. Mutational analyses of the Runt domain revealed that the amino acid residues used for Apt1-S binding were similar to those used for RDE binding. Furthermore, the aptamer competed with RDE for binding to the Runt domain in vitro. These results demonstrated that the Runt domain of the AML1 protein binds to the motif of the aptamer that mimics DNA. Our findings should provide new insights into RNA function and utility in both basic and applied sciences.

  19. Complex three-way translocation involving MLL, ELL, RREB1, and CMAHP genes in an infant with acute myeloid leukemia and t(6;19;11)(p22.2;p13.1;q23.3)

    DEFF Research Database (Denmark)

    Tuborgh, A; Meyer, C; Marschalek, R

    2013-01-01

    until progression to acute myeloid leukemia, AML-M5. The leukemic cells harbored a novel apparent 3-way translocation t(6;19;11)(p22.2;p13.1;q23.3). We utilized advanced molecular cytogenetic methods including 24-color karyotyping, high-resolution array comparative genomic hybridization (aCGH) and DNA...... in the initial stages of disease before clear morphological signs of bone marrow involvement. The patient responded well to therapy and remains in remission>6 years from diagnosis. This apparent 3-way translocation is remarkable because of its rarity and presentation with myeloid sarcoma, and may, as more cases...

  20. Progress in the leukemias

    International Nuclear Information System (INIS)

    Galton, D.A.G.; Spiers, A.S.D.

    1971-01-01

    Recent work on the epidemiology of leukemia is reviewed in relation to factors of possible etiologic importance. There is still much geographic variation in the accuracy of diagnosis, the reliability of death certification, and the provision of national registries for classifying leukemia according to cytologic type. This variation and the low incidence of all types of leukemia make difficult the recognition of potentially significant distributions or trends that might suggest the operation of environmental leukemogens and their interaction with genetically determined susceptibility. Exposure to ionizing radiation remains the only predisposing factor beyond doubt for acute and chronic granulocytic leukemia, but its exact role remains obscure. There is no evidence that radiation plays a part in the etiology of chronic lymphocytic leukemia. In the population of survivors of the Hiroshima atomic bomb explosion of 1945, the incidence of leukemia (mainly CGL), though declining in the second 10-year period, was still higher than that of Japan as a whole. The suggestion that the exposure of women to radiation could increase the likelihood of leukemia in their still unconceived children was examined by the Atomic Bomb Casualty Commission in a prospective study of 17,700 children, and no increase in the incidence of leukemia was found in the children of parents who had been heavily exposed to radiation before conception. In the 1960's a decline in the United States mortality rates for leukemia among the white population was recorded. This decline was most marked in children below age 5, and it was suggested that the decline could have resulted from a drop in the use of diagnostic radiology in pregnant women following the reports in 1956 of the Medical Research Council and the National Academy of Sciences on the biologic hazards of radiation. A similar decline in mortality was reported from Norway. (464 references) (U.S.)

  1. Birth weight and other perinatal characteristics and childhood leukemia in California.

    Science.gov (United States)

    Oksuzyan, S; Crespi, C M; Cockburn, M; Mezei, G; Kheifets, L

    2012-12-01

    We conducted a large registry-based study in California to investigate the association of perinatal factors and childhood leukemia with analysis of two major subtypes, acute lymphocytic leukemia (ALL) and acute myeloid leukemia (AML). We linked California cancer and birth registries to obtain information on 5788 cases and 5788 controls matched on age and sex (1:1). We examined the association of birth weight, gestational age, birth and pregnancy order, parental ages, and specific conditions during pregnancy and risk of total leukemia, ALL and AML using conditional logistic regression, with adjustment for potential confounders. The odds ratio (OR) per 1000 g increase in birth weight was 1.11 for both total leukemia and ALL. The OR were highest for babies weighing ≥ 4500 g with reference birth weight and LGA were associated with increased risk and SGA with decreased risk of total childhood leukemia and ALL, being first-born was associated with decreased risk of AML, and advanced paternal age was associated with increased risk of ALL. These findings suggest that associations of childhood leukemia and perinatal factors depend highly on subtype of leukemia. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Targeted Therapies in Hematology and Their Impact on Patient Care: Chronic and Acute Myeloid Leukemia

    Science.gov (United States)

    Cortes, Elias Jabbour Jorge; Ravandi, Farhad; O’Brien, Susan; Kantarjian, Hagop

    2014-01-01

    Advances in the genetic and molecular characterizations of leukemias have enhanced our capabilities to develop targeted therapies. The most dramatic examples of targeted therapy in cancer to date are the use of targeted BCR-ABL protein tyrosine kinase inhibitors (TKI) which has revolutionized the treatment of chronic myeloid leukemia (CML). Inhibition of the signaling activity of this kinase has proved to be a highly successful treatment target, transforming the prognosis of patients with CML. In contrast, acute myeloid leukemia (AML) is an extremely heterogeneous disease with outcomes that vary widely according to subtype of the disease. Targeted therapy with monoclonal antibodies and small molecule kinase inhibitors are promising strategies to help improve the cure rates in AML. In this review, we will highlight the results of recent clinical trials in which outcomes of CML and AML have been influenced significantly. Also, novel approaches to sequencing and combining available therapies will be covered. PMID:24246694

  3. Radiation responses of hematopoietic-cells and inducing acute myeloid leukemia

    International Nuclear Information System (INIS)

    Ojima, Mitsuaki; Hirouchi, Tokuhisa

    2016-01-01

    Leukemia has consistently held the interest of researchers from the beginning of radiation carcinogenesis. One of the major reasons for this interest is the availability of several strains of mice that develop leukemia following radiation exposure after a short latency period that resemble those found in A-Bomb survivors. Previous studies have shown that rAML (Radiation-induced Acute Myeloid Leukemia) in mice show inactivation of Sfpi1 gene and a hemizygous deletion in chromosome 2. Leukemic stem cells in murine rAML have been reported to share some characteristics with common myeloid progenitor cells. In this review, we will discuss the possible mechanisms in the development of rAML stem cells, focusing on the alterations found in the leukemic stem cells and as well as the environment in which these leukemic stem cells are developed, such cytokine expression, as Well as alterations that may be found in other cells residing in the bone marrow. Hematopoietic stem cells respond to radiation exposure both as a single cell and as a part of the differentiating hematopoietic tissue for several months prior to its transformation to a rAML stem cell. It is however unclear how these 2 responses contribute to the development of the rAML stem cell. This review covers previous reports and examines the development of the rAML stem cell in detail. (author)

  4. Leukemia - B-Cell Prolymphocytic Leukemia and Hairy Cell Leukemia

    Science.gov (United States)

    ... Leukemia - B-cell Prolymphocytic Leukemia and Hairy Cell Leukemia Introduction Statistics Risk Factors Symptoms and Signs Diagnosis Stages Treatment Options About Clinical Trials Latest Research ...

  5. Chronic myelogenous leukemia (CML)

    Science.gov (United States)

    CML; Chronic myeloid leukemia; Chronic granulocytic leukemia; Leukemia - chronic granulocytic ... nuclear disaster. It takes many years to develop leukemia from radiation exposure. Most people treated for cancer ...

  6. OSI-211, a novel liposomal topoisomerase I inhibitor, is active in SCID mouse models of human AML and ALL.

    Science.gov (United States)

    Tomkinson, Blake; Bendele, Ray; Giles, Francis J; Brown, Eric; Gray, Atherton; Hart, Karen; LeRay, Jeremy D; Meyer, Denny; Pelanne, Michelle; Emerson, David L

    2003-11-01

    OSI-211 (liposomal lurtotecan), was evaluated using several different dose schedules (1mg/kg, d1-5, 1.75 mg/kg d1, 3, 5 and 6 mg/kg d1, 8) in severe combined immunodeficient (SCID) mouse models of acute myelogenous leukemia (AML) and acute lymphocytic leukemia (ALL) with early treatment (ET, days 6-8) or late treatment (LT, days 15-19), examining early and advanced disease, respectively. Due to the aggressive nature of the Molt-4 model, the ET and LT were accelerated to day 3 or 4 and day 8 post-implant, respectively. For each model, 2 x 10(7) (KBM-3B) or 1 x 10(7) (Molt-4, HL-60 and CEM) leukemia cells were injected intravenously into the tail vein. Each control and test group consisted of eight animals. All three schedules (1mg/kg qd1-5, 1.75 mg/kg d1, 3, 5 and 6 mg/kg d1, 8) increased the life span of OSI-211 treated animals in each model, with a tendency toward improved efficacy with the 6 mg/kg d1, 8 schedule. As a result, the activity of the 6 mg/kg d1, 8 schedule is detailed for each model. ET significantly (Pmodel with 86% long-term survivors (LTS). Using PRC analysis, human beta-globin gene sequences in one or several tissues were amplified in all but 3 LTS, suggesting minimal residual disease in 26 of the 29 LTS. LT also significantly (Pmodel, with an average ILS=196+/-11% and one LTS. Treatment of HL-60 leukemia animals significantly (Pmodel tested, significantly (Pmodel, ET resulted in a significantly (POSI-211, treatment with DaunoXome, the liposomal formulation of daunorubicin, a drug with clinical efficacy in AML and ALL, had no effect on survival in the KBM-3B, nor Molt-4 A4 leukemia models when administered at its maximum or near maximum tolerated doses of 3mg/kg d1, 8. These data demonstrate that OSI-211 has potent antileukemia activity in preclinical SCID mouse AML and ALL leukemia models, supporting the clinical investigation of OSI-211 for hematological malignancies.

  7. Radotinib Induces Apoptosis of CD11b+ Cells Differentiated from Acute Myeloid Leukemia Cells.

    Directory of Open Access Journals (Sweden)

    Sook-Kyoung Heo

    Full Text Available Radotinib, developed as a BCR/ABL tyrosine kinase inhibitor (TKI, is approved for the second-line treatment of chronic myeloid leukemia (CML in South Korea. However, therapeutic effects of radotinib in acute myeloid leukemia (AML are unknown. In the present study, we demonstrate that radotinib significantly decreases the viability of AML cells in a dose-dependent manner. Kasumi-1 cells were more sensitive to radotinib than NB4, HL60, or THP-1 cell lines. Furthermore, radotinib induced CD11b expression in NB4, THP-1, and Kasumi-1 cells either in presence or absence of all trans-retinoic acid (ATRA. We found that radotinib promoted differentiation and induced CD11b expression in AML cells by downregulating LYN. However, CD11b expression induced by ATRA in HL60 cells was decreased by radotinib through upregulation of LYN. Furthermore, radotinib mainly induced apoptosis of CD11b+ cells in the total population of AML cells. Radotinib also increased apoptosis of CD11b+ HL60 cells when they were differentiated by ATRA/dasatinib treatment. We show that radotinib induced apoptosis via caspase-3 activation and the loss of mitochondrial membrane potential (ΔΨm in CD11b+ cells differentiated from AML cells. Our results suggest that radotinib may be used as a candidate drug in AML or a chemosensitizer for treatment of AML by other therapeutics.

  8. The role of HOXB2 and HOXB3 in acute myeloid leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Lindblad, Oscar [Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund (Sweden); Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund (Sweden); Department of Hematology and Vascular Disorders, Skåne University Hospital, Lund (Sweden); Chougule, Rohit A.; Moharram, Sausan A. [Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund (Sweden); Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund (Sweden); Kabir, Nuzhat N. [Laboratory of Computational Biochemistry, KN Biomedical Research Institute, Barisal (Bangladesh); Sun, Jianmin [Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund (Sweden); Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund (Sweden); Kazi, Julhash U. [Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund (Sweden); Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund (Sweden); Laboratory of Computational Biochemistry, KN Biomedical Research Institute, Barisal (Bangladesh); Rönnstrand, Lars, E-mail: lars.ronnstrand@med.lu.se [Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund (Sweden); Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund (Sweden)

    2015-11-27

    Acute myeloid leukemia (AML) is a heterogeneous aggressive disease and the most common form of adult leukemia. Mutations in the type III receptor tyrosine kinase FLT3 are found in more than 30% of AML patients. Drugs against FLT3 have been developed for the treatment of AML, but they lack specificity, show poor response and lead to the development of a resistant phenotype upon treatment. Therefore, a deeper understanding of FLT3 signaling will facilitate identification of additional pharmacological targets in FLT3-driven AML. In this report, we identify HOXB2 and HOXB3 as novel regulators of oncogenic FLT3-ITD-driven AML. We show that HOXB2 and HOXB3 expression is upregulated in a group of AML patients carrying FLT3-ITD. Overexpression of HOXB2 or HOXB3 in mouse pro-B cells resulted in decreased FLT3-ITD-dependent cell proliferation as well as colony formation and increased apoptosis. Expression of HOXB2 or HOXB3 resulted in a significant decrease in FLT3-ITD-induced AKT, ERK, p38 and STAT5 phosphorylation. Our data suggest that HOXB2 and HOXB3 act as tumor suppressors in FLT3-ITD driven AML.

  9. Acute myeloid leukemia risk by industry and occupation.

    Science.gov (United States)

    Tsai, Rebecca J; Luckhaupt, Sara E; Schumacher, Pam; Cress, Rosemary D; Deapen, Dennis M; Calvert, Geoffrey M

    2014-11-01

    Acute myeloid leukemia (AML) is the most common type of leukemia found in adults. Identifying jobs that pose a risk for AML may be useful for identifying new risk factors. A matched case-control analysis was conducted using California Cancer Registry data from 1988 to 2007. This study included 8999 cases of AML and 24 822 controls. Industries with a statistically significant increased AML risk were construction (matched odds ratio [mOR] = 1.13); crop production (mOR = 1.41); support activities for agriculture and forestry (mOR = 2.05); and animal slaughtering and processing (mOR = 2.09). Among occupations with a statistically significant increased AML risk were miscellaneous agricultural workers (mOR = 1.76); fishers and related fishing workers (mOR = 2.02); nursing, psychiatric and home health aides (mOR = 1.65); and janitors and building cleaners (mOR = 1.54). Further investigation is needed to confirm study findings and to identify specific exposures responsible for the increased risks.

  10. Leukemia among atomic bomb survivors during the 1980s

    International Nuclear Information System (INIS)

    Kusumi, Shizuyo; Matsuo, Tatsuki

    1990-01-01

    On the basis of the dosimetry system 1986, exposure doses were determined in a cohort of 86,502 subjects for the Life Span Study during the period 1950-1985. A total of 248 people were found to develop leukemia in Hiroshima and Nagasaki cities. This is an analysis of the 248 patients with leukemia in connection with exposure doses, years after A-bombing, age at the time of A-bombing, relative risk, and background. An average exposure dose was 0.20 Gy for Hiroshima and 0.22 Gy for Nagasaki. Relative risk for leukemia tended to show a linear increase in proportion to exposure doses. This was significant for acute myelocytic leukemia (AML), regardless of whether A-bomb survivors came from Hiroshima or Nagasaki. The younger the age at the time of A-bombing was, the higher excess relative risk for acute lymphocytic leukemia (ALL) and chronic myelocytic leukemia (CML) was. For AML, however, it was independent of the age at that time. These findings were similar in Hiroshima and Nagasaki A-bomb survivors, irrespective of age. As for non-exposed group, the incidence of CML was three times higher in Hiroshima citizen than Nagasaki citizen. Similarly, Hiroshima citizen had a 1.6 fold incidence of AML. There was no significant difference in the incidence of ALL between the cities. The incidences of both AML and ALL tended to increase more and more with aging, but the prevalences tended to increase in younger generation. An increased incidence of CML was associated with aging alone. (N.K.)

  11. Efficacy and tolerability of treatment with azacitidine for 5 days in elderly patients with acute myeloid leukemia

    International Nuclear Information System (INIS)

    Sadashiv, Santhosh K; Hilton, Christie; Khan, Cyrus; Rossetti, James M; Benjamin, Heather L; Fazal, Salman; Sahovic, Entezam; Shadduck, Richard K; Lister, John

    2014-01-01

    Acute myeloid leukemia (AML) patients aged ≥60 years tolerate standard induction chemotherapy poorly. Therapy with azacitidine at a dose of 75 mg/m 2 /day for 7 days appears to be better tolerated, and is approved by the Food and Drug Administration (FDA) for the treatment of elderly AML patients with bone marrow (BM) blast counts of 20–30%. Here, we report the results of a prospective, phase 2, open-label study that evaluated the tolerability and efficacy of a 5-day regimen of single-agent subcutaneous azacitidine 100 mg/m 2 /day administered every 28 days in 15 elderly patients with newly diagnosed AML, 14 of whom had BM blast counts >30%. The overall response rate was 47%. Complete remission, partial remission, and hematologic improvement were achieved by 20, 13, and 13% of patients, respectively. Median overall survival was 355 days for the entire cohort, and 532 days for responders. Median time to best response was 95 days, and median treatment duration was 198 days (range = 13–724 days). Grade 3–4 hematologic toxicities comprised predominantly febrile neutropenia (40%) and thrombocytopenia (20%). Febrile neutropenia was the most common cause of hospitalization. Nonhematologic toxicities, consisting of injection-site skin reactions and fatigue (Grades 1–2), occurred in 73% (n = 11) of patients. No treatment-related deaths occurred during the study. The dose and schedule of therapy remained constant in all but four patients. The findings of this study suggest that administration of subcutaneous azacitidine 100 mg/m 2 /day for 5 days every 28 days is a feasible, well-tolerated, and effective alternative to standard induction chemotherapy in elderly patients with AML

  12. The acute monocytic leukemias: multidisciplinary studies in 45 patients.

    Science.gov (United States)

    Straus, D J; Mertelsmann, R; Koziner, B; McKenzie, S; de Harven, E; Arlin, Z A; Kempin, S; Broxmeyer, H; Moore, M A; Menendez-Botet, C J; Gee, T S; Clarkson, B D

    1980-11-01

    The clinical and laboratory features of 37 patients with variants of acute monocytic leukemia are described. Three of these 37 patients who had extensive extramedullary leukemic tissue infiltration are examples of true histiocytic "lymphomas." Three additional patients with undifferentiated leukemias, one patient with refractory anemia with excess of blasts, one patient with chronic myelomonocytic leukemia, one patient with B-lymphocyte diffuse "histiocytic" lymphoma and one patient with "null" cell, terminal deoxynucleotidyl transferase-positive lymphoblastic lymphoma had bone marrow cells with monocytic features. Another patient had dual populations of lymphoid and monocytoid leukemic cells. The true monocytic leukemias, acute monocytic leukemia (AMOL) and acute myelomonocytic leukemia (AMMOL), are closely related to acute myelocytic leukemia (AML) morphologically and by their response to chemotherapy. like AML, the leukemic cells from the AMMOL and AMOL patients form leukemic clusters in semisolid media. Cytochemical staining of leukemic cells for nonspecific esterases, presence of Fc receptor on the cell surface, phagocytic ability, low TdT activity, presence of surface "ruffles" and "ridges" on scanning EM, elevations of serum lysozyme, and clinical manifestations of leukemic tissue infiltration are features which accompanied monocytic differentiation in these cases.

  13. PRAME Gene Expression in Acute Leukemia and Its Clinical Significance

    International Nuclear Information System (INIS)

    Ding, Kai; Wang, Xiao-ming; Fu, Rong; Ruan, Er-bao; Liu, Hui; Shao, Zong-hong

    2012-01-01

    To investigate the expression of the preferentially expressed antigen of melanoma (PRAME) gene in acute leukemia and its clinical significance. The level of expressed PRAME mRNA in bone marrow mononuclear cells from 34 patients with acute leukemia (AL) and in 12 bone marrow samples from healthy volunteers was measured via RT-PCR. Correlation analyses between PRAME gene expression and the clinical characteristics (gender, age, white blood count, immunophenotype of leukemia, percentage of blast cells, and karyotype) of the patients were performed. The PRAME gene was expressed in 38.2% of all 34 patients, in 40.7% of the patients with acute myelogenous leukemia (AML, n=27), and in 28.6% of the patients with acute lymphoblastic leukemia (ALL, n=7), but was not expressed in the healthy volunteers. The difference in the expression levels between AML and ALL patients was statistically significant. The rate of gene expression was 80% in M 3 , 33.3% in M 2 , and 28.6% in M 5 . Gene expression was also found to be correlated with CD15 and CD33 expression and abnormal karyotype, but not with age, gender, white blood count or percentage of blast cells. The PRAME gene is highly expressed in acute leukemia and could be a useful marker to monitor minimal residual disease. This gene is also a candidate target for the immunotherapy of acute leukemia

  14. A randomized comparison of daunorubicin 90 mg/m2 vs 60 mg/m2 in AML induction

    DEFF Research Database (Denmark)

    Burnett, A. K.; Russell, N. H.; Hills, R. K.

    2015-01-01

    Modifying induction therapy in acute myeloid leukemia (AML) may improve the remission rate and reduce the risk of relapse, thereby improving survival. Escalation of the daunorubicin dose to 90 mg/m(2) has shown benefit for some patient subgroups when compared with a dose of 45 mg/m(2), and has been...... = .15). In an exploratory subgroup analysis, there was no subgroup that showed significant benefit, although there was a significant interaction by FLT3 ITD mutation. This trial is registered at http://www.isrctn.com as #ISRCTN55675535....

  15. [Clinical and biological prognostic factors in relapsed acute myeloid leukemia patients].

    Science.gov (United States)

    Yébenes-Ramírez, Manuel; Serrano, Josefina; Martínez-Losada, Carmen; Sánchez-García, Joaquín

    2016-09-02

    Acute myeloid leukemia (AML) is the most frequent type of acute leukemia in adults. Despite recent advances in the characterization of pathogenesis of AML, the cure rates are under 40%, being leukemia relapse the most common cause of treatment failure. Leukaemia relapse occurs due to clonal evolution or clonal escape. In this study, we aimed to analyze the clinical and biological factors influencing outcomes in patients with AML relapse. We included a total of 75 AML patients who experienced leukaemia relapse after achieving complete remission. We performed complete immunophenotyping and conventional karyotyping in bone marrow aspirates obtained at diagnosis and at leukemia relapse. Overall survival (OS) of the series was 3.7%±2.3, leukaemia progression being the most common cause of death. Patients relapsing before 12 months and those with adverse cytogenetic-molecular risk had statistically significant worse outcomes. A percentage of 52.5 of patients showed phenotypic changes and 50% cytogenetic changes at relapse. We did not find significant clinical factors predicting clonal evolution. The presence of clonal evolution at relapse did not have a significant impact on outcome. Patients with relapsed AML have a dismal prognosis, especially those with early relapse and adverse cytogenetic-molecular risk. Clonal evolution with phenotypic and cytogenetic changes occurred in half of the patients without predictive clinical factors or impact on outcome. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  16. Histone deacetylases: a common molecular target for differentiation treatment of acute myeloid leukemias?

    Science.gov (United States)

    Minucci, S; Nervi, C; Lo Coco, F; Pelicci, P G

    2001-05-28

    Recent discoveries have identified key molecular events in the pathogenesis of acute promyelocytic leukemia (APL), caused by chromosomal rearrangements of the transcription factor RAR (resulting in a fusion protein with the product of other cellular genes, such as PML). Oligomerization of RAR, through a self-association domain present in PML, imposes an altered interaction with transcriptional co-regulators (NCoR/SMRT). NCoR/SMRT are responsible for recruitment of histone deacetylases (HDACs), which is required for transcriptional repression of PML-RAR target genes, and for the transforming potential of the fusion protein. Oligomerization and altered recruitment of HDACs are also responsible for transformation by the fusion protein AML1-ETO, extending these mechanisms to other forms of acute myeloid leukemias (AMLs) and suggesting that HDAC is a common target for myeloid leukemias. Strikingly, AML1-ETO expression blocks retinoic acid (RA) signaling in hematopoietic cells, suggesting that interference with the RA pathway (genetically altered in APL) by HDAC recruitment may be a common theme in AMLs. Treatment of APLs with RA, and of other AMLs with RA plus HDAC inhibitors (HDACi), results in myeloid differentiation. Thus, activation of the RA signaling pathway and inhibition of HDAC activity might represent a general strategy for the differentiation treatment of myeloid leukemias.

  17. Allogeneic Hematopoietic Stem Cell Transplantation in patients with Acute Myeloid Leukemia : a personalized approach : Allogene hematopoïetische stamcel transplantatie voor patiënten met acute myeloïde leukemie : een gepersonaliseerde benadering

    NARCIS (Netherlands)

    J. Versluis (Jurjen)

    2017-01-01

    textabstractThe majority of patients with newly diagnosed acute myeloid leukemia (AML) obtain complete hematological remission (CR) after induction chemotherapy, but the incidence of relapse is considerable despite chemotherapeutic consolidation therapy. Currently, post-remission treatment (PRT) for

  18. [Cytomorphology of acute mixed leukemia].

    Science.gov (United States)

    Sucić, Mirna; Batinić, Drago; Zadro, Renata; Mrsić, Sanja; Labar, Boris

    2008-10-01

    Biphenotypic acute leukemias (AL) with blasts expressing both myeloid and lymphoid antigens are grouped with undifferentiated AL and bilineal AL in the group of AL of ambiguous lineage. Not all AL with myeloid and lymphoid antigens (ALMy+Ly) are true biphenotypic AL. According to EGIL scoring system, true biphenotypic ALMy+Ly are those with a sum of antigens 2 or more points for both myeloid and lymphoid lineage or for B and T lineage. The aim of this study was to compare cytomorphology and immunophenotype of AL to better understand the relation of certain AL morphology, immunophenotype, cytogenetics and molecular biology of biphenotypic AL. The study included a group of 169 AL patients treated from 1985 till 1991, and a group of 102 AL patients treated from 1993 till 1996 at Zagreb University Hospital Center. Bone marrow and peripheral blood of the two groups of AL patients were analyzed according to Pappenheim (May-Grunwald-Giemsa), cytochemical and alkaline phosphatase-anti-alkaline phosphatase (APAAP) immunocytochemical staining. Flow cytometry immunophenotyping of bone marrow was also done in both patient groups. In the group of 169 adult AL patients, 116 were cytomorphologically classified as acute myeloblastic leukemias (AML), 35 as acute lymphoblastic leukemias (ALL) and 18 as acute undifferentiated leukemias (ANLM). In 6 (3.4%) of 169 AL patients, blasts expressed both myeloid and lymphoid antigens. In the group of 102 AL patients there were 19 (18.6%) ALMy+Ly. In 64 patients cytomorphologically classified into AML subgroup out of 102 AL patients, there were 15 (14.7%/102; 23.4%/64) AML with lymphoid antigens (AMLLy+). In 35 patients cytomorphologically diagnosed as ALL and 3 as ANLM out of 102 AL, there were 4 (3.9%/102; 10.5%/38) ALL with myeloid antigens (ALLMy+). The incidence of mixed AL in 102 AL was more consistent with other studies, pointing to the necessity of myeloperoxidase (MPO), CD7 and TdT determination as part of standard immunophenotyping

  19. Small Molecule Inhibitors in Acute Myeloid Leukemia: From the Bench to the Clinic

    Science.gov (United States)

    Al-Hussaini, Muneera; DiPersio, John F.

    2014-01-01

    Many patients with acute myeloid leukemia (AML) will eventually develop refractory or relapsed disease. In the absence of standard therapy for this population, there is currently an urgent unmet need for novel therapeutic agents. Targeted therapy with small molecule inhibitors (SMIs) represents a new therapeutic intervention that has been successful for the treatment of multiple tumors (e.g., gastrointestinal stromal tumors, chronic myelogenous leukemia). Hence, there has been great interest in generating selective small molecule inhibitors targeting critical pathways of proliferation and survival in AML. This review highlights a selective group of intriguing therapeutic agents and their presumed targets in both preclinical models and in early human clinical trials. PMID:25025370

  20. The biologic properties of recombinant human thrombopoietin in the proliferation and megakaryocytic differentiation of acute myeloblastic leukemia cells.

    Science.gov (United States)

    Matsumura, I; Kanakura, Y; Kato, T; Ikeda, H; Horikawa, Y; Ishikawa, J; Kitayama, H; Nishiura, T; Tomiyama, Y; Miyazaki, H; Matsuzawa, Y

    1996-10-15

    Thrombopoietin (TPO) is implicated as a primary regulator of megakaryopoiesis and thrombopoiesis. However, the biologic effects of TPO on human acute myeloblastic leukemia (AML) cells are largely unknown. To determine if recombinant human (rh) TPO has proliferation-supporting and differentiation-inducing activities in AML cells, 15 cases of AML cells that were exclusively composed of undifferentiated leukemia cells and showed growth response to rhTPO in a short-term culture (72 hours) were subjected to long-term suspension culture with or without rhTPO. Of 15 cases, rhTPO supported proliferation of AML cells for 2 to 4 weeks in 4 cases whose French-American-British subtypes were M0, M2, M4, and M7, respectively. In addition to the proliferation-supporting activity, rhTPO was found to induce AML cells to progress to some degree of megakaryocytic differentiation at both morphologic and surface-phenotypic level in 2 AML cases with M0 and M7 subtypes. The treatment of AML cells with rhTPO resulted in rapid tyrosine phosphorylation of the TPO-receptor, c-mpl, and STAT3 in all of cases tested. By contrast, the expression of erythroid/megakaryocyte-specific transcription factors (GATA-1, GATA-2, and NF-E2) was markedly induced or enhanced in only 2 AML cases that showed megakaryocytic differentiation in response to rhTPO. These results suggested that, at least in a fraction of AML cases, TPO could not only support the proliferation of AML cells irrespective of AML subtypes, but could also induce megakaryocytic differentiation, possibly through activation of GATA-1, GATA-2, and NF-E2.

  1. Esophageal Candidiasis as the Initial Manifestation of Acute Myeloid Leukemia.

    Science.gov (United States)

    Komeno, Yukiko; Uryu, Hideki; Iwata, Yuko; Hatada, Yasumasa; Sakamoto, Jumpei; Iihara, Kuniko; Ryu, Tomiko

    2015-01-01

    A 47-year-old woman presented with persistent dysphagia. A gastroendoscopy revealed massive esophageal candidiasis, and oral miconazole was prescribed. Three weeks later, she returned to our hospital without symptomatic improvement. She was febrile, and blood tests showed leukocytosis (137,150 /μL, blast 85%), anemia and thrombocytopenia. She was diagnosed with acute myeloid leukemia (AML). She received chemotherapy and antimicrobial agents. During the recovery from the nadir, bilateral ocular candidiasis was detected, suggesting the presence of preceding candidemia. Thus, esophageal candidiasis can be an initial manifestation of AML. Thorough examination to detect systemic candidiasis is strongly recommended when neutropenic patients exhibit local candidiasis prior to chemotherapy.

  2. Correlation of the microculture-kinetic drug-induced apoptosis assay with patient outcomes in initial treatment of adult acute myelocytic leukemia.

    Science.gov (United States)

    Strickland, Stephen A; Raptis, Anastasios; Hallquist, Allan; Rutledge, James; Chernick, Michael; Perree, Mathieu; Talbott, Mahsa S; Presant, Cary A

    2013-03-01

    Overall survival (OS) with acute myeloid leukemia (AML) remains poor. Determining prognostic factors will help in selecting patients for appropriate treatments. Our aim was to determine whether the level of drug-induced apoptosis (chemosensitivity) demonstrated by the microculture-kinetic drug-induced apoptosis (MiCK) assay significantly predicted outcomes after standard AML induction therapy. A total of 109 patients with untreated AML had blood and/or bone marrow aspirate samples analyzed for anthracycline-induced apoptosis using the MiCK assay. The amount of apoptosis observed over 48 h was determined and expressed as kinetic units of apoptosis (KU). Complete remission (CR) was significantly higher (72%) in patients with high idarubicin-induced apoptosis >3 KU compared to patients with apoptosis ≤ 3 KU (p = 0.01). Multivariate analysis showed the only significant variables to be idarubicin-induced apoptosis and karyotype. Median overall survival of patients with idarubicin-induced apoptosis >3 KU was 16.1 months compared to 4.5 months in patients with apoptosis ≤ 3 KU (p = 0.004). Multivariate analysis showed the only significant variable to be idarubicin-induced apoptosis. Chemotherapy-induced apoptosis measured by the MiCK assay demonstrated significant correlation with outcomes and appears predictive of complete remission and overall survival for patients receiving standard induction chemotherapy.

  3. Impact of baseline cytogenetic findings and cytogenetic response on outcome of high-risk myelodysplastic syndromes and low blast count AML treated with azacitidine.

    Science.gov (United States)

    Sébert, Marie; Komrokji, Rami S; Sekeres, Mikkael A; Prebet, Thomas; Cluzeau, Thomas; Santini, Valeria; Gyan, Emmanuel; Sanna, Alessandro; Ali, Najla HAl; Hobson, Sean; Eclache, Virginie; List, Alan; Fenaux, Pierre; Adès, Lionel

    2017-12-01

    Karyotype according to the revised IPSS is a strong independent prognostic factor for overall survival (OS) in myelodysplastic syndromes (MDS), however established in untreated patients. The prognostic impact of cytogenetics and cytogenetic response (CyR) in MDS patients receiving azacitidine (AZA) remains uncertain. We examined the prognostic value of baseline cytogenetics and CyR for overall response rate (ORR) and OS in 702 AZA-treated higher risk MDS and low blast count acute myeloid leukemia (AML), including 493 (70%) with abnormal karyotype. None of the cytogenetic abnormalities had significant impact on ORR (43.9%) or complete response (15.35%), except 3q abnormalities and complex karyotypes, which were associated with a lower ORR. OS differed significantly across all R-IPSS cytogenetic subgroups (pcytogenetics. CyR was achieved in 32% of the 281 evaluable patients with abnormal cytogenetics, was complete (CCyR) in 71 (25.3%) patients. We found no correlation between hematological response and cytogenetic response and 21% of the patients with CCyR did not achieve morphological response. In the 281 patients, we found no impact of CyR on survival, but when restricting to MDS (ie: <20% marrow blasts) achievement of CCyR was associated with better OS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Prognostic implications of genetic aberrations in acute myelogenous leukemia with normal cytogenetics.

    Science.gov (United States)

    Ghanem, Hady; Tank, Niki; Tabbara, Imad A

    2012-01-01

    Acute myelogenous leukemia (AML) is a genetically heterogeneous disease in which somatic mutations, that disturb cellular growth, proliferation, and differentiation, accumulate in hematopoietic progenitor cells. Cytogenetic findings, at diagnosis, have been proven to be one of the most important prognostic indicators in AML. About half of the patients with AML are found to have "normal" cytogenetic analysis by standard culture techniques. These patients are considered as an intermediate risk group. Cytogenetically normal AML (CN-AML) is the largest cytogenetic risk group, and the variation in clinical outcome of patients in this group is greater than in any other cytogenetic group. Besides mutation testing, age and presenting white blood cell count are important predictors of overall survival, suggesting that other factors independent of cytogenetic abnormalities, contribute to the outcome of patients with AML. The expanding knowledge at the genetic and molecular levels is helping define several subgroups of patients with CN-AML with variable prognosis. In this review, we describe the clinical and prognostic characteristics of CN-AML patients as a group, as well as the various molecular and genetic aberrations detected in these patients and their clinical and prognostic implications. Copyright © 2011 Wiley Periodicals, Inc.

  5. Premature chromosome condensation studies in human leukemia. I. Pretreatment characteristics.

    Science.gov (United States)

    Hittelman, W N; Broussard, L C; McCredie, K

    1979-11-01

    The phenomenon of premature chromosome condensation (PCC) was used to compare the bone marrow proliferation characteristics of 163 patients with various forms of leukemia prior to the initiation of new therapy. The proliferative potential index (PPI, or fraction of G1 cells in late G1 phase) and the fraction of cells in S phase was determined and compared to the type of disease and the bone marrow blast infiltrate for each patient. Previously untreated patients with acute leukemia exhibited an average PPI value three times that of normal bone marrow (37.5% for acute myeloblastic leukemia [AML], acute monomyeloblastic leukemia [AMML], or acute promyelocytic leukemia [APML] and 42% for acute lymphocytic leukemia [ALL] or acute undifferentiated leukemia [AUL]). Untreated chronic myelogenous leukemia (CML) patients showed intermediate PPI values (25.2%), whereas CML patients with controlled disease exhibited nearly normal PPI values (14.6%). On the other hand, blastic-phase CML patients exhibited PPI values closer to that observed in patients with acute leukemia (35.4%). Seven patients with chronic lymphocytic leukemia (CLL) exhibited even higher PPI values. No correlations were observed between PPI values, fraction of cells in S phase, and marrow blast infiltrate. For untreated acute disease patients, PPI values were prognostic for response only at low and high PPI values. These results suggest that the PCC-determined proliferative potential is a biologic reflection of the degree of malignancy within the bone marrow.

  6. Low 25(OH) Vitamin D3 Levels Are Associated with Adverse Outcome in Newly-Diagnosed Intensively-Treated Adult Acute Myeloid Leukemia Patients

    Science.gov (United States)

    Lee, Hun Ju; Muindi, Josephia R.; Tan, Wei; Hu, Qiang; Wang, Dan; Liu, Song; Wilding, Gregory E.; Ford, Laurie A.; Sait, Sheila N.J.; Block, Annemarie W.; Adjei, Araba A.; Barcos, Maurice; Griffiths, Elizabeth A; Thompson, James E.; Wang, Eunice S.; Johnson, Candace S; Trump, Donald L.; Wetzler, Meir

    2013-01-01

    Background Several studies suggest that low 25(OH) vitamin D3 levels may be prognostic in some malignancies, but no studies have evaluated their impact on treatment outcome in acute myeloid leukemia (AML). Methods VD levels were evaluated in 97 consecutive newly diagnosed, intensively-treated AML patients. MicroRNA-expression profiles and single nucleotide polymorphisms (SNPs) in the 25(OH) vitamin D3 pathway genes were evaluated and correlated with 25(OH) vitamin D3 levels and treatment outcome. Results Thirty-four (35%) patients had normal 25(OH) vitamin D3 levels (32–100 ng/ml), 34 (35%) insufficient (20–31.9 ng/ml) and 29 (30%) deficient levels (<20 ng/ml). Insufficient/deficient 25(OH) vitamin D3 levels were associated with worse relapse-free survival (RFS) compared to normal vitamin D3 levels. In multivariate analyses, deficient 25(OH) vitamin D3, smoking, European LeukemiaNet Genetic Groups and white blood cell count retained their statistical significance for RFS. A number of microRNAs and SNPs were found to be associated with 25(OH) vitamin D3 level, although none remained significant after multiple test corrections; one 25(OH) vitamin D3 receptor SNP, rs10783219, was associated with lower complete remission rate (p=0.0442), shorter RFS (p=0.0058) and overall survival (p=0.0011). Conclusions It remains to be determined what role microRNA and SNP profiles play in contributing to low 25(OH) vitamin D3 level and/or outcome and whether supplementation will improve AML outcome. PMID:24166051

  7. Hypermethylation of the GATA binding protein 4 (GATA4) promoter in Chinese pediatric acute myeloid leukemia

    International Nuclear Information System (INIS)

    Tao, Yan-Fang; Fang, Fang; Hu, Shao-Yan; Lu, Jun; Cao, Lan; Zhao, Wen-Li; Xiao, Pei-Fang; Li, Zhi-Heng; Wang, Na-Na; Xu, Li-Xiao; Du, Xiao-Juan; Sun, Li-Chao; Li, Yan-Hong; Li, Yi-Ping; Xu, Yun-Yun; Ni, Jian; Wang, Jian; Feng, Xing; Pan, Jian

    2015-01-01

    Acute myeloid leukemia (AML) is the second-most common form of leukemia in children. Aberrant DNA methylation patterns are a characteristic feature of AML. GATA4 has been suggested to be a tumor suppressor gene regulated by promoter hypermethylation in various types of human cancers although the expression and promoter methylation of GATA4 in pediatric AML is still unclear. Transcriptional expression levels of GATA4 were evaluated by semi-quantitative and real-time PCR. Methylation status was investigated by methylation-specific PCR (MSP) and bisulfate genomic sequencing (BGS). The prognostic significance of GATA4 expression and promoter methylation was assessed in 105 cases of Chinese pediatric acute myeloid leukemia patients with clinical follow-up records. MSP and BGS analysis showed that the GATA4 gene promoter is hypermethylated in AML cells, such as the HL-60 and MV4-11 human myeloid leukemia cell lines. 5-Aza treatment significantly upregulated GATA4 expression in HL-60 and MV4-11 cells. Aberrant methylation of GATA4 was observed in 15.0 % (3/20) of the normal bone marrow control samples compared to 56.2 % (59/105) of the pediatric AML samples. GATA4 transcript levels were significantly decreased in AML patients (33.06 ± 70.94; P = 0.011) compared to normal bone marrow/idiopathic thrombocytopenic purpura controls (116.76 ± 105.39). GATA4 promoter methylation was correlated with patient leukocyte counts (WBC, white blood cells) (P = 0.035) and minimal residual disease MRD (P = 0.031). Kaplan-Meier survival analysis revealed significantly shorter overall survival time in patients with GATA4 promoter methylation (P = 0.014). Epigenetic inactivation of GATA4 by promoter hypermethylation was observed in both AML cell lines and pediatric AML samples; our study implicates GATA4 as a putative tumor suppressor gene in pediatric AML. In addition, our findings imply that GATA4 promoter methylation is correlated with WBC and MRD. Kaplan-Meier survival analysis

  8. CAR-T cells targeting CLL-1 as an approach to treat acute myeloid leukemia.

    Science.gov (United States)

    Wang, Jinghua; Chen, Siyu; Xiao, Wei; Li, Wende; Wang, Liang; Yang, Shuo; Wang, Weida; Xu, Liping; Liao, Shuangye; Liu, Wenjian; Wang, Yang; Liu, Nawei; Zhang, Jianeng; Xia, Xiaojun; Kang, Tiebang; Chen, Gong; Cai, Xiuyu; Yang, Han; Zhang, Xing; Lu, Yue; Zhou, Penghui

    2018-01-10

    Acute myeloid leukemia (AML) is one of the most common types of adult acute leukemia. Standard chemotherapies can induce complete remission in selected patients; however, a majority of patients eventually relapse and succumb to the disease. Thus, the development of novel therapeutics for AML is urgently needed. Human C-type lectin-like molecule-1 (CLL-1) is a type II transmembrane glycoprotein, and its expression is restricted to myeloid cells and the majority of AML blasts. Moreover, CLL-1 is expressed in leukemia stem cells (LSCs), but absent in hematopoietic stem cells (HSCs), which may provide a potential therapeutic target for AML treatment. We tested the expression of CLL-1 antigen on peripheral blood cells and bone marrow cells in healthy donor and AML patients. Then, we developed a chimeric antigen receptor (CAR) containing a CLL1-specific single-chain variable fragment, in combination with CD28, 4-1BB costimulatory domains, and CD3-ζ signaling domain. We further investigate the function of CLL-1 CAR-T cells. The CLL-1 CAR-T cells specifically lysed CLL-1 + cell lines as well as primary AML patient samples in vitro. Strong anti-leukemic activity was observed in vivo by using a xenograft model of disseminated AML. Importantly, CLL-1 + myeloid progenitor cells and mature myeloid cells were specifically eliminated by CLL-1 CAR-T cells, while normal HSCs were not targeted due to the lack of CLL-1 expression. CLL-1 CAR-T represents a promising immunotherapy for the treatment of AML.

  9. The applicability of the WHO classification in paediatric AML. A NOPHO-AML study

    DEFF Research Database (Denmark)

    Sandahl, Julie D; Kjeldsen, Eigil; Abrahamsson, Jonas

    2015-01-01

    The World Health Organization (WHO) classification of myeloid leukaemia was revised in 2008. It incorporates newly recognized entities and emphasizes the pivotal role of cytogenetic abnormalities. The aim of this study was to evaluate the usability of the WHO classification when applied to a large......(7q) into one group. We found that -7 (n = 14) had significantly poorer outcome than del(7q) (n = 11); 5-year event-free survival 26% vs. 67%, (P = 0·02), and 5-year overall survival 51% vs. 90%, (P = 0·04). The largest group was the highly heterogeneous AML not otherwise specified (NOS) (n = 280...

  10. Reinduction therapy for adult acute leukemia with adriamycin, vincristine, and prednisone: a Southwest Oncology Group study.

    Science.gov (United States)

    Elias, L; Shaw, M T; Raab, S O

    1979-08-01

    In an attempt to improve remissions and survivals in previously treated patients with adult acute leukemia, we gave Adriamycin, vincristine, and prednisone for induction therapy, followed by 6-mercaptopurine and methotrexate for maintenance therapy to patients attaining complete remission (CR). The study group consisted of 18 patients with acute myeloblastic leukemia (AML), ten with acute lymphoblastic leukemia, and one with acute undifferentiated leukemia. Only one patient had previously received Adriamycin. Overall, there were ten CRs and two partial remissions. The five CRs and one partial remission in patients with AML occurred among those with one prior induction attempt; none of the eight AML patients with more than one prior induction attempt responded. The actuarial median duration of CR was 15 weeks and was similar for AML and acute lymphoblastic leukemia patients. Responders had a longer median survival (30 weeks) than nonresponders (9 weeks). Thus, although a reasonable number of responses in previously treated patients were obtained with this program, improvements in maintenance therapy are clearly needed.

  11. Treatment of relapsed or refractory acute leukemia in childhood with bisantrene combined with high dose aracytine.

    Science.gov (United States)

    Leblanc, T; Deméocq, F; Leverger, G; Baruchel, A; Lemerle, S; Vannier, J P; Nelken, B; Guillot, T; Schaison, G

    1994-01-01

    Bisantrene is an anthracene derivative which has demonstrated activity in acute myeloblastic leukemia (AML) and in lymphoma. The present study was designed to assess the reinduction rate and toxicity of bisantrene (250 mg/m2/d x 5) associated with aracytine (100 mg/m2 twice a day x 5) in refractory and relapsed acute childhood leukemia. Patients who relapsed after bone marrow transplantation were eligible. Twenty-six children were included. Diagnoses were as follows: 13 AML, 9 acute lymphoblastic leukemia (ALL), and 4 undifferentiated leukemia (AUL). All patients had been very highly pretreated, especially with anthracyclines, and most of them were of poor prognosis. The overall response rate was 46% with a 95% confidence interval ranging from 27-65%. According to diagnosis, complete remission (CR) rates are: AML: 5/13, ALL: 5/9, and AUL: 2/4. Four children died, three from infection and one from acute lysis syndrome. The major toxicity was infection with grade 3 and 4 episodes occurring in 42% of patients. No significant cardiac toxicity was noted. Hepatic and renal toxicity was noted. Hepatic and renal toxicity were limited and transient. Bisantrene in association with aracytine is effective in both AML and ALL of childhood. Bisantrene should be evaluated with a five-day schedule in other pediatric malignancies. In children with acute leukemia previously treated with high dose aracytine, new combination regimen is warranted.

  12. T Cell-Replete Peripheral Blood Haploidentical Hematopoietic Cell Transplantation with Post-Transplantation Cyclophosphamide Results in Outcomes Similar to Transplantation from Traditionally Matched Donors in Active Disease Acute Myeloid Leukemia.

    Science.gov (United States)

    How, Joan; Slade, Michael; Vu, Khoan; DiPersio, John F; Westervelt, Peter; Uy, Geoffrey L; Abboud, Camille N; Vij, Ravi; Schroeder, Mark A; Fehniger, Todd A; Romee, Rizwan

    2017-04-01

    Outcomes for patients with acute myeloid leukemia (AML) who fail to achieve complete remission remain poor. Hematopoietic cell transplantation (HCT) has been shown to induce long-term survival in AML patients with active disease. HCT is largely performed with HLA-matched unrelated or HLA-matched related donors. Recently, HCT with HLA-haploidentical related donors has been identified as a feasible option when HLA-matched donors are not immediately available. However, there are little data comparing outcomes for AML patients with active disease who receive haploidentical versus traditionally matched HCT. We retrospectively analyzed data from 99 AML patients with active disease undergoing allogeneic HCT at a single institution. Forty-three patients received unrelated donor HCT, 32 patients received matched related donor HCT, and 24 patients received peripheral blood haploidentical HCT with post-transplantation cyclophosphamide. We found no significant differences between treatment groups in terms of overall survival (OS), event-free survival, transplantation-related mortality, cumulative incidence of relapse, and cumulative incidence of acute and chronic graft-versus-host disease (GVHD). We performed univariate regression analysis of variables that modified OS in all patients and found only younger age at transplantation and development of chronic GVHD significantly improved outcome. Although limited by our relatively small sample size, these results indicate that haploidentical HCT in active AML patients have comparable outcomes to HCT with traditionally matched donors. Haploidentical HCT can be considered in this population of high-risk patients when matched donors are unavailable or when wait times for transplantation are unacceptably long. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  13. The Epigenetic Landscape of Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Emma Conway O’Brien

    2014-01-01

    Full Text Available Acute myeloid leukemia (AML is a genetically heterogeneous disease. Certain cytogenetic and molecular genetic mutations are recognized to have an impact on prognosis, leading to their inclusion in some prognostic stratification systems. Recently, the advent of high-throughput whole genome or exome sequencing has led to the identification of several novel recurrent mutations in AML, a number of which have been found to involve genes concerned with epigenetic regulation. These genes include in particular DNMT3A, TET2, and IDH1/2, involved with regulation of DNA methylation, and EZH2 and ASXL-1, which are implicated in regulation of histones. However, the precise mechanisms linking these genes to AML pathogenesis have yet to be fully elucidated as has their respective prognostic relevance. As massively parallel DNA sequencing becomes increasingly accessible for patients, there is a need for clarification of the clinical implications of these mutations. This review examines the literature surrounding the biology of these epigenetic modifying genes with regard to leukemogenesis and their clinical and prognostic relevance in AML when mutated.

  14. A Hyperactive Signalosome in Acute Myeloid Leukemia Drives Addiction to a Tumor-Specific Hsp90 Species

    Directory of Open Access Journals (Sweden)

    Hongliang Zong

    2015-12-01

    Full Text Available Acute myeloid leukemia (AML is a heterogeneous and fatal disease with an urgent need for improved therapeutic regimens given that most patients die from relapsed disease. Irrespective of mutation status, the development of aggressive leukemias is enabled by increasing dependence on signaling networks. We demonstrate that a hyperactive signalosome drives addiction of AML cells to a tumor-specific Hsp90 species (teHsp90. Through genetic, environmental, and pharmacologic perturbations, we demonstrate a direct and quantitative link between hyperactivated signaling pathways and apoptotic sensitivity of AML to teHsp90 inhibition. Specifically, we find that hyperactive JAK-STAT and PI3K-AKT signaling networks are maintained by teHsp90 and, in fact, gradual activation of these networks drives tumors increasingly dependent on teHsp90. Thus, although clinically aggressive AML survives via signalosome activation, this addiction creates a vulnerability that can be exploited with Hsp90-directed therapy.

  15. Monocytic leukemias.

    Science.gov (United States)

    Shaw, M T

    1980-05-01

    The monocytic leukemias may be subdivided into acute monocytic leukemia, acute myelomonocytic leukemia, and subacute and chronic myelomonocytic leukemia. The clinical features of acute monocytic and acute myelomonocytic leukemias are similar and are manifestations of bone marrow failure. Gingival hypertrophy and skin infiltration are more frequent in acute monocytic leukemia. Cytomorphologically the blast cells in acute monocytic leukemia may be undifferentiated or differentiated, whereas in the acute myelomonocytic variety there are mixed populations of monocytic and myeloblastic cells. Cytochemical characteristics include strongly positive reactions for nonspecific esterase, inhibited by fluoride. The functional characteristics of acute monocytic and acute myelomonocytic cells resemble those of monocytes and include glass adherence and phagocytoses, the presence of Fc receptors for IgG and C'3, and the production of colony stimulating activity. Subacute and chronic myelomonocytic leukemias are insidious and slowly progressive diseases characterized by anemia and peripheral blood monocytosis. Atypical monocytes called paramyeloid cells are characteristic. The drugs used in the treatment of acute monocytic and acute myelomonocytic leukemias include cytosine arabinoside, the anthracyclines, and VP 16-213. Drug therapy in subacute and chronic myelomonocytic leukemias is not usually indicated, although VP 16-213 has been claimed to be effective.

  16. Targeting Human C-Type Lectin-Like Molecule-1 (CLL1) with a Bispecific Antibody for Acute Myeloid Leukemia Immunotherapy**

    OpenAIRE

    Lu, Hua; Zhou, Quan; Deshmukh, Vishal; Phull, Hardeep; Ma, Jennifer; Tardif, Virginie; Naik, Rahul R.; Bouvard, Claire; Zhang, Yong; Choi, Seihyun; Lawson, Brian R.; Zhu, Shoutian; Kim, Chan Hyuk; Schultz, Peter G.

    2014-01-01

    Acute myeloid leukemia (AML), the most common acute adult leukemia and the second most common pediatric leukemia, still has a poor prognosis. Human C-type lectin-like molecule-1 (CLL1) is a recently identified myeloid lineage restricted cell surface marker, which is overexpressed in over 90% of AML patient myeloid blasts and in leukemic stem cells. Here, we describe the synthesis of a novel bispecific antibody, αCLL1-αCD3, using the genetically encoded unnatural amino acid, p-acetylphenylalan...

  17. Modeling of C/EBPalpha mutant acute myeloid leukemia reveals a common expression signature of committed myeloid leukemia-initiating cells

    DEFF Research Database (Denmark)

    Kirstetter, Peggy; Schuster, Mikkel B; Bereshchenko, Oksana

    2008-01-01

    Mutations in the CEBPA gene are present in 7%-10% of human patients with acute myeloid leukemia (AML). However, no genetic models exist that demonstrate their etiological relevance. To mimic the most common mutations affecting CEBPA-that is, those leading to loss of the 42 kDa C/EBPalpha isoform (p...... penetrance. p42-deficient leukemia could be transferred by a Mac1+c-Kit+ population that gave rise only to myeloid cells in recipient mice. Expression profiling of this population against normal Mac1+c-Kit+ progenitors revealed a signature shared with MLL-AF9-transformed AML.......42) while retaining the 30kDa isoform (p30)-we modified the mouse Cebpa locus to express only p30. p30 supported the formation of granulocyte-macrophage progenitors. However, p42 was required for control of myeloid progenitor proliferation, and p42-deficient mice developed AML with complete...

  18. Analysis of low Z elements in serum of patients with leukemias by SRTXRF

    Energy Technology Data Exchange (ETDEWEB)

    Canellas, Catarine G.L.; Jesus, Edgar F.O. de; Anjos, Marcelino J.; Lopes, Ricardo T., E-mail: marcelin@lin.ufrj.b, E-mail: catarine@lin.ufrj.b, E-mail: edgar@lin.ufrj.b, E-mail: marcelin@lin.ufrj.b, E-mail: ricardo@lin.ufrj.b [Federal University of Rio de Janeiro (UFRJ/COPPE), Rio de Janeiro, RJ (Brazil). Nuclear Engineering Program. Nuclear Instrumentation Lab.; Carvalho, Silvia M.F., E-mail: silvia@hemorio.rj.gov.b [State Institute of Hematology Arthur de Siqueira Cavalcanti (HEMORIO), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Leukemia is a disease that occurs all over the world. Leukemia is a type of cancer. All cancers begin in cells, which make up blood and other tissues. Normally, cells grow and divide to form new cells as the body needs them. When cells grow old, they die, and new cells take their place. Sometimes this orderly process goes wrong. New cells form when the body does not need them, and old cells do not die when they should. Leukemia is a kind of cancer that begins in blood cells. There are four common types of leukemia: Chronic Myelogenous Leukemia (CML), Acute Myelogenous Leukemia (AML), Chronic Lymphocytic Leukemia (CLL) and Acute Lymphocytic Leukemia (ALL). In this work, low Z elements were determined in serum of patients with four groups of leukemia (CML, AML, CLL and ALL) and control group (CG) or healthy subjects using Total Reflection X-Ray Fluorescence induced by Synchrotron Radiation (SRTXRF). We studied thirty patients - male gender and feminine gender - with ages ranging from 18 to 60 years, suffering from CML, AML, CLL, ALL and thirty healthy volunteers aged 18 to 60 years. All the serum samples were collected from people who live in the urban area of Rio de Janeiro City/Brazil. All of them were submitted to medical history. This study was performed with the approval of the ethics committee. It was possible to determine the elemental concentrations of the following six elements: Na, P, S, Cl, K and Ca. By using t-test it could be seen significant differences (alpha = 0.05) between groups of healthy subjects and four groups of leukemia. The t- test showed real differences among the elemental concentrations. Thus, our findings indicate that the elements can be directly related to the biochemical processes in leukemias. The significant differences found between the groups may be indicators of these diseases. This could help biomedical field with regard to early diagnosis and improved medical treatment. (author)

  19. Analysis of low Z elements in serum of patients with leukemias by SRTXRF

    International Nuclear Information System (INIS)

    Canellas, Catarine G.L.; Jesus, Edgar F.O. de; Anjos, Marcelino J.; Lopes, Ricardo T.

    2009-01-01

    Leukemia is a disease that occurs all over the world. Leukemia is a type of cancer. All cancers begin in cells, which make up blood and other tissues. Normally, cells grow and divide to form new cells as the body needs them. When cells grow old, they die, and new cells take their place. Sometimes this orderly process goes wrong. New cells form when the body does not need them, and old cells do not die when they should. Leukemia is a kind of cancer that begins in blood cells. There are four common types of leukemia: Chronic Myelogenous Leukemia (CML), Acute Myelogenous Leukemia (AML), Chronic Lymphocytic Leukemia (CLL) and Acute Lymphocytic Leukemia (ALL). In this work, low Z elements were determined in serum of patients with four groups of leukemia (CML, AML, CLL and ALL) and control group (CG) or healthy subjects using Total Reflection X-Ray Fluorescence induced by Synchrotron Radiation (SRTXRF). We studied thirty patients - male gender and feminine gender - with ages ranging from 18 to 60 years, suffering from CML, AML, CLL, ALL and thirty healthy volunteers aged 18 to 60 years. All the serum samples were collected from people who live in the urban area of Rio de Janeiro City/Brazil. All of them were submitted to medical history. This study was performed with the approval of the ethics committee. It was possible to determine the elemental concentrations of the following six elements: Na, P, S, Cl, K and Ca. By using t-test it could be seen significant differences (α = 0.05) between groups of healthy subjects and four groups of leukemia. The t- test showed real differences among the elemental concentrations. Thus, our findings indicate that the elements can be directly related to the biochemical processes in leukemias. The significant differences found between the groups may be indicators of these diseases. This could help biomedical field with regard to early diagnosis and improved medical treatment. (author)

  20. Maternal supplementation with folic acid and other vitamins and risk of leukemia in offspring: a Childhood Leukemia International Consortium study.

    Science.gov (United States)

    Metayer, Catherine; Milne, Elizabeth; Dockerty, John D; Clavel, Jacqueline; Pombo-de-Oliveira, Maria S; Wesseling, Catharina; Spector, Logan G; Schüz, Joachim; Petridou, Eleni; Ezzat, Sameera; Armstrong, Bruce K; Rudant, Jérémie; Koifman, Sergio; Kaatsch, Peter; Moschovi, Maria; Rashed, Wafaa M; Selvin, Steve; McCauley, Kathryn; Hung, Rayjean J; Kang, Alice Y; Infante-Rivard, Claire

    2014-11-01

    Maternal prenatal supplementation with folic acid and other vitamins has been inconsistently associated with a reduced risk of childhood acute lymphoblastic leukemia (ALL). Little is known regarding the association with acute myeloid leukemia (AML), a rarer subtype. We obtained original data on prenatal use of folic acid and vitamins from 12 case-control studies participating in the Childhood Leukemia International Consortium (enrollment period: 1980-2012), including 6,963 cases of ALL, 585 cases of AML, and 11,635 controls. Logistic regression was used to estimate pooled odds ratios (ORs) and 95% confidence intervals (CIs), adjusted for child's age, sex, ethnicity, parental education, and study center. Maternal supplements taken any time before conception or during pregnancy were associated with a reduced risk of childhood ALL; odds ratios were 0.85 (95% CI = 0.78-0.92) for vitamin use and 0.80 (0.71-0.89) for folic acid use. The reduced risk was more pronounced in children whose parents' education was below the highest category. The analyses for AML led to somewhat unstable estimates; ORs were 0.92 (0.75-1.14) and 0.68 (0.48-0.96) for prenatal vitamins and folic acid, respectively. There was no strong evidence that risks of either types of leukemia varied by period of supplementation (preconception, pregnancy, or trimester). Our results, based on the largest number of childhood leukemia cases to date, suggest that maternal prenatal use of vitamins and folic acid reduces the risk of both ALL and AML and that the observed association with ALL varied by parental education, a surrogate for lifestyle and sociodemographic characteristics.

  1. Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells

    NARCIS (Netherlands)

    Mathew, N.R.; Baumgartner, F.; Braun, L.; O'Sullivan, D.; Thomas, S.; Waterhouse, M.; Muller, T.A.; Hanke, K.; Taromi, S.; Apostolova, P.; Illert, A.L.; Melchinger, W.; Duquesne, S.; Schmitt-Graeff, A.; Osswald, L.; Yan, K.L.; Weber, A; Tugues, S.; Spath, S.; Pfeifer, D.; Follo, M.; Claus, R.; Lubbert, M.; Rummelt, C.; Bertz, H.; Wasch, R.; Haag, J.; Schmidts, A.; Schultheiss, M.; Bettinger, D.; Thimme, R.; Ullrich, E.; Tanriver, Y.; Vuong, G.L.; Arnold, R.; Hemmati, P.; Wolf, D.; Ditschkowski, M.; Jilg, C.; Wilhelm, K.; Leiber, C.; Gerull, S.; Halter, J.; Lengerke, C.; Pabst, T.; Schroeder, T.; Kobbe, G.; Rosler, W.; Doostkam, S.; Meckel, S.; Stabla, K.; Metzelder, S.K.; Halbach, S.; Brummer, T.; Hu, Z; Dengjel, J.; Hackanson, B.; Schmid, C.; Holtick, U.; Scheid, C.; Spyridonidis, A.; Stolzel, F.; Ordemann, R.; Muller, L.P.; Sicre-de-Fontbrune, F.; Ihorst, G.; Kuball, J.; Ehlert, J.E.; Feger, D.; Wagner, E.M.; Cahn, J.Y.; Schnell, J.; Kuchenbauer, F.; Bunjes, D.; Chakraverty, R.; Richardson, S.; Gill, S.; Kroger, N.; Ayuk, F.; Vago, L.; Ciceri, F.; Muller, A.M.; Kondo, T.; Teshima, T.; Klaeger, S.; Kuster, B.; Kim, D.D.H.; Weisdorf, D.; Velden, W.J. van der; Dorfel, D.; Bethge, W.; Hilgendorf, I.; Hochhaus, A.; Andrieux, G.; Borries, M.; Busch, H.; Magenau, J.; Reddy, P.; Labopin, M.; Antin, J.H., et al.

    2018-01-01

    Individuals with acute myeloid leukemia (AML) harboring an internal tandem duplication (ITD) in the gene encoding Fms-related tyrosine kinase 3 (FLT3) who relapse after allogeneic hematopoietic cell transplantation (allo-HCT) have a 1-year survival rate below 20%. We observed that sorafenib, a

  2. In Vivo RNA Interference Screening Identifies a Leukemia-Specific Dependence on Integrin Beta 3 Signaling

    Science.gov (United States)

    Miller, Peter G.; Al-Shahrour, Fatima; Hartwell, Kimberly A.; Chu, Lisa P.; Järås, Marcus; Puram, Rishi V.; Puissant, Alexandre; Callahan, Kevin P.; Ashton, John; McConkey, Marie E.; Poveromo, Luke P.; Cowley, Glenn S.; Kharas, Michael G.; Labelle, Myriam; Shterental, Sebastian; Fujisaki, Joji; Silberstein, Lev; Alexe, Gabriela; Al-Hajj, Muhammad A.; Shelton, Christopher A.; Armstrong, Scott A.; Root, David E.; Scadden, David T.; Hynes, Richard O.; Mukherjee, Siddhartha; Stegmaier, Kimberly; Jordan, Craig T.; Ebert, Benjamin L.

    2013-01-01

    SUMMARY We used an in vivo short hairpin RNA (shRNA) screening approach to identify genes that are essential for MLL-AF9 acute myeloid leukemia (AML). We found that Integrin Beta 3 (Itgb3) is essential for murine leukemia cells in vivo, and for human leukemia cells in xenotransplantation studies. In leukemia cells, Itgb3 knockdown impaired homing, downregulated LSC transcriptional programs, and induced differentiation via the intracellular kinase, Syk. In contrast, loss of Itgb3 in normal HSPCs did not affect engraftment, reconstitution, or differentiation. Finally, we confirmed that Itgb3 is dispensable for normal hematopoiesis and required for leukemogenesis using an Itgb3 knockout mouse model. Our results establish the significance of the Itgb3 signaling pathway as a potential therapeutic target in AML. PMID:23770013

  3. Sensitivity of MLL-rearranged AML cells to all-trans retinoic acid is associated with the level of H3K4me2 in the RARα promoter region

    International Nuclear Information System (INIS)

    Sakamoto, K; Imamura, T; Yano, M; Yoshida, H; Fujiki, A; Hirashima, Y; Hosoi, H

    2014-01-01

    All-trans retinoic acid (ATRA) is well established as differentiation therapy for acute promyelocytic leukemia (APL) in which the PML–RARα (promyelocytic leukemia-retinoic acid receptor α) fusion protein causes blockade of the retinoic acid (RA) pathway; however, in types of acute myeloid leukemia (AML) other than APL, the mechanism of RA pathway inactivation is not fully understood. This study revealed the potential mechanism of high ATRA sensitivity of mixed-lineage leukemia (MLL)-AF9-positive AML compared with MLL-AF4/5q31-positive AML. Treatment with ATRA induced significant myeloid differentiation accompanied by upregulation of RARα, C/EBPα, C/EBPε and PU.1 in MLL-AF9-positive but not in MLL-AF4/5q31-positive cells. Combining ATRA with cytarabine had a synergistic antileukemic effect in MLL-AF9-positive cells in vitro. The level of dimethyl histone H3 lysine 4 (H3K4me2) in the RARα gene-promoter region, PU.1 upstream regulatory region (URE) and RUNX1+24/+25 intronic enhancer was higher in MLL-AF9-positive cells than in MLL-AF4-positive cells, and inhibiting lysine-specific demethylase 1, which acts as a histone demethylase inhibitor, reactivated ATRA sensitivity in MLL-AF4-positive cells. These findings suggest that the level of H3K4me2 in the RARα gene-promoter region, PU.1 URE and RUNX1 intronic enhancer is determined by the MLL-fusion partner. Our findings provide insight into the mechanisms of ATRA sensitivity in AML and novel treatment strategies for ATRA-resistant AML

  4. Leukemia -- Eosinophilic

    Science.gov (United States)

    ... social workers, and patient advocates. Cancer.Net Guide Leukemia - Eosinophilic Introduction Statistics Risk Factors Symptoms and Signs Diagnosis Stages Treatment Options About Clinical Trials Latest Research ...

  5. Nuclear accumulation of SHIP1 mutants derived from AML patients leads to increased proliferation of leukemic cells.

    Science.gov (United States)

    Nalaskowski, Marcus M; Ehm, Patrick; Rehbach, Christoph; Nelson, Nina; Täger, Maike; Modest, Kathrin; Jücker, Manfred

    2018-05-28

    The inositol 5-phosphatase SHIP1 acts as negative regulator of intracellular signaling in myeloid cells and is a tumor suppressor in myeloid leukemogenesis. After relocalization from the cytoplasm to the plasma membrane SHIP1 terminates PI3-kinase mediated signaling processes. Furthermore, SHIP1 is also found in distinct puncta in the cell nucleus and nuclear SHIP1 has a pro-proliferative function. Here we report the identification of five nuclear export signals (NESs) which regulate together with the two known nuclear localization signals (NLSs) the nucleocytoplasmic shuttling of SHIP1. Mutation of NLSs reduced the nuclear import and mutation of NESs decreased the nuclear export of SHIP1 in the acute myeloid leukemia (AML) cell line UKE-1. Interestingly, four SHIP1 mutants (K210R, N508D, V684E, Q1153L) derived from AML patients showed a nuclear accumulation after expression in UKE-1 cells. In addition, overexpression of the AML patient-derived mutation N508D caused an increased proliferation rate of UKE-1 cells in comparison to wild type SHIP1. Furthermore, we identified serine and tyrosine phosphorylation as a molecular mechanism for the regulation of nucleocytoplasmic shuttling of SHIP1 where tyrosine phosphorylation of distinct residues i.e. Y864, Y914, Y1021 reduces nuclear localization, whereas serine phosphorylation at S933 enhances nuclear localization of SHIP1. In summary, our data further implicate nuclear SHIP1 in cellular signaling and suggest that enhanced accumulation of SHIP1 mutants in the nucleus may be a contributory factor of abnormally high proliferation of AML cells. Copyright © 2017. Published by Elsevier Inc.

  6. Relapsing acute myeloid leukemia presenting as hypopyon uveitis

    Directory of Open Access Journals (Sweden)

    Sapna P Hegde

    2011-01-01

    Full Text Available Anterior segment infiltration in acute myeloid leukemia (AML presenting as hypopyon uveitis is very rare. We report this case as an uncommon presentation in a patient on remission after bone marrow transplant for AML. In addition to the hypopyon, the patient presented with "red eye" caused by ocular surface disease due to concurrent graft-versus-host disease and glaucoma. The classical manifestations of masquerade syndrome due to AML were altered by concurrent pathologies. Media opacities further confounded the differential diagnosis. We highlight the investigations used to arrive at a definitive diagnosis. In uveitis, there is a need to maintain a high index of clinical suspicion, as early diagnosis in ocular malignancy can save sight and life.

  7. Isodicentric chromosome 21: a novel aberration in acute myeloid leukemia.

    Science.gov (United States)

    Sankar, M; Tanaka, K; Arif, M; Shintani, T; Kumaravel, T S; Kyo, T; Dohy, H; Kamada, N

    1998-11-01

    We present here a 78-year-old female patient with acute myeloid leukemia (AML), French-American-British classification M2, exhibiting isodicentric chromosome 21, idic(21)(q22), at the time of diagnosis. The patient had three idic(21)(q22), besides the del(5)(q13q32), add(21)(q22), dic(21;22) (q22;q13), and +22. Fluorescence in situ hybridization studies with whole-chromosome painting and centromere-specific probes for chromosome 21 verified the diagnosis of idic(21)(q22). There were no distinct clinicohematological characteristics of AML with isodicentric 21. The patient was treated with remission-induction therapy followed by consolidation therapy. Two years later, the patient showed the disappearance of isodicentric 21 but retained del(5)(q13q32) and gained other chromosomal abnormalities, +add(17)(p11) and -16. To our knowledge, this is the first report of AML with acquired idic(21)(q22).

  8. Bone marrow stromal elements in murine leukemia; Decreased CSF-producing fibroblasts and normal IL-1 expression by macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Ishay, Z [Laboratory of Experimental Hematology, Department of Anatomy and Embryology, Hebrew University-Hadassah Medical School (Israel); Barak, V [Laboratory of Immunology, Department of Oncology, Hadassah University Hospital (Israel); Shoshan, S [Faculty of Dental Medicine, Connective Tissue Research Laboratory, Hebrew University, Jerusalem (Israel); Prindull, G [Department of Pediatrics, University of Gottingen, Gottingen (Germany, F.R.)

    1990-01-01

    A study of bone marrow stromal elements in murine acute myeloid leukemia (AML) was carried out. Our previous studies had indicated marrow stromal deficiency in murine AML. In the current investigation, separate stromal cells were cultured and the results obtained have shown that, while marrow stromal macrophages are normal in leukemia and express adequate amounts of IL-1, the fibroblasts are markedly reduced. However, if sufficient fibroblasts are pooled in vitro, they produce adequate amounts of CSF. Test of TNF{alpha} in leukemic cells CM, as possible cause of marrow stromal inhibition in leukemia, had not disclosed this cytokine. Further, it was observed that total body lethal irradiation of leukemic mice aggravates the stromal deficiency, confirming results of our previous investigations. It is concluded that bone marrow stromal deficiency in murine AML is due to decreased fibroblasts and, implicity, reduced CSF production. (author).

  9. Mesenchymal stromal cells from patients with acute myeloid leukemia have altered capacity to expand differentiated hematopoietic progenitors.

    Science.gov (United States)

    Chandran, Priya; Le, Yevgeniya; Li, Yuhua; Sabloff, Mitchell; Mehic, Jelica; Rosu-Myles, Michael; Allan, David S

    2015-04-01

    The bone marrow microenvironment may be permissive to the emergence and progression of acute myeloid leukemia (AML). Studying interactions between the microenvironment and leukemia cells should provide new insight for therapeutic advances. Mesenchymal stromal cells (MSCs) are central to the maintenance of the hematopoietic niche. Here we compared the functions and gene expression patterns of MSCs derived from bone marrow aspirates of healthy donors and patients with AML. MSCs expanded from AML patients had heterogeneous morphology and displayed a wide range of proliferation capacity compared to MSCs from healthy controls. The ability of AML-MSCs to support the expansion of committed hematopoietic progenitors from umbilical cord blood-derived CD34+ cells may be impaired while the expression of genes associated with maintaining hematopoietic quiescence appeared to be increased in AML-MSCs compared to healthy donors. These results highlight important potential differences in the biologic profile of MSCs from AML patients compared to healthy donors that may contribute to the emergence or progression of leukemia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. MR imaging of the bone marrow in myeloid leukemia and myelodysplastic syndrome. Comparison of the lumbar spine and femur

    International Nuclear Information System (INIS)

    Tanaka, Osamu; Kobayashi, Yasuyuki; Ichikawa, Tamaki; Matsuura, Katsuhiko; Nagai, Jun; Takagi, Shojiro

    1995-01-01

    MR imaging of the lumber spine and the femur was performed with T1-weighted SE sequence and comparison of the MRI findings of the lumber vertebral body and the femoral marrow was made in 15 patients with acute myeloid leukemia (AML), 5 chronic myelogenous leukemia (CML), and 9 myelodysplastic syndrome (MDS). The MRI appearance of the bone marrow was classified into four patterns: 1) fatty marrow; 2) faint signal; 3) heterogeneous infiltration; and 4) diffuse infiltration. The MRI of the lumber vertebral body showed a diffuse marrow infiltration pattern in over the half of the cases of AML and MDS. On the MRI of the femoral marrow, the signal intensity alteration, a low signal on T1-weighted SE image, began in the proximal femurs almost symmetrically. The abnormal low signal intensity area tended to gradually extend towards the distal portion of the femoral marrow with progression of the disease in the patients with AML and MDS. M2 type of AML tended to be demonstrated as a faint signal pattern, which was significantly different from the other types of AML. In all the cases of CML, a diffuse cellular infiltration pattern was noted with total replacement of the fatty marrow on both lumbar spinal and femoral MRI, and the femoral marrow involvement was more downwardly extended than AML. We concluded that MRI of the femoral marrow was more efficient than that of the lumbar spine in the assessment of myeloid leukemia and MDS. (author)

  11. Therapy-related acute promyelocytic leukemia following etoposide-based chemotherapy in non-seminomatous germ cell tumor

    Directory of Open Access Journals (Sweden)

    T N Kumar

    2014-01-01

    Full Text Available Therapy related AML (t- AML accounts for 10-20% of all cases of AML. Cytotoxic agents implicated are alkylating agents, topoisomerase II inhibitors and rarely anti metabolites and anti tubulin agents. A growing incidence of therapy related acute promyelocytic leukemia (t-APL has been reported over the last few decades in malignant and non malignant conditions. To the best of our knowledge this is the first t-APL case report to be reported in NSGCT post etoposide based therapy.

  12. Cytogenetic Profile of de novo Acute Myeloid Leukemia Patients in Malaysia.

    Science.gov (United States)

    Meng, Chin Yuet; Noor, Puteri J; Ismail, Azli; Ahid, Mohd Fadly Md; Zakaria, Zubaidah

    2013-03-01

    Acute myeloid leukemia (AML) is a heterogeneous disease in terms of cytogenetics and molecular genetics. AML is the most common acute leukemia in adults and its incidence increases with age. Diagnostic cytogenetics is an important prognostic indicator for predicting outcome of AML. We examined the karyotypic patterns of 480 patients with de novo AML seen at government hospitals throughout the country and evaluated the association of chromosome aberrations with the age of patient. Chromosome abnormalities were detected in 146 (30.4%) patients. The most common cytogenetic abnormality was balanced translocation t (8; 21), followed by trisomy 8 (as sole abnormality) and t (15; 17). The age of our Malaysian patients at diagnosis ranged from four months to 81 years, with a median age of 39 years. The normal karyotype was found mainly in patients aged 15-30 years. About 75% of patients with t (8; 21) were below 40 years of age, and the complex karyotype was found with the highest frequently (34.3%) in elderly patients (age above 60 years). More than half of the patients with complex karyotype were above 50 years of age. The deletion 5q was detected only in patients aged above 50 years. Different cytogenetic abnormalities in AML show different frequencies with increasing age. Probably different genetic mechanisms are involved in the pathogenesis of AML and these mechanisms might occur at different frequencies over lifetime.

  13. Acute myeloid leukemia in a patient with constitutional 47,XXY karyotype

    Directory of Open Access Journals (Sweden)

    Marla M. Jalbut

    2015-01-01

    Full Text Available Klinefelter syndrome (KS, a 47,XXY chromosomal abnormality, has been shown to be associated with a number of malignancies, but has not been linked to acute leukemias to date. We present a case of a 54-year-old male diagnosed with acute myeloid leukemia (AML with monocytic differentiation, whose cytogenetic and subsequent FISH analyses revealed a constitutional 47,XXY karyotype. We also review and discuss relevant prior literature.

  14. Acute myeloid leukemia in a patient with constitutional 47,XXY karyotype.

    Science.gov (United States)

    Jalbut, Marla M; Sohani, Aliyah R; Dal Cin, Paola; Hasserjian, Robert P; Moran, Jenna A; Brunner, Andrew M; Fathi, Amir T

    2015-01-01

    Klinefelter syndrome (KS), a 47,XXY chromosomal abnormality, has been shown to be associated with a number of malignancies, but has not been linked to acute leukemias to date. We present a case of a 54-year-old male diagnosed with acute myeloid leukemia (AML) with monocytic differentiation, whose cytogenetic and subsequent FISH analyses revealed a constitutional 47,XXY karyotype. We also review and discuss relevant prior literature.

  15. Antileukemic activity of the HSP70 inhibitor pifithrin-μ in acute leukemia

    International Nuclear Information System (INIS)

    Kaiser, M; Kühnl, A; Reins, J; Fischer, S; Ortiz-Tanchez, J; Schlee, C; Mochmann, L H; Heesch, S; Benlasfer, O; Hofmann, W-K; Thiel, E; Baldus, C D

    2011-01-01

    Heat shock protein (HSP) 70 is aberrantly expressed in different malignancies and has emerged as a promising new target for anticancer therapy. Here, we analyzed the in vitro antileukemic effects of pifithrin-μ (PFT-μ), an inhibitor of inducible HSP70, in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) cell lines, as well as in primary AML blasts. PFT-μ significantly inhibited cell viability at low micromolar concentrations in all cell lines tested, with IC50 values ranging from 2.5 to 12.7 μ, and was highly active in primary AML blasts with a median IC50 of 8.9 μ (range 5.7–37.2). Importantly, higher IC50 values were seen in normal hematopoietic cells. In AML and ALL, PFT-μ induced apoptosis and cell cycle arrest in a dose-dependent fashion. PFT-μ also led to an increase of the active form of caspase-3 and reduced the intracellular concentrations of AKT and ERK1/2 in NALM-6 cells. Moreover, PFT-μ enhanced cytotoxicity of cytarabine, 17-(allylamino)-17-desmethoxygeldanamycin, suberoylanilide hydroxamic acid, and sorafenib in NALM-6, TOM-1 and KG-1a cells. This is the first study demonstrating significant antileukemic effects of the HSP70 inhibitor PFT-μ, alone and in combination with different antineoplastic drugs in both AML and ALL. Our results suggest a potential therapeutic role for PFT-μ in acute leukemias

  16. Molecular biomarkers for the study of childhood leukemia

    International Nuclear Information System (INIS)

    Smith, Martyn T.; McHale, Cliona M.; Wiemels, Joseph L.; Zhang, Luoping; Wiencke, John K.; Zheng, Shichun; Gunn, Laura; Skibola, Christine F.; Ma, Xiaomei; Buffler, Patricia A.

    2005-01-01

    Various specific chromosome rearrangements, including t(8;21), t(15;17), and inv(16), are found in acute myeloid leukemia (AML) and in childhood acute lymphocytic leukemia (ALL), t(12;21) and t(1;19) are common. We sequenced the translocation breakpoints of 56 patients with childhood ALL or AML harboring t(12;21), t(8;21), t(15;17), inv(16), and t(1;19), and demonstrated, with the notable exception of t(1;19), that these rearrangements are commonly detected in the neonatal blood spots (Guthrie cards) of the cases. These findings show that most childhood leukemias begin before birth and that maternal and perinatal exposures such as chemical and infectious agents are likely to be critical. Indeed, we have reported that exposure to indoor pesticides during pregnancy and the first year of life raises leukemia risk, but that later exposures do not. We have also examined aberrant gene methylation in different cytogenetic subgroups and have found striking differences between them, suggesting that epigenetic events are also important in the development of some forms of childhood leukemia. Further, at least two studies now show that the inactivating NAD(P)H:quinone acceptor oxidoreductase (NQO1) C609T polymorphism is positively associated with leukemias arising in the first 1-2 years of life and polymorphisms in the 5,10-methylenetetrahydrofolate reductase (MTHFR) gene have been associated with adult and childhood ALL. Thus, low folate intake and compounds that are detoxified by NQO1 may be important in elevating leukemia risk in children. Finally, we are exploring the use of proteomics to subclassify leukemia, because cytogenetic analysis is costly and time-consuming. Several proteins have been identified that may serve as useful biomarkers for rapidly identifying different forms of childhood leukemia

  17. Using Proteomics to 1) Identify the Bone Marrow Homing Receptors Expressed on Human Hematopoietic Stem Cells and 2) Elucidate Critical Signaling Pathways Responsible for the Blockage of Hematopoietic Differentiation in Leukemia

    KAUST Repository

    Chin, Chee J.

    2011-05-22

    Successful hematopoiesis requires the trafficking of hematopoietic stem/progenitor cells (HSPCs) to their bone marrow (BM) niche, where they can differentiate to produce all blood lineages. Leukemia arises when there is a blockage of differentiation and uncontrolled proliferation in the hematopoietic cells during their development. To refine therapies for leukemia, this study sought to improve the homing of healthy donor HSPCs for better transplantation and to find new candidates for differentiating and blocking proliferation in leukemic cells. Characterizing the molecular effectors mediating cell migration forms the basis for improving clinical transplantation of HSPCs. E-selectin/ligand interactions play a critical role in the homing of HSPCs to the BM, however, the identity of E-selectin ligands remains elusive. We aimed to use mass spectrometry (MS) to fully analyze the E-selectin ligands expressed on HSPCs. Immunoprecipitation studies coupled with MS confirmed the expression of three known E-selectin ligands, the hematopoietic cell E-/L-selectin ligand (HCELL), P-selectin glycoprotein ligand-1 (PSGL-1) and CD43, and revealed the presence of many interesting candidates on HSPCs-like cell line and on primary human BM CD34+ cells. The MS dataset represents a rich resource for further characterization of E-selectin ligands, which will lead to improvement of HSPCs transplantation. 4 Understanding the critical pathways underlying the initiation and maintenance of leukemia plays a key role in treating acute myeloid leukemia (AML). Ligation of the glycoprotein, CD44, using monoclonal antibodies or its natural ligand, hyaluronic acid, drives the differentiation of immature leukemic cells towards mature terminally differentiated cells, inhibits their proliferation and in some case induces their apoptosis. The aim of this study is to characterize the phosphoproteome of AML cells in response to CD44-induced differentiation. This will afford novel insights into the

  18. The Prognostic Impact of K-RAS Mutations in Adult Acute Myeloid Leukemia Patients Treated with High Dose Cytarabine

    International Nuclear Information System (INIS)

    Ahmad, E.I.; Gawish, H.H.; Al-Azizi, N.M.A.; El-Hefni, A.M.

    2009-01-01

    Activating point mutation of the RAS gene has been generally accepted as an oncogenic event in a variety of malignancies. It represents one of the most common genetic alterations in acute myeloid leukemia (AML). However there is still controversy about its clinical relevance on the treatment outcome of this leukemia. Objective: This study aimed to clarify the biologic and prognostic impact of K-RAS mutations in relation to the dose of cytarabine (ara-C) used in post induction consolidation chemotherapy in adult AML patients. Patients and Methods: The study comprised 71de novo AML patients with a male: Female ratio of 1.4: 1; their ages ranged from 21-59 years with a median of 37 years. They were subjected to full clinical evaluation, routine laboratory investigations, cytogenetic studies by G banding and K-RAS mutation detection using realtime PCR. The patients were randomized into 2 groups (gps) according to the ara-C dose used in consolidation treatment, HDAC gp receiving 400 mg ara-C and LDAC gp receiving 100 mg ara-C. They were followed over a period of 5 years. Results: Mutations in the K-RAS gene (mutRAS) were detected in 23 patients (32%) with the remaining 48 patients (68%) having wild type RAS (wtRAS). Blast cell percentage was significantly lower in mutRAS compared to wtRAS patients (p=<0.001). The M4 subtype of AML and cases with Inv 16 showed significantly higher frequencies in mutRAS compared to wtRAS patients, (p=0.015, 0.003, respectively). The patients were followed up for a median of 43 months (range 11-57 months). There was no significant difference in overall survival (OS) between mutRAS and wtRAS patients (p=0.326). Within the mutRAS patients treated with HDAC, cumulative OS was significantly higher than those treated with LDAC (p=0.001). This was not the case in the wtRAS group (p=0.285). There was no significant difference in disease The Prognostic Impact of K-RAS Mutations in Adult Acute Myeloid Leukemia Patients Treated with High Dose

  19. The prognostic impact of K-RAS mutations in adult acute myeloid leukemia patients treated with high-dose cytarabine

    Directory of Open Access Journals (Sweden)

    Ahmad EI

    2011-07-01

    Full Text Available Ebtesam I Ahmad, Heba H Gawish, Nashwa MA Al Azizi, Ashraf M ElhefniClinical Pathology Department, Hematology and Oncology Unit of Internal Medicine Department, Faculty of Medicine, Zagazig University, Sharkia, EgyptBackground: Activating point mutation of the RAS gene has been generally accepted as an oncogenic event in a variety of malignancies. It represents one of the most common genetic alterations in acute myeloid leukemia (AML. However, little is known about its clinical relevance in the treatment outcome for this leukemia.Objective: This study aimed to clarify the biologic and prognostic impact of K-RAS mutations in relation to the dose of cytarabine (ara-C used in postinduction consolidation chemotherapy in adult AML patients.Patients and methods: The study comprised of 71 de novo AML patients with male/female ratio 1.4:1; their ages ranged from 21–59 years with a median of 37 years. They were subjected to full clinical evaluation, routine laboratory investigations, cytogenetic studies by G-banding (Giemsa staining, and K-RAS mutation detection using real-time polymerase chain reaction. The patients were randomized into two groups according to the ara-C dose used in consolidation treatment, the high the dose ara-C (HDAC group receiving 400 mg ara-C and-low-dose ara-C (LDAC group receiving 100 mg ara-C; they were followed over a period of five years.Results: Mutations in the K-RAS gene (mutRAS were detected in 23 patients (32% with the remaining 48 patients (68% having wild-type RAS (wtRAS. The percent of blast cells was significantly lower in mutRAS compared to wtRAS patients (P ≤ 0.001 while M4 subtype of AML and Inv(16 frequencies were significantly higher in mutRAS compared to wtRAS patients (P = 0.015 and (P = 0.003, respectively. The patients were followed up for a median of 43 months (range 11–57 months. There was no significant difference in overall survival (OS between mutRAS and wtRAS (P = 0.326. Within the mut

  20. Frequency of acute myeloid leukemia in children attended in Belém, Pará from August 2005 to May 2009

    Directory of Open Access Journals (Sweden)

    Lacy C. B. Junior

    2015-04-01

    Full Text Available Introduction: Acute myeloid leukemia (AML has variable incidence in different regions of Brazil. Objective: To determine the frequency of AML subtypes in children aged 0-17 years attended at Belém, Pará, from August 2005 to May 2009. Patients and methods: A retrospective study was performed with 278 patients diagnosed with acute or chronic leukemia based on clinical and morphological criteria (French-American-British [FAB]/World Health Organization classification [WHO] and immunophenotyping profile by flow cytometry, to determine the frequency of the subtypes in AML. Results: We found 70 (25.18% cases of AML, 37 of these (52.9% were children aged 0-17 years (median age of 7 years and 8 months. There was no statistical difference in relation to gender. We observed a higher frequency of AML subtype M2 (18/37 - 48.6% and M0/M1 (10/37 - 27%, especially in the first decade of life (16/28 [57.1%] AML M2 and 9/28 [32.1%] AML M0/M1. Conclusion: In the pediatric population, the types of AML M2, M0/M1 and M3 were respectively the most frequent.

  1. A review of therapy-related myelodysplastic syndromes and acute myeloid leukaemia (t-MDS/AML) in Irish patients: a single centre experience.

    Science.gov (United States)

    Maung, Su W; Burke, Cathie; Hayde, Jennifer; Walshe, Janice; McDermott, Ray; Desmond, Ronan; McHugh, Johnny; Enright, Helen

    2017-07-01

    To demonstrate the incidence, characteristics, treatment and outcomes of patients with therapy-related myelodysplastic syndromes and therapy-related acute myeloid leukaemia (t-MDS/AML) in a tertiary referral centre. Patients meeting the diagnostic criteria for t-MDS/AML from 2003 to 2014 were reviewed to analyse their diagnostic features, details of antecedent disorder and treatment, approach to management and survival. 39 patients who developed t-MDS/AML were identified with incidence of 8.7%. Median age and gender distribution were similar to de novo MDS but t-MDS/AML patients had greater degree of cytopenia and adverse karyotypes. Time to development of t-MDS/AML was shortest for patients with antecedent haematological malignancy compared to solid tumours and autoimmune disorders (46, 85 and 109 months). Patients with prior acute leukaemia had the shortest latency and poor overall survival. Treatment options included best supportive care (56%), Azacitidine (31%) or intensive chemotherapy/allogeneic transplant (13%). Median OS of all patients was 14 months. Survival declined markedly after two years and 5-year OS was 13.8%. Longer survival was associated with blast count MDS/AML patients showed unique characteristics which influenced their treatment and outcomes. IPSS-R may be useful in risk-adapted treatment approaches and can predict outcomes. Survival remains poor but improved outcomes were seen with allogeneic transplantation. Azacitidine may be effective in patients unfit for intensive therapies.

  2. The thrombopoietin/MPL/Bcl-xL pathway is essential for survival and self-renewal in human preleukemia induced by AML1-ETO

    Science.gov (United States)

    Chou, Fu-Sheng; Griesinger, Andrea; Wunderlich, Mark; Lin, Shan; Link, Kevin A.; Shrestha, Mahesh; Goyama, Susumu; Mizukawa, Benjamin; Shen, Shuhong; Marcucci, Guido

    2012-01-01

    AML1-ETO (AE) is a fusion product of translocation (8;21) that accounts for 40% of M2 type acute myeloid leukemia (AML). In addition to its role in promoting preleukemic hematopoietic cell self-renewal, AE represses DNA repair genes, which leads to DNA damage and increased mutation frequency. Although this latter function may promote leukemogenesis, concurrent p53 activation also leads to an increased baseline apoptotic rate. It is unclear how AE expression is able to counterbalance this intrinsic apoptotic conditioning by p53 to promote survival and self-renewal. In this report, we show that Bcl-xL is up-regulated in AE cells and plays an essential role in their survival and self-renewal. Further investigation revealed that Bcl-xL expression is regulated by thrombopoietin (THPO)/MPL-signaling induced by AE expression. THPO/MPL-signaling also controls cell cycle reentry and mediates AE-induced self-renewal. Analysis of primary AML patient samples revealed a correlation between MPL and Bcl-xL expression specifically in t(8;21) blasts. Taken together, we propose that survival signaling through Bcl-xL is a critical and intrinsic component of a broader self-renewal signaling pathway downstream of AML1-ETO–induced MPL. PMID:22337712

  3. JAK inhibitors suppress t(8;21) fusion protein-induced leukemia

    Science.gov (United States)

    Lo, Miao-Chia; Peterson, Luke F.; Yan, Ming; Cong, Xiuli; Hickman, Justin H.; DeKelver, Russel C.; Niewerth, Denise; Zhang, Dong-Er

    2014-01-01

    Oncogenic mutations in components of the JAK/STAT pathway, including those in cytokine receptors and JAKs, lead to increased activity of downstream signaling and are frequently found in leukemia and other hematological disorders. Thus, small-molecule inhibitors of this pathway have been the focus of targeted therapy in these hematological diseases. We previously showed that t(8;21) fusion protein AML1-ETO and its alternatively spliced variant AML1-ETO9a (AE9a) enhance the JAK/STAT pathway via down-regulation of CD45, a negative regulator of this pathway. To investigate the therapeutic potential of targeting JAK/STAT in t(8;21) leukemia, we examined the effects of a JAK2-selective inhibitor TG101209 and a JAK1/2-selective inhibitor INCB18424 on t(8;21) leukemia cells. TG101209 and INCB18424 inhibited proliferation and promoted apoptosis of these cells. Furthermore, TG101209 treatment in AE9a leukemia mice reduced tumor burden and significantly prolonged survival. TG101209 also significantly impaired the leukemia-initiating potential of AE9a leukemia cells in secondary recipient mice. These results demonstrate the potential therapeutic efficacy of JAK inhibitors in treating t(8;21) AML. PMID:23812420

  4. Outcome of Allogeneic Stem Cell Transplantation for Patients Transformed to Myelodysplastic Syndrome or Leukemia from Severe Aplastic Anemia: A Report from the MDS Subcommittee of the Chronic Malignancies Working Party and the Severe Aplastic Anemia Working Party of the European Group for Blood and Marrow Transplantation

    NARCIS (Netherlands)

    Hussein, A.A.; Halkes, C.M.; Socie, G.; Tichelli, A.; Borne, P.A. von dem; Schaap, M.N.; Foa, R.; Ganser, A.; Dufour, C.; Bacigalupo, A.; Locasciulli, A.; Aljurf, M.; Peters, C.; Robin, M.; Biezen, A.A. van; Volin, L.; Witte, T.J. de; Marsh, J.; Passweg, J.R.; Kroger, N.; et al.,

    2014-01-01

    One hundred and forty patients who had undergone hematopoietic stem cell transplantation (HSCT) for myelodysplastic syndrome (MDS) or acute myelogenous leukemia (AML) transformation after treatment of severe aplastic anemia (SAA) were identified in the European Group for Blood and Marrow

  5. Treatment of Chronic Myelomonocytic Leukemia with 5-Azacytidine: Case Reports

    Directory of Open Access Journals (Sweden)

    Peter Rohon

    2012-01-01

    Full Text Available Epigenetic therapy with hypomethylating agent (5-azacytidine; AZA is common in the management of specific subtypes of myelodysplastic syndrome (MDS, but there are only few studies in chronic myelomonocytic leukemia (CMML patients. In this paper our experience with 3 CMML patients treated with AZA is described. In one patient transfusion independency was observed after 4 treatment cycles; in one case a partial response was recorded, but a progression to acute myeloid leukemia (AML after 13 AZA cycles has appeared. In one patient, AZA in reduced dosage was administered as a bridging treatment before allogeneic stem cell transplantation (ASCT, but in the control bone marrow aspirate (before ASCT a progression to AML was recorded. Future studies are mandatory for evaluation of new molecular and clinical features which could predict the efficiency of hypomethylating agents in CMML therapy with respect to overall survival, event-free survival, quality-adjusted life year, and pharmacoeconomy.

  6. KIT D816V Positive Acute Mast Cell Leukemia Associated with Normal Karyotype Acute Myeloid Leukemia.

    Science.gov (United States)

    Lopes, Marta; Teixeira, Maria Dos Anjos; Casais, Cláudia; Mesquita, Vanessa; Seabra, Patrícia; Cabral, Renata; Palla-García, José; Lau, Catarina; Rodrigues, João; Jara-Acevedo, Maria; Freitas, Inês; Vizcaíno, Jose Ramón; Coutinho, Jorge; Escribano, Luis; Orfao, Alberto; Lima, Margarida

    2018-01-01

    Mast cell (MC) leukemia (MCL) is extremely rare. We present a case of MCL diagnosed concomitantly with acute myeloblastic leukemia (AML). A 41-year-old woman presented with asthenia, anorexia, fever, epigastralgia, and diarrhea. She had a maculopapular skin rash, hepatosplenomegaly, retroperitoneal adenopathies, pancytopenia, 6% blast cells (BC) and 20% MC in the peripheral blood, elevated lactate dehydrogenase, cholestasis, hypoalbuminemia, hypogammaglobulinemia, and increased serum tryptase (184  μ g/L). The bone marrow (BM) smears showed 24% myeloblasts, 17% promyelocytes, and 16% abnormal toluidine blue positive MC, and flow cytometry revealed 12% myeloid BC, 34% aberrant promyelocytes, a maturation blockage at the myeloblast/promyelocyte level, and 16% abnormal CD2-CD25+ MC. The BM karyotype was normal, and the KIT D816V mutation was positive in BM cells. The diagnosis of MCL associated with AML was assumed. The patient received corticosteroids, disodium cromoglycate, cladribine, idarubicin and cytosine arabinoside, high-dose cytosine arabinoside, and hematopoietic stem cell transplantation (HSCT). The outcome was favorable, with complete hematological remission two years after diagnosis and one year after HSCT. This case emphasizes the need of an exhaustive laboratory evaluation for the concomitant diagnosis of MCL and AML, and the therapeutic options.

  7. Outcomes for Patients with Chronic Lymphocytic Leukemia (CLL) and Acute Leukemia or Myelodysplastic Syndrome

    Science.gov (United States)

    Tambaro, Francesco Paolo; Garcia-Manero, Guillermo; O’Brien, Susan M.; Faderl, Stefan H.; Ferrajoli, Alessandra; Burger, Jan A.; Pierce, Sherry; Wang, Xuemei; Do, Kim-Anh; Kantarjian, Hagop M.; Keating, Michael J.; Wierda, William G.

    2016-01-01

    Acute leukemia (AL) and myelodysplastic syndrome (MDS) are uncommon in CLL. We retrospectively identified 95 patients with CLL also diagnosed with AL (n=38) or MDS (n=57), either concurrently (n=5) or subsequent (n=90) to CLL diagnosis and report their outcomes. Median number of CLL treatments prior to AL and MDS was 2(0–9) and 1(0–8), respectively; the most common regimen was purine analogue combined with alkylating agent±CD20 mAb. Twelve had no prior CLL treatment. Among 38 with AL, 33 had AML, 3 had ALL (1Ph+), 1 had biphenotypic, and 1 had extramedullary (bladder) AML. Unfavorable AML karyotype was noted in 26, intermediate-risk in 7. There was no association between survival from AL and number of prior CLL regimens or karyotype. Expression of CD7 on blasts was associated with shorter survival. Among MDS cases, all IPSS were represented; karyotype was unfavorable in 36, intermediate in 6, and favorable in 12 patients; 10 experienced transformation to AML. Shorter survival from MDS correlated with higher-risk IPSS, poor-risk karyotype, and increased number of prior CLL treatments. Overall, outcomes for patients with CLL subsequently diagnosed with AL or MDS were poor; AL/MDS occurred without prior CLL treatment. Effective therapies for these patients are desperately needed. PMID:26290497

  8. Hierarchy in gene expression is predictive of risk, progression, and outcome in adult acute myeloid leukemia

    Science.gov (United States)

    Tripathi, Shubham; Deem, Michael W.

    2015-02-01

    Cancer progresses with a change in the structure of the gene network in normal cells. We define a measure of organizational hierarchy in gene networks of affected cells in adult acute myeloid leukemia (AML) patients. With a retrospective cohort analysis based on the gene expression profiles of 116 AML patients, we find that the likelihood of future cancer relapse and the level of clinical risk are directly correlated with the level of organization in the cancer related gene network. We also explore the variation of the level of organization in the gene network with cancer progression. We find that this variation is non-monotonic, which implies the fitness landscape in the evolution of AML cancer cells is non-trivial. We further find that the hierarchy in gene expression at the time of diagnosis may be a useful biomarker in AML prognosis.

  9. Hierarchy in gene expression is predictive of risk, progression, and outcome in adult acute myeloid leukemia

    International Nuclear Information System (INIS)

    Tripathi, Shubham; Deem, Michael W

    2015-01-01

    Cancer progresses with a change in the structure of the gene network in normal cells. We define a measure of organizational hierarchy in gene networks of affected cells in adult acute myeloid leukemia (AML) patients. With a retrospective cohort analysis based on the gene expression profiles of 116 AML patients, we find that the likelihood of future cancer relapse and the level of clinical risk are directly correlated with the level of organization in the cancer related gene network. We also explore the variation of the level of organization in the gene network with cancer progression. We find that this variation is non-monotonic, which implies the fitness landscape in the evolution of AML cancer cells is non-trivial. We further find that the hierarchy in gene expression at the time of diagnosis may be a useful biomarker in AML prognosis. (paper)

  10. RUNX1 regulates phosphoinositide 3-kinase/AKT pathway: role in chemotherapy sensitivity in acute megakaryocytic leukemia.

    Science.gov (United States)

    Edwards, Holly; Xie, Chengzhi; LaFiura, Katherine M; Dombkowski, Alan A; Buck, Steven A; Boerner, Julie L; Taub, Jeffrey W; Matherly, Larry H; Ge, Yubin

    2009-09-24

    RUNX1 (AML1) encodes the core binding factor alpha subunit of a heterodimeric transcription factor complex which plays critical roles in normal hematopoiesis. Translocations or down-regulation of RUNX1 have been linked to favorable clinical outcomes in acute leukemias, suggesting that RUNX1 may also play critical roles in chemotherapy responses in acute leukemias; however, the molecular mechanisms remain unclear. The median level of RUNX1b transcripts in Down syndrome (DS) children with acute megakaryocytic leukemia (AMkL) were 4.4-fold (P regulation of PIK3CD by RUNX1 was further confirmed by chromatin immunoprecipitation and promoter reporter gene assays. Further, a PI3-kinase inhibitor, LY294002, and cytosine arabinoside synergized in antileukemia effects on Meg-01 and primary pediatric AMkL cells. Our results suggest that RUNX1 may play a critical role in chemotherapy response in AMkL by regulating the PI3-kinase/Akt pathway. Thus, the treatment of AMkL may be improved by integrating PI3-kinase or Akt inhibitors into the chemotherapy of this disease.

  11. Quality of health in survivors of childhood acute myeloid leukemia treated with chemotherapy only

    DEFF Research Database (Denmark)

    Molgaard-Hansen, Lene; Glosli, Heidi; Jahnukainen, Kirsi

    2011-01-01

    More than 60% of children with acute myeloid leukemia (AML) become long-term survivors, and approximately 50% are cured with chemotherapy only. Limited data exist about their long-term morbidity and social outcomes. The aim of the study was to compare the self-reported use of health care services...

  12. Allogeneic hematopoietic stem-cell transplantation for acute myeloid leukemia in remission

    DEFF Research Database (Denmark)

    Nagler, Arnon; Rocha, Vanderson; Labopin, Myriam

    2013-01-01

    Cyclophosphamide (Cy) combined with total-body irradiation (TBI) or with busulfan (Bu) are currently the most common myeloablative regimens used in allogeneic stem-cell transplantation (alloSCT) in adults with acute myelogenous leukemia (AML). Intravenous (IV) Bu has more predictable...

  13. A phase 1 clinical trial of single-agent selinexor in acute myeloid leukemia

    DEFF Research Database (Denmark)

    Garzon, Ramiro; Savona, Michael; Baz, Rachid

    2017-01-01

    of selinexor in patients with advanced hematological malignancies. Ninety-five patients with relapsed or refractory acute myeloid leukemia (AML) were enrolled between January 2013 and June 2014 to receive 4, 8, or 10 doses of selinexor in a 21- or 28-day cycle. The most frequently reported adverse events (AEs...

  14. Addition of gemtuzumab ozogamicin to induction chemotherapy improves survival in older patients with acute myeloid leukemia

    DEFF Research Database (Denmark)

    Burnett, Alan K; Russell, Nigel H; Hills, Robert K

    2012-01-01

    PURPOSE There has been little survival improvement in older patients with acute myeloid leukemia (AML) in the last two decades. Improving induction treatment may improve the rate and quality of remission and consequently survival. In our previous trial, in younger patients, we showed improved...

  15. Cigarette smoking and the risk of adult leukemia: results from the Three Mile Island cohort study.

    Science.gov (United States)

    Xu, Xiaohui; Talbott, Evelyn O; Zborowski, Jeanne V; Rager, Judith R

    2007-01-01

    Smoking is an unconfirmed risk factor for the development of leukemia. The authors examined the potential link using data from the Three Mile Island cohort for the period 1979-1995. Eligible for analysis were 24,539 individuals aged 14 years or older who were followed up over 16 years from the Three Mile Island cohort. The authors identified all incident leukemia cases through the Pennsylvania Department of Health Cancer Registry. They used the Cox proportional hazards model to evaluate the relationships and observed 42 incident leukemia cases, including 15 acute myeloid leukemia (AML) cases, in the cohort. After controlling for other confounding factors, the authors found current smoking to be associated with an increased risk of adult AML (relative risk = 3.47; 95% confidence interval = 1.002-11.99). The authors also observed a marginally significant linear trend of risk of AML associated with the number of years smoked (p = .06). The results from this study suggested that cigarette smoking was associated with an increased risk of adult AML. Further investigation is required to confirm these findings.

  16. Karyotyping, FISH, and PCR in acute lymphoblastic leukemia: competing or complementary diagnostics?

    NARCIS (Netherlands)

    Olde Nordkamp, Louise; Mellink, Clemens; van der Schoot, Ellen; van den Berg, Henk

    2009-01-01

    BACKGROUND: Chromosomal abnormalities, such as t(9;22)(q34;q11) (ABL/BCR), t(12;21)(p13;q22) (TEL/AML1), and t(11q23) (MLL) are independent prognostic indicators in childhood acute lymphoblastic leukemia resulting in risk adapted therapy. Accurate and rapid detection of these abnormalities is

  17. Central diabetes insipidus preceding acute myeloid leukemia with t(3;12)(q26;p12)

    NARCIS (Netherlands)

    Nieboer, P; Vellenga, E; Adriaanse, R; van de Loosdrecht, AA

    A 52-year-old woman presented with polyuria and polydipsia. ii diagnosis of central diabetes insipidus (DI) was made, which turned out to be the first sign of acute myeloid leukemia (AML). Cytogenetic analysis revealed a balanced translocation between chromosome 3 and 12 t(3;12)(q26;p12). The

  18. [Cellular immunophenotypes in 97 adults with acute leukemia].

    Science.gov (United States)

    Piedras, J; López-Karpovitch, X; Cárdenas, M R

    1997-01-01

    To analyze hematopoietic cell surface antigen reactivity in acute leukemia (AL) by flow cytometry and identify acute mixed-lineage leukemias (AMLL) employing the most widely accepted criteria. Ninety seven patients with de novo AL were studied. Cell surface antigens were investigated with monoclonal antibodies directed to: B lymphoid (CD10, CD19, CD20, CD21, CD22); T lymphoid (CD2, CD3, CD5, CD7); and myeloid (CD13, CD14, CD15, CD33, CD41) cell lineages. Maturation cell-associated antigens (CD34, HLA-DR and TdT) were also studied. Twelve patients unclassified by cytomorphology could be classified by immunophenotype. Using cytomorphologic, cytochemical and immunophenotypic data, 54 cases corresponded to acute lymphoblastic leukemia (ALL) and 43 were acute myeloblastic leukemia (AML). In All there were 63% B lineage, 15% T, 7% T/B, 6% undifferentiated and 9% mixed-lineage (coexpression of two or more myeloid-associated antigens). In AML, myeloid immunophenotype was observed in 86% undifferentiated in 2%, and mixed-lineage in 12% (coexpression of two or more lymphoid-associated antigens). In addition, 26% of ALL cases and 12% of AML cases expressed a single myeloid and lymphoid antigen respectively. The most common aberrant antigens in ALL and AML were CD13 and CD7 respectively. The highest frequency of CD34 antigen expression (90%) was detected in patients with AMLL. Flow cytometric immunophenotypic analysis allowed to: a) establish diagnosis in cytomorphologically unclassified cases; b) identify AMLL with a frequency similar to that reported in other series; and c) confirm the heterogeneity of AL.

  19. GATA Factor-Dependent Positive-Feedback Circuit in Acute Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Koichi R. Katsumura

    2016-08-01

    Full Text Available The master regulatory transcription factor GATA-2 triggers hematopoietic stem and progenitor cell generation. GATA2 haploinsufficiency is implicated in myelodysplastic syndrome (MDS and acute myeloid leukemia (AML, and GATA2 overexpression portends a poor prognosis for AML. However, the constituents of the GATA-2-dependent genetic network mediating pathogenesis are unknown. We described a p38-dependent mechanism that phosphorylates GATA-2 and increases GATA-2 target gene activation. We demonstrate that this mechanism establishes a growth-promoting chemokine/cytokine circuit in AML cells. p38/ERK-dependent GATA-2 phosphorylation facilitated positive autoregulation of GATA2 transcription and expression of target genes, including IL1B and CXCL2. IL-1β and CXCL2 enhanced GATA-2 phosphorylation, which increased GATA-2-mediated transcriptional activation. p38/ERK-GATA-2 stimulated AML cell proliferation via CXCL2 induction. As GATA2 mRNA correlated with IL1B and CXCL2 mRNAs in AML-M5 and high expression of these genes predicted poor prognosis of cytogenetically normal AML, we propose that the circuit is functionally important in specific AML contexts.

  20. Raman spectroscopy for the assessment of acute myeloid leukemia: a proof of concept study

    Science.gov (United States)

    Vanna, R.; Tresoldi, C.; Ronchi, P.; Lenferink, A. T. M.; Morasso, C.; Mehn, D.; Bedoni, M.; Terstappen, L. W. M. M.; Ciceri, F.; Otto, C.; Gramatica, F.

    2014-03-01

    Acute myeloid leukemia (AML) is a proliferative neoplasm, that if not properly treated can rapidly cause a fatal outcome. The diagnosis of AML is challenging and the first diagnostic step is the count of the percentage of blasts (immature cells) in bone marrow and blood sample, and their morphological characterization. This evaluation is still performed manually with a bright field light microscope. Here we report results of a study applying Raman spectroscopy for analysis of samples from two patients affected by two AML subtypes characterized by a different maturation stage in the neutrophilic lineage. Ten representative cells per sample were selected and analyzed with high-resolution confocal Raman microscopy by scanning 64x64 (4096) points in a confocal layer through the volume of the whole cell. The average spectrum of each cell was then used to obtain a highly reproducible mean fingerprint of the two different AML subtypes. We demonstrate that Raman spectroscopy efficiently distinguishes these different AML subtypes. The molecular interpretation of the substantial differences between the subtypes is related to granulocytic enzymes (e.g. myeloperoxidase and cytochrome b558), in agreement with different stages of maturation of the two considered AML subtypes . These results are promising for the development of a new, objective, automated and label-free Raman based methods for the diagnosis and first assessment of AML.

  1. [Identification of novel pathogenic gene mutations in pediatric acute myeloid leukemia by whole-exome resequencing].

    Science.gov (United States)

    Shiba, Norio

    2015-12-01

    A new class of gene mutations, identified in the pathogenesis of adult acute myeloid leukemia (AML), includes DNMT3A, IDH1/2, TET2 and EZH2. However, these mutations are rare in pediatric AML cases, indicating that pathogeneses differ between adult and pediatric forms of AML. Meanwhile, the recent development of massively parallel sequencing technologies has provided a new opportunity to discover genetic changes across entire genomes or proteincoding sequences. In order to reveal a complete registry of gene mutations, we performed whole exome resequencing of paired tumor-normal specimens from 19 pediatric AML cases using Illumina HiSeq 2000. In total, 80 somatic mutations or 4.2 mutations per sample were identified. Many of the recurrent mutations identified in this study involved previously reported targets in AML, such as FLT3, CEBPA, KIT, CBL, NRAS, WT1 and EZH2. On the other hand, several genes were newly identified in the current study, including BCORL1 and major cohesin components such as SMC3 and RAD21. Whole exome resequencing revealed a complex array of gene mutations in pediatric AML genomes. Our results indicate that a subset of pediatric AML represents a discrete entity that could be discriminated from its adult counterpart, in terms of the spectrum of gene mutations.

  2. Regulatory T cells in acute myelogenous leukemia: is it time for immunomodulation?

    Science.gov (United States)

    Ustun, Celalettin; Miller, Jeffrey S; Munn, David H; Weisdorf, Daniel J; Blazar, Bruce R

    2011-11-10

    The microenviroment of acute myelogenous leukemia (AML) is suppressive for immune effector cells. Regulatory T cells (Tregs) have been recognized as a contributor factor and may be recruited and exploited by leukemic cells to evade immunesurveillance. Studies have shown that the frequencies of marrow and blood Tregs are greater in patients with AML than in control patients. Although increased Tregs have been associated with a decreased risk of GVHD after allogeneic HCT and hence may impede the graft-versus-tumor effect, recent findings indicate that that this may not be the case. Because there is a need to improve outcomes of standard treatment (chemotherapy with or without allogeneic HCT) in AML, targeting Tregs present an outstanding opportunity in AML because discoveries may apply throughout its treatment. Here, we review data on the roles of Tregs in mediating immune system-AML interactions. We focused on in vitro, animal, and observational human studies of Tregs in AML biology, development, prognosis, and therapy in different settings (eg, vaccination and HCT). Manipulation of Tregs or other types of immunomodulation may become a part of AML treatment in the future.

  3. Frequency and Prognostic Relevance of FLT3 Mutations in Saudi Acute Myeloid Leukemia Patients

    Directory of Open Access Journals (Sweden)

    Ghaleb Elyamany

    2014-01-01

    Full Text Available The Fms-like tyrosine kinase-3 (FLT3 is a receptor tyrosine kinase that plays a key role in cell survival, proliferation, and differentiation of hematopoietic stem cells. Mutations of FLT3 were first described in 1997 and account for the most frequent molecular mutations in acute myeloid leukemia (AML. AML patients with FLT3 internal tandem duplication (ITD mutations have poor cure rates the prognostic significance of point mutations; tyrosine kinase domain (TKD is still unclear. We analyzed the frequency of FLT3 mutations (ITD and D835 in patients with AML at diagnosis; no sufficient data currently exist regarding FLT3 mutations in Saudi AML patients. This study was aimed at evaluating the frequency of FLT3 mutations in patients with AML and its significance for prognosis. The frequency of FLT3 mutations in our study (18.56% was lower than many of the reported studies, FLT3-ITD mutations were observed in 14.4%, and FLT3-TKD in 4.1%, of 97 newly diagnosed AML patients (82 adult and 15 pediatric. Our data show significant increase of FLT3 mutations in male more than female (13 male, 5 female. Our results support the view that FLT3-ITD mutation has strong prognostic factor in AML patients and is associated with high rate of relapse, and high leucocytes and blast count at diagnosis and relapse.

  4. MicroRNA-29b mediates altered innate immune development in acute leukemia

    Science.gov (United States)

    Mundy-Bosse, Bethany L.; Scoville, Steven D.; Chen, Li; McConnell, Kathleen; Mao, Hsiaoyin C.; Ahmed, Elshafa H.; Zorko, Nicholas; Harvey, Sophia; Cole, Jordan; Zhang, Xiaoli; Costinean, Stefan; Croce, Carlo M.; Larkin, Karilyn; Byrd, John C.; Vasu, Sumithira; Blum, William; Yu, Jianhua; Freud, Aharon G.; Caligiuri, Michael A.

    2016-01-01

    Natural killer (NK) cells can have potent antileukemic activity following haplo-mismatched, T cell–depleted stem cell transplantations for the treatment of acute myeloid leukemia (AML), but they are not successful in eradicating de novo AML. Here, we have used a mouse model of de novo AML to elucidate the mechanisms by which AML evades NK cell surveillance. NK cells in leukemic mice displayed a marked reduction in the cytolytic granules perforin and granzyme B. Further, as AML progressed, we noted the selective loss of an immature subset of NK cells in leukemic mice and in AML patients. This absence was not due to elimination by cell death or selective reduction in proliferation, but rather to the result of a block in NK cell differentiation. Indeed, NK cells from leukemic mice and humans with AML showed lower levels of TBET and EOMES, transcription factors that are critical for terminal NK cell differentiation. Further, the microRNA miR-29b, a regulator of T-bet and EOMES, was elevated in leukemic NK cells. Finally, deletion of miR-29b in NK cells reversed the depletion of this NK cell subset in leukemic mice. These results indicate that leukemic evasion of NK cell surveillance occurs through miR-mediated dysregulation of lymphocyte development, representing an additional mechanism of immune escape in cancer. PMID:27775550

  5. Outcome of poor response Paediatric AML using early SCT

    DEFF Research Database (Denmark)

    Wareham, Neval E; Heilmann, Carsten; Abrahamsson, Jonas

    2013-01-01

    ) or > 5% blasts after AM (n = 14, refractory disease). Poor response patients received intensively timed induction and proceeded to SCT when a donor was available. RESULTS: Thirty-one of 267 evaluable patients (12%) had a poor response. SCT was performed in 25; using matched unrelated donors in 13......BACKGROUND: Children with poor response acute myeloid leukaemia (AML) generally have a very poor outcome. Allogeneic stem cell transplantation (SCT) is often recommended for these children but the benefit is unclear. The aim of this study was to investigate survival for poor response AML patients...... treated with SCT. MATERIAL AND METHODS: Treatment was given according to the NOPHO-AML 2004 protocol. All patients received AIET (Cytarabine, Idarubicin, Etoposide, Thioguanine) and AM (Cytarabine, Mitoxantrone) as induction. We included poor response defined as > 15% blasts on day 15 after AIET (n = 17...

  6. Childhood Leukemia and Primary Prevention

    Science.gov (United States)

    Whitehead, Todd P.; Metayer, Catherine; Wiemels, Joseph L.; Singer, Amanda W.; Miller, Mark D.

    2016-01-01

    Leukemia is the most common pediatric cancer, affecting 3,800 children per year in the United States. Its annual incidence has increased over the last decades, especially among Latinos. Although most children diagnosed with leukemia are now cured, many suffer long-term complications, and primary prevention efforts are urgently needed. The early onset of leukemia – usually before age five – and the presence at birth of “pre-leukemic” genetic signatures indicate that pre- and postnatal events are critical to the development of the disease. In contrast to most pediatric cancers, there is a growing body of literature – in the United States and internationally – that has implicated several environmental, infectious, and dietary risk factors in the etiology of childhood leukemia, mainly for acute lymphoblastic leukemia, the most common subtype. For example, exposures to pesticides, tobacco smoke, solvents, and traffic emissions have consistently demonstrated positive associations with the risk of developing childhood leukemia. In contrast, intake of vitamins and folate supplementation during the pre-conception period or pregnancy, breastfeeding, and exposure to routine childhood infections have been shown to reduce the risk of childhood leukemia. Some children may be especially vulnerable to these risk factors, as demonstrated by a disproportionate burden of childhood leukemia in the Latino population of California. The evidence supporting the associations between childhood leukemia and its risk factors – including pooled analyses from around the world and systematic reviews – is strong; however, the dissemination of this knowledge to clinicians has been limited. To protect children’s health, it is prudent to initiate programs designed to alter exposure to well-established leukemia risk factors rather than to suspend judgement until no uncertainty remains. Primary prevention programs for childhood leukemia would also result in the significant co

  7. Comorbidity and performance status in acute myeloid leukemia patients

    DEFF Research Database (Denmark)

    Ostgård, L S G; Nørgaard, J M; Sengeløv, H

    2015-01-01

    As the world population ages, the comorbidity burden in acute myeloid leukemia (AML) patients increases. Evidence on how to integrate comorbidity measures into clinical decision-making is sparse. We determined the prognostic impact of comorbidity and World Health Organization Performance Status (PS...... with an increased short- and long-term mortality (adjusted 90 day MR, PS⩾2=3.43 (95%CI=2.30-5.13); adjusted 91 day-3 year MR=1.35 (95%CI=1.06-1.74)). We propose that more patients with comorbidity may benefit from intensive chemotherapy.Leukemia advance online publication, 2 September 2014; doi:10.1038/leu.2014.234....

  8. Membrane Type-1 Matrix Metalloproteinase Expression in Acute Myeloid Leukemia and Its Upregulation by Tumor Necrosis Factor-α

    Directory of Open Access Journals (Sweden)

    Anna Janowska-Wieczorek

    2012-07-01

    Full Text Available Membrane type-1 matrix metalloproteinase (MT1-MMP has been implicated in tumor invasion, as well as trafficking of normal hematopoietic cells, and acts as a physiologic activator of proMMP-2. In this study we examined MT1-MMP expression in primary acute myeloid leukemia (AML cells. Because tumor necrosis factor (TNF-α is known to be elevated in AML, we also investigated the effect of TNF-α on MT1-MMP expression. We found (i MT1-MMP mRNA expression in 41 out of 43 primary AML samples tested; (ii activation of proMMP-2 in co-cultures of AML cells with normal bone marrow stromal cells; and (iii inhibition of proMMP-2 activation and trans-Matrigel migration of AML cells by gene silencing using MT1-MMP siRNA. Moreover, recombinant human TNF-α upregulated MT1-MMP expression in AML cells resulting in enhanced proMMP-2 activation and trans-Matrigel migration. Thus, AML cells express MT1-MMP and TNF-α enhances it leading to increased MMP-2 activation and most likely contributing to the invasive phenotype. We suggest that MT1-MMP, together with TNF-α, should be investigated as potential therapeutic targets in AML.

  9. Membrane Type-1 Matrix Metalloproteinase Expression in Acute Myeloid Leukemia and Its Upregulation by Tumor Necrosis Factor-α

    International Nuclear Information System (INIS)

    Marquez-Curtis, Leah A.; Shirvaikar, Neeta; Turner, A. Robert; Mirza, Imran; Surmawala, Amir; Larratt, Loree M.; Janowska-Wieczorek, Anna

    2012-01-01

    Membrane type-1 matrix metalloproteinase (MT1-MMP) has been implicated in tumor invasion, as well as trafficking of normal hematopoietic cells, and acts as a physiologic activator of proMMP-2. In this study we examined MT1-MMP expression in primary acute myeloid leukemia (AML) cells. Because tumor necrosis factor (TNF)-α is known to be elevated in AML, we also investigated the effect of TNF-α on MT1-MMP expression. We found (i) MT1-MMP mRNA expression in 41 out of 43 primary AML samples tested; (ii) activation of proMMP-2 in co-cultures of AML cells with normal bone marrow stromal cells; and (iii) inhibition of proMMP-2 activation and trans-Matrigel migration of AML cells by gene silencing using MT1-MMP siRNA. Moreover, recombinant human TNF-α upregulated MT1-MMP expression in AML cells resulting in enhanced proMMP-2 activation and trans-Matrigel migration. Thus, AML cells express MT1-MMP and TNF-α enhances it leading to increased MMP-2 activation and most likely contributing to the invasive phenotype. We suggest that MT1-MMP, together with TNF-α, should be investigated as potential therapeutic targets in AML

  10. Proteogenomics approaches for studying cancer biology and their potential in the identification of acute myeloid leukemia biomarkers.

    Science.gov (United States)

    Hernandez-Valladares, Maria; Vaudel, Marc; Selheim, Frode; Berven, Frode; Bruserud, Øystein

    2017-08-01

    Mass spectrometry (MS)-based proteomics has become an indispensable tool for the characterization of the proteome and its post-translational modifications (PTM). In addition to standard protein sequence databases, proteogenomics strategies search the spectral data against the theoretical spectra obtained from customized protein sequence databases. Up to date, there are no published proteogenomics studies on acute myeloid leukemia (AML) samples. Areas covered: Proteogenomics involves the understanding of genomic and proteomic data. The intersection of both datatypes requires advanced bioinformatics skills. A standard proteogenomics workflow that could be used for the study of AML samples is described. The generation of customized protein sequence databases as well as bioinformatics tools and pipelines commonly used in proteogenomics are discussed in detail. Expert commentary: Drawing on evidence from recent cancer proteogenomics studies and taking into account the public availability of AML genomic data, the interpretation of present and future MS-based AML proteomic data using AML-specific protein sequence databases could discover new biological mechanisms and targets in AML. However, proteogenomics workflows including bioinformatics guidelines can be challenging for the wide AML research community. It is expected that further automation and simplification of the bioinformatics procedures might attract AML investigators to adopt the proteogenomics strategy.

  11. Membrane Type-1 Matrix Metalloproteinase Expression in Acute Myeloid Leukemia and Its Upregulation by Tumor Necrosis Factor-α

    Energy Technology Data Exchange (ETDEWEB)

    Marquez-Curtis, Leah A.; Shirvaikar, Neeta [Canadian Blood Services R& D, Edmonton, Alberta T6G 2R8 (Canada); Turner, A. Robert [Departments of Medicine and Oncology, University of Alberta, Edmonton, Alberta T6G 2G3 (Canada); Mirza, Imran [Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 2B7 (Canada); Surmawala, Amir; Larratt, Loree M. [Departments of Medicine and Oncology, University of Alberta, Edmonton, Alberta T6G 2G3 (Canada); Janowska-Wieczorek, Anna, E-mail: anna.janowska@blood.ca [Canadian Blood Services R& D, Edmonton, Alberta T6G 2R8 (Canada); Departments of Medicine and Oncology, University of Alberta, Edmonton, Alberta T6G 2G3 (Canada)

    2012-07-25

    Membrane type-1 matrix metalloproteinase (MT1-MMP) has been implicated in tumor invasion, as well as trafficking of normal hematopoietic cells, and acts as a physiologic activator of proMMP-2. In this study we examined MT1-MMP expression in primary acute myeloid leukemia (AML) cells. Because tumor necrosis factor (TNF)-α is known to be elevated in AML, we also investigated the effect of TNF-α on MT1-MMP expression. We found (i) MT1-MMP mRNA expression in 41 out of 43 primary AML samples tested; (ii) activation of proMMP-2 in co-cultures of AML cells with normal bone marrow stromal cells; and (iii) inhibition of proMMP-2 activation and trans-Matrigel migration of AML cells by gene silencing using MT1-MMP siRNA. Moreover, recombinant human TNF-α upregulated MT1-MMP expression in AML cells resulting in enhanced proMMP-2 activation and trans-Matrigel migration. Thus, AML cells express MT1-MMP and TNF-α enhances it leading to increased MMP-2 activation and most likely contributing to the invasive phenotype. We suggest that MT1-MMP, together with TNF-α, should be investigated as potential therapeutic targets in AML.

  12. CD274 promotes cell cycle entry of leukemia-initiating cells through JNK/Cyclin D2 signaling

    Directory of Open Access Journals (Sweden)

    Xia Fang

    2016-11-01

    Full Text Available Abstract Background CD274 (programmed death ligand 1, also known as B7H1 is expressed in both solid tumors and hematologic malignancies and is of critical importance for the escape of tumor cells from immune surveillance by inhibiting T cell function via its receptor, programmed death 1 (PD-1. Increasing evidence indicates that functional monoclonal antibodies of CD274 may potently enhance the antitumor effect in many cancers. However, the role of CD274 in leukemia-initiating cells (LICs remains largely unknown. Methods We established an MLL-AF9-induced acute myeloid leukemia (AML model with wild-type (WT and CD274-null mice to elucidate the role of CD274 in the cell fates of LICs, including self-renewal, differentiation, cell cycle, and apoptosis. RNA sequencing was performed to reveal the potential downstream targets, the results of which were further validated both in vitro and in vivo. Results In silico analysis indicated that CD274 level was inversely correlated with the overall survival of AML patients. In Mac-1+/c-Kit+ mouse LICs, CD274 was expressed at a much higher level than in the normal hematopoietic stem cells (HSCs. The survival of the mice with CD274-null leukemia cells was dramatically extended during the serial transplantation compared with that of their WT counterparts. CD274 deletion led to a significant decrease in LIC frequency and arrest in the G1 phase of the cell cycle. Interestingly, CD274 is not required for the maintenance of HSC pool as shown in our previous study. Mechanistically, we demonstrated that the levels of both phospho-JNK and Cyclin D2 were strikingly downregulated in CD274-null LICs. The overexpression of Cyclin D2 fully rescued the loss of function of CD274. Moreover, CD274 was directly associated with JNK and enhanced the downstream signaling to increase the Cyclin D2 level, promoting leukemia development. Conclusions The surface immune molecule CD274 plays a critical role in the proliferation of LICs

  13. Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells.

    Science.gov (United States)

    Mathew, Nimitha R; Baumgartner, Francis; Braun, Lukas; O'Sullivan, David; Thomas, Simone; Waterhouse, Miguel; Müller, Tony A; Hanke, Kathrin; Taromi, Sanaz; Apostolova, Petya; Illert, Anna L; Melchinger, Wolfgang; Duquesne, Sandra; Schmitt-Graeff, Annette; Osswald, Lena; Yan, Kai-Li; Weber, Arnim; Tugues, Sonia; Spath, Sabine; Pfeifer, Dietmar; Follo, Marie; Claus, Rainer; Lübbert, Michael; Rummelt, Christoph; Bertz, Hartmut; Wäsch, Ralph; Haag, Johanna; Schmidts, Andrea; Schultheiss, Michael; Bettinger, Dominik; Thimme, Robert; Ullrich, Evelyn; Tanriver, Yakup; Vuong, Giang Lam; Arnold, Renate; Hemmati, Philipp; Wolf, Dominik; Ditschkowski, Markus; Jilg, Cordula; Wilhelm, Konrad; Leiber, Christian; Gerull, Sabine; Halter, Jörg; Lengerke, Claudia; Pabst, Thomas; Schroeder, Thomas; Kobbe, Guido; Rösler, Wolf; Doostkam, Soroush; Meckel, Stephan; Stabla, Kathleen; Metzelder, Stephan K; Halbach, Sebastian; Brummer, Tilman; Hu, Zehan; Dengjel, Joern; Hackanson, Björn; Schmid, Christoph; Holtick, Udo; Scheid, Christof; Spyridonidis, Alexandros; Stölzel, Friedrich; Ordemann, Rainer; Müller, Lutz P; Sicre-de-Fontbrune, Flore; Ihorst, Gabriele; Kuball, Jürgen; Ehlert, Jan E; Feger, Daniel; Wagner, Eva-Maria; Cahn, Jean-Yves; Schnell, Jacqueline; Kuchenbauer, Florian; Bunjes, Donald; Chakraverty, Ronjon; Richardson, Simon; Gill, Saar; Kröger, Nicolaus; Ayuk, Francis; Vago, Luca; Ciceri, Fabio; Müller, Antonia M; Kondo, Takeshi; Teshima, Takanori; Klaeger, Susan; Kuster, Bernhard; Kim, Dennis Dong Hwan; Weisdorf, Daniel; van der Velden, Walter; Dörfel, Daniela; Bethge, Wolfgang; Hilgendorf, Inken; Hochhaus, Andreas; Andrieux, Geoffroy; Börries, Melanie; Busch, Hauke; Magenau, John; Reddy, Pavan; Labopin, Myriam; Antin, Joseph H; Henden, Andrea S; Hill, Geoffrey R; Kennedy, Glen A; Bar, Merav; Sarma, Anita; McLornan, Donal; Mufti, Ghulam; Oran, Betul; Rezvani, Katayoun; Shah, Omid; Negrin, Robert S; Nagler, Arnon; Prinz, Marco; Burchert, Andreas; Neubauer, Andreas; Beelen, Dietrich; Mackensen, Andreas; von Bubnoff, Nikolas; Herr, Wolfgang; Becher, Burkhard; Socié, Gerard; Caligiuri, Michael A; Ruggiero, Eliana; Bonini, Chiara; Häcker, Georg; Duyster, Justus; Finke, Jürgen; Pearce, Erika; Blazar, Bruce R; Zeiser, Robert

    2018-03-01

    Individuals with acute myeloid leukemia (AML) harboring an internal tandem duplication (ITD) in the gene encoding Fms-related tyrosine kinase 3 (FLT3) who relapse after allogeneic hematopoietic cell transplantation (allo-HCT) have a 1-year survival rate below 20%. We observed that sorafenib, a multitargeted tyrosine kinase inhibitor, increased IL-15 production by FLT3-ITD + leukemia cells. This synergized with the allogeneic CD8 + T cell response, leading to long-term survival in six mouse models of FLT3-ITD + AML. Sorafenib-related IL-15 production caused an increase in CD8 + CD107a + IFN-γ + T cells with features of longevity (high levels of Bcl-2 and reduced PD-1 levels), which eradicated leukemia in secondary recipients. Mechanistically, sorafenib reduced expression of the transcription factor ATF4, thereby blocking negative regulation of interferon regulatory factor 7 (IRF7) activation, which enhanced IL-15 transcription. Both IRF7 knockdown and ATF4 overexpression in leukemia cells antagonized sorafenib-induced IL-15 production in vitro. Human FLT3-ITD + AML cells obtained from sorafenib responders following sorafenib therapy showed increased levels of IL-15, phosphorylated IRF7, and a transcriptionally active IRF7 chromatin state. The mitochondrial spare respiratory capacity and glycolytic capacity of CD8 + T cells increased upon sorafenib treatment in sorafenib responders but not in nonresponders. Our findings indicate that the synergism of T cells and sorafenib is mediated via reduced ATF4 expression, causing activation of the IRF7-IL-15 axis in leukemia cells and thereby leading to metabolic reprogramming of leukemia-reactive T cells in humans. Therefore, sorafenib treatment has the potential to contribute to an immune-mediated cure of FLT3-ITD-mutant AML relapse, an otherwise fatal complication after allo-HCT.

  14. Recurrence of a t(8;21-Positive Acute Myeloid Leukemia in the Form of a Granulocytic Sarcoma Involving Cranial Bones: A Diagnostic and Therapeutic Challenge

    Directory of Open Access Journals (Sweden)

    Ambra Di Veroli

    2013-01-01

    Full Text Available Granulocytic sarcoma (GS is a rare extramedullary solid tumor defined as an accumulation of myeloblasts or immature myeloid cells. It can cooccur with or precede the acute myeloid leukemia (AML as well as following treated AML. The incidence of GS in AML patients is 3–8% but it significantly rises in M2 FAB subtype AML. This variety of AML harbors t(8;21 in up to 20–25% of cases (especially in children and black ones of African origin and, at a molecular level, it is characterized by the generation of a fusion gene known as RUNX1-RUNX1T1. Approximately 10% of M2 AML patients will develop GS, as a consequence, the t(8;21 and the relative transcript represent the most common cytogenetic and molecular abnormalities in GS. FLT3-ITD mutation was rarely described in AML patients presenting with GS. FLT3 ITD is generally strongly associated with poor prognosis in AML, and is rarely reported in patients with t(8;21. GS presentation is extremely variable depending on organs involved; in general, cranial bones and sinus are very rarely affected sites. We report a rare case of GS occurring as a recurrence of a previously treated t(8;21, FLT3-ITD positive AML, involving mastoid bones and paravertebral tissues.

  15. Juvenile Myelomonocytic Leukemia

    Science.gov (United States)

    ... myeloproliferative neoplasms, leukemia , and other conditions . Chronic Myelomonocytic Leukemia Key Points Chronic myelomonocytic leukemia is a disease ... chance of recovery) and treatment options. Chronic myelomonocytic leukemia is a disease in which too many myelocytes ...

  16. Atypical Chronic Myelogenous Leukemia

    Science.gov (United States)

    ... myeloproliferative neoplasms, leukemia , and other conditions . Chronic Myelomonocytic Leukemia Key Points Chronic myelomonocytic leukemia is a disease ... chance of recovery) and treatment options. Chronic myelomonocytic leukemia is a disease in which too many myelocytes ...

  17. Dendritic cells (DCs) can be successfully generated from leukemic blasts in individual patients with AML or MDS: an evaluation of different methods.

    Science.gov (United States)

    Kremser, Andreas; Dressig, Julia; Grabrucker, Christine; Liepert, Anja; Kroell, Tanja; Scholl, Nina; Schmid, Christoph; Tischer, Johanna; Kufner, Stefanie; Salih, Helmut; Kolb, Hans Jochem; Schmetzer, Helga

    2010-01-01

    Myeloid-leukemic cells (AML, MDS, CML) can be differentiated to leukemia-derived dendritic cell [DC (DCleu)] potentially presenting the whole leukemic antigen repertoire without knowledge of distinct leukemia antigens and are regarded as promising candidates for a vaccination strategy. We studied the capability of 6 serum-free DC culture methods, chosen according to different mechanisms, to induce DC differentiation in 137 cases of AML and 52 cases of MDS. DC-stimulating substances were cytokines ("standard-medium", "MCM-Mimic", "cytokine-method"), bacterial lysates ("Picibanil"), double-stranded RNA ["Poly (I:C)"] or a cytokine bypass method ("Ca-ionophore"). The quality/quantity of DC generated was estimated by flow cytometry studying (co) expressions of "DC"antigens, costimulatory, maturation, and blast-antigens. Comparing these methods on average 15% to 32% DC, depending on methods used, could be obtained from blast-containing mononuclear cells (MNC) in AML/MDS cases with a DC viability of more than 60%. In all, 39% to 64% of these DC were mature; 31% to 52% of leukemic blasts could be converted to DCleu and DCleu-proportions in the suspension were 2% to 70% (13%). Average results of all culture methods tested were comparable, however not every given case of AML could be differentiated to DC with 1 selected method. However performing a pre-analysis with 3 DC-generating methods (MCM-Mimic, Picibanil, Ca-ionophore) we could generate DC in any given case. Functional analyses provided proof, that DC primed T cells to antileukemia-directed cytotoxic cells, although an anti-leukemic reaction was not achieved in every case. In summary our data show that a successful, quantitative DC/DCleu generation is possible with the best of 3 previously tested methods in any given case. Reasons for different functional behaviors of DC-primed T cells must be evaluated to design a practicable DC-based vaccination strategy.

  18. Reclassification of leukemia among A-bomb survivors in Nagasaki using French-American-British (FAB) classification for acute leukemia

    International Nuclear Information System (INIS)

    Matsuo, Tatsuki; Tomonaga, Masao; Bennett, J.M.

    1988-01-01

    The concordance rate for diagnoses of atomic bomb-related cases of leukemia in Nagasaki was determined using the French-American-British (FAB) classification for acute leukemias and myelodysplastic syndromes (MDS). Two Radiation Effects Research Foundation (RERF) hematologists and one of the members (JMB) of the FAB cooperative group reviewed independently the peripheral blood and/or bone marrow smears from 193 people with leukemia or a related disorder. There was 85 % agreement in the identification of types and subtypes of acute leukemia. There was almost complete agreement for the diagnoses of non-FAB disorders (chronic myeloid leukemia (CML), adult T-cell leukemia (ATL) and others) resulting in overall concordance of 88.2 %. The present study suggest that the previously established leukemia types for about a quarter of the cases of acute leukemia and related disorders except CML should be changed. Considerable numbers of cases of ATL and MDS were involved in this series. The frequency of the former disease was not high in the high-dose irradiated group, but that of the latter was considerably high. All subtypes of AML except M3 and M6 were present in the high-dose group. The striking difference in CML incidence between Nagasaki and Hiroshima may continue to be a problem in relation to biological response to radiation exposure. (author)

  19. Reclassification of leukemia among A-bomb survivors in Nagasaki using French-American-British (FAB) classification for acute leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, Tatsuki; Tomonaga, Masao; Bennett, J.M. and others

    1988-06-01

    The concordance rate for diagnoses of atomic bomb-related cases of leukemia in Nagasaki was determined using the French-American-British (FAB) classification for acute leukemias and myelodysplastic syndromes (MDS). Two Radiation Effects Research Foundation (RERF) hematologists and one of the members (JMB) of the FAB cooperative group reviewed independently the peripheral blood and/or bone marrow smears from 193 people with leukemia or a related disorder. There was 85 % agreement in the identification of types and subtypes of acute leukemia. There was almost complete agreement for the diagnoses of non-FAB disorders (chronic myeloid leukemia (CML), adult T-cell leukemia (ATL) and others) resulting in overall concordance of 88.2 %. The present study suggest that the previously established leukemia types for about a quarter of the cases of acute leukemia and related disorders except CML should be changed. Considerable numbers of cases of ATL and MDS were involved in this series. The frequency of the former disease was not high in the high-dose irradiated group, but that of the latter was considerably high. All subtypes of AML except M3 and M6 were present in the high-dose group. The striking difference in CML incidence between Nagasaki and Hiroshima may continue to be a problem in relation to biological response to radiation exposure.

  20. Understanding Leukemia

    Science.gov (United States)

    ... for as long as they take it. Allogeneic stem cell transplantation is another treatment option that is only done if CML is not responding as expected to drug therapy. Chronic Lymphocytic Leukemia (CLL) . Some CLL patients do not need treatment ...

  1. Childhood Leukemia

    Science.gov (United States)

    ... acute types. Symptoms include Infections Fever Loss of appetite Tiredness Easy bruising or bleeding Swollen lymph nodes Night sweats Shortness of breath Pain in the bones or joints Risk factors for childhood leukemia include having a brother ...

  2. Two-Stage Priming of Allogeneic Natural Killer Cells for the Treatment of Patients with Acute Myeloid Leukemia: A Phase I Trial.

    Directory of Open Access Journals (Sweden)

    Panagiotis D Kottaridis

    Full Text Available Human Natural Killer (NK cells require at least two signals to trigger tumor cell lysis. Absence of ligands providing either signal 1 or 2 provides NK resistance. We manufactured a lysate of a tumour cell line which provides signal 1 to resting NK cells without signal 2. The tumor-primed NK cells (TpNK lyse NK resistant Acute Myeloid Leukemia (AML blasts expressing signal 2 ligands. We conducted a clinical trial to determine the toxicity of TpNK cell infusions from haploidentical donors. 15 patients with high risk AML were screened, 13 enrolled and 7 patients treated. The remaining 6 either failed to respond to re-induction chemotherapy or the donor refused to undergo peripheral blood apheresis. The conditioning consisted of fludarabine and total body irradiation. This was the first UK trial of a cell therapy regulated as a medicine. The complexity of Good Clinical Practice compliance was underestimated and led to failures requiring retrospective independent data review. The lessons learned are an important aspect of this report. There was no evidence of infusional toxicity. Profound myelosuppression was seen in the majority (median neutrophil recovery day 55. At six months follow-up, three patients treated in Complete Remission (CR remained in remission, one patient infused in Partial Remission had achieved CR1, two had relapsed and one had died. One year post-treatment one patient remained in CR. Four patients remained in CR after treatment for longer than their most recent previous CR. During the 2 year follow-up six of seven patients died; median overall survival was 400 days post infusion (range 141–910. This is the first clinical trial of an NK therapy in the absence of IL-2 or other cytokine support. The HLA-mismatched NK cells survived and expanded in vivo without on-going host immunosuppression and appeared to exert an anti-leukemia effect in 4/7 patients treated.ISRCTN trial registry ISRCTN11950134.

  3. GEP analysis validates high risk MDS and acute myeloid leukemia post MDS mice models and highlights novel dysregulated pathways.

    Science.gov (United States)

    Guerenne, Laura; Beurlet, Stéphanie; Said, Mohamed; Gorombei, Petra; Le Pogam, Carole; Guidez, Fabien; de la Grange, Pierre; Omidvar, Nader; Vanneaux, Valérie; Mills, Ken; Mufti, Ghulam J; Sarda-Mantel, Laure; Noguera, Maria Elena; Pla, Marika; Fenaux, Pierre; Padua, Rose Ann; Chomienne, Christine; Krief, Patricia

    2016-01-27

    In spite of the recent discovery of genetic mutations in most myelodysplasic (MDS) patients, the pathophysiology of these disorders still remains poorly understood, and only few in vivo models are available to help unravel the disease. We performed global specific gene expression profiling and functional pathway analysis in purified Sca1+ cells of two MDS transgenic mouse models that mimic human high-risk MDS (HR-MDS) and acute myeloid leukemia (AML) post MDS, with NRASD12 and BCL2 transgenes under the control of different promoters MRP8NRASD12/tethBCL-2 or MRP8[NRASD12/hBCL-2], respectively. Analysis of dysregulated genes that were unique to the diseased HR-MDS and AML post MDS mice and not their founder mice pointed first to pathways that had previously been reported in MDS patients, including DNA replication/damage/repair, cell cycle, apoptosis, immune responses, and canonical Wnt pathways, further validating these models at the gene expression level. Interestingly, pathways not previously reported in MDS were discovered. These included dysregulated genes of noncanonical Wnt pathways and energy and lipid metabolisms. These dysregulated genes were not only confirmed in a different independent set of BM and spleen Sca1+ cells from the MDS mice but also in MDS CD34+ BM patient samples. These two MDS models may thus provide useful preclinical models to target pathways previously identified in MDS patients and to unravel novel pathways highlighted by this study.

  4. GEP analysis validates high risk MDS and acute myeloid leukemia post MDS mice models and highlights novel dysregulated pathways

    Directory of Open Access Journals (Sweden)

    Laura Guerenne

    2016-01-01

    Full Text Available Abstract Background In spite of the recent discovery of genetic mutations in most myelodysplasic (MDS patients, the pathophysiology of these disorders still remains poorly understood, and only few in vivo models are available to help unravel the disease. Methods We performed global specific gene expression profiling and functional pathway analysis in purified Sca1+ cells of two MDS transgenic mouse models that mimic human high-risk MDS (HR-MDS and acute myeloid leukemia (AML post MDS, with NRASD12 and BCL2 transgenes under the control of different promoters MRP8NRASD12/tethBCL-2 or MRP8[NRASD12/hBCL-2], respectively. Results Analysis of dysregulated genes that were unique to the diseased HR-MDS and AML post MDS mice and not their founder mice pointed first to pathways that had previously been reported in MDS patients, including DNA replication/damage/repair, cell cycle, apoptosis, immune responses, and canonical Wnt pathways, further validating these models at the gene expression level. Interestingly, pathways not previously reported in MDS were discovered. These included dysregulated genes of noncanonical Wnt pathways and energy and lipid metabolisms. These dysregulated genes were not only confirmed in a different independent set of BM and spleen Sca1+ cells from the MDS mice but also in MDS CD34+ BM patient samples. Conclusions These two MDS models may thus provide useful preclinical models to target pathways previously identified in MDS patients and to unravel novel pathways highlighted by this study.

  5. Novel BET protein proteolysis-targeting chimera exerts superior lethal activity than bromodomain inhibitor (BETi) against post-myeloproliferative neoplasm secondary (s) AML cells.

    Science.gov (United States)

    Saenz, D T; Fiskus, W; Qian, Y; Manshouri, T; Rajapakshe, K; Raina, K; Coleman, K G; Crew, A P; Shen, A; Mill, C P; Sun, B; Qiu, P; Kadia, T M; Pemmaraju, N; DiNardo, C; Kim, M-S; Nowak, A J; Coarfa, C; Crews, C M; Verstovsek, S; Bhalla, K N

    2017-09-01

    The PROTAC (proteolysis-targeting chimera) ARV-825 recruits bromodomain and extraterminal (BET) proteins to the E3 ubiquitin ligase cereblon, leading to degradation of BET proteins, including BRD4. Although the BET-protein inhibitor (BETi) OTX015 caused accumulation of BRD4, treatment with equimolar concentrations of ARV-825 caused sustained and profound depletion (>90%) of BRD4 and induced significantly more apoptosis in cultured and patient-derived (PD) CD34+ post-MPN sAML cells, while relatively sparing the CD34+ normal hematopoietic progenitor cells. RNA-Seq, Reverse Phase Protein Array and mass cytometry 'CyTOF' analyses demonstrated that ARV-825 caused greater perturbations in messenger RNA (mRNA) and protein expressions than OTX015 in sAML cells. Specifically, compared with OTX015, ARV-825 treatment caused more robust and sustained depletion of c-Myc, CDK4/6, JAK2, p-STAT3/5, PIM1 and Bcl-xL, while increasing the levels of p21 and p27. Compared with OTX015, PROTAC ARV-771 treatment caused greater reduction in leukemia burden and further improved survival of NSG mice engrafted with luciferase-expressing HEL92.1.7 cells. Co-treatment with ARV-825 and JAK inhibitor ruxolitinib was synergistically lethal against established and PD CD34+ sAML cells. Notably, ARV-825 induced high levels of apoptosis in the in vitro generated ruxolitinib-persister or ruxolitinib-resistant sAML cells. These findings strongly support the in vivo testing of the BRD4-PROTAC based combinations against post-MPN sAML.

  6. Outcome of poor response paediatric AML using early SCT.

    Science.gov (United States)

    Wareham, Neval E; Heilmann, Carsten; Abrahamsson, Jonas; Forestier, Erik; Gustafsson, Britt; Ha, Shau-Yin; Heldrup, Jesper; Jahnukainen, Kirsi; Jónsson, Ólafur G; Lausen, Birgitte; Palle, Josefine; Zeller, Bernward; Hasle, Henrik

    2013-03-01

    Children with poor response acute myeloid leukaemia (AML) generally have a very poor outcome. Allogeneic stem cell transplantation (SCT) is often recommended for these children but the benefit is unclear. The aim of this study was to investigate survival for poor response AML patients treated with SCT. Treatment was given according to the NOPHO-AML 2004 protocol. All patients received AIET (Cytarabine, Idarubicin, Etoposide, Thioguanine) and AM (Cytarabine, Mitoxantrone) as induction. We included poor response defined as > 15% blasts on day 15 after AIET (n = 17) or > 5% blasts after AM (n = 14, refractory disease). Poor response patients received intensively timed induction and proceeded to SCT when a donor was available. Thirty-one of 267 evaluable patients (12%) had a poor response. SCT was performed in 25; using matched unrelated donors in 13, matched sibling donors in 6, cord blood donor in 4, and haploidentical donor in two. The median follow-up for the 31 poor responding patients was 2.6 years (range 0.4 - 8.1 years) and 3-year probability of survival 70% (95% CI 59-77%). The poor responders in the NOPHO-AML 2004 protocol had a favourable prognosis treated with time-intensive induction followed by SCT. © 2012 John Wiley & Sons A/S.

  7. Jmjd2/Kdm4 demethylases are required for expression of Il3ra and survival of acute myeloid leukemia cells

    DEFF Research Database (Denmark)

    Agger, Karl; Miyagi, Satoru; Pedersen, Marianne Terndrup

    2016-01-01

    Acute myeloid leukemias (AMLs) with a rearrangement of the mixed-linage leukemia (MLL) gene are aggressive hematopoietic malignancies. Here, we explored the feasibility of using the H3K9- and H3K36-specific demethylases Jmjd2/Kdm4 as putative drug targets in MLL-AF9 translocated leukemia. Using...... a mechanism involving removal of H3K9me3 from the promoter of the Il3ra gene. Importantly, ectopic expression of Il3ra in Jmjd2/Kdm4 knockout cells alleviates the requirement of Jmjd2/Kdm4 for the survival of AML cells, showing that Il3ra is a critical downstream target of Jmjd2/Kdm4 in leukemia...

  8. SphK1 inhibitor II (SKI-II) inhibits acute myelogenous leukemia cell growth in vitro and in vivo

    International Nuclear Information System (INIS)

    Yang, Li; Weng, Wei; Sun, Zhi-Xin; Fu, Xian-Jie; Ma, Jun; Zhuang, Wen-Fang

    2015-01-01

    Previous studies have identified sphingosine kinase 1 (SphK1) as a potential drug target for treatment of acute myeloid leukemia (AML). In the current study, we investigated the potential anti-leukemic activity of a novel and specific SphK1 inhibitor, SKI-II. We demonstrated that SKI-II inhibited growth and survival of human AML cell lines (HL-60 and U937 cells). SKI-II was more efficient than two known SphK1 inhibitors SK1-I and FTY720 in inhibiting AML cells. Meanwhile, it induced dramatic apoptosis in above AML cells, and the cytotoxicity by SKI-II was almost reversed by the general caspase inhibitor z-VAD-fmk. SKI-II treatment inhibited SphK1 activation, and concomitantly increased level of sphingosine-1-phosphate (S1P) precursor ceramide in AML cells. Conversely, exogenously-added S1P protected against SKI-II-induced cytotoxicity, while cell permeable short-chain ceramide (C6) aggravated SKI-II's lethality against AML cells. Notably, SKI-II induced potent apoptotic death in primary human AML cells, but was generally safe to the human peripheral blood mononuclear cells (PBMCs) isolated from healthy donors. In vivo, SKI-II administration suppressed growth of U937 leukemic xenograft tumors in severe combined immunodeficient (SCID) mice. These results suggest that SKI-II might be further investigated as a promising anti-AML agent. - Highlights: • SKI-II inhibits proliferation and survival of primary and transformed AML cells. • SKI-II induces apoptotic death of AML cells, but is safe to normal PBMCs. • SKI-II is more efficient than two known SphK1 inhibitors in inhibiting AML cells. • SKI-II inhibits SphK1 activity, while increasing ceramide production in AML cells. • SKI-II dose-dependently inhibits U937 xenograft growth in SCID mice

  9. SphK1 inhibitor II (SKI-II) inhibits acute myelogenous leukemia cell growth in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Li; Weng, Wei; Sun, Zhi-Xin; Fu, Xian-Jie; Ma, Jun, E-mail: majuntongrensh1@126.com; Zhuang, Wen-Fang, E-mail: wenfangzhuangmd@163.com

    2015-05-15

    Previous studies have identified sphingosine kinase 1 (SphK1) as a potential drug target for treatment of acute myeloid leukemia (AML). In the current study, we investigated the potential anti-leukemic activity of a novel and specific SphK1 inhibitor, SKI-II. We demonstrated that SKI-II inhibited growth and survival of human AML cell lines (HL-60 and U937 cells). SKI-II was more efficient than two known SphK1 inhibitors SK1-I and FTY720 in inhibiting AML cells. Meanwhile, it induced dramatic apoptosis in above AML cells, and the cytotoxicity by SKI-II was almost reversed by the general caspase inhibitor z-VAD-fmk. SKI-II treatment inhibited SphK1 activation, and concomitantly increased level of sphingosine-1-phosphate (S1P) precursor ceramide in AML cells. Conversely, exogenously-added S1P protected against SKI-II-induced cytotoxicity, while cell permeable short-chain ceramide (C6) aggravated SKI-II's lethality against AML cells. Notably, SKI-II induced potent apoptotic death in primary human AML cells, but was generally safe to the human peripheral blood mononuclear cells (PBMCs) isolated from healthy donors. In vivo, SKI-II administration suppressed growth of U937 leukemic xenograft tumors in severe combined immunodeficient (SCID) mice. These results suggest that SKI-II might be further investigated as a promising anti-AML agent. - Highlights: • SKI-II inhibits proliferation and survival of primary and transformed AML cells. • SKI-II induces apoptotic death of AML cells, but is safe to normal PBMCs. • SKI-II is more efficient than two known SphK1 inhibitors in inhibiting AML cells. • SKI-II inhibits SphK1 activity, while increasing ceramide production in AML cells. • SKI-II dose-dependently inhibits U937 xenograft growth in SCID mice.

  10. ZFX Controls Propagation and Prevents Differentiation of Acute T-Lymphoblastic and Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Stuart P. Weisberg

    2014-02-01

    Full Text Available Tumor-propagating cells in acute leukemia maintain a stem/progenitor-like immature phenotype and proliferative capacity. Acute myeloid leukemia (AML and acute T-lymphoblastic leukemia (T-ALL originate from different lineages through distinct oncogenic events such as MLL fusions and Notch signaling, respectively. We found that Zfx, a transcription factor that controls hematopoietic stem cell self-renewal, controls the initiation and maintenance of AML caused by MLL-AF9 fusion and of T-ALL caused by Notch1 activation. In both leukemia types, Zfx prevents differentiation and activates gene sets characteristic of immature cells of the respective lineages. In addition, endogenous Zfx contributes to gene induction and transformation by Myc overexpression in myeloid progenitors. Key Zfx target genes include the mitochondrial enzymes Ptpmt1 and Idh2, whose overexpression partially rescues the propagation of Zfx-deficient AML. These results show that distinct leukemia types maintain their undifferentiated phenotype and self-renewal by exploiting a common stem-cell-related genetic regulator.

  11. Targeting chemotherapy-resistant leukemia by combining DNT cellular therapy with conventional chemotherapy.

    Science.gov (United States)

    Chen, Branson; Lee, Jong Bok; Kang, Hyeonjeong; Minden, Mark D; Zhang, Li

    2018-04-24

    While conventional chemotherapy is effective at eliminating the bulk of leukemic cells, chemotherapy resistance in acute myeloid leukemia (AML) is a prevalent problem that hinders conventional therapies and contributes to disease relapse, and ultimately patient death. We have recently shown that allogeneic double negative T cells (DNTs) are able to target the majority of primary AML blasts in vitro and in patient-derived xenograft models. However, some primary AML blast samples are resistant to DNT cell therapy. Given the differences in the modes of action of DNTs and chemotherapy, we hypothesize that DNT therapy can be used in combination with conventional chemotherapy to further improve their anti-leukemic effects and to target chemotherapy-resistant disease. Drug titration assays and flow-based cytotoxicity assays using ex vivo expanded allogeneic DNTs were performed on multiple AML cell lines to identify therapy-resistance. Primary AML samples were also tested to validate our in vitro findings. Further, a xenograft model was employed to demonstrate the feasibility of combining conventional chemotherapy and adoptive DNT therapy to target therapy-resistant AML. Lastly, blocking assays with neutralizing antibodies were employed to determine the mechanism by which chemotherapy increases the susceptibility of AML to DNT-mediated cytotoxicity. Here, we demonstrate that KG1a, a stem-like AML cell line that is resistant to DNTs and chemotherapy, and chemotherapy-resistant primary AML samples both became more susceptible to DNT-mediated cytotoxicity in vitro following pre-treatment with daunorubicin. Moreover, chemotherapy treatment followed by adoptive DNT cell therapy significantly decreased bone marrow engraftment of KG1a in a xenograft model. Mechanistically, daunorubicin increased the expression of NKG2D and DNAM-1 ligands on KG1a; blocking of these pathways attenuated DNT-mediated cytotoxicity. Our results demonstrate the feasibility and benefit of using DNTs as

  12. Report of a Phase II Study of Clofarabine and Cytarabine in De Novo and Relapsed and Refractory AML Patients and in Selected Elderly Patients at High Risk for Anthracycline Toxicity

    Science.gov (United States)

    Cooper, Barry; Holmes, Houston; Vance, Estil; Berryman, Robert Brian; Maisel, Christopher; Li, Sandy; Saracino, Giovanna; Tadic-Ovcina, Mirjana; Fay, Joseph

    2011-01-01

    Purpose. To determine the efficacy and safety of clofarabine and cytarabine (Ara-C) in adult patients with relapsed or refractory acute myeloid leukemia (AML) and in elderly patients with untreated AML and heart disease. Patients and Methods. Patients with relapsed/refractory AML and older patients for whom there was a concern over toxicity from additional anthracyclines received 5 days of clofarabine, 40 mg/m2 per day i.v. over 1 hour, followed 4 hours later by Ara-C, 1,000 mg/m2 per day i.v. over 2 hours. Results. Thirty patients were enrolled. The median age was 67 years (range, 38–82 years) and 18 (60%) had received at least one prior therapy. Eleven (37%) patients had a history of cardiovascular disease and were considered to be at high risk for anthracycline toxicity. High-risk cytogenetic abnormalities were present in 14 (47%) patients. The overall response rate (complete remission [CR] plus partial remission) was 53%, including a CR in 14 patients (47%). Responses were observed in all cytogenetic risk groups and in patients who had received up to five prior therapies. The median disease-free survival interval was 9.5 months. The 30-day mortality rate was 20% (de novo AML, 8%; relapsed/refractory AML, 28%). Of the 14 patients achieving a CR, half were able to proceed to curative hematopoietic stem cell transplantation. Conclusions. Clofarabine in combination with Ara-C is effective in both untreated and previously treated patients with AML. In addition, it represents a useful remission induction strategy to serve as a bridge to transplantation in older patients with AML. PMID:21273514

  13. Enhanced Fructose Utilization Mediated by SLC2A5 Is a Unique Metabolic Feature of Acute Myeloid Leukemia with Therapeutic Potential.

    Science.gov (United States)

    Chen, Wen-Lian; Wang, Yue-Ying; Zhao, Aihua; Xia, Li; Xie, Guoxiang; Su, Mingming; Zhao, Linjing; Liu, Jiajian; Qu, Chun; Wei, Runmin; Rajani, Cynthia; Ni, Yan; Cheng, Zhen; Chen, Zhu; Chen, Sai-Juan; Jia, Wei

    2016-11-14

    Rapidly proliferating leukemic progenitor cells consume substantial glucose, which may lead to glucose insufficiency in bone marrow. We show that acute myeloid leukemia (AML) cells are prone to fructose utilization with an upregulated fructose transporter GLUT5, which compensates for glucose deficiency. Notably, AML patients with upregulated transcription of the GLUT5-encoding gene SLC2A5 or increased fructose utilization have poor outcomes. Pharmacological blockage of fructose uptake ameliorates leukemic phenotypes and potentiates the cytotoxicity of the antileukemic agent, Ara-C. In conclusion, this study highlights enhanced fructose utilization as a metabolic feature of AML and a potential therapeutic target. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. An exploratory phase 2 study of investigational Aurora A kinase inhibitor alisertib (MLN8237 in acute myelogenous leukemia and myelodysplastic syndromes

    Directory of Open Access Journals (Sweden)

    Stuart L. Goldberg

    2014-01-01

    Full Text Available Alisertib (MLN8237 is an investigational, oral, selective, Aurora A kinase (AAK inhibitor. In this phase 2 trial, 57 patients with acute myeloid leukemia (AML or high-grade myelodysplastic syndrome received alisertib 50 mg BID for 7 days in 21-day cycles. Responses in 6/35 AML patients (17% response rate with an additional 49% stable disease, 34% transfusion independence included 1 complete response lasting >1 year. No responses were observed in MDS patients. Adverse events >30% included diarrhea, fatigue, nausea, febrile neutropenia, and stomatitis. Results suggest modest activity in AML, supporting further research to better understand how AAK inhibition may induce leukemic cell senescence.

  15. Esterase Isoenzyme Profiles in Acute and Chronic Leukemias.

    Science.gov (United States)

    Drexler, H G; Gignac, S M; Hoffbrand, A V; Minowada, J

    1991-01-01

    Using isoelectric focusing (IEF) a number of carboxylic esterase isoenzymes (EC 3.1.1.1) with isoelectric points between pH 4.5-8.0 can be separated. One particular isoenzyme with an isoelectric point at about pH 6.0, the Mono-band, can be selectively and completely inhibited by sodium fluoride; this isoenzyme comprises a number of closely related subcomponents and may appear in more than one band on the gel. We analyzed the expression of typical esterase isoenzyme patterns in cells from a large panel of leukemias which were tested under identical conditions by IEF on horizontal thin-layer polyacrylamide gels with an ampholyte of pH 2-11. The 442 cases of acute and chronic myeloid and lymphoid leukemia (AML/AMMoL, CML/CMML, ALL, CLL) were classified according to clinical, morpho-cytochemical and immunophenotyping criteria. While bands between pH 4.5-5.5 appeared not to be specific for lineage or stage of differentiation, isoenzymes between pH 6.6-7.7 provided information on the type of leukemia involved. Seven typical isoenzyme patterns termed Mono1/Mono2 (fo monocyte-associated), My1/My2 (myeloid), Lym1/Lym2 (lymphoid) and Und (undifferentiated) could be discerned. Lym and Und patterns are characterized by fewer bands with a weaker staining intensity than Mono and My patterns. Nearly all cases of lymphoid leukemias (acute and chronic) expressed only Lym or Und esterase isoenzyme patterns, but no Mono or My patterns. Cases of acute or chronic myeloid and (myelo)monocytic leukemia showed strong isoenzyme staining displaying predominantly Mono or My isoenzyme patterns. The isoenzyme patterns found in CML in lymphoid or myeloid blast crisis corresponded to those seen in the respective acute leukemias, ALL or AML. The Mono-band was found in most cases of leukemias with monocytic elements (AMMoL 80%, CML 44%, CMML 100%), in the occasional case of CML-myeloid blast crisis or AML, but in none of the cases of ALL or CLL. This isoenzyme is a distinctive, specific marker for

  16. Enhancers of Polycomb EPC1 and EPC2 sustain the oncogenic potential of MLL leukemia stem cells

    Science.gov (United States)

    Huang, Xu; Spencer, Gary J; Lynch, James T; Ciceri, Filippo; Somerville, Tim D D; Somervaille, Tim C P

    2013-01-01

    Through a targeted knockdown (KD) screen of chromatin regulatory genes we identified the EP400 complex components EPC1 and EPC2 as critical oncogenic co-factors in acute myeloid leukemia (AML). EPC1 and EPC2 were required for the clonogenic potential of human AML cells of multiple molecular subtypes. Focusing on MLL-mutated AML as an exemplar, Epc1 or Epc2 KD induced apoptosis of murine MLL-AF9 AML cells and abolished leukemia stem cell potential. By contrast, normal hematopoietic stem and progenitor cells (HSPC) were spared. Similar selectivity was observed for human primary AML cells versus normal CD34+ HSPC. In keeping with these distinct functional consequences, Epc1 or Epc2 KD induced divergent transcriptional consequences in murine MLL-AF9 granulocyte-macrophage progenitor-like (GMP) cells versus normal GMP, with a signature of increased MYC activity in leukemic but not normal cells. This was caused by accumulation of MYC protein and was also observed following KD of other EP400 complex genes. Pharmacological inhibition of MYC:MAX dimerization, or concomitant MYC KD, reduced apoptosis following EPC1 KD, linking the accumulation of MYC to cell death. Therefore EPC1 and EPC2 are components of a complex which directly or indirectly serves to prevent MYC accumulation and AML cell apoptosis, thus sustaining oncogenic potential. PMID:24166297

  17. Low CLL-1 Expression Is a Novel Adverse Predictor in 123 Patients with De Novo CD34+ Acute Myeloid Leukemia.

    Science.gov (United States)

    Wang, Yan-Yu; Chen, Wen-Lian; Weng, Xiang-Qin; Sheng, Yan; Wu, Jing; Hao, Jie; Liu, Zhan-Yun; Zhu, Yong-Mei; Chen, Bing; Xiong, Shu-Min; Chen, Yu; Chen, Qiu-Sheng; Sun, Hui-Ping; Li, Jun-Min; Wang, Jin

    2017-10-15

    Recent reports state that C-type lectin-like molecule-1 (CLL-1) in acute myeloid leukemia (AML) is expressed primarily on myeloid cells, but there is still no investigation about its prognostic significance on leukemic blast compartment. Hence, this study aimed to evaluate the prognostic value of CLL-1 in 123 patients with de novo CD34 + Non-M3 AML. Multiparameter flow cytometry was used to assess the expression of CLL-1 on immature compartment in AML and control groups. We found that CLL-1 expression level on blast compartment was closely linked to clinical characteristics, treatment response, and survival outcome of patients. Decreased expression of CLL-1 was observed on immature compartment from AML patients as compared with controls (62.6% vs. 86.5%, P CLL-1 low independently predicted low complete remission rate with an odds ratio of 4.57 (2.53-6.61, P CLL-1 expression level at diagnosis was inversely correlated to the residual blast cells (residual leukemia cell) after induction chemotherapy (r = -0.423, P CLL-1 low was still an independent adverse predictor (P CLL-1 low was able to discriminate poor survival patients from intermediate- and favorable-risk groups. Taken together, CLL-1 is a novel prognostic predictor that could be exploited to supplement the current AML prognostic risk stratification system, and potentially optimize the clinical management of AML.

  18. Development of A Chimeric Antigen Receptor Targeting C-Type Lectin-Like Molecule-1 for Human Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Eduardo Laborda

    2017-10-01

    Full Text Available The treatment of patients with acute myeloid leukemia (AML with targeted immunotherapy is challenged by the heterogeneity of the disease and a lack of tumor-exclusive antigens. Conventional immunotherapy targets for AML such as CD33 and CD123 have been proposed as targets for chimeric antigen receptor (CAR-engineered T-cells (CAR-T-cells, a therapy that has been highly successful in the treatment of B-cell leukemia and lymphoma. However, CD33 and CD123 are present on hematopoietic stem cells, and targeting with CAR-T-cells has the potential to elicit long-term myelosuppression. C-type lectin-like molecule-1 (CLL1 or CLEC12A is a myeloid lineage antigen that is expressed by malignant cells in more than 90% of AML patients. CLL1 is not expressed by healthy Hematopoietic Stem Cells (HSCs, and is therefore a promising target for CAR-T-cell therapy. Here, we describe the development and optimization of an anti-CLL1 CAR-T-cell with potent activity on both AML cell lines and primary patient-derived AML blasts in vitro while sparing healthy HSCs. Furthermore, in a disseminated mouse xenograft model using the CLL1-positive HL60 cell line, these CAR-T-cells completely eradicated tumor, thus supporting CLL1 as a promising target for CAR-T-cells to treat AML while limiting myelosuppressive toxicity.

  19. Prognostic value of IDH1 mutations identified with PCR-RFLP assay in acute myeloid leukemia patients

    International Nuclear Information System (INIS)

    Elsayed, Gh.M.; Zaher, A.; Elnoshokaty, E.H.; Nassar, H.R.; Moneer, M.M.

    2014-01-01

    Background: Somatic mutations in isocitrate dehydrogenase 1 (1DH1) gene occur frequently in primary brain tumors. Recently theses mutations were demonstrated in acute myeloid leukemia (AML). So far, assessment of these mutations relied on the DNA sequencing technique. Aim of the work: The aim of this study was to detect somatic mutations in IDH1 gene using mismatched primers suitable for endonuclease based detection, without the need for DNA sequencing, and to estimate its prognostic value, on patients with de novo AML. Methods: Residual DNA extracted from pretreatment bone marrow (BM) samples of 100 patients with de novo AML was used. The polymerase chain reaction-restriction fragment length polymorphism method (PCR-RFLP) was adapted to IDHl gene, codon 132 mutations screening. Results: The frequency of IDH1 mutations was 13%. In the non-acute promyelocytic leukemia group (non-APL), IDH1 mutations were significantly associated with FLT3-ITD negative patients (p = 0.03). Patients with 1DH1 mutations did not achieve complete remission (CR). There was a trend for shorter overall survival (OS) in patients with IDH1 mutation compared to those with wild type (p = 0.08). Conclusion: IDH1 mutations are recurring genetic alterations in AML and they may have unfavorable impact on clinical outcome in adult AML. The PCR-RFLP method allows for a fast, inexpensive, and sensitive method for the detection of IDF11 mutations in AML.

  20. Sacral Myeloid Sarcoma Manifesting as Radiculopathy in a Pediatric Patient: An Unusual Form of Myeloid Leukemia Relapse

    Directory of Open Access Journals (Sweden)

    Joana Ruivo Rodrigues

    2018-01-01

    Full Text Available Myeloid sarcoma (MS, granulocytic sarcoma or chloroma, is defined as a localized extramedullary mass of blasts of granulocytic lineage with or without maturation, occurring outside the bone marrow. MS can be diagnosed concurrently with acute myeloid leukemia (AML or myelodysplastic syndrome (MDS. The authors report a case of sacral MS occurring as a relapse of myeloid leukemia in a 5-year-old girl who was taken to the emergency department with radiculopathy symptoms.

  1. Acute Myeloid Leukemia in Adolescents and Young Adults Treated in Pediatric and Adult Departments in the Nordic Countries.

    Science.gov (United States)

    Wennström, Lovisa; Edslev, Pernille Wendtland; Abrahamsson, Jonas; Nørgaard, Jan Maxwell; Fløisand, Yngvar; Forestier, Erik; Gustafsson, Göran; Heldrup, Jesper; Hovi, Liisa; Jahnukainen, Kirsi; Jonsson, Olafur Gisli; Lausen, Birgitte; Palle, Josefine; Zeller, Bernward; Holmberg, Erik; Juliusson, Gunnar; Stockelberg, Dick; Hasle, Henrik

    2016-01-01

    Studies on adolescents and young adults with acute lymphoblastic leukemia suggest better results when using pediatric protocols for adult patients, while corresponding data for acute myeloid leukemia (AML) are limited. We investigated disease characteristics and outcome for de novo AML patients 10-30 years old treated in pediatric or adult departments. We included 166 patients 10-18 years of age with AML treated according to the pediatric NOPHO-protocols (1993-2009) compared with 253 patients aged 15-30 years treated in hematology departments (1996-2009) in the Nordic countries. The incidence of AML was 4.9/million/year for the age group 10-14 years, 6.5 for 15-18 years, and 6.9 for 19-30 years. Acute promyelocytic leukemia (APL) was more frequent in adults and in females of all ages. Pediatric patients with APL had similar overall survival as pediatric patients without APL. Overall survival at 5 years was 60% (52-68%) for pediatric patients compared to 65% (58-70%) for adult patients. Cytogenetics and presenting white blood cell count were the only independent prognostic factors for overall survival. Age was not an independent prognostic factor. No difference was found in outcome for AML patients age 10-30 years treated according to pediatric as compared to adult protocols. © 2015 Wiley Periodicals, Inc.

  2. Frontline treatment of acute myeloid leukemia in adults

    Science.gov (United States)

    Tamamyan, Gevorg; Kadia, Tapan; Ravandi, Farhad; Borthakur, Gautam; Cortes, Jorge; Jabbour, Elias; Daver, Naval; Ohanian, Maro; Kantarjian, Hagop; Konopleva, Marina

    2017-01-01

    Recent years have highlighted significant progress in understanding the underlying genetic and epigenetic signatures of acute myeloid leukemia(AML). Most importantly, novel chemotherapy and targeted strategies have led to improved outcomes in selected genetic subsets. AML is a remarkably heterogeneous disease, and individualized therapies for disease-specific characteristics (considering patients’ age, cytogenetics, and mutations) could yield better outcomes. Compared with the historical 5-to 10-year survival rate of 10%, the survival of patients who undergo modern treatment approaches reaches up to 40–50%, and for specific subsets, the improvements are even more dramatic; for example, in acute promyelocytic leukemia, the use of all-trans retinoic acid and arsenic trioxide improved survival from 30–40% up to 80–90%. Similar progress has been documented in core-binding-factor-AML, with an increase in survival from 30% to 80% upon the use of high-dose cytarabine/fludarabine/granulocyte colony-stimulating factor combination regimens. AML treatment was also recently influenced by the discovery of the superiority of regimens with higher dose Ara-C and nucleoside analogues compared with the “7+3” regimen, with about a 20% improvement in overall survival. Despite these significant differences, most centers continue to use the “7+3” regimen, and greater awareness will improve the outcome. The discovery of targetable molecular abnormalities and recent studies of targeted therapies (gemtuzumab ozagomycin, FLT3 inhibitors, isocitrate dehydrogenase inhibitors, and epigenetic therapies), future use of checkpoint inhibitors and other immune therapies such as chimeric antigen receptor T-cells, and maintenance strategies based on the minimal residual disease evaluation represent novel, exciting clinical leads aimed to improve AML outcomes in the near future. PMID:28109402

  3. Dasatinib accelerates valproic acid-induced acute myeloid leukemia cell death by regulation of differentiation capacity.

    Directory of Open Access Journals (Sweden)

    Sook-Kyoung Heo

    Full Text Available Dasatinib is a compound developed for chronic myeloid leukemia as a multi-targeted kinase inhibitor against wild-type BCR-ABL and SRC family kinases. Valproic acid (VPA is an anti-epileptic drug that also acts as a class I histone deacetylase inhibitor. The aim of this research was to determine the anti-leukemic effects of dasatinib and VPA in combination and to identify their mechanism of action in acute myeloid leukemia (AML cells. Dasatinib was found to exert potent synergistic inhibitory effects on VPA-treated AML cells in association with G1 phase cell cycle arrest and apoptosis induction involving the cleavage of poly (ADP-ribose polymerase and caspase-3, -7 and -9. Dasatinib/VPA-induced cell death thus occurred via caspase-dependent apoptosis. Moreover, MEK/ERK and p38 MAPK inhibitors efficiently inhibited dasatinib/VPA-induced apoptosis. The combined effect of dasatinib and VPA on the differentiation capacity of AML cells was more powerful than the effect of each drug alone, being sufficiently strong to promote AML cell death through G1 cell cycle arrest and caspase-dependent apoptosis. MEK/ERK and p38 MAPK were found to control dasatinib/VPA-induced apoptosis as upstream regulators, and co-treatment with dasatinib and VPA to contribute to AML cell death through the regulation of differentiation capacity. Taken together, these results indicate that combined dasatinib and VPA treatment has a potential role in anti-leukemic therapy.

  4. Acute myeloid leukemia-targeted toxin activates both apoptotic and necroptotic death mechanisms.

    Directory of Open Access Journals (Sweden)

    Henrick Horita

    Full Text Available BACKGROUND: Acute myelogenous leukemia (AML is the second most common leukemia with approximately 13,410 new cases and 8,990 deaths annually in the United States. A novel fusion toxin treatment, diphtheria toxin GM-CSF (DT-GMCSF has been shown to selectively eliminate leukemic repopulating cells that are critical for the formation of AML. We previously showed that DT-GMCSF treatment of U937 cells, an AML cell line, causes activation of caspases and the induction of apoptosis. METHODS AND FINDINGS: In this study we further investigate the mechanisms of cell death induced by DT-GMCSF and show that, in addition to the activation of caspase-dependent apoptosis, DT-GMCSF also kills AML cells by simultaneously activating caspase-independent necroptosis. These mechanisms depend on the ability of the targeted toxin to inhibit protein synthesis, and are not affected by the receptor that is targeted or the mechanism through which protein synthesis is blocked. CONCLUSIONS: We conclude that fusion toxin proteins may be effective for treating AML cells whether or not they are defective in apoptosis.

  5. TdT activity in acute myeloid leukemias defined by monoclonal antibodies.

    Science.gov (United States)

    San Miguel, J F; González, M; Cañizo, M C; Anta, J P; Portero, J A; López-Borrasca, A

    1986-09-01

    Blast cells from eight out of 71 patients diagnosed with acute myeloid leukemia (AML) by morphological, cytochemical, and immunological criteria showed TdT activity. Their distribution according to the FAB classification was one M1, one M2, one M4, two M5a, one M5b, one M6, and one undifferentiated case. The TdT+ AML cases did not show major clinical and hematological differences when compared with the classical TdT- AML patients. Other phenotypical aberrations in the expression of membrane antigens, apart from the presence of nuclear TdT, were not observed in these TdT+ cases after study with a large panel of monoclonal antibodies. A higher incidence of TdT+ cases was found among the monocytic variants of AML (M4 and M5)--four cases--than in the granulocytic variants (M1, M2, and M3)--2 cases. These TdT+ cases should be distinguished from mixed leukemias by double labeling techniques, assessing in the TdT+ AML the coexpression of TdT and myeloid markers in individual cells as shown in four of our cases.

  6. Heterogeneous effects of M-CSF isoforms on the progression of MLL-AF9 leukemia.

    Science.gov (United States)

    Wang, Rong; Feng, Wenli; Yang, Feifei; Yang, Xiao; Wang, Lina; Chen, Chong; Hu, Yuting; Ren, Qian; Zheng, Guoguang

    2018-02-01

    Macrophage colony-stimulating factor (M-CSF) regulates both malignant cells and microenvironmental cells. Its splicing isoforms show functional heterogeneity. However, their roles on leukemia have not been well established. Here, the expression of total M-CSF in patients with hematopoietic malignancies was analyzed. The roles of M-CSF isoforms on the progression of acute myeloid leukemia (AML) were studied by establishing MLL-AF9-induced mouse AML models with high level membrane-bound M-CSF (mM-CSF) or soluble M-CSF (sM-CSF). Total M-CSF was highly expressed in myeloid leukemia patients. Furthermore, mM-CSF but not sM-CSF prolonged the survival of leukemia mice. While sM-CSF was more potent to promote proliferation and self-renew, mM-CSF was more potent to promote differentiation. Moreover, isoforms had different effects on leukemia-associated macrophages (LAMs) though they both increase monocytes/macrophages by growth-promoting and recruitment effects. In addition, mM-CSF promoted specific phagocytosis of leukemia cells by LAMs. RNA-seq analysis revealed that mM-CSF enhanced phagocytosis-associated genes and activated oxidative phosphorylation and metabolism pathway. These results highlight heterogeneous effects of M-CSF isoforms on AML progression and the mechanisms of mM-CSF, that is, intrinsically promoting AML cell differentiation and extrinsically enhancing infiltration of macrophages and phagocytosis by macrophages, which may provide potential clues for clinical diagnosis and therapy. © 2017 Australasian Society for Immunology Inc.

  7. [Acute myeloid leukemia in adults: experience at the Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán from 2003 to 2008].

    Science.gov (United States)

    Buitrón-Santiago, Natalie; Arteaga-Ortiz, Luis; Rosas-López, Adriana; Aguayo, Alvaro; López-Karpovitch, Xavier; Crespo-Solís, Erick

    2010-01-01

    Acute myeloid leukemia (AML) comprises a group of diseases with different biologic characteristics; despite knowledge improvements, these are not reflected in long term survival. To describe characteristics of adults with AML in a hospital of Mexico City, their treatment response, complications and to evaluate survival related factors. Cohort study. Between January 2003 and July 2008, patients with AML diagnosis were included (except promyelocitic). Treatment protocols used: 3 + 7, high doses of cytarabine and autologous bone marrow transplant as consolidation therapy. 53 patients were included. Median age: 44 years (15-79). At diagnosis: tumor lysis syndrome in 4/ 53 (7.5%), 3/51 (5.9%) with altered liver function test and hyperleukocytosis in 8/53 (15.1%). 46 patients had available cytogenetic and this was successful in 28/46 (60.8%), 12/28 (42.8%) had adverse cytogenetic; 16/28 (57.1%) intermediate risk and none was favorable. There were 2 losses during follow up, 7 patients did not receive chemotherapy with curative intent and 1 died at diagnosis. 43 patients received 3 + 7, 13.9% died during aplasia, complete remission was achieved in 27/43 (62.7%) and 10/43 (23.2%) were refractory to treatment. A second induction attempt was required in 39.5% (17/43). Median disease free survival (DFS) was 491 days (366-615), with a median follow up of 993 days (105-1744). The median overall survival (OS) was 531 days (312-749). Aplasia related mortality decreased (p = 0.09) between the actual cohort (13.9%) and the historical cohort (37%). Long term survival in AML patients remains poor despite improvements in diagnosis, classification, and treatment. In our institution, it is required to improve induction protocols and cytogenetic analysis in order to adequately choose the group of patients that could be benefit from stem cell transplant.

  8. Diagnostic value of CD117 in differential diagnosis of acute leukemias.

    Science.gov (United States)

    Ahmadi, Abbas; Poorfathollah, Ali-Akbar; Aghaiipour, Mahnaz; Rezaei, Mansour; Nikoo-ghoftar, Mahin; Abdi, Mohammad; Gharib, Alireza; Amini, Amir

    2014-07-01

    C-kit receptor (CD117) and its ligand, stem cell factor, play a key role in normal hematopoiesis. It has been demonstrated that its expression extremely increases in leukemias with myeloid commitment. We analyzed findings on CD117 expression together with other myeloid related markers in 203 de novo acute leukemias, referred to Iranian immunophenotyping centers: Iranian Blood Transfusion Organization (IBTO) and Baghiatallah Hospital (BH). All cases were characterized based on the French American British cooperative group (FAB) and European Group for Immunological Classification of Leukemias (EGIL). The cases comprised of 111 acute myeloblastic leukemia (AML), 86 acute lymphoblastic leukemia (ALL), and 6 acute undifferentiated leukemia (AUL). CD117 was positive in 75 % of AML and 50 % of AUL, whereas none of the ALL cases was positive for this marker. Although CD117 was positive in 100 % of M5a cases, no M5b positive was found (p = 0.036). The calculated specificity for myeloid involvement was 100 % for CD117 and CD33, and 98 % for CD13 and CD15 (p acute leukemias.

  9. Genome wide analysis of acute myeloid leukemia reveal leukemia specific methylome and subtype specific hypomethylation of repeats.

    Directory of Open Access Journals (Sweden)

    Marwa H Saied

    Full Text Available Methylated DNA immunoprecipitation followed by high-throughput sequencing (MeDIP-seq has the potential to identify changes in DNA methylation important in cancer development. In order to understand the role of epigenetic modulation in the development of acute myeloid leukemia (AML we have applied MeDIP-seq to the DNA of 12 AML patients and 4 normal bone marrows. This analysis revealed leukemia-associated differentially methylated regions that included gene promoters, gene bodies, CpG islands and CpG island shores. Two genes (SPHKAP and DPP6 with significantly methylated promoters were of interest and further analysis of their expression showed them to be repressed in AML. We also demonstrated considerable cytogenetic subtype specificity in the methylomes affecting different genomic features. Significantly distinct patterns of hypomethylation of certain interspersed repeat elements were associated with cytogenetic subtypes. The methylation patterns of members of the SINE family tightly clustered all leukemic patients with an enrichment of Alu repeats with a high CpG density (P<0.0001. We were able to demonstrate significant inverse correlation between intragenic interspersed repeat sequence methylation and gene expression with SINEs showing the strongest inverse correlation (R(2 = 0.7. We conclude that the alterations in DNA methylation that accompany the development of AML affect not only the promoters, but also the non-promoter genomic features, with significant demethylation of certain interspersed repeat DNA elements being associated with AML cytogenetic subtypes. MeDIP-seq data were validated using bisulfite pyrosequencing and the Infinium array.

  10. Clonal evolution of AML on novel FMS-like tyrosine kinase-3 (FLT3 inhibitor therapy with evolving actionable targets

    Directory of Open Access Journals (Sweden)

    Pashtoon M. Kasi

    2016-01-01

    Full Text Available For acute myeloid leukemia (AML, identification of activating mutations in the FMS-like tyrosine kinase-3 (FLT3 has led to the development of several FLT3-inhibitors. Here we present clinical and next generation sequencing data at the time of progression of a patient on a novel FLT3-inhibitor clinical trial (ASP2215 to show that employing therapeutic interventions with these novel targeted therapies can lead to consequences secondary to selective pressure and clonal evolution of cancer. We describe novel findings alongside data on treatment directed towards actionable aberrations acquired during the process. (Clinical Trial: NCT02014558; registered at: 〈https://clinicaltrials.gov/ct2/show/NCT02014558〉

  11. Central nervous system leukemia in a patient with concurrent nasopharyngeal carcinoma and acute myeloid leukaemia: A case report.

    Science.gov (United States)

    Liu, Jun-Qing; Mai, Wen-Yuan; Wang, Si-Ben; Lou, Yin-Jun; Yan, Sen-Xiang; Jin, Jie; Xu, Wei-Lai

    2017-12-01

    Concurrent case of nasopharyngeal carcinoma (NPC) and acute myeloid leukemia (AML) has not been reported. Here, we report a case of NPC, who was concurrently suffered from AML one mother after the NPC diagnosis. The patient was a 45-year-old male who presented with a mass on his right side neck. The patient was diagnosed with Epstein-Barr virus negative type-2 non-keratinizing carcinoma with clivus involvement and unilateral metastasis to the cervical lymph node. He was treated with one cycle of cisplatin and 69.76 Gy of concurrent external-beam radiation. Three months after completion of chemo-radiotherapy, the patient was diagnosed as acute myeloid leukemia, which achieved complete remission after one course induction chemotherapy. Two months later, however, the patient was diagnosed as central nervous system leukemia. He ultimately died of relapsed leukemia. The overall survival of the patient was 10 months. The co-occurrence of NPC and AML is rare and prognosis is poor. Radiotherapy in NPC can disrupt the blood-brain barrier, which may contribute to the pathogenesis of central nervous system leukemia. Early alert and prevention of central nervous system leukemia following radiotherapy in NPC patient is recommended. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  12. MR imaging of the femoral marrow in adult acute leukemia. Correlation of MRI patterns with FAB subtype and prognosis

    International Nuclear Information System (INIS)

    Tanaka, Osamu; Takagi, Shojiro; Kobayashi, Yasuyuki; Ichikawa, Tamaki; Matsuura, Katsuhiko; Nagai, Jun

    1996-01-01

    MR imaging of the femoral marrow was performed in 36 patients with untreated acute myeloid leukemia (AML) and 7 patients with acute lymphocytic leukemia (ALL). The MRI appearance was classified into five patterns: fatty marrow; faint signal; nodular pattern; heterogeneous infiltration; and diffuse infiltration. The MRI patterns of the femoral marrow were compared among the FAB subtypes of acute leukemia, and the MRI patterns were correlated with prognosis. All five MRI patterns were observed in the femoral marrow in adult acute leukemia, and diffuse infiltration was most commonly seen (41.9%). A completely fatty marrow was also depicted in two cases (4.7%) and faint signal in four cases (9.3%) in spite of untreated acute leukemia. The M2 subtype of AML tended to be demonstrated as a minimally abnormal MRI finding, which was significantly different from the other types of AML. The patients who showed fatty marrow or faint signal were thought to have a good prognosis, while diffuse or heterogeneous infiltration was regarded as a poor prognostic sign. However, there were some exceptions to these rules, and no significant differences were revealed in prognosis between minimally abnormal and advanced MRI patterns. We concluded that MRI of the femoral marrow could be useful in the assessment of tumor volume of adult acute leukemia, and that there were limitations to predicting prognosis on the basis of the MRI manifestations. (author)

  13. WT1 vaccination in acute myeloid leukemia: new methods of implementing adoptive immunotherapy.

    Science.gov (United States)

    Rein, Lindsay A M; Chao, Nelson J

    2014-03-01

    The Wilms tumor 1 (WT1) gene was originally identified as a tumor suppressor gene that, when mutated, would lead to the development of pediatric renal tumors. More recently, it has been determined that WT1 is overexpressed in 90% of patients with acute myeloid leukemia (AML) and is mutated in approximately 10% of AML patients. WT1 plays a role in normal hematopoiesis and, in AML specifically, it has oncogenic function and plays an important role in cellular proliferation and differentiation. The ubiquity of WT1 in leukemia has lead to the development of vaccines aimed at employing the host immune system to mount a T-cell response to a known antigen. In this evaluation, the authors discuss the role of WT1 in normal hematopoiesis as well as in the development of hematologic malignancies. Furthermore, the authors discuss the data supporting the development of WT1 vaccines, and the clinical trials supporting their use in patients with acute leukemia. Several small trials have been conducted which support the safety and efficacy of this therapy, although larger trials are certainly warranted. In the authors' opinion, the WT1 vaccination has potential in terms of its application as an adjuvant therapy for patients with AML who are at high risk of relapse or who have detectable minimal residual disease after initial standard therapy.

  14. Neuropsychological late effects of treatment for acute leukemia in children with Down syndrome.

    Science.gov (United States)

    Roncadin, Caroline; Hitzler, Johann; Downie, Andrea; Montour-Proulx, Isabelle; Alyman, Cheryl; Cairney, Elizabeth; Spiegler, Brenda J

    2015-05-01

    Children with Down syndrome (DS) have an elevated risk of developing acute leukemia, but little is known about treatment-related neuropsychological morbidity because they are systematically excluded from research in this area. The current study investigated neuropsychological outcomes in children with DS treated for acute lymphoblastic leukemia (ALL) or acute myeloid leukemia (AML) compared to children with DS with no history of cancer. Participants were 4 to 17 years of age at testing and were administered measures of intelligence, academic achievement, language, visual-motor and fine-motor skills, and adaptive function. Patients had been off treatment for at least 2 years. The AML group (N = 12) had significantly lower verbal intelligence and receptive vocabulary compared to controls (N = 21). By contrast, the ALL group (N = 14) performed significantly worse than controls on measures of verbal intelligence, spelling, receptive and expressive vocabulary, visual-motor skills, and adaptive function. Patients with DS treated for AML may have specific post-treatment morbidity in verbal function, whereas those treated for ALL have broader morbidity affecting multiple neuropsychological domains and overall adaptive function. We hypothesize that the broader impairment profile of ALL survivors may be related to a combination of the longer duration of central nervous system-directed treatment for ALL compared to AML and the concomitant limited access to intervention opportunities during active treatment. © 2014 Wiley Periodicals, Inc.

  15. Cytogenetically Unrelated Clones in Acute Myeloid Leukemia Showing Different Responses to Chemotherapy

    Directory of Open Access Journals (Sweden)

    Kohei Kasahara

    2016-01-01

    Full Text Available We report a case of acute myeloid leukemia (AML with two cytogenetically unrelated clones. The patient was a 45-year-old male who was diagnosed with acute monoblastic leukemia (AMoL. Initial G-band analysis showed 51,XY,+6,+8,inv(9(p12q13c,+11,+13,+19[12]/52,idem,+Y[8], but G-band analysis after induction therapy showed 45,XY,-7,inv(9(p12q13c[19]/46,XY,inv(9(p12q13c[1]. Retrospective FISH analysis revealed a cryptic monosomy 7 clone in the initial AML sample. The clone with multiple trisomies was eliminated after induction therapy and never recurred, but a clone with monosomy 7 was still detected in myelodysplastic marrow with a normal blast percentage. Both clones were successfully eliminated after related peripheral blood stem cell transplantation, but the patient died of relapsed AML with monosomy 7. We concluded that one clone was de novo AMoL with chromosome 6, 8, 11, 13, and 19 trisomy and that the other was acute myeloid leukemia with myelodysplasia-related changes (AML-MRC with chromosome 7 monosomy showing different responses to chemotherapy. Simultaneous onset of cytogenetically unrelated hematological malignancies that each have a different disease status is a rare phenomenon but is important to diagnose for a correct understanding of the disease status and for establishing an appropriate treatment strategy.

  16. Natural Product Vibsanin A Induces Differentiation of Myeloid Leukemia Cells through PKC Activation.

    Science.gov (United States)

    Yu, Zu-Yin; Xiao, He; Wang, Li-Mei; Shen, Xing; Jing, Yu; Wang, Lin; Sun, Wen-Feng; Zhang, Yan-Feng; Cui, Yu; Shan, Ya-Jun; Zhou, Wen-Bing; Xing, Shuang; Xiong, Guo-Lin; Liu, Xiao-Lan; Dong, Bo; Feng, Jian-Nan; Wang, Li-Sheng; Luo, Qing-Liang; Zhao, Qin-Shi; Cong, Yu-Wen

    2016-05-01

    All-trans retinoic acid (ATRA)-based cell differentiation therapy has been successful in treating acute promyelocytic leukemia, a unique subtype of acute myeloid leukemia (AML). However, other subtypes of AML display resistance to ATRA-based treatment. In this study, we screened natural, plant-derived vibsane-type diterpenoids for their ability to induce differentiation of myeloid leukemia cells, discovering that vibsanin A potently induced differentiation of AML cell lines and primary blasts. The differentiation-inducing activity of vibsanin A was mediated through direct interaction with and activation of protein kinase C (PKC). Consistent with these findings, pharmacological blockade of PKC activity suppressed vibsanin A-induced differentiation. Mechanistically, vibsanin A-mediated activation of PKC led to induction of the ERK pathway and decreased c-Myc expression. In mouse xenograft models of AML, vibsanin A administration prolonged host survival and inhibited PKC-mediated inflammatory responses correlated with promotion of skin tumors in mice. Collectively, our results offer a preclinical proof of concept for vibsanin A as a myeloid differentiation-inducing compound, with potential application as an antileukemic agent. Cancer Res; 76(9); 2698-709. ©2016 AACR. ©2016 American Association for Cancer Research.

  17. Rare myeloid sarcoma/acute myeloid leukemia with adrenal mass after allogeneic mobilization peripheral blood stem cell transplantation

    International Nuclear Information System (INIS)

    Wang, Ya-Fei; Li, Qian; Xu, Wen-Gui; Xiao, Jian-Yu; Pang, Qing-Song; Yang, Qing; Zhang, Yi-Zuo

    2013-01-01

    Myeloid sarcoma (MS) is a rare hematological neoplasm that develops either de novo or concurrently with acute myeloid leukemia (AML). This neoplasm can also be an initial manifestation of relapse in a previously treated AML that is in remission. A 44-year-old male patient was diagnosed with testis MS in a local hospital in August 2010. After one month, bone marrow biopsy and aspiration confirmed the diagnosis of AML. Allogeneic mobilization peripheral blood stem cell transplantation was performed, with the sister of the patient as donor, after complete remission (CR) was achieved by chemotherapy. Five months after treatment, an adrenal mass was detected by positron emission tomography-computed tomography (PET-CT). Radiotherapy was performed for the localized mass after a multidisciplinary team (MDT) discussion. The patient is still alive as of May 2013, with no evidence of recurrent MS or leukemia

  18. Identification of the Molecular Mechanisms Responsible for the Inhibition of Homing of AML Cells Triggered by CD44-Ligation

    KAUST Repository

    Al-Jifri, Ablah

    2011-08-03

    Acute Myeloid Leukemia (AML) is a cancerous disease that is defined by the inability to produce functional and mature blood cells, as well as the uncontrolled proliferation due to failure to undergo apoptosis of abnormal cells. The most common therapy for Leukemia, chemotherapy, has proven only to be partially efficient since it does not target the leukemic stem cells (LSCs) that have a high self-renewal and repopulation capacity and result in remission of the disease. Therefore targeting LSCs will provide more efficient therapy. One way to achieve this would be to inhibit their homing capability to the bone marrow. It has recently been shown that CD44, an adhesive molecule, plays a crucial role in cell trafficking and lodgement of both normal and leukemic stem cells. More importantly anti-CD44 monoclonal antibodies, along with its ability to induce differentiation of leukemic blasts, it inhibits specifically the homing capacity of LSCs to their micro-environmental niches. However, these molecular mechanisms that underlie the inhibition of homing have yet to be determined. To address these questions we conducted in vitro adhesion and blot-rolling assays to analyze the adherence and rolling capacity of these LSCs before and after treatment with anti-CD44 monoclonal antibody (mAb). Since glycosyltransferases play a crucial role in post translational carbohydrate decoration on adhesion molecules, we analyzed the expression (using quantitative PCR) of the different glycosyltransferases expressed in LSC\\'s before and after CD44 ligation (mAb treatment). Furthermore, we analyzed differentiation by flow cytometric analysis of treated and non-treated LSC\\'s. We anticipate that our results will set forth new insights into targeted therapies for AML.

  19. Drug Repurposing for the Treatment of Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Vibeke Andresen

    2017-11-01

    Full Text Available Acute myeloid leukemia (AML is a heterogeneous disease characterized by the accumulation of immature myeloid progenitor cells in the bone marrow, compromising of normal blood cell production and ultimately resulting in bone marrow failure. With a 20% overall survival rate at 5 years and 50% in the 18- to 65-year-old age group, new medicines are needed. It is proposed that development of repurposed drugs may be a part of the new therapy needed. AML is subdivided into recurrent molecular entities based on molecular genetics increasingly accessible for precision medicine. Novel therapy developments form a basis for novel multimodality therapy and include liposomal daunorubicin/cytarabine, broad or FLT3-specific tyrosine kinase inhibitors, Bcl-2 family inhibitors, selective inhibitors of nuclear export, metabolic inhibitors, and demethylating agents. The use of non-transplant immunotherapy is in early development in AML with the exceptional re-approval of a toxin-conjugated anti-CD33. However, the full potential of small molecule inhibitors and modalities like immunological checkpoint inhibitors, immunostimulatory small molecules, and CAR-T cell therapy is unknown. Some novel therapeutics will certainly benefit AML patient subgroups; however, due to high cost, more affordable alternatives are needed globally. Also the heterogeneity of AML will likely demand a broader repertoire of therapeutic molecules. Drug repurposing or repositioning represent a source for potential therapeutics with well-known toxicity profiles and reasonable prices. This implies that biomarkers of response need to accompany the development of antileukemic therapies for sharply defined patient subgroups. We will illustrate repurposing in AML with selected examples and discuss some experimental and regulatory limitations that may obstruct this development.

  20. A mathematical model for leukemogenesis of radiation-induced acute myeloid leukemia in C3H/He mice

    International Nuclear Information System (INIS)

    Kai, M.; Ban, N.

    2002-01-01

    We developed a mathematical model in leukemogenesis of acute myeloid leukemia(AML) in C3H/He mice irradiated. Our previous study indicated that the leukemogenesis of AML was associated with a deletion of chromosome 2 directly induced by acute radiation. We hypothesized that radiation-induced AML needs both inactivation of one allele of a causative gene directly induced by acute radiation and another mutational event at the other allele. We analyzed data using a two-stage stochastic model for carcinogenesis. Model fitting was based on the maximum likelihood method. Our model analysis suggested that a single exposure might induce the long-lasting delayed cell death of radiation-induced initiated cells, and that the incidence of AML may be determined through both radiation-induced initiation and persistent increase of delayed cell death of the initiated cell induced by radiation

  1. Atomic bomb irradiation-induced leukemias revisited. Summary data of 50 years-long term follow up study on survivors

    International Nuclear Information System (INIS)

    Tomonaga, Masao; Matsuo, Tatsuki; Preston, D.L.; Bennett, J.M.

    1997-01-01

    The Life Span Study (LSS) on 93,741 survivors (fixed cohort) and the Open City Study (OCS) on all survivors (unfixed) irrespective of whether they belonged to LSS or not, have been conducted in parallel over 45 years to ensure reliable case detection. We adopted the FAB classification for acute leukemias and for exposure dose of individual survivors, the new dosimetry system 1986 (DS86). In LSS, 221 leukemia cases were analysed. There was strong evidence of radiation-induced risks for acute myeloid leukemia (AML), acute lymphoid leukemia (ALL) and chronic myeloid leukemia (CML), but not for adult T-cell leukemia and chronic lymphocytic leukemia. There was also significant difference between three major types with respect to the effects of age at bombing and sex, and in the temporal pattern of the elevated risks. For AML the dose response function was non-linear, whereas there was no evidence against linearity for ALL and CML. The hypothesis of a 0.5 Gy threshold could be rejected for three major types of leukemia. Excess Absolute Risk (EAR) estimates in cases per 10,000 Person Year Sievert (PYSv) were 0.6, 1.1, 0.9 for ALL, AML and CML, respectively. The corresponding relative risk at 1.0 Sv were 9.1, 3.3, 6.2, respectively. Although childhood exposure <15 age at bombing apparently induced three major types, the age-related highest risk was observed for ALL. In OCS, 413 cases with DS86 estimates were used for analysis. Type specific incidence rates were calculated indirectly by using the over all incidence of leukemia from LSS data and multiplying these values by the corresponding proportions of cases in OCS. In conjunction with LSS data, the effects of radiation were significantly greater on the incidences of ALL and CML than on that of AML. In the high dose group there was a strong evidence for shorter incubation time and faster decline of elevated risk for ALL and CML than for AML. AML risk was apparently persistent through 1980. (K.H.)

  2. Assessing the miRNA sponge potential of RUNX1T1 in t(8;21) acute myeloid leukemia

    DEFF Research Database (Denmark)

    Junge, Alexander; Zandi, Roza; Havgaard, Jakob Hull

    2017-01-01

    t(8;21) acute myeloid leukemia (AML) is characterized by a translocation between chromosomes 8 and 21 and formation of a distinctive RUNX1-RUNX1T1 fusion transcript. This translocation places RUNX1T1 under control of the RUNX1 promoter leading to a pronounced upregulation of RUNX1T1 transcripts...

  3. Growth regulation on human acute myeloid leukemia effects of five recombinant hematopoietic factors in a serum-free culture system

    NARCIS (Netherlands)

    Delwel, E.; Salem, M.; Pellens, C.; Dorssers, L.; Wagemaker, G.; Clark, S.; Loewenberg, B

    1988-01-01

    The response of human acute myeloid leukemia (AML) cells to the distinct hematopoietic growth factors (HGFs), ie, recombinant interleukin-3 (IL-3), granulocyte-macrophage-CSF (GM-CSF), granulocyte-CSF (G-CSF), macrophage-CSF (M-CSF), and erythropoietin (Epo) was investigated under well-defined

  4. P-glycoprotein and multidrug resistance protein activities in relation to treatment outcome in acute myeloid leukemia

    NARCIS (Netherlands)

    de Vries, EGE; van Putten, WLJ; Verdonck, LF; Ossenkoppele, GJ; Verhoef, GEG; Vellenga, E

    Despite treatment with intensive chemotherapy, a considerable number of patients with acute myeloid leukemia (AML) die from their disease due to the occurrence of resistance. Overexpression of the transporter proteins P-glycoprotein (P-gp) and multidrug resistance protein (MRP) 1 has been identified

  5. T315 Decreases Acute Myeloid Leukemia Cell Viability through a Combination of Apoptosis Induction and Autophagic Cell Death

    Directory of Open Access Journals (Sweden)

    Chang-Fang Chiu

    2016-08-01

    Full Text Available T315, an integrin-linked kinase (ILK inhibitor, has been shown to suppress the proliferation of breast cancer, stomach cancer and chronic lymphocytic leukemia cells. Here we demonstrate that T315 decreases cell viability of acute myeloid leukemia (AML cell lines (HL-60 and THP-1 and primary leukemia cells from AML patients in a dose-responsive manner. Normal human bone marrow cells are less sensitive than leukemia cells to T315. T315 down regulates protein kinase B (Akt and p-Akt and induces caspase activation, poly-ADP-ribose polymerase (PARP cleavage, apoptosis and autophagy through an ILK-independent manner. Interestingly, pretreatment with autophagy inhibitors rescues cells from apoptosis and concomitant PARP cleavage, which implicates a key role of autophagic cell death in T315-mediated cytotoxicity. T315 also demonstrates efficacy in vivo, suppressing the growth of THP-1 xenograft tumors in athymic nude mice when administered intraperitoneally. This study shows that autophagic cell death and apoptosis cooperatively contribute to the anticancer activity of T315 in AML cells. In conclusion, the complementary roles of apoptotic and autophagic cell death should be considered in the future assessment of the translational value of T315 in AML therapy.

  6. Rhodium(II) Proximity-Labeling Identifies a Novel Target Site on STAT3 for Inhibitors with Potent Anti-Leukemia Activity.

    Science.gov (United States)

    Minus, Matthew B; Liu, Wei; Vohidov, Farrukh; Kasembeli, Moses M; Long, Xin; Krueger, Michael J; Stevens, Alexandra; Kolosov, Mikhail I; Tweardy, David J; Sison, Edward Allan R; Redell, Michele S; Ball, Zachary T

    2015-10-26

    Nearly 40 % of children with acute myeloid leukemia (AML) suffer relapse arising from chemoresistance, often involving upregulation of the oncoprotein STAT3 (signal transducer and activator of transcription 3). Herein, rhodium(II)-catalyzed, proximity-driven modification identifies the STAT3 coiled-coil domain (CCD) as a novel ligand-binding site, and we describe a new naphthalene sulfonamide inhibitor that targets the CCD, blocks STAT3 function, and halts its disease-promoting effects in vitro, in tumor growth models, and in a leukemia mouse model, validating this new therapeutic target for resistant AML. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Pharmacogenetics in Acute Lymphoblastic Leukemia

    Science.gov (United States)

    Cheok, Meyling H.; Pottier, Nicolas; Kager, Leo

    2009-01-01

    Progress in the treatment of acute leukemia in children has been remarkable, from a disease being lethal four decades ago to current cure rates exceeding 80%. This exemplary progress is largely due to the optimization of existing treatment modalities rather than the discovery of new antileukemic agents. However, despite these high cure rates, the annual number of children whose leukemia relapses after their initial therapy remains greater than that of new cases of most types of childhood cancers. The aim of pharmacogenetics is to develop strategies to personalize treatment and tailor therapy to individual patients, with the goal of optimizing efficacy and safety through better understanding of human genome variability and its influence on drug response. In this review, we summarize recent pharmacogenomic studies related to the treatment of pediatric acute lymphoblastic leukemia. These studies illustrate the promise of pharmacogenomics to further advance the treatment of human cancers, with childhood leukemia serving as a paradigm. PMID:19100367

  8. Digitalization of a non-irradiated acute myeloid leukemia model.

    Science.gov (United States)

    Li, Rudong; Cheng, Hui; Cheng, Tao; Liu, Lei

    2016-08-26

    Computer-aided, interdisciplinary researches for biomedicine have valuable prospects, as digitalization of experimental subjects provide opportunities for saving the economic costs of researches, as well as promoting the acquisition of knowledge. Acute myeloid leukemia (AML) is intensively studied over long periods of time. Till nowaday, most of the studies primarily focus on the leukemic cells rather than how normal hematopoietic cells are affected by the leukemic environment. Accordingly, the conventional animal models for AML are mostly myeloablated as leukemia can be induced with short latency and complete penetrance. Meanwhile, most previous computational models focus on modeling the leukemic cells but not the multi-tissue leukemic body resided by both leukemic and normal blood cells. Recently, a non-irradiated AML mouse model has been established; therefore, normal hematopoietic cells can be investigated during leukemia development. Experiments based on the non-irradiated animal model have monitored the kinetics of leukemic and (intact) hematopoietic cells in multiple tissues simultaneously; and thus a systematic computational model for the multi-tissue hematopoiesis under leukemia has become possible. In the present work, we adopted the modeling methods in previous works, but aimed to model the tri-tissue (peripheral blood, spleen and bone marrow) dynamics of hematopoiesis under leukemia. The cell kinetics generated from the non-irradiated experimental model were used as the reference data for modeling. All mathematical formulas were systematically enumerated, and model parameters were estimated via numerical optimization. Multiple validations by additional experimental data were then conducted for the established computational model. In the results, we illustrated that the important fact of functional depression of hematopoietic stem/progenitor cells (HSC/HPC) in leukemic bone marrow (BM), which must require additional experiments to be established, could

  9. Incidence of extramedullary relapse after haploidentical SCT for advanced AML/myelodysplastic syndrome.

    Science.gov (United States)

    Yoshihara, S; Ikegame, K; Kaida, K; Taniguchi, K; Kato, R; Inoue, T; Fujioka, T; Tamaki, H; Okada, M; Soma, T; Ogawa, H

    2012-05-01

    Extramedullary (EM) relapse of leukemia after allo-SCT in patients with AML/myelodysplastic syndrome has been increasingly reported. The reduced effectiveness of the GVL effect in EM sites, as compared with BM, has been suggested to underlie this problem. We retrospectively analyzed the pattern of relapse after haploidentical SCT (haplo-SCT), performed as the first or second SCT. Among 38 patients who received haplo-SCT as their first SCT, the cumulative incidences of BM and EM relapse at 3 years were 40.5 and 10.9%, respectively. Among 19 patients who received haplo-SCT as their second SCT, the cumulative incidences of BM and EM relapse were 30.9 and 31.9%, respectively. Moreover, most of the patients who underwent repeat haplo-SCT for the treatment of EM relapse had further EM relapse at other sites. Post-relapse survival did not differ significantly with different patterns of relapse. The frequent occurrence of EM relapse after haplo-SCT, particularly when performed as a second SCT, suggests that the potent GVL effect elicited by an HLA disparity also occurs preferentially in BM. Our findings emphasize the need for a treatment strategy for EM relapse that recognizes the reduced susceptibility of EM relapse to the GVL effect.

  10. Initial presentation of acute myelogenous leukemia in the infiltrate underlying an actinic keratosis

    Directory of Open Access Journals (Sweden)

    Collin Blattner

    2014-01-01

    Full Text Available We report an 85-year-old female patient who presented with an erythematous keratotic lesion on her temple suspicious of squamous cell carcinoma. Histological evaluation revealed actinic keratosis, but the underlying atypical infiltrate contained atypical myeloid forms consistent with acute myelogenous leukemia (AML. Upon further questioning, it was determined that the patient had a history of myelodysplastic syndrome. Her skin biopsy provided the first evidence of progression to AML. This case serves as an important reminder of the role the dermatopathologist plays in identifying serious systemic disease.

  11. Retinoic acid and arsenic trioxide in the treatment of acute promyelocytic leukemia: current perspectives

    Directory of Open Access Journals (Sweden)

    McCulloch D

    2017-03-01

    Full Text Available Derek McCulloch, Christina Brown, Harry Iland Institute of Hematology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia Abstract: Acute promyelocytic leukemia (APL is a distinct subtype of acute myeloid leukemia (AML with a unique morphological appearance, associated coagulopathy and canonical balanced translocation of genetic material between chromosomes 15 and 17. APL was first described as a distinct subtype of AML in 1957 by Dr Leif Hillestad who recognized the pattern of an acute leukemia associated with fibrinolysis, hypofibrinogenemia and catastrophic hemorrhage. In the intervening years, the characteristic morphology of APL has been described fully with both classical hypergranular and variant microgranular forms. Both are characterized by a balanced translocation between the long arms of chromosomes 15 and 17, [t(15;17(q24;q21], giving rise to a unique fusion gene PML-RARA and an abnormal chimeric transcription factor (PML-RARA, which disrupts normal myeloid differentiation programs. The success of current treatments for APL is in marked contrast to the vast majority of patients with non-promyelocytic AML. The overall prognosis in non-promyelocytic AML is poor, and although there has been an improvement in overall survival in patients aged <60 years, only 30%–40% of younger patients are still alive 5 years after diagnosis. APL therapy has diverged from standard AML therapy through the empirical discovery of two agents that directly target the molecular basis of the disease. The evolution of treatment over the last 4 decades to include all-trans retinoic acid and arsenic trioxide, with chemotherapy limited to patients with high-risk disease, has led to complete remission in 90%–100% of patients in trials and rates of overall survival between 86% and 97%. Keywords: acute promyelocytic leukemia, ATRA, arsenic trioxide

  12. Preservation Method and Phosphate Buffered Saline Washing Affect the Acute Myeloid Leukemia Proteome

    Directory of Open Access Journals (Sweden)

    Rebecca Wangen

    2018-01-01

    Full Text Available Acute myeloid leukemia (AML primary cells can be isolated from peripheral blood, suspended with media containing bovine serum and cryoprotectant, and stored in liquid nitrogen before being processed for proteomic analysis by mass spectrometry (MS. The presence of bovine serum and human blood proteins in AML samples can hamper the identifications of proteins, and thereby reduce the proteome coverage of the study. Herein, we have established the effect of phosphate buffered saline (PBS washing on AML patient samples stored in media. Although PBS washes effectively removed serum and blood contaminants, the saline wash resulted in cell burst and remarkable protein material loss. We also compared different methods to preserve the AML proteome from THP-1 and Molm-13 cell lines before MS analysis: (1 stored in media containing bovine serum and dimethyl sulfoxide (DMSO; (2 stored as dried cell pellets; and (3 stored as cell lysates in 4% sodium dodecyl sulfate (SDS. MS analysis of differently preserved AML cell samples shows that preservation with DMSO produce a high number of fragile cells that will burst during freezing and thawing. Our studies encourage the use of alternative preservation methods for future MS analysis of the AML proteome.

  13. Transglutaminase 2 expression in acute myeloid leukemia: Association with adhesion molecule expression and leukemic blast motility

    Science.gov (United States)

    Meyer, Stefan; Ravandi-Kashani, Farhad; Borthakur, Gautam; Coombes, Kevin R.; Zhang, Nianxiang; Kornblau, Steven

    2016-01-01

    Acute myeloid leukemia (AML) is a heterogenous disease with differential oncogene association, outcome and treatment regimens. Treatment strategies for AML have improved outcome but despite increased molecular biological information AML is still associated with poor prognosis. Proteomic analysis on the effects of a range of leukemogenic oncogenes showed that the protein transglutaminase 2 (TG2) is expressed at greater levels as a consequence of oncogenic transformation. Further analysis of this observation was performed with 511 AML samples using reverse phase proteomic arrays, demonstrating that TG2 expression was higher at relapse than diagnosis in many cases. In addition elevated TG2 expression correlated with increased expression of numerous adhesion proteins and many apoptosis regulating proteins, two processes related to leukemogenesis. TG2 has previously been linked to drug resistance in cancer and given the negative correlation between TG2 levels and peripheral blasts observed increased TG2 levels may lead to the protection of the leukemic stem cell due to increased adhesion/reduced motility. TG2 may therefore form part of a network of proteins that define poor outcome in AML patients and potentially offer a target to sensitize AML stem cells to drug treatment. PMID:23576428

  14. HLA-G Expression on Blasts and Tolerogenic Cells in Patients Affected by Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Grazia Locafaro

    2014-01-01

    Full Text Available Human Leukocyte Antigen-G (HLA-G contributes to cancer cell immune escape from host antitumor responses. The clinical relevance of HLA-G in several malignancies has been reported. However, the role of HLA-G expression and functions in Acute Myeloid Leukemia (AML is still controversial. Our group identified a subset of tolerogenic dendritic cells, DC-10 that express HLA-G and secrete IL-10. DC-10 are present in the peripheral blood and are essential in promoting and maintaining tolerance via the induction of adaptive T regulatory (Treg cells. We investigated HLA-G expression on blasts and the presence of HLA-G-expressing DC-10 and CD4+ T cells in the peripheral blood of AML patients at diagnosis. Moreover, we explored the possible influence of the 3′ untranslated region (3′UTR of HLA-G, which has been associated with HLA-G expression, on AML susceptibility. Results showed that HLA-G-expressing DC-10 and CD4+ T cells are highly represented in AML patients with HLA-G positive blasts. None of the HLA-G variation sites evaluated was associated with AML susceptibility. This is the first report describing HLA-G-expressing DC-10 and CD4+ T cells in AML patients, suggesting that they may represent a strategy by which leukemic cells escape the host’s immune system. Further studies on larger populations are required to verify our findings.

  15. Resveratrol Downregulates Interleukin-6-Stimulated Sonic Hedgehog Signaling in Human Acute Myeloid Leukemia

    Science.gov (United States)

    Su, Yu-Chieh; Li, Szu-Chin; Wu, Yin-Chi; Wang, Li-Min; Chao, K. S. Clifford; Liao, Hui-Fen

    2013-01-01

    IL-6 and sonic hedgehog (Shh) signaling molecules are considered to maintain the growth of cancer stem cells (CSCs). Resveratrol, an important integrant in traditional Chinese medicine, possesses certain antitumor effects. However, the mechanisms on regulating acute myeloid leukemia (AML) are unclear. This study first used human subjects to demonstrate that the plasma levels of IL-6 and IL-1β in AML patients were higher and lower, respectively, than healthy donors. The expression of Shh preproproteins, and C- and N-terminal Shh peptides increased in bone marrow and peripheral blood mononuclear cells isolated from AML patients, and the plasma N-Shh secretion was greater. To further clarify the effect of IL-6 and resveratrol in Shh signaling, human AML HL-60 cells were tested. IL-6 upregulated Shh and Gli-1 expression and was accompanied by an increase of cell viability. Resveratrol significantly decreased CSC-related Shh expression, Gli-1 nuclear translocation, and cell viability in IL-6-treated HL-60 cells and had synergistic effect with Shh inhibitor cyclopamine on inhibiting cell growth. Conclusions. IL-6 stimulated the growth of AML cells through Shh signaling, and this effect might be blocked by resveratrol. Further investigations of Shh as a prognostic marker and resveratrol as a therapeutic drug target to CSCs in AML are surely warranted. PMID:23533494

  16. Impaired B cell immunity in acute myeloid leukemia patients after chemotherapy.

    Science.gov (United States)

    Goswami, Meghali; Prince, Gabrielle; Biancotto, Angelique; Moir, Susan; Kardava, Lela; Santich, Brian H; Cheung, Foo; Kotliarov, Yuri; Chen, Jinguo; Shi, Rongye; Zhou, Huizhi; Golding, Hana; Manischewitz, Jody; King, Lisa; Kunz, Lauren M; Noonan, Kimberly; Borrello, Ivan M; Smith, B Douglas; Hourigan, Christopher S

    2017-07-10

    Changes in adaptive immune cells after chemotherapy in adult acute myeloid leukemia (AML) may have implications for the success of immunotherapy. This study was designed to determine the functional capacity of the immune system in adult patients with AML who have completed chemotherapy and are potential candidates for immunotherapy. We used the response to seasonal influenza vaccination as a surrogate for the robustness of the immune system in 10 AML patients in a complete remission post-chemotherapy and performed genetic, phenotypic, and functional characterization of adaptive immune cell subsets. Only 2 patients generated protective titers in response to vaccination, and a majority of patients had abnormal frequencies of transitional and memory B-cells. B-cell receptor sequencing showed a B-cell repertoire with little evidence of somatic hypermutation in most patients. Conversely, frequencies of T-cell populations were similar to those seen in healthy controls, and cytotoxic T-cells demonstrated antigen-specific activity after vaccination. Effector T-cells had increased PD-1 expression in AML patients least removed from chemotherapy. Our results suggest that while some aspects of cellular immunity recover quickly, humoral immunity is incompletely reconstituted in the year following intensive cytotoxic chemotherapy for AML. The observed B-cell abnormalities may explain the poor response to vaccination often seen in AML patients after chemotherapy. Furthermore, the uncoupled recovery of B-cell and T-cell immunity and increased PD-1 expression shortly after chemotherapy might have implications for the success of several modalities of immunotherapy.

  17. Deletion and reduced expression of the Fanconi anemia FANCA gene in sporadic acute myeloid leukemia.

    Science.gov (United States)

    Tischkowitz, M D; Morgan, N V; Grimwade, D; Eddy, C; Ball, S; Vorechovsky, I; Langabeer, S; Stöger, R; Hodgson, S V; Mathew, C G

    2004-03-01

    Fanconi anemia (FA) is an autosomal recessive chromosomal instability disorder caused by mutations in one of seven known genes (FANCA,C,D2,E,F,G and BRCA2). Mutations in the FANCA gene are the most prevalent, accounting for two-thirds of FA cases. Affected individuals have greatly increased risks of acute myeloid leukemia (AML). This raises the question as to whether inherited or acquired mutations in FA genes might be involved in the development of sporadic AML. Quantitative fluorescent PCR was used to screen archival DNA from sporadic AML cases for FANCA deletions, which account for 40% of FANCA mutations in FA homozygotes. Four heterozygous deletions were found in 101 samples screened, which is 35-fold higher than the expected population frequency for germline FANCA deletions (PFANCA in the AML samples with FANCA deletions did not detect mutations in the second allele and there was no evidence of epigenetic silencing by hypermethylation. However, real-time quantitative PCR analysis in these samples showed reduced expression of FANCA compared to nondeleted AML samples and to controls. These findings suggest that gene deletions and reduced expression of FANCA may be involved in the promotion of genetic instability in a subset of cases of sporadic AML.

  18. Physical properties of Kentucky's AML landslides: Case studies analyzed

    International Nuclear Information System (INIS)

    Iannacchione, A.T.; Vallejo, L.E.

    1994-01-01

    Once an abandoned mined land (AML) landslide occurs and is identified as an emergency, engineers must rapidly implement a slope stabilization design. Correct slope remediation solutions are generally derived from well-executed geotechnical examinations. This paper summarizes a large body of geotechnical data compiled by the US office of Surface Mining Reclamation and Enforcement (OSM) from AML landslides in eastern Kentucky. Special attention is placed on the examination of subsurface failures, phreatic water levels, soil profiles, and soil composition information from numerous borehole exploration programs. Strength properties calculated from laboratory procedures and stability analysis techniques were also reviewed. Laboratory-determined soil shear strength values were found to be higher than those inferred from stability analysis. This suggests that postfailure determinations of the phreatic surface may be largely inappropriate when used in stability analysis or that laboratory-measured shear strengths are ineffective in replicating in situ colluvium/spoil slope properties

  19. Significance of molecular-cytogenetic aberrations for the achievement of first remission in de novo acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Boriana M. Zaharieva

    2008-12-01

    Full Text Available OBJECTIVE: The majority of adults diagnosed with acute myeloid leukemia (AML display acquired cytogenetic aberrations at presentation. In this article, we present the major cytogenetic findings regarding AML and review their clinical significance for achievement of the first complete remission.METHODS: We studied 71 adult patients with de novo AML, without previous myelodysplasia or alkylating therapy. Conventional cytogenetics and FISH were performed on bone marrow cells. The patients with AML were assigned to 12 subgroups according to established data for cytogenetic, molecular and general laboratory results. The selection of the analyzed parameters is consistent with internationally accepted “prognostic factors” in adult AML.RESULTS: Complete remission upon induction therapy was achieved in 40% of cases (in a mean period of 2.3 months from therapy initiation. The patients with t(15;17 PML-RARA and inv(16/CBFbeta-MYH11ë demonstrated the highest frequency of complete remission. Patients with hypodiploidy, t(9;22/bcr-abl and complex karyotypes were therapy-resistant or died within the first three months after AML diagnosis. CONCLUSION: Molecular-cytogenetic findings have an important significance for achievement of first complete remission. However, laboratory and biologic features (age, WBC and LDH and type of AML have a large influence on the disease outcome.

  20. Reactive oxygen species activate differentiation gene transcription of acute myeloid leukemia cells via the JNK/c-JUN signaling pathway.

    Science.gov (United States)

    Lam, Chung Fan; Yeung, Hoi Ting; Lam, Yuk Man; Ng, Ray Kit

    2018-05-01

    Reactive oxygen species (ROS) and altered cellular redox status are associated with many malignancies. Acute myeloid leukemia (AML) cells are maintained at immature state by differentiation blockade, which involves deregulation of transcription factors in myeloid differentiation. AML cells can be induced to differentiate by phorbol-12-myristate-13-acetate (PMA), which possesses pro-oxidative activity. However, the signaling events mediated by ROS in the activation of transcriptional program during AML differentiation has not been fully elucidated. Here, we investigated AML cell differentiation by treatment with PMA and ROS scavenger N-acetyl-l-cysteine (NAC). We observed elevation of intracellular ROS level in the PMA-treated AML cells, which correlated with differentiated cell morphology and increased CD11b + mature cell population. The effect of PMA can be abolished by NAC co-treatment, supporting the involvement of ROS in the process. Moreover, we demonstrated that short ROS elevation mediated cell cycle arrest, but failed to activate myeloid gene transcription; whereas prolonged ROS elevation activated JNK/c-JUN signaling pathway. Inhibition of JNK suppressed the expression of key myeloid transcriptional regulators c-JUN, SPI-1 and MAFB, and prevented AML cells from undergoing terminal differentiation. These findings provide new insights into the crucial role of JNK/c-Jun signaling pathway in the activation of transcriptional program during ROS-mediated AML differentiation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Study of the S427G polymorphism and of MYBL2 variants in patients with acute myeloid leukemia.

    Science.gov (United States)

    Dolz, Sandra; García, Paloma; Llop, Marta; Fuster, Óscar; Luna, Irene; Ibáñez, Mariam; Gómez, Inés; López, María; Such, Esperanza; Cervera, José; Sanz, Miguel A; De Juan, Inmaculada; Palanca, Sarai; Murria, Rosa; Bolufer, Pascual; Barragán, Eva

    2015-06-19

    Dysregulation of MYBL2 has been associated to tumorigenesis and the S427G polymorphism could induce partial inactivation of MYBL2, associating it with cancer risk. It has previously been shown that MYBL2 was over-expressed in some acute myeloid leukemias (AML), portending poor prognosis. However, to date no studies have investigated the S427G or other genetic variants of MYBL2 in AML. This study analyzed the S427G in 197 AML patients and 179 controls and screened the MYBL2 sequence in patients. In contrast to other studies in solid tumors, the S427G was not associated with the incidence of AML. This study detected four unannotated genetic alterations, of which the Q67X could be involved in MYBL2 dysfunction. Eight polymorphisms were identified, among which the rs73116571, located in a splicing region, was associated with higher incidence in AML and weaker MYBL2 expression, suggesting pre-disposition to AML. Additional functional studies should be performed to verify these genetic variations as possible targets in AML.

  2. Radiation-induced acute myeloid leukemia in the mouse: experimental observations in vivo with implications for hypotheses about the basis of carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Mole, R H

    1986-01-01

    Acute myeloid leukaemia induction by X- and ..gamma..-rays in 4 mouse strains follows the same dose-response aD/sup 2/esup(-lambdaD). The (dose)/sup 2/ interaction disappears within 3 days. AML appears earlier when syngeneic marrow cells are injected 3 days after irradiation, minimum latent period and final frequency remaining unchanged. Dose-responses for brief and protracted exposures are quite different for non-myeloid 'leukemia'. The results seem incompatible with a common model for initiation of both leukaemia categories and with orthodox concepts that initiation is a stable state and must be followed by multiple events over a period of time before cells express fully malignant behaviour.

  3. Radiation-induced acute myeloid leukemia in the mouse: experimental observations in vivo with implications for hypotheses about the basis of carcinogenesis

    International Nuclear Information System (INIS)

    Mole, R.H.

    1986-01-01

    Acute myeloid leukaemia induction by X- and γ-rays in 4 mouse strains follows the same dose-response aD 2 esup(-lambdaD). The (dose) 2 interaction disappears within 3 days. AML appears earlier when syngeneic marrow cells are injected 3 days after irradiation, minimum latent period and final frequency remaining unchanged. Dose-responses for brief and protracted exposures are quite different for non-myeloid 'leukemia'. The results seem incompatible with a common model for initiation of both leukaemia categories and with orthodox concepts that initiation is a stable state and must be followed by multiple events over a period of time before cells express fully malignant behaviour. (author)

  4. Concurrent targeting Akt and sphingosine kinase 1 by A-674563 in acute myeloid leukemia cells

    International Nuclear Information System (INIS)

    Xu, Lin; Zhang, Yanan; Gao, Meng; Wang, Guangping; Fu, Yunfeng

    2016-01-01

    Akt signaling plays a pivotal role in acute myeloid leukemia (AML) development and progression. In the present study, we evaluated the potential anti-AML activity by a novel Akt kinase inhibitor A-674563. Our results showed that A-674563 dose-dependently inhibited survival and proliferation of U937 AML cells and six lines of human AML progenitor cells, yet sparing human peripheral blood mononuclear leukocytes (PBMCs). A-674563 activated caspase-3/9 and apoptosis in the AML cells. Reversely, the pan-caspase inhibitor z-VAD-CHO dramatically alleviated A-674563-induced AML cell apoptosis and cytotoxicity. For the molecular study, we showed that A-674563 blocked Akt activation in U937 cells and human AML progenitor cells. Further, A-674563 decreased sphingosine kinase 1 (SphK1) activity in above AML cells to deplete pro-survival sphingosine-1-phosphate (S1P) and boost pro-apoptotic ceramide production. Such an effect on SphK1 signaling by A-674563 appeared independent of Akt blockage. Significantly, K6PC-5, a novel SphK1 activator, or supplement with S1P attenuated A-674563-induced ceramide production, and subsequent U937 cell death and apoptosis. Importantly, intraperitoneal injection of A-674563 at well-tolerated doses suppressed U937 leukemic xenograft tumor growth in nude mice, whiling significantly improving the animal survival. The results of the current study demonstrate that A-674563 exerts potent anti-leukemic activity in vitro and in vivo, possibly via concurrent targeting Akt and SphK1 signalings. - Highlights: • A-674563 is cytotoxic and anti-proliferative in U937 and AML progenitor cells. • A-674563 activates caspase-3/9 and apoptosis in U937 and AML progenitor cells. • Whiling blocking Akt, A-674563 manipulates other signalings in AML cells. • A-674563 inhibits SphK1 activity in AML cells, independent of Akt blockage. • A-674563 injection inhibits U937 xenograft in vivo growth, and improves mice survival.

  5. Concurrent targeting Akt and sphingosine kinase 1 by A-674563 in acute myeloid leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Lin [Xiangya Hospital, Central South University, Changsha (China); Shaoyang Central Hospital, Hunan Province (China); Zhang, Yanan; Gao, Meng [The Third Xiangya Hospital, Central South University, Changsha, 410013 (China); Wang, Guangping, E-mail: wangguangping45@sina.com [Xiangya Hospital, Central South University, Changsha (China); Fu, Yunfeng, E-mail: fuyunfeng33163@163.com [The Third Xiangya Hospital, Central South University, Changsha, 410013 (China)

    2016-04-15

    Akt signaling plays a pivotal role in acute myeloid leukemia (AML) development and progression. In the present study, we evaluated the potential anti-AML activity by a novel Akt kinase inhibitor A-674563. Our results showed that A-674563 dose-dependently inhibited survival and proliferation of U937 AML cells and six lines of human AML progenitor cells, yet sparing human peripheral blood mononuclear leukocytes (PBMCs). A-674563 activated caspase-3/9 and apoptosis in the AML cells. Reversely, the pan-caspase inhibitor z-VAD-CHO dramatically alleviated A-674563-induced AML cell apoptosis and cytotoxicity. For the molecular study, we showed that A-674563 blocked Akt activation in U937 cells and human AML progenitor cells. Further, A-674563 decreased sphingosine kinase 1 (SphK1) activity in above AML cells to deplete pro-survival sphingosine-1-phosphate (S1P) and boost pro-apoptotic ceramide production. Such an effect on SphK1 signaling by A-674563 appeared independent of Akt blockage. Significantly, K6PC-5, a novel SphK1 activator, or supplement with S1P attenuated A-674563-induced ceramide production, and subsequent U937 cell death and apoptosis. Importantly, intraperitoneal injection of A-674563 at well-tolerated doses suppressed U937 leukemic xenograft tumor growth in nude mice, whiling significantly improving the animal survival. The results of the current study demonstrate that A-674563 exerts potent anti-leukemic activity in vitro and in vivo, possibly via concurrent targeting Akt and SphK1 signalings. - Highlights: • A-674563 is cytotoxic and anti-proliferative in U937 and AML progenitor cells. • A-674563 activates caspase-3/9 and apoptosis in U937 and AML progenitor cells. • Whiling blocking Akt, A-674563 manipulates other signalings in AML cells. • A-674563 inhibits SphK1 activity in AML cells, independent of Akt blockage. • A-674563 injection inhibits U937 xenograft in vivo growth, and improves mice survival.

  6. A Newborn with Congenital Mixed Phenotype Acute Leukemia After In Vitro Fertilization

    Directory of Open Access Journals (Sweden)

    Hacer Ergin

    2015-08-01

    Full Text Available Congenital leukemia is a rare disease. The majority of cases of this disease are acute myelogenous leukemia (AML. Congenital acute lymphoblastic leukemia (ALL is rare and most often is of B cell lineage. Rarely, some cases have been designated biphenotypic or mixed phenotype acute leukemia (MPAL. Herein, we report a preterm newborn referred to us as a result of the appearance of blue-violaceous dermal nodules on her body at birth. She was a twin and the product of an in vitro fertilization (IVF pregnancy. Physical examination showed jaundice, hepatosplenomegaly, and peripheral facial nerve palsy in addition to dermal nodules. Bone marrow aspiration showed 40% blasts of lymphoid lineage; skin biopsy and its immunohistochemistry revealed myeloblastic infiltration of the dermis. Cytogenetic analysis (46,XX, fluorescence in situ hybridization (FISH analysis, and cranial magnetic resonance were normal. The patient was diagnosed with congenital MPAL, and an association between IVF and congenital leukemia was suggested.

  7. The incidence and distribution characteristics of MLL rearrangements in Chinese acute myeloid leukemia patients by multiplex nested RT-PCR.

    Science.gov (United States)

    Yang, Hua; Cao, Tingting; Gao, Li; Wang, Lili; Zhu, Chengying; Xu, Yuanyuan; Jing, Yu; Zhu, Haiyan; Lv, Na; Yu, Li

    2017-07-20

    Occurrence of MLL (Mixed Lineage Leukemia) gene rearrangements indicates poor prognosis in acute myeloid leukemia (AML) patients. This is the first study to report the positive rate and distribution characteristics of MLL rearrangements in AML patients in north China. We used multiplex nested real time PCR (RT-PCR) to screen for incidence of 11 MLL rearrangements in 433 AML patients. Eleven MLL rearrangements included (MLL-PTD, MLL-AF9, MLL-ELL, MLL-AF10, MLL-AF17, MLL-AF6, MLL-ENL, MLL-AF1Q, MLL-CBP, MLL-AF1P, MLL-AFX1). There were 68 AML patients with MLL rearrangements, and the positive rate was 15.7%. MLL-PTD (4.84%) was detected in 21 patients, MLL-AF9 in 15, (3.46%), MLL-ELL in 10 (2.31%), MLL-AF10 in 8 (1.85%), MLL-AF1Q in 2 (0.46%), 3 cases each of MLL-AF17, MLL-AF6, MLL-ENL (0.69% each), a and single case each of MLL-CBP, MLL-AF1P, and MLL-AFX1 (0.23% each). The highest rate of MLL rearrangements was found in 24 patients with M5 subtype AML, occurring in 24 cases (35.3%). MLL rearrangements occurred in 21 patients with M2 subtype AML (30.9%), and in 10 patients with M4 subtype AML (14.7%). Screening fusion genes by multiplex nested RT-PCR is a convenient, fast, economical, and accurate method for diagnosis and predicting prognosis of AML.

  8. Program death-1 signaling and regulatory T cells collaborate to resist the function of adoptively transferred cytotoxic T lymphocytes in advanced acute myeloid leukemia.

    Science.gov (United States)

    Zhou, Qing; Munger, Meghan E; Highfill, Steven L; Tolar, Jakub; Weigel, Brenda J; Riddle, Megan; Sharpe, Arlene H; Vallera, Daniel A; Azuma, Miyuki; Levine, Bruce L; June, Carl H; Murphy, William J; Munn, David H; Blazar, Bruce R

    2010-10-07

    Tumor-induced immune defects can weaken host immune response and permit tumor cell growth. In a systemic model of murine acute myeloid leukemia (AML), tumor progression resulted in increased regulatory T cells (Treg) and elevation of program death-1 (PD-1) expression on CD8(+) cytotoxic T cells (CTLs) at the tumor site. PD-1 knockout mice were more resistant to AML despite the presence of similar percentage of Tregs compared with wild type. In vitro, intact Treg suppression of CD8(+) T-cell responses was dependent on PD-1 expression by T cells and Tregs and PD-L1 expression by antigen-presenting cells. In vivo, the function of adoptively transferred AML-reactive CTLs was reduced by AML-associated Tregs. Anti-PD-L1 monoclonal antibody treatment increased the proliferation and function of CTLs at tumor sites, reduced AML tumor burden, and resulted in long-term survivors. Treg depletion followed by PD-1/PD-L1 blockade showed superior efficacy for eradication of established AML. These data demonstrated that interaction betwe