WorldWideScience

Sample records for lettuce seedlings grown

  1. Internalisation potential of Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica subsp. enterica serovar Typhimurium and Staphylococcus aureus in lettuce seedlings and mature plants.

    Science.gov (United States)

    Standing, Taryn-Ann; du Plessis, Erika; Duvenage, Stacey; Korsten, Lise

    2013-06-01

    The internalisation potential of Listeria monocytogenes, Staphylococcus aureus, Escherichia coli O157:H7 and Salmonella enterica subsp. enterica serovar Typhimurium in lettuce was evaluated using seedlings grown in vermiculite in seedling trays as well as hydroponically grown lettuce. Sterile distilled water was spiked with one of the four human pathogenic bacteria (10(5) CFU/mL) and used to irrigate the plants. The potential for pathogen internalisation was investigated over time using light microscopy, transmission electron microscopy and viable plate counts. Additionally, the identities of the pathogens isolated from internal lettuce plant tissues were confirmed using polymerase chain reaction with pathogen-specific oligonucleotides. Internalisation of each of the human pathogens was evident in both lettuce seedlings and hydroponically grown mature lettuce plants. To our knowledge, this is the first report of S. aureus internalisation in lettuce plants. In addition, the levels of background microflora in the lettuce plants were determined by plate counting and the isolates identified using matrix-assisted laser ionisation-time of flight (MALDI-TOF). Background microflora assessments confirmed the absence of the four pathogens evaluated in this study. A low titre of previously described endophytes and soil inhabitants, i.e., Enterobacter cloacae, Enterococcus faecalis, Lysinibacillus fusiformis, Rhodococcus rhodochrous, Staphylococcus epidermidis and Staphylococcus hominis were identified.

  2. CONSUMER ATTITUDES TOWARD ORGANICALLY GROWN LETTUCE

    OpenAIRE

    Wolf, Marianne McGarry; Johnson, Bradey; Cochran, Kerry; Hamilton, Lynn L.

    2002-01-01

    This research shows that approximately 29 percent of lettuce purchases in California expect to purchase an organically grown lettuce product in the future. Organic lettuce purchasers are more likely to be female, have a higher household income and a higher level of education. Consumers are concerned with the freshness, quality, price, and environmental impact of the lettuce they purchase.

  3. Potential internalisation of caliciviruses in lettuce.

    Science.gov (United States)

    Urbanucci, A; Myrmel, M; Berg, I; von Bonsdorff, C-H; Maunula, L

    2009-10-31

    Fresh produce such as lettuce (Lactuca sativa) has often been linked to epidemic viral gastroenteritis. In these cases, it is unknown whether the viral contamination has occurred during the growing or the processing of the implicated product. In this study lettuce was grown in the presence of enteric viruses, and the uptake of viruses via the roots into the edible parts (leaves and stem) of the lettuce plants was investigated, for plants with both intact and damaged roots. The roots of lettuce, growing either in hydroponic culture or in soil, were exposed to canine calicivirus (CaCV) and a human genogroup 2 norovirus (HuNoV) by these being added into the water or soil in which the lettuce was growing. Leaves from lettuce plants and seedlings were examined for viruses by real-time RT-PCR. When the lettuce plants were exposed to very high concentrations of CaCV, the virus was detected in lettuce leaves, indicating contamination via the roots, but the frequency of positive results was low. Internalisation occurred in both seedlings and grown plants, in both hydroponic and soil cultures, and occurred whether the roots were intact or damaged. However, internalisation of HuNoV was not detected in any of the experimental set ups, although the concentrations to which the plants were exposed were relatively high. Based on these results, viral contamination of lettuce plants via roots cannot be excluded, but is apparently not an important transmission route for viruses.

  4. Mechanism of artemisinin phytotoxicity action: induction of reactive oxygen species and cell death in lettuce seedlings.

    Science.gov (United States)

    Yan, Zhi-Qiang; Wang, Dan-Dan; Ding, Lan; Cui, Hai-Yan; Jin, Hui; Yang, Xiao-Yan; Yang, Jian-She; Qin, Bo

    2015-03-01

    Artemisinin has been recognized as an allelochemical that inhibits growth of several plant species. However, its mode of action is not well clarified. In this study, the mechanism of artemisinin phytotoxicity on lettuce seedlings was investigated. Root and shoot elongation of lettuce seedlings were inhibited by artemisinin in a concentration-dependent manner. The compound effectively arrested cell division and caused loss of cell viability in root tips of lettuce. Overproduction of reactive oxygen species (ROS) was induced by artemisinin. Lipid peroxidation, proline overproduction and reduction of chlorophyll content in lettuce seedlings were found after treatments. These results suggested that artemisinin could induce ROS overproduction, which caused membrane lipids peroxidation and cell death, and impacted mitosis and physiological processes, resulting in growth inhibition of receptor plants. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  5. Effects of glucose and ethylene on root hair initiation and elongation in lettuce (Lactuca sativa L.) seedlings.

    Science.gov (United States)

    Harigaya, Wakana; Takahashi, Hidenori

    2018-05-01

    Root hair formation occurs in lettuce seedlings after transfer to an acidic medium (pH 4.0). This process requires cortical microtubule (CMT) randomization in root epidermal cells and the plant hormone ethylene. We investigated the interaction between ethylene and glucose, a new signaling molecule in plants, in lettuce root development, with an emphasis on root hair formation. Dark-grown seedlings were used to exclude the effect of photosynthetically produced glucose. In the dark, neither root hair formation nor the CMT randomization preceding it occurred, even after transfer to the acidic medium (pH 4.0). Adding 1-aminocyclopropane-1-carboxylic-acid (ACC) to the medium rescued the induction, while adding glucose did not. Although CMT randomization occurred when glucose was applied together with ACC, it was somewhat suppressed compared to that in ACC-treated seedlings. This was not due to a decrease in the speed of randomization, but due to lowering of the maximum degree of randomization. Despite the negative effect of glucose on ACC-induced CMT randomization, the density and length of ACC-induced root hairs increased when glucose was also added. The hair-cell length of the ACC-treated seedlings was comparable to that in the combined-treatment seedlings, indicating that the increase in hair density caused by glucose results from an increase in the root hair number. Furthermore, quantitative RT-PCR revealed that glucose suppressed ethylene signaling. These results suggest that glucose has a negative and positive effect on the earlier and later stages of root hair formation, respectively, and that the promotion of the initiation and elongation of root hairs by glucose may be mediated in an ethylene-independent manner.

  6. Physiological responses of seeds and seedlings of lettuce submitted to Philodendron bipinnatifidum extract

    Directory of Open Access Journals (Sweden)

    Tiago Zanatta Aumonde

    2013-12-01

    Full Text Available The work was conducted to evaluate the effect of different Philodendron bipinnatifidum Schott. extract concentrations on the physiology and enzymatic metabolism of lettuce seeds and seedlings. The treatments extracts of mature leaves at concentrations of 0, 6, 12, 25 and 50%. Were evaluated the germination, first count germination, speed and germination speed index, length of shoot and primary root, seedling total dry mass, electrical conductivity, chlorophyll content, activity of the enzymes ?-amilase, superoxide dismutase, catalase and ascorbarto peroxidase, lipid peroxidation, hydrogen peroxide content and seedling emergence, length of shoot and total dry mass of emerged seedlings. There was a reduction of germination, germination speed index and total dry mass by increasing the concentration of the extract. While the content of hydrogen peroxide, lipid peroxidation and activity of superoxide dismutase, catalase and peroxidase ascorbarto increased with concentration. The increasing of concentration the leaf extracts of the P. bipinnatifidum negatively affects the activity of the enzyme ?-amylase and causes increase in the activity of antioxidant enzymes, affecting the physiologic performance and growth of lettuce seedlings.

  7. Phyllosphere Microbiota Composition and Microbial Community Transplantation on Lettuce Plants Grown Indoors

    Science.gov (United States)

    Williams, Thomas R.

    2014-01-01

    ABSTRACT The aerial surfaces of plants, or phyllosphere, are microbial habitats important to plant and human health. In order to accurately investigate microbial interactions in the phyllosphere under laboratory conditions, the composition of the phyllosphere microbiota should be representative of the diversity of microorganisms residing on plants in nature. We found that Romaine lettuce grown in the laboratory contained 10- to 100-fold lower numbers of bacteria than age-matched, field-grown lettuce. The bacterial diversity on laboratory-grown plants was also significantly lower and contained relatively higher proportions of Betaproteobacteria as opposed to the Gammaproteobacteria-enriched communities on field lettuce. Incubation of field-grown Romaine lettuce plants in environmental growth chambers for 2 weeks resulted in bacterial cell densities and taxa similar to those on plants in the field but with less diverse bacterial populations overall. In comparison, the inoculation of laboratory-grown Romaine lettuce plants with either freshly collected or cryopreserved microorganisms recovered from field lettuce resulted in the development of a field-like microbiota on the lettuce within 2 days of application. The survival of an inoculated strain of Escherichia coli O157:H7 was unchanged by microbial community transfer; however, the inoculation of E. coli O157:H7 onto those plants resulted in significant shifts in the abundance of certain taxa. This finding was strictly dependent on the presence of a field-associated as opposed to a laboratory-associated microbiota on the plants. Phyllosphere microbiota transplantation in the laboratory will be useful for elucidating microbial interactions on plants that are important to agriculture and microbial food safety. PMID:25118240

  8. Photomorphogenetic responses to UV radiation and short-term red light in lettuce seedlings

    International Nuclear Information System (INIS)

    Kobzar, E.F.; Kreslavski, V.D.; Muzafarov, E.N.

    1998-01-01

    Effects of red light (R), far-red light (FR) and UV radiation on growth and greening of lettuce seedlings (Latuca sativa L., cv. Berlinskii) have been investigated. UV-B and UV-C inhibited hypocotyl elongation and stimulated cotyledonary growth. R in combination with UV-B and UV-C partly eliminated these effects, but FR increased those and reversed the R effect. Chlorophyll accumulation was inhibited by UV-B and UV-C. In comparison with cotyledonary growth, R strengthened the UV inhibitory effect, and FR reversed this effect of R. Thus, UV and phytochrome system modify the effects of each other on hypocotyl and leaf growth in lettuce seedlings depending on the level of active phytochrome formed

  9. Microbial Profile of Soil-Free versus In-Soil Grown Lettuce and Intervention Methodologies to Combat Pathogen Surrogates and Spoilage Microorganisms on Lettuce

    Directory of Open Access Journals (Sweden)

    Sujata A. Sirsat

    2013-11-01

    Full Text Available Aquaponics is an effective method to practice sustainable agriculture and is gaining popularity in the US; however, the microbial safety of aquaponically grown produce needs to be ascertained. Aquaponics is a unique marriage of fish production and soil-free produce (e.g., leafy greens production. Fish are raised in fresh water tanks that are connected to water filled beds where fruits and vegetables are grown. The fish bi-products create nutrient-rich water that provides the key elements for the growth of plants and vegetables. The objective of this study was to perform a comparative analysis of the microbial safety and quality of aquaponic lettuce and soil grown lettuce (conventional, bagged, certified organic, and field lettuce. Following this, an intervention study was performed to combat foodborne pathogen surrogates (Salmonella and E. coli, spoilage, and fecal microorganisms using 2.5% acetic acid. The results of the comparative analysis study showed that aquaponically grown lettuce had significantly lower concentration of spoilage and fecal microorganisms compared to in-soil grown lettuce. The intervention study showed that diluted vinegar (2.5% acetic acid significantly reduced Salmonella, E. coli, coliforms, and spoilage microorganisms on fresh lettuce by 2 to 3 log CFU/g. Irrespective of growing methods (in-soil or soilless, it is crucial to incorporate good agricultural practices to reduce microbial contamination on fresh produce. The intervention employed in this study can be proposed to small farmers and consumers to improve quality and safety of leafy greens.

  10. Microbial Profile of Soil-Free versus In-Soil Grown Lettuce and Intervention Methodologies to Combat Pathogen Surrogates and Spoilage Microorganisms on Lettuce.

    Science.gov (United States)

    Sirsat, Sujata A; Neal, Jack A

    2013-11-11

    Aquaponics is an effective method to practice sustainable agriculture and is gaining popularity in the US; however, the microbial safety of aquaponically grown produce needs to be ascertained. Aquaponics is a unique marriage of fish production and soil-free produce (e.g., leafy greens) production. Fish are raised in fresh water tanks that are connected to water filled beds where fruits and vegetables are grown. The fish bi-products create nutrient-rich water that provides the key elements for the growth of plants and vegetables. The objective of this study was to perform a comparative analysis of the microbial safety and quality of aquaponic lettuce and soil grown lettuce (conventional, bagged, certified organic, and field lettuce). Following this, an intervention study was performed to combat foodborne pathogen surrogates ( Salmonella and E. coli ), spoilage, and fecal microorganisms using 2.5% acetic acid. The results of the comparative analysis study showed that aquaponically grown lettuce had significantly lower concentration of spoilage and fecal microorganisms compared to in-soil grown lettuce. The intervention study showed that diluted vinegar (2.5% acetic acid) significantly reduced Salmonella , E. coli , coliforms, and spoilage microorganisms on fresh lettuce by 2 to 3 log CFU/g. Irrespective of growing methods (in-soil or soilless), it is crucial to incorporate good agricultural practices to reduce microbial contamination on fresh produce. The intervention employed in this study can be proposed to small farmers and consumers to improve quality and safety of leafy greens.

  11. On hybridising lettuce seedlings with nanoparticles and the resultant effects on the organisms' electrical characteristics.

    Science.gov (United States)

    Gizzie, Nina; Mayne, Richard; Patton, David; Kendrick, Paul; Adamatzky, Andrew

    2016-09-01

    Lettuce seedlings are attracting interest in the computing world due to their capacity to become hybrid circuit components, more specifically, in the creation of living 'wires'. Previous studies have shown that seedlings can be hybridised with gold nanoparticles and withstand mild electrical currents. In this study, lettuce seedlings were hybridised with a variety of metallic and non-metallic nanomaterials: carbon nanotubes, graphene oxide, aluminium oxide and calcium phosphate. Toxic effects and the following electrical properties were monitored: mean potential, resistance and capacitance. Macroscopic observations revealed only slight deleterious health effects after administration with one variety of particle, aluminium oxide. Mean potential in calcium phosphate-hybridised seedlings showed a considerable increase when compared with the control, whereas those administered with graphene oxide showed a small decrease; there were no notable variations across the remaining treatments. Electrical resistance decreased substantially in graphene oxide-treated seedlings whereas slight increases were shown following calcium phosphate and carbon nanotubes applications. Capacitance showed no considerable variation across treated seedlings. These results demonstrate that use of some nanomaterials, specifically graphene oxide and calcium phosphate, may be towards biohybridisation purposes including the generation of living 'wires'. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Physiological responses of seeds and seedlings of lettuce submitted to Philodendron bipinnatifidum extract

    OpenAIRE

    Tiago Zanatta Aumonde; Emanuela Garbin Martinazzo; Tiago Pedó; Junior Borella; Luciano do Amarante; Francisco Amaral Villela; Dario Munt de Moraes

    2013-01-01

    The work was conducted to evaluate the effect of different Philodendron bipinnatifidum Schott. extract concentrations on the physiology and enzymatic metabolism of lettuce seeds and seedlings. The treatments extracts of mature leaves at concentrations of 0, 6, 12, 25 and 50%. Were evaluated the germination, first count germination, speed and germination speed index, length of shoot and primary root, seedling total dry mass, electrical conductivity, chlorophyll content, activity of the enzymes...

  13. The Comparison of Ammonium or Nitrate-Grown Lettuce and Spinach in a Hydroponic System

    OpenAIRE

    H. R. Roosta

    2010-01-01

    Most plant species are sensitive to high ammonium concentrations. In this experiment the sensitivity of lettuce and spinach to ammonium was investigated. In a factorial experiment with framework of a completely randomized design with two factors, nitrogen form (ammonium and nitrate) and plant species (lettuce and spinach), and three replications seeds were germinated in a mixture of perlite, sand and clay in soil-maid pots. After two weeks, the seedlings at two true-leaf stage were then trans...

  14. Improvement of lettuce seedling vigour after far red irradiation of aged achenes

    International Nuclear Information System (INIS)

    Górski, T.

    1993-01-01

    Far red treatment of aged achenes of lettuce (Lactuca sativa L.) during 4 days after inhibition usually reduced the percentage of seedlings with developmental abnormities. This effect was retained also in redried seeds. The field test yielded a greater number of plants emerging from treated than from control seeds. The results are similar to seed invigoration by other factors inhibiting an immediate germination of imbibed seeds

  15. Effects of Minthostachys mollis essential oil and volatiles on seedlings of lettuce, tomato, cucumbre and Bidens pilosa.

    OpenAIRE

    Alonso Amelot, Miguel; Usubillaga, Alfredo; Avila Nuñez, Jorge Luis; Oliveros Bastidas, Alberto; Avendaño Meza, Marisabel

    2007-01-01

    Effects of Minthostachys mollis essential oil and volatiles on seedlings of lettuce, tomato, cucumbre and Bidens pilosa. (Alonso Amelot, Miguel; Usubillaga, Alfredo; Avila Nuñez, Jorge Luis; Oliveros Bastidas, Alberto y Avendaño Meza, Mairsabel) Abstract The extraction and chemical composition of essential oil of Minthostachys mollis (Kunth) Griseb (Lamiaceae) and its inhibitory effects on germation and shoot/root elongation of lettuce, tomato, cucumber and Bidens pilosa (L...

  16. Effect of vanadium on germination and seedling growth of lettuce (Lactuca sativa L. C. V. salad bowl)

    Energy Technology Data Exchange (ETDEWEB)

    Lepp, N.W.

    1977-01-01

    The effect of vanadium, applied as VOSO/sub 4/, on germination and subsequent seedling growth of Lettuce has been studied. No differences in germination were observed at any of the applied vanadium concentrations, when compared to a vanadium-free control. Subsequent seedling growth, however, was significantly inhibited by all vanadium treatments. Reductions in shoot growth, root growth and fresh weight were apparent. Similar, but less dramatic effects were observed when 3 day old seedlings were transferred to vanadium enriched media. 13 references, 2 tables.

  17. Effects of sodium nitroprusside (SNP) pretreatment on UV-B stress tolerance in lettuce (Lactuca sativa L.) seedlings.

    Science.gov (United States)

    Esringu, Aslıhan; Aksakal, Ozkan; Tabay, Dilruba; Kara, Ayse Aydan

    2016-01-01

    Ultraviolet-B (UV-B) radiation is one of the most important abiotic stress factors that could influence plant growth, development, and productivity. Nitric oxide (NO) is an important plant growth regulator involved in a wide variety of physiological processes. In the present study, the possibility of enhancing UV-B stress tolerance of lettuce seedlings by the exogenous application of sodium nitroprusside (SNP) was investigated. UV-B radiation increased the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD) and total phenolic concentrations, antioxidant capacity, and expression of phenylalanine ammonia lyase (PAL) gene in seedlings, but the combination of SNP pretreatment and UV-B enhanced antioxidant enzyme activities, total phenolic concentrations, antioxidant capacity, and PAL gene expression even more. Moreover, UV-B radiation significantly inhibited chlorophylls, carotenoid, gibberellic acid (GA), and indole-3-acetic acid (IAA) contents and increased the contents of abscisic acid (ABA), salicylic acid (SA), malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide radical (O2•(-)) in lettuce seedlings. When SNP pretreatment was combined with the UV-B radiation, we observed alleviated chlorophylls, carotenoid, GA, and IAA inhibition and decreased content of ABA, SA, MDA, H2O2, and O2•(-) in comparison to non-pretreated stressed seedlings.

  18. Cytogenetic changes in cells of lettuce seedlings after expesure to accelerated 12C ions

    International Nuclear Information System (INIS)

    Vikhrov, A.I.; Kovalev, E.E.; Maksimova, E.N.; Nevzgodina, L.V.; Potapov, Yu.V.

    1985-01-01

    In this report the data are presented on the incidence of aberrant cells in lettuce seedlings after the effect of 12 C ions depending on the number of hits. Determined were the number of particles passed through the biological object and the values of doses received by each seed with regard for the secondary irradiation contribution to these doses are determined

  19. Yield of lettuce grown in aquaponic system using different substrates

    Directory of Open Access Journals (Sweden)

    Rodrigo A. Jordan

    Full Text Available ABSTRACT In the aquaponic system, the characteristics of the materials used as substrate directly affect plant development, because besides acting as a support base, they must present a surface to fix microorganisms, responsible for the conversion of nutrients into forms more easily available to plants. Thus, the objective of this study was to evaluate the effect of four growing substrates on the yield of lettuce grown in aquaponic system. The experimental design was randomized blocks with four treatments, which corresponded to the substrates, and six replicates. Plants were grown using the nutrient film technique (NFT system. The substrates used in the experiment were: coconut shell fiber with crushed stone #3, expanded vermiculite, zeolite and phenolic foam. The treatment with phenolic foam was considered as the least suitable for lettuce cultivation in aquaponic system, because it caused lower yield (20.8 t ha-1. The treatment using coconut shell fiber with crushed stone #3 was considered as the most adequate, since it led to higher yield (39.9 t ha-1 compared with the other substrates analyzed.

  20. Uptake of perfluorinated alkyl acids by hydroponically grown lettuce (Lactuca sativa)

    NARCIS (Netherlands)

    Felizeter, S.; McLachlan, M.; de Voogt, P.

    2012-01-01

    An uptake study was carried out to assess the potential human exposure to perfluorinated alkyl acids (PFAAs) through the ingestion of vegetables. Lettuce (Lactuca sativa) was grown in PFAA-spiked nutrient solutions at four different concentrations, ranging from 10 ng/L to 10 μg/L. Eleven

  1. Effects of long-term low atmospheric pressure on gas exchange and growth of lettuce

    Science.gov (United States)

    Tang, Yongkang; Guo, Shuangsheng; Dong, Wenping; Qin, Lifeng; Ai, Weidang; Lin, Shan

    2010-09-01

    The objectives of this research were to determine photosynthesis, evapotranspiration and growth of lettuce at long-term low atmospheric pressure. Lettuce ( Lactuca sativa L . cv. Youmaicai) plants were grown at 40 kPa total pressure (8.4 kPa p) or 101 kPa total pressure (20.9 kPa p) from seed to harvest for 35 days. Germination rate of lettuce seeds decreased by 7.6% at low pressure, although this was not significant. There was no significant difference in crop photosynthetic rate between hypobaria and ambient pressure during the 35-day study. The crop evapotranspiration rate was significantly lower at low pressure than that at ambient pressure from 20 to 30 days after planting (DAP), but it had no significant difference before 20 DAP or after 30 DAP. The growth cycle of lettuce plants at low pressure was delayed. At low pressure, lettuce leaves were curly at the seedling stage and this disappeared gradually as the plants grew. Ambient lettuce plants were yellow and had an epinastic growth at harvest. The shoot height, leaf number, leaf length and shoot/root ratio were lower at low pressure than those at ambient pressure, while leaf area and root growth increased. Total biomass of lettuce plants grown at two pressures had no significant difference. Ethylene production at low pressure decreased significantly by 38.8% compared with ambient pressure. There was no significant difference in microelements, nutritional phytochemicals and nitrate concentrations at the two treatments. This research shows that lettuce can be grown at long-term low pressure (40 kPa) without significant adverse effects on seed germination, gas exchange and plant growth. Furthermore, ethylene release was reduced in hypobaria.

  2. Comparative toxicity of VO3-, CrO42-, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, and Cd2+ to lettuce seedlings

    International Nuclear Information System (INIS)

    Berry, W.L.

    1978-01-01

    Lettuce seeds imbibed, germinated, and grown in a 0.1-strength modified Hoagland culture solution were subjected to a series of increasing concentrations of individual heavy metals up to and exceeding lethal levels. After an exposure of 5 days, seedlings were harvested, examined, and measured to determine toxic effects. A log--log plot of root length (yield) vs. heavy metal concentration was made for each metal to produce a dose response curve. The curves showed a growth plateau at low concentrations of the respective metals which was equivalent to the growth of the control. All metals inhibited root growth and caused lethal toxicity in the sub- and low-milliequivalent range. When concentrations of the tested metals exceeded their thresholds of acute toxicity, root growth was inhibited. In the zone of inhibition, between the acute toxic threshold and complete inhibition, the log--log dose response curves were approximately linear or were a series of linear steps. The threshold toxicity and the response slope were characteristic for each metal. Seedling lettuce showed a monophasic response to VO 3 - , Cu 2+ , and Zn 2+ ; a biphasic response to CrO 4 2 -, Mn 2+ , Ni 2+ , and Cd 2+ ; and a quadraphasic response to Co 2+ . The acute toxicity threshold on an equivalent basis increased according to the following sequence: Cd 2+ much less than VO 3 - 2+ 2+ 2+ 4 2- 2+ much less than Mn 2+ . On this basis, Cd 2+ is the most toxic of the trace elements tested

  3. The metabolism and distribution of 14C-8N6-benzyladenine in lettuce seeds and seedlings

    International Nuclear Information System (INIS)

    Seeber, R.G. Jr.

    1989-01-01

    This investigation sought to follow the uptake of the cytokinin, 14 C-8N 6 -benzyladenine (BAP), by lettuce seeds through time, trace the movement of the metabolites through several areas of the seedling, and identify the BAP metabolites. Lettuce seeds (Lactuca sativa L. cv. Grand Rapids) were exposed to a two hour pulse of the radioactive BAP. These seeds were harvested at 4 hour intervals from 2-48 hours. Seedlings incubated from 36-48 hours were cut in two; root, stem, shoot tip and seed coats. Each of these groups were extracted in 70% methanol and their radioactive isolated by high performance liquid chromatography. Radioactive fractions were pooled and reduced for further analysis by thin layer chromatography. The major compound identified throughout the time periods was BAP, exclusively found from 2-20 hours. BAP riboside was found in addition to BAP from 24-32 hours. The 40 and 44 hour extracts contained BAP and its riboside in the shoot and BAP in the seed coat. The 48 hours extract contained BAP and its riboside in both the shoot tip and the seed coat. This study produced information on the following points. A cytokinin exposure of 2 hours or less is needed to break dormancy in these seeds

  4. Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce.

    Science.gov (United States)

    Schreiter, Susanne; Ding, Guo-Chun; Heuer, Holger; Neumann, Günter; Sandmann, Martin; Grosch, Rita; Kropf, Siegfried; Smalla, Kornelia

    2014-01-01

    The complex and enormous diversity of microorganisms associated with plant roots is important for plant health and growth and is shaped by numerous factors. This study aimed to unravel the effects of the soil type on bacterial communities in the rhizosphere of field-grown lettuce. We used an experimental plot system with three different soil types that were stored at the same site for 10 years under the same agricultural management to reveal differences directly linked to the soil type and not influenced by other factors such as climate or cropping history. Bulk soil and rhizosphere samples were collected 3 and 7 weeks after planting. The analysis of 16S rRNA gene fragments amplified from total community DNA by denaturing gradient gel electrophoresis and pyrosequencing revealed soil type dependent differences in the bacterial community structure of the bulk soils and the corresponding rhizospheres. The rhizosphere effect differed depending on the soil type and the plant growth developmental stage. Despite the soil type dependent differences in the bacterial community composition several genera such as Sphingomonas, Rhizobium, Pseudomonas, and Variovorax were significantly increased in the rhizosphere of lettuce grown in all three soils. The number of rhizosphere responders was highest 3 weeks after planting. Interestingly, in the soil with the highest numbers of responders the highest shoot dry weights were observed. Heatmap analysis revealed that many dominant operational taxonomic units were shared among rhizosphere samples of lettuce grown in diluvial sand, alluvial loam, and loess loam and that only a subset was increased in relative abundance in the rhizosphere compared to the corresponding bulk soil. The findings of the study provide insights into the effect of soil types on the rhizosphere microbiome of lettuce.

  5. Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce

    Directory of Open Access Journals (Sweden)

    Susanne eSchreiter

    2014-04-01

    Full Text Available The complex and enormous diversity of microorganisms associated with plant roots is important for plant health and growth and is shaped by numerous factors. This study aimed to unravel the effects of the soil type on bacterial communities in the rhizosphere of field-grown lettuce. We used an experimental plot system with three different soil types that were stored at the same site for ten years under the same agricultural management to reveal differences directly linked to the soil type and not influenced by other factors such as climate or cropping history. Bulk soil and rhizosphere samples were collected three and seven weeks after planting. The analysis of 16S rRNA gene fragments amplified from total community DNA by denaturing gradient gel electrophoresis and pyrosequencing revealed soil type-dependent differences in the bacterial community structure of the bulk soils and the corresponding rhizospheres. The rhizosphere effect differed depending on the soil type and the plant growth developmental stage. Despite the soil type-dependent differences in the bacterial community composition several genera such as Sphingomonas, Rhizobium, Pseudomonas and Variovorax were significantly increased in the rhizosphere of lettuce grown in all three different soils. The number of rhizosphere responders was highest three weeks after planting. Interestingly, in the soil with the highest numbers of responders the highest shoot dry weights were observed. Heatmap analysis revealed that many dominant operational taxonomic units were shared among rhizosphere samples of lettuce grown in diluvial sand, alluvial loam, and loess loam and that only a subset was increased in relative abundance in the rhizosphere compared to the corresponding bulk soil. The findings of the study provide insights into the effect of soil types on the rhizosphere microbiome of lettuce.

  6. Quantitative trait loci associated with seed and seedling traits in Lactuca.

    Science.gov (United States)

    Argyris, Jason; Truco, María José; Ochoa, Oswaldo; Knapp, Steven J; Still, David W; Lenssen, Ger M; Schut, Johan W; Michelmore, Richard W; Bradford, Kent J

    2005-11-01

    Seed and seedling traits related to germination and stand establishment are important in the production of cultivated lettuce (Lactuca sativa L.). Six seed and seedling traits segregating in a L. sativa cv. Salinas x L. serriola recombinant inbred line population consisting of 103 F8 families revealed a total of 17 significant quantitative trait loci (QTL) resulting from three seed production environments. Significant QTL were identified for germination in darkness, germination at 25 and 35 degrees C, median maximum temperature of germination, hypocotyl length at 72 h post-imbibition, and plant (seedling) quality. Some QTL for germination and early seedling growth characteristics were co-located, suggestive of pleiotropic loci regulating these traits. A single QTL (Htg6.1) described 25 and 23% of the total phenotypic variation for high temperature germination in California- and Netherlands-grown populations, respectively, and was significant between 33 and 37 degrees C. Additionally, Htg6.1 showed significant epistatic interactions with other Htg QTL and a consistent effect across all the three seed production environments. L. serriola alleles increased germination at these QTL. The estimate of narrow-sense heritability (h2) of Htg6.1 was 0.84, indicating potential for L. serriola as a source of germination thermotolerance for lettuce introgression programs.

  7. Possible Internalization of an Enterovirus in Hydroponically Grown Lettuce

    Directory of Open Access Journals (Sweden)

    Annalaura Carducci

    2015-07-01

    Full Text Available Several studies have shown that enteric viruses can be transferred onto the surface of vegetables and fruits through spray irrigation, but, recently, reports have suggested viral contamination of vegetables sub-irrigated with reused wastewater. Hydroponic cultures, used to grow ready to eat fresh lettuce, have also been used to study the possibility of viral absorption through roots. This study was conducted to assess a possible risk of viral contamination in lettuce from contaminated water. The leaves of lettuce plants grown in hydroponic cultures where the roots were exposed to water containing Coxsakievirus B2, were analysed for evidence of the virus. The plants and water were sampled at different times and virus was measured using quantitative RT-PCR and infectivity assay. In leaf samples, the lowest observed infective data were lower than the qRT-PCR detection limits, suggesting that free viral RNA or damaged viruses are eliminated rapidly while infectious particles remain stable for a longer time. The obtained data revealed that the leaves were contaminated at a water concentration of 4.11 ± 1 Log Most Probable Number/L (8.03 ± 1 Log GC/L a concentration observed in contaminated untreated water of wastewater treatment plants. However, the absorption dynamics and whether the virus is inactive in the leaves still remains to be clarified. Nevertheless, this work has practical implications for risk management in using reclaimed water for agricultural use; when irrigated vegetables are destined for raw consumption, virological contamination in water sources should be evaluated.

  8. Possible Internalization of an Enterovirus in Hydroponically Grown Lettuce.

    Science.gov (United States)

    Carducci, Annalaura; Caponi, Elisa; Ciurli, Adriana; Verani, Marco

    2015-07-17

    Several studies have shown that enteric viruses can be transferred onto the surface of vegetables and fruits through spray irrigation, but, recently, reports have suggested viral contamination of vegetables sub-irrigated with reused wastewater. Hydroponic cultures, used to grow ready to eat fresh lettuce, have also been used to study the possibility of viral absorption through roots. This study was conducted to assess a possible risk of viral contamination in lettuce from contaminated water. The leaves of lettuce plants grown in hydroponic cultures where the roots were exposed to water containing Coxsakievirus B2, were analysed for evidence of the virus. The plants and water were sampled at different times and virus was measured using quantitative RT-PCR and infectivity assay. In leaf samples, the lowest observed infective data were lower than the qRT-PCR detection limits, suggesting that free viral RNA or damaged viruses are eliminated rapidly while infectious particles remain stable for a longer time. The obtained data revealed that the leaves were contaminated at a water concentration of 4.11 ± 1 Log Most Probable Number/L (8.03 ± 1 Log GC/L) a concentration observed in contaminated untreated water of wastewater treatment plants. However, the absorption dynamics and whether the virus is inactive in the leaves still remains to be clarified. Nevertheless, this work has practical implications for risk management in using reclaimed water for agricultural use; when irrigated vegetables are destined for raw consumption, virological contamination in water sources should be evaluated.

  9. Influence of mycorrhizal fungi on fate of E. coli 0157:H7 in soil and Salmonella in soil and internalization into romaine lettuce plants

    Science.gov (United States)

    The objectives of this study were to determine the influence of arbuscular mycorrhizal (AM) fungi on persistence of Salmonella and enterohemorrhagic E. coli O157:H7 (EHEC) within soil, and survival within Romaine lettuce. Romaine seedlings were grown with or without AM fungi, i.e., soil fungi that ...

  10. Effect of residual monomer from polyacrylamide on head lettuce grown in peat substrate.

    Science.gov (United States)

    Mroczek, Ewelina; Kleiber, Tomasz; Konieczny, Piotr; Waśkiewicz, Agnieszka

    2015-01-01

    The paper investigates the migration of the acrylamide monomer (AMD) to lettuce chosen as a test plant growing in an organic medium (peat substrate). Polyacrylamide (PAM)-based flocculant added to the growing medium contained no more than 1000 mg kg(-1) of AMD. Plants were grown with varied doses of PAM preparation (0.5-3.0 mg dm(-3) of peat substrate) to compare the results with the control sample. The determination of AMD content, chlorophyll content, weight of the lettuce head, and also analysis of macro- and micro-elements in lyophilised test material was made under the same analytical conditions. The results showed that lettuce plants absorb AMD to the leaves from the peat substrate. The AMD uptake has a negative impact on the growth of lettuce. It reduces the average fresh weight of heads and destabilises the mineral composition of the plant. Therefore, concern related to the transfer risk of the residual AMD from sludge used for organic fertilisation of edible plants still remains a crucial question from a food and consumer safety point of view. To ensure consumer safety, the fate of the AMD following the application of PAM to cropland should be carefully monitored in the whole food chain.

  11. Interactions between cadmium and other heavy metals in affecting the growth of lettuce (Lactuca sativa L. c. v. Webbs Wonderful) seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Lepp, N.W.

    1977-01-01

    Changes in root and shoot extension of lettuce seedlings in relation to single or dual applications of heavy metal ions have been studied. When cadmium, copper, lead or nickel are applied singly, at concentrations of 10 ..mu..g/litre, significant reductions in root and shoot growth of the seedlings are apparent. Dual ion applications of 10 ..mu..g/litre cadmium with 10 ..mu..g/litre of any of the other elements produce no significant synergistic reduction in seedling growth. The responses observed are either additive or antagonistic, depending upon the metal treatment. The results are discussed in terms of their possible significance to heavy metal effects on plant growth. 14 references, 1 figure.

  12. Uptake of azoles by lamb's lettuce (Valerianella locusta L.) grown in hydroponic conditions.

    Science.gov (United States)

    García-Valcárcel, Ana I; Loureiro, Iñigo; Escorial, Concepción; Molero, Encarnación; Tadeo, José L

    2016-02-01

    An uptake and translocation study of azole compounds was performed in lamb's lettuce (Valerianella locusta L.) grown in nutrient solution fortified with different azoles. Three azoles, (clotrimazole, fluconazole and propiconazole), which have different physico-chemical properties and are ubiquitous in the aquatic environment, were the compounds selected. An analytical method, based on matrix solid phase dispersion (MSPD) followed by LC-MS/MS determination, was developed to quantify these compounds in aqueous solution and in roots and leaves. The physicochemical properties of azoles are the main factors governing the uptake and plant accumulation. These azoles were detected in leaves indicating their transport within lamb's lettuce. Translocation from nutrient solution to the aerial part of lamb's lettuce was found to be highly dependent on the hydrophobicity of the azole. Clotrimazole accumulates in roots causing necrosis in roots and leaves, whereas fluconazole was the azole with the highest concentration in leaves without causing apparent phytotoxicity symptoms. The assessment of the levels of these azoles in leaves indicates that the risk for human health is negligible. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Plasma membrane H(+)-ATPase is involved in methyl jasmonate-induced root hair formation in lettuce (Lactuca sativa L.) seedlings.

    Science.gov (United States)

    Zhu, Changhua; Yang, Na; Ma, Xiaoling; Li, Guijun; Qian, Meng; Ng, Denny; Xia, Kai; Gan, Lijun

    2015-06-01

    Our results show that methyl jasmonate induces plasma membrane H (+) -ATPase activity and subsequently influences the apoplastic pH of trichoblasts to maintain a cell wall pH environment appropriate for root hair development. Root hairs, which arise from root epidermal cells, are tubular structures that increase the efficiency of water absorption and nutrient uptake. Plant hormones are critical regulators of root hair development. In this study, we investigated the regulatory role of the plasma membrane (PM) H(+)-ATPase in methyl jasmonate (MeJA)-induced root hair formation. We found that MeJA had a pronounced effect on the promotion of root hair formation in lettuce seedlings, but that this effect was blocked by the PM H(+)-ATPase inhibitor vanadate. Furthermore, MeJA treatment increased PM H(+)-ATPase activity in parallel with H(+) efflux from the root tips of lettuce seedlings and rhizosphere acidification. Our results also showed that MeJA-induced root hair formation was accompanied by hydrogen peroxide accumulation. The apoplastic acidification acted in concert with reactive oxygen species to modulate root hair formation. Our results suggest that the effect of MeJA on root hair formation is mediated by modulation of PM H(+)-ATPase activity.

  14. Cadmium determination in lettuce grown in contaminated soil by INAAA and GFAAS

    Energy Technology Data Exchange (ETDEWEB)

    Armelin, Maria Jose A.; Maihara, Vera A.; Saiki, Mitiko, E-mail: marmelin@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Trevizam, Anderson R.; Silva, Maria Ligia S. [Universidade Estadual do Centro Oeste (UNICENTRO), Guarapuava, PR (Brazil); Muraoka, Takashi, E-mail: muraoka@cena.usp.b [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil)

    2011-07-01

    Although Cd is not essential for the mammalian organism, it follows in body the same pathways of essential elements such as zinc and copper. There is evidence that the Cd induced reduction of Ca absorption, may lead to the development of osteoporosis. Anthropogenic activities associated with industrial activities, mining and use of fertilizers, limestone pesticides in agriculture are the main sources of Cd enrichment in soils. Due to the possibility that Cd being absorbed by plants and through them to reach the food chain, interest has increased in regard to developing techniques for remediation of contaminated sites. The addition of substances capable of immobilizing the toxic elements from the soil is a procedure that has been used for remediation of contaminated sites. The function of these substances is to reduce the mobility and bioavailability of potentially toxic elements in the soil. In this study, five doses of phosphorus as triple phosphorus were used in a number of lettuce plants grown in contaminated soil. The concentration of Cd present in lettuce leaves treated with phosphate was compared with the Cd absorbed by the control plant leaves. Instrumental Neutron Activation Analysis (INAA) and Graphite-Furnace Absorption Atomic Spectrometry (GFAAS) were the analytical methods used to determine Cd contents in lettuce leaves. The objective was to evaluate the performance of the employed analytical methods: INAA and GFAAS in the assessment of the efficiency of phosphorus treatments to reduce the Cd concentrations in leaves of lettuce. Results obtained indicated that both analytical methods were efficient to discriminate the response of Cd concentration in lettuce as a function of soil treatment with phosphorus. Although INAA has shown a positive performance in this study, GFAAS seemed more appropriate because its sensitivity was much higher than that obtained by INAA, in the experimental conditions. (author)

  15. Cadmium determination in lettuce grown in contaminated soil by INAAA and GFAAS

    International Nuclear Information System (INIS)

    Armelin, Maria Jose A.; Maihara, Vera A.; Saiki, Mitiko; Trevizam, Anderson R.; Silva, Maria Ligia S.; Muraoka, Takashi

    2011-01-01

    Although Cd is not essential for the mammalian organism, it follows in body the same pathways of essential elements such as zinc and copper. There is evidence that the Cd induced reduction of Ca absorption, may lead to the development of osteoporosis. Anthropogenic activities associated with industrial activities, mining and use of fertilizers, limestone pesticides in agriculture are the main sources of Cd enrichment in soils. Due to the possibility that Cd being absorbed by plants and through them to reach the food chain, interest has increased in regard to developing techniques for remediation of contaminated sites. The addition of substances capable of immobilizing the toxic elements from the soil is a procedure that has been used for remediation of contaminated sites. The function of these substances is to reduce the mobility and bioavailability of potentially toxic elements in the soil. In this study, five doses of phosphorus as triple phosphorus were used in a number of lettuce plants grown in contaminated soil. The concentration of Cd present in lettuce leaves treated with phosphate was compared with the Cd absorbed by the control plant leaves. Instrumental Neutron Activation Analysis (INAA) and Graphite-Furnace Absorption Atomic Spectrometry (GFAAS) were the analytical methods used to determine Cd contents in lettuce leaves. The objective was to evaluate the performance of the employed analytical methods: INAA and GFAAS in the assessment of the efficiency of phosphorus treatments to reduce the Cd concentrations in leaves of lettuce. Results obtained indicated that both analytical methods were efficient to discriminate the response of Cd concentration in lettuce as a function of soil treatment with phosphorus. Although INAA has shown a positive performance in this study, GFAAS seemed more appropriate because its sensitivity was much higher than that obtained by INAA, in the experimental conditions. (author)

  16. Stimulating productivity of hydroponic lettuce in controlled environments with triacontanol

    Science.gov (United States)

    Knight, S. L.; Mitchell, C. A.

    1987-01-01

    Triacontanol (1-triacontanol) applied as a foliar spray at 10(-7) M to 4-day-old, hydroponically grown leaf lettuce (Lactuca sativa L.) seedlings in a controlled environment increased leaf fresh and dry weight 13% to 20% and root fresh and dry weight 13% to 24% 6 days after application, relative to plants sprayed with water. When applied at 8 as well as 4 days after seeding, triacontanol increased plant fresh and dry weight, leaf area, and mean relative growth rate 12% to 37%. There was no benefit of repeating application of triacontanol in terms of leaf dry weight gain.

  17. Uptake of polybrominated diphenyl ethers by carrot and lettuce crops grown in compost-amended soils.

    Science.gov (United States)

    Bizkarguenaga, E; Iparraguirre, A; Oliva, E; Quintana, J B; Rodil, R; Fernández, L A; Zuloaga, O; Prieto, A

    2016-02-01

    The uptake of polybrominated diphenyl ethers (PBDEs) by carrot and lettuce was investigated. Degradation of PBDEs in soil in the absence of the plants was discarded. Different carrot (Nantesa and Chantenay) and lettuce (Batavia Golden Spring and Summer Queen) varieties were grown in fortified or contaminated compost-amended soil mixtures under greenhouse conditions. After plant harvesting, roots (core and peel) and leaves were analyzed separately for carrot, while for lettuce, leaves and hearts were analyzed together. The corresponding bioconcentration factors (BCFs) were calculated. In carrots, a concentration gradient of 2,2',3,4,4',5'-hexabromodiphenyl ether (BDE-138) became evident that decreased from the root peel via root core to the leaves. For decabromodiphenyl ether (BDE-209) at the low concentration level (7 and 20 ng g(-1)), the leaves incorporated the highest concentration of the target substance. For lettuce, a decrease in the BCF value (from 0.24 to 0.02) was observed the higher the octanol-water partition coefficient, except in the case of BDE-183 (BCF = 0.51) and BDE-209 (BCF values from 0.41 to 0.74). Significant influence of the soils and crop varieties on the uptake could not be supported. Metabolic debromination, hydroxylation or methylation of the target PBDEs in the soil-plant system was not observed.

  18. Comparison of Land, Water, and Energy Requirements of Lettuce Grown Using Hydroponic vs. Conventional Agricultural Methods.

    Science.gov (United States)

    Barbosa, Guilherme Lages; Gadelha, Francisca Daiane Almeida; Kublik, Natalya; Proctor, Alan; Reichelm, Lucas; Weissinger, Emily; Wohlleb, Gregory M; Halden, Rolf U

    2015-06-16

    The land, water, and energy requirements of hydroponics were compared to those of conventional agriculture by example of lettuce production in Yuma, Arizona, USA. Data were obtained from crop budgets and governmental agricultural statistics, and contrasted with theoretical data for hydroponic lettuce production derived by using engineering equations populated with literature values. Yields of lettuce per greenhouse unit (815 m2) of 41 ± 6.1 kg/m2/y had water and energy demands of 20 ± 3.8 L/kg/y and 90,000 ± 11,000 kJ/kg/y (±standard deviation), respectively. In comparison, conventional production yielded 3.9 ± 0.21 kg/m2/y of produce, with water and energy demands of 250 ± 25 L/kg/y and 1100 ± 75 kJ/kg/y, respectively. Hydroponics offered 11 ± 1.7 times higher yields but required 82 ± 11 times more energy compared to conventionally produced lettuce. To the authors' knowledge, this is the first quantitative comparison of conventional and hydroponic produce production by example of lettuce grown in the southwestern United States. It identified energy availability as a major factor in assessing the sustainability of hydroponics, and it points to water-scarce settings offering an abundance of renewable energy (e.g., from solar, geothermal, or wind power) as particularly attractive regions for hydroponic agriculture.

  19. The production of Physalis spp. seedlings grown under different-colored shade nets

    Directory of Open Access Journals (Sweden)

    Daniel Fernandes da Silva

    2016-04-01

    Full Text Available The objective of this study was to evaluate the production of seedlings of Physalis L. species under different-colored shade nets. Four shade nets individually stained white, blue, red and black, all with 50% shading, were used in this study, and an additional  treatment (control was used in which seedlings were grown in full sun. The study examined four species of Physalis, namely, P. peruviana, P. pubescens, P. minima and P. ixocarpa. The experiment followed a randomized block design with three blocks and 25 seeds per plot. The species were sown in styrofoam trays. Germination was monitored daily to calculate the Emergency Velocity Index (EVI and stabilize the overall percentage of emergence. Height, stem diameter, number of leaves, leaf area index and dry mass of seedlings were assessed at 50 days after sowing. The study found that these species react differently to changes in the light spectrum. Seedlings of P. peruviana should be grown under a white or red shade net; of P. pubescens under a white or black shade net; of P. minima under a white, red or black shade net; and of P. ixocarpa under a white shade net. For all species, 50% shade should be used.

  20. Production and characterization of cyanocobalamin-enriched lettuce (Lactuca sativa L.) grown using hydroponics.

    Science.gov (United States)

    Bito, Tomohiro; Ohishi, Noriharu; Hatanaka, Yuka; Takenaka, Shigeo; Nishihara, Eiji; Yabuta, Yukinori; Watanabe, Fumio

    2013-04-24

    When lettuces (Lactuca sativa L.) grown for 30 days in hydroponic culture were treated with various concentrations of cyanocobalamin for 24 h, its content in their leaves increased significantly from nondetectable to 164.6 ± 74.7 ng/g fresh weight. This finding indicated that consumption of only two or three of these fresh leaves is sufficient to meet the Recommended Dietary Allowance for adults of 2.4 μg/day. Analyses using a cobalamin-dependent Escherichia coli 215 bioautogram and LC/ESI-MS/MS demonstrated that the cyanocobalamin absorbed from the nutrient solutions by the leaves did not alter any other compounds such as coenzymes and inactive corrinoids. Gel filtration indicated that most (86%) of the cyanocobalamin in the leaves was recovered in the free cyanocobalamin fractions. These results indicated that cyanocobalamin-enriched lettuce leaves would be an excellent source of free cyanocobalamin, particularly for strict vegetarians or elderly people with food-bound cobalamin malabsorption.

  1. Living Wires - Effects of Size and Coating of Gold Nanoparticles in Altering the Electrical Properties of Physarum polycephalum and Lettuce Seedlings

    OpenAIRE

    Gizzie, Nina; Mayne, Richard; Yitzchaik, Shlomo; Ikbal, Muhamad; Adamatzky, Andrew

    2015-01-01

    The manipulation of biological substrates is becoming more popular route towards generating novel computing devices. Physarum polycephalum is used as a model organism in biocomputing because it can create `wires' for use in hybrid circuits; programmable growth by manipulation through external stimuli and the ability withstanding a current and its tolerance to hybridisation with a variety of nano/microparticles. Lettuce seedlings have also had previous interest invested in them for generating ...

  2. Evolution of nitrate level in green lettuce conventional grown under natural conditions and aquaponic system

    OpenAIRE

    Flavius Blidariu; Drasovean Alexandru; Grozea Adrian; Radulov Isidora; Lalescu Dacian

    2013-01-01

    Aquaponics integrates growing plants without soil technology with aquaculture, having an important role in recovery of nutrients from effluents. The research aimed to evaluate nitrates level in lettuce (Lactuca sativa) conventional grown under natural conditions and in integrated aquaponic system with a recirculated aquaculture system designed for pikeperch growth (Sander lucioperca). Conventional production (54 plants) has been obtained in the field without fertilizer or pesticide management...

  3. Cashew nut shell liquid and formulation: toxicity during the germination of lettuce, tomato seeds and coffee senna and seedling formation

    Directory of Open Access Journals (Sweden)

    Rosemary Matias

    2017-08-01

    Full Text Available Cashew (Anacardium occidentale nut shell liquid (CNSL has been successfully used in trials as an Aedes aegypti larvicide, but little is known about its environmental effects. In this study, the potential effects of CNSL and a CNSL-based phyto-product formulation on the germination and growth of Lactuca sativa (lettuce, Lycopersicon esculentum (tomato and Senna obtusifolia (coffee senna were assessed. The pH of CNSL and the formulation were 6.4 and 6.8, respectively; the electrical conductivities were 2.89 μS cm-1 (CNSL and 2.21 μS cm-1 (formulation, respectively, and both contained anacardic acid (53.2% and degradation products. In bioassays for germination and growth, CNSL (25, 50, 100, 150, and 200 mg mL-1, the formulation (100 mg mL-1 and the control were used in a completely randomized design. The results demonstrated the chemical effects of CNSL, which negatively affected the germination and vigor of lettuce and tomato and the vigor of coffee senna; for growth, it negatively influenced both the root and aerial parts of lettuce and tomato, but only the roots of coffee senna. The formulation had negative effects on the vigor of coffee senna and the growth of tomato and lettuce seedlings (roots and aerial parts. The results indicate the phytotoxicity of CNSL and the formulation for the plant species tested.

  4. The morphology, physiology and nutritional quality of lettuce grown under hypobaria and hypoxia

    Science.gov (United States)

    Tang, Yongkang; Gao, Feng; Guo, Shuangsheng; Li, Fang

    2015-07-01

    The objectives of this research were to investigate the morphological, physiological and nutritional characteristics of lettuce plants (Lactuca sativa L. cv. Rome) under hypobaric and hypoxic conditions. Plants were grown under two levels of total pressures (101 and 30 kPa) and three levels of oxygen partial pressures (21, 6 and 2 kPa) for 20 days. Hypoxia (6 or 2 kPa) not only significantly inhibited the growth of lettuce plants by decreasing biomass, leaf area, root/shoot ratio, water content, the contents of minerals and organic compounds (vitamin C, crude protein and crude fat), but also destroyed the ultrastructure of mitochondria and chloroplast. The activities of catalase and total superoxide dismutase, the contents of glutathione and the total antioxidant capacity significantly decreased due to hypoxia. Hypobaria (30 kPa) did not markedly enhance the biomass, but it increased leaf area, root/shoot ratio and relative water content. Hypobaria also decreased the contents of total phenols, malondialdehyde and total carbohydrate and protected the ultrastructure of mitochondria and chloroplast under hypoxia. Furthermore, the activities of catalase and total superoxide dismutase, the contents of minerals and organic compounds markedly increased under hypobaria. This study demonstrates that hypobaria (30 kPa) does not increase the growth of lettuce plants, but it enhances plant's stress resistance and nutritional quality under hypoxia.

  5. Cadmium uptake in above-ground parts of lettuce (Lactuca sativa L.).

    Science.gov (United States)

    Tang, Xiwang; Pang, Yan; Ji, Puhui; Gao, Pengcheng; Nguyen, Thanh Hung; Tong, Yan'an

    2016-03-01

    Because of its high Cd uptake and translocation, lettuce is often used in Cd contamination studies. However, there is a lack of information on Cd accumulation in the above-ground parts of lettuce during the entire growing season. In this study, a field experiment was carried out in a Cd-contaminated area. Above-ground lettuce parts were sampled, and the Cd content was measured using a flame atomic absorption spectrophotometer (AAS). The results showed that the Cd concentration in the above-ground parts of lettuce increased from 2.70 to 3.62mgkg(-1) during the seedling stage, but decreased from 3.62 to 2.40mgkg(-1) during organogenesis and from 2.40 to 1.64mgkg(-1) during bolting. The mean Cd concentration during the seedling stage was significantly higher than that during organogenesis (a=0.05) and bolting (a=0.01). The Cd accumulation in the above-ground parts of an individual lettuce plant could be described by a sigmoidal curve. Cadmium uptake during organogenesis was highest (80% of the total), whereas that during bolting was only 4.34%. This research further reveals that for Rome lettuce: (1) the highest Cd content of above-ground parts occurred at the end of the seedling phase; (2) the best harvest time with respect to Cd phytoaccumulation is at the end of the organogenesis stage; and (3) the organogenesis stage is the most suitable time to enhance phytoaccumulation efficiency by adjusting the root:shoot ratio. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Efeito da qualidade das sementes sobre a formação de mudas de alface Effect of seed quality on lettuce seedlings development

    Directory of Open Access Journals (Sweden)

    Simone M. Franzin

    2005-06-01

    Full Text Available Determinou-se o efeito da qualidade fisiológica das sementes sobre a formação de mudas de alface. Utilizaram-se dois lotes de sementes com diferentes níveis de qualidade inicial, das cultivares Regina e Vera, selecionados por meio dos testes de germinação, primeira contagem, envelhecimento acelerado, condutividade elétrica e emergência em "gerbox". Os efeitos dos níveis de qualidade sobre a produção de mudas foram avaliados por meio dos testes de índice de velocidade de emergência, número de folhas, altura da parte aérea, comprimento de raízes, massa úmida e seca das mudas e classificação do vigor das mudas. Utilizou-se o delineamento inteiramente casualizado, com os dados analisados pelo teste Tukey em 5% de probabilidade. Houve efeito favorável na qualidade das sementes das cultivares Regina e Vera para a formação de mudas aos 20 dias após a semeadura. Concluiu-se que sementes de alta qualidade fisiológica produzem maior percentagem de mudas vigorosas, com maior número de folhas, maior altura da parte aérea e comprimento de raízes e maior massa aos 20 dias de cultivo.The effect of the physiological quality of the seeds on lettuce seedlings was established. Two lots of lettuce seeds cv. Regina and Vera with different levels of initial quality were used. These lots were selected based upon germination tests: first score, fast aging, electrical conductivity and emergence in gerbox. The effects of the quality levels on the seedling production were evaluated through the parameters: speed rate emergence tests, number of leaves, height of the aerial part, root length, dry and wet mass of the seedlings and classification of the vitality of the seedlings. The experiment was carried out in a completely randomized design with four replications. Seed quality of the cultivars Regina and Vera have a positive effect on the formation of seedlings 20 days after sowing. High physiological quality seeds produce a higher percentage of

  7. Maximizing growth of vegetable seedlings in controlled environments at elevated temperature, light and CO/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Krizek, D.T.; Bailey, W.A.; Klueter, H.; Liu, R.C.

    1974-01-01

    Seedlings of cucumber Burpee Hybrid, tomato Michigan-Ohio and lettuce Grand Rapids were germinated in the greenhouse for 5, 8, and 11 days respectively, and then grown for 15 days at elevated temperature (30/24/sup 0/C), light (43.1 klx), and CO/sub 2/ (2000 ppm) a 16-hr photoperiod, 65% relative humidity, and fertilized 4 times daily. At the end of this time, they weighed 2 to 4.6 times those grown at standard environmental conditions in the growth chamber (24/18/sup 0/C, 21.5 klx, and 400 ppm CO/sub 2/) and 10 to 25 times those of greenhouse controls kept on natural days (24/18/sup 0/C, 350 ppm CO/sub 2/, and ca 12-hr photoperiod). Leaf expansion of seedlings grown under elevated growth chamber conditions was double that of seedlings in standard growth chamber conditions, and 6 to 7 times greater than under natural days in the greenhouse. Temperature was the most limiting factor for seedling growth. At the levels of light and CO/sub 2/ used in the experiment, CO/sub 2/ was more limiting than light intensity. In general, optimum seedling growth was obtained when temperature, light, and CO/sub 2/ were increased simultaneously. The most striking effects of CO/sub 2/ enrichment were precocious flower bud formation in tomato and cucumber and extensive growth of the lateral buds in all three species.

  8. Concentration of phenolic compounds is increased in lettuce grown under high light intensity and elevated CO2.

    Science.gov (United States)

    Pérez-López, Usue; Sgherri, Cristina; Miranda-Apodaca, Jon; Micaelli, Francesco; Lacuesta, Maite; Mena-Petite, Amaia; Quartacci, Mike Frank; Muñoz-Rueda, Alberto

    2018-02-01

    The present study was focused on lettuce, a widely consumed leafy vegetable for the large number of healthy phenolic compounds. Two differently-pigmented lettuce cultivars, i.e. an acyanic-green leaf cv. and an anthocyanic-red one, were grown under high light intensity or elevated CO 2 or both in order to evaluate how environmental conditions may affect the production of secondary phenolic metabolites and, thus, lettuce quality. Mild light stress imposed for a short time under ambient or elevated CO 2 concentration increased phenolics compounds as well as antioxidant capacity in both lettuce cvs, indicating how the cultivation practice could enhance the health-promoting benefits of lettuce. The phenolic profile depended on pigmentation and the anthocyanic-red cv. always maintained a higher phenolic amount as well as antioxidant capacity than the acyanic-green one. In particular, quercetin, quercetin-3-O-glucuronide, kaempferol, quercitrin and rutin accumulated under high light or high CO 2 in the anthocyanic-red cv., whereas cyanidin derivatives were responsive to mild light stress, both at ambient and elevated CO 2 . In both cvs total free and conjugated phenolic acids maintained higher values under all altered environmental conditions, whereas luteolin reached significant amounts when both stresses were administered together, indicating, in this last case, that the enzymatic regulation of the flavonoid synthesis could be differently affected, the synthesis of flavones being favored. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Detailed characterization of Mirafiori lettuce virus-resistant transgenic lettuce.

    Science.gov (United States)

    Kawazu, Yoichi; Fujiyama, Ryoi; Noguchi, Yuji; Kubota, Masaharu; Ito, Hidekazu; Fukuoka, Hiroyuki

    2010-04-01

    Lettuce big-vein disease is caused by Mirafiori lettuce virus (MiLV), which is vectored by the soil-borne fungus Olpidium brassicae. A MiLV-resistant transgenic lettuce line was developed through introducing inverted repeats of the MiLV coat protein (CP) gene. Here, a detailed characterization study of this lettuce line was conducted by comparing it with the parental, non-transformed 'Kaiser' cultivar. There were no significant differences between transgenic and non-transgenic lettuce in terms of pollen fertility, pollen dispersal, seed production, seed dispersal, dormancy, germination, growth of seedlings under low or high temperature, chromatographic patterns of leaf extracts, or effects of lettuce on the growth of broccoli or soil microflora. A significant difference in pollen size was noted, but the difference was small. The length of the cotyledons of the transgenic lettuce was shorter than that of 'Kaiser,' but there were no differences in other morphological characteristics. Agrobacterium tumefaciens used for the production of transgenic lettuce was not detected in transgenic seeds. The transgenic T(3), T(4), and T(5) generations showed higher resistance to MiLV and big-vein symptoms expression than the resistant 'Pacific' cultivar, indicating that high resistance to lettuce big-vein disease is stably inherited. PCR analysis showed that segregation of the CP gene was nearly 3:1 in the T(1) and T(2) generations, and that the transgenic T(3) generation was homozygous for the CP gene. Segregation of the neomycin phosphotransferase II (npt II) gene was about 3:1 in the T(1) generation, but the full length npt II gene was not detected in the T(2) or T(3) generation. The segregation pattern of the CP and npt II genes in the T(1) generation showed the expected 9:3:3:1 ratio. These results suggest that the fragment including the CP gene and that including the npt II gene have been integrated into two unlinked loci, and that the T(1) plant selected in our study did

  10. Fate of Escherichia coli O157:H7 and Salmonella in soil and lettuce roots as affected by potential home gardening practices.

    Science.gov (United States)

    Erickson, Marilyn C; Liao, Jean; Payton, Alison S; Webb, Cathy C; Ma, Li; Zhang, Guodong; Flitcroft, Ian; Doyle, Michael P; Beuchat, Larry R

    2013-12-01

    The survival and distribution of enteric pathogens in soil and lettuce systems were investigated in response to several practices (soil amendment supplementation and reduced watering) that could be applied by home gardeners. Leaf lettuce was grown in manure compost/top soil (0:5, 1:5 or 2:5 w/w) mixtures. Escherichia coli O157:H7 or Salmonella was applied at a low or high dose (10(3) or 10(6) colony-forming units (CFU) mL(-1) ) to the soil of seedlings and mid-age plants. Supplementation of top soil with compost did not affect pathogen survival in the soil or on root surfaces, suggesting that nutrients were not a limiting factor. Salmonella populations on root surfaces were 0.7-0.8 log CFU g(-1) lower for mid-age plants compared with seedlings. E. coli O157:H7 populations on root surfaces were 0.8 log CFU g(-1) lower for mid-age plants receiving 40 mL of water compared with plants receiving 75 mL of water on alternate days. Preharvest internalization of E. coli O157:H7 and Salmonella into lettuce roots was not observed at any time. Based on the environmental conditions and high pathogen populations in soil used in this study, internalization of Salmonella or E. coli O157:H7 into lettuce roots did not occur under practices that could be encountered by inexperienced home gardeners. © 2013 Society of Chemical Industry.

  11. Infrared light-emitting diode radiation causes gravitropic and morphological effects in dark-grown oat seedlings

    Science.gov (United States)

    Johnson, C. F.; Brown, C. S.; Wheeler, R. M.; Sager, J. C.; Chapman, D. K.; Deitzer, G. F.

    1996-01-01

    Oat (Avena sativa cv Seger) seedlings were irradiated with IR light-emitting diode (LED) radiation passed through a visible-light-blocking filter. Infrared LED irradiated seedlings exhibited differences in growth and gravitropic response when compared to seedlings grown in darkness at the same temperature. Thus, the oat seedlings in this study were able to detect IR LED radiation. These findings call into question the use of IR LED as a safe-light for some photosensitive plant response experiments. These findings also expand the defined range of wavelengths involved in radiation-gravity (light-gravity) interactions to include wavelengths in the IR region of the spectrum.

  12. Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce

    OpenAIRE

    Schreiter, Susanne; Ding, Guo-Chun; Heuer, Holger; Neumann, Günter; Sandmann, Martin; Grosch, Rita; Kropf, Siegfried; Smalla, Kornelia

    2014-01-01

    The complex and enormous diversity of microorganisms associated with plant roots is important for plant health and growth and is shaped by numerous factors. This study aimed to unravel the effects of the soil type on bacterial communities in the rhizosphere of field-grown lettuce. We used an experimental plot system with three different soil types that were stored at the same site for 10 years under the same agricultural management to reveal differences directly linked to the soil type and no...

  13. Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce

    OpenAIRE

    Susanne eSchreiter; Susanne eSchreiter; Guo-chun eDing; Guo-chun eDing; Holger eHeuer; Günter eNeumann; Martin eSandmann; Rita eGrosch; Siegfried eKropf; Kornelia eSmalla

    2014-01-01

    The complex and enormous diversity of microorganisms associated with plant roots is important for plant health and growth and is shaped by numerous factors. This study aimed to unravel the effects of the soil type on bacterial communities in the rhizosphere of field-grown lettuce. We used an experimental plot system with three different soil types that were stored at the same site for ten years under the same agricultural management to reveal differences directly linked to the soil type and n...

  14. Lettuce and rhizosphere microbiome responses to growth promoting Pseudomonas species under field conditions.

    Science.gov (United States)

    Cipriano, Matheus A P; Lupatini, Manoeli; Lopes-Santos, Lucilene; da Silva, Márcio J; Roesch, Luiz F W; Destéfano, Suzete A L; Freitas, Sueli S; Kuramae, Eiko E

    2016-12-01

    Plant growth promoting rhizobacteria are well described and recommended for several crops worldwide. However, one of the most common problems in research into them is the difficulty in obtaining reproducible results. Furthermore, few studies have evaluated plant growth promotion and soil microbial community composition resulting from bacterial inoculation under field conditions. Here we evaluated the effect of 54 Pseudomonas strains on lettuce (Lactuca sativa) growth. The 12 most promising strains were phylogenetically and physiologically characterized for plant growth-promoting traits, including phosphate solubilization, hormone production and antagonism to pathogen compounds, and their effect on plant growth under farm field conditions. Additionally, the impact of beneficial strains on the rhizospheric bacterial community was evaluated for inoculated plants. The strains IAC-RBcr4 and IAC-RBru1, with different plant growth promoting traits, improved lettuce plant biomass yields up to 30%. These two strains also impacted rhizosphere bacterial groups including Isosphaera and Pirellula (phylum Planctomycetes) and Acidothermus, Pseudolabrys and Singusphaera (phylum Actinobacteria). This is the first study to demonstrate consistent results for the effects of Pseudomonas strains on lettuce growth promotion for seedlings and plants grown under tropical field conditions. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Pseudomonas cichorii as the causal agent of midrib rot, an emerging disease of greenhouse-grown butterhead lettuce in Flanders.

    Science.gov (United States)

    Cottyn, Bart; Heylen, Kim; Heyrman, Jeroen; Vanhouteghem, Katrien; Pauwelyn, Ellen; Bleyaert, Peter; Van Vaerenbergh, Johan; Höfte, Monica; De Vos, Paul; Maes, Martine

    2009-05-01

    Bacterial midrib rot of greenhouse-grown butterhead lettuce (Lactuca sativa L. var. capitata) is an emerging disease in Flanders (Belgium) and fluorescent pseudomonads are suspected to play an important role in the disease. Isolations from infected lettuces, collected from 14 commercial greenhouses in Flanders, yielded 149 isolates that were characterized polyphasically, which included morphological characteristics, pigmentation, pathogenicity tests by both injection and spraying of lettuce, LOPAT characteristics, FAME analysis, BOX-PCR fingerprinting, 16S rRNA and rpoB gene sequencing, as well as DNA-DNA hybridization. Ninety-eight isolates (66%) exhibited a fluorescent pigmentation and were associated with the genus Pseudomonas. Fifty-five of them induced an HR+ (hypersensitive reaction in tobacco leaves) response. The other 43 fluorescent isolates were most probably saprophytic bacteria and about half of them were able to cause rot on potato tuber slices. BOX-PCR genomic fingerprinting was used to assess the genetic diversity of the Pseudomonas midrib rot isolates. The delineated BOX-PCR patterns matched quite well with Pseudomonas morphotypes defined on the basis of colony appearance and variation in fluorescent pigmentation. 16S rRNA and rpoB gene sequence analyses allowed most of the fluorescent isolates to be allocated to Pseudomonas, and they belonged to either the Pseudomonas fluorescens group, Pseudomonas putida group, or the Pseudomonas cichorii/syringae group. In particular, the isolates allocated to this latter group constituted the vast majority of HR+ isolates and were identified as P. cichorii by DNA-DNA hybridization. They were demonstrated by spray-inoculation tests on greenhouse-grown lettuce to induce the midrib rot disease and could be re-isolated from lesions of inoculated plants. Four HR+ non-fluorescent isolates associated with one sample that showed an atypical midrib rot were identified as Dickeya sp.

  16. Pochonia chlamydosporia promotes the growth of tomato and lettuce plants

    Directory of Open Access Journals (Sweden)

    Rosangela Dallemole-Giaretta

    2015-10-01

    Full Text Available The fungus Pochonia chlamydosporia is one of the most studied biological agents used to control plant-parasitic nematodes. This study found that the isolates Pc-3, Pc-10 and Pc-19 of this fungus promote the growth of tomato and lettuce seedlings. The isolate Pc-19 colonized the rhizoplane of tomato seedlings in only 15 days and produced a large quantity of chlamydospores. This isolate was able to use cellulose as a carbon source, in addition to glucose and sucrose. Scanning electron microscopy (SEM revealed that hyphae of the P. chlamydosporia isolate Pc-10 penetrated the epidermal cells of the tomato roots. These three P. chlamydosporia isolates promote the growth of tomato and lettuce.

  17. Studies on the growth and indole-3-acetic acid and abscisic acid content of Zea mays seedlings grown in microgravity

    Science.gov (United States)

    Schulze, A.; Jensen, P. J.; Desrosiers, M.; Buta, J. G.; Bandurski, R. S.

    1992-01-01

    Measurements were made of the fresh weight, dry weight, dry weight-fresh weight ratio, free and conjugated indole-3-acetic acid, and free and conjugated abscisic acid in seedlings of Zea mays grown in darkness in microgravity and on earth. Imbibition of the dry kernels was 17 h prior to launch. Growth was for 5 d at ambient orbiter temperature and at a chronic accelerational force of the order of 3 x 10(-5) times earth gravity. Weights and hormone content of the microgravity seedlings were, with minor exceptions, not statistically different from seedlings grown in normal gravity. The tissues of the shuttle-grown plants appeared normal and the seedlings differed only in the lack of orientation of roots and shoots. These findings, based upon 5 d of growth in microgravity, cannot be extrapolated to growth in microgravity for weeks, months, and years, as might occur on a space station. Nonetheless, it is encouraging, for prospects of bioregeneration of the atmosphere and food production in a space station, that no pronounced differences in the parameters measured were apparent during the 5 d of plant seedling growth in microgravity.

  18. Cavity size and copper root pruning affect production and establishment of container-grown longleaf pine seedlings

    Science.gov (United States)

    Marry Anne Sword Sayer; James D. Haywood; Shi-Jean Susana Sung

    2009-01-01

    With six container types, we tested the effects of cavity size (i.e., 60, 93, and 170 ml) and copper root pruning on the root system development of longleaf pine (Pinus palustris Mill.) seedlings grown in a greenhouse. We then evaluated root egress during a root growth potential test and assessed seedling morphology and root system development 1 year after planting in...

  19. Modeling uptake kinetics of cadmium by field-grown lettuce

    Energy Technology Data Exchange (ETDEWEB)

    Chen Weiping [Department of Environmental Sciences, University of California, 900 University Avenue, Riverside, CA 92521 (United States)], E-mail: chenweip@yahoo.com.cn; Li Lianqing [Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095 (China); Chang, Andrew C.; Wu Laosheng [Department of Environmental Sciences, University of California, 900 University Avenue, Riverside, CA 92521 (United States); Kwon, Soon-Ik [Agricultural Environmental and Ecology Division, National Institute of Agricultural Science and Technology, Suwon 441-707 (Korea, Republic of); Bottoms, Rick [Desert Research and Extension Center, 1004 East Holton Road, El Centro, CA 92243 (United States)

    2008-03-15

    Cadmium uptake by field grown Romaine lettuce treated with P-fertilizers of different Cd levels was investigated over an entire growing season. Results indicated that the rate of Cd uptake at a given time of the season can be satisfactorily described by the Michaelis-Menten kinetics, that is, plant uptake increases as the Cd concentration in soil solution increases, and it gradually approaches a saturation level. However, the rate constant of the Michaelis-Menten kinetics changes over the growing season. Under a given soil Cd level, the cadmium content in plant tissue decreases exponentially with time. To account for the dynamic nature of Cd uptake, a kinetic model integrating the time factor was developed to simulate Cd plant uptake over the growing season: C{sub Plant} = C{sub Solution} . PUF{sub max} . exp[-b . t], where C{sub Plant} and C{sub Solution} refer to the Cd content in plant tissue and soil solution, respectively, PUF{sub max} and b are kinetic constants. - A kinetic model was developed to evaluate the uptake of Cd under field conditions.

  20. Modeling uptake kinetics of cadmium by field-grown lettuce

    International Nuclear Information System (INIS)

    Chen Weiping; Li Lianqing; Chang, Andrew C.; Wu Laosheng; Kwon, Soon-Ik; Bottoms, Rick

    2008-01-01

    Cadmium uptake by field grown Romaine lettuce treated with P-fertilizers of different Cd levels was investigated over an entire growing season. Results indicated that the rate of Cd uptake at a given time of the season can be satisfactorily described by the Michaelis-Menten kinetics, that is, plant uptake increases as the Cd concentration in soil solution increases, and it gradually approaches a saturation level. However, the rate constant of the Michaelis-Menten kinetics changes over the growing season. Under a given soil Cd level, the cadmium content in plant tissue decreases exponentially with time. To account for the dynamic nature of Cd uptake, a kinetic model integrating the time factor was developed to simulate Cd plant uptake over the growing season: C Plant = C Solution . PUF max . exp[-b . t], where C Plant and C Solution refer to the Cd content in plant tissue and soil solution, respectively, PUF max and b are kinetic constants. - A kinetic model was developed to evaluate the uptake of Cd under field conditions

  1. Physiological aspects of seedling development of coffee grown under colored screens

    International Nuclear Information System (INIS)

    Henrique, Paola de Castro; Alves, Jose Donizeti; Livramento, Darlan Einstein do; Goulart, Patricia de Fatima Pereira

    2011-01-01

    The objective of this work was to evaluate the physiological aspects of the development of coffee seedlings grown under colored screens with different spectral characteristics. Seedlings of Catucai Amarelo 2SL, in the stage known as 'orelha de onca', were arranged in a randomized block design, with five replicates, under structures individually covered with blue, white, gray, black or red screens with 50% shade. Four months after, evaluations were done for seedling growth, pigment content of the leaves, total soluble sugars and starch contents of the leaves and roots. The red screen was the most effective in promoting growth in four out of the seven studied traits: plant height, leaf area and leaf dry weight and total dry matter. For the other characteristics, there was no difference among the screens. The pigment analysis showed that, except for the gray screen, the other ones did not differ for this trait. In leaves, the red screen promoted higher levels of carbohydrates and starch. At the root, carbohydrate contents were higher under the red and black screens. Among the five screen colors, the red one was the most efficient in the production of coffee seedlings with higher vigor and quality, with outstanding carbohydrate contents and biomass. (author)

  2. Toxicity Effect of Cr Stress on Seed Germination and Seedling Growth in Lactuca Sativa

    Science.gov (United States)

    Ma, Wan Zheng; Ma, Wan Min; Du, Ying Ying; Dan, Qiong Peng; Yin, Bing; Dai, Shan Shan; Hao, Xiang

    2018-03-01

    The impact of Cr6+ on the growth of lactuca sativa in Greenhouse Cucumber was investigated. The seeds of lacuna sativa Italian bolting resistance lettuce were treated by different Cr6+ concentration to study the effects on its seed germination and seedling growth. The results showed that the seed germination rate, vigor index of seedlings decreased with increment of Cr6+ concentration to varying degrees, and vigor germination, vigor index, raw weight, root length significantly lower. The absorption of lettuce seedlings on different nutrient elements is impacted by the concentration of Cr6+.

  3. Quality of Heliconia psittacorum seedlings grown on different substrates

    Directory of Open Access Journals (Sweden)

    Raimundo Luiz Laurinho dos Santos

    2016-01-01

    Full Text Available The production of good seedlings depends on the quality of the matrix and propagation techniques used. In choosing a substrate should be particularly observed physical and chemical characteristics. The objective of this study was to assess the development and vigor of heliconia seedlings from Heliconia psittacorum species, grown on different substrates and mixtures. The materials that form the treatments were: burnt rice husk (RHB, vermiculite (VC, sugarcane waste burnt (SWB, subsoil (S, chicken bedding (CB, cattle manure (CM, earthworm humus (EH, coconut husk powder (CSP and Horticultural Plantmax (HP. The treatments chosen were: 1( ⅔ CM + ⅓ CSP, 2( ⅔CM + ⅓RHB, 3( ⅔CB + ⅓ SWB, 4(CSP, 5(½VC+ ½SWB, 6(⅔ S + ⅓ CB, 7(⅓CM + ⅔SWB, 8(⅔ CM + ⅓SWB, 9(⅔CB + ⅓RHB, 10(⅓CM + ⅔RHB, 11(⅓CB + ⅔SWB, 12(⅔CB + ⅓CSP, 13(⅔EH + ⅓CSP, 14(⅔EH + ⅓SWB, 15(⅓CB + ⅔RHB, 16(⅓EH + ⅔SWB, 17(⅔EH + ⅓RHB, 18( ½VC + ½RHB, 19(S, 20(⅔ S + ⅓ CM, 21(⅔ S + ⅓ EH, 22(EH, 23(HP, 24(⅓EH + ⅔RHB. Samples of all treatment compositions were taken and carried out chemical and physical analysis. A set of ten treatments (1, 2, 5, 7, 8, 10, 14, 16, 20 and 22 basically consisting of CM EH, RHB, CSP and SWB produced the best seedlings and treatment with CB as a main component or not produced the worst seedlings due to high electrical conductivity

  4. Photoinduced toxicity of fluoranthene on germination and early development of plant seedling.

    Science.gov (United States)

    Kummerová, Marie; Kmentová, Eva

    2004-07-01

    The influence of light on phytotoxicity of increased concentration (2, 5, 10 mg/l) of intact fluoranthene (FLT) and photomodified fluoranthene (phFLT) diluted in experimental solutions was investigated. The germination rate of lettuce (Lactuca sativa L.), onion (Allium cepa L.) and tomato (Lycopersicum esculentum L.) seeds and some parameters of seedlings primary growth of these plant species were used as laboratory indicators of phytotoxicity. Among them a length of root and shoot, their dry weight and a content of photosynthetic pigments in shoot were measured. The results demonstrated that the higher concentration (5 and 10 mg/l) of FLT and especially of phFLT significantly inhibited the germination rate of seeds and the length of root and shoot seedlings of all plant species. Decreased production of biomass expressed by dry weight of root and shoot was found in lettuce seedlings under the inhibitory effect of FLT and phFLT. An increased concentration of FLT and phFLT did not exhibit an unambiguous effect on the content of photosynthetic pigments in shoot of experimental plants. Only the highest concentration (10 mg/l) of FLT significantly increased content of chlorophylls a and b in lettuce, onion and tomato plants and content of carotenoids in lettuce and onion. Light intensified a significant inhibitory effect of phFLT in the most testified parameters of germination and seedling growth.

  5. Effects of container cavity size and copper coating on field performance of container-grown longleaf pine seedlings

    Science.gov (United States)

    Shi-Jean Susana Sung; James D. Haywood; Mary A. Sword-Sayer; Kristina F. Connor; D. Andrew Scott

    2010-01-01

    Longleaf pine (Pinus palustris Mill.) seedlings were grown for 27 weeks in 3 container cavity sizes [small (S), medium (M), and large (L)], and half the containers were coated with copper (Cu). In November 2004, we planted 144 seedlings from each of 6 container treatments in each of 4 replications in central LA. All plots were burned in February 2006...

  6. Alfalfa seedlings grown outdoors are more resistant to UV-induced DNA damage than plants grown in a UV-free environmental chamber

    International Nuclear Information System (INIS)

    Takayanagi, Shinnosuke; Trunk, J.G.; Sutherland, J.C.; Sutherland, B.M.

    1994-01-01

    The relative UV sensitivities of alfalfa seedlings grown outdoors versus plants grown in a growth chamber under UV-filtered cool white fluorescent bulbs have been determined using three criteria: (1) level of endogenous DNA damage as sites for the UV endonuclease from Micrococcus luteus, (2) susceptibility to pyrimidine dimer induction by a UV challenge exposure and (3) ability to repair UV-induced damage. We find that outdoor-grown plants contain approximately equal frequencies of endogenous DNA damages, are less susceptible to dimer induction by a challenge exposure of broad-spectrum UV and photorepair dimers more rapidly than plants grown in an environmental chamber under cool white fluorescent lamps plus a filter removes most UV radiation. These data suggest that plants grown in a natural environment would be less sensitive to UVB-induced damage than would be predicted on the basis of studies on plants grown under minimum UV. (author)

  7. Incorporation of temperature and solar radiation thresholds to modify a lettuce downy mildew warning system

    NARCIS (Netherlands)

    Wu, B.M.; Bruggen, van A.H.C.; Subbarao, K.V.; Scherm, H.

    2002-01-01

    The effect of temperature on infection of lettuce by Bremia lactucae was investigated in controlled environment studies and in the field. In controlled conditions, lettuce seedlings inoculated with B. lactucae were incubated at 15, 20, 25, or 30°C during a 4-h wet period immediately after

  8. The effect of within-crop habitat manipulations on the conservation biological control of aphids in field-grown lettuce.

    Science.gov (United States)

    Skirvin, D J; Kravar-Garde, L; Reynolds, K; Wright, C; Mead, A

    2011-12-01

    Within-crop habitat manipulations have the potential to increase the biological control of pests in horticultural field crops. Wildflower strips have been shown to increase the abundance of natural enemies, but there is little evidence to date of an impact on pest populations. The aim of this study was to determine whether within-crop wildflower strips can increase the natural regulation of pests in horticultural field crops. Aphid numbers in plots of lettuce grown adjacent to wildflower strips were compared with those in plots grown in the absence of wildflowers. The presence of wildflower strips led to a decrease in aphid numbers on adjacent lettuce plants during June and July, but had less impact in August and September. The decrease in aphid numbers was greatest close to the wildflower strips and, the decrease in aphid numbers declined with increasing distance from the wildflower strips, with little effect at a distance of ten metres. The main natural enemies found in the crop were those that dispersed aerially, which is consistent with data from previous studies on cereal crops. Analysis and interpretation of natural enemy numbers was difficult due to low recovery of natural enemies, and the numbers appeared to follow changes in aphid abundance rather than being directly linked to the presence of wildflower strips. Cutting the wildflower strips, to remove floral resources, had no impact on the reduction in aphid numbers achieved during June and July, but decreased the effect of the wildflower strips during August and September. The results suggest that wildflower strips can lead to increased natural regulation of pest aphids in outdoor lettuce crops, but more research is required to determine how this is mediated by natural enemies and how the impact of wildflower strips on natural pest regulation changes during the growing season.

  9. Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce

    Science.gov (United States)

    Rastogi, Gurdeep; Sbodio, Adrian; Tech, Jan J; Suslow, Trevor V; Coaker, Gitta L; Leveau, Johan H J

    2012-01-01

    The presence, size and importance of bacterial communities on plant leaf surfaces are widely appreciated. However, information is scarce regarding their composition and how it changes along geographical and seasonal scales. We collected 106 samples of field-grown Romaine lettuce from commercial production regions in California and Arizona during the 2009–2010 crop cycle. Total bacterial populations averaged between 105 and 106 per gram of tissue, whereas counts of culturable bacteria were on average one (summer season) or two (winter season) orders of magnitude lower. Pyrosequencing of 16S rRNA gene amplicons from 88 samples revealed that Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria were the most abundantly represented phyla. At the genus level, Pseudomonas, Bacillus, Massilia, Arthrobacter and Pantoea were the most consistently found across samples, suggesting that they form the bacterial ‘core' phyllosphere microbiota on lettuce. The foliar presence of Xanthomonas campestris pv. vitians, which is the causal agent of bacterial leaf spot of lettuce, correlated positively with the relative representation of bacteria from the genus Alkanindiges, but negatively with Bacillus, Erwinia and Pantoea. Summer samples showed an overrepresentation of Enterobacteriaceae sequences and culturable coliforms compared with winter samples. The distance between fields or the timing of a dust storm, but not Romaine cultivar, explained differences in bacterial community composition between several of the fields sampled. As one of the largest surveys of leaf surface microbiology, this study offers new insights into the extent and underlying causes of variability in bacterial community composition on plant leaves as a function of time, space and environment. PMID:22534606

  10. Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce.

    Science.gov (United States)

    Rastogi, Gurdeep; Sbodio, Adrian; Tech, Jan J; Suslow, Trevor V; Coaker, Gitta L; Leveau, Johan H J

    2012-10-01

    The presence, size and importance of bacterial communities on plant leaf surfaces are widely appreciated. However, information is scarce regarding their composition and how it changes along geographical and seasonal scales. We collected 106 samples of field-grown Romaine lettuce from commercial production regions in California and Arizona during the 2009-2010 crop cycle. Total bacterial populations averaged between 10(5) and 10(6) per gram of tissue, whereas counts of culturable bacteria were on average one (summer season) or two (winter season) orders of magnitude lower. Pyrosequencing of 16S rRNA gene amplicons from 88 samples revealed that Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria were the most abundantly represented phyla. At the genus level, Pseudomonas, Bacillus, Massilia, Arthrobacter and Pantoea were the most consistently found across samples, suggesting that they form the bacterial 'core' phyllosphere microbiota on lettuce. The foliar presence of Xanthomonas campestris pv. vitians, which is the causal agent of bacterial leaf spot of lettuce, correlated positively with the relative representation of bacteria from the genus Alkanindiges, but negatively with Bacillus, Erwinia and Pantoea. Summer samples showed an overrepresentation of Enterobacteriaceae sequences and culturable coliforms compared with winter samples. The distance between fields or the timing of a dust storm, but not Romaine cultivar, explained differences in bacterial community composition between several of the fields sampled. As one of the largest surveys of leaf surface microbiology, this study offers new insights into the extent and underlying causes of variability in bacterial community composition on plant leaves as a function of time, space and environment.

  11. Influence of farmyard manure on some morphological and biochemical parameters of cowpea (Vigna unguiculata) seedling grown in cadmium-treated soil.

    Science.gov (United States)

    Asagba, Samuel Ogheneovo; Ezedom, Theresa; Kadiri, Helen

    2017-10-01

    The present study aims to assess the effects of the two kinds of farmyard manure (poultry and pig manures) as amendments for soil on cadmium (Cd) toxicity in plants using cowpea seedlings as plant model. Cd toxicity was evaluated by assessing the effect of the metal on the growth rate and antioxidant status as well as the ability of the plant to metabolise xenobiotic. There was a significantly (p cowpea seedlings grown in all the treated soils relative to control. Addition of poultry manure to the soil significantly (p cowpea seedlings grown in Cd-treated soil augmented with poultry manure but not in cowpea seedlings in cadmium-treated soil with pig manure amendments. Similarly, augmentation of Cd-treated soil with pig manure did not alter the Cd-induced effect on the levels of superoxide dismutase (SOD) and lipid peroxidation (LPO) in leaf, stem and roots, as SOD remained significantly (p cowpea seedlings grown in Cd-treated soils amended with poultry manure were restored to a level not significantly (p > 0.05) different from control. Like in the case of SOD, the Cd-induced inhibition of the activity of xenobiotic metabolising enzymes, aldehyde oxidase and sulphite oxidase remained significantly (p  0.05) different from control. In conclusion, the findings of the study revealed that supplementation of Cd-treated soils with pig and poultry manures reversed effects of Cd on cowpea seedlings. However, poultry manure was more effective than pig manure in ameliorating the effects of Cd.

  12. Growth, Plastochron, and the Final Number of Nodes of China Pink Seedlings Grown on Different Substrates

    Directory of Open Access Journals (Sweden)

    Marília Milani

    Full Text Available ABSTRACT The objective of this work was to plot the growth curves and determine the plastochron and the final number of nodes of China pink seedlings grown on different substrates. Thus, 392 China pink seedlings were grown on seven substrates under greenhouse conditions, in Santa Maria in the state of Rio Grande do Sul, Brazil. The growth curves were plotted using the logistic model. The plastochron was estimated by the inverse of the angular coefficient of the simple linear regression between the number of accumulated nodes and accumulated thermal sum from the subsampling of the seedlings. In all substrates, the logistic model fit better for the variable number of leaves than for the plant height. The plants in substrates with 50% of soil plus 50% of rice husk ash, and 80% of rice husk ash plus 20% earthworm humus had the longest cycles with 74 and 65 days, respectively. They completed the cycles with a thermal sum of 1317.9 ºC day for number of leaves and plant height. The growth curves that were plotted by the logistic model and the plastochron of the China pink seedlings are dependent on the type of substrate used. The commercial substrate Mecplant® had the best results. The average final number of nodes of the main stem of the plants was 14 for all substrates.

  13. Escherichia coli Contamination of Lettuce Grown in Soils Amended with Animal Slurry

    DEFF Research Database (Denmark)

    Jensen, Annette Nygaard; Storm, Christina; Forslund, Anita

    2013-01-01

    A pilot study was conducted to assess the transfer of Escherichia coli from animal slurry fertilizer to lettuce, with E. coli serving as an indicator of fecal contamination and as an indicator for potential bacterial enteric pathogens. Animal slurry was applied as fertilizer to three Danish agric...... types between slurry, soil, and lettuce. The frequent finding of fecal-contaminated lettuce indicates that human pathogens such as Salmonella and Campylobacter can be present and represent food safety hazards.......A pilot study was conducted to assess the transfer of Escherichia coli from animal slurry fertilizer to lettuce, with E. coli serving as an indicator of fecal contamination and as an indicator for potential bacterial enteric pathogens. Animal slurry was applied as fertilizer to three Danish....... coli. A relatively higher frequency of E. coli in lettuce compared with the soil samples at harvest suggests environmental sources of fecal contamination, e.g., wildlife. The higher frequency was supported by the finding of 21 different PFGE types among the E. coli isolates, with only a few common PFGE...

  14. The phytoavailability of cadmium to lettuce in long-term biosolids-amended soils

    Energy Technology Data Exchange (ETDEWEB)

    Brown, S.L.; Chaney, R.L. [Dept. of Agriculture, Beltsville, MD (United States); Angle, J.S. [Univ. of Maryland, College Park, MD (United States). Dept. of Agronomy; Ryan, J.A. [Environmental Protection Agency, Cincinnati, OH (United States). National Risk Management Research Lab.

    1998-09-01

    A field study was conducted to assess the phytoavailability of Cd in long-term biosolids-amended plots managed at high and low pH. The experiment, established 13 to 15 yr prior to the present cropping, on a Christiana fine sandy loam soil used a variety of biosolids. Two of the biosolids had total Cd concentrations of 13.4 and 210 mg kg{sup {minus}1}. A Cd salt treatment, with Cd added to soil at a rate equivalent to the Cd added by the higher Cd biosolids applied at 100 Mg ha{sup {minus}1}, was also included. The lettuce (Lactuca sativa var. longifolia) cultivar (Paris Island Cos) used in the initial study was also used in the current study. Lettuce Cd was compared between treatments, and in relation to the soil Cd/soil organic C (OC) ratio. There has been no significant increase in plant Cd since the initial cropping. With 16% of the biosolids added OC remaining, lettuce grown on the soil amended with the more contaminated biosolids was not different than that of the initial cropping. Further, significantly less Cd was taken up by lettuce grown on biosolids-amended soil than lettuce grown on soil amended with equivalent rates of Cd salt. The Cd concentration in lettuce grown in the low Cd biosolids treatment was not different from the control. These results indicate that the potential hazards associated with food chain transfer of biosolids-applied Cd are substantially lower than equivalent Cd salt treatments, and that the hazards do not increase over time.

  15. Phytotoxicity of zinc and manganese to seedlings grown in soil contaminated by zinc smelting

    Science.gov (United States)

    Beyer, W.N.; Green, C.E.; Beyer, M.; Chaney, R.L.

    2013-01-01

    Historic emissions from two zinc smelters have injured the forest on Blue Mountain near Palmerton, Pennsylvania, USA. Seedlings of soybeans and five tree species were grown in a greenhouse in a series of mixtures of smelter-contaminated and reference soils and then phytotoxic thresholds were calculated. As little as 10% Palmerton soil mixed with reference soil killed or greatly stunted seedlings of most species. Zinc was the principal cause of the phytotoxicity to the tree seedlings, although Mn and Cd may also have been phytotoxic in the most contaminated soil mixtures. Calcium deficiency seemed to play a role in the observed phytotoxicity. Exposed soybeans showed symptoms of Mn toxicity. A test of the effect of liming on remediation of the Zn and Mn phytotoxicity caused a striking decrease in Sr-nitrate extractable metals in soils and demonstrated that liming was critical to remediation and restoration.

  16. Weedborne reservoirs and seed transmission of Verticillium dahliae in lettuce

    OpenAIRE

    Vallad, G E; Bhat, R G; Koike, S T; Ryder, E J; Subbarao, K V

    2005-01-01

    The seed transmission of Verticillium dahliae was evaluated in lettuce (Lactuca sativa). Seed collected from lettuce plants infected with V. dahliae were plated with or without surface sterilization on Sorenson's modified NP10 medium. Of the seed plated with or without surface sterilization, 90 and 66 %, respectively, yielded colonies of V. dahliae. The incidence of Verticillium wilt ranged from 55 to 80 % among lettuce plants grown from seed harvested from infected plants. All evaluated isol...

  17. Improvement of the growth and yield of lettuce plants by elf sinusoidal non-uniform magnetic fields

    International Nuclear Information System (INIS)

    Souzal, A. De; Gonzalez, L.M.; Sueirol, L.; Peralta, O.; Liceal, L.; Porras, E.; Gilart, F.

    2008-01-01

    Influence of pre-sowing magnetic treatments on plant growth and final yield of lettuce (cv. Black Seeded Simpson) were studied under organoponic conditions. Lettuce seeds were exposed to full-wave rectified sinusoidal non-uniform magnetic fields (MFs) induced by an electromagnet at 120 mT(rms) for 3 min, 160 mT(rms) for 1 min and to 160 mT (rms) for 5 min. Non-treated seeds were considered as controls. Plants were grown in experimental stonemasons (25.2 m2) of an organoponic and cultivated according to standard agricultural practices. During nursery and vegetative growth stages, samples were collected at regular intervals for seedling growth assessment and growth rate analyses. At physiological maturity, the plants were harvested from each stonemason and the final yield and yield parameters were determined. In the nursery stage, the magnetic treatments induced a significant increase of root length and shoot height in plants derived from magnetically-treated seeds. In the vegetative stage, the relative growth rates of plants derived from magnetically-exposed seeds were greater than those shown by the control plants. At maturity stage, all magnetic treatments increased significantly (p<0.05) the plant height, the leaf area per plant, the final yield per area and the fresh mass per plant in comparison with the controls. Pre-sowing magnetic treatments would enhance the growth and final yield of lettuce crop

  18. Biofortification of lettuce (Lactuca sativa L.) with iodine: the effect of iodine form and concentration in the nutrient solution on growth, development and iodine uptake of lettuce grown in water culture.

    Science.gov (United States)

    Voogt, Wim; Holwerda, Harmen T; Khodabaks, Rashied

    2010-04-15

    Iodine is an essential trace element for humans. Two billion individuals have insufficient iodine intake. Biofortification of vegetables with iodine offers an excellent opportunity to increase iodine intake by humans. The main aim was to study the effect of iodine form and concentration in the nutrient solution on growth, development and iodine uptake of lettuce, grown in water culture. In both a winter and summer trial, dose rates of 0, 13, 39, 65, and 90 or 129 microg iodine L(-1), applied as iodate (IO(3)(-)) or iodide (I(-)), did not affect plant biomass, produce quality or water uptake. Increases in iodine concentration significantly enhanced iodine content in the plant. Iodine contents in plant tissue were up to five times higher with I(-) than with IO(3)(-). Iodine was mainly distributed to the outer leaves. The highest iodide dose rates in both trials resulted in 653 and 764 microg iodine kg(-1) total leaf fresh weight. Biofortification of lettuce with iodine is easily applicable in a hydroponic growing system, both with I(-) and IO(3)(-). I(-) was more effective than IO(3)(-). Fifty grams of iodine-biofortified lettuce would provide, respectively, 22% and 25% of the recommended daily allowance of iodine for adolescents and adults. (c) 2010 Society of Chemical Industry.

  19. Phytotoxicity of zinc and manganese to seedlings grown in soil contaminated by zinc smelting

    International Nuclear Information System (INIS)

    Beyer, W.N.; Green, C.E.; Beyer, M.; Chaney, R.L.

    2013-01-01

    Historic emissions from two zinc smelters have injured the forest on Blue Mountain near Palmerton, Pennsylvania, USA. Seedlings of soybeans and five tree species were grown in a greenhouse in a series of mixtures of smelter-contaminated and reference soils and then phytotoxic thresholds were calculated. As little as 10% Palmerton soil mixed with reference soil killed or greatly stunted seedlings of most species. Zinc was the principal cause of the phytotoxicity to the tree seedlings, although Mn and Cd may also have been phytotoxic in the most contaminated soil mixtures. Calcium deficiency seemed to play a role in the observed phytotoxicity. Exposed soybeans showed symptoms of Mn toxicity. A test of the effect of liming on remediation of the Zn and Mn phytotoxicity caused a striking decrease in Sr-nitrate extractable metals in soils and demonstrated that liming was critical to remediation and restoration. -- Highlights: •Zinc in smelter-contaminated acid soil was highly toxic to tree seedlings. •Phytotoxic thresholds (Zn in soil, leaves and roots) were estimated. •Liming greatly ameliorated the phytotoxicity. •Calcium deficiency played a role in the phytotoxicity. •Soybeans showed symptoms of Mn toxicity. -- This work estimates the phytotoxic thresholds of Zn to tree seedlings in smelter-contaminated soil and explains the interactions of Zn with Mn and Ca

  20. Evidence of Protaphorura fimata (Collembola: Poduromorpha: Onychiuridae) feeding on germinating lettuce in the Salinas Valley of California.

    Science.gov (United States)

    Joseph, Shimat V; Bettiga, Christopher; Ramirez, Christian; Soto-Adames, Felipe N

    2015-02-01

    A series of experiments were conducted to determine the impact of Protaphorura fimata Gisin (Family: Onychiuridae) feeding on seeds and germinating seedlings of lettuce, Lactuca sativa L. (Asteraceae). First, various densities of P. fimata were incubated with 25 lettuce seeds for 7 d and feeding injury was evaluated in three soilless arena experiments. As a second step, 100 P. fimata were incubated with 25 lettuce seeds in three arena experiments with soil media. Finally, in a commercial field the incidence and impact of P. fimata on recently planted lettuce was assessed following applications of pyrethroid-insecticides: 2 d before planting, at planting, and 20 d later. In experiments without soil, the number of ungerminated seeds, feeding injury sites, and plants with injury were significantly greater in arenas with P. fimata than without. Similarly, the number of germinated seedlings, shoot fresh, and dry weights, and the length and width of fully opened-leaves were greater in arenas without than with P. fimata in assays with soil. In the field, P. fimata densities were significantly lower in beds that received insecticides at 2 d before and at planting than in untreated beds. Also, the fresh and dry weights of lettuce plants were significantly greater in the beds that received insecticide than in untreated. The results clearly show that P. fimata is a pest of lettuce and can cause severe feeding injury to germinating seeds or seedlings, thereby reducing their growth rate. The potential implications of P. fimata feeding and feeding injury characteristics are discussed. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Evolution of nitrate level in green lettuce conventional grown under natural conditions and aquaponic system

    Directory of Open Access Journals (Sweden)

    Flavius Blidariu

    2013-05-01

    Full Text Available Aquaponics integrates growing plants without soil technology with aquaculture, having an important role in recovery of nutrients from effluents. The research aimed to evaluate nitrates level in lettuce (Lactuca sativa conventional grown under natural conditions and in integrated aquaponic system with a recirculated aquaculture system designed for pikeperch growth (Sander lucioperca. Conventional production (54 plants has been obtained in the field without fertilizer or pesticide management. Aquaponics productions (54 plants/production had ponds effluents as a nutritional support from the breeding of pikeperch, tanks were arranged with 255 numbers of pikeperch, each tank of 85 individuals, with a total of fish biomass of 30.76 kg. Fish individual body weight in the experiment was between 66 and 238 grams with an average of 120. 69 g. Chemical analyses were carried out to determine the level of nitrates in 5 plants grown in aquaponic system and respectively, conventional technology. The results have shown that the nitrate level is higher in the salad obtained from the aquaponic system than in conventional technology, however not exceeding the maximum permitted limits..

  2. Gas exchange, dry weights, and chlorophyll contents of Populus tremuloides seedlings grown from gamma-irradiated seeds

    International Nuclear Information System (INIS)

    Salmonson, B.J.; Zavitkovski, J.

    1977-01-01

    Photosynthesis and respiration rates of Populus tremuloides seedlings grown from seeds acutely irradiated with gamma rays (at levels of 0, 0.47, 0.94, 1.8, 3.7, 7.5, and 15 kr) were measured using a closed system and infrared (IR) gas analyzer. Dry weights of seedling roots and shoots and chlorophyll contents were also determined. In general, gamma irradiation of seed had little effect on subsequent gas-exchange processes in the plant. Net photosynthesis and dark respiration rates of the seedling at any radiation level were not significantly different from those of the control group. Pooled net photosynthesis of all irradiated seedlings was nonsignificantly lower than that of the control seedlings. The data suggested a slight stimulation in dry-matter production of shoots by low levels of gamma radiation. At the highest levels of radiation, shoot dry weight was significantly reduced. Root production displayed a pattern similar to that of shoots. No trends different from controls were evident in the shoot/root ratios. Total chlorophyll concentrations of the seedling increased over the controls by radiation treatment. Age and radiation effects were evident in the chlorophyll a/b ratios. The chlorophyll a/b ratios decreased with age in both the control and treatment groups. Although in seedlings 39 through 46 days old chlorophyll a/b ratios were higher in the control, chlorophyll a/b ratios were significantly higher in the treatment seedlings at 68 days. Changes in chlorophyll a were primarily responsible for this change

  3. The Inlfuence of Biochar on Growth of Lettuce and Potato

    Institute of Scientific and Technical Information of China (English)

    Kalika P. Upadhyay; Doug George; Roger S. Swift; Victor Galea

    2014-01-01

    Pot experiments were conducted in a glasshouse to determine the growth pattern of lettuce, true potato seedlings (TPS) and single node cuttings of TPS in response to biochar. The treatments were arranged in a randomized complete block design with 5 treatments (0, 10, 30, 50 and 100 t ha-1) of biochar from greenwaste with 5 replications in lettuce, 10 in TPS and 5 in single node cuttings of TPS. The observations recorded on growth parameters showed that biochar had signiifcant effect on growth of lettuce but no consistent effect on growth of TPS and single node cuttings. Among the biochar rates, 30 t ha-1 had the greatest inlfuence on overall growth of lettuce. The pH and electrical conductivity increased as the biochar rates increased in all experiments. These results provide an avenue for soil management system by using biochar as an amendment in horticultural crops. However, their veriifcation in the ifeld is important for speciifc recommendations.

  4. Transcriptome analysis and anthocyanin-related genes in red leaf lettuce.

    Science.gov (United States)

    Zhang, Y Z; Xu, S Z; Cheng, Y W; Ya, H Y; Han, J M

    2016-01-29

    This study aimed to analyze the transcriptome profile of red lettuce and identify the genes involved in anthocyanin accumulation. Red leaf lettuce is a popular vegetable and popular due to its high anthocyanin content. However, there is limited information available about the genes involved in anthocyanin biosynthesis in this species. In this study, transcriptomes of 15-day-old seedlings and 40-day-old red lettuce leaves were analyzed using an Illuminia HiseqTM 2500 platform. A total of 10.6 GB clean data were obtained and de novo assembled into 83,333 unigenes with an N50 of 1067. After annotation against public databases, 51,850 unigene sequences were identified, among which 46,087 were annotated in the NCBI non-redundant protein database, and 41,752 were annotated in the Swiss-Prot database. A total of 9125 unigenes were mapped into 163 pathways using the Kyoto Encyclopedia of Genes and Genomes database. Thirty-four structural genes were found to cover the main steps of the anthocyanin pathway, including chalcone synthase, chalcone isomerase, flavanone 3-hydroxylase, flavonoid 3'-hydroxylase, flavonoid 3',5'-hydroxylase, dihydroflavonol 4-reductase, and anthocyanidin synthase. Seven MYB, three bHLH, and two WD40 genes, considered anthocyanin regulatory genes, were also identified. In addition, 3607 simple sequence repeat (SSR) markers were identified from 2916 unigenes. This research uncovered the transcriptomic characteristics of red leaf lettuce seedlings and mature plants. The identified candidate genes related to anthocyanin biosynthesis and the detected SSRs provide useful tools for future molecular breeding studies.

  5. Influence of production time on quality and height of yield of crisp lettuce

    International Nuclear Information System (INIS)

    Odziemkowski, S.; Gajc-Wolska, J.; Skapski, H.

    1998-01-01

    The cultivar of crisp lettuce Saladin, was grown in the field in 10 production terms starting from spring to autumn in 1993-95. The highest average weight of head of crisp lettuce was obtained in earlier terms of production. The head weight at the time of harvest depended on the amount of solar radiation during the time of lettuce head formation

  6. Preliminary investigations of the rhizosphere nature of hydroponically grown lettuces

    Science.gov (United States)

    Antunes, Inês; Paille, Christel; Lasseur, Christophe

    Due to capabilities of current launchers, future manned exploration beyond the Earth orbit will imply long journeys and extended stays on planet surfaces. For this reason, it is of a great importance to develop a Regenerative Life Support System that enables the crew to be, to a very large extent, metabolic consumables self-sufficient. In this context, the European Space Agency, associated with a scientific and engineering con-sortium, initiated in 1989 the Micro-Ecological Life Support System Alternative (MELiSSA) project. This concept, inspired on a terrestrial ecosystem (i.e. a lake), comprises five intercon-nected compartments inhabited by micro-organisms and higher-plants aiming to produce food, fresh water, and oxygen from organic waste, carbon dioxide, and minerals. Given the important role of the higher-plant compartment for the consumption of carbon dioxide and the production of oxygen, potable water, and food, it was decided to study the microbial communities present in the root zone of the plants (i.e. the rhizosphere), and their synergistic and antagonistic influences in the plant growth. This understanding is important for later investigations concerning the technology involved in the higher plant compartment, since the final goal is to integrate this compartment inside the MELiSSA loop and to guarantee a healthy and controlled environment for the plants to grow under reduced-gravity conditions. To perform a preliminary assessment of the microbial populations of the root zone, lettuces were grown in a hydroponic system and their growth was characterized in terms of nutrient uptake, plant diameter, and plant wet and dry weights. In parallel, the microbial population, bacteria and fungi, present in the hydroponic medium and also inside and outside the roots were analyzed in terms of quantity and nature. The goal of this presentation is to give a preliminary review in the plant root zone of the micro-organisms communities and as well their proportions

  7. Evaluation of respiratory parameters in minimally processed lettuce grown under organic or conventional system

    Directory of Open Access Journals (Sweden)

    Júlio César Mello

    2010-12-01

    Full Text Available The increased preference for minimally processed vegetables has been attributed to the health benefits associated with fresh produce and the demand for ready-to-eat salads. In this paper, lettuce (Lactuca sativa L. was evaluated for the effects of different cropping systems on the respiratory properties. Lettuce was packaged in low density polyethylene bags and stored in a refrigerator at 4 ºC. The concentration of carbon dioxide and oxygen inside the package was monitored during the storage at zero, three, six, eight, ten and twelve days by gas chromatography. Dry matter variation was measured gravimetrically up to day fourteen of storage. Values of respiratory rate for conventional lettuce increased from day 1 to 3 and remained low, while respiratory rate of the organic lettuce increased three-fold up to day 8, stabilizing at a high level. Variation in dry matter during storage also resulted from differences between the two cultivation systems. The highest content of dry matter was achieved by organic lettuce.

  8. Plant-Adapted Escherichia coli Show Increased Lettuce Colonizing Ability, Resistance to Oxidative Stress and Chemotactic Response

    Science.gov (United States)

    Dublan, Maria de los Angeles; Ortiz-Marquez, Juan Cesar Federico; Lett, Lina; Curatti, Leonardo

    2014-01-01

    Background Escherichia coli is a widespread gut commensal and often a versatile pathogen of public health concern. E. coli are also frequently found in different environments and/or alternative secondary hosts, such as plant tissues. The lifestyle of E. coli in plants is poorly understood and has potential implications for food safety. Methods/Principal Findings This work shows that a human commensal strain of E. coli K12 readily colonizes lettuce seedlings and produces large microcolony-like cell aggregates in leaves, especially in young leaves, in proximity to the vascular tissue. Our observations strongly suggest that those cell aggregates arise from multiplication of single bacterial cells that reach those spots. We showed that E. coli isolated from colonized leaves progressively colonize lettuce seedlings to higher titers, suggesting a fast adaptation process. E. coli cells isolated from leaves presented a dramatic rise in tolerance to oxidative stress and became more chemotactic responsive towards lettuce leaf extracts. Mutant strains impaired in their chemotactic response were less efficient lettuce colonizers than the chemotactic isogenic strain. However, acclimation to oxidative stress and/or minimal medium alone failed to prime E. coli cells for enhanced lettuce colonization efficiency. Conclusion/Significance These findings help to understand the physiological adaptation during the alternative lifestyle of E. coli in/on plant tissues. PMID:25313845

  9. Expression of Root Genes in Arabidopsis Seedlings Grown by Standard and Improved Growing Methods.

    Science.gov (United States)

    Qu, Yanli; Liu, Shuai; Bao, Wenlong; Xue, Xian; Ma, Zhengwen; Yokawa, Ken; Baluška, František; Wan, Yinglang

    2017-05-03

    Roots of Arabidopsis thaliana seedlings grown in the laboratory using the traditional plant-growing culture system (TPG) were covered to maintain them in darkness. This new method is based on a dark chamber and is named the improved plant-growing method (IPG). We measured the light conditions in dark chambers, and found that the highest light intensity was dramatically reduced deeper in the dark chamber. In the bottom and side parts of dark chambers, roots were almost completely shaded. Using the high-throughput RNA sequencing method on the whole RNA extraction from roots, we compared the global gene expression levels in roots of seedlings from these two conditions and identified 141 differently expressed genes (DEGs) between them. According to the KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment, the flavone and flavonol biosynthesis and flavonoid biosynthesis pathways were most affected among all annotated pathways. Surprisingly, no genes of known plant photoreceptors were identified as DEGs by this method. Considering that the light intensity was decreased in the IPG system, we collected four sections (1.5 cm for each) of Arabidopsis roots grown in TPG and IPG conditions, and the spatial-related differential gene expression levels of plant photoreceptors and polar auxin transporters, including CRY1 , CRY2 , PHYA , PHYB , PHOT1 , PHOT2 , and UVR8 were analyzed by qRT-PCR. Using these results, we generated a map of the spatial-related expression patterns of these genes under IPG and TPG conditions. The expression levels of light-related genes in roots is highly sensitive to illumination and it provides a background reference for selecting an improved culture method for laboratory-maintained Arabidopsis seedlings.

  10. Responses of neotropical mangrove seedlings grown in monoculture and mixed culture under treatments of hydroperiod and salinity

    Science.gov (United States)

    Cardona-Olarte, P.; Twilley, R.R.; Krauss, K.W.; Rivera-Monroy, V.

    2006-01-01

    We investigated the combined effects of salinity and hydroperiod on seedlings of Rhizophora mangle and Laguncularia racemosa grown under experimental conditions of monoculture and mixed culture by using a simulated tidal system. The objective was to test hypotheses relative to species interactions to either tidal or permanent flooding at salinities of 10 or 40 g/l. Four-month-old seedlings were experimentally manipulated under these environmental conditions in two types of species interactions: (1) seedlings of the same species were grown separately in containers from September 2000 to August 2001 to evaluate intraspecific response and (2) seedlings of each species were mixed in containers to evaluate interspecific, competitive responses from August 2002 to April 2003. Overall, L. racemosa was strongly sensitive to treatment combinations while R. mangle showed little effect. Most plant responses of L. racemosa were affected by both salinity and hydroperiod, with hydroperiod inducing more effects than salinity. Compared to R. mangle, L. racemosa in all treatment combinations had higher relative growth rate, leaf area ratio, specific leaf area, stem elongation, total length of branches, net primary production, and stem height. Rhizophora mangle had higher biomass allocation to roots. Species growth differentiation was more pronounced at low salinity, with few species differences at high salinity under permanent flooding. These results suggest that under low to mild stress by hydroperiod and salinity, L. racemosa exhibits responses that favor its competitive dominance over R. mangle. This advantage, however, is strongly reduced as stress from salinity and hydroperiod increase. ?? Springer 2006.

  11. Effete of Gamma Radiation and N.P.K on Lettuce yield

    International Nuclear Information System (INIS)

    Abo Elkhier, O.H.M.M.

    2013-01-01

    Two field experiment were carried out during 2005/2006 winter growing seasons at the experiment at farm of Nuclear Research Center, Atomic Energy Authority, Inshas, Egypt – The experiments were conducted to study the effect of irradiated sowing seeds with 0, 2, 4, 6 and 8 Gray (Gy) of gamma radiation and / or the effect of different levels of NPK fertilizer 0, (NPK)1, (NPK)2, (NPK)3, (NPK)4 and (NPK)5 on the morphological and chemical parameters of the lettuce yield. The fresh weight of the plant in the line, length of the plant in the line, the number of leaves in the line, the number of plants in the line and the fresh weight in Fadden per ton were studied. There were significant effects of NPK contents on the lettuce leaves at (NPK) 4 in the dose level 6 Gy and on Calcium and Vitamins. We found that the most effective doses on leaf lettuce is 6 Gy dose of gamma radiation which gives strong and early seedlings in maturity upwards in the production of seedlings dose of 4 Gy. While the dose 8 Gray did not occur any increase at dose level 6 Gy. The Level (NPK) 4 increase the production of fresh per acre more upwards for all levels with 6 Gray and fourth level was the best in the natural qualities and characteristics of chemical terms of delay growth harvest lettuce, as well as influence on the plant content of calcium, nitrogen, protein and all the natural qualities among the first season and the second season.

  12. The effects of ultraviolet-B radiation on loblolly pine. 1: Growth, photosynthesis and pigment production in greenhouse-grown seedlings

    International Nuclear Information System (INIS)

    Sullivan, J.H.; Teramura, A.H.

    1989-01-01

    One-year old loblolly pine (Pinus taeda L.) seedlings were grown in an unshaded greenhouse for 7 months under 4 levels of ultraviolet-B (UV-B) radiation simulating stratospheric ozone reductions of 16, 25 and 40% and included a control with no UV-B radiation. Periodic measurements were made of growth and gas exchange characteristics and needle chlorophyll and UV-B-absorbing-compound concentrations. The effectiveness of UV-B radiation on seedling growth and physiology varied with the UV-B irradiance level. Seedlings receiving the lowest supplemental UV-B irradiance showed reductions in growth and photosynthetic capacity after only 1 month of irradiation. These reductions persisted and resulted in lower biomass production, while no increases in UV-B-absorbing compounds in needles were observed. Seedlings receiving UV-B radiation which simulated a 25% stratospheric ozone reduction showed an increase in UV-B-absorbing-compound concentrations after 6 months, which paralleled a recovery in photosynthesis and growth after an initial decrease in these characteristics. The seedlings grown at the highest UV-B irradiance (40% stratospheric ozone reduction) showed a more rapid increase in the concentration of UV-B-absorbing compounds and no effects of UV-B radiation on growth or photosynthetic capacity until after 4 months at this irradiance. Changes in photosynthetic capacity were probably the result of direct effects on light-dependent processes, since no effects were observed on either needle chlorophyll concentrations or stomatal conductance. Further studies are necessary to determine whether these responses persist and accumulate over subsequent years. (author)

  13. Incorporation of tritium due to foliar exposure in certain vegetation

    International Nuclear Information System (INIS)

    Iyengar, T.S.; Sadarangani, S.H.; Vaze, P.K.; Soman, S.D.

    1981-01-01

    Tritium uptake, release and incorporation patterns through the foliage of seedlings of certain edible vegetation were investigated, for exposure periods ranging from an hour to about 20 hours. A large number of plants belonging to the family of lettuce (Lactuca sativa L.), cabbage (Brassica Oleracea L.) and capsicum (Capsicum fruitescens L.) were exposed to tritiated air under dynamic and static conditions. The half times for tissue-free-water-tritium (TFWT) were found to be about 46 and 32 minutes for capsicum and lettuce and 45 minutes for cabbage. Tissue-bound-tritium (TBT) in the seedlings and the grown plants showed different incorporation rates as a result of foliar exposure. The relative concentration factors were larger by a factor of ten for TFWT in the leaves of the grown plants than in the shoots of the seedlings. However, tissue-bound-tritium concentration values in the shoots/stems of the young and grown plants were of the same order, as related to the tissue-free-water-tritium concentrations. Thus the study indicates a larger translocation of tritium from aqueous to organic phase in the leaves of the grown plants than in the shoots of young seedlings. (auth.)

  14. Non-destructive prediction of pigment content in lettuce based on visible-NIR spectroscopy.

    Science.gov (United States)

    Steidle Neto, Antonio José; Moura, Lorena de Oliveira; Lopes, Daniela de Carvalho; Carlos, Lanamar de Almeida; Martins, Luma Moreira; Ferraz, Leila de Castro Louback

    2017-05-01

    Lettuce (Lactuca sativa L.) is one of the most important salad vegetables in the world, with a number of head shapes, leaf types and colors. The lettuce pigments play important physiological functions, such as photosynthetic processes and light stress defense, but they also benefit human health because of their antioxidant action and anticarcinogenic properties. In this study three lettuce cultivars were grown under different farming systems, and partial least squares models were built to predict the leaf chlorophyll, carotenoid and anthocyanin content. The three proposed models resulted in high coefficients of determination and variable importance for the projection values, as well as low estimative errors for calibration and external validation datasets. These results confirmed that it is possible to accurately predict chlorophyll, carotenoid and anthocyanin content of green and red lettuces, grown in different farming systems, based on the spectral reflectance from 500 to 1000 nm. The proposed models were adequate for estimating lettuce pigments in a quick and non-destructive way, representing an alternative to conventional measurement methods. Prediction accuracies were improved by using the detrending, smoothing and first derivative pretreatments to the original spectral signatures prior to estimating lettuce chlorophyll, carotenoid and anthocyanin content, respectively. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Influence of mycorrhizal fungi on fate of E. coli O157:H7 and Salmonella in soil and internalization into Romaine lettuce plants.

    Science.gov (United States)

    Nicholson, April M; Gurtler, Joshua B; Bailey, Rebecca B; Niemira, Brendan A; Douds, David D

    2015-01-02

    The objectives of this study were to determine the influence of a symbiotic arbuscular mycorrhizal (AM) fungus on persistence of Salmonella and enterohemorrhagic Escherichia coli O157:H7 (EHEC) within soil, and survival within Romaine lettuce. Romaine seedlings were grown with or without AM fungi. Soil surrounding plants was inoculated with ca. 8 log CFU/plant of either Salmonella enterica or E. coli EHEC composites. Samples (soil, root, and shoot) were analyzed on days 1, 8, 15 and 22 for Salmonella and EHEC by direct plating and selective enrichment. Twenty-four hours after inoculation, populations of Salmonella and EHEC, respectively, were 4.20 and 3.24 log CFU/root, 2.52 and 1.17 log CFU/shoot, and 5.46 and 5.17 log CFU/g soil. By selective enrichment, samples tested positive for Salmonella or EHEC at day 22 at rates of 94 and 68% (shoot), 97 and 56% (root), and 100 and 75% (soil), respectively, suggesting that Salmonella has a greater propensity for survival than EHEC. Salmonella populations in soil remained as high as 4.35 log CFU/g by day 22, while EHEC populations dropped to 1.12 log CFU/g in the same amount of time. Ninety-two percent of all Romaine leaves in our study were positive for internalized Salmonella from days 8 to 22 and remained as high as 1.26 log CFU/shoot on day 22 in AM fungi+Romaine plants. There were no differences (P>0.05) between the survival of either pathogen based on the presence or absence of mycorrhizal fungi. Results of this study suggest that AM fungi do not affect the internalization and/or survival of either S. enterica or E. coli O157:H7 in Romaine lettuce seedlings. Our results should provide Romaine lettuce farmers confidence that the presence and/or application of AM fungi to crop soil is not a contributing factor to the internalization and survival of Salmonella or E. coli O157:H7 within Romaine lettuce plants. Published by Elsevier B.V.

  16. Detection of QTLs for seedling characteristics in barley (Hordeum vulgare L.) grown under hydroponic culture condition.

    Science.gov (United States)

    Wang, Qifei; Sun, Genlou; Ren, Xifeng; Wang, Jibin; Du, Binbin; Li, Chengdao; Sun, Dongfa

    2017-11-07

    Seedling characteristics play significant roles in the growth and development of barley (Hordeum vulgare L.), including stable stand establishment, water and nutrients uptake, biotic resistance and abiotic stresses, and can influence yield and quality. However, the genetic mechanisms underlying seedling characteristics in barley are largely unknown and little research has been done. In the present work, 21 seedling-related characteristics are assessed in a barley double haploid (DH) population, grown under hydroponic conditions. Of them, leaf age (LAG), shoot height (SH), maximum root length (MRL), main root number (MRN) and seedling fresh weight (SFW) were investigated at the 13th, 20th, 27th, and 34th day after germination. The objectives were to identify quantitative trait loci (QTLs) underlying these seedling characteristics using a high-density linkage map and to reveal the QTL expression pattern by comparing the QTLs among four different seedling growth stages. A total of 70 QTLs were distributed over all chromosomes except 4H, and, individually, accounted for 5.01%-77.78% of phenotypic variation. Out of the 70 detected QTLs, 23 showed a major effect on 14 seedling-related characteristics. Ten co-localized chromosomal regions on 2H (five regions), 3H (two regions) and 7H (three regions) involved 39 QTLs (55.71%), each simultaneously influenced more than one trait. Meanwhile, 9 co-localized genomic regions involving 22 QTLs for five seedling characteristics (LAG, SH, MRL, MRN and SFW) at the 13th, 20th, 27th and 34th day-old seedling were common for two or more growth stages of seedling. QTL in the vicinity of Vrs1 locus on chromosome 2H with the favorable alleles from Huadamai 6 was found to have the largest main effects on multiple seedling-related traits. Six QTL cluster regions associated with 16 seedling-related characteristics were observed on chromosome 2H, 3H and 7H. The majority of the 29 regions identified for five seedling characteristics were

  17. Microbial risk in wastewater irrigated lettuce: comparing Escherichia coli contamination from an experimental site with a laboratory approach.

    Science.gov (United States)

    Makkaew, P; Miller, M; Fallowfield, H J; Cromar, N J

    This study assessed the contamination of Escherichia coli, in lettuce grown with treated domestic wastewater in four different irrigation configurations: open spray, spray under plastic sheet cover, open drip and drip under plastic sheet cover. Samples of lettuce from each irrigation configuration and irrigating wastewater were collected during the growing season. No E. coli was detected in lettuce from drip irrigated beds. All lettuce samples from spray beds were positive for E. coli, however, no statistical difference (p > 0.05) was detected between lettuces grown in open spray or covered spray beds. The results from the field experiment were also compared to a laboratory experiment which used submersion of lettuce in wastewater of known E. coli concentration as a surrogate method to assess contamination following irrigation. The microbial quality of spray bed lettuces was not significantly different from submersed lettuce when irrigated with wastewater containing 1,299.7 E. coli MPN/100 mL (p > 0.05). This study is significant since it is the first to validate that the microbial contamination of lettuce irrigated with wastewater in the field is comparable with a laboratory technique frequently applied in the quantitative microbial risk assessment of the consumption of wastewater irrigated salad crops.

  18. assessment of cadmium and lead in soil and tomatoes grown

    African Journals Online (AJOL)

    MAHMUD IMAM

    Transfer of Heavy Metals from Soil to Lettuce (Lactuca sativa) grown in irrigated farmlands of ... respectively being the highest elements absorbed by the lettuce samples from the irrigated .... radioactive elements and organic chemicals,.

  19. Wpływ szczepów bakterii wyizolowanych z hydroponicznej uprawy sałaty (Lactuca sativa L. na wzrost siewek sałaty, rosnących w obecnosci rożnych form pożywienia azotowego [Influence of bacterial strains isolated from hydroponic cultures of lettuce (Lactuca sativa L. on the growth of lettuce seedlings growing in the presence of various forms of nitrogen nutrition

    Directory of Open Access Journals (Sweden)

    Z. Kobierzyńska-Gołąb

    2015-06-01

    Full Text Available 320 bacterial strains isolated from the surface of cultivated plants, as well as from other parts of hydroponic cultures showed stimulating (49 bacterial strains or inhibitory (9 bacterial strains properties in respect to the investigated plant. The following bacteria were isolated: Pseudomonas, Flavobacterium, Agrobacterium, Achromobacter and Chromobacterium. The effects of active bacterial strains on the growth of seedlings were investigated in dependence on the kind of inorganic form of nitrogen present in the nutrient solutions. The same bacterial strains exerted a stimulating effect on seedlings growing on nitrates, weaker stimulation was observed in cultures with ammonium nitrate; the growth of lettuce seedlings on nutrient solution with ammonium only, was, as a rule, inhibited by the bacteria.

  20. Listeria monocytogenes internalizes in Romaine Lettuce grown in greenhouse conditions

    Science.gov (United States)

    Listeria monocytogenes has been implicated in a number of outbreaks involving fresh produce, including an outbreak in 2016 resulting from contaminated packaged salads. The persistence and internalization potential of L. monocytogenes in romaine lettuce was evaluated, and the persistence of two L. mo...

  1. Post-harvest decay in fresh-cut lettuce

    Science.gov (United States)

    Shelf-life of fresh-cut lettuce was assessed in two mapping population (Salinas 88 x La Brillante, and Pavane x Parade. The most significant QTL was detected in both populations on linkage group 4. This QTL was detected in seven experiments grown in different environments. Molecular markers are bein...

  2. Effect of exogenous gibberellic acid on germination, seedling growth ...

    African Journals Online (AJOL)

    The effect of gibberellic acid on germination and seedling growth of lettuce variety, Vista, under salinity conditions was studied. A reduction in germination percentage, roots and shoots length and fresh weight were observed under salt stress. At the same time, acid phosphatase and phytase activities in roots were reduced ...

  3. Occurrence and bioaccumulation of chemical contaminants in lettuce grown in peri-urban horticulture.

    Science.gov (United States)

    Margenat, Anna; Matamoros, Víctor; Díez, Sergi; Cañameras, Núria; Comas, Jordi; Bayona, Josep M

    2018-05-14

    Peri-urban horticulture performs environmental and socio-economic functions and provides ecological services to nearby urban areas. Nevertheless, industrialization and water pollution have led to an increase in the exposure of peri-urban vegetables to contaminants such as trace elements (TEs) and organic microcontaminants (OMCs). In this study, the occurrence of chemical contaminants (i.e., 16 TEs, 33 OMCs) in soil and lettuce leaves from 4 farm fields in the peri-urban area of the city of Barcelona was assessed. A rural site, outside the peri-urban area of influence, was selected for comparison. The concentration of TEs and OMCs ranged from non-detectable to 803 mg/kg dw and from non-detectable to 397 μg/kg dw respectively in the peri-urban soil, and from 6 · 10 -5 to 4.91 mg/kg fw and from non-detectable to 193 μg/kg fw respectively in lettuce leaves. Although the concentration of Mo, Ni, Pb, and As in the soil of the peri-urban area exceeded the environmental quality guidelines, their occurrence in lettuce complied with human food standards (except for Pb). The many fungicides (carbendazim, dimetomorph, and methylparaben) and chemicals released by plastic pipelines (tris(1-chloro-2-propyl)phosphate, bisphenol F, and 2-mercaptobenzothiazole) used in agriculture were prevalent in the soil and the edible parts of the lettuce. The occurrence of these chemical pollutants in the peri-urban area did not affect the chlorophyll, lipid, or carbohydrate content of the lettuce leaves. PCA (Principal Component Analysis) showed that soil pollution, fungicide application, and irrigation water quality are the most relevant factors determining the presence of contaminants in crops. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Effect of Salt Stress on Morphological Traits of Lettuce Genotypes (Lactuca Sativa L.

    Directory of Open Access Journals (Sweden)

    maryam zare

    2017-02-01

    Full Text Available Introduction: The recognition of salt tolerant plants is important as a result ofincreasing saline lands in Iran and world. Cultivation of plants in hydroponic environment is a reliable and economical method in order to select the salt tolerant plant. Salt stress can effect on plant growth and development by ion toxicity, ionic disturb the balance and osmotic potential. Lettuce is one of the most important vegetable crops. This plant is one of the most important leafy vegetables which is used for salad and fresh marketing, also some types of this vegetable is used in baked type. The aim of this study was to investigate the genetic diversity of lettuce genotypes undersalt stress in the hydroponic system. Materials and Methods: To assess response of lettuce seedlings to salt stress, a factorial experiment was conducted in a completely randomized design with three replications at Biotechnology Research Institute for hydroponic cultivation of Zabol. In this experiment, the effects of three salinity levels (0, 2 and 4 dS/m on morphological characteristics of 15 lettuce genotypes were evaluated. The seeds were sterilized for ten seconds in ethanol 96% and then 15% sodium hypochlorite solution for 50 seconds, then rinsed several times with distilled water, then disinfected seeds were cultured in plastic pots containing coco peat and perlite. After …days plants were transferred to hydroponic system containing Hoagland solution. Collected data were analyzed and means comparisons were made using LSD by SAS software. Results and Discussion: The results showed that salinity has a significant effect on seedling growth of lettuce genotypes (p≤0.01. significant difference between salinity levels and genotype were observed for all traits. Interaction of genotype and salinity for all the traits except root length, plant length and leaf were significant at 1%. Based on the results, the greatest root length was belong to Esfahan Varzaneh leafy lettuce and

  5. Effect of Salt Stress on Morphological Traits of Lettuce Genotypes (Lactuca Sativa L.

    Directory of Open Access Journals (Sweden)

    maryam zare

    2017-09-01

    Full Text Available Introduction: The recognition of salt tolerant plants is important as a result ofincreasing saline lands in Iran and world. Cultivation of plants in hydroponic environment is a reliable and economical method in order to select the salt tolerant plant. Salt stress can effect on plant growth and development by ion toxicity, ionic disturb the balance and osmotic potential. Lettuce is one of the most important vegetable crops. This plant is one of the most important leafy vegetables which is used for salad and fresh marketing, also some types of this vegetable is used in baked type. The aim of this study was to investigate the genetic diversity of lettuce genotypes undersalt stress in the hydroponic system. Materials and Methods: To assess response of lettuce seedlings to salt stress, a factorial experiment was conducted in a completely randomized design with three replications at Biotechnology Research Institute for hydroponic cultivation of Zabol. In this experiment, the effects of three salinity levels (0, 2 and 4 dS/m on morphological characteristics of 15 lettuce genotypes were evaluated. The seeds were sterilized for ten seconds in ethanol 96% and then 15% sodium hypochlorite solution for 50 seconds, then rinsed several times with distilled water, then disinfected seeds were cultured in plastic pots containing coco peat and perlite. After …days plants were transferred to hydroponic system containing Hoagland solution. Collected data were analyzed and means comparisons were made using LSD by SAS software. Results and Discussion: The results showed that salinity has a significant effect on seedling growth of lettuce genotypes (p≤0.01. significant difference between salinity levels and genotype were observed for all traits. Interaction of genotype and salinity for all the traits except root length, plant length and leaf were significant at 1%. Based on the results, the greatest root length was belong to Esfahan Varzaneh leafy lettuce and

  6. Developing lettuce with improved quality for processed salads.

    Science.gov (United States)

    Lettuce is increasingly consumed as minimally processed salads. Cultivars grown for this market may require breeding for improved shelf-life and resistance to physiological defects such as tipburn (TB). Tipburn is a calcium deficiency related defect causing necrosis on the leaf margins, typically on...

  7. Sources of Verticillium dahliae affecting lettuce.

    Science.gov (United States)

    Atallah, Zahi K; Maruthachalam, Karunakaran; Subbarao, Krishna V

    2012-11-01

    ABSTRACT Since 1995, lettuce in coastal California, where more than half of the crop in North America is grown, has consistently suffered from severe outbreaks of Verticillium wilt. The disease is confined to this region, although the pathogen (Verticillium dahliae) and the host are present in other crop production regions in California. Migration of the pathogen with infested spinach seed was previously documented, but the geographic sources of the pathogen, as well as the impact of lettuce seed sparsely infested with V. dahliae produced outside coastal California on the pathogen population in coastal California remain unclear. Population analyses of V. dahliae were completed using 16 microsatellite markers on isolates from lettuce plants in coastal California, infested lettuce seed produced in the neighboring Santa Clara Valley of California, and spinach seed produced in four major spinach seed production regions: Chile, Denmark, the Netherlands, and the United States (Washington State). California produces 80% of spinach in the United States and all seed planted with the majority infested by V. dahliae comes from the above four sources. Three globally distributed genetic populations were identified, indicating sustained migration among these distinct geographic regions with multiple spinach crops produced each year and repeated every year in coastal California. The population structure of V. dahliae from coastal California lettuce plants was heavily influenced by migration from spinach seed imported from Denmark and Washington. Conversely, the sparsely infested lettuce seed had limited or no contribution to the Verticillium wilt epidemic in coastal California. The global trade in plant and seed material is likely contributing to sustained shifts in the population structure of V. dahliae, affecting the equilibrium of native populations, and likely affecting disease epidemiology.

  8. Effects of pre-and postharvest lighting on quality and shelf life of fresh-cut lettuce

    NARCIS (Netherlands)

    Woltering, E.J.; Witkowska, I.M.

    2016-01-01

    The effects of pre-and postharvest lighting on quality and shelf life of fresh-cut lettuce was investigated. Lettuce was grown under different light intensities (120 and 250 μmol m-2 s-1 PAR from fluorescent tubes) and quality at harvest and subsequent postharvest

  9. Complete genome sequence of the biofilm-forming Microbacterium sp. strain BH-3-3-3, isolated from conventional field-grown lettuce (Lactuca sativa) in Norway.

    Science.gov (United States)

    Dees, Merete Wiken; Brurberg, May Bente; Lysøe, Erik

    2017-03-01

    The genus Microbacterium contains bacteria that are ubiquitously distributed in various environments and includes plant-associated bacteria that are able to colonize tissue of agricultural crop plants. Here, we report the 3,508,491 bp complete genome sequence of Microbacterium sp. strain BH-3-3-3, isolated from conventionally grown lettuce ( Lactuca sativa ) from a field in Vestfold, Norway. The nucleotide sequence of this genome was deposited into NCBI GenBank under the accession CP017674.

  10. Endophytic fungi occurring in fennel, lettuce, chicory, and celery--commercial crops in southern Italy.

    Science.gov (United States)

    D'Amico, Margherita; Frisullo, Salvatore; Cirulli, Matteo

    2008-01-01

    The occurrence of endophytic fungi in fennel, lettuce, chicory, and celery crops was investigated in southern Italy. A total of 186 symptomless plants was randomly collected and sampled at the stage of commercial ripeness. Fungal species of Acremonium, Alternaria, Fusarium, and Plectosporium were detected in all four crops; Plectosporium tabacinum was the most common in all crop species and surveyed sites. The effect of eight endophytic isolates (five belonging to Plectosporium tabacinum and three to three species of Acremonium) inoculated on lettuce plants grown in gnotobiosis was assessed by recording plant height, root length and dry weight, collar diameter, root necrosis, and leaf yellowing. P. tabacinum and three species of Acremonium, inoculated on gnotobiotically grown lettuce plants, showed pathogenic activity that varied with the fungal isolate. Lettuce plants inoculated with the isolates Ak of Acremonium kiliense, Ac of Acremonium cucurbitacearum, and P35 of P. tabacinum showed an increased root growth, compared to the non-inoculated control. The high frequency of P. tabacinum isolation recorded in lettuce plants collected in Bari and Metaponto, and in fennel plants from Foggia agricultural districts, suggests a relationship not only between a crop species and P. tabacinum, but also between the occurrence of the endophyte and the crop rotation history of the soil.

  11. Assessments of Total and Viable Escherichia coli O157:H7 on Field and Laboratory Grown Lettuce

    Science.gov (United States)

    Moyne, Anne-Laure; Harris, Linda J.; Marco, Maria L.

    2013-01-01

    Leafy green produce has been associated with numerous outbreaks of foodborne illness caused by strains of Escherichia coli O157:H7. While the amounts of culturable E. coli O157:H7 rapidly decline after introduction onto lettuce in the field, it remains to be determined whether the reduction in cell numbers is due to losses in cell viability, cell injury and a subsequent inability to be detected by standard laboratory culturing methods, or a lack of adherence and hence rapid removal of the organism from the plants during application. To assess which of these options is most relevant for E. coli O157:H7 on leafy green produce, we developed and applied a propidium monoazide (PMA) real-time PCR assay to quantify viable (with PMA) and total (without PMA) E. coli O157:H7 cells on growth chamber and field-grown lettuce. E. coli O157:H7, suspended in 0.1% peptone, was inoculated onto 4-week-old lettuce plants at a level of approximately 106 CFU/plant. In the growth chamber at low relative humidity (30%), culturable amounts of the nontoxigenic E. coli O157:H7 strain ATCC 700728 and the virulent strain EC4045 declined 100 to 1000-fold in 24 h. Fewer E. coli O157:H7 cells survived when applied onto plants in droplets with a pipette compared with a fine spray inoculation. Total cells for both strains were equivalent to inoculum levels for 7 days after application, and viable cell quantities determined by PMA real-time PCR were approximately 104 greater than found by colony enumeration. Within 2 h after application onto plants in the field, the number of culturable E. coli ATCC 700728 was reduced by up to 1000-fold, whereas PCR-based assessments showed that total cell amounts were equivalent to inoculum levels. These findings show that shortly after inoculation onto plants, the majority of E. coli O157:H7 cells either die or are no longer culturable. PMID:23936235

  12. Varietal response to lead by lettuce

    Energy Technology Data Exchange (ETDEWEB)

    John, M.K.

    1977-06-01

    Nine lettuce varieties were hydroponically grown at six substrate Pb concentrations to 50 ppM in substrate. Top and root tissue Pb concentration, amounts assimilated, and translocation to edible tissue were dependent on the variety as well as substrate lead and exposure duration. Even though Pb in substrate was in a precipitated form, lettuce plants could assimilate and translocate Pb. Differential response of varieties with similar morphology indicated genetical regulated physiological mechanisms of Pb assimilation and translocation. This evidence suggests varietal selection could minimize human and animal dietary intake of Pb via food plants. While early growth of some varieties was stimulated by low concentrations of Pb, and high solution concentrations suppressed growth of several varieties, genetic variation also included non-significant response of growth.

  13. Effects of Abiotic and Biotic Stresses on the Internalization and Dissemination of Human Norovirus Surrogates in Growing Romaine Lettuce.

    Science.gov (United States)

    DiCaprio, Erin; Purgianto, Anastasia; Li, Jianrong

    2015-07-01

    Human norovirus (NoV) is the major causative agent of fresh-produce-related outbreaks of gastroenteritis; however, the ecology and persistence of human NoV in produce systems are poorly understood. In this study, the effects of abiotic and biotic stresses on the internalization and dissemination of two human NoV surrogates (murine norovirus 1 [MNV-1] and Tulane virus [TV]) in romaine lettuce were determined. To induce abiotic stress, romaine lettuce was grown under drought and flood conditions that mimic extreme weather events, followed by inoculation of soil with MNV-1 or TV. Independently, lettuce plants were infected with lettuce mosaic virus (LMV) to induce biotic stress, followed by inoculation with TV. Plants were grown for 14 days, and viral titers in harvested tissues were determined by plaque assays. It was found that drought stress significantly decreased the rates of both MNV-1 and TV internalization and dissemination. In contrast, neither flood stress nor biotic stress significantly impacted viral internalization or dissemination. Additionally, the rates of TV internalization and dissemination in soil-grown lettuce were significantly higher than those for MNV-1. Collectively, these results demonstrated that (i) human NoV surrogates can be internalized via roots and disseminated to shoots and leaves of romaine lettuce grown in soil, (ii) abiotic stress (drought) but not biotic stress (LMV infection) affects the rates of viral internalization and dissemination, and (iii) the type of virus affects the efficiency of internalization and dissemination. This study also highlights the need to develop effective measures to eliminate internalized viruses in fresh produce. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Arsenic uptake by lettuce from As-contaminated soil remediated with Pteris vittata and organic amendment.

    Science.gov (United States)

    de Oliveira, Letuzia M; Suchismita, Das; Gress, Julia; Rathinasabapathi, Bala; Chen, Yanshan; Ma, Lena Q

    2017-06-01

    Leaching of inorganic arsenic (As) from chromated copper arsenate (CCA)-treated wood may elevate soil As levels. Thus, an environmental concern arises regarding As accumulation in vegetables grown in these soils. In this study, a greenhouse experiment was conducted to investigate the ability of As-hyperaccumulator P. vittata and organic amendments in reducing As uptake by lettuce (Lactuca sativa) from a soil contaminated from CCA-treated wood (63.9 mg kg -1 As). P. vittata was grown for 150 d in a CCA-contaminated soil amended with biochar, activated carbon or coffee grounds at 1%, followed by lettuce for another 55 d. After harvest, plant biomass and As concentrations in plant and soil were determined. The presence of P. vittata reduced As content in lettuce by 21% from 27.3 to 21.5 mg kg -1 while amendment further reduced As in lettuce by 5.6-18%, with activated C being most effective. Our data showed that both P. vittata and organic amendments were effective in reducing As concentration in lettuce. Though no health-based standard for As in vegetables exists in USA, care should be taken when growing lettuce in contaminated soils. Our data showed that application of organic amendments with P. vittata reduced As hazards in CCA-contaminated soils. Published by Elsevier Ltd.

  15. Research on lettuce growth technology onboard Chinese Tiangong II Spacelab

    Science.gov (United States)

    Shen, Yunze; Guo, Shuangsheng; Zhao, Pisheng; Wang, Longji; Wang, Xiaoxia; Li, Jian; Bian, Qiang

    2018-03-01

    Lettuce was grown in a space vegetable cultivation facility onboard the Tiangong Ⅱ Spacelab during October 18 to November 15, 2016, in order to testify the key cultivating technology in CELSS under spaceflight microgravity condition. Potable water was used for irrigation of rooting substrate and the SRF (slowly released fertilizer) offered mineral nutrition for plant growth. Water content and electric conductivity in rooting substrate were measured based on FDR(frequency domain reflectometry) principle applied first in spaceflight. Lettuce germinated with comparative growth vigor as the ground control, showing that the plants appeared to be not stressed by the spaceflight environment. Under microgravity, lettuce grew taller and showed deeper green color than the ground control. In addition, the phototropism of the on-orbit plants was more remarkable. The nearly 30-d spaceflight test verified the seed fixation technology and water& nutrition management technology, which manifests the feasibility of FDR being used for measuring moisture content and electric conductivity in rooting zone under microgravity. Furthermore, the edibility of the space-grown vegetable was proved, providing theoretical support for astronaut to consume the space vegetable in future manned spaceflight.

  16. Phosphate effect on the content of selected elements in a lettuce variety grown at a contaminated soil

    International Nuclear Information System (INIS)

    Armelin, M.J.A.; Saiki, M.; Maihara, V.A.; Moreira, E.G.; Trevizam, A.R.; Muraoka, T.; Silva, M.L.S.

    2014-01-01

    The purpose of this study was to evaluate the efficiency of superphosphate fertilizer in remediating a contaminated soil with potentially toxic elements. For this, different phosphorus doses were used in a number of lettuce plants. The element concentrations determined in their leaves were compared with those found in control lettuce plants. Instrumental neutron activation analysis was the analytical technique used to determine element concentration in lettuce leave samples. The application of 250 mg kg -1 of P was the most effective treatment to reduce the concentrations of Br, Ca, Cd, Cl, Co, Cr, Fe, K, Mg, Mn, Sb and Zn in lettuce leaves. (author)

  17. Jatropha press cake as organic fertilizer in lettuce cultivation

    Directory of Open Access Journals (Sweden)

    José R. Mantovani

    Full Text Available ABSTRACT In biodiesel production, vegetable press cake is obtained as waste, and a suitable destination for jatropha press cake would be the use in agriculture as organic fertilizer. This study aimed to evaluate the effect of jatropha press cake on soil fertility attributes and on lettuce production and accumulation of nutrients in the shoots. The experiment was conducted in pots in a greenhouse, in a randomized block design with eight treatments and five replicates. The treatments consisted of doses of jatropha press cake equivalent to 0, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0 and 32.0 t ha-1. Portions of 5.5 dm3 of soil received limestone, phosphate fertilizer and the doses of jatropha press cake, and remained incubated for 30 days. After incubation, soil samples were collected, each pot received one lettuce seedling and the experiment was carried out for 45 days. The organic fertilization with jatropha press cake increased the contents of nutrients in the soil, especially K+, but caused increment in soil acidity and electrical conductivity. The use of jatropha press cake as organic fertilizer decreased lettuce production and accumulation of nutrients in the shoots.

  18. SOURCES OF MYCORRHIZAL INFECTION OF SHOREA ACUMINATA SEEDLINGS UNDER LABORATORY CONDITIONS

    Directory of Open Access Journals (Sweden)

    LEE Su SEE

    1995-01-01

    Full Text Available Uninoculated dipterocarp seedlings raised in normal field soil in nurseries were always found to have mycorrhizas after a few months. This study set out to determine whether dipterocarp seedlings could continue to grow and develop in the absence of mycorrhizas and also to determine possible sources of mycorrhizal infection of dipterocarp seedlings raised under laboratory conditions using Shorea acuminata as a typical example. Seedlings were planted in capped or uncapped perspex boxes containing sterile or non-sterile field soil and watered daily with sterile water or tap water. Seedling growth and development of mycorrhizas were monitored at monthly intervals for up to seven months. Seedlings grown in sterile soil remained uninfected after seven months while infection was found in some of the seedlings grown in normal soil regardless of whether they had been watered with tap water or sterile water. This showed that field soil (i.e. under grass far from the forest contained suitable inoculum for forest tree seedlings. Tap water and the air were not important sources of infection. However, mycorrhizal infection was very uneven indicating that the inoculum was probably very unevenly distributed in the soil or that the inoculum density was rather low. Seedlings grown in sterile soil showed better growth than those grown in normal soil and infection of roots by parasitic fungi in the latter was also observed.

  19. Uptake of perfluorinated alkyl acids by hydroponically grown lettuce (Lactuca sativa).

    Science.gov (United States)

    Felizeter, Sebastian; McLachlan, Michael S; de Voogt, Pim

    2012-11-06

    An uptake study was carried out to assess the potential human exposure to perfluorinated alkyl acids (PFAAs) through the ingestion of vegetables. Lettuce (Lactuca sativa) was grown in PFAA-spiked nutrient solutions at four different concentrations, ranging from 10 ng/L to 10 μg/L. Eleven perfluorinated carboxylic acids (PFCAs) and three perfluorinated sulfonic acids (PFSAs) were analyzed by HPLC-MS/MS. At the end of the experiment, the major part of the total mass of each of the PFAAs (except the short-chain, C4-C7, PFCAs) taken up by plants appeared to be retained in the nonedible part, viz. the roots. Root concentration factors (RCF), foliage/root concentration factors (FRCF), and transpiration stream concentration factors (TSCF) were calculated. For the long chained PFAAs, RCF values were highest, whereas FRCF were lowest. This indicates that uptake by roots is likely governed by sorption of PFAAs to lipid-rich root solids. Translocation from roots to shoots is restricted and highly depending on the hydrophobicity of the compounds. Although the TSCF show that longer-chain PFCAs (e.g., perfluorododecanoic acid) get better transferred from the nutrient solution to the foliage than shorter-chain PFCAs (e.g., perfluoroheptanoic acid), the major fraction of longer-chain PFCAs is found in roots due to additional adsorption from the spiked solution. Due to the strong electron-withdrawing effect of the fluorine atoms the role of the negative charge of the dissociated PFAAs is likely insignificant.

  20. Accumulation of heavy metals by vegetables grown in mine wastes

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, G.P.; Sands, K.; Waters, M.; Wixson, B.G.; Dorward-King, E.

    2000-03-01

    Lead, cadmium, arsenic, and zinc were quantified in mine wastes and in soils mixed with mine wastes. Metal concentrations were found to be heterogeneous in the wastes. Iceberg lettuce, Cherry Belle radishes, Roma bush beans, and Better Boy tomatoes were cultivated in mine wastes and in waste-amended soils. Lettuce and radishes had 100% survival in the 100% mine waste treatments compared to 0% and 25% survival for tomatoes and beans, respectively. Metal concentrations were determined in plant tissues to determine uptake and distribution of metals in the edible plant parts. Individual soil samples were collected beneath each plant to assess metal content in the immediate plant environment. This analysis verified heterogeneous metal content of the mine wastes. The four plant species effectively accumulated and translocated lead, cadmium, arsenic, and zinc. Tomato and bean plants contained the four metals mainly in the roots and little was translocated to the fruits. Radish roots accumulated less metals compared to the leaves, whereas lettuce roots and leaves accumulated similar concentrations of the four metals. Lettuce leaves and radish roots accumulated significantly more metals than bean and tomato fruits. This accumulation pattern suggests that consumption of lettuce leaves or radish roots from plants grown in mine wastes would pose greater risks to humans and wildlife than would consumption of beans or tomatoes grown in the same area. The potential risk may be mitigated somewhat in humans, as vegetables grown in mine wastes exhibited stunted growth and chlorosis.

  1. Phytochemical phenolics in organically grown vegetables.

    Science.gov (United States)

    Young, Janice E; Zhao, Xin; Carey, Edward E; Welti, Ruth; Yang, Shie-Shien; Wang, Weiqun

    2005-12-01

    Fruit and vegetable intake is inversely correlated with risks for several chronic diseases in humans. Phytochemicals, and in particular, phenolic compounds, present in plant foods may be partly responsible for these health benefits through a variety of mechanisms. Since environmental factors play a role in a plant's production of secondary metabolites, it was hypothesized that an organic agricultural production system would increase phenolic levels. Cultivars of leaf lettuce, collards, and pac choi were grown either on organically certified plots or on adjacent conventional plots. Nine prominent phenolic agents were quantified by HPLC, including phenolic acids (e. g. caffeic acid and gallic acid) and aglycone or glycoside flavonoids (e. g. apigenin, kaempferol, luteolin, and quercetin). Statistically, we did not find significant higher levels of phenolic agents in lettuce and collard samples grown organically. The total phenolic content of organic pac choi samples as measured by the Folin-Ciocalteu assay, however, was significantly higher than conventional samples (p lettuce and collards, the organic system provided an increased opportunity for insect attack, resulting in a higher level of total phenolic agents in pac choi.

  2. Outbreaks of gastroenteritis linked to lettuce, Denmark, January 2010

    DEFF Research Database (Denmark)

    Ethelberg, S.; Lisby, M.; Bottiger, B.

    2010-01-01

    At least 11 linked outbreaks of gastroenteritis with a total of 260 cases have occurred in Denmark in mid January 2010. Investigations showed that the outbreaks were caused by norovirus of several genotypes and by enterotoxigenic Escherichia coli. Lettuce of the lollo bionda type grown in France...

  3. Produção de mudas de alface, pepino e pimentão em substratos combinando areia, solo e Plantmax® Production of lettuce, cucumber and sweet pepper seedlings in substrate with different combinations of sand, soil and Plantmax®

    Directory of Open Access Journals (Sweden)

    Oscar José Smiderle

    2001-11-01

    Full Text Available O efeito do substrato comercial Plantmax®; e sua combinação com solo e areia, foi avaliado de acordo com a resposta biológica de três culturas olerícolas (alface, pepino e pimentão, sendo o experimento conduzido em casa de vegetação na ESALQ/USP em Piracicaba de abril a junho de 1996. Os tratamentos consistiram do substrato comercial Plantmax®; e da mistura deste com areia, com solo, na proporção 1:1 em volume, e mistura dos três, proporção 1:1:1. O substrato Plantmax®; propiciou menor velocidade de emergência para alface e pepino e maior para pimentão. Resultou, também, em maior altura de plântulas nas três diferentes culturas. O menor comprimento de raízes das três olerícolas foi obtido com o substrato Plantmax®; + solo + areia. A maior produção de matéria seca de plântulas e raízes de alface e de pimentão foram obtidas com o substrato Plantmax®;. Por outro lado, a menor produção de matéria seca foi obtida com a mistura dos três componentes para a cultura do pepino. O desempenho obtido nas misturas de Plantmax®; com solo ou com areia, indicam ser uma alternativa técnica viável ao uso de substratos comerciaisThe effect of commercial substrate Plantmax®; and it's combination with soil and sand, was evaluated according to the biological response of three vegetable crops (lettuce, cucumber and sweet pepper. The experiment was carried out in plastic tunnels, at ESALQ/USP, Piracicaba-SP, from April to June, 1996. The treatments consisted of the commercial substrate Plantmax®;, the mixture of Plantmax®; with sand, Plantmax®;with soil and the mixture of Plantmax®;with both soil and sand. Lower lettuce and cucumber seedlings emergence and faster sweet pepper seedlings emergence were observed with Plantmax®; substrate. It also resulted in bigger size of seedlings of these three different plant species. Smaller roots of these three species were observed with the mixture of Plantmax®; plus soil plus sand

  4. Genetic transformation of lettuce ( Lactuca sativa ): A review | Dan ...

    African Journals Online (AJOL)

    Lettuce (Lactuca sativa L.) is a globally important leafy vegetable that can be grown worldwide. Due to the rapid growth of population and the human desire to progress, there have been a lot of studies made by researchers, especially in genetic engineering. Improvements in regeneration system and transformation ...

  5. Electron-cytochemical study of Ca2+ in cotyledon cells of soybean seedlings grown in microgravity

    Science.gov (United States)

    Nedukha, O.; Brown, C. S.; Kordyum, E.; Piastuch, W. C.; Guikema, J. A. (Principal Investigator)

    1999-01-01

    Microgravity and horizontal clinorotation are known to cause the rearrangement of the structural-functional organization of plant cells, leading to accelerated aging. Altered gravity conditions resulted in an increase in the droplets volume in cells and the destruction of chloroplast structure in Arabidopsis thaliana plants, an enhancement of cytosolic autophagaous processes, an increase in the respiration rate and a greater number of multimolecular forms of succinate- and malate dehydrogenases in cells of the Funaria hygrometrica protonema and Chlorella vulgaris, and changes in calcium balance of cells. Because ethylene is known to be involved in cell aging and microgravity appears to speed the process, and because soybean seedlings grown in space produce higher ethylene levels we asked: 1) does an acceleration of soybean cotyledon cell development and aging occur in microgravity? 2) what roles do Ca2+ ions and the enhanced ethylene level play in these events? Therefore, the goal of our investigation was to examine of the interaction of microgravity and ethylene on the localization of Ca2+ in cotyledon mesophyll of soybean seedlings.

  6. Retardation of hypocotyl elongation of ornamental and vegetable seedlings by ultraviolet irradiation

    International Nuclear Information System (INIS)

    Bae, E.; Inamoto, K.; Doi, M.; Imanishi, H.

    1998-01-01

    Seedlings of cosmos (Cosmos bipinnatus Cav.), lettuce (Lactuca sativa L.), sunflower (Helianthus annuus L), ornamental kale (Brassica oleracea L. var. acephara), tomato (Lycopersicon esculentum Mill.), bell pepper (Capsicum annuum L.), and cucumber (Cucumis sativus L.) were irradiated by a UV-B lamp (fluorescent sun lamp) or a three-band fluorescent lamp (control) for 72 hr just after sowing. Hypocotyl elongation was repressed by all species during the irradiation with UV-B. The retarding effects of UV-B persisted when these seedlings were placed in dark or a greenhouse with 30% shade after irradiation. The most effective timing of UV-B irradiation for cosmos and ornamental kale seedlings was from 48 hr to 72 hr after sowing, when the seedlings were rapidly increasing their surface area to UV-B

  7. Lettuce contact allergy

    DEFF Research Database (Denmark)

    Paulsen, Evy; Andersen, Klaus E

    2016-01-01

    Lettuce (Lactuca sativa L.) and its varieties are important vegetable crops worldwide. They are also well-known, rarely reported, causes of contact allergy. As lettuce allergens and extracts are not commercially available, the allergy may be underdiagnosed. The aims of this article are to present...... person who is occupationally exposed to lettuce for longer periods, especially atopics, amateur gardeners, and persons keeping lettuce-eating pets, is potentially at risk of developing lettuce contact allergy.......Lettuce (Lactuca sativa L.) and its varieties are important vegetable crops worldwide. They are also well-known, rarely reported, causes of contact allergy. As lettuce allergens and extracts are not commercially available, the allergy may be underdiagnosed. The aims of this article are to present...... new data on lettuce contact allergy and review the literature. Lettuce is weakly allergenic, and occupational cases are mainly reported. Using aimed patch testing in Compositae-allergic patients, two recent Danish studies showed prevalence rates of positive lettuce reactions of 11% and 22...

  8. Low-cost multispectral imaging for remote sensing of lettuce health

    Science.gov (United States)

    Ren, David D. W.; Tripathi, Siddhant; Li, Larry K. B.

    2017-01-01

    In agricultural remote sensing, unmanned aerial vehicle (UAV) platforms offer many advantages over conventional satellite and full-scale airborne platforms. One of the most important advantages is their ability to capture high spatial resolution images (1-10 cm) on-demand and at different viewing angles. However, UAV platforms typically rely on the use of multiple cameras, which can be costly and difficult to operate. We present the development of a simple low-cost imaging system for remote sensing of crop health and demonstrate it on lettuce (Lactuca sativa) grown in Hong Kong. To identify the optimal vegetation index, we recorded images of both healthy and unhealthy lettuce, and used them as input in an expectation maximization cluster analysis with a Gaussian mixture model. Results from unsupervised and supervised clustering show that, among four widely used vegetation indices, the blue wide-dynamic range vegetation index is the most accurate. This study shows that it is readily possible to design and build a remote sensing system capable of determining the health status of lettuce at a reasonably low cost (lettuce growers.

  9. Proximate composition of CELSS crops grown in NASA's Biomass Production Chamber

    Science.gov (United States)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Berry, W. L.

    Edible biomass from four crops of wheat (Triticum aestivum L.), four crops of lettuce (Lactuca sativa L.), four crops of potato (Solanum tuberosum L.), and three crops of soybean (Glycine max (L.) Merr.) grown in NASA's CELSS Biomass Production Chamber were analyzed for proximate composition. All plants were grown using recirculating nutrient (hydroponic) film culture with pH and electrical conductivity automatically controlled. Temperature and humidity were controlled to near optimal levels for each species and atmospheric carbon dioxide partial pressures were maintained near 100 Pa during the light cycles. Soybean seed contained the highest percentage of protein and fat, potato tubers and wheat seed contained the highest levels of carbohydrate, and lettuce leaves contained the highest level of ash. Analyses showed values close to data published for field-grown plants with several exceptions: In comparison with field-grown plants, wheat seed had higher protein levels; soybean seed had higher ash and crude fiber levels; and potato tubers and lettuce leaves had higher protein and ash levels. The higher ash and protein levels may have been a result of the continuous supply of nutrients (e.g., potassium and nitrogen) to the plants by the recirculating hydroponic culture.

  10. Changes in the flavonoid and phenolic acid contents and antioxidant activity of red leaf lettuce (Lollo Rosso) due to cultivation under plastic films varying in ultraviolet transparency.

    Science.gov (United States)

    García-Macías, Paulina; Ordidge, Matthew; Vysini, Eleni; Waroonphan, Saran; Battey, Nicholas H; Gordon, Michael H; Hadley, Paul; John, Philip; Lovegrove, Julie A; Wagstaffe, Alexandra

    2007-12-12

    Red leaf lettuce (Lollo Rosso) was grown under three types of plastic films that varied in transparency to UV radiation (designated as UV block, UV low, and UV window). Flavonoid composition was determined by high-performance liquid chromatography (HPLC), total phenolics by the Folin-Ciocalteu assay, and antioxidant capacity by the oxygen radical absorbance capacity (ORAC) assay. Exposure to increased levels of UV radiation during cultivation caused the leaves to redden and increased concentrations of total phenols and the main flavonoids, quercetin and cyanidin glycosides, as well as luteolin conjugates and phenolic acids. The total phenol content increased from 1.6 mg of gallic acid equivalents (GAE)/g of fresh weight (FW) for lettuce grown under UV block film to 2.9 and 3.5 mg of GAE/g of FW for lettuce grown under the UV low and UV window films. The antioxidant activity was also higher in lettuce exposed to higher levels of UV radiation with ORAC values of 25.4 and 55.1 micromol of Trolox equivalents/g of FW for lettuce grown under the UV block and UV window films, respectively. The content of phenolic acids, quantified as caffeic acid, was also different, ranging from 6.2 to 11.1 micromol/g of FW for lettuce cultivated under the lowest and highest UV exposure plastic films, respectively. Higher concentrations of the flavonoid glycosides were observed with increased exposure to UV radiation, as demonstrated by the concentrations of aglycones after hydrolysis, which were cyanidin (ranging from 165 to 793 microg/g), quercetin (ranging from 196 to 880 microg/g), and luteolin (ranging from 19 to 152 microg/g). The results demonstrate the potential of the use of UV-transparent plastic as a means of increasing beneficial flavonoid content of red leaf lettuce when the crop is grown in polytunnels.

  11. Production system and harvesting stage influence on nitrate content and quality of butterhead lettuce

    Directory of Open Access Journals (Sweden)

    Siti Fairuz Yosoff

    2015-01-01

    Full Text Available Leafy vegetables such as lettuce grown under different production systems may accumulate different concentrations of nitrate which may reach to the levels potentially toxic to humans. Moreover, nitrate accumulation varies in various plant parts and physiological age of the plant. Therefore, to determine the effect of production system and harvesting stage on nitrate accumulation and quality of butterhead lettuce, a study was conducted considering two lettuce production systems namely hydroponic and organic, and four different harvesting stages such as 35, 38, 41 and 44 days after transplanting (DAT. The experimental design was complete randomized design (CRD with four replications. Hydroponic and organic systems performed similar in terms of yield, quality and nitrate content of butterhead lettuce. Delaying harvesting can not only increase yield but also can minimize nitrate accumulation and health hazard risk as well. Delay in harvesting stage may result in quality deterioration of lettuce and increased production cost. Thus, a compromise is necessary to consider 41 DAT as the optimum stage to harvest butterhead lettuce with significantly higher reduction of nitrate content in both outer adult leaf blades and young leaves of hydroponic lettuce. Fresh weight, firmness and color of butterhead lettuce at this stage were still acceptable.

  12. Selectivity of thiobencarb between two lettuce (Lactuca sativa, L.) cultivars

    International Nuclear Information System (INIS)

    Reiners, S.

    1987-01-01

    Thiobencarb [S-(4-chlorobenzyl)N,N-diethylthiocarbamate] was examined for weed control on muck grown lettuce. Weed control results were erratic though differential lettuce tolerance was observed in the field. This led to the testing of five lettuce cultivars for tolerance to the herbicide. Of the five lettuce cultivars evaluated, two were selected with the widest tolerance differences: Great Lakes 366 (GLA) (tolerant) and Dark Green Boston (BOS) (susceptible). Studies examining the mechanism of thiobencarb tolerance were conducted with these two cultivars. Within four days after the addition of thiobencarb to the nutrient solution, BOS had significant reductions in the foliar dry weight. In addition, growth abnormalities including fused leaves were observed, indicating inhibition early in leaf development. Greater amounts of 14 C-thiobencarb were absorbed from nutrient solution by BOS, likely due to a significantly greater root system at the time of treatment. The greater uptake and accumulation of 14 C-label in the leaves, as well as significantly greater amounts of unmetabolized 14 C-thiobencarb in the foliage of BOS may account for the selectivity observed. A thiobencarb sulfoxide was not identified in these studies. This indicates that the metabolism of thiobencarb in lettuce differs from other members of the thiocarbamate family of herbicides

  13. Synthesis of Pisolithus Ectomycorrhizae on Pecan Seedlings in Fumigated Soil

    Science.gov (United States)

    Donald H. Marx

    1979-01-01

    Curtis variety of pecan (Carya illinoensis) seedlings were grown for 8 months in fumigated soil infested at sowing with mycelial inoculum of Pisolithus tinctorius. Pisolithus ectomycorrhizae were formed on all inoculated seedlings and significantly improved their growth over control seedlings. Inoculated and control seedlings also formed ectomycorrhizae with naturally...

  14. Quantification of contamination of lettuce by GFP-expressing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium

    NARCIS (Netherlands)

    Franz, Eelco; Visser, Anna A; Van Diepeningen, Anne D; Klerks, Michel M; Termorshuizen, Aad J; van Bruggen, Ariena H C

    The primary objective of this study was to determine the possibility of internalization of GFP-expressing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium (S. Typhimurium) strains MAE 110 (multi-cellular morphology) and 119 (wild type morphology) into lettuce seedlings (Lactuca

  15. Impact of non-functionalized and amino-functionalized multiwall carbon nanotubes on pesticide uptake by lettuce (Lactuca sativa L.).

    Science.gov (United States)

    Hamdi, Helmi; De La Torre-Roche, Roberto; Hawthorne, Joseph; White, Jason C

    2015-03-01

    The effect of non-functionalized and amino-functionalized multiwall carbon nanotube (CNT) exposure, as well as the impact of CNT presence on coexistent pesticide accumulation, was investigated in lettuce (Lactuca sativa L.). Lettuce seeds were sown directly into CNT-amended vermiculite (1000 mg L(-1)) to monitor phytotoxicity during germination and growth. During growth, lettuce seedlings were subsequently exposed to chlordane (cis-chlordane [CS], trans-chlordane [TC] and trans-nonachlor [TN]) and p,p'-DDE (all at 100 ng/L) in the irrigation solution for a 19-d growth period. CNT exposure did not significantly influence seed germination (82-96%) or plant growth. Similarly, pesticide exposure had no impact on plant growth, total pigment production or tissue lipid peroxidation. After 19 d, the root content of total chlordane and p,p'-DDE was 390 and 73.8 µg g(-1), respectively; in plants not exposed to CNTs, the shoot levels were 1.58 and 0.40 µg g(-1), respectively. The presence and type of CNT significantly influenced pesticide availability to lettuce seedlings. Non-functionalized CNT decreased the root and shoot pesticide content by 88% and 78%, respectively, but amino-functionalized CNT effects were significantly more modest, with decreases of 57% in the roots and 23% in the shoots, respectively. The presence of humic acid completely reversed the reduced accumulation of pesticides induced by amino-functionalized CNT, likely due to strong competition over adsorption sites on the nanomaterial (NM). These findings have implications for food safety and for the use of engineered NMs in agriculture, especially with leafy vegetables.

  16. Regulation of Flavonoid Biosynthetic Genes in Germinating Arabidopsis Seedlings.

    Science.gov (United States)

    Kubasek, WL; Shirley, BW; McKillop, A; Goodman, HM; Briggs, W; Ausubel, FM

    1992-01-01

    Many higher plants, including Arabidopsis, transiently display purple anthocyanin pigments just after seed germination. We observed that steady state levels of mRNAs encoded by four flavonoid biosynthetic genes, PAL1 (encoding phenylalanine ammonia-lyase 1), CHS (encoding chalcone synthase), CHI (encoding chalcone isomerase), and DFR (encoding dihydroflavonol reductase), were temporally regulated, peaking in 3-day-old seedlings grown in continuous white light. Except for the case of PAL1 mRNA, mRNA levels for these flavonoid genes were very low in seedlings grown in darkness. Light induction studies using seedlings grown in darkness showed that PAL1 mRNA began to accumulate before CHS and CHI mRNAs, which, in turn, began to accumulate before DFR mRNA. This order of induction is the same as the order of the biosynthetic steps in flavonoid biosynthesis. Our results suggest that the flavonoid biosynthetic pathway is coordinately regulated by a developmental timing mechanism during germination. Blue light and UVB light induction experiments using red light- and dark-grown seedlings showed that the flavonoid biosynthetic genes are induced most effectively by UVB light and that blue light induction is mediated by a specific blue light receptor. PMID:12297632

  17. Use of aquatic macrophytes in substrate composition to produce moringa seedlings

    Directory of Open Access Journals (Sweden)

    Walda Monteiro Farias

    2016-03-01

    Full Text Available The use of aquatic macrophytes in substrate composition to produce seedlings of moringa is a sustainable alternative. Therefore, the objective of this research was to evaluate the development of moringa seedlings using substrates composed with aquatic macrophytes, and to determine concentrations of N, P and K in the seedlings. We used different combinations of weeds (M, manure (E and topsoil (TV to compose the substrates. The experiment was conducted in a 3 × 4 factorial in randomized arrangement with four replications. We evaluated plant height, crown diameter and stem, relative growth rate in height, canopy diameter and in stem, dry matter of aerial part and of roots, root length and root/shoot ratio, besides the content of N, P and K in seedlings. Moringa seedlings showed reduced growth when produced in substrates composed only with cattail. Water lettuce and substrates composed of 60% M + 30%E + 10 % TV and 70% M + 30% E, promoted greater nutrition and growth of moringa seedlings. The substrate 60M +30E +10TV composed by water hyacinth and cattail resulted in greater amount of P in moringa seedlings.

  18. Lettuce contact allergy.

    Science.gov (United States)

    Paulsen, Evy; Andersen, Klaus E

    2016-02-01

    Lettuce (Lactuca sativa L.) and its varieties are important vegetable crops worldwide. They are also well-known, rarely reported, causes of contact allergy. As lettuce allergens and extracts are not commercially available, the allergy may be underdiagnosed. The aims of this article are to present new data on lettuce contact allergy and review the literature. Lettuce is weakly allergenic, and occupational cases are mainly reported. Using aimed patch testing in Compositae-allergic patients, two recent Danish studies showed prevalence rates of positive lettuce reactions of 11% and 22%. The majority of cases are non-occupational, and may partly be caused by cross-reactivity. The sesquiterpene lactone mix seems to be a poor screening agent for lettuce contact allergy, as the prevalence of positive reactions is significantly higher in non-occupationally sensitized patients. Because of the easy degradability of lettuce allergens, it is recommended to patch test with freshly cut lettuce stem and supplement this with Compositae mix. As contact urticaria and protein contact dermatitis may present as dermatitis, it is important to perform prick-to-prick tests, and possibly scratch patch tests as well. Any person who is occupationally exposed to lettuce for longer periods, especially atopics, amateur gardeners, and persons keeping lettuce-eating pets, is potentially at risk of developing lettuce contact allergy. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Lettuce breeding

    Science.gov (United States)

    In the 2016-2017 period, major efforts targeted resistance to lettuce drop caused by Sclerotinia species, Verticillium wilt, Fusarium wilt, bacterial leaf spot, corky root, downy mildew, drought tolerance, lettuce aphid, tipburn, shelf-life of salad-cut lettuce, and multiple disease resistance. Resi...

  20. A model for multiseasonal spread of verticillium wilt of lettuce.

    Science.gov (United States)

    Wu, B M; Subbarao, K V

    2014-09-01

    Verticillium wilt, caused by Verticillium dahliae, is a destructive disease in lettuce, and the pathogen is seedborne. Even though maximum seed infestation rates of lettuce seed lots, it is necessary to establish acceptable contamination thresholds to prevent introduction and establishment of the pathogen in lettuce production fields. However, introduction of inoculum into lettuce fields for experimental purposes to determine its long term effects is undesirable. Therefore, we constructed a simulation model to study the spread of Verticillium wilt following pathogen introduction from seed. The model consists of four components: the first for simulating infection of host plants, the second for simulating reproduction of microsclerotia on diseased plants, the third for simulating the survival of microsclerotia, and the fourth for simulating the dispersal of microsclerotia. The simulation results demonstrated that the inoculum density-disease incidence curve parameters and the dispersal gradients affect disease spread in the field. Although a steep dispersal gradient facilitated the establishment of the disease in a new field with a low inoculum density, a long-tail gradient allowed microsclerotia to be dispersed over greater distances, promoting the disease spread in fields with high inoculum density. The simulation results also revealed the importance of avoiding successive lettuce crops in the same field, reducing survival rate of microsclerotia between crops, and the need for breeding resistance against V. dahliae in lettuce cultivars to lower the number of microsclerotia formed on each diseased plant. The simulation results, however, suggested that, even with a low seed infestation rate, the pathogen would eventually become established if susceptible lettuce cultivars were grown consecutively in the same field for many years. A threshold for seed infestation can be established only when two of the three drivers of the disease-(i) low microsclerotia production per

  1. Uptake of radiocaesium by lettuce crops: the effect of K in soil solution

    International Nuclear Information System (INIS)

    Waegeneers, N.; Camps I Vila, M.; Smolders, E.; Merckx, R.; Sauras, T.; Madoz-Escande, C.

    1998-01-01

    The effect of varying K supply on 137 Cs uptake by lettuce (Lactuca sativa, cv. Batavia, Gloire du Dauphine) was studied in solution culture, in a potted soil experiment and in a greenhouse lysimeter experiment under close-to-real conditions. Lettuce was grown for 13 days in nutrient solution spiked with 137 Cs. Treatments were four concentrations of potassium in solution (25, 50, 250, and 1000 μM). Yields were marginally affected by K supply. The 137 Cs concentration factor (CF, ml/g) decreased 66-fold in the shoot and 432-fold in the roots over the whole K concentration range. The decrease was most pronounced between 25 and 250 μM K. In a subsequent experiment, lettuce was grown for 20 days under the same climatic conditions in two sandy-foam soils (A, B) contaminated with 134 Cs. Both had similar characteristics but differed widely in K supply. Soil solution K concentrations were 100 μM (A) or 3000 μM (B). The radiocesium soil-to-plant Transfer Factor (TF, g plant dry weight / g soil) was 0.320 in soil A and 0.016 in soil B. The higher 137 Cs availability at the lower K supply (soil A) was contrasted by lower 137 Cs concentrations in soil solution of soil A than of soil B. Radiocesium transfer to lettuce grown to maturity was analysed on 5 different lysimeter soils under controlled climatic conditions. The soils were artificially contaminated with 137 Cs in 1994. The TF's varied between 0.032 and 0.191 and were not related to K concentrations in soil solution. The CF decreased about 100-fold with K concentrations increasing from 0.3 to 18 mM. Predictions of soil-to-plant transfer factors based on soil solution composition and nutrient solution results were qualitatively correct but underestimated the observed values

  2. Media Effects on Lettuce Growth in "Pillows" Designed for the VEGGIE Spaceflight Growth Chamber

    Science.gov (United States)

    Massa, Gioia; Newsham, Gerard; McCoy, LaShelle; Stutte, Gary; Wheeler, Raymond

    2012-01-01

    VEGGIE is a prototype vegetable production unit for space designed by Orbital Technologies Corporation that is being developed to fly on the International Space Station. A modular plant rooting system "pillow" is being designed to support plant growth in VEGGIE under microgravity conditions. VEGGIE pillows are small self-contained packets of media with time-release fertilizer that can wick water passively from a root mat reservoir. Seeds are planted in pillows and the entire root system of a plant is contained as the crop develops, preventing loss into the spacecraft cabin. This study compared five media types and three lettuce cultivars in pillows growing in a VEGGIE analog environment.. Media consisted of a peat-based potting mix (Fafard #2,Conrad Fafard Inc., Agawam, MA), and a calcined clay, (arcillite, 1-2 mm sifted, Turface Proleague, Profile LLC, Buffalo Grove IL) as well as three different blends of the two, 70:30, 50:50, and 30:70. Lettuce cultivars tested were 'Sierra', a bi-colored French crisp Batavia lettuce, 'Outredgeous', a red romaine lettuce and 'Flandria', a green butter head variety. Plants were grown for 28 days, harvested, biometric data was obtained, and tissue mineral analysis was performed. For all cultivars, lettuce plants grown in the media blends were more productive than those in the individual media types. All cultivars showed bell-shaped curves in response to increases in arcillite / decreases in Fafard #2 for leaf area, fresh, and dry mass. Plants in 100% Fafard #2 and in 100% arcillite were stunted, but only those in higher levels of Fafard #2 (70% and 100%) had reduced shoot percent moisture, possibly indicating that mechanisms causing stunting differed. Variation in tissue nutrient content are consistent with this, with Mg and Mn highest in plants grown in 100% Fafard and decreasing as the concentration of arcillite increased. Color also varied with media, especially in the 'Sierra' lettuce, with plants grown in increasing levels

  3. A STUDY ON THE ACCUMULATION OF PERCHLORATE IN YOUNG HEAD LETTUCE

    Science.gov (United States)

    The overall objective of this study was to demonstrate in a greenhouse study the potential for incorporation of perchlorate from aqueous solutions of 10, 50, 100, 500, 1,000, 5,000, and 10,000 ppb into an agricultural food crop (lettuce; Lactuca sativa), which is typically grown ...

  4. Effects of composted tobacco waste and farmyard manure on some soil physical properties and lettuce yield

    OpenAIRE

    Çerçioğlu, Melis; Okur, Bülent; Delibacak, Sezai; Ongun, Ali Rıza

    2008-01-01

    This research was held in Agriculture Faculty of Ege University Menemen Investigation and Practise Farmyard. Tobacco waste gathered from cigarette industry were composted and applied to the soil together with farmyard manure. lettuce (Lactuca sativa L. var. capitata) was grown as test plant. No mineral fertilizers or pestisides were applied. The effects of composted tobacco wastes and farmyard manures on soil physical properties and lettuce yield were investigated. All application...

  5. Photomodulation of strigolactone biosynthesis and accumulation during sunflower seedling growth

    Science.gov (United States)

    Bharti, Niharika; Tripathi, Smita; Bhatla, Satish Chander

    2015-01-01

    Present investigations report the presence of strigolactones (SLs) and photomodulation of their biosynthesis in sunflower seedlings (roots, cotyledons and first pair of leaves) during early phase of seedling development. Qualitative analyses and characterization by HPLC, ESI-MS and FT-IR revealed the presence of more than one type of SLs. Orobanchyl acetate was detected both in roots and leaves. Five-deoxystrigol, sorgolactone and orobanchol were exclusively detected in seedling roots. Sorgomol was detectable only in leaves. HPLC eluted fraction from seedling roots and leaves co-chromatographing with GR24 (a synthetic SL) could also bring about germination in Orobanche cernua (a weed) seeds, which are established to exhibit SL – mediated germination, thereby indicating the SL identity of the eluates using this bioassay. SLs accumulation was always more in the roots of light-grown seedlings, it being maximum at 4 d stage. Although significant activity of carotenoid cleavage dioxygenase (CCD, the enzyme critical for SL biosynthesis) was detected in 2 d old seedling roots, SLs remained undetectable in cotyledons at all stages of development and also in the roots of 2 d old light and dark-grown seedlings. Roots of light-grown seedlings showed maximum CCD activity during early (2 d) stage of development, thereby confirming photomodulation of enzyme activity. These observations indicate the migration of a probable light-sensitized signaling molecule (yet to be identified) or a SL precursor from light exposed aerial parts to the seedling roots maintained in dark. Thus, a photomodulation and migration of SL precursor/s is evident from the present work. PMID:26252191

  6. Evaluation of response of lettuce (Lactuca sativa L. to temperature and light stress

    Directory of Open Access Journals (Sweden)

    Nidal Tabit Shaban

    2016-06-01

    Full Text Available The aim of the study was to assess the effect of irrigation water temperature and shading on the rate of photosynthesis and transpiration in four varieties of lettuce (Lactuca sativa L. – green foliage (‘Salakis’ and ‘Estony’ and red foliage (‘Lollo Rossa’ and ‘Nika’. During the production of seedlings in the greenhouse, two irrigation water temperature regimes (12 and 20°C were applied. After transplanting in the field plants were grown under three lighting systems (100, 70, and 50% of lighting in the open. The rates of photosynthesis and transpiration were measured at the end of the greenhouse period and 14 days after shading in the field using a Li 6400 infrared gas analyzer. In most varieties, cooling of the irrigation water was not found to have an effect on the rate of photosynthesis. Plants of all the varieties responded to the decrease in irrigation water temperature and to strong shading by reducing transpiration and increasing the water use efficiency. The ‘Salakis’ and ‘Estony’ plants have shown the best adaptability to the changing conditions and therefore they could be used successfully in the practice of extending vegetative growth.

  7. Influence of the temporal and spatial variation of nitrate reductase, glutamine synthetase and soil composition in the N species content in lettuce (Lactuca sativa).

    Science.gov (United States)

    Pinto, Edgar; Fidalgo, Fernanda; Teixeira, Jorge; Aguiar, Ana A; Ferreira, Isabel M P L V O

    2014-04-01

    The variation of nitrate reductase (NR), glutamine synthetase (GS) and N content in lettuce was evaluated at 5 stages of lettuce growth. Soil physicochemical properties and its N content were also assessed to elucidate the soil-to-plant transfer of inorganic N and potential leaching to groundwater. A decrease of NR activity and an increase of NO3(-) and N-Kjeldahl content in lettuces were observed during plant growth, whereas GS activity and NH4(+) increased during the first few weeks of lettuce growth and then decreased. Although the temporal variation was similar in lettuces grown in different soils, quantitative differences were observed, indicating that high NO3(-) content in soil caused a higher NO3(-) accumulation in lettuce despite the higher NR activity during the initial stage of plant growth. Higher levels of NO3(-) and NH4(+) were correlated with higher levels of N-Kjeldahl in lettuce suggesting a positive effect of these N species in the biosynthesis of organic forms of N. Soil physicochemical properties influenced the mobility of inorganic N within the groundwater-soil-plant system. Sandy soils with low OM content allowed NO3(-) leaching, which was confirmed by higher NO3(-) levels in groundwater. Therefore, lettuces grown in those soils presented lower N content and the inputs of N to the environment were higher. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Enhanced Accumulation of Vitamins, Nutraceuticals and Minerals in Lettuces Associated with Arbuscular Mycorrhizal Fungi (AMF: A Question of Interest for Both Vegetables and Humans

    Directory of Open Access Journals (Sweden)

    Marouane Baslam

    2013-03-01

    Full Text Available Lettuce (Lactuca sativa L. is extensively grown and is the most widely used food crop for the called “Fourth Range” of vegetables. Lettuce exhibits healthy properties mainly due to the presence of antioxidant compounds (vitamins C and E, carotenoids, polyphenols alongside significant fibre content and useful amounts of certain minerals. Lettuce can establish a mutualistic association with arbuscular mycorrhizal fungi (AMF. The establishment of the symbiosis involves a continuous cellular and molecular dialogue between both symbionts, which includes the activation of antioxidant, phenylpropanoid or carotenoid metabolic pathways. The presence of AMF colonizing roots of greenhouse-grown lettuces can induce an accumulation of secondary metabolites, vitamins and minerals in leaves that overcome the dilution effect due to the increased size of mycorrhizal plants. Therefore, AMF would allow the intake of minerals and compounds with antioxidant properties to be enhanced without increasing the consumption of lettuce in the diet. In addition, increased quantities of secondary metabolites may help lettuce plants to withstand biotic and abiotic stresses. Our review discusses the influence exerted by several environmental factors and agronomic practices on the ability of AMF for enhancing the levels of vitamins, nutraceuticals and minerals in leaves of green and red-leaf types of lettuces.

  9. Uptake and Accumulation of Pharmaceuticals in Lettuce Under Surface and Overhead Irrigations

    Science.gov (United States)

    Bhalsod, G.; Chuang, Y. H.; Jeon, S.; Gui, W.; Li, H.; Guber, A.; Zhang, W.

    2015-12-01

    Pharmaceuticals and personal care products are being widely detected in wastewater and surface waters. As fresh water becomes scarcer, interests in using reclaimed water for crop irrigation is intensified. Since reclaimed waters often carry trace levels of pharmaceuticals, accumulation of pharmaceuticals in food crops could increase the risk of human exposure. This study aims to investigate uptake and accumulations of pharmaceuticals in greenhouse-grown lettuce under contrasting irrigation practices (i.e., overhead and surface irrigations). Lettuce was irrigated with water spiked with 11 commonly used pharmaceuticals (acetaminophen, caffeine, carbamazepine, sulfadiazine, sulfamethoxazole, carbadox, trimethoprim, lincomycin hydrochloride, oxytetracycline hydrochloride, monensin sodium, and tylosin). Weekly sampling of lettuce roots, shoots, and soils were continued for 5 weeks, and the samples were freeze dried, extracted for pharmaceuticals and analyzed by LC-MS/MS. Preliminary results indicate that higher concentrations of pharmaceuticals were found in overhead irrigated lettuce compared to surface irrigated lettuce. For carbamezapine, sulfadiazine, trimethoprim, oxytetracycline, and monensin sodium, their concentrations generally increased in lettuce shoots in the overhead treatment over time. However, acetaminophen was found at higher concentrations in both shoots and roots, indicating that acetaminophen can be easily transported in the plant system. This study provides insight on developing better strategies for using reclaimed water for crop irrigations, while minimizing the potential risks of pharmaceutical contamination of vegetables.

  10. The effect of growth conditions on flavonols and anthocyanins accumulation in green and red lettuce

    OpenAIRE

    Klaudia BRÜCKOVÁ; Oksana SYTAR; Marek ŢIVČÁK; Marian BRESTIC; Aleš LEBEDA

    2016-01-01

    The aim of the study was to investigate the effect of different growth conditions on anthocyanins and flavonols accumulation in leaves of green and red loose leaf lettuce (Lactuca sativa var. crispa). Lettuce plants were grown in three types of conditions, in greenhouse (I. variant), behind clear glass in field (II. variant) and in open field conditions (III. variant). Estimation of anthocyanins and flavonols content was done by non-destructive measurements with optical fluorescence sensor Mu...

  11. Frequency of Verticillium Species in Commercial Spinach Fields and Transmission of V. dahliae from Spinach to Subsequent Lettuce Crops.

    Science.gov (United States)

    Short, D P G; Gurung, S; Koike, S T; Klosterman, S J; Subbarao, K V

    2015-01-01

    Verticillium wilt caused by V. dahliae is a devastating disease of lettuce in California (CA). The disease is currently restricted to a small geographic area in central coastal CA, even though cropping patterns in other coastal lettuce production regions in the state are similar. Infested spinach seed has been implicated in the introduction of V. dahliae into lettuce fields but direct evidence linking this inoculum to wilt epidemics in lettuce is lacking. In this study, 100 commercial spinach fields in four coastal CA counties were surveyed to evaluate the frequency of Verticillium species recovered from spinach seedlings and the area under spinach production in each county was assessed. Regardless of the county, V. isaacii was the most frequently isolated species from spinach followed by V. dahliae and, less frequently, V. klebahnii. The frequency of recovery of Verticillium species was unrelated to the occurrence of Verticillium wilt on lettuce in the four counties but was related to the area under spinach production in individual counties. The transmission of V. dahliae from infested spinach seeds to lettuce was investigated in microplots. Verticillium wilt developed on lettuce following two or three plantings of Verticillium-infested spinach, in independent experiments. The pathogen recovered from the infected lettuce from microplots was confirmed as V. dahliae by polymerase chain reaction assays. In a greenhouse study, transmission of a green fluorescence protein-tagged mutant strain of V. dahliae from spinach to lettuce roots was demonstrated, after two cycles of incorporation of infected spinach residue into the soil. This study presents conclusive evidence that V. dahliae introduced via spinach seed can cause Verticillium wilt in lettuce.

  12. Locus-dependent selection in crop-wild hybrids of lettuce under field conditions and its implication for GM crop development

    Science.gov (United States)

    Hooftman, Danny A P; Flavell, Andrew J; Jansen, Hans; den Nijs, Hans C M; Syed, Naeem H; Sørensen, Anker P; Orozco-ter Wengel, Pablo; van de Wiel, Clemens C M

    2011-01-01

    Gene escape from crops has gained much attention in the last two decades, as transgenes introgressing into wild populations could affect the latter's ecological characteristics. However, different genes have different likelihoods of introgression. The mixture of selective forces provided by natural conditions creates an adaptive mosaic of alleles from both parental species. We investigated segregation patterns after hybridization between lettuce (Lactuca sativa) and its wild relative, L. serriola. Three generations of hybrids (S1, BC1, and BC1S1) were grown in habitats mimicking the wild parent's habitat. As control, we harvested S1 seedlings grown under controlled conditions, providing very limited possibility for selection. We used 89 AFLP loci, as well as more recently developed dominant markers, 115 retrotransposon markers (SSAP), and 28 NBS loci linked to resistance genes. For many loci, allele frequencies were biased in plants exposed to natural field conditions, including over-representation of crop alleles for various loci. Furthermore, Linkage disequilibrium was locally changed, allegedly by selection caused by the natural field conditions, providing ample opportunity for genetic hitchhiking. Our study indicates that when developing genetically modified crops, a judicious selection of insertion sites, based on knowledge of selective (dis)advantages of the surrounding crop genome under field conditions, could diminish transgene persistence. PMID:25568012

  13. Locus-dependent selection in crop-wild hybrids of lettuce under field conditions and its implication for GM crop development.

    Science.gov (United States)

    Hooftman, Danny A P; Flavell, Andrew J; Jansen, Hans; den Nijs, Hans C M; Syed, Naeem H; Sørensen, Anker P; Orozco-Ter Wengel, Pablo; van de Wiel, Clemens C M

    2011-09-01

    Gene escape from crops has gained much attention in the last two decades, as transgenes introgressing into wild populations could affect the latter's ecological characteristics. However, different genes have different likelihoods of introgression. The mixture of selective forces provided by natural conditions creates an adaptive mosaic of alleles from both parental species. We investigated segregation patterns after hybridization between lettuce (Lactuca sativa) and its wild relative, L. serriola. Three generations of hybrids (S1, BC1, and BC1S1) were grown in habitats mimicking the wild parent's habitat. As control, we harvested S1 seedlings grown under controlled conditions, providing very limited possibility for selection. We used 89 AFLP loci, as well as more recently developed dominant markers, 115 retrotransposon markers (SSAP), and 28 NBS loci linked to resistance genes. For many loci, allele frequencies were biased in plants exposed to natural field conditions, including over-representation of crop alleles for various loci. Furthermore, Linkage disequilibrium was locally changed, allegedly by selection caused by the natural field conditions, providing ample opportunity for genetic hitchhiking. Our study indicates that when developing genetically modified crops, a judicious selection of insertion sites, based on knowledge of selective (dis)advantages of the surrounding crop genome under field conditions, could diminish transgene persistence.

  14. Impact of mulches and growing season on indicator bacteria survival during lettuce cultivation.

    Science.gov (United States)

    Xu, Aixia; Buchanan, Robert L; Micallef, Shirley A

    2016-05-02

    In fresh produce production, the use of mulches as ground cover to retain moisture and control weeds is a common agricultural practice, but the influence that various mulches have on enteric pathogen survival and dispersal is unknown. The goal of this study was to assess the impact of different mulching methods on the survival of soil and epiphytic fecal indicator bacteria on organically grown lettuce during different growing seasons. Organically managed lettuce, cultivated with various ground covers--polyethylene plastic, corn-based biodegradable plastic, paper and straw mulch--and bare ground as a no-mulch control, was overhead inoculated with manure-contaminated water containing known levels of generic Escherichia coli and Enterococcus spp. Leaves and soil samples were collected at intervals over a two week period on days 0, 1, 3, 5, 7, 10 and 14, and quantitatively assessed for E. coli, fecal coliforms and Enterococcus spp. Data were analyzed using mixed models with repeated measures and an exponential decline with asymptote survival model. Indicator bacterial concentrations in the lettuce phyllosphere decreased over time under all treatments, with more rapid E. coli declines in the fall than in the spring (plettuce compared to mulches. In fall 2014, the E. coli decline rate on paper mulch-grown lettuce was higher (plettuce phyllosphere, and mulch type was a factor for fecal coliform levels (plettuce production may impact the fate of enteric bacteria in soil or on lettuce, most likely in relation to soil moisture retention, and other weather-related factors, such as temperature and rainfall. The data suggest that the time between exposure to a source of enteric bacteria and harvesting of the crop is season dependent, which has implications for determining best harvest times. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Biological Control of Lettuce Drop and Host Plant Colonization by Rhizospheric and Endophytic Streptomycetes

    Science.gov (United States)

    Chen, Xiaoyulong; Pizzatti, Cristina; Bonaldi, Maria; Saracchi, Marco; Erlacher, Armin; Kunova, Andrea; Berg, Gabriele; Cortesi, Paolo

    2016-01-01

    Lettuce drop, caused by the soil borne pathogen Sclerotinia sclerotiorum, is one of the most common and serious diseases of lettuce worldwide. Increased concerns about the side effects of chemical pesticides have resulted in greater interest in developing biocontrol strategies against S. sclerotiorum. However, relatively little is known about the mechanisms of Streptomyces spp. as biological control agents against S. sclerotiorum on lettuce. Two Streptomyces isolates, S. exfoliatus FT05W and S. cyaneus ZEA17I, inhibit mycelial growth of Sclerotinia sclerotiorum by more than 75% in vitro. We evaluated their biocontrol activity against S. sclerotiorum in vivo, and compared them to Streptomyces lydicus WYEC 108, isolated from Actinovate®. When Streptomyces spp. (106 CFU/mL) were applied to S. sclerotiorum inoculated substrate in a growth chamber 1 week prior lettuce sowing, they significantly reduced the risk of lettuce drop disease, compared to the inoculated control. Interestingly, under field conditions, S. exfoliatus FT05W and S. cyaneus ZEA17I protected lettuce from drop by 40 and 10% respectively, whereas S. lydicus WYEC 108 did not show any protection. We further labeled S. exfoliatus FT05W and S. cyaneus ZEA17I with the enhanced GFP (EGFP) marker to investigate their rhizosphere competence and ability to colonize lettuce roots using confocal laser scanning microscopy (CLSM). The abundant colonization of young lettuce seedlings by both strains demonstrated Streptomyces' capability to interact with the host from early stages of seed germination and root development. Moreover, the two strains were detected also on 2-week-old roots, indicating their potential of long-term interactions with lettuce. Additionally, scanning electron microscopy (SEM) observations showed EGFP-S. exfoliatus FT05W endophytic colonization of lettuce root cortex tissues. Finally, we determined its viability and persistence in the rhizosphere and endorhiza up to 3 weeks by quantifying its

  16. Biological control of lettuce drop and host plant colonization by rhizospheric and endophytic streptomycetes

    Directory of Open Access Journals (Sweden)

    Xiaoyulong eChen

    2016-05-01

    Full Text Available Lettuce drop, caused by the soil borne pathogen Sclerotinia sclerotiorum, is one of the most common and serious diseases of lettuce worldwide. Increased concerns about the side effects of chemical pesticides have resulted in greater interest in developing biocontrol strategies against S. sclerotiorum. However, relatively little is known about the mechanisms of Streptomyces spp. as biological control agents against S. sclerotiorum on lettuce. Two Streptomyces isolates, S. exfoliatus FT05W and S. cyaneus ZEA17I, inhibit mycelial growth of Sclerotinia sclerotiorum by more than 75% in vitro. We evaluated their biocontrol activity against S. sclerotiorum in vivo, and compared them to Streptomyces lydicus WYEC 108, isolated from Actinovate®. When Streptomyces spp. (106 CFU/mL were applied to S. sclerotiorum inoculated substrate in a growth chamber one week prior lettuce sowing, they significantly reduced the risk of lettuce drop disease, compared to the inoculated control. Interestingly, under field conditions, S. exfoliatus FT05W and S. cyaneus ZEA17I protected lettuce from drop by 40% and 10% respectively, whereas S. lydicus WYEC 108 did not show any protection. We further labeled S. exfoliatus FT05W and S. cyaneus ZEA17I with the enhanced GFP (EGFP marker to investigate their rhizosphere competence and ability to colonize lettuce roots using confocal laser scanning microscopy (CLSM. The abundant colonization of young lettuce seedlings by both strains demonstrated Streptomyces’ capability to interact with the host from early stages of seed germination and root development. Moreover, the two strains were detected also on two-week-old roots, indicating their potential of long-term interactions with lettuce. Additionally, scanning electron microscopy (SEM observations showed EGFP-S. exfoliatus FT05W endophytic colonization of lettuce root cortex tissues. Finally, we determined its viability and persistence in the rhizosphere and endorhiza up to

  17. Performance of Oak Seedlings Grown under Different Oust® XP Regimes

    Directory of Open Access Journals (Sweden)

    Andrew Self

    2014-06-01

    Full Text Available Herbaceous weed control (HWC is prescribed for growing season control of vegetative competition in hardwood afforestation attempts on former agricultural areas. Without HWC, planted seedlings often exhibit poor growth and survival. While currently employed HWC methods are proven, there is a substantial void in research comparing HWC treatments spanning multiple years. A total of 4,320 bare-root seedlings of three oak species were planted on three Mississippi sites. All sites were of comparable soils and received above average precipitation for the majority of the three-year study. Eight combinations of HWC and mechanical site preparation were utilized at each site, with 480 seedlings planted in each of the nine blocks, and a total of 1,440 seedlings per species planted across all sites. Treatments were installed on 3.1 m centers, with mechanical treatments as follows: control, subsoiling, bedding, and combination plowing. HWC treatments included one and two-year applications of Oust® XP. Treatments were applied over seedlings post-planting in 1.5 m bands, at a rate of 140.1 g product/hectare. Excepting one species, HWC dependent height or groundline diameter differences were not detected among mechanical treatments, species, HWC regime, or combinations thereof. No survival differences were observed among site preparation treatments or species. However, analysis detected a growing season/HWC treatment interaction for seedling survival.

  18. Labelling of rice seedlings and rice plants with 32P

    International Nuclear Information System (INIS)

    Achmad Nasroh, K.

    1989-01-01

    Labelling of rice seedlings and rice plants with 32 P. Labelled rice seedlings can be used to tag insect pests that feed on. Radioactivity counting of 32 P in the endosperm and in the shoot of rice seeds that soaked for 72 hours in KH 2 32 PO 4 solution of 1 μCi/ml were 29,300 and 9,500 cpm respectively. When these labelled seedlings were grown in unlabelled medium the radioactivity in the shoot increased. It was due to the 32 P that was translocated to the shoot from the endosperm. The 32 P translocation reached maximum about one week after the seedling were grown in the unlabelled medium. Labelled seedlings could also be produced by growing 5, 10 and 15 days old seedlings hydroponically in Kimura B solution containing 32 P. Ten days after growing, the radioactivity concentration of the seedlings stem reached about 115,000; 85,000 and 170,000 cpm/mg dry weight for the 5, 10 and 15 days old seedlings respectively. For the implementation of this method, 20 ml labelled Kimura B was needed for labelling of one seedling. The seedlings should be prepared in tap water. During the growth the 32 P in the labelled seedlings was distributed throughout the plant, so that new leaves and tillers became also radioactive. (author). 5 refs

  19. PRODUCTION OF LETTUCE UNDER GREEN MANURING WITH Calotropis procera IN TWO CULTIVATION SEASONS

    Directory of Open Access Journals (Sweden)

    ÊNIO GOMES FLÔR SOUZA

    2017-01-01

    Full Text Available The production of vegetable crops is characterized by intensive land use, high input demands and the requirement of strategic management adoption with an agro - ecological approach. In this study, agronomic indicators were evaluated in lettuce fertilized with different amounts of roostertree biomass; fertilizer was incorporated into the soil at distinct times and seedlings were planted in two cropping seasons (spring and autumn - winter in Serra Talhada, Pernambuco state, Brazil. The experimental design consisted of randomized complete blocks with three replications and treatments arranged in a 4 x 4 factorial scheme. The first factor was the amounts of roostertree biomass (5.4, 8.8, 12.2, and 15.6 t ha - 1 on a dry basis and the second the manure incorporation times (0, 10, 20, and 30 days before lettuce transplanting. The variables evaluated in the lettuce crop were: plant height and diameter, number of leaves per plant, productivity of green mass, and dry shoot mass. Maximum productivity and dry shoot mass were obtained using fertilization with 15.6 t ha - 1 . A synchrony between supply of nutrients by green manure and the period of maximum demand by lettuce was observed in the incorporation times of 10 (spring and 20 (autumn - winter days before transplanting. Cultivation in the spring resulted in higher vegetative growth.

  20. Postharvest transfer and survival of Salmonella enterica serotype enteritidis on living lettuce.

    Science.gov (United States)

    Waitt, J A; Kuhn, D D; Welbaum, G E; Ponder, M A

    2014-02-01

    The potential for postharvest transfer of Salmonella to 'living lettuce' is not well understood. In this study, the transfer of Salmonella enterica Enteritidis (6 log CFU g(-1) ) from worker hands or contaminated roots to leaves of living lettuce was quantified. Transfer rates of Salmonella from contaminated gloves to sequentially handled lettuce heads ranged from 94% to head 1, 82% to head 2 and 69% to head 3. On average, 2.9 ± 0.1 log CFU g(-1) (64%) Salmonella was transferred from inoculated roots to leaves resulting from typical postharvest handling activities for living lettuce. Salmonella persisted on leaves stored at recommended storage temperatures (4°C) and increased 0.5 log CFU g(-1) when stored at temperature abuse conditions (12°C). Salmonella increased 1.6 log CFU g(-1) on roots after 18-day storage at 12°C, emphasizing the need to maintain temperature control to reduce the risk of human illness. Hydroponically grown lettuce packaged in plastic clamshells with intact roots, marketed as 'living lettuce', is increasing in popularity due to its extended shelf life. This study demonstrates the transfer of Salmonella from contaminated worker hands and contaminated roots to leaves where it persisted at 4°C for 18 day. Temperature abuse (12°C) increased Salmonella on roots and leaves. These findings suggest that failure to maintain temperatures below 12°C can pose a risk for consumers purchasing living lettuce at markets where recommended storage temperatures are not maintained. © 2013 The Society for Applied Microbiology.

  1. Comparison of the microbiological quality of environmentally friendly and conventionally grown vegetables sold at retail markets in Korea.

    Science.gov (United States)

    Ryu, Jee-Hoon; Kim, Minju; Kim, Eun-Gyeong; Beuchat, Larry R; Kim, Hoikyung

    2014-09-01

    Fresh produce is usually eaten raw without cooking or heating, which may increase the probability of foodborne infection. The microbiological quality of 11 types of fresh, raw vegetables (romaine lettuce, sesame leaves, crown daisy, garlic chives, iceberg lettuce, cabbage, broccoli, leek, chili pepper, capsicum, and zucchini) purchased at retail markets in Iksan, Korea as affected by cultivation method (environmentally friendly vegetables [organic, pesticide-free, and low-pesticide vegetables] and conventionally grown vegetables) and harvest season was determined. Escherichia coli O157:H7 and Salmonella were not detected in all samples of vegetables tested. Aerobic mesophiles (>6 log cfu/g) were detected in environmentally friendly romaine lettuce and crown daisy and environmentally friendly and conventionally grown garlic chives, which also contained coliforms (>3 log cfu/g). Sesame leaf and crown daisy (regardless of cultivation method), as well as conventionally grown romaine lettuce and leek, contained >1 log cfu/g of E. coli. The overall microbiological quality of environmentally friendly and conventionally grown vegetables was not significantly different (P > 0.05). However, there were seasonal effects on populations of coliforms and generic E. coli on vegetables. The greatest numbers of microorganisms were isolated from environmentally friendly or conventionally grown vegetables purchased in winter. The vegetables, regardless of cultivation method or season, should be subjected to appropriate antimicrobial treatment to enhance their microbial safety. © 2014 Institute of Food Technologists®

  2. LETTUCE AND BROCCOLI RESPONSE AND SOIL PROPERTIES RESULTING FROM TANNERY WASTE APPLICATIONS

    Science.gov (United States)

    Broccoli (Brassica oleracea L. var. italica) and lettuce (Lactuca sativa L.) were grown on Willamette sil (Pachic Ultic Argixerolls) amended 1 and 2 yr earlier with chrome tannery wastes at rates up to 192 Mg ha to determine nutrient and trace element availability. Soils were sam...

  3. Comparative Infection Progress Analysis of Lettuce big-vein virus and Mirafiori lettuce virus in Lettuce Crops by Developed Molecular Diagnosis Techniques.

    Science.gov (United States)

    Navarro, Jose A; Botella, Francisco; Maruhenda, Antonio; Sastre, Pedro; Sánchez-Pina, M Amelia; Pallas, Vicente

    2004-05-01

    ABSTRACT Nonisotopic molecular dot blot hybridization technique and multiplex reverse transcription-polymerase chain reaction assay for the specific detection of Lettuce big-vein virus (LBVV) and Mirafiori lettuce virus (MiLV) in lettuce tissue were developed. Both procedures were suitable for the specific detection of both viruses in a range of naturally infected lettuce plants from various Spanish production areas and seven different cultivars. The study of the distribution of both viruses in the plant revealed that the highest concentration of LBVV and MiLV occurred in roots and old leaves, respectively. LBVV infection progress in a lettuce production area was faster than that observed for MiLV. In spite of different rates of virus infection progress, most lettuce plants became infected with both viruses about 100 days posttransplant. The appearance of both viruses in lettuce crops was preceded by a peak in the concentration of resting spores and zoosporangia of the fungus vector Olpidium brassicae in lettuce roots.

  4. Effect of Ionic and Chelate Assisted Hexavalent Chromium on Mung Bean Seedlings (Vigna radiata L. wilczek. var k-851 During Seedling Growth

    Directory of Open Access Journals (Sweden)

    Mohanty, Monalisa

    2013-04-01

    Full Text Available The effect of Cr+6 with and without chelating agents were assessed in mung bean seedlings grown hydroponically. It was noted that the growth parameters showed a declining trend with increasing Cr+6 concentrations without chelate application. Among the seedlings grown with chelated chromium complexes, Cr+6–DTPA (10µM showed highest growth rate of roots as well as shoots. At higher concentration of Chromium i.e. Cr+6 (100µM, there exhibited high chlorophyll content in mung bean leaves where the seedlings showed stunted growth. The seedlings treated without and with chelated chromium complexes showed increased proline content as compared to control. The enzymatic study showed that, the catalase activity was maximum in shoots as compared to roots and the reverse is true in the case of peroxidase activity i.e. the roots showed higher value than that of the shoots.

  5. Phosphorus levels in soil and lettuce production due to phosphorus fertilization

    Directory of Open Access Journals (Sweden)

    José Ricardo Mantovani

    2014-09-01

    Full Text Available The leafy vegetables are considered nutrient-demanding, but are scarce in the literature works about phosphorus fertilization. This study aimed to evaluate the effect of phosphate on the production of lettuce, content and amount of P accumulated in leaf plants, and to relate levels of P in the clayey soil with plant production. The experiment was conducted in a greenhouse in pots in a randomized block design with ten treatments and four replications. The treatments were made up of P, corresponding to 0, 50, 100, 150, 200, 300, 400, 500, 600 and 700 mg dm-3, as triple superphosphate powder. Portions of 6 dm3 of the clay soil (420 g kg-1 clay received lime, aimed at raising the V % soil to 70 %, equivalent to 20 t ha-1 of cattle manure, and the phosphate fertilizer according to the treatments, remaining incubated for about 30 days. At the end of incubation, each pot received a change of lettuce cultivar Verônica. The plant harvesting was performed 39 days after transplanting the seedlings. O P gave large increases in growth and production of lettuce, and culture responded positively to the application of high doses of the nutrient. A dose of 350 mg dm-3, equivalent to 800 kg ha-1 P2O5, was the most suitable for growing lettuce in the clay soil. In this work conditions, the phosphorus fertilizations it was necessary when the P-Mehlich contents in the clay soil were less than 75 mg dm-3.

  6. Comparative Study of Lettuce and Radish Grown Under Red and Blue Light-Emitting Diodes (LEDs) and White Fluorescent Lamps

    Science.gov (United States)

    Mickens, Matthew A.

    2012-01-01

    Growing vegetable crops in space will be an essential part of sustaining astronauts during long-term missions. To drive photosynthesis, red and blue light-emitting diodes (LEDs) have attracted attention because of their efficiency, longevity, small size, and safety. In efforts to optimize crop production, there have also been recent interests in analyzing the subtle effects of green light on plant growth, and to determine if it serves as a source of growth enhancement or suppression. A comparative study was performed on two short cycle crops of lettuce (Outredgeous) and radish (Cherry Bomb) grown under two light treatments. The first treatment being red and blue LEDs, and the second treatment consisting of white fluorescent lamps which contain a portion of green light. In addition to comparing biomass production, physiological characterizations were conducted on how the light treatments influence morphology, water use, chlorophyll content, and the production of A TP within plant tissues.

  7. Inhibitory effects of ambient levels of solar UV-A and UV-B radiation in growth of cv. New Red Fire lettuce

    International Nuclear Information System (INIS)

    Krizek, D.T.; Britz, S.J.; Mirecki, R.M.

    1998-01-01

    The influence of solar UV-A and UV-B radiation at Beltsville, MD, USA, on growth of Lactuca sativa L. (cv. New Red Fire lettuce) was examined during early summer of 1996 and 1997. Plants were grown from seed in plastic window boxes covered with Llumar to exclude UV-A and UV-B, polyester to exclude UV-B, or tefzel (1996) or teflon (1997) to transmit UV-A and UV-B radiation. After 31-34 days, plants grown in the absence of solar UV-B radiation (polyester) had 63 and 57% greater fresh weight and dry weight of tops, respectively, and 57, 72 and 47% greater dry weight of leaves, stems and roots, respectively, as compared to those grown under ambient UV-B (tefzel or teflon). Plants protected from UV-A radiation as well (Llumar) showed an additional 43 and 35% increase, respectively, in fresh and dry weight of tops and a 33 and 33% increase, respectively, in dry weight of leaves and stems, but no difference in root biomass over those grown under polyester. Excluding ambient UV-B (polyester) significantly reduced the UV absorbance of leaf extracts at 270, 300 and 330 nm (presumptive flavonoids) and the concentration of anthocyantins at 550 nm as compared to those of leaf extract from plants grown under ambient UV-A and UV-B. Additional removal of ambient UV-A (Llumar) reduced the concentration of anthocyanins, but had no further effect on UV absorbance at 270, 300 or 330 nm. These findings provide evidence that UV-B radiation is more important than UV-A radiation for flavonoid induction in this red-pigmented lettuce cultivar. Although previous workers have obtained decreases in lettuce yield under enhanced UV-B, this is the first evidence for inhibitory effects of solar UV-A and UV-B radiation on lettuce growth. (au)

  8. Inhibitory effects of ambient levels of solar UV-A and UV-B radiation in growth of cv. New Red Fire lettuce

    Energy Technology Data Exchange (ETDEWEB)

    Krizek, D.T.; Britz, S.J.; Mirecki, R.M. [Climate Stress Laboratory, Beltsville, MD (United States)

    1998-05-01

    The influence of solar UV-A and UV-B radiation at Beltsville, MD, USA, on growth of Lactuca sativa L. (cv. New Red Fire lettuce) was examined during early summer of 1996 and 1997. Plants were grown from seed in plastic window boxes covered with Llumar to exclude UV-A and UV-B, polyester to exclude UV-B, or tefzel (1996) or teflon (1997) to transmit UV-A and UV-B radiation. After 31-34 days, plants grown in the absence of solar UV-B radiation (polyester) had 63 and 57% greater fresh weight and dry weight of tops, respectively, and 57, 72 and 47% greater dry weight of leaves, stems and roots, respectively, as compared to those grown under ambient UV-B (tefzel or teflon). Plants protected from UV-A radiation as well (Llumar) showed an additional 43 and 35% increase, respectively, in fresh and dry weight of tops and a 33 and 33% increase, respectively, in dry weight of leaves and stems, but no difference in root biomass over those grown under polyester. Excluding ambient UV-B (polyester) significantly reduced the UV absorbance of leaf extracts at 270, 300 and 330 nm (presumptive flavonoids) and the concentration of anthocyantins at 550 nm as compared to those of leaf extract from plants grown under ambient UV-A and UV-B. Additional removal of ambient UV-A (Llumar) reduced the concentration of anthocyanins, but had no further effect on UV absorbance at 270, 300 or 330 nm. These findings provide evidence that UV-B radiation is more important than UV-A radiation for flavonoid induction in this red-pigmented lettuce cultivar. Although previous workers have obtained decreases in lettuce yield under enhanced UV-B, this is the first evidence for inhibitory effects of solar UV-A and UV-B radiation on lettuce growth. (au) 34 refs.

  9. The effect of growth conditions on flavonols and anthocyanins accumulation in green and red lettuce

    Directory of Open Access Journals (Sweden)

    Klaudia BRÜCKOVÁ

    2016-12-01

    Full Text Available The aim of the study was to investigate the effect of different growth conditions on anthocyanins and flavonols accumulation in leaves of green and red loose leaf lettuce (Lactuca sativa var. crispa. Lettuce plants were grown in three types of conditions, in greenhouse (I. variant, behind clear glass in field (II. variant and in open field conditions (III. variant. Estimation of anthocyanins and flavonols content was done by non-destructive measurements with optical fluorescence sensor Multiplex® 3 (Force-A, France. It was estimated that green lettuce varieties had a greater flavonols content compared to red lettuce varieties in all experimental variants. The highest level of flavonols was detected in leaves of green variety Zoltán (1.218 RU and in red lettuce had the highest amount of flavonols in variety Carmesi (1.095 RU. At the same time red lettuce varieties were characterized by higher anthocyanins content. Parameter anthocyanin index is correlated with visible red coloration of leaves. The highest content of anthocyanins was detected in variety Oakly (0.867 RU. Under the open field conditions was found statistically significant higher (P < 0.05 flavonols and anthocyanins level in both green and red lettuce leaves compared to greenhouse conditions. It may be connected with intensification of flavonoids biosynthesis and accumulation which normally stimulated by sun irradiation, especially UV-B radiation.

  10. Hydrogen sulphide improves adaptation of Zea mays seedlings to iron deficiency.

    Science.gov (United States)

    Chen, Juan; Wu, Fei-Hua; Shang, Yu-Ting; Wang, Wen-Hua; Hu, Wen-Jun; Simon, Martin; Liu, Xiang; Shangguan, Zhou-Ping; Zheng, Hai-Lei

    2015-11-01

    Hydrogen sulphide (H2S) is emerging as a potential molecule involved in physiological regulation in plants. However, whether H2S regulates iron-shortage responses in plants is largely unknown. Here, the role of H2S in modulating iron availability in maize (Zea mays L. cv Canner) seedlings grown in iron-deficient culture solution is reported. The main results are as follows: Firstly, NaHS, a donor of H2S, completely prevented leaf interveinal chlorosis in maize seedlings grown in iron-deficient culture solution. Secondly, electron micrographs of mesophyll cells from iron-deficient maize seedlings revealed plastids with few photosynthetic lamellae and rudimentary grana. On the contrary, mesophyll chloroplasts appeared completely developed in H2S-treated maize seedlings. Thirdly, H2S treatment increased iron accumulation in maize seedlings by changing the expression levels of iron homeostasis- and sulphur metabolism-related genes. Fourthly, phytosiderophore (PS) accumulation and secretion were enhanced by H2S treatment in seedlings grown in iron-deficient solution. Indeed, the gene expression of ferric-phytosiderophore transporter (ZmYS1) was specifically induced by iron deficiency in maize leaves and roots, whereas their abundance was decreased by NaHS treatment. Lastly, H2S significantly enhanced photosynthesis through promoting the protein expression of ribulose-1,5-bisphosphate carboxylase large subunit (RuBISCO LSU) and phosphoenolpyruvate carboxylase (PEPC) and the expression of genes encoding RuBISCO large subunit (RBCL), small subunit (RBCS), D1 protein (psbA), and PEPC in maize seedlings grown in iron-deficient solution. These results indicate that H2S is closely related to iron uptake, transport, and accumulation, and consequently increases chlorophyll biosynthesis, chloroplast development, and photosynthesis in plants. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. Quantification of the growth response of light quantity of greenhouse grown crops

    NARCIS (Netherlands)

    Marcelis, L.F.M.; Broekhuijsen, A.G.M.; Nijs, E.M.F.M.; Raaphorst, M.G.M.

    2006-01-01

    Growers have often assumed that a 1% increment in light results in a 1% yield increase. In this study, this rule of thumb has been evaluated for a number of greenhouse grown crops: fruit vegetables (cucumber, tomato, sweet pepper), soil grown vegetables (lettuce, radish), cut flowers (rose,

  12. AMMONIUM TOXICITY AND NITRATE RESPONSE OF AXENICALLY GROWN DACTYLORHIZA-INCARNATA SEEDLINGS

    NARCIS (Netherlands)

    DIJK, E; ECK, N

    1995-01-01

    The response to ammonium- and nitrate-nitrogen of seedlings of the calcicole orchid species Dactylorhiza incarnata (L.) Soo was tested in axenic in vitro culture of c. 3-month-old protocorms. A pronounced toxicity of ammonium ions was observed. Seedlings raised from plants of a coastal population

  13. Lettuce seed germination and root elongation toxicity evaluation of the F-Area seepline soils

    International Nuclear Information System (INIS)

    Nelson, E.A.; Westbury, H.M. Jr.

    1994-09-01

    This study is a continuation of similar studies conducted by Easton and Murphy (1993) and Loehle (1990). The objectives of these studies are to: (1) assess the toxicity of the water-soluble constituents of soil in a seepline adjacent to the F-Area Seepage Basins and (2) evaluate the effectiveness of rainwater movements in reducing the toxicity of the soil. Soils from the F-Area seepline that were found to inhibit lettuce seed germination and radical elongation in 1990 were not found to be significantly different from soils from an uncontaminated control site in this test. After six washings of the soil, the toxicity of the leachate was comparable to that of de-ionized water. This indicates that natural water movements may have rendered the F-Area seepline soils less toxic to lettuce seedlings than in previous tests

  14. Longleaf Pine Root System Development and Seedling Quality in Response to Copper Root Pruning and Cavity Size

    Science.gov (United States)

    Mary Anne Sword Sayer; Shi-Jean Susana Sung; James D. Haywood

    2011-01-01

    Cultural practices that modify root system structure in the plug of container-grown seedlings have the potential to improve root system function after planting. Our objective was to assess how copper root pruning affects the quality and root system development of longleaf pine seedlings grown in three cavity sizes in a greenhouse. Copper root pruning increased seedling...

  15. The effect of competition from neighbours on stomatal conductance in lettuce and tomato plants.

    Science.gov (United States)

    Vysotskaya, Lidiya; Wilkinson, Sally; Davies, William J; Arkhipova, Tatyana; Kudoyarova, Guzel

    2011-05-01

    Competition decreased transpiration from young lettuce plants after 2 days, before any reductions in leaf area became apparent, and stomatal conductance (g(s) ) of lettuce and tomato plants was also reduced. Stomatal closure was not due to hydraulic signals or competition for nutrients, as soil water content, leaf water status and leaf nitrate concentrations were unaffected by neighbours. Competition-induced stomatal closure was absent in an abscisic acid (ABA)-deficient tomato mutant, flacca, indicating a fundamental involvement of ABA. Although tomato xylem sap ABA concentrations were unaffected by the presence of neighbours, ABA/pH-based stomatal modulation is still likely to underlie the response to competition, as soil and xylem sap alkalization was observed in competing plants. Competition also modulated leaf ethylene production, and treatment of lettuce plants with an ethylene perception inhibitor (1-methylcyclopropene) diminished the difference in g(s) between single and competing plants grown in a controlled environment room, but increased it in plants grown in the greenhouse: ethylene altered the extent of the stomatal response to competition. Effects of competition on g(s) are discussed in terms of the detection of the absence of neighbours: increases in g(s) and carbon fixation may allow faster initial space occupancy within an emerging community/crop. © 2011 Blackwell Publishing Ltd.

  16. [Effects of LED spectrum combinations on the absorption of mineral elements of hydroponic lettuce].

    Science.gov (United States)

    Chen, Xiao-Li; Guo, Wen-Zhong; Xue, Xu-Zhang; Mmanake Beauty, Morewane

    2014-05-01

    Lettuce (Lactuca sativa) was hydroponically cultured in a completely enclosed plant factory, in which spectrum proportion-adjustable LED panels were used as sole light source for plant growth. Absorption and content of eleven mineral elements such as K, P, Ca, Mg, Na, Fe, Mn, Zn, Cu, B and Mo in Lactuca sativa under different spectral component conditions were studied by ICP -AES technology. The results showed that: (1) Single or combined spectrums corresponding to the absorbing peaks of chlorophyll a and b (450, 660 nm) could enhance the absorbing ability of roots especially for mineral elements Na, Fe, Mn, Cu and Mo, the single red spectrum had the most significant promoting effect under which contents of those four elements were respectively 7. 8, 4. 2, 4. 0 and 3. 7 times more than that under FL; (2) Absorption of K and B was the highest under FL which was 10. 309 mg g-1 and 32. 6 microg g-1 while the values decreased significantly under single or combined spectrum of red and blue; (3) Plants grown under single blue spectrum had the lowest absorption of Ca and Mg which respectively decreased by 35% and 33% than FL; (4) Lettuce grown under the spectrum combination of 30% blue and 70% red had the highest accumulations of biomass while those grown under 20% blue and 80% red had the highest accumulations of the following seven elements Ca, Mg, Na, Fe, Mn, Zn and B. The results provided theoretical basis for adjusting nutrient solution formula and selecting light spectrum of hydroponic lettuce.

  17. Allelopathic Responses of Rice Seedlings under Some Different Stresses

    Directory of Open Access Journals (Sweden)

    Tran Dang Khanh

    2018-05-01

    Full Text Available The objective of this study was to evaluate the allelopathic responses of rice seedlings under submergence stress at different temperatures (10, 25, 32, and 37 °C. The results showed that a wide range of allelopathic responses of rice seedlings depended on varieties and stress conditions, with temperature was being a key factor. It showed that the extracts of rice seedlings induced significant suppression on lettuce and radish seedling germination, but had negligible allelopathic effects on growth of barnyardgrass, whilst the emergence and growth of natural weeds was stimulated. In contrast, the root exudates of Koshihikari rice seedlings (K32 at 32 °C reduced the number of total weeds by ≈60.0% and the total dry weight of weeds by 93.0%; i.e., to a greater extent than other root exudates. Among the 13 identified phenolic acids, p-hydroxybenzoic, vanillic, syringic, sinapic and benzoic acids—at concentrations of 0.360, 0.045, 3.052, 1.309 and 5.543 μg/mL might be involved in allelopathic responses of K32, inhibiting the growth of barnyardgrass and natural weeds. Findings of the present study may provide useful information on allelopathic responses of rice under environmental stresses and thus further understand of the competitive relationships between rice and weeds under natural conditions.

  18. Qualidade de mudas de alface em função de substratos com e sem biofertilizante Quality of lettuce seedlings depending on substrates with and without biofertilizer addition

    Directory of Open Access Journals (Sweden)

    Damiana Cleuma de Medeiros

    2008-06-01

    Full Text Available Avaliou-se a qualidade de mudas de alface em função de substratos com e sem biofertilizante (aplicado aos 6; 12 e 18 dias após germinação em condições de casa-de-vegetação. O experimento foi conduzido em esquema fatorial inteiramente casualizado: 3 cultivares (Babá-de-Verão, Grand Rapids e Grandes Lagos x 3 tipos de substratos (areia lavada, composto orgânico e substrato comercial Plantmax® x 2 (com e sem biofertilizante, com quatro repetições. A avaliação foi feita aos 24 dias da germinação através de número de folhas, altura da parte aérea, comprimento da raiz, massa seca da parte aérea e massa seca da raiz. Houve efeito isolado dos fatores cultivares e substratos para número de folhas e comprimento da raiz. Houve efeito de interação cultivares x substratos para altura da parte aérea, massa seca da parte aérea e massa seca da raiz. Dentre as variáveis analisadas a cultivar Grand Rapids e o substrato composto orgânico foi a que obteve melhor resultado. Não houve influência significativa da aplicação de biofertilizante.The quality of lettuce seedlings depending on substrates and biofertilizer addition (at 6; 12 and 18 days after germination, under greenhouse conditions was evaluated. The experiment was carried out in a completely randomized factorial scheme: 3 cultivars (Babá-de-Verão, Grand Rapids and Great Lakes x 3 substrates (washed sand, organic compost and commercial substrate Plantmax® x 2 (with and without biofertilizer addition, with four replications. The evaluation was done on 24-day old seedlings through number of leaves, shoot height, root length, shoot dry mass and root dry mass. There was an isolated effect for cultivars and substrates with regard to the number of leaves and root length. There was cultivars x substrates interaction effect for shoot height, shoot dry mass and root dry mass. The best result was obtained with cultivar Grands Rapids grown in organic compost. There were no

  19. Arsenic and Lead Uptake by Vegetable Crops Grown on Historically Contaminated Orchard Soils

    Directory of Open Access Journals (Sweden)

    M. B. McBride

    2013-01-01

    Full Text Available Transfer of Pb and As into vegetables grown on orchard soils historically contaminated by Pb arsenate pesticides was measured in the greenhouse. Lettuce, carrots, green beans, and tomatoes were grown on soils containing a range of total Pb (16.5–915 mg/kg and As (6.9–211 mg/kg concentrations. The vegetables were acid-digested and analyzed for total Pb and As using ICP-mass spectrometry. Vegetable contamination was dependent on soil total Pb and As concentrations, pH, and vegetable species. Arsenic concentrations were the highest in lettuce and green beans, lower in carrots, and much lower in tomato fruit. Transfer of Pb into lettuce and beans was generally lower than that of As, and Pb and As were strongly excluded from tomato fruit. Soil metal concentrations as high as 400 mg/kg Pb and 100 mg/kg As produced vegetables with concentrations of Pb and As below the limits of international health standards.

  20. Role of benzoxazinones in allelopathy by rye (Secale cereale L.).

    Science.gov (United States)

    Barnes, J P; Putnam, A R

    1987-04-01

    Two phytotoxic compounds [2,4-dihydroxy-1,4(2H)-benzoxazin-3-one (DIBOA) and 2(3H)-benzoxazolinone (BOA)] were previously isolated and identified in 35-day-old greenhouse-grown rye shoot tissue. Both compounds were also detected by TLC in greenhouse-grown root and fieldgrown shoot tissue. The concentration of DIBOA varied in the tissues, with the greatest quantity detected in greenhouse-grown shoots. DIBOA and BOA were compared with β-phenyllactic acid (PLA) and β-hydroxybutyric acid (HBA) for activity on seed germination and seedling growth and were consistently more toxic than either compound. Dicot species tested, including lettuce (Lactuca sativa L.), tomato (Lycopersicon esculentum Mill.), and redroot pigweed (Amaranthus retroflexus L.), were 30% more sensitive than the monocots tested. Of the two benzoxazinone compounds, DIBOA was most toxic to seedling growth. DIBOA and BOA reduced chlorophyll production inChlamydomonas rheinhardtii Dangeard, by 50% at 7.5 × 10(-5) M and 1.0 × 10(-3) M, respectively. Both DIBOA and BOA inhibited emergence of barnyardgrass (Echinochloa crusgalli L. Beauv.), cress (Lepidium sativum L.), and lettuce when applied to soil, indicating their potential for allelopathic activity.

  1. Liquid chromatography-tandem mass spectrometry method for simultaneous quantification of azoxystrobin and its metabolites, azoxystrobin free acid and 2-hydroxybenzonitrile, in greenhouse-grown lettuce.

    Science.gov (United States)

    Gautam, Maheswor; Fomsgaard, Inge S

    2017-12-01

    Lettuce is an important part of the diet in Europe. The permitted levels of pesticides in lettuce are strictly regulated and there is growing urge among food safety authorities to analyse pesticide metabolites as well. Azoxystrobin is one of pesticides that is frequently detected in lettuce. Although there are several analytical methods for the determination of azoxystrobin in lettuce, a sensitive method for the determination of its metabolites in lettuce is lacking. This study aimed at developing an extraction and LC-MS/MS method for the simultaneous determination of azoxystrobin, and its metabolites azoxystrobin free acid and 2-hydroxybenzonitrile in lettuce. Accelerated solvent extraction, QuEChERS extraction, and shaking extraction were compared using various solvents. The final method consisted of shaking freeze-dried sample in 0.1% formic acid in 80% aqueous acetonitrile. The selected method was validated by spiking each analyte at 125 ng/g and 500 ng/g. The method resulted in acceptable recovery for 2-hydroxybenzonitrile, azoxystrobin free acid, and azoxystrobin, with a RSD of lettuce.

  2. Sugar maple and yellow birch seedling growth after simulated browsing.

    Science.gov (United States)

    Frederick T. Metzger

    1977-01-01

    Simulating natural damage to leaders of forest-grown seedlings of yellow birch and sugar maple resulted in no loss of vigor but a loss in net height growth. Leader elongation depended upon seedling, shoot, and bud characteristics rather than on the extent of damage.

  3. Effects of soil texture and drought stress on the uptake of antibiotics and the internalization of Salmonella in lettuce following wastewater irrigation.

    Science.gov (United States)

    Zhang, Yuping; Sallach, J Brett; Hodges, Laurie; Snow, Daniel D; Bartelt-Hunt, Shannon L; Eskridge, Kent M; Li, Xu

    2016-01-01

    Treated wastewater is expected to be increasingly used as an alternative source of irrigation water in areas facing fresh water scarcity. Understanding the behaviors of contaminants from wastewater in soil and plants following irrigation is critical to assess and manage the risks associated with wastewater irrigation. The objective of this study was to evaluate the effects of soil texture and drought stress on the uptake of antibiotics and the internalization of human pathogens into lettuce through root uptake following wastewater irrigation. Lettuce grown in three soils with variability in soil texture (loam, sandy loam, and sand) and under different levels of water stress (no drought control, mild drought, and severe drought) were irrigated with synthetic wastewater containing three antibiotics (sulfamethoxazole, lincomycin and oxytetracycline) and one Salmonella strain a single time prior to harvest. Antibiotic uptake in lettuce was compound-specific and generally low. Only sulfamethoxazole was detected in lettuce with increasing uptake corresponding to increasing sand content in soil. Increased drought stress resulted in increased uptake of lincomycin and decreased uptake of oxytetracycline and sulfamethoxazole. The internalization of Salmonella was highly dependent on the concentration of the pathogen in irrigation water. Irrigation water containing 5 Log CFU/mL Salmonella resulted in limited incidence of internalization. When irrigation water contained 8 Log CFU/mL Salmonella, the internalization frequency was significantly higher in lettuce grown in sand than in loam (p = 0.009), and was significantly higher in lettuce exposed to severe drought than in unstressed lettuce (p = 0.049). This work demonstrated how environmental factors affected the risk of contaminant uptake by food crops following wastewater irrigation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Effects of soil texture and drought stress on the uptake of antibiotics and the internalization of Salmonella in lettuce following wastewater irrigation

    International Nuclear Information System (INIS)

    Zhang, Yuping; Sallach, J. Brett; Hodges, Laurie; Snow, Daniel D.; Bartelt-Hunt, Shannon L.; Eskridge, Kent M.; Li, Xu

    2016-01-01

    Treated wastewater is expected to be increasingly used as an alternative source of irrigation water in areas facing fresh water scarcity. Understanding the behaviors of contaminants from wastewater in soil and plants following irrigation is critical to assess and manage the risks associated with wastewater irrigation. The objective of this study was to evaluate the effects of soil texture and drought stress on the uptake of antibiotics and the internalization of human pathogens into lettuce through root uptake following wastewater irrigation. Lettuce grown in three soils with variability in soil texture (loam, sandy loam, and sand) and under different levels of water stress (no drought control, mild drought, and severe drought) were irrigated with synthetic wastewater containing three antibiotics (sulfamethoxazole, lincomycin and oxytetracycline) and one Salmonella strain a single time prior to harvest. Antibiotic uptake in lettuce was compound-specific and generally low. Only sulfamethoxazole was detected in lettuce with increasing uptake corresponding to increasing sand content in soil. Increased drought stress resulted in increased uptake of lincomycin and decreased uptake of oxytetracycline and sulfamethoxazole. The internalization of Salmonella was highly dependent on the concentration of the pathogen in irrigation water. Irrigation water containing 5 Log CFU/mL Salmonella resulted in limited incidence of internalization. When irrigation water contained 8 Log CFU/mL Salmonella, the internalization frequency was significantly higher in lettuce grown in sand than in loam (p = 0.009), and was significantly higher in lettuce exposed to severe drought than in unstressed lettuce (p = 0.049). This work demonstrated how environmental factors affected the risk of contaminant uptake by food crops following wastewater irrigation. - Highlights: • Higher sand content in soil caused higher internalization of sulfamethoxazole and Salmonella in lettuce. • Drought

  5. A mixed-model QTL analysis for salt tolerance in seedlings of crop-wild hybrids of lettuce

    NARCIS (Netherlands)

    Wei, Z.; Julkowska, M.M.; Laloë, J.O.; Hartman, Y.; de Boer, G.J.; Michelmore, R.W.; van Tienderen, P.H.; Testerink, C.; Schranz, M.E.

    2014-01-01

    Cultivated lettuce is more sensitive to salinity stress than its wild progenitor species potentially due to differences in root architecture and/or differential uptake and accumulation of sodium. We have identified quantitative trait locis (QTLs) associated with salt-induced changes in root system

  6. Dynamics of nonpersistent aphid-borne viruses in lettuce crops covered with UV-absorbing nets.

    Science.gov (United States)

    Legarrea, S; Betancourt, M; Plaza, M; Fraile, A; García-Arenal, F; Fereres, A

    2012-04-01

    Aphid-transmitted viruses frequently cause severe epidemics in lettuce grown under Mediterranean climates. Spatio-temporal dynamics of aphid-transmitted viruses and its vector were studied on lettuce (Lactuca sativa L.) grown under tunnels covered by two types of nets: a commercial UV-absorbing net (Bionet) and a Standard net. A group of plants infected by Cucumber mosaic virus (CMV, family Bromoviridae, genus Cucumovirus) and Lettuce mosaic virus (LMV, family Potyviridae, genus Potyvirus) was transplanted in each plot. The same virus-infected source plants were artificially infested by the aphid Macrosiphum euphorbiae (Thomas). Secondary spread of insects was weekly monitored and plants were sampled for the detection of viruses every two weeks. In 2008, the infection rate of both CMV and LMV were lower under the Bionet than under the Standard cover, probably due to the lower population density and lower dispersal rate achieved by M. euphorbiae. However, during spring of 2009, significant differences in the rate of infection between the two covers were only found for LMV six weeks after transplant. The spatial distribution of the viruses analysed by SADIE methodology was "at random", and it was not associated to the spatial pattern of the vector. The results obtained are discussed analyzing the wide range of interactions that occurred among UV-radiation, host plant, viruses, insect vector and environmental conditions. Our results show that UV-absorbing nets can be recommended as a component of an integrated disease management program to reduce secondary spread of lettuce viruses, although not as a control measure on its own. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Development of marker-free transgenic lettuce resistant to Mirafiori lettuce big-vein virus.

    Science.gov (United States)

    Kawazu, Yoichi; Fujiyama, Ryoi; Imanishi, Shunsuke; Fukuoka, Hiroyuki; Yamaguchi, Hirotaka; Matsumoto, Satoru

    2016-10-01

    Lettuce big-vein disease caused by Mirafiori lettuce big-vein virus (MLBVV) is found in major lettuce production areas worldwide, but highly resistant cultivars have not yet been developed. To produce MLBVV-resistant marker-free transgenic lettuce that would have a transgene with a promoter and terminator of lettuce origin, we constructed a two T-DNA binary vector, in which the first T-DNA contained the selectable marker gene neomycin phosphotransferase II, and the second T-DNA contained the lettuce ubiquitin gene promoter and terminator and inverted repeats of the coat protein (CP) gene of MLBVV. This vector was introduced into lettuce cultivars 'Watson' and 'Fuyuhikari' by Agrobacterium tumefaciens-mediated transformation. Regenerated plants (T0 generation) that were CP gene-positive by PCR analysis were self-pollinated, and 312 T1 lines were analyzed for resistance to MLBVV. Virus-negative plants were checked for the CP gene and the marker gene, and nine lines were obtained which were marker-free and resistant to MLBVV. Southern blot analysis showed that three of the nine lines had two copies of the CP gene, whereas six lines had a single copy and were used for further analysis. Small interfering RNAs, which are indicative of RNA silencing, were detected in all six lines. MLBVV infection was inhibited in all six lines in resistance tests performed in a growth chamber and a greenhouse, resulting in a high degree of resistance to lettuce big-vein disease. Transgenic lettuce lines produced in this study could be used as resistant cultivars or parental lines for breeding.

  8. The development of an economic threshold for Nasonovia ribisnigri (Hemiptera: Aphididae) on lettuce in central Spain.

    Science.gov (United States)

    Morales, Ignacio; Diaz, Beatriz María; Hermoso de Mendoza, Alfonso; Nebreda, Miguel; Fereres, Alberto

    2013-04-01

    This study reports economic thresholds for the lettuce aphid Nasonovia ribisnigri (Mosley), based exclusively on cosmetic damage, that is, presence or absence of aphids at harvest time. Field trials were conducted in La Poveda Experimental Farm, Madrid (Spain) during autumn (2004 and 2005) and spring (2005 and 2006). Plants were arranged in plots and just before the formation of lettuce hearts they were infested with different densities of N. ribisnigri. Two days later, half of each plot was treated with tau-fluvalinate (Klartan24AF) and the other half remained as an untreated control. Economic thresholds were obtained from nonlinear regressions calculated between the percentage of commercial plants at the end of the crop cycle for both, treated and untreated semiplots, and the different initial densities of N. ribisnigri per plant. Two criteria were used to consider a commercial lettuce plant: a conservative estimate (0 aphids/plant) and a lax one (aphids/plant). Thus, an economic threshold was established for each season and criterium. The economic thresholds that were obtained with the most and least conservative criteria were in spring 0.06 and 0.12 aphids per plant, and in autumn 0.07 and 0.13 aphids per plant, respectively. These results show that to avoid cosmetic damage, insecticide sprays are required when a very low aphid density is detected in lettuce seedlings soon after transplant.

  9. Arum-type of arbuscular mycorrhizae, dark septate endophytes and Olpidium spp. in fine roots of container-grown seedlings of Sorbus torminalis (Rosaceae

    Directory of Open Access Journals (Sweden)

    Roman M. Bzdyk

    2016-06-01

    Full Text Available The aim of this study was to determine the mycorrhizal status of nursery seedlings of the wild service tree (Sorbus torminalis, which belongs to the Rosaceae family. Its mycorrhizal associations are still fragmentarily known, and data from the few existing studies indicate that it forms ectomycorrhizal symbiosis (ECM. We analyzed the degree of mycorrhizal colonization of thirty 2-year-old container-grown S. torminalis nursery seedlings, which belonged to three single-tree progenies. The roots were dominated by arbuscular mycorrhizae (AM, with the morphology of the Arum-type containing arbuscules, vesicles and hyphae; however, no ECM structures were found. The degree of root colonization of the analyzed seedlings by AM fungi was 83.6% and did not differ significantly between the three single-tree progenies. In addition to AM, structures of dark septate endophytes (0.7% and sporangia of Olpidium spp. (1.1% were found in wild service tree roots. In agreement with previous studies, we confirmed arbuscular mycorrhizae for S. torminalis. Moreover, this is the first report that roots of this Sorbus species show the Arum-type morphology of AM and are associated with Olpidium species.

  10. Characterization of copper toxicity in letttuce seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Mukherji, S; Gupta, B D

    1972-01-01

    Information on the effects of toxic concentration of cupric sulphate on the growth of lettuce (Lactuca sativa) seedlings is provided. Root growth is completely inhibited at 5 x 10/sup -2/ M and germination stops altogether at 10/sup -1/ M. The relative inhibition of root growth is stronger than that of hypocotyl growth. Various metabolites and hormones are partially capable of relieving copper inhibition. Catalase, peroxidase and IAA-oxidase activity shows increments directly proportional to the concentration of copper. It is obvious that growth is inversely proportional to enzyme activity. The increased level of these enzymes is probably due to an accelerated protein synthesis.

  11. Lettuce flavonoids screening and phenotyping by chlorophyll fluorescence excitation ratio.

    Science.gov (United States)

    Zivcak, Marek; Brückova, Klaudia; Sytar, Oksana; Brestic, Marian; Olsovska, Katarina; Allakhverdiev, Suleyman I

    2017-06-01

    Environmentally induced variation and the genotypic differences in flavonoid and phenolic content in lettuce can be reliably detected using the appropriate parameters derived from the records of rapid non-invasive fluorescence technique. The chlorophyll fluorescence excitation ratio method was designed as a rapid and non-invasive tool to estimate the content of UV-absorbing phenolic compounds in plants. Using this technique, we have assessed the dynamics of accumulation of flavonoids related to developmental changes and environmental effects. Moreover, we have tested appropriateness of the method to identify the genotypic differences and fluctuations in total phenolics and flavonoid content in lettuce. Six green and two red genotypes of lettuce (Lactuca sativa L.) grown in pots were exposed to two different environments for 50 days: direct sunlight (UV-exposed) and greenhouse conditions (low UV). The indices based on the measurements of chlorophyll fluorescence after red, green and UV excitation indicated increase of the content of UV-absorbing compounds and anthocyanins in the epidermis of lettuce leaves. In similar, the biochemical analyses performed at the end of the experiment confirmed significantly higher total phenolic and flavonoid content in lettuce plants exposed to direct sun compared to greenhouse conditions and in red compared to green genotypes. As the correlation between the standard fluorescence indices and the biochemical records was negatively influenced by the presence of red genotypes, we proposed the use of a new parameter named Modified Flavonoid Index (MFI) taking into an account both absorbance changes due to flavonol and anthocyanin content, for which the correlation with flavonoid and phenolic content was relatively good. Thus, our results confirmed that the fluorescence excitation ratio method is useful for identifying the major differences in phenolic and flavonoid content in lettuce plants and it can be used for high-throughput pre

  12. Comparative Study of Lettuce and Radish Grown Under Red and Blue LEDs and White Fluorescent Lamps

    Science.gov (United States)

    Mickens, Matthew A.; Massa, Gioia; Newsham, Gerard; Wheeler, Raymond; Birmele, Michele

    2016-01-01

    Growing vegetable crops in space will be an essential part of sustaining astronauts during long-range missions. To drive photosynthesis, red and blue light-emitting diodes (LEDs) have attracted attention because of their efficiency, longevity, small size, and safety. In efforts to optimize crop yield, there is also recent interest in analyzing the subtle effects of additional wavelengths on plant growth. For instance, since plants often look purplish gray under red and blue LEDs, the addition of green light allows easy recognition of disease and the assessment of plant health status. However, it is important to know if wavelengths outside the traditional red and blue wavebands have a direct effect on enhancing or hindering the mechanisms involved in plant growth. In this experiment, a comparative study was performed on two short cycle crops of red romaine lettuce (Lactuca sativa cv. "Outredgeous") and radish (Raphanus sativa cv. 'Cherry Bomb'), which were grown under two light treatments. The first treatment being red (630 nm) and blue (450 nm) LEDs alone, while the second treatment consisted of daylight tri-phosphor fluorescent lamps (CCT approximately 5000 K) at equal photosynthetic photon flux (PPF). The treatment effects were evaluated by measuring the fresh biomass produced, plant morphology and leaf dimensions, leaf chlorophyll content, and adenosine triphosphate (ATP) within plant leaf/storage root tissues.

  13. Soil Type Dependent Rhizosphere Competence and Biocontrol of Two Bacterial Inoculant Strains and Their Effects on the Rhizosphere Microbial Community of Field-Grown Lettuce

    Science.gov (United States)

    Schreiter, Susanne; Sandmann, Martin; Smalla, Kornelia; Grosch, Rita

    2014-01-01

    Rhizosphere competence of bacterial inoculants is assumed to be important for successful biocontrol. Knowledge of factors influencing rhizosphere competence under field conditions is largely lacking. The present study is aimed to unravel the effects of soil types on the rhizosphere competence and biocontrol activity of the two inoculant strains Pseudomonas jessenii RU47 and Serratia plymuthica 3Re4-18 in field-grown lettuce in soils inoculated with Rhizoctonia solani AG1-IB or not. Two independent experiments were carried out in 2011 on an experimental plot system with three soil types sharing the same cropping history and weather conditions for more than 10 years. Rifampicin resistant mutants of the inoculants were used to evaluate their colonization in the rhizosphere of lettuce. The rhizosphere bacterial community structure was analyzed by denaturing gradient gel electrophoresis of 16S rRNA gene fragments amplified from total community DNA to get insights into the effects of the inoculants and R. solani on the indigenous rhizosphere bacterial communities. Both inoculants showed a good colonization ability of the rhizosphere of lettuce with more than 106 colony forming units per g root dry mass two weeks after planting. An effect of the soil type on rhizosphere competence was observed for 3Re4-18 but not for RU47. In both experiments a comparable rhizosphere competence was observed and in the presence of the inoculants disease symptoms were either significantly reduced, or at least a non-significant trend was shown. Disease severity was highest in diluvial sand followed by alluvial loam and loess loam suggesting that the soil types differed in their conduciveness for bottom rot disease. Compared to effect of the soil type of the rhizosphere bacterial communities, the effects of the pathogen and the inoculants were less pronounced. The soil types had a surprisingly low influence on rhizosphere competence and biocontrol activity while they significantly affected

  14. Soil type dependent rhizosphere competence and biocontrol of two bacterial inoculant strains and their effects on the rhizosphere microbial community of field-grown lettuce.

    Directory of Open Access Journals (Sweden)

    Susanne Schreiter

    Full Text Available Rhizosphere competence of bacterial inoculants is assumed to be important for successful biocontrol. Knowledge of factors influencing rhizosphere competence under field conditions is largely lacking. The present study is aimed to unravel the effects of soil types on the rhizosphere competence and biocontrol activity of the two inoculant strains Pseudomonas jessenii RU47 and Serratia plymuthica 3Re4-18 in field-grown lettuce in soils inoculated with Rhizoctonia solani AG1-IB or not. Two independent experiments were carried out in 2011 on an experimental plot system with three soil types sharing the same cropping history and weather conditions for more than 10 years. Rifampicin resistant mutants of the inoculants were used to evaluate their colonization in the rhizosphere of lettuce. The rhizosphere bacterial community structure was analyzed by denaturing gradient gel electrophoresis of 16S rRNA gene fragments amplified from total community DNA to get insights into the effects of the inoculants and R. solani on the indigenous rhizosphere bacterial communities. Both inoculants showed a good colonization ability of the rhizosphere of lettuce with more than 10(6 colony forming units per g root dry mass two weeks after planting. An effect of the soil type on rhizosphere competence was observed for 3Re4-18 but not for RU47. In both experiments a comparable rhizosphere competence was observed and in the presence of the inoculants disease symptoms were either significantly reduced, or at least a non-significant trend was shown. Disease severity was highest in diluvial sand followed by alluvial loam and loess loam suggesting that the soil types differed in their conduciveness for bottom rot disease. Compared to effect of the soil type of the rhizosphere bacterial communities, the effects of the pathogen and the inoculants were less pronounced. The soil types had a surprisingly low influence on rhizosphere competence and biocontrol activity while they

  15. Soil type dependent rhizosphere competence and biocontrol of two bacterial inoculant strains and their effects on the rhizosphere microbial community of field-grown lettuce.

    Science.gov (United States)

    Schreiter, Susanne; Sandmann, Martin; Smalla, Kornelia; Grosch, Rita

    2014-01-01

    Rhizosphere competence of bacterial inoculants is assumed to be important for successful biocontrol. Knowledge of factors influencing rhizosphere competence under field conditions is largely lacking. The present study is aimed to unravel the effects of soil types on the rhizosphere competence and biocontrol activity of the two inoculant strains Pseudomonas jessenii RU47 and Serratia plymuthica 3Re4-18 in field-grown lettuce in soils inoculated with Rhizoctonia solani AG1-IB or not. Two independent experiments were carried out in 2011 on an experimental plot system with three soil types sharing the same cropping history and weather conditions for more than 10 years. Rifampicin resistant mutants of the inoculants were used to evaluate their colonization in the rhizosphere of lettuce. The rhizosphere bacterial community structure was analyzed by denaturing gradient gel electrophoresis of 16S rRNA gene fragments amplified from total community DNA to get insights into the effects of the inoculants and R. solani on the indigenous rhizosphere bacterial communities. Both inoculants showed a good colonization ability of the rhizosphere of lettuce with more than 10(6) colony forming units per g root dry mass two weeks after planting. An effect of the soil type on rhizosphere competence was observed for 3Re4-18 but not for RU47. In both experiments a comparable rhizosphere competence was observed and in the presence of the inoculants disease symptoms were either significantly reduced, or at least a non-significant trend was shown. Disease severity was highest in diluvial sand followed by alluvial loam and loess loam suggesting that the soil types differed in their conduciveness for bottom rot disease. Compared to effect of the soil type of the rhizosphere bacterial communities, the effects of the pathogen and the inoculants were less pronounced. The soil types had a surprisingly low influence on rhizosphere competence and biocontrol activity while they significantly affected

  16. Manipulation of Contents of Nitrate, Phenolic Acids, Chlorophylls, and Carotenoids in Lettuce (Lactuca sativa L.) via Contrasting Responses to Nitrogen Fertilizer When Grown in a Controlled Environment.

    Science.gov (United States)

    Qadir, Othman; Siervo, Mario; Seal, Chris J; Brandt, Kirsten

    2017-11-22

    This study aimed to use different nitrogen fertilizer regimes to produce Butterhead lettuce with such large differences in nitrate content that they could be used as treatment and placebo to study the effect of inorganic nitrate on human health. Plants were grown under controlled conditions at 27/23 °C day/night with a relatively low photosynthetically active radiation (PAR) of 150 μmol m -2 s -1 for 14 h day -1 and nitrogen supplies ranging from 26 to 154 ppm of N as ammonium nitrate in the fertigation solution. This resulted in contrasting high (∼1078 mg nitrate 100 g -1 FW) or low (∼6 mg 100 g -1 ) nitrate contents in the leaves. Contents of carotenoids and chlorophylls in fresh weight did not differ significantly between the highest and the lowest N-supply levels. However, increased nitrogen supply reduced contents of phenolic compounds from 154 to 22 mg 100 g -1 FW, dry matter content from 8.9% to 4.6%, and fresh weight per plant from 108.52 to 47.57 g/plant FW (all P < 0.001). Thus, while fertilizer treatments can provide lettuce with substantially different nitrate contents, maintaining similar pigment contents (color), they also strongly influence the contents of phenolic acids and flavones.

  17. Fate and Phytotoxicity of CeO2 Nanoparticles on Lettuce Cultured in the Potting Soil Environment.

    Science.gov (United States)

    Gui, Xin; Zhang, Zhiyong; Liu, Shutong; Ma, Yuhui; Zhang, Peng; He, Xiao; Li, Yuanyuan; Zhang, Jing; Li, Huafen; Rui, Yukui; Liu, Liming; Cao, Weidong

    2015-01-01

    Cerium oxide nanoparticles (CeO2 NPs) have been shown to have significant interactions in plants. Previous study reported the specific-species phytotoxicity of CeO2 NPs by lettuce (Lactuca sativa), but their physiological impacts and vivo biotransformation are not yet well understood, especially in relative realistic environment. Butterhead lettuce were germinated and grown in potting soil for 30 days cultivation with treatments of 0, 50, 100, 1000 mg CeO2 NPs per kg soil. Results showed that lettuce in 100 mg·kg-1 treated groups grew significantly faster than others, but significantly increased nitrate content. The lower concentrations treatment had no impact on plant growth, compared with the control. However, the higher concentration treatment significantly deterred plant growth and biomass production. The stress response of lettuce plants, such as Superoxide dismutase (SOD), Peroxidase (POD), Malondialdehyde(MDA) activity was disrupted by 1000 mg·kg-1 CeO2 NPs treatment. In addition, the presence of Ce (III) in the roots of butterhead lettuce explained the reason of CeO2 NPs phytotoxicity. These findings demonstrate CeO2 NPs modification of nutritional quality, antioxidant defense system, the possible transfer into the food chain and biotransformation in vivo.

  18. Fate and Phytotoxicity of CeO2 Nanoparticles on Lettuce Cultured in the Potting Soil Environment.

    Directory of Open Access Journals (Sweden)

    Xin Gui

    Full Text Available Cerium oxide nanoparticles (CeO2 NPs have been shown to have significant interactions in plants. Previous study reported the specific-species phytotoxicity of CeO2 NPs by lettuce (Lactuca sativa, but their physiological impacts and vivo biotransformation are not yet well understood, especially in relative realistic environment. Butterhead lettuce were germinated and grown in potting soil for 30 days cultivation with treatments of 0, 50, 100, 1000 mg CeO2 NPs per kg soil. Results showed that lettuce in 100 mg·kg-1 treated groups grew significantly faster than others, but significantly increased nitrate content. The lower concentrations treatment had no impact on plant growth, compared with the control. However, the higher concentration treatment significantly deterred plant growth and biomass production. The stress response of lettuce plants, such as Superoxide dismutase (SOD, Peroxidase (POD, Malondialdehyde(MDA activity was disrupted by 1000 mg·kg-1 CeO2 NPs treatment. In addition, the presence of Ce (III in the roots of butterhead lettuce explained the reason of CeO2 NPs phytotoxicity. These findings demonstrate CeO2 NPs modification of nutritional quality, antioxidant defense system, the possible transfer into the food chain and biotransformation in vivo.

  19. Resistance to lettuce aphid (Nasonovia ribisnigri) biotype 0 in wild lettuce accessions PI 491093 and PI 274378

    Science.gov (United States)

    Lettuce aphid, Nasonovia ribisnigri Mosley (Homoptera : Aphididae), is a major insect pest of lettuce, Lactuca sativa L, in many commercial lettuce productions areas around the world. Resistance to lettuce aphid was first reported in Lactuca virosa L. accession IVT 280 and characterized as complete,...

  20. IMPROVED METHODS OF OBTAINING PEPPER SEEDLINGS

    OpenAIRE

    Florina Uleanu

    2012-01-01

    This paper refers to the effect of different types of pots on the level of growth and development of the pepper seedlings in order to clarify the influences caused by use of different recipes transplanters pots. Different biocomposites from renewable resources biodegradable nutritive support were studied. Seedlings were grown in 4 variants of pots M1 (V1), M2 (V2), M3 (V3) and jiffy- pots (V4). The height of the aerial part varied from 14.5 (V1) to 17.4 cm (V4), whereas the root length varied...

  1. Differential radiosensitivity of seeds, seedlings and callus cultures of Petunia inflata

    International Nuclear Information System (INIS)

    Bapat, V.A.; Rao, P.S.

    1976-01-01

    A comparative study of the effects of γ-irradiation on seeds, seedlings and callus cultures of Petunia inflata showed striking differences in radiosensitivity as reflected in differences in mean fresh and dry weights, seedling height and morphology. Seeds subjected to low doses (4-6 kR) of irradiation showed stimulation of seedling height. Direct exposure of seedlings to high doses (10 kR) of irradiation caused inhibition in their development. Callus cultures, however, were more radioresistant compared to seeds and seedlings. Tissues grown on either an irradiated nutrient medium or on a medium in which sucrose alone had been irradiated, showed a marked inhibition in their growth potential

  2. Effect of corn steep liquor on lettuce root rot (Fusarium oxysporum f.sp. lactucae) in hydroponic cultures.

    Science.gov (United States)

    Chinta, Yufita D; Kano, Kazuki; Widiastuti, Ani; Fukahori, Masaru; Kawasaki, Shizuka; Eguchi, Yumi; Misu, Hideyuki; Odani, Hiromitsu; Zhou, Songying; Narisawa, Kazuhiko; Fujiwara, Kazuki; Shinohara, Makoto; Sato, Tatsuo

    2014-08-01

    Recent reports indicate that organic fertilisers have a suppressive effect on the pathogens of plants grown under hydroponic systems. Furthermore, microorganisms exhibiting antagonistic activity to diseases have been observed in organic hydroponic systems. This study evaluated the effect of corn steep liquor (CSL) on controlling lettuce root rot disease [Fusarium oxysporum f.sp. lactucae (FOL)] in a hydroponic system. The effect of CSL and Otsuka A (a chemical fertiliser) on the inhibition of FOL in terms of mycelial growth inhibition was tested in vivo. Addition of CSL suppressed FOL infection rates. CSL inhibited FOL infection by 26.3-42.5% from 2 days after starting incubation. In comparison, Otsuka A inhibited FOL growth by 5.5-19.4%. In addition, four of 10 bacteria isolated from the nutrient media containing CSL exhibited inhibition zones preventing FOL mycelial growth. We found that CSL suppressed FOL in lettuce via its antifungal and biostimulatory effects. We suggest that activation of beneficial microorganisms present in CSL may be used to decrease lettuce root rot disease and contribute to lettuce root growth. © 2014 Society of Chemical Industry.

  3. Evaluation of sanitary quality of lettuce (Lactuca sativa, L. irrigated with reused water in comparison with commercialized lettuce

    Directory of Open Access Journals (Sweden)

    Claudinei Fonseca Souza

    2011-08-01

    Full Text Available Inadequate use of water resources reduces their availability and therefore, research focused on their reutilization is required. This work evaluated the sanitary quality of lettuce irrigated with reused water in comparison with samples of lettuce commercialized in Taubaté (SP market. An experiment was developed in a greenhouse with three beds of lettuce irrigated with reused water and three beds of lettuce irrigated with urban water supply. After lettuce biological cycle had been completed, lettuce samples were collected from the beds (irrigated and non-irrigated with reused water and from samples of lettuce commercialized in the city market that were analyzed in the laboratory. The analyses were done using the multiple tubes methodology. The results showed that the samples from lettuce irrigated with urban water supply were not contaminated by either total or thermotolerant coliforms while samples of irrigated lettuce with reused water were contaminated by total coliforms. Samples from commercialized lettuce were contaminated by both kinds of coliforms. Results indicated that the application of reused water for agricultural purposes should occur only after carefully treatment to allow a safe use and to contribute to the water use sustainability.

  4. Growing container seedlings: Three considerations

    Science.gov (United States)

    Kas Dumroese; Thomas D. Landis

    2015-01-01

    The science of growing reforestation and conservation plants in containers has continually evolved, and three simple observations may greatly improve seedling quality. First, retaining stock in its original container for more than one growing season should be avoided. Second, strongly taprooted species now being grown as bareroot stock may be good candidates...

  5. Physiological and foliar injury responses of Prunus serotina, Fraxinus americana, and Acer rubrum seedlings to varying soil moisture and ozone

    International Nuclear Information System (INIS)

    Schaub, M.; Skelly, J.M.; Steiner, K.C.; Davis, D.D.; Pennypacker, S.P.; Zhang, J.; Ferdinand, J.A.; Savage, J.E.; Stevenson, R.E.

    2003-01-01

    High soil water availability favors ozone uptake, increases foliar injury, and exacerbates the negative ozone effect on gas exchange of seedlings of deciduous tree species. - Sixteen black cherry (Prunus serotina, Ehrh.), 10 white ash (Fraxinus americana, L.) and 10 red maple (Acer rubrum, L.) 1-year old seedlings were planted per plot in 1997 on a former nursery bed within 12 open-top chambers and six open plots. Seedlings were exposed to three different ozone scenarios (ambient air: 100% O 3 ; non-filtered air: 98% ambient O 3 ; charcoal-filtered air: 50% ambient O 3 ) within each of two different water regimes (nine plots irrigated, nine plots non-irrigated) during three growing seasons. During the 1998 and 1999 growing season, leaf gas exchange, plant water relations, and foliar injury were measured. Climatic data, ambient- and chamber-ozone-concentrations were monitored. We found that seedlings grown under irrigated conditions had similar (in 1998) but significantly higher gas exchange rates (in 1999) than seedlings grown within non-irrigated plots among similar ozone exposures. Cherry and ash had similar ozone uptake but cherry developed more ozone-induced injury (<34% affected leaf area, LAA) than ash (<5% LAA), while maple rarely showed foliar injury, indicating the species differed in ozone sensitivity. Significantly more severe injury on seedlings grown under irrigated conditions than seedlings grown under non-irrigated conditions demonstrated that soil moisture altered seedling responses to ambient ozone exposures

  6. Adaptive Response of Listeria monocytogenes to Heat, Salinity and Low pH, after Habituation on Cherry Tomatoes and Lettuce Leaves.

    Science.gov (United States)

    Poimenidou, Sofia V; Chatzithoma, Danai-Natalia; Nychas, George-John; Skandamis, Panagiotis N

    2016-01-01

    Pathogens found on fresh produce may encounter low temperatures, high acidity and limited nutrient availability. The aim of this study was to evaluate the effect of habituation of Listeria monocytogenes on cherry tomatoes or lettuce leaves on its subsequent response to inhibitory levels of acid, osmotic and heat stress. Habituation was performed by inoculating lettuce coupons, whole cherry tomatoes or tryptic soy broth (TSB) with a three-strains composite of L. monocytogenes, which were further incubated at 5°C for 24 hours or 5 days. Additionally, cells grown overnight in TSB supplemented with 0.6% yeast extract (TSBYE) at 30°C were used as control cells. Following habituation, L. monocytogenes cells were harvested and exposed to: (i) pH 3.5 adjusted with lactic acid, acetic acid or hydrochloric acid (HCl), and pH 1.5 (HCl) for 6 h; (ii) 20% NaCl and (iii) 60°C for 150 s. Results showed that tomato-habituated L. monocytogenes cells were more tolerant (P lettuce, and habituation on both foods resulted in more stress resistant cells than prior growth in TSB. On the contrary, the highest resistance to heat stress (P lettuce-habituated L. monocytogenes cells followed by TSB-grown cells at 5°C for 24 h, whereas tomato-habituated cells were highly sensitized. Prolonged starvation on fresh produce (5 days vs. 24 h) increased resistance to osmotic and acid stress, but reduced thermotolerance, regardless of the pre-exposure environment (i.e., tomatoes, lettuce or TSB). These results indicate that L. monocytogenes cells habituated on fresh produce at low temperatures might acquire resistance to subsequent antimicrobial treatments raising important food safety implications.

  7. Production and efficiency of organic compost generated by millipede activity

    Directory of Open Access Journals (Sweden)

    Luiz Fernando de Sousa Antunes

    2016-05-01

    Full Text Available ABSTRACT: The putrefactive activity of organisms such as diplopods in the edaphic macrof auna can be leveraged to promote the transformation of agricultural and urban waste into a low-cost substrate for the production of vegetable seedlings. This research aimed to evaluate: (1 the quantity of Gervais millipedes ( Trigoniulus corallinus needed to produce an acceptable quantity of organic compost; (2 the main physical and chemical characteristics of different compost types; and (3 compost efficiency in the production of lettuce seedlings. The first experiment lasted 90 days and was conducted using 6.5L of Gliricidia, 6.5L of Flemingia, 13.5L of grass cuttings, 4.5L of cardboard, 4.5L of coconut husk, and 4.5L of corncob. Treatments consisting of 0, 0.10, 0.30, 0.50, and 0.90L of millipedes were applied. This experiment compared millicompost and vermicompost, using four repetitions. After 23 days, the heights of grown lettuce plants and the weights of the fresh and dry mass of above ground lettuce and of the roots were assessed. A millipede volume of 0.1L proved to be sufficient for the production of an acceptable volume of organic compost. However, the addition of greater volumes leads to increased calcium, magnesium, and phosphorous content. Millicompost has similar physicochemical characteristics those of vermicompost, and both are equally efficient as a substrate for the production of lettuce seedlings.

  8. Stimulatory effects of aluminum on growth of sugar maple seedlings

    Science.gov (United States)

    George A. Schier; Carolyn J. McQuattie

    2002-01-01

    To determine the effect of aluminum (Al) on sugar maple (Acer saccharum Marsh.), seedlings were grown in sand irrigated with nutrient solution (pH 3.8) containing 0, 2.5, 5, 10, 20, or 40 mg L-1 Al. Seedling growth was enhanced at 2.5 and 5mgL-1 Al. Although higher levels of Al reduced calcium (Ca) and...

  9. Morphological and photosynthetic adaptations of Tabebuia aurea seedlings in the nursery

    Directory of Open Access Journals (Sweden)

    Eduardo R Gonçalves

    2013-11-01

    Full Text Available Tabebuia aurea (Benth. & Hook. f. ex S. Moore (Bignoniaceae is a boreal species common in Brazil. It is used for ornamental parks and along sidewalks. Its timber is also used for furniture. The objective of this study was to evaluate the effect of nursery shading on the growth and photosynthesis of T. aurea and their photosynthetic adaptation after being transferred to direct sunlight. The T. aurea seedlings were grown under 0, 50, 70 or 95% shade. The photosynthetic active radiation and leaf gas exchange were measured over two distinct periods: 51 (young seedlings and 70 days after having been sown under each shade treatment. Immediately after the measurements were taken, the seedlings were transferred into full sunlight and the measurements were repeated two times after 15 min and 3 days under ambient sunlight. T. aurea seedlings showed satisfactory growth up to 50% shade in the nursery, which could be verified both by growth measurement and by total biomass accumulation. Shading greater than 70% reduced the number of leaves, the leaf area and the stem diameter in relation to plants exposed to full sunlight. The results suggest that T. aurea seedlings should be grown under full sunlight or under shading up to 50% to maximize their growth in the nursery and to minimize stress when transferring the seedlings to their final planting sites.

  10. Irrigation Water Sources and Time Intervals as Variables on the Presence of Campylobacter spp. and Listeria monocytogenes on Romaine Lettuce Grown in Muck Soil.

    Science.gov (United States)

    Guévremont, Evelyne; Lamoureux, Lisyanne; Généreux, Mylène; Côté, Caroline

    2017-07-01

    Irrigation water has been identified as a possible source of vegetable contamination by foodborne pathogens. Risk management for pathogens such as Campylobacter spp. and Listeria monocytogenes in fields can be influenced by the source of the irrigation water and the time interval between last irrigation and harvest. Plots of romaine lettuce were irrigated with manure-contaminated water or aerated pond water 21, 7, or 3 days prior to harvesting, and water and muck soil samples were collected at each irrigation treatment. Lettuce samples were collected at the end of the trials. The samples were tested for the presence of Campylobacter spp. and L. monocytogenes. Campylobacter coli was isolated from 33% of hog manure samples (n = 9) and from 11% of the contaminated water samples (n = 27), but no lettuce samples were positive (n = 288). L. monocytogenes was not found in manure, and only one sample of manure-contaminated irrigation water (n = 27) and one lettuce sample (n = 288) were positive. No Campylobacter or L. monocytogenes was recovered from the soil samples (n = 288). Because of the low incidence of pathogens, it was not possible to link the contamination of either soil or lettuce with the type of irrigation water. Nevertheless, experimental field trials mimicking real conditions provide new insights into the survival of two significant foodborne pathogens on romaine lettuce.

  11. Seed size effects on the response of seedlings of Acacia asak (Forssk.) Willd to water stress

    International Nuclear Information System (INIS)

    El Atta, H.A.; Areef, I.M.; Ahmed, A.I.

    2016-01-01

    Dry tropical forests are characterized by unpredictable spells of drought and climate change. Saudi Arabia mostly falls within the arid zone and some few scattered areas fall in the semiarid zone mainly in the South Western region. Rainfall is sparse and with sporadic distribution. Drought is the most critical factor for restoration of the tree cover. Within a tree, seeds vary in size from large to small seeds. Although several researchers have studied the effect of within species variation in seed size on seedlings growth parameters, however there is a lack of knowledge regarding the effect of seed size on stress tolerance (Khurana and Singh 2000). We assumed that seedlings grown from different seed sizes from the same tree species may influence their response to water stress. Seeds of Acacia asak (Forssk.) Willd. were categorized into large, medium and small seeds on the basis of the seed weight. Seedlings from the three seed sizes were grown in potted soil and subjected to 5 levels of field water capacity (FC) (100, 75, 50, 25 and 15 percent) in the greenhouse. The Objective was to evaluate the response of seedling grown (from different seed sizes) to water stress and to understand the acclimation of seedlings to water stress. Water stress significantly reduced RWC, leaf area, and shoot length, fresh and dry weight. Significant correlations between growth parameters and water stress level were recorded. Seedlings from large seeds were heavier and comparatively less affected by drought compared to seedlings from smaller seeds. In all seedlings root length increased significantly and more biomass was allocated to roots than to shoots. However, at severe water stress (15 percent FC) no significant differences were reported between the three seedling categories. Therefore, raising of seedlings from large seeds is more appropriate for tree restoration programs under drought conditions. (author)

  12. Production and early field performance of RPM® seedlings in Missouri floodplains

    Science.gov (United States)

    Daniel C. Dey; Wayne Lovelace; John M. Kabrick; Michael A. Gold

    2004-01-01

    A new nursery culture process has been developed to produce large container RPM? seedlings in an effort to improve the success in artificially regenerating hardwoods. Major features of the process include air root pruning of seedlings grown in a well aerated soil medium to encourage a dense, fibrous root system. Production has focused on native bottomland tree, shrub,...

  13. Survival of Escherichia coli on Lettuce under Field Conditions Encountered in the Northeastern United States.

    Science.gov (United States)

    Weller, Daniel L; Kovac, Jasna; Roof, Sherry; Kent, David J; Tokman, Jeffrey I; Kowalcyk, Barbara; Oryang, David; Ivanek, Renata; Aceituno, Anna; Sroka, Christopher; Wiedmann, Martin

    2017-07-01

    Although wildlife intrusion and untreated manure have been associated with microbial contamination of produce, relatively few studies have examined the survival of Escherichia coli on produce under field conditions following contamination (e.g., via splash from wildlife feces). This experimental study was performed to estimate the die-off rate of E. coli on preharvest lettuce following contamination with a fecal slurry. During August 2015, field-grown lettuce was inoculated via pipette with a fecal slurry that was spiked with a three-strain cocktail of rifampin-resistant nonpathogenic E. coli. Ten lettuce heads were harvested at each of 13 time points following inoculation (0, 2.5, 5, and 24 h after inoculation and every 24 h thereafter until day 10). The most probable number (MPN) of E. coli on each lettuce head was determined, and die-off rates were estimated. The relationship between sample time and the log MPN of E. coli per head was modeled using a segmented linear model. This model had a breakpoint at 106 h (95% confidence interval = 69, 142 h) after inoculation, with a daily decrease of 0.70 and 0.19 log MPN for 0 to 106 h and 106 to 240 h following inoculation, respectively. These findings are consistent with die-off rates obtained in similar studies that assessed E. coli survival on produce following irrigation. Overall, these findings provide die-off rates for E. coli on lettuce that can be used in future quantitative risk assessments.

  14. Root exudates and leaf leachates of 19 medicinal plants of pakistan exhibit allelopathic potential

    International Nuclear Information System (INIS)

    Syed, S.; Ahmed, Z.I.; Razzaq, A.

    2014-01-01

    Laboratory experiments were conducted to evaluate the allelopathic potential of root exudates and leaf leachates of 19 medicinal plants commonly used in Pakistan by plant box and sandwich methods, respectively. In sandwich method, lettuce seedlings were grown with the dry leaf leachates of the selected plant species in a growing media at the rate of 5, 10 and 50 mg dish-1 in a completely randomized design with three replications. Their effects on hypocotyl and radicle growth of the lettuce were recorded as a percentage of untreated control. Data was subjected for analysis of variance and treatment means were compared by Tukey's HSD test at p<0.05. Results indicated that allelopathic effects of the leaf leachates of all selected plant species on the hypocotyl and radicle elongations of the lettuce varied significantly in all concentrations used in experiments. The hypocotyl growth of the lettuce seedlings was affected from promotion (6.71% inhibition) caused by Phlaris minor to inhibition (78.40%) by Withania somnifera. Both species suppressed the radicle length from 33.69-93.30%. Leachates of W. somnifera and Sarcococca saligna exhibited strong inhibitory results in a concentration dependant manner. After the growth period of 50 days, root exudates of S. saligna appeared most detrimental (78.00% inhibition) to radicle growth of the lettuce seedling followed by W. somnifera (75.00%) when tested by plant box method. The results presented can be utilized as benchmark information for further joint research on the elucidation of chemicals involved in the allelopathy in nature and in the development of new and potent bioherbicides to combat environmental risk. (author)

  15. The Impact of Biochar Application on Soil Properties and Plant Growth of Pot Grown Lettuce (Lactuca sativa and Cabbage (Brassica chinensis

    Directory of Open Access Journals (Sweden)

    Stephan Haefele

    2013-05-01

    Full Text Available The effect of rice-husk char (potentially biochar application on the growth of transplanted lettuce (Lactuca sativa and Chinese cabbage (Brassica chinensis was assessed in a pot experiment over a three crop (lettuce-cabbage-lettuce cycle in Cambodia. The biochar was the by-product of a rice-husk gasification unit and consisted of 28.7% carbon (C by mass. Biochar application rates to potting medium of 25, 50 and 150 g kg−1 were used with and without locally available fertilizers (a mixture of compost, liquid compost and lake sediment. The rice-husk biochar used was slightly alkaline (pH 7.79, increased the pH of the soil, and contained elevated levels of some trace metals and exchangeable cations (K, Ca and Mg in comparison to the soil. The biochar treatments were found to increase the final biomass, root biomass, plant height and number of leaves in all the cropping cycles in comparison to no biochar treatments. The greatest biomass increase due to biochar additions (903% was found in the soils without fertilization, rather than fertilized soils (483% with the same biochar application as in the “without fertilization” case. Over the cropping cycles the impact was reduced; a 363% increase in biomass was observed in the third lettuce cycle.

  16. Allelopathic activity of medicinal plant essential oils on seed germination and vigor of lettuce achenes

    Directory of Open Access Journals (Sweden)

    Cíntia Alvarenga Santos Fraga de Miranda

    2015-07-01

    Full Text Available In recent years, essential oils have gained commercial interest in the agricultural area, mainly for their allelopathic, insecticidal, antifungal, antimicrobial and antioxidant properties, and, also for their natural compounds, which have generally displayed low toxicity, relatively low cost and rapid degradation in the environment. Medicinal plants have emerged as potential suppliers of essential oils because of their ethnopharmacological utility. The aim of this study was to evaluate the allelopathic potential of essential oils extracted from fresh leaves of lemon grass (Cymbopogon citratus, wild basil (Ocimum gratissimum L. and sweet basil (Ocimum basilicum L. with regard to their major constituents (citral, eugenol and cineol, respectively in different application forms (direct contact and the effect of volatile constituents on the germination and vigor of lettuce seeds (cultivar Regina SF 3500. The effects of the oils and their major components were evaluated with regard to the variables: first germination count, total germination, GVI (germination velocity index, seedling dry weight and average lengths of shoots and lettuce roots. The essential oils from lemon grass and basil displayed allelopathic potentials on seed germination and vigor of lettuce achenes that can be assigned to their respective major constituents citral and eugenol. On the other hand, the allelopathic effect of the essential oil from basil was a consequence of the combined effect of all the components, regardless the application method.

  17. THE YIELD OF LETTUCE BREEDING LINE UNDER LED LAMPS IN WINTER GREENHOUSE IN THE NORTH

    Directory of Open Access Journals (Sweden)

    I. V. Dalke

    2017-01-01

    Full Text Available The lettuce (Lactuca sativa L. is widely known and favorite vegetable crop among people. In Europe the main production of lettuce is performed on protected ground with application of  artificial  light  sources. The artificially-lighted  culture  of salad became very actually acquired in the north. Previously, on the basis of multi-year studies on yield registration and experiments with different regimes of lighting we have defined the appropriate parameters of supplementary lighting for lettuce with sodium high-pressure lamps that provided the production in different seasons per year. The aim was to study the accumulation of biomass and yield quality in lettuce ‘Aphytsion’ being grown in winter rotation under light-emitting diodes lamps. The accumulation of biomass and yield quality was studied in ‘Aphytsion’,  grown in winter rotation under lightemitting diodes lamps ECOLED-BIO-112-185WD120 UniversaLED (ООО ‘GK’  ‘CET’, Perm, in  industrial greenhouse OOO ‘Prigorodniy’  at Syktyvkar city. The commodity  output  was obtained  for  two  cycle  of  cultivation, November-December  and  December-January.  Yield  of foliage biomass was 2.4 kg/m2 with flow density PAR (Photosynthetically active radiation about 90 μmole quantum/m2  s. at 20 W/m2 with total light energy 54 MJ/m2  supplied to plants from LED lamps. The plants produced about 0.5 g. of dry weight calculated on one mole of spent light energy. Energy efficiency of PAR was 3% that corresponded with data observed earlier with sodium high-pressure lamps. The conclusion was made about the suitableness of this type of light-emitting diode lamps for lettuce cultivation in winter rotation in first photic zone. It was recommended to increase duration of supplemental lighting up to 22-24 hours in December and up to 20-22 hours in January to improve the productivity and biological value of plant output. It enables to raise RAP income in plants by 35 %, on

  18. Effect of increasing concentrations of lead, cadmium, chromium, nickel, or zinc on lettuce grown in nutrient solution

    Energy Technology Data Exchange (ETDEWEB)

    Foroughi, M.; Hoffmann, G.; Teicher, K.; Venter, F.

    1975-01-01

    Experiments were performed to examine concentrations at which excess symptoms could be expected, which kind of damage symptoms appear and in which amount the heavy metals are enriched in roots and leaves. The following results were revealed. Lettuce (Lactuca sativa L. var. capitata L.) can tolerate amounts of Cd below 1 ppm, of Ni below 2 ppm and of Pb below 20 ppm in the nutrient solution without any symptoms of excess. The growth of lettuce was mostly influenced by Cd, least of all by Pb. Only Ni caused specific poisoning symptoms. Heavy metals were enriched in different amounts in roots and leaves. The contents of Cd and Ni were more than twice as high as those of Pb. The heavy metals influenced the uptake and distribution of macro-elements more (nitrogen) or less (potassium) vigorously.

  19. Response of seedlings of different tree species to elevated C02 in Changbai Mountain

    Institute of Scientific and Technical Information of China (English)

    DAILi-min; JILan-zhu; WANGMiao; LIQiu-rong

    2003-01-01

    Eco-physiological responses of seedlings of eight species, Pinus koraiensis, Picea koraiensis, Lanx olgensis,Populus ussuriensis, Betula platyphylla, Tilia amurensis, Traxinus mandshurica and Acer mono from broadleaved/Korean pine forest, to elevated CO2 were studied by using open-top chambers under natural sunlight in Changbai Mountain, China in two growing seasons (1998-1999). Two concentrations of CO2 were designed: elevated CO2 (700 pmol· mol-1) and ambient CO2 (400μmol· mol-1). The study results showed that the height growth of the tree seedlings grown at elevated CO2 increased by about 10%-40% compared to those grown at ambient CO2. And the water using efficiency of seedlings also followed the same tendency. However, the responses of seedlings in transpiration and chlorophyll content to elevated CO2 varied with tree species.The broad-leaf tree species were more sensitive to the elevated CO2than conifer tree species. All seedlings showed a photo-synthetic acclimation to Iong-term elevated CO2.

  20. Growth of Three Lettuce Cultivars in NASA's HDU PEM During the 2010 DRATS Test

    Science.gov (United States)

    Stutte, Gary W.; Newsham, Gerard; Wheeler, Raymond

    2011-01-01

    NASA's 2010 Desert Research and Technology Studies (DRATS) of the VEGGIE Food Production System in the Habitat Demonstration Unit (HDU) Pressurized Excursion Module (PEM) was the first operational evaluation of salad crop production technology in a NASA analog test. Rooting media and slow release fertilizers were evaluated for three lettuce cultivars that had shown promise as candidates for a surface based food production system. These tests involved comparing growth, color and quality of the lettuce cultivars grown under VEGGIE LED array (Orbitec, Madison, WI) or Biomass Production System for Education ((BSEe), Orbitec, Madison, WI) compact fluorescent lamps using a gravity feed water delivery system. Mission relevant conditions of CO2, temperature and RH were maintained using controlled environment chambers (EGC, Chagrin Falls, OH). Growth data was obtained for the two red leaf lettuce cultivars, Outredgeous and Firecracker, and the green Bibb lettuce cultivar, Flandria. Growth and quality was evaluated using different concentrations (7.5 g/L and 15 g/L) of commercial slow release fertilizer (Osmocote Plus 15-9-12, Scotts, Maryville, OH) and Nutricote 18-6-8 (Florikan, Sarasota, FL) in either a peat/vermiculite media (sunshine LP5 MiX, Sungro, Bellview, WA) or calcined montmorillonite clay [(arcillite,)Turface Proleague, Profile LLC, Buffalo Grove, IL]. The commercial peat/vermiculite mix generally resulted in larger plants than those grown in arcillite. Increasing the concentration of Osmocote from 7.5 to 15 g/L increased the height, dry mass, and leaf area of lettuce cultivars. In contrast, there was a decrease in growth parameters when concentration of Nutricote was increased from 7.5 to 15 g/L. The best growth was obtained with the 7.5 g/L Nutricote using a commercial peat/vermiculite mixture. This media was used for field testing VEGGIE plant system in the 2010 DRAT test. The VEGGIE nutrient delivery system worked well, was able to be maintained by multiple

  1. Escherichia coli transfer from simulated wildlife feces to lettuce during foliar irrigation: A field study in the Northeastern United States.

    Science.gov (United States)

    Weller, Daniel L; Kovac, Jasna; Kent, David J; Roof, Sherry; Tokman, Jeffrey I; Mudrak, Erika; Kowalcyk, Barbara; Oryang, David; Aceituno, Anna; Wiedmann, Martin

    2017-12-01

    Wildlife intrusion has been associated with pathogen contamination of produce. However, few studies have examined pathogen transfer from wildlife feces to pre-harvest produce. This study was performed to calculate transfer coefficients for Escherichia coli from simulated wildlife feces to field-grown lettuce during irrigation. Rabbit feces inoculated with a 3-strain cocktail of non-pathogenic E. coli were placed in a lettuce field 2.5-72 h before irrigation. Following irrigation, the E. coli concentration on the lettuce was determined. After exclusion of an outlier with high E. coli levels (Most Probable Number = 5.94*10 8 ), the average percent of E. coli in the feces that transferred to intact lettuce heads was 0.0267% (Standard Error [SE] = 0.0172). Log-linear regression showed that significantly more E. coli transferred to outer leaves compared to inner leaves (Effect = 1.3; 95% Confidence Interval = 0.4, 2.1). Additionally, the percent of E. coli that transferred from the feces to the lettuce decreased significantly with time after fecal placement, and as the distance between the lettuce and the feces, and the lettuce and the sprinklers increased. These findings provide key data that may be used in future quantitative risk assessments to identify potential intervention strategies for reducing food safety risks associated with fresh produce. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Root system architecture: The invisible trait in container longleaf pine seedlings

    Science.gov (United States)

    Shi-Jean Susana Sung; R. Kasten Dumroese

    2013-01-01

    Longleaf pine (Pinus palustris Mill.) seedlings cultured in four cavity volumes (60 to 336 ml [3.7 to 20.5 cubic inches]), two root pruning treatments (with or without copper coating), and 3 nitrogen levels (low to high) were grown for 29 weeks before they were outplanted into an open area in central Louisiana. Twenty-two months after outplanting, 3 seedlings were...

  3. Phytotoxic Activity of Ocimum tenuiflorum Extracts on Germination and Seedling Growth of Different Plant Species

    Directory of Open Access Journals (Sweden)

    A. K. M. Mominul Islam

    2014-01-01

    Full Text Available Phytotoxic activity of Ocimum tenuiflorum (Lamiaceae plant extracts was investigated against the germination and seedling growth of cress (Lepidium sativum, lettuce (Lactuca sativa, alfalfa (Medicago sativa, Italian ryegrass (Lolium multiflorum, barnyard grass (Echinochloa crus-galli, and timothy (Phleum pratense at four different concentrations. The plant extracts at concentrations greater than 30 mg dry weight equivalent extract mL−1 reduced significantly the total germination percent (GP, germination index (GI, germination energy (GE, speed of emergence (SE, seedling vigour index (SVI, and coefficient of the rate of germination (CRG of all test species except barnyard grass and GP of lettuce. In contrast, time required for 50% germination (T50 and mean germination time (MGT were increased at the same or higher than this concentration. The increasing trend of T50 and MGT and the decreasing trend of other indices indicated a significant inhibition or delay of germination of the test species by O. tenuiflorum plant extracts and vice versa. In addition, the shoot and root growth of all test species were significantly inhibited by the extracts at concentrations greater than 10 mg dry weight equivalent extract mL−1. The I50 values for shoot and root growth were ranged from 26 to 104 mg dry weight equivalent extract mL−1. Seedling growth was more sensitive to the extracts compared to seed germination. Results of this study suggest that O. tenuiflorum plant extracts have phytotoxic properties and thus contain phytotoxic substances. Isolation and characterization of those substances from this plant may act as a tool for new natural, biodegradable herbicide development to control weeds.

  4. Effects of Al and Mn, alone and in combination, on growth and nutrient status of red pine seedlings hydroponically grown in nutrient culture solution; Suiko saibaishita akamatsunae no seicho oyobi eiyo jotai ni taisuru Al to Mn no tandoku oyobi fukugo eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.; Izuta, T.; Aoki, M.; Totsuka, T. [Tokyo University of Agriculture and Technology, Tokyo (Japan). Faculty of Agriculture

    1997-09-10

    Experiments have made clear the effects of Al and Mn on growth of red pine seedlings hydroponically grown. Analysis was performed on components of plants grown in culture solution into which Al and Mn were added alone or in combination. Photosynthesis velocity and dark respiration velocity of the seedlings were measured when they have fully grown. The following results were obtained: the Al addition reduces dry seedling weight, the T/R ratio (T is dry weight of a seedling above the ground and R is that under the ground) decreases as the addition amount is increased, and the photosynthesis velocity decreases; Al accumulates in roots reducing physiological function of the roots and concentrations of Ca and Mg; the dry weight decreases with increasing Mn addition, but does not affect the T/R ratio; the Mn addition reduces the photosynthesis velocity lowering chlorophyll content in needle leaves; the dark respiration velocity decreases as the Mn amount is increased, but does not affect that for trunks; Ca and Mg concentrations decrease in the trunks and roots; no significant compound effects of Al and Mn are recognized, and the effects are additive; and the concentration at which growth decrease appears is 10 ppm or higher for Al and 60 ppm or higher for Mn. 32 refs., 2 figs., 11 tabs.

  5. Photosynthetic Responses of Seedlings of two Indigenous Plants ...

    African Journals Online (AJOL)

    Bheema

    ABSTRACT. The potential role of exotic tree plantations in facilitating successional processes on degraded areas was evaluated in southern Ethiopia, Munessa-Shashemene forest, by examining photosynthetic responses of Bersamaabyssinica Fres. and Croton macrostachyusDel. seedlings naturally grown inside ...

  6. Impact of relative humidity, inoculum carrier and size, and native microbiota on Salmonella ser. Typhimurium survival in baby lettuce.

    Science.gov (United States)

    López-Gálvez, Francisco; Gil, Maria Isabel; Allende, Ana

    2018-04-01

    The effects of relative humidity (RH), fluctuating climate conditions, inoculum size and carrier on the survival of Salmonella enterica serovar Typhimurium on baby lettuce in environmental test chambers were studied. Buffered peptone water (BPW), distilled water (DW), and irrigation water (IW) were compared as inoculum carriers. Additionally, survival of Salmonella in suspensions prepared using filtered and unfiltered IW was assessed. Salmonella Typhimurium survived better on baby lettuce plants at high RH independently of the inoculum size. When lettuce plants were grown under fluctuating environmental conditions, Salmonella survival was similar under both RH conditions. Regarding the inoculum carrier, the inoculated microorganism survived better on lettuce plants when BPW was used as carrier both at high and low RH. Survival rate of Salmonella in IW was affected by the presence of native microbiota. Native microbiota present in IW did not affect survival of Salmonella or the levels of mesophilic bacteria on the baby lettuce leaves. The information obtained in the present study contributes to the knowledge on the effect of environmental conditions on pathogenic bacteria survival on growing edible plants. These results are useful when selecting the methodology to carry out experimental studies on the survival of microbial pathogens under different pre-harvest conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Wild lettuce (Lactuca virosa) toxicity.

    Science.gov (United States)

    Besharat, Sima; Besharat, Mahsa; Jabbari, Ali

    2009-01-01

    Wild lettuce (Lactuca virosa) can cause toxic effects when eaten. Wild lettuce grows in the north of Iran and some natives consume it unaware of its adverse side effects. We describe eight patients with manifestations of wild lettuce toxicity, admitted to a general hospital affiliated to the Golestan University of Medical Sciences. All the patients recovered (although one had to spend 48 h in the intensive care unit) and no chronic complications were reported. A clinical suspicion of toxicity caused by wild lettuce intake and an accurate history formed the basis of the diagnosis. Conservative treatment, vital sign monitoring, control of patient intake and output, and reducing patient agitation provided the basis for treatment.

  8. Grass or fern competition reduce growth and survival of planted tree seedlings

    Science.gov (United States)

    Larry H. McCormick; Todd W. Bowersox

    1997-01-01

    Bareroot seedlings of northern red oak, white ash, yellow-poplar and white pine were planted into herbaceous communities at three forested sites in central Pennsylvania that were clearcut 0 to 1 year earlier. Seedlings were grown 4 years in the presence and absence of either an established grass or hay-scented fern community. Survival and height growth were measured...

  9. FOLIAR N RESPONSE OF PONDEROSA PINE SEEDLINGS TO ELEVATED CO2 AND O3

    Science.gov (United States)

    Interactions between needle N status and exposure to combined CO2 and O3 stresses were studied in Pinus ponderosa seedlings. The seedlings were grown for three years (April 1998 through March 2001) in outdoor chambers in native soils from eastern Oregon, and exposed to ambient ...

  10. Genetic investigation of the nonhost resistance of wild lettuce, Lactuca saligna, to lettuce downy mildew, Bremia lactucae

    NARCIS (Netherlands)

    Boer, den E.

    2014-01-01

    Abstract

    Downy mildew (Bremia lactucae) in lettuce (Lactuca sativa) is a devastating foliar disease causing high losses in lettuce cultivation. The wild lettuce and nonhost species, Lactuca saligna, is absolute resistant to downy mildew and

  11. Bioassay standardization for the detection of allelopathic compounds and environmental toxicants using lettuce

    Directory of Open Access Journals (Sweden)

    Mateus Salomão Simões

    2013-09-01

    Full Text Available The purpose of this study was to assess different experimental conditions to determine a protocol for bioassays based on seed germination and early seedling growth using lettuce (Lactuca sativa L. cv. Grand Rapids as indicator species. This protocol aims to provide support for the standardization of assays of various chemicals such as allelochemicals and environmental toxicants. The following tests were performed: time of germination, temperature, light, solution volume and Petri dish size. For each test (except for time of germination, the influence of the conditions investigated was determined by the endpoints germination percentage, germination speed index, root length, seedling fresh weight and total dry weight. The results showed that variations in the methods altered the results. It is recommended that bioassays using L. sativa L. cv. Grand Rapids be carried out for a minimum period of four days for assessments of both germination and initial growth and that the experimental conditions include a temperature of 20°C, 90-mm Petri dishes or larger, 0.1 mL cypsela solution, and continuous light or 12-hour photoperiod.

  12. A rapid and robust method of identifying transformed Arabidopsis thaliana seedlings following floral dip transformation

    Directory of Open Access Journals (Sweden)

    Gray John C

    2006-11-01

    Full Text Available Abstract Background The floral dip method of transformation by immersion of inflorescences in a suspension of Agrobacterium is the method of choice for Arabidopsis transformation. The presence of a marker, usually antibiotic- or herbicide-resistance, allows identification of transformed seedlings from untransformed seedlings. Seedling selection is a lengthy process which does not always lead to easily identifiable transformants. Selection for kanamycin-, phosphinothricin- and hygromycin B-resistance commonly takes 7–10 d and high seedling density and fungal contamination may result in failure to recover transformants. Results A method for identifying transformed seedlings in as little as 3.25 d has been developed. Arabidopsis T1 seeds obtained after floral dip transformation are plated on 1% agar containing MS medium and kanamycin, phosphinothricin or hygromycin B, as appropriate. After a 2-d stratification period, seeds are subjected to a regime of 4–6 h light, 48 h dark and 24 h light (3.25 d. Kanamycin-resistant and phosphinothricin-resistant seedlings are easily distinguished from non-resistant seedlings by green expanded cotyledons whereas non-resistant seedlings have pale unexpanded cotyledons. Seedlings grown on hygromycin B differ from those grown on kanamycin and phosphinothricin as both resistant and non-resistant seedlings are green. However, hygromycin B-resistant seedlings are easily identified as they have long hypocotyls (0.8–1.0 cm whereas non-resistant seedlings have short hypocotyls (0.2–0.4 cm. Conclusion The method presented here is an improvement on current selection methods as it allows quicker identification of transformed seedlings: transformed seedlings are easily discernable from non-transformants in as little as 3.25 d in comparison to the 7–10 d required for selection using current protocols.

  13. Effects of Seedbed Density on Seedling Morphological Characteristics of four Broadleaved Species

    Energy Technology Data Exchange (ETDEWEB)

    Yucedag, C.; Gailing, O.

    2012-11-01

    The aim of this study was to investigate the effects of seedling spacing on morphological characteristics of one year-old Amygdalus communis L., Prunus avium L., Pyrus elaeagnifolia Pall. and Eriolobus trilobatus (Poiret) Roemer seedlings under nursery conditions. Seedlings were grown in completely randomized blocks with four replications. Seedbeds were 1.2 m wide with 5 rows each 20 cm apart. Within-row spacings were chosen as 4, 8 and 12 cm to analyze the effect of seedlings density on growth performance. Seedling spacing significantly affected root collar diameter, shoot height, tap root length and number of fine roots in A. communis and P. avium, but not in P. elaeagnifolia and E. tribolatus. Additionally wider seedling spacings resulted in larger seedlings in A. communis and P. avium. In conclusion, it would be beneficial to use wider seedling spacing in order to obtain better seedling growth in A. communis and P. avium. Larger seedlings could also provide significant advantages because of reduced cultural activities and an expected higher growth and survival rate. (Author) 27 refs.

  14. Can δ(15)N in lettuce tissues reveal the use of synthetic nitrogen fertiliser in organic production?

    Science.gov (United States)

    Sturm, Martina; Kacjan-Maršić, Nina; Lojen, Sonja

    2011-01-30

    The nitrogen isotopic fingerprint (δ(15)N) is reported to be a promising indicator for differentiating between organically and conventionally grown vegetables. However, the effect on plant δ(15)N of split nitrogen fertilisation, which could enable farmers to cover up the use of synthetic fertiliser, is not well studied. In this study the use of δ(15)N in lettuce as a potential marker for identifying the use of synthetic nitrogen fertiliser was tested on pot-grown lettuce (Lactuca sativa L.) treated with synthetic and organic nitrogen fertilisers (single or split application). The effect of combined usage of synthetic and organic fertilisers on δ(15)N was also investigated. The δ(15)N values of whole plants treated with different fertilisers differed significantly when the fertiliser was applied in a single treatment. However, additional fertilisation (with isotopically the same or different fertiliser) did not cause a significant alteration of plant δ(15)N. The findings of the study suggest that the δ(15)N value of lettuce tissues could be used as a rough marker to reveal the history of nitrogen fertilisation, but only in the case of single fertiliser application. However, if the difference in δ(15)N between the applied synthetic and organic nitrogen fertilisers was > 9.1 ‰, the detection of split and combined usage of the fertilisers would have greater discriminatory power. 2010 Society of Chemical Industry.

  15. Wild lettuce (Lactuca virosa) toxicity

    OpenAIRE

    Besharat, Sima; Besharat, Mahsa; Jabbari, Ali

    2009-01-01

    Wild lettuce (Lactuca virosa) can cause toxic effects when eaten. Wild lettuce grows in the north of Iran and some natives consume it unaware of its adverse side effects. We describe eight patients with manifestations of wild lettuce toxicity, admitted to a general hospital affiliated to the Golestan University of Medical Sciences. All the patients recovered (although one had to spend 48 h in the intensive care unit) and no chronic complications were reported. A clinical suspicion of toxicity...

  16. Direct-seedling pines in the south

    Science.gov (United States)

    Harold J. Derr; William F. Mann

    1971-01-01

    Direct seeding of the southern pines is a versatile reforestation technique that is being widely accepted by land managers. On many sites it is more economical than planting nursery-grown seedlings or waiting for natural reproduction. It is applicable on some sites where access, terrain, or drainage conditions make planting difficult. Commercial trials have proved it...

  17. Seedling formation and field production of beetroot and lettuce in Aquidauana, Mato Grosso do Sul, Brazil Formação de mudas e produção a campo de beterraba e alface em Aquidauana-MS

    Directory of Open Access Journals (Sweden)

    Paulo AM Leal

    2011-12-01

    Full Text Available In horticulture, the proper use of containers and substrates for the production of seedlings are important factors that affect crop productivity in the field. This study aimed to evaluate the effect of different containers and substrates in the production of lettuce (Lactuca sativa, cv Veneranda and beetroot (Beta vulgaris, cv Top Tall Early Wonder seedlings in nursery with monofilament screen, 50% of shading, and the productivity of these species when transplanted to field plots. In protected cultivation, a completely randomized experimental design, in a 3 x 3 factorial scheme (three polystyrene trays, R1= 72, R2= 128 and R3= 200 cells and three substrates, S1= 93% of soil + 7% of organic compost, S2= 86% of soil + 14% of organic compost and S3= 79% of soil + 21% of organic compost was used, with 15 replications, where one plantlet was a replication. In the field, the nine treatments were evaluated in a completely randomized experimental design. The 72 cells tray with 7% commercial organic compost substrate promoted the best beetroot and lettuce seedlings. In the field, the plants from the 72 cell tray produced greater plants, independent of substrates type.Na olericultura o uso adequado de recipientes e substratos para a produção de mudas são fatores importantes e que afetam a produtividade das culturas a campo. No presente trabalho objetivou-se avaliar, em viveiro de tela de monofilamento com 50% de sombreamento, o efeito de diferentes recipientes e substratos na produção de mudas de alface (Lactuca sativa, cv Veneranda e beterraba (Beta vulgaris, cv Top Tall Early Wonder, bem como a produtividade dessas espécies quando transplantadas em canteiros a campo. No ambiente protegido utilizou-se o delineamento experimental inteiramente casualizado, em esquema fatorial 3 x 3, sendo os fatores 3 recipientes (R1= 72, R2= 128 e R3= 200 células de poliestireno e 3 substratos (S1= 93% de solo + 7% de composto orgânico, S2= 86% de solo + 14% de

  18. Increased vapor pressure deficit due to higher temperature leads to greater transpiration and faster mortality during drought for tree seedlings common to the forest-grassland ecotone.

    Science.gov (United States)

    Will, Rodney E; Wilson, Stuart M; Zou, Chris B; Hennessey, Thomas C

    2013-10-01

    Tree species growing along the forest-grassland ecotone are near the moisture limit of their range. Small increases in temperature can increase vapor pressure deficit (VPD) which may increase tree water use and potentially hasten mortality during severe drought. We tested a 40% increase in VPD due to an increase in growing temperature from 30 to 33°C (constant dewpoint 21°C) on seedlings of 10 tree species common to the forest-grassland ecotone in the southern Great Plains, USA. Measurement at 33 vs 30°C during reciprocal leaf gas exchange measurements, that is, measurement of all seedlings at both growing temperatures, increased transpiration for seedlings grown at 30°C by 40% and 20% for seedlings grown at 33°C. Higher initial transpiration of seedlings in the 33°C growing temperature treatment resulted in more negative xylem water potentials and fewer days until transpiration decreased after watering was withheld. The seedlings grown at 33°C died 13% (average 2 d) sooner than seedlings grown at 30°C during terminal drought. If temperature and severity of droughts increase in the future, the forest-grassland ecotone could shift because low seedling survival rate may not sufficiently support forest regeneration and migration. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  19. Influence of chelating ligands on arsenic uptake by hydroponically grown rice seedlings (Oryza sativa L.): a preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Mohammad A.; Hasegawa, Hiroshi; Ueda, Kazumasa; Maki, Teruya [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa (Japan); Rahman, M.M. [Department of Botany, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka (Bangladesh)

    2008-06-15

    Ferric (oxyhydro-)oxides (FeO{sub x}) precipitate in the rhizosphere at neutral or alkaline pH and are adsorbed on the plant root surfaces. Consequently, the higher binding affinity of arsenate to FeO{sub x} and the low iron phytoavailability of the precipitated FeO{sub x} make the phytoremediation of arsenic difficult. In the present study, the influence of chelating ligands on arsenic and iron uptake by hydroponically grown rice seedlings (Oryza sativa L.) was investigated. When chelating ligands were not treated to the growth medium, about 63 and 71% of the total arsenic and iron were distributed in the root extract (outer root surfaces) of rice, respectively. On the other hand, ethylenediaminetetraacetic acid (EDTA), ethylenediaminedisuccinic acid (EDDS) and hydroxyiminodisuccinic acid (HIDS) desorbed a significant amount of arsenic from FeO{sub x} of the outer root surfaces. Therefore, the uptake of arsenic and iron into the roots and their subsequent translocation to the shoots of the rice seedlings increased significantly. The order of increasing arsenic uptake by chelating ligands was HIDS > EDTA > EDDS. Methylglycinediacetic acid (MGDA) and iminodisuccinic acid (IDS) might not be effective in arsenic solubilization from FeO{sub x}. The results suggest that EDDS and HIDS would be a good and environmentally safe choice to accelerate arsenic phytoavailability in the phytoremediation process because of their biodegradability and would be a competent alternative to the widely used non-biodegradable and environmentally persistent EDTA. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  20. Plutonium contents of broadleaf vegetable crops grown near a nuclear fuel chemical separations facility

    Energy Technology Data Exchange (ETDEWEB)

    McLeod, K W; Alberts, J J; Adriano, D C; Pinder, III, J E

    1984-02-01

    Among agricultural crops, broadleaf vegetables are particularly prone to intercept and retain aerially released contaminants. The plutonium concentration of four broadleaf crops (broccoli, cabbage, lettuce and turnip greens) was determined, when grown in close proximity to a nuclear-fuel chemical-separations facility. Concentrations varied among species, apparently influenced by the crop morphology, with Pu concentrations increasing in the sequence: cabbage < broccoli < turnip greens < lettuce. Washing of the crops significantly reduced the Pu concentration of lettuce, but had no effect on Pu concentration of broccoli and cabbage. The vast majority of Pu found in the crops was due to direct deposition of recently released Pu and resuspension of Pu-bearing soil particles, and was not due to root uptake. Resultant doses from consumption are small relative to the annual background dose.

  1. Tolerance of wheat and lettuce plants grown on human mineralized waste to high temperature stress

    Science.gov (United States)

    Ushakova, Sofya A.; Tikhomirov, Alexander A.; Shikhov, Valentin N.; Gros, Jean-Bernard; Golovko, Tamara K.; Dal'ke, Igor V.; Zakhozhii, Ilya G.

    2013-06-01

    The main objective of a life support system for space missions is to supply a crew with food, water and oxygen, and to eliminate their wastes. The ultimate goal is to achieve the highest degree of closure of the system using controlled processes offering a high level of reliability and flexibility. Enhancement of closure of a biological life support system (BLSS) that includes plants relies on increased regeneration of plant waste, and utilization of solid and liquid human wastes. Clearly, the robustness of a BLSS subjected to stress will be substantially determined by the robustness of the plant components of the phototrophic unit. The aim of the present work was to estimate the heat resistance of two plants (wheat and lettuce) grown on human wastes. Human exometabolites mineralized by hydrogen peroxide in an electromagnetic field were used to make a nutrient solution for the plants. We looked for a possible increase in the heat tolerance of the wheat plants using changes in photosynthetically active radiation (PAR) intensity during heat stress. At age 15 days, plants were subjected to a rise in air temperature (from 23 ± 1 °C to 44 ± 1 °С) under different PAR intensities for 4 h. The status of the photosynthetic apparatus of the plants was assessed by external СО2 gas exchange and fluorescence measurements. The increased irradiance of the plants during the high temperature period demonstrated its protective action for both the photosynthetic apparatus of the leaves and subsequent plant growth and development. The productivity of the plants subjected to temperature changes at 250 W m-2 of PAR did not differ from that of controls, whereas the productivity of the plants subjected to the same heat stress but in darkness was halved.

  2. RESULTS ON THE EFFECT OF DIFFERENT TYPES OF ROMANIAN NATIVE PEAT BIO COMPOSITES POTS ON SEEDLING GROWTH

    OpenAIRE

    Florina Uleanu

    2013-01-01

    Seedlings production is an important link in vegetable culture because many vegetables species are grown by producing prior of seedlings. The theme work is in line with Western trends to produce seedlings by integrating new vegetables technologies, profitable, with positive effect on limiting pathogens to obtain seedlings, using biodegradable pots. Were conducted various observations and measurements on plants when they have reached the optimum phase for planting. We have determined: height o...

  3. DETERMINATION OF THE SEEDLINGS QUALITY CLASSES OF BLACK LOCUST (Robinia pseudoacacia L. ORIGINS

    Directory of Open Access Journals (Sweden)

    İbrahim Turna

    2000-04-01

    Full Text Available classification criteria is the assesment of height and root-colar diameter together. newly seedling quality classification (YS have highly first grade seedlings. The most important According to the results of this study, all the origins determined with respect to either TSE or determined by using factor analysis. Furthermore the morphological characteristics that affect the seedling quality classification were diameter. The resulting seedling quality classification were controlled by using discriminant analysis. determined according to height, root-colar diameter and combination of both height and root-colar provenances were soved in KTÜ Nursery. One year later, these seedlings were lifted. Quality norms in KTÜ Nursery were used. Eighteen different origin seeds of Black locust of which eleven are egzotic In this present study, 1+0 Black Locust ( Robinia pseudoacacia L. seedlings grown

  4. Composition of hydroponic lettuce: effect of time of day, plant size, and season.

    Science.gov (United States)

    Gent, Martin P N

    2012-02-01

    The diurnal variation of nitrate and sugars in leafy green vegetables may vary with plant size or the ability of plants to buffer the uptake, synthesis, and use of metabolites. Bibb lettuce was grown in hydroponics in a greenhouse and sampled at 3 h intervals throughout one day in August 2007 and another day in November 2008 to determine fresh weight, dry matter, and concentration of nitrate and sugars. Plantings differing in size and age were sampled on each date. The dry/fresh weight ratio increased during the daylight period. This increase was greater for small compared to large plants. On a fresh weight basis, tissue nitrate of small plants was only half that of larger plants. The variation in concentration with time was much less for nitrate than for soluble sugars. Soluble sugars were similar for all plant sizes early in the day, but they increased far more for small compared to large plants in the long days of summer. The greatest yield on a fresh weight basis was obtained by harvesting lettuce at dawn. Although dry matter or sugar content increased later in the day, there is no commercial benefit to delaying harvest as consumers do not buy lettuce for these attributes. Copyright © 2011 Society of Chemical Industry.

  5. Exogenous Glycine Nitrogen Enhances Accumulation of Glycosylated Flavonoids and Antioxidant Activity in Lettuce (Lactuca sativa L.

    Directory of Open Access Journals (Sweden)

    Xiao Yang

    2017-12-01

    Full Text Available Glycine, the simplest amino acid in nature and one of the most abundant free amino acids in soil, is regarded as a model nutrient in organic nitrogen studies. To date, many studies have focused on the uptake, metabolism and distribution of organic nitrogen in plants, but few have investigated the nutritional performance of plants supplied with organic nitrogen. Lettuce (Lactuca sativa L., one of the most widely consumed leafy vegetables worldwide, is a significant source of antioxidants and bioactive compounds such as polyphenols, ascorbic acid and tocopherols. In this study, two lettuce cultivars, Shenxuan 1 and Lollo Rossa, were hydroponically cultured in media containing 4.5, 9, or 18 mM glycine or 9 mM nitrate (control for 4 weeks, and the levels of health-promoting compounds and antioxidant activity of the lettuce leaf extracts were evaluated. Glycine significantly reduced fresh weight compared to control lettuce, while 9 mM glycine significantly increased fresh weight compared to 4.5 or 18 mM glycine. Compared to controls, glycine (18 mM for Shenxuan 1; 9 mM for Lollo Rossa significantly increased the levels of most antioxidants (including total polyphenols, α-tocopherol and antioxidant activity, suggesting appropriate glycine supply promotes antioxidant accumulation and activity. Glycine induced most glycosylated quercetin derivatives and luteolin derivatives detected and decreased some phenolic acids compared to nitrate treatment. This study indicates exogenous glycine supplementation could be used strategically to promote the accumulation of health-promoting compounds and antioxidant activity of hydroponically grown lettuce, which could potentially improve human nutrition.

  6. Exogenous Glycine Nitrogen Enhances Accumulation of Glycosylated Flavonoids and Antioxidant Activity in Lettuce (Lactuca sativa L.).

    Science.gov (United States)

    Yang, Xiao; Cui, Xiaoxian; Zhao, Li; Guo, Doudou; Feng, Lei; Wei, Shiwei; Zhao, Chao; Huang, Danfeng

    2017-01-01

    Glycine, the simplest amino acid in nature and one of the most abundant free amino acids in soil, is regarded as a model nutrient in organic nitrogen studies. To date, many studies have focused on the uptake, metabolism and distribution of organic nitrogen in plants, but few have investigated the nutritional performance of plants supplied with organic nitrogen. Lettuce ( Lactuca sativa L.), one of the most widely consumed leafy vegetables worldwide, is a significant source of antioxidants and bioactive compounds such as polyphenols, ascorbic acid and tocopherols. In this study, two lettuce cultivars, Shenxuan 1 and Lollo Rossa, were hydroponically cultured in media containing 4.5, 9, or 18 mM glycine or 9 mM nitrate (control) for 4 weeks, and the levels of health-promoting compounds and antioxidant activity of the lettuce leaf extracts were evaluated. Glycine significantly reduced fresh weight compared to control lettuce, while 9 mM glycine significantly increased fresh weight compared to 4.5 or 18 mM glycine. Compared to controls, glycine (18 mM for Shenxuan 1; 9 mM for Lollo Rossa) significantly increased the levels of most antioxidants (including total polyphenols, α-tocopherol) and antioxidant activity, suggesting appropriate glycine supply promotes antioxidant accumulation and activity. Glycine induced most glycosylated quercetin derivatives and luteolin derivatives detected and decreased some phenolic acids compared to nitrate treatment. This study indicates exogenous glycine supplementation could be used strategically to promote the accumulation of health-promoting compounds and antioxidant activity of hydroponically grown lettuce, which could potentially improve human nutrition.

  7. Tree planting in Haiti: How to plant and care for your nursery grown seedlings

    Science.gov (United States)

    Kyrstan Hubbel; Yvonne Barkley; Jeremiah R. Pinto; R. Kasten Dumroese; Sabine Deristin; Raymond Joseph; Randy Brooks; Anthony S. Davis

    2016-01-01

    Seedlings need the right amounts of sunlight, water and nutrients to live and grow into healthy trees. Different types of trees have different requirements, so seedlings will need planting sites that meet all of their requirements. For example, pine trees need full sun, a moderate amount of water and a certain combination of nutrients to grow into healthy trees. If you...

  8. Evaluation of Lettuce Genotypes for Seed Thermotolerance

    Science.gov (United States)

    Thermoinhibition of lettuce (Lactuca sativa L.) seed germination is a common problem associated with lettuce production. Depending on lettuce cultivars, seed germination may be inhibited when temperatures exceed 28oC. The delay or inhibition of seed germination at high temperatures may reduce seedli...

  9. Characterization of lettuce big-vein associated virus and Mirafiori lettuce big-vein virus infecting lettuce in Saudi Arabia.

    Science.gov (United States)

    Umar, M; Amer, M A; Al-Saleh, M A; Al-Shahwan, I M; Shakeel, M T; Zakri, A M; Katis, N I

    2017-07-01

    During 2014 and 2015, 97 lettuce plants that showed big-vein-disease-like symptoms and seven weed plants were collected from the Riyadh region. DAS-ELISA revealed that 25% and 9% of the lettuce plants were singly infected with LBVaV and MiLBVV, respectively, whereas 63% had a mixed infection with both viruses. The results were confirmed by multiplex reverse transcription polymerase chain reaction using primers specific for LBVaV and MiLBVV. LBVaV and MiLBVV were also detected in Sonchus oleraceus and Eruca sativa, respectively. The nucleotide sequence of LBVaV and MiLBVV Saudi isolates ranged from 94.3-100%, and their similarities to isolates with sequences in the GenBank database ranged from 93.9 to 99.6% and 93.8 to 99.3%, respectively. Olpidium sp. was present in the roots of lettuce plants with big-vein disease and it was shown to facilitate transmission of both viruses.

  10. Transcriptomics analysis of etiolated Arabidopsis thaliana seedlings in response to microgravity

    Data.gov (United States)

    National Aeronautics and Space Administration — Gene expression profile of two-week-old etiolated Arabidopsis seedlings under microgravity on board space flight BRIC16 were compared with ground grown control in...

  11. Seed origin and size of ponderosa pine planting stock grown at several California nurseries

    Science.gov (United States)

    Frank J. Baron; Gilbert H. Schubert

    1963-01-01

    Ponderosa pine planting stock (1-0 and 2-0) grown from five different seed collection zones in the California pine region differed noticeably in size. On the west side of the Sierra Nevada, seeds from zones above 4,000 feet yielded smaller seedlings than those from lower zones, but larger seedlings than those from east-side sources. Average dimensions (seedling weight...

  12. Nutritional disorder of lettuce cv. Veronica in nutrient solution with suppressed macronutrients

    Directory of Open Access Journals (Sweden)

    Thiago Batista Firmato de Almeida

    2011-06-01

    Full Text Available Lettuce is the most popular of the leafy vegetables. It is known worldwide and its consumption occurs mainly in the natural form. The objective was to evaluate the effect of macronutrient omission on the growth and nutritional status of the lettuce cv. Veronica, and to describe the visual symptoms of nutritional deficiency. The treatments complete consisted of the solution and the individual omission of N, P, K, Ca, Mg and S, under a completely randomized design with three replications. Plants were grown in Hoagland & Arnon, in pots (8L. At 56 days after transplant we evaluated plant height, leaf number, leaf area, SPAD index, dry matter of shoots, roots and whole plant, levels of macronutrients in shoots and roots, and the nature of nutritional disorders. The omission of nutrients affected the growth variables. The nutrients found in lettuce plants from nutrient solution and the complete omission in the shoot were, respectively, N= 23.2 to 9.5, P= 5.4 to 1.3, K= 58,9 to 3.2, Ca= 12.1 to 3.6, Mg= 5.5 to 0.7 and S= 3.2 to 1.5g.kg-1. The omission of macronutrients caused quality losses, since it affected the nutrition of the vegetables and this resulted in morphological changes, reflected as symptoms of deficiency for each nutrient.

  13. Estimate of uptake and translocation of emerging organic contaminants from irrigation water concentration in lettuce grown under controlled conditions.

    Science.gov (United States)

    Hurtado, Carlos; Domínguez, Carmen; Pérez-Babace, Lorea; Cañameras, Núria; Comas, Jordi; Bayona, Josep M

    2016-03-15

    The widespread distribution of emerging organic contaminants (EOCs) in the water cycle can lead to their incorporation in irrigated crops, posing a potential risk for human consumption. To gain further insight into the processes controlling the uptake of organic microcontaminants, Batavia lettuce (Lactuca sativa) grown under controlled conditions was watered with EOCs (e.g., non-steroidal anti-inflammatories, sulfonamides, β-blockers, phenolic estrogens, anticonvulsants, stimulants, polycyclic musks, biocides) at different concentrations (0-40μgL(-1)). Linear correlations were obtained between the EOC concentrations in the roots and leaves and the watering concentrations for most of the contaminants investigated. However, large differences were found in the root concentration factors ( [Formula: see text] =0.27-733) and leaf translocation concentration factors ( [Formula: see text] =0-3) depending on the persistence of the target contaminants in the rhizosphere and the specific physicochemical properties of each one. With the obtained dataset, a simple predictive model based on a linear regression and the root bioconcentration and translocation factors can be used to estimate the concentration of the target EOCs in leaves based on the dose supplied in the irrigation water or the soil concentration. Finally, enantiomeric fractionation of racemic ibuprofen from the initial spiking mixture suggests that biodegradation mainly occurs in the rhizosphere. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Partial aphid resistance in lettuce negatively affects parasitoids.

    Science.gov (United States)

    Lanteigne, Marie-Eve; Brodeur, Jacques; Jenni, Sylvie; Boivin, Guy

    2014-10-01

    This study investigated the effects of partial plant resistance on the lettuce aphid Nasonovia ribisnigri (Mosley) (Hemiptera: Aphididae), a major pest of cultivated lettuce (Lactuca sativa L.), and one of its parasitoids, Aphidius ervi Haliday (Hymenoptera: Braconidae). Aphids were reared on susceptible (L. sativa variety Estival; S) or partially resistant (Lactuca serriola L. PI 491093; PR) lettuce, and next parasitized by A. ervi females. Fitness proxies were measured for both aphids and parasitoids. Developmental time to adult stage took longer for alate and apterous aphids (an average of 3.5 and 1.5 additional days, respectively) on PR than on S lettuce, and fecundity of alate aphids reared on PR lettuce was reduced by 37.8% relative to those reared on S lettuce. Size (tibia length) and weight of aphids reared on PR lettuce were lower than for aphids reared on S lettuce from the third and second instar onward, respectively. Parasitism of aphids reared on PR plants resulted in lower parasitoid offspring emergence (-49.9%), lower adult female (-30.3%) and male (-27.5%) weight, smaller adult female (-17.5%) and male (-11.9%) size, and lower female fecundity (37.8% fewer eggs) than when parasitoids developed from aphids reared on S plants. Our results demonstrate that partial aphid resistance in lettuce negatively affects both the second and third trophic levels. Host plant resistance in cultivated lettuce may therefore create an ecological sink for aphid parasitoids.

  15. Effects of biochar and alkaline amendments on cadmium immobilization, selected nutrient and cadmium concentrations of lettuce (Lactuca sativa) in two contrasting soils

    DEFF Research Database (Denmark)

    Woldetsadik, Desta; Drechsel, Pay; Keraita, Bernard

    2016-01-01

    To assess the efficiency of seven treatments including biochars produced from dried faecal matter and manures as stabilizing agents of cadmium (Cd)-spiked soils, lettuce was grown in glasshouse on two contrasting soils. The soils used were moderately fertile silty loam and less fertile sandy loam...... and the applied treatments were 7 % w/w. The reduction of bioavailable Cd (ammonium nitrate extractable) and its phytoavailability for lettuce were used as assessment criteria in the evaluation of stabilization performance of each treatment. Moreover, the agronomic values of the treatments were also investigated...... extracts. The immobilization potential of faecal matter biochar and lime were superior than the other treatments. However, lime and egg shell promoted statistically lower yield and P, K and Zn concentrations response of lettuce plants compared to the biochar treatments. The lowest Cd and highest P tissue...

  16. Leaf life span plasticity in tropical seedlings grown under contrasting light regimes.

    Science.gov (United States)

    Vincent, Gregoire

    2006-02-01

    The phenotypic plasticity of leaf life span in response to low resource conditions has a potentially large impact on the plant carbon budget, notably in evergreen species not subject to seasonal leaf shedding, but has rarely been well documented. This study evaluates the plasticity of leaf longevity, in terms of its quantitative importance to the plant carbon balance under limiting light. Seedlings of four tropical tree species with contrasting light requirements (Alstonia scholaris, Hevea brasiliensis, Durio zibethinus and Lansium domesticum) were grown under three light regimes (full sunlight, 45 % sunlight and 12 % sunlight). Their leaf dynamics were monitored over 18 months. All species showed a considerable level of plasticity with regard to leaf life span: over the range of light levels explored, the ratio of the range to the mean value of life span varied from 29 %, for the least plastic species, to 84 %, for the most. The common trend was for leaf life span to increase with decreasing light intensity. The plasticity apparent in leaf life span was similar in magnitude to the plasticity observed in specific leaf area and photosynthetic rate, implying that it has a significant impact on carbon gain efficiency when plants acclimate to different light regimes. In all species, median survival time was negatively correlated with leaf photosynthetic capacity (or its proxy, the nitrogen content per unit area) and leaf emergence rate. Longer leaf life spans under low light are likely to be a consequence of slower ageing as a result of a slower photosynthetic metabolism.

  17. Testes de vigor em sementes de alface Seed vigor tests for lettuce seeds

    Directory of Open Access Journals (Sweden)

    Ana Lúcia P Kikuti

    2012-03-01

    Full Text Available O vigor da semente tem sido avaliado por meio de testes fisiológicos, bioquímicos e de tolerância a estresse. Mais recentemente, com o uso da análise computadorizada de imagens de plântulas, podem ser obtidas informações objetivas, em período relativamente curto, com menor interferência humana. O objetivo nesta pesquisa foi identificar testes eficientes para avaliação do vigor de sementes de alface, com ênfase para a análise de imagens digitais de plântulas. Sementes de 12 lotes (seis da cultivar Vanda e seis da Vera foram avaliadas por meio de testes de germinação, germinação a baixa temperatura (15ºC, emergência de plântulas e envelhecimento acelerado tradicional e com solução salina (NaCl 40% saturada, a 41ºC/48 h e 41ºC/72 h. Utilizou-se, também, o sistema de análise computadorizada de imagens de plântulas (SVIS®, desenvolvido pela Ohio State University (EUA, que forneceu dados referentes ao índice de vigor, uniformidade e crescimento de plântulas. Os testes foram realizados a cada três meses, durante 12 meses de armazenamento, sob condições ambiente. Com base nos resultados obtidos, concluiu-se que os testes de envelhecimento acelerado com uso de solução saturada de NaCl, a 41ºC por 48 e 72 horas e de velocidade de germinação, e os parâmetros obtidos com o software SVIS, índice de crescimento de plântulas e comprimento da raiz primária, são eficientes na avaliação do vigor de lotes de sementes de alface.The seed vigor is evaluated by traditional tests and more recently by seedling imaging analysis to obtain objective information within a short period of time. The objective of the study was to verify the accuracy of accepted vigor tests in comparison to an automated computer imaging system for seedling evaluation (SVIS® in order to assess lettuce seed vigor. Six seed lots each of two cultivars (Vanda and Vera were evaluated in the germination, cold germination (15ºC, seedling emergence and

  18. Differential effects of aluminium on the seedling parameters of wheat ...

    African Journals Online (AJOL)

    Differential effects of aluminium on the seedling parameters of wheat. ... African Journal of Biotechnology ... and Maroon (Al tolerant) were grown on hydroponic solution (non modified Hoagland) containing AlCl3 (0-100-200-300 μM). Factorial ...

  19. The Influence of Thermic Plastic Films on Vegetative and Reproductive Growth of Iceberg Lettuce 'Dublin'

    OpenAIRE

    Wael M. Semida; P. Hadley; W. Sobeih; N. A. El-Sawah; M. A. S. Barakat

    2013-01-01

    Photoselective plastic films with thermic properties are now available so that greenhouses clad with such plastics exhibit a higher degree of “Greenhouse Effect” with a consequent increase in night time temperature. In this study, we investigate the potential benefits of a range of thermic plastic films used as greenhouse cover materials on the vegetative and reproductive growth and development of Iceberg lettuce (Lactuca sativa L). Transplants were grown under thermic fi...

  20. Influence of nutrition and various substrates on spruce seedling growth

    Directory of Open Access Journals (Sweden)

    Đukić Matilda

    2004-01-01

    Full Text Available The results of the influence of main macronutrients (N, P, and K on growth and development of spruce (Picea abies L. Karst one-year old seedlings are presented. They were grown in containers, in nursery conditions, on four different substrates. There is a good influence on biogenous element contents, height, root collar diameter, needle length and mass, root mass as well as physiological vitality of spruce seedlings. It was observed that the effect of nutrition depends also on the type of substrate.

  1. RESULTS ON THE EFFECT OF DIFFERENT TYPES OF ROMANIAN NATIVE PEAT BIO COMPOSITES POTS ON SEEDLING GROWTH

    Directory of Open Access Journals (Sweden)

    Florina Uleanu

    2013-07-01

    Full Text Available Seedlings production is an important link in vegetable culture because many vegetables species are grown by producing prior of seedlings. The theme work is in line with Western trends to produce seedlings by integrating new vegetables technologies, profitable, with positive effect on limiting pathogens to obtain seedlings, using biodegradable pots. Were conducted various observations and measurements on plants when they have reached the optimum phase for planting. We have determined: height of seedlings, root length, leaf number, root volume total weight, weight of the aerial and weight of roots. The obtained data was calculated and considered as average / variant.

  2. Radium and uranium levels in vegetables grown using different farming management systems

    Energy Technology Data Exchange (ETDEWEB)

    Lauria, D.C. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN), Av. Salvador Allende s/n, Recreio dos Bandeirantes, Rio de Janeiro, RJ, CEP 22780-160 (Brazil)], E-mail: dejanira@ird.gov.br; Ribeiro, F.C.A. [Centro Regional de Ciencias Nucleares (CRCN/CNEN), Av. Prof. Luiz Freire 200, Cidade Universitaria Recife, PE, CEP 50740-540 (Brazil); Conti, C.C. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN), Av. Salvador Allende s/n, Recreio dos Bandeirantes, Rio de Janeiro, RJ, CEP 22780-160 (Brazil); Loureiro, F.A. [Estacao Experimental de Nova Friburgo, Empresa de Pesquisa Agropecuaria do Estado do Rio de Janeiro, Pesagro (Brazil)

    2009-02-15

    Vegetables grown with phosphate fertilizer (conventional management), with bovine manure fertilization (organic management) and in a mineral nutrient solution (hydroponic) were analyzed and the concentrations of {sup 238}U, {sup 226}Ra and {sup 228}Ra in lettuce, carrots, and beans were compared. Lettuce from hydroponic farming system showed the lowest concentration of radionuclides 0.51 for {sup 226}Ra, 0.55 for {sup 228}Ra and 0.24 for {sup 238}U (Bq kg{sup -1} dry). Vegetables from organically and conventionally grown farming systems showed no differences in the concentration of radium and uranium. Relationships between uranium content in plants and exchangeable Ca and Mg in soil were found, whereas Ra in vegetables was inversely correlated to the cation exchange capacity of soil, leading to the assumption that by supplying carbonate and cations to soil, liming may cause an increase of U and a decrease of radium uptake by plants. The soil to plant transfer varied from 10{sup -4} to 10{sup -2} for {sup 238}U and from 10{sup -2} to 10{sup -1} for {sup 228}Ra.

  3. Radium and uranium levels in vegetables grown using different farming management systems

    International Nuclear Information System (INIS)

    Lauria, D.C.; Ribeiro, F.C.A.; Conti, C.C.; Loureiro, F.A.

    2009-01-01

    Vegetables grown with phosphate fertilizer (conventional management), with bovine manure fertilization (organic management) and in a mineral nutrient solution (hydroponic) were analyzed and the concentrations of 238 U, 226 Ra and 228 Ra in lettuce, carrots, and beans were compared. Lettuce from hydroponic farming system showed the lowest concentration of radionuclides 0.51 for 226 Ra, 0.55 for 228 Ra and 0.24 for 238 U (Bq kg -1 dry). Vegetables from organically and conventionally grown farming systems showed no differences in the concentration of radium and uranium. Relationships between uranium content in plants and exchangeable Ca and Mg in soil were found, whereas Ra in vegetables was inversely correlated to the cation exchange capacity of soil, leading to the assumption that by supplying carbonate and cations to soil, liming may cause an increase of U and a decrease of radium uptake by plants. The soil to plant transfer varied from 10 -4 to 10 -2 for 238 U and from 10 -2 to 10 -1 for 228 Ra

  4. Radium and uranium levels in vegetables grown using different farming management systems.

    Science.gov (United States)

    Lauria, D C; Ribeiro, F C A; Conti, C C; Loureiro, F A

    2009-02-01

    Vegetables grown with phosphate fertilizer (conventional management), with bovine manure fertilization (organic management) and in a mineral nutrient solution (hydroponic) were analyzed and the concentrations of (238)U, (226)Ra and (228)Ra in lettuce, carrots, and beans were compared. Lettuce from hydroponic farming system showed the lowest concentration of radionuclides 0.51 for (226)Ra, 0.55 for (228)Ra and 0.24 for (238)U (Bq kg(-1) dry). Vegetables from organically and conventionally grown farming systems showed no differences in the concentration of radium and uranium. Relationships between uranium content in plants and exchangeable Ca and Mg in soil were found, whereas Ra in vegetables was inversely correlated to the cation exchange capacity of soil, leading to the assumption that by supplying carbonate and cations to soil, liming may cause an increase of U and a decrease of radium uptake by plants. The soil to plant transfer varied from 10(-4) to 10(-2) for (238)U and from 10(-2) to 10(-1) for (228)Ra.

  5. The Effect of Plant Growth Promoting Bacteria on Transplants Growth and Lettuce Yield in Organic Production

    Directory of Open Access Journals (Sweden)

    Szczech Magdalena

    2016-12-01

    Full Text Available Application of beneficial bacterial strain B125 (Enterobacter sp. and strain PZ9 (Bacillus sp. in lettuce transplants production significantly enhanced seed germination and plant biomass. The best effect was obtained when the mixture of B125 and PZ9 was used. Combined application of these bacteria significantly increased transplants biomass, which was about 45% higher than that in the control. However, after planting these transplants in organic field, generally, there were no differences in yield and nutrient content in plants treated and not treated with the bacteria, except for nitrogen and vitamin C. The lettuce grown from transplants treated with bacterial mixture B125 + PZ9 contained significantly higher nitrogen than plants from other treatments. Opposite to nitrogen, bacterial applications decreased the amount of vitamin C. The growth and organic lettuce composition was affected by planting time. The yield was higher in spring, but the concentration of nutrients in these plants was lower than that in plants harvested in autumn. Climatic and light conditions in the late season were the reasons for increased dry matter content, minerals, phenolic compounds, and vitamin C, as well as high concentration of nitrates.

  6. Silencing the lettuce homologs of small rubber particle protein does not influence natural rubber biosynthesis in lettuce (Lactuca sativa).

    Science.gov (United States)

    Chakrabarty, Romit; Qu, Yang; Ro, Dae-Kyun

    2015-05-01

    Natural rubber, cis-1,4-polyisoprene, is an important raw material in chemical industries, but its biosynthetic mechanism remains elusive. Natural rubber is known to be synthesized in rubber particles suspended in laticifer cells in the Brazilian rubber tree (Hevea brasiliensis). In the rubber tree, rubber elongation factor (REF) and its homolog, small rubber particle protein (SRPP), were found to be the most abundant proteins in rubber particles, and they have been implicated in natural rubber biosynthesis. As lettuce (Lactuca sativa) can synthesize natural rubber, we utilized this annual, transformable plant to examine in planta roles of the lettuce REF/SRPP homologs by RNA interference. Among eight lettuce REF/SRPP homologs identified, transcripts of two genes (LsSRPP4 and LsSRPP8) accounted for more than 90% of total transcripts of REF/SRPP homologs in lettuce latex. LsSRPP4 displays a typical primary protein sequence as other REF/SRPP, while LsSRPP8 is twice as long as LsSRPP4. These two major LsSRPP transcripts were individually and simultaneously silenced by RNA interference, and relative abundance, polymer molecular weight, and polydispersity of natural rubber were analyzed from the LsSRPP4- and LsSRPP8-silenced transgenic lettuce. Despite previous data suggesting the implications of REF/SRPP in natural rubber biosynthesis, qualitative and quantitative alterations of natural rubber could not be observed in transgenic lettuce lines. It is concluded that lettuce REF/SRPP homologs are not critically important proteins in natural rubber biosynthesis in lettuce. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Simple method for the determination of personal care product ingredients in lettuce by ultrasound-assisted extraction combined with solid-phase microextraction followed by GC-MS.

    Science.gov (United States)

    Cabrera-Peralta, Jerónimo; Peña-Alvarez, Araceli

    2018-05-01

    A simple method for the simultaneous determination of personal care product ingredients: galaxolide, tonalide, oxybenzone, 4-methylbenzyliden camphor, padimate-o, 2-ethylhexyl methoxycinnamate, octocrylene, triclosan, and methyl triclosan in lettuce by ultrasound-assisted extraction combined with solid-phase microextraction followed by gas chromatography with mass spectrometry was developed. Lettuce was directly extracted by ultrasound-assisted extraction with methanol, this extract was combined with water, extracted by solid-phase microextraction in immersion mode, and analyzed by gas chromatography with mass spectrometry. Good linear relationships (25-250 ng/g, R 2  > 0.9702) and low detection limits (1.0-25 ng/g) were obtained for analytes along with acceptable precision for almost all analytes (RSDs < 20%). The validated method was applied for the determination of personal care product ingredients in commercial lettuce and lettuces grown in soil and irrigated with the analytes, identifying the target analytes in leaves and roots of the latter. This procedure is a miniaturized and environmentally friendly proposal which can be a useful tool for quality analysis in lettuce. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Secondary metabolism and antioxidants are involved in environmental adaptation and stress tolerance in lettuce.

    Science.gov (United States)

    Oh, Myung-Min; Trick, Harold N; Rajashekar, C B

    2009-01-30

    Lettuce (Lactuca sativa) plants grown in a protective environment, similar to in vitro conditions, were acclimated in a growth chamber and subjected to water stress to examine the activation of genes involved in secondary metabolism and biosynthesis of antioxidants. The expression of phenylalanine ammonia-lyase (PAL), gamma-tocopherol methyl transferase (gamma-TMT) and l-galactose dehydrogenase (l-GalDH) genes involved in the biosynthesis of phenolic compounds, alpha-tocopherol and ascorbic acid, respectively, were determined during plant adaptation. These genes were activated in tender plants, grown under protective conditions, when exposed to normal growing conditions in a growth chamber. A large increase in transcript level for PAL, a key gene in the phenylpropanoid pathway leading to the biosynthesis of a wide array of phenolics and flavonoids, was observed within 1h of exposure of tender plants to normal growing conditions. Plant growth, especially the roots, was retarded in tender plants when exposed to normal growing conditions. Furthermore, exposure of both protected and unprotected plants to water stress resulted in the activation of PAL. PAL inhibition by 2-aminoindan-2-phosphonic acid (AIP) rendered these plants more sensitive to chilling and heat shock treatments. These results suggest that activation of secondary metabolism as well as the antioxidative metabolism is an integral part of plant adaptation to normal growing conditions in lettuce plants.

  9. The influence of the microbial quality of wastewater, lettuce cultivars and enumeration technique when estimating the microbial contamination of wastewater-irrigated lettuce.

    Science.gov (United States)

    Makkaew, P; Miller, M; Cromar, N J; Fallowfield, H J

    2017-04-01

    This study investigated the volume of wastewater retained on the surface of three different varieties of lettuce, Iceberg, Cos, and Oak leaf, following submersion in wastewater of different microbial qualities (10, 10 2 , 10 3 , and 10 4 E. coli MPN/100 mL) as a surrogate method for estimation of contamination of spray-irrigated lettuce. Uniquely, Escherichia coli was enumerated, after submersion, on both the outer and inner leaves and in a composite sample of lettuce. E. coli were enumerated using two techniques. Firstly, from samples of leaves - the direct method. Secondly, using an indirect method, where the E. coli concentrations were estimated from the volume of wastewater retained by the lettuce and the E. coli concentration of the wastewater. The results showed that different varieties of lettuce retained significantly different volumes of wastewater (p 0.01) were detected between E. coli counts obtained from different parts of lettuce, nor between the direct and indirect enumeration methods. Statistically significant linear relationships were derived relating the E. coli concentration of the wastewater in which the lettuces were submerged to the subsequent E. coli count on each variety the lettuce.

  10. Growing patterns to produce 'nitrate-free' lettuce (Lactuca sativa).

    Science.gov (United States)

    Croitoru, Mircea Dumitru; Muntean, Daniela-Lucia; Fülöp, Ibolya; Modroiu, Adriana

    2015-01-01

    Vegetables can contain significant amounts of nitrate and, therefore, may pose health hazards to consumers by exceeding the accepted daily intake for nitrate. Different hydroponic growing patterns were examined in this work in order to obtain 'nitrate-free lettuces'. Growing lettuces on low nitrate content nutrient solution resulted in a significant decrease in lettuces' nitrate concentrations (1741 versus 39 mg kg(-1)), however the beneficial effect was cancelled out by an increase in the ambient temperature. Nitrate replacement with ammonium was associated with an important decrease of the lettuces' nitrate concentration (from 1896 to 14 mg kg(-1)) and survival rate. An economically feasible method to reduce nitrate concentrations was the removal of all inorganic nitrogen from the nutrient solution before the exponential growth phase. This method led to lettuces almost devoid of nitrate (10 mg kg(-1)). The dried mass and calcinated mass of lettuces, used as markers of lettuces' quality, were not influenced by this treatment, but a small reduction (18%, p < 0.05) in the fresh mass was recorded. The concentrations of nitrite in the lettuces and their modifications are also discussed in the paper. It is possible to obtain 'nitrate-free' lettuces in an economically feasible way.

  11. Advancements in utilizing molecular markers in lettuce breeding

    Science.gov (United States)

    Lettuce (Lactuca sativa L.) is globally the most popular commercially produced, leafy vegetable, farmed in moderate climates. Cultivated lettuce is a self-fertilizing, diploid (2n = 2x = 18) species from the family Compositae (Asteraceae). New cultivars of lettuce are developed by combining desirabl...

  12. BIOACTIVE COMPOUNDS AND ANTIOXIDANT CAPACITY FROM FIVE TYPES OF SEEDLINGS

    Directory of Open Access Journals (Sweden)

    Florina Maria Copaciu

    2016-10-01

    Full Text Available After germination process, the green seedlings accumulate important quantities of bioactive compounds such as: enzymes, vitamins, minerals, chlorophylls and nutrients. The current study presents a comparison between different bioactive compounds and their antioxidant capacity, after the seedling germination and growth of five seeds (arugula, lentil, wheat, beans and mustard both on soil, in a pot (natural system, and directly on cotton wool soaked, in water (artificial system. In this study the carotenoids content and the antioxidant capacity were analysed. The data of the present study showed that the highest amount of zeaxanthin and β - carotene was found in cultivars of wheat grown in natural system, while the highest antioxidant activity was found in cultivars of wheat, lentils and beans, though in this case with no statistical differences between the systems. The results show statistical differences between the values of bioactive compounds in the five types of seedlings but also in the values obtained for the same seedlings in different systems. The best cultivars for improving the nutritional quality for human consumption are wheat seedlings followed by lentil ones.

  13. Evidence for Lettuce big-vein associated virus as the causal agent of a syndrome of necrotic rings and spots in lettuce

    NARCIS (Netherlands)

    Verbeek, M.; Dullemans, A.M.; Bekkum, van P.J.; Vlugt, van der R.A.A.

    2013-01-01

    Lettuce big-vein associated virus (LBVaV, genus Varicosavirus) was shown to be responsible for characteristic necrotic symptoms observed in combination with big-vein symptoms in lettuce breeding lines when tested for their susceptibility to lettuce big-vein disease (BVD) using viruliferous Olpidium

  14. Effect of laser-diode light on growth of Lactuca sativa L

    International Nuclear Information System (INIS)

    Yamazaki, A.; Tsuchiya, H.; Miyajima, H.; Honma, T.; Kan, H.

    2000-01-01

    Development of an effective, high-power, low-cost, artificial light source for use in plant-growing facilities would be very beneficial for plant production. Recently, the laser-diode lamp was proposed as a new type of light source for plant production. The advantages of the laser-diode lamp over conventional light sources are its high electrical-to-optical power conversion efficiency, low thermal radiation, easy set-up for high power and pulse irradiation, small weight and small volume for mounting, and selectivity for proper wavelength. Because laser light itself differs from the light sources presently used in plant growing, we confirmed the possibility of growing plants under the laser-diode light using lettuces. Lettuce seedlings with 5-6 leaves were grown under a laser-diode lamp panel with 30 pieces of high-power and high-efficiency AlGaInP laser-diodes. The power of each laser-diode lamp was 500 mW, and the wavelength was 680 nm, which was efficient for photosynthesis. The lettuce plants were able to grow under the laser-diode light. However, plants were lighter and had thinner leaves than those grown under high-pressure sodium lamps. (author)

  15. Altering the axial light gradient affects photomorphogenesis in emerging seedlings of Zea mays L

    Science.gov (United States)

    Parks, B. M.; Poff, K. L.

    1986-01-01

    The axial (longitudinal) red light gradient (632 nanometers) of 4 day old dark-grown maize seedlings is increased by staining the peripheral cells of the coleoptile. The magnitude of increase in the light gradient is dependent solely on the light-absorbing qualities of the stain used. Metanil yellow has no effect on the axial red-light gradient, while methylene blue causes a large increase in this light gradient. These stains did not affect growth in darkness or the sensitivity of mesocotyl elongation to red light. However, mesocotyl elongation was altered for the dark-grown seedlings stained with methylene blue when these seedlings were transplanted, covered with soil, and permitted to emerge under natural lighting conditions. These observations are consistent with the idea that there is a single perceptive site below the coleoptilar node, and suggest that this perceptive site gives the actinic light which has traveled downward through the length of the shoot from an entry point in the plant tip region.

  16. Genetic resources collections of leafy vegetables (lettuce, spinach, chicory, artichoke, asparagus, lamb’s lettuce, rhubarb and rocket salad): composition and gaps

    NARCIS (Netherlands)

    Treuren, van R.; Coquin, P.; Lohwasser, U.

    2012-01-01

    Lettuce, spinach and chicory are generally considered the main leafy vegetables, while a fourth group denoted by ‘minor leafy vegetables’ includes, amongst others, rocket salad, lamb’s lettuce, asparagus, artichoke and rhubarb. Except in the case of lettuce, central crop databases of leafy

  17. Short-day treatment alters Douglas-fir seedling dehardening and transplant root proliferation at varying rhizosphere temperatures

    Science.gov (United States)

    Douglass F. Jacobs; Anthony S. Davis; BArrett C. Wilson; R. Kasten Dumroese; Rosa C. Goodman; K. Francis Salifu

    2008-01-01

    We tested effects of shortened day length during nursery culture on Douglis-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco) seedling development at dormancy release. Seedlings from a 42 N source were grown either under ambient photoperiods (long-day (LD)) or with a 28 day period of 9 h light: 15 h dark photoperiods (short...

  18. Effects of light and soil flooding on the growth and photosynthesis of ramin (Gonystylus bancanus) seedlings in Malaysia

    NARCIS (Netherlands)

    Jans, W.W.P.; Dibor, L.; Verwer, C.C.; Kruijt, B.; Tan, S.; Meer, van der P.J.

    2012-01-01

    We studied the ecophysiology of ramin (Gonystylus bancanus) seedlings in an experimental set up at the Forest Research Centre in Kuching, Sarawak, Malaysia. Ramin seedlings were grown on flooded and drained peat soil under 100, 76, 46 and 23% sunlight, thus simulating effects of different light

  19. Big-leaf mahogany (Swietenia macrophylla) seedling survival and growth across a topographic gradient in southeast Pará, Brazil

    Science.gov (United States)

    James Grogana; Mark S. Ashtona; Galv& atilde; Jurandir oc

    2003-01-01

    Adult populations of big-leaf mahogany (Swietenia macrophylla) occur in aggregations along seasonal streams in transitional evergreen forests of southeast Pará, Brazil. To test whether variable seedling survival and growth across topography may underlie this observed distribution pattern, we planted nursery-grown seedlings in the...

  20. Produce of seedlings of cedar in function of types of container and fertilization sources

    Directory of Open Access Journals (Sweden)

    Osmar Henrique de Castro Pias

    2015-06-01

    Full Text Available The aim of this study was to evaluate the production of cedar seedlings according to the size of containers and nutrient sources. It was tested three types of containers (Root trainers, plastic bag and plastic vase, three sources of fertilization (Conventional, Kimcoat® and Osmocote® in seven evaluations. The cedar seedlings in root trainers, fertilized with source Osmocote® presented the greatest increments in height and stem diameter when compared to another sources of fertilization. The plastic bag and plastic vase containers promoted similar seedlings height growth. However the seedlings grown in plastic vase presented greatest growth in stem diameter when compared with the ones in plastic bag.

  1. Internalization and Dissemination of Human Norovirus and Animal Caliciviruses in Hydroponically Grown Romaine Lettuce

    Science.gov (United States)

    DiCaprio, Erin; Ma, Yuanmei; Purgianto, Anastasia; Hughes, John

    2012-01-01

    Fresh produce is a major vehicle for the transmission of human norovirus (NoV) because it is easily contaminated during both pre- and postharvest stages. However, the ecology of human NoV in fresh produce is poorly understood. In this study, we determined whether human NoV and its surrogates can be internalized via roots and disseminated to edible portions of the plant. The roots of romaine lettuce growing in hydroponic feed water were inoculated with 1 × 106 RNA copies/ml of a human NoV genogroup II genotype 4 (GII.4) strain or 1 × 106 to 2 × 106 PFU/ml of animal caliciviruses (Tulane virus [TV] and murine norovirus [MNV-1]), and plants were allowed to grow for 2 weeks. Leaves, shoots, and roots were homogenized, and viral titers and/or RNA copies were determined by plaque assay and/or real-time reverse transcription (RT)-PCR. For human NoV, high levels of viral-genome RNA (105 to 106 RNA copies/g) were detected in leaves, shoots, and roots at day 1 postinoculation and remained stable over the 14-day study period. For MNV-1 and TV, relatively low levels of infectious virus particles (101 to 103 PFU/g) were detected in leaves and shoots at days 1 and 2 postinoculation, but virus reached a peak titer (105 to 106 PFU/g) at day 3 or 7 postinoculation. In addition, human NoV had a rate of internalization comparable with that of TV as determined by real-time RT-PCR, whereas TV was more efficiently internalized than MNV-1 as determined by plaque assay. Taken together, these results demonstrated that human NoV and animal caliciviruses became internalized via roots and efficiently disseminated to the shoots and leaves of the lettuce. PMID:22729543

  2. Arsenic uptake and speciation in vegetables grown under greenhouse conditions.

    Science.gov (United States)

    Smith, E; Juhasz, A L; Weber, J

    2009-04-01

    The accumulation of arsenic (As) by vegetables is a potential human exposure pathway. The speciation of As in vegetables is an important consideration due to the varying toxicity of different As species. In this study, common Australian garden vegetables were hydroponically grown with As-contaminated irrigation water to determine the uptake and species of As present in vegetable tissue. The highest concentrations of total As were observed in the roots of all vegetables and declined in the aerial portions of the plants. Total As accumulation in the edible portions of the vegetables decreased in the order radish > mung bean > lettuce = chard. Arsenic was present in the roots of radish, chard, and lettuce as arsenate (As(V)) and comprised between 77 and 92% of the total As present, whereas in mung beans, arsenite (As(III)) comprised 90% of the total As present. In aerial portions of the vegetables, As was distributed equally between both As(V) and As(III) in radish and chard but was present mainly as As(V) in lettuce. The presence of elevated As in vegetable roots suggests that As species may be complexed by phytochelatins, which limits As translocation to aerial portions of the plant.

  3. IPM for fresh-market lettuce production in the desert southwest: the produce paradox.

    Science.gov (United States)

    Palumbo, John C; Castle, Steven J

    2009-12-01

    In the 'Integrated Control Concept', Stern et al. emphasized that, although insecticides are necessary for agricultural production, they should only be used as a last resort and as a complement to biological control. They argued that selective insecticide use should only be attempted after it has been determined that insect control with naturally occurring biotic agents is not capable of preventing economic damage. However, they concluded their seminal paper by emphasizing that integrated control will not work where natural enemies are inadequate or where economic thresholds are too low to rely on biological control. Thus, it is no surprise that insect control in high-value, fresh-market lettuce crops grown in the desert southwest have relied almost exclusively on insecticides to control a complex of mobile, polyphagous pests. Because lettuce and leafy greens are short-season annual crops with little or no tolerance for insect damage or contamination, biological control is generally considered unacceptable. High expectations from consumers for aesthetically appealing produce free of pesticide residues further forces vegetable growers to use chemical control tactics that are not only effective but safe. Consequently, scientists have been developing integrated pest management (IPM) programs for lettuce that are aimed at reducing the economic, occupational and dietary risks associated with chemical controls of the past. Most of these programs have drawn upon the integrated control concept and promote the importance of understanding the agroecosystem, and the need to sample for pest status and use action thresholds for cost-effective insect control. More recently, pest management programs have implemented newly developed, reduced-risk chemistries that are selectively efficacious against key pests. This paper discusses the influence that the integrated control concept, relative to zero-tolerance market standards and other constraints, has had on the adoption of pest

  4. Lignification in beech grown at elevated CO2 concentrations: interaction with nutrient availability and leaf maturation

    International Nuclear Information System (INIS)

    Blaschke, L; Forstreuter, M.; Sheppard, L. J.; Leith, K.; Murray, M. B.; Polle, A.

    2002-01-01

    Results of a study undertaken to investigate contradictory observations reported in the literature to the effect that growth in elevated carbon dioxide affects ontogeny, are discussed. Results of this study showed that seedlings grown at elevated carbon dioxide had nitrogen concentrations of about 15 per cent lower than seedlings grown in ambient carbon dioxide. Elevated carbon dioxide caused increased growth and biomass production in trees with a medium to high nutrient supply, but had no effect on growth of trees with a low nutrient supply rate. Because elevated carbon dioxide enhanced seedling growth in the high nutrient supply treatments, the total amount of lignin produced per seedling was higher in these treatments. Overall, the results suggest that carbon dioxide availability does not directly affect lignin concentrations, but affects them indirectly through the effects on or an interaction with nitrogen supply and growth. In seedlings, elevated carbon dioxide reduced lignin concentration on a dry mass basis, indicating diminished wood quality in a carbon dioxide-enriched atmosphere. 51 refs., 2 tabs., 5 figs

  5. Control age - and irradiation-induced seed deterioration in lettuce (Lactuca sativa L.) by hydration-dehydration treatments

    International Nuclear Information System (INIS)

    Punjabi, Bina; Basu, R.N.

    1982-01-01

    Hydration-dehydration treatment of stored lettuce seed (1-year-old, medium-vigour), greatly slowed down their deterioration during subsequent storage under accelerated and natural ageing conditions. Hydration-dehydration of seeds, before or soon after X- and γ-irradiation, considerably minimized the adverse effect of irradiation on the development of biological after-effects responsible for the fall in germinibility, especially the large reduction of root growth of seedlings. Pre- and post-irradiation treatments gave broadly similar effects. The results have been discussed in terms of a possible involvement of a cellular (biochemical) repair mechanism in the hydration phase and also on the basis of a physico-chemical control of free radical pathology in the aged and irradiated seed. (author)

  6. Control age - and irradiation-induced seed deterioration in lettuce (Lactuca sativa L. ) by hydration-dehydration treatments

    Energy Technology Data Exchange (ETDEWEB)

    Punjabi, B; Basu, R N [University Coll. of Agriculture, Calcutta (India)

    1982-04-01

    Hydration-dehydration treatment of stored lettuce seed (1-year-old, medium-vigour), greatly slowed down their deterioration during subsequent storage under accelerated and natural ageing conditions. Hydration-dehydration of seeds, before or soon after X- and ..gamma..-irradiation, considerably minimized the adverse effect of irradiation on the development of biological after-effects responsible for the fall in germinibility, especially the large reduction of root growth of seedlings. Pre- and post-irradiation treatments gave broadly similar effects. The results have been discussed in terms of a possible involvement of a cellular (biochemical) repair mechanism in the hydration phase and also on the basis of a physico-chemical control of free radical pathology in the aged and irradiated seed.

  7. Simulated drought influences oxidative stress in Zea mays seedlings ...

    African Journals Online (AJOL)

    Drought is an abiotic factor that limits the productivity of crop plants survival and productivity. This study was conducted to evaluate the effects of simulated drought on the malondialdehyde (MDA) and antioxidant enzymes activity in Zea mays. Seedlings were grown for 8 weeks in nursery bags filled with sandy-loam soil in ...

  8. Cool-cultivated red leaf lettuce accumulates cyanidin-3-O-(6″-O-malonyl)-glucoside and caffeoylmalic acid.

    Science.gov (United States)

    Becker, Christine; Klaering, Hans-Peter; Kroh, Lothar W; Krumbein, Angelika

    2014-03-01

    Cultivating lettuce in greenhouses at low temperatures improves its CO2-balance and may increase its content of flavonoid glycosides and phenolic acids. We cultivated 5weeks old red leaf lettuce seedlings at 20/15°C (day/night) or 12/7°C until plants reached comparable growth stages: small heads were harvested after 13 (warm) and 26 (cool)days, while mature heads were harvested after 26 (warm) or 52 (cool)days. Additionally, some plants were cultivated first cool then warm and vice versa (39days). Cool-cultivated small heads had higher concentrations of cyanidin-3-O-(6″-O-malonyl)-glucoside and caffeoylmalic acid than warm-cultivated ones but we detected no differences concerning quercetin and luteolin glycosides or di-O-caffeoyltartaric and 5-O-caffeoylquinic acid. Regarding mature heads, there were only differences concerning cyanidin-3-O-(6″-O-malonyl)-glucoside. We therefore suggest that only cyanidin-3-O-(6″-O-malonyl)-glucoside was truly responsive to temperatures alone. Previously reported contrasting effects may rather be due to comparison of different growth stages or interactive effects with radiation. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Growth and root development of four mangrove seedlings under varying salinity

    Science.gov (United States)

    Basyuni, M.; Keliat, D. A.; Lubis, M. U.; Manalu, N. B.; Syuhada, A.; Wati, R.; Yunasfi

    2018-03-01

    This present study describes four mangrove seedlings namely Bruguiera cylindrica, B. sexangula, Ceriops tagal, and Rhizophora apiculata in response to salinity with particular emphasis to root development. The seedlings of four mangroves were grown for 5 months in 0%, 0.5%, 1.5%, 2.0% and 3.0% salt concentration. Salinity significantly decreased the growth (diameter and plant height) of all mangrove seedlings. Root developments were observed from the tap and lateral root. The number, length and diameter of both roots-typed of B. cylindrica, B. sexangula and C. tagal seedlings significantly decreased with increasing salt concentration with optimum development at 0.5% salinity. By contrast, the number, length, and diameter of tap root of R. apiculata seedlings were significantly enhanced by salt with maximal stimulation at 0.5%, and this increase was attenuated by increasing salinity. On the other hand, lateral root development of R. apiculata significantly thrived up to 1.5% salinity then decreasing with the increasing salinity. The different response of root development suggested valuable information for mangrove rehabilitation in North Sumatra and their adaption to withstand salt stress.

  10. 7 CFR 319.56-24 - Lettuce and peppers from Israel.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Lettuce and peppers from Israel. 319.56-24 Section 319... Lettuce and peppers from Israel. (a) Lettuce may be imported into the United States from Israel without... protected with sticky traps and prophylactic sprays approved for the crop by Israel; (v) The lettuce must be...

  11. The impact of the pathogen Rhizoctonia solani and its beneficial counterpart Bacillus amyloliquefaciens on the indigenous lettuce microbiome

    Directory of Open Access Journals (Sweden)

    Armin eErlacher

    2014-04-01

    Full Text Available Lettuce belongs to the most commonly raw eaten food worldwide and its microbiome plays an important role for both human and plant health. Yet, little is known about the impact of potentially occurring pathogens and beneficial inoculants of the indigenous microorganisms associated with lettuce. To address this question we studied the impact of the phytopathogenic fungus Rhizoctonia solani and the biological control agent Bacillus amyloliquefaciens FZB42 on the indigenous rhizosphere and phyllosphere community of greenhouse-grown lettuce at two plant stages. The rhizosphere and phyllosphere gammaproteobacterial microbiomes of lettuce plants showed clear differences in their overall and core microbiome composition as well as in corresponding diversity indices. The rhizosphere was dominated by Xanthomonadaceae (48% and Pseudomonadaceae (37% with Rhodanobacter, Pseudoxanthomonas, Dokdonella, Luteimonas, Steroidobacter, Thermomonas as core inhabitants, while the dominating taxa associated to phyllosphere were Pseudomonadaceae (54%, Moraxellaceae (16% and Enterobacteriaceae (25% with Alkanindiges, Pantoea and a group of Enterobacteriaceae unclassified at genus level. The preferential occurrence of enterics in the phyllosphere was the most significant difference between both habitats. Additional enhancement of enterics on the phyllosphere was observed in bottom rot diseased lettuce plants, while Acinetobacter and Alkanindiges were identified as indicators of healthy plants. Interestingly, the microbial diversity was enhanced by treatment with both the pathogen, and the co-inoculated biological control agent. The highest impact and bacterial diversity was found by Rhizoctonia inoculation, but FZB42 lowered the impact of Rhizoctonia on the microbiome. This study shows that the indigenous microbiome shifts as a consequence to pathogen attack but FZB42 can compensate these effects, which supports their role as biocontrol agent and suggests a novel mode of

  12. Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil.

    Science.gov (United States)

    Liu, Houjun; Zhang, Junling; Christie, Peter; Zhang, Fusuo

    2008-05-15

    Iron plaque is ubiquitously formed on the root surfaces of rice. However, little is known about the role of iron plaque in Cd movement from soil to the plant aboveground parts. A pot experiment was conducted to investigate the influence of iron plaque in Cd uptake and accumulation by rice seedlings in soil. Rice seedlings were pre-cultivated in solution culture for 16 days. Two seedlings were transplanted in a nylon bag containing no substrate but surrounded by soil amended with Fe and Cd combined at rates of 0, 1, or 2 g Fe kg(-1) and 0, 2.0, or 10 mg Cd kg(-1) soil. Fe was added to induce different amounts of iron plaque, and Cd to simulate Cd-polluted soils. Plants were grown for a further 43 days and then harvested. The length of the longest leaf and SPAD values of the newly mature leaves were measured during plant growth. Fe and Cd concentrations were determined in dithionite-citrate-bicarbonate (DCB) soil extracts and in plant roots and shoots. Shoot and root dry weights were significantly affected by Fe supply level but not by added Cd. Root dry weight declined with increasing Fe supply but shoot dry weight decreased at 2 g Fe kg(-1) and increased at 1 g Fe kg(-1) (except at 2 mg Cd kg(-1)). The length of the longest leaf and SPAD values of the newly mature leaves were significantly affected by plant growth stage and added Fe and Cd. Fe tended to diminish the negative effect of Cd on these two parameters. Cd concentrations in DCB extracts increased with increasing Cd and Fe supply. In contrast, external Fe supply markedly reduced shoot and root Cd concentrations and there was generally no significant difference between the two Fe supply levels. Shoot and root Cd concentrations increased with increasing Cd addition. Root Cd concentrations were negatively correlated with root Fe concentrations. The proportion of Cd in DCB extracts was significantly lower than in roots or shoots. The results indicate that enhanced Fe uptake by plants can diminish the negative

  13. Carrot, Corn, Lettuce and Soybean Nutrient Contents are ...

    Science.gov (United States)

    Biochar, the carbon-rich material remaining after pyrolysis of cellulosic and manure feedstocks, has the potential as a soil amendment to sequester carbon and to improve soil water-holding and nutrient properties- thereby enhancing plant growth. However, biochar produced from some feedstocks also could adversely affect crop quality by changing soil pH and reducing nutrients (e.g., Ca, K, Mg, N, Na, and P) in plant tissues. To evaluate effects of biochar on the nutrient quality of four crops, we conducted a greenhouse study using pots with: carrot (Daucus carota cv. Tendersweet), corn (Zea mays, cv. Golden Bantam), lettuce (Lactuca sativa, cv. Black-Seeded Simpson) and soybean (Glycine max cv. Viking 2265). Plants were grown in one of two South Carolina sandy Coastal Plain soils (Norfolk and Coxville Soil Series), along with biochar (1% by weight) produced from pine chips (PC), poultry litter (PL), swine solids (SS), switchgrass (SG), and two blends of pine chips plus poultry litter (PC/PL, 50/50% and 80/20%). Each of the feedstocks and feedstock blends was pyrolyzed at 350, 500, and 700 ̊ C to produce the biochar used to amend the Norfolk and Coxville soils. Effects of biochar on leaf nutrients (% dry weight) statistically varied with species, soil, feedstock and temperature and nutrient. For carrot and lettuce, the PL, PL/PC, and SS biochars generally decreased leaf N, Ca, Mg, and P; while PL and PL/PC increased K and Na. Biochars had little effect on lea

  14. Water lettuce

    African Journals Online (AJOL)

    Nutritive values, Mineral and Antioxidant properties of Pistia stratiotes (Water lettuce). 1R .S.U. Wasagu ... The use of plants as medicines predates written human history and some of ... used to maintain health, as well as to prevent, diagnose ...

  15. Effects of illuminants and illumination time on lettuce growth, yield and nutritional quality in a controlled environment

    Science.gov (United States)

    Shen, Y. Z.; Guo, S. S.; Ai, W. D.; Tang, Y. K.

    2014-07-01

    Effects of illuminants and illumination time on the growth of lettuce were researched. Red-blue light-emitting diodes (LEDs, 90% red light +10% blue light) and white light fluorescent (WF) lamps were compared as the illuminants for plant cultivation. Under each type of illuminant, lettuce was grown at 4 illumination times: 12 h, 16 h, 20 h and 24 h, with the same light intensity of 600 μmolm-2s-1. The leaf net photosynthetic rate (Pn) under the two illuminants was comparable but the shape of lettuce was obviously affected by the illuminant. The WF lamps produced more compact plant, while red-blue LED resulted in less but longer leaves. However, the total leaf area was not significantly affected by the illuminant. The red-blue LED produced nearly same aboveground biomass with far less energy consumption relative to WF lamps. The underground biomass was lowered under red-blue LED in comparison with WF lamps. Red-blue LED could improve the nutritional quality of lettuce by increasing the concentration of soluble sugar and vitamin C (VC) and reducing the concentration of nitrate. Under each type of illuminant, longer illumination time resulted in higher Pn, more leaves and larger leaf area. The total chlorophyll concentration increased while the concentration ratio of chlorophyll a/b decreased with the extension of illumination time. Illumination time had highly significant positive correlation with biomass. Moreover, when total daily light input was kept the same, longer illumination time increased the biomass significantly as well. In addition, longer illumination time increased the concentration of crude fiber, soluble sugar and VC and reduced the concentration of nitrate. In summary, red-blue LEDs and 24 h illumination time were demonstrated to be more suitable for lettuce cultivation in the controlled environment.

  16. Virus diseases in lettuce in the Mediterranean basin.

    Science.gov (United States)

    Moreno, Aranzazu; Fereres, Alberto

    2012-01-01

    Lettuce is frequently attacked by several viruses causing disease epidemics and considerable yield losses along the Mediterranean basin. Aphids are key pests and the major vectors of plant viruses in lettuce fields. Lettuce mosaic virus (LMV) is probably the most important because it is seed-transmitted in addition to be transmissible by many aphid species that alight on the crop. Tomato spotted wilt virus (TSWV) is another virus that causes severe damage since the introduction of its major vector, the thrips Frankliniella occidentalis. In regions with heavy and humid soils, Lettuce Mirafiori big-vein virus (LMBVV) can also produce major yield losses. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. The Effect of Anaerobic and Aerobic Fish Sludge Supernatant on Hydroponic Lettuce

    Directory of Open Access Journals (Sweden)

    Simon Goddek

    2016-06-01

    Full Text Available The mobilization of nutrients from fish sludge (i.e., feces and uneaten feed plays a key role in optimizing the resource utilization and thus in improving the sustainability of aquaponic systems. While several studies have documented the aerobic and anaerobic digestion performance of aquaculture sludge, the impact of the digestate on plant growth has yet to be understood. The present study examines the impact of either an aerobic or an anaerobic digestion effluent on lettuce plant growth, by enriching a mixture of aquaculture and tap water with supernatants from both aerobic and anaerobic batch reactors. The lettuce plants grown in the hydroponic system supplied with supernatant from an anaerobic reactor had significantly better performance with respect to weight gain than both, those in the system where supernatant from the aerobic reactor was added, as well as the control system. It can be hypothesized that this effect was caused by the presence of NH4+ as well as dissolved organic matter, plant growth promoting rhizobacteria and fungi, and humic acid, which are predominantly present in anaerobic effluents. This study should therefore be of value to researchers and practitioners wishing to further develop sludge remineralization in aquaponic systems.

  18. Seedling Performance Associated with Live or Herbicide Treated Tall Fescue

    Directory of Open Access Journals (Sweden)

    Jonathan J. Halvorson

    2015-01-01

    Full Text Available Tall fescue is an important forage grass which can host systemic fungal endophytes. The association of host grass and endophyte is known to influence herbivore behavior and host plant competition for resources. Establishing legumes into existing tall fescue sods is a desirable means to acquire nitrogen and enhance the nutritive value of forage for livestock production. Competition from existing tall fescue typically must be controlled to ensure interseeding success. We used a soil-on-agar method to determine if soil from intact, living (L, or an herbicide killed (K tall fescue sward influenced germination and seedling growth of three cultivars of tall fescue (E+, MaxQ, and E− or legumes (alfalfa, red clover, and white clover. After 30 days, seedlings were larger and present in greater numbers when grown in L soil rather than K soil. Root growth of legumes (especially white clover and tall fescue (especially MaxQ were not as vigorous in K soil as L soil. While shoot biomass was similar for all cultivars of tall fescue in L soil, MaxQ produced less herbage when grown in K soil. Our data suggest establishing legumes or fescue cultivars may not be improved by first killing the existing fescue sod and seedling performance can exhibit significant interseasonal variation, related only to soil conditions.

  19. Arbuscular Mycorrhizal Symbiosis Modulates Antioxidant Response and Ion Distribution in Salt-Stressed Elaeagnus angustifolia Seedlings.

    Science.gov (United States)

    Chang, Wei; Sui, Xin; Fan, Xiao-Xu; Jia, Ting-Ting; Song, Fu-Qiang

    2018-01-01

    Elaeagnus angustifolia L. is a drought-resistant species. Arbuscular mycorrhizal symbiosis is considered to be a bio-ameliorator of saline soils that can improve salinity tolerance in plants. The present study investigated the effects of inoculation with the arbuscular mycorrhizal fungus Rhizophagus irregularis on the biomass, antioxidant enzyme activities, and root, stem, and leaf ion accumulation of E. angustifolia seedlings grown during salt stress conditions. Salt-stressed mycorrhizal seedlings produced greater root, stem, and leaf biomass than the uninoculated stressed seedlings. In addition, the seedlings colonized by R. irregularis showed notably higher activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) in the leaves of the mycorrhizal seedlings in response to salinity compared to those of the non-mycorrhizal seedlings. Mycorrhizal seedlings not only significantly increased their ability to acquire K + , Ca 2+ , and Mg 2+ , but also maintained higher K + :Na + ratios in the leaves and lower Ca 2+ :Mg 2+ ratios than non-mycorrhizal seedlings during salt stress. These results suggest that the salt tolerance of E. angustifolia seedlings could be enhanced by R. irregularis. The arbuscular mycorrhizal symbiosis could be a promising method to restore and utilize salt-alkaline land in northern China.

  20. Detection of Lettuce Discoloration Using Hyperspectral Reflectance Imaging.

    Science.gov (United States)

    Mo, Changyeun; Kim, Giyoung; Lim, Jongguk; Kim, Moon S; Cho, Hyunjeong; Cho, Byoung-Kwan

    2015-11-20

    Rapid visible/near-infrared (VNIR) hyperspectral imaging methods, employing both a single waveband algorithm and multi-spectral algorithms, were developed in order to discrimination between sound and discolored lettuce. Reflectance spectra for sound and discolored lettuce surfaces were extracted from hyperspectral reflectance images obtained in the 400-1000 nm wavelength range. The optimal wavebands for discriminating between discolored and sound lettuce surfaces were determined using one-way analysis of variance. Multi-spectral imaging algorithms developed using ratio and subtraction functions resulted in enhanced classification accuracy of above 99.9% for discolored and sound areas on both adaxial and abaxial lettuce surfaces. Ratio imaging (RI) and subtraction imaging (SI) algorithms at wavelengths of 552/701 nm and 557-701 nm, respectively, exhibited better classification performances compared to results obtained for all possible two-waveband combinations. These results suggest that hyperspectral reflectance imaging techniques can potentially be used to discriminate between discolored and sound fresh-cut lettuce.

  1. Variation in stem morphology and movement of amyloplasts in white spruce grown in the weightless environment of the International Space Station.

    Science.gov (United States)

    Rioux, Danny; Lagacé, Marie; Cohen, Luchino Y; Beaulieu, Jean

    2015-01-01

    One-year-old white spruce (Picea glauca) seedlings were studied in microgravity conditions in the International Space Station (ISS) and compared with seedlings grown on Earth. Leaf growth was clearly stimulated in space whereas data suggest a similar trend for the shoots. Needles on the current shoots of ground-based seedlings were more inclined towards the stem base than those of seedlings grown in the ISS. Amyloplasts sedimented in specialized cells of shoots and roots in seedlings grown on Earth while they were distributed at random in similar cells of seedlings tested in the ISS. In shoots, such amyloplasts were found in starch sheath cells located between leaf traces and cortical cells whereas in roots they were constituents of columella cells of the cap. Nuclei were regularly observed just above the sedimented amyloplasts in both organs. It was also frequent to detect vacuoles with phenolic compounds and endoplasmic reticulum (ER) close to the sedimented amyloplasts. The ER was mainly observed just under these amyloplasts. Thus, when amyloplasts sediment, the pressure exerted on the ER, the organelle that can for instance secrete proteins destined for the plasma membrane, might influence their functioning and play a role in signaling pathways involved in gravity-sensing white spruce cells. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  2. The effect of ectomycorrhizal fungi and bacteria on pine seedlings

    Directory of Open Access Journals (Sweden)

    Hanna Dahm

    2014-08-01

    Full Text Available The effect of ecomycorrhizal fungi (Hebelon crustuliniforme(Bull.: Fr. Quél. 5392 and Pisolithus tinctorius (Pers. Coker et Couch 5335 and bacteria (Bacillus polymyxa and Azospirillum brasilense. associated with mycorrhizas on the growth of pine seedligs was investigated. In addition the influence of bacteria on fungal biomass production and the relationship between ectomycorrhizal fungi and fungi pathogenic to root of pine seedlings were determined. In general, the shoot/root ratio was higher in plants inoculated with Hebeloma crustuliniforme and bacteria than in the control seedlings (grown only under sterile conditions. In non-sterile substrate the root/shoot ratio of the mycorrhizal seedlings was lower as compared to the control. Similar phenomenon was noted in plants inoculated with the mycorrhizal fungus Pisolithus tinetorius. The bacteria used as well as the time of introduction of these organisms into the cultures of mycorrhiza fungi affected the production of fungal biomass. Hebeloma crustuliniforme and Pisolithus tinctorius inhibited the growth of Rizoctonia solani and Fusarium oxysporum fungi pathogenic to pine seedlings.

  3. Reclassification of rhizosphere bacteria including strains causing corky root of lettuce and proposal of Rhizorhapis suberifaciens gen. nov., comb. nov., Sphingobium mellinum sp. nov., Sphingobium xanthum sp. nov. and Rhizorhabdus argentea gen. nov., sp. nov.

    Science.gov (United States)

    Francis, Isolde M; Jochimsen, Kenneth N; De Vos, Paul; van Bruggen, Ariena H C

    2014-04-01

    The genus Rhizorhapis gen. nov. (to replace the illegitimate genus name Rhizomonas) is proposed for strains of Gram-negative bacteria causing corky root of lettuce, a widespread and important lettuce disease worldwide. Only one species of the genus Rhizomonas was described, Rhizomonas suberifaciens, which was subsequently reclassified as Sphingomonas suberifaciens based on 16S rRNA gene sequences and the presence of sphingoglycolipid in the cell envelope. However, the genus Sphingomonas is so diverse that further reclassification was deemed necessary. Twenty new Rhizorhapis gen. nov.- and Sphingomonas-like isolates were obtained from lettuce or sow thistle roots, or from soil using lettuce seedlings as bait. These and previously reported isolates were characterized in a polyphasic study including 16S rRNA gene sequencing, DNA-DNA hybridization, DNA G+C content, whole-cell fatty acid composition, morphology, substrate oxidation, temperature and pH sensitivity, and pathogenicity to lettuce. The isolates causing lettuce corky root belonged to the genera Rhizorhapis gen. nov., Sphingobium, Sphingopyxis and Rhizorhabdus gen. nov. More specifically, we propose to reclassify Rhizomonas suberifaciens as Rhizorhapis suberifaciens gen. nov., comb. nov. (type strain, CA1(T) = LMG 17323(T) = ATCC 49355(T)), and also propose the novel species Sphingobium xanthum sp. nov., Sphingobium mellinum sp. nov. and Rhizorhabdus argentea gen. nov., sp. nov. with the type strains NL9(T) ( = LMG 12560(T) = ATCC 51296(T)), WI4(T) ( = LMG 11032(T) = ATCC 51292(T)) and SP1(T) ( = LMG 12581(T) = ATCC 51289(T)), respectively. Several strains isolated from lettuce roots belonged to the genus Sphingomonas, but none of them were pathogenic.

  4. Effect of phenol on germination capacity and polyphenol oxidase, peroxidase and catalase activities in lettuce

    Directory of Open Access Journals (Sweden)

    Tadić Vojin

    2014-01-01

    Full Text Available In this study we examined the activities of polyphenol oxidase (PPO and antioxidant enzymes, peroxidase (POX and catalase (CAT during lettuce seed germination at different concentrations of phenol. Out of eleven varieties of lettuce, four were chosen according to their germination tolerance to phenol as follows: plants exhibiting high (Ljubljanska ledenka - LJL and Nansen - N and low toleranace (Little Gem - LG and Majska kraljica - MK. A decrease in germination efficiency after exposure to LD50 of phenol was determined for these four varieties. The effects of phenol treatment on POX, CAT and PPO activities were determined after 4, 5, 6, 7 and 8 days of growth at LD50 concentrations. A trend of increased peroxidase activity was observed in seeds grown on LD50 of phenol compared to control seeds. A significant increase in CAT activity was observed at the beginning of treatment for MK, LG and N in seeds grown on phenol as well as in control seeds. A trend of increased PPO activity was observed in all control seeds. We also investigated the affinity of PPO for two different substrates that were used for the determination of enzyme activity. Our results show that LJL and N are the varieties most tolerant to growth on phenol. Here we report on the activities of their antioxidant enzymes and PPO during seed germination. [Projekat Ministarstva nauke Republike Srbije, br. ON173017

  5. Derivation of ozone flux-yield relationships for lettuce: A key horticultural crop

    International Nuclear Information System (INIS)

    Goumenaki, Eleni; Fernandez, Ignacio Gonzalez; Papanikolaou, Antigoni; Papadopoulou, Despoina; Askianakis, Christos; Kouvarakis, George; Barnes, Jeremy

    2007-01-01

    Ozone flux-response relationships were derived for lettuce, employing a multiplicative approach to model the manner in which stomatal conductance is influenced by key environmental variables, using a dataset collected during field experimentation in Crete and yield-response relationships derived from parallel open-top chamber experiments. Regional agronomic practices were adopted throughout. Computed versus measured data revealed that the derived model explained 51% (P -2 s -1 . Regressions employing very low or zero flux thresholds resulted in the strongest yield-flux relationships (explaining ∼80% (P < 0.05) of the variation in the dataset). - Establishment of ozone flux-yield relationships for a commercially-important horticultural crop grown widely in the Mediterranean

  6. SEASONAL PATTERNS OF PHOTOSYNTHESIS IN DOUGLAS FIR SEEDLINGS DURING THE THIRD AND FOURTH YEAR OF EXPOSURE TO ELEVATED CO2 AND TEMPERATURE

    Science.gov (United States)

    We examined the interactive effects of elevated atmospheric CO2 and temperature on seasonal patterns of photosynthesis in Douglas-fir (Psuedotsuga menziesii (Mirb.) Franco) seedlings. Seedlings were grown in sunlit chambers controlled to track either ambient (~400 ppm) CO2 or am...

  7. Effect of dim light irradiation on preservation of fresh lettuce

    International Nuclear Information System (INIS)

    Harada, F.; Uchino, T.; Akimoto, K.; Hu, W.

    2001-01-01

    In order to preserve fresh lettuce, the dim light irradiation storage was investigated. Lettuce (Lactuca sativa L.) stored for about 120 hours at 5 or 20 deg C under continuous illumination at 0 (darkness), 1.6, 3.4, 6.5, 13 or 19.7 micro mol/m**-2/s**-1 photosynthetic photon flux. The light compensation point was about 3.4 micro mol/m**-2/s**-1 at 5 deg C, about 19.7 micro mol/m**-2/s**-1 at 20 deg C. Fresh weight of lettuce decreased by promotion of transpiration caused by the dim light. Accordingly the root of lettuce should not be removed, so as to up-take water. The optimum dim light irradiation preserved the chlorophyll content in lettuce leaf or increased it. Therefore it appeared that the dim light irradiation was effective for the fresh lettuce preservation

  8. Variation in flood tolerance of container-grown seedlings of swamp white oak, bur oak, and white oak

    Science.gov (United States)

    Michael P. Walsh; J.W. Van Sambeek; Mark V. Coggeshall

    2008-01-01

    How much variation in flood tolerance exists among seedlings within oak species, given the flood frequency of sites from which acorns are collected, has been largely unexplored. Our studies examined initial growth and flood tolerance for seedlings of swamp white oak (Quercus bicolor Willd.), bur oak (Q. macrocarpa L.), and white...

  9. Nitric oxide induces the alternative oxidase pathway in Arabidopsis seedlings deprived of inorganic phosphate.

    Science.gov (United States)

    Royo, Beatriz; Moran, Jose F; Ratcliffe, R George; Gupta, Kapuganti J

    2015-10-01

    Phosphate starvation compromises electron flow through the cytochrome pathway of the mitochondrial electron transport chain, and plants commonly respond to phosphate deprivation by increasing flow through the alternative oxidase (AOX). To test whether this response is linked to the increase in nitric oxide (NO) production that also increases under phosphate starvation, Arabidopsis thaliana seedlings were grown for 15 d on media containing either 0 or 1mM inorganic phosphate. The effects of the phosphate supply on growth, the production of NO, respiration, the AOX level and the production of superoxide were compared for wild-type (WT) seedlings and the nitrate reductase double mutant nia. Phosphate deprivation increased NO production in WT roots, and the AOX level and the capacity of the alternative pathway to consume electrons in WT seedlings; whereas the same treatment failed to stimulate NO production and AOX expression in the nia mutant, and the plants had an altered growth phenotype. The NO donor S-nitrosoglutathione rescued the growth phenotype of the nia mutants under phosphate deprivation to some extent, and it also increased the respiratory capacity of AOX. It is concluded that NO is required for the induction of the AOX pathway when seedlings are grown under phosphate-limiting conditions. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. Escherichia coli O157:H7 Converts Plant-Derived Choline to Glycine Betaine for Osmoprotection during Pre- and Post-harvest Colonization of Injured Lettuce Leaves

    Directory of Open Access Journals (Sweden)

    Russell A. Scott

    2017-12-01

    Full Text Available Plant injury is inherent to the production and processing of fruit and vegetables. The opportunistic colonization of damaged plant tissue by human enteric pathogens may contribute to the occurrence of outbreaks of foodborne illness linked to produce. Escherichia coli O157:H7 (EcO157 responds to physicochemical stresses in cut lettuce and lettuce lysates by upregulation of several stress response pathways. We investigated the tolerance of EcO157 to osmotic stress imposed by the leakage of osmolytes from injured lettuce leaf tissue. LC-MS analysis of bacterial osmoprotectants in lettuce leaf lysates and wound washes indicated an abundant natural pool of choline, but sparse quantities of glycine betaine and proline. Glycine betaine was a more effective osmoprotectant than choline in EcO157 under osmotic stress conditions in vitro. An EcO157 mutant with a deletion of the betTIBA genes, which are required for biosynthesis of glycine betaine from imported choline, achieved population sizes twofold lower than those of the parental strain (P < 0.05 over the first hour of colonization of cut lettuce in modified atmosphere packaging (MAP. The cell concentrations of the betTIBA mutant also were 12-fold lower than those of the parental strain (P < 0.01 when grown in hypertonic lettuce lysate, indicating that lettuce leaf cellular contents provide choline for osmoprotection of EcO157. To demonstrate the utilization of available choline by EcO157 for osmoadaptation in injured leaf tissue, deuterated (D-9 choline was introduced to wound sites in MAP lettuce; LC-MS analysis revealed the conversion of D9-choline to D-9 glycine betaine in the parental strain, but no significant amounts were observed in the betTIBA mutant. The EcO157 ΔbetTIBA-ΔotsBA double mutant, which is additionally deficient in de novo synthesis of the compatible solute trehalose, was significantly less fit than the parental strain after their co-inoculation onto injured lettuce leaves and

  11. Root growth, secondary root formation and root gravitropism in carotenoid-deficient seedlings of Zea mays L

    Science.gov (United States)

    Ng, Y. K.; Moore, R.

    1985-01-01

    The effect of ABA on root growth, secondary-root formation and root gravitropism in seedlings of Zea mays was investigated by using Fluridone-treated seedlings and a viviparous mutant, both of which lack carotenoids and ABA. Primary roots of seedlings grown in the presence of Fluridone grew significantly slower than those of control (i.e. untreated) roots. Elongation of Fluridone-treated roots was inhibited significantly by the exogenous application of 1 mM ABA. Exogenous application of 1 micromole and 1 nmole ABA had either no effect or only a slight stimulatory effect on root elongation, depending on the method of application. The absence of ABA in Fluridone-treated plants was not an important factor in secondary-root formation in seedlings less than 9-10 d old. However, ABA may suppress secondary-root formation in older seedlings, since 11-d-old control seedlings had significantly fewer secondary roots than Fluridone-treated seedlings. Roots of Fluridone-treated and control seedlings were graviresponsive. Similar data were obtained for vp-9 mutants of Z. mays, which are phenotypically identical to Fluridone-treated seedlings. These results indicate that ABA is necessary for neither secondary-root formation nor for positive gravitropism by primary roots.

  12. IMPROVED METHODS OF OBTAINING PEPPER SEEDLINGS

    Directory of Open Access Journals (Sweden)

    Florina Uleanu

    2012-12-01

    Full Text Available This paper refers to the effect of different types of pots on the level of growth and development of the pepper seedlings in order to clarify the influences caused by use of different recipes transplanters pots. Different biocomposites from renewable resources biodegradable nutritive support were studied. Seedlings were grown in 4 variants of pots M1 (V1, M2 (V2, M3 (V3 and jiffy- pots (V4. The height of the aerial part varied from 14.5 (V1 to 17.4 cm (V4, whereas the root length varied from 5.4 (V1 to 12.6 cm (V4. The number of leaves ranged from 7 (V2 to 12 (V4. The total volume was lowest for V2 (1.5 cm3 and highest for V4 (2.5 cm3, but the root volume was lowest for V2 (0.5 cm3 and highest for V1 (1 cm3. V2 also resulted in the smallest total seedling mass (1.6 g aerial part mass (1.1 g and root mass (0.5 g. Excepting the root volume V4 had the greatest values for the studied indicators.

  13. Genetic characterization of resistance to Sclerotinia in lettuce cultivar Eruption

    Science.gov (United States)

    Lettuce drop caused by the fungal pathogens Sclerotinia minor and S. sclerotiorum is a serious disease of lettuce. The use of genetic resistance as part of an integrated lettuce drop management strategy should have a significant economic advantage in mitigating yield loss. Sclerotinia resistance is ...

  14. Elucidating the genetic basis of antioxidant status in lettuce (Lactuca sativa).

    Science.gov (United States)

    Damerum, Annabelle; Selmes, Stacey L; Biggi, Gaia F; Clarkson, Graham Jj; Rothwell, Steve D; Truco, Maria José; Michelmore, Richard W; Hancock, Robert D; Shellcock, Connie; Chapman, Mark A; Taylor, Gail

    2015-01-01

    A diet rich in phytonutrients from fruit and vegetables has been acknowledged to afford protection against a range of human diseases, but many of the most popular vegetables are low in phytonutrients. Wild relatives of crops may contain allelic variation for genes determining the concentrations of these beneficial phytonutrients, and therefore understanding the genetic basis of this variation is important for breeding efforts to enhance nutritional quality. In this study, lettuce recombinant inbred lines, generated from a cross between wild and cultivated lettuce (Lactuca serriola and Lactuca sativa, respectively), were analysed for antioxidant (AO) potential and important phytonutrients including carotenoids, chlorophyll and phenolic compounds. When grown in two environments, 96 quantitative trait loci (QTL) were identified for these nutritional traits: 4 for AO potential, 2 for carotenoid content, 3 for total chlorophyll content and 87 for individual phenolic compounds (two per compound on average). Most often, the L. serriola alleles conferred an increase in total AOs and metabolites. Candidate genes underlying these QTL were identified by BLASTn searches; in several cases, these had functions suggesting involvement in phytonutrient biosynthetic pathways. Analysis of a QTL on linkage group 3, which accounted for >30% of the variation in AO potential, revealed several candidate genes encoding multiple MYB transcription factors which regulate flavonoid biosynthesis and flavanone 3-hydroxylase, an enzyme involved in the biosynthesis of the flavonoids quercetin and kaempferol, which are known to have powerful AO activity. Follow-up quantitative RT-PCR of these candidates revealed that 5 out of 10 genes investigated were significantly differentially expressed between the wild and cultivated parents, providing further evidence of their potential involvement in determining the contrasting phenotypes. These results offer exciting opportunities to improve the nutritional

  15. Genetics of resistance against lettuce downy mildew

    Science.gov (United States)

    Lettuce (Lactuca sativa) is one of the most valuable vegetable crops in the U.S. Downy mildew (DM), caused by Bremia lactucae, is the most important foliar disease of lettuce worldwide, which decreases the quality of the marketable portion of the crop. The use of resistant varieties carrying dominan...

  16. Arbuscular Mycorrhizal Symbiosis Modulates Antioxidant Response and Ion Distribution in Salt-Stressed Elaeagnus angustifolia Seedlings

    Directory of Open Access Journals (Sweden)

    Wei Chang

    2018-04-01

    Full Text Available Elaeagnus angustifolia L. is a drought-resistant species. Arbuscular mycorrhizal symbiosis is considered to be a bio-ameliorator of saline soils that can improve salinity tolerance in plants. The present study investigated the effects of inoculation with the arbuscular mycorrhizal fungus Rhizophagus irregularis on the biomass, antioxidant enzyme activities, and root, stem, and leaf ion accumulation of E. angustifolia seedlings grown during salt stress conditions. Salt-stressed mycorrhizal seedlings produced greater root, stem, and leaf biomass than the uninoculated stressed seedlings. In addition, the seedlings colonized by R. irregularis showed notably higher activities of superoxide dismutase (SOD, catalase (CAT, and ascorbate peroxidase (APX in the leaves of the mycorrhizal seedlings in response to salinity compared to those of the non-mycorrhizal seedlings. Mycorrhizal seedlings not only significantly increased their ability to acquire K+, Ca2+, and Mg2+, but also maintained higher K+:Na+ ratios in the leaves and lower Ca2+:Mg2+ ratios than non-mycorrhizal seedlings during salt stress. These results suggest that the salt tolerance of E. angustifolia seedlings could be enhanced by R. irregularis. The arbuscular mycorrhizal symbiosis could be a promising method to restore and utilize salt-alkaline land in northern China.

  17. Increased stability of thylakoid components in Vigna sinensis seedlings grown under ultraviolet-B enhanced radiation

    International Nuclear Information System (INIS)

    Nedunchezhian, N.; Kulandaivelu, G.

    1994-01-01

    Chloroplasts isolated from Vigna sinensis L. seedlings grown under cool fluorescent (control chloroplasts) and ultraviolet-B (UV-B)-enhanced fluorescent (UV chloroplasts) radiation, when incubated at 10, 20, 30 and 40-degrees-C, showed large variations in the photosynthetic electron transport reactions. The overall electron transport activity in both control and UV chloroplasts incubated at 40-degrees-C decreased rapidly. In contrast to this, at 30-degrees-C the control chloroplasts got inactivated very rapidly during the 30 min of incubation while the UV chloroplasts showed high stability. A similar trend was also noticed at 20-degrees-C. At 10-degrees-C, although the rate of inactivation was slow, UV chloroplasts were more stable than control chloroplasts. A similar trend was noticed in photosystem (PS) 2 activity. In contrast to overall electron transport and PS2 reactions, PS1 activity showedonly marginal changes at all temperatures. The polypeptide profiles of chloroplasts exposed to UV-B irradiation for 60 min at different temperatures revealed marked decreases in the level of the 23 and 33 kDa polypeptides in control chloroplasts while in UV chloroplasts these polypeptides were highly stable. In addition, UV chloroplasts contained several new polypeptides of both high and low molecular masses. The polypeptide pattern indicated that higher photochemical activity of UV chloroplasts over the control chloroplasts could be due to stabilization of PS2 core complexes by the new polypeptides induced under UV-B enhanced radiation

  18. Ferulic acid depletion by cultured soybean seedlings under action of glucose and methionine

    Directory of Open Access Journals (Sweden)

    Herrig Vanessa

    2000-01-01

    Full Text Available Cultured soybean seedlings were used to investigate how glucose or methionine influenced depletion of ferulic acid. Three-day-old seedlings were grown in hydroponic solution containing ferulic acid plus glucose or methionine, and the level of the phenolic acid were monitored in the nutrient culture. The results showed that ferulic acid depletion was more rapid in the presence of those compounds. After 6 h, the increase caused by glucose (0.01 and 0.05 mM was more pronounced than methionine in the same concentrations. On the other hand, methionine (0.1 and 0.2 mM increased depletion more significantly than glucose. Results suggested that both compounds might to increase the allelopathic effects of ferulic acid in the seedlings.

  19. Complete genome sequence of the biofilm-forming Curtobacterium sp. strain BH-2-1-1, isolated from lettuce (Lactuca sativa) originating from a conventional field in Norway.

    Science.gov (United States)

    Dees, Merete Wiken; Brurberg, May Bente; Lysøe, Erik

    2016-12-01

    Here, we present the 3,795,952 bp complete genome sequence of the biofilm-forming Curtobacterium sp. strain BH-2-1-1, isolated from conventionally grown lettuce ( Lactuca sativa ) from a field in Vestfold, Norway. The nucleotide sequence of this genome was deposited into NCBI GenBank under the accession CP017580.

  20. The Lr34 adult plant rust resistance gene provides seedling resistance in durum wheat without senescence.

    Science.gov (United States)

    Rinaldo, Amy; Gilbert, Brian; Boni, Rainer; Krattinger, Simon G; Singh, Davinder; Park, Robert F; Lagudah, Evans; Ayliffe, Michael

    2017-07-01

    The hexaploid wheat (Triticum aestivum) adult plant resistance gene, Lr34/Yr18/Sr57/Pm38/Ltn1, provides broad-spectrum resistance to wheat leaf rust (Lr34), stripe rust (Yr18), stem rust (Sr57) and powdery mildew (Pm38) pathogens, and has remained effective in wheat crops for many decades. The partial resistance provided by this gene is only apparent in adult plants and not effective in field-grown seedlings. Lr34 also causes leaf tip necrosis (Ltn1) in mature adult plant leaves when grown under field conditions. This D genome-encoded bread wheat gene was transferred to tetraploid durum wheat (T. turgidum) cultivar Stewart by transformation. Transgenic durum lines were produced with elevated gene expression levels when compared with the endogenous hexaploid gene. Unlike nontransgenic hexaploid and durum control lines, these transgenic plants showed robust seedling resistance to pathogens causing wheat leaf rust, stripe rust and powdery mildew disease. The effectiveness of seedling resistance against each pathogen correlated with the level of transgene expression. No evidence of accelerated leaf necrosis or up-regulation of senescence gene markers was apparent in these seedlings, suggesting senescence is not required for Lr34 resistance, although leaf tip necrosis occurred in mature plant flag leaves. Several abiotic stress-response genes were up-regulated in these seedlings in the absence of rust infection as previously observed in adult plant flag leaves of hexaploid wheat. Increasing day length significantly increased Lr34 seedling resistance. These data demonstrate that expression of a highly durable, broad-spectrum adult plant resistance gene can be modified to provide seedling resistance in durum wheat. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  1. The Potential for Cereal Rye Cover Crops to Host Corn Seedling Pathogens.

    Science.gov (United States)

    Bakker, Matthew G; Acharya, Jyotsna; Moorman, Thomas B; Robertson, Alison E; Kaspar, Thomas C

    2016-06-01

    Cover cropping is a prevalent conservation practice that offers substantial benefits to soil and water quality. However, winter cereal cover crops preceding corn may diminish beneficial rotation effects because two grass species are grown in succession. Here, we show that rye cover crops host pathogens capable of causing corn seedling disease. We isolated Fusarium graminearum, F. oxysporum, Pythium sylvaticum, and P. torulosum from roots of rye and demonstrate their pathogenicity on corn seedlings. Over 2 years, we quantified the densities of these organisms in rye roots from several field experiments and at various intervals of time after rye cover crops were terminated. Pathogen load in rye roots differed among fields and among years for particular fields. Each of the four pathogen species increased in density over time on roots of herbicide-terminated rye in at least one field site, suggesting the broad potential for rye cover crops to elevate corn seedling pathogen densities. The radicles of corn seedlings planted following a rye cover crop had higher pathogen densities compared with seedlings following a winter fallow. Management practices that limit seedling disease may be required to allow corn yields to respond positively to improvements in soil quality brought about by cover cropping.

  2. Sustainable lettuce: Adaptability to uncertain production conditions

    Science.gov (United States)

    Lettuce is a popular and widely consumed leafy vegetable. California and Arizona annually produce more than 250,000 acres of iceberg, romaine, leaf, and specialty types of lettuce, supplying more than 95% of the U.S market as well as exports to Canada and other countries. These states have dominat...

  3. Effects of filamentous macroalgae on growth and survival of eelgrass, Zostera marina, seedlings

    DEFF Research Database (Denmark)

    Rasmussen, Jonas; Krause-Jensen, Dorte; Olesen, Birgit

    of oxygen and sulphide and their diurnal variations in the mats were measured using microelectrodes. Seedling growth rates declined 99 % from controls to the high C. linum cover treatment and 55 % to the high imitation algae treatment. But due to high water flow rates anoxic conditions failed to develop...... on a 2-factorial laboratory experiment. Eelgrass seedlings were grown with three different heights and two different types of algae mats: Chaetomorpha linum and artificial macroalgae. The two types of mats were used to separate the physical and metabolic effects of algal presence. Concentrations...

  4. Violaxanthin is an abscisic acid precursor in water-stressed dark-grown bean leaves

    International Nuclear Information System (INIS)

    Li, Yi; Walton, D.C.

    1990-01-01

    The leaves a dark-grown bean (Phaseolus vulgaris L.) seedlings accumulate considerably lower quantities of xanthophylls and carotenes than do leaves of light-grown seedlings, but they synthesize at least comparable amounts of abscisic acid (ABA) and its metabolites when water stressed. We observed a 1:1 relationship on a molar basis between the reduction in levels of ciolaxanthin, 9'-cis-neoxanthin, and 9-cis-violaxanthin and the accumulation of ABA, phaseic acid, and dihydrophaseic acid, when leaves from dark-grown plants were stressed for 7 hours. Early in the stress period, reductions in xanthophylls were greater than the accumulation of ABA and its metabolites, suggesting the accumulation of an intermediate which was subsequently converted to ABA. Leaves which were detached, but no stressed, did not accumulate ABA nor were their xanthophyll levels reduced. Leaves from plants that had been sprayed with cycloheximido did not accumulate ABA when stressed, nor were their xanthophyll levels reduced significantly. Incubation of dark-grown stressed leaves in an 18 O 2 -containing atmosphere resulted in the synthesis of ABA with levels of 18 O in the carboxyl group that were virtually identical to those observed in light-grown leaves. The results of these experiments indicate that violaxanthin is an ABA precursor in stressed dark-grown leaves, and they are used to suggest several possible pathways from violaxanthin to ABA

  5. Violaxanthin is an abscisic acid precursor in water-stressed dark-grown bean leaves

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yi; Walton, D.C. (State Univ. of New York, Syracuse (USA))

    1990-03-01

    The leaves a dark-grown bean (Phaseolus vulgaris L.) seedlings accumulate considerably lower quantities of xanthophylls and carotenes than do leaves of light-grown seedlings, but they synthesize at least comparable amounts of abscisic acid (ABA) and its metabolites when water stressed. We observed a 1:1 relationship on a molar basis between the reduction in levels of ciolaxanthin, 9{prime}-cis-neoxanthin, and 9-cis-violaxanthin and the accumulation of ABA, phaseic acid, and dihydrophaseic acid, when leaves from dark-grown plants were stressed for 7 hours. Early in the stress period, reductions in xanthophylls were greater than the accumulation of ABA and its metabolites, suggesting the accumulation of an intermediate which was subsequently converted to ABA. Leaves which were detached, but no stressed, did not accumulate ABA nor were their xanthophyll levels reduced. Leaves from plants that had been sprayed with cycloheximido did not accumulate ABA when stressed, nor were their xanthophyll levels reduced significantly. Incubation of dark-grown stressed leaves in an {sup 18}O{sub 2}-containing atmosphere resulted in the synthesis of ABA with levels of {sup 18}O in the carboxyl group that were virtually identical to those observed in light-grown leaves. The results of these experiments indicate that violaxanthin is an ABA precursor in stressed dark-grown leaves, and they are used to suggest several possible pathways from violaxanthin to ABA.

  6. Nutritional value, bioactive compounds, and health benefits of lettuce (Lactuca sativa L.)

    Science.gov (United States)

    Lettuce is one of the most popularly consumed vegetables worldwide but its nutritional value has been underestimated. Lettuce is low in calories and fat but high in fiber. Moreover, lettuce is high in potassium but low in sodium. Lettuce is also a good source of health-beneficial bioactive compounds...

  7. POTENCIAL ALELOPÁTICO DO EXTRATO AQUOSO DE CASCAS DE JUREMA PRETA NO DESENVOLVIMENTO INICIAL DE ALFACE

    Directory of Open Access Journals (Sweden)

    PATRÍCIA FERNANDES SILVEIRA

    2012-01-01

    Full Text Available The paper aimed to evaluate the allelopathic potential of Jurema (Mimosa tenuiflora (Willd. Poir. on seed germination and seedling growth of lettuce. The study consisted of two experiments, each arranged in a completely randomized design with five treatments and four replications of 20 seeds: 1 stem bark extract of M. tenuiflora obtained in hot water (100 °C and at concentrations of 0%, 25%, 50%, 75% and 100% of standard extract, 2 stem bark extract of M. tenuiflora obtained in cold water and the same concentrations. The extract was obtained by standard 50 g of bark in 500 mL of distilled water. We evaluated the germination percentage (G, germination speed index (GSI, percentage of normal seedlings (NP and abnormal (PA, shoot length (CPA and root (CR in lettuce seedlings. All extracts were analyzed for pH and conductivity. The germination of lettuce was high (> 97% and no significant difference between means of G and IVG in different concentrations of the extract pattern. No allelopathic activity of M. tenuiflora on the germination of lettuceseeds. The hot extract cause greater percentage of abnormal seedlings in lettuce. The aqueous extracts of bark of M. tenuiflora have phytotoxic effects on seedling growth of lettuce, and in higher concentrations drastically affect the length of the root and shoot.

  8. Gas exchange, phisiological indexes and ionic accumulation in Annona emarginata (Schltdl. H. Rainer seedlings in nutrients solution

    Directory of Open Access Journals (Sweden)

    Daniel Baron

    2013-06-01

    Full Text Available "Araticum-de-terra-fria" (Annona emarginata (Schltdl. H. Rainer has been consider a good alternative in rootstock production for the main commercial Annonaceae species. Although this species develops in different soil and climate conditions, there is no understanding by the physiological responses of this species at different nutritional levels. Thus, the objective of this study was to evaluate the influence of different ionic strengths on development of vegetative species known as "Araticum-de-terra-fria". It was evaluated in seedlings grown in different ionic strengths (25% I, 50% I, 75% I and 100% I of the complete nutrient solution Hoagland and Arnon (1950 nº 2, for 140 days, the following characteristics: Gas Exchange (CO2 assimilation rate, stomatal conductance, internal CO2 concentration, transpiration rate, water use efficiency, Rubisco carboxylation efficiency; Vegetative growth characteristics (diameter, leaf number, dry matter; Physiological Indexes (leaf area ratio, specific leaf area, relative growth rate, net assimilation rate, leaf weight ratio and Ionic Accumulation (nutrients leaf analysis. Seedlings grown under 50% I showed the highest values of Leaf CO2 assimilation rate, water use efficiency, carboxylation efficiency, growth, relative growth rate, net assimilation rate and ionic accumulation in the total dry matter. So it is concluded that "Araticum-de-terra-fria" seedlings grown under intermediate nutrient concentrations of complete nutrient solution Hoagland and Arnon (1950 nº 2, explored more adequately their physiological potential that justify their adaptation in different nutritional conditions and allow reducing the amount of mineral nutrition of seedlings production.

  9. Agronomic efficiency of intercropping tomato and lettuce

    Directory of Open Access Journals (Sweden)

    Arthur B. Cecílio Filho

    2011-09-01

    Full Text Available Four experiments were carried out at the São Paulo State University, Brazil, with the aim of determining the agronomic viability of intercropping tomato and lettuce, under greenhouse conditions. The studied intercropping systems were established by transplanting lettuce at 0, 10, 20 and 30 days after transplanting (DAT tomato and by transplanting tomato at 0, 10, 20 and 30 DAT lettuce. Intercropped tomato and lettuce were evaluated during two seasons and compared to their sole cropping. The experimental design was a randomized complete block with nine treatments. The productivity and the classification of the tomato fruits were not influenced by having lettuce intercropped with it, but lettuce production was lowered when tomato was intercropped with it. The longer the delay in lettuce transplanting, the greater the reduction in its productivity. There was an effect of cropping season on the extent of the agronomic advantage of intercropping over sole cropping. In the first cropping season, intercropping established by transplanting lettuce during the interval between 30 days before up to 20 DAT tomato yielded land use efficiency (LUE indices of 1.63 to 2.22. In the second period, intercropping established with the transplanting of lettuce up to 30 days before tomato yielded LUE indices of 1.57 to 2.05.Quatro experimentos foram conduzidos na Unesp, Brasil, com o objetivo de determinar a viabilidade agronômica de cultivos consorciados de alface e tomate em ambiente protegido. Consórcios estabelecidos por transplantes da alface aos 0, 10, 20 e 30 dias após o transplante (DAT do tomate e de tomate aos 0, 10, 20 e 30 DAT da alface, foram avaliados em duas épocas e comparados às suas monoculturas. Cada experimento foi conduzido em delineamento de blocos ao acaso, com nove tratamentos. Verificou-se que a produtividade do tomate e a classificação dos frutos não foram influenciadas pela alface, mas a produção da alface foi menor em cons

  10. Conifers, angiosperm trees, and lianas: growth, whole-plant water and nitrogen use efficiency, and stable isotope composition ({delta}13C and {delta}18O) of seedlings grown in a tropical environment.

    Science.gov (United States)

    Cernusak, Lucas A; Winter, Klaus; Aranda, Jorge; Turner, Benjamin L

    2008-09-01

    Seedlings of several species of gymnosperm trees, angiosperm trees, and angiosperm lianas were grown under tropical field conditions in the Republic of Panama; physiological processes controlling plant C and water fluxes were assessed across this functionally diverse range of species. Relative growth rate, r, was primarily controlled by the ratio of leaf area to plant mass, of which specific leaf area was a key component. Instantaneous photosynthesis, when expressed on a leaf-mass basis, explained 69% of variation in r (P physiological models of tropical forest trees.

  11. The effect of exposure rate of the growth of soybean seedlings grown from gamma irradiated seeds

    International Nuclear Information System (INIS)

    Mohd Yusof, A.; Grunewald, R.

    1981-01-01

    The effect of the gamma ( 137 Cs) total exposure rate of 25 kR delivered at three different exposure rates (887 R/min, 159 R/min and 48 R/min) on soybean seeds was studied by measuring seedling height, cotyledon area, fresh weight, dry weight, Co 2 fixation and RuDP carboxylase activity. The dry weight, CO 2 fixation and irradiated imbibed groups did not show any correlation with exposure rate. Exposure rate effect was shown for the first stage out, no further correlation was observed in the subsequent stages, probably due to the recovery and repair mechanisms that take place as the seedling increases with age. The absence of an exposure rate effect on irradiated imbibed group may be explained in terms of non-detectable damage at a very high dose, since these seedlings exhibited effects that are similar to the effects of seeds exposed to an acute radiation dose. (author)

  12. Effects of elevated [CO2] and low soil moisture on the physiological responses of Mountain Maple (Acer spicatum L. seedlings to light.

    Directory of Open Access Journals (Sweden)

    Gabriel Danyagri

    Full Text Available Global climate change is expected to affect how plants respond to their physical and biological environments. In this study, we examined the effects of elevated CO2 ([CO2] and low soil moisture on the physiological responses of mountain maple (Acer spicatum L. seedlings to light availability. The seedlings were grown at ambient (392 µmol mol(-1 and elevated (784 µmol mol(-1 [CO2], low and high soil moisture (M regimes, at high light (100% and low light (30% in the greenhouse for one growing season. We measured net photosynthesis (A, stomatal conductance (g s, instantaneous water use efficiency (IWUE, maximum rate of carboxylation (V cmax, rate of photosynthetic electron transport (J, triose phosphate utilization (TPU, leaf respiration (R d, light compensation point (LCP and mid-day shoot water potential (Ψx. A and g s did not show significant responses to light treatment in seedlings grown at low soil moisture treatment, but the high light significantly decreased the C i/C a in those seedlings. IWUE was significantly higher in the elevated compared with the ambient [CO2], and the effect was greater at high than the low light treatment. LCP did not respond to the soil moisture treatments when seedlings were grown in high light under both [CO2]. The low soil moisture significantly reduced Ψx but had no significant effect on the responses of other physiological traits to light or [CO2]. These results suggest that as the atmospheric [CO2] rises, the physiological performance of mountain maple seedlings in high light environments may be enhanced, particularly when soil moisture conditions are favourable.

  13. Effects of elevated [CO2] and low soil moisture on the physiological responses of Mountain Maple (Acer spicatum L.) seedlings to light.

    Science.gov (United States)

    Danyagri, Gabriel; Dang, Qing-Lai

    2013-01-01

    Global climate change is expected to affect how plants respond to their physical and biological environments. In this study, we examined the effects of elevated CO2 ([CO2]) and low soil moisture on the physiological responses of mountain maple (Acer spicatum L.) seedlings to light availability. The seedlings were grown at ambient (392 µmol mol(-1)) and elevated (784 µmol mol(-1)) [CO2], low and high soil moisture (M) regimes, at high light (100%) and low light (30%) in the greenhouse for one growing season. We measured net photosynthesis (A), stomatal conductance (g s), instantaneous water use efficiency (IWUE), maximum rate of carboxylation (V cmax), rate of photosynthetic electron transport (J), triose phosphate utilization (TPU)), leaf respiration (R d), light compensation point (LCP) and mid-day shoot water potential (Ψx). A and g s did not show significant responses to light treatment in seedlings grown at low soil moisture treatment, but the high light significantly decreased the C i/C a in those seedlings. IWUE was significantly higher in the elevated compared with the ambient [CO2], and the effect was greater at high than the low light treatment. LCP did not respond to the soil moisture treatments when seedlings were grown in high light under both [CO2]. The low soil moisture significantly reduced Ψx but had no significant effect on the responses of other physiological traits to light or [CO2]. These results suggest that as the atmospheric [CO2] rises, the physiological performance of mountain maple seedlings in high light environments may be enhanced, particularly when soil moisture conditions are favourable.

  14. Alelopatia de extratos de diferentes órgãos de mulungu na germinação de alface Allelopathy of extracts of different organs of coral tree on the germination of lettuce

    Directory of Open Access Journals (Sweden)

    Andreya K Oliveira

    2012-09-01

    Full Text Available O mulungu (Erythrina velutina é uma árvore de crescimento rápido, com propriedades medicinais. O objetivo no presente trabalho foi avaliar o efeito alelopático do extrato aquoso de sementes, flores e cascas de mulungu na germinação e desenvolvimento de plântulas de alface cv. Mônica SF FI. O delineamento experimental utilizado foi inteiramente casualizado com sete tratamentos [extrato de sementes a 100°C, extrato de sementes a 25°C, extrato de cascas a 100°C, extrato de cascas a 25°C, extrato de flores a 100°C, extrato de flores a 25°C e água destilada (testemunha] com quatro repetições. Os extratos obtidos de sementes, independente da temperatura de extração reduziram a porcentagem e velocidade de germinação de sementes de alface e afetaram o desenvolvimento das plântulas. Os demais extratos não afetaram a germinação, mas causaram o aparecimento de plântulas anormais e mortas. Os extratos aquosos de sementes de mulungu têm potencial alelopático sobre as sementes de alface cv. Mônica SF FI.The coral tree (Erythrina velutina is a fast growing tree with medicinal properties. The aim of this study was to evaluate the allelopathic effects of aqueous extract of seeds, flowers and bark of coral tree on seed germination and seedling development of lettuce cv. Mônica SF FI. The experimental design was completely randomized with seven treatments [seed extract at 100°C, seed extract at 25°C, bark extract at 100°C, bark extract at 25°C, flower extract at 100°C, flower extract at 25°C and distilled water (control] with four replications. The extracts of seeds, independent of the extraction temperature decreased the percentage and speed of germination of lettuce and affected the development of the seedlings. The other extracts did not affect germination, but caused the appearance of abnormal seedlings and dead. The aqueous extract of seeds of coral tree has allelopathic potential in the seeds of lettuce cv. Mônica SF FI.

  15. Activity of aphids associated with lettuce and broccoli in Spain and their efficiency as vectors of Lettuce mosaic virus.

    Science.gov (United States)

    Nebreda, M; Moreno, A; Pérez, N; Palacios, I; Seco-Fernández, V; Fereres, A

    2004-03-01

    This research sought to identify the aphid virus vector species associated with lettuce and broccoli crops in Spain, and to determine their population dynamics and ability to transmit Lettuce mosaic virus (LMV). Green tile traps and Moericke yellow water-pan traps were used to monitor aphid flights during the spring and autumn growing seasons of 2001. Aphid species feeding on lettuce were counted weekly. The transmission efficiencies of LMV were determined for the aphid species caught most frequently. The Moericke traps generally caught more aphid species than the tile trap, but the latter was the most suitable to estimate flight activity of species involved in virus spread. Spring aphid catches indicated that the main aphid species landing on lettuce in the regions of Madrid and Murcia was Hyperomyzus lactucae, but Brachycaudus helichrysi was also abundant in both regions. In broccoli in the Navarra region, the most abundant species in spring were Aphis fabae, B. helichrysi and H. lactucae. In autumn-sown crops, the main species landing on lettuce in the Madrid region were Hyadaphis coriandri and Aphis spiraecola. In Murcia, A. spiraecola and Myzus persicae were the most abundant, while in Navarra, Therioaphis trifolii, and various Aphis spp. were the most numerous landing on broccoli. The main aphid species colonising lettuce was Nasonovia ribisnigri, but other less abundant colonising species were Aulacorthum solani and Macrosiphum euphorbiae. The most efficient vectors of LMV were M. persicae, Aphis gossypii and M. euphorbiae, while A. fabae and H. lactucae transmitted with low efficiency, and Rhopalosiphum padi and N. ribisnigri did not transmit. Occurrence of LMV epidemics in central Spain in relation to aphid flights and the role of weeds as virus reservoirs is discussed.

  16. USE OF PELLETED LETTUCE SEEDS IN BIOAVAILABILITY STUDIES

    Science.gov (United States)

    Lettuce (Latuca sativa L., cv. Buttercrunch) is one of the most common and sensitive test organisms, among plants, used in toxicology and bioavailability studies. Much of the available lettuce seeds in commercial channels are pelleted to allow for precision machine planting. Th...

  17. USE OF PELLETED LETTUCE SEEDS IN BIOABAILABILITY STUDIES

    Science.gov (United States)

    Lettuce (Latuca sativa L., cv. Buttercrunch) is one of the most common and sensitive test organisms, among plants, used in toxicology and bioavailability studies. Much of the available lettuce seeds in commercial channels are pelleted to allow for precision machine planting. Th...

  18. N2-fixation and seedling growth promotion of lodgepole pine by endophytic Paenibacillus polymyxa.

    Science.gov (United States)

    Anand, Richa; Grayston, Susan; Chanway, Christopher

    2013-08-01

    We inoculated lodgepole pine (Pinus contorta var. latifolia (Dougl.) Engelm.) with Paenibacillus polymyxa P2b-2R, a diazotrophic bacterium previously isolated from internal stem tissue of a naturally regenerating pine seedling to evaluate biological nitrogen fixation and seedling growth promotion by this microorganism. Seedlings generated from pine seed inoculated with strain P2b-2R were grown for up to 13 months in a N-limited soil mix containing 0.7 mM available N labeled as Ca((15)NO3)2 to facilitate detection of N2-fixation. Strain P2b-2R developed a persistent endophytic population comprising 10(2)-10(6) cfu g(-1) plant tissue inside pine roots, stems, and needles during the experiment. At the end of the growth period, P2b-2R had reduced seedling mortality by 14 % and (15)N foliar N abundance 79 % and doubled foliar N concentration and seedling biomass compared to controls. Our results suggest that N2-fixation by P. polymyxa enhanced growth of pine seedlings and support the hypothesis that plant-associated diazotrophs capable of endophytic colonization can satisfy a significant proportion of the N required by tree seedlings growing under N-limited conditions.

  19. Lettuce achene invigoration through osmopriming at supraoptimal temperature

    International Nuclear Information System (INIS)

    Jahangir, M.M.; Amjad, M.; Iqbal, Q.; Nawaz, A.; Afzal, I.

    2009-01-01

    The effect of osmopriming on lettuce achene invigoration at supra optimal temperature (35degreeC) was investigated in the present study. Osmopriming of lettuce achene with KNO/sub 3/ (0.25%, 0.5% and 1%), CaCl/sub 2/ (15 mM, 25 mM, 50 mM) and PEG 8000 (0.1 g/ml H/sub 2/O, 0.2 g/ml H/sub 2/O, 0.3g/ml H/sub 2/O) alleviated thermodormancy and improved lettuce achene's vigor. Moreover, priming significantly improved final germination % age, energy of germination, germination index, shoot length, root length, vigor index and reduced mean germination time and time taken to 50% germination, as compared to control, when seeds were subjected to supra-optimal germination environments. It can be concluded that osmopriming can act as effective tool to invigorate lettuce seeds at supra optimal temperature. (author)

  20. Microbial Profile of Soil-Free versus In-Soil Grown Lettuce and Intervention Methodologies to Combat Pathogen Surrogates and Spoilage Microorganisms on Lettuce

    OpenAIRE

    Sirsat, Sujata A.; Neal, Jack A.

    2013-01-01

    Aquaponics is an effective method to practice sustainable agriculture and is gaining popularity in the US; however, the microbial safety of aquaponically grown produce needs to be ascertained. Aquaponics is a unique marriage of fish production and soil-free produce (e.g., leafy greens) production. Fish are raised in fresh water tanks that are connected to water filled beds where fruits and vegetables are grown. The fish bi-products create nutrient-rich water that provides the key elements for...

  1. Agronomic aspects of strip intercropping lettuce with alyssum for biological control of aphids

    OpenAIRE

    Brennan, Eric B.

    2013-01-01

    Organic lettuce growers in California typically use insectary strips of alyssum (Lobularia maritima (L.) Desv.) to attract hoverflies (Syrphidae) that provide biological control of aphids. A two year study with transplanted organic romaine lettuce in Salinas, California investigated agronomic aspects of lettuce monoculture and lettuce-alyssum strip intercropping on beds in replacement intercropping treatments where alyssum transplants replaced 2 to 8% of the lettuce transplants, and in additi...

  2. Microbiological quality and safety assessment of lettuce production in Brazil.

    Science.gov (United States)

    Ceuppens, Siele; Hessel, Claudia Titze; de Quadros Rodrigues, Rochele; Bartz, Sabrina; Tondo, Eduardo César; Uyttendaele, Mieke

    2014-07-02

    The microbiological quality and safety of lettuce during primary production in Brazil were determined by enumeration of hygiene indicators Escherichia coli, coliforms and enterococci and detection of enteric pathogens Salmonella and E. coli O157:H7 in organic fertilizers, soil, irrigation water, lettuce crops, harvest boxes and worker's hands taken from six different lettuce farms throughout the crop growth cycle. Generic E. coli was a suitable indicator for the presence of Salmonella and E. coli O157:H7, while coliforms and enterococci were not. Few pathogens were detected: 5 salmonellae and 2 E. coli O157:H7 from 260 samples, of which only one was lettuce and the others were manure, soil and water. Most (5/7) pathogens were isolated from the same farm and all were from organic production. Statistical analysis revealed the following environmental and agro-technical risk factors for increased microbial load and pathogen prevalence in lettuce production: high temperature, flooding of lettuce fields, application of contaminated organic fertilizer, irrigation with water of inferior quality and large distances between the field and toilets. Control of the composting process of organic fertilizers and the irrigation water quality appear most crucial to improve and/or maintain the microbiological quality and safety during the primary production of lettuce. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Influence of hydroponic and soil cultivation on quality and shelf life of ready-to-eat lamb's lettuce (Valerianella locusta L. Laterr).

    Science.gov (United States)

    Manzocco, Lara; Foschia, Martina; Tomasi, Nicola; Maifreni, Michela; Dalla Costa, Luisa; Marino, Marilena; Cortella, Giovanni; Cesco, Stefano

    2011-06-01

    Nowadays, there is an increasing interest in the hydroponic floating system to cultivate leafy vegetables for ready-to-eat salads. It is reasonable that different growing systems could affect the quality and shelf life of these salads. The quality and shelf life of ready-to-eat lamb's lettuce grown in protected environment in soil plot or in soil-less system over hydroponic solution with or without the addition of 30 µmol L⁻¹ silicon were evaluated. Minimum effects were observed on colour, firmness and microbial counts. Hydroponic cultivation largely affected plant tissue hydration, leading to weight loss and structural modifications during refrigerated storage. The shelf life of lamb's lettuce was limited by the development of visually detectable unpleasant sensory properties. Shelf life, calculated by survival analysis of consumer acceptability data, resulted about 7 days for soil-cultivated salad and 2 days for the hydroponically grown ones. The addition of silicon to the hydroponic solution resulted in an interesting strategy to increase plant tissue yield and reduce nitrate accumulation. Although hydroponic cultivation may have critical consequences on product quality and shelf life, these disadvantages could be largely counterbalance by increased yield and a reduction of nitrate accumulation when cultivation is performed on nutritive solutions with supplemental addition of silicon. Copyright © 2011 Society of Chemical Industry.

  4. Unravelling the resistance mechanism of lettuce against Nasonovia ribisnigri

    OpenAIRE

    Broeke, ten, C.J.M.

    2013-01-01

    Aphids are serious pests of crop plant species, and host plant resistance is often the most effective and environmentally friendly control strategy to control these pests. One of these aphid pests is the black currant - lettuce aphid, Nasonovia ribisnigri (Mosely), an economically important pest of cultivated lettuce, Lactuca sativa L. Host plant resistance has been used since 1982 to control this aphid species and is mediated by the Nr-gene, originating from wild lettuce Lactuca virosa L. H...

  5. Marker-assisted selection for disease resistance in lettuce

    Science.gov (United States)

    Lettuce (Lactuca sativa L.) is the most popular leafy vegetable that is cultivated mainly in moderate climate. Consumers demand lettuce with good visual appearance and free of disease. Improved disease resistance of new cultivars is achieved by combining desirable genes (or alleles) from existing cu...

  6. Accumulation of contaminants of emerging concern in food crops-part 1: Edible strawberries and lettuce grown in reclaimed water.

    Science.gov (United States)

    Hyland, Katherine C; Blaine, Andrea C; Dickenson, Eric R V; Higgins, Christopher P

    2015-10-01

    Contaminants of emerging concern present in domestic waste streams include a highly diverse group of potentially biologically active compounds that can be detected at trace levels in wastewater. Concerns about potential uptake into crops arise when reclaimed water is used in food crop production. The present study investigated how 9 contaminants of emerging concern in reclaimed water are taken up into edible portions of two food crops. Two flame retardant chemicals, tris(1-chloro-2-propyl) phosphate (TCPP) and tris(2-chloroethyl) phosphate (TCEP) and several polar pharmaceuticals (carbamazepine, diphenhydramine, sulfamethoxazole, and trimethoprim) accumulated in a linear, concentration-dependent manner in lettuce (Lactuca sativa) irrigated with reclaimed water, suggesting passive uptake of both neutral and ionizable chemical contaminants in lettuce. Furthermore, concentration-dependent accumulation of TCEP and TCPP from reclaimed water was also observed in strawberry fruits (Fragaria ananassa). Collectively, these data suggest that highly polar or charged contaminants can be taken up by crops from water bearing contaminants of emerging concern and can be accumulated in the edible portions. Using these data, however, estimates of human exposure to these contaminants from reclaimed water food crop accumulation suggest that exposure to the contaminants of emerging concern examined in the present study is likely substantially lower than current exposure guidelines. © 2015 SETAC.

  7. Identification of 'Ubá' mango tree zygotic and nucellar seedlings using ISSR markers

    Directory of Open Access Journals (Sweden)

    Aline Rocha

    2014-10-01

    Full Text Available Polyembryonic seeds are characterized by the development of over one embryo in the same seed, which can be zygotic and nucellar. The objective of this work was to identify the genetic origin, whether zygotic or nucellar, of seedlings of polyembryonic seeds of 'Ubá' mango tree using ISSR markers, and relating them with the vigor of the seedlings. Thus, mangos were harvested in Visconde do Rio Branco (accession 102 and Ubá (accessions 112, 138, 152 and 159, whose seeds were germinated in plastic trays filled with washed sand. Fifty days after sowing, seedlings from five seeds of each one of the accessions 102, 112, 138, 159 and from 10 seeds of the accession 152, were analyzed. These sseedlings were characterized and evaluated for plant height, stem circumference and mass of fresh aerial part and the most vigorous seedling was the one displaying at least two of these traits higher than the other seedlings from seed. Leaves were collected for genomic DNA extraction, which was amplified using seven ISSR primers previously selected based on the amplification profile and considering the number and resolution of fragments. Zygotic seedlings were found in 18 seeds, which were the most vigorous in six seeds. The results evidenced the existence of genetic variability in orchards using seedlings grown from seeds, because the farmer usually uses the most vigorous ones, assuming that this is of nucellar origin. These results also indicate that the most vigorous seedling are not always nucellar, inasmuch as of 20% of the total seeds evaluated, the zygotic seedling was the most vigorous.

  8. Season, Irrigation, Leaf Age, and Escherichia coli Inoculation Influence the Bacterial Diversity in the Lettuce Phyllosphere

    Science.gov (United States)

    Williams, Thomas R.; Moyne, Anne-Laure; Harris, Linda J.; Marco, Maria L.

    2013-01-01

    The developmental and temporal succession patterns and disturbance responses of phyllosphere bacterial communities are largely unknown. These factors might influence the capacity of human pathogens to persist in association with those communities on agriculturally-relevant plants. In this study, the phyllosphere microbiota was identified for Romaine lettuce plants grown in the Salinas Valley, CA, USA from four plantings performed over 2 years and including two irrigation methods and inoculations with an attenuated strain of Escherichia coli O157:H7. High-throughput DNA pyrosequencing of the V5 to V9 variable regions of bacterial 16S rRNA genes recovered in lettuce leaf washes revealed that the bacterial diversity in the phyllosphere was distinct for each field trial but was also strongly correlated with the season of planting. Firmicutes were generally most abundant in early season (June) plantings and Proteobacteria comprised the majority of bacteria recovered later in the year (August and October). Comparisons within individual field trials showed that bacterial diversity differed between sprinkler (overhead) and drip (surface) irrigated lettuce and increased over time as the plants grew. The microbiota were also distinct between control and E. coli O157:H7-inoculated plants and between E. coli O157:H7-inoculated plants with and without surviving pathogen cells. The bacterial inhabitants of the phyllosphere therefore appear to be affected by seasonal, irrigation, and biological factors in ways that are relevant for assessments of fresh produce food safety. PMID:23844230

  9. Neural Network Modeling to Predict Shelf Life of Greenhouse Lettuce

    Directory of Open Access Journals (Sweden)

    Wei-Chin Lin

    2009-04-01

    Full Text Available Greenhouse-grown butter lettuce (Lactuca sativa L. can potentially be stored for 21 days at constant 0°C. When storage temperature was increased to 5°C or 10°C, shelf life was shortened to 14 or 10 days, respectively, in our previous observations. Also, commercial shelf life of 7 to 10 days is common, due to postharvest temperature fluctuations. The objective of this study was to establish neural network (NN models to predict the remaining shelf life (RSL under fluctuating postharvest temperatures. A box of 12 - 24 lettuce heads constituted a sample unit. The end of the shelf life of each head was determined when it showed initial signs of decay or yellowing. Air temperatures inside a shipping box were recorded. Daily average temperatures in storage and averaged shelf life of each box were used as inputs, and the RSL was modeled as an output. An R2 of 0.57 could be observed when a simple NN structure was employed. Since the "future" (or remaining storage temperatures were unavailable at the time of making a prediction, a second NN model was introduced to accommodate a range of future temperatures and associated shelf lives. Using such 2-stage NN models, an R2 of 0.61 could be achieved for predicting RSL. This study indicated that NN modeling has potential for cold chain quality control and shelf life prediction.

  10. Leaf life span plasticity in tropical seedlings grown under contrasting light regimes

    OpenAIRE

    Vincent, Grégoire

    2006-01-01

    Background and Aims The phenotypic plasticity of leaf life span in response to low resource conditions has a potentially large impact on the plant carbon budget, notably in evergreen species not subject to seasonal leaf shedding, but has rarely been well documented. This study evaluates the plasticity of leaf longevity, in terms of its quantitative importance to the plant carbon balance under limiting light. Methods Seedlings of four tropical tree species with contrasting light requirements (...

  11. Effects of anaerobic growth conditions on biomass accumulation, root morphology, and efficiencies of nutrient uptake and utilization in seedlings of some southern coastal plain pine species

    International Nuclear Information System (INIS)

    Topa, M.A.

    1984-01-01

    Seedlings of pond (Pinus serotina (Michx.)), sand (P. clausa (Engelm.) Sarg.), and loblolly pines (P. taeda L., drought-hardy and wet site seed sources) were grown in a non-circulating, continuously-flowing solution culture under anaerobic or aerobic conditions to determine the effects of anaerobics on overall growth, root morphology and efficiencies of nutrient uptake and utilization. Although shoot growth of the 11-week old loblolly and pond pines was not affected by anaerobic treatment, it did significantly reduce root biomass. Sand pine suffered the largest biomass reduction. Flooding tolerance was positively correlated with specific morphological changes which enhanced root internal aeration. Oxygen transport from shoot to the root in anaerobically-grown loblolly and pond pine seedlings was demonstrated via rhizosphere oxidation experiments. Tissue elemental analyses showed that anaerobic conditions interfered with nutrient absorption and utilization. Short-term 32 p uptake experiments with intact seedlings indicated that net absorption decreased because of the reduction in root biomass, since H 2 PO 4 - influx in the anaerobically-grown seedlings was more than twice that of their aerobic counterparts. Sand pine possessed the physiological but not morphological capacity to increase P uptake under anaerobic growth conditions. Pond and wet-site loblolly pine seedlings maintained root growth, perhaps through enhanced internal root aeration - an advantage in field conditions where the phosphorus supply may be limited or highly localized

  12. A role for arabinogalactan-proteins in plant cell expansion: evidence from studies on the interaction of ß-glucosyl Yariv reagent with seedlings of Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Willats, William George Tycho; Knox, J.P.

    1996-01-01

    Seedlings of Arabidopsis thaliana were germinated and grown in medium containing ß-glucosyl Yariv reagent (ßGlcY), a synthetic phenyl glycoside that interacts specifically with arabinogalactan-proteins (AGPs), a class of plant cell surface proteoglycans. The effect of ßGlcY on the seedlings...

  13. Influence of season growth, soils and irrigation water composition on the concentration of uranium in two lettuce (Lactuca sativa L.) varieties. Field experiments

    Science.gov (United States)

    Abreu, M. M.; Neves, O.; Marcelino, M.

    2012-04-01

    Former uranium mines areas are frequently the sources of environmental radionuclides problems even many years after the closure of mining operations. A concern for inhabitants from mining areas is the use of contaminated land or irrigation water for agriculture, and the potential transfer of metals from soils to vegetables, and to humans through the food chain. The main aim of this study was to compare the uranium concentration in lettuce (Lactuca sativa L. varieties Marady and Romana) grown in different seasons (autumn and summer) and exposed to high and low uranium concentrations both in irrigation water and agricultural soil. The content of uranium in irrigation water, soil (total and available fraction) and in lettuce leaf samples was analyzed in a certified laboratory. In the field experiments, two agricultural soils were divided into two plots (four replicates each); one of them was irrigated with uranium contaminated water (0.94 to 1.14 mg/L) and the other with uncontaminated water (< 0.02 mg/L). Irrigation with contaminated water together with highest soil uranium available concentration (10 to 13 mg/kg) had negative effects on both studied lettuce varieties, namely yield reduction (up to 53% and 87% in autumn and summer experiments, respectively) and increase of uranium leaf concentration (up to 1.4 and 7 fold in autumn and summer, respectively). Effect on lettuce yield was mainly due to the high soil salinity (1.01 to 6.31 mS/cm) as a consequence of high irrigation water electrical conductivity (up to 1.82 mS/cm) and low lettuce soil salinity tolerance (1 to 3 mS/cm). The highest lettuce uranium concentration (dry weight) observed was 2.13 and 5.37 mg/kg for Marady and Romana variety, respectively. The highest uranium lettuce concentration in Romana variety was also the effect of its growing in summer season when it was subject to greatest frequency and amount of water irrigation. The consumption by an adult of the lettuce that concentrate more uranium

  14. Effect of population density of lettuce intercropped with rocket on productivity and land-use efficiency

    Science.gov (United States)

    2018-01-01

    The objective of this study was to evaluate the influence of the spacing of lettuce rows on the production of a lettuce-rocket intercropping system over two growing seasons (11 August to 25 September 2011 and 12 January to 24 February 2012) in Jaboticabal, São Paulo, Brazil. We evaluated 11 treatments in each season: lettuce-rocket intercrops with five row spacings for the lettuce (0.20, 0.25, 0.30, 0.35 and 0.40 m) and the rocket planted midway between the lettuce rows, sole crops of lettuce at the same five row spacings and a sole crop of rocket. Fresh and dry masses of the lettuce and rocket and number of lettuce leaves per plant were highest with a lettuce row spacing of 0.40 m, but the productivities of the lettuce and rocket were higher with a lettuce row spacing of 0.20 m. The productivities and fresh and dry weights of the lettuce and rocket and the number of lettuce leaves per plant were highest in the sole crops, but the fresh and dry weights of the rocket were higher with intercropping. The land equivalent ratios were >1.0 in both seasons in all intercrops and were highest for the densest crop (1.41). Intercropping was therefore 41% more efficient than sole cropping for the production of lettuce and rocket. PMID:29698401

  15. Determination of low levels of perchlorate in lettuce and spinach using ion chromatography-electrospray ionization mass spectrometry (IC-ESI-MS).

    Science.gov (United States)

    Seyfferth, Angelia L; Parker, David R

    2006-03-22

    A sample preparation method was developed to quantify environmentally relevant (low micrograms per liter) concentrations of perchlorate (ClO4(-)) in leafy vegetables using IC-ESI-MS. Lettuce and spinach were macerated, centrifuged, and filtered, and the aqueous extracts were rendered water-clear using a one-step solid-phase extraction method. Total time for extraction and sample preparation was 6 h. Ion suppression was demonstrated and was likely due to unknown organics still present in the extract solution after cleanup. However, this interference was readily eliminated using a Cl(18)O4(-) internal standard at 1 microg/L in all standards and samples. Hydroponically grown perchlorate-free butterhead lettuce was spiked to either 10.3 or 37.7 microg/kg of fresh weight (FW), and recoveries were between 91 and 98% and between 93 and 101%, respectively. Five types of lettuce and spinach from a local grocery store were then analyzed; they contained from 0.6 to 6.4 microg/kg of FW. Spike recoveries using the store-bought samples ranged from 89 to 100%. The method detection limit for perchlorate in plant extracts is 40 ng/L, and the corresponding minimum reporting limit is 200 ng/L or 0.8 microg/kg of FW.

  16. Differential effects of Pseudomonas mendocina and Glomus intraradices on lettuce plants physiological response and aquaporin PIP2 gene expression under elevated atmospheric CO2 and drought.

    Science.gov (United States)

    Alguacil, Maria Del Mar; Kohler, Josef; Caravaca, Fuensanta; Roldán, Antonio

    2009-11-01

    Arbuscular mycorrhizal (AM) symbiosis and plant-growth-promoting rhizobacterium (PGPR) can alleviate the effects of water stress in plants, but it is unknown whether these benefits can be maintained at elevated CO2. Therefore, we carried out a study where seedlings of Lactuca sativa were inoculated with the AM fungus (AMF) Glomus intraradices N.C. Schenk & G.S. Sm. or the PGPR Pseudomonas mendocina Palleroni and subjected to two levels of watering and two levels of atmospheric CO2 to ascertain their effects on plant physiological parameters and gene expression of one PIP aquaporin in roots. The inoculation with PGPR produced the greatest growth in lettuce plants under all assayed treatments as well as the highest foliar potassium concentration and leaf relative water content under elevated [CO2] and drought. However, under such conditions, the PIP2 gene expression remained almost unchanged. G. intraradices increased significantly the AMF colonization, foliar phosphorus concentration and leaf relative water content in plants grown under drought and elevated [CO2]. Under drought and elevated [CO2], the plants inoculated with G. intraradices showed enhanced expression of the PIP2 gene as compared to P. mendocina or control plants. Our results suggest that both microbial inoculation treatments could help to alleviate drought at elevated [CO2]. However, the PIP2 gene expression was increased only by the AMF but not by the PGPR under these conditions.

  17. Third year effects of cloudwater and ozone on red spruce seedlings

    International Nuclear Information System (INIS)

    Pier, P.A.; Thornton, F.C.; McDuffie, C. Jr.

    1991-01-01

    The reduction in growth of high elevation red spruce in the eastern US has been attributed in part to greater exposure to atmospheric pollution which occurs at high elevation. The authors objective was to evaluate the impact of ambient ozone and cloudwater deposition on the growth of red spruce seedlings at a high elevation site. Potted native and Phyton-grown (Phyton Technologies) red spruce seedlings were exposed in open-top field chambers at Whitetop Mountain, Virginia (elevation 1,680) for the third season to treatments of: (1) exclusion of clouds and 50% reduction in ambient O 3 (COE), (2) O 3 with clouds excluded (CO), (3) exposure to clouds and O 3 , as control chambers (CC), and (4) open plots (AA). Plant biomass components and diameter increment growth for both seedling types were not affected by treatments. Photosynthesis was not enhanced by removal of cloudwater and O 3 . Respiration (R d ) generally was not affected by treatments; however, R d in native seedling needles of previous year and two-year previous growth was significantly greater in CC than CO and COE on several sampling dates, indicating that cloudwater and O 3 may be causing higher R d

  18. A greenhouse study of northern red oak seedling growth on two forest soils at different stages of acidification

    International Nuclear Information System (INIS)

    Sharpe, W.E.; Swistock, B.R.; Dewalle, D.R.

    1993-01-01

    The objective of this study was to determine whether or not Ca and P in soils from two forested sites at two different stages of acidification were limiting growth of red oak seedlings. The A and E horizons of a Berks soils from Watershed 4 at the Fernow Experimental Forest (cation exchange buffer range) and a Hazelton-Dekalb soil from Pea Vine Hill in Southwestern Pennsylvania (A1 buffer range) were placed in pots and utilized as the growth medium for northern red oak seedlings in a greenhouse environment. Soil water NO 3 -N, Ca, Mg and K concentrations were significantly higher on the Berks soil. Soil exchangeable P and soil solution TP (total phosphorus) were significantly higher on the Hazelton-Dekalb soil. Both soils were amended with bone meal (CaPO 4 ) to determine the effects of Ca and P addition on the growth and nutrient uptake of the seedlings. Height growth of the control red oak seedlings was significantly greater on the Berks soil after 45 d, but amendment of Hazelton-Dekalb soils with bone meal eliminated this difference. Bone meal addition to the Hazelton-Dekalb soil resulted in significantly greater height growth of red oak seedlings when compared to red oak seedings grown on unamended Hazelton-Dekalb soil, but did not have a similar effect for red oak seedlings grown on Berks soil. Bone meal addition to Hazelton-Dekalb soil resulted in greater concentrations of Ca and Mg in red oak leaves. Unfertilized Berks red oak seedling leaves had significantly higher concentrations of Ca and K than their Hazelton-Dekalb counterparts. Al-Ca molar ratios were significantly lower on the Berks soil. Red oak height growth was increased significantly by Ca addition to the Hazelton-Dekalb soil. 24 refs., 2 figs., 8 tabs

  19. Effects of Watering and Fertilization on Carbohydrate Reserves in Sugar Maple Seedlings

    Science.gov (United States)

    Clayton M., Jr. Carl; John R. Donnelly; Boyd W. Post

    1978-01-01

    Sugar maple seedlings, grown under three nutrient and three moisture levels, were analyzed after three growing seasons for starch and ethanol-soluble sugars. Analytical procedures are detailed in the appendix. Fertilization did not affect carbohydrate levels in stems or roots. Water stress caused a significant reduction in the amount of carbohydrates in stems and roots...

  20. Inoculation of tomato seedlings with Trichoderma Harzianum and Arbuscular Mycorrhizal Fungi and their effect on growth and control of wilt in tomato seedlings

    Directory of Open Access Journals (Sweden)

    Margaret W. Mwangi

    2011-06-01

    Full Text Available A green house study was conducted to investigate the ability of an isolate of Trichoderma harzianum (P52 and arbuscular mycorrhizal fungi (AMF in enhancing growth and control of a wilt pathogen caused by Fusarium oxysporum f. sp. lycopersici in tomato seedlings. The plants were grown in plastic pots filled with sterilized soils. There were four treatments applied as follows; P52, AMF, AMF + P52 and a control. A completely randomized design was used and growth measurements and disease assessment taken after 3, 6 and 9 weeks. Treatments that significantly (P < 0.05 enhanced heights and root dry weights were P52, AMF and a treatment with a combination of both P52 and AMF when compared the control. The treatment with both P52 and AMF significantly (P < 0.05 enhanced all growth parameters (heights; shoot and root dry weight investigated compared to the control. Disease severity was generally lower in tomato plants grown with isolate P52 and AMF fungi either individually or when combined together, though the effect was not statistically significant (P0.05. A treatment combination of P52 + AMF had less trend of severity as compared to each individual fungus. T. harzianum and AMF can be used to enhance growth in tomato seedlings.

  1. Growth and nutrient balance of Enterolobium contortsiliquum seedlings with addition of organic substrates and wastewater

    Directory of Open Access Journals (Sweden)

    Emanuel França Araújo

    2016-06-01

    Full Text Available Given the strong generation of solid organic waste and wastewater, the use of these materials as a primary source of nutrients is an important practice in environmental management, especially in the production of seedlings with emphasis on degraded areas. The objective of this study was to evaluate growth and nutrient balance of “tamboril” (Enterolobium contortsiliquum (Vell. Morong seedlings grown on substrates with different formulations proportions of organic matter irrigated with wastewater. It was tested five ratios of organic composts and soil: 0:100; 20:80; 40:60; 60:40 and 80:20 v/v. Two procedences of irrigation water was tested: water supply and wastewater from swine farming, arranged in a completely randomized design in a factorial scheme 5 x 2, with four replications. At 90 days, we evaluate seedlings morphological variables, the integrate diagnosis recommendation index and the nutrient balance index. The organic residue contributes to seedlings growth and nutritional balance. The proportion 80:20 proved to be the most suitable for “tamboril” seedlings production. Seedlings presented lower growth and nutritional balance when irrigate with swine farm wastewater.

  2. Quantitative microbial risk assessment for Escherichia coli O157 on lettuce, based on survival data from controlled studies in a climate chamber.

    Science.gov (United States)

    Ottoson, Jakob R; Nyberg, Karin; Lindqvist, Roland; Albihn, Ann

    2011-12-01

    The aims of the study were to determine the survival of Escherichia coli O157 on lettuce as a function of temperature and light intensity, and to use that information in a screening-level quantitative microbial risk assessment (QMRA) in order to evaluate risk-reducing strategies including irrigation water quality guidelines, rinsing, and holding time between last irrigation and harvest. Iceberg lettuce was grown in a climate chamber and inoculated with E. coli O157. Bacterial numbers were determined with the standard plate count method after inoculation and 1, 2, 4, and 7 day(s) postinoculation. The experiments were carried out at 11, 18, and 25°C in light intensities of 0, 400, and 600 mmol (m(2))(-1) s(-1). There was a significant effect of temperature and light intensity on survival, with less bacteria isolated from lettuce incubated at 25 and 18°C compared with 11°C (P < 0.0001), and in light intensities of 400 and 600 mmol (m(2))(-1) s(-1) compared with 0 mmol (m(2))(-1) s(-1) (P < 0.001). The average log reductions after 1, 2, 4, and 7 day(s) were 1.14, 1.71, 2.04, and 3.0, respectively. The QMRA compared the relative risk with lettuce consumption from 20 scenarios. A stricter water quality guideline gave a mean fivefold risk reduction. Holding times of 1, 2, 4, and 7 day(s) reduced the risk 3, 8, 8, and 18 times, respectively, compared with harvest the same day as the last irrigation. Finally, rinsing lettuce for 15 s in cold tap water prior to consumption gave a sixfold risk reduction compared with eating unrinsed lettuce. Sensitivity analyses indicated that variation in bacterial inactivation had the most significant effect on the risk outcome. A QMRA determining the relative risks between scenarios reduces uncertainty and can provide risk managers with decision support.

  3. Factors Affecting Planting Depth and Standing of Rice Seedling in Parachute Rice Transplanting

    Science.gov (United States)

    Astika, I. W.; Subrata, I. D. M.; Pramuhadi, G.

    2018-05-01

    Parachute rice transplanting is a simple and practical rice transplanting method. It can be done manually or mechanically, with various possible designs of machines or tools. This research aimed at quantitatively formulating related factors to the planting depth and standing of rice seedling. Parachute seedlings of rice were grown at several sizes of parachute soil bulb sizes. The trays were specially designed with a 3D printer having bulb sizes 7, 8, 9, 10 mm in square sides and 15 mm depth. At seedling ages of 8-12 days after sowing the seedling bulbs were drops into puddled soil. Soil hardness was set at 3 levels of hardness, measured in hardness index using golf ball test. Angle of dropping was set at 3 levels: 0°, 30°and 45° from the vertical axis. The height of droppings was set at 100 cm, 75 cm, and 50 cm. The relationship between bulb size, height of dropping, soil hardness, dropping angle and planting depth was formulated with ANN. Most of input variables did not significantly affect the planting depth, except that hard soil significantly differs from mild soil and soft soil. The dropping also resulted in various positions of the planted seedlings: vertical standing, sloped, and falling. However, at any position of the planted seedlings, the seedlings would recover themselves into normally vertical position. With this result, the design of planting machinery, as well as the manual planting operation, can be made easier.

  4. Low moisture availability inhibits the enhancing effect of increased soil temperature on net photosynthesis of white birch (Betula papyrifera) seedlings grown under ambient and elevated carbon dioxide concentrations.

    Science.gov (United States)

    Ambebe, Titus F; Dang, Qing-Lai

    2009-11-01

    White birch (Betula papyrifera Marsh.) seedlings were grown under two carbon dioxide concentrations (ambient: 360 micromol mol(-1) and elevated: 720 micromol mol(-1)), three soil temperatures (5, 15 and 25 degrees C initially, increased to 7, 17 and 27 degrees C, respectively, 1 month later) and three moisture regimes (low: 30-40%; intermediate: 45-55% and high: 60-70% field water capacity) in greenhouses. In situ gas exchange and chlorophyll fluorescence were measured after 2 months of treatments. Net photosynthetic rate (A(n)) of seedlings grown under the intermediate and high moisture regimes increased from low to intermediate T(soil) and then decreased to high T(soil). There were no significant differences between the low and high T(soil), with the exception that A(n) was significantly higher under high than low T(soil) at the high moisture regime. No significant T(soil) effect on A(n) was observed at the low moisture regime. The intermediate T(soil) increased stomatal conductance (g(s)) only at intermediate and high but not at low moisture regime, whereas there were no significant differences between the low and high T(soil) treatments. Furthermore, the difference in g(s) between the intermediate and high T(soil) at high moisture regime was not statistically significant. The low moisture regime significantly reduced the internal to ambient CO2 concentration ratio at all T(soil). There were no significant individual or interactive effects of treatment on maximum carboxylation rate of Rubisco, light-saturated electron transport rate, triose phosphate utilization or potential photochemical efficiency of photosystem II. The results of this study suggest that soil moisture condition should be taken into account when predicting the responses of white birch to soil warming.

  5. Involvement of an antioxidant defense system in the adaptive response to cadmium in maize seedlings (Zea mays L.).

    Science.gov (United States)

    Xu, Xianghua; Liu, Cuiying; Zhao, Xiaoyan; Li, Renying; Deng, Wenjing

    2014-11-01

    Chemical and biological analyses were used to investigate the growth response and antioxidant defense mechanism of maize seedlings (Zea mays L.) grown in soils with 0-100 mg kg(-1) Cd. Results showed that maize seedlings have strong abilities to accumulate and tolerate high concentrations of Cd. For soil with 50 mg kg(-1) Cd, the Cd contents in roots and shoots of maize seedlings are as large as 295.6 and 153.0 mg kg(-1) DW, respectively, without visible symptoms of toxicity. Lower soil Cd concentrations lead to a decrease in reduced glutathione (GSH) content in leaves of maize seedlings, whereas higher soil Cd concentrations resulted in an increase in the activities of superoxide dismutase, guaiacol peroxidase, catalase, and ascorbate peroxidase. Maize seedlings have strong capacities to adapt to low concentrations of Cd by consuming GSH and to develop an antioxidative enzyme system to defend against high-Cd stress.

  6. Stable plastid transformation in lettuce (Lactuca sativa L.).

    Science.gov (United States)

    Lelivelt, Cilia L C; McCabe, Matthew S; Newell, Christine A; Desnoo, C Bastiaan; van Dun, Kees M P; Birch-Machin, Ian; Gray, John C; Mills, Kingston H G; Nugent, Jacqueline M

    2005-08-01

    Although plastid transformation in higher plants was first demonstrated in the early 1990s it is only recently that the technology is being extended to a broader range of species. To date, the production of fertile transplastomic plants has been reported for tobacco, tomato, petunia, soybean, cotton and Lesquerella fendleri (Brassicaceae). In this study we demonstrate a polyethylene glycol-mediated plastid transformation system for lettuce that generates fertile, homoplasmic, plastid-transformed lines. Transformation was achieved using a vector that targets genes to the trnA/trnI intergenic region of the lettuce plastid genome employing the aadA gene as a selectable marker against spectinomycin. Spectinomycin resistance and heterologous gene transcription were shown in T(1) plants derived from self-pollinated primary regenerants demonstrating transmission of the plastid-encoded transgene to the first seed generation. Crossing with male sterile wild-type lettuce showed that spectinomycin resistance was not transmitted via pollen. Constructs containing the gfp gene showed plastid-based expression of green fluorescent protein. The lettuce plastid could have potential both as a production and a delivery system for edible human therapeutic proteins.

  7. Growth and phenolic compounds of Lactuca sativa L. grown in a closed-type plant production system with UV-A, -B, or -C lamp.

    Science.gov (United States)

    Lee, Min-Jeong; Son, Jung Eek; Oh, Myung-Min

    2014-01-30

    The production of high-quality crops based on phytochemicals is a strategy for accelerating the practical use of plant factories. Previous studies have demonstrated that ultraviolet (UV) light is effective in improving phytochemical production. This study aimed to determine the effect of various UV wavelengths on growth and phenolic compound accumulation in lettuce (Lactuca sativa L.) grown in a closed-type plant production system. Seven days, 1 day and 0.25 day were determined as the upper limit of the irradiation periods for UV-A, -B, and -C, respectively, in the lettuce based on physiological disorders and the fluorescence parameter F(v)/F(m). Continuous UV-A treatment significantly induced the accumulation of phenolic compounds and antioxidants until 4 days of treatment without growth inhibition, consistent with an increase in phenylalanine ammonia lyase (PAL) gene expression and PAL activity. Repeated or gradual UV-B exposure yielded approximately 1.4-3.6 times more total phenolics and antioxidants, respectively, than the controls did 2 days after the treatments, although both treatments inhibited lettuce growth. Repeated UV-C exposure increased phenolics but severely inhibited the growth of lettuce plants. Our data suggest that UV irradiation can improve the accumulation of phenolic compounds with antioxidant properties in lettuce cultivated in plant factories. © 2013 Society of Chemical Industry.

  8. Persistence of 14C maneb in lettuce plants an soil

    International Nuclear Information System (INIS)

    Bennaceur, M.; Sennaoui, Z.; Meguenni, H.

    1992-10-01

    Maneb residue is studied on lettuce plant and soil after spraying on greenhouse with 14C maneb. The residues declined with time. After 37 days from the application, 14C maneb residues in water extracts declined to 1,5. 10-2ug/g from 5,8. 10-1ug/g of the zero day sample in lettuce plants and 4,6. 10-3ug/g from 1,73. 10-1ug/g in soil. The 14C internals residues in lettuce and soil increase respectively till 16 days and 24 days, then decrease to 88% and 4,05% after 37 days. ETU was present in lettuce plant after 8 days then decreases with time. Two metabolites were identified by TLC (EU,ETU)

  9. Incorporation of transuranics into vegetable and field crops grown at the Nevada Test Site

    International Nuclear Information System (INIS)

    Au, F.H.F.; Leavitt, V.D.; Beckert, W.F.; McFarlane, J.C.

    1977-01-01

    Radish, lettuce, barley, and alfalfa plants were grown from seeds in undisturbed soil in Area 13 of the Nevada Test Site to determine the uptake of transuranics under field conditions. The plants were grown in small greenhouses erected over the soil to preclude aerial deposition of resuspended transuranics on the growing plants. The crops were irrigated during the growing season with either distilled water, diethylenetriaminepentaacetic acid (DTPA) in distilled water, fertilizer in distilled water, or a combination of DTPA and fertilizer in distilled water. The plutonium and americium contents of the harvested plants showed differences which are mostly attributable to the effects of the treatments and the resulting changes in soil pH during the experiment

  10. Increased occurrence of pesticide residues on crops grown in protected environments compared to crops grown in open field conditions.

    Science.gov (United States)

    Allen, Gina; Halsall, Crispin J; Ukpebor, Justina; Paul, Nigel D; Ridall, Gareth; Wargent, Jason J

    2015-01-01

    Crops grown under plastic-clad structures or in greenhouses may be prone to an increased frequency of pesticide residue detections and higher concentrations of pesticides relative to equivalent crops grown in the open field. To test this we examined pesticide data for crops selected from the quarterly reports (2004-2009) of the UK's Pesticide Residue Committee. Five comparison crop pairs were identified whereby one crop of each pair was assumed to have been grown primarily under some form of physical protection ('protected') and the other grown primarily in open field conditions ('open'). For each pair, the number of detectable pesticide residues and the proportion of crop samples containing pesticides were statistically compared (n=100 s samples for each crop). The mean concentrations of selected photolabile pesticides were also compared. For the crop pairings of cabbage ('open') vs. lettuce ('protected') and 'berries' ('open') vs. strawberries ('protected') there was a significantly higher number of pesticides and proportion of samples with multiple residues for the protected crops. Statistically higher concentrations of pesticides, including cypermethrin, cyprodinil, fenhexamid, boscalid and iprodione were also found in the protected crops compared to the open crops. The evidence here demonstrates that, in general, the protected crops possess a higher number of detectable pesticides compared to analogous crops grown in the open. This may be due to different pesticide-use regimes, but also due to slower rates of pesticide removal in protected systems. The findings of this study raise implications for pesticide management in protected-crop systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Avaliação de coberturas mortas em cultura de alface sob manejo orgânico Evaluation of mulches on organically grown lettuce

    Directory of Open Access Journals (Sweden)

    Fabio F de Oliveira

    2008-06-01

    quando leguminosas foram utilizadas como cobertura morta.Soil mulching with legumes and grasses is an agricultural practice which promotes benefits to production systems. An experiment was carried out at Seropédica, Rio de Janeiro State, to evaluate the effects of mulch types on weed control and agronomic performance of organically grown lettuce. A randomized blocks design was adopted, with four replications and eight plants in the useful area of each plot. The treatments were: sugar cane (Saccharum sp. bagasse, bamboo (Bambuza sp., Cameroon grass (Penisetum purpureum, sunn hemp (Crotalaria juncea, mountain immortelle (Erythrina poeppigiana, gliricidia (Gliricidia sepium, pigeon pea (Cajanus cajan, velvet bean (Mucuna pruriens and control (no mulching. In situ decomposition and nitrogen release rates were estimated for each mulch. Two consecutive cycles of lettuce (cv. Regina were conducted in the same area to compare residual effects of mulching. There were greater accumulations of N in the legumes residues (with a maximum of 1.010 kg ha-1, at velvet bean. Legumes residues showed lower contents of remaining dry matter and N than grasses, at the end of the first cultivation cycle of lettuce (35 days after transplanting. Weed populations did not differ in relation to the mulch source, varying from 31 to 58 plants m-2. The reduction of weed infestation reached 83% as compared to the control treatment. In both crop cycles, lettuce shoot dry matter (315.8 to 366.0, and 202.9 to 225.0 g plant-1, respectively at the first and the second cultivation cycles, diameter (30.8 to 31.7, and 25.5 to 28.5 cm and N content (32.3 to 38.8, and 28.0 to 30.3 g kg-1 were greater in the treatments using legume mulches.

  12. Determination of Vitamin C, b-carotene and Riboflavin Contents in Five Green Vegetables Organically and Conventionally Grown.

    Science.gov (United States)

    Ismail, Amin; Cheah, Sook Fun

    2003-03-01

    As consumer interest in organically grown vegetables is increasing in Malaysia, there is a need to answer whether the vegetables are more nutritious than those conventionally grown. This study investigates commercially available vegetables grown organically and conventionally, purchased from retailers to analyse β-carotene, vitamin C and riboflavin contents. Five types of green vegetables were selected, namely Chinese mustard (sawi) (Brassica juncea), Chinese kale (kai-lan) (Brassica alboglabra), lettuce (daun salad) (Lactuca sativa), spinach (bayam putih) (Amaranthus viridis) and swamp cabbage (kangkung) (Ipomoea aquatica). For vitamin analysis, a reverse-phase high performance liquid chromatography was used to identify and quantify β -carotene, vitamin C and riboflavin. The findings showed that not all of the organically grown vegetables were higher in vitamins than that conventionally grown. This study found that only swamp cabbage grown organically was highest in β -carotene, vitamin C and riboflavin contents among the entire samples studied. The various nutrients in organically grown vegetables need to be analysed for the generation of a database on nutritional value which is important for future research.

  13. Prevalence of Lettuce mosaic virus - common strain on three lettuce producing areas from São Paulo State

    OpenAIRE

    Firmino,Ana Carolina; Krause-Sakate,Renate; Pavan,Marcelo Agenor; Silva,Norberto da; Hanai,Sérgio Minoru; Anbo,Roberto Hiroto; Nietzsche,Thomas; Le Gall,Olivier

    2008-01-01

    LMV is one of the most important pathogens of lettuce worldwide. Based on their ability to overcome the resistance genes mo1¹ and mo1² in lettuce, isolates can be divided in two types: LMV-Most, which can infect and are seed-borne in cultivars containing the mo1 gene and LMV-Common, which do not cause symptoms on these cultivars and are seed transmitted only in susceptible cultivars. To evaluate the occurrence of these two types of LMV isolates, a survey was carried out during 2002-2005 in th...

  14. Quantitative trait loci associated with longevity of lettuce seeds under conventional and controlled deterioration storage conditions.

    Science.gov (United States)

    Schwember, Andrés R; Bradford, Kent J

    2010-10-01

    Lettuce (Lactuca sativa L.) seeds have poor shelf life and exhibit thermoinhibition (fail to germinate) above ∼25°C. Seed priming (controlled hydration followed by drying) alleviates thermoinhibition by increasing the maximum germination temperature, but reduces lettuce seed longevity. Controlled deterioration (CD) or accelerated ageing storage conditions (i.e. elevated temperature and relative humidity) are used to study seed longevity and to predict potential seed lifetimes under conventional storage conditions. Seeds produced in 2002 and 2006 of a recombinant inbred line (RIL) population derived from a cross between L. sativa cv. Salinas×L. serriola accession UC96US23 were utilized to identify quantitative trait loci (QTLs) associated with seed longevity under CD and conventional storage conditions. Multiple longevity-associated QTLs were identified under both conventional and CD storage conditions for control (non-primed) and primed seeds. However, seed longevity was poorly correlated between the two storage conditions, suggesting that deterioration processes under CD conditions are not predictive of ageing in conventional storage conditions. Additionally, the same QTLs were not identified when RIL populations were grown in different years, indicating that lettuce seed longevity is strongly affected by production environment. Nonetheless, a major QTL on chromosome 4 [Seed longevity 4.1 (Slg4.1)] was responsible for almost 23% of the phenotypic variation in viability of the conventionally stored control seeds of the 2006 RIL population, with improved longevity conferred by the Salinas allele. QTL analyses may enable identification of mechanisms responsible for the sensitivity of primed seeds to CD conditions and breeding for improved seed longevity.

  15. Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils.

    Science.gov (United States)

    Neumann, G; Bott, S; Ohler, M A; Mock, H-P; Lippmann, R; Grosch, R; Smalla, K

    2014-01-01

    Development and activity of plant roots exhibit high adaptive variability. Although it is well-documented, that physicochemical soil properties can strongly influence root morphology and root exudation, particularly under field conditions, a comparative assessment is complicated by the impact of additional factors, such as climate and cropping history. To overcome these limitations, in this study, field soils originating from an unique experimental plot system with three different soil types, which were stored at the same field site for 10 years and exposed to the same agricultural management practice, were used for an investigation on effects of soil type on root development and root exudation. Lettuce (Lactuca sativa L. cv. Tizian) was grown as a model plant under controlled environmental conditions in a minirhizotrone system equipped with root observation windows (rhizoboxes). Root exudates were collected by placing sorption filters onto the root surface followed by subsequent extraction and GC-MS profiling of the trapped compounds. Surprisingly, even in absence of external stress factors with known impact on root exudation, such as pH extremes, water and nutrient limitations/toxicities or soil structure effects (use of sieved soils), root growth characteristics (root length, fine root development) as well as profiles of root exudates were strongly influenced by the soil type used for plant cultivation. The results coincided well with differences in rhizosphere bacterial communities, detected in field-grown lettuce plants cultivated on the same soils (Schreiter et al., this issue). The findings suggest that the observed differences may be the result of plant interactions with the soil-specific microbiomes.

  16. Root exudation and root development of lettuce (Lactuca sativa L.cv. Tizian as affected by different soils

    Directory of Open Access Journals (Sweden)

    Günter eNeumann

    2014-01-01

    Full Text Available Development and activity of plant roots exhibits high adaptive variability. Although it is well-documented, that physicochemical soil properties can strongly influence root morphology and root exudation, particularly under field conditions, a comparative assessment is complicated by the impact of additional factors, such as climate and cropping history. To overcome these limitations, in this study, field soils originating from an unique experimental plot system with three different soil types, which were stored at the same field site for ten years and exposed to the same agricultural management practice, were used for an investigation on effects of soil type on root development and root exudation. Lettuce (Lactuca sativa L. cv. Tizian was used as a model plant, grown under controlled environmental conditions in a minirhizotrone system equipped with root observation windows (rhizoboxes. Root exudates were collected by placing sorption filters onto the root surface followed by subsequent extraction and GC-MS profiling of the trapped compounds. Surprisingly, even in absence of external stress factors with known impact on root exudation, such as pH extremes, water and nutrient limitations/toxicities or soil structure effects (use of sieved soils, root growth characteristics (root length, fine root development as well as profiles of root exudates were strongly influenced by the soil type used for plant cultivation. The results coincided well with differences in rhizosphere bacterial communities, detected in field-grown lettuce plants cultivated on the same soils (Schreiter et al., this issue. The findings suggest that the observed differences may be the result of plant interactions with the soil-specific microbiomes.

  17. Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils

    Science.gov (United States)

    Neumann, G.; Bott, S.; Ohler, M. A.; Mock, H.-P.; Lippmann, R.; Grosch, R.; Smalla, K.

    2014-01-01

    Development and activity of plant roots exhibit high adaptive variability. Although it is well-documented, that physicochemical soil properties can strongly influence root morphology and root exudation, particularly under field conditions, a comparative assessment is complicated by the impact of additional factors, such as climate and cropping history. To overcome these limitations, in this study, field soils originating from an unique experimental plot system with three different soil types, which were stored at the same field site for 10 years and exposed to the same agricultural management practice, were used for an investigation on effects of soil type on root development and root exudation. Lettuce (Lactuca sativa L. cv. Tizian) was grown as a model plant under controlled environmental conditions in a minirhizotrone system equipped with root observation windows (rhizoboxes). Root exudates were collected by placing sorption filters onto the root surface followed by subsequent extraction and GC-MS profiling of the trapped compounds. Surprisingly, even in absence of external stress factors with known impact on root exudation, such as pH extremes, water and nutrient limitations/toxicities or soil structure effects (use of sieved soils), root growth characteristics (root length, fine root development) as well as profiles of root exudates were strongly influenced by the soil type used for plant cultivation. The results coincided well with differences in rhizosphere bacterial communities, detected in field-grown lettuce plants cultivated on the same soils (Schreiter et al., this issue). The findings suggest that the observed differences may be the result of plant interactions with the soil-specific microbiomes. PMID:24478764

  18. Responses of Nasonovia ribisnigri (Homoptera: Aphididae) to susceptible and resistant lettuce.

    Science.gov (United States)

    Liu, Yong-Biao; McCreight, James D

    2006-06-01

    Nymphs and alates of aphid Nasonovia ribisnigri (Mosley) (Homoptera: Aphididae) were tested on 10 lettuce cultivars with N. ribisnigri resistance gene Nr and 18 cultivars without the resistance gene in various bioassays. Bioassays used whole plants, leaf discs, or leaf cages to determine susceptibility of commercial lettuce cultivars to N. ribisnigri infestation and to evaluate screening methods for breeding lettuce resistance to N. ribisnigri. Resistant and susceptible plants were separated in 3 d when using whole plant bioassays. Long-term (> or =7 d) no-choice tests using leaf cages or whole plants resulted in no survival of N. ribisnigri on resistant plants, indicating great promise of the Nr gene for management of N. ribisnigri. Effective screening was achieved in both no-choice tests where resistant or susceptible intact plants were tested separately in groups or individually and in choice tests where susceptible and resistant plants were intermixed. Leaf discs bioassays were not suitable for resistance screening. All lettuce cultivars without the resistance gene were suitable hosts for N. ribisnigri, indicating the great importance of this pest to lettuce production and the urgency in developing resistant lettuce cultivars to manage N. ribisnigri.

  19. Genome-wide association study for lettuce cultivars with improved salad processing efficiency

    Science.gov (United States)

    Lettuce (Lactuca sativa L.) is widely used as the main ingredient of packaged leafy vegetable salads. Salad lettuce can have short shelf life, decaying as early as eight days after harvest and reducing the nutritional quality. Decayed lettuce is not marketable, produces extra waste, and results in t...

  20. Carotenoids of lettuce (Lactuca sativa L.) grown on soil enriched with spent coffee grounds.

    Science.gov (United States)

    Cruz, Rebeca; Baptista, Paula; Cunha, Sara; Pereira, José Alberto; Casal, Susana

    2012-02-07

    The impact of spent coffee grounds on carotenoid and chlorophyll content in lettuce (Lactuca sativa L. var. capitata) was evaluated. A greenhouse pot experiment was conducted with spent coffee amounts ranging from 0% to 20% (v/v). All evaluated pigments increased proportionally to spent coffee amounts. Lutein and β-carotene levels increased up to 90% and 72%, respectively, while chlorophylls increased up to 61%. Biomass was also improved in the presence of 2.5% to 10% spent coffee, decreasing for higher amounts. Nevertheless, all plants were characterized by lower organic nitrogen content than the control ones, inversely to the spent coffee amounts, pointing to possible induced stress. Collected data suggests that plants nutritional features, with regards to these bioactive compounds, can be improved by the presence of low amounts of spent coffee grounds (up to 10%). This observation is particularly important because soil amendment with spent coffee grounds is becoming increasingly common within domestic agriculture. Still, further studies on the detailed influence of spent coffee bioactive compounds are mandatory, particularly regarding caffeine.

  1. Carotenoids of Lettuce (Lactuca sativa L. Grown on Soil Enriched with Spent Coffee Grounds

    Directory of Open Access Journals (Sweden)

    Susana Casal

    2012-02-01

    Full Text Available The impact of spent coffee grounds on carotenoid and chlorophyll content in lettuce (Lactuca sativa L. var. capitata was evaluated. A greenhouse pot experiment was conducted with spent coffee amounts ranging from 0% to 20% (v/v. All evaluated pigments increased proportionally to spent coffee amounts. Lutein and β-carotene levels increased up to 90% and 72%, respectively, while chlorophylls increased up to 61%. Biomass was also improved in the presence of 2.5% to 10% spent coffee, decreasing for higher amounts. Nevertheless, all plants were characterized by lower organic nitrogen content than the control ones, inversely to the spent coffee amounts, pointing to possible induced stress. Collected data suggests that plants nutritional features, with regards to these bioactive compounds, can be improved by the presence of low amounts of spent coffee grounds (up to 10%. This observation is particularly important because soil amendment with spent coffee grounds is becoming increasingly common within domestic agriculture. Still, further studies on the detailed influence of spent coffee bioactive compounds are mandatory, particularly regarding caffeine.

  2. Effect Of Gamma Rays And Growth Regulators On Explants Excised From In Vitro Shoots And Greenhouse Seedlings, Of Pepper (Capsicum Annum L.)

    International Nuclear Information System (INIS)

    Maarouf, A. A.; Kassem, M.

    2004-01-01

    This experiment was conducted on pepper (Capsicum annum L.) to compare the ability of the in vitro explants with those of greenhouse grown seedlings on shoot proliferation and callus formation and their ability to form plantlets and the effect of gamma irradiation and growth regulators on the shoot tip, hypocotyls and leaf tissue was used as laboratory explants, leaf tissue nodes and internodes were taken from greenhouse seedlings. 6- benzyla-minopurine (BAP) in different concentrations was combined with Indoleacertic acid (IAA) to know their effect on shoot proliferation, 2,4 - Dichlorophenoxy acetic acid (2,4- D) was used for callus formation, and use stimulation effect of gamma irradiation, potassium nitrat (KNO 3 ), Thidaiazurom (TDZ) and casine hydrolysate (CH) for plantlet formation. The results showed that the highest percentage of callus was obtained by in vitro hypocotyls and greenhouse grown nodes followed by in vitro leaf tissue thereafter greenhouse leaf tissue. The shoot tips were the lowest efficient explants in producing callus in both in vitro and greenhouse ones. The highest percentage of shooting resulted from shoot tip, hypocotyls and leaf tissue of in vitro explants, followed by shoot tip, nodes and internodes of greenhouse grown explants and the lowest percentage was recorded by leaf tissue. Highest percentage of shoot number was obtained form greenhouse grown shoot tip followed by in vitro shoot tip, hypocotyls and leaf tissue of greenhouse grown seedlings the internodes were the lowest efficient in producing shoots. The highest success in plantlet formation was caused by TDZ followed by gamma irradiation and the other treatments were equaled. (Authors)

  3. Effect of elevated CO2 concentration on growth course of tree seed-lings in Changbai Mountain

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    One-year-old seedlings of Pinus koraiensis, Pinus sylvestriformis, Phellodendron amurense were grown in open-top chambers (OTCs) with 700 and 500 mmol/mol CO2 concentrations, control chamber and on open site (ambient CO2, about 350 mmol/mol CO2) respectively at the Open Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences, and the growth course responses of three species to elevated CO2 and temperature during one growing season was studied from May to Oct. 1999. The results showed that increase in CO2 concentration enhanced the growth of seedlings and the effect of 700 mmol/mol CO2 was more remarkable than 500 mmol/mol CO2 on seedling growth. Under the condition of doubly elevated CO2 concentration, the biomass increased by 38% in average for coniferous seedlings and 60% for broad-leaved seedlings. With continuous treatment of high CO2 concentration, the monthly-accumulated biomass of shade-tolerant Pinus koraiensis seedlings was bigger in July than in August and September, while those of Pinus sylvestriformis and Phellodendron amurense seedlings showed an increase in July and August, or did not decrese until September. During the hot August, high CO2 concentration enhanced the growth of Pinus koraiensis seedlings by increasing temperature, but it did not show dominance in other two species.

  4. Development of a Direct Headspace Collection Method from Arabidopsis Seedlings Using HS-SPME-GC-TOF-MS Analysis

    Directory of Open Access Journals (Sweden)

    Kazuki Saito

    2013-04-01

    Full Text Available Plants produce various volatile organic compounds (VOCs, which are thought to be a crucial factor in their interactions with harmful insects, plants and animals. Composition of VOCs may differ when plants are grown under different nutrient conditions, i.e., macronutrient-deficient conditions. However, in plants, relationships between macronutrient assimilation and VOC composition remain unclear. In order to identify the kinds of VOCs that can be emitted when plants are grown under various environmental conditions, we established a conventional method for VOC profiling in Arabidopsis thaliana (Arabidopsis involving headspace-solid-phase microextraction-gas chromatography-time-of-flight-mass spectrometry (HS-SPME-GC-TOF-MS. We grew Arabidopsis seedlings in an HS vial to directly perform HS analysis. To maximize the analytical performance of VOCs, we optimized the extraction method and the analytical conditions of HP-SPME-GC-TOF-MS. Using the optimized method, we conducted VOC profiling of Arabidopsis seedlings, which were grown under two different nutrition conditions, nutrition-rich and nutrition-deficient conditions. The VOC profiles clearly showed a distinct pattern with respect to each condition. This study suggests that HS-SPME-GC-TOF-MS analysis has immense potential to detect changes in the levels of VOCs in not only Arabidopsis, but other plants grown under various environmental conditions.

  5. Precut prepackaged lettuce: a risk for listeriosis?

    Science.gov (United States)

    Hanning, Irene B; Johnson, Michael G; Ricke, Steven C

    2008-12-01

    The most recent outbreaks of listeriosis have been traced back to contaminated ready-to-eat (RTE) poultry and meat products. However, Listeria monocytogenes can be isolated from every food group, including fresh vegetables. This review is focused on one of the most popular RTE vegetable products, precut prepackaged lettuce. The available literature concerning Listeria contamination of vegetables is reviewed, and possible reasons why no recent outbreaks or sporadic cases of listeriosis due to contaminated precut prepackaged lettuce are explored.

  6. Assessing biochar and compost from the organic fraction of municipal solid waste on nutrient availability and plant growth of lettuce

    Science.gov (United States)

    Regkouzas, Panagiotis; Manolikaki, Ioanna; Diamadopoulos, Evan

    2017-04-01

    Biochars have a high variability in chemical composition, which is determined by types of feedstock and pyrolysis conditions. Inorganic compounds, such as N, P, K and Ca, retained in biochar could be released and become available to plants. The aim of this study was to understand the effect of biochar and compost addition, derived from the organic fraction of municipal solid wastes at two different pyrolysis temperatures 3000C (BC300) and 6000C (BC600), on phosphorus availability and plant growth of lettuce (Lactuca sativa L.) grown in an alkaline loam soil. This type of soil is widely available in Greece, leading us to investigate ways to increase its fertility. A 39 d growth period of lettuce was studied in a greenhouse in triplicate. Treatments comprised of control soils (no addition of biochar or compost), soils treated only with compost (5%) or biochar (5%), and combinations of biochar (5%) plus compost (5%). No fertilization was added to any of the treatments. One biomass cut was obtained. Plant shoot yield and height were determined along with elemental concentration (N, P, K, Ca, Mg, Mn, Fe, Zn, Cu) and uptake of shoots. Results showed that BC300 combined with compost significantly increased P uptake of lettuce. On the other hand, BC600 plus compost, along with the two biochar-only treatments, significantly decreased Ca and Mg uptake of lettuce. N, K, Fe, Zn, Mn and Cu uptakes were not affected by the application of biochar, compost or the combined treatments. Despite the significant increase of P uptake, plant height and shoot yield were not significantly influenced by any of the treatments.

  7. Edaphic history over seedling characters predicts integration and plasticity of integration across geologically variable populations of Arabidopsis thaliana.

    Science.gov (United States)

    Cousins, Elsa A; Murren, Courtney J

    2017-12-01

    Studies on phenotypic plasticity and plasticity of integration have uncovered functionally linked modules of aboveground traits and seedlings of Arabidopsis thaliana , but we lack details about belowground variation in adult plants. Functional modules can be comprised of additional suites of traits that respond to environmental variation. We assessed whether shoot and root responses to nutrient environments in adult A. thaliana were predictable from seedling traits or population-specific geologic soil characteristics at the site of origin. We compared 17 natural accessions from across the native range of A. thaliana using 14-day-old seedlings grown on agar or sand and plants grown to maturity across nutrient treatments in sand. We measured aboveground size, reproduction, timing traits, root length, and root diameter. Edaphic characteristics were obtained from a global-scale dataset and related to field data. We detected significant among-population variation in root traits of seedlings and adults and in plasticity in aboveground and belowground traits of adult plants. Phenotypic integration of roots and shoots varied by population and environment. Relative integration was greater in roots than in shoots, and integration was predicted by edaphic soil history, particularly organic carbon content, whereas seedling traits did not predict later ontogenetic stages. Soil environment of origin has significant effects on phenotypic plasticity in response to nutrients, and on phenotypic integration of root modules and shoot modules. Root traits varied among populations in reproductively mature individuals, indicating potential for adaptive and integrated functional responses of root systems in annuals. © 2017 Botanical Society of America.

  8. AND DEVELOPMENT OF LETTUCE ON CHERNOZEM ORDINARY

    Directory of Open Access Journals (Sweden)

    N. V. Gromakova

    2017-01-01

    Full Text Available Lettuce is very popular in the Russian consumer market. Special conditions for its cultivation determine the need to select modern, inexpensive elements of agro-technology that promote high yields. At present biochar (bio-coal is considered as a promising organic fertilizer. Its main difference lies in the possibility of using any organic raw material in its production. In Russia, the study on the use of biochar is limited; there is no practice of applying it in the complex of agricultural techniques of various agricultural crops. In the conditions of vegetative experiment, the influence of various doses of biochar in ordinary chernozem on the growth and development of lettuce (Lactuca sativa cultivar was studied in accordance with the developed experiment scheme: control (without biochar, supplemented with 1, 2 and 5 % of biochar. In the experiment, biochar obtained from birch wood was used, by pyrolysis method in fraction of 0.5-5mm. The following observations and determinations were made: the timing of the onset of the phases of plant development, the length of the roots, the number of leaves, the length of the largest leaf, the height of plants, the diameter of the rosette, the mass of 10 plants. The use of biochar contributed to a reduction of beginning period technical ripeness in plants, particularly in variant with the addition of 2%. The increase in root length, the number of leaves of lettuce plants as compared with to control in variants with 2 and 5% of biocar has been observed. The length of the largest leaf, the height of plants and the diameter of the rosette of lettuce are characterized by a significant improvement, even in variant with 1%. Productivity of lettuce was highest in the variant with 2% of biochar applied to the soil.

  9. Plant growth activities of aspyran, asperentin, and its analogues produced by the fungus Aspergillus sp.

    Science.gov (United States)

    Kimura, Yasuo; Shimomura, Naomi; Tanigawa, Fumiaki; Fujioka, Shozo; Shimada, Atsumi

    2012-01-01

    Aspyran (1), a novel compound, and the known isocoumarin asperentin (2), also known as cladosporin, together with its analogues 3-6 were isolated from Aspergillus sp. and their structures established by spectroscopic methods including 2D NMR spectroscopy. The effects of 1-6 on plant growth were examined by bioassays using lettuce and rice seedlings. Compounds 1 and 3 promoted the root growth of the seedlings, while 2 and 5 were inhibitory. Compounds 4 and 6 did not show any effect on the growth of lettuce and rice seedlings, respectively.

  10. SALINITY TOLERANCE OF SEVERAL RICE GENOTYPES AT SEEDLING STAGE

    Directory of Open Access Journals (Sweden)

    Heni Safitri

    2018-01-01

    Full Text Available Salinity is one of the most serious problems in rice cultivation. Salinity drastically reduced plant growth and yield, especially at seedling stage. Several rice genotypes have been produced, but their tolerance to salinity has not yet been evaluated. The study aimed to evaluate salinity tolerance of rice genotypes at seedling stage. The glasshouse experiment was conducted at Cimanggu Experimental Station, Bogor, from April to May 2013. Thirteen rice genotypes and two check varieties, namely Pokkali (salt tolerant and IR29 (salt sensitive were tested at seedling stage. The experiment was arranged in a randomized complete block design with three replications and two factors, namely the levels of NaCl (0 and 120 mM and 13 genotypes of rice. Rice seedlings were grown in the nutrient culture (hydroponic supplemented with NaCl at different levels. The growth and salinity injury levels of the genotypes were recorded periodically. The results showed that salinity level of 120 mM NaCl reduced seedling growth of all rice genotypes, but the tolerant ones were survived after 14 days or until the sensitive check variety died. Based on the visual injury symptoms on the leaves, five genotypes, i.e. Dendang, Inpara 5, Inpari 29, IR77674-3B-8-2-2-14-4-AJY2, and IR81493-BBB-6-B- 2-1-2 were tolerant to 120 mM salinity level, while Inpara 4 was comparable to salt sensitive IR29. Hence, Inpara 4 could be used as a salinity sensitive genotype for future research of testing tolerant variety. Further evaluation is needed to confirm their salinity tolerance under field conditions. 

  11. Effect of CO2 Enrichment on the Growth and Nutrient Uptake of Tomato Seedlings

    Institute of Scientific and Technical Information of China (English)

    LI Juan; ZHOU Jian-Min; DUAN Zeng-Qiang; DU Chang-Wen; WANG Huo-Yan

    2007-01-01

    Exposing tomato seedlings to elevated CO2 concentrations may have potentially profound impacts on the tomato yield and quality. A growth chamber experiment was designed to estimate how different nutrient concentrations influenced the effect of elevated CO2 on the growth and nutrient uptake of tomato seedlings. Tomato (Hezuo 906) was grown in pots placed in controlled growth chambers and was subjected to ambient or elevated CO2 (360 or 720 μL L-1), and four nutrient solutions of different strengths (1/2-, 1/4-, 1/8-, and 1/16-strength Japan Yamazaki nutrient solutions) in a completely randomized design. The results indicated that some agricultural characteristics of the tomato seedlings such as the plant height, stem thickness, total dry and fresh weights of the leaves, stems and roots, the G value (G value = total plant dry weight/seedling age),and the seedling vigor index (seedling vigor index = stem thickness/(plant height × total plant dry weight) increased with the elevated CO2, and the increases were strongly dependent on the nutrient solution concentrations, being greater with higher nutrient solution concentrations. The elevated CO2 did not alter the ratio of root to shoot. The total N, P, K, and C absorbed from all the solutions except P in the 1/8- and 1/16-strength nutrient solutions increased in the elevated CO2 treatment. These results demonstrate that the nutrient demands of the tomato seedlings increased at elevated CO2 concentrations.

  12. Concomitant uptake of antimicrobials and Salmonella in soil and into lettuce following wastewater irrigation

    International Nuclear Information System (INIS)

    Sallach, J. Brett; Zhang, Yuping; Hodges, Laurie; Snow, Daniel; Li, Xu; Bartelt-Hunt, Shannon

    2015-01-01

    The use of wastewater for irrigation may introduce antimicrobials and human pathogens into the food supply through vegetative uptake. The objective of this study was to investigate the uptake of three antimicrobials and Salmonella in two lettuce cultivars. After repeated subirrigation with synthetic wastewater, lettuce leaves and soil were collected at three sequential harvests. The internalization frequency of Salmonella in lettuce was low. A soil horizon-influenced Salmonella concentration gradient was determined with concentrations in bottom soil 2 log CFU/g higher than in top soil. Lincomycin and sulfamethoxazole were recovered from lettuce leaves at concentrations as high as 822 ng/g and 125 ng/g fresh weight, respectively. Antimicrobial concentrations in lettuce decreased from the first to the third harvest suggesting that the plant growth rate may exceed antimicrobial uptake rates. Accumulation of antimicrobials was significantly different between cultivars demonstrating a subspecies level variation in uptake of antibiotics in lettuce. - Highlights: • Antimicrobial uptake in lettuce is cultivar dependent. • Antimicrobial concentrations in lettuce decrease despite repeated exposure. • Lincomycin is better conserved in the soil-plant system than oxytetracycline or sulfamethoxazole. • Subirrigation resulted in more Salmonella in bottom soil than in top soil. • Internalization frequency of Salmonella in lettuce is low despite repeated exposure. - Cultivar-specific differences in lincomycin and sulfamethazine uptake were observed in lettuce, while uptake of Salmonella was low despite repeated exposure from wastewater

  13. Dynamical behavior of psb gene transcripts in greening wheat seedlings. I. Time course of accumulation of the pshA through psbN gene transcripts during light-induced greening.

    Science.gov (United States)

    Kawaguchi, H; Fukuda, I; Shiina, T; Toyoshima, Y

    1992-11-01

    The time course of the accumulation of the transcripts from 13 psb genes encoding a major part of the proteins composing photosystem II during light-induced greening of dark-grown wheat seedlings was examined focusing on early stages of plastid development (0.5 h through 72 h). The 13 genes can be divided into three groups. (1) The psbA gene is transcribed as a single transcript of 1.3 kb in the dark-grown seedlings, but its level increases 5- to 7-fold in response to light due to selective increase in RNA stability as well as in transcription activity. (2) The psbE-F-L-J operon, psbM and psbN genes are transcribed as a single transcript of 1.1 kb, two transcripts of 0.5 and 0.7 kb and a single transcript of 0.3 kb, respectively, in the dark-grown seedlings. The levels of accumulation of every transcript remain unchanged or rather decrease during plastid development under illumination. (3) The psbK-I-D-C gene cluster and psbB-H operon exhibit fairly complicated northern hybridization patterns during the greening process. When a psbC or psbD gene probe was used for northern hybridization, five transcripts differing in length were detected in the etioplasts from 5-day old dark-grown seedlings. After 2 h illumination, two new transcripts of different length appeared. Light induction of new transcripts was also observed in the psbB-H operon.

  14. Irradiation of lettuce (Lactuca sativa. L.): microbiological and sensory aspects

    International Nuclear Information System (INIS)

    Tsuhako, Vanessa Provenzano

    2005-01-01

    The increasing demand for fresh foods have stimulated the marketing of minimally processed vegetables. However, these products maintain most of their natural microbiota even after being sanitized, including pathogenic microorganisms. Refrigerated storage allows the growth of psychotropic microorganisms and among them the pathogen Listeria monocytogenes. The ingestion of food contaminated with L. monocytogenes may represent a risk to pregnant women and their fetuses and to immunocompromised people. Non-thermal alternative processes for food preservation, such as irradiation, can reduce pathogenic and spoilage microorganism populations without impairing substantial changes in sensory, physical or chemical attributes. The aims of this research were to evaluate the effect of gamma radiation on L. monocytogenes artificially inoculated on minimally processed lettuce, to evaluate its effect on lettuce leaves through acceptance sensory test and to determine the irradiated vegetable shelf life through sensory and microbiological tests. A mixture of 4 types of lettuce (Iceberg, Boston, Loose-leaf and Red loose-leaf) were artificially inoculated with L. monocytogenes (7 log UFC/g lettuce) and then exposed to 0.3; 0.6; 0.9 and 1.2 kGy, under refrigeration. The DlO values for L. monocytogenes varied fram 0.18 to 0.21 kGy. Sensory and microbiological tests indicated that the shelf life of Iceberg lettuce stored at 7 deg C was 5 and 7 days for the irradiated and non-irradiated samples, respectively, and for the irradiated and non-irradiated Loose-leaf lettuce samples were 10 days. For the non-irradiated Boston sample, the shelf life was 3 days and for the Irradiated 7 days. Red loose-leaf showed 5 and 4 days of shelf lives for the irradiated and non-irradiated, respectively. Irradiated samples presented better microbiological quality than non-irradiated ones. The irradiation is feasible process to improve quality and safety of lettuce leaves. (author)

  15. Plastid transformation in lettuce (Lactuca sativa L.) by biolistic DNA delivery.

    Science.gov (United States)

    Ruhlman, Tracey A

    2014-01-01

    The interest in producing pharmaceutical proteins in a nontoxic plant host has led to the development of an approach to express such proteins in transplastomic lettuce (Lactuca sativa L.). A number of therapeutic proteins and vaccine antigen candidates have been stably integrated into the lettuce plastid genome using biolistic DNA delivery. High levels of accumulation and retention of biological activity suggest that lettuce may provide an ideal platform for the production of biopharmaceuticals.

  16. Imaging analysis of direct alanine uptake by rice seedlings

    International Nuclear Information System (INIS)

    Nihei, Naoto; Masuda, Sayaka; Rai, Hiroki; Nakanishi, Tomoko M.

    2008-01-01

    We presented alanine, a kind of amino acids, uptake by a rice seedling to study the basic mechanism of the organic fertilizer effectiveness in organic farming. The rice grown in the culture solution containing alanine as a nitrogen source absorbed alanine approximately two times faster than that grown with NH 4 + from analysis of 14 C-alanine images by Imaging Plate method. It was suggested that the active transport ability of the rice seeding was induced in roots by existence of alanine in the rhizosphere. The alanine uptake images of the rice roots were acquired every 5 minutes successively by the real-time autoradiography system we developed. The analysis of the successive images showed that alanine uptake was not uniform throughout the root but especially active at the root tip. (author)

  17. Transcriptomic analysis reveals the roles of gibberellin-regulated genes and transcription factors in regulating bolting in lettuce (Lactuca sativa L.).

    Science.gov (United States)

    Liu, Xueying; Lv, Shanshan; Liu, Ran; Fan, Shuangxi; Liu, Chaojie; Liu, Renyi; Han, Yingyan

    2018-01-01

    A cool temperature is preferred for lettuce cultivation, as high temperatures cause premature bolting. Accordingly, exploring the mechanism of bolting and preventing premature bolting is important for agriculture. To explore this relationship in depth, morphological, physiological, and transcriptomic analyses of the bolting-sensitive line S39 at the five-leaf stage grown at 37°C were performed in the present study. Based on paraffin section results, we observed that S39 began bolting on the seventh day at 37°C. During bolting in the heat-treated plants, GA3 and GA4 levels in leaves and the indoleacetic acid (IAA) level in the stem reached a maximum on the sixth day, and these high contents were maintained. Additionally, bolting begins in the fifth day after GA3 treatment in S39 plants, GA3 and GA4 increased and then decreased, reaching a maximum on the fourth day in leaves. Similarly, IAA contents reached a maximum in the stem on the fifth day. No bolting was observed in the control group grown at 25°C, and significant changes were not observed in GA3 and GA4 levels in the controls during the observation period. RNA-sequencing data implicated transcription factors (TFs) in regulating bolting in lettuce, suggesting that the high GA contents in the leaves and IAA in the stem promote bolting. TFs possibly modulate the expression of related genes, such as those encoding hormones, potentially regulating bolting in lettuce. Compared to the control group, 258 TFs were identified in the stem of the treatment group, among which 98 and 156 were differentially up- and down-regulated, respectively; in leaves, 202 and 115 TFs were differentially up- and down-regulated, respectively. Significant changes in the treated group were observed for C2H2 zinc finger, AP2-EREBP, and WRKY families, indicating that these TFs may play important roles in regulating bolting.

  18. THE FARMING AND MARKETING OF ORGANIC LETTUCE: STUDY AT BOBOSAN VILLAGE, KEDUNGBANTENG SUB-DISTRICT, BANYUMAS

    Directory of Open Access Journals (Sweden)

    Irene Kartika Eka Wijayanti

    2017-09-01

    Full Text Available Banyumas has great potential as a producer of organic lettuce in term of condition of natural, human resources and availability of market. The centre producer of organic lettuce is located in district of Kedungbanteng, and managed by farmers group "abdi tani". The aim of this study is to analyze: 1. The cost and income farming of organic lettuce; 2. Financial feasibility of organic lettuce farm; 3. The channel and structure of organic lettuce market. Processing and data analysis performed qualitatively and quantitatively. The data used is to the production and marketing of organic lettuce in period of June-July 2016. Quantitative analysis performed using analysis of cost, farm income, and R/C. Qualitative analysis was conducted to determine the channel and structure of organic lettuce market. The results showed that organic lettuce farm income generating positive value and the value of R/C is greater than one (R/C >1, the farming is profitable and feasible. Organic lettuce marketing channels through the use of one channel, such farmers, traders, retailers (supermarket. Farmers faced monopsony market structure, while traders and retailers deal with oligopoly one

  19. Lettuce and spinach breeding

    Science.gov (United States)

    Lettuce and spinach production is beset by numerous biotic an abiotic challenges, thus the leafy-vegetable industry of California requires continued development of improved, adapted cultivars to meet new disease and insect problems, changes in the market, and changes in growing procedures. The lettu...

  20. Growth Responses of Acacia mangium and Paraserianthes falcataria Seedlings on Different Soil Origin under Nursery Condition

    Directory of Open Access Journals (Sweden)

    Tirtha Ayu Paramitha

    2015-12-01

    Full Text Available The objective of the present study was to examine the growth responses of Acacia mangium (mangium and Paraserianthes falcataria (sengon seedlings growing on different soil origin under nursery condition. This study was started in September 2012 and terminated in March 2013.  The seedlings were grown from seeds sown in a plastic box filled with sterilized sands. One week after sowing, the seedlings were transplanted into polybags contained sterilized soils originated from secondary forest, Imperata cylindrica grassland and ex-coal mining. The number of all seedlings were 180 seedlings consisted of 3 different soils, 2 species of seedlings with 10 seedlings replicated 3 times. Assessment was conducted one week after transplanting, then subsequently monitored every 2 weeks, except dry weighing and counting nodules were performed at the end of the study. A completely randomized design was used in this study. The data was analyzed using Costat software. The study resulted that the different of soil origin influenced on all growth variables of mangium and sengon of 4.5 months old. The survival rate of seedlings, height and diameter increments, dry weight and root nodules were better in both species of seedlings growing on soil originated from secondary forest and Imperata grassland compared with the soil from ex-coal mining. But the survival rates of sengon seedlings were higher than that of mangium on these three soils. The highest dry weight of sengon seedlings was achieved on soil originated from secondary forest. In the present study, soil originated from secondary forest increased more in weight of shoot than root, so that the shoot-root ratio was unbalanced more than one. Based on the results of this study, it is recommended that soil from secondary forest and Imperata grassland can be used as growing media for mangium and sengon seedlings in the nursery.

  1. Interspecific variation in functional traits of oak seedlings (Quercus ilex, Quercus trojana, Quercus virgiliana) grown under artificial drought and fire conditions.

    Science.gov (United States)

    Chiatante, D; Tognetti, R; Scippa, G S; Congiu, T; Baesso, B; Terzaghi, M; Montagnoli, A

    2015-07-01

    To face summer drought and wildfire in Mediterranean-type ecosystems, plants adopt different strategies that involve considerable rearrangements of biomass allocation and physiological activity. This paper analyses morphological and physiological traits in seedlings of three oak species (Quercus ilex, Quercus trojana and Quercus virgiliana) co-occurring under natural conditions. The aim of this study was to evaluate species-specific characteristics and the response of these oak seedlings to drought stress and fire treatment. Seedlings were kept in a growth chamber that mimicked natural environmental conditions. All three species showed a good degree of tolerance to drought and fire treatments. Differences in specific biomass allocation patterns and physiological traits resulted in phenotypic differences between species. In Q. ilex, drought tolerance depended upon adjustment of the allocation pattern. Q. trojana seedlings undergoing mild to severe drought presented a higher photosystem II (PSII) efficiency than control seedlings. Moreover, Q. trojana showed a very large root system, which corresponded to higher soil area exploitation, and bigger leaf midrib vascular bundles than the other two species. Morphological and physiological performances indicated Q. trojana as the most tolerant to drought and fire. These characteristics contribute to a high recruitment potential of Q. trojana seedlings, which might be the reason for the dominance of this species under natural conditions. Drought increase as a result of climate change is expected to favour Q. trojana, leading to an increase in its spatial distribution.

  2. Within-population variation in response of red oak seedlings to herbivory by gypsy moth larvae

    Science.gov (United States)

    T. Scott Byington; Kurt W. Gottschalk; James B. McGraw

    1994-01-01

    The potential for an evolutionary response to gypsy moth (Lymantna dispar L.) herbivory was investigated in red oak (Quercus rubra L.), a preferred host. Seedlings of nine open-pollinated families were grown in a greenhouse and experimentally defoliated by fourth instar larvae in the summer of 1991 to assay for intraspecific...

  3. Effect of saline water irrigation on seed germination and early seedling growth of the halophyte quinoa

    DEFF Research Database (Denmark)

    Panuccio, M.R.; Jacobsen, Sven-Erik; Saleem Akhtar, Saqib

    2014-01-01

    with their high protein content and unique amino acid composition. Although the species has been described as a facultative halophyte, and its tolerance to salt stress has been investigated, its physiological and molecular responses to seawater (SW) and other salts have not been studied. We evaluated the effects...... been carried out to investigate the mechanisms used by quinoa, a facultative halophytic species, in order to cope with high salt levels at various stages of its develop- ment. Quinoa is regarded as one of the crops that might sustain food security in this century, grown primarily for its edible seeds...... of SW and different salts on seed germination, seedling emergence and the antioxidative pathway of quinoa. Seeds were germi- nated in Petri dishes and seedlings grown in pots with SW solutions (25, 50, 75 and 100 %) and NaCl, CaCl2, KCl and MgCl2 individually, at the concentrations in which...

  4. Perception of bitterness, sweetness and liking of different genotypes of lettuce.

    Science.gov (United States)

    Chadwick, M; Gawthrop, F; Michelmore, R W; Wagstaff, C; Methven, L

    2016-04-15

    Lettuce is an important leafy vegetable, consumed across the world, containing bitter sesquiterpenoid lactone (SL) compounds that may negatively affect consumer acceptance and consumption. We assessed liking of samples with differing absolute abundance and different ratios of bitter:sweet compounds by analysing recombinant inbred lines (RILs) from an interspecific lettuce mapping population derived from a cross between a wild (L. serriola acc. UC96US23) and domesticated lettuce (L. sativa, cv. Salinas). We found that the ratio of bitter:sweet compounds was a key determinant of bitterness perception and liking. We were able to demonstrate that SLs, such as 8-deoxylactucin-15-sulphate, contribute most strongly to bitterness perception, whilst 15-p-hydroxylphenylacetyllactucin-8-sulphate does not contribute to bitter taste. Glucose was the sugar most highly correlated with sweetness perception. There is a genetic basis to the biochemical composition of lettuce. This information will be useful in lettuce breeding programmes in order to produce leaves with more favourable taste profiles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Evaluation of Lettuce Germplasm Resistance to Gray Mold Disease for Organic Cultivations

    Directory of Open Access Journals (Sweden)

    Chang Ki Shim

    2014-03-01

    Full Text Available This study was conducted to evaluate the resistance of 212 accessions of lettuce germplasm to gray mold disease caused by Botrytis cinerea. The lettuce germplasm were composed of five species: Lactuca sativa (193 accessions, L. sativa var. longifolia (2 accessions, L. sativa var. crispa (2 accessions, L. saligna (2 accessions, and L. serriola (1 accession; majority of these originated from Korea, Netherlands, USA, Russia, and Bulgaria. After 35 days of spray inoculation with conidial suspension (3×10⁷ conidia/ml of B. cinerea on the surface of lettuce leaves, tested lettuce germplasm showed severe symptoms of gray mold disease. There were 208 susceptible accessions to B. cinerea counted with 100% of disease incidence and four resistant accessions, IT908801, K000598, K000599, and K021055. Two moderately resistant accessions of L. sativa, K021055 and IT908801, showed 20% of disease incidence of gray mold disease at 45 days after inoculation; and two accessions of L. saligna, K000598 and K000599, which are wild relatives of lettuce germplasm with loose-leaf type, showed complete resistance to B. cinerea. These four accessions are candidates for breeding lettuce cultivars resistant to gray mold disease.

  6. The Impact of Moss Species and Biomass on the Growth of Pinus sylvestris Tree Seedlings at Different Precipitation Frequencies

    Directory of Open Access Journals (Sweden)

    Babs M. Stuiver

    2014-08-01

    Full Text Available Boreal forests are characterized by an extensive moss layer, which may have both competitive and facilitative effects on forest regeneration. We conducted a greenhouse experiment to investigate how variation in moss species and biomass, in combination with precipitation frequency, affect Pinus sylvestris seedling growth. We found that moss species differed in their effects on seedling growth, and moss biomass had negative effects on seedlings, primarily when it reached maximal levels. When moss biomass was maximal, seedling biomass decreased, whereas height and above- relative to below-ground mass increased, due to competition for light. The effect that moss biomass had on seedling performance differed among the moss species. Hylocomium splendens and Polytrichum commune reduced seedling growth the most, likely because of their taller growth form. Seedlings were not adversely affected by Sphagnum girgensohnii and Pleurozium schreberi, possibly because they were not tall enough to compete for light and improved soil resource availability. Reduced precipitation frequency decreased the growth of all moss species, except P. commune, while it impaired the growth of seedlings only when they were grown with P. commune. Our findings suggest that changes in moss species and biomass, which can be altered by disturbance or climate change, can influence forest regeneration.

  7. Leaf age affects the responses of foliar injury and gas exchange to tropospheric ozone in Prunus serotina seedlings

    Science.gov (United States)

    Jianwei Zhang; Marcus Schaub; Jonathan A. Ferdinand; John M. Skelly; Kim C. Steiner; James E. Savage

    2010-01-01

    We investigated the effect of leaf age on the response of net photosynthesis (A), stomatal conductance (gwv), foliar injury, and leaf nitrogen concentration (NL) to tropospheric ozone (O3) on Prunus serotina seedlings grown in open-plots (AA) and open-top...

  8. Heat shock protein Hsp90-2 expression in the Arabidopsis thaliana seedlings under clinorotation

    Science.gov (United States)

    Kozeko, Liudmyla

    Heat shock proteins 90 kDa (Hsp90) are abundant under normal conditions and induced by stress. This family is distinguished from other chaperones in that most of its substrates are signal transduction proteins. Previously, we determined some time-dependent increase in the Hsp90 level in pea seedlings in response to simulated microgravity that indicated a stress-reaction. However, expression of the individual members of the Hsp90 family have specific pattern. The purpose of this study was to investigate possible alterations in the gene expression pattern of cytosolic Hsp90-2 in Arabidopsis thaliana seedlings under 2D-clinorotation. To obtain detailed expression pattern of the HSP90-2 genes we used seeds that provides a resource of loss-of-function mutations gene expression patterns via translational fusions with the reporter gene, GUS (a line N 166718, NASC). There were two variants of the experiment: 1) seedlings grew under clinorotation for 10, 12, 14 d; 2) seedlings grew in the stationary conditions for 10 d followed by clinorotation for 3 h -at 22o C and 16h light cycle. The seedlings grown in the stationary conditions were used as a control. GUS staining showed that HSP90-2 expression was regulated during seedling development and affected by clinorotation in the heterozygous mutant plants. In the homozygous for the mutation plants, HSP90-2 expression was stable during seedling development and not affected by clinorotation. GUS staining was observed in cotyledons, leaves and hypocotyls of the seedlings (especially intense in vascular bundles), indicating intensive cellular processes with participation of this chaperone. Possible pathways of influence of clinorotation on HSP90-2 expression are discussed.

  9. Dissipation and Residues of Pyrethrins in Leaf Lettuce under Greenhouse and Open Field Conditions.

    Science.gov (United States)

    Pan, Lixiang; Feng, Xiaoxiao; Zhang, Hongyan

    2017-07-21

    Pyrethrins are nowadays widely used for prevention and control of insects in leaf lettuce. However, there is a concern about the pesticide residue in leaf lettuce. A reliable analytical method for determination of pyrethrins (pyrethrin-and П, cinerin І and П, and jasmolin І and П) in leaf lettuce was developed by using gas chromatography-mass spectrometry (GC-MS). Recoveries of pyrethrins in leaf lettuce at three spiking levels were 99.4-104.0% with relative standard deviations of 0.9-3.1% ( n = 5). Evaluation of dissipation and final residues of pyrethrins in leaf lettuce were determined at six different locations, including the open field, as well as under greenhouse conditions. The initial concentration of pyrethrins in greenhouse (0.57 mg/kg) was higher than in open field (0.25 mg/kg) and the half-life for pyrethrins disappearance in field lettuce (0.7 days) was less than that greenhouse lettuce (1.1 days). Factors such as rainfall, solar radiation, wind speed, and crop growth rate are likely to have caused these results. The final residue in leaf lettuce was far below the maximum residue limits (MRLs) (1 mg/kg established by the European Union (EU), Australia, Korea, Japan).

  10. Antioxidant capacity and contents of phenols, ascorbic acid, β-carotene and lycopene in lettuce

    Directory of Open Access Journals (Sweden)

    Zdravković Jasmina M.

    2014-01-01

    Full Text Available The antioxidant activity of three lettuce varieties (Lactuca sativa L. Emerald, Vera and Neva, cultivated in two kinds of protected spaces, a glasshouse and a plastic greenhouse, under controlled conditions, was determined. The content of antioxidant compounds: total phenols, flavonoids, L-ascorbic acid, ß-carotene and lycopene, were determined in ethanolic extracts of the lettuce with spectrophotometric methods. The largest content of total phenols (78.98 ± 0.67 mg GAE/g of dry extract was found in ethanolic extract of the lettuce variety Neva cultivated in a plastic greenhouse, whereas the largest content of flavonoids (35.45 ± 0.95 mg RU/g of dry extract was displayed in the lettuce Emerald cultivated in a glasshouse. It was observed that the lettuce cultivated in the glasshouse contained a somewhat higher content of L-ascorbic acid than the lettuce same variety from plastic greenhouse. The content of lycopene in the examined lettuce is negligible, and the content of ß-carotene is low. On the other hand, the high content of phenolic components causes favourable antioxidant properties found in all varieties of examined lettuce. [Projekat Ministarstva nauke Republike Srbije, br. TR 31059: A new concept in breeding vegetable cultivars and hybrids designed for sustainable growing systems using biotechnological methods

  11. Incidence of Lettuce mosaic virus in lettuce and its detection by polyclonal antibodies produced against recombinant coat protein expressed in Escherichia coli.

    Science.gov (United States)

    Sharma, Prachi; Sharma, Susheel; Singh, Jasvir; Saha, Swati; Baranwal, V K

    2016-04-01

    Lettuce mosaic virus (LMV), a member of the genus Potyvirus of family Potyviridae, causes mosaic disease in lettuce has recently been identified in India. The virus is seed borne and secondary infection occurs through aphids. To ensure virus freedom in seeds it is important to develop diagnostic tools, for serological methods the production of polyclonal antibodies is a prerequisite. The coat protein (CP) gene of LMV was amplified, cloned and expressed using pET-28a vector in Escherichia coli BL21DE3 competent cells. The LMV CP was expressed as a fusion protein containing a fragment of the E. coli His tag. The LMV CP/His protein reacted positively with a commercial antiserum against LMV in an immunoblot assay. Polyclonal antibodies purified from serum of rabbits immunized with the fusion protein gave positive results when LMV infected lettuce (Lactuca sativa) was tested at 1:1000 dilution in PTA-ELISA. These were used for specific detection of LMV in screening lettuce accessions. The efficacy of the raised polyclonal antiserum was high and it can be utilized in quarantine and clean seed production. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Decontamination and survival of Enterobacteriaceae on shredded iceberg lettuce during storage.

    Science.gov (United States)

    Osaili, Tareq M; Alaboudi, Akram R; Al-Quran, Heba N; Al-Nabulsi, Anas A

    2018-08-01

    Enterobacteriaceae family can contaminate fresh produce at any stage of production either at pre-harvest or post-harvest stages. The objectives of the current study were to i) identify Enterobacteriaceae species on iceberg lettuce, ii) compare the decontamination efficiency of water, sodium hypochlorite (free chlorine 200 ppm), peroxyacetic acid (PA 80 ppm; Kenocid 2100 ® ) or their combinations and ionizing radiation against Enterobacteriaceae on shredded iceberg lettuce and iii) determine the survival of Enterobacteriaceae post-treatment storage of shredded iceberg lettuce at 4, 10 and 25 °C, for up to 7 days. Klebsiella pneumonia spp. pneumonia, Enterobacter cloacae, Klebsiella oxytoca, Pantoea spp., Leclercia adecarboxylata and Kluyvera ascorbate were identified on iceberg lettuce. No significant difference (P≥ 0.05) among Enterobacteriaceae survival after washing with water or sanitizing with sodium hypochlorite or Kenocid 2100 ® (reduction ≤ 0.6 log CFU/g) were found. Combined sanitizer treatments were more effective against Enterobacteriaceae than single washing/sanitizing treatments. Sanitization of iceberg lettuce with combined washing/sanitizing treatments reduced Enterobacteriaceae by 0.85-2.24 CFU/g. Post-treatment growth of Enterobacteriaceae during storage on samples sanitized with sodium hypochlorite and Kenocid 2100 ® was more than on samples washed with water. The D 10 -value of Enterobacteriaceae on shredded iceberg lettuce was 0.21 KGy. The reduction of Enterobacteriaceae populations on iceberg after gamma radiation (0.6 KGy) was 3 log CFU/g, however, Enterobacteriaceae counts increased post-irradiation storage by 4-5 log CFU/g. Therefore, washing shredded iceberg lettuce with combined sanitizing treatment (sodium hypochlorite/sodium hypochlorite, sodium hypochlorite/Kenocid 2100 ® , or Kenocid 2100 ® /Kenocid 2100 ® ) for total time of 6 min or exposing it to gamma irradiation (0.6 KGy) can decrease the risk of

  13. Consórcios alface-cenoura e alface-rabanete sob manejo orgânico Intercropping of lettuce-carrot and lettuce-radish under organic management

    Directory of Open Access Journals (Sweden)

    Ailena Sudo Salgado

    2006-07-01

    Full Text Available Dois experimentos foram conduzidos, por dois anos consecutivos, em Seropédica, RJ, com o objetivo de avaliar o desempenho agronômico dos consórcios das cultivares de alface 'Regina 71' (lisa e 'Verônica' (crespa com cenoura 'Brasília' e rabanete 'Híbrido nº 19', sob manejo orgânico, assim como determinar as quantidades de macronutrientes exportadas. O delineamento experimental usado foi o de blocos ao acaso, com quatro repetições. No primeiro experimento, os tratamentos consistiram de alface crespa em consórcio com cenoura, alface crespa em consórcio com rabanete e os cultivos solteiros. No segundo experimento, usou-se alface lisa em lugar da crespa. Nos consórcios entre cenoura e alface crespa ou lisa, foram observados índices de uso eficiente da terra, superiores a 1,60. Nos consórcios de rabanete com alface, crespa ou lisa, esses índices foram de 1,54 e 1,27, respectivamente. As quantidades de nutrientes extraídas do sistema pelos produtos colhidos foram inferiores aos aportes efetuados, evidenciando a viabilidade de qualquer dos consórcios avaliados.Two experiments were carried out, in two consecutive years, at Seropédica, RJ, Brazil, aiming to evaluate the agronomic performance of intercropping of lettuce cvs. Regina 71 (smooth leaf and Verônica (crisp leaf with carrot (cv. Brasília and radish (cv. Hybrid number 19, under organic management. The amount of nutrients exported from the system by harvesting was also evaluated. The experimental design used was of completely randomized blocks, with four replications. In the first experiment, treatments consisted of lettuce with crisp leaves intercropped with carrot, lettuce with crisp leaves intercropped with radish and sole crops. In the second experiment, lettuce with smooth leaves was used instead of lettuce with crisp leaves. Intercropping of carrot and lettuce, with crisp or smooth leaf, presented land equivalent ratios higher than 1.60. Intercropping of radish and

  14. The effect of available soil moisture and nitrogen source on the utilization of nitrogen and growth of cocoa seedlings (The obromea cocoa L)

    International Nuclear Information System (INIS)

    Asiah Ahmad; Mok Chak Kim

    1987-01-01

    The N-15 labelled urea or sulphate of ammonia was applied to the soil surface of 3 months old cocoa seedlings grown in pots under the glasshouse condition. The seedlings were watered daily to 100%, 60% or 20% available soil moisture for a period of 2 and 4 weeks respectively. The results showed that watering to 20% available soil moisture reduced the % N fertilizer utilization of cocoa seedlings compared to that of 60% and 100% available soil moisture levels. There was also a significant reduction in the growth of cocoa seedlings at 20% available soil moisture. Daily watering to 60% available soil moisture did not significantly reduce the % N fertilizer utilization and growth of the seedlings compared to that of 100% available soil moisture. Differences in fertilizer and growth responses between seedlings fertilized with either urea or sulphate of ammonia for each of the available moisture level were not significant. (author)

  15. Reforestation of bauxite mine spoils with Eucalyptus tereticornis Sm. seedlings inoculated with arbuscular mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    N. Krishnakumar

    2012-11-01

    Full Text Available Open cast mining for bauxite at Yercaud hills (India resulted indegradation of forest ecosystem and production of large quantities of waste rocks (called mine spoils. To ameliorate mine spoils, topsoil is used to spread over before the planting of tree species, conventional method as the topsoil has a good structure, water holding capacity and beneficial microbes like Arbuscular Mycorrhizal (AM fungi essential for plant growth.However, the use of top soil is expensive and in this study bauxite mine spoils were reforestated with AM fungi instead of it. The beneficial microbes AM fungi (Glomus aggregatum Schenck & Smith, G. fasciculatum(Thatcher Gerd. & Trappe emend. Walker & Koske, G. geosporum(Nicol. & Gerd. Walker were isolated, cultured and inoculated into the seedlings of Eucalyptus tereticornis Sm. and grown in bauxite mine spoils as potting medium under nursery conditions. Then, the biomass improved seedlings of E. tereticornis with inoculation of AM fungi were directly transplanted at bauxite mine spoils. After transplantation of the seedlings at bauxite mine spoils, the growth and survival rate were monitored for two years. The AM fungi inoculated seedlings of E. tereticornis showed 95% survival over the control seedlings and their growth was also significantlyhigher. Tissue nutrients (N, P, K were also found higher inAM fungi inoculated E. tereticornis than un inoculated control seedlings.

  16. Reforestation of Bauxite mine spoils with Eucalyptus tereticornis Sm. seedlings inoculated with Arbuscular mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    A. Karthikeyan

    2012-12-01

    Full Text Available Open cast mining for bauxite at Yercaud hills (India resulted in degradation of forest ecosystem and production of large quantities of waste rocks (called mine spoils. To ameliorate mine spoils, topsoil is used to spread over before the planting of tree species, conventional method as the topsoil has a good structure, water holding capacity and beneficial microbes like Arbuscular Mycorrhizal (AM fungi essential for plant growth. However, the use of top soil is expensive and in this study bauxite mine spoils were reforestated with AM fungi instead of it. The beneficial microbes AM fungi (Glomus aggregatum Schenck & Smith, G. fasciculatum (Thatcher Gerd. & Trappe emend. Walker & Koske, G. geosporum (Nicol. & Gerd. Walker were isolated, cultured and inoculated into the seedlings ofEucalyptus tereticornis Sm. and grown in bauxite mine spoils as potting medium under nursery conditions. Then, the biomass improved seedlings of E. tereticornis with inoculation of AM fungi were directly transplanted at bauxite mine spoils. After transplantation of the seedlings at bauxite mine spoils, the growth and survival rate were monitored for two years. The AM fungi inoculated seedlings ofE. tereticornis showed 95% survival over the control seedlings and their growth was also significantly higher. Tissue nutrients (N, P, K were also found higher in AM fungi inoculated E. tereticornis than un inoculated control seedlings

  17. Vertical farming increases lettuce yield per unit area compared to conventional horizontal hydroponics.

    Science.gov (United States)

    Touliatos, Dionysios; Dodd, Ian C; McAinsh, Martin

    2016-08-01

    Vertical farming systems (VFS) have been proposed as an engineering solution to increase productivity per unit area of cultivated land by extending crop production into the vertical dimension. To test whether this approach presents a viable alternative to horizontal crop production systems, a VFS (where plants were grown in upright cylindrical columns) was compared against a conventional horizontal hydroponic system (HHS) using lettuce ( Lactuca sativa L . cv. "Little Gem") as a model crop. Both systems had similar root zone volume and planting density. Half-strength Hoagland's solution was applied to plants grown in perlite in an indoor controlled environment room, with metal halide lamps providing artificial lighting. Light distribution (photosynthetic photon flux density, PPFD) and yield (shoot fresh weight) within each system were assessed. Although PPFD and shoot fresh weight decreased significantly in the VFS from top to base, the VFS produced more crop per unit of growing floor area when compared with the HHS. Our results clearly demonstrate that VFS presents an attractive alternative to horizontal hydroponic growth systems and suggest that further increases in yield could be achieved by incorporating artificial lighting in the VFS.

  18. Efficient and stable transformation of Lactuca sativa L. cv. Cisco (lettuce) plastids.

    Science.gov (United States)

    Kanamoto, Hirosuke; Yamashita, Atsushi; Asao, Hiroshi; Okumura, Satoru; Takase, Hisabumi; Hattori, Masahira; Yokota, Akiho; Tomizawa, Ken-Ichi

    2006-04-01

    Transgenic plastids offer unique advantages in plant biotechnology, including high-level foreign protein expression. However, broad application of plastid genome engineering in biotechnology has been largely hampered by the lack of plastid transformation systems for major crops. Here we describe the development of a plastid transformation system for lettuce, Lactuca sativa L. cv. Cisco. The transforming DNA carries a spectinomycin-resistance gene (aadA) under the control of lettuce chloroplast regulatory expression elements, flanked by two adjacent lettuce plastid genome sequences allowing its targeted insertion between the rbcL and accD genes. On average, we obtained 1 transplastomic lettuce plant per bombardment. We show that lettuce leaf chloroplasts can express transgene-encoded GFP to approximately 36% of the total soluble protein. All transplastomic T0 plants were fertile and the T1 progeny uniformly showed stability of the transgene in the chloroplast genome. This system will open up new possibilities for the efficient production of edible vaccines, pharmaceuticals, and antibodies in plants.

  19. Production and photosynthetic activity of Mimosa Verde and Mimosa Roxa lettuce in two farming systems

    Directory of Open Access Journals (Sweden)

    Aline Mabel Rosa

    2014-08-01

    Full Text Available Lettuce (Lactuca sativa L. is the most commonly consumed leaf vegetable in the Brazilian diet, and it is a good source of vitamins and minerals. It is widely grown in the conventional farming system. However, the hydroponic farming system has been gaining importance in the market, wining confidence from consumers, who are becoming increasingly more demanding on food quality. The objective of this study was to evaluate the performance of two lettuce cultivars on hydroponic and conventional farming systems for the production of fresh mass (FM and dry mass (DM, photosynthesis, contents of chlorophyll and anthocyanin. The following two experiments were carried out: hydroponics farming (HF and conventional farming (CF, performed in protect and unprotect environments, respectively, in Florianópolis, SC. Mimosa Verde cultivar (MV showed greater fresh mass than Mimosa Roxa (MR, in both farming systems and the two cultivars presented better performance in the hydroponic system (287.7 g MV and 139.1 g MR than the conventional system (129.7 g MV and 111.8 g MR. Mimosa Verde cultivar presented lower average contents of total chlorophyll (7.7 mg g-¹ FM than Mimosa Roxa (11.8 mg g-¹FM, and both cultivars displayed higher means for this variable in the hydroponic farming system. Mimosa Roxa presented higher contents of anthocyanin in the conventional system (88.24 mg g-¹ FM than the ones in the hydroponic system (36.89 mg g-¹ FM. The best results for CO2 net assimilation rate regarded to photosyntheticaly active photon flux density were found in the hydroponic system, for both lettuce cultivars. Variation in the contents of chlorophyll were also found. Those variations were higher in the protected system than in the hydroponic system and contents of anthocyanin were higher in the conventional system.

  20. CO₂ enrichment can produce high red leaf lettuce yield while increasing most flavonoid glycoside and some caffeic acid derivative concentrations.

    Science.gov (United States)

    Becker, Christine; Kläring, Hans-Peter

    2016-05-15

    Carbon dioxide (CO2) enrichment is a common practice in greenhouses to increase crop yields up to 30%. Yet, reports on the effect on foliar phenolic compounds vary. We studied the effect on two red leaf lettuce cultivars, grown for 25 days in growth chambers at CO2 concentrations of 200 or 1,000 ppm, with some plants exchanged between treatments after 11 days. As expected, head mass increased with higher CO2 concentration. Regression analysis, corrected for head mass, showed increased concentrations of most flavonoid glycosides at high CO2 concentrations while only some caffeic acid derivatives were increased, and not uniformly in both cultivars. Sugar concentrations increased with CO2 concentration. Generally, conditions in the 10 days before harvest determined concentrations. We suspect that phenolic compounds were mainly accumulated because plenty of precursors were available. The results indicate that CO2 enrichment can result in high yields of red leaf lettuce rich in phenolic compounds. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Effects of red and blue LD lights on the growth of lettuce

    International Nuclear Information System (INIS)

    Mori, Y.; Takatsuji, M.; Yasuoka, T.

    2003-01-01

    In this study, Lactuca sativa L. cv. “Red Fire” was cultivated under visible laser diodes (LD) light alone, using red and blue LD for digital versatile discs (DVD). Relative growth rate, photosynthetic rate and vitamin C content were measured, and compared with those obtained using light emitting diodes (LED). When the lettuce was cultivated under LD light, the relative growth rate and net photosynthetic rate were decreased compared to those under LED light. The rates were decreased by 10% and 20% or more under red LD light and under a combination of red and blue LD lights, respectively. However, the vitamin C content was higher when grown under LD light than LED light. Considering the high output and high electrical-to-optical power conversion efficiency of LD, LD are potential light sources for plant cultivation when their prices decrease

  2. Fine-mapping of qRL6.1, a major QTL for root length of rice seedlings grown under a wide range of NH4+ concentrations in hydroponic conditions

    Science.gov (United States)

    Tamura, Wataru; Ebitani, Takeshi; Yano, Masahiro; Sato, Tadashi; Yamaya, Tomoyuki

    2010-01-01

    Root system development is an important target for improving yield in cereal crops. Active root systems that can take up nutrients more efficiently are essential for enhancing grain yield. In this study, we attempted to identify quantitative trait loci (QTL) involved in root system development by measuring root length of rice seedlings grown in hydroponic culture. Reliable growth conditions for estimating the root length were first established to renew nutrient solutions daily and supply NH4+ as a single nitrogen source. Thirty-eight chromosome segment substitution lines derived from a cross between ‘Koshihikari’, a japonica variety, and ‘Kasalath’, an indica variety, were used to detect QTL for seminal root length of seedlings grown in 5 or 500 μM NH4+. Eight chromosomal regions were found to be involved in root elongation. Among them, the most effective QTL was detected on a ‘Kasalath’ segment of SL-218, which was localized to the long-arm of chromosome 6. The ‘Kasalath’ allele at this QTL, qRL6.1, greatly promoted root elongation under all NH4+ concentrations tested. The genetic effect of this QTL was confirmed by analysis of the near-isogenic line (NIL) qRL6.1. The seminal root length of the NIL was 13.5–21.1% longer than that of ‘Koshihikari’ under different NH4+ concentrations. Toward our goal of applying qRL6.1 in a molecular breeding program to enhance rice yield, a candidate genomic region of qRL6.1 was delimited within a 337 kb region in the ‘Nipponbare’ genome by means of progeny testing of F2 plants/F3 lines derived from a cross between SL-218 and ‘Koshihikari’. Electronic supplementary material The online version of this article (doi:10.1007/s00122-010-1328-3) contains supplementary material, which is available to authorized users. PMID:20390245

  3. Effects of elevated root zone CO2 and air temperature on photosynthetic gas exchange, nitrate uptake, and total reduced nitrogen content in aeroponically grown lettuce plants.

    Science.gov (United States)

    He, Jie; Austin, Paul T; Lee, Sing Kong

    2010-09-01

    Effects of elevated root zone (RZ) CO(2) and air temperature on photosynthesis, productivity, nitrate (NO(3)(-)), and total reduced nitrogen (N) content in aeroponically grown lettuce plants were studied. Three weeks after transplanting, four different RZ [CO(2)] concentrations [ambient (360 ppm) and elevated concentrations of 2000, 10,000, and 50,000 ppm] were imposed on plants grown at two air temperature regimes of 28 degrees C/22 degrees C (day/night) and 36 degrees C/30 degrees C. Photosynthetic CO(2) assimilation (A) and stomatal conductance (g(s)) increased with increasing photosynthetically active radiation (PAR). When grown at 28 degrees C/22 degrees C, all plants accumulated more biomass than at 36 degrees C/30 degrees C. When measured under a PAR >or=600 micromol m(-2) s(-1), elevated RZ [CO(2)] resulted in significantly higher A, lower g(s), and higher midday leaf relative water content in all plants. Under elevated RZ [CO(2)], the increase of biomass was greater in roots than in shoots, causing a lower shoot/root ratio. The percentage increase in growth under elevated RZ [CO(2)] was greater at 36 degrees C/30 degrees C although the total biomass was higher at 28 degrees C/22 degrees C. NO(3)(-) and total reduced N concentrations of shoot and root were significantly higher in all plants under elevated RZ [CO(2)] than under ambient RZ [CO(2)] of 360 ppm at both temperature regimes. At each RZ [CO(2)], NO(3)(-) and total reduced N concentration of shoots were greater at 28 degrees C/22 degrees C than at 36 degrees C/30 degrees C. At all RZ [CO(2)], roots of plants at 36 degrees C/30 degrees C had significantly higher NO(3)(-) and total reduced N concentrations than at 28 degrees C/22 degrees C. Since increased RZ [CO(2)] caused partial stomatal closure, maximal A and maximal g(s) were negatively correlated, with a unique relationship for each air temperature. However, across all RZ [CO(2)] and temperature treatments, there was a close correlation between

  4. Oxygenated phosphine fumigation for control of Nasonovia ribisnigri (Homoptera: Aphididae) on harvested lettuce.

    Science.gov (United States)

    Liu, Yong-Biao

    2012-06-01

    Low temperature regular phosphine fumigations under the normal oxygen level and oxygenated phosphine fumigations under superatmospheric oxygen levels were compared for efficacy against the aphid, Nasonovia ribisnigri (Mosley), and effects on postharvest quality of romaine and head lettuce. Low temperature regular phosphine fumigation was effective against the aphid. However, a 3 d treatment with high phosphine concentrations of > or = 2,000 ppm was needed for complete control of the aphid. Oxygen greatly increased phosphine toxicity and significantly reduced both treatment time and phosphine concentration for control of N. ribisnigri. At 1,000 ppm phosphine, 72 h regular fumigations at 6 degrees C did not achieve 100% mortality of the aphid. The 1,000 ppm phosphine fumigation under 60% O2 killed all aphids in 30 h. Both a 72 h regular fumigation with 2,200 ppm phosphine and a 48 h oxygenated fumigation with 1,000 ppm phosphine under 60% O2 were tested on romaine and head lettuce at 3 degrees C. Both treatments achieved complete control of N. ribisnigri. However, the 72 h regular fumigation resulted in significantly higher percentages of lettuce with injuries and significantly lower lettuce internal quality scores than the 48 h oxygenated phosphine fumigation. Although the oxygenated phosphine fumigation also caused injuries to some treated lettuce, lettuce quality remained very good and the treatment is not expected to have a significant impact on marketability of the lettuce. This study demonstrated that oxygenated phosphine fumigation was more effective and less phytotoxic for controlling N. ribisnigri on harvested lettuce than regular phosphine fumigation and is promising for practical use.

  5. Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa).

    Science.gov (United States)

    Hong, Jie; Rico, Cyren M; Zhao, Lijuan; Adeleye, Adeyemi S; Keller, Arturo A; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2015-01-01

    The increased production and use of nanoparticles (NPs) has generated concerns about their impact on living organisms. In this study, nCu, bulk Cu, nCuO, bulk CuO, Cu(OH)2 (CuPRO 2005, Kocide 3000), and CuCl2 were exposed for 15 days to 10 days-old hydroponically grown lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Each compound was applied at 0, 5, 10, and 20 mg L(-1). At harvest, we measured the size of the plants and determined the concentration of Cu, macro and microelements by using ICP-OES. Catalase and ascorbate peroxidase activity was also determined. Results showed that all Cu NPs/compounds reduced the root length by 49% in both plant species. All Cu NPs/compounds increased Cu, P, and S (>100%, >50%, and >20%, respectively) in alfalfa shoots and decreased P and Fe in lettuce shoot (>50% and >50%, respectively, excluding Fe in CuCl2 treatment). Biochemical assays showed reduced catalase activity in alfalfa (root and shoot) and increased ascorbate peroxidase activity in roots of both plant species. Results suggest that Cu NPs/compounds not only reduced the size of the plants but altered nutrient content and enzyme activity in both plant species.

  6. Influence of nutrient solutions in an open-field soilless system on the quality characteristics and shelf life of fresh-cut red and green lettuces (Lactuca sativa L.) in different seasons.

    Science.gov (United States)

    Luna, María C; Martínez-Sánchez, Ascensión; Selma, María V; Tudela, Juan A; Baixauli, Carlos; Gil, María I

    2013-01-01

    Little information is available about the impact of nutrient solution ion concentration on quality characteristics and shelf life of fresh-cut lettuce grown in soilless systems in open field. Three lettuce genotypes, lollo rosso and red oak leaf as red-leafed genotypes and butterhead as green-leafed genotype, were studied. The influence of three nutrient solutions with low, medium and high ion concentrations, which varied in the macroanion (NO₃⁻) and macrocations (K⁺, Ca²⁺ and NH₄⁺), were compared in summer and winter. The nutrient solutions evaluated in this study for the production of lettuce in a soilless system did not strongly influence the quality characteristics of the raw material. When the ion concentration of the nutrient solution was increased, fresh weight decreased, although it depended on the genotype and season. Maturity index and dry matter content varied with the season but independently of the nutrient solution. In summer, maturity index was higher and dry matter lower than in winter. Initial texture and visual quality were not influenced by the nutrient solution. Medium ion concentration provided the highest content of vitamin C and phenolic compounds. Our observations pointed out that the genotype had a strong influence on the shelf life of the fresh-cut product with minor differences among nutrient solutions. In general, red-leafed lettuces showed the highest antioxidant content, helping the maintenance of sensory characteristics throughout storage. The combination of optimal nutrient solution ion concentration and suitable cultivar is considered essential to ensure lettuce post-cutting life. Copyright © 2012 Society of Chemical Industry.

  7. Concomitant uptake of antimicrobials and Salmonella in soil and into lettuce following wastewater irrigation.

    Science.gov (United States)

    Sallach, J Brett; Zhang, Yuping; Hodges, Laurie; Snow, Daniel; Li, Xu; Bartelt-Hunt, Shannon

    2015-02-01

    The use of wastewater for irrigation may introduce antimicrobials and human pathogens into the food supply through vegetative uptake. The objective of this study was to investigate the uptake of three antimicrobials and Salmonella in two lettuce cultivars. After repeated subirrigation with synthetic wastewater, lettuce leaves and soil were collected at three sequential harvests. The internalization frequency of Salmonella in lettuce was low. A soil horizon-influenced Salmonella concentration gradient was determined with concentrations in bottom soil 2 log CFU/g higher than in top soil. Lincomycin and sulfamethoxazole were recovered from lettuce leaves at concentrations as high as 822 ng/g and 125 ng/g fresh weight, respectively. Antimicrobial concentrations in lettuce decreased from the first to the third harvest suggesting that the plant growth rate may exceed antimicrobial uptake rates. Accumulation of antimicrobials was significantly different between cultivars demonstrating a subspecies level variation in uptake of antibiotics in lettuce. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Effects of seed mass on seedling success in Artocarpus heterophyllus L., a tropical tree species of north-east India

    Science.gov (United States)

    Khan, M. L.

    2004-03-01

    I examined the effects of seed mass on performance of seedlings of Artocarpus heterophyllus L. (Moraceae), a large evergreen late successional shade-tolerant tree species in three contrasting light conditions. Seed mass varied many fold from 1.5 to 14 g in A. heterophyllus. Germination and germination time showed a significant correlation with seed mass. Germination differed significantly among three light regimes (50%, 25% and 3%). Seed mass and light level significantly affected seedling survival. The seedlings that emerged from large seeds survived better than those from small seeds under all light regimes. Survival of seedlings was maximum in 25% light regime for all seed mass classes but did not differ significantly from that at 50% light regime. Survival was significantly lower in 3% light as compared to 50% and 25% light regimes. Seedling vigor (expressed in terms of seedling height, leaf area and dry weight) was also significantly affected by seed mass and light regimes. Seedlings that emerged from larger seeds and grew under 50% light regime produced the heaviest seedlings, while those resulting from smaller seeds and grown under 3% light regime produced the lightest seedlings. Resprouting capacity of seedlings after clipping was significantly affected by seed mass and light regime. Seedlings emerging from larger seeds were capable of resprouting several times successively. Resprouting was more pronounced under 50% and 25% light regimes as compared to 3% light. Success of A. heterophyllus regeneration appears to be regulated by an interactive effect of seed mass and light regime.

  9. Stimulation of lettuce seed germination by ethylene.

    Science.gov (United States)

    Abeles, F B; Lonski, J

    1969-02-01

    Ethylene increased the germination of freshly imbibed lettuce (Lactuca sativa L. var. Grand Rapids) seeds. Seeds receiving either red or far-red light or darkness all showed a positive response to the gas. However, ethylene was apparently without effect on dormant seeds, those which failed to germinate after an initial red or far-red treatment. Carbon dioxide, which often acts as a competitive inhibitor of ethylene, failed to clearly reverse ethylene-enhanced seed germination. While light doubled ethylene production from the lettuce seeds, its effect was not mediated by the phytochrome system since both red and far-red light had a similar effect.

  10. Existence of vigorous lineages of crop-wild hybrids in Lettuce under field conditions.

    Science.gov (United States)

    Hooftman, Danny A P; Hartman, Yorike; Oostermeijer, J Gerard B; Den Nijs, Hans J C M

    2009-01-01

    Plant to plant gene flow is a route of environmental exposure for GM plants specifically since crosses with wild relatives could lead to the formation of more vigorous hybrids, which could increase the rate of introgression and the environmental impact. Here, we test the first step in the process of potential transgene introgression: whether hybrid vigor can be inherited to the next generation, which could lead to fixation of altered, i.e., elevated, quantitative traits. The potential for a permanent elevated fitness was tested using individual autogamous progeny lineages of hybrids between the crop Lactuca sativa (Lettuce) and the wild species Lactuca serriola (Prickly Lettuce). We compared progeny from motherplants grown under either greenhouse or field conditions. The survival of young plants depended strongly on maternal environment. Furthermore, we observed that offspring reproductive fitness components were correlated with maternal fitness. Our study demonstrates that post-zygotic genotypic sorting at the young plants stage reduces the number of genotypes non-randomly, leading to inheritance of high levels of reproductive traits in the surviving hybrid lineages, compared to the pure wild relatives. Consequently, directional selection could lead to displacement of the pure wild relative and fixation of more vigorous genome segments originating from crops, stabilizing plant traits at elevated levels. Such information can be used to indentify segments which are less likely to introgress into wild relative populations as a target for transgene insertion. © ISBR, EDP Sciences, 2010.

  11. Effects of ultraviolet-B irradiation on seedling growth in the Pinaceae

    International Nuclear Information System (INIS)

    Sullivan, J.H.; Teramura, A.H.

    1988-01-01

    Ten conifer species were grown in an unshaded greenhouse at the University of Maryland under 3 levels of biologically effective ultraviolet-B radiation. Ultraviolet-B radiation was supplied by Westinghouse FS-40 sunlamps and effective daily doses were 0, 12.4, and 19.1 kJ m-2. During the irradiation period, seedling growth and the development of stress symptoms were monitored. After 22 weeks of irradiation, seedlings were harvested and morphological characteristics analyzed. Visual symptoms included needle discoloration and stunting in three of the ten species tested. Seedling height was significantly reduced by supplemental UV-B in Pinus contorta (lodgepole pine), Pinus resinosa (red pine), and Pinus taeda (loblolly pine). Biomass increased in Picea engelmannii (Engelmann spruce). Abies fraseri (Fraser fir), Pinus edulus (pinyon pine), and Pinus nigra (black pine) were unaffected by UV-B while biomass reductions exceeding 5% were observed in all other species tested. These deleterious effects occurred despite the presence of morphological characteristics which would tend to reduce UV-B effectiveness. Generally, the effects of supplemental UV-B dose were less for those species native to higher elevations, implying the presence of natural adaptations to UV-B

  12. Transfer and expression of the rabbit defensin NP-1 gene in lettuce (Lactuca sativa).

    Science.gov (United States)

    Song, D; Xiong, X; Tu, W F; Yao, W; Liang, H W; Chen, F J; He, Z Q

    2017-01-23

    Lettuce (Lactuca sativa L.) is an annual plant of the daisy family, Asteraceae, with high food and medicinal value. However, the crop is susceptible to several viruses that are transmitted by aphids and is highly vulnerable to post-harvest diseases, as well as insect and mammal pests and fungal and bacterial diseases. Here, the rabbit defensin gene NP-1 was transferred into lettuce by Agrobacterium-mediated transformation to obtain a broad-spectrum disease-resistant lettuce. Transgenic lettuce plants were selected and regenerated on selective media. The presence of the NP-1 gene in these plants was confirmed by western blot analyses. Resistance tests revealed native defensin NP-1 expression conferred partial resistance to Bacillus subtilis and Pseudomonas aeruginosa, which suggests new possibilities for lettuce disease resistance.

  13. Yield and Quality of Lettuce and Rocket Grown in Floating Culture System

    OpenAIRE

    Spyridon Alexandros PETROPOULOS; Eleni CHATZIEUSTRATIOU; Eleni CONSTANTOPOULOU; Georgios KAPOTIS

    2016-01-01

    In recent years, there has been a growing trend towards cultivating leafy vegetables in hydroponic systems. Floating system is an alternative hydroponic system suitable for the production of baby vegetable products, ready-to eat salads and minimally processed leafy vegetables. However, the implementation of this system for the production of fully grown leafy vegetables is not sufficiently studied. The aim of the present study was to examine the potential of floating system as an alternative g...

  14. Nutrient absorption and response of lettuce to phosphorus fertilization

    Directory of Open Access Journals (Sweden)

    Antonio Ismael Inácio Cardoso

    2012-09-01

    Full Text Available The objective of this study was to evaluate the response of lettuce (cultivar Verônica to different levels of phosphorus fertilization. The experiment was conducted from 25/09/2003 (sowing to 03/12/2003 (harvesting at the Fazenda Experimental São Manuel, UNESP/FCA, Botucatu/SP, under protective structures. The experiment was conducted in a randomized block design, with five treatments (0, 200, 400, 600 and 800kg.ha-1 of P2O5, in the form of triple superphosphate and five replications. Plants were grown in 13L plastic pots containing Latossolo Vermelho Distrófico Típico. A quadratic response was observed for the fresh mass of the plant shoots and leaf area, with maximum equivalent levels of 733 and 756kg.ha-1 of P2O5, respectively, as well as for potassium, calcium, magnesium, sulfur, boron, copper, iron, manganese and zinc accumulation. Linear increases were observed with the treatments of P2O5 for dry mass of the shoots, leaf number, plant height and nitrogen and phosphorus accumulation.

  15. Low power continuous wave-laser seed irradiation effect on Moringa oleifera germination, seedling growth and biochemical attributes.

    Science.gov (United States)

    Urva; Shafique, Hina; Jamil, Yasir; Haq, Zia Ul; Mujahid, Tamveel; Khan, Aman Ullah; Iqbal, Munawar; Abbas, Mazhar

    2017-05-01

    Recently, laser application in agriculture has gained much attention since plant characteristics were improved significantly in response of pre-sowing seed treatment. Pre-sowing laser seed treatment effects on germination, seedling growth and mineral profile were studied in Moringa olifera. M. olifera healthy seeds were exposed to 25, 50, 75mJ low power continuous wave laser light and grown under greenhouse conditions. The seedling growth and biochemical attributes were evaluated from 10-day-old seedlings. The germination parameters (percentage, mean germination time), vigor index, seedling growth (root length, seedling length, shoot fresh weight, root fresh weight, shoot dry weight, root dry weight) enhanced considerably. The laser energy levels used for seed irradiation showed variable effects on germination, seedling growth and mineral profile. The mineral contents were recorded to be higher in seedling raised from laser treated seeds, which were higher in roots versus shoots and leaves. The effect of laser treatment on seedling fat, nitrogen and protein content was insignificant and at higher energy level both nitrogen and protein contents decreased versus control. Results revealed that M. olifera germination, seedling growth and mineral contents were enhanced and optimum laser energy level has more acceleratory effect since at three laser energy levels the responses were significantly different. Overall the laser energy levels effect on germination and seedling growth was found in following order; 75mJ>50mJ>25mJ, where as in case of fat, protein and nitrogen contents the trend was as; 25mJ>50mJ and 75mJ. However, this technique could possibly be used to improve the M. olifera germination, seedling growth, and minerals contents where germination is low due to unfavorable conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Mating System and Effective Population Size of the Overexploited Neotropical Tree (Myroxylon peruiferum L.f.) and Their Impact on Seedling Production.

    Science.gov (United States)

    Silvestre, Ellida de Aguiar; Schwarcz, Kaiser Dias; Grando, Carolina; de Campos, Jaqueline Bueno; Sujii, Patricia Sanae; Tambarussi, Evandro Vagner; Macrini, Camila Menezes Trindade; Pinheiro, José Baldin; Brancalion, Pedro Henrique Santin; Zucchi, Maria Imaculada

    2018-03-16

    The reproductive system of a tree species has substantial impact on genetic diversity and structure within and among natural populations. Such information, should be considered when planning tree planting for forest restoration. Here, we describe the mating system and genetic diversity of an overexploited Neotropical tree, Myroxylon peruiferum L.f. (Fabaceae) sampled from a forest remnant (10 seed trees and 200 seeds) and assess whether the effective population size of nursery-grown seedlings (148 seedlings) is sufficient to prevent inbreeding depression in reintroduced populations. Genetic analyses were performed based on 8 microsatellite loci. M. peruiferum presented a mixed mating system with evidence of biparental inbreeding (t^m-t^s = 0.118). We found low levels of genetic diversity for M. peruiferum species (allelic richness: 1.40 to 4.82; expected heterozygosity: 0.29 to 0.52). Based on Ne(v) within progeny, we suggest a sample size of 47 seed trees to achieve an effective population size of 100. The effective population sizes for the nursery-grown seedlings were much smaller Ne = 27.54-34.86) than that recommended for short term Ne ≥ 100) population conservation. Therefore, to obtain a reasonable genetic representation of native tree species and prevent problems associated with inbreeding depression, seedling production for restoration purposes may require a much larger sampling effort than is currently used, a problem that is further complicated by species with a mixed mating system. This study emphasizes the need to integrate species reproductive biology into seedling production programs and connect conservation genetics with ecological restoration.

  17. Reducing microbial contamination on wastewater-irrigated lettuce by cessation of irrigation before harvesting

    DEFF Research Database (Denmark)

    Keraita, Bernard; Konradsen, Flemming; Drechsel, Pay

    2007-01-01

    OBJECTIVE: To assess the effectiveness of cessation of irrigation before harvesting in reducing microbial contamination of lettuce irrigated with wastewater in urban vegetable farming in Ghana. METHODS: Assessment was done under actual field conditions with urban vegetable farmers in Ghana. Trials...... were arranged in completely randomized block design and done both in the dry and wet seasons. Seven hundred and twenty-six lettuce samples and 36 water samples were analysed for thermotolerant coliforms and helminth eggs. RESULTS: On average, 0.65 log units for indicator thermotolerant coliforms and 0.......4 helminth eggs per 100 g of lettuce were removed on each non-irrigated day from lettuce in the dry season. This corresponded to a daily loss of 1.4 tonnes/ha of fresh weight of lettuce. As an input for exposure analysis to make risk estimates, the decay coefficient, k, for thermotolerant coliforms was 0...

  18. Altered physiology, cell structure and gene expression of Theobroma cacao seedlings submitted to Cu toxicity

    Science.gov (United States)

    Theobroma cacao seedlings from the genotype CCN 51 were grown under greenhouse conditions and exposed to increasing concentrations of Cu (0.005, 1, 2, 4, 8, 16 and 32 mg Cu L-1) in nutrient solution. When doses were equal or higher than 8 mg Cu L-1, after 24 h of treatment application, leaf gas exch...

  19. Short communication. Effect of deficit irrigation on curly lettuce grown under semiarid conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kuslu, Y.; Dursun, A.; Sahin, U.; Kiziloglu, F. M.; Turan, M.

    2008-07-01

    Field experiments were conducted to characterize the effects of deficit irrigation on curly lettuce (Lactuca sativa var. Crispa cv. Bohemia) evapotranspiration, water use efficiency, marketable yield, yield components and mineral contents. The experiments were performed under semiarid climatic conditions in Erzurum province (east of Turkey) in the summer periods of 2005 and 2006. Irrigation water levels were selected to be 100% of usable soil water in full irrigation treatment (control) (T-100) and 80%, 60%, 40% and 20% of usable soil water in deficit irrigation treatments (T-80, T-60, T-40 and T- 20, respectively). Average seasonal evapotranspiration was 232 mm in T-100 and 121 mm in T-20. Average marketable yield was 39.49 Mg ha{sup -}1 in T-100 and 14.57 Mg ha{sup -}1 in T-20. A linear relationship (y=0.23x-13.97; R{sup 2}0.94) was found between seasonal evapotranspiration (x) and marketable plant yield (y). According to the regression equation, the yield response factor (k{sub y}) was found to be 1.39, and the coefficient of determination 0.91. Average water use efficiency was 168.88 kg ha{sup -}1 mm{sup -}1 in T-100 and 117.39 kg ha{sup -}1 mm{sup -}1 in T-20. The lowest plant length, width, steam diameter, leaf number, macro and micro element content values were obtained for T-20 in both years. (Author) 21 refs.

  20. MINERAL NUTRITION OF CRISPHEAD LETTUCE GROWN IN A HYDROPONIC SYSTEM WITH BRACKISH WATER

    Directory of Open Access Journals (Sweden)

    HAMMADY RAMALHO E SOARES

    2016-01-01

    Full Text Available Water availability in the Brazilian semiarid is restricted and often the only water source available has high salt concentrations. Hydroponics allows using these waters for production of various crops, including vegetables, however, the water salinity can cause nutritional disorders. Thus, two experiments were conducted in a greenhouse at the Department of Agricultural Engineering of the Federal Rural University of Pernambuco, to evaluate the effects of salinity on the mineral nutrition of crisphead lettuce, cultivar Taina, in a hydroponic system (Nutrient Film Technique, using brackish water in the nutrient solution, which was prepared by adding NaCl to the local water (0.2 dS m-1. A randomized blocks experimental design was used in both experiments. The treatments consisted of water of different salinity levels (0.2, 1.2, 2.2, 3.2, 4.2 and 5.2 dS m-1 with four replications, totaling 24 plots for each experiment. The water added to compensate for the water-depth loss due to evapotranspiration (WCET was the brackish water of each treatment in Experiment I and the local water without modifications in Experiment II. The increase in the salinity of the water used for the nutrient solution preparation reduced the foliar phosphorus and potassium contents and increased the chloride and sodium contents, regardless of the WCET. Foliar nitrogen, calcium, magnesium and sulfur contents were not affected by increasing the water salinity used for the nutrient solution preparation.

  1. Towards plant wires

    OpenAIRE

    Adamatzky, Andrew

    2014-01-01

    In experimental laboratory studies we evaluate a possibility of making electrical wires from living plants. In scoping experiments we use lettuce seedlings as a prototype model of a plant wire. We approximate an electrical potential transfer function by applying direct current voltage to the lettuce seedlings and recording output voltage. We analyse oscillation frequencies of the output potential and assess noise immunity of the plant wires. Our findings will be used in future designs of self...

  2. Modeling Nitrogen Decrease in Water Lettuce Ponds from Waste Stabilization Ponds

    Science.gov (United States)

    Putri, Gitta Agnes; Sunarsih

    2018-02-01

    This paper presents about the dynamic modeling of the Water Lettuce ponds as a form of improvement from the Water Hyacinth ponds. The purpose of this paper is to predict nitrogen decrease and nitrogen transformation in Water Lettuce ponds integrated with Waste Stabilization Ponds. The model consists of 4 mass balances, namely Dissolved Organic Nitrogen (DON), Particulate Organic Nitrogen (PON), ammonium (NH4+), Nitrate and Nitrite (NOx). The process of nitrogen transformation which considered in a Water Lettuce ponds, namely hydrolysis, mineralization, nitrification, denitrification, plant and bacterial uptake processes. Numerical simulations are performed by giving the values of parameters and the initial values of nitrogen compounds based on a review of previous studies. Numerical results show that the rate of change in the concentration of nitrogen compounds in the integration ponds of waste stabilization and water lettuce decreases and reaches stable at different times.

  3. Photoprotection, photosynthesis and growth of tropical tree seedlings under near-ambient and strongly reduced solar ultraviolet-B radiation.

    Science.gov (United States)

    Krause, G Heinrich; Jahns, Peter; Virgo, Aurelio; García, Milton; Aranda, Jorge; Wellmann, Eckard; Winter, Klaus

    2007-10-01

    Seedlings of two late-successional tropical rainforest tree species, Tetragastris panamensis (Engler) O. Kuntze and Calophyllum longifolium (Willd.), were field grown for 3-4 months at an open site near Panama City (9 degrees N), Panama, under plastic films that either transmitted or excluded most solar UV-B radiation. Experiments were designed to test whether leaves developing under bright sunlight with strongly reduced UV-B are capable of acclimating to near-ambient UV-B conditions. Leaves of T. panamensis that developed under near-ambient UV-B contained higher amounts of UV-absorbing substances than leaves of seedlings grown under reduced UV-B. Photosynthetic pigment composition, content of alpha-tocopherol, CO(2) assimilation, potential photosystem II (PSII) efficiency (evaluated by F(v)/F(m) ratios) and growth of T. panamensis and C. longifolium did not differ between seedlings developed under near-ambient and reduced solar UV-B. When seedlings were transferred from the reduced UV-B treatment to the near-ambient UV-B treatment, a pronounced inhibition of photosynthetic capacity was observed initially in both species. UV-B-mediated inhibition of photosynthetic capacity nearly fully recovered within 1 week of the transfer in C. longifolium, whereas in T. panamensis an about 35% reduced capacity of CO(2) uptake was maintained. A marked increase in UV-absorbing substances was observed in foliage of transferred T. panamensis seedlings. Both species exhibited enhanced mid-day photoinhibition of PSII immediately after being transferred from the reduced UV-B to the near-ambient UV-B treatment. This effect was fully reversible within 1d in T. panamensis and within a few days in C. longifolium. The data show that leaves of these tropical tree seedlings, when developing in full-spectrum sunlight, are effectively protected against high solar UV-B radiation. In contrast, leaves developing under conditions of low UV-B lacked sufficient UV protection. They experienced a

  4. CaMV-35S promoter sequence-specific DNA methylation in lettuce.

    Science.gov (United States)

    Okumura, Azusa; Shimada, Asahi; Yamasaki, Satoshi; Horino, Takuya; Iwata, Yuji; Koizumi, Nozomu; Nishihara, Masahiro; Mishiba, Kei-ichiro

    2016-01-01

    We found 35S promoter sequence-specific DNA methylation in lettuce. Additionally, transgenic lettuce plants having a modified 35S promoter lost methylation, suggesting the modified sequence is subjected to the methylation machinery. We previously reported that cauliflower mosaic virus 35S promoter-specific DNA methylation in transgenic gentian (Gentiana triflora × G. scabra) plants occurs irrespective of the copy number and the genomic location of T-DNA, and causes strong gene silencing. To confirm whether 35S-specific methylation can occur in other plant species, transgenic lettuce (Lactuca sativa L.) plants with a single copy of the 35S promoter-driven sGFP gene were produced and analyzed. Among 10 lines of transgenic plants, 3, 4, and 3 lines showed strong, weak, and no expression of sGFP mRNA, respectively. Bisulfite genomic sequencing of the 35S promoter region showed hypermethylation at CpG and CpWpG (where W is A or T) sites in 9 of 10 lines. Gentian-type de novo methylation pattern, consisting of methylated cytosines at CpHpH (where H is A, C, or T) sites, was also observed in the transgenic lettuce lines, suggesting that lettuce and gentian share similar methylation machinery. Four of five transgenic lettuce lines having a single copy of a modified 35S promoter, which was modified in the proposed core target of de novo methylation in gentian, exhibited 35S hypomethylation, indicating that the modified sequence may be the target of the 35S-specific methylation machinery.

  5. Productivity responses of Acer rubrum and Taxodium distichum seedlings to elevated CO2 and flooding

    Science.gov (United States)

    Vann, C.D.; Megonigal, J.P.

    2002-01-01

    Elevated levels of atmospheric CO2 are expected to increase photosynthetic rates of C3 tree species, but it is uncertain whether this will result in an increase in wetland seedling productivity. Separate short-term experiments (12 and 17 weeks) were performed on two wetland tree species, Taxodium distichum and Acer rubrum, to determine if elevated CO2 would influence the biomass responses of seedlings to flooding. T. distichum were grown in replicate glasshouses (n = 2) at CO2 concentrations of 350 or 700 ppm, and A. rubrum were grown in growth chambers at CO2 concentrations of 422 or 722 ppm. Both species were grown from seed. The elevated CO2 treatment was crossed with two water table treatments, flooded and non-flooded. Elevated CO2 increased leaf-level photosynthesis, whole-plant photosynthesis, and trunk diameter of T. distichum in both flooding treatments, but did not increase biomass of T. distichum or A. rubrum. Flooding severely reduced biomass, height, and leaf area of both T. distichum and A. rubrum. Our results suggest that the absence of a CO2-induced increase in growth may have been due to an O2 limitation on root production even though there was a relatively deep (??? 10 cm) aerobic soil surface in the non-flooded treatment. ?? 2001 Elsevier Science Ltd. All rights reserved.

  6. Resistance to Downy Mildew in Lettuce 'La Brillante' is Conferred by Dm50 Gene and Multiple QTL.

    Science.gov (United States)

    Simko, Ivan; Ochoa, Oswaldo E; Pel, Mathieu A; Tsuchida, Cayla; Font I Forcada, Carolina; Hayes, Ryan J; Truco, Maria-Jose; Antonise, Rudie; Galeano, Carlos H; Michelmore, Richard W

    2015-09-01

    Many cultivars of lettuce (Lactuca sativa L.) are susceptible to downy mildew, a nearly globally ubiquitous disease caused by Bremia lactucae. We previously determined that Batavia type cultivar 'La Brillante' has a high level of field resistance to the disease in California. Testing of a mapping population developed from a cross between 'Salinas 88' and La Brillante in multiple field and laboratory experiments revealed that at least five loci conferred resistance in La Brillante. The presence of a new dominant resistance gene (designated Dm50) that confers complete resistance to specific isolates was detected in laboratory tests of seedlings inoculated with multiple diverse isolates. Dm50 is located in the major resistance cluster on linkage group 2 that contains at least eight major, dominant Dm genes conferring resistance to downy mildew. However, this Dm gene is ineffective against the isolates of B. lactucae prevalent in the field in California and the Netherlands. A quantitative trait locus (QTL) located at the Dm50 chromosomal region (qDM2.2) was detected, though, when the amount of disease was evaluated a month before plants reached harvest maturity. Four additional QTL for resistance to B. lactucae were identified on linkage groups 4 (qDM4.1 and qDM4.2), 7 (qDM7.1), and 9 (qDM9.2). The largest effect was associated with qDM7.1 (up to 32.9% of the total phenotypic variance) that determined resistance in multiple field experiments. Markers identified in the present study will facilitate introduction of these resistance loci into commercial cultivars of lettuce.

  7. Exploring the Limits of Crop Productivity: High Light Studies with Lettuce

    OpenAIRE

    USU Crop Physiology Lab

    2015-01-01

    There are many different leaf lettuce cultivars and they range in color from light green and yellow to deep green as a result of higher concentrations of chlorophyll in the leaves. We tested four cultivars in high light to explore the limits of lettuce productivity.

  8. Potential production of Aspidosperma cylindrocarpon seedlings viarescue seedlings

    Directory of Open Access Journals (Sweden)

    Nathália Ferreira e Silva

    Full Text Available ABSTRACT: Translocation of rare populations is regarded as the last resort for the conservation of species whose habitat destruction is imminent. The objective of the present study was to evaluate the effect of two height classes and three leaf reduction intensities on growth and increases in height, stem diameter, survival, and new leaf production in seedlings of Aspidosperma cylindrocarpon (peroba obtained via rescue seedlings in a remnant of tropical semi deciduous forest. We recovered 240 individuals that were divided into two height classes (Class I-5 to 15cm and Class II-20 to 35cm and subjected to three leaf reduction intensities (0%, 50%, and 100%, which were then transported to a shade house with 50% light reduction. Measurements of height, stem diameter, and new leaf production were collected 8 times at 0, 15, 60, 75, 90, 105, 120, and 135 days, and survival rate was measured at day 135. The average survival rate was 82.9%; 77.5% for one Class I (5-15cm and 88.3% for Class II (20-35cm. Higher seedling growth was observed for the 0% leaf reduction treatment in both height classes. The leaves insertion were greater in the 100% cuts, with a decrease observed over time. It is advisable to restore A. cylindrocarpon seedlings in two height classes owing to the high survival rate, leaf appearance, and growth reported in the present study. The no-leaf reduction treatment (0% is the most viable alternative for the production of A. cylindrocarpon seedlings, via rescue seedlings.

  9. Temperature effects on wood anatomy, wood density, photosynthesis and biomass partitioning of Eucalyptus grandis seedlings.

    Science.gov (United States)

    Thomas, D S; Montagu, K D; Conroy, J P

    2007-02-01

    Wood density, a gross measure of wood mass relative to wood volume, is important in our understanding of stem volume growth, carbon sequestration and leaf water supply. Disproportionate changes in the ratio of wood mass to volume may occur at the level of the whole stem or the individual cell. In general, there is a positive relationship between temperature and wood density of eucalypts, although this relationship has broken down in recent years with wood density decreasing as global temperatures have risen. To determine the anatomical causes of the effects of temperature on wood density, Eucalyptus grandis W. Hill ex Maiden seedlings were grown in controlled-environment cabinets at constant temperatures from 10 to 35 degrees C. The 20% increase in wood density of E. grandis seedlings grown at the higher temperatures was variously related to a 40% reduction in lumen area of xylem vessels, a 10% reduction in the lumen area of fiber cells and a 10% increase in fiber cell wall thickness. The changes in cell wall characteristics could be considered analogous to changes in carbon supply. Lumen area of fiber cells declined because of reduced fiber cell expansion and increased fiber cell wall thickening. Fiber cell wall thickness was positively related to canopy CO2 assimilation rate (Ac), which increased 26-fold because of a 24-fold increase in leaf area and a doubling in leaf CO2 assimilation rate from minima at 10 and 35 degrees C to maxima at 25 and 30 degrees C. Increased Ac increased seedling volume, biomass and wood density; but increased wood density was also related to a shift in partitioning of seedling biomass from roots to stems as temperature increased.

  10. Effect of waste mica on transfer factors of 134Cs to spinach and lettuce

    International Nuclear Information System (INIS)

    Sreenivasa Chari, M.; Manjaiah, K.M.; Sachdev, P.; Sachdev, M.S.

    2011-01-01

    A greenhouse pot culture experiment was conducted to study the effect of graded levels of waste mica (0, 10, 20 and 40 g kg -1 ) on reducing the radiocesium uptake by spinach (Spinacia olerecea L) and lettuce (Lactuca sativa L.) grown in 134 Cs-contaminated (at 37 k Bq kg -1 soil) Inceptisols, Vertisols and Ultisols. The biomass yield, and potassium content and its uptake by crops have been significantly improved by waste mica application. The crops grown in Vertisols recorded higher biomass yield, and K content and its uptake as compared with Inceptisols and Ultisols. The average 134 Cs transfer factor values recorded were: 0.21, 0.17 and 0.26 at the first cutting, 0.15, 0.12 and 0.28 at the second cutting and 0.07, 0.05 and 0.23 at the third cutting from Inceptisols, Vertisols and Ultisols, respectively. Waste mica significantly suppressed radiocesium uptake, the effect being more pronounced at 40 g mica kg -1 soil. There exists an inverse relationship between the 134 Cs transfer factors with plant potassium content and also the K uptake by the crops. (authors)

  11. Influence of nonuniform magnetic fields on orientation of plant seedlings in microgravity conditions

    Science.gov (United States)

    Nechitailo, G. S.; Mashinsky, A. L.; Kuznetsov, A. A.; Chikov, V. M.; Kuznetsov, O. A.

    2001-01-01

    Experiments on the spatial behavior of the flax ( Linum usitatissimum, L.) seedlings in a nonuniform magnetic field were conducted on the orbital space stations «Salutå and «Mirå. This field can displace sensory organelles (statoliths) inside receptor cells and such displacement should cause a physiological reaction of the plant - tropistic curvature. Experiments were conducted in the custom-built «Magnetogravistatå facility, where seeds were germinated and grown for 3-4 days in a magnetic field with the dynamic factor grad(H 2/2)≈ 10 7 Oe 2/cm, then fixed on orbit and returned to Earth for analysis. It was found, that 93% of the seedlings were oriented in the field consistently with curvature in response to displacement of statoliths along the field gradient by ponderomotive magnetic forces, while control seedlings grew in the direction of the initial orientation of the seed. This suggests, that gravity receptors of plants recognized magnetic forces on statoliths as gravity, and that gravity stimulus can be substituted for plants by a force of a different physical nature.

  12. Determination of Profenofos Pesticidal Residue in Lettuce (Lactuca sativa L. by Gas Chromatographic Method

    Directory of Open Access Journals (Sweden)

    Yohannes Alen

    2015-05-01

    Full Text Available The determination of profenofos pesticidal residue in the lettuce (Lactuca sativa L. by using gas chromatography using flame photometric detector (FPD had been investigated. The lettuce was collected from Padang Luar area, Agam distric, West Sumatera. Sample for determination of profenofos residue divided into three groups: unwashed (A, washed with water (B, and washed with detergent (C. Maceration with sonication was used for the extraction using ethylacetateas a solvent. The results showed that profenofos pesticide residue in sample A, B and C were 0.204, 0.080 and 0.061 ppm, respectively. These profenofos pesticidal residue are over than the Maximum Residue Limits (MRL that established by The Japan Food Chemical Research Foundation (0.05 ppm even though World Health Organization (WHO has not established Maximum Residue Limits (MRL profenofos on lettuce. Based on the statistical analysis one-way method (Anova using SPSS 20.0 showed that there was a significant concentrations difference between lettuce A from lettuce B and lettuce C with p < 0.05.

  13. Growth, allocation and tissue chemistry of Picea abies seedlings affected by nutrient supply during the second growing season.

    Science.gov (United States)

    Kaakinen, Seija; Jolkkonen, Annika; Iivonen, Sari; Vapaavuori, Elina

    2004-06-01

    One-year-old Norway spruce (Picea abies (L.) Karst.) seedlings were grown hydroponically in a growth chamber to investigate the effects of low and high nutrient availability (LN; 0.25 mM N and HN; 2.50 mM N) on growth, biomass allocation and chemical composition of needles, stem and roots during the second growing season. Climatic conditions in the growth chamber simulated the mean growing season from May to early October in Flakaliden, northern Sweden. In the latter half of the growing season, biomass allocation changed in response to nutrient availability: increased root growth and decreased shoot growth led to higher root/shoot ratios in LN seedlings than in HN seedlings. At high nutrient availability, total biomass, especially stem biomass, increased, as did total nonstructural carbohydrate and nitrogen contents per seedling. Responses of stem chemistry to nutrient addition differed from those of adult trees of the same provenance. In HN seedlings, concentrations of alpha-cellulose, hemicellulose and lignin decreased in the secondary xylem. Our results illustrate the significance of retranslocation of stored nutrients to support new growth early in the season when root growth and nutrient uptake are still low. We conclude that nutrient availability alters allocation patterns, thereby influencing the success of 2-year-old Norway spruce seedlings at forest planting sites.

  14. How does solar ultraviolet-B radiation improve drought tolerance of silver birch (Betula pendula Roth.) seedlings?

    Science.gov (United States)

    Robson, T Matthew; Hartikainen, Saara M; Aphalo, Pedro J

    2015-05-01

    We hypothesized that solar ultraviolet (UV) radiation would protect silver birch seedlings from the detrimental effects of water stress through a coordinated suite of trait responses, including morphological acclimation, improved control of water loss through gas exchange and hydraulic sufficiency. To better understand how this synergetic interaction works, plants were grown in an experiment under nine treatment combinations attenuating ultraviolet-A and ultraviolet-B (UVB) from solar radiation together with differential watering to create water-deficit conditions. In seedlings under water deficit, UV attenuation reduced height growth, leaf production and leaf length compared with seedlings receiving the full spectrum of solar radiation, whereas the growth and morphology of well-watered seedlings was largely unaffected by UV attenuation. There was an interactive effect of the treatment combination on water relations, which was more apparent as a change in the water potential at which leaves wilted or plants died than through differences in gas exchange. This suggests that changes occur in the cell wall elastic modulus or accumulation of osmolites in cells under UVB. Overall, the strong negative effects of water deficit are partially ameliorated by solar UV radiation, whereas well-watered silver birch seedlings are slightly disadvantaged by the solar UV radiation they receive. © 2014 John Wiley & Sons Ltd.

  15. Tolerance to Cadmium of Agave lechuguilla (Agavaceae Seeds and Seedlings from Sites Contaminated with Heavy Metals

    Directory of Open Access Journals (Sweden)

    Alejandra Méndez-Hurtado

    2013-01-01

    Full Text Available We investigated if seeds of Agave lechuguilla from contaminated sites with heavy metals were more tolerant to Cd ions than seeds from noncontaminated sites. Seeds from a highly contaminated site (Villa de la Paz and from a noncontaminated site (Villa de Zaragoza were evaluated. We tested the effect of Cd concentrations on several ecophysiological, morphological, genetical, and anatomical responses. Seed viability, seed germination, seedling biomass, and radicle length were higher for the non-polluted site than for the contaminated one. The leaves of seedlings from the contaminated place had more cadmium and showed peaks attributed to chemical functional groups such as amines, amides, carboxyl, and alkenes that tended to disappear due to increasing the concentration of cadmium than those from Villa de Zaragoza. Malformed cells in the parenchyma surrounding the vascular bundles were found in seedlings grown with Cd from both sites. The leaves from the contaminated place showed a higher metallothioneins expression in seedlings from the control group than that of seedlings at different Cd concentrations. Most of our results fitted into the hypothesis that plants from metal-contaminated places do not tolerate more pollution, because of the accumulative effect that cadmium might have on them.

  16. Local adaptation in migrated interior Douglas-fir seedlings is mediated by ectomycorrhizas and other soil factors.

    Science.gov (United States)

    Pickles, Brian J; Twieg, Brendan D; O'Neill, Gregory A; Mohn, William W; Simard, Suzanne W

    2015-08-01

    Separating edaphic impacts on tree distributions from those of climate and geography is notoriously difficult. Aboveground and belowground factors play important roles, and determining their relative contribution to tree success will greatly assist in refining predictive models and forestry strategies in a changing climate. In a common glasshouse, seedlings of interior Douglas-fir (Pseudotsuga menziesii var. glauca) from multiple populations were grown in multiple forest soils. Fungicide was applied to half of the seedlings to separate soil fungal and nonfungal impacts on seedling performance. Soils of varying geographic and climatic distance from seed origin were compared, using a transfer function approach. Seedling height and biomass were optimized following seed transfer into drier soils, whereas survival was optimized when elevation transfer was minimised. Fungicide application reduced ectomycorrhizal root colonization by c. 50%, with treated seedlings exhibiting greater survival but reduced biomass. Local adaptation of Douglas-fir populations to soils was mediated by soil fungi to some extent in 56% of soil origin by response variable combinations. Mediation by edaphic factors in general occurred in 81% of combinations. Soil biota, hitherto unaccounted for in climate models, interacts with biogeography to influence plant ranges in a changing climate. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  17. Overexpression of TaNAC2D displays opposite responses to abiotic stresses between seedling and mature stage of transgenic Arabidopsis

    Directory of Open Access Journals (Sweden)

    Quanjun Huang

    2016-11-01

    Full Text Available Environmental stresses frequently affect plant growth and development, and many genes have been found to be induced by unfavorable environmental conditions. Here, we reported the biological functions of TaNAC2D, a stress-related NAC (NAM, ATAF, and CUC gene from wheat. TaNAC2D showed transcriptional activator activity in yeast. TaNAC2D-GFP fusion protein was localized in the nucleus of wheat mesophyll protoplasts. TaNAC2D transcript abundance was significantly induced by NaCl, PEG6000, and abscisic acid (ABA at seedling stage, and repressed by NaCl and PEG6000 at mature plant stage. When TaNAC2D was introduced into Arabidopsis, the 35-day-old soil-grown TaNAC2D-overexpression (TaNAC2D-OX plants displayed slower stomatal closure, higher water loss rate, and more sensitivity to salt and drought stresses compared with WT plants. In contrast, TaNAC2D-OX seedlings, grown on 1/2 MS medium supplemented with different concentrations of NaCl, Mannitol, and MV, had enhanced tolerances to salt, osmotic and oxidative stresses during seed germination and post-germination periods. The opposite stress-responsive phenotypes of transgenic Arabidopsis were consistent with the expression patterns of TaNAC2D in wheat. Moreover, under high salinity and dehydration conditions, three marker genes, including NCED3, RD29A, and RD29B, were down-regulated in 35-d-old TaNAC2D-OX plants grown in soil and up-regulated in 14-d-old TaNAC2D-OX seedlings grown on 1/2 MS medium. Our results suggest that the change in growth stages and environmental conditions may regulate TaNAC2D’s function.

  18. Seedling root targets

    Science.gov (United States)

    Diane L. Haase

    2011-01-01

    Roots are critical to seedling performance after outplanting. Although root quality is not as quick and simple to measure as shoot quality, target root characteristics should be included in any seedling quality assessment program. This paper provides a brief review of root characteristics most commonly targeted for operational seedling production. These are: root mass...

  19. Pyridine 2,4-Dicarboxylic Acid Suppresses Tomato Seedling Growth

    Directory of Open Access Journals (Sweden)

    Sotirios Fragkostefanakis

    2018-01-01

    Full Text Available Pyridine 2,4-dicarboxylic acid is a structural analog of 2-oxoglutarate and is known to inhibit 2-oxoglutare-dependent dioxygenases. The effect of this inhibitor in tomato seedlings grown in MS media supplied with various concentrations of PDCA was investigated, resulting in shorter roots and hypocotyls in a dose-dependent manner. The partial inhibition of growth in roots was more drastic compared to hypocotyls and was attributed to a decrease in the elongation of root and hypocotyl cells. Concentrations of 100 and 250 μM of PDCA decreased hydroxyproline content in roots while only the 250 μM treatment reduced the hydroxyproline content in shoots. Seedlings treated with 100 μM PDCA exhibited enhanced growth of hypocotyl and cotyledon cells and higher hydroxyproline content resulting in cotyledons with greater surface area. However, no alterations in hypocotyl length were observed. Prolyl 4 hydroxylases (P4Hs are involved in the O-glycosylation of AGPs and were also highly expressed during seedling growth. Moreover PDCA induced a decrease in the accumulation of HRGPs and particularly in AGPs-bound epitopes in a dose dependent-manner while more drastic reduction were observed in roots compared to shoots. In addition, bulged root epidermal cells were observed at the high concentration of 250 μM which is characteristic of root tissues with glycosylation defects. These results indicate that PDCA induced pleiotropic effects during seedling growth while further studies are required to better investigate the physiological significance of this 2-oxoglutarate analog. This pharmacological approach might be used as a tool to better understand the physiological significance of HRGPs and probably P4Hs in various growth and developmental programs in plants.

  20. Pyridine 2,4-dicarboxylic acid suppresses tomato seedling growth

    Science.gov (United States)

    Fragkostefanakis, Sotirios; Kaloudas, Dimitrios; Kalaitzis, Panagiotis

    2018-01-01

    Pyridine 2,4-dicarboxylic acid is a structural analogue of 2-oxoglutarate and is known to inhibit 2-oxoglutare-dependent dioxygenases. The effect of this inhibitor in tomato seedlings grown in MS media supplied with various concentrations of PDCA was investigated, resulting in shorter roots and hypocotyls in a dose-dependent manner. The partial inhibition of growth in roots was more drastic compared to hypocotyls and was attributed to a decrease in the elongation of root and hypocotyl cells. Concentrations of 100 and 250 μΜ of PDCA decreased hydroxyproline content in roots while only the 250 μΜ treatment reduced the hydroxyproline content in shoots. Seedlings treated with 100 μΜ PDCA exhibited enhanced growth of hypocotyl and cotyledon cells and higher hydroxyproline content resulting in cotyledons with greater surface area. However, no alterations in hypocotyl length were observed. Prolyl 4 hydroxylases (P4Hs) are involved in the O-glycosylation of AGPs and were also highly expressed during seedling growth. Moreover PDCA induced a decrease in the accumulation of HRGPs and particularly in AGPs-bound epitopes in a dose dependent-manner while more drastic reduction were observed in roots compared to shoots. In addition, bulged root epidermal cells were observed at the high concentration of 250 μΜ which is characteristic of root tissues with glycosylation defects. These results indicate that PDCA induced pleiotropic effects during seedling growth while further studies are required to better investigate the physiological significance of this 2-oxoglutarate analogue. This pharmacological approach might be used as a tool to better understand the physiological significance of HRGPs and probably P4Hs in various growth and developmental programs in plants.

  1. Identification of prenylated pterocarpans and other isoflavonoids in Rhizopus spp. elicited soya bean seedlings by electrospray ionisation mass spectrometry

    NARCIS (Netherlands)

    Simons, R.; Vincken, J.P.; Bohin, M.C.; Kuijpers, T.F.M.; Verbruggen, M.A.; Gruppen, H.

    2011-01-01

    Phytoalexins from soya are mainly characterised as prenylated pterocarpans, the glyceollins. Extracts of non-soaked and soaked soya beans, as well as that of soya seedlings, grown in the presence of Rhizopus microsporus var. oryzae, were screened for the presence of prenylated flavonoids with a

  2. Internalization of Sapovirus, a Surrogate for Norovirus, in Romaine Lettuce and the Effect of Lettuce Latex on Virus Infectivity

    Science.gov (United States)

    Esseili, Malak A.; Zhang, Zhenwen

    2012-01-01

    Noroviruses are the leading cause of food-borne outbreaks, including those that involve lettuce. The culturable porcine sapovirus (SaV) was used as a norovirus surrogate to study the persistence and the potential transfer of the virus from roots to leaves and from outer to inner leaves of lettuce plants. Treatment of lettuce with SaV was done through the roots of young plants, the soil, or the outer leaves of mature plants. Sampling of roots, xylem sap, and inner and outer leaves followed by RNA extraction and SaV-specific real-time reverse transcription (RT)-PCR was performed at 2 h and on postinoculation days (PID) 2, 5, 7, 14, and/or 28. When SaV was inoculated through the roots, viral RNA persisted on the roots and in the leaves until PID 28. When the virus was inoculated through the soil, viral RNA was detected on the roots and in the xylem sap until PID 14; viral RNA was detected in the leaves only until PID 2. No infectious virus was detected inside the leaves for either treatment. When SaV was inoculated through the outer leaves, viral RNA persisted on the leaves until PID 14; however, the virus did not transfer to inner leaves. Infectious viral particles on leaves were detected only at 2 h postinoculation. The milky sap (latex) of leaves, but not the roots' xylem sap, significantly decreased virus infectivity when tested in vitro. Collectively, our results showed the transfer of SaV from roots to leaves through the xylem system and the capacity of the sap of lettuce leaves to decrease virus infectivity in leaves. PMID:22752176

  3. Bacterial diversity and community structure in lettuce soil are shifted by cultivation time

    Science.gov (United States)

    Liu, Yiqian; Chang, Qing; Guo, Xu; Yi, Xinxin

    2017-08-01

    Compared with cereal production, vegetable production usually requires a greater degree of management and larger input of nutrients and irrigation, but these systems are not sustainable in the long term. This study aimed to what extent lettuce determine the bacterial community composition in the soil, during lettuce cultivation, pesticides and fertilizers were not apply to soil. Soil samples were collected from depths of 0-20cm and 20-40cm. A highthroughput sequencing approach was employed to investigate bacterial communities in lettuce-cultivated soil samples in a time-dependent manner. The dominant bacteria in the lettuce soil samples were mainly Proteobacteria, Actinobacteria, Chloroflexi, Nitrospirae, Firmicutes, Acidobacteria, Bacteroidetes, Verrucomicrobia, Planctomycetes, Gemmatimo nadetes, Cyanobacteria. Proteobacteria was the most abundant phylum in the 6 soil samples. The relative abundance of Acidobacteria, Firmicutes, Bacteroidetes, Verrucomicrobia and Cyanobacteria decreased through time of lettuce cultivation, but the relative abundance of Proteobacteria, Actinobacteria, Gemmatimonadetes, Chloroflexi, Planctomycetes and Nitrospirae increased over time. In the 0-20cm depth group and the 20-40cm depth soil, a similar pattern was observed that the percentage number of only shared OTUs between the early and late stage was lower than that between the early and middle stage soil, the result showed that lettuce growth can affect structure of soil bacterial communities.

  4. On-line fresh-cut lettuce quality measurement system using hyperspectral imaging

    Science.gov (United States)

    Lettuce, which is a main type of fresh-cut vegetable, has been used in various fresh-cut products. In this study, an online quality measurement system for detecting foreign substances on the fresh-cut lettuce was developed using hyperspectral reflectance imaging. The online detection system with a s...

  5. Allelopathic effect of medicinal plant Cannabis sativa L. on Lactuca sativa L. seed germination

    Directory of Open Access Journals (Sweden)

    Homa MAHMOODZADEH

    2015-11-01

    Full Text Available In order to examine allelopathic effect of Cannabis sativa L. on germination capability and seedling growth of Lactuca sativa L., a study was performed in laboratory conditions. Treatments were set up in randomised block design in four replications for each of four concentration ranges of 25, 50, 75 and 100 % of aqueous extract made of shoot parts and 4 identical extract concentrations made of root of cannabis. Control variant was lettuce seed treated by distilled water. During the studies shoot and seminal root length of lettuce seedlings were measured after treatments with different concentrations of extracts made of root and shoot parts of cannabis, and the obtained values were compared with the control. The obtained results suggest that the extract from the shoot parts of cannabis in high concentrations of 75 and 100 % had inhibiting effect to the germination indices while the extract from the root had no statistically significant effect on germination of lettuce seeds. Extract made of root part of cannabis showed also stimulatory effect to shoot and seminal root length of lettuce seedlings in extract concentrations of 50, 75 and 100 %.

  6. Lytic bacteriophages reduce Escherichia coli O157: H7 on fresh cut lettuce introduced through cross-contamination.

    Science.gov (United States)

    Ferguson, Sean; Roberts, Cheryl; Handy, Eric; Sharma, Manan

    2013-01-01

    The role of lytic bacteriophages in preventing cross contamination of produce has not been evaluated. A cocktail of three lytic phages specific for E. coli O157:H7 (EcoShield™) or a control (phosphate buffered saline, PBS) was applied to lettuce by either; (1) immersion of lettuce in 500 ml of EcoShield™ 8.3 log PFU/ml or 9.8 log PFU/ml for up to 2 min before inoculation with E. coli O157:H7; (2) spray-application of EcoShield™ (9.3 log PFU/ml) to lettuce after inoculation with E. coli O157:H7 (4.10 CFU/cm 2 ) following exposure to 50 μg/ml chlorine for 30 sec. After immersion studies, lettuce was spot-inoculated with E. coli O157:H7 (2.38 CFU/cm 2 ). Phage-treated, inoculated lettuce pieces were stored at 4°C for and analyzed for E. coli O157:H7 populations for up to 7 d. Immersion of lettuce in 9.8 log PFU/ml EcoShield™ for 2 min significantly (p PFU/ml) resulted in the deposition of high concentrations (7.8 log log PFU/cm 2 ) of bacteriophages on the surface of fresh cut lettuce, potentially contributing to the efficacy of the lytic phages on lettuce. Spraying phages on to inoculated fresh cut lettuce after being washed in hypochlorite solution was significantly more effective in reducing E. coli O157:H7 populations (2.22 log CFU/cm 2 ) on day 0 compared with control treatments (4.10 log CFU/cm 2 ). Both immersion and spray treatments provided protection from E. coli O157:H7 contamination on lettuce, but spray application of lytic bacteriophages to lettuce was more effective in immediately reducing E. coli O157:H7 populations fresh cut lettuce.

  7. Sampling Plans for the Thrips Frankliniella schultzei (Thysanoptera: Thripidae) in Three Lettuce Varieties.

    Science.gov (United States)

    Silva, Alisson R; Rodrigues-Silva, Nilson; Pereira, Poliana S; Sarmento, Renato A; Costa, Thiago L; Galdino, Tarcísio V S; Picanço, Marcelo C

    2017-12-05

    The common blossom thrips, Frankliniella schultzei Trybom (Thysanoptera: Thripidae), is an important lettuce pest worldwide. Conventional sampling plans are the first step in implementing decision-making systems into integrated pest management programs. However, this tool is not available for F. schultzei infesting lettuce crops. Thus, the objective of this work was to develop a conventional sampling plan for F. schultzei in lettuce crops. Two sampling techniques (direct counting and leaf beating on a white plastic tray) were compared in crisphead, looseleaf, and Boston lettuce varieties before and during head formation. The frequency distributions of F. schultzei densities in lettuce crops were assessed, and the number of samples required to compose the sampling plan was determined. Leaf beating on a white plastic tray was the best sampling technique. F. schultzei densities obtained with this technique were fitted to the negative binomial distribution with a common aggregation parameter (common K = 0.3143). The developed sampling plan is composed of 91 samples per field and presents low errors in its estimates (up to 20%), fast execution time (up to 47 min), and low cost (up to US $1.67 per sampling area). This sampling plan can be used as a tool for integrated pest management in lettuce crops, assisting with reliable decision making in different lettuce varieties before and during head formation. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Phloem sap collection from lettuce (Lactuca sativa L.): Methodology and yield.

    Science.gov (United States)

    van Helden, M; Tjallingii, W F; van Beek, T A

    1994-12-01

    Three methods to collect phloem sap on different lettuce lines were optimized and are described in detail. The success ratio for stylectomy of aphids was over 80% through the combination of a specially designed setup and electrical penetration graphs to monitor phloem sap ingestion. For unknown reasons on some lettuce lines stylets never showed sustained exudation. There were clear differences in stylet exudation between two aphid species on the same lettuce line. Honeydew collection in hexadecane made accurate quantitative analysis possible; samples were large and clean, but biotransformed. The EDTA chelation method produced large samples, but dilution, oxidation, and impurities from the wound surface reduced the reliability.

  9. Growth and photosynthesis of lettuce

    NARCIS (Netherlands)

    Holsteijn, van H.M.C.

    1981-01-01

    Butterhead lettuce is an important glass-house crop in the poor light period in The Netherlands. Fundamental data about the influence of temperature, light and CO 2 on growth and photosynthesis are important e.g. to facilitate selection criteria for new cultivars. In

  10. Selenium accumulation in lettuce germplasm

    Science.gov (United States)

    Selenium (Se) is an essential micronutrient for animals and humans. Increasing Se content in food crops offers an effective approach to reduce the widespread selenium deficiency problem in many parts of the world. In this study, we evaluated thirty diverse accessions of lettuce (Lactuca sativa L.) f...

  11. Screening of lettuce germplasm for agronomic traits under low water conditions

    Science.gov (United States)

    After a preliminary screening of over 3,500 varieties, we selected 200 cultivars of butterhead, cos, crisphead, leaf, and stem lettuce (Lactuca sativa L.) and wild prickly lettuce (Lactuca serriola L.) to test under high water (150% ET) and low water (50% ET) conditions in the field, and tracked com...

  12. Impact of phytopathogen infection and extreme weather stress on internalization of Salmonella Typhimurium in lettuce.

    Science.gov (United States)

    Ge, Chongtao; Lee, Cheonghoon; Nangle, Ed; Li, Jianrong; Gardner, David; Kleinhenz, Matthew; Lee, Jiyoung

    2014-01-03

    Internalization of human pathogens, common in many types of fresh produce, is a threat to human health since the internalized pathogens cannot be fully inactivated/removed by washing with water or sanitizers. Given that pathogen internalization can be affected by many environmental factors, this study was conducted to investigate the influence of two types of plant stress on the internalization of Salmonella Typhimurium in iceberg lettuce during pre-harvest. The stresses were: abiotic (water stress induced by extreme weather events) and biotic (phytopathogen infection by lettuce mosaic virus [LMV]). Lettuce with and without LMV infection were purposefully contaminated with green fluorescence protein-labeled S. Typhimurium on the leaf surfaces. Lettuce was also subjected to water stress conditions (drought and storm) which were simulated by irrigating with different amounts of water. The internalized S. Typhimurium in the different parts of the lettuce were quantified by plate count and real-time quantitative PCR and confirmed with a laser scanning confocal microscope. Salmonella internalization occurred under the conditions outlined above; however internalization levels were not significantly affected by water stress alone. In contrast, the extent of culturable S. Typhimurium internalized in the leafy part of the lettuce decreased when infected with LMV under water stress conditions and contaminated with high levels of S. Typhimurium. On the other hand, LMV-infected lettuce showed a significant increase in the levels of culturable bacteria in the roots. In conclusion, internalization was observed under all experimental conditions when the lettuce surface was contaminated with S. Typhimurium. However, the extent of internalization was only affected by water stress when lettuce was infected with LMV. © 2013.

  13. Growth, physiological and biochemical responses of Camptotheca acuminata seedlings to different light environments

    Directory of Open Access Journals (Sweden)

    Xiaohua eMa

    2015-05-01

    Full Text Available Light intensity critically affects plant growth. Camptotheca acuminata is a light-demanding species, but its optimum light intensity is not known. To investigate the response of C. acuminata seedlings to different light intensities, specifically 100% irradiance (PAR, 1500±30 μmol m-2 s-1, 75% irradiance, 50% irradiance, and 25% irradiance, a pot experiment was conducted to analyze growth parameters, photosynthetic pigments, gas exchange, chlorophyll fluorescence, stomatal structure and density, chloroplast ultrastructure, ROS concentrations, and antioxidant activities. Plants grown under 75% irradiance had significantly higher total biomass, seedling height, ground diameter, photosynthetic capacity, photochemical efficiency and photochemical quenching than those grown under 100%, 25%, and 50% irradiance. Malondialdehyde (MDA content, relative electrolyte conductivity (REC, superoxide anion (O2.- production, and peroxide (H2O2 content were lower under 75% irradiance. The less pronounced plant growth under 100% and 25% irradiance was associated with a decline in photosynthetic capacity and photochemical efficiency, with increases in the activity of specific antioxidants (i.e., superoxidase dismutase, peroxidase, and catalase, and with increases in MDA content and REC. Lower levels of irradiance were associated with significantly higher concentrations of chlorophyll (Chl a and b and lower Chla/b ratios. Stomatal development was most pronounced under 75% irradiance. Modification of chloroplast development was found to be an important mechanism of responding to different light intensities in C. acuminata. The results indicated that 75% irradiance is optimal for the growth of C. acuminata seedlings. The improvement in C. acuminata growth under 75% irradiance was attributable to increased photosynthesis, less accumulation of ROS, and the maintenance of the stomatal and chloroplast structure.

  14. Morphophysiological Behavior and Cambial Activity in Seedlings of Two Amazonian Tree Species under Shade

    Directory of Open Access Journals (Sweden)

    Monyck Jeane dos Santos Lopes

    2015-01-01

    Full Text Available Variations in light intensity can lead to important anatomical and morphophysiological changes in plants. Aiming to increase knowledge about the Amazonian tree species, this study examines the influence of shade on the cambial activity and development of Parkia gigantocarpa Ducke and Schizolobium parahyba var. amazonicum (Huber ex Ducke Barneby seedlings. Seedlings of the two species were grown in a nursery under four shade intensities (treatments: full sun, low, moderate, and high shade (resp., 0%, 23%, 67%, and 73% of shade, or 2000, 1540, 660, and 540 µmol·m−2·s−1 obtained with polyethylene screens. We measured plant height, stem diameter, biomass production, stomatal conductance (gs, transpiration (E, photosynthesis (A, and cambial activity (CA (xylem, cambium, and phloem. Also, we calculated the Dickson Quality Index (DQI. The highest values of biomass production, gs,  E, A, and DQI, were found under full sun, in P. gigantocarpa, and under low shade intensity in S. parahyba. In both species high shade intensity reduced CA. We concluded that the CA and the physiological and morphological attributes work together, explaining the radial growth and increasing seedlings quality, which optimized efficient seedling production under full sun, in P. gigantocarpa, and under low shade intensity in S. parahyba.

  15. The Effect of Soil Manganese on Japanese Larch (Larix Leptolepis Sieb. and Zucc.) Seedlings in the Greenhouse

    Science.gov (United States)

    Callie Jo Schweitzer; William E. Sharpe; Pamela J. Edwards

    1999-01-01

    Preliminary analysis of 9 year old Japanese larch trees and soil subjected to appliitions of triple ambient annual nitrogen (N) and sulfur (S) deposftfon revealed elevated available soil and foliar manganese (Mn) levels and decreased growth compared to controls. A greenhouse study was conducted in which Japanese larch seedlings were grown in geld collected soil...

  16. Persistence of ectomycorrhizas by Thelephora terrestris on outplanted Scots pine seedlings

    Directory of Open Access Journals (Sweden)

    Dorota Hilszczańska

    2013-12-01

    Full Text Available Thelephora terrestris (Erhr. Fr. is a very common ectomycorrhizal symbiont (ECM in conifer trees, however the role of this ubiquitous fungus in nurseries and Scots pine plantations is still unknown. It is described as tolerant of high nitrogen availability and therefore was taken into consideration as an important ECM partner of seedlings, particularly after replanting on post agricultural land. In laboratory the seedlings of Scots pine (Pinus sylvestris L. were inoculated with T. terrestris (Tt/IBL/2 or not inoculated (control and grown in containers in two different regimes of nitrogen fertilization (4g N x kg-1 and 6 g N x kg-1. Next year these seedlings were outplanted in post agricultural land and 6 months later, the number and identity of some mycorrhizas were studied. It was found, that mycorrhizal abundance was higher in the inoculated treatments than in non-inoculated ones. PCR RFLP analysis confirmed share of two different isolates of Thelephora engaged in mycorrhizal symbiosis. Part of mycorrhizas had the same pattern of RFLP as the isolate used to inoculation. Similar results were obtained in second year of experimental study in the field what confirmed the persistence of artificially introduced T. terrestris in post agricultural soil as an important component of the ECM community.

  17. Effect of long-term drought on carbon allocation and nitrogen uptake of Pinus sylvestris seedlings

    Science.gov (United States)

    Pumpanen, Jukka; Aaltonen, Heidi; Lindén, Aki; Köster, Kajar; Biasi, Christina; Heinonsalo, Jussi

    2015-04-01

    Weather extremes such as drought events are expected to increase in the future as a result of climate change. The drought affects the allocation of carbon assimilated by plants e.g. by modifying the root to shoot ratio, amount of fine roots and the amount of mycorrhizal fungal hyphae. We studied the effect of long term drought on the allocation of carbon in a common garden experiment with 4-year-old Pinus sylvestris seedlings. Half of the seedlings were exposed to long-term drought by setting the soil water content close to wilting point for over two growing seasons whereas the other half was grown in soil close to field capacity. We conducted a pulse labelling with 13CO2 in the end of the study by injecting a known amount of 13C enriched CO2 to the seedlings and measuring the CO2 uptake and distribution of 13C to the biomass of the seedlings and to the root and rhizosphere respiration. In addition, we studied the effect of drought on the decomposition of needle litter and uptake of nitrogen by 15N labelled needles buried in the soil in litter bags. The litterbags were collected and harvested in the end of the experiment and the changes in microbial community in the litterbags were studied from the phospholipid fatty acid (PLFA) composition. We also determined the 15N isotope concentrations from the needles of the seedlings to study the effect of drought on the nitrogen uptake of the seedlings. Our results indicate that the drought had a significant effect both on the biomass allocation of the seedlings and on the microbial species composition. The amount of carbon allocated belowground was much higher in the seedlings exposed to drought compared to the control seedlings. The seedlings seemed to adapt their carbon allocation to long-term drought to sustain adequate needle biomass and water uptake. The seedlings also adapted their osmotic potential and photosynthesis capacity to sustain the long-term drought as was indicated by the measurements of osmotic potential

  18. Growth experiment in lettuce [Lactuca sativa] using laser light

    International Nuclear Information System (INIS)

    Mori, Y.; Takatsuji, M.

    2001-01-01

    Photosynthetic rate, relative growth rate and vitamin C contents were measured in lettuce cultivated under red and blue lasers and the results were compared with those cultivated under light emitting diodes (LED). It was found that lettuce grew fairly healthily under red laser diode (650 nm) and blue laser (442 nm) with R/B ratio 10. However, both photosynthetic rate and growth rate rather diminished compared with LED cases. As for vitamin C contents, the result was about the same as LED cases

  19. Nitrogen use strategies of seedlings from neotropical tree species of distinct successional groups.

    Science.gov (United States)

    Oliveira, Halley Caixeta; da Silva, Ligia Maria Inocêncio; de Freitas, Letícia Dias; Debiasi, Tatiane Viegas; Marchiori, Nidia Mara; Aidar, Marcos Pereira Marinho; Bianchini, Edmilson; Pimenta, José Antonio; Stolf-Moreira, Renata

    2017-05-01

    Few studies have analyzed the strategies of neotropical tree seedlings for absorbing, translocating and assimilating the nitrogen. Here, we compared the nitrogen use strategies of seedlings from six tree species that are native to the Brazilian Atlantic Forest and that belong to different successional groups: Trema micrantha, Heliocarpus popayanensis and Cecropia pachystachya (pioneers), Cariniana estrellensis, Eugenia brasiliensis and Guarea kunthiana (non-pioneers). The effects of cultivating seedlings with nitrate or ammonium on the growth, physiology and nitrogen metabolism were analyzed. Nitrate-grown pioneer species had much higher leaf nitrate reductase activity than non-pioneer ones, but non-pioneer seedlings were also able to use nitrate as a nitrogen source. In addition to this remarkable difference between the groups in the capacity for leaf nitrate assimilation, substantial variations in the nitrogen use strategies were observed within the successional classes. Differently from the other non-pioneers, the canopy species C. estrellensis seemed to assimilate nitrate mainly in the leaves. Morphophysiological analyses showed a gradient of ammonium toxicity response, with E. brasiliensis as the most tolerant species, and T. micrantha and H. popayanensis as the most sensitive ones. Guarea kunthiana showed a relatively low tolerance to ammonium and an unusual high translocation of this cation in the xylem sap. In contrast to the other pioneers, C. pachystachya had a high plasticity in the use of nitrogen sources. Overall, these results suggest that nitrogen use strategies of neotropical tree seedlings were not determined solely by their successional position. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Genetic dissection of nonhost resistance of wild lettuce, Lactuca saligna, to downy mildew

    OpenAIRE

    Zhang, N.

    2008-01-01

    Lettuce downy mildew is the most destructive disease in lettuce (Lactuca spp.) cultivation and is caused by Bremia lactucae. The successful cross between its host L. sativa and the nonhost, L. saligna, and offers a rare chance to study the genetics of the nonhost resistance. From a set of 29 Backcross Inbred Lines (BILs) representing in total 96% of the L. saligna genome, 15 introgressions were identified to contribute to this resistance at one to four tested lettuce developmental stages and ...

  1. Retrospectiva e tendência da alfacicultura brasileira Retrospective and trends of Brazilian lettuce crop

    Directory of Open Access Journals (Sweden)

    Fernando Cesar Sala

    2012-06-01

    Full Text Available A alface é considerada a principal hortaliça folhosa no Brasil. Nas ultimas décadas, houve muitas mudanças quanto aos tipos varietais predominantes no país bem como para a preferência do uso de semente peletizada. O domínio do cultivo da alface lisa foi até a década de 90 com as cultivares do tipo 'manteiga' e 'Regina'. Posteriormente, houve uma mudança para o tipo crespa e que, atualmente, corresponde ao principal segmento cultivado no Brasil. A ausência de formação de cabeça aliada à presença de folhas flabeladas conferiram a esse tipo de alface uma melhor adaptação no cultivo de verão com altas temperaturas e índices de pluviosidade. A preferência brasileira pela alface crespa é um fato único na alfacicultura mundial. A alface americana vem apresentando maiores índices de crescimento e aceitação pelo mercado consumidor. Apesar de apresentar formação de cabeça e que tem limitado seu cultivo no verão, na ausência de cultivo protegido, suas folhas mais espessas têm conferido melhor sabor, crocância e durabilidade pós-colheita na alface americana. Alface com folha espessa é mandatória para o mercado de processamento que apresenta alta tendência de crescimento. Considerações sobre o melhoramento genético para contribuir, pelo menos em parte, com essa situação são discutidas com o surgimento de novos tipos varietais tropicalizados, com a tendência de segmentação de mercado e da necessidade de uma cadeia pós-colheita mais eficiente.Lettuce is considered the main leafy vegetable crop in Brazil. In recent decades, many changes occurred towards the varietal types as well as in the preference for pelleted seeds. Until mid 90 decade, the dominant varieties of looseleaf lettuce were the type 'White Boston' and 'Regina'. Later, there was a change toward the Grand Rapids type which represents the main varietal segment grown in Brazil. The non-head Grand Rapids type with its earliness performed better adaptation

  2. Growth and gas exchange by lettuce stands in a closed, controlled environment.

    Science.gov (United States)

    Wheeler, R M; Mackowiak, C L; Sager, J C; Yorio, N C; Knott, W M; Berry, W L

    1994-05-01

    Two studies were conducted in which 'Waldmann's Green' lettuce (Lactuca sativa L.) was grown hydroponically from seed to harvest in a large (20-m2), atmospherically closed growth chamber for the National Aeronautics and Space Administration's controlled ecological life support system (CELSS) program. The first study used metal-halide (MH) lamps [280 micromoles m-2 s-1 photosynthetic photon flux (PPF)], whereas the second used high-pressure sodium (HPS) lamps (293 micromoles m-2 s-1). Both studies used a 16-hour photoperiod, a constant air temperature (22 to 23C), and 1000 micromoles mol-1 CO2 during the light period. In each study, canopy photosynthesis and evapotranspiration (ET) rates were highly correlated to canopy cover, with absolute rates peaking at harvest (28 days after planting ) at 17 micromoles CO2/m2 per sec and 4 liters m-2 day-1, respectively. When normalized for actual canopy cover, photosynthesis and ET rates per unit canopy area decreased with age (between 15 and 28 days after planting). Canopy cover increased earlier during the study with HPS lamps, and final shoot yields averaged 183 g fresh mass (FM)/plant 8.8 g dry mass (DM)/plant. Shoot yields in the first study with MH lamps averaged 129 g FM/plant and 6.8 g DM/plant. Analysis of leaf tissue showed that ash levels from both studies averaged 22% and K levels ranged from 15% to 17% of tissue DM. Results suggest that lettuce should be easily adaptable to a CELSS with moderate lighting and that plant spacing or transplant schemes are needed to maximize canopy light interception and sustained efficient CO2 removal and water production.

  3. Water Deficit and Abscisic Acid Cause Differential Inhibition of Shoot versus Root Growth in Soybean Seedlings 1

    Science.gov (United States)

    Creelman, Robert A.; Mason, Hugh S.; Bensen, Robert J.; Boyer, John S.; Mullet, John E.

    1990-01-01

    Roots often continue to elongate while shoot growth is inhibited in plants subjected to low-water potentials. The cause of this differential response to water deficit was investigated. We examined hypocotyl and root growth, polysome status and mRNA populations, and abscisic acid (ABA) content in etiolated soybean (Glycine max [L.] Merr. cv Williams) seedlings whose growth was inhibited by transfer to low-water potential vermiculite or exogenous ABA. Both treatments affected growth and dry weight in a similar fashion. Maximum inhibition of hypocotyl growth occurred when internal ABA levels (modulated by ABA application) reached the endogenous level found in the elongating zone of seedlings grown in water-deficient vermiculite. Conversely, root growth was affected to only a slight extent in low-water potential seedlings and by most ABA treatments (in some, growth was promoted). In every seedling section examined, transfer of seedlings into low-water potential vermiculite caused ABA levels to increase approximately 5- to 10-fold over that found in well-watered seedlings. Changes in soluble sugar content, polysome status, and polysome mRNA translation products seen in low-water potential seedlings did not occur with ABA treatments sufficient to cause significant inhibition of hypocotyl elongation. These data suggest that both variation in endogenous ABA levels, and differing sensitivity to ABA in hypocotyls and roots can modulate root/shoot growth ratios. However, exogenous ABA did not induce changes in sugar accumulation, polysome status, and mRNA populations seen after transfer into low-water potential vermiculite. Images Figure 6 Figure 7 PMID:16667248

  4. Influence of Soil Type and Drainage on Growth of Swamp Chestnut Oak (Quercus Michauxii Nutt.) Seedlings

    Science.gov (United States)

    Donald D. Hook

    1969-01-01

    Swamp chestnut oak (Quercus michauxii Nutt.) seedlings were grown for 2 years in five soil types in drained and undrained pots. First-year height growth was related to soil type and pot drainage, but second-year height growth was related only to soil type. Results suggest that swamp chestnut oak is site-sensitive. But slow growth, a maximum of 2...

  5. Derivation of ozone flux-yield relationships for lettuce: A key horticultural crop

    Energy Technology Data Exchange (ETDEWEB)

    Goumenaki, Eleni [Environmental and Molecular Plant Physiology, Institute for Research on the Environment and Sustainability, School of Biology and Psychology, Division of Biology, Devonshire Building, Newcastle University, Newcastle Upon Tyne NE1 7RU (United Kingdom); School of Agricultural Technology, Technological Education Institute of Crete, P.O. Box 1939, 71004 Heraklion (Greece); Fernandez, Ignacio Gonzalez [Environmental and Molecular Plant Physiology, Institute for Research on the Environment and Sustainability, School of Biology and Psychology, Division of Biology, Devonshire Building, Newcastle University, Newcastle Upon Tyne NE1 7RU (United Kingdom); CIEMAT, Ecotoxicology of Air Pollution, Avda. Complutense 22, 28040 Madrid (Spain); Papanikolaou, Antigoni [School of Agricultural Technology, Technological Education Institute of Crete, P.O. Box 1939, 71004 Heraklion (Greece); Papadopoulou, Despoina [School of Agricultural Technology, Technological Education Institute of Crete, P.O. Box 1939, 71004 Heraklion (Greece); Askianakis, Christos [School of Agricultural Technology, Technological Education Institute of Crete, P.O. Box 1939, 71004 Heraklion (Greece); Kouvarakis, George [Environmental and Chemical Processes Laboratory, Department of Chemistry, University of Crete, P.O. Box 1470, 71409 Heraklion (Greece); Barnes, Jeremy [Environmental and Molecular Plant Physiology, Institute for Research on the Environment and Sustainability, School of Biology and Psychology, Division of Biology, Devonshire Building, Newcastle University, Newcastle Upon Tyne NE1 7RU (United Kingdom)]. E-mail: j.d.barnes@ncl.ac.uk

    2007-04-15

    Ozone flux-response relationships were derived for lettuce, employing a multiplicative approach to model the manner in which stomatal conductance is influenced by key environmental variables, using a dataset collected during field experimentation in Crete and yield-response relationships derived from parallel open-top chamber experiments. Regional agronomic practices were adopted throughout. Computed versus measured data revealed that the derived model explained 51% (P < 0.001) of the observed variation in stomatal conductance. Concentration-based indices were compared with flux-based indices. Analyses revealed a significant relationship between accumulated stomatal ozone flux and yield employing flux threshold cut-offs up to 4 nmol m{sup -2} s{sup -1}. Regressions employing very low or zero flux thresholds resulted in the strongest yield-flux relationships (explaining {approx}80% (P < 0.05) of the variation in the dataset). - Establishment of ozone flux-yield relationships for a commercially-important horticultural crop grown widely in the Mediterranean.

  6. Inflorescence Development and the Role of LsFT in Regulating Bolting in Lettuce (Lactuca sativa L.)

    Science.gov (United States)

    Chen, Zijing; Han, Yingyan; Ning, Kang; Ding, Yunyu; Zhao, Wensheng; Yan, Shuangshuang; Luo, Chen; Jiang, Xiaotang; Ge, Danfeng; Liu, Renyi; Wang, Qian; Zhang, Xiaolan

    2018-01-01

    Lettuce (Lactuca sativa L.) is one of the most important leafy vegetable that is consumed during its vegetative growth. The transition from vegetative to reproductive growth is induced by high temperature, which has significant economic effect on lettuce production. However, the progression of floral transition and the molecular regulation of bolting are largely unknown. Here we morphologically characterized the inflorescence development and functionally analyzed the FLOWERING LOCUS T (LsFT) gene during bolting regulation in lettuce. We described the eight developmental stages during floral transition process. The expression of LsFT was negatively correlated with bolting in different lettuce varieties, and was promoted by heat treatment. Overexpression of LsFT could recover the late-flowering phenotype of ft-2 mutant. Knockdown of LsFT by RNA interference dramatically delayed bolting in lettuce, and failed to respond to high temperature. Therefore, this study dissects the process of inflorescence development and characterizes the role of LsFT in bolting regulation in lettuce. PMID:29403510

  7. Inflorescence Development and the Role of LsFT in Regulating Bolting in Lettuce (Lactuca sativa L.).

    Science.gov (United States)

    Chen, Zijing; Han, Yingyan; Ning, Kang; Ding, Yunyu; Zhao, Wensheng; Yan, Shuangshuang; Luo, Chen; Jiang, Xiaotang; Ge, Danfeng; Liu, Renyi; Wang, Qian; Zhang, Xiaolan

    2017-01-01

    Lettuce ( Lactuca sativa L.) is one of the most important leafy vegetable that is consumed during its vegetative growth. The transition from vegetative to reproductive growth is induced by high temperature, which has significant economic effect on lettuce production. However, the progression of floral transition and the molecular regulation of bolting are largely unknown. Here we morphologically characterized the inflorescence development and functionally analyzed the FLOWERING LOCUS T (LsFT) gene during bolting regulation in lettuce. We described the eight developmental stages during floral transition process. The expression of LsFT was negatively correlated with bolting in different lettuce varieties, and was promoted by heat treatment. Overexpression of LsFT could recover the late-flowering phenotype of ft-2 mutant. Knockdown of LsFT by RNA interference dramatically delayed bolting in lettuce, and failed to respond to high temperature. Therefore, this study dissects the process of inflorescence development and characterizes the role of LsFT in bolting regulation in lettuce.

  8. Bacterial networks and co-occurrence relationships in the lettuce root microbiota.

    Science.gov (United States)

    Cardinale, Massimiliano; Grube, Martin; Erlacher, Armin; Quehenberger, Julian; Berg, Gabriele

    2015-01-01

    Lettuce is one of the most common raw foods worldwide, but occasionally also involved in pathogen outbreaks. To understand the correlative structure of the bacterial community as a network, we studied root microbiota of eight ancient and modern Lactuca sativa cultivars and the wild ancestor Lactuca serriola by pyrosequencing of 16S rRNA gene amplicon libraries. The lettuce microbiota was dominated by Proteobacteria and Bacteriodetes, as well as abundant Chloroflexi and Actinobacteria. Cultivar specificity comprised 12.5% of the species. Diversity indices were not different between lettuce cultivar groups but higher than in L. serriola, suggesting that domestication lead to bacterial diversification in lettuce root system. Spearman correlations between operational taxonomic units (OTUs) showed that co-occurrence prevailed over co-exclusion, and complementary fluorescence in situ hybridization-confocal laser scanning microscopy (FISH-CLSM) analyses revealed that this pattern results from both potential interactions and habitat sharing. Predominant taxa, such as Pseudomonas, Flavobacterium and Sphingomonadaceae rather suggested interactions, even though these are not necessarily part of significant modules in the co-occurrence networks. Without any need for complex interactions, single organisms are able to invade into this microbial network and to colonize lettuce plants, a fact that can influence the susceptibility to pathogens. The approach to combine co-occurrence analysis and FISH-CLSM allows reliably reconstructing and interpreting microbial interaction networks. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Characterization of Pinus pinaster seedling growth in different photo- and thermoperiods in a phytotron as a basis for early selection

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, A.; Kremer, A. [INRA, Laboratory of Forest Trees Genetics and Breeding, Cestas (France); Dormling, I. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Genetics

    1995-07-01

    Seedlings of Pinus pinaster families exhibiting monocyclic or polycyclic adult growth patterns, were cultivated in climate chambers during two successive growth periods separated by a period of low temperature to satisfy the chilling requirement. Six treatments combining photoperiod and temperature factors were tested. The morphology of the apex was assessed and height and biomass measured. First season seedlings grown in continuous light varied in apex morphology from the typical juvenile rosette to the adult bud usually found outdoors on 2-yr-old plants. It seems possible to distinguish monocyclic and polycyclic populations at an early stage by characters related to development and growth height. The results indicate that special environmental conditions during seedling development may be used as a tool in the search for criteria for early selection. 35 refs, 6 figs, 6 tabs

  10. Ultralow oxygen treatment for postharvest control of Nasonovia ribisnigri (Homoptera: Aphididae) on iceberg lettuce.

    Science.gov (United States)

    Liu, Yong-Biao

    2005-12-01

    The aphid Nasonovia ribisnigri (Mosley) is a common pest of lettuce in the United States. It hinders export of U.S. lettuce to the overseas market such as Japan where it is a quarantined pest. Ultralow oxygen treatments were studied for control of the insect on iceberg lettuce. Small-scale ultralow oxygen treatments in plastic jars were conducted at 1, 5, and 10 degrees C for different durations to determine effective treatment against nymphs and alates of N. ribisnigri. At oxygen levels of 0.015-0.025%, N. ribisnigri can be controlled in 3 d at 1 degrees C, 2 d at 5 degrees C, and 1 d at 10 degrees C. Large-scale ultralow oxygen treatments were conducted in bulk container treatment chambers with commercial iceberg lettuce heads for 2 d at 6 degrees C with oxygen levels of 0.015 and 0.025% and for 3 d at 3 degrees C with oxygen level of 0.015%. All treatments achieved complete control of N. ribisnigri. No negative impact on lettuce quality was detected after 2 wk of posttreatment storage. Therefore, the selected treatments have potential to be commercially developed for postharvest control of N. ribisnigri on iceberg lettuce.

  11. Phosphorus rates on yield and quality of lettuce seeds

    OpenAIRE

    Kano,Cristiaini; Cardoso,Antonio Ismael Inácio; Bôas,Roberto L Villas

    2012-01-01

    Because of lack of information about phosphorus fertilization in lettuce from the standpoint of seed production, this study was undertaken. The work was carried out in Botucatu, São Paulo state, Brazil, from September 25, 2003 to February 19, 2004, in order to study the influence of crescents phosphorus rates on yield and quality of lettuce seeds, cultivar Verônica. The experimental design was randomized blocks with five treatments (0; 200; 400; 600 and 800 kg ha-1 of P2O5) and five replicati...

  12. Biological control of fusarium seedling blight disease of wheat and barley.

    Science.gov (United States)

    Khan, Mojibur R; Fischer, Sven; Egan, Damian; Doohan, Fiona M

    2006-04-01

    ABSTRACT Fusarium fungi, including F. culmorum, cause seedling blight, foot rot, and head blight diseases of cereals, resulting in yield loss. In a screen for potential disease control organisms and agents, Pseudomonas fluorescens strains MKB 100 and MKB 249, P. frederiksbergensis strain 202, Pseudomonas sp. strain MKB 158, and chitosan all significantly reduced the extent of both wheat coleoptile growth retardation and wheat and barley seedling blight caused by F. culmorum (by 53 to 91%). Trichodiene synthase is a Fusarium enzyme necessary for trichothecene mycotoxin biosynthesis; expression of the gene encoding this enzyme in wheat was 33% lower in stem base tissue coinoculated with Pseudomonas sp. strain MKB 158 and F. culmorum than in wheat treated with bacterial culture medium and F. culmorum. When wheat and barley were grown in soil amended with either chitosan, P. fluorescens strain MKB 249, Pseudomonas sp. strain MKB 158, or culture filtrates of these bacteria, the level of disease symptoms on F. culmorum-inoculated stem base tissue (at 12 days post- F. culmorum inoculation) was >/=31% less than the level on F. culmorum-inoculated plants grown in culture medium-amended soil. It seems likely that at least part of the biocontrol activity of these bacteria and chitosan may be due to the induction of systemic disease resistance in host plants. Also, in coinoculation studies, Pseudomonas sp. strain MKB 158 induced the expression of a wheat class III plant peroxidase gene (a pathogenesis-related gene).

  13. Supplemental Upward Lighting from Underneath to Obtain Higher Marketable Lettuce (Lactuca sativa) Leaf Fresh Weight by Retarding Senescence of Outer Leaves.

    Science.gov (United States)

    Zhang, Geng; Shen, Shanqi; Takagaki, Michiko; Kozai, Toyoki; Yamori, Wataru

    2015-01-01

    Recently, the so-called "plant factory with artificial lighting" (PFAL) approach has been developed to provide safe and steady food production. Although PFALs can produce high-yielding and high-quality plants, the high plant density in these systems accelerates leaf senescence in the bottom (or outer) leaves owing to shading by the upper (or inner) leaves and by neighboring plants. This decreases yield and increases labor costs for trimming. Thus, the establishment of cultivation methods to retard senescence of outer leaves is an important research goal to improve PFAL yield and profitability. In the present study, we developed an LED lighting apparatus that would optimize light conditions for PFAL cultivation of a leafy vegetable. Lettuce (Lactuca sativa L.) was hydroponically grown under white, red, or blue LEDs, with light provided from above (downward), with or without supplemental upward lighting from underneath the plant. White LEDs proved more appropriate for lettuce growth than red or blue LEDs, and the supplemental lighting retarded the senescence of outer leaves and decreased waste (i.e., dead or low-quality senescent leaves), leading to an improvement of the marketable leaf fresh weight.

  14. The effect of iron plaque on uptake and translocation of norfloxacin in rice seedlings grown in paddy soil.

    Science.gov (United States)

    Yan, Dafang; Ma, Wei; Song, Xiaojing; Bao, Yanyu

    2017-03-01

    Although the role of iron plaque on rice root surface has been investigated in recent years, its effect on antibiotic uptake remains uncertain. In the study, pot experiment was conducted to investigate the effect of iron plaque on uptake and translocation of norfloxacin (adding 10 and 50 mg·kg -1 treatments) in rice seedlings grown in paddy soil. Iron plaque was induced by adding different amounts of Fe(II) in soil. The results showed that the presence of norfloxacin can decrease the amount of iron plaque induced. After rice with iron plaque induced, norfloxacin was mainly accumulated in iron plaque on root surface, followed by inside root, but its translocation from root to other rice tissues is not observed. Iron plaque played the role of a barrier for norfloxacin uptake into rice roots under high norfloxacin concentration of 50 mg·kg -1 , however not that under low concentration of 10 mg·kg -1 . And the barrier function was the most strongest with adding Fe(II) of 30 mg·kg -1 as combined action of iron plaque and rhizosphere effect. Fluorescence microscope analysis showed that norfloxacin mainly distributed in the outside of root cell, which showed its translocation as apoplastic pathway in rice. Comparing with non-rhizosphere, more norfloxacin was accumulated in rhizosphere soil. Maybe, strong root oxidization (high Eh values) induced more iron oxide formation in rhizosphere and on root surface, which led to norfloxacin's mobility towards to rhizosphere through its strong adsorption of iron oxides and then promoted its uptake by rice on root surface.

  15. Structural and Sensory Characterization of Novel Sesquiterpene Lactones from Iceberg Lettuce.

    Science.gov (United States)

    Mai, Franziska; Glomb, Marcus A

    2016-01-13

    Lactuca sativa var. capitate (iceberg lettuce) is a delicious vegetable and popular for its mild taste. Nevertheless, iceberg lettuce is a source of bitter substances, such as the sesquiterpene lactones. Chemical investigations on the n-butanol extract led to the isolation of three novel sesquiterpene lactones. All compounds were isolated by multilayer countercurrent chromatography followed by preparative high-performance liquid chromatography. The structures were verified by means of spectroscopic methods, including NMR and mass spectrometry techniques. For the first time 11ß,13-dihydrolactucin-8-O-sulfate (jaquinelin-8-O-sulfate) was structurally elucidated and identified in plants. In addition, the sesquiterpene lactones cichorioside B and 8-deacetylmatricarin-8-O-sulfate were identified as novel ingredients of iceberg lettuce. Further flowering plants in the daisy family Asteraceae were examined for the above three compounds. At least one of the compounds was identified in nine plants. The comparison between the lettuce butt end and the leaves of five types of the Cichorieae tribe showed an accumulation of the compounds in the butt end. Further experiments addressed the impact of sesquiterpene lactones on color formation and bitter taste.

  16. Zooming in on the lettuce genome: species relationships in Lactuca s.l., inferred from chromosomal and molecular characters

    OpenAIRE

    Koopman, W.J.M.

    2002-01-01

    Lactuca sativa (cultivated lettuce) is the world's most important leafy salad vegetable. Apart from L. sativa , the genus Lactuca contains ca. 75 wild species, potentially useful to improve, for example, taste, texture, and disease resistance of cultivated lettuce. The wild species L. serriola (Prickly Lettuce), L. saligna (Least Lettuce), and L. virosa (Great...

  17. Quality of fresh-cut Iceberg lettuce and spinach irradiated at doses up to 4 kGy

    International Nuclear Information System (INIS)

    Fan Xuetong; Guan Wenqiang; Sokorai, Kimberly J.B.

    2012-01-01

    Fresh-cut Iceberg lettuce packaged in modified atmosphere packages and spinach in perforated film bags were irradiated with gamma rays at doses of 0, 1, 2, 3, and 4 kGy. After irradiation, the samples were stored for 14 days at 4 °C. O 2 levels in the packages of fresh-cut Iceberg lettuce decreased and CO 2 levels increased with increasing radiation dose, suggesting that irradiation increased respiration rates of lettuce. Tissue browning of irradiated cut lettuce was less severe than that of non-irradiated, probably due to the lower O 2 levels in the packages. However, samples irradiated at 3 and 4 kGy had lower maximum force and more severe sogginess than the non-irradiated control. In addition, ascorbic acid content of irradiated lettuce was 22–40% lower than the non-irradiated samples after 14 days of storage. The visual appearance of spinach was not affected by irradiation even at a dose of 4 kGy. Consumer acceptance suggested that more people would dislike and would not buy spinach that was treated at 3 and 4 kGy as compared to the non-irradiated sample. Overall, irradiation at doses of 1 and 2 kGy may be employed to enhance microbial safety of fresh-cut Iceberg lettuce and spinach while maintaining quality. - Highlights: ▶ Headspace composition in the modified atmosphere packages of cut lettuce was affected by irradiation. ▶ Fresh-cut lettuce in adapted atmosphere could tolerate 1 or 2 kGy rays without quality deterioration in look and texture. ▶ Lettuce irradiated at doses higher than 2 kGy developed sogginess. ▶ Irradiated spinach maintained a good appearance at doses of 3 and 4 kGy. ▶ Higher doses (3 and 4 kGy) of radiation decreased consumers' likingness and purchase intent of irradiated spinach.

  18. Fertilization effect on yield and nitrate content in organically produced lettuce

    Directory of Open Access Journals (Sweden)

    Čabilovski Ranko

    2010-01-01

    Full Text Available The effect of applying different organic materials (OM on yield and nitrate content in lettuce was studied in a field experiment on a farm registered for organic production during two years (2007 and 2008. Treatments were: farmyard manure (ST, guano (G, milled soybean (Glicine hispida seed (S; milled forage pea (Pisum sativum seed (P and control treatment (q. Biannual average fresh matter (FM yield of lettuce on fertilized plots ranges from 45.44 t ha-1 (P to 46,38 t ha-1 (ST and was significantly higher than fresh matter yield of the control (39.34 t ha-1, while the differences between fertilized treatments were not significant. Nitrate content in the fresh mass of lettuce in all treatments in both years was below the maximum allowed content (2.500 mg kg-1 regulated by the EU (Commission Regulation (EC, No 466/2001. In both years, the lowest nitrate content in the fresh mass of lettuce was recorded with the control treatment (q and highest with S treatment. Nitrate contents with G, P and S treatments were significantly higher than that recorded with FYM and q, whereas the differences between FYM and q were not significant in either the first or the second year of research. Linear correlation (r = 0.83**in 2007; r = 0.91** in 2008 was found between the content of mineral N in the soil and nitrate content in the FM of lettuce at the moment of harvesting in both years. .

  19. Health effect of vegetable-based diet: lettuce consumption improves cholesterol metabolism and antioxidant status in the rat.

    Science.gov (United States)

    Nicolle, Catherine; Cardinault, Nicolas; Gueux, Elyett; Jaffrelo, Lydia; Rock, Edmond; Mazur, Andrzej; Amouroux, Pierre; Rémésy, Christian

    2004-08-01

    It is often assumed that fruits and vegetables contribute to protect against degenerative pathologies such as cardiovascular diseases. Besides epidemiological observations, scientific evidences for their mechanism of action are scarce. In the present study, we investigated the mean term and post-prandial effects of lettuce ingestion on lipid metabolism and antioxidant protection in the rat. Feeding rats a 20% lettuce diet for 3 weeks resulted in a decrease cholesterol LDL/HDL ratio and a marked decrease of liver cholesterol levels (-41%). Concurrently, fecal total steroid excretion increased (+44%) and apparent absorption of dietary cholesterol was significantly depressed (-37%) by the lettuce diet. Lettuce diet also displayed an improvement of vitamin E/TG ratio in plasma and limited lipid peroxidation in heart as evidenced by TBARS. In post-prandial experiment, lettuce intake significantly increased both ascorbic acid and alpha-tocopherol plasma levels which contribute to improve plasma antioxidant capacity within 2 h of consumption. Other lipid-soluble antioxidants (lutein and vitamin E) may also improve the plasma antioxidant capacity. Lettuce consumption increases the total cholesterol end-products excretion and improves antioxidant status due to the richness in antioxidants (vitamins C, E and carotenoids). In our model, lettuce clearly shows a beneficial effect on lipid metabolism and on tissue oxidation. Therefore regular consumption of lettuce should contribute to improve protection against cardiovascular diseases. Copyright 2003 Elsevier Ltd.

  20. Arabidopsis seedling flood-inoculation technique: a rapid and reliable assay for studying plant-bacterial interactions

    Directory of Open Access Journals (Sweden)

    Uppalapati Srinivasa R

    2011-10-01

    Full Text Available Abstract Background The Arabidopsis thaliana-Pseudomonas syringae model pathosystem is one of the most widely used systems to understand the mechanisms of microbial pathogenesis and plant innate immunity. Several inoculation methods have been used to study plant-pathogen interactions in this model system. However, none of the methods reported to date are similar to those occurring in nature and amicable to large-scale mutant screens. Results In this study, we developed a rapid and reliable seedling flood-inoculation method based on young Arabidopsis seedlings grown on MS medium. This method has several advantages over conventional soil-grown plant inoculation assays, including a shorter growth and incubation period, ease of inoculation and handling, uniform infection and disease development, requires less growth chamber space and is suitable for high-throughput screens. In this study we demonstrated the efficacy of the Arabidopsis seedling assay to study 1 the virulence factors of P. syringae pv. tomato DC3000, including type III protein secretion system (TTSS and phytotoxin coronatine (COR; 2 the effector-triggered immunity; and 3 Arabidopsis mutants affected in salicylic acid (SA- and pathogen-associated molecular pattern (PAMPs-mediated pathways. Furthermore, we applied this technique to study nonhost resistance (NHR responses in Arabidopsis using nonhost pathogens, such as P. syringae pv. tabaci, pv. glycinea and pv. tomato T1, and confirmed the functional role of FLAGELLIN-SENSING 2 (FLS2 in NHR. Conclusions The Arabidopsis seedling flood-inoculation assay provides a rapid, efficient and economical method for studying Arabidopsis-Pseudomonas interactions with minimal growth chamber space and time. This assay could also provide an excellent system for investigating the virulence mechanisms of P. syringae. Using this method, we demonstrated that FLS2 plays a critical role in conferring NHR against nonhost pathovars of P. syringae, but not to