WorldWideScience

Sample records for lethal cell injury

  1. Radiation injuries of plasmatic membrane and lethal action of radiation on cells

    Energy Technology Data Exchange (ETDEWEB)

    Fomenko, B S; Akoev, I G [AN SSSR, Pushchino-na-Oke. Inst. Biologicheskoj Fiziki

    1984-01-01

    Data on modification of procaryotes and eukaryotes cell injuries using preparations not penetrating into cells and also membrane-specific drugs localized in cells in a lipid phase are generalized. A conclusion is drawn that radiation injuries of plasmatic membrane of prokaryotes and eukaryotes contribute considerably to lethal action of radiation on cells.

  2. Radiation injuries of plasmatic membrane and lethal action of radiation on cells

    International Nuclear Information System (INIS)

    Fomenko, B.S.; Akoev, I.G.

    1984-01-01

    Data on modification of procaryotes and eukaryotes cell injuries using preparations not penetrating into cells and also membrane-specific drugs localized in cells in a lipid phase are generalized. A conclusion is drawn that radiation injuries of plasmatic membrane of prokaryotes and eukaryotes contribute considerably to lethal action of radiation on cells

  3. Critical analysis of the maximum non inhibitory concentration (MNIC) method in quantifying sub-lethal injury in Saccharomyces cerevisiae cells exposed to either thermal or pulsed electric field treatments.

    Science.gov (United States)

    Kethireddy, V; Oey, I; Jowett, Tim; Bremer, P

    2016-09-16

    Sub-lethal injury within a microbial population, due to processing treatments or environmental stress, is often assessed as the difference in the number of cells recovered on non-selective media compared to numbers recovered on a "selective media" containing a predetermined maximum non-inhibitory concentration (MNIC) of a selective agent. However, as knowledge of cell metabolic response to injury, population diversity and dynamics increased, the rationale behind the conventional approach of quantifying sub-lethal injury must be scrutinized further. This study reassessed the methodology used to quantify sub-lethal injury for Saccharomyces cerevisiae cells (≈ 4.75 Log CFU/mL) exposed to either a mild thermal (45°C for 0, 10 and 20min) or a mild pulsed electric field treatment (field strengths of 8.0-9.0kV/cm and energy levels of 8, 14 and 21kJ/kg). Treated cells were plated onto either Yeast Malt agar (YM) or YM containing NaCl, as a selective agent at 5-15% in 1% increments. The impact of sub-lethal stress due to initial processing, the stress due to selective agents in the plating media, and the subsequent variation of inhibition following the treatments was assessed based on the CFU count (cell numbers). ANOVA and a generalised least squares model indicated significant effects of media, treatments, and their interaction effects (P<0.05) on cell numbers. It was shown that the concentration of the selective agent used dictated the extent of sub-lethal injury recorded owing to the interaction effects of the selective component (NaCl) in the recovery media. Our findings highlight a potential common misunderstanding on how culture conditions impact on sub-lethal injury. Interestingly for S. cerevisiae cells the number of cells recovered at different NaCl concentrations in the media appears to provide valuable information about the mode of injury, the comparative efficacy of different processing regimes and the inherent degree of resistance within a population. This

  4. In vitro cell culture lethal dose submitted to gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Carolina S.; Rogero, Sizue O.; Rogero, Jose Roberto [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: carolina_sm@hotmail.com; Ikeda, Tamiko I.; Cruz, Aurea S. [Instituto Adolfo Lutz, Sao Paulo, SP (Brazil)

    2009-07-01

    The present study was designed to evaluate the in vitro effect of gamma radiation in cell culture of mouse connective tissue exposed to different doses of gamma radiation and under several conditions. The cell viability was analyzed by neutral red uptake methodology. This assay was developed for establish a methodology to be used in the future in the study of resveratrol radioprotection. Resveratrol (3,4',5- trihydroxystilbene), a phenolic phytoalexin that occurs naturally in some spermatophytes, such as grapevines, in response to injury as fungal infections and exposure to ultraviolet light. In the wines this compound is found at high levels and is considered one of the highest antioxidant constituents. The intense antioxidant potential of resveratrol provides many pharmacological activities including cardioprotection, chemoprevention and anti-tumor effects. Our results demonstrated that {sup 60}Co gamma radiation lethal dose (LD50) on NCTC clone 929 cells was about 340Gy. (author)

  5. In vitro cell culture lethal dose submitted to gamma radiation

    International Nuclear Information System (INIS)

    Moreno, Carolina S.; Rogero, Sizue O.; Rogero, Jose Roberto; Ikeda, Tamiko I.; Cruz, Aurea S.

    2009-01-01

    The present study was designed to evaluate the in vitro effect of gamma radiation in cell culture of mouse connective tissue exposed to different doses of gamma radiation and under several conditions. The cell viability was analyzed by neutral red uptake methodology. This assay was developed for establish a methodology to be used in the future in the study of resveratrol radioprotection. Resveratrol (3,4',5- trihydroxystilbene), a phenolic phytoalexin that occurs naturally in some spermatophytes, such as grapevines, in response to injury as fungal infections and exposure to ultraviolet light. In the wines this compound is found at high levels and is considered one of the highest antioxidant constituents. The intense antioxidant potential of resveratrol provides many pharmacological activities including cardioprotection, chemoprevention and anti-tumor effects. Our results demonstrated that 60 Co gamma radiation lethal dose (LD50) on NCTC clone 929 cells was about 340Gy. (author)

  6. Lethal and sublethal cellular injury in multifraction irradiation

    International Nuclear Information System (INIS)

    Withers, H.R.

    1975-01-01

    Work has been carried out on cellular injury in multifraction irradiation of mouse tissues and compared with similar work on human skin reported earlier by Dutreix et al (Eur. J. Cancer.; 9:159 (1973)). In agreement with Dutreix et al it is emphasized that the absolute amount of sublethal injury repaired per fractionation interval (Dsub(r)) is not as important to radiotherapists as the change in the amount repaired (ΔDsub(r)) when the dose-per-fraction is altered. It was found that although there is a critical divergence at low doses, the data for mouse tissues are similar to those previously given for human skin and support the conclusions: (i) That the capacity of many normal cells for accumulating and repairing sublethal radiation injury is probably not greatly different. (ii) That fixed exponents used for fraction number and time in iso-effect formulae are inaproporiate. At low doses-per-fraction, repair of sublethal injury is complete, or nearly so, and hence, additional fractionation of dose does not give appreciable additional sparing, whereas rapidly-regenerating tissues, due to the lengthening of overall time, would continue being spared by repopulation. (U.K.)

  7. [Underlying Mechanisms of Methamphetamine-Induced Self-Injurious Behavior and Lethal Effects in Mice].

    Science.gov (United States)

    Mori, Tomohisa; Sawaguchi, Toshiko

    2018-01-01

    Relatively high doses of psychostimulants induce neurotoxicity on the dopaminergic system and self-injurious behavior (SIB) in rodents. However the underlying neuronal mechanisms of SIB remains unclear. Dopamine receptor antagonists, N-methyl-D-aspartic acid (NMDA) receptor antagonists, Nitric Oxide Synthase (NOS) inhibitors and free radical scavengers significantly attenuate methamphetamine-induced SIB. These findings indicate that activation of dopamine as well as NMDA receptors followed by radical formation and oxidative stress, especially when mediated by NOS activation, is associated with methamphetamine-induced SIB. On the other hand, an increase in the incidence of polydrug abuse is a major problem worldwide. Coadministered methamphetamine and morphine induced lethality in more than 80% in mice, accompanied by an increase in the number of poly (ADP-ribose) polymerase (PARP)-immunoreactive cells in the heart, kidney and liver. The lethal effect and the increase in the incidence of rupture or PARP-immunoreactive cells induced by the coadministration of methamphetamine and morphine were significantly attenuated by pretreatment with a phospholipase A2 inhibitor or a radical scavenger, or by cooling of body from 30 to 90 min after drug administration. These results suggest that free radicals play an important role in the increased lethality induced by the coadministration of methamphetamine and morphine. Therefore, free radical scavengers and cooling are beneficial for preventing death that is induced by the coadministration of methamphetamine and morphine. These findings may help us better understand for masochistic behavior, which is a clinical phenomenon on SIB, as well as polydrug-abuse-induced acute toxicity.

  8. Lethals induced by γ-radiation in drosophila somatic cells

    International Nuclear Information System (INIS)

    Ivanov, A.I.

    1989-01-01

    Exposure of 3-hour drosophila male embryos to γ-radiation during the topographic segregation of the germ anlage nuclei caused recessive sex-linked lethals in somatic cells only. The selectivity of the screening was determined by the ratio of mutation frequencies induced in embryos and adult males. Analysis of lethal mutations shows that a minimal rate of the divergence between germinal and somatic patterns of the cell development is observed in the embryogenesis, the 3d instar larva and prepupa, and maximal in the 1st and 2nd larva and pupa

  9. Hypoxial death inferred from thermally induced injuries at upper lethal temperatures, in the banded killifish, Fundulus diaphanus (LeSueur)

    Energy Technology Data Exchange (ETDEWEB)

    Rombough, P J; Garside, E T

    1977-10-01

    Banded killifish, Fundulus diaphanus (LeSueur), acclimated to 25/sup 0/C were subjected to upper lethal temperatures using a 10,000 min bioassay procedure. The incipient upper lethal temperature (LT/sub 50/) was about 34.5/sup 0/C. Histologic examination of heat-treated fish revealed no obvious injury to the heart, spleen, trunk musculature, eye, naris, integument, or digestive tract. Thermal stress induced progressive injury to the gills characterized by subepithelial edema, congestion of lamellar capillaries, and delamination of the respiratory epithelium from the pillar cell system. Areas of necrosis were observed in the lobus inferior of the hypothalamus and in the medulla oblongata. The pseudobranch epithelium was necrotic. Fatty change occurred in the liver. Acinar cells of the pancreas appeared autolytic and adjacent blood vessels damaged. Degenerative tubular changes and contracted glomerular tufts were noted in the kidney. The ovary was extremely temperature sensitive and displayed severe injury to oocytes and follicular cells after relatively short exposure to temperatures near the LT/sub 50/. It is proposed that primary thermally induced injury is to the gills. This results in abnormal gas exchange and osmoregulation and leads to pathologic changes in other tissues. Hypoxia of the central nervous system appears to be the ultimate cause of death.

  10. Transplantation of bone marrow cells into lethally irradiated mice

    International Nuclear Information System (INIS)

    Viktora, L.; Hermanova, E.

    1978-01-01

    Morphological changes were studied of megakaryocytes in the bone marrow and spleen of lethally irradiated mice (0.2 C/kg) after transplantation of living bone marrow cells. It was observed that functional trombopoietic megakaryocytes occur from day 15 after transplantation and that functional active megakaryocytes predominate in bone marrow and spleen from day 20. In addition, other types of cells, primarily granulocytes, were detected in some megakaryocytes. (author)

  11. A case of lethal soft tissue injuries due to assault

    Directory of Open Access Journals (Sweden)

    Yanagawa Y

    2012-05-01

    Full Text Available Youichi Yanagawa,1 Yoshimasa Kanawaku,2 Jun Kanetake21Department of Emergency and Disaster Medicine, Juntendo University, Tokyo, 2Department of Forensic Medicine, National Defense Medical College, Saitama, JapanAbstract: A 42-year-old male had been assaulted by his family over the two previous days and went into a deep coma. When the emergency technician arrived, the patient was in a state of cardiopulmonary arrest. On arrival, his electrocardiogram showed asystole. His body showed swelling with subcutaneous hemorrhage, suggesting multiple contusional wounds. Serum biochemistry evaluation revealed blood urea nitrogen of 80 mg/dL, creatinine of 5.99 mg/dL, creatine phosphokinase of 10,094 IU/L, and potassium of 11.0 mEq/L. Advanced cardiopulmonary resuscitation failed to obtain a return of spontaneous circulation. Laboratory findings revealed rhabdomyolysis, renal failure, and hyperkalemia. Autopsy did not indicate the direct cause of death to be traumatic organ injuries. Because trauma was not the direct reason of death, we speculated that the patient died of hyperkalemia induced by multiple contusional soft tissue injuries, following rhabdomyolysis, hemolysis, and acute renal failure. The physician should maintain a high index of suspicion for hyperkalemia induced by rhabdomyolysis and acute renal failure, especially in patients presenting with symptoms of multiple soft tissue injuries with massive subcutaneous hemorrhaging.Keywords: contusion, rhabdomyolysis, renal failure, hyperkalemia

  12. Metformin is synthetically lethal with glucose withdrawal in cancer cells.

    Science.gov (United States)

    Menendez, Javier A; Oliveras-Ferraros, Cristina; Cufí, Sílvia; Corominas-Faja, Bruna; Joven, Jorge; Martin-Castillo, Begoña; Vazquez-Martin, Alejandro

    2012-08-01

    Glucose deprivation is a distinctive feature of the tumor microecosystem caused by the imbalance between poor supply and an extraordinarily high consumption rate. The metabolic reprogramming from mitochondrial respiration to aerobic glycolysis in cancer cells (the "Warburg effect") is linked to oncogenic transformation in a manner that frequently implies the inactivation of metabolic checkpoints such as the energy rheostat AMP-activated protein kinase (AMPK). Because the concept of synthetic lethality in oncology can be applied not only to genetic and epigenetic intrinsic differences between normal and cancer cells but also to extrinsic ones such as altered microenvironment, we recently hypothesized that stress-energy mimickers such as the AMPK agonist metformin should produce metabolic synthetic lethality in a glucose-starved cell culture milieu imitating the adverse tumor growth conditions in vivo. Under standard high-glucose conditions, metformin supplementation mostly caused cell cycle arrest without signs of apoptotic cell death. Under glucose withdrawal stress, metformin supplementation circumvented the ability of oncogenes (e.g., HER2) to protect breast cancer cells from glucose-deprivation apoptosis. Significantly, representative cell models of breast cancer heterogeneity underwent massive apoptosis (by >90% in some cases) when glucose-starved cell cultures were supplemented with metformin. Our current findings may uncover crucial issues regarding the cell-autonomous metformin's anti-cancer actions: (1) The offently claimed clinically irrelevant, non-physiological concentrations needed to observe the metformin's anti-cancer effects in vitro merely underlie the artifactual interference of erroneous glucose-rich experimental conditions that poorly reflect glucose-starved in vivo conditions; (2) the preferential killing of cancer stem cells (CSC) by metformin may simply expose the best-case scenario for its synthetically lethal activity because an increased

  13. Cell lethality after selective irradiation of the DNA replication fork

    International Nuclear Information System (INIS)

    Hofer, K.G.; Warters, R.L.

    1985-01-01

    It has been suggested that nascent DNA located at the DNA replication fork may exhibit enhanced sensitivity to radiation damage. To evaluate this hypothesis, Chinese hamster ovary cells (CHO) were labeled with 125 I-iododeoxyuridine ( 125 IUdR) either in the presence or absence of aphidicolin. Aphidicolin (5 μg/ml) reduced cellular 125 IUdR incorporation to 3-5% of the control value. The residual 125 I incorporation appeared to be restricted to low molecular weight (sub-replicon sized) fragments of DNA which were more sensitive to micrococcal nuclease attack and less sensitive to high salt DNase I digestion than randomly labeled DNA. These findings suggest that DNA replicated in the presence of aphidicolin remains localized at the replication fork adjacent to the nuclear matrix. Based on these observations an attempt was made to compare the lethal consequences of 125 I decays at the replication fork to that of 125 I decays randomly distributed over the entire genome. Regardless of the distribution of decay events, all treatment groups exhibited identical dose-response curves (D 0 : 101 125 I decays/cell). Since differential irradiation of the replication complex did not result in enhanced cell lethality, it can be concluded that neither the nascent DNA nor the protein components (replicative enzymes, nuclear protein matrix) associated with the DNA replication site constitute key radiosensitive targets within the cellular genome. (orig.)

  14. ANOTHER "LETHAL TRIAD"-RISK FACTORS FOR VIOLENT INJURY AND LONG-TERM MORTALITY AMONG ADULT VICTIMS OF VIOLENT INJURY.

    Science.gov (United States)

    Laytin, Adam D; Shumway, Martha; Boccellari, Alicia; Juillard, Catherine J; Dicker, Rochelle A

    2018-04-14

    Mental illness, substance abuse, and poverty are risk factors for violent injury, and violent injury is a risk factor for early mortality that can be attenuated through hospital-based violence intervention programs. Most of these programs focus on victims under the age of 30 years. Little is known about risk factors or long-term mortality among older victims of violent injury. To explore the prevalence of risk factors for violent injury among younger (age < 30 years) and older (age 30 ≥ years) victims of violent injury, to determine the long-term mortality rates in these age groups, and to explore the association between risk factors for violent injury and long-term mortality. Adults with violent injuries were enrolled between 2001 and 2004. Demographic and injury data were recorded on enrollment. Ten-year mortality rates were measured. Descriptive analysis and logistic regression were used to compare older and younger subjects. Among 541 subjects, 70% were over age 30. The overall 10-year mortality rate was 15%, and was much higher than in the age-matched general population in both age groups. Risk factors for violent injury including mental illness, substance abuse, and poverty were prevalent, especially among older subjects, and were each independently associated with increased risk of long-term mortality. Mental illness, substance abuse, and poverty constitute a "lethal triad" that is associated with an increased risk of long-term mortality among victims of violent injury, including both younger adults and those over age 30 years. Both groups may benefit from targeted risk-reduction efforts. Emergency department visits offer an invaluable opportunity to engage these vulnerable patients. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Lethal effect of glucose load on malignant cells

    International Nuclear Information System (INIS)

    Shmakova, N.L.; Yarmonenko, S.P.; Kozubek, S.

    1987-01-01

    Ehrlich ascites tumor (EAT) cells were treated with glucose load under anoxic conditions (for 15 or 60 min) and/or with γ radiation (20 Gy). The efficiency of the treatment was judged from the tumorigenic activity of EAT cell inocula. The markedly increased efficiency of the combined treatment of EAT cells using glucose load in anoxia and γ radiation is due to the additive action of both agents. The glucose load in anoxia leads to extensive desintegration of tumor cells. Further, the lethal effect of various pH values on EAT cells was investigated. Different pH values were obtained by means of both glucose load and phosphate buffers. The effect was investigated by determining the tumorigenic activity of EAT cells tested in vivo in mice and by determining the radiosensitivity of treated EAT cells. The results allowed us to conclude that the same values of pH lead to the same effect on EAT cells independently of the way by which the given pH value was reached. (author). 5 figs., 2 tabs., 12 refs

  16. Inhibiting Bruton's Tyrosine Kinase Rescues Mice from Lethal Influenza Induced Acute Lung Injury.

    Science.gov (United States)

    Florence, Jon M; Krupa, Agnieszka; Booshehri, Laela M; Davis, Sandra A; Matthay, Michael A; Kurdowska, Anna K

    2018-03-08

    Infection with seasonal influenza A virus (IAV) leads to lung inflammation and respiratory failure, a main cause of death in influenza infected patients. Previous experiments in our laboratory indicated that Bruton's tyrosine kinase (Btk) plays a substantial role in regulating inflammation in the respiratory region during acute lung injury (ALI) in mice, therefore we sought to determine if blocking Btk activity had a protective effect in the lung during influenza induced inflammation. A Btk inhibitor (Btk Inh.) Ibrutinib (also known as PCI-32765) was administered intranasally to mice starting 72h after lethal infection with IAV. Our data indicates that treatment with the Btk inhibitor not only reduced weight loss and led to survival, but had a dramatic effect on morphological changes to the lungs of IAV infected mice. Attenuation of lung inflammation indicative of ALI such as alveolar hemorrhage, interstitial thickening, and the presence of alveolar exudate, together with reduced levels of inflammatory mediators TNFα, IL-1β, IL-6, KC, and MCP-1 strongly suggest amelioration of the pathological immune response in the lungs to promote resolution of the infection. Finally, we observed that blocking Btk specifically in the alveolar compartment led to significant attenuation of neutrophil extracellular traps (NET)s released into the lung in vivo, and NET formation in vitro. Our innovative findings suggest that Btk may be a new drug target for influenza induced lung injury, and in general immunomodulatory treatment may be key in treating lung dysfunction driven by excessive inflammation.

  17. Lethal, potentially lethal, and nonlethal damage induction by heavy ions in cultured human cells

    International Nuclear Information System (INIS)

    Todd, P.; Wood, J.C.; Walker, J.T.; Weiss, S.J.

    1985-01-01

    In the fields of high-LET radiotherapy and space radiation safety it is important to know the relative probabilities with which a cell whose nucleus is struck by a heavy ion will be damaged or killed. Experiments were performed in which synchronous cultured human T-1 cells (presumptive HeLa) were irradiated with natural alpha particles of energy approximately 3.5 MeV at various times after mitotic selection up to the middle of S phase. Nuclear-area histograms were determined as a function of time after mitosis under conditions identical to those used for irradiation. The efficiency with which one particle passing through the nucleus killed a cell was found to be 0.14-0.20. This value was extrapolated to experimental cell survival data obtained when asynchronous cultured human cells were irradiated with He, Li, B, C, N, O, Ne, Ar ions of energy 6.58 or 5.5 MeV/amu, and the cell killing efficiency was found to be in the broad range of 0.5-1.0 under single-hit conditions. Similarly irradiated cells were examined for colony-size distribution by an image analysis technique, and it was found that the loss of large colonies was dose and LET-dependent in a systematic way. Dose-response data suggest two predominant subpopulations, resistant and sensitive cells, and it appears that the sensitive population is affected by single-hit kinetics. The single-hit coefficient for the induction of inherited slow growth varied with LET in a similar way to that for survival. The action cross section for this form of heritable damage appears to be comparable to the geometric cross section of the cell nucleus

  18. Penetrating injury to the chest by an attenuated energy projectile: a case report and literature review of thoracic injuries caused by "less-lethal" munitions

    Directory of Open Access Journals (Sweden)

    Porto Leonardo BO

    2009-06-01

    Full Text Available Abstract We present the case of a patient who sustained a penetrating injury to the chest caused by an attenuated energy rubber bullet and review the literature on thoracic injuries caused by plastic and rubber "less-lethal" munitions. The patient of this report underwent a right thoracotomy to extract the projectile as well as a wedge resection of the injured lung parenchyma. This case demonstrates that even supposedly safe riot control munition fired at close range, at the torso, can provoke serious injury. Therefore a thorough investigation and close clinical supervision are justified.

  19. Penetrating injury to the chest by an attenuated energy projectile: a case report and literature review of thoracic injuries caused by "less-lethal" munitions.

    Science.gov (United States)

    Rezende-Neto, Joao; Silva, Fabriccio Df; Porto, Leonardo Bo; Teixeira, Luiz C; Tien, Homer; Rizoli, Sandro B

    2009-06-26

    We present the case of a patient who sustained a penetrating injury to the chest caused by an attenuated energy rubber bullet and review the literature on thoracic injuries caused by plastic and rubber "less-lethal" munitions. The patient of this report underwent a right thoracotomy to extract the projectile as well as a wedge resection of the injured lung parenchyma. This case demonstrates that even supposedly safe riot control munition fired at close range, at the torso, can provoke serious injury. Therefore a thorough investigation and close clinical supervision are justified.

  20. Photoreactivable sector of lethal damage in ultraviolet-irradiated Escherichia coli cells

    International Nuclear Information System (INIS)

    Balgavy, P.

    1976-01-01

    The photoreactivable sector of lethal damage in Escherichia coli Bsub(s-1), Escherichia coli B/r Hcr - and Escherichia coli B/r Hcr + cells after ultraviolet irradiation at 254 nm is 0.823 +- 0.004, 0.70 +- 0.01 and 0.53 +- 0.06, respectively, at 99% confidence limits. For the low values of the photoreactivable sector in the B/r Hcr - and B/r Hcr + strains are likely to be responsible dark repair processes which eliminate lethal damage, brought about by pyrimidine dimers, preferably in comparison with lethal damage caused by photoproducts of another type. (author)

  1. A reliable method for reconstituting thymectomized, lethally irradiated guinea pigs with bone marrow cells

    International Nuclear Information System (INIS)

    Terata, N.; Tanio, Y.; Zbar, B.

    1984-01-01

    The authors developed a reliable method for reconstituting thymectomized, lethally irradiated guinea pigs. Injection of 2.5-10 x 10 7 syngeneic bone marrow cells into adult thymectomized, lethally irradiated guinea pigs produced survival of 46-100% of treated animals. Gentamycin sulfate (5 mg/kg of body weight) for 10 days was required for optimal results. Acidified drinking water (pH 2.5) appeared to be required for optimal results. Thymectomized, lethally irradiated, bone marrow reconstituted ('B') guinea pigs had impaired ability to develop delayed cutaneous hypersensitivity to mycobacterial antigens and cutaneous basophil hypersensitivity to keyhole limpet hemocyanin; proliferative responses to phytohemagglutinin were impaired. (Auth.)

  2. Inactivation of CDK2 is synthetically lethal to MYCN over-expressing cancer cells

    Science.gov (United States)

    Molenaar, Jan J.; Ebus, Marli E.; Geerts, Dirk; Koster, Jan; Lamers, Fieke; Valentijn, Linda J.; Westerhout, Ellen M.; Versteeg, Rogier; Caron, Huib N.

    2009-01-01

    Two genes have a synthetically lethal relationship when the silencing or inhibiting of 1 gene is only lethal in the context of a mutation or activation of the second gene. This situation offers an attractive therapeutic strategy, as inhibition of such a gene will only trigger cell death in tumor cells with an activated second oncogene but spare normal cells without activation of the second oncogene. Here we present evidence that CDK2 is synthetically lethal to neuroblastoma cells with MYCN amplification and over-expression. Neuroblastomas are childhood tumors with an often lethal outcome. Twenty percent of the tumors have MYCN amplification, and these tumors are ultimately refractory to any therapy. Targeted silencing of CDK2 by 3 RNA interference techniques induced apoptosis in MYCN-amplified neuroblastoma cell lines, but not in MYCN single copy cells. Silencing of MYCN abrogated this apoptotic response in MYCN-amplified cells. Inversely, silencing of CDK2 in MYCN single copy cells did not trigger apoptosis, unless a MYCN transgene was activated. The MYCN induced apoptosis after CDK2 silencing was accompanied by nuclear stabilization of P53, and mRNA profiling showed up-regulation of P53 target genes. Silencing of P53 rescued the cells from MYCN-driven apoptosis. The synthetic lethality of CDK2 silencing in MYCN activated neuroblastoma cells can also be triggered by inhibition of CDK2 with a small molecule drug. Treatment of neuroblastoma cells with roscovitine, a CDK inhibitor, at clinically achievable concentrations induced MYCN-dependent apoptosis. The synthetically lethal relationship between CDK2 and MYCN indicates CDK2 inhibitors as potential MYCN-selective cancer therapeutics. PMID:19525400

  3. Reproductive-phase and interphase lethal cell damage after irradiation and treatment with cytostatics

    International Nuclear Information System (INIS)

    Hagemann, G.

    1979-01-01

    After X-ray irradiation of manual cells, two lethal fractions occur due to reproductive and interphase death under low and high radiation doses. The damage kinetics on which this fact is based is compared with hypothetical tumour frequencies and leucemia induction caused in experiments. The reproductive-lethal damage can be manifested by means of colony size spectrometry, with the median colony size class differences (MCD) serving as measure for the damage found. The simultaneous effects of the cytostatics BLEOMYCIN or ICRF 159 and X-rays on reproductive lethal and interphase-lethal damage are measured by means of MCD and survival fraction, and the additive and intensifying effect' is judged with the help of suitably defined terms. This shows that the clinically used ICRF 159 has an additive effect on interphase-lethal and a sub-additive effect on reproductive-lethal cell damage. Thus, favourable results may be expected for the electivity factor in fractionated irradiation and with regard to delayed damage in healthy tissue. (orig.) 891 MG/orig. 892 RDG [de

  4. Soluble factor(s) from bone marrow cells can rescue lethally irradiated mice by protecting endogenous hematopoietic stem cells.

    Science.gov (United States)

    Zhao, Yi; Zhan, Yuxia; Burke, Kathleen A; Anderson, W French

    2005-04-01

    Ionizing radiation-induced myeloablation can be rescued via bone marrow transplantation (BMT) or administration of cytokines if given within 2 hours after radiation exposure. There is no evidence for the existence of soluble factors that can rescue an animal after a lethal dose of radiation when administered several hours postradiation. We established a system that could test the possibility for the existence of soluble factors that could be used more than 2 hours postirradiation to rescue animals. Animals with an implanted TheraCyte immunoisolation device (TID) received lethal-dose radiation and then normal bone marrow Lin- cells were loaded into the device (thereby preventing direct interaction between donor and recipient cells). Animal survival was evaluated and stem cell activity was tested with secondary bone marrow transplantation and flow cytometry analysis. Donor cell gene expression of five antiapoptotic cytokines was examined. Bone marrow Lin- cells rescued lethally irradiated animals via soluble factor(s). Bone marrow cells from the rescued animals can rescue and repopulate secondary lethally irradiated animals. Within the first 6 hours post-lethal-dose radiation, there is no significant change of gene expression of the known radioprotective factors TPO, SCF, IL-3, Flt-3 ligand, and SDF-1. Hematopoietic stem cells can be protected in lethally irradiated animals by soluble factors produced by bone marrow Lin- cells.

  5. Pedigree analyses of yeast cells recovering from DNA damage allow assignment of lethal events to individual post-treatment generations

    International Nuclear Information System (INIS)

    Klein, F.; Karwan, A.; Wintersberger, U.

    1990-01-01

    Haploid cells of Saccharomyces cerevisiae were treated with different DNA damaging agents at various doses. A study of the progeny of individual such cells allowed the assignment of lethal events to distinct post treatment generations. By microscopically inspecting those cells which were not able to form visible colonies the authors could discriminate between cells dying from immediately effective lethal hits and those generating microcolonies probably as a consequence of lethal mutation(s). The experimentally obtained numbers of lethal events were mathematically transformed into mean probabilities of lethal fixations at taking place in cells of certain post treatment generations. Such analyses give detailed insight into the kinetics of lethality as a consequence of different kinds of DNA damage. For example, X-irradiated cells lost viability mainly by lethal hits, only at a higher dose also lethal mutations fixed in the cells that were in direct contact with the mutagen, but not in later generations, occurred. Ethyl methanesulfonate (EMS)-treated cells were hit by 00-fixations in a dose dependent manner. The distribution of all sorts of lethal fixations taken together, which occurred in the EMS-damaged cell families, was not random. For comparison analyses of cells treated with methyl methanesulfonate, N-methyl-N'-nitro-N-nitrosoguanidine and nitrous acid are also reported

  6. Does the declining lethality of gunshot injuries mask a rising epidemic of gun violence in the United States?

    Science.gov (United States)

    Jena, Anupam B; Sun, Eric C; Prasad, Vinay

    2014-07-01

    Recent mass shootings in the U.S. have reignited the important public health debate concerning measures to decrease the epidemic of gun violence. Editorialists and gun lobbyists have criticized the recent focus on gun violence, arguing that gun-related homicide rates have been stable in the last decade. While true, data from the U.S. Centers for Disease Control and Prevention also demonstrate that although gun-related homicide rates were stable between 2002 and 2011, rates of violent gunshot injuries increased. These seemingly paradoxical trends may reflect the declining lethality of gunshot injuries brought about by surgical advances in the care of the patient with penetrating trauma. Focusing on gun-related homicide rates as a summary statistic of gun violence, rather than total violent gunshot injuries, can therefore misrepresent the rising epidemic of gun violence in the U.S.

  7. Damage to E. coli cells induced by tritium decay: secondary lethality under nongrowth conditions

    International Nuclear Information System (INIS)

    Koukalova, B.; Kuhrova, V.

    1980-01-01

    Cells containing incorporated 3 H-thymidine are damaged by its decay. It was found with E.coli TAU-bar cells that a small part of the damage is lethal whereas most of it is reparable and only potentially lethal. If cells are subjected to nongrowth conditions, the potentially lethal damage changes to lethal damage. This process is called secondary lethality (SL). The extent of SL and some changes in DNA under three different modes of growth inhibition were determined. It was found that: (i) SL is maximal under conditions of amino acid starvation (-AA), the viable count decreasing by two orders of magnitude. (ii) SL is 4 times lower in the presence of chloramphenicol (-AA+CLP) and 6.5 times lower under +AA+CLP conditions. Changes in the sedimentation rate of DNA determined in alkaline sucrose gradient correlate with the differences in SL: under -AA conditions the sedimentation rate of DNA decreases whereas in the presence of CLP no decrease occurs. The results suggest that certain enzymatic processes take place under -AA conditions which lead to irreparable changes in DNA. (author)

  8. Damage to E. coli cells induced by tritium decay: secondary lethality under nongrowth conditions

    Energy Technology Data Exchange (ETDEWEB)

    Koukalova, B; Kuhrova, V [Ceskoslovenska Akademie Ved, Brno. Biofysikalni Ustav

    1980-05-01

    Cells containing incorporated /sup 3/H-thymidine are damaged by its decay. It was found with E.coli TAU-bar cells that a small part of the damage is lethal whereas most of it is reparable and only potentially lethal. If cells are subjected to nongrowth conditions, the potentially lethal damage changes to lethal damage. This process is called secondary lethality (SL). The extent of SL and some changes in DNA under three different modes of growth inhibition were determined. It was found that: (i) SL is maximal under conditions of amino acid starvation (-AA), the viable count decreasing by two orders of magnitude. (ii) SL is 4 times lower in the presence of chloramphenicol (-AA+CLP) and 6.5 times lower under +AA+CLP conditions. Changes in the sedimentation rate of DNA determined in alkaline sucrose gradient correlate with the differences in SL: under -AA conditions the sedimentation rate of DNA decreases whereas in the presence of CLP no decrease occurs. The results suggest that certain enzymatic processes take place under -AA conditions which lead to irreparable changes in DNA.

  9. Lethal Area 50 in Patients with Burn Injuries in North West, Iran

    Directory of Open Access Journals (Sweden)

    Ahmad Mirza Aghazadeh

    2018-03-01

    Full Text Available Introduction: In view of their considerably high rates of mortality and morbidity, burns are still viewed as one of the most important health-threatening environmental hazards imposing a significant burden on the health care system in low and middle-income countries. This study seeks to determine the lethal area fifty percent (LA50 in all burn patients admitted over a period of five years and the factors influencing mortality in burn injuries. Methods: This study was a cross-sectional carried out from 2010 to 2014 in Sina Hospital of Tabriz, 1226 participant including 319 women, 346 men, 272 girls, and 289 boys were selected through stratified sampling. The demographic and clinical data of patients ( their age, gender, burn type, TBSA, the season and consequences of burning were all extracted and then analyzed, using descriptive statistics (measures of central tendency and variability and inferential statistics(chi-square and linear regressionat a significance level of 0.05. The LA50 was calculated through determining the relationship between the total body surface area and mortality rate (The extent of the body burns measured and recorded based on Lando Chart in hospitals. Results: The highest (47.6% and the lowest (3.8% rates of burns were observed among those aged below 16 and above 65, respectively. The majority of the participants were residents of cities (55.4%, married (34.6%, illiterate (56.6%, and housewives (14.8%. Most burns were caused by accidents (98.4% at home (90.6%. Most patients had suffered first- and second-degree burns (68.4%, with no inhalation damages (99.5%. Hot liquids were the main culprit in most of the burns (58.7% and the upper extremities were the most frequently affected areas (34.8%. There was .99 rise in mortality for every percent increase in TBSA, and there seemed to be a significant relationship between the age level and the eventual outcome- the higher the age, the more likely for the incident to end in death

  10. Quantitative aspects of repair of potentially lethal damage in mammalian cells

    International Nuclear Information System (INIS)

    Iliakis, G.; Pohlit, W.

    1979-01-01

    Stationary cultures of Ehrlich ascites tumour cells were irradiated with X-rays and then immediately or after a time interval tsub(rep) plated to measure the survival. The increase in survival observed after delayed plating was interpreted as repair of potentially lethal damage. A cybernetic model was used to analyse these data. Three states of damage were assumed for the cells. In state A the cells could grow to macrocolonies, in state B the cells suffered potentially lethal damage and could grow to macrocolonies only if they were allowed to repair the damage and in state C the cells were lethally damaged. A method of deriving the values of the parameters of the model from the experimental data was given. The dependence of the reaction rate constant of the repair potentially lethal damage on the dose D was used to derive a possible mechanism for the production of the shoulder in the dose effect curve. Finally this model was compared with other models of radiation action in living cells. (author)

  11. Lethal impacts of cigarette smoke in cultured tobacco cells

    Directory of Open Access Journals (Sweden)

    Kawano Tomonori

    2011-07-01

    Full Text Available Abstract Background In order to understand and generalize the toxic mechanism of cigarette smoke in living cells, comparison of the data between animal systems and other biological system such as microbial and plant systems is highly beneficial. Objective By employing the tobacco cells as model materials for cigarette smoke toxicity assay, the impacts of the combustion by-products such as nitrogen oxides could be highlighted as the toxic impacts of the plant-derived endogenous chemicals could be excluded in the plant cells. Methods Cigarette smoke-induced cell death was assessed in tobacco cell suspension cultures in the presence and absence of pharmacological inhibitors. Results Cigarette smoke was effective in induction of cell death. The smoke-induced cell death could be partially prevented by addition of nitric oxide (NO scavenger, suggesting the role for NO as the cell death mediator. Addition of NO donor to tobacco cells also resulted in development of partial cell death further confirming the role of NO as cell death mediator. Members of reactive oxygen species and calcium ion were shown to be protecting the cells from the toxic action of smoke-derived NO.

  12. Plasma microRNA profiles distinguish lethal injury in acetaminophen toxicity: A research study

    Institute of Scientific and Technical Information of China (English)

    Jeanine Ward; Shashi Bala; Jan Petrasek; Gyongyi Szabo

    2012-01-01

    AIM:To investigate plasma microRNA (miRNA) profiles indicative of hepatotoxicity in the setting of lethal acetaminophen (APAP) toxicity in mice.METHODS:Using plasma from APAP poisoned mice,either lethally (500 mg/kg) or sublethally (150 mg/kg) dosed,we screened commercially available murine microRNA libraries (SABiosciences,Qiagen Sciences,MD) to evaluate for unique miRNA profiles between these two dosing parameters.RESULTS:We distinguished numerous,unique plasma miRNAs both up- and downregulated in lethally compared to sublethally dosed mice.Of note,many of the greatest up- and downregulated miRNAs,namely 574-5p,466g,466f-3p,375,29c,and 148a,have been shown to be associated with asthma in prior studies.Interestingly,a relationship between APAP and asthma has been previously well described in the literature,with an as yet unknown mechanism of pathology.There was a statistically significant increase in alanine aminotransferase levels in the lethal compared to sublethal APAP dosing groups at the 12 h time point (P <0.001).There was 90% mortality in the lethally compared to sublethally dosed mice at the 48 h time point (P =0.011).CONCLUSION:We identified unique plasma miRNAs both up- and downregulated in APAP poisoning which are correlated to asthma development.

  13. Nonlinear Dynamic Theory of Acute Cell Injuries and Brain Ischemia

    Science.gov (United States)

    Taha, Doaa; Anggraini, Fika; Degracia, Donald; Huang, Zhi-Feng

    2015-03-01

    Cerebral ischemia in the form of stroke and cardiac arrest brain damage affect over 1 million people per year in the USA alone. In spite of close to 200 clinical trials and decades of research, there are no treatments to stop post-ischemic neuron death. We have argued that a major weakness of current brain ischemia research is lack of a deductive theoretical framework of acute cell injury to guide empirical studies. A previously published autonomous model based on the concept of nonlinear dynamic network was shown to capture important facets of cell injury, linking the concept of therapeutic to bistable dynamics. Here we present an improved, non-autonomous formulation of the nonlinear dynamic model of cell injury that allows multiple acute injuries over time, thereby allowing simulations of both therapeutic treatment and preconditioning. Our results are connected to the experimental data of gene expression and proteomics of neuron cells. Importantly, this new model may be construed as a novel approach to pharmacodynamics of acute cell injury. The model makes explicit that any pro-survival therapy is always a form of sub-lethal injury. This insight is expected to widely influence treatment of acute injury conditions that have defied successful treatment to date. This work is supported by NIH NINDS (NS081347) and Wayne State University President's Research Enhancement Award.

  14. An Immature Myeloid/Myeloid-Suppressor Cell Response Associated with Necrotizing Inflammation Mediates Lethal Pulmonary Tularemia.

    Directory of Open Access Journals (Sweden)

    Sivakumar Periasamy

    2016-03-01

    Full Text Available Inhalation of Francisella tularensis (Ft causes acute and fatal pneumonia. The lung cytokine milieu favors exponential Ft replication, but the mechanisms underlying acute pathogenesis and death remain unknown. Evaluation of the sequential and systemic host immune response in pulmonary tularemia reveals that in contrast to overwhelming bacterial burden or cytokine production, an overt innate cellular response to Ft drives tissue pathology and host mortality. Lethal infection with Ft elicits medullary and extra-medullary myelopoiesis supporting recruitment of large numbers of immature myeloid cells and MDSC to the lungs. These cells fail to mature and die, leading to subsequent necrotic lung damage, loss of pulmonary function, and host death that is partially dependent upon immature Ly6G+ cells. Acceleration of this process may account for the rapid lethality seen with Ft SchuS4. In contrast, during sub-lethal infection with Ft LVS the pulmonary cellular response is characterized by a predominance of mature neutrophils and monocytes required for protection, suggesting a required threshold for lethal bacterial infection. Further, eliciting a mature phagocyte response provides transient, but dramatic, innate protection against Ft SchuS4. This study reveals that the nature of the myeloid cell response may be the primary determinant of host mortality versus survival following Francisella infection.

  15. An Immature Myeloid/Myeloid-Suppressor Cell Response Associated with Necrotizing Inflammation Mediates Lethal Pulmonary Tularemia

    Science.gov (United States)

    Periasamy, Sivakumar; Avram, Dorina; McCabe, Amanda; MacNamara, Katherine C.; Sellati, Timothy J.; Harton, Jonathan A.

    2016-01-01

    Inhalation of Francisella tularensis (Ft) causes acute and fatal pneumonia. The lung cytokine milieu favors exponential Ft replication, but the mechanisms underlying acute pathogenesis and death remain unknown. Evaluation of the sequential and systemic host immune response in pulmonary tularemia reveals that in contrast to overwhelming bacterial burden or cytokine production, an overt innate cellular response to Ft drives tissue pathology and host mortality. Lethal infection with Ft elicits medullary and extra-medullary myelopoiesis supporting recruitment of large numbers of immature myeloid cells and MDSC to the lungs. These cells fail to mature and die, leading to subsequent necrotic lung damage, loss of pulmonary function, and host death that is partially dependent upon immature Ly6G+ cells. Acceleration of this process may account for the rapid lethality seen with Ft SchuS4. In contrast, during sub-lethal infection with Ft LVS the pulmonary cellular response is characterized by a predominance of mature neutrophils and monocytes required for protection, suggesting a required threshold for lethal bacterial infection. Further, eliciting a mature phagocyte response provides transient, but dramatic, innate protection against Ft SchuS4. This study reveals that the nature of the myeloid cell response may be the primary determinant of host mortality versus survival following Francisella infection. PMID:27015566

  16. Giant cell phlebitis: a potentially lethal clinical entity.

    Science.gov (United States)

    Kunieda, Takeshige; Murayama, Masanori; Ikeda, Tsuneko; Yamakita, Noriyoshi

    2012-08-01

    An 83-year-old woman presented to us with a 4-week history of general malaise, subjective fever and lower abdominal pain. Despite the intravenous infusion of antibiotics, her blood results and physical condition worsened, resulting in her sudden death. Autopsy study revealed that the medium-sized veins of the mesentery were infiltrated by eosinophil granulocytes, lymphocytes, macrophages and multinucleated giant cells; however, the arteries were not involved. Microscopically, venous giant cell infiltration was observed in the gastrointestinal tract, bladder, retroperitoneal tissues and myocardium. The final diagnosis was giant cell phlebitis, a rare disease of unknown aetiology. This case demonstrates for the first time that giant cell phlebitis involving extra-abdominal organs, including hearts, can cause serious morbidity.

  17. Cell membranes in radiation injury

    International Nuclear Information System (INIS)

    Koeteles, G.J.

    1986-01-01

    Cell membrane-related phenomena caused by low linear energy transfer radiation with doses lower than those producing cell killing are outlined. Micromorphological alterations as well as functional activities appearing with the receptors and in binding sites render it possible to reveal early and temporary changes. The cell injuries are suggested to transfer damaging conditions to surviving cells and to contribute to further development of non-stochastic effects in tissues

  18. Functional and morphological recovery of the T-cell compartment in lethally irradiated and reconstituted mice

    International Nuclear Information System (INIS)

    Kraal, G.; Hilst, B. van der; Boden, D.

    1979-01-01

    The recovery of the T-cell compartment in mice after lethal irradiation and reconstitution was studied using functional and morphological parameters. T-helper cell activity, determined by the direct SRBC-plaque-forming cell (PFC) response, recovered in a similar fashion as T-memory function which was studied by adoptive transfer of carrier-primed cells. Both functions returned to control levels in 2.5 to 3 months. Using immunoperoxidase staining of frozen sections with anti-T cell serum, the morphological recovery of the T-cell dependent areas in the white pulp of the spleen could be studied and compared with the functional recovery. (author)

  19. A linear-quadratic model of cell survival considering both sublethal and potentially lethal radiation damage

    International Nuclear Information System (INIS)

    Rutz, H.P.; Coucke, P.A.; Mirimanoff, R.O.

    1991-01-01

    The authors assessed the dose-dependence of repair of potentially lethal damage in Chinese hamster ovary cells x-irradiated in vitro. The recovery ratio (RR) by which survival (SF) of the irradiated cells was enhanced increased exponentially with a linear and a quadratic component namely ζ and ψ: RR=exp(ζD+ψD 2 ). Survival of irradiated cells can thus be expressed by a combined linear-quadratic model considering 4 variables, namely α and β for the capacity of the cells to accumulate sublethal damage, and ζ and ψ for their capacity to repair potentially lethal damage: SF=exp((ζ-α)D+ (ψ-β)D 2 ). author. 26 refs.; 1 fig.; 1 tab

  20. Role of marrow architecture and stromal cells in the recovery process of aplastic marrow of lethally irradiated rats parabiosed with healthy litter mates

    International Nuclear Information System (INIS)

    Hayashi, K.; Kagawa, K.; Awai, M.; Irino, S.

    1986-01-01

    Bone marrow aplasia was induced in rats by whole body lethal irradiation (1,000 rads by x-ray), and rats died of irradiation injury within 7 days. Correlative studies at light (LM), transmission (TEM) and scanning electron microscopy (SEM) demonstrated swelling of endothelial and reticular cells and hemorrhage due to detachment of sinus endothelial cells on days 1 and 2. With time, structural recovery occurred without hemopoietic recovery. Reticular cells developed small intracytoplasmic lipid droplets on days 3 and 4. This resulted in fatty aplastic marrow within 7 days. On the other hand, in the marrow of irradiated rats parabiosed with healthy mates by aortic anastomosis, hemopoiesis was initiated by adhesion of nucleated blood cells to fine cytoplasmic pseudopods of fat-stored cells on days 1 and 2 after parabiosis. On days 3 to 5, reticular cells with large lipid droplets and fine pseudopods increased, then hemopoietic foci became clear and extensive. On day 8 after parabiosis, the aplastic bone marrow recovered completely both its structure and hemopoietic activity. Thus, hemopoietic recovery in lethally irradiated marrow begins with recovery of vascular endothelial cells, re-establishment of sinusoidal structure, and morphological and functional recoveries of reticular cells from fat-storage cells by releasing intracytoplasmic lipid droplets. Marrow stromal cells, namely reticular, fat-storage and fibroblastoid cells, share a common cellular origin, and regain their structure and function when fat-storage cells and fibroid cells are placed in contact with hemopoietic precursor cells

  1. Arrest of irradiated G1, S, or G2 cells at mitosis using nocodazole promotes repair of potentially lethal damage

    International Nuclear Information System (INIS)

    Iliakis, G.; Nuesse, M.

    1984-01-01

    The ability of synchronized Ehrlich ascites tumor cells, irradiated in G1, S, and G2 phases, to repair potentially lethal damage when arrested at mitosis by using 0.4 μg/ml nocodazole, a specific inhibitor of microtubule polymerization, has been studied. Cells irradiated in these phases were found to repair potentially lethal damage at mitosis. The extent of this repair was similar to that observed for cells irradiated at the same stages in the cell cycle but allowed to repair potentially lethal damage by incubating in balanced salt solution for 6 hr after X irradiation

  2. The role of cell progression in potentiation of radiation lethality by hyperthermia and by chemical means

    International Nuclear Information System (INIS)

    Djordjevic, B.; Lange, C.S.

    1984-01-01

    Aerobic stationary dense cultures of HeLa cells show very little potentiation of radiation lethality when irradiated cells are incubated with procaine HCl for two hours at 37 0 C, but if cells are diluted in fresh medium after irradiation and incubated for two hours with procaine, a high degree of radiopotentiation is obtained. This effect is not cell density dependent, since the addition of heavily irradiated cells to achieve comparable densities did not diminish lethality in the diluted culture. Procaine radiopotentiation at 37 0 C could be prevented by simultaneous administration with procaine of the protein synthesis inhibitor cycloheximide. Since cycloheximide inhibits cell cycle progression (with block points in G1 and G2) progression is strongly implicated in the phenomenon of radiopotentiation. Cell progression may be also involved in hyperthermic radiopotentiation: adding cycloheximide during heating of irradiated cells at 41 0 C for two hours increased survival. This effect of cycloheximide is even more pronounced in cells also treated with procaine during heating, thus diminishing the interaction of heat and procaine in radiopotentiation. Data pertaining to cell progression in synchronous cultures of HeLa cells under various treatment conditions are presented and discussed

  3. Penetrating Obturator Artery Injury after Gunshot Wounds: A Successful Multidisciplinary Trauma Team Approach to a Potentially Lethal Injury.

    Science.gov (United States)

    Maraqa, Tareq I; Shin, Ji-Sun J; Diallo, Ismael; Sachwani-Daswani, Gul R; Mercer, Leo C

    2017-11-17

    Obturator artery injury (OAI) from pelvic gunshot wounds (GSW) is a rarely reported condition. Hemorrhages from pelvic trauma (PT) are mostly venous. Arterial hemorrhages represent about 10-20% of PTs. When arterial hemorrhages from PT occur, they are a severe and deadly complication often causing significant hemodynamic instability and eventual shock. A  23-year-old male presented to our emergency service via a private vehicle with multiple gunshot wounds to both thighs and to the lower back, resulted in rectal and obturator artery (OA) injuries. The patient underwent a successful coil-embolization of the right OA. Given the density of structures within the pelvis, patients who sustain gunshot wounds to the pelvic region are at high risk for injury to the small bowel, sigmoid colon, rectum, bladder, and/or vascular structures. While bleeding is the major cause of early mortality in PT, rectal injuries carry the highest mortality due to visceral injuries. A high clinical index of suspicion is needed to diagnose an iliac artery injury or injury to its branches. Prompt computed tomographic angiogram (CTA) and embolization of the OA is the best method to control and stop the bleeding and improve the mortality outcome. Clinicians caring for patients presenting with pelvic gunshot wounds should pay attention to the delayed presentation of internal hemorrhage from the OAs. A multidisciplinary team approach is crucial in the successful management of penetrating injuries to the obturator artery.

  4. Reprodaetion of an animal model of multiple intestinal injuries mimicking "lethal triad" caused by severe penetrating abdominal trauma

    Directory of Open Access Journals (Sweden)

    Peng-fei WANG

    2011-03-01

    Full Text Available Objective To reproduce an animal model of multi-intestinal injuries with "lethal triad" characterized by low body temperature,acidosis and coagulopathy.Methods Six female domestic outbred pigs were anesthetized,and the carotid artery and jugular vein were cannulated for monitoring the blood pressure and heart rate and for infusion of fluid.The animals were shot with a gun to create a severe penetrating abdominal trauma.Immediately after the shooting,50% of total blood volume(35ml/kg hemorrhage was drawn from the carotid artery in 20min.After a 40min shock period,4h of pre-hospital phase was mimicked by normal saline(NS resuscitation to maintain systolic blood pressure(SBP > 80mmHg or mean arterial pressure(MAP > 60mmHg.When SBP > 80mmHg or MAP > 60mmHg,no fluid infusion or additional bleeding was given.Hemodynamic parameters were recorded,and pathology of myocardium,lung,small intestine and liver was observed.Results There were multiple intestinal perforations(8-10 site injuries/pig leading to intra-abdominal contamination,mesenteric injury(1-2 site injuries/pig resulted in partial intestinal ischemia and intra-abdominal hemorrhage,and no large colon and mesenteric vascular injury.One pig died before the completion of the model establishment(at the end of pre-hospital resuscitation.The typical symptoms of trauma-induced hemorrhagic shock were observed in survival animals.Low temperature(33.3±0.5℃,acidosis(pH=7.242±0.064,and coagulopathy(protrombin time and activated partial thromboplasting time prolonged were observed after pre-hospital resuscitation.Pathology showed that myocardium,lung,small intestine and liver were severely injured.Conclusions A new model,simulating three stages of "traumatic hemorrhagic shock,pre-hospital recovery and hospital treatment" and inducing the "lethal triad" accompanied with abdominal pollution,has been successfully established.This model has good stability and high reproducibility.The survival animals can be

  5. Transition of a Combined Toxic Gas Lethality Model to an Injury Model

    National Research Council Canada - National Science Library

    Stuhmiller, James

    1997-01-01

    Acute exposure to toxic gases under militarily relevant conditions differs dramatically from the long-term, low-dose exposure conditions for which most toxic gas injury criteria have been developed...

  6. B cells are not essential for Lactobacillus-mediated protection against lethal pneumovirus infection*

    OpenAIRE

    Percopo, Caroline M.; Dyer, Kimberly D.; Garcia-Crespo, Katia E.; Gabryszewski, Stanislaw J.; Shaffer, Arthur L.; Domachowske, Joseph B.; Rosenberg, Helene F.

    2014-01-01

    We have shown previously that priming of respiratory mucosa with live Lactobacillus species promotes robust and prolonged survival from an otherwise lethal infection with pneumonia virus of mice (PVM), a property known as heterologous immunity. Lactobacillus-priming results in a moderate reduction in virus recovery and a dramatic reduction in virus-induced proinflammatory cytokine production; the precise mechanisms underlying these findings remain to be elucidated. As B cells have been shown ...

  7. Cytoplasmic superoxide dismutase and catalase activity and resistance to radiation lethality in murine tumor cells

    International Nuclear Information System (INIS)

    Davy, C.A.; Tesfay, Z.; Jones, J.; Rosenberg, R.C.; McCarthy, C.; Rosenberg, S.O.

    1986-01-01

    Reduced species of molecular oxygen are produced by the interaction of ionizing radiation with aqueous solutions containing molecular oxygen. The enzymes catalase and superoxide dismutase (SOD) are thought to function in vivo as scavengers of metabolically produced peroxide and superoxide respectively. SOD has been shown to protect against the lethal effects of ionizing radiation in vitro and in vivo. The authors have investigated the relationship between the cytosolic SOD catalase content and the sensitivity to radiation lethality of a number of murine cell lines (402AX, EL-4, MB-2T3, MB-4, MEL, P-815, SAI, SP-2, and SV-3T3). K/sub i/(CN - ) for murine Cu-Zn-SOD was determined to be 6.8 x 10 -6 M. No cytosolic Mn-SOD activity was found in any of the cell lines studied. No correlation was found between the cytosolic Cu-Zn-SOD or cytosolic catalase activity and the resistance to radiation lethality or the murine cell lines studied

  8. The role of pH in lethal effect of glucose load malignant cells

    International Nuclear Information System (INIS)

    Shmakova, N.L.; Yarmonenko, S.P.; Laser, K.; Fomenkova, T.E.; Kozubek, S.; Korogodin, V.I.

    1985-01-01

    The lethal effect of variuos pH values on Erlich ascites tumour (EAT) calls has been investigated. Different pH values were obtained by means of both glucose load and phosphate buffers. The effect has been investigated by observing cell death in vitro, determining cancerogenity of EAT cells and determining their radiosensitivity. The results of all methods enabled us to conclude that the same values of pH lead to the same effect on EAT cells independently of the way by which the given pH value was reached. The lethal effect markedly increased when the value of pH was lower than 5.6. It is concluded that the basis of the mechanism of glucose load lethal effect is their ''self-acidisation''. The measurement of pH in tumours is proposed as a basic test for determining the suitability of the use of hyperglycemia in clinics and for comparison of the efficiency of various modes of treatment

  9. B cells are not essential for Lactobacillus-mediated protection against lethal pneumovirus infection*

    Science.gov (United States)

    Percopo, Caroline M.; Dyer, Kimberly D.; Garcia-Crespo, Katia E.; Gabryszewski, Stanislaw J.; Shaffer, Arthur L.; Domachowske, Joseph B.; Rosenberg, Helene F.

    2014-01-01

    We have shown previously that priming of respiratory mucosa with live Lactobacillus species promotes robust and prolonged survival from an otherwise lethal infection with pneumonia virus of mice (PVM), a property known as heterologous immunity. Lactobacillus-priming results in a moderate reduction in virus recovery and a dramatic reduction in virus-induced proinflammatory cytokine production; the precise mechanisms underlying these findings remain to be elucidated. As B cells have been shown to promote heterologous immunity against respiratory virus pathogens under similar conditions, here we explore the role of B cells in Lactobacillus-mediated protection against acute pneumovirus infection. We found that Lactobacillus-primed mice feature elevated levels of airway immunoglobulins IgG, IgA and IgM and lung tissues with dense, B cell (B220+) enriched peribronchial and perivascular infiltrates with germinal centers consistent with descriptions of bronchus-associated lymphoid tissue. No B cells were detected in lung tissue of Lactobacillus-primed B-cell deficient μMT mice or Jh mice, and Lactobacillus-primed μMT mice had no characteristic infiltrates or airway immunoglobulins. Nonetheless, we observed diminished virus recovery and profound suppression of virus-induced proinflammatory cytokines CCL2, IFN-gamma, and CXCL10 in both wild-type and Lactobacillus-primed μMT mice. Furthermore, L. plantarum-primed, B-cell deficient μMT and Jh mice were fully protected from an otherwise lethal PVM infection, as were their respective wild-types. We conclude that B cells are dispensable for Lactobacillus-mediated heterologous immunity and were not crucial for promoting survival in response to an otherwise lethal pneumovirus infection. PMID:24748495

  10. B cells are not essential for Lactobacillus-mediated protection against lethal pneumovirus infection.

    Science.gov (United States)

    Percopo, Caroline M; Dyer, Kimberly D; Garcia-Crespo, Katia E; Gabryszewski, Stanislaw J; Shaffer, Arthur L; Domachowske, Joseph B; Rosenberg, Helene F

    2014-06-01

    We have shown previously that priming of respiratory mucosa with live Lactobacillus species promotes robust and prolonged survival from an otherwise lethal infection with pneumonia virus of mice, a property known as heterologous immunity. Lactobacillus priming results in a moderate reduction in virus recovery and a dramatic reduction in virus-induced proinflammatory cytokine production; the precise mechanisms underlying these findings remain to be elucidated. Because B cells have been shown to promote heterologous immunity against respiratory virus pathogens under similar conditions, in this study we explore the role of B cells in Lactobacillus-mediated protection against acute pneumovirus infection. We found that Lactobacillus-primed mice feature elevated levels of airway Igs IgG, IgA, and IgM and lung tissues with dense, B cell (B220(+))-enriched peribronchial and perivascular infiltrates with germinal centers consistent with descriptions of BALT. No B cells were detected in lung tissue of Lactobacillus-primed B cell deficient μMT mice or Jh mice, and Lactobacillus-primed μMT mice had no characteristic infiltrates or airway Igs. Nonetheless, we observed diminished virus recovery and profound suppression of virus-induced proinflammatory cytokines CCL2, IFN-γ, and CXCL10 in both wild-type and Lactobacillus-primed μMT mice. Furthermore, Lactobacillus plantarum-primed, B cell-deficient μMT and Jh mice were fully protected from an otherwise lethal pneumonia virus of mice infection, as were their respective wild-types. We conclude that B cells are dispensable for Lactobacillus-mediated heterologous immunity and were not crucial for promoting survival in response to an otherwise lethal pneumovirus infection.

  11. Pluripotent stem cells with normal or reduced self renewal survive lethal irradiation

    International Nuclear Information System (INIS)

    Brecher, G.; Neben, S.; Yee, M.; Bullis, J.; Cronkite, E.P.

    1988-01-01

    Transfusion with 10,000 or 20,000 marrow cells resulted in 30+ days survival of 15%-50% of mice exposed to an Ld90 or LD100 or radiation. The use of congenic mice with alloenzyme markers permitted the identification of host and donor cells in the peripheral blood of transfused animals. Donor cells were present initially in all hosts. Between 55% and 92% of the animals became 100% host type by 12-24 weeks after transfusion in three separate experiments. To explore whether the temporary repopulation by donor cells was due to short-lived stem cells, the marrows of several primary hosts were transfused into secondary, lethally irradiated hosts. Some of the retransplanted primary donor and host cells persisted only temporarily. It is suggested that some of the donor stem cells in both the primary and secondary hosts had an intrinsically shortened life span

  12. Non-lethal heat treatment of cells results in reduction of tumor initiation and metastatic potential

    International Nuclear Information System (INIS)

    Kim, Yoo-Shin; Lee, Tae Hoon; O'Neill, Brian E.

    2015-01-01

    Non-lethal hyperthermia is used clinically as adjuvant treatment to radiation, with mixed results. Denaturation of protein during hyperthermia treatment is expected to synergize with radiation damage to cause cell cycle arrest and apoptosis. Alternatively, hyperthermia is known to cause tissue level changes in blood flow, increasing the oxygenation and radiosensitivity of often hypoxic tumors. In this study, we elucidate a third possibility, that hyperthermia alters cellular adhesion and mechanotransduction, with particular impact on the cancer stem cell population. We demonstrate that cell heating results in a robust but temporary loss of cancer cell aggressiveness and metastatic potential in mouse models. In vitro, this heating results in a temporary loss in cell mobility, adhesion, and proliferation. Our hypothesis is that the loss of cellular adhesion results in suppression of cancer stem cells and loss of tumor virulence and metastatic potential. Our study suggests that the metastatic potential of cancer is particularly reduced by the effects of heat on cellular adhesion and mechanotransduction. If true, this could help explain both the successes and failures of clinical hyperthermia, and suggest ways to target treatments to those who would most benefit. - Highlights: • Non-lethal hyperthermia treatment of cancer cells is shown to cause a reduction in rates of tumor initiation and metastasis. • Dynamic imaging of cells during heat treatment shows temporary changes in cell shape, cell migration, and cell proliferation. • Loss of adhesion may lead to the observed effect, which may disproportionately impact the tumor initiating cell fraction. • Loss or suppression of the tumor initiating cell fraction results in the observed loss of metastatic potential in vivo. • This result may lead to new approaches to synergizing hyperthermia with surgery, radiation, and chemotherapy

  13. Non-lethal heat treatment of cells results in reduction of tumor initiation and metastatic potential

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoo-Shin; Lee, Tae Hoon; O' Neill, Brian E., E-mail: BEOneill@houstonmethodist.org

    2015-08-14

    Non-lethal hyperthermia is used clinically as adjuvant treatment to radiation, with mixed results. Denaturation of protein during hyperthermia treatment is expected to synergize with radiation damage to cause cell cycle arrest and apoptosis. Alternatively, hyperthermia is known to cause tissue level changes in blood flow, increasing the oxygenation and radiosensitivity of often hypoxic tumors. In this study, we elucidate a third possibility, that hyperthermia alters cellular adhesion and mechanotransduction, with particular impact on the cancer stem cell population. We demonstrate that cell heating results in a robust but temporary loss of cancer cell aggressiveness and metastatic potential in mouse models. In vitro, this heating results in a temporary loss in cell mobility, adhesion, and proliferation. Our hypothesis is that the loss of cellular adhesion results in suppression of cancer stem cells and loss of tumor virulence and metastatic potential. Our study suggests that the metastatic potential of cancer is particularly reduced by the effects of heat on cellular adhesion and mechanotransduction. If true, this could help explain both the successes and failures of clinical hyperthermia, and suggest ways to target treatments to those who would most benefit. - Highlights: • Non-lethal hyperthermia treatment of cancer cells is shown to cause a reduction in rates of tumor initiation and metastasis. • Dynamic imaging of cells during heat treatment shows temporary changes in cell shape, cell migration, and cell proliferation. • Loss of adhesion may lead to the observed effect, which may disproportionately impact the tumor initiating cell fraction. • Loss or suppression of the tumor initiating cell fraction results in the observed loss of metastatic potential in vivo. • This result may lead to new approaches to synergizing hyperthermia with surgery, radiation, and chemotherapy.

  14. Lethal pedestrian--passenger car collisions in Berlin. Changed injury patterns in two different time intervals.

    Science.gov (United States)

    Ehrlich, Edwin; Tischer, Anja; Maxeiner, H

    2009-04-01

    To expand the passive safety of automobiles protecting traffic participants technological innovations were done in the last decades. Objective of our retrospective analysis was to examine if these technical modifications led to a clearly changed pattern of injuries of pedestrians whose death was caused by the accidents. Another reduction concerns the exclusion of injured car passengers--only pedestrians walking or standing at the moment of collision were included. We selected time intervals 1975-1985 and 1991-2004 (=years of construction of the involved passenger cars). The cars were classified depending on their frontal construction in types as presented by Schindler et al. [Schindler V, Kühn M, Weber S, Siegler H, Heinrich T. Verletzungsmechanismen und Wirkabschätzungen der Fahrzegfrontgestaltung bei Pkw-Fussgänger-Kollisionen. Abschlussbericht im Auftrag der Deutschen Versicherungswirtschaft e.V. TU-Berlin Fachgebiet Kraftfahrzeuge (GDV) 2004:36-40]. In both periods more than 90% of all cars were from the usual types small/medium/large class. Hundred and thirty-four autopsy records of such cases from Department of Forensic Medicine (Charité Berlin) data were analysed. The data included technical information of the accidents and vehicles and the external and internal injuries of the victims. The comparison of the two periods showed a decrease of serious head injuries and femoral fractures but an increase of chest-, abdominal and pelvic injuries. This situation could be explained by an increased occurrence of soft-face-constructions and changed front design of modern passenger cars, resulting in a favourable effects concerning head impact to the car during accident. Otherwise the same kinetic energy was transferred to the (complete) victim - but because of a displacement of main focus of impact the pattern of injuries modified (went distally).

  15. Role of natural killer cells in innate protection against lethal ebola virus infection.

    Science.gov (United States)

    Warfield, Kelly L; Perkins, Jeremy G; Swenson, Dana L; Deal, Emily M; Bosio, Catharine M; Aman, M Javad; Yokoyama, Wayne M; Young, Howard A; Bavari, Sina

    2004-07-19

    Ebola virus is a highly lethal human pathogen and is rapidly driving many wild primate populations toward extinction. Several lines of evidence suggest that innate, nonspecific host factors are potentially critical for survival after Ebola virus infection. Here, we show that nonreplicating Ebola virus-like particles (VLPs), containing the glycoprotein (GP) and matrix protein virus protein (VP)40, administered 1-3 d before Ebola virus infection rapidly induced protective immunity. VLP injection enhanced the numbers of natural killer (NK) cells in lymphoid tissues. In contrast to live Ebola virus, VLP treatment of NK cells enhanced cytokine secretion and cytolytic activity against NK-sensitive targets. Unlike wild-type mice, treatment of NK-deficient or -depleted mice with VLPs had no protective effect against Ebola virus infection and NK cells treated with VLPs protected against Ebola virus infection when adoptively transferred to naive mice. The mechanism of NK cell-mediated protection clearly depended on perforin, but not interferon-gamma secretion. Particles containing only VP40 were sufficient to induce NK cell responses and provide protection from infection in the absence of the viral GP. These findings revealed a decisive role for NK cells during lethal Ebola virus infection. This work should open new doors for better understanding of Ebola virus pathogenesis and direct the development of immunotherapeutics, which target the innate immune system, for treatment of Ebola virus infection.

  16. Fasting protects mice from lethal DNA damage by promoting small intestinal epithelial stem cell survival.

    Science.gov (United States)

    Tinkum, Kelsey L; Stemler, Kristina M; White, Lynn S; Loza, Andrew J; Jeter-Jones, Sabrina; Michalski, Basia M; Kuzmicki, Catherine; Pless, Robert; Stappenbeck, Thaddeus S; Piwnica-Worms, David; Piwnica-Worms, Helen

    2015-12-22

    Short-term fasting protects mice from lethal doses of chemotherapy through undetermined mechanisms. Herein, we demonstrate that fasting preserves small intestinal (SI) architecture by maintaining SI stem cell viability and SI barrier function following exposure to high-dose etoposide. Nearly all SI stem cells were lost in fed mice, whereas fasting promoted sufficient SI stem cell survival to preserve SI integrity after etoposide treatment. Lineage tracing demonstrated that multiple SI stem cell populations, marked by Lgr5, Bmi1, or HopX expression, contributed to fasting-induced survival. DNA repair and DNA damage response genes were elevated in SI stem/progenitor cells of fasted etoposide-treated mice, which importantly correlated with faster resolution of DNA double-strand breaks and less apoptosis. Thus, fasting preserved SI stem cell viability as well as SI architecture and barrier function suggesting that fasting may reduce host toxicity in patients undergoing dose intensive chemotherapy.

  17. Megakaryocytopoiesis and the number of thrombocytes after bone marrow cell transplantation in lethally irradiated mice

    International Nuclear Information System (INIS)

    Viktora, L.; Hermanova, E.; Zoubkova, M.

    1977-01-01

    Changes were studied in the number of thrombocytes in the peripheral blood and megakaryocytes in the bone marrow and spleen in lethally irradiated mice after the transplantation of bone marrow cells. It was found that the thrombocytes increased in dependence on time after transplantation with the maximal values around the 20th day. An increased megakaryocytopoiesis was observed not only in the bone marrow but also in the spleen. These ascertainments suggest the importance of the transplantation of bone marrow cells and the role of thrombocytes for the survival of the organism after irradiation. (author)

  18. Modification of the repair of potentially lethal damage in plateau-phase Chinese hamster cells by 2-chlorodeoxyadenosine

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, Kiyoshi; Hiraoka, Wakako; Kuwabara, Mikinori; Matsuda, Akira; Ueda, Tohru; Sato, Fumiaki.

    1988-09-01

    The ability of 2-chlorodeoxyadenosine, a ribonucleotide reductase inhibitor, to inhibit the repair of potentially lethal damage was demonstrated in Chinese hamster V79 cells after X irradiation in plateau-phase cultures. This ability of the drug was completely diminished when deoxycytidine was added at the same time, though this was slightly affected by the addition of adenosine, suggesting that this drug was phosphorylated by deoxycytidine kinase to serve as an inhibitor of the repair of potentially lethal damage. Compared with hydroxyurea, another ribonucleotide reductase inhibitor, this drug appeared to contain its own activity which suppressed the repair of potentially lethal damage. A combined study of post-irradiation treatment with hypertonic salt solution and with this drug on the fixation of potentially lethal damage revealed that this drug inhibited the repair of hypertonic-insensitive potentially lethal damage.

  19. Modification of the repair of potentially lethal damage in plateau-phase Chinese hamster cells by 2-chlorodeoxyadenosine

    International Nuclear Information System (INIS)

    Tanabe, Kiyoshi; Hiraoka, Wakako; Kuwabara, Mikinori; Matsuda, Akira; Ueda, Tohru; Sato, Fumiaki.

    1988-01-01

    The ability of 2-chlorodeoxyadenosine, a ribonucleotide reductase inhibitor, to inhibit the repair of potentially lethal damage was demonstrated in Chinese hamster V79 cells after X irradiation in plateau-phase cultures. This ability of the drug was completely diminished when deoxycytidine was added at the same time, though this was slightly affected by the addition of adenosine, suggesting that this drug was phosphorylated by deoxycytidine kinase to serve as an inhibitor of the repair of potentially lethal damage. Compared with hydroxyurea, another ribonucleotide reductase inhibitor, this drug appeared to contain its own activity which suppressed the repair of potentially lethal damage. A combined study of post-irradiation treatment with hypertonic salt solution and with this drug on the fixation of potentially lethal damage revealed that this drug inhibited the repair of hypertonic-insensitive potentially lethal damage. (author)

  20. Effect of sulfhydryls on potentiation of radiation-induced cell lethality by substituted anthraquinones

    International Nuclear Information System (INIS)

    Kimler, B.F.

    1984-01-01

    The effects of various substituted anthraquinones (SAQ's) and Adriamycin (ADR) were investigated in cultured Chinese hamster V79 cells. These drugs cause a potentiation of radiation-induced cell lethality, albeit by different mechanisms. One possibility is that these components operate through the production of free radicals which then produce DNA strand breaks and crosslinks. If so, then one should be able to change the degree of cell kill by modifying sulfhydryl (SH) levels such that free radical processes are altered. Diamide, buthionine-S, R-sulfoximine, and N-ethylmaleimide (NEM) were used to reduce intracellular SH levels. Cysteamine and dithiotheitol were used to increase SH levels. In general, altered SH levels did not affect SAQ-induced cytotoxicity at low drug concentrations. When drug-tested cells were also irradiated, survival levels were generally those predicted from assuming purely additive interactions. On the other hand, survival after treatment with high concentrations of ADR and one other SAQ were decreased by concomitant treatment with NEM. Since altered SH levels do not produce changes in the potentiation of radiation-induced cell lethality by SAQs, it is concluded that free radicals are not involved in this potentiation. A free radical-mediated process may be involved in the cytotoxicity induced by ADR and other SAQs; however, it is not a simple process

  1. HOIP Deficiency Causes Embryonic Lethality by Aberrant TNFR1-Mediated Endothelial Cell Death

    Directory of Open Access Journals (Sweden)

    Nieves Peltzer

    2014-10-01

    Full Text Available Summary: Linear ubiquitination is crucial for innate and adaptive immunity. The linear ubiquitin chain assembly complex (LUBAC, consisting of HOIL-1, HOIP, and SHARPIN, is the only known ubiquitin ligase that generates linear ubiquitin linkages. HOIP is the catalytically active LUBAC component. Here, we show that both constitutive and Tie2-Cre-driven HOIP deletion lead to aberrant endothelial cell death, resulting in defective vascularization and embryonic lethality at midgestation. Ablation of tumor necrosis factor receptor 1 (TNFR1 prevents cell death, vascularization defects, and death at midgestation. HOIP-deficient cells are more sensitive to death induction by both tumor necrosis factor (TNF and lymphotoxin-α (LT-α, and aberrant complex-II formation is responsible for sensitization to TNFR1-mediated cell death in the absence of HOIP. Finally, we show that HOIP’s catalytic activity is necessary for preventing TNF-induced cell death. Hence, LUBAC and its linear-ubiquitin-forming activity are required for maintaining vascular integrity during embryogenesis by preventing TNFR1-mediated endothelial cell death. : HOIP is the main catalytic subunit of the linear ubiquitin chain assembly complex (LUBAC, a crucial regulator of TNF and other immune signaling pathways. Peltzer et al. find that HOIP deficiency results in embryonic lethality at midgestation due to endothelial cell death mediated by TNFR1. Aberrant formation of a TNF-mediated cell-death-inducing complex in HOIP-deficient (but not -proficient cells underlies the phenotype, with the catalytic activity of HOIP required for the control of cell death in response to TNF.

  2. Hyperthermic radiosensitization of synchronous Chinese hamster cells: relationship between lethality and chromosomal aberrations

    International Nuclear Information System (INIS)

    Dewey, W.C.; Sapareto, S.A.; Betten, D.A.

    1978-01-01

    Synchronous Chinese hamster cells in vitro were obtained by mitotic selection. The cells were heated at 45.5 0 C for 4 min in mitosis, 11 min in G 1 , or 7 min in S sphase and then x-irradiated immediately thereafter. Colony survival from heat alone was 0.30 to 0.45, and the frequency of chromosomal aberrations induced by heat was 0.00, 0.14, or 0.97 for heat treatments during M, G 1 , or S, respectively. As shown previously, lethality from hyperthermia alone is due to chromosomal aberrations only when the cells are heated during S phase. The log survival (D 0 /sup approximately/ = 80 rad) and aberration frequency curves for cells irradiated during mitosis were linear, and the only effect of hyperthermia was to shift the curves in accord with the effect from heat alone. Thus, hyperthermia did not radiosensitize the mitotic cells. The cells irradiated in G 1 were more resistant (D 0 /sup approximately/ = 100 rad) than those irradiated in mitosis, and the survival and aberration frequency curves both had shoulders. The primary effect of hyperthermia was to greatly reduce the shoulders of the curves and to increase the slopes by about 23%. The cells irradiated in S were the most resistant (D 0 /sup approximately/ = 140 rad), and the survival and aberration frequency curves both had large shoulders. For both end points of lethality and chromosomal aberrations, heat selectively radiosensitized S-phase cells relative to G 1 cells by removing most of the shoulder and increasing the slope by about 45%. For cells treated in G 1 or S, the increase in radiosensitization following hyperthermia can be accounted for by an increase in the frequency of chromosomal aberrations

  3. Cell line name recognition in support of the identification of synthetic lethality in cancer from text

    Science.gov (United States)

    Kaewphan, Suwisa; Van Landeghem, Sofie; Ohta, Tomoko; Van de Peer, Yves; Ginter, Filip; Pyysalo, Sampo

    2016-01-01

    Motivation: The recognition and normalization of cell line names in text is an important task in biomedical text mining research, facilitating for instance the identification of synthetically lethal genes from the literature. While several tools have previously been developed to address cell line recognition, it is unclear whether available systems can perform sufficiently well in realistic and broad-coverage applications such as extracting synthetically lethal genes from the cancer literature. In this study, we revisit the cell line name recognition task, evaluating both available systems and newly introduced methods on various resources to obtain a reliable tagger not tied to any specific subdomain. In support of this task, we introduce two text collections manually annotated for cell line names: the broad-coverage corpus Gellus and CLL, a focused target domain corpus. Results: We find that the best performance is achieved using NERsuite, a machine learning system based on Conditional Random Fields, trained on the Gellus corpus and supported with a dictionary of cell line names. The system achieves an F-score of 88.46% on the test set of Gellus and 85.98% on the independently annotated CLL corpus. It was further applied at large scale to 24 302 102 unannotated articles, resulting in the identification of 5 181 342 cell line mentions, normalized to 11 755 unique cell line database identifiers. Availability and implementation: The manually annotated datasets, the cell line dictionary, derived corpora, NERsuite models and the results of the large-scale run on unannotated texts are available under open licenses at http://turkunlp.github.io/Cell-line-recognition/. Contact: sukaew@utu.fi PMID:26428294

  4. Potentially lethal damage repair in cell lines of radioresistant human tumours and normal skin fibroblasts

    International Nuclear Information System (INIS)

    Marchese, M.J.; Minarik, L.; Hall, E.J.; Zaider, M.

    1985-01-01

    Radiation cell survival data were obtained in vitro for three cell lines isolated from human tumours traditionally considered to be radioresistant-two melanomas and one osteosarcoma-as well as from a diploid skin fibroblast cell line. One melanoma cell line was much more radioresistant than the other, while the osteosarcoma and fibroblast cell lines were more radiosensitive than either. For cells growing exponentially, little potentially lethal damage repair (PLDR) could be demonstrated by comparing survival data for cells in which subculture was delayed by 6 h with those sub-cultured immediately after treatment. For the malignant cells in plateau phase, which in these cells might be better termed 'slowed growth phase', since an appreciable fraction of the cells are still cycling, a small amount of PLDR was observed, but not as much as reported by other investigators in the literature. The normal fibroblasts, which achieved a truer plateau phase in terms of noncycling cells, showed a significantly larger amount of PLDR than the tumour cells. (author)

  5. Transplantation of homologous bone marrow cells to lethally irradiated mice: changes in the spleen

    Energy Technology Data Exchange (ETDEWEB)

    Viktora, L; Hach, P; Zoubkova, M

    1975-01-01

    Bone marrow cell suspensions were administered intravenously to lethally irradiated mice. The number of colonies in the spleen and the regeneration of hematopoietic tissue in the spleen were studied on the 9th day after irradiation and transplantation. From a comparison of the histological picture and weight of the spleens, the authors conclude that the degree of regeneration of hematopoiesis in the spleen after irradiation and transplantation is reflected in the weight of the spleen as well as in the number of hematopoietic colonies.

  6. Postirradiation expression of lethal mutations in an immortalized human keratinocyte cell line

    International Nuclear Information System (INIS)

    O'Reilly, S.; Mothersill, C.; Seymour, C.B.

    1994-01-01

    The quantification of the extent of delayed cell death and the rate and pattern of its occurrence in relation to the cell division cycle is important in radiotherapy and also in radiation transformation studies related to protection and dose limits. Here the numbers of lethal mutations occurring over 45 population doublings (clonal expansion to about 10 13 cells per cell originally surviving irradiation) was measured in an HPV 16 immortalized human keratinocyte cell lines used for transformation studies. The results showed that when postirradiation (dose range 1-6 Gy) growth curves were constructed, the difference in slopes could be accounted for entirely by correcting for the non-clonogenic fraction in the cell count, excluding a longer cell generation time as an explanation. When the cell loss was examined over the entire growth period of 6 weeks (about 45 doublings of the cell population), it was found to be dose dependent for the first two passages, but then to become more independent of dose. The results allow a time/cell generation dependent factor to be derived for the cell line and used in survival curve equations where effects of radiation are being measured at times distant from the original exposure. (author)

  7. Mouse dendritic cells pulsed with capsular polysaccharide induce resistance to lethal pneumococcal challenge: roles of T cells and B cells.

    Directory of Open Access Journals (Sweden)

    Noam Cohen

    Full Text Available Mice are exceedingly sensitive to intra-peritoneal (IP challenge with some virulent pneumococci (LD50 = 1 bacterium. To investigate how peripheral contact with bacterial capsular polysaccharide (PS antigen can induce resistance, we pulsed bone marrow dendritic cells (BMDC of C57BL/6 mice with type 4 or type 3 PS, injected the BMDC intra-foot pad (IFP and challenged the mice IP with supra-lethal doses of pneumococci. We examined the responses of T cells and B cells in the draining popliteal lymph node and measured the effects on the bacteria in the peritoneum and blood. We now report that: 1 The PS co-localized with MHC molecules on the BMDC surface; 2 PS-specific T and B cell proliferation and IFNγ secretion was detected in the draining popliteal lymph nodes on day 4; 3 Type-specific resistance to lethal IP challenge was manifested only after day 5; 4 Type-specific IgM and IgG antibodies were detected in the sera of only some of the mice, but B cells were essential for resistance; 5 Control mice vaccinated with a single injection of soluble PS did not develop a response in the draining popliteal lymph node and were not protected; 6 Mice injected with unpulsed BMDC also did not resist challenge: In unprotected mice, pneumococci entered the blood shortly after IP inoculation and multiplied exponentially in both blood and peritoneum killing the mice within 20 hours. Mice vaccinated with PS-pulsed BMDC trapped the bacteria in the peritoneum. The trapped bacteria proliferated exponentially IP, but died suddenly at 18-20 hours. Thus, a single injection of PS antigen associated with intact BMDC is a more effective vaccine than the soluble PS alone. This model system provides a platform for studying novel aspects of PS-targeted vaccination.

  8. Repair of potentially lethal and sublethal radiation damage in x-irradiated ascites tumor cells

    International Nuclear Information System (INIS)

    Tsuboi, Atsushi; Okamoto, Mieko; Tsuchiya, Takehiko.

    1985-01-01

    The ability of cells to repair cellular radiation damage during the growth of TMT-3 ascites tumor and the effect of host reaction on the repair ability were examined by using an in vitro assay of cell clonogenicity after in situ irradiation of tumor cells. In single-dose experiments, the repair of potentially lethal radiation damage (PLD) was observed in stationary phase cells (12-day tumor) of the unirradiated host, but not in exponential phase cells (3-day tumor) of the unirradiated host animals. However, if previously irradiated host animals were used, even the exponentially growing tumor cells showed repair of PLD. In two-dose experiments, the ability to repair sublethal radiation damage (SLD) in exponential phase tumor cells was less than that of stationary phase cells in the unirradiated host. In the pre-irradiated host, the extent of the repair in exponential phase cells was somewhat enhanced. These results suggest that irradiation of host animals might suppress a factor that inhibits repair, resulting in enhancement of the repair capability of tumor cells. (author)

  9. Repair of potentially lethal damage by introduction of T4 DNA ligase in eucaryotic cells

    International Nuclear Information System (INIS)

    Durante, M.; Grossi, G.F.; Napolitano, M.; Gialanella, G.

    1991-01-01

    The bacterial enzyme PvuII, which generates blunt-ended DNA double-strand breaks, and T4 DNA ligase, which seals adjacent DNA fragments in coupling to ATP cleavage, were introduced in mouse C3H10T1/2 fibroblasts using osmolytic shock of pinocytic vesicles. Cells were then assayed for their clonogenic ability. In agreement with previous studies by others, the authors found that PvuII restriction endonuclease simulates ionizing radiation effects by causing a dose-dependent loss of reproductive capacity. They show that concomitant treatment with DNA ligase considerably increases cell survival. Survival curves were shown to be dependent on ligase enzyme dose and on ATP concentration in the hypertonic medium. They conclude that T4 DNA ligase is able to repair some potentially lethal damage produced by restriction endonucleases in eucaryotic cells. (author)

  10. Extending the golden hour: Partial resuscitative endovascular balloon occlusion of the aorta in a highly lethal swine liver injury model.

    Science.gov (United States)

    Russo, Rachel M; Williams, Timothy K; Grayson, John Kevin; Lamb, Christopher M; Cannon, Jeremy W; Clement, Nathan F; Galante, Joseph M; Neff, Lucas P

    2016-03-01

    Combat-injured patients may require rapid and sustained support during transport; however, the prolonged aortic occlusion produced by conventional resuscitative endovascular balloon occlusion of the aorta (REBOA) may lead to substantial morbidity. Partial REBOA (P-REBOA) may permit longer periods of occlusion by allowing some degree of distal perfusion. However, the ability of this procedure to limit exsanguination is unclear. We evaluated the impact of P-REBOA on immediate survival and ongoing hemorrhage in a highly lethal swine liver injury model. Fifteen Yorkshire-cross swine were anesthetized, instrumented, splenectomized, and subjected to rapid 10% total blood loss followed by 30% liver amputation. Coagulopathy was created through colloid hemodilution. Randomized swine received no intervention (control), P-REBOA, or complete REBOA (C-REBOA). Central mean arterial pressure (cMAP), carotid blood flow, and blood loss were recorded. Balloons remained inflated in the P-REBOA and C-REBOA groups for 90 minutes followed by graded deflation. The study ended at 180 minutes from onset of hemorrhage or death of the animal. Survival analysis was performed, and data were analyzed using repeated-measures analysis of variance with post hoc pairwise comparisons. Mean survival times in the control, P-REBOA, and C-REBOA groups were, 25 ± 21, 86 ± 40, and 163 ± 20 minutes, respectively (p golden hour while maintaining cMAP and carotid flow at physiologic levels.

  11. Determination of gamma radiation lethal dose (LD50) and resveratrol cytotoxicity level in tumor cells line

    International Nuclear Information System (INIS)

    Magalhaes, Vanessa D.; Rogero, Sizue O.; Rogero, Jose R.; Cruz, Aurea S.

    2011-01-01

    Cancer is a disease with high incidence and it is considered a worldwide public health problem. Resveratrol is a polyphenol occurring naturally in a wide variety of plants according to response of ultraviolet radiation (UV) exposition or according to mechanical stress resulting of pathogens or chemical and physical agents. This polyphenol possesses a pharmacological activity of carcinogenesis inhibition in multiple levels. It also protects cells by scavenging the free radicals which are considered toxic products. These free radicals are formed of natural process of cell aging and also by incidence of ionizing radiation in the organism. Thus, resveratrol is considered as a cell radioprotector. On the other hand, in some elevated concentrations resveratrol may be considered as a radiosensitizing. The aim of this work was the determination of radiation lethal dose (LD 50 ) and also verifies the cytotoxicity level of resveratrol in tumor cells line: muco epidermoid pulmonary carcinoma cells (NCI-H292) and rhabdomyosarcoma cells (RD). The cytotoxicity test was performed by neutral red uptake assay. The results of resveratrol IC 50% in NCI-H292 cells was 192μM and in RD cells was 128μM; and RD cells gamma radiation LD 50 was 435Gy. (author)

  12. Defective recoveryfrom potentially lethal damage in some human fibroblast cell strains

    International Nuclear Information System (INIS)

    Arlett, C.F.; Priestley, A.

    1983-01-01

    The repair of potentially lethal damage following treatment by gamma radiation was investigated in human fibroblasts held in a non-cycling state by maintenance in a medium containing 0.5 per cent foetal calf serum. Variation in their capacity to repair PLD was noted between three normal cell strains. A failure to repair PLD in ataxia-telangiectasia cells (AT5BI) was confirmed. In three cell strains which were intermediate between normals and A-T cells in their sensitivity, XP3BR, 46BR and GB1142, a limited capacity for the repair of PLD was observed. Two other cell strains, 47BR and 67BR, which showed little if any hypersensitivity could be clearly distinguished from normals after a 24 hour period for the repair of PLD. Thus the technique might permit better discrimination between cell strains. One other cell strain, H15617, could be distinguished from normals by proving hypersensitive under all conditions. Here, however, the repair of PLD appeared to be normal. (author)

  13. Lethal graft-versus-host disease: modification with allogeneic cultured donor cells

    International Nuclear Information System (INIS)

    Mauch, P.; Lipton, J.M.; Hamilton, B.; Obbagy, J.; Kudisch, M.; Nathan, D.; Hellman, S.

    1984-01-01

    The use of the bone marrow culture technique was studied as a means to prepare donor marrow for bone marrow transplantation to avoid lethal graft-versus-host disease (GVHD). Preliminary experiments demonstrated the rapid loss of theta-positive cells in such cultures, so that theta-positive cells were not detected after 6 days. Initial experiments in C3H/HeJ (H-2k, Hbbd) recipients prepared with 900 rad demonstrated improved survival when 3-day cultured C57BL/6 (H-2b, Hbbs) donor cells were used in place of hind limb marrow for transplantation. However, hemoglobin typing of recipient animals revealed only short-term donor engraftment, with competitive repopulation of recipient marrow occurring. Subsequent experiments were done in 1,200-rad prepared recipients, with long-term donor engraftment demonstrated. The majority of 1,200-rad prepared animals receiving cultured allogeneic cells died of GVHD, but animals receiving 28-day cultured cells had an improved 90-day survival and a delay in GVHD development over animals receiving hind limb marrow or marrow from shorter times in culture. In addition, animals receiving anti-theta-treated, 3-day nonadherent cells had an improved survival (44%) over animals receiving anti-theta-treated hind limb marrow (20%). These experiments demonstrate modest benefit for the use of cultured cells in bone marrow transplantation across major H-2 histocompatibility complex differences

  14. Cardiomyocyte H9c2 cells present a valuable alternative to fish lethal testing for azoxystrobin

    International Nuclear Information System (INIS)

    Rodrigues, Elsa T.; Pardal, Miguel Â.; Laizé, Vincent; Cancela, M. Leonor; Oliveira, Paulo J.; Serafim, Teresa L.

    2015-01-01

    The present study aims at identifying, among six mammalian and fish cell lines, a sensitive cell line whose in vitro median inhibitory concentration (IC_5_0) better matches the in vivo short-term Sparus aurata median lethal concentration (LC_5_0). IC_5_0_s and LC_5_0 were assessed after exposure to the widely used fungicide azoxystrobin (AZX). Statistical results were relevant for most cell lines after 48 h of AZX exposure, being H9c2 the most sensitive cells, as well as the ones which provided the best prediction of fish toxicity, with a LC_5_0_,_9_6_h/IC_5_0_,_4_8_h = 0.581. H9c2 cell proliferation upon 72 h of AZX exposure revealed a LC_5_0_,_9_6_h/IC_5_0_,_7_2_h = 0.998. Therefore, identical absolute sensitivities were attained for both in vitro and in vivo assays. To conclude, the H9c2 cell-based assay is reliable and represents a suitable ethical alternative to conventional fish assays for AZX, and could be used to get valuable insights into the toxic effects of other pesticides. - Highlights: • Fish toxicity data are still considered standard information in ecotoxicology. • Alternatives to animal testing have become an important topic of research. • Cell-based assays are currently a promising in vitro alternative. • Comparative studies to accelerate the validation of cell-based methods are required. • H9c2 cell line proved to produce in vitro reliable toxicity results for azoxystrobin. - The application of cell-based assays for environmental toxicity studies would greatly reduce the number of fish needed for toxicity testing without any loss of reliability.

  15. Evidence of heritable lethal mutations in progeny of X-irradiated CHO cells by micronucleus count in clon-cells

    International Nuclear Information System (INIS)

    Hagemann, G.; Kreczik, A.; Treichel, M.

    1996-01-01

    Low doses of ionizing radiation reduce the growth rates of clones following irradiation of the progenitor cells. Such reductions of clone growth have been proven by means of measurements of clone size distributions. The medians of such distributions can be used to quantify the radiation damage. Prolongations of generation times and cell death as result of heritable lethal mutations have been discussed as causes for the reduction of clone growth. The cell number of a clone of hypotetraploid CHO-cells was compared to the frequency of micronucleated binucleated cells in the same clone using the cytokinesis-block-micronucleus method. The dose dependent reduction of clone sizes is measured by the difference of the medians (after log transformation) of the clone size distributions. At cytochalasin-B concentrations of 1 μg/ml and after an incubation time of 16 h a yield of binucleated cells of about 50% was obtained. Median clone size differences as a measure of clonal radiation damage increased linearly with incubation times of 76, 100, 124, and 240 h following irradiation with 3, 5, 7, and 12 Gy. The frequency of binucleated clone cells with micronuclei strongly increased with decreasing clone size by a factor up to 20 following irradiation with 3, 5, and 7 Gy. The frequency of micronucleated binucleated clone cells was found to be independent of incubation time after irradiation. Radiation induced clone size reductions result from cell losses caused by intraclonal expression of micronuclei which have its origin in heritable lethal mutations. Measurements of clone size distributions can be done automatically. They can serve as predictive test for determination of median cell loss rates of surviving cell clones. (orig./MG) [de

  16. The lethal effect of longwave ultraviolet light and PUVA. An analysis based upon human mesenchymal cells in vitro

    International Nuclear Information System (INIS)

    Jongh, G. de; Bergers, M.; Boezeman, J.B.M.; Verhagen, A.R.; Mier, P.D.

    1984-01-01

    The lethal effect of UVA and PUVA radiation was studied in cultures of fresh and mature monocytes. UVA radiation alone was shown to possess a lethal effect at doses which are attained in the dermis in vivo. The synergistic action of 8-methoxypsoralen and UVA radiation predominated in PUVA radiation, but again a residual effect of UVA alone was demonstrated mathematically. Mature cells were less sensitive than fresh monocytes. The results indicate that a monolayer culture of non-dividing, mesenchymal cells offers considerable advantages over in vivo systems as a model for the study of phototoxicity. (author)

  17. Semi-lethal high temperature and heat tolerance of eight Camellia species

    OpenAIRE

    He, XY; Ye, H; Ma, JL; Zhang, RQ; Chen, GC; Xia, YY

    2012-01-01

    Annual leaf segments of eight Camellia species were used to study the heat tolerance by an electrical conductivity method, in combination with a Logistic equation to ascertain the semi-lethal high temperature by fitting the cell injury rate curve. Te relationship between the processing temperature and the cell injury rate in Camellia showed a typical "S" shaped curve, following the Logistic model. Te correlation coeficient was above 0.95. Te semi-lethal high temperature LT50 of the eight Came...

  18. Todralazine protects zebra fish from lethal doses of ionizing radiation: role of hematopoietic stem cell expansion

    International Nuclear Information System (INIS)

    Dimri, Manali; Joshi, Jaidev; Indracanti, Prem Kumar

    2013-01-01

    Radiation induced cell killing and hematopoietic stem cell depletion leads to compromised immune functions and opportunistic infections which significantly affect the recovery and survival upon irradiation. Any agent which can expand residual hematopoietic stem cells in irradiated organism can render protection from the effects of lethal doses of ionizing radiation. Johns Hopkins Clinical compound library (JHCCL) was screened for protection against lethal doses of ionizing radiation using developing zebra fish as a model organism. Modulation of radiation induced reactive oxygen species by the small molecules were done by DCFDA staining and for visual identification and quantification of apoptosis acridine orange assay, flow cytometry were employed respectively. Hematopoietic stem cell expansion potential was assessed by quantifying runx1 expression, a marker for definitive stem cells, were done by RT-PCR and by the kinetics of recovery from chemically induced anaemia. Todralazine hydrochloride from JHCCL exhibited promising results with potential anti radiation effects. A dose of 5μM was found to be the most effective and has rendered significant organ and whole body protection (100% survival advantage over a period of 6 days) against 20 Gy. However todralazine did not modulated radiation induced free radicals (monitored within 2 h of irradiation) and apoptosis in zebra fish embryos analysed at 8 and 24h post irradiation. Flow cytometric quantification of pre G1 population suggested the same. Chemoinformatics approaches were further carried out to elucidate possible targets which are contributing to its radioprotection potential. Structural similarity search suggested several targets and possible hematopoietic stem cell expanding potential. Treatment of zebra fish embryos with todralazine has lead to significant proliferation of hematopoietic stem cell as indicated by increase in expression of runx1. HSC expanding potential of todralazine was further supported by

  19. 35S induced dominant lethals in male germ cells of mouse

    International Nuclear Information System (INIS)

    Satyanarayana Reddy, K.; Reddy, P.D.; Reddi, O.S.

    1977-01-01

    (CBA female x C 3 H/He male) F 1 males born to 35 S (20 μCi) treated animals during major organogenesis period were tested for dominant lethal mutations at maturity. The pre-implantation loss showed an increase from 6.88% in the control to 10.92% in 35 S treated animals. Similarly the post-implantation loss has increased from 3.96% (control) to 7.40%. As a result of the increased pre- and post-losses the total loss showed a significant increase (17.51%) in F 1 males born to 35 S treated animals when compared to controls (10.57%). Thus the results clearly show that 35 S is mutagenic in male germ cells of mouse. (author)

  20. Lethal and sublethal effects of marine sediment extracts on fish cells and chromosomes

    Science.gov (United States)

    Landolt, Marsha L.; Kocan, Richard M.

    1984-03-01

    The cost of conducting conventional chronic bioassays with every potentially toxic compound found in marine ecosystems is prohibitive; therefore short-term toxicity tests which can be used for rapid screening were developed. The tests employ cultured fish cells to measure lethal, sublethal or genotoxic effects of pure compounds and complex mixtures. The sensitivity of these tests has been proven under laboratory conditions; the following study used two of these tests, the anaphase aberration test and a cytotoxicity assay, under field conditions. Sediment was collected from 97 stations within Puget Sound, Washington. Serial washings of the sediment in methanol and dichloromethane yielded an organic extract which was dried, dissolved in DMSO and incubated as a series of dilutions with rainbow trout gonad (RTG-2) cells. The toxic effects of the extract were measured by examining the rate of cell proliferation and the percentage of damaged anaphase figures. Anaphase figures were considered to be abnormal if they exhibited non-disjunctions, chromosome fragments, or chromosome bridges. A second cell line (bluegill fry, BF-2) was also tested for cell proliferation and was included because, unlike the RTG-2 cell line, it contains little or no mixed function oxygenase activity. Of 97 stations tested, 35 showed no genotoxic activity, 42 showed high genotoxic activity (P≤.01) and the remainder were intermediate. Among the toxic sites were several deep water stations adjacent to municipal sewage outfalls and four urban waterways contaminated by industrial and municipal effluents. Extracts from areas that showed genotoxic effects also inhibited cell proliferation and were cytotoxic to RTG-2 cells. Few effects were noted in the MFO deficient BF-2 cells. Short term in vitro tests provide aquatic toxicologists with a versatile and cost effective tool for screening complex environments. Through these tests one can identify compounds or geographic regions that exhibit high

  1. Protection of lethally irradiated mice with allogeneic fetal liver cells: influence of irradiation dose on immunologic reconstitution

    International Nuclear Information System (INIS)

    Tulunay, O.; Good, R.A.; Yunis, E.J.

    1975-01-01

    After lethal irradiation long-lived, immunologically vigorous C3Hf mice were produced by treatment with syngeneic fetal liver cells or syngeneic newborn or adult spleen cells. Treatment of lethally irradiated mice with syngeneic or allogeneic newborn thymus cells or allogeneic newborn or adult spleen cells regularly led to fatal secondary disease or graft-versus-host reactions. Treatment of the lethally irradiated mice with fetal liver cells regularly yielded long-lived, immunologically vigorous chimeras. The introduction of the fetal liver cells into the irradiated mice appeared to be followed by development of immunological tolerance of the donor cells. The findings suggest that T-cells at an early stage of differentiation are more susceptible to tolerance induction than are T-lymphocytes at later stages of differentiation. These investigations turned up a perplexing paradox which suggests that high doses of irradiation may injure the thymic stroma, rendering it less capable of supporting certain T-cell populations in the peripheral lymphoid tissue. Alternatively, the higher and not the lower dose of irradiation may have eliminated a host cell not readily derived from fetal liver precursors which represents an important helper cell in certain cell-mediated immune functions, e.g., graft-versus-host reactions, but which is not important in others, e.g., allograft rejections. The higher dose of lethal irradiation did not permit development or maintenance of a population of spleen cells that could initiate graft-versus-host reactions but did permit the development of a population of donor cells capable of achieving vigorous allograft rejection

  2. Eμ/miR-125b transgenic mice develop lethal B-cell malignancies.

    Science.gov (United States)

    Enomoto, Y; Kitaura, J; Hatakeyama, K; Watanuki, J; Akasaka, T; Kato, N; Shimanuki, M; Nishimura, K; Takahashi, M; Taniwaki, M; Haferlach, C; Siebert, R; Dyer, M J S; Asou, N; Aburatani, H; Nakakuma, H; Kitamura, T; Sonoki, T

    2011-12-01

    MicroRNA-125b-1 (miR-125b-1) is a target of a chromosomal translocation t(11;14)(q24;q32) recurrently found in human B-cell precursor acute lymphoblastic leukemia (BCP-ALL). This translocation results in overexpression of miR-125b controlled by immunoglobulin heavy chain gene (IGH) regulatory elements. In addition, we found that six out of twenty-one BCP-ALL patients without t(11;14)(q24;q32) showed overexpression of miR-125b. Interestingly, four out of nine patients with BCR/ABL-positive BCP-ALL and one patient with B-cell lymphoid crisis that had progressed from chronic myelogenous leukemia overexpressed miR-125b. To examine the role of the deregulated expression of miR-125b in the development of B-cell tumor in vivo, we generated transgenic mice mimicking the t(11;14)(q24;q32) (Eμ/miR-125b-TG mice). Eμ/miR-125b-TG mice overexpressed miR-125b driven by IGH enhancer and promoter and developed IgM-negative or IgM-positive lethal B-cell malignancies with clonal proliferation. B cells obtained from the Eμ/miR-125b-TG mice were resistant to apoptosis induced by serum starvation. We identified Trp53inp1, a pro-apoptotic gene induced by cell stress, as a novel target gene of miR-125b in hematopoietic cells in vitro and in vivo. Our results provide direct evidence that miR-125b has important roles in the tumorigenesis of precursor B cells.

  3. Structural specificity in the lethal and mutagenic activity of furocoumarins in yeast cells

    International Nuclear Information System (INIS)

    Averbeck, D.; Chandra, P.; Biswas, R.K.; Gesellschaft fuer Strahlen- und Umweltforschung m.b.H., Frankfurt am Main

    1975-01-01

    Using monofunctional (Angelicin) and bifunctional furocoumarins (Psoralen and 8 Methoxypsoralen) plus 365 nm light it is shown that both kinds of damage, the induced monoadducts and/or crosslinks in DNA, provoke lethal and mutagenic effects in haploid and diploid cells of Saccharomyces cerevisiae. Bifunctional furocoumarins are about 20 times more effective in cell killing than Angelicin. Diploid cells are always more resistant than haploid cells. Dark repair (agar holding) increases survival. This effect can be at least in part correlated to the release of bound material from DNA in dark repair conditions. Bifunctional psoralens (10 μg/ml) are at least 10-fold more effective in inducing nuclear gene back mutations (his - to HIS + ) than Angelicin (10 μg/ml) plus 365 nm light or 254 nm ultraviolet light. In contrast cytoplasmic 'petite' (rho-) mutations are about as frequently induced by Angelicin plus 365 nm light as by 254 nm UV light. Bifunctional furocoumarins are less effective. The frequency of cytoplasmic 'petite' mutations per survivors decreases during dark repair conditions more efficiently after Angelicin than after Psoralen plus 365 nm light treatment. (orig.) [de

  4. Bacillus anthracis lethal toxin disrupts TCR signaling in CD1d-restricted NKT cells leading to functional anergy.

    Directory of Open Access Journals (Sweden)

    Sunil K Joshi

    2009-09-01

    Full Text Available Exogenous CD1d-binding glycolipid (alpha-Galactosylceramide, alpha-GC stimulates TCR signaling and activation of type-1 natural killer-like T (NKT cells. Activated NKT cells play a central role in the regulation of adaptive and protective immune responses against pathogens and tumors. In the present study, we tested the effect of Bacillus anthracis lethal toxin (LT on NKT cells both in vivo and in vitro. LT is a binary toxin known to suppress host immune responses during anthrax disease and intoxicates cells by protective antigen (PA-mediated intracellular delivery of lethal factor (LF, a potent metalloprotease. We observed that NKT cells expressed anthrax toxin receptors (CMG-2 and TEM-8 and bound more PA than other immune cell types. A sub-lethal dose of LT administered in vivo in C57BL/6 mice decreased expression of the activation receptor NKG2D by NKT cells but not by NK cells. The in vivo administration of LT led to decreased TCR-induced cytokine secretion but did not affect TCR expression. Further analysis revealed LT-dependent inhibition of TCR-stimulated MAP kinase signaling in NKT cells attributable to LT cleavage of the MAP kinase kinase MEK-2. We propose that Bacillus anthracis-derived LT causes a novel form of functional anergy in NKT cells and therefore has potential for contributing to immune evasion by the pathogen.

  5. Lipids as Tumoricidal Components of Human α-Lactalbumin Made Lethal to Tumor Cells (HAMLET)

    Science.gov (United States)

    Ho, James C. S.; Storm, Petter; Rydström, Anna; Bowen, Ben; Alsin, Fredrik; Sullivan, Louise; Ambite, Inès; Mok, K. H.; Northen, Trent; Svanborg, Catharina

    2013-01-01

    Long-chain fatty acids are internalized by receptor-mediated mechanisms or receptor-independent diffusion across cytoplasmic membranes and are utilized as nutrients, building blocks, and signaling intermediates. Here we describe how the association of long-chain fatty acids to a partially unfolded, extracellular protein can alter the presentation to target cells and cellular effects. HAMLET (human α-lactalbumin made lethal to tumor cells) is a tumoricidal complex of partially unfolded α-lactalbumin and oleic acid (OA). As OA lacks independent tumoricidal activity at concentrations equimolar to HAMLET, the contribution of the lipid has been debated. We show by natural abundance 13C NMR that the lipid in HAMLET is deprotonated and by chromatography that oleate rather than oleic acid is the relevant HAMLET constituent. Compared with HAMLET, oleate (175 μm) showed weak effects on ion fluxes and gene expression. Unlike HAMLET, which causes metabolic paralysis, fatty acid metabolites were less strongly altered. The functional overlap increased with higher oleate concentrations (500 μm). Cellular responses to OA were weak or absent, suggesting that deprotonation favors cellular interactions of fatty acids. Fatty acids may thus exert some of their essential effects on host cells when in the deprotonated state and when presented in the context of a partially unfolded protein. PMID:23629662

  6. Lethality of radiation-induced chromosome aberrations in human tumour cell lines with different radiosensitivities.

    Science.gov (United States)

    Coco-Martin, J M; Ottenheim, C P; Bartelink, H; Begg, A C

    1996-03-01

    In order to find an explanation for the eventual disappearance of all chromosome aberrations in two radiosensitive human tumour cell lines, the type and stability of different aberration types was investigated in more detail. To classify the aberrations into unstable and stable types, three-colour fluorescence in situ hybridization was performed, including a whole-chromosome probe, a pancentromere probe, and a stain for total DNA. This technique enables the appropriate classification of the aberrations principally by the presence (stable) or not (unstable) of a single centromere per chromosome. Unstable-type aberrations were found to disappear within 7 days (several divisions) in the two radiosensitive and the two radioresistant tumour lines investigated. Stable-type aberrations were found to remain at an approximately constant level over the duration of the experiment (14 days; 8-10 divisions) in the two radioresistant lines. In contrast, the majority of these stable-type aberrations had disappeared by 14 days in the two radiosensitive lines. The previous findings of disappearance of total aberrations in radiosensitive cells was therefore not due to a reduced induction of stable-type aberrations, but the complete disappearance of cells with this aberration type. These results could not be explained by differences in apoptosis or G1 blocks. Two possible explanations for these unexpected findings involve non-random induction of unstable-type aberrations, or lethality of stable-type aberrations. The results suggest caution in the use of stable-type aberration numbers as a predictor for radiosensitivity.

  7. Quantitative determination of the contribution of indirect and direct radiation action to the production of lethal lesions in mammalian cells

    International Nuclear Information System (INIS)

    Pohlit, W.; Drenkard, S.

    1985-01-01

    For quantitative models of radiation action in living cells it is necessary to know what fraction of the absorbed dose affects the target molecule by direct radiation action and what fraction by indirect radiation action. Mammalian cells were irradiated in suspension, saturated with N 2 O or CO 2 . With these gases the production of OH-radicals is changed by a factor of two in aqueous solutions and a corresponding change in cell survival would be expected, if only indirect radiation action is involved in the production of lethal lesions in the living cell. No difference could be detected, however, and it is concluded that indirect radiation action does not contribute to radiation lethality in mammalian cells. (author)

  8. Apoptosis and tumor cell death in response to HAMLET (human alpha-lactalbumin made lethal to tumor cells).

    Science.gov (United States)

    Hallgren, Oskar; Aits, Sonja; Brest, Patrick; Gustafsson, Lotta; Mossberg, Ann-Kristin; Wullt, Björn; Svanborg, Catharina

    2008-01-01

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a molecular complex derived from human milk that kills tumor cells by a process resembling programmed cell death. The complex consists of partially unfolded alpha-lactalbumin and oleic acid, and both the protein and the fatty acid are required for cell death. HAMLET has broad antitumor activity in vitro, and its therapeutic effect has been confirmed in vivo in a human glioblastoma rat xenograft model, in patients with skin papillomas and in patients with bladder cancer. The mechanisms of tumor cell death remain unclear, however. Immediately after the encounter with tumor cells, HAMLET invades the cells and causes mitochondrial membrane depolarization, cytochrome c release, phosphatidyl serine exposure, and a low caspase response. A fraction of the cells undergoes morphological changes characteristic of apoptosis, but caspase inhibition does not rescue the cells and Bcl-2 overexpression or altered p53 status does not influence the sensitivity of tumor cells to HAMLET. HAMLET also creates a state of unfolded protein overload and activates 20S proteasomes, which contributes to cell death. In parallel, HAMLET translocates to tumor cell nuclei, where high-affinity interactions with histones cause chromatin disruption, loss of transcription, and nuclear condensation. The dying cells also show morphological changes compatible with macroautophagy, and recent studies indicate that macroautophagy is involved in the cell death response to HAMLET. The results suggest that HAMLET, like a hydra with many heads, may interact with several crucial cellular organelles, thereby activating several forms of cell death, in parallel. This complexity might underlie the rapid death response of tumor cells and the broad antitumor activity of HAMLET.

  9. Effect of peripheral lymphoid cells on the incidence of lethal graft versus host disease following allogeneic mouse bone marrow transplantation

    International Nuclear Information System (INIS)

    Almaraz, R.; Ballinger, W.; Sachs, D.H.; Rosenberg, S.A.

    1983-01-01

    Experiments were performed to study the role of circulating lymphoid cells in the incidence of lethal graft versus host disease (GVHD) in radiation-induced fully allogeneic mouse chimeras. The incidence of GVHD was reduced significantly in BALB/c leads to C57BL/6 radiation chimeras if bone marrow donors were exsanguinated immediately prior to marrow harvest. Chimeras resulting from the injection of bone marrow from bled donors exhibited only donor cells in spleen, bone marrow and peripheral blood and normal levels of Thy 1+ and Ia+ cells were found in each of these lymphoid compartments. The addition of as few as 3 X 10(4) peripheral mononuclear cells to the marrow from exsanguinated donors uniformly led to lethal GVHD. 51 Cr-labeled cell traffic studies revealed that prior exsanguination of marrow donors led to about a 70% reduction in the number of circulating mononuclear cells contaminating the bone marrow at the time of marrow harvest. This decrease in contaminating peripheral cells was calculated to be in the appropriate range to account for the decreased GVHD seen when marrow from exsanguinated donors was used. It thus appears that peripheral cells contaminating marrow can be an important factor in causing lethal GVHD in allogeneic radiation chimeras

  10. Mitochondrial uncoupler exerts a synthetic lethal effect against β-catenin mutant tumor cells.

    Science.gov (United States)

    Shikata, Yuki; Kiga, Masaki; Futamura, Yushi; Aono, Harumi; Inoue, Hiroyuki; Kawada, Manabu; Osada, Hiroyuki; Imoto, Masaya

    2017-04-01

    The wingless/int-1 (Wnt) signal transduction pathway plays a central role in cell proliferation, survival, differentiation and apoptosis. When β-catenin: a component of the Wnt pathway, is mutated into an active form, cell growth signaling is hyperactive and drives oncogenesis. As β-catenin is mutated in a wide variety of tumors, including up to 10% of all sporadic colon carcinomas and 20% of hepatocellular carcinomas, it has been considered a promising target for therapeutic interventions. Therefore, we screened an in-house natural product library for compounds that exhibited synthetic lethality towards β-catenin mutations and isolated nonactin, an antibiotic mitochondrial uncoupler, as a hit compound. Nonactin, as well as other mitochondrial uncouplers, induced apoptosis selectively in β-catenin mutated tumor cells. Significant tumor regression was observed in the β-catenin mutant HCT 116 xenograft model, but not in the β-catenin wild type A375 xenograft model, in response to daily administration of nonactin in vivo. Furthermore, we found that expression of an active mutant form of β-catenin induced a decrease in the glycolysis rate. Taken together, our results demonstrate that tumor cells with mutated β-catenin depend on mitochondrial oxidative phosphorylation for survival. Therefore, they undergo apoptosis in response to mitochondrial dysfunction following the addition of mitochondrial uncouplers, such as nonactin. These results suggest that targeting mitochondria is a potential chemotherapeutic strategy for tumor cells that harbor β-catenin mutations. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  11. Effects of β-arabinofuranosyladenine on the growth and repair of potentially lethal damage in Ehrlich ascites tumor cells

    International Nuclear Information System (INIS)

    Iliakis, G.

    1980-01-01

    β-D-Arabinofuranosyladenine (β-araA) inhibit the growth of Ehrlich ascites tumor cells by selective inhibition of DNA polymerases. RNA and protein synthesis are not significantly affected. Addition of β-araA to the cells after irradiation resulted in a concentration-dependent decrease in survival, presumably due to the inhibition of the repair of potentially lethal damage. Since β-araA selectively inhibits DNA polymerases it is suggested that repair of potentially lethal damage involves steps at the DNA level which require some polymerization. These repair steps take place in the DNA with a velocity comparable to that of the repair of potentially lethal damage. The inhibition of the repair of potentially lethal damage by β-araA was modified by the addition of deoxyadenosine; this supports the finding that β-araA acts competitively against dATP at the molecular level. The inhibition of the repair of potentially lethal damage by β-araA, which is partly reversible, resulted in a concentration-dependent modification of the survival curve. At low concentrations of β-araA a dose-modifying decrease in survival was observed. At higher concentrations (more than 12 μM) the decrease in survival resulted in a decrease of the shoulder width of the survival curve. Eventually an exponential curve was obtained. We suggest therefore that the shoulder of the survival curve results from some repair or potentially lethal damage. Preliminary information has been obtained on the time course of this repair

  12. Use of lymphokine-activated killer cells to prevent bone marrow graft rejection and lethal graft-vs-host disease

    International Nuclear Information System (INIS)

    Azuma, E.; Yamamoto, H.; Kaplan, J.

    1989-01-01

    Prompted by our recent finding that lymphokine-activated killer (LAK) cells mediate both veto and natural suppression, we tested the ability of adoptively transferred LAK cells to block two in vivo alloreactions which complicate bone marrow transplantation: resistance to transplanted allogeneic bone marrow cells, and lethal graft-vs-host disease. Adoptive transfer of either donor type B6D2 or recipient-type B6 lymphokine-activated bone marrow cells, cells found to have strong LAK activity, abrogated or inhibited the resistance of irradiated B6 mice to both B6D2 marrow and third party-unrelated C3H marrow as measured by CFU in spleen on day 7. The ability of lymphokine-activated bone marrow cells to abrogate allogeneic resistance was eliminated by C lysis depletion of cells expressing asialo-GM1, NK1.1, and, to a variable degree, Thy-1, but not by depletion of cells expressing Lyt-2, indicating that the responsible cells had a LAK cell phenotype. Similar findings were obtained by using splenic LAK cells generated by 3 to 7 days of culture with rIL-2. Demonstration that allogeneic resistance could be blocked by a cloned LAK cell line provided direct evidence that LAK cells inhibit allogeneic resistance. In addition to inhibiting allogeneic resistance, adoptively transferred recipient-type LAK cells prevented lethal graft-vs-host disease, and permitted long term engraftment of allogeneic marrow. Irradiation prevented LAK cell inhibition of both allogeneic resistance and lethal graft-vs-host disease. These findings suggest that adoptive immunotherapy with LAK cells may prove useful in preventing graft rejection and graft-versus-host disease in human bone marrow transplant recipients

  13. ATM inhibition induces synthetic lethality and enhances sensitivity of PTEN-deficient breast cancer cells to cisplatin.

    Science.gov (United States)

    Li, Ke; Yan, Huaying; Guo, Wenhao; Tang, Mei; Zhao, Xinyu; Tong, Aiping; Peng, Yong; Li, Qintong; Yuan, Zhu

    2018-05-01

    PTEN deficiency often causes defects in DNA damage repair. Currently, effective therapies for breast cancer are lacking. ATM is an attractive target for cancer treatment. Previous studies suggested a synthetic lethality between PTEN and PARP. However, the synthetically lethal interaction between PTEN and ATM in breast cancer has not been reported. Moreover, the mechanism remains elusive. Here, using KU-60019, an ATM kinase inhibitor, we investigated ATM inhibition as a synthetically lethal strategy to target breast cancer cells with PTEN defects. We found that KU-60019 preferentially sensitizes PTEN-deficient MDA-MB-468 breast cancer cells to cisplatin, though it also slightly enhances sensitivity of PTEN wild-type breast cancer cells. The increased cytotoxic sensitivity is associated with apoptosis, as evidenced by flow cytometry and PARP cleavage. Additionally, the increase of DNA damage accumulation due to the decreased capability of DNA repair, as indicated by γ-H2AX and Rad51 foci, also contributed to this selective cytotoxicity. Mechanistically, compared with PTEN wild-type MDA-MB-231 cells, PTEN-deficient MDA-MB-468 cells have lower level of Rad51, higher ATM kinase activity, and display the elevated level of DNA damage. Moreover, these differences could be further enlarged by cisplatin. Our findings suggest that ATM is a promising target for PTEN-defective breast cancer. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. CD4+ T cells targeting dominant and cryptic epitopes from Bacillus anthracis Lethal Factor

    Directory of Open Access Journals (Sweden)

    Stephanie eAscough

    2016-01-01

    Full Text Available Anthrax is an endemic infection in many countries, particularly in the developing world. The causative agent, Bacillus anthracis, mediates disease through the secretion of binary exotoxins. Until recently, research into adaptive immunity targeting this bacterial pathogen has largely focused on the humoral response to these toxins. There is, however, growing recognition that cellular immune responses involving IFNγ producing CD4+ T cells also contribute significantly to a protective memory response. An established concept in adaptive immunity to infection is that during infection of host cells, new microbial epitopes may be revealed, leading to immune recognition of so called ‘cryptic’ or ‘subdominant’ epitopes. We analysed the response to both cryptic and immunodominant T cell epitopes derived from the toxin component lethal factor and presented by a range of HLA-DR alleles. Using IFNγ-ELISPOT assays we characterised epitopes that elicited a response following immunisation with synthetic peptide and the whole protein and tested their capacities to bind purified HLA-DR molecules in vitro. We found that DR1 transgenics demonstrated T cell responses to a greater number of domain III cryptic epitopes than other HLA-DR transgenics, and that this pattern was repeated with the immunodominant epitopes, a greater proportion of these epitopes induced a T cell response when presented within the context of the whole protein. Immunodominant epitopes LF457-476 and LF467-487 were found to induce a T cell response to the peptide, as well as to the whole native LF protein in DR1 and DR15, but not in DR4 trangenics. The analysis of Domain I revealed the presence of several unique cryptic epitopes all of which showed a strong to moderate relative binding affinity to HLA-DR4 molecules. However, none of the cryptic epitopes from either domain III or I displayed notably high binding affinities across all HLA-DR alleles assayed. These responses were

  15. Enhanced lethal effect of combined ACNU with x-ray on cultured HeLaS3 cells

    International Nuclear Information System (INIS)

    Kanazawa, Haruyuki; Miyamoto, Tadaaki

    1983-01-01

    The combined effects of ACNU and X-irradiation on cultured HeLaS 3 cells were investigated. Pretreatment with either ACNU or X-ray induced a substantial reduction in shoulder width the D 0 value of the dose-response curve for the other agent, given later was unchanged. ACNU did not inhibit the recovery of sublethal damage (SLD) induced by X-ray when this treatment preceded the spilit-dose experiment. Our results indicate that some cell damage induced by each agent is transmissible to the progeny of the surviving cells and that the interaction of ACNU and X-irradiation was lethal to the cells. (author)

  16. Sub-lethal irradiation of human colorectal tumor cells imparts enhanced and sustained susceptibility to multiple death receptor signaling pathways.

    Directory of Open Access Journals (Sweden)

    Victoria Ifeadi

    Full Text Available BACKGROUND: Death receptors (DR of the TNF family function as anti-tumor immune effector molecules. Tumor cells, however, often exhibit DR-signaling resistance. Previous studies indicate that radiation can modify gene expression within tumor cells and increase tumor cell sensitivity to immune attack. The aim of this study is to investigate the synergistic effect of sub-lethal doses of ionizing radiation in sensitizing colorectal carcinoma cells to death receptor-mediated apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: The ability of radiation to modulate the expression of multiple death receptors (Fas/CD95, TRAILR1/DR4, TRAILR2/DR5, TNF-R1 and LTβR was examined in colorectal tumor cells. The functional significance of sub-lethal doses of radiation in enhancing tumor cell susceptibility to DR-induced apoptosis was determined by in vitro functional sensitivity assays. The longevity of these changes and the underlying molecular mechanism of irradiation in sensitizing diverse colorectal carcinoma cells to death receptor-mediated apoptosis were also examined. We found that radiation increased surface expression of Fas, DR4 and DR5 but not LTβR or TNF-R1 in these cells. Increased expression of DRs was observed 2 days post-irradiation and remained elevated 7-days post irradiation. Sub-lethal tumor cell irradiation alone exhibited minimal cell death, but effectively sensitized three of three colorectal carcinoma cells to both TRAIL and Fas-induced apoptosis, but not LTβR-induced death. Furthermore, radiation-enhanced Fas and TRAIL-induced cell death lasted as long as 5-days post-irradiation. Specific analysis of intracellular sensitizers to apoptosis indicated that while radiation did reduce Bcl-X(L and c-FLIP protein expression, this reduction did not correlate with the radiation-enhanced sensitivity to Fas and/or TRAIL mediated apoptosis among the three cell types. CONCLUSIONS/SIGNIFICANCE: Irradiation of tumor cells can overcome Fas and TRAIL

  17. Ribosomal elongation factor 4 promotes cell death associated with lethal stress.

    Science.gov (United States)

    Li, Liping; Hong, Yuzhi; Luan, Gan; Mosel, Michael; Malik, Muhammad; Drlica, Karl; Zhao, Xilin

    2014-12-09

    Ribosomal elongation factor 4 (EF4) is highly conserved among bacteria, mitochondria, and chloroplasts. However, the EF4-encoding gene, lepA, is nonessential and its deficiency shows no growth or fitness defect. In purified systems, EF4 back-translocates stalled, posttranslational ribosomes for efficient protein synthesis; consequently, EF4 has a protective role during moderate stress. We were surprised to find that EF4 also has a detrimental role during severe stress: deletion of lepA increased Escherichia coli survival following treatment with several antimicrobials. EF4 contributed to stress-mediated lethality through reactive oxygen species (ROS) because (i) the protective effect of a ΔlepA mutation against lethal antimicrobials was eliminated by anaerobic growth or by agents that block hydroxyl radical accumulation and (ii) the ΔlepA mutation decreased ROS levels stimulated by antimicrobial stress. Epistasis experiments showed that EF4 functions in the same genetic pathway as the MazF toxin, a stress response factor implicated in ROS-mediated cell death. The detrimental action of EF4 required transfer-messenger RNA (tmRNA, which tags truncated proteins for degradation and is known to be inhibited by EF4) and the ClpP protease. Inhibition of a protective, tmRNA/ClpP-mediated degradative activity would allow truncated proteins to indirectly perturb the respiratory chain and thereby provide a potential link between EF4 and ROS. The connection among EF4, MazF, tmRNA, and ROS expands a pathway leading from harsh stress to bacterial self-destruction. The destructive aspect of EF4 plus the protective properties described previously make EF4 a bifunctional factor in a stress response that promotes survival or death, depending on the severity of stress. Translation elongation factor 4 (EF4) is one of the most conserved proteins in nature, but it is dispensable. Lack of strong phenotypes for its genetic knockout has made EF4 an enigma. Recent biochemical work has

  18. HAMLET (human alpha-lactalbumin made lethal to tumor cells) triggers autophagic tumor cell death.

    Science.gov (United States)

    Aits, Sonja; Gustafsson, Lotta; Hallgren, Oskar; Brest, Patrick; Gustafsson, Mattias; Trulsson, Maria; Mossberg, Ann-Kristin; Simon, Hans-Uwe; Mograbi, Baharia; Svanborg, Catharina

    2009-03-01

    HAMLET, a complex of partially unfolded alpha-lactalbumin and oleic acid, kills a wide range of tumor cells. Here we propose that HAMLET causes macroautophagy in tumor cells and that this contributes to their death. Cell death was accompanied by mitochondrial damage and a reduction in the level of active mTOR and HAMLET triggered extensive cytoplasmic vacuolization and the formation of double-membrane-enclosed vesicles typical of macroautophagy. In addition, HAMLET caused a change from uniform (LC3-I) to granular (LC3-II) staining in LC3-GFP-transfected cells reflecting LC3 translocation during macroautophagy, and this was blocked by the macroautophagy inhibitor 3-methyladenine. HAMLET also caused accumulation of LC3-II detected by Western blot when lysosomal degradation was inhibited suggesting that HAMLET caused an increase in autophagic flux. To determine if macroautophagy contributed to cell death, we used RNA interference against Beclin-1 and Atg5. Suppression of Beclin-1 and Atg5 improved the survival of HAMLET-treated tumor cells and inhibited the increase in granular LC3-GFP staining. The results show that HAMLET triggers macroautophagy in tumor cells and suggest that macroautophagy contributes to HAMLET-induced tumor cell death.

  19. Alpha-beta T cells provide protection against lethal encephalitis in the murine model of VEEV infection

    International Nuclear Information System (INIS)

    Paessler, Slobodan; Yun, Nadezhda E.; Judy, Barbara M.; Dziuba, Natallia; Zacks, Michele A.; Grund, Anna H.; Frolov, Ilya; Campbell, Gerald A.; Weaver, Scott C.; Estes, D. Mark

    2007-01-01

    We evaluated the safety and immunogenicity of a chimeric alphavirus vaccine candidate in mice with selective immunodeficiencies. This vaccine candidate was highly attenuated in mice with deficiencies in the B and T cell compartments, as well as in mice with deficient gamma-interferon responsiveness. However, the level of protection varied among the strains tested. Wild type mice were protected against lethal VEEV challenge. In contrast, alpha/beta (αβ) TCR-deficient mice developed lethal encephalitis following VEEV challenge, while mice deficient in gamma/delta (γδ) T cells were protected. Surprisingly, the vaccine potency was diminished by 50% in animals lacking interferon-gamma receptor alpha chain (R1)-chain and a minority of vaccinated immunoglobulin heavy chain-deficient (μMT) mice survived challenge, which suggests that neutralizing antibody may not be absolutely required for protection. Prolonged replication of encephalitic VEEV in the brain of pre-immunized mice is not lethal and adoptive transfer experiments indicate that CD3 + T cells are required for protection

  20. Lethal and mutagenic effects of radiation and chemicals on cultured fish cells derived the erythrophoroma of goldfish (Carassius auratus)

    Energy Technology Data Exchange (ETDEWEB)

    Mitani, H. (Tokyo Univ. (Japan). Inst. of Zoology)

    1983-01-01

    GEM 199 cells derived from an eryhtrophoroma of goldfish (Carassius auratus), which had a high plating efficiency, were used to investigate the lethal and mutational effects of radiations (UV and ..gamma..-rays) and chemicals (4NQO and MNNG). The cells were more resistant to rays than mammalian cells and CAF-MM1 cells derived from the normal fin tissue of goldfish. They were also more resistant to UV-irradiation than CAF-MM1 cells. Photoreactivation after UV-irradiation was present in GEM 199 cells for both survival and mutation. The initial shoulder of the survival curve of UV-irradiated cells was reduced greatly by caffeine, suggesting a high activity of the post-replication repair. The spontaneous mutation frequency to ouabain resistance was 1-5x10/sup -6/ clones per viable cell. MNNG was effective in inducing ouabain-resistant mutation, while 4NQO and ..gamma..-rays did not induce mutation.

  1. Chromosome condensation may enhance X-ray-related cell lethality in a temperature-sensitive mutant (tsBN2) of baby hamster kidney cells (BHK21)

    International Nuclear Information System (INIS)

    Sasaki, H.; Nishimoto, T.

    1987-01-01

    In the tsBN2 cell line, which has a temperature-sensitive defect in the regulatory mechanism for chromosome condensation, the lethal effect of X rays was enhanced by incubating the cells at a nonpermissive temperature (40 degrees C) following X irradiation. This enhancement was suppressed in the presence of cycloheximide, which inhibits induction of premature chromosome condensation. The findings obtained in the case of delayed incubation at 40 degrees C and in synchronized cells indicate that X-ray-related potentially lethal damage, which can be expressed by chromosome condensation, is produced in the cells at any stage of the cell cycle, but it is repairable for all cells except those at around the late G2-M phase, where chromosome condensation occurs at a permissive temperature (33.5 degrees C). These observations suggest that the high sensitivity of late G2-M cells to X rays is caused by the events associated with chromosome condensation

  2. Suppression of AKT phosphorylation restores rapamycin-based synthetic lethality in SMAD4-defective pancreatic cancer cells.

    Science.gov (United States)

    Le Gendre, Onica; Sookdeo, Ayisha; Duliepre, Stephie-Anne; Utter, Matthew; Frias, Maria; Foster, David A

    2013-05-01

    mTOR has been implicated in survival signals for many human cancers. Rapamycin and TGF-β synergistically induce G1 cell-cycle arrest in several cell lines with intact TGF-β signaling pathway, which protects cells from the apoptotic effects of rapamycin during S-phase of the cell cycle. Thus, rapamycin is cytostatic in the presence of serum/TGF-β and cytotoxic in the absence of serum. However, if TGF-β signaling is defective, rapamycin induced apoptosis in both the presence and absence of serum/TGF-β in colon and breast cancer cell lines. Because genetic dysregulation of TGF-β signaling is commonly observed in pancreatic cancers-with defects in the Smad4 gene being most prevalent, we hypothesized that pancreatic cancers would display a synthetic lethality to rapamycin in the presence of serum/TGF-β. We report here that Smad4-deficient pancreatic cancer cells are killed by rapamycin in the absence of serum; however, in the presence of serum, we did not observe the predicted synthetic lethality with rapamycin. Rapamycin also induced elevated phosphorylation of the survival kinase Akt at Ser473. Suppression of rapamycin-induced Akt phosphorylation restored rapamycin sensitivity in Smad4-null, but not Smad4 wild-type pancreatic cancer cells. This study shows that the synthetic lethality to rapamycin in pancreatic cancers with defective TGF-β signaling is masked by rapamycin-induced increases in Akt phosphorylation. The implication is that a combination of approaches that suppress both Akt phosphorylation and mTOR could be effective in targeting pancreatic cancers with defective TGF-β signaling. ©2013 AACR.

  3. Induction of dominant lethal mutations by alkylating agnets in germ-cells of the silkworm, Bombyx mori

    International Nuclear Information System (INIS)

    Murota, Tetsuo; Murakami, Akio.

    1977-01-01

    The comparison of the intensity of activity was made by measuring radiation equivalent chemical (REC) dose in the experiment of the induction of dominant lethal mutation, using the germ cells of pupae five days before the moths will be hatched. The alkylating agents employed in the experiment are methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS), diethyl sulfate (DSC) and mitomycine-C (MC). X-ray irradiation was employed in order to indicate the capability of inducing mutation of the alkylating agents with the radiation equivalent chemical dose (REC dose). The dose-hatchability curves for the alkylating agents showed sigmoidal fashion as observed in X-ray, regardless of germ cells. The REC value at LD (50) was estimated by comparing the relative mutagenic capability of these chemicals. In sperm, EMS and DES with concentration of 1.0 x 10 -7 M/g showed the same lethality as about 2.3 kR and 0.6 kR of X-ray. However, no significant reduction of embryonic lethality after the treatment of pupae with MC (up to 2.1 x 10 -7 M/g) and MMS (up to 1.0 x 10 -6 M/g) was observed. As the results, the order of mutagenic effectiveness was as follows: EMS>DES>MMS approximately equal to MC. When oocytes in the mid-pupae were treated with MMS, EMS and MC with concentration of 1.0 x 10 -7 M/g, MMS and EMS showed the same effects as 12.8 kR and 0.6 kR. Surprisingly, MC showed the same lethality as 232.3 kR. This extremely high sensitivity of oocytes to MC may be ascribed to the inhibiting effect of the drug on the meiotic division. (Iwakiri, K.)

  4. Thioredoxin mitigates radiation-induced hematopoietic stem cell injury in mice

    Directory of Open Access Journals (Sweden)

    Pasupathi Sundaramoorthy

    2017-11-01

    Full Text Available Abstract Background Radiation exposure poses a significant threat to public health. Hematopoietic injury is one of the major manifestations of acute radiation sickness. Protection and/or mitigation of hematopoietic stem cells (HSCs from radiation injury is an important goal in the development of medical countermeasure agents (MCM. We recently identified thioredoxin (TXN as a novel molecule that has marked protective and proliferative effects on HSCs. In the current study, we investigated the effectiveness of TXN in rescuing mice from a lethal dose of total body radiation (TBI and in enhancing hematopoietic reconstitution following a lethal dose of irradiation. Methods We used in-vivo and in-vitro methods to understand the biological and molecular mechanisms of TXN on radiation mitigation. BABL/c mice were used for the survival study and a flow cytometer was used to quantify the HSC population and cell senescence. A hematology analyzer was used for the peripheral blood cell count, including white blood cells (WBCs, red blood cells (RBCs, hemoglobin, and platelets. Colony forming unit (CFU assay was used to study the colongenic function of HSCs. Hematoxylin and eosin staining was used to determine the bone marrow cellularity. Senescence-associated β-galactosidase assay was used for cell senescence. Western blot analysis was used to evaluate the DNA damage and senescence protein expression. Immunofluorescence staining was used to measure the expression of γ-H2AX foci for DNA damage. Results We found that administration of TXN 24 h following irradiation significantly mitigates BALB/c mice from TBI-induced death: 70% of TXN-treated mice survived, whereas only 25% of saline-treated mice survived. TXN administration led to enhanced recovery of peripheral blood cell counts, bone marrow cellularity, and HSC population as measured by c-Kit+Sca-1+Lin– (KSL cells, SLAM + KSL cells and CFUs. TXN treatment reduced cell senescence and radiation

  5. Hyperthermia radiosensitization in human glioma cells comparison of recovery of polymerase activity, survival, and potentially lethal damage repair

    International Nuclear Information System (INIS)

    Raaphorst, G.P.; Feeley, M.M.

    1994-01-01

    DNA polymerase inactivation is compared to thermal radiosensitization and inhibition of damage recovery in human glioma cells. Two human glioma cell lines (U87MG and U373MG) were exposed to hyperthermia and irradiation. Hyperthermia was given at 43 degrees C and 45 degrees C and DNA polymerase α + δ + ε and β activities were measured. Hyperthermia was given at various times before irradiation and the degree of radiosensitization and polymerase activity was assessed at various times after heating. In addition the ability of cells to undergo repair of potentially lethal radiation damage was assessed for cells irradiated at various times after heating. Polymerase α + δ + ε and polymerase β both recovered after heating but polymerase β was faster and was complete in U373MG but not in the U87MG cell lines after 48 h incubation after heating (45 degrees C, 60 min). Incubation, between hyperthermia and irradiation resulted in a loss of radiosensitization and a loss of inhibition of repair of potentially lethal damage. These changes correlated well with recovery of polymerase β but not with polymerase α + δ + ε. The correlation of polymerase β activity and thermoradiosensitization and its recovery indicate that polymerase β may be one of the mechanisms involved in thermoradiosensitization. 35 refs., 7 figs

  6. Studies on chromosomal aberrations and dominant lethal mutations induced by x irradiation in germ cells of male mice

    International Nuclear Information System (INIS)

    Wang Xianli; Wang Mingdong; Wang Bin; Sun Shuqing

    1992-01-01

    After male mice irradiated by 2 Gy X rays mated to normal virginal females superovulated with PMSG and HCG, pronuclei chromosome spreading of first-cleavage embryos were prepared and chromosomal aberrations of paternal pronuclei were observed. The results showed that the frequency of chromosomal aberrations was highest irradiated at spermatic stage among different stages of spermatogenesis. The sequence of radiosensitivity in spermatogenesis was as follows: spermatids > mature sperm > spermatocyte > spermatogonia and stem spermatogonia. The frequencies of paternal chromosomal aberrations resulted from irradiation at spermatids and mature sperms were significantly higher than that in control. The reciprocal translocations of stem spermatogonia induced by 2 Gy X rays in those male mice were also examined in the preparations of diakinesis-metaphase I. The frequency of reciprocal translocations were 0.0429 per cell and significantly higher than that in control. The proportion of unbalanced gametes, resulting in lethal embryos after fertilization, was 0.02145 to be predicted. At the same time, the dominant lethality induced by X rays in stem spermatogonia was measured, being 0.0371. The frequency of dead fetuses in irradiation group was about twice as in control. The regression analysis was found that the reciprocal translocations was markedly related to the dominant lethality

  7. Differential response of human and rodent cell lines to chemical inhibition of the repair of potentially lethal damage

    Energy Technology Data Exchange (ETDEWEB)

    Little, J.B.; Ueno, A.M.; Dahlberg, W.K.

    1989-07-01

    We have examined the effects of several classes of metabolic inhibitors on the repair of potentially lethal damage in density-inhibited cultures of two rodent and two human cell systems which differ in their growth characteristics. Aphidicolin, 1-..beta..-D-arabinofuranosylcytosine (ara-C) and hydroxyurea showed no effect on PLD repair, whereas the effects of 9-..beta..-D-arabinofuranosyladenine (ara-A) and 3-aminobenzamide (3-AB) were cell line dependent. For example, 3-AB suppressed PLD repair almost completely in CHO cells, but showed no inhibitory effects in human diploid fibroblasts. These results indicate that inhibitors of DNA replication and poly(ADP-ribose) synthesis are not efficient inhibitors of cellular recovery in irradiated cells and, moreover, that such effects may be cell line dependent.

  8. Sensitivity of Vibrio cholerae cells to lethal and mutagenic effect of UV-irradiation mediated by plasmids

    International Nuclear Information System (INIS)

    Tiganova, I.G.; Evdokimova, N.M.; Aleshkin, G.I.

    1988-01-01

    The effect of UV-irradiation on Vibrio cholerae cells and its changes mediated by the plasmid R245 have been studied. Vibrio cholerae strains 569B and RV31 have been shown to be considerably more sensitive to lethal effect of UV-irradiation as compared with Escherichia coli and Salmonella typhimurium cells. Highly toxigenic strain 569B and practically atoxigenic strain RV31 have the same UV-sensitivity. Lethla effect of UV-irradiation on Vibrio cholerae cells is incresed when the irradiated cells are plated on enriched media. UV-induction of mutations was not registered in plasmidless strains of Vibrio cholerae. Plasmid R245 increase UV-resistance of vibrio cells and makes them UV-mutable

  9. Culture media from hypoxia conditioned endothelial cells protect human intestinal cells from hypoxia/reoxygenation injury.

    Science.gov (United States)

    Hummitzsch, Lars; Zitta, Karina; Bein, Berthold; Steinfath, Markus; Albrecht, Martin

    2014-03-10

    Remote ischemic preconditioning (RIPC) is a phenomenon, whereby short episodes of non-lethal ischemia to an organ or tissue exert protection against ischemia/reperfusion injury in a distant organ. However, there is still an apparent lack of knowledge concerning the RIPC-mediated mechanisms within the target organ and the released factors. Here we established a human cell culture model to investigate cellular and molecular effects of RIPC and to identify factors responsible for RIPC-mediated intestinal protection. Human umbilical vein cells (HUVEC) were exposed to repeated episodes of hypoxia (3 × 15 min) and conditioned culture media (CM) were collected after 24h. Human intestinal cells (CaCo-2) were cultured with or without CM and subjected to 90 min of hypoxia/reoxygenation injury. Reverse transcription-polymerase chain reaction, Western blotting, gelatin zymography, hydrogen peroxide measurements and lactate dehydrogenase (LDH) assays were performed. In HUVEC cultures hypoxic conditioning did not influence the profile of secreted proteins but led to an increased gelatinase activity (Pcultures 90 min of hypoxia/reoxygenation resulted in morphological signs of cell damage, increased LDH levels (Pculture model may help to unravel RIPC-mediated cellular events and to identify molecules released by RIPC. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Lack of a peroxiredoxin suppresses the lethality of cells devoid of electron donors by channelling electrons to oxidized ribonucleotide reductase.

    Science.gov (United States)

    Boronat, Susanna; Domènech, Alba; Carmona, Mercè; García-Santamarina, Sarela; Bañó, M Carmen; Ayté, José; Hidalgo, Elena

    2017-06-01

    The thioredoxin and glutaredoxin pathways are responsible of recycling several enzymes which undergo intramolecular disulfide bond formation as part of their catalytic cycles such as the peroxide scavengers peroxiredoxins or the enzyme ribonucleotide reductase (RNR). RNR, the rate-limiting enzyme of deoxyribonucleotide synthesis, is an essential enzyme relying on these electron flow cascades for recycling. RNR is tightly regulated in a cell cycle-dependent manner at different levels, but little is known about the participation of electron donors in such regulation. Here, we show that cytosolic thioredoxins Trx1 and Trx3 are the primary electron donors for RNR in fission yeast. Unexpectedly, trx1 transcript and Trx1 protein levels are up-regulated in a G1-to-S phase-dependent manner, indicating that the supply of electron donors is also cell cycle-regulated. Indeed, genetic depletion of thioredoxins triggers a DNA replication checkpoint ruled by Rad3 and Cds1, with the final goal of up-regulating transcription of S phase genes and constitutive RNR synthesis. Regarding the thioredoxin and glutaredoxin cascades, one combination of gene deletions is synthetic lethal in fission yeast: cells lacking both thioredoxin reductase and cytosolic dithiol glutaredoxin. We have isolated a suppressor of this lethal phenotype: a mutation at the Tpx1-coding gene, leading to a frame shift and a loss-of-function of Tpx1, the main client of electron donors. We propose that in a mutant strain compromised in reducing equivalents, the absence of an abundant and competitive substrate such as the peroxiredoxin Tpx1 has been selected as a lethality suppressor to favor RNR function at the expense of the non-essential peroxide scavenging function, to allow DNA synthesis and cell growth.

  11. Lack of a peroxiredoxin suppresses the lethality of cells devoid of electron donors by channelling electrons to oxidized ribonucleotide reductase.

    Directory of Open Access Journals (Sweden)

    Susanna Boronat

    2017-06-01

    Full Text Available The thioredoxin and glutaredoxin pathways are responsible of recycling several enzymes which undergo intramolecular disulfide bond formation as part of their catalytic cycles such as the peroxide scavengers peroxiredoxins or the enzyme ribonucleotide reductase (RNR. RNR, the rate-limiting enzyme of deoxyribonucleotide synthesis, is an essential enzyme relying on these electron flow cascades for recycling. RNR is tightly regulated in a cell cycle-dependent manner at different levels, but little is known about the participation of electron donors in such regulation. Here, we show that cytosolic thioredoxins Trx1 and Trx3 are the primary electron donors for RNR in fission yeast. Unexpectedly, trx1 transcript and Trx1 protein levels are up-regulated in a G1-to-S phase-dependent manner, indicating that the supply of electron donors is also cell cycle-regulated. Indeed, genetic depletion of thioredoxins triggers a DNA replication checkpoint ruled by Rad3 and Cds1, with the final goal of up-regulating transcription of S phase genes and constitutive RNR synthesis. Regarding the thioredoxin and glutaredoxin cascades, one combination of gene deletions is synthetic lethal in fission yeast: cells lacking both thioredoxin reductase and cytosolic dithiol glutaredoxin. We have isolated a suppressor of this lethal phenotype: a mutation at the Tpx1-coding gene, leading to a frame shift and a loss-of-function of Tpx1, the main client of electron donors. We propose that in a mutant strain compromised in reducing equivalents, the absence of an abundant and competitive substrate such as the peroxiredoxin Tpx1 has been selected as a lethality suppressor to favor RNR function at the expense of the non-essential peroxide scavenging function, to allow DNA synthesis and cell growth.

  12. Role of Natural Killer Cells in Innate Protection against Lethal Ebola Virus Infection

    OpenAIRE

    Warfield, Kelly L.; Perkins, Jeremy G.; Swenson, Dana L.; Deal, Emily M.; Bosio, Catharine M.; Aman, M. Javad; Yokoyama, Wayne M.; Young, Howard A.; Bavari, Sina

    2004-01-01

    Ebola virus is a highly lethal human pathogen and is rapidly driving many wild primate populations toward extinction. Several lines of evidence suggest that innate, nonspecific host factors are potentially critical for survival after Ebola virus infection. Here, we show that nonreplicating Ebola virus-like particles (VLPs), containing the glycoprotein (GP) and matrix protein virus protein (VP)40, administered 1–3 d before Ebola virus infection rapidly induced protective immunity. VLP injectio...

  13. Influence of vaccination with Bordetella pertussis cells on haemopoiesis in sublethally irradiated mice and their radiation lethality

    International Nuclear Information System (INIS)

    Kwiek, S.; Bitny-Szlachto, S.

    1978-01-01

    Post-irradiation lethality of CFW mice has turned out to be enhanced by vaccination with Bordetella pertussis cells 10 min., 48 hrs. prior or 48 hrs. after the exposure to X-rays. The sensitization factor was found to be 1.23, as it revealed by decrease of radiation LD 50 . Granulopoiesis and erythropoiesis proved to be stimulated by vaccination, in mice irradiated with 200 or 400 R but not in those after 600 R. Direct radiosensitivity of CFU was not altered by vaccination, but the subsequent loss of bone marrow stem cells was enhanced in vaccinated mice. On the other hand, endocolonization of spleens with bone marrow stem cells has turned out to be highly enhanced by the vaccine, resulting in confluent growth of colonies. This effect of the vaccine was not abolished by hydroxyurea given 15 min. or 1 hr. after vaccination. Enhanced post-irradiation lethality is considered to result from fall of the bone marrow stem cell pool below the level indispensable to ensure the post-irradiation recovery of the haemopoietic system. (author)

  14. Radiation therapy of lethal midline granuloma type nasal T-cell lymphoma

    International Nuclear Information System (INIS)

    Sakata, Koh-ichi; Hareyama, Masato; Ohuchi, Atushi; Sido, Mitsuo; Nagakura, Hisayasu; Morita, Kazuo; Harabuchi, Yasuaki; Kataura, Akikatsu

    1996-01-01

    Purpose/Objective: Lethal midline granuloma (LMG) is disorder characterized by progressive, unrelenting ulceration, and necrosis of the nasal cavity and midline facial tissues. Several investigators have demonstrated that LMG (polymorphic reticulosis) is a peripheral T-cell lymphoma, and the term nasal T-cell lymphoma of the LMG type (LMG-NTL) has since been widely used. Recently, expression of the natural killer (NK) cell marker CD56 on tumor cells has been reported in some cases. However, there is very little information about the optimal treatment for this disease. In this study, we report our observations on the clinical behavior of this tumor in comparison with nasal lymphoma of non-LMG-NTL type (non-LMG-NTL) that makes tumor mass and paranasal sinus lymphoma (PSL) to improve management of LMG-NTL. Materials and Methods: Sixteen patients (10 men, 6 women) with LMG-NTL, 8 patients (4 men, 4 women) with non-LMG-NTL, and 6 patients (4 men, 2 women) with PSL were treated with radiation therapy between January 1975 and December 1994. Four of 8 patients with non-LMG-NTL had tumors of B-cell origin and four had T-cell derived tumors. All 6 patients with PSL had B-cell tumors. They had stage I or II disease. The radiation portal encompassed clinically involved areas with a generous margin. The median dose received was 40 Gy (range, 9-74 Gy) and the median TDF delivered was 63.3 (range, 13.7-103.5). One or two courses of VEPA chemotherapy (same drugs as CHOP, however, drugs doses and treatment schedule are a little different) were administered to the patients with non-LMG-NTL after radiotherapy and the patients with PSL before radiotherapy. In patients with LMG-NTL, between 1975 and 1981 one patient was treated with COPP, one with VEMP after radiotherapy, and two with radiotherapy alone. From 1982 to 1986, all three patients treated for LMG-NTL received VEPA before radiotherapy. Since 1987, of 11 patients treated for LMG-NTL, all except one received two courses of

  15. Stem cells and repair of lung injuries

    Directory of Open Access Journals (Sweden)

    Randell Scott H

    2004-07-01

    Full Text Available Abstract Fueled by the promise of regenerative medicine, currently there is unprecedented interest in stem cells. Furthermore, there have been revolutionary, but somewhat controversial, advances in our understanding of stem cell biology. Stem cells likely play key roles in the repair of diverse lung injuries. However, due to very low rates of cellular proliferation in vivo in the normal steady state, cellular and architectural complexity of the respiratory tract, and the lack of an intensive research effort, lung stem cells remain poorly understood compared to those in other major organ systems. In the present review, we concisely explore the conceptual framework of stem cell biology and recent advances pertinent to the lungs. We illustrate lung diseases in which manipulation of stem cells may be physiologically significant and highlight the challenges facing stem cell-related therapy in the lung.

  16. Blue light induced reactive oxygen species from flavin mononucleotide and flavin adenine dinucleotide on lethality of HeLa cells.

    Science.gov (United States)

    Yang, Ming-Yeh; Chang, Chih-Jui; Chen, Liang-Yü

    2017-08-01

    Photodynamic therapy (PDT) is a safe and non-invasive treatment for cancers and microbial infections. Various photosensitizers and light sources have been developed for clinical cancer therapies. Flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are the cofactor of enzymes and are used as photosensitizers in this study. Targeting hypoxia and light-triggering reactive oxygen species (ROS) are experimental strategies for poisoning tumor cells in vitro. HeLa cells are committed to apoptosis when treated with FMN or FAD and exposed to visible blue light (the maximum emitted wavelength of blue light is 462nm). Under blue light irradiation at 3.744J/cm 2 (=0.52mW/cm 2 irradiated for 2h), the minimal lethal dose is 3.125μM and the median lethal doses (LD 50 ) for FMN and FAD are 6.5μM and 7.2μM, respectively. Individual exposure to visible blue light irradiation or riboflavin photosensitizers does not produce cytotoxicity and no side effects are observed in this study. The western blotting results also show that an intrinsic apoptosis pathway is activated by the ROS during photolysis of riboflavin analogues. Blue light triggers the cytotoxicity of riboflavins on HeLa cells in vitro. Based on these results, this is a feasible and efficient of PDT with an intrinsic photosensitizer for cancer research. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Poly(ADP-ribose) metabolism in X-irradiated Chinese hamster cells: its relation to repair of potentially lethal damage

    International Nuclear Information System (INIS)

    Ben-Hur, E.; Elkind, M.M.

    1984-01-01

    Nicotinamide-adenine dinucleotide (NAD + ) is the substrate used by cells in poly(ADP-ribose) synthesis. X-irradiation of log-phase Chinese hamster cells caused a rapid decrease in NAD + levels which was linearly dependent on radiation dose. The activity of ADP-ribosyl transferase (ADPRT) also increased linearly with radiation dose. The decrease of NAD + was slower, and the increase in ADPRT activity was less pronounced, in a radiation sensitive line, V79-AL162/S-10. An inhibitor of ADPRT, m-aminobenzamide, largely prevented the depletion of cellular NAD + and reduced the rate at which ADPRT activity disappeared during post-irradiation incubation. Post-irradiation treatment with hypertonic buffer or with medium containing D 2 O-which inhibit repair of radiation-induced potentially lethal damage-enhanced the depletion of NAD + and prevented the reduction in ADPRT activity following irradiation. The characteristics of the effects of treatment with hypertonic buffer on NAD + metabolism were qualitatively similar to the effects that such treatment has on radiation-induced cell killing. These results suggest that poly(ADP-ribose) synthesis after irradiation plays a role in the repair of potentially lethal damage. (author)

  18. Induction of lethal and genetic damage by vacuum-ultraviolet (163 nm) irradiation of aqueous suspensions of yeast cells

    International Nuclear Information System (INIS)

    Ito, T.; Kobayashi, K.

    1976-01-01

    Yeast cells suspended in distilled water were irradiated with monochromatic 163 nm photons by immersing a specially designed discharge tube into the suspension. This was thought to be a useful means of investigating in vivo effects of radiation-induced water radicals on well cells in the complete absence of ionic species, since 163 nm photons can dissociate water only via excitation. These experiments showed that the water radicals (excluding e/sub aq/ - ) exerted both lethal and genetic (gene-conversion) effects quite potently, and the characteristic protection against these effects was observable when 2-mercaptoethanol or, in particular, p-aminobenzoic acid, a specific scavenger for OH radicals, was added to the medium prior to irradiation. Nearly complete protection from both lethal and genetic effects was observed in some cases with p-aminobenzoic acid. These results establish unequivocally that the OH radical, and not the hydrogen atom (H radical), possesses the damaging potency in the cell. Comparisons with γ-ray experiments revealed several differences between 163 nm photons and γ rays in the protective actions of radical scavengers, which may be attributable to reactive species other than OH radicals produced by the γ rays

  19. Genetically modified anthrax lethal toxin safely delivers whole HIV protein antigens into the cytosol to induce T cell immunity

    Science.gov (United States)

    Lu, Yichen; Friedman, Rachel; Kushner, Nicholas; Doling, Amy; Thomas, Lawrence; Touzjian, Neal; Starnbach, Michael; Lieberman, Judy

    2000-07-01

    Bacillus anthrax lethal toxin can be engineered to deliver foreign proteins to the cytosol for antigen presentation to CD8 T cells. Vaccination with modified toxins carrying 8-9 amino acid peptide epitopes induces protective immunity in mice. To evaluate whether large protein antigens can be used with this system, recombinant constructs encoding several HIV antigens up to 500 amino acids were produced. These candidate HIV vaccines are safe in animals and induce CD8 T cells in mice. Constructs encoding gag p24 and nef stimulate gag-specific CD4 proliferation and a secondary cytotoxic T lymphocyte response in HIV-infected donor peripheral blood mononuclear cells in vitro. These results lay the foundation for future clinical vaccine studies.

  20. The effect of sub-lethal damage repair and exchange on the final slope of cell survival curves

    International Nuclear Information System (INIS)

    Carlone, M.C.; Wilkins, D.E.; Raaphorst, G.P.

    2003-01-01

    Full text: The Lea-Catcheside dose rate protraction factor, G, is the most widely used model to describe the effects of dose rate on cell survival. In the linear quadratic formalism, this factor modifies the beta component of cell killing; G is greatest for acute irradiations while vanishing at low dose rates. We have found a simple compartmental model that can derive the Lea-Catcheside function. This compartmental model clearly shows that the G function can only be derived using a little known assumption: the diminution of sub-lethal damage due to exchange of repairable lesions is negligible compared to that due to repair. This assumption was explicitly stated by Lea, but it does not appear to have been restated or verified since very early work on cell survival. The implication of this assumption is that sub-lethal damage can be modeled without considering exchange, which is evidenced by the fact that the G function does not contain parameters relating to exchange. By using a new model that fully accounts for repair and exchange of sublethal lesions, a cell survival expression that has a modified G function, but that retains the linear quadratic formalism, can be obtained. At low doses, this new model predicts linear-quadratic behavior, but the behavior gradually changes to mono-exponential at high doses, which is consistent with experimental observations. Modeling cell survival of well-known survival curves using the modified linear quadratic model shows statistically significant improvement in the fits to the cell survival data as compared to best fits obtained with the linear quadratic model. It is shown that these improvements in fits are due to a superior representation of the high dose region of the survival curve

  1. Determination of gamma radiation lethal dose (LD{sub 50}) and resveratrol cytotoxicity level in tumor cells line

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, Vanessa D.; Rogero, Sizue O.; Rogero, Jose R. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Cruz, Aurea S. [Instituto Adolfo Lutz (IAL-SP) Secao de Culturas Celulares, SP (Brazil)

    2011-07-01

    Cancer is a disease with high incidence and it is considered a worldwide public health problem. Resveratrol is a polyphenol occurring naturally in a wide variety of plants according to response of ultraviolet radiation (UV) exposition or according to mechanical stress resulting of pathogens or chemical and physical agents. This polyphenol possesses a pharmacological activity of carcinogenesis inhibition in multiple levels. It also protects cells by scavenging the free radicals which are considered toxic products. These free radicals are formed of natural process of cell aging and also by incidence of ionizing radiation in the organism. Thus, resveratrol is considered as a cell radioprotector. On the other hand, in some elevated concentrations resveratrol may be considered as a radiosensitizing. The aim of this work was the determination of radiation lethal dose (LD{sub 50}) and also verifies the cytotoxicity level of resveratrol in tumor cells line: muco epidermoid pulmonary carcinoma cells (NCI-H292) and rhabdomyosarcoma cells (RD). The cytotoxicity test was performed by neutral red uptake assay. The results of resveratrol IC{sub 50%} in NCI-H292 cells was 192{mu}M and in RD cells was 128{mu}M; and RD cells gamma radiation LD{sub 50} was 435Gy. (author)

  2. A Comparison of Real-Time and Endpoint Cell Viability Assays for Improved Synthetic Lethal Drug Validation.

    Science.gov (United States)

    Single, Andrew; Beetham, Henry; Telford, Bryony J; Guilford, Parry; Chen, Augustine

    2015-12-01

    Cell viability assays fulfill a central role in drug discovery studies. It is therefore important to understand the advantages and disadvantages of the wide variety of available assay methodologies. In this study, we compared the performance of three endpoint assays (resazurin reduction, CellTiter-Glo, and nuclei enumeration) and two real-time systems (IncuCyte and xCELLigence). Of the endpoint approaches, both the resazurin reduction and CellTiter-Glo assays showed higher cell viabilities when compared directly to stained nuclei counts. The IncuCyte and xCELLigence real-time systems were comparable, and both were particularly effective at tracking the effects of drug treatment on cell proliferation at sub-confluent growth. However, the real-time systems failed to evaluate contrasting cell densities between drug-treated and control-treated cells at full growth confluency. Here, we showed that using real-time systems in combination with endpoint assays alleviates the disadvantages posed by each approach alone, providing a more effective means to evaluate drug toxicity in monolayer cell cultures. Such approaches were shown to be effective in elucidating the toxicity of synthetic lethal drugs in an isogenic pair of MCF10A breast cell lines. © 2015 Society for Laboratory Automation and Screening.

  3. Lethal and mutagenic effects of radiation and alkylating agents on two strains of mouse L5178Y cells

    International Nuclear Information System (INIS)

    Evans, H.H.; Horng, M.; Beer, J.Z.

    1986-01-01

    The two closely related strains of L5178Y (LY) mouse lymphoma cells, LY-R and LY-S, have been shown to differ in their sensitivity to UV and ionizing radiation. In the present work, the lethal and mutagenic effects of ethyl methanesulfonate (EMS), methyl nitrosourea (MNU) and UV radiation (254 nm) were compared in the two strains. Mutability at the Na + /K + -ATPase locus as well as the HGPRT locus was determined. The authors found strain LY-S to be more resistant than strain LY-R to the lethal effects of UV radiation. In contrast, strain LY-S was more sensitive to the cytotoxic effects of the two alkylating agents. In spite of these differences in sensitivity, the authors found strain LY-S to be less mutable than strain LY-R by all 3 agents at the HGPRT locus. At the Na + /K + -ATPase locus, strain LY-S was also less mutable than strain LY-R by equal concentrations of EMS and UV radiation and by equitoxic concentrations of MNU. However, the difference between the strains was much more pronounced at the HGPRT locus than at the Na + /K + -ATPase locus. The authors have suggested that the interaction of unrepaired lesions in strain LY-S tends to cause an excess of deletions and multilocus effects, which in turn result in a locus-dependent decrease in the recovery of viable LY-S mutant cells. (Auth.)

  4. Lethal Epistaxis.

    Science.gov (United States)

    Byard, Roger W

    2016-09-01

    Epistaxis or nosebleed refers to bleeding from the nostrils, nasal cavity, or nasopharynx. Occasional cases may present with torrential lethal hemorrhage. Three cases are reported to demonstrate particular features: Case 1: A 51-year-old woman with lethal epistaxis with no obvious bleeding source; Case 2: A 77-year-old man with treated nasopharyngeal carcinoma who died from epistaxis arising from a markedly neovascularized tumor bed; Case 3: A 2-year-old boy with hemophilia B who died from epistaxis with airway obstruction in addition to gastrointestinal bleeding. Epistaxis may be associated with trauma, tumors, vascular malformations, bleeding diatheses, infections, pregnancy, endometriosis, and a variety of different drugs. Careful dissection of the nasal cavity is required to locate the site of hemorrhage and to identify any predisposing conditions. This may be guided by postmortem computerized tomographic angiography (PCTA). Despite careful dissection, however, a source of bleeding may never be identified. © 2016 American Academy of Forensic Sciences.

  5. Sex-lethal enables germline stem cell differentiation by down-regulating Nanos protein levels during Drosophila oogenesis.

    Science.gov (United States)

    Chau, Johnnie; Kulnane, Laura Shapiro; Salz, Helen K

    2012-06-12

    Drosophila ovarian germ cells require Sex-lethal (Sxl) to exit from the stem cell state and to enter the differentiation pathway. Sxl encodes a female-specific RNA binding protein and in somatic cells serves as the developmental switch gene for somatic sex determination and X-chromosome dosage compensation. None of the known Sxl target genes are required for germline differentiation, leaving open the question of how Sxl promotes the transition from stem cell to committed daughter cell. We address the mechanism by which Sxl regulates this transition through the identification of nanos as one of its target genes. Previous studies have shown that Nanos protein is necessary for GSC self-renewal and is rapidly down-regulated in the daughter cells fated to differentiate in the adult ovary. We find that this dynamic expression pattern is limited to female germ cells and is under Sxl control. In the absence of Sxl, or in male germ cells, Nanos protein is continuously expressed. Furthermore, this female-specific expression pattern is dependent on the presence of canonical Sxl binding sites located in the nanos 3' untranslated region. These results, combined with the observation that nanos RNA associates with the Sxl protein in ovarian extracts and loss and gain of function studies, suggest that Sxl enables the switch from germline stem cell to committed daughter cell by posttranscriptional down-regulation of nanos expression. These findings connect sexual identity to the stem cell self-renewal/differentiation decision and highlight the importance of posttranscriptional gene regulatory networks in controlling stem cell behavior.

  6. Bladder cancers respond to intravesical instillation of HAMLET (human alpha-lactalbumin made lethal to tumor cells).

    Science.gov (United States)

    Mossberg, Ann-Kristin; Wullt, Björn; Gustafsson, Lotta; Månsson, Wiking; Ljunggren, Eva; Svanborg, Catharina

    2007-09-15

    We studied if bladder cancers respond to HAMLET (human alpha-lactalbumin made lethal to tumor cells) to establish if intravesical HAMLET application might be used to selectively remove cancer cells in vivo. Patients with nonmuscle invasive transitional cell carcinomas were included. Nine patients received 5 daily intravesical instillations of HAMLET (25 mg/ml) during the week before scheduled surgery. HAMLET stimulated a rapid increase in the shedding of tumor cells into the urine, daily, during the 5 days of instillation. The effect was specific for HAMLET, as intravesical instillation of NaCl, PBS or native alpha-lactalbumin did not increase cell shedding. Most of the shed cells were dead and an apoptotic response was detected in 6 of 9 patients, using the TUNEL assay. At surgery, morphological changes in the exophytic tumors were documented by endoscopic photography and a reduction in tumor size or change in tumor character was detected in 8 of 9 patients. TUNEL staining was positive in biopsies from the remaining tumor in 4 patients but adjacent healthy tissue showed no evidence of apoptosis and no toxic response. The results suggest that HAMLET exerts a direct and selective effect on bladder cancer tissue in vivo and that local HAMLET administration might be of value in the future treatment of bladder cancers. (c) 2007 Wiley-Liss, Inc.

  7. RBE of Cf-252 neutrons as determined by its lethal, mutagenic, and cytogenetic effects on human cells

    International Nuclear Information System (INIS)

    Ban, Sadayuki

    1989-01-01

    To assess the biological effects of neutrons, a man-made spontaneously fissioning isotope, Cf-252, is useful as an experimental model to obtain basic biological data on mixed radiation of gamma-rays and neutrons. The paper describes the lethal effect of Cf-252 radiation on human skin fibroblasts, its lethal and mutagenic effect on HeLa MR cells, and the micronuclei inducing effect on human peripheral lymphocytes. Dose-survival responses of three fibroblast cell strains exposed to Cf-252 radiation are measured. Individual difference is larger than the experimental fluctuation. D 10 values of each strain are obtained from the linear model and linear-quadratic model. Though the dose rate of X-ray is higher than that of Cf-252 radiations, the mean value of RBE(n+γ) is simply obtained as 1.86+0.31 (RBE:relative biological effectiveness). RBE(n) of Cf-252 neutrons to high-dose-rate X-rays is 2.29. After X-ray irradiation, the survival curve of HeLa MR cells gives an extrapolation number of 3.6. It is 1.3 after Cf-252 irradiation. At 50% survival, RBE(n+γ) and RBE(n) are 2.05 and 2.6, respectively. At 10% survival they are 2.05 and 2.6. The mutation frequencies after X-ray irradiation showed a significant non-linear increase with dose. Those after Cf-252 irradiation increase linearly with dose. (N.K.)

  8. Lethal giant larvae 1 tumour suppressor activity is not conserved in models of mammalian T and B cell leukaemia.

    Directory of Open Access Journals (Sweden)

    Edwin D Hawkins

    Full Text Available In epithelial and stem cells, lethal giant larvae (Lgl is a potent tumour suppressor, a regulator of Notch signalling, and a mediator of cell fate via asymmetric cell division. Recent evidence suggests that the function of Lgl is conserved in mammalian haematopoietic stem cells and implies a contribution to haematological malignancies. To date, direct measurement of the effect of Lgl expression on malignancies of the haematopoietic lineage has not been tested. In Lgl1⁻/⁻ mice, we analysed the development of haematopoietic malignancies either alone, or in the presence of common oncogenic lesions. We show that in the absence of Lgl1, production of mature white blood cell lineages and long-term survival of mice are not affected. Additionally, loss of Lgl1 does not alter leukaemia driven by constitutive Notch, c-Myc or Jak2 signalling. These results suggest that the role of Lgl1 in the haematopoietic lineage might be restricted to specific co-operating mutations and a limited number of cellular contexts.

  9. Lethal Giant Larvae 1 Tumour Suppressor Activity Is Not Conserved in Models of Mammalian T and B Cell Leukaemia

    Science.gov (United States)

    Hawkins, Edwin D.; Oliaro, Jane; Ramsbottom, Kelly M.; Ting, Stephen B.; Sacirbegovic, Faruk; Harvey, Michael; Kinwell, Tanja; Ghysdael, Jacques; Johnstone, Ricky W.; Humbert, Patrick O.; Russell, Sarah M.

    2014-01-01

    In epithelial and stem cells, lethal giant larvae (Lgl) is a potent tumour suppressor, a regulator of Notch signalling, and a mediator of cell fate via asymmetric cell division. Recent evidence suggests that the function of Lgl is conserved in mammalian haematopoietic stem cells and implies a contribution to haematological malignancies. To date, direct measurement of the effect of Lgl expression on malignancies of the haematopoietic lineage has not been tested. In Lgl1−/− mice, we analysed the development of haematopoietic malignancies either alone, or in the presence of common oncogenic lesions. We show that in the absence of Lgl1, production of mature white blood cell lineages and long-term survival of mice are not affected. Additionally, loss of Lgl1 does not alter leukaemia driven by constitutive Notch, c-Myc or Jak2 signalling. These results suggest that the role of Lgl1 in the haematopoietic lineage might be restricted to specific co-operating mutations and a limited number of cellular contexts. PMID:24475281

  10. Freezing Injury in Onion Bulb Cells

    Science.gov (United States)

    Palta, Jiwan P.; Levitt, Jacob; Stadelmann, Eduard J.

    1977-01-01

    Onion (Allium cepa L.) bulbs were frozen to −4 and −11 C and kept frozen for up to 12 days. After slow thawing, a 2.5-cm square from a bulb scale was transferred to 25 ml deionized H2O. After shaking for standard times, measurements were made on the effusate and on the effused cells. The results obtained were as follows. Even when the scale tissue was completely infiltrated, and when up to 85% of the ions had diffused out, all of the cells were still alive, as revealed by cytoplasmic streaming and ability to plasmolyze. The osmotic concentration of the cell sap, as measured plasmolytically, decreased in parallel to the rise in conductivity of the effusate. The K+ content of the effusate, plus its assumed counterion, accounted for only 20% of the total solutes, but for 100% of the conductivity. A large part of the nonelectrolytes in the remaining 80% of the solutes was sugars. The increased cell injury and infiltration in the −11 C treatment, relative to the −4 C and control (unfrozen) treatments, were paralleled by increases in conductivity, K+ content, sugar content, and pH of the effusate. In spite of the 100% infiltration of the tissue and the large increase in conductivity of the effusate following freezing, no increase in permeability of the cells to water could be detected. The above observations may indicate that freezing or thawing involves a disruption of the active transport system before the cells reveal any injury microscopically. PMID:16660100

  11. An essential role of intestinal cell kinase in lung development is linked to the perinatal lethality of human ECO syndrome

    Science.gov (United States)

    Tong, Yixin; Park, So Hyun; Wu, Di; Xu, Wenhao; Guillot, Stacey J.; Jin, Li; Li, Xudong; Wang, Yalin; Lin, Chyuan-Sheng; Fu, Zheng

    2017-01-01

    Human endocrine-cerebro-osteodysplasia (ECO) syndrome, caused by the loss-of-function mutation R272Q in the ICK (intestinal cell kinase) gene, is a neonatal-lethal developmental disorder. To elucidate the molecular basis of ECO syndrome, we constructed an Ick R272Q knock-in mouse model that recapitulates ECO pathological phenotypes. Newborns bearing Ick R272Q homozygous mutations die at birth due to respiratory distress. Ick mutant lungs exhibit not only impaired branching morphogenesis associated with reduced mesenchymal proliferation, but also significant airspace deficiency in primitive alveoli concomitant with abnormal interstitial mesenchymal differentiation. ICK dysfunction induces elongated primary cilia and perturbs ciliary Hedgehog signaling and autophagy during lung sacculation. Our study identifies an essential role for ICK in lung development and advances the mechanistic understanding of ECO syndrome. PMID:28380258

  12. Nociceptor sensory neurons suppress neutrophil and γδ T cell responses in bacterial lung infections and lethal pneumonia.

    Science.gov (United States)

    Baral, Pankaj; Umans, Benjamin D; Li, Lu; Wallrapp, Antonia; Bist, Meghna; Kirschbaum, Talia; Wei, Yibing; Zhou, Yan; Kuchroo, Vijay K; Burkett, Patrick R; Yipp, Bryan G; Liberles, Stephen D; Chiu, Isaac M

    2018-05-01

    Lung-innervating nociceptor sensory neurons detect noxious or harmful stimuli and consequently protect organisms by mediating coughing, pain, and bronchoconstriction. However, the role of sensory neurons in pulmonary host defense is unclear. Here, we found that TRPV1 + nociceptors suppressed protective immunity against lethal Staphylococcus aureus pneumonia. Targeted TRPV1 + -neuron ablation increased survival, cytokine induction, and lung bacterial clearance. Nociceptors suppressed the recruitment and surveillance of neutrophils, and altered lung γδ T cell numbers, which are necessary for immunity. Vagal ganglia TRPV1 + afferents mediated immunosuppression through release of the neuropeptide calcitonin gene-related peptide (CGRP). Targeting neuroimmunological signaling may be an effective approach to treat lung infections and bacterial pneumonia.

  13. Action of caffeine on x-irradiated HeLa cells. II. Synergistic lethality

    International Nuclear Information System (INIS)

    Busse, P.M.; Bose, S.K.; Jones, R.W.; Tolmach, L.J.

    1977-01-01

    Postirradiation treatment of HeLa S3 cells with 1 mM caffeine results in a marked diminution of the surviving fraction as scored by colony formation. The decrease is dose dependent; the effect of a 24-hour postirradiation treatment of a nonsynchronous population with caffeine is to change the terminal slope of the survival curve and its intercept. D 0 is reduced from 130 to 60 rad; the extrapolation number is increased about twofold. The amount of postirradiation killing is maximal if cells are exposed to caffeine at a concentration of at least 1 mM for 8 hours; less than 10% of unirradiated cells are killed under these conditions. Dose-response curves were also obtained for synchronous cells at various phases of the cell cycle. Similar results were obtained at all cell ages, but the magnitude of the effect is age dependent. This age dependence was further explored in experiments in which mitotically collected cells were exposed to 300 or 500 rad doses at 2-hour intervals throughout the cell cycle. Treatment with caffeine for 24 hours after irradiation enchances the killing of cells late in the cycle more than cells in G1. The sensitivities of two other cell lines, CHO and EMT6, also were examined; both are substantially less sensitive to caffeine. The smaller cell-cycle dependence of CHO cells is qualitatively the same as that of HeLa cells

  14. Abnormal regulation of DNA replication and increased lethality in ataxia telangiectasia cells exposed to carcinogenic agents

    International Nuclear Information System (INIS)

    Jaspers, N.G.; de Wit, J.; Regulski, M.R.; Bootsma, D.

    1982-01-01

    The effect of different carcinogenic agents on the rate of semiconservative DNA replication in normal and ataxia telangiectasis (AT) cells was investigated. The rate of DNA synthesis in all AT cell strains tested was depressed to a significantly lesser extent than in normal cells after exposure to X-rays under oxia or hypoxia or to bleomycin, agents to which AT cells are hypersensitive. In contrast, inhibition of DNA replication in normal human and AT cells was similar after treatment with some DNA-methylating agents or mitomycin C. Colony-forming ability of AT cells treated with these agents was not different from normal cells. Treatment with 4-nitroquinoline 1-oxide elicited a variable response in both AT and normal cell strains. In some strains, including those shown to be hypersensitive to the drug by other workers, the inhibition of DNA synthesis was more pronounced than in other cell strains, but no significant difference between AT and normal cells could be detected. The rejoining of DNA strand breaks induced by X-rays, measured by DNA elution techniques, occurred within l2 hr after treatment and could not be correlated with the difference in DNA synthesis inhibition in AT and normal cells. After low doses of X-rays, AT cells rejoined single-strand breaks slightly more slowly than did normal cells. The rate of DNA replication in X-irradiation AT and normal cells was not affected by nicotinamide, an inhibitor of poly(adenosine diphosphate ribose) synthesis. These data indicate that the diminished inhibition of DNA replication in carcinogen-treated AT cells (a) is a general characteristic of all AT cell strains, (b) correlates with AT cellular hypersensitivity, (c) is not directly caused by the bulk of the DNA strand breaks produced by carcinogenic agents, and (d) is not based on differences in the induction of poly(adenosine diphosphate ribose) synthesis between X-irradiated AT and normal cells

  15. Pro-apoptotic protein Noxa regulates memory T cell population size and protects against lethal immunopathology

    NARCIS (Netherlands)

    Wensveen, Felix M.; Klarenbeek, Paul L.; van Gisbergen, Klaas P. J. M.; Pascutti, Maria F.; Derks, Ingrid A. M.; van Schaik, Barbera D. C.; ten Brinke, Anja; de Vries, Niek; Cekinovic, Durdica; Jonjic, Stipan; van Lier, René A. W.; Eldering, Eric

    2013-01-01

    Memory T cells form a highly specific defense layer against reinfection with previously encountered pathogens. In addition, memory T cells provide protection against pathogens that are similar, but not identical to the original infectious agent. This is because each T cell response harbors multiple

  16. Stem and stromal cell reconstitution of lethally irradiated mice following transplantation of hematopoietic tissue from donors of various ages

    International Nuclear Information System (INIS)

    Schmidt, C.M.; Doran, G.A.; Crouse, D.A.; Sharp, J.G.

    1987-01-01

    If the limited life span of hematopoietic tissues in vitro is due to a finite proliferative capacity of individual stem cells, one might expect tissues of young donors to possess a greater proliferative capacity and to contain a larger population of primitive stem cells than those of older donors. To test this hypothesis, we used 12- and 8-day spleen colony formation (CFU-s) to assay more and less primitive stem cell subpopulations of three murine hematopoietic tissues: fetal liver (FL) and weanling (WBM) and adult (ABM) bone marrow. Subsequently, the same assays and a stromal cell assay were performed on the bone marrow from groups of lethally irradiated mice reconstituted with these tissues. Comparison of the CFU-s content of the donor tissues revealed that FL contained a significantly greater proportion of primitive stem cells as evidenced by a (Day 12):(Day 8) CFU-s ratio of 3.0 +/- 1.0 as compared to 0.9 +/- 0.1 for WBM and ABM. In addition, at 21 weeks post-transplantation the CFU-s/femur values of the FL reconstituted group were significantly greater than those of the ABM and WBM reconstituted groups. These results suggest that fetal hematopoietic tissue contains a greater proportion of primitive stem cells and has a greater proliferative potential than hematopoietic tissue from older donors. No differences were seen in stromal cell reconstitution of the three experimental groups. In all cases, assayable fibroblast colony forming cells (CFU-f) remained at 20-40% of control values, even at 21 weeks postreconstitution

  17. Heritable non-lethal damage to cultured human cells irradiated with heavy ions

    International Nuclear Information System (INIS)

    Walker, J.T.; Walker, O.A.

    2002-01-01

    During interplanetary flights the nuclei of all of a crew member's cells could be traversed by at least one high-LET (linear energy transfer) cosmic-ray particle. In mammalian cells irradiated in vitro about 1 in 10,000 of the surviving cells traversed by heavy particles is transformed to malignancy or mutated. What, if anything, happens to the remaining >99% of surviving cells? A retrospective analysis of archived data and samples from heavy-ion irradiation experiments with cultured human cells in vitro indicated that heavy ions caused a dose- and LET-dependent reduction in growth rates of progeny of irradiated cells, based on colony-size distributions. The maximum action cross section for this effect is between 100 and 300 μm 2 , at least as large as the cell nuclear area and up to 3 times the cross section for cell killing. Thus, heritable slow growth is the most prevalent effect of high-LET radiations on cultured animal cells, which may have implications for crew health during deep space travel. (author)

  18. Cell kinetics and acute lung injury

    International Nuclear Information System (INIS)

    Witschi, H.P.; Whitaker, M.S.

    1987-01-01

    In order to estimate whether acute lung injury is followed by a stereotype pattern of cell proliferation in the lungs, mice were treated with three cytostatic drugs: cyclophosphamide, busulfan, or 1,3-Bis(2-chloroethyl)-1-nitrosourea (BCNU). The alveolar labeling index was measured following drug administration with a pulse of 3 H-labeled thymidine and autoradiography. In cyclophosphamide treated animals, peak alveolar cell proliferation was seen 5 days after injection of the drug. In animals treated with busulfan or BCNU, proliferation was even more delayed (occurring 2 to 3 wks after administration). In contrast, with oleic acid, the highest alveolar cell labeling was found 2 days after intravenous administration. In animals exposed to a cytostatic drug, proliferation of type II alveolar cells was never a prominent feature; whereas, in animals treated with oleic acid there was an initial burst of type II cell proliferation. It was concluded that the patterns of pulmonary repair vary between chemical designed to interfere with DNA replication as compared to agents which produce acute lung damage such as oleic acid

  19. Polar solvent modification of x ray induced potentially lethal damage in heterogeneous human colon tumor cells in vitro

    International Nuclear Information System (INIS)

    Arundel, C.M.; Leith, J.T.; Dexter, D.L.; Glicksman, A.S.

    1984-01-01

    Two subpopulations of tumor cells (clones A and D) obtained from a human colon adenocarcinoma were examined for their sensitivities to x-irradiation as unfed, early plateau phase cultures. Both the single dose survival curves and the kinetics of potentially lethal damage recovery (PLDR) were determined for the two tumor lines. Also, possible modification of PLDR by N,N-dimethylformamide (DMF), which has previously been shown to enhance the radiosensitivity of exponentially growing tumor cells, was investigated by adding DMF (0.8% v/v) to plateau phase cultures immediately after irradiation, and determining effects on the extent of PLDR. For non-DMF treated cells, the survival curve parameters of the diploid (clone D) and aneuploid (clone A) lines were very similar. Using initial survival levels of 3.5% (clone D) or 5.5% (clone A) to investigate PLDR, it was found that the increase in survival for clone D was 2.2, while the SFR for clone A was 1.6. DMF did not change either the kinetics or extent of PLDR in these two tumor lines when added to cultures immediately after irradiation. These results indicate that significant heterogeneity in PLDR exists between these closely related tumor subpopulations

  20. Relationship of DNA repair and chromosome aberrations to potentially lethal damage repair in X-irradiated mammalian cells

    International Nuclear Information System (INIS)

    Fornace, A.J. Jr.; Nagasawa, H.; Little, J.B.

    1980-01-01

    By the alkaline elution technique, the repair of x-ray-induced DNA single strand breaks and DNA-protein cross-links was investigated in stationary phase, contact-inhibited mouse cells. During the first hour of repair, approximately 90% of x-ray induced single strand breaks were rejoined whereas most of the remaining breaks were rejoined more slowly during the next 5 h. The number of residual non-rejoined single strand breaks was approximately proportional to the x-ray dose at early repair times. DNA-protein cross-links were removed at a slower rate - T 1/2 approximately 10 to 12 h. Cells were subcultured at low density at various times after irradiation and scored for colony survival, and chromosome aberrations in the first mitosis after sub-culture. Both cell lethality and the frequency of chromosome aberrations decreased during the first several hours of repair, reaching a minimum level by 6 h; this decrease correlated temporally with the repair of the slowly rejoining DNA strand breaks. The possible relationship of DNA repair to changes in survival and chromosome aberrations is discussed

  1. The radiobiology of laser-driven particle beams: focus on sub-lethal responses of normal human cells

    International Nuclear Information System (INIS)

    Manti, L.; Perozziello, F.M.; Romagnani, L.; Borghesi, M.; Doria, D.; Candiano, G.; Cirrone, G.A.P.; Leanza, R.; Romano, F.; Scuderi, V.; Tramontana, A.; Chaudhary, P.; Gwynne, D.; Prise, K. M.

    2017-01-01

    Accelerated proton beams have become increasingly common for treating cancer. The need for cost and size reduction of particle accelerating machines has led to the pioneering investigation of optical ion acceleration techniques based on laser-plasma interactions as a possible alternative. Laser-matter interaction can produce extremely pulsed particle bursts of ultra-high dose rates (≥ 10 9 Gy/s), largely exceeding those currently used in conventional proton therapy. Since biological effects of ionizing radiation are strongly affected by the spatio-temporal distribution of DNA-damaging events, the unprecedented physical features of such beams may modify cellular and tissue radiosensitivity to unexplored extents. Hence, clinical applications of laser-generated particles need thorough assessment of their radiobiological effectiveness. To date, the majority of studies have either used rodent cell lines or have focussed on cancer cell killing being local tumour control the main objective of radiotherapy. Conversely, very little data exist on sub-lethal cellular effects, of relevance to normal tissue integrity and secondary cancers, such as premature cellular senescence. Here, we discuss ultra-high dose rate radiobiology and present preliminary data obtained in normal human cells following irradiation by laser-accelerated protons at the LULI PICO2000 facility at Laser Lab Europe, France.

  2. RBE-LET relationships for different types of lethal radiation damage in mammalian cells: comparison with DNA dsb and an interpretation of differences in radiosensitivity

    NARCIS (Netherlands)

    Barendsen, G. W.

    1994-01-01

    Relative biological effectiveness (RBE), as a function of linear energy transfer (LET), is evaluated for different types of damage contributing to mammalian cell reproductive death. Survival curves are analysed assuming a linear-quadratic dose dependence of lethal lesions. The linear term represents

  3. Disruption of the regulatory beta subunit of protein kinase CK2 in mice leads to a cell-autonomous defect and early embryonic lethality

    DEFF Research Database (Denmark)

    Buchou, Thierry; Vernet, Muriel; Blond, Olivier

    2003-01-01

    in mice leads to postimplantation lethality. Mutant embryos were reduced in size at embryonic day 6.5 (E6.5). They did not exhibit signs of apoptosis but did show reduced cell proliferation. Mutant embryos were resorbed at E7.5. In vitro, CK2beta(-/-) morula development stopped after the blastocyst stage...

  4. Exposure to Sub-lethal 2,4-Dichlorophenoxyacetic Acid Arrests Cell Division and Alters Cell Surface Properties in Escherichia coli

    Science.gov (United States)

    Bhat, Supriya V.; Kamencic, Belma; Körnig, André; Shahina, Zinnat; Dahms, Tanya E. S.

    2018-01-01

    Escherichia coli is a robust, easily adaptable and culturable bacterium in vitro, and a model bacterium for studying the impact of xenobiotics in the environment. We have used correlative atomic force – laser scanning confocal microscopy (AFM-LSCM) to characterize the mechanisms of cellular response to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). One of the most extensively used herbicides world-wide, 2,4-D is known to cause hazardous effects in diverse non-target organisms. Sub-lethal concentrations of 2,4-D caused DNA damage in E. coli WM1074 during short exposure periods which increased significantly over time. In response to 2,4-D, FtsZ and FtsA relocalized within seconds, coinciding with the complete inhibition of cell septation and cell elongation. Exposure to 2,4-D also resulted in increased activation of the SOS response. Changes to cell division were accompanied by concomitant changes to surface roughness, elasticity and adhesion in a time-dependent manner. This is the first study describing the mechanistic details of 2,4-D at sub-lethal levels in bacteria. Our study suggests that 2,4-D arrests E. coli cell division within seconds after exposure by disrupting the divisome complex, facilitated by dissipation of membrane potential. Over longer exposures, 2,4-D causes filamentation as a result of an SOS response to oxidative stress induced DNA damage. PMID:29472899

  5. The Acquired Capability for Lethal Self Injury: Case Studies of Plath’s The Bell Jar and Eugenides’ The Virgin Suicides

    Directory of Open Access Journals (Sweden)

    Sepideh Jafari

    2017-07-01

    Full Text Available Interpersonal theory developed by Joiner (2005 is based on the assumption that people die by suicide because they can-acquired capability-and because they want to- desire of suicide.  Desire to die arises from two specific psychological states: perceived burdensomeness and thwarted belongingness.  The obtained ability of committing suicidal thoughts referred to the second segment of the approach consists of some specific factors, i.e., the person must be capable of doing some lethal activities courageously to put an end to the life; therefore, they present a fearless attitude towards death.  Another factor is endurance to face self-injuries pain acquired from the long painful experiences or probably stimulating and motivating situations.  In this paper, the researchers intended to present a Joinerian reading of Sylvia Plath’s only novel, the Bell Jar, and one of Jeffrey Eugenides’ prominent works, the Virgin Suicides.  In fact, this qualitative study would analyze the two selected novels (i.e., the Bell Jar and the Virgin Suicides by the use of the acquired capability for suicide to find out why one takes his/her life by his/her own hands.  Based on the findings, Loneliness, social isolation, and thwarted effectiveness can be the mental states that have inflicted an acute pain on the heroines, a pain that makes them ready to die by suicides.  Suicidal ideation and witnessing other’s suicidal behaviors, habituates the heroines to the concept of death and suicide.

  6. Human umbilical-cord-blood mononucleated cells enhance the survival of lethally irradiated mice. Dosage and the window of time

    International Nuclear Information System (INIS)

    Kovalenko, Olga A.; Ende, Norman; Azzam, Edouard I.

    2013-01-01

    The purpose of this study was to evaluate the window of time and dose of human umbilical-cord-blood (HUCB) mononucleated cells necessary for successful treatment of radiation injury in mice. Female A/J mice (27-30 weeks old) were exposed to an absorbed dose of 9-10 Gy of 137 Cs γ-rays delivered acutely to the whole body. They were treated either with 1 × 10 8 or 2 × 10 8 HUCB mononucleated cells at 24-52 h after the irradiation. The antibiotic Levaquin was applied 4 h postirradiation. The increased dose of cord-blood cells resulted in enhanced survival. The enhancement of survival in animals that received 2 × 10 8 HUCB mononucleated cells relative to irradiated but untreated animals was highly significant (P < 0.01). Compared with earlier studies, the increased dose of HUCB mononucleated cells, coupled with early use of an antibiotic, extended the window of time for effective treatment of severe radiation injury from 4 to 24-52 h after exposure. (author)

  7. Non-lethal effects of low- and high-LET radiation on cultured mammalian cells

    International Nuclear Information System (INIS)

    Walker, J.T.

    1982-01-01

    In analyzing post-irradiation growth kinetics of cultured mammalian cells, specifically T1-E human cells, this investigation shows that the shift in post-irradiation clone-size distributions toward small colonies is due to both radiation-induced division delay and increased generation times of the irradiated population. Evidence also indicates that the final shape of the final clone-size distribution is influenced by the age density distribution of the parent cells at the time of plating. From computer-generated delay time distributions it was determined that a large percentage of the parent population was found to be in the plateau phase at early growth times and evidence indicates that these cells may contribute heavily to the total population response to radiation

  8. Deformation-driven, lethal damage to cancer cells. Its contribution to metastatic inefficiency.

    Science.gov (United States)

    Weiss, L

    1991-04-01

    Direct and indirect, in vivo and in vitro observations are in accord with the hypothesis that as a consequence of their deformation within capillaries, cancer cells undergo sphere-to-cylinder shape-transformations that create a demand for increased surface area. When this demand cannot be met by apparent increases in surface area accomplished by nonlethal, surface "unfolding," the cell surface membrane is stretched; if expansion results in more than a 4% increase in true surface area, the membrane ruptures, resulting in cancer cell death. It is suggested that this deformation-driven process is an important factor in accounting for the rapid death of circulating cancer cells that have been trapped in the microvasculature. Therefore, this mechanism is thought to make a significant contribution to metastatic inefficiency by acting as a potent rate-regulator for hematogenous metastasis.

  9. Nras Overexpression Results in Granulocytosis, T-Cell Expansion and Early Lethality in Mice

    DEFF Research Database (Denmark)

    Lassen, Louise Berkhoudt; Gonzalez, Borja Ballarin; Schmitz, Alexander

    2012-01-01

    NRAS is a proto-oncogene involved in numerous myeloid malignancies. Here, we report on a mouse line bearing a single retroviral long terminal repeat inserted into Nras. This genetic modification resulted in an increased level of wild type Nras mRNA giving the possibility of studying the function ...... the increment in immature myeloid cells detected in these mice. The short latency period indicates that Nras overexpression alone is sufficient to cause dose-dependent granulocytosis and T-cell expansion....

  10. Lethal Effect of Thermal Neutrons on Hypoxic Elirlich Ascites Tumour Cells in vitro

    OpenAIRE

    MITSUHIKO, AKABOSHI; KENICHI, KAWAI; HIROTOSHI, MAKI; Research Reactor Institute, Kyoto University; Research Reactor Institute, Kyoto University; Research Reactor Institute, Kyoto University

    1985-01-01

    Ehrlich ascites tumour cells were irradiated in vitro with thermal neutrons under aerobic and hypoxic conditions, and the survival of their reproductive capacity was assayed in vivo. Only a slight hypoxic protection was observed for thermal neutron irradiation with an oxygen enhancement ratio (OER) of 1.2, as compared with OER of 3.3 for ^Co-γ-rays. Absorbed dose of thermal neutrons was calculated by assuming that the energies of recoiled nuclei were completely absorbed within a cell nucleus....

  11. Lethal action of ionizing radiation on the chlorella vulgaris cells containing varying dmounts of intracellular cysteine

    International Nuclear Information System (INIS)

    Kamchatova, I.E.; Zakharov, I.A.; Korolev, V.G.; Gracheva, L.M.; Zheleznyakova, N.Yu.; AN SSSR, Leningrad. Inst. Yadernoj Fiziki)

    1975-01-01

    In experiments on related strains of Chlorella vulgaris it has been shown that the content of sulfhydryl groups in ''feeder'' mutant cells exceeds the content of the latter in the cells of initial wild strain. Radiosensitivity of chlorella mutant forms does not differ from that of the initial wild strain and revertant isolated from the mutant strain culture. The presence of a high level of sulfhydryl groups, maybe, does not determine its resistance to ionizing radiation

  12. The effect of peripheral lymphoid cells on the incidence of lethal graft versus host disease following allogeneic mouse bone marrow transplantation

    International Nuclear Information System (INIS)

    Almaraz, R.; Ballinger, W.; Sachs, D.H.; Rosenberg, S.A.

    1983-01-01

    Experiments were performed to study the role of circulating lymphoid cells in the incidence of lethal graft versus host disease (GVHD) in radiation-induced fully allogeneic mouse chimeras. The incidence of GVHD was reduced significantly in BALB/c leads to C57BL/6 radiation chimeras if bone marrow donors were exsanguinated immediately prior to marrow harvest. Chimeras resulting from the injection of bone marrow from bled donors exhibited only donor cells in spleen, bone marrow and peripheral blood and normal levels of Thy 1+ and Ia+ cells were found in each of these lymphoid compartments. The addition of as few as 3 X 10(4) peripheral mononuclear cells to the marrow from exsanguinated donors uniformly led to lethal GVHD. 51 Cr-labeled cell traffic studies revealed that prior exsanguination of marrow donors led to about a 70% reduction in the number of circulating mononuclear cells contaminating the bone marrow at the time of marrow harvest. This decrease in contaminating peripheral cells was calculated to be in the appropriate range to account for the decreased GVHD seen when marrow from exsanguinated donors was used. It thus appears that peripheral cells contaminating marrow can be an important factor in causing lethal GVHD in allogeneic radiation chimeras. These results raise the possibility that the fulminant GVHD seen in human marrow transplantation is in part due to the major contamination of bone marrow with peripheral blood that results from the techniques currently used for human bone marrow harvest

  13. Predictive lethal proarrhythmic risk evaluation using a closed-loop-circuit cell network with human induced pluripotent stem cells derived cardiomyocytes

    Science.gov (United States)

    Nomura, Fumimasa; Hattori, Akihiro; Terazono, Hideyuki; Kim, Hyonchol; Odaka, Masao; Sugio, Yoshihiro; Yasuda, Kenji

    2016-06-01

    For the prediction of lethal arrhythmia occurrence caused by abnormality of cell-to-cell conduction, we have developed a next-generation in vitro cell-to-cell conduction assay, i.e., a quasi in vivo assay, in which the change in spatial cell-to-cell conduction is quantitatively evaluated from the change in waveforms of the convoluted electrophysiological signals from lined-up cardiomyocytes on a single closed loop of a microelectrode of 1 mm diameter and 20 µm width in a cultivation chip. To evaluate the importance of the closed-loop arrangement of cardiomyocytes for prediction, we compared the change in waveforms of convoluted signals of the responses in the closed-loop circuit arrangement with that of the response of cardiomyocyte clusters using a typical human ether a go-go related gene (hERG) ion channel blocker, E-4031. The results showed that (1) waveform prolongation and fluctuation both in the closed loops and clusters increased depending on the E-4031 concentration increase. However, (2) only the waveform signals in closed loops showed an apparent temporal change in waveforms from ventricular tachycardia (VT) to ventricular fibrillation (VF), which is similar to the most typical cell-to-cell conductance abnormality. The results indicated the usefulness of convoluted waveform signals of a closed-loop cell network for acquiring reproducible results acquisition and more detailed temporal information on cell-to-cell conduction.

  14. Spinal cord injury reveals multilineage differentiation of ependymal cells.

    Directory of Open Access Journals (Sweden)

    Konstantinos Meletis

    2008-07-01

    Full Text Available Spinal cord injury often results in permanent functional impairment. Neural stem cells present in the adult spinal cord can be expanded in vitro and improve recovery when transplanted to the injured spinal cord, demonstrating the presence of cells that can promote regeneration but that normally fail to do so efficiently. Using genetic fate mapping, we show that close to all in vitro neural stem cell potential in the adult spinal cord resides within the population of ependymal cells lining the central canal. These cells are recruited by spinal cord injury and produce not only scar-forming glial cells, but also, to a lesser degree, oligodendrocytes. Modulating the fate of ependymal progeny after spinal cord injury may offer an alternative to cell transplantation for cell replacement therapies in spinal cord injury.

  15. Construction, characterization, and complementation of a conditional-lethal DNA topoisomerase IIalpha mutant human cell line.

    Science.gov (United States)

    Carpenter, Adam J; Porter, Andrew C G

    2004-12-01

    DNA Topoisomerase IIalpha (topoIIalpha) is a DNA decatenating enzyme, abundant constituent of mammalian mitotic chromosomes, and target of numerous antitumor drugs, but its exact role in chromosome structure and dynamics is unclear. In a powerful new approach to this important problem, with significant advantages over the use of topoII inhibitors or RNA interference, we have generated and characterized a human cell line (HTETOP) in which >99.5% topoIIalpha expression can be silenced in all cells by the addition of tetracycline. TopoIIalpha-depleted HTETOP cells enter mitosis and undergo chromosome condensation, albeit with delayed kinetics, but normal anaphases and cytokineses are completely prevented, and all cells die, some becoming polyploid in the process. Cells can be rescued by expression of topoIIalpha fused to green fluorescent protein (GFP), even when certain phosphorylation sites have been mutated, but not when the catalytic residue Y805 is mutated. Thus, in addition to validating GFP-tagged topoIIalpha as an indicator for endogenous topoIIalpha dynamics, our analyses provide new evidence that topoIIalpha plays a largely redundant role in chromosome condensation, but an essential catalytic role in chromosome segregation that cannot be complemented by topoIIbeta and does not require phosphorylation at serine residues 1106, 1247, 1354, or 1393.

  16. Rare but Lethal Hepatopathy-Sickle Cell Intrahepatic Cholestasis and Management Strategies.

    Science.gov (United States)

    Malik, Aamir; Merchant, Chandni; Rao, Mana; Fiore, Rosemary P

    2015-11-28

    Sickle cell disease can affect the liver by way of the disease process, including sickling in hepatic sinusoids, as well as its treatment, including repeated blood transfusions leading to hemosiderosis and hepatitis. Sickle cell intrahepatic cholestasis (SCIC) is an extreme variant of sickle cell hepatopathy, and is associated with high fatality. We present the case of a 31-year-old man with past medical history of sickle cell disease and cholecystectomy who was admitted with uncomplicated vaso occlusive crisis and during the hospital stay developed fever, upper abdominal pain, and jaundice. There was an accelerated rise in total bilirubin to 50 mg/dL, direct bilirubin 38 mg/dL, and Cr 3.0 mg/dL. Hb was 6.4 g/dL, reticulocyte count 16%, ALT 40 IU/L, AST 155 IU/L, ALP 320 IU/L, and LDH 475 IU/L. Hepatitis panel was negative and MRCP showed normal caliber of the common bile duct, with no obstruction. Exchange transfusion of 9 units of packed red blood cells led to great improvement in his condition. SCIC, unlike the other sickle cell hepatopathies, requires urgent and vigorous exchange transfusion. Renal impairment in SCIC has not been well studied but usually is reversible with the hepatic impairment, as in this case. Unresolved renal impairment requires dialysis and is associated with poor outcome. There is limited data on use of hydroxyurea to prevent SCIC, and liver transplant is associated with high mortality. A timely diagnosis of SCIC and appropriate management is life-saving.

  17. CD4 T cell-mediated protection from lethal influenza: perforin and antibody-mediated mechanisms give a one-two punch.

    Science.gov (United States)

    Brown, Deborah M; Dilzer, Allison M; Meents, Dana L; Swain, Susan L

    2006-09-01

    The mechanisms whereby CD4 T cells contribute to the protective response against lethal influenza infection remain poorly characterized. To define the role of CD4 cells in protection against a highly pathogenic strain of influenza, virus-specific TCR transgenic CD4 effectors were generated in vitro and transferred into mice given lethal influenza infection. Primed CD4 effectors conferred protection against lethal infection over a broad range of viral dose. The protection mediated by CD4 effectors did not require IFN-gamma or host T cells, but did result in increased anti-influenza Ab titers compared with untreated controls. Further studies indicated that CD4-mediated protection at high doses of influenza required B cells, and that passive transfer of anti-influenza immune serum was therapeutic in B cell-deficient mice, but only when CD4 effectors were present. Primed CD4 cells also acquired perforin (Pfn)-mediated cytolytic activity during effector generation, suggesting a second mechanism used by CD4 cells to confer protection. Pfn-deficient CD4 effectors were less able to promote survival in intact BALB/c mice and were unable to provide protection in B cell-deficient mice, indicating that Ab-independent protection by CD4 effectors requires Pfn. Therefore, CD4 effectors mediate protection to lethal influenza through at least two mechanisms: Pfn-mediated cytotoxicity early in the response promoted survival independently of Ab production, whereas CD4-driven B cell responses resulted in high titer Abs that neutralized remaining virus.

  18. Repair of potentially lethal damage in unfed plateau phase cultures of Ehrlich ascited tumour cells

    International Nuclear Information System (INIS)

    Illiakis, G.

    1980-01-01

    Plateau phase EAT-cells have been irradiated at different times in the plateau phase and their ability to repair PLD has been measured. A large capacity to repair PLD has been observed if the cultures were kept in the plateau phase for some hours after irradiation before diluting and plating to measure the survival. In combination with theoretical considerations it is concluded that almost all the PLD produced under these conditions can be repaired. The reaction rate of this repair was independent of the dose and the age of the culture. The results also indicate that PLD repair is independent of the intercellular contact of EAT-cells. (author)

  19. Modifying effect of caffeine on lethality and mutability of Chlamydomonas reinhardii cells following UV irradiation

    International Nuclear Information System (INIS)

    Podstavkova, S.; Vlcek, D.; Miadokova, E.

    1983-01-01

    The modifying effect of caffeine was studied using two standard and two UV-sensitive strains of Chlamydomonas reinhardii Dang. Cell survival and mutation frequency was microscopically evaluated on media without caffeine and on media with 1.5 mM of caffeine. The obtained results were indicative of the stimulating effect of caffeine upon survival in all strains. (author)

  20. Skin allografts in lethally irradiated animals repopulated with syngeneic hemopoietic cells

    International Nuclear Information System (INIS)

    Schwadron, R.B.

    1983-01-01

    Total body irradiation and repopulation with syngeneic hemopoietic cells can be used to induce tolerance to major histocompatibility complex (MHC) mismatched heart and kidney grafts in rats and mice. However, this protocol does not work for MHC mismatched skin grafts in rats or mice. Furthermore, LEW rats that accept WF cardiac allografts after irradiation and repopulation reject subsequent WF skin grafts. Treatment of skin allograft donors with methotrexate prior to grafting onto irradiated and reconstituted mice resulted in doubling of the mean survival time. Analysis of which antigens provoked skin graft rejection by irradiation and reconstituted animals revealed the importance of I region antigens. Cardiac allograft acceptance by irradiated and reconstituted animals is mediated by suppressor cells found in the spleen. Adoptively tolerant LEW rats accepted WF skin grafts in 50% of grafted animals. Analysis of this phenomenon revealed that the adoptive transfer procedure itself was important in achieving skin allograft acceptance by these animals. In general, it seems that the lack of ability of irradiated and reconstituted animals to accept fully MHC disparate skin grafts results from the inability of these animals to suppress lymph node effector cells against I region antigen seen on highly immunogenic allogeneic Langerhans cells in the skin

  1. Prevention and treatment of colon cancer by peroral administration of HAMLET (human α-lactalbumin made lethal to tumour cells).

    Science.gov (United States)

    Puthia, Manoj; Storm, Petter; Nadeem, Aftab; Hsiung, Sabrina; Svanborg, Catharina

    2014-01-01

    Most colon cancers start with dysregulated Wnt/β-catenin signalling and remain a major therapeutic challenge. Examining whether HAMLET (human α-lactalbumin made lethal to tumour cells) may be used for colon cancer treatment is logical, based on the properties of the complex and its biological context. To investigate if HAMLET can be used for colon cancer treatment and prevention. Apc(Min)(/+) mice, which carry mutations relevant to hereditary and sporadic human colorectal tumours, were used as a model for human disease. HAMLET was given perorally in therapeutic and prophylactic regimens. Tumour burden and animal survival of HAMLET-treated and sham-fed mice were compared. Tissue analysis focused on Wnt/β-catenin signalling, proliferation markers and gene expression, using microarrays, immunoblotting, immunohistochemistry and ELISA. Confocal microscopy, reporter assay, immunoprecipitation, immunoblotting, ion flux assays and holographic imaging were used to determine effects on colon cancer cells. Peroral HAMLET administration reduced tumour progression and mortality in Apc(Min)(/+) mice. HAMLET accumulated specifically in tumour tissue, reduced β-catenin and related tumour markers. Gene expression analysis detected inhibition of Wnt signalling and a shift to a more differentiated phenotype. In colon cancer cells with APC mutations, HAMLET altered β-catenin integrity and localisation through an ion channel-dependent pathway, defining a new mechanism for controlling β-catenin signalling. Remarkably, supplying HAMLET to the drinking water from the time of weaning also significantly prevented tumour development. These data identify HAMLET as a new, peroral agent for colon cancer prevention and treatment, especially needed in people carrying APC mutations, where colon cancer remains a leading cause of death.

  2. Cell-cycle variation in the induction of lethality and mitotic recombination after treatment with UV and nitrous acid in the yeast, Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Davies, P.J.; Tippins, R.S.; Parry, J.M.

    1978-01-01

    Exponentially growing yeast cultures separated into discrete periods of the cell cycle by zonal rotor centrifugation show cyclic variation in both UV and nitrous acid induced cell lethality, mitotic gene conversion and mitotic crossing-over. Maximum cell survival after UV treatment was observed in the S and G2 phases of the cell cycle at a time when UV induction of both types of mitotic recombination was at a minumum. In contrast, cell inactivation by the chemical mutagen nitrous acid showed a single discrete period of sensitivity which occurred in S phase cells which are undergoing DNA synthesis. Mitotic gene conversion ahd mitotic crossing-over were induced by nitrous acid in cells at all stages of the cell cycle with a peak of induction of both events occurring at the time of maximum cell lethality. The lack of correlation observed between maximum cell survival and the maximum induction of mitotic intragenic recombination suggest that other DNA-repair mechanisms besides DNA-recombination repair are involved in the recovery of inactivated yeast cells during the cell cycle. (Auth.)

  3. Restoring efficiency of hemopoietic cell transplantation in a mouse lethally irradiated by a total exposure to X rays

    International Nuclear Information System (INIS)

    Doria, Gino

    1959-10-01

    This research thesis reports the study of possibility of treatments (or restoration) of a mouse which has been submitted to a lethal dose of X rays. More particularly, the author compared the restoring efficiency of bone marrow and fetal liver injected in a mouse which had been lethally irradiated by a total exposure to X rays. He also studied the functional status of the hemopoietic graft, and the emergence of the secondary disease in mice which had been as well lethally irradiated and then restored by injection of bone marrow and fetal liver. The author then addressed the influence of the induction of immune tolerance of the host with respect to the donor on the survival of a mouse lethally irradiated and restored by homologue bone marrow [fr

  4. Effects of caffeine on purine metabolism and ultraviolet light-induced lethality in cultured mammalian cells

    International Nuclear Information System (INIS)

    Waldren, C.A.; Patterson, D.

    1979-01-01

    Caffeine, at doses which enhance the killing action of ultraviolet light, inhibits both de novo synthesis and the utilization of exogenous purines in cultured CHO-K1, a Chinese hamster ovary cell line. The effect is dose dependent, with a caffeine concentration of 7.5 mM producing a 90% reduction in 15 min. Interference with utilization of exogenous purines was seen as a substantial decrease in the conversion of [14C]hypoxanthine, [14C]adenine, or [14C]guanine into their respective di- and triphosphates in the presence of caffeine. Thus, one of the ways by which antimetabolites and caffeine act to enhance ultraviolet light killing may be by interference with the supply of purine nucleotides needed for repair

  5. An inhibitor of potentially lethal damage (PLD) repair reduces the frequency of γ-ray mutations in cultured Chinese hamster V79 cells

    International Nuclear Information System (INIS)

    Yokoiyama, A.; Kada, T.; Kuroda, Y.

    1992-01-01

    Cordycepin (3'-deoxyadenosine, 3 - dA) is an RNA antimetabolite and a radiosensitizer in cultured mammalian cells. In the present paper, the effects of 3'-dA on γ-ray-induced lethality and 6-thioguanine (6TG)-resistant mutations in cultured Chinese hamster V79 cells were examined. 3'-dA had the effect of sensitizing the lethality induced by γ-rays. The potentially lethal damage (PLD) repair produced by post-incubation cells in Hanks' solution after γ-irradiation was almost completely suppressed by 5x10 -5 M 3'-dA. When cells were irradiated with 10 Gy γ-rays and incubated with 3'-dA for 5 h, the frequency of 6TG-resistant mutations induced by γ-rays decreased to 1/6 of that of the irradiated cells incubated without 3'-dA. The decrease in the frequency of γ-ray-induced mutations was dependent on the length of incubation time with 3'-dA. It is suggested that the inhibition of PLD repair by 3'-dA may be that of error-prone repair. (author). 26 refs.; 5 figs

  6. Ethanol exacerbates T cell dysfunction after thermal injury.

    Science.gov (United States)

    Choudhry, M A; Messingham, K A; Namak, S; Colantoni, A; Fontanilla, C V; Duffner, L A; Sayeed, M M; Kovacs, E J

    2000-07-01

    To understand the mechanism of suppressed immunity following alcohol consumption and thermal injury, we analyzed T cell functions in a mouse model of acute alcohol exposure and burn injury. Mice with blood alcohol levels at approximately 100 mg/dl were given a 15% scald or sham injury. Mice were sacrificed 48 h after injury. Our data demonstrated a 20-25% decrease in Con A-mediated splenic T cell proliferation (p<0.01) and 45-50% decrease in interleukin-2 (IL-2) production (p<0.01) following burn injury compared to the T cells from sham animals. A further decrease in the proliferation (25-30%) and IL-2 production (40-45%) was detected in T cells derived from burned animals receiving alcohol as compared to burn alone. No significant change in the proliferation and IL-2 production was observed in splenic T cells derived from sham-injured mice regardless of alcohol exposure. Additionally, there was no demonstrable difference in splenocyte apoptosis in any treatment group. These results suggest that alcohol consumption prior to burn injury causes a greater decrease in T cell proliferation and IL-2 production compared to either burn or alcohol injury alone that may further attenuate the cell-mediated immunity and thus enhance susceptibility to infection.

  7. Why is intracellular ice lethal? A microscopical study showing evidence of programmed cell death in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum

    CSIR Research Space (South Africa)

    Wesley-Smith, J

    2015-10-01

    Full Text Available Walters3,*, N. W. Pammenter1 and Patricia Berjak1,‡ 1Plant Germplasm Conservation Research, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Durban, 4001 South Africa, 2National Centre for Nanostructured Materials, Council.... In roots, regrowth occurred from the ground meristem and procambium, not the distal meristem, which became lethally damaged. Regrowth of shoots occurred from isolated pockets of surviving cells of peripheral and pith meristems. The size of these pockets...

  8. Relationship between chromosomal aberration of germ cells and dominant lethal mutation in male mice after low dosage of X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Mingdong, Wang; Baochen, Yang; Yuke, Jin [Bethune (N.) Medical Univ., Changchun, JL (China). Dept. of Gentics

    1989-01-01

    The relationship between chromosomal aberration adn dominant mutation in spermatocytes of late pachytene phase in male mice after a single X-irridiation was reported. It was found that the frequency of aberrant cells was correlative to the rate of fetal death, the latter was being about 2.5 times as high as the former. The frequency of dominant lethal mutation induced by X-irradiation is 2.1995x10{sup -3} gamete {center dot} 10 mGy.

  9. Structure and function of human α-lactalbumin made lethal to tumor cells (HAMLET)-type complexes.

    Science.gov (United States)

    Mossberg, Ann-Kristin; Hun Mok, Kenneth; Morozova-Roche, Ludmilla A; Svanborg, Catharina

    2010-11-01

    Human α-lactalbumin made lethal to tumor cells (HAMLET) and equine lysozyme with oleic acid (ELOA) are complexes consisting of protein and fatty acid that exhibit cytotoxic activities, drastically differing from the activity of their respective proteinaceous compounds. Since the discovery of HAMLET in the 1990s, a wealth of information has been accumulated, illuminating the structural, functional and therapeutic properties of protein complexes with oleic acid, which is summarized in this review. In vitro, both HAMLET and ELOA are produced by using ion-exchange columns preconditioned with oleic acid. However, the complex of human α-lactalbumin with oleic acid with the antitumor activity of HAMLET was found to be naturally present in the acidic fraction of human milk, where it was discovered by serendipity. Structural studies have shown that α-lactalbumin in HAMLET and lysozyme in ELOA are partially unfolded, 'molten-globule'-like, thereby rendering the complexes dynamic and in conformational exchange. HAMLET exists in the monomeric form, whereas ELOA mostly exists as oligomers and the fatty acid stoichiometry varies, with HAMLET holding an average of approximately five oleic acid molecules, whereas ELOA contains a considerably larger number (11- 48). Potent tumoricidal activity is found in both HAMLET and ELOA, and HAMLET has also shown strong potential as an antitumor drug in different in vivo animal models and clinical studies. The gain of new, beneficial function upon partial protein unfolding and fatty acid binding is a remarkable phenomenon, and may reflect a significant generic route of functional diversification of proteins via varying their conformational states and associated ligands. © 2010 The Authors Journal compilation © 2010 FEBS.

  10. Cultured cells from a severe combined immunodeficient mouse have a slower than normal rate of repair of potentially lethal damage sensitive to hypertonic treatment

    International Nuclear Information System (INIS)

    Kimura, H.; Terado, T.; Ikebuchi, M.; Aoyama, T.; Komatsu, K.; Nozawa, A.

    1995-01-01

    The effects of hypertonic 0.5 M NaCl treatment after irradiation on the repair of DNA damage were examined in fibroblasts of the severe combined immunodeficient (scid) mouse. These cells are hypersensitive to ionizing radiation because of a deficiency in the repair of double-strand breaks. Hypertonic treatment caused radiosensitization due to a fixation of potentially lethal damage (PLD) in scid cells, demonstrating that scid cells normally repair PLD. To assess the kinetics of the repair of PLD, hypertonic treatment was delayed for various times after irradiation. Potentially lethal damage was repaired during these times in isotonic medium at 37 degrees C. It was found that the rate of repair of PLD was much slower in scid cells than in BALB/c 3T3 cells, which have a open-quotes wild-typeclose quotes level of radiosensitivity. This fact indicates that the scid mutation affects the type of repair of PLD that is sensitive to 0.5 M NaCl treatment. In scid hybrid cells containing fragments of human chromosome 8, which complements the radiosensitivity of the scid cells, the rate of repair was restored to a normal level. An enzyme encoded by a gene on chromosome 8 may also be connected with PLD which is sensitive to hypertonic treatment. 29 refs., 3 figs

  11. Action of caffeine on x-irradiated HeLa cells. V. Identity of the sector of cells that expresses potentially lethal damage in G1 and G2

    International Nuclear Information System (INIS)

    Beetham, K.L.; Tolmach, L.J.

    1982-01-01

    When HeLa S3 cells are irradiated in early G 1 with 4 Gy of 220-kV x rays and are then incubated in growth medium containing up to 5 mM caffeine, survival is reduced (as reported previously), reaching a concentration-dependent plateau. Cell killing presumably occurs as a result of the fixation of a portion of the potentially lethal damage the cells contain. These cells respond to continued treatment with caffeine at concentrations greater than 2 mM during S, but less so than during G 1 . When they reach G 2 arrest, however, extensive cell killing again occurs (reported previously), presumably also the result of potentially lethal damage fixation. G 1 -irradiated cultures that are treated with caffeine either continuously at a concentration in the range 1 to 5 mM, or at 10 mM for 8 hr and subsequently with the low concentration, achieve the same survival level in G 2 , provided that the potentially lethal damage is not repaired during G 1 and S. Repair seems to be completely inhibited in the presence of 3 to 4 mM caffeine. The results indicate that fixation of potentially lethal damage occurs in the same sector of cells in G 1 and G 2 , suggesting that the same cellular lesion gives rise to cell killing in the two phases

  12. Effects of sub-lethal neurite outgrowth inhibitory concentrations of chlorpyrifos oxon on cytoskeletal proteins and acetylcholinesterase in differentiating N2a cells

    Energy Technology Data Exchange (ETDEWEB)

    Flaskos, J., E-mail: flaskos@vet.auth.gr [Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Nikolaidis, E. [Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Harris, W. [School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS (United Kingdom); Sachana, M. [Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Hargreaves, A.J., E-mail: alan.hargreaves@ntu.ac.uk [School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS (United Kingdom)

    2011-11-15

    Previous work in our laboratory has shown that sub-lethal concentrations (1-10 {mu}M) of chlorpyrifos (CPF), diazinon (DZ) and diazinon oxon (DZO) inhibit the outgrowth of axon-like neurites in differentiating mouse N2a neuroblastoma cells concomitant with altered levels and/or phosphorylation state of axonal cytoskeleton and growth-associated proteins. The aim of the present work was to determine whether chlorpyrifos oxon (CPO) was capable of inhibiting N2a cell differentiation in a similar manner. Using experimental conditions similar to our previous work, sub-lethal concentrations (1-10 {mu}M) of CPO were found to inhibit N2a cell differentiation. However, unlike previous studies with DZ and DZO, there was a high level of sustained inhibition of acetylcholinesterase (AChE) in CPO treated cells. Impairment of neurite outgrowth was also associated with reduced levels of growth associated protein-43 and neurofilament heavy chain (NFH), and the distribution of NFH in cells stained by indirect immunofluorescence was disrupted. However, in contrast to previous findings for DZO, the absolute level of phosphorylated NFH was unaffected by CPO exposure. Taken together, the findings suggest that sub-lethal concentrations of CPO inhibit axon outgrowth in differentiating N2a cells and that this effect involves reduced levels of two proteins that play key roles in axon outgrowth and maintenance. Although the inhibition of neurite outgrowth is unlikely to involve AChE inhibition directly, further work will help to determine whether the persistent inhibition of AChE by CPO can account for the different effects induced by CPO and DZO on the levels of total and phosphorylated NFH. -- Highlights: Black-Right-Pointing-Pointer Sub-lethal levels of chlorpyrifos oxon inhibit neurite outgrowth in N2a cells Black-Right-Pointing-Pointer Acetylcholinesterase exhibits sustained inhibition throughout exposure Black-Right-Pointing-Pointer The levels of neurofilament heavy chain and GAP-43

  13. The lethal interaction of x ray and penicillin induced lesions following x-irradiation of Escherichia coli B/r in the presence of hypoxic cell sensitizers

    International Nuclear Information System (INIS)

    Gillies, N.E.; Obioha, F.I.

    1982-01-01

    When Escherichia coli B/r were x-irradiated under anoxia in the presence of different electron-affinic sensitizers and then incubated in broth containing penicillin (at a concentration that did not kill unirradiated cells) additional killing of the bacteria occurred provided the sensitizers were of relatively high lipophilicity. The overall effect was to increase the efficiency of these sensitizers. It is concluded that sensitizer-dependent latent radiation lesions(s) are produced in membrane components of the cell envelope that interact with damage caused by penicillin in the peptidoglycan layer and this causes the additional lethality

  14. Effects of sub-lethal neurite outgrowth inhibitory concentrations of chlorpyrifos oxon on cytoskeletal proteins and acetylcholinesterase in differentiating N2a cells

    International Nuclear Information System (INIS)

    Flaskos, J.; Nikolaidis, E.; Harris, W.; Sachana, M.; Hargreaves, A.J.

    2011-01-01

    Previous work in our laboratory has shown that sub-lethal concentrations (1–10 μM) of chlorpyrifos (CPF), diazinon (DZ) and diazinon oxon (DZO) inhibit the outgrowth of axon-like neurites in differentiating mouse N2a neuroblastoma cells concomitant with altered levels and/or phosphorylation state of axonal cytoskeleton and growth-associated proteins. The aim of the present work was to determine whether chlorpyrifos oxon (CPO) was capable of inhibiting N2a cell differentiation in a similar manner. Using experimental conditions similar to our previous work, sub-lethal concentrations (1–10 μM) of CPO were found to inhibit N2a cell differentiation. However, unlike previous studies with DZ and DZO, there was a high level of sustained inhibition of acetylcholinesterase (AChE) in CPO treated cells. Impairment of neurite outgrowth was also associated with reduced levels of growth associated protein-43 and neurofilament heavy chain (NFH), and the distribution of NFH in cells stained by indirect immunofluorescence was disrupted. However, in contrast to previous findings for DZO, the absolute level of phosphorylated NFH was unaffected by CPO exposure. Taken together, the findings suggest that sub-lethal concentrations of CPO inhibit axon outgrowth in differentiating N2a cells and that this effect involves reduced levels of two proteins that play key roles in axon outgrowth and maintenance. Although the inhibition of neurite outgrowth is unlikely to involve AChE inhibition directly, further work will help to determine whether the persistent inhibition of AChE by CPO can account for the different effects induced by CPO and DZO on the levels of total and phosphorylated NFH. -- Highlights: ► Sub-lethal levels of chlorpyrifos oxon inhibit neurite outgrowth in N2a cells ► Acetylcholinesterase exhibits sustained inhibition throughout exposure ► The levels of neurofilament heavy chain and GAP-43 protein are reduced ► Neurofilament heavy chain forms aggregates in cell

  15. OH radicals from the indirect actions of X-rays induce cell lethality and mediate the majority of the oxygen enhancement effect.

    Science.gov (United States)

    Hirayama, Ryoichi; Ito, Atsushi; Noguchi, Miho; Matsumoto, Yoshitaka; Uzawa, Akiko; Kobashi, Gen; Okayasu, Ryuichi; Furusawa, Yoshiya

    2013-11-01

    We examined OH radical-mediated indirect actions from X irradiation on cell killing in wild-type Chinese hamster ovary cell lines (CHO and AA8) under oxic and hypoxic conditions, and compared the contribution of direct and indirect actions under both conditions. The contribution of indirect action on cell killing can be estimated from the maximum degree of protection by dimethylsulfoxide, which suppresses indirect action by quenching OH radicals without affecting the direct action of X rays on cell killing. The contributions of indirect action on cell killing of CHO cells were 76% and 50% under oxic and hypoxic conditions, respectively, and those for AA8 cells were 85% and 47%, respectively. Therefore, the indirect action on cell killing was enhanced by oxygen during X irradiation in both cell lines tested. Oxygen enhancement ratios (OERs) at the 10% survival level (D10 or LD90) for CHO and AA8 cells were 2.68 ± 0.15 and 2.76 ± 0.08, respectively. OERs were evaluated separately for indirect and direct actions, which gave the values of 3.75 and 2.01 for CHO, and 4.11 and 1.32 for AA8 cells, respectively. Thus the generally accepted OER value of ∼3 is best understood as the average of the OER values for both indirect and direct actions. These results imply that both indirect and direct actions on cell killing require oxygen for the majority of lethal DNA damage, however, oxygen plays a larger role in indirect than for direct effects. Conversely, the lethal damage induced by the direct action of X rays are less affected by oxygen concentration.

  16. Recovery of Corneal Endothelial Cells from Periphery after Injury.

    Directory of Open Access Journals (Sweden)

    Sang Ouk Choi

    Full Text Available Wound healing of the endothelium occurs through cell enlargement and migration. However, the peripheral corneal endothelium may act as a cell resource for the recovery of corneal endothelium in endothelial injury.To investigate the recovery process of corneal endothelial cells (CECs from corneal endothelial injury.Three patients with unilateral chemical eye injuries, and 15 rabbit eyes with corneal endothelial chemical injuries were studied. Slit lamp examination, specular microscopy, and ultrasound pachymetry were performed immediately after chemical injury and 1, 3, 6, and 9 months later. The anterior chambers of eyes from New Zealand white rabbits were injected with 0.1 mL of 0.05 N NaOH for 10 min (NaOH group. Corneal edema was evaluated at day 1, 7, and 14. Vital staining was performed using alizarin red and trypan blue.Specular microscopy did not reveal any corneal endothelial cells immediately after injury. Corneal edema subsided from the periphery to the center, CEC density increased, and central corneal thickness decreased over time. In the animal study, corneal edema was greater in the NaOH group compared to the control at both day 1 and day 7. At day 1, no CECs were detected at the center and periphery of the corneas in the NaOH group. Two weeks after injury, small, hexagonal CECs were detected in peripheral cornea, while CECs in mid-periphery were large and non-hexagonal.CECs migrated from the periphery to the center of the cornea after endothelial injury. The peripheral corneal endothelium may act as a cell resource for the recovery of corneal endothelium.

  17. Lethal action of ultraviolet and visible (blue violet) radiations at defined wavelengths on human lymphoblastoid cells; action spectra and interaction sites

    Energy Technology Data Exchange (ETDEWEB)

    Tyrrell, R.M.; Werfelli, P.; Moraes, E.C. (Institut Suisse de Recherches Experimentales sur le Cancer, Lausanne)

    1984-02-01

    The repair proficient human lymphoblastoid line (TK6) has been employed to construct an action spectrum for the lethal action of ultraviolet (UV) radiation in the range 254 to 434 nm and to examine possible interactions between longer (334, 365 and 405 nm) and shorter wavelength (254 and 313 nm) radiations. The action spectrum follows a DNA absorption spectrum fairly closely out to 360 nm. As in previously determined lethal action spectra for procaryotic and eucaryotic cell populations, there is a broad shoulder in the 334 to 405 nm region which could reflect the existence of either (a) a non-DNA chromophore or (b) a unique photochemical reaction in the DNA over this region. Pre-treatment with radiation at 334 or 365 nm causes either a slight sensitivity to (low fluences) or protection from (higher fluences) subsequent exposure to radiation at a shorter wavelength (254 or 313 nm). Pre-irradiation at a visible wavelength (405 nm) at all fluence levels employed sensitizes the populations to treatment with 254 or 313 nm radiations. These interactions will influence the lethal outcome of cellular exposure to broad-band radiation sources.

  18. Lethal action of ultraviolet and visible (blue violet) radiations at defined wavelengths on human lymphoblastoid cells; action spectra and interaction sites

    International Nuclear Information System (INIS)

    Tyrrell, R.M.; Werfelli, P.; Moraes, E.C.

    1984-01-01

    The repair proficient human lymphoblastoid line (TK6) has been employed to construct an action spectrum for the lethal action of ultraviolet (UV) radiation in the range 254 to 434 nm and to examine possible interactions between longer (334, 365 and 405 nm) and shorter wavelength (254 and 313 nm) radiations. The action spectrum follows a DNA absorption spectrum fairly closely out to 360 nm. As in previously determined lethal action spectra for procaryotic and eucaryotic cell populations, there is a broad shoulder in the 334 to 405 nm region which could reflect the existence of either (a) a non-DNA chromophore or (b) a unique photochemical reaction in the DNA over this region. Pre-treatment with radiation at 334 or 365 nm causes either a slight sensitivity to (low fluences) or protection from (higher fluences) subsequent exposure to radiation at a shorter wavelength (254 or 313 nm). Pre-irradiation at a visible wavelength (405 nm) at all fluence levels employed sensitizes the populations to treatment with 254 or 313 nm radiations. These interactions will influence the lethal outcome of cellular exposure to broad-band radiation sources. (author)

  19. Inhibition of potentially lethal radiation damage repair in normal and neoplastic human cells by 3-aminobenzamide: an inhibitor of poly(ADP-ribosylation)

    International Nuclear Information System (INIS)

    Thraves, P.J.; Mossman, K.L.; Frazier, D.T.; Dritschilo, A.

    1986-01-01

    The effect of 3-aminobenzamide (3AB), an inhibitor of poly(ADP-ribose) synthetase, on potentially lethal damage repair (PLDR) was investigated in normal human fibroblasts and four human tumor cell lines from tumors with varying degrees of radiocurability. The tumor lines selected were: Ewing's sarcoma, a bone tumor considered radiocurable and, human lung adenocarcinoma, osteosarcoma, and melanoma, three tumors considered nonradiocurable. PLDR was measured by comparing cell survival when cells were irradiated in a density-inhibited state and replated at appropriate cell numbers at specified times following irradiation to cell survival when cells were replated immediately following irradiation. 3AB was added to cultures 2 hr prior to irradiation and removed at the time of replating. Different test radiation doses were used for the various cell lines to obtain equivalent levels of cell survival. In the absence of inhibitor, PLDR was similar in all cell lines tested. In the presence of 8 mM 3AB, differential inhibition of PLDR was observed. PLDR was almost completely inhibited in Ewing's sarcoma cells and partially inhibited in normal fibroblast cells and osteosarcoma cells. No inhibition of PLDR was observed in the lung adenocarcinoma or melanoma cells. Except for the osteosarcoma cells, inhibition of PLDR by 3AB correlated well with radiocurability

  20. Effect of mutagen combined action on Chlamydomonas reinhardtii cells. II. Dependence of lethal effect on mutagen dose and on conditions of cultivation following mutagen action. [In Slovak

    Energy Technology Data Exchange (ETDEWEB)

    Podstavkova, S; Vlcek, D; Dubovsky, J [Komenskeho Univ., Bratislava (Czechoslovakia). Prirodovedecka Fakulta

    1978-01-01

    The effect of UV radiation and UV radiation combined with alkylnitrosourea derivatives (N-methyl-N-nitrosourea and N-ethyl-N-nitrosourea) was observed on survival of cells of the algae Chlamydomonas reinhardtii. In particular, single parts were evaluated of the overall lethal effect - dying of cells before division and dying of cells after division. It was found that the combined action of low doses of UV radiation and alkylnitrosoureas result in a pronounced protective effect which manifests itself by a higher frequency of surviving cells than was that effected by the action of alkylnitrosoureas alone. As a result of combined action with higher doses of UV radiation this effect is lost, and the resultant values will come close to the theoretically anticipated values. This gradual transition from a protective to an additive effect mainly manifests itself by changes in the proportion of cells dying before division.

  1. Cell therapy for spinal cord injury informed by electromagnetic waves.

    Science.gov (United States)

    Finnegan, Jack; Ye, Hui

    2016-10-01

    Spinal cord injury devastates the CNS, besetting patients with symptoms including but not limited to: paralysis, autonomic nervous dysfunction, pain disorders and depression. Despite the identification of several molecular and genetic factors, a reliable regenerative therapy has yet to be produced for this terminal disease. Perhaps the missing piece of this puzzle will be discovered within endogenous electrotactic cellular behaviors. Neurons and stem cells both show mediated responses (growth rate, migration, differentiation) to electromagnetic waves, including direct current electric fields. This review analyzes the pathophysiology of spinal cord injury, the rationale for regenerative cell therapy and the evidence for directing cell therapy via electromagnetic waves shown by in vitro experiments.

  2. Cellular therapy after spinal cord injury using neural progenitor cells

    NARCIS (Netherlands)

    Vroemen, Maurice

    2006-01-01

    In this thesis, the possibilities and limitations of cell-based therapies after spinal cord injury are explored. Particularly, the potential of adult derived neural progenitor cell (NPC) grafts to function as a permissive substrate for axonal regeneration was investigated. It was found that syngenic

  3. Sequential transition of the injury phenotype, temperature-dependent survival and transcriptional response in Listeria monocytogenes following lethal H2O2 exposure.

    Science.gov (United States)

    Ochiai, Yoshitsugu; Yamada, Fumiya; Yoshikawa, Yuko; Mochizuki, Mariko; Takano, Takashi; Hondo, Ryo; Ueda, Fukiko

    2017-10-16

    The food-borne pathogen Listeria monocytogenes is present persistently in food processing environments, where this bacterium is exposed to various stress factors, including oxidative stress. This study aimed to elucidate the temperature-dependent response of L. monocytogenes to H 2 O 2 exposure and the phenotypic changes in colony formation by H 2 O 2 -treated bacteria. Survival curves indicated an increase in the resistance to H 2 O 2 in L. monocytogenes as the temperature decreased during the stress exposure procedure. Transcriptional induction of genes with key roles in response to H 2 O 2 , including sigB and kat, was observed at 37°C, but not at 20°C, whereas other stress response genes were induced at both temperatures. Following H 2 O 2 exposure, L. monocytogenes produced small colony phenotypes and the colony size decreased in a stress exposure duration-dependent manner. Resuscitated cells with no ability to form colonies in the absence of sodium pyruvate were also found. Our findings show the possibility that a sequential transition in the injury phenotype from small colony phenotype to resuscitated cells occurred during the course of exposure to H 2 O 2 . The higher H 2 O 2 resistance at 20°C than 37°C suggests further investigation of the response to H 2 O 2 exposure under the lower temperatures, including refrigeration temperature, which may contribute to elucidation of bacterial survival over extended time periods in food-processing environments. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Stem cells in sepsis and acute lung injury.

    Science.gov (United States)

    Cribbs, Sushma K; Matthay, Michael A; Martin, Greg S

    2010-12-01

    Sepsis and acute lung injury continue to be major causes of morbidity and mortality worldwide despite advances in our understanding of pathophysiology and the discovery of new management strategies. Recent investigations show that stem cells may be beneficial as prognostic biomarkers and novel therapeutic strategies in these syndromes. This article reviews the potential use of endogenous adult tissue-derived stem cells in sepsis and acute lung injury as prognostic markers and also as exogenous cell-based therapy. A directed systematic search of the medical literature using PubMed and OVID, with particular emphasis on the time period after 2002, was done to evaluate topics related to 1) the epidemiology and pathophysiology of sepsis and acute lung injury; and 2) the definition, characterization, and potential use of stem cells in these diseases. DATA SYNTHESIS AND FINDINGS: When available, preferential consideration was given to prospective nonrandomized clinical and preclinical studies. Stem cells have shown significant promise in the field of critical care both for 1) prognostic value and 2) treatment strategies. Although several recent studies have identified the potential benefit of stem cells in sepsis and acute lung injury, further investigations are needed to more completely understand stem cells and their potential prognostic and therapeutic value.

  5. Melatonin mitigates neomycin-induced hair cell injury in zebrafish.

    Science.gov (United States)

    Oh, Kyoung Ho; Rah, Yoon Chan; Hwang, Kyu Ho; Lee, Seung Hoon; Kwon, Soon Young; Cha, Jae Hyung; Choi, June

    2017-10-01

    Ototoxicity due to medications, such as aminoglycosides, is irreversible, and free radicals in the inner ear are assumed to play a major role. Because melatonin has an antioxidant property, we hypothesize that it might mitigate hair cell injury by aminoglycosides. The objective of this study was to evaluate whether melatonin has an alleviative effect on neomycin-induced hair cell injury in zebrafish (Danio rerio). Various concentrations of melatonin were administered to 5-day post-fertilization zebrafish treated with 125 μM neomycin for 1 h. Surviving hair cells within four neuromasts were compared with that of a control group. Apoptosis was assessed via terminal deoxynucleotidyl transferase dUTP nick-end labeling assay. The changes of ultrastructure were confirmed using a scanning electron microscope. Melatonin alleviated neomycin-induced hair cell injury in neuromasts (neomycin + melatonin 100 μM: 13.88 ± 0.91 cells, neomycin only: 7.85 ± 0.90 cells; n = 10, p melatonin for 1 h in SEM findings. Melatonin is effective in alleviating aminoglycoside-induced hair cell injury in zebrafish. The results of this study demonstrated that melatonin has the potential to reduce apoptosis induced by aminoglycosides in zebrafish.

  6. Burn injury suppresses human dermal dendritic cell and Langerhans cell function

    NARCIS (Netherlands)

    van den Berg, Linda M.; de Jong, Marein A. W. P.; Witte, Lot de; Ulrich, Magda M. W.; Geijtenbeek, Teunis B. H.

    2011-01-01

    Human skin contains epidermal Langerhans cells (LCs) and dermal dendritic cells (DCs) that are key players in induction of adaptive immunity upon infection. After major burn injury, suppressed adaptive immunity has been observed in patients. Here we demonstrate that burn injury affects adaptive

  7. Effect of mutagen combined action on Chlamydomonas reinhardtii cells. I. Lethal effect dependence on the sequence of mutagen application and on cultivation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Vlcek, D; Podstavkova, S; Dubovsky, J [Komenskeho Univ., Bratislava (Czechoslovakia). Prirodovedecka Fakulta

    1978-01-01

    The effect was investigated of single and combined actions of alkylnitrosourea derivatives (N-methyl-N-nitrosourea and N-ethyl-N-nitrosourea) and UV-radiation on the survival of cells of Chlamydomonas reinhardtii algae in dependence on the sequence of application of mutagens and on the given conditions of cultivation following mutagen activity. In particular, the single phases were investigated of the total lethal effect, i.e., the death of cells before division and their death after division. The most pronounced changes in dependence on the sequence of application of mutagens and on the given conditions of cultivation were noted in cell death before division. In dependence on the sequence of application of mutagens, the effect of the combined action on the survival of cells changed from an additive (alkylnitrosourea + UV-radiation) to a protective effect (UV-radiation + alkylnitrosourea).

  8. Cell injury, retrodifferentiation and the cancer treatment paradox.

    Science.gov (United States)

    Uriel, José

    2015-09-01

    This "opinion article" is an attempt to take an overview of some significant changes that have happened in our understanding of cancer status during the last half century and its evolution under the progressive influence of molecular biology. As an active worker in cancer research and developmental biology during most of this period, I would like to comment briefly on these changes and to give my critical appreciation of their outcome as it affects our knowledge of cancer development as well as the current treatment of the disease. A recall of my own contribution to the subject is also included. Two subjects are particularly developed: cell injury and cell-killing therapies. Cell injury, whatever its origin, has acquired the status of a pivotal event for the initiation of cancer emergence. It is postulated that cell injury, a potential case of cellular death, may also be the origin of a process of stepwise cell reversion (retrodifferentiation or retroprogrammation) leading, by division, mature or stem cells to progressive immaturity. The genetic instability and mutational changes that accompanies this process of cell injury and rejuvenation put normal cells in a status favourable to neoplastic transformation or may evolve cancer cells toward clones with higher malignant potentiality. Thus, cell injury suggests lifestyle as the major upstream initiator of cancer development although this not exclude randomness as an unavoidable contributor to the disease. Cell-killing agents (mainly cytotoxic drugs and radiotherapy) are currently used to treat cancer. At the same time, it is agreed that agents with high cell injury potential (ultraviolet light, ionising radiations, tobacco, environmental pollutants, etc.) contribute to the emergence of malignant tumours. This represents a real paradox. In spite of the progress accomplished in cancer survival, one is tempted to suggest that we have very few chances of really cure cancer as long as we continue to treat malignancies

  9. Wolbachia Protein TomO Targets nanos mRNA and Restores Germ Stem Cells in Drosophila Sex-lethal Mutants.

    Science.gov (United States)

    Ote, Manabu; Ueyama, Morio; Yamamoto, Daisuke

    2016-09-12

    Wolbachia, endosymbiotic bacteria prevalent in invertebrates, manipulate their hosts in a variety of ways: they induce cytoplasmic incompatibility, male lethality, male-to-female transformation, and parthenogenesis. However, little is known about the molecular basis for host manipulation by these bacteria. In Drosophila melanogaster, Wolbachia infection makes otherwise sterile Sex-lethal (Sxl) mutant females capable of producing mature eggs. Through a functional genomic screen for Wolbachia genes with growth-inhibitory effects when expressed in cultured Drosophila cells, we identified the gene WD1278 encoding a novel protein we call toxic manipulator of oogenesis (TomO), which phenocopies some of the Wolbachia effects in Sxl mutant D. melanogaster females. We demonstrate that TomO enhances the maintenance of germ stem cells (GSCs) by elevating Nanos (Nos) expression via its interaction with nos mRNA, ultimately leading to the restoration of germ cell production in Sxl mutant females that are otherwise without GSCs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Human alpha-lactalbumin made lethal to tumor cells (HAMLET) kills human glioblastoma cells in brain xenografts by an apoptosis-like mechanism and prolongs survival.

    Science.gov (United States)

    Fischer, Walter; Gustafsson, Lotta; Mossberg, Ann-Kristin; Gronli, Janne; Mork, Sverre; Bjerkvig, Rolf; Svanborg, Catharina

    2004-03-15

    Malignant brain tumors present a major therapeutic challenge because no selective or efficient treatment is available. Here, we demonstrate that intratumoral administration of human alpha-lactalbumin made lethal to tumor cells (HAMLET) prolongs survival in a human glioblastoma (GBM) xenograft model, by selective induction of tumor cell apoptosis. HAMLET is a protein-lipid complex that is formed from alpha-lactalbumin when the protein changes its tertiary conformation and binds oleic acid as a cofactor. HAMLET induces apoptosis in a wide range of tumor cells in vitro, but the therapeutic effect in vivo has not been examined. In this study, invasively growing human GBM tumors were established in nude rats (Han:rnu/rnu Rowett, n = 20) by transplantation of human GBM biopsy spheroids. After 7 days, HAMLET was administered by intracerebral convection-enhanced delivery for 24 h into the tumor area; and alpha-lactalbumin, the native, folded variant of the same protein, was used as a control. HAMLET reduced the intracranial tumor volume and delayed the onset of pressure symptoms in the tumor-bearing rats. After 8 weeks, all alpha-lactalbumin-treated rats had developed pressure symptoms, but the HAMLET-treated rats remained asymptomatic. Magnetic resonance imaging scans revealed large differences in tumor volume (456 versus 63 mm(3)). HAMLET caused apoptosis in vivo in the tumor but not in adjacent intact brain tissue or in nontransformed human astrocytes, and no toxic side effects were observed. The results identify HAMLET as a new candidate in cancer therapy and suggest that HAMLET should be additionally explored as a novel approach to controlling GBM progression.

  11. Alpha-lactalbumin unfolding is not sufficient to cause apoptosis, but is required for the conversion to HAMLET (human alpha-lactalbumin made lethal to tumor cells).

    Science.gov (United States)

    Svensson, Malin; Fast, Jonas; Mossberg, Ann-Kristin; Düringer, Caroline; Gustafsson, Lotta; Hallgren, Oskar; Brooks, Charles L; Berliner, Lawrence; Linse, Sara; Svanborg, Catharina

    2003-12-01

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a complex of human alpha-lactalbumin and oleic acid (C18:1:9 cis) that kills tumor cells by an apoptosis-like mechanism. Previous studies have shown that a conformational change is required to form HAMLET from alpha-lactalbumin, and that a partially unfolded conformation is maintained in the HAMLET complex. This study examined if unfolding of alpha-lactalbumin is sufficient to induce cell death. We used the bovine alpha-lactalbumin Ca(2+) site mutant D87A, which is unable to bind Ca(2+), and thus remains partially unfolded regardless of solvent conditions. The D87A mutant protein was found to be inactive in the apoptosis assay, but could readily be converted to a HAMLET-like complex in the presence of oleic acid. BAMLET (bovine alpha-lactalbumin made lethal to tumor cells) and D87A-BAMLET complexes were both able to kill tumor cells. This activity was independent of the Ca(2+)site, as HAMLET maintained a high affinity for Ca(2+) but D87A-BAMLET was active with no Ca(2+) bound. We conclude that partial unfolding of alpha-lactalbumin is necessary but not sufficient to trigger cell death, and that the activity of HAMLET is defined both by the protein and the lipid cofactor. Furthermore, a functional Ca(2+)-binding site is not required for conversion of alpha-lactalbumin to the active complex or to cause cell death. This suggests that the lipid cofactor stabilizes the altered fold without interfering with the Ca(2+)site.

  12. Stem cell extracellular vesicles and kidney injury

    OpenAIRE

    Grange, Cristina; Iampietro, Corinne; Bussolati, Benedetta

    2017-01-01

    Extracellular vesicles (EVs) appear as a new promising cell-free therapy for acute and chronic renal diseases. EVs retain characteristics of the cell of origin and those derived from stem cells may mimic their regenerative properties per se. In fact, EVs contain many active molecules such as proteins and RNA species that act on target cells through different mechanisms, stimulating proliferation and angiogenesis and reducing apoptosis and inflammation. There are several reports that demonstra...

  13. Molecular Imaging in Stem Cell Therapy for Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Fahuan Song

    2014-01-01

    Full Text Available Spinal cord injury (SCI is a serious disease of the center nervous system (CNS. It is a devastating injury with sudden loss of motor, sensory, and autonomic function distal to the level of trauma and produces great personal and societal costs. Currently, there are no remarkable effective therapies for the treatment of SCI. Compared to traditional treatment methods, stem cell transplantation therapy holds potential for repair and functional plasticity after SCI. However, the mechanism of stem cell therapy for SCI remains largely unknown and obscure partly due to the lack of efficient stem cell trafficking methods. Molecular imaging technology including positron emission tomography (PET, magnetic resonance imaging (MRI, optical imaging (i.e., bioluminescence imaging (BLI gives the hope to complete the knowledge concerning basic stem cell biology survival, migration, differentiation, and integration in real time when transplanted into damaged spinal cord. In this paper, we mainly review the molecular imaging technology in stem cell therapy for SCI.

  14. Molecular Mechanisms of the Cytotoxicity of Human α-Lactalbumin Made Lethal to Tumor Cells (HAMLET) and Other Protein-Oleic Acid Complexes*

    Science.gov (United States)

    Nakamura, Takashi; Aizawa, Tomoyasu; Kariya, Ryusho; Okada, Seiji; Demura, Makoto; Kawano, Keiichi; Makabe, Koki; Kuwajima, Kunihiro

    2013-01-01

    Although HAMLET (human α-lactalbumin made lethal to tumor cells), a complex formed by human α-lactalbumin and oleic acid, has a unique apoptotic activity for the selective killing of tumor cells, the molecular mechanisms of expression of the HAMLET activity are not well understood. Therefore, we studied the molecular properties of HAMLET and its goat counterpart, GAMLET (goat α-lactalbumin made lethal to tumor cells), by pulse field gradient NMR and 920-MHz two-dimensional NMR techniques. We also examined the expression of HAMLET-like activities of complexes between oleic acid and other proteins that form a stable molten globule state. We observed that both HAMLET and GAMLET at pH 7.5 were heterogeneous, composed of the native protein, the monomeric molten globule-like state, and the oligomeric species. At pH 2.0 and 50 °C, HAMLET and GAMLET appeared in the monomeric state, and we identified the oleic acid-binding site in the complexes by two-dimensional NMR. Rather surprisingly, the binding site thus identified was markedly different between HAMLET and GAMLET. Furthermore, canine milk lysozyme, apo-myoglobin, and β2-microglobulin all formed the HAMLET-like complex with the anti-tumor activity, when the protein was treated with oleic acid under conditions in which their molten globule states were stable. From these results, we conclude that the protein portion of HAMLET, GAMLET, and the other HAMLET-like protein-oleic acid complexes is not the origin of their cytotoxicity to tumor cells and that the protein portion of these complexes plays a role in the delivery of cytotoxic oleic acid molecules into tumor cells across the cell membrane. PMID:23580643

  15. Molecular mechanisms of the cytotoxicity of human α-lactalbumin made lethal to tumor cells (HAMLET) and other protein-oleic acid complexes.

    Science.gov (United States)

    Nakamura, Takashi; Aizawa, Tomoyasu; Kariya, Ryusho; Okada, Seiji; Demura, Makoto; Kawano, Keiichi; Makabe, Koki; Kuwajima, Kunihiro

    2013-05-17

    Although HAMLET (human α-lactalbumin made lethal to tumor cells), a complex formed by human α-lactalbumin and oleic acid, has a unique apoptotic activity for the selective killing of tumor cells, the molecular mechanisms of expression of the HAMLET activity are not well understood. Therefore, we studied the molecular properties of HAMLET and its goat counterpart, GAMLET (goat α-lactalbumin made lethal to tumor cells), by pulse field gradient NMR and 920-MHz two-dimensional NMR techniques. We also examined the expression of HAMLET-like activities of complexes between oleic acid and other proteins that form a stable molten globule state. We observed that both HAMLET and GAMLET at pH 7.5 were heterogeneous, composed of the native protein, the monomeric molten globule-like state, and the oligomeric species. At pH 2.0 and 50 °C, HAMLET and GAMLET appeared in the monomeric state, and we identified the oleic acid-binding site in the complexes by two-dimensional NMR. Rather surprisingly, the binding site thus identified was markedly different between HAMLET and GAMLET. Furthermore, canine milk lysozyme, apo-myoglobin, and β2-microglobulin all formed the HAMLET-like complex with the anti-tumor activity, when the protein was treated with oleic acid under conditions in which their molten globule states were stable. From these results, we conclude that the protein portion of HAMLET, GAMLET, and the other HAMLET-like protein-oleic acid complexes is not the origin of their cytotoxicity to tumor cells and that the protein portion of these complexes plays a role in the delivery of cytotoxic oleic acid molecules into tumor cells across the cell membrane.

  16. A Study on Recovery from Potentially Lethal Damage induced by γ-Irradiation in Plateau-phase Vero Cells in vitro

    International Nuclear Information System (INIS)

    Kim, Il Han; Choi, Eun Kyung; Ha, Sung Whan; Park, Charn Il; Cha, Chang Yong

    1988-01-01

    Recovery from potentially lethal damage (PLDR) after irradiation was studied in plateau-phase culture of Vero cells in vitro. Unfed plateau-phase cells were irradiated with dose of 1 to 9 Gy using Cs-137 irradiator. Cells then were incubated again and left in situ for 0, 1, 2, 3, 4, 5, 6 and 24 hours and then were trypsinized, explanted, and subcultured in fresh RPMI-1640 media containing 0.33% agar. Cell survival was measured by colony forming ability. An adequate number of heavily irradiated Vero cells were added as feeder cells to make the total cell number constant in every culture dish. As the postirradiation in situ incubation time increased, surviving fraction increased saturation level at 2 to 4 hours after in situ incubation. As the radiation dose increased, the rate of PLDR also increased. In analysis of cell survival curve fitted to the linear-quadratic model, the linear inactivation coefficient (a) decreased largely and reached nearly to zero but the quadratic inactivation coefficient (b) increased minimally by increment of postirradiation in situ incubation time. So PLDR mainly affected the damage expressed as a. In the multitarget model, significant change was not obtained in D0 but in Dq. Therefore, shoulder region in cell survival curve was mainly affected by PLDR and terminal slope was not influenced at all. And dose-modifying factor by PLDR was relatively higher in shoulder region, that is, in low dose area below 3 Gy

  17. Cell Therapy in Spinal Cord Injury: a Mini- Reivew

    Directory of Open Access Journals (Sweden)

    Soraya Mehrabi

    2013-04-01

    Full Text Available Spinal cord injury (SCI is a debilitating disease which leads to progressive functional damages. Because of limited axonal regeneration in the central nervous system, there is no or little recovery expected in the patients. Different cellular and molecular approaches were investigated in SCI animal models. Cellular transplantation of stem cells can potentially replace damaged tissue and provide a suitable microenvironment for axons to regenerate. Here, we reviewed the last approaches applied by our colleagues and others in order to improve axonal regeneration following SCI. We used different types of stem cells via different methods. First, fetal olfactory mucosa, schwann, and bone marrow stromal cells were transplanted into the injury sites in SCI models. In later studies, was applied simultaneous transplantation of stem cells with chondroitinase ABC in SCI models with the aid of nanoparticles. Using these approaches, considerable functional recovery was observed. However, considering some challenges in stem cell therapy such as rejection, infection, and development of a new cancer, our more recent strategy was application of cytokines. We observed a significant improvement in motor function of rats when stromal derived factor-1 was used to attract innate stem cells to the injury site. In conclusion, it seems that co-transplantation of different cells accompanies with other factors like enzymes and growth factors via new delivery systems may yield better results in SCI.

  18. Artemesia annua extract prevents glyoxal-induced cell injury in ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of Artemesia annua extract on glyoxal-induced injury in retinal microvascular endothelial cells (HRECs). Methods: HRECs were cultured in a medium containing 500 μM glyoxal or glyoxal plus 50μM Artemesia annua extract, or in the medium alone for 24 h. Apoptosis was analysed by flow ...

  19. Involvement of CD8+ T cell-mediated immune responses in LcrV DNA vaccine induced protection against lethal Yersinia pestis challenge.

    Science.gov (United States)

    Wang, Shixia; Goguen, Jon D; Li, Fusheng; Lu, Shan

    2011-09-09

    Yersinia pestis (Y. pestis) is the causative pathogen of plague, a highly fatal disease for which an effective vaccine, especially against mucosal transmission, is still not available. Like many bacterial infections, antigen-specific antibody responses have been traditionally considered critical, if not solely responsible, for vaccine-induced protection against Y. pestis. Studies in recent years have suggested the importance of T cell immune responses against Y. pestis infection but information is still limited about the details of Y. pestis antigen-specific T cell immune responses. In current report, studies are conducted to identify the presence of CD8+ T cell epitopes in LcrV protein, the leading antigen of plague vaccine development. Furthermore, depletion of CD8+ T cells in LcrV DNA vaccinated Balb/C mice led to reduced protection against lethal intranasal challenge of Y. pestis. These findings establish that an LcrV DNA vaccine is able to elicit CD8+ T cell immune responses against specific epitopes of this key plague antigen and that a CD8+ T cell immune response is involved in LcrV DNA vaccine-elicited protection. Future studies in plague vaccine development will need to examine if the presence of detectable T cell immune responses, in particular CD8+ T-cell immune responses, will enhance the protection against Y. pestis in higher animal species or humans. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Effects of β-arabinofuranosyladenine on potentially lethal damage induced in plateau phase mammalian cells exposed to U.V.-light

    International Nuclear Information System (INIS)

    Iliakis, G.

    1983-01-01

    The effect of β-arabinofuranosyladenine (β-araA), a specific inhibitor of DNA polymerases α and β, on the survival of plateau phase Ehrlich ascites tumour cells after U.V.-exposure has been studied. β-araA inhibited repair of U.V.-induced potentially lethal damage (PLD), when given to the cells after irradiation. An exponential survival curve (D 0 = 1 J/m 2 ) was obtained when irradiated cells were treated with β-araA at 120 μM. β-araA mainly affected the shoulder width of the survival curve but also changed the slope of the resistant 'tail' of the survival curve. The effect was irreversible at 80 μM and partly reversible at 20 μM. When β-araA was added to cultures in fresh or conditioned medium at 80 μM at various times after irradiation, there was a gradual decrease in PLD. Survival reached levels corresponding to those of untreated cells plated immediately after irradiation. If cells were incubated for additional times in fresh medium, survival increased to levels corresponding to those obtained with plateau phase cells after delayed plating, but did not occur in cells incubated in conditioned medium. The repair time constant for PLD was about 3 hours for cells incubated in fresh medium and about 6 hours incubated in conditioned medium. (author)

  1. Mesenchymal stem cells induce dermal fibroblast responses to injury

    International Nuclear Information System (INIS)

    Smith, Andria N.; Willis, Elise; Chan, Vincent T.; Muffley, Lara A.; Isik, F. Frank; Gibran, Nicole S.; Hocking, Anne M.

    2010-01-01

    Although bone marrow-derived mesenchymal stem cells have been shown to promote repair when applied to cutaneous wounds, the mechanism for this response remains to be determined. The aim of this study was to determine the effects of paracrine signaling from mesenchymal stem cells on dermal fibroblast responses to injury including proliferation, migration and expression of genes important in wound repair. Dermal fibroblasts were co-cultured with bone marrow-derived mesenchymal stem cells grown in inserts, which allowed for paracrine interactions without direct cell contact. In this co-culture model, bone marrow-derived mesenchymal stem cells regulate dermal fibroblast proliferation, migration and gene expression. When co-cultured with mesenchymal stem cells, dermal fibroblasts show increased proliferation and accelerated migration in a scratch assay. A chemotaxis assay also demonstrated that dermal fibroblasts migrate towards bone marrow-derived mesenchymal stem cells. A PCR array was used to analyze the effect of mesenchymal stem cells on dermal fibroblast gene expression. In response to mesenchymal stem cells, dermal fibroblasts up-regulate integrin alpha 7 expression and down-regulate expression of ICAM1, VCAM1 and MMP11. These observations suggest that mesenchymal stem cells may provide an important early signal for dermal fibroblast responses to cutaneous injury.

  2. Induced Pluripotent Stem Cell Therapies for Cervical Spinal Cord Injury

    Science.gov (United States)

    Doulames, Vanessa M.; Plant, Giles W.

    2016-01-01

    Cervical-level injuries account for the majority of presented spinal cord injuries (SCIs) to date. Despite the increase in survival rates due to emergency medicine improvements, overall quality of life remains poor, with patients facing variable deficits in respiratory and motor function. Therapies aiming to ameliorate symptoms and restore function, even partially, are urgently needed. Current therapeutic avenues in SCI seek to increase regenerative capacities through trophic and immunomodulatory factors, provide scaffolding to bridge the lesion site and promote regeneration of native axons, and to replace SCI-lost neurons and glia via intraspinal transplantation. Induced pluripotent stem cells (iPSCs) are a clinically viable means to accomplish this; they have no major ethical barriers, sources can be patient-matched and collected using non-invasive methods. In addition, the patient’s own cells can be used to establish a starter population capable of producing multiple cell types. To date, there is only a limited pool of research examining iPSC-derived transplants in SCI—even less research that is specific to cervical injury. The purpose of the review herein is to explore both preclinical and clinical recent advances in iPSC therapies with a detailed focus on cervical spinal cord injury. PMID:27070598

  3. Why is intracellular ice lethal? A microscopical study showing evidence of programmed cell death in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum.

    Science.gov (United States)

    Wesley-Smith, James; Walters, Christina; Pammenter, N W; Berjak, Patricia

    2015-05-01

    Conservation of the genetic diversity afforded by recalcitrant seeds is achieved by cryopreservation, in which excised embryonic axes (or, where possible, embryos) are treated and stored at temperatures lower than -180 °C using liquid nitrogen. It has previously been shown that intracellular ice forms in rapidly cooled embryonic axes of Acer saccharinum (silver maple) but this is not necessarily lethal when ice crystals are small. This study seeks to understand the nature and extent of damage from intracellular ice, and the course of recovery and regrowth in surviving tissues. Embryonic axes of A. saccharinum, not subjected to dehydration or cryoprotection treatments (water content was 1·9 g H2O g(-1) dry mass), were cooled to liquid nitrogen temperatures using two methods: plunging into nitrogen slush to achieve a cooling rate of 97 °C s(-1) or programmed cooling at 3·3 °C s(-1). Samples were thawed rapidly (177 °C s(-1)) and cell structure was examined microscopically immediately, and at intervals up to 72 h in vitro. Survival was assessed after 4 weeks in vitro. Axes were processed conventionally for optical microscopy and ultrastructural examination. Immediately following thaw after cryogenic exposure, cells from axes did not show signs of damage at an ultrastructural level. Signs that cells had been damaged were apparent after several hours of in vitro culture and appeared as autophagic decomposition. In surviving tissues, dead cells were sloughed off and pockets of living cells were the origin of regrowth. In roots, regrowth occurred from the ground meristem and procambium, not the distal meristem, which became lethally damaged. Regrowth of shoots occurred from isolated pockets of surviving cells of peripheral and pith meristems. The size of these pockets may determine the possibility for, the extent of and the vigour of regrowth. Autophagic degradation and ultimately autolysis of cells following cryo-exposure and formation of small

  4. Stem Cells: New Hope For Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Gazdic Marina

    2015-03-01

    Full Text Available Stem cell therapy offers several attractive strategies for spinal cord repair. The regenerative potential of pluripotent stem cells was confirmed in an animal model of Spinal Cord Injury (SCI; nevertheless, optimized growth and differentiation protocols along with reliable safety assays should be established prior to the clinical application of hESCs and iPSCs. Th e therapeutic effects of mesenchymal stem cells (MSCs in SCI result from neurotrophin secretion, angiogenesis, and antiinflammatory actions. Several preclinical SCI studies have reported that the occurrence of axonal extension, remyelination and neuroprotection occur after the transplantation of olfactory ensheathing cells (OECs. The transplantation of neural stem cells NSCs (NSCs promotes partial functional improvement after SCI because of their potential to differentiate into neurons, oligodendrocytes, and astrocytes. The ideal source of stem cells for safe and efficient cell-based therapy for SCI remains a challenging issue that requires further investigation.

  5. Obstructive renal injury: from fluid mechanics to molecular cell biology.

    Science.gov (United States)

    Ucero, Alvaro C; Gonçalves, Sara; Benito-Martin, Alberto; Santamaría, Beatriz; Ramos, Adrian M; Berzal, Sergio; Ruiz-Ortega, Marta; Egido, Jesus; Ortiz, Alberto

    2010-04-22

    Urinary tract obstruction is a frequent cause of renal impairment. The physiopathology of obstructive nephropathy has long been viewed as a mere mechanical problem. However, recent advances in cell and systems biology have disclosed a complex physiopathology involving a high number of molecular mediators of injury that lead to cellular processes of apoptotic cell death, cell injury leading to inflammation and resultant fibrosis. Functional studies in animal models of ureteral obstruction using a variety of techniques that include genetically modified animals have disclosed an important role for the renin-angiotensin system, transforming growth factor-β1 (TGF-β1) and other mediators of inflammation in this process. In addition, high throughput techniques such as proteomics and transcriptomics have identified potential biomarkers that may guide clinical decision-making.

  6. Induction of the early response protein EGR-1 in human tumour cells after ionizing radiation is correlated with a reduction of repair of lethal lesions and an increase of repair of sublethal lesions

    NARCIS (Netherlands)

    Franken, Nicolaas A. P.; ten Cate, Rosemarie; van Bree, Chris; Haveman, Jaap

    2004-01-01

    The role of EGR-1 in potentially lethal damage repair (PLDR) was studied. Induction of the early response protein EGR-1 and survival after ionizing radiation of two human tumour cell lines after culturing for 48 h in serum-deprived medium was investigated. The glioblastoma cell line (Gli-6) and a

  7. Radiation and chemically induced potentially lethal lesions in noncycling mammalian cells: recovery analysis in terms of x-ray- and ultraviolet-like-systems

    International Nuclear Information System (INIS)

    Hahn, G.M.

    1975-01-01

    Recovery from and fixation of potentially lethal damage after exposure of Chinese hamster cells to uv and to x irradiation were investigated, as was recovery after exposure to chemotherapeutic agents. Recovery after uv radiation has a T/sub 1 / 2 / of about 20 hr; the fraction of cells able to undergo recovery depends upon nutritional factors both before and after exposure. After x irradiation, recovery proceeds with a T/sub 1 / 2 / of approximately 2 hr and is much less influenced by nutritional factors. Fixation after serum stimulation has a T/sub 1 / 2 / of 3 to 4 hr in uv-irradiated cells, a T/sub 1 / 2 / of 30 min in x-irradiated cells. Recovery kinetics after nitrogen mustard and bleomycin exposures mimic those for x-ray exposure; after methyl methane sulfonate the kinetics are mainly uv-like, though with an x-ray-like component. Recovery by cells with BUdR-substituted DNA and irradiated with visible light is primarily x-ray-like, though with a uv-like component. There is no recovery by cells exposed to adriamycin or to 1,3-bis(2-chloroethyl)-1-nitrosourea

  8. Inhibition of X-ray-induced potentially lethal damage (PLD) repair in aerobic plateau-phase Chinese hamster cells by misonidazole

    International Nuclear Information System (INIS)

    Brown, D.M.

    1984-01-01

    The effect of the 2-nitroimidazole radiosensitizer misonidazole (MISO) and the hydrophilic analog SR-2508 on the repair of X-ray-induced potentially lethal damage (PLD) was studied in plateau-phase Chinese Hamster ovary (HA-1) cells. It was found that although MISO does not radiosensitize aerobic cells, it inhibits the repair of PLD. However, under hypoxic conditions, MISO has no effect on PLD repair. The major portion of the inhibition of PLD repair in aerobic cells requires the presence of MISO only during irradiation; little or no additional inhibition occurs when MISO is present during the postirradiation repair period. Also, treatment of aerobic cells with 5 mM MISO for either 5 or 30 min prior to irradiation is equally inhibitory. This suggests that the presence of MISO in some way modifies the initial lesion under aerobic conditions since it does not increase cell killing as determined by immediate plating but inhibits subsequent repair. The inhibition is concentration dependent; 0.5 mM MISO inhibits PLD repair by one-half while 5-10 mM totally inhibits the repair measured 6 hr postirradiation. This phenomenon suggests that radiosensitization of tissue in vivo by MISO and other 2-nitroimidazoles may not be unequivocal proof of the presence of hypoxic cells

  9. Action of caffeine on x-irradiated HeLa cells. VII. Evidence that caffeine enhances expression of potentially lethal radiation damage

    International Nuclear Information System (INIS)

    Beetham, K.L.; Tolmach, L.J.

    1984-01-01

    HeLa cells irradiated with 2 Gy of 220-kV X rays suffer a 60-70% loss of colony-forming ability which is increased to 90% by postirradiation treatment with 10 mM caffeine for 6 hr. The detailed postirradiation patterns of cell death and sister-cell fusion in such cultures and in cultures in which the colony-forming ability was brought to about the same level by treatment with a larger (4 Gy) X-ray dose alone or by longer (48 hr) treatment with 10 mM caffeine alone were recorded by time-lapse cinemicrography. Because the patterns of cell death and fusion differ radically in irradiated and in caffeine-treated cultures, the response of the additional cells killed by the combined treatment can be identified as X-ray induced rather than caffeine induced. The appearance of cultures after several days of incubation confirms the similarity of the post-treatment patterns of proliferation in cultures suffering enhanced killing to those occurring in cultures treated with larger doses of X rays alone. It is concluded that x rays do not sensitize cells to caffeine, but rather that caffeine enhanced the expression of potentially lethal radiation-induced damage

  10. The roles of ADAM33, ADAM28, IL-13 and IL-4 in the development of lung injuries in children with lethal non-pandemic acute infectious pneumonia.

    Science.gov (United States)

    Baurakiades, Emanuele; Costa, Victor Horácio; Raboni, Sonia Mara; de Almeida, Vivian Rafaela Telli; Larsen, Kelly Susana Kunze; Kohler, Juliana Nemetz; Gozzo, Priscilla do Carmo; Klassen, Giseli; Manica, Graciele C M; de Noronha, Lucia

    2014-12-01

    ADAM28, ADAM33, IL-13, IL-4 and other cytokines (IL-6 and IL-10) seem to play important roles in the persistence and maintenance of acute inflammatory processes that ultimately lead to lung remodeling and pulmonary fibrosis, which may be responsible for the high morbidity and mortality rates associated with non-pandemic acute viral pneumonias in childhood. The aim of this study was to evaluate the roles of ADAM33, ADAM28, IL4, IL6, IL10 and IL13 in the development of inflammation and alveolar fibrosis due to lethal acute respiratory infections of the lower airway in a pediatric population, especially in those with viral etiology. For this study, 193 cases were selected, and samples from the cases were processed for viral antigen detection by immunohistochemistry and then separated into two groups: virus-positive (n=68) and virus-negative (n=125). Immunohistochemistry was performed to assess the presence of metalloproteinases (ADAM33 and ADAM28) and inflammatory cytokines (IL-4, IL-13, IL-6, IL-10) in the alveolar septa. The virus-positive group showed stronger immunolabeling for ADAM33, ADAM28, IL-4 and IL-13 (pplay important roles in pulmonary inflammatory reactions elicited against etiological viral agents. In addition, these mediators may affect the process of lung remodeling and the development of pulmonary fibrosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Stem cell, cytokine and plastic surgical management for radiation injuries

    International Nuclear Information System (INIS)

    Akita, Sadanori; Hirano, Akiyoshi; Akino, Kozo

    2008-01-01

    Increasing concern on systemic and local radiation injuries caused by nuclear power plant accident, therapeutic irradiation or nuclear terrorism should be treated and prevented properly for life-saving and improved wound management. We therefore reviewed our therapeutic regimens and for local radiation injuries and propose surgical methods reflecting the importance of the systemic and general conditions. For local radiation injuries, after careful and complete debridement, sequential surgeries with local flap, arterialized or perforator flap and to free flap are used when the patients' general conditions allow. Occasionally, undetermined wound margins in acute emergency radiation injuries and the regenerative surgical modalities should be attempted with temporal artificial dermis impregnated and sprayed with angiogenic factor such as basic fibroblast growth factor (bFGF) and secondary reconstruction can be a candidate for demarcation and saving the donor morbidity. Human mesenchymal stem cells (hMSCs) and adipose-derived stem cells (ADSCs), together with angiogenic and mitogenic factor of basic fibroblast growth factor (bFGF) and an artificial dermis were applied over the excised irradiated skin defect are tested for differentiation and local stimulation effects in the radiation-exposed wounds. The perforator flap and artificial dermal template with growth factor were successful for reconstruction in patients who are suffering from complex underlying disease. Patients were uneventfully treated with minimal morbidities. The hMSCs are strongly proliferative even after 20 Gy irradiation in vitro. Immediate artificial dermis application impregnated with hMSCs and bFGF over the 20 Gy irradiated skin and soft tissues demonstrated the significantly improved fat angio genesis, architected dermal reconstitution and less inflammatory epidermal recovery. Even though emergent cases are more often experienced, detailed understanding of underlying diseases and rational

  12. Stem cell, cytokine and plastic surgical management for radiation injuries

    Energy Technology Data Exchange (ETDEWEB)

    Akita, Sadanori; Hirano, Akiyoshi [Dept. of Plastic and Reconstructive Surgery, Nagasaki (Japan); Akino, Kozo [Nagasaki Univ. (Japan). Graduate School of Biomedical Sciences, Dept. of Neuroanatomy; Ohtsuru, Akira [Nagasaki Univ. Hospital (Japan). Takashi Nagai Memorial, International Hibakusha Medical Center; Yamashita, Shunichi [Nagasaki Univ. School of Medicine (Japan). Atomic Bomb Disease Institute; World Health Organization (WHO), Nagasaki (Japan)

    2008-07-01

    Increasing concern on systemic and local radiation injuries caused by nuclear power plant accident, therapeutic irradiation or nuclear terrorism should be treated and prevented properly for life-saving and improved wound management. We therefore reviewed our therapeutic regimens and for local radiation injuries and propose surgical methods reflecting the importance of the systemic and general conditions. For local radiation injuries, after careful and complete debridement, sequential surgeries with local flap, arterialized or perforator flap and to free flap are used when the patients' general conditions allow. Occasionally, undetermined wound margins in acute emergency radiation injuries and the regenerative surgical modalities should be attempted with temporal artificial dermis impregnated and sprayed with angiogenic factor such as basic fibroblast growth factor (bFGF) and secondary reconstruction can be a candidate for demarcation and saving the donor morbidity. Human mesenchymal stem cells (hMSCs) and adipose-derived stem cells (ADSCs), together with angiogenic and mitogenic factor of basic fibroblast growth factor (bFGF) and an artificial dermis were applied over the excised irradiated skin defect are tested for differentiation and local stimulation effects in the radiation-exposed wounds. The perforator flap and artificial dermal template with growth factor were successful for reconstruction in patients who are suffering from complex underlying disease. Patients were uneventfully treated with minimal morbidities. The hMSCs are strongly proliferative even after 20 Gy irradiation in vitro. Immediate artificial dermis application impregnated with hMSCs and bFGF over the 20 Gy irradiated skin and soft tissues demonstrated the significantly improved fat angio genesis, architected dermal reconstitution and less inflammatory epidermal recovery. Even though emergent cases are more often experienced, detailed understanding of underlying diseases and rational

  13. Cytotoxicity and Hsp 70 induction in Hep G2 cells in response to zearalenone and cytoprotection by sub-lethal heat shock

    International Nuclear Information System (INIS)

    Hassen, Wafa; Golli, Emna El; Baudrimont, Isabelle; Mobio, A. Theophile; Ladjimi, M. Moncef; Creppy, E. Edmond; Bacha, Hassen

    2005-01-01

    Zearalenone (ZEN) is a mycotoxin with several adverse effects in laboratory and domestic animals. The mechanism of ZEN toxicity that involves mainly binding to oestrogen receptors and inhibition of macromolecules synthesis is not fully understood. Using human hepatocytes Hep G2 cells as a model, the aim of this work was (i) to investigate the ability of ZEN to induce heat shock proteins Hsp 70 and (ii) to find out the mechanisms of ZEN cytotoxicity by examining cell proliferation and protein synthesis. Our study demonstrated that ZEN induces Hsp 70 expression in a time and dose-dependant manner; this induction occurs at non-cytotoxic concentrations, it could be therefore considered as a biomarker of toxicity. A cytoprotective effect of Hsp 70 was elicited when Hep G2 cells were exposed to Sub-Lethal heat shock prior to ZEN treatment and evidenced by a reduced ZEN cytolethality. This cytoprotection suggests that Hsp 70 may constitute an important cellular defence mechanism. Finally, our data show that ZEN is cytotoxic in Hep G2 cells by inhibiting cell proliferation and total protein synthesis and pointed out oxidative damage as possible pathway involved in ZEN toxicity; however, other investigations are needed to further confirm Zen induced oxidative stress

  14. Lethality and the depression on DNA synthesis in UV-irradiated normal human and xeroderma pigmentosum cells

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, K. (Kobe Univ. (Japan). School of Medicine)

    1983-12-01

    Ultraviolet radiation suppresses the semiconservative DNA replication in mammalian cells. The rate of DNA synthesis is initially depressed and later recovers after low doses of UV radiation in human cells. Such a response is more sensitive to UV radiation in cells derived from patients with xeroderma pigmentosum (XP) than that in normal human cells. The relative rate of DNA synthesis is not always correlated with cell survival because, unlike cell survival, the dose-response curve of the relative rate of DNA synthesis shows the biphasic nature of the sensitivity. In the experiments reported herein, the total amount (not the rate) of DNA synthesized during a long interval of incubation which covers the period of inhibition and recovery (but not longer than one generation time) after irradiation with various doses of UV radiation was examined in normal human and XP cells, and was found to be well correlated with cell survival in all the cells tested.

  15. Time course of photoreactivation of UV-induced chromosomal aberrations and lethal damage in interphase Xenopus cells

    International Nuclear Information System (INIS)

    Griggs, H.G.; Payne, J.D.

    1981-01-01

    Sets of G1, S, and G2 phase Xenopus cells were exposed to 15.0 Jm -2 UV and their ability to photoreactivate the induced cell killing and chromosomal aberrations was determined. Most of the lesions induced in G1 cells leading to cell death were converted to a non-photoreactivable state before the cells entered the S phase, while lesions leading to chromosomal aberrations were converted to a non-photoreactivable state as the cells entered the S phase. In S phase cells the UV-induced lesions leading to aberrations appeared to be converted to a non-photoreactivable state at a much faster rate than those leading to cell death. A significant fraction of the lesions induced in G2 cells, leading to cell death, were converted to a non-photoreactivable state before the progeny of the exposed cells reach the next S phase. Few, if any, lesions were induced in G2 cells that were expressed as aberrations at the first mitosis following exposure. The results suggest that the intracellular mechanism which expresses photoreactivable UV-induced lesions as cell death is not identical to the mechanism which expresses such lesions as chromosomal aberrations, and the two mechanisms operate with different efficiencies in different phases of the cell cycle. (author)

  16. Anthrax lethal factor as an immune target in humans and transgenic mice and the impact of HLA polymorphism on CD4+ T cell immunity.

    Science.gov (United States)

    Ascough, Stephanie; Ingram, Rebecca J; Chu, Karen K; Reynolds, Catherine J; Musson, Julie A; Doganay, Mehmet; Metan, Gökhan; Ozkul, Yusuf; Baillie, Les; Sriskandan, Shiranee; Moore, Stephen J; Gallagher, Theresa B; Dyson, Hugh; Williamson, E Diane; Robinson, John H; Maillere, Bernard; Boyton, Rosemary J; Altmann, Daniel M

    2014-05-01

    Bacillus anthracis produces a binary toxin composed of protective antigen (PA) and one of two subunits, lethal factor (LF) or edema factor (EF). Most studies have concentrated on induction of toxin-specific antibodies as the correlate of protective immunity, in contrast to which understanding of cellular immunity to these toxins and its impact on infection is limited. We characterized CD4+ T cell immunity to LF in a panel of humanized HLA-DR and DQ transgenic mice and in naturally exposed patients. As the variation in antigen presentation governed by HLA polymorphism has a major impact on protective immunity to specific epitopes, we examined relative binding affinities of LF peptides to purified HLA class II molecules, identifying those regions likely to be of broad applicability to human immune studies through their ability to bind multiple alleles. Transgenics differing only in their expression of human HLA class II alleles showed a marked hierarchy of immunity to LF. Immunogenicity in HLA transgenics was primarily restricted to epitopes from domains II and IV of LF and promiscuous, dominant epitopes, common to all HLA types, were identified in domain II. The relevance of this model was further demonstrated by the fact that a number of the immunodominant epitopes identified in mice were recognized by T cells from humans previously infected with cutaneous anthrax and from vaccinated individuals. The ability of the identified epitopes to confer protective immunity was demonstrated by lethal anthrax challenge of HLA transgenic mice immunized with a peptide subunit vaccine comprising the immunodominant epitopes that we identified.

  17. VSVΔG/EBOV GP-induced innate protection enhances natural killer cell activity to increase survival in a lethal mouse adapted Ebola virus infection.

    Science.gov (United States)

    Williams, Kinola J N; Qiu, Xiangguo; Fernando, Lisa; Jones, Steven M; Alimonti, Judie B

    2015-02-01

    Members of the species Zaire ebolavirus cause severe hemorrhagic fever with up to a 90% mortality rate in humans. The VSVΔG/EBOV GP vaccine has provided 100% protection in the mouse, guinea pig, and nonhuman primate (NHP) models, and has also been utilized as a post-exposure therapeutic to protect mice, guinea pigs, and NHPs from a lethal challenge of Ebola virus (EBOV). EBOV infection causes rapid mortality in human and animal models, with death occurring as early as 6 days after infection, suggesting a vital role for the innate immune system to control the infection before cells of the adaptive immune system can assume control. Natural killer (NK) cells are the predominant cell of the innate immune response, which has been shown to expand with VSVΔG/EBOV GP treatment. In the current study, an in vivo mouse model of the VSVΔG/EBOV GP post-exposure treatment was used for a mouse adapted (MA)-EBOV infection, to determine the putative VSVΔG/EBOV GP-induced protective mechanism of NK cells. NK depletion studies demonstrated that mice with NK cells survive longer in a MA-EBOV infection, which is further enhanced with VSVΔG/EBOV GP treatment. NK cell mediated cytotoxicity and IFN-γ secretion was significantly higher with VSVΔG/EBOV GP treatment. Cell mediated cytotoxicity assays and perforin knockout mice experiments suggest that there are perforin-dependent and -independent mechanisms involved. Together, these data suggest that NK cells play an important role in VSVΔG/EBOV GP-induced protection of EBOV by increasing NK cytotoxicity, and IFN-γ secretion.

  18. Clarithromycin expands CD11b+Gr-1+ cells via the STAT3/Bv8 axis to ameliorate lethal endotoxic shock and post-influenza bacterial pneumonia

    Science.gov (United States)

    Fujii, Hideki; Yagi, Kazuma; Suzuki, Shoji; Hegab, Ahmed E.; Tasaka, Sadatomo; Nakamoto, Nobuhiro; Iwata, Satoshi; Honda, Kenya; Kanai, Takanori; Hasegawa, Naoki; Betsuyaku, Tomoko

    2018-01-01

    Macrolides are used to treat various inflammatory diseases owing to their immunomodulatory properties; however, little is known about their precise mechanism of action. In this study, we investigated the functional significance of the expansion of myeloid-derived suppressor cell (MDSC)-like CD11b+Gr-1+ cells in response to the macrolide antibiotic clarithromycin (CAM) in mouse models of shock and post-influenza pneumococcal pneumonia as well as in humans. Intraperitoneal administration of CAM markedly expanded splenic and lung CD11b+Gr-1+ cell populations in naïve mice. Notably, CAM pretreatment enhanced survival in a mouse model of lipopolysaccharide (LPS)-induced shock. In addition, adoptive transfer of CAM-treated CD11b+Gr-1+ cells protected mice against LPS-induced lethality via increased IL-10 expression. CAM also improved survival in post-influenza, CAM-resistant pneumococcal pneumonia, with improved lung pathology as well as decreased interferon (IFN)-γ and increased IL-10 levels. Adoptive transfer of CAM-treated CD11b+Gr-1+ cells protected mice from post-influenza pneumococcal pneumonia. Further analysis revealed that the CAM-induced CD11b+Gr-1+ cell expansion was dependent on STAT3-mediated Bv8 production and may be facilitated by the presence of gut commensal microbiota. Lastly, an analysis of peripheral blood obtained from healthy volunteers following oral CAM administration showed a trend toward the expansion of human MDSC-like cells (Lineage−HLA-DR−CD11b+CD33+) with increased arginase 1 mRNA expression. Thus, CAM promoted the expansion of a unique population of immunosuppressive CD11b+Gr-1+ cells essential for the immunomodulatory properties of macrolides. PMID:29621339

  19. Inactivation by oxidation and recruitment into stress granules of hOGG1 but not APE1 in human cells exposed to sub-lethal concentrations of cadmium

    International Nuclear Information System (INIS)

    Bravard, Anne; Campalans, Anna; Vacher, Monique; Gouget, Barbara; Levalois, Celine; Chevillard, Sylvie; Radicella, J. Pablo

    2010-01-01

    The induction of mutations in mammalian cells exposed to cadmium has been associated with the oxidative stress triggered by the metal. There is increasing evidence that the mutagenic potential of Cd is not restricted to the induction of DNA lesions. Cd has been shown to inactivate several DNA repair enzymes. Here we show that exposure of human cells to sub-lethal concentrations of Cd leads to a time- and concentration-dependent decrease in hOGG1 activity, the major DNA glycosylase activity responsible for the initiation of the base excision repair (BER) of 8-oxoguanine, an abundant and mutagenic form of oxidized guanine. Although there is a slight effect on the level of hOGG1 transcripts, we show that the inhibition of the 8-oxoguanine DNA glycosylase activity is mainly associated with an oxidation of the hOGG1 protein and its disappearance from the soluble fraction of total cell extracts. Confocal microscopy analyses show that in cells exposed to Cd hOGG1-GFP is recruited to discrete structures in the cytoplasm. These structures were identified as stress granules. Removal of Cd from the medium allows the recovery of the DNA glycosylase activity and the presence of hOGG1 in a soluble form. In contrast to hOGG1, we show here that exposure to Cd does not affect the activity of the second enzyme of the pathway, the major AP endonuclease APE1.

  20. Control of cell division and radiation injury in mouse skin

    International Nuclear Information System (INIS)

    Yamaguchi, Takeo

    1974-01-01

    The method for determining the inhibitors of cell division (chalone-adrenalin system) in the irradiated epidermis and blood was developed using the epidermis of mouse ear conch during the cure of wounds (in vivo), and the epidermis cultured for a long period (in vitro). The whole body was irradiated with 200KV, 20 mA x-rays of 96 R/min filtered by 0.5 mmCu + 0.5 mmAl. Chalone, which is a physiologically intrinsic substance to control the proliferation, inhibits the DNA synthesis. From changes in cell division with time, chalone in the epidermis is considered to inhibit each process from G 2 to M, from G 2 to S, from G 1 to S. Adrenalin is indispensable when epidermal chalone acts the inhibition of cell division. Chalone activities in the epidermis irradiated with almost lethal doses were decreased. Factors to inhibit the proliferation of the epidermis by the potentiation of chalone and adrenalin are present in sera of animals irradiated to x-rays. (Serizawa, K.)

  1. Kinetics of antigen specific and non-specific polyclonal B-cell responses during lethal Plasmodium yoelii malaria

    Directory of Open Access Journals (Sweden)

    Laurence Rolland

    1992-06-01

    Full Text Available In order to study the kinetics and composition of the polyclonal B-cell activation associated to malaria infection, antigen-specific and non-specific B-cell responses were evaluated in the spleens of mice infected with Plasmodium yoelii 17 XL or injected with lysed erythrocytes or plasma from P. yoelii infected mice or with P. falciparum culture supernatants. Spleen/body weigth ratio, numbers of nucleated spleen cells and Immunoglobulin-containing and Immunoglobulin-secreting cells increased progressively during the course of infection,in parallel to the parasitemia. A different pattern of kinetics was observed when anti-sheep red blood cell and anti-trinitrophenylated-sheep red blood cell plaque forming cells response were studied: maximum values were observed at early stages of infection, whereas the number of total Immunoglobulin-containing and Immunoglobulin-secreting cells were not yet altered. Conversely, at the end of infection, when these latter values reached their maximum, the anti-sheep red blood cell and anti-trinitrophenylated-sheep red blood cell specific responses were normal or even infranormal. In mice injected with Plasmodium-derived material, a higher increase in antigen-specific PFC was observed, as compared to the increase of Immunoglobulin-containing and Immunoglobulin-secreting cell numbers. This suggested a "preferential" (antigen-plus mitogen-induced stimulation of antigen-specific cells rather than a generalized non-specific (mitogen-induced triggering of B-lymphocytes. On the basis of these and previous results, it is suggested that polyclonal B-cell activation that takes place during the course of infection appears as a result of successive waves of antigen-specific B-cell activation.

  2. Lethal response of HeLa cells to x irradiation in the latter part of the generation cycle

    International Nuclear Information System (INIS)

    Griffith, T.D.; Tolmach, L.J.

    1976-01-01

    The age-response for the killing of HeLa S3 cells by x rays during the latter part of the generation cycle has been examined in detail. As synchronous cells move from the G1/S boundary through S phase, the relatively high sensitivity of late G1 cells gradually decreases; minimum sensitivity is reached in mid-S and maintained during the remainder of that phase. The response of cells as they progress from S to the point in G2 at which they are temporarily arrested by radiation (or by inhibitors of protein synthesis) was measured in populations free of both S phase cells and late G2 cells that had passed the arrest point: cells retain their high resistance from early G2 up to the arrest point. The response of G2 cells that have passed the arrest point before being irradiated was examined by exposing randomly growing cultures to x rays and collecting cells periodically thereafter, as they entered mitosis. Survival values very close to those of sensitive mitotic cells were found in the 2 h period after irradiation during which unarrested cells continued to reach mitosis. Values typical of late S/early G2 were found only after cells that had been arrested began arriving at mitosis. Thus, HeLa S3 cells undergo an abrupt increase in sensitivity at or near the arrest point. The sensitivity to a second irradiation of cells arrested in G2 by a conditioning x-ray dose increases rapidly in the early part of the arrest period

  3. Lack of WDR36 leads to preimplantation embryonic lethality in mice and delays the formation of small subunit ribosomal RNA in human cells in vitro.

    Science.gov (United States)

    Gallenberger, Martin; Meinel, Dominik M; Kroeber, Markus; Wegner, Michael; Milkereit, Philipp; Bösl, Michael R; Tamm, Ernst R

    2011-02-01

    Mutations in WD repeat domain 36 gene (WDR36) play a causative role in some forms of primary open-angle glaucoma, a leading cause of blindness worldwide. WDR36 is characterized by the presence of multiple WD40 repeats and shows homology to Utp21, an essential protein component of the yeast small subunit (SSU) processome required for maturation of 18S rRNA. To clarify the functional role of WDR36 in the mammalian organism, we generated and investigated mutant mice with a targeted deletion of Wdr36. In parallel experiments, we used RNA interference to deplete WDR36 mRNA in mouse embryos and cultured human trabecular meshwork (HTM-N) cells. Deletion of Wdr36 in the mouse caused preimplantation embryonic lethality, and essentially similar effects were observed when WDR36 mRNA was depleted in mouse embryos by RNA interference. Depletion of WDR36 mRNA in HTM-N cells caused apoptotic cell death and upregulation of mRNA for BAX, TP53 and CDKN1A. By immunocytochemistry, staining for WDR36 was observed in the nucleolus of cells, which co-localized with that of nucleolar proteins such as nucleophosmin and PWP2. In addition, recombinant and epitope-tagged WDR36 localized to the nucleolus of HTM-N cells. By northern blot analysis, a substantial decrease in 21S rRNA, the precursor of 18S rRNA, was observed following knockdown of WDR36. In addition, metabolic-labeling experiments consistently showed a delay of 18S rRNA maturation in WDR36-depleted cells. Our results provide evidence that WDR36 is an essential protein in mammalian cells which is involved in the nucleolar processing of SSU 18S rRNA.

  4. The peripheral chimerism of bone marrow-derived stem cells after transplantation: regeneration of gastrointestinal tissues in lethally irradiated mice

    Czech Academy of Sciences Publication Activity Database

    Filip, S.; Mokrý, J.; Vávrová, J.; Šinkorová, Z.; Mičuda, S.; Šponer, P.; Filipová, A.; Hrebíková, H.; Dayanithi, Govindan

    2014-01-01

    Roč. 18, č. 5 (2014), s. 832-843 ISSN 1582-1838 R&D Projects: GA MZd(CZ) NT13477; GA MŠk EE2.3.20.0274 Grant - others:GA MšK(CZ) Prvouk 37/06 Institutional support: RVO:68378041 Keywords : cell recruitment * cell trafficking * stem cells Subject RIV: FH - Neurology Impact factor: 4.753, year: 2012

  5. Suicide Intent and Accurate Expectations of Lethality: Predictors of Medical Lethality of Suicide Attempts

    Science.gov (United States)

    Brown, Gregory K.; Henriques, Gregg R.; Sosdjan, Daniella; Beck, Aaron T.

    2004-01-01

    The degree of intent to commit suicide and the severity of self-injury were examined in individuals (N = 180) who had recently attempted suicide. Although a minimal association was found between the degree of suicide intent and the degree of lethality of the attempt, the accuracy of expectations about the likelihood of dying was found to moderate…

  6. Lipids as tumoricidal components of human α-lactalbumin made lethal to tumor cells (HAMLET): unique and shared effects on signaling and death.

    Science.gov (United States)

    Ho, James C S; Storm, Petter; Rydström, Anna; Bowen, Ben; Alsin, Fredrik; Sullivan, Louise; Ambite, Inès; Mok, K H; Northen, Trent; Svanborg, Catharina

    2013-06-14

    Long-chain fatty acids are internalized by receptor-mediated mechanisms or receptor-independent diffusion across cytoplasmic membranes and are utilized as nutrients, building blocks, and signaling intermediates. Here we describe how the association of long-chain fatty acids to a partially unfolded, extracellular protein can alter the presentation to target cells and cellular effects. HAMLET (human α-lactalbumin made lethal to tumor cells) is a tumoricidal complex of partially unfolded α-lactalbumin and oleic acid (OA). As OA lacks independent tumoricidal activity at concentrations equimolar to HAMLET, the contribution of the lipid has been debated. We show by natural abundance (13)C NMR that the lipid in HAMLET is deprotonated and by chromatography that oleate rather than oleic acid is the relevant HAMLET constituent. Compared with HAMLET, oleate (175 μm) showed weak effects on ion fluxes and gene expression. Unlike HAMLET, which causes metabolic paralysis, fatty acid metabolites were less strongly altered. The functional overlap increased with higher oleate concentrations (500 μm). Cellular responses to OA were weak or absent, suggesting that deprotonation favors cellular interactions of fatty acids. Fatty acids may thus exert some of their essential effects on host cells when in the deprotonated state and when presented in the context of a partially unfolded protein.

  7. Proteomic analysis of differentiating neuroblastoma cells treated with sub-lethal neurite inhibitory concentrations of diazinon: Identification of novel biomarkers of effect

    International Nuclear Information System (INIS)

    Harris, W.; Sachana, M.; Flaskos, J.; Hargreaves, A.J.

    2009-01-01

    In previous work we showed that sub-lethal levels of diazinon inhibited neurite outgrowth in differentiating N2a neuroblastoma cells. Western blotting analysis targeted at proteins involved in axon growth and stress responses, revealed that such exposure led to a reduction in the levels of neurofilament heavy chain, microtubule associated protein 1 B (MAP 1B) and HSP-70. The aim of this study was to apply the approach of 2 dimensional polyacrylamide gel electrophoresis and mass spectrometry to identify novel biomarkers of effect. A number of proteins were found to be up-regulated compared to the control on silver-stained gels. These were classified in to 3 main groups of proteins: cytosolic factors, chaperones and the actin-binding protein cofilin, all of which are involved in cell differentiation, survival or metabolism. The changes observed for cofilin were further confirmed by quantitative Western blotting analysis with anti-actin and anti-cofilin antibodies. Indirect immunofluorescence staining with the same antibodies indicated that the microfilament network was disrupted in diazinon-treated cells. Our data suggest that microfilament organisation is disrupted by diazinon exposure, which may be related to increased cofilin expression.

  8. Modification of potentially lethal damage in irradiated Chinese hamster V79 cells after incorporation of halogenated pyrimidines

    NARCIS (Netherlands)

    Franken, N. A.; van Bree, C. V.; Kipp, J. B.; Barendsen, G. W.

    1997-01-01

    Radiosensitization of exponentially growing and plateau phase Chinese hamster V79 cells by incorporation of halogenated pyrimidines (HP) was investigated for different culture conditions that influenced repair. For this purpose cells were grown for 72 h with 0, 1, 2 and 4 microM of chloro-(CldUrd),

  9. Prevention of lethal graft-versus-host disease in mice by monoclonal antibodies directed against T cells or their subsets.I.Evidence for the induction of a state of tolerance based on suppression

    NARCIS (Netherlands)

    Knulst, A.C.; Tibbe, G.J.M.; Noort, W.A.; Bril-Bazuin, C.; Benner, R.; Savelkoul, H.F.J.

    1994-01-01

    Lethal GVHD in the fully allogeneic BALB/c (donor)-(C57BL x CBA)F1 (recipient) mouse strain combination could be prevented by a single dose of IgG2b monoclonal antibodies (moAb) directed to T cells. The influence of the time of administration of this moAb after GVHD induction and the effect of

  10. Novel BET protein proteolysis-targeting chimera exerts superior lethal activity than bromodomain inhibitor (BETi) against post-myeloproliferative neoplasm secondary (s) AML cells.

    Science.gov (United States)

    Saenz, D T; Fiskus, W; Qian, Y; Manshouri, T; Rajapakshe, K; Raina, K; Coleman, K G; Crew, A P; Shen, A; Mill, C P; Sun, B; Qiu, P; Kadia, T M; Pemmaraju, N; DiNardo, C; Kim, M-S; Nowak, A J; Coarfa, C; Crews, C M; Verstovsek, S; Bhalla, K N

    2017-09-01

    The PROTAC (proteolysis-targeting chimera) ARV-825 recruits bromodomain and extraterminal (BET) proteins to the E3 ubiquitin ligase cereblon, leading to degradation of BET proteins, including BRD4. Although the BET-protein inhibitor (BETi) OTX015 caused accumulation of BRD4, treatment with equimolar concentrations of ARV-825 caused sustained and profound depletion (>90%) of BRD4 and induced significantly more apoptosis in cultured and patient-derived (PD) CD34+ post-MPN sAML cells, while relatively sparing the CD34+ normal hematopoietic progenitor cells. RNA-Seq, Reverse Phase Protein Array and mass cytometry 'CyTOF' analyses demonstrated that ARV-825 caused greater perturbations in messenger RNA (mRNA) and protein expressions than OTX015 in sAML cells. Specifically, compared with OTX015, ARV-825 treatment caused more robust and sustained depletion of c-Myc, CDK4/6, JAK2, p-STAT3/5, PIM1 and Bcl-xL, while increasing the levels of p21 and p27. Compared with OTX015, PROTAC ARV-771 treatment caused greater reduction in leukemia burden and further improved survival of NSG mice engrafted with luciferase-expressing HEL92.1.7 cells. Co-treatment with ARV-825 and JAK inhibitor ruxolitinib was synergistically lethal against established and PD CD34+ sAML cells. Notably, ARV-825 induced high levels of apoptosis in the in vitro generated ruxolitinib-persister or ruxolitinib-resistant sAML cells. These findings strongly support the in vivo testing of the BRD4-PROTAC based combinations against post-MPN sAML.

  11. Stem cells and their role in renal ischaemia reperfusion injury.

    Science.gov (United States)

    Bagul, Atul; Frost, Jodie H; Drage, Martin

    2013-01-01

    Ischaemia-reperfusion injury (IRI) remains one of the leading causes of acute kidney injury (AKI). IRI is an underlying multifactorial pathophysiological process which affects the outcome in both native and transplanted patients. The high morbidity and mortality associated with IRI/AKI and disappointing results from current available clinical therapeutic approaches prompt further research. Stem cells (SC) are undifferentiated cells that can undergo both renewal and differentiation into one or more cell types which can possibly ameliorate IRI. To carry out a detailed literature analysis and construct a comprehensive literature review addressing the role of SC in AKI secondary to IRI. Evidence favouring the role of SC in renal IRI and evidence showing no benefits of SC in renal IRI are the two main aspects to be studied. The search strategy was based on an extensive search addressing MESH terms and free text terms. The majority of studies in the field of renal IRI and stem cell therapy show substantial benefits. Studies were mostly conducted in small animal models, thus underscoring the need for further pre-clinical studies in larger animal models, and results should be taken with caution. SC therapy may be promising though controversy exists in the exact mechanism. Thorough scientific exploration is required to assess mechanism, safety profile, reproducibility and methods to monitor administered SC. Copyright © 2012 S. Karger AG, Basel.

  12. The effects of 'cell age' upon the lethal effects of physical and chemical mutagens in the yeast, Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Parry, J.M.

    1976-01-01

    Yeast cultures progressing from the exponential to the stationary phase of growth showed changes in cell sensitivity to physical agents such as UV light, heat shock at 52 0 C and the chemical mutagens ethyl methane sulphonate, nitrous acid and mitomycin C. Exponential phase cells showed maximum resistance to heat shock and the three chemicals. The increased resistance of exponential phase cells to UV light was shown to be dependent upon the functional integrity of the RAD 50 gene. Treatment of growing yeast cultures with radioactively labelled ethyl methane sulphonate indicated the preferential uptake of radioactivity during the sensitive exponential stage of growth. The results indicated that the differential uptake of the chemical mutagens was responsible for at least a fraction of the variations in cell sensitivity observed in yeast cultures at different phases of growth. (orig.) [de

  13. Acute Liver Injury Is Independent of B Cells or Immunoglobulin M.

    Directory of Open Access Journals (Sweden)

    James A Richards

    Full Text Available Acute liver injury is a clinically important pathology and results in the release of Danger Associated Molecular Patterns, which initiate an immune response. Withdrawal of the injurious agent and curtailing any pathogenic secondary immune response may allow spontaneous resolution of injury. The role B cells and Immunoglobulin M (IgM play in acute liver injury is largely unknown and it was proposed that B cells and/or IgM would play a significant role in its pathogenesis.Tissue from 3 models of experimental liver injury (ischemia-reperfusion injury, concanavalin A hepatitis and paracetamol-induced liver injury and patients transplanted following paracetamol overdose were stained for evidence of IgM deposition. Mice deficient in B cells (and IgM were used to dissect out the role B cells and/or IgM played in the development or resolution of injury. Serum transfer into mice lacking IgM was used to establish the role IgM plays in injury.Significant deposition of IgM was seen in the explanted livers of patients transplanted following paracetamol overdose as well as in 3 experimental models of acute liver injury (ischemia-reperfusion injury, concanavalin A hepatitis and paracetamol-induced liver injury. Serum transfer into IgM-deficient mice failed to reconstitute injury (p = 0.66, despite successful engraftment of IgM. Mice deficient in both T and B cells (RAG1-/- mice (p<0.001, but not B cell deficient (μMT mice (p = 0.93, were significantly protected from injury. Further interrogation with T cell deficient (CD3εKO mice confirmed that the T cell component is a key mediator of sterile liver injury. Mice deficient in B cells and IgM mice did not have a significant delay in resolution following acute liver injury.IgM deposition appears to be common feature of both human and murine sterile liver injury. However, neither IgM nor B cells, play a significant role in the development of or resolution from acute liver injury. T cells appear to be key

  14. Magnetic resonance imaging and cell-based neurorestorative therapy after brain injury

    Directory of Open Access Journals (Sweden)

    Quan Jiang

    2016-01-01

    Full Text Available Restorative cell-based therapies for experimental brain injury, such as stroke and traumatic brain injury, substantially improve functional outcome. We discuss and review state of the art magnetic resonance imaging methodologies and their applications related to cell-based treatment after brain injury. We focus on the potential of magnetic resonance imaging technique and its associated challenges to obtain useful new information related to cell migration, distribution, and quantitation, as well as vascular and neuronal remodeling in response to cell-based therapy after brain injury. The noninvasive nature of imaging might more readily help with translation of cell-based therapy from the laboratory to the clinic.

  15. In delicate balance: stem cells and spinal cord injury advocacy.

    Science.gov (United States)

    Parke, Sara; Illes, Judy

    2011-09-01

    Spinal cord injury (SCI) is a major focus for stem cell therapy (SCT). However, the science of SCT has not been well matched with an understanding of perspectives of persons with SCI. The online advocacy community is a key source of health information for primary stakeholders and their caregivers. In this study, we sought to characterize the content of SCI advocacy websites with respect to their discussion of SCT and stem cell tourism. We performed a comprehensive analysis of SCI advocacy websites identified through a web search and verified by expert opinion. Two independent researchers coded the information for major themes (e.g., scientific & clinical facts, research & funding, policy, ethics) and valence (positive, negative, balanced, neutral). Of the 40 SCI advocacy websites that met inclusion criteria, 50% (N=20) contained information about SCT. Less than 18% (N=7) contained information on stem cell tourism. There were more than ten times as many statements about SCT with a positive valence (N=67) as with a negative valence (N=6). Ethics-related SCT information comprised 20% (N=37) of the total content; the largest proportion of ethics-related content was devoted to stem cell tourism (80%, N=30 statements). Of those, the majority focused on the risks of stem cell tourism (N=16). Given the still-developing science behind SCT, the presence of cautionary information about stem cell tourism at advocacy sites is ethically appropriate. The absence of stem cell tourism information at the majority of advocacy sites represents a lost educational opportunity.

  16. Effect of cell phone distraction on pediatric pedestrian injury risk.

    Science.gov (United States)

    Stavrinos, Despina; Byington, Katherine W; Schwebel, David C

    2009-02-01

    Early adolescents are using cell phones with increasing frequency. Cell phones are known to distract motor vehicle drivers to the point that their safety is jeopardized, but it is unclear if cell phones might also distract child pedestrians. This study was designed to examine the influence of talking on a cell phone for pediatric pedestrian injury risk. Seventy-seven children aged 10 to 11 years old completed simulated road crossings in an immersive, interactive virtual pedestrian environment. In a within-subjects design, children crossed the virtual street 6 times while undistracted and 6 times while distracted by a cell phone conversation with an unfamiliar research assistant. Participants also completed several other experimental tasks hypothesized to predict the impact of distraction while crossing the street and talking on a cell phone. Children's pedestrian safety was compromised when distracted by a cell phone conversation. While distracted, children were less attentive to traffic; left less safe time between their crossing and the next arriving vehicle; experienced more collisions and close calls with oncoming traffic; and waited longer before beginning to cross the street. Analyses testing experience using a cell phone and experience as a pedestrian yielded few significant results, suggesting that distraction on the cell phone might affect children's pedestrian safety no matter what their experience level. There was some indication that younger children and children who are less attentive and more oppositional may be slightly more susceptible to distraction while talking on the cell phone than older, more attentive, and less oppositional children. Our results suggest that cell phones distract preadolescent children while crossing streets.

  17. The relationships between RBE and LET for different types of lethal damage in mammalian cells: biophysical and molecular mechanisms

    NARCIS (Netherlands)

    Barendsen, G. W.

    1994-01-01

    The relative biological effectiveness (RBE) of radiations as a function of linear energy transfer (LET) is analyzed for different types of damage causing reproductive death of mammalian cells. Survival curves are evaluated assuming a linear-quadratic dose dependence of the induction of reproductive

  18. Transcriptome dysregulation by anthrax lethal toxin plays a key role in induction of human endothelial cell cytotoxicity

    CSIR Research Space (South Africa)

    Rolando, M

    2010-07-01

    Full Text Available . They show that knock-down of cortactin and rhophilin-2 under conditions of calponin-1 expression defines the minimal set of genes regulated by LT for actin cable formation. Together their data establish that the modulation of the cell transcriptome by LT...

  19. Sulfatide-Reactive Natural Killer T Cells Abrogate Ischemia-Reperfusion Injury

    OpenAIRE

    Yang, Seung Hee; Lee, Jung Pyo; Jang, Hye Ryoun; Cha, Ran-hui; Han, Seung Seok; Jeon, Un Sil; Kim, Dong Ki; Song, Junghan; Lee, Dong-Sup; Kim, Yon Su

    2011-01-01

    There is a significant immune response to ischemia-reperfusion injury (IRI), but the role of immunomodulatory natural killer T (NKT) cell subtypes is not well understood. Here, we compared the severity of IRI in mice deficient in type I/II NKT cells (CD1d−/−) or type I NKT cells (Jα18−/−). The absence of NKT cells, especially type II NKT cells, accentuated the severity of renal injury, whereas repletion of NKT cells attenuated injury. Adoptively transferred NKT cells trafficked into the tubul...

  20. An avirulent chimeric Pestivirus with altered cell tropism protects pigs against lethal infection with classical swine fever virus

    International Nuclear Information System (INIS)

    Reimann, Ilona; Depner, Klaus; Trapp, Sascha; Beer, Martin

    2004-01-01

    A chimeric Pestivirus was constructed using an infectious cDNA clone of bovine viral diarrhea virus (BVDV) [J. Virol. 70 (1996) 8606]. After deletion of the envelope protein E2-encoding region, the respective sequence of classical swine fever virus (CSFV) strain Alfort 187 was inserted in-frame resulting in plasmid pA/CP7 E 2alf. After transfection of in vitro-transcribed CP7 E 2alf RNA, autonomous replication of chimeric RNA in bovine and porcine cell cultures was observed. Efficient growth of chimeric CP7 E 2alf virus, however, could only be demonstrated on porcine cells, and in contrast to the parental BVDV strain CP7, CP7 E 2alf only inefficiently infected and propagated in bovine cells. The virulence, immunogenicity, and 'marker vaccine' properties of the generated chimeric CP7 E 2alf virus were determined in an animal experiment using 27 pigs. After intramuscular inoculation of 1 x 10 7 TCID 50 , CP7 E 2alf proved to be completely avirulent, and neither viremia nor virus transmission to contact animals was observed; however, CSFV-specific neutralizing antibodies were detected from day 11 after inoculation. In addition, sera from all animals reacted positive in an E2-specific CSFV-antibody ELISA, but were negative for CSFV-E RNS -specific antibodies as determined with a CSFV marker ELISA. After challenge infection with highly virulent CSFV strain Eystrup, pigs immunized with CP7 E 2alf were fully protected against clinical signs of CSFV infection, viremia, and shedding of challenge virus, and almost all animals scored positive in a CSFV marker ELISA. From our results, we conclude that chimeric CP7 E 2alf may not only serve as a tool for a better understanding of Pestivirus attachment, entry, and assembly, but also represents an innocuous and efficacious modified live CSFV 'marker vaccine'

  1. Study on lethal effect on cells by determination of 10B in biological tissues and (n, α) reaction

    International Nuclear Information System (INIS)

    Ishida, Masahiro; Tsuruta, Takao; Takagaki, Masao

    1980-01-01

    As for the macroscopic distribution in tissues and microscopic distribution in cells of 10 B administrated to patients, which are important in thermal neutron capture therapy, it is difficult to say that the method of quantitative determination has been established. The authors tried some experiments by solid state track detection for the determination. That is, the trial determinations of boron in cells by solution method (wet process), filter paper method (dry process) and the method using an electron microscope are reported. If the maximum thermal neutron fluence available is assumed to be 10 14 /cm 2 and the minimum detectable surface density of etch pits is 10 4 /cm 2 , the detection limit of 10 B concentration is estimated as about 10 -2 μg/ml either in the solution method or in the filter paper method. In the quantitative determination of boron distribution at cell level with an electron microscope, a sample of tissue was covered with a plastic thin film, etched after the irradiation with thermal neutrons, and the tissue and the thin film were simultaneously observed with the transmission electron microscope. The thin film thickness of about 0.1 μm is suitable for the sliced tissue of about 0.1 μm thick. The existence of fast neutrons at the time of thermal neutron irradiation causes the generation of etch pits by recoiled particles in celluloid, and increases background counts, while γ-dose above 10 6 rad leads to the deterioration of celluloid composition. Some automatic methods of counting etch pits under consideration are described. (Wakatsuki, Y.)

  2. IP3 3-kinase B controls hematopoietic stem cell homeostasis and prevents lethal hematopoietic failure in mice

    Science.gov (United States)

    Siegemund, Sabine; Rigaud, Stephanie; Conche, Claire; Broaten, Blake; Schaffer, Lana; Westernberg, Luise; Head, Steven Robert

    2015-01-01

    Tight regulation of hematopoietic stem cell (HSC) homeostasis ensures lifelong hematopoiesis and prevents blood cancers. The mechanisms balancing HSC quiescence with expansion and differentiation into hematopoietic progenitors are incompletely understood. Here, we identify Inositol-trisphosphate 3-kinase B (Itpkb) as an essential regulator of HSC homeostasis. Young Itpkb−/− mice accumulated phenotypic HSC, which were less quiescent and proliferated more than wild-type (WT) controls. Itpkb−/− HSC downregulated quiescence and stemness associated, but upregulated activation, oxidative metabolism, protein synthesis, and lineage associated messenger RNAs. Although they had normal-to-elevated viability and no significant homing defects, Itpkb−/− HSC had a severely reduced competitive long-term repopulating potential. Aging Itpkb−/− mice lost hematopoietic stem and progenitor cells and died with severe anemia. WT HSC normally repopulated Itpkb−/− hosts, indicating an HSC-intrinsic Itpkb requirement. Itpkb−/− HSC showed reduced colony-forming activity and increased stem-cell-factor activation of the phosphoinositide-3-kinase (PI3K) effectors Akt/mammalian/mechanistic target of rapamycin (mTOR). This was reversed by treatment with the Itpkb product and PI3K/Akt antagonist IP4. Transcriptome changes and biochemistry support mTOR hyperactivity in Itpkb−/− HSC. Treatment with the mTOR-inhibitor rapamycin reversed the excessive mTOR signaling and hyperproliferation of Itpkb−/− HSC without rescuing colony forming activity. Thus, we propose that Itpkb ensures HSC quiescence and function through limiting cytokine-induced PI3K/mTOR signaling and other mechanisms. PMID:25788703

  3. A Potent and Selective Quinoxalinone-Based STK33 Inhibitor Does Not Show Synthetic Lethality in KRAS-Dependent Cells

    Science.gov (United States)

    2012-01-01

    The KRAS oncogene is found in up to 30% of all human tumors. In 2009, RNAi experiments revealed that lowering mRNA levels of a transcript encoding the serine/threonine kinase STK33 was selectively toxic to KRAS-dependent cancer cell lines, suggesting that small-molecule inhibitors of STK33 might selectively target KRAS-dependent cancers. To test this hypothesis, we initiated a high-throughput screen using compounds in the Molecular Libraries Small Molecule Repository (MLSMR). Several hits were identified, and one of these, a quinoxalinone derivative, was optimized. Extensive SAR studies were performed and led to the chemical probe ML281 that showed low nanomolar inhibition of purified recombinant STK33 and a distinct selectivity profile as compared to other STK33 inhibitors that were reported in the course of these studies. Even at the highest concentration tested (10 μM), ML281 had no effect on the viability of KRAS-dependent cancer cells. These results are consistent with other recent reports using small-molecule STK33 inhibitors. Small molecules having different chemical structures and kinase-selectivity profiles are needed to fully understand the role of STK33 in KRAS-dependent cancers. In this regard, ML281 is a valuable addition to small-molecule probes of STK33. PMID:23256033

  4. CFU-C populations in blood and bone marrow of dogs after lethal irradiation and allogeneic transfusion with cryopreserved blood mononuclear cells

    International Nuclear Information System (INIS)

    Nothdurft, W.; Fliedner, T.M.; Calvo, W.; Flad, H.-D.; Huget, R.; Koerbling, M.; Krumbacher-von Loringen, K; Ross, W.M.; Schnappauf, H.-P.; Steinbach, I.

    1978-01-01

    Colony forming units in agar (CFU-C) were assayed in both bone marrow and peripheral blood of dogs during haemopoietic recovery after lethal total-body irradiation (1200 R) and allogeneic transfusion of blood mononuclear cells (MNC) from histocompatible donors. MNC had been collected from the peripheral blood by continuous-flow centrifugation leucapheris and cryopreserved at -196 deg C until transfusion. Two groups of dogs were studied. Group 1 dogs (n = 12) were given between 0.39 and 2.76 x 10 9 MNC per kg body wt. Group 2 dogs (n = 14) were transfused with a similar number of MNC, ranging from 0.51 to 1.87 x 10 9 per kg body wt., but in addition underwent immuno-suppressive therapy with methotrexate. In group 1 dogs, there was a rather good correlation between the number of CFU-C in the regenerating bone marrow and the recovery of the peripheral blood granulocyte values. The regeneration of the CPU-C population in the bone marrow of methotrexate-treated dogs showed a somewhat more heterogeneous picture than in dogs of group 1 and in dogs that, in a previous study, were transfused with autologous MNC. The minimum time interval required for the reconstitution of peripheral blood CFU-C to normal levels was 2-4 weeks but usually took from 4-14 weeks. (author)

  5. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury.

    Science.gov (United States)

    Keirstead, Hans S; Nistor, Gabriel; Bernal, Giovanna; Totoiu, Minodora; Cloutier, Frank; Sharp, Kelly; Steward, Oswald

    2005-05-11

    Demyelination contributes to loss of function after spinal cord injury, and thus a potential therapeutic strategy involves replacing myelin-forming cells. Here, we show that transplantation of human embryonic stem cell (hESC)-derived oligodendrocyte progenitor cells (OPCs) into adult rat spinal cord injuries enhances remyelination and promotes improvement of motor function. OPCs were injected 7 d or 10 months after injury. In both cases, transplanted cells survived, redistributed over short distances, and differentiated into oligodendrocytes. Animals that received OPCs 7 d after injury exhibited enhanced remyelination and substantially improved locomotor ability. In contrast, when OPCs were transplanted 10 months after injury, there was no enhanced remyelination or locomotor recovery. These studies document the feasibility of predifferentiating hESCs into functional OPCs and demonstrate their therapeutic potential at early time points after spinal cord injury.

  6. Assessing the Blunt Trauma Potential of Free Flying Projectiles for Development and Safety Certification of Non-Lethal Kinetic Impactors

    National Research Council Canada - National Science Library

    Widder, Jeffrey

    1997-01-01

    The primary performance objective for non-lethal, antipersonnel kinetic energy impact projectiles is to reliably deter or incapacitate without causing injuries that require medical treatment beyond...

  7. Systematic screening of isogenic cancer cells identifies DUSP6 as context-specific synthetic lethal target in melanoma

    DEFF Research Database (Denmark)

    Wittig-Blaich, Stephanie; Wittig, Rainer; Schmidt, Steffen

    2017-01-01

    Next-generation sequencing has dramatically increased genome-wide profiling options and conceptually initiates the possibility for personalized cancer therapy. State-of-the-art sequencing studies yield large candidate gene sets comprising dozens or hundreds of mutated genes. However, few technolo......Next-generation sequencing has dramatically increased genome-wide profiling options and conceptually initiates the possibility for personalized cancer therapy. State-of-the-art sequencing studies yield large candidate gene sets comprising dozens or hundreds of mutated genes. However, few...... technologies are available for the systematic downstream evaluation of these results to identify novel starting points of future cancer therapies. We improved and extended a site-specific recombination-based system for systematic analysis of the individual functions of a large number of candidate genes......, a library of 108 isogenic melanoma cell lines was constructed and 8 genes were identified that significantly reduced viability in a discovery screen and in an independent validation screen. Here, we demonstrate the broad applicability of this recombination-based method and we proved its potential...

  8. CD11c(hi) Dendritic Cells Regulate Ly-6C(hi) Monocyte Differentiation to Preserve Immune-privileged CNS in Lethal Neuroinflammation.

    Science.gov (United States)

    Kim, Jin Hyoung; Choi, Jin Young; Kim, Seong Bum; Uyangaa, Erdenebelig; Patil, Ajit Mahadev; Han, Young Woo; Park, Sang-Youel; Lee, John Hwa; Kim, Koanhoi; Eo, Seong Kug

    2015-12-02

    Although the roles of dendritic cells (DCs) in adaptive defense have been defined well, the contribution of DCs to T cell-independent innate defense and subsequent neuroimmunopathology in immune-privileged CNS upon infection with neurotropic viruses has not been completely defined. Notably, DC roles in regulating innate CD11b(+)Ly-6C(hi) monocyte functions during neuroinflammation have not yet been addressed. Using selective ablation of CD11c(hi)PDCA-1(int/lo) DCs without alteration in CD11c(int)PDCA-1(hi) plasmacytoid DC number, we found that CD11c(hi) DCs are essential to control neuroinflammation caused by infection with neurotropic Japanese encephalitis virus, through early and increased infiltration of CD11b(+)Ly-6C(hi) monocytes and higher expression of CC chemokines. More interestingly, selective CD11c(hi) DC ablation provided altered differentiation and function of infiltrated CD11b(+)Ly-6C(hi) monocytes in the CNS through Flt3-L and GM-CSF, which was closely associated with severely enhanced neuroinflammation. Furthermore, CD11b(+)Ly-6C(hi) monocytes generated in CD11c(hi) DC-ablated environment had a deleterious rather than protective role during neuroinflammation, and were more quickly recruited into inflamed CNS, depending on CCR2, thereby exacerbating neuroinflammation via enhanced supply of virus from the periphery. Therefore, our data demonstrate that CD11c(hi) DCs provide a critical and unexpected role to preserve the immune-privileged CNS in lethal neuroinflammation via regulating the differentiation, function, and trafficking of CD11b(+)Ly-6C(hi) monocytes.

  9. Lethality of chlorine, chlorine dioxide, and a commercial fruit and vegetable sanitizer to vegetative cells and spores of Bacillus cereus and spores of Bacillus thuringiensis.

    Science.gov (United States)

    Beuchat, Larry R; Pettigrew, Charles A; Tremblay, Mario E; Roselle, Brian J; Scouten, Alan J

    2004-08-01

    Chlorine, ClO2, and a commercial raw fruit and vegetable sanitizer were evaluated for their effectiveness in killing vegetative cells and spores of Bacillus cereus and spores of Bacillus thuringiensis. The ultimate goal was to use one or both species as a potential surrogate(s) for Bacillus anthracis in studies that focus on determining the efficacy of sanitizers in killing the pathogen on food contact surfaces and foods. Treatment with alkaline (pH 10.5 to 11.0) ClO2 (200 microg/ml) produced by electrochemical technologies reduced populations of a five-strain mixture of vegetative cells and a five-strain mixture of spores of B. cereus by more than 5.4 and more than 6.4 log CFU/ml respectively, within 5 min. This finding compares with respective reductions of 4.5 and 1.8 log CFU/ml resulting from treatment with 200 microg/ml of chlorine. Treatment with a 1.5% acidified (pH 3.0) solution of Fit powder product was less effective, causing 2.5- and 0.4-log CFU/ml reductions in the number of B. cereus cells and spores, respectively. Treatment with alkaline ClO2 (85 microg/ml), acidified (pH 3.4) ClO2 (85 microg/ml), and a mixture of ClO2 (85 microg/ml) and Fit powder product (0.5%) (pH 3.5) caused reductions in vegetative cell/spore populations of more than 5.3/5.6, 5.3/5.7, and 5.3/6.0 log CFU/ml, respectively. Treatment of B. cereus and B. thuringiensis spores in a medium (3.4 mg/ml of organic and inorganic solids) in which cells had grown and produced spores with an equal volume of alkaline (pH 12.1) ClO2 (400 microg/ml) for 30 min reduced populations by 4.6 and 5.2 log CFU/ml, respectively, indicating high lethality in the presence of materials other than spores that would potentially react with and neutralize the sporicidal activity of ClO2.

  10. Role of Non-neuronal Cells in Tauopathies After Brain Injury

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-15-1-0422 TITLE: Role of Nonneuronal Cells in Tauopathies After Brain Injury PRINCIPAL INVESTIGATOR: Sally A. Frautschy...AND SUBTITLE 5a. CONTRACT NUMBER Role of Non-neuronal Cells in Tauopathies After Brain Injury 5b. GRANT NUMBER W81XWH-15-1-0422 5c. PROGRAM...traumatic brain injury (TBI), specific inflammatory factors (complement proteins) elevated during long asymptomatic prodromal period are responsible

  11. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    OpenAIRE

    Zhou, Ya-jing; Liu, Jian-min; Wei, Shu-ming; Zhang, Yun-hao; Qu, Zhen-hua; Chen, Shu-bo

    2015-01-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-l...

  12. Adipose derived stem cells in radiotherapy injury: a new frontier

    Directory of Open Access Journals (Sweden)

    Lipi eShukla

    2015-01-01

    Full Text Available Radiotherapy is increasingly used to treat numerous human malignancies. In addition to the beneficial anti-cancer effects, there are a series of undesirable effects on normal host tissues surrounding the target tumour. Whilst the early effects of radiotherapy (desquamation, erythema and hair loss typically resolve, the chronic effects persist as unpredictable and often troublesome sequelae of cancer treatment, long after oncological treatment has been completed. Plastic surgeons are often called upon to treat the problems subsequently arising in irradiated tissues, such as recurrent infection, impaired healing, fibrosis, contracture and/or lymphoedema. Recently, it was anecdotally noted - then validated in more robust animal and human studies - that fat grafting can ameliorate some of these chronic tissue effects. Despite the widespread usage of fat grafting, the mechanism of its action remains poorly understood. This review provides an overview of the current understanding of (i mechanisms of chronic radiation injury and its clinical manifestations; (ii biological properties of fat grafts and their key constituent, Adipose-Derived Stem Cells (ADSCs; (iii the role of ADSCs in radiotherapy-induced soft-tissue injury.

  13. Severe acute radiation syndrome. Treatment of a lethally 60Co-source irradiated accident victim in China with HLA-mismatched peripheral blood stem cell transplantation and mesenchymal stem cells

    International Nuclear Information System (INIS)

    Guo Mei; Dong Zheng; Qiao Jianhui

    2014-01-01

    This is a case report of a 32-year-old man exposed to a total body dose of 14.5 Gy γ-radiation in a lethal 60 Co-source irradiation accident in 2008 in China. Frequent nausea, vomiting and marked neutropenia and lymphopenia were observed from 30 min to 45 h after exposure. HLA-mismatched peripheral blood stem cell transplantation combined with infusion of mesenchymal stem cells was used at Day 7. Rapid hematopoietic recovery, stable donor engraftment and healing of radioactive skin ulceration were achieved during Days 18-36. The patient finally developed intestinal obstruction and died of multi-organ failure on Day 62, although intestinal obstruction was successfully released by emergency bowel resection. (author)

  14. Fixation of potentially lethal radiation damage by post-irradiation exposure of Chinese hamster cells to 0.5 M or 1.5 M NaCl solutions

    International Nuclear Information System (INIS)

    Raaphorst, G.P.; Dewey, W.C.

    1979-01-01

    The effect of 0.05 M and 1.5 M NaCl treatments on CHO cells during and after irradiation has been examined. Treatment with either hypotonic or hypertonic salt solutions during and after irradiation resulted in the fixation of radiation damage which would otherwise not be expressed. The half time for fixation was 4 to 5 min, and the increased expression of the potentially lethal damage by anisotonic solutions was mainly characterized by large decreases in the shoulder of the survival curve, as well as by decreases in Dsub(o). Fixation of radiation damage at 37 0 C occurred to a much greater extent for the hypertonic treatment than for the hypotonic treatment and was greater at 37 0 C than at 20 0 C. Although both the hypotonic and hypertonic treatments during and after irradiation reduced or eliminated the repair of sublethal and potentially lethal damage, treatment during irradiation only, radiosensitized the cells when the treatment was hypotonic, and radioprotected the cells when the treatment was hypertonic. These observations are discussed in relation to salt treatments and different temperatures altering competition between repair and fixation of potentially lethal lesions, the number of which depends on the particular salt treatment at the time of irradiation. (author)

  15. A cell culture-derived whole virus influenza A vaccine based on magnetic sulfated cellulose particles confers protection in mice against lethal influenza A virus infection.

    Science.gov (United States)

    Pieler, Michael M; Frentzel, Sarah; Bruder, Dunja; Wolff, Michael W; Reichl, Udo

    2016-12-07

    Downstream processing and formulation of viral vaccines employs a large number of different unit operations to achieve the desired product qualities. The complexity of individual process steps involved, the need for time consuming studies towards the optimization of virus yields, and very high requirements regarding potency and safety of vaccines results typically in long lead times for the establishment of new processes. To overcome such obstacles, to enable fast screening of potential vaccine candidates, and to explore options for production of low cost veterinary vaccines a new platform for whole virus particle purification and formulation based on magnetic particles has been established. Proof of concept was carried out with influenza A virus particles produced in suspension Madin Darby canine kidney (MDCK) cells. The clarified, inactivated, concentrated, and diafiltered virus particles were bound to magnetic sulfated cellulose particles (MSCP), and directly injected into mice for immunization including positive and negative controls. We show here, that in contrast to the mock-immunized group, vaccination of mice with antigen-loaded MSCP (aMSCP) resulted in high anti-influenza A antibody responses and full protection against a lethal challenge with replication competent influenza A virus. Antiviral protection correlated with a 400-fold reduced number of influenza nucleoprotein gene copies in the lungs of aMSCP immunized mice compared to mock-treated animals, indicating the efficient induction of antiviral immunity by this novel approach. Thus, our data proved the use of MSCP for purification and formulation of the influenza vaccine to be fast and efficient, and to confer protection of mice against influenza A virus infection. Furthermore, the method proposed has the potential for fast purification of virus particles directly from bioreactor harvests with a minimum number of process steps towards formulation of low-cost veterinary vaccines, and for screening

  16. Relative biological effectiveness measurements using murine lethality and survival of intestinal and hematopoietic stem cells after Fermilab neutrons compared to JANUS reactor neutrons and 60Co gamma rays

    International Nuclear Information System (INIS)

    Hanson, W.R.; Crouse, D.A.; Fry, R.J.M.; Ainsworth, E.J.

    1984-01-01

    The relative biological effectiveness (RBE) of the 25-MeV (average energy) neutron beam at the Fermi National Accelerator Laboratory was measured using murine bone marrow (LD/sub 50/30/) and gut (LD/sub 50/6/) lethality and killing of hematopoietic colony forming units (CFU-S) or intestinal clonogenic cells (ICC). The LD/sub 50/30/ and LD/sub 50/6/ for mice exposed to the Fermilab neutron beam were 6.6 and 8.7 Gy, respectively, intermediate between those of JANUS neutrons and 60 Co γ rays. The D 0 values for CFU-S and ICC were 47 cGy and 1.05 Gy, respectively, also intermediate between the lowest values found for JANUS neutrons and the highest values found after 60 Co γ rays. The split-dose survival ratios for CFU-S at intervals of 1-6 hr between doses were essentially 1.0 for both neutron sources. The 3-hr split-dose survival ratios for ICC were 1.0 for JANUS neutrons, 1.85 for Fermilab neutrons, and 6.5 for 60 Co γ rays. The RBE estimates for LD/sub 50/30/ were 1.5 and 2.3 for Fermilab and JANUS neutrons, respectively. Based on LD/sub 50/6/, the RBEs were 1.9 (Fermilab) and 3.0 (JANUS). The RBEs for CFU-S D 0 were 1.4 (Fermilab) and 1.9 (JANUS) and for jejunal microcolony D 0 1.4 (Fermilab) and 2.8 (JANUS)

  17. Studies on the regeneration of the CFU-C population in blood and bone marrow or lethally irradiated dogs after autologous transfusion of cryopreserved mononuclear blood cells

    International Nuclear Information System (INIS)

    Nothdurft, W.; Bruch, C.; Fliedner, T.M.; Rueber, E.

    1977-01-01

    In a group of 8 lethally irradiated (1200 R) dogs, that were transfused autologously with cryopreserved mononuclear cells (MNC) derived from the peripheral blood by leucapheresis the concentration of colony-forming units in agar (CFU-C) in bone marrow and peripheral blood was estimated at regular intervals after irradiation and transfusion of MNC. The numbers of MNC transfused per kg body weight ranged from 0.32 x 10 9 to 1.63 x 10 9 with an incidence of CFU-C between 0.02 x 10 5 and 1.38 x 10 5 . In 6 dogs the CFU-C levels in the bone marrow reached the normal preirradiation values between days 15 and 20. But in 2 dogs that had received the lowest CFU-C numbers the regeneration of the bone marrow CFU-C was markedly delayed. In general the time course of the bone marrow repopulation by CFU-C for single dogs was reflected by a corresponding regeneration pattern of the blood CFU-C. The time course of the curves for the blood CFU-C levels on the other hand was of the same kind as for the granulocyte values in the peripheral blood, that reached the normal levels mainly around day 30 and thereafter. Considerable fluctuations were seen in the blood CFU-C levels of single dogs before irradiation and after mononuclear leucocyte transfusion. Despite of such limitations the blood CFU-C content appeared to be a useful indicator of haematopoietic regeneration of the bone marrow. (author)

  18. Leflunomide or A77 1726 protect from acetaminophen-induced cell injury through inhibition of JNK-mediated mitochondrial permeability transition in immortalized human hepatocytes

    International Nuclear Information System (INIS)

    Latchoumycandane, Calivarathan; Seah, Quee Ming; Tan, Rachel C.H.; Sattabongkot, Jetsumon; Beerheide, Walter; Boelsterli, Urs A.

    2006-01-01

    Leflunomide, a disease-modifying anti-rheumatic drug, protects against T-cell-mediated liver injury by poorly understood mechanisms. The active metabolite of leflunomide, A77 1726 (teriflunomide) has been shown to inhibit stress-activated protein kinases (JNK pathway), which are key regulators of mitochondria-mediated cell death. Therefore, we hypothesized that leflunomide may protect from drugs that induce the mitochondrial permeability transition (mPT) by blocking the JNK signaling pathway. To this end, we exposed cultured immortalized human hepatocytes (HC-04) to the standard protoxicant drug acetaminophen (APAP), which induces CsA-sensitive mPT-mediated cell death. We determined the effects of leflunomide on the extent of APAP-induced hepatocyte injury and the upstream JNK-mediated mitochondrial signaling pathways. We found that leflunomide or A77 1726 concentration-dependently protected hepatocytes from APAP (1 mM)-induced mitochondrial permeabilization and lethal cell injury. This was not due to proximal inhibition of CYP-catalyzed APAP bioactivation to its thiol-reactive metabolite. Instead, we demonstrate that leflunomide (20 μM) inhibited the APAP-induced early (3 h) activation (phosphorylation) of JNK1/2, thus inhibiting phosphorylation of the anti-apoptotic protein Bcl-2 and preventing P-Bcl-2-mediated induction of the mPT. This greatly attenuated mitochondrial cytochrome c release, which we used as a marker for mitochondrial permeabilization. The specific JNK2 inhibitor SP600125 similarly protected from APAP-induced cell death. In conclusion, these findings are consistent with our hypothesis that leflunomide protects from protoxicant-induced hepatocyte injury by inhibiting JNK signaling and preventing mPT induction

  19. Human bone marrow mesenchymal stem cells for retinal vascular injury.

    Science.gov (United States)

    Wang, Jin-Da; An, Ying; Zhang, Jing-Shang; Wan, Xiu-Hua; Jonas, Jost B; Xu, Liang; Zhang, Wei

    2017-09-01

    To examine the potential of intravitreally implanted human bone marrow-derived mesenchymal stem cells (BMSCs) to affect vascular repair and the blood-retina barrier in mice and rats with oxygen-induced retinopathy, diabetic retinopathy or retinal ischaemia-reperfusion damage. Three study groups (oxygen-induced retinopathy group: 18 C57BL/6J mice; diabetic retinopathy group: 15 rats; retinal ischaemia-reperfusion model: 18 rats) received BMSCs injected intravitreally. Control groups (oxygen-induced retinopathy group: 12 C57BL/6J mice; diabetic retinopathy group: 15 rats; retinal ischaemia-reperfusion model: 18 rats) received an intravitreal injection of phosphate-buffered saline. We applied immunohistological techniques to measure retinal vascularization, spectroscopic measurements of intraretinally extravasated fluorescein-conjugated dextran to quantify the blood-retina barrier breakdown, and histomorphometry to assess retinal thickness and retinal ganglion cell count. In the oxygen-induced retinopathy model, the study group with intravitreally injected BMSCs as compared with the control group showed a significantly (p = 0.001) smaller area of retinal neovascularization. In the diabetic retinopathy model, study group and control group did not differ significantly in the amount of intraretinally extravasated dextran. In the retinal ischaemia-reperfusion model, on the 7th day after retina injury, the retina was significantly thicker in the study group than in the control group (p = 0.02), with no significant difference in the retinal ganglion cell count (p = 0.36). Intravitreally implanted human BMSCs were associated with a reduced retinal neovascularization in the oxygen-induced retinopathy model and with a potentially cell preserving effect in the retinal ischaemia-reperfusion model. Intravitreal BMSCs may be of potential interest for the therapy of retinal vascular disorders. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley

  20. Renal Impairment with Sublethal Tubular Cell Injury in a Chronic Liver Disease Mouse Model.

    Directory of Open Access Journals (Sweden)

    Tokiko Ishida

    Full Text Available The pathogenesis of renal impairment in chronic liver diseases (CLDs has been primarily studied in the advanced stages of hepatic injury. Meanwhile, the pathology of renal impairment in the early phase of CLDs is poorly understood, and animal models to elucidate its mechanisms are needed. Thus, we investigated whether an existing mouse model of CLD induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC shows renal impairment in the early phase. Renal injury markers, renal histology (including immunohistochemistry for tubular injury markers and transmission electron microscopy, autophagy, and oxidative stress were studied longitudinally in DDC- and standard diet-fed BALB/c mice. Slight but significant renal dysfunction was evident in DDC-fed mice from the early phase. Meanwhile, histological examinations of the kidneys with routine light microscopy did not show definitive morphological findings, and electron microscopic analyses were required to detect limited injuries such as loss of brush border microvilli and mitochondrial deformities. Limited injuries have been recently designated as sublethal tubular cell injury. As humans with renal impairment, either with or without CLD, often show almost normal tubules, sublethal injury has been of particular interest. In this study, the injuries were associated with mitochondrial aberrations and oxidative stress, a possible mechanism for sublethal injury. Intriguingly, two defense mechanisms were associated with this injury that prevent it from progressing to apparent cell death: autophagy and single-cell extrusion with regeneration. Furthermore, the renal impairment of this model progressed to chronic kidney disease with interstitial fibrosis after long-term DDC feeding. These findings indicated that DDC induces renal impairment with sublethal tubular cell injury from the early phase, leading to chronic kidney disease. Importantly, this CLD mouse model could be useful for studying the

  1. Inducible satellite cell depletion attenuates skeletal muscle regrowth following a scald-burn injury.

    Science.gov (United States)

    Finnerty, Celeste C; McKenna, Colleen F; Cambias, Lauren A; Brightwell, Camille R; Prasai, Anesh; Wang, Ye; El Ayadi, Amina; Herndon, David N; Suman, Oscar E; Fry, Christopher S

    2017-11-01

    Severe burns result in significant skeletal muscle cachexia that impedes recovery. Activity of satellite cells, skeletal muscle stem cells, is altered following a burn injury and likely hinders regrowth of muscle. Severe burn injury induces satellite cell proliferation and fusion into myofibres with greater activity in muscles proximal to the injury site. Conditional depletion of satellite cells attenuates recovery of myofibre area and volume following a scald burn injury in mice. Skeletal muscle regrowth following a burn injury requires satellite cell activity, underscoring the therapeutic potential of satellite cells in the prevention of prolonged frailty in burn survivors. Severe burns result in profound skeletal muscle atrophy; persistent muscle atrophy and weakness are major complications that hamper recovery from burn injury. Many factors contribute to the erosion of muscle mass following burn trauma, and we have previously shown concurrent activation and apoptosis of muscle satellite cells following a burn injury in paediatric patients. To determine the necessity of satellite cells during muscle recovery following a burn injury, we utilized a genetically modified mouse model (Pax7 CreER -DTA) that allows for the conditional depletion of satellite cells in skeletal muscle. Additionally, mice were provided 5-ethynyl-2'-deoxyuridine to determine satellite cell proliferation, activation and fusion. Juvenile satellite cell-wild-type (SC-WT) and satellite cell-depleted (SC-Dep) mice (8 weeks of age) were randomized to sham or burn injury consisting of a dorsal scald burn injury covering 30% of total body surface area. Both hindlimb and dorsal muscles were studied at 7, 14 and 21 days post-burn. SC-Dep mice had >93% depletion of satellite cells compared to SC-WT (P satellite cell proliferation and fusion. Depletion of satellite cells impaired post-burn recovery of both muscle fibre cross-sectional area and volume (P satellite cells in the aetiology of lean

  2. CD4(+) T cell-mediated protection against a lethal outcome of systemic infection with vesicular stomatitis virus requires CD40 ligand expression, but not IFN-gamma or IL-4

    DEFF Research Database (Denmark)

    Andersen, C; Jensen, T; Nansen, A

    1999-01-01

    experiments using B cell- and T cell-deficient recipients revealed that no protection could be obtained in the absence of B cells, whereas treatment with virus-specific immune (IgG) serum controlled viral spreading to the central nervous system (CNS), but did not necessarily accomplish virus elimination......To investigate the mechanism(s) whereby T cells protect against a lethal outcome of systemic infection with vesicular stomatitis virus, mice with targeted defects in genes central to T cell function were tested for resistance to i.v. infection with this virus. Our results show that mice lacking...... the capacity to secrete both IFN-gamma and perforin completely resisted disease. Similar results were obtained using IL-4 knockout mice, indicating that neither cell-mediated nor T(h)2-dependent effector systems were required. In contrast, mice deficient in expression of CD40 ligand were more susceptible than...

  3. Roles of neural stem cells in the repair of peripheral nerve injury.

    Science.gov (United States)

    Wang, Chong; Lu, Chang-Feng; Peng, Jiang; Hu, Cheng-Dong; Wang, Yu

    2017-12-01

    Currently, researchers are using neural stem cell transplantation to promote regeneration after peripheral nerve injury, as neural stem cells play an important role in peripheral nerve injury repair. This article reviews recent research progress of the role of neural stem cells in the repair of peripheral nerve injury. Neural stem cells can not only differentiate into neurons, astrocytes and oligodendrocytes, but can also differentiate into Schwann-like cells, which promote neurite outgrowth around the injury. Transplanted neural stem cells can differentiate into motor neurons that innervate muscles and promote the recovery of neurological function. To promote the repair of peripheral nerve injury, neural stem cells secrete various neurotrophic factors, including brain-derived neurotrophic factor, fibroblast growth factor, nerve growth factor, insulin-like growth factor and hepatocyte growth factor. In addition, neural stem cells also promote regeneration of the axonal myelin sheath, angiogenesis, and immune regulation. It can be concluded that neural stem cells promote the repair of peripheral nerve injury through a variety of ways.

  4. Protoplasmic Swelling as a Symptom of Freezing Injury in Onion Bulb Cells 1

    Science.gov (United States)

    Arora, Rajeev; Palta, Jiwan P.

    1986-01-01

    Freezing injury, in onion bulb tissue, is known to cause enhanced K+ efflux accompanied by a small but significant loss of Ca2+ following incipient freezing injury and swelling of protoplasm during the postthaw secondary injury. The protoplasmic swelling of the cell is thought to be caused by the passive influx of extracellular K+ into the cell followed by water uptake. Using outer epidermal layer of unfrozen onion bulb scales (Allium cepa L. cv Big Red), we were able to stimulate the irreversible freezing injury symptoms, by bathing epidermal cells in 50 millimolar KCl. These symptoms were prevented by adding 20 millimolar CaCl2 to the extracellular KCl solution. Our results provide evidence that loss of cellular Ca2+ plays an important role in the initiation and the progression of freezing injury. Images Fig. 1 PMID:16665083

  5. Merkel cells are long-lived cells whose production is stimulated by skin injury.

    Science.gov (United States)

    Wright, Margaret C; Logan, Gregory J; Bolock, Alexa M; Kubicki, Adam C; Hemphill, Julie A; Sanders, Timothy A; Maricich, Stephen M

    2017-02-01

    Mechanosensitive Merkel cells are thought to have finite lifespans, but controversy surrounds the frequency of their replacement and which precursor cells maintain the population. We found by embryonic EdU administration that Merkel cells undergo terminal cell division in late embryogenesis and survive long into adulthood. We also found that new Merkel cells are produced infrequently during normal skin homeostasis and that their numbers do not change during natural or induced hair cycles. In contrast, live imaging and EdU experiments showed that mild mechanical injury produced by skin shaving dramatically increases Merkel cell production. We confirmed with genetic cell ablation and fate-mapping experiments that new touch dome Merkel cells in adult mice arise from touch dome keratinocytes. Together, these independent lines of evidence show that Merkel cells in adult mice are long-lived, are replaced rarely during normal adult skin homeostasis, and that their production can be induced by repeated shaving. These results have profound implications for understanding sensory neurobiology and human diseases such as Merkel cell carcinoma. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Modification of the sensitivity and repair of potentially lethal damage by diethyldithiocarbamate during and following exposure of plateau-phase cultures of mammalian cells to radiation and cis-diamminedichloroplatinum(II)

    International Nuclear Information System (INIS)

    Evans, R.G.; Engel, C.; Wheatley, C.; Nielsen, J.

    1982-01-01

    Diethyldithiocarbamate (DDC), a chelating agent known to reduce levels of superoxide dismutase and glutathione peroxidase, appears to protect irradiated monolayers of mammalian cells when present for 1 hr before and during irradiation. To examine a possible cause of this modification, the repair of potentially lethal X-ray damage was examined with and without the presence of DDC in the medium overlying the cells postirradiation. Although little repair was seen in full medium alone when DDC was added to the full medium, the amount of repair was comparable to that seen under optimum repair conditions, that is, in Hanks' balanced salt solution. The t 1/2 of the repair process in Hanks' balanced salt solution or in full medium with DDC added was comparable and of the order of 1 to 1.5 hr. The cis-platinum sensitivity of the monolayers is significantly modified by the addition of DDC, and the nature of the modification is dependent upon the time at which the DDC is added to the cells following initiation of cis-platinum exposure. To investigate a possible reason for this protection by DDC, we examined the repair of potentially lethal cis-platinum damage in the cell monolayers. Minimal repair was noted in the presence of either Hanks' balanced salt solution or full medium, but when DDC was added to the full medium, the repair was tripled, and the t 1/2 of the repair process was approximately 2 hr. The ability of DDC to protect cells from exposure to both X-rays and cis-platinum, together with its augmentation of repair of potentially lethal damage following exposure to each, has broad clinical application and is being actively explored in tumor-bearing mice

  7. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    Science.gov (United States)

    Zhou, Ya-jing; Liu, Jian-min; Wei, Shu-ming; Zhang, Yun-hao; Qu, Zhen-hua; Chen, Shu-bo

    2015-01-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and fluorogold-labeled nerve fibers were increased and hindlimb motor function of spinal cord-injured rats was markedly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats. PMID:26487860

  8. Injurious effects of wool and grain dusts on alveolar epithelial cells and macrophages in vitro.

    Science.gov (United States)

    Brown, D M; Donaldson, K

    1991-01-01

    Epidemiological studies of workers in wool textile mills have shown a direct relation between the concentration of wool dust in the air and respiratory symptoms. Injurious effects of wool dust on the bronchial epithelium could be important in causing inflammation and irritation. A pulmonary epithelial cell line in vitro was therefore used to study the toxic effects of wool dust. Cells of the A549 epithelial cell line were labelled with 51Cr and treated with whole wool dusts and extracts of wool, after which injury was assessed. Also, the effects of grain dust, which also causes a form of airway obstruction, were studied. The epithelial injury was assessed by measuring 51Cr release from cells as an indication of lysis, and by monitoring cells which had detached from the substratum. No significant injury to A549 cells was caused by culture with any of the dusts collected from the air but surface "ledge" dust caused significant lysis at some doses. Quartz, used as a toxic control dust, caused significant lysis at the highest concentration of 100 micrograms/well. To determine whether any injurious material was soluble the dusts were incubated in saline and extracts collected. No extracts caused significant injury to epithelial cells. A similar lack of toxicity was found when 51Cr labelled control alveolar macrophages were targets for injury. Significant release of radiolabel was evident when macrophages were exposed to quartz at concentrations of 10 and 20 micrograms/well, there being no significant injury with either wool or grain dusts. These data suggest that neither wool nor grain dust produce direct injury to epithelial cells, and further studies are necessary to explain inflammation leading to respiratory symptoms in wool and grain workers. PMID:2015211

  9. Edaravone combined with Schwann cell transplantation may repair spinal cord injury in rats

    Directory of Open Access Journals (Sweden)

    Shu-quan Zhang

    2015-01-01

    Full Text Available Edaravone has been shown to delay neuronal apoptosis, thereby improving nerve function and the microenvironment after spinal cord injury. Edaravone can provide a favorable environment for the treatment of spinal cord injury using Schwann cell transplantation. This study used rat models of complete spinal cord transection at T 9. Six hours later, Schwann cells were transplanted in the head and tail ends of the injury site. Simultaneously, edaravone was injected through the caudal vein. Eight weeks later, the PKH-26-labeled Schwann cells had survived and migrated to the center of the spinal cord injury region in rats after combined treatment with edaravone and Schwann cells. Moreover, the number of PKH-26-labeled Schwann cells in the rat spinal cord was more than that in rats undergoing Schwann cell transplantation alone or rats without any treatment. Horseradish peroxidase retrograde tracing revealed that the number of horseradish peroxidase-positive nerve fibers was greater in rats treated with edaravone combined withSchwann cells than in rats with Schwann cell transplantation alone. The results demonstrated that lower extremity motor function and neurophysiological function were better in rats treated with edaravone and Schwann cells than in rats with Schwann cell transplantation only. These data confirmed that Schwann cell transplantation combined with edaravone injection promoted the regeneration of nerve fibers of rats with spinal cord injury and improved neurological function.

  10. Histopathological effects of lethal and sub-lethal concentrations of ...

    African Journals Online (AJOL)

    The histopathological effects of lethal and sub-lethal concentrations of glyphosate on African catfish Clarias gariepinus were investigated. C. gariepinus juveniles were assessed in a static renewal bioassay for 96 hours (acute toxicity) and 28 days (chronic toxicity) using varying concentrations (0.0 mg/l 20.0 mg/l, 30.0 mg/l, ...

  11. Lethal interpersonal violence in the Middle Pleistocene.

    Directory of Open Access Journals (Sweden)

    Nohemi Sala

    Full Text Available Evidence of interpersonal violence has been documented previously in Pleistocene members of the genus Homo, but only very rarely has this been posited as the possible manner of death. Here we report the earliest evidence of lethal interpersonal violence in the hominin fossil record. Cranium 17 recovered from the Sima de los Huesos Middle Pleistocene site shows two clear perimortem depression fractures on the frontal bone, interpreted as being produced by two episodes of localized blunt force trauma. The type of injuries, their location, the strong similarity of the fractures in shape and size, and the different orientations and implied trajectories of the two fractures suggest they were produced with the same object in face-to-face interpersonal conflict. Given that either of the two traumatic events was likely lethal, the presence of multiple blows implies an intention to kill. This finding shows that the lethal interpersonal violence is an ancient human behavior and has important implications for the accumulation of bodies at the site, supporting an anthropic origin.

  12. Lethal interpersonal violence in the Middle Pleistocene.

    Science.gov (United States)

    Sala, Nohemi; Arsuaga, Juan Luis; Pantoja-Pérez, Ana; Pablos, Adrián; Martínez, Ignacio; Quam, Rolf M; Gómez-Olivencia, Asier; Bermúdez de Castro, José María; Carbonell, Eudald

    2015-01-01

    Evidence of interpersonal violence has been documented previously in Pleistocene members of the genus Homo, but only very rarely has this been posited as the possible manner of death. Here we report the earliest evidence of lethal interpersonal violence in the hominin fossil record. Cranium 17 recovered from the Sima de los Huesos Middle Pleistocene site shows two clear perimortem depression fractures on the frontal bone, interpreted as being produced by two episodes of localized blunt force trauma. The type of injuries, their location, the strong similarity of the fractures in shape and size, and the different orientations and implied trajectories of the two fractures suggest they were produced with the same object in face-to-face interpersonal conflict. Given that either of the two traumatic events was likely lethal, the presence of multiple blows implies an intention to kill. This finding shows that the lethal interpersonal violence is an ancient human behavior and has important implications for the accumulation of bodies at the site, supporting an anthropic origin.

  13. Macrophage polarization in nerve injury: do Schwann cells play a role?

    Directory of Open Access Journals (Sweden)

    Jo Anne Stratton

    2016-01-01

    Full Text Available In response to peripheral nerve injury, the inflammatory response is almost entirely comprised of infiltrating macrophages. Macrophages are a highly plastic, heterogenic immune cell, playing an indispensable role in peripheral nerve injury, clearing debris and regulating the microenvironment to allow for efficient regeneration. There are several cells within the microenvironment that likely interact with macrophages to support their function - most notably the Schwann cell, the glial cell of the peripheral nervous system. Schwann cells express several ligands that are known to interact with receptors expressed by macrophages, yet the effects of Schwann cells in regulating macrophage phenotype remains largely unexplored. This review discusses macrophages in peripheral nerve injury and how Schwann cells may regulate their behavior.

  14. The effect of postirradiation holding at 22 degrees C on the repair of sublethal, potentially lethal and potentially neoplastic transforming damage in gamma-irradiated HeLa x skin fibroblast human hybrid cells

    International Nuclear Information System (INIS)

    Redpath, J.L.; Antoniono, R.J.; Mendonca, M.S.; Sun, C.

    1994-01-01

    The effect of postirradiation holding at 22 degrees C on cell growth, progression of cells through the cell cycle, and the repair of sublethal, potentially lethal and potentially neoplastic transforming damage in γ-irradiated HeLa x skin fibroblast human hybrid cells has been examined. Cell growth and cell cycle progression were essentially stopped at this reduced temperature. Cell survival was dramatically reduced by holding confluent cultures for 6 h at 22 degrees C, as opposed to 37 degrees C, after 7.5 Gy γ radiation delivered at a rate of 2 Gy/min. Return of the cells to 37 degrees C for 6 h after holding at 22 degrees C did not result in increased survival. A similar effect was obtained when the cells were held at 22 degrees C between split-dose irradiation of log-phase cultures where no increase in survival was observed over a split-dose interval of 4 h. In this case a partial increase in survival was observed upon returning the cells to 37 degrees C for 3 h after holding at 22 degrees C for the first 3 h of the split-dose interval. Neoplastic transformation frequency was not enhanced by holding confluent cultures for 6 h at 22 degrees C after 7.5 Gy γ radiation. This is consistent with previous observations that misrepair of potentially neoplastic transforming damage already occurs at 37 degrees C. The overall results are interpreted in terms of the reduced temperature favoring misrepair, rather than inhibition of repair, of sublethal, potentially lethal and potentially transforming radiation damage. 24 refs., 5 figs., 3 tabs

  15. An ex vivo spinal cord injury model to study ependymal cells in adult mouse tissue.

    Science.gov (United States)

    Fernandez-Zafra, Teresa; Codeluppi, Simone; Uhlén, Per

    2017-08-15

    Traumatic spinal cord injury is characterized by an initial cell loss that is followed by a concerted cellular response in an attempt to restore the damaged tissue. Nevertheless, little is known about the signaling mechanisms governing the cellular response to injury. Here, we have established an adult ex vivo system that exhibits multiple hallmarks of spinal cord injury and allows the study of complex processes that are difficult to address using animal models. We have characterized the ependymal cell response to injury in this model system and found that ependymal cells can become activated, proliferate, migrate out of the central canal lining and differentiate in a manner resembling the in vivo situation. Moreover, we show that these cells respond to external adenosine triphosphate and exhibit spontaneous Ca 2+ activity, processes that may play a significant role in the regulation of their response to spinal cord injury. This model provides an attractive tool to deepen our understanding of the ependymal cell response after spinal cord injury, which may contribute to the development of new treatment options for spinal cord injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Gal-3 regulates the capacity of dendritic cells to promote NKT-cell-induced liver injury.

    Science.gov (United States)

    Volarevic, Vladislav; Markovic, Bojana Simovic; Bojic, Sanja; Stojanovic, Maja; Nilsson, Ulf; Leffler, Hakon; Besra, Gurdyal S; Arsenijevic, Nebojsa; Paunovic, Verica; Trajkovic, Vladimir; Lukic, Miodrag L

    2015-02-01

    Galectin-3 (Gal-3), an endogenous lectin, exhibits pro- and anti-inflammatory effects in various disease conditions. In order to explore the role of Gal-3 in NKT-cell-dependent pathology, we induced hepatitis in C57BL/6 WT and Gal-3-deficient mice by using specific ligand for NKT cells: α-galactosylceramide, glycolipid Ag presented by CD1d. The injection of α-galactosylceramide significantly enhanced expression of Gal-3 in liver NKT and dendritic cells (DCs). Genetic deletion or selective inhibition of Gal-3 (induced by Gal-3-inhibitor TD139) abrogated the susceptibility to NKT-cell-dependent hepatitis. Blood levels of pro-inflammatory cytokines (TNF-α, IFN-γ, IL-12) and their production by liver DCs and NKT cells were also downregulated. Genetic deletion or selective inhibition of Gal-3 alleviated influx of inflammatory CD11c(+) CD11b(+) DCs in the liver and favored tolerogenic phenotype and IL-10 production of liver NKT and DCs. Deletion of Gal-3 attenuated the capacity of DCs to support liver damage in the passive transfer experiments and to produce pro-inflammatory cytokines in vitro. Gal-3-deficient DCs failed to optimally stimulate production of pro-inflammatory cytokines in NKT cells, in vitro and in vivo. In conclusion, Gal-3 regulates the capacity of DCs to support NKT-cell-mediated liver injury, playing an important pro-inflammatory role in acute liver injury. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Evaluation of the ability of N-terminal fragment of lethal factor of Bacillus anthracis for delivery of Mycobacterium T cell antigen ESAT-6 into cytosol of antigen presenting cells to elicit effective cytotoxic T lymphocyte response

    International Nuclear Information System (INIS)

    Chandra, Subhash; Kaur, Manpreet; Midha, Shuchi; Bhatnagar, Rakesh; Banerjee-Bhatnagar, Nirupama

    2006-01-01

    We report the ability of N-terminal fragment of lethal factor of Bacillus anthracis to deliver genetically fused ESAT-6 (early secretory antigen target), a potent T cell antigen of Mycobacterium tuberculosis, into cytosol to elicit Cytotoxic T lymphocyte (CTL) response. In vitro Th1 cytokines data and CTL assay proved that efficient delivery of LFn.ESAT-6 occurs in cytosol, in the presence of protective antigen (PA), and leads to generation of effective CTL response. Since CTL response is essential for protection against intracellular pathogens and, it is well known that only single T cell epitope or single antigenic protein is not sufficient to elicit protective CTL response due to variation or polymorphism in MHC-I alleles among the individuals, we suggest that as a fusion protein LFn can be used to deliver multiepitopes of T cells or multiproteins which can generate effective CTLs against intracellular pathogens like M. tuberculosis. It can be used to enhance the protective efficacy of BCG vaccine

  18. Bone marrow mesenchymal cells improve muscle function in a skeletal muscle re-injury model.

    Directory of Open Access Journals (Sweden)

    Bruno M Andrade

    Full Text Available Skeletal muscle injury is the most common problem in orthopedic and sports medicine, and severe injury leads to fibrosis and muscle dysfunction. Conventional treatment for successive muscle injury is currently controversial, although new therapies, like cell therapy, seem to be promise. We developed a model of successive injuries in rat to evaluate the therapeutic potential of bone marrow mesenchymal cells (BMMC injected directly into the injured muscle. Functional and histological assays were performed 14 and 28 days after the injury protocol by isometric tension recording and picrosirius/Hematoxilin & Eosin staining, respectively. We also evaluated the presence and the fate of BMMC on treated muscles; and muscle fiber regeneration. BMMC treatment increased maximal skeletal muscle contraction 14 and 28 days after muscle injury compared to non-treated group (4.5 ± 1.7 vs 2.5 ± 0.98 N/cm2, p<0.05 and 8.4 ± 2.3 vs. 5.7 ± 1.3 N/cm2, p<0.05 respectively. Furthermore, BMMC treatment increased muscle fiber cross-sectional area and the presence of mature muscle fiber 28 days after muscle injury. However, there was no difference in collagen deposition between groups. Immunoassays for cytoskeleton markers of skeletal and smooth muscle cells revealed an apparent integration of the BMMC within the muscle. These data suggest that BMMC transplantation accelerates and improves muscle function recovery in our extensive muscle re-injury model.

  19. Suicide Lethality: A Concept Analysis.

    Science.gov (United States)

    DeBastiani, Summer; De Santis, Joseph P

    2018-02-01

    Suicide is a significant health problem internationally. Those who complete suicide may have different behaviors and risk factors than those who attempt a non-fatal suicide. The purpose of this article is to analyze the concept of suicide lethality and propose a clear definition of the concept through the identification of antecedents, attributes, and consequences. A literature search for articles published in the English language between 1970 and 2016 was conducted using MEDLINE, the Cochrane Library, Pubmed, Psychlit, Ovid, PsycINFO, and Proquest. The bibliographies of all included studies were also reviewed to identify additional relevant citations. A concept analysis was conducted on the literature findings using six stages of Walker and Avant's method. The concept analysis differentiated between suicide, lethality, suicidal behavior, and suicide lethality. Presence of a suicide plan or a written suicide note was not found to be associated with the majority of completed suicides included in the definition of suicide lethality. There are a few scales that measure the lethality of a suicide attempt, but none that attempt to measure the concept of suicide lethality as described in this analysis. Clarifying the concept of suicide lethality encourages awareness of the possibility of different suicidal behaviors associated with different suicide outcomes and will inform the development of future nursing interventions. A clearer definition of the concept of suicide lethality will guide clinical practice, research, and policy development aimed at suicide prevention.

  20. Mononuclear Phagocyte-Derived Microparticulate Caspase-1 Induces Pulmonary Vascular Endothelial Cell Injury.

    Directory of Open Access Journals (Sweden)

    Srabani Mitra

    Full Text Available Lung endothelial cell apoptosis and injury occurs throughout all stages of acute lung injury (ALI/ARDS and impacts disease progression. Lung endothelial injury has traditionally been focused on the role of neutrophil trafficking to lung vascular integrin receptors induced by proinflammatory cytokine expression. Although much is known about the pathogenesis of cell injury and death in ALI/ARDS, gaps remain in our knowledge; as a result of which there is currently no effective pharmacologic therapy. Enzymes known as caspases are essential for completion of the apoptotic program and secretion of pro-inflammatory cytokines. We hypothesized that caspase-1 may serve as a key regulator of human pulmonary microvascular endothelial cell (HPMVEC apoptosis in ALI/ARDS. Our recent experiments confirm that microparticles released from stimulated monocytic cells (THP1 induce lung endothelial cell apoptosis. Microparticles pretreated with the caspase-1 inhibitor, YVAD, or pan-caspase inhibitor, ZVAD, were unable to induce cell death of HPMVEC, suggesting the role of caspase-1 or its substrate in the induction of HPMVEC cell death. Neither un-induced microparticles (control nor direct treatment with LPS induced apoptosis of HPMVEC. Further experiments showed that caspase-1 uptake into HPMVEC and the induction of HPMVEC apoptosis was facilitated by caspase-1 interactions with microparticulate vesicles. Altering vesicle integrity completely abrogated apoptosis of HPMVEC suggesting an encapsulation requirement for target cell uptake of active caspase-1. Taken together, we confirm that microparticle centered caspase-1 can play a regulator role in endothelial cell injury.

  1. Syringe needle skull penetration reduces brain injuries and secondary inflammation following intracerebral neural stem cell transplantation

    OpenAIRE

    Gao, Mou; Dong, Qin; Zhang, Hongtian; Yang, Yang; Zhu, Jianwei; Yang, Zhijun; Xu, Minhui; Xu, Ruxiang

    2017-01-01

    Intracerebral neural stem cell (NSC) transplantation is beneficial for delivering stem cell grafts effectively, however, this approach may subsequently result in brain injury and secondary inflammation. To reduce the risk of promoting brain injury and secondary inflammation, two methods were compared in the present study. Murine skulls were penetrated using a drill on the left side and a syringe needle on the right. Mice were randomly divided into three groups (n=84/group): Group A, receiving...

  2. Analysis of cell cycle regulated and regulating proteins following exposure of lung derived cells to sub-lethal doses of a-rays

    Science.gov (United States)

    Trani, D.; Claudio, P. P.; Cassone, M.; Lucchetti, C.; D'Agostino, L.; Caputi, M.; Giordano, A.

    Introduction Since the last century mankind had to face an increased exposure to man made and natural sources of radiation Radiation represents a therapeutic instrument for radiosensitive cancers as well as a cytotoxic agent for normal human tissues The effects of prolonged exposure to low doses of high energy radiation are still not well-known at the molecular and clinical level Understanding their molecular effects will aid in developing more tailored therapeutic strategies as well as implementing radio-protective measures essential prerequisite for the long-time permanence of men in space Objective of the study The general aim of this study was to evaluate the susceptibility and the response of lung epithelial cells to DNA damage induced by ionizing radiations We decided to study a panel of epithelial bronchial cell lines because of their fast-growth rate and their prominent exposure to both environmental and medical radiations The specific objective of our study was to qualitatively and semi-quantitatively assess the involvement and behaviour of selected genes in DNA damage DNA-repair mechanisms and apoptosis which follow radiation exposure with the aim to determine the involvement of the most promising targets for the early detection of radiation-mediated lung damage before chronic disease develops Methods Four epithelial cell lines one normal and three neoplastic were selected in order to detect and compare survival cell cycle and protein expression differences related to their different genetic asset

  3. In vitro study of injury on human bronchial epithelial cells caused by gunpowder smog.

    Science.gov (United States)

    Lan, Xiaomei; Feng, Liang; Liu, Yifan; Zhou, Ying; Shao, Lingli; Pang, Wei; Lan, Yating; Wang, Chengbin

    2013-02-01

    Smog inhalation is associated with acute respiratory symptoms in exposed victims. However, despite the evidence from cell injury caused by smog, a stable and practical apparatus used to treat cells with smog is necessary. The aim of this study is to develop a cell research platform of smoke inhalation injury. In the smog-generation device, a wireless electromagnetic heater was used to ignite gunpowder and generate smog. The quality of black powder was checked by the black powder burn rate, and experimental smog was indirectly checked by the amount of cell damage. The temperature and humidity were set at 37 °C ± 1 °C and ≥95% in the smog-cells reaction chamber, respectively. Factors including gunpowder dosages, smog-exposure time, the cell density, modes of exposure, volumes of smog, test durations, volumes of the cell culture medium and combustion velocity were measured. Coefficient variation of different batches of gunpowder and smog were less than 4% and 9%, respectively. With larger gunpowder dosage and longer exposure time, cell injury appeared to increase. When cells were cultured in 4 × 10(4)/well density in culture medium (1 mL/well), exposed to more than 10 L smog with filter screens above plates, detected after 24 h culture in cell incubator and gunpowder burned out within 5 s, smog had the best effect on cell injury. In conclusion, the experimental device can produce test smog stably and safely. The apparatus treating cells with smog can induce cell injury effectively, and the injury is positively correlated with smog concentration and exposure time.

  4. Direct conversion of injury-site myeloid cells to fibroblast-like cells of granulation tissue.

    Science.gov (United States)

    Sinha, Mithun; Sen, Chandan K; Singh, Kanhaiya; Das, Amitava; Ghatak, Subhadip; Rhea, Brian; Blackstone, Britani; Powell, Heather M; Khanna, Savita; Roy, Sashwati

    2018-03-05

    Inflammation, following injury, induces cellular plasticity as an inherent component of physiological tissue repair. The dominant fate of wound macrophages is unclear and debated. Here we show that two-thirds of all granulation tissue fibroblasts, otherwise known to be of mesenchymal origin, are derived from myeloid cells which are likely to be wound macrophages. Conversion of myeloid to fibroblast-like cells is impaired in diabetic wounds. In cross-talk between keratinocytes and myeloid cells, miR-21 packaged in extracellular vesicles (EV) is required for cell conversion. EV from wound fluid of healing chronic wound patients is rich in miR-21 and causes cell conversion more effectively compared to that by fluid from non-healing patients. Impaired conversion in diabetic wound tissue is rescued by targeted nanoparticle-based delivery of miR-21 to macrophages. This work introduces a paradigm wherein myeloid cells are recognized as a major source of fibroblast-like cells in the granulation tissue.

  5. Lethal midline granuloma syndrome: a diagnostic dilemma

    International Nuclear Information System (INIS)

    Ribeiro, Bruno Niemeyer de Freitas; Bahia, Paulo Roberto Valle; Oliveira, Ana Luiza Vianna Sobral de Magalhaes; Marchon Junior, Joao Luiz

    2012-01-01

    The rare lethal midline granuloma syndrome is difficult to diagnose because of the wide array of related diseases and lack of knowledge by the majority of physicians. In the present report, the authors describe the case of a patient with this disease, caused by squamous cell carcinoma, drawing attention to differential diagnoses and to clinical and radiological findings that may be useful to define the diagnosis. (author)

  6. Lethal midline granuloma syndrome: a diagnostic dilemma

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Bruno Niemeyer de Freitas; Bahia, Paulo Roberto Valle [Radiology, Hospital Universitario Clementino Fraga Filho - Universidade Federal do Rio de Janeiro (HUCFF-UFRJ), Rio de Janeiro, RJ (Brazil); Oliveira, Ana Luiza Vianna Sobral de Magalhaes [Resident of Medical Practice, Hospital Federal da Lagoa, Rio de Janeiro, RJ (Brazil); Marchon Junior, Joao Luiz [Unit of Computed Tomography, Hospital Federal da Lagoa, Rio de Janeiro, RJ (Brazil)

    2012-11-15

    The rare lethal midline granuloma syndrome is difficult to diagnose because of the wide array of related diseases and lack of knowledge by the majority of physicians. In the present report, the authors describe the case of a patient with this disease, caused by squamous cell carcinoma, drawing attention to differential diagnoses and to clinical and radiological findings that may be useful to define the diagnosis. (author)

  7. Crash Lethality Model

    Science.gov (United States)

    2012-06-06

    of Death from Burn Injuries, New England Journal of Medicine. Massachusetts, Feb 1998. 11. Crull, Michelle. Tatom, John. Conway, Robert . SPIDER 2... Raymer , Daniel P. Aircraft Design: A Conceptual Approach. Washington DC: American Institute of Aeronautics and Astronautics, Inc., 1992. ISBN 0-930403...Patuxent River, MD 20670 NAVAIRSYSCOM (AIR-5.1G - Roberts ), Bldg. 8010 (1) 47320 Priests Point Loop, St. Inigoes, MD 20684-4017 NAVAIRSYSCOM (UASTD

  8. Endogenous Tim-1 (Kim-1) promotes T-cell responses and cell-mediated injury in experimental crescentic glomerulonephritis.

    Science.gov (United States)

    Nozaki, Yuji; Nikolic-Paterson, David J; Snelgrove, Sarah L; Akiba, Hisaya; Yagita, Hideo; Holdsworth, Stephen R; Kitching, A Richard

    2012-05-01

    The T-cell immunoglobulin mucin 1 (Tim-1) modulates CD4(+) T-cell responses and is also expressed by damaged proximal tubules in the kidney where it is known as kidney injury molecule-1 (Kim-1). We sought to define the role of endogenous Tim-1 in experimental T-cell-mediated glomerulonephritis induced by sheep anti-mouse glomerular basement membrane globulin acting as a planted foreign antigen. Tim-1 is expressed by infiltrating activated CD4(+) cells in this model, and we studied the effects of an inhibitory anti-Tim-1 antibody (RMT1-10) on immune responses and glomerular disease. Crescentic glomerulonephritis, proliferative injury, and leukocyte accumulation were attenuated following treatment with anti-Tim-1 antibodies, but interstitial foxp3(+) cell accumulation and interleukin-10 mRNA were increased. T-cell proliferation and apoptosis decreased in the immune system along with a selective reduction in Th1 and Th17 cellular responses both in the immune system and within the kidney. The urinary excretion and renal expression of Kim-1 was reduced by anti-Tim-1 antibodies reflecting diminished interstitial injury. The effects of anti-Tim-1 antibodies were not apparent in the early phase of renal injury, when the immune response to sheep globulin was developing. Thus, endogenous Tim-1 promotes Th1 and Th17 nephritogenic immune responses and its neutralization reduces renal injury while limiting inflammation in cell-mediated glomerulonephritis.

  9. Clinical Response of 277 Patients with Spinal Cord Injury to Stem Cell Therapy in Iraq

    Science.gov (United States)

    Hammadi, Abdulmajeed Alwan; Marino, Andolina; Farhan, Saad

    2012-01-01

    Background and Objectives: Spinal cord injury is a common neurological problem secondary to car accidents, war injuries and other causes, it may lead to varying degrees of neurological disablement, and apart from physiotherapy there is no available treatment to regain neurological function loss. Our aim is to find a new method using autologous hematopoietic stem cells to gain some of the neurologic functions lost after spinal cord injury. Methods and Results: 277 patients suffering from spinal cord injury were submitted to an intrathecally treatment with peripheral stem cells. The cells were harvested from the peripheral blood after a treatment with G-CSF and then concentrated to 4∼ 6 ml. 43% of the patients improved; ASIA score shifted from A to B in 88 and from A to C in 32. The best results were achieved in patients treated within one year from the injury. Conclusions: Since mesenchymal cells increase in the peripheral blood after G-CSF stimulation, a peripheral blood harvest seems easier and cheaper than mesenchymal cell cultivation prior to injection. It seems reasonable treatment for spinal cord injury. PMID:24298358

  10. PGE2 suppresses intestinal T cell function in thermal injury: a cause of enhanced bacterial translocation.

    Science.gov (United States)

    Choudhry, M A; Fazal, N; Namak, S Y; Haque, F; Ravindranath, T; Sayeed, M M

    2001-09-01

    Increased gut bacterial translocation in burn and trauma patients has been demonstrated in a number of previous studies, however, the mechanism for such an increased gut bacterial translocation in injured patients remains poorly understood. Utilizing a rat model of burn injury, in the present study we examined the role of intestinal immune defense by analyzing the T cell functions. We investigated if intestinal T cells dysfunction contributes to bacterial translocation after burn injury. Also our study determined if burn-mediated alterations in intestinal T cell functions are related to enhanced release of PGE2. Finally, we examined whether or not burn-related alterations in intestinal T cell function are due to inappropriate activation of signaling molecule P59fyn, which is required for T cell activation and proliferation. The results presented here showed an increase in gut bacterial accumulation in mesenteric lymph nodes after thermal injury. This was accompanied by a decrease in the intestinal T cell proliferative responses. Furthermore, the treatments of burn-injured animals with PGE2 synthesis blocker (indomethacin or NS398) prevented both the decrease in intestinal T cell proliferation and enhanced bacterial translocation. Finally, our data suggested that the inhibition of intestinal T cell proliferation could result via PGE2-mediated down-regulation of the T cell activation-signaling molecule P59fyn. These findings support a role of T cell-mediated immune defense against bacterial translocation in burn injury.

  11. Human amniotic epithelial cells combined with silk fibroin scaffold in the repair of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Ting-gang Wang

    2016-01-01

    Full Text Available Treatment and functional reconstruction after central nervous system injury is a major medical and social challenge. An increasing number of researchers are attempting to use neural stem cells combined with artificial scaffold materials, such as fibroin, for nerve repair. However, such approaches are challenged by ethical and practical issues. Amniotic tissue, a clinical waste product, is abundant, and amniotic epithelial cells are pluripotent, have low immunogenicity, and are not the subject of ethical debate. We hypothesized that amniotic epithelial cells combined with silk fibroin scaffolds would be conducive to the repair of spinal cord injury. To test this, we isolated and cultured amniotic epithelial cells, and constructed complexes of these cells and silk fibroin scaffolds. Implantation of the cell-scaffold complex into a rat model of spinal cord injury resulted in a smaller glial scar in the damaged cord tissue than in model rats that received a blank scaffold, or amniotic epithelial cells alone. In addition to a milder local immunological reaction, the rats showed less inflammatory cell infiltration at the transplant site, milder host-versus-graft reaction, and a marked improvement in motor function. These findings confirm that the transplantation of amniotic epithelial cells combined with silk fibroin scaffold can promote the repair of spinal cord injury. Silk fibroin scaffold can provide a good nerve regeneration microenvironment for amniotic epithelial cells.

  12. Lysophosphatidic acid generation by pulmonary NKT cell ENPP-2/autotaxin exacerbates hyperoxic lung injury.

    Science.gov (United States)

    Nowak-Machen, Martina; Lange, Martin; Exley, Mark; Wu, Sherry; Usheva, Anny; Robson, Simon C

    2015-12-01

    Hyperoxia is still broadly used in clinical practice in order to assure organ oxygenation in critically ill patients, albeit known toxic effects. In this present study, we hypothesize that lysophosphatidic acid (LPA) mediates NKT cell activation in a mouse model of hyperoxic lung injury. In vitro, pulmonary NKT cells were exposed to hyperoxia for 72 h, and the induction of the ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP-2) was examined and production of lysophosphatidic acid (LPA) was measured. In vivo, animals were exposed to 100 % oxygen for 72 h and lungs and serum were harvested. Pulmonary NKT cells were then incubated with the LPA antagonist Brp-LPA. Animals received BrP-LPA prior to oxygen exposure. Autotaxin (ATX, ENPP-2) was significantly up-regulated on pulmonary NKT cells after hyperoxia (p NKT cells. LPA levels were significantly reduced by incubating NKT cells with LPA-BrP during oxygen exposure (p NKT cell numbers in vivo. BrP-LPA injection significantly improved survival as well as significantly decreased lung injury and lowered pulmonary NKT cell numbers. We conclude that NKT cell-induced hyperoxic lung injury is mediated by pro-inflammatory LPA generation, at least in part, secondary to ENPP-2 up-regulation on pulmonary NKT cells. Being a potent LPA antagonist, BrP-LPA prevents hyperoxia-induced lung injury in vitro and in vivo.

  13. A population of Pax7-expressing muscle progenitor cells show differential responses to muscle injury dependent on developmental stage and injury extent

    Directory of Open Access Journals (Sweden)

    Stefanie eKnappe

    2015-08-01

    Full Text Available Muscle regeneration in vertebrates occurs by the activation of quiescent progenitor cells that express pax7 and replace and repair damaged fibers. We have developed a mechanical injury paradigm in zebrafish to determine whether developmental stage and injury size affect the regeneration dynamics of damaged muscle. We found that both small, focal injuries and large injuries affecting the entire myotome lead to the expression of myf5 and myogenin. Their expression was prolonged in older larvae, indicating a slower process of regeneration. We characterized the endogenous behavior of a population of muscle-resident Pax7-expressing cells using a pax7a:eGFP transgenic line and found that GFP+ cell migration in the myotome dramatically declined between 5 and 7 days post fertilization (dpf. Following a small injury, we observed that GFP+ cells responded by extending processes, before migrating to the injured fibers. Furthermore, these cells responded more rapidly to injury in 4dpf larvae compared to 7dpf. Interestingly, we did not see GFP+ fibers after repair of small injuries, indicating that pax7a-expressing cells did not contribute to fiber formation in this injury context. On the contrary, numerous GFP+ fibers could be observed after a large single myotome injury. Both injury models were accompanied by an increased number of proliferating GFP+ cells, which was more pronounced in larvae injured at 4dpf than 7dpf, This indicates intriguing developmental differences, even at these relatively early ages. Our data also suggests an interesting disparity in the role that pax7a-expressing muscle progenitor cells play during muscle regeneration, which may reflect the extent of muscle damage.

  14. NKT cells are important mediators of hepatic ischemia-reperfusion injury.

    Science.gov (United States)

    Richards, James A; Wigmore, Stephen J; Anderton, Stephen M; Howie, Sarah E M

    2017-12-01

    IRI results from the interruption then reinstatement of an organ's blood supply, and this poses a significant problem in liver transplantation and resectional surgery. In this paper, we explore the role T cells play in the pathogenesis of this injury. We used an in vivo murine model of warm partial hepatic IRI, genetically-modified mice, in vivo antibody depletion, adoptive cell transfer and flow cytometry to determine which lymphocyte subsets contribute to pathology. Injury was assessed by measuring serum alanine aminotransfersase (ALT) and by histological examination of liver tissue sections. The absence of T cells (CD3εKO) is associated with significant protection from injury (p=0.010). Through a strategy of antibody depletion it appears that NKT cells (p=0.0025), rather than conventional T (CD4+ or CD8+) (p=0.11) cells that are the key mediators of injury. Our results indicate that tissue-resident NKT cells, but not other lymphocyte populations are responsible for the injury in hepatic IRI. Targeting the activation of NKT cells and/or their effector apparatus would be a novel approach in protecting the liver during transplantation and resection surgery; this may allow us to expand our current criteria for surgery. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Loss of 51chromium, lactate dehydrogenase, and 111indium as indicators of endothelial cell injury

    International Nuclear Information System (INIS)

    Chopra, J.; Joist, J.H.; Webster, R.O.

    1987-01-01

    Injury to endothelial cells appears to be an important initial event in the pathogenesis of many diseases such as acute lung injury, venous and arterial thromboembolism, and atherosclerosis. Different methods for detecting damage to cultured endothelial cells have been described. However, their relative sensitivity as markers of endothelial cell damage has not been adequately determined. We compared the loss of 51 Chromium ( 51 Cr), the cytoplasmic enzyme lactate dehydrogenase (LDH), and 111 Indium ( 111 In) from endothelial cells upon exposure to several injurious agents. Cultured bovine pulmonary artery endothelial cells in confluent monolayers were labeled with 51 Cr or 111 Inoxine and exposed to increasing concentrations of the nonionic detergent, Triton X-100 (0.2 to 1%), hydrogen peroxide (1 to 500 microM), or neutrophils stimulated with phorbol myristate acetate. With all forms of injury, loss of 51 Cr occurred earlier and to a greater extent than LDH loss which in turn was greater than loss of 111 In. Substantial loss of 51 Cr was observed in the absence of appreciable ultrastructural damage to endothelial cell external membranes. The findings may reflect the relative ease with which small molecules such as adenine nucleotides ( 51 Cr-labeled) escape whereas larger molecules such as LDH and proteins binding 111 In are retained intracellularly. Thus, 51 Cr loss appears to be a more sensitive indicator of sublytic endothelial cell injury than either 111 In or LDH release

  16. Cocktail of chemical compounds robustly promoting cell reprogramming protects liver against acute injury

    Directory of Open Access Journals (Sweden)

    Yuewen Tang

    2017-02-01

    Full Text Available Abstract Tissue damage induces cells into reprogramming-like cellular state, which contributes to tissue regeneration. However, whether factors promoting the cell reprogramming favor tissue regeneration remains elusive. Here we identified combination of small chemical compounds including drug cocktails robustly promoting in vitro cell reprogramming. We then administrated the drug cocktails to mice with acute liver injuries induced by partial hepatectomy or toxic treatment. Our results demonstrated that the drug cocktails which promoted cell reprogramming in vitro improved liver regeneration and hepatic function in vivo after acute injuries. The underlying mechanism could be that expression of pluripotent genes activated after injury is further upregulated by drug cocktails. Thus our study offers proof-of-concept evidence that cocktail of clinical compounds improving cell reprogramming favors tissue recovery after acute damages, which is an attractive strategy for regenerative purpose.

  17. Tolbutamide attenuates diazoxide-induced aggravation of hypoxic cell injury.

    Science.gov (United States)

    Pissarek, M; Reichelt, C; Krauss, G J; Illes, P

    1998-11-23

    /ADP, GTP/GDP and UTP/UDP ratios uniformly declined at a low pO2. However, only the ATP/ADP ratio was decreased further by diazoxide (300 microM). The observed alterations in nucleotide contents may be of importance for long- and short-term processes related to acute cerebral hypoxia. Thus, hypoxia-induced alterations of purine and pyrimidine nucleotide levels may influence the open state of KATP-channels during the period of reversible hypoxic cerebral injury. Furthermore, alterations during the irreversible period of cerebral injury may also arise, as a consequence of decreased pyrimidine nucleotide contents affecting cell survival viaprotein and DNA synthesis.

  18. Macrophage depletion and Schwann cell transplantation reduce cyst size after rat contusive spinal cord injury.

    Science.gov (United States)

    Lee, Yee-Shuan; Funk, Lucy H; Lee, Jae K; Bunge, Mary Bartlett

    2018-04-01

    Schwann cell transplantation is a promising therapy for the treatment of spinal cord injury (SCI) and is currently in clinical trials. In our continuing efforts to improve Schwann cell transplantation strategies, we sought to determine the combined effects of Schwann cell transplantation with macrophage depletion. Since macrophages are major inflammatory contributors to the acute spinal cord injury, and are the major phagocytic cells, we hypothesized that transplanting Schwann cells after macrophage depletion will improve cell survival and integration with host tissue after SCI. To test this hypothesis, rat models of contusive SCI at thoracic level 8 were randomly subjected to macrophage depletion or not. In rat subjected to macrophage depletion, liposomes filled with clodronate were intraperitoneally injected at 1, 3, 6, 11, and 18 days post injury. Rats not subjected to macrophage depletion were intraperitoneally injected with liposomes filled with phosphate buffered saline. Schwann cells were transplanted 1 week post injury in all rats. Biotinylated dextran amine (BDA) was injected at thoracic level 5 to evalute axon regeneration. The Basso, Beattie, and Bresnahan locomotor test, Gridwalk test, and sensory test using von Frey filaments were performed to assess functional recovery. Immunohistochemistry was used to detect glial fibrillary acidic protein, neurofilament, and green fluorescent protein (GFP), and also to visulize BDA-labelled axons. The GFP labeled Schwann cell and cyst and lesion volumes were quantified using stained slides. The numbers of BDA-positive axons were also quantified. At 8 weeks after Schwann cell transplantation, there was a significant reduction in cyst and lesion volumes in the combined treatment group compared to Schwann cell transplantation alone. These changes were not associated, however, with improved Schwann cell survival, axon growth, or locomotor recovery. Although combining Schwann cell transplantation with macrophage

  19. Macrophage depletion and Schwann cell transplantation reduce cyst size after rat contusive spinal cord injury

    Science.gov (United States)

    Lee, Yee-Shuan; Funk, Lucy H.; Lee, Jae K.; Bunge, Mary Bartlett

    2018-01-01

    Schwann cell transplantation is a promising therapy for the treatment of spinal cord injury (SCI) and is currently in clinical trials. In our continuing efforts to improve Schwann cell transplantation strategies, we sought to determine the combined effects of Schwann cell transplantation with macrophage depletion. Since macrophages are major inflammatory contributors to the acute spinal cord injury, and are the major phagocytic cells, we hypothesized that transplanting Schwann cells after macrophage depletion will improve cell survival and integration with host tissue after SCI. To test this hypothesis, rat models of contusive SCI at thoracic level 8 were randomly subjected to macrophage depletion or not. In rat subjected to macrophage depletion, liposomes filled with clodronate were intraperitoneally injected at 1, 3, 6, 11, and 18 days post injury. Rats not subjected to macrophage depletion were intraperitoneally injected with liposomes filled with phosphate buffered saline. Schwann cells were transplanted 1 week post injury in all rats. Biotinylated dextran amine (BDA) was injected at thoracic level 5 to evalute axon regeneration. The Basso, Beattie, and Bresnahan locomotor test, Gridwalk test, and sensory test using von Frey filaments were performed to assess functional recovery. Immunohistochemistry was used to detect glial fibrillary acidic protein, neurofilament, and green fluorescent protein (GFP), and also to visulize BDA-labelled axons. The GFP labeled Schwann cell and cyst and lesion volumes were quantified using stained slides. The numbers of BDA-positive axons were also quantified. At 8 weeks after Schwann cell transplantation, there was a significant reduction in cyst and lesion volumes in the combined treatment group compared to Schwann cell transplantation alone. These changes were not associated, however, with improved Schwann cell survival, axon growth, or locomotor recovery. Although combining Schwann cell transplantation with macrophage

  20. Macrophage depletion and Schwann cell transplantation reduce cyst size after rat contusive spinal cord injury

    Directory of Open Access Journals (Sweden)

    Yee-Shuan Lee

    2018-01-01

    Full Text Available Schwann cell transplantation is a promising therapy for the treatment of spinal cord injury (SCI and is currently in clinical trials. In our continuing efforts to improve Schwann cell transplantation strategies, we sought to determine the combined effects of Schwann cell transplantation with macrophage depletion. Since macrophages are major inflammatory contributors to the acute spinal cord injury, and are the major phagocytic cells, we hypothesized that transplanting Schwann cells after macrophage depletion will improve cell survival and integration with host tissue after SCI. To test this hypothesis, rat models of contusive SCI at thoracic level 8 were randomly subjected to macrophage depletion or not. In rat subjected to macrophage depletion, liposomes filled with clodronate were intraperitoneally injected at 1, 3, 6, 11, and 18 days post injury. Rats not subjected to macrophage depletion were intraperitoneally injected with liposomes filled with phosphate buffered saline. Schwann cells were transplanted 1 week post injury in all rats. Biotinylated dextran amine (BDA was injected at thoracic level 5 to evalute axon regeneration. The Basso, Beattie, and Bresnahan locomotor test, Gridwalk test, and sensory test using von Frey filaments were performed to assess functional recovery. Immunohistochemistry was used to detect glial fibrillary acidic protein, neurofilament, and green fluorescent protein (GFP, and also to visulize BDA-labelled axons. The GFP labeled Schwann cell and cyst and lesion volumes were quantified using stained slides. The numbers of BDA-positive axons were also quantified. At 8 weeks after Schwann cell transplantation, there was a significant reduction in cyst and lesion volumes in the combined treatment group compared to Schwann cell transplantation alone. These changes were not associated, however, with improved Schwann cell survival, axon growth, or locomotor recovery. Although combining Schwann cell transplantation with

  1. Temperature shock, injury and transient sensitivity to nisin in Gram negatives.

    Science.gov (United States)

    Boziaris, I S; Adams, M R

    2001-10-01

    The effect of thermal stresses on survival, injury and nisin sensitivity was investigated in Salmonella Enteritidis PT4, PT7 and Pseudomonas aeruginosa. Heating at 55 degrees C, rapid chilling to 0.5 degrees C or freezing at -20 degrees C produced transient sensitivity to nisin. Cells were only sensitive if nisin was present during stress. Resistance recovered rapidly afterwards, though some cells displayed residual injury. Injury was assessed by SDS sensitivity, hydrophobicity changes, lipopolysaccharide release and NPN uptake. LPS release and hydrophobicity were not always associated with transient nisin sensitivity. Uptake of NPN correlated better but persisted longer after treatment. Thermal shocks produce transient injury to the outer membrane, allowing nisin access. After treatment, the permeability barrier is rapidly restored by a process apparently involving reorganization rather than biosynthetic repair. Inclusion of nisin during food treatments that impose sub-lethal stress on Gram negatives could increase process lethality, enhancing microbiological safety and stability.

  2. Mesenchymal stem cells promote augmented response of endogenous neural stem cells in spinal cord injury of rats

    Directory of Open Access Journals (Sweden)

    Marta Rocha Araujo

    2016-06-01

    Full Text Available Traumatic spinal cord injury results in severe neurological deficits, mostly irreversible. The cell therapy represents a strategy for treatment particularly with the use of stem cells with satisfactory results in several experimental models. The aim of the study was to compare the treatment of spinal cord injury (SCI with and without mesenchymal stem cells (MSC, to investigate whether MSCs migrate and/or remain at the site of injury, and to analyze the effects of MSCs on inflammation, astrocytic reactivity and activation of endogenous stem cells. Three hours after SCI, animals received bone marrow-derived MSCs (1×107 in 1mL PBS, IV. Animals were euthanized 24 hours, 7 and 21 days post-injury. The MSC were not present in the site of the lesion and the immunofluorescent evaluation showed significant attenuation of inflammatory response with reduction in macrophages labeled with anti-CD68 antibody (ED1, decreased immunoreactivity of astrocytes (GFAP+ and greater activation of endogenous stem cells (nestin+ in the treated groups. Therefore, cell transplantation have a positive effect on recovery from traumatic spinal cord injury possibly due to the potential of MSCs to attenuate the immune response.

  3. Fructose and tagatose protect against oxidative cell injury by iron chelation.

    Science.gov (United States)

    Valeri, F; Boess, F; Wolf, A; Göldlin, C; Boelsterli, U A

    1997-01-01

    To further investigate the mechanism by which fructose affords protection against oxidative cell injury, cultured rat hepatocytes were exposed to cocaine (300 microM) or nitrofurantoin (400 microM). Both drugs elicited massively increased lactate dehydrogenase release. The addition of the ketohexoses D-fructose (metabolized via glycolysis) or D-tagatose (poor glycolytic substrate) significantly attenuated cocaine- and nitrofurantoin-induced cell injury, although both fructose and tagatose caused a rapid depletion of ATP and compromised the cellular energy charge. Furthermore, fructose, tagatose, and sorbose all inhibited in a concentration-dependent manner (0-16 mM) luminolenhanced chemiluminescence (CL) in cell homogenates, indicating that these compounds inhibit the iron-dependent reactive oxygen species (ROS)-mediated peroxidation of luminol. Indeed, both Fe2+ and Fe3+ further increased cocaine-stimulated CL, which was markedly quenched following addition of the ketohexoses. The iron-independent formation of superoxide anion radicals (acetylated cytochrome c reduction) induced by the prooxidant drugs remained unaffected by fructose or tagatose. The iron-chelator deferoxamine similarly protected against prooxidant-induced cell injury. In contrast, the nonchelating aldohexoses D-glucose and D-galactose did not inhibit luminol CL nor did they protect against oxidative cell injury. These data indicate that ketohexoses can effectively protect against prooxidant-induced cell injury, independent of their glycolytic metabolism, by suppressing the iron-catalyzed formation of ROS.

  4. Immune cell distribution and immunoglobulin levels change following sciatic nerve injury in a rat model

    Directory of Open Access Journals (Sweden)

    Wei Yuan

    2016-07-01

    Full Text Available Objective(s: To investigate the systemic and local immune status of two surgical rat models of sciatic nerve injury, a crushed sciatic nerve, and a sciatic nerve transection Materials and Methods:Twenty-four adult male Sprague-Dawley rats were randomly divided into three groups: sham-operation (control group, sciatic nerve crush, and sciatic nerve transaction. Sciatic nerve surgery was performed. The percentage of CD4+ cells and the CD4+/CD8+ratio were determined by flow cytometry. Serum IgM and IgG levels were analyzed by ELISA. T-cells (CD3 and macrophages (CD68 in sciatic nerve tissue sections were identified through immunohistochemistry. Results: Compared to sham-operated controls, in rats that underwent nerve injury, the percentage of CD4+ cells and the CD4+/CD8+ ratio in the peripheral blood were significantly  decreased 7 days after surgery, serum IgM levels were increased 14 days after surgery, and serum IgG levels were increased 21 days after surgery. There were a large number of CD3+ cells and a small number of CD68+ cells in sciatic nerve tissue sections 21 days after surgery, indicating T-cell and macrophage activation and infiltration. Local IgG deposition was also detected at the nerve injury site 21 days after surgery. Conclusion: Rat humoral and cellular immune status changed following sciatic nerve injury, particularly with regard to the cellular immune response at the nerve injury site.

  5. Repair of Ischemic Injury by Pluripotent Stem Cell Based Cell Therapy without Teratoma through Selective Photosensitivity

    Directory of Open Access Journals (Sweden)

    Seung-Ju Cho

    2015-12-01

    Full Text Available Stem-toxic small molecules have been developed to induce selective cell death of pluripotent stem cells (PSCs to lower the risk of teratoma formation. However, despite their high efficacies, chemical-based approaches may carry unexpected toxicities on specific differentiated cell types. Herein, we took advantage of KillerRed (KR as a suicide gene, to selectively induce phototoxicity using visible light via the production of reactive oxygen species. PSCs in an undifferentiated state that exclusively expressed KR (KR-PSCs were eliminated by a single exposure to visible light. This highly selective cell death in KR-PSCs was exploited to successfully inhibit teratoma formation. In particular, endothelial cells from KR-mPSCs remained fully functional in vitro and sufficient to repair ischemic injury in vivo regardless of light exposure, suggesting that a genetic approach in which KR is expressed in a tightly controlled manner would be a viable strategy to inhibit teratoma formation for future safe PSC-based therapies.

  6. Burn-injury affects gut-associated lymphoid tissues derived CD4+ T cells.

    Science.gov (United States)

    Fazal, Nadeem; Shelip, Alla; Alzahrani, Alhusain J

    2013-01-01

    After scald burn-injury, the intestinal immune system responds to maintain immune balance. In this regard CD4+T cells in Gut-Associated Lymphoid Tissues (GALT), like mesenteric lymph nodes (MLN) and Peyer's patches (PP) respond to avoid immune suppression following major injury such as burn. Therefore, we hypothesized that the gut CD4+T cells become dysfunctional and turn the immune homeostasis towards depression of CD4+ T cell-mediated adaptive immune responses. In the current study we show down regulation of mucosal CD4+ T cell proliferation, IL-2 production and cell surface marker expression of mucosal CD4+ T cells moving towards suppressive-type. Acute burn-injury lead to up-regulation of regulatory marker (CD25+), down regulation of adhesion (CD62L, CD11a) and homing receptor (CD49d) expression, and up-regulation of negative co-stimulatory (CTLA-4) molecule. Moreover, CD4+CD25+ T cells of intestinal origin showed resistance to spontaneous as well as induced apoptosis that may contribute to suppression of effector CD4+ T cells. Furthermore, gut CD4+CD25+ T cells obtained from burn-injured animals were able to down-regulate naïve CD4+ T cell proliferation following adoptive transfer of burn-injured CD4+CD25+ T cells into sham control animals, without any significant effect on cell surface activation markers. Together, these data demonstrate that the intestinal CD4+ T cells evolve a strategy to promote suppressive CD4+ T cell effector responses, as evidenced by enhanced CD4+CD25+ T cells, up-regulated CTLA-4 expression, reduced IL-2 production, tendency towards diminished apoptosis of suppressive CD4+ T cells, and thus lose their natural ability to regulate immune homeostasis following acute burn-injury and prevent immune paralysis.

  7. Cell-based Therapy for Acute Organ Injury: Preclinical Evidence and On-going Clinical Trials Using Mesenchymal Stem Cells

    Science.gov (United States)

    Monsel, Antoine; Zhu, Ying-gang; Gennai, Stephane; Hao, Qi; Liu, Jia; Lee, Jae W.

    2014-01-01

    Critically ill patients often suffer from multiple organ failures involving lung, kidney, liver or brain. Genomic, proteomic and metabolomic approaches highlight common injury mechanisms leading to acute organ failure. This underlines the need to focus on therapeutic strategies affecting multiple injury pathways. The use of adult stem cells such as mesenchymal stem or stromal cells (MSC) may represent a promising new therapeutic approach as increasing evidence shows that MSC can exert protective effects following injury through the release of pro-mitotic, anti-apoptotic, anti-inflammatory and immunomodulatory soluble factors. Furthermore, they can mitigate metabolomic and oxidative stress imbalance. In this work, we review the biological capabilities of MSC and the results of clinical trials using MSC as therapy in acute organ injuries. Although preliminary results are encouraging, more studies concerning safety and efficacy of MSC therapy are needed to determine their optimal clinical use. PMID:25211170

  8. Study of cell cycle and apoptosis after radiation with electron linear accelerator injury

    International Nuclear Information System (INIS)

    Xu Lan; Zhou Yinghui; Shi Ning; Peng Miao; Wu Shiliang

    2002-01-01

    Purpose: To determine the cell cycle and apoptosis of the injured cells after radiation with the electron linear accelerator. Methods: NIH 3T3 cells were irradiated by the radiation with the electron linear accelerator. In the experiment the condition of the cell cycle and apoptosis of the injured cells were measured. The expression of p53 was also tested. Results: After exposure to radiation, the number of apoptotic cells as well as the expression of p53 increased. Conclusion: The electron linear accelerator radiation injury can induce cell apoptosis

  9. Enhancement of the radiation-lethal effect of hypoxic cancer cells by some nitroheterocyclic compounds. Part of a coordinated programme on the improvement of radiotherapy of cancer using modifiers of radiosensitivity of cells

    International Nuclear Information System (INIS)

    Chiricuta, I.

    1981-12-01

    The possibilities to enhance the lethal effect of ionizing radiation on hypoxic cells by electron-affinic compounds have stimulated the investigations for finding new chemicals with radiobiological and pharmacological features as adequate as possible. On the other hand, the experimental studies and clinical trials had shown that the aerobic toxicity seems to be the major limiting factor in the use of large doses of radiosensitizers required to achieve significant therapeutic efficiency. The investigations in the present paper were attempted to join these two main directions of research and comprised the syntheses of new nitroheterocyclic compounds with potential radiosensitization properties and the knowledge of biochemical alterations involved in the producing of aerobic toxicity of radiosensitizers aiming to find practical solutions to enhance the efficiency of radiotherapy. Several newly synthesized compounds were tested for their radiosensitizing effect. The experiments carried out on hypoxic cells V 79 showed that only 1-(hydroxyethyl-2'-phosphate)-2-methyl-5-nitroimidazole, dipotassium salt displayed an enhancement ratio of 1.17 (at 8 mM), but lower than in case of parent compound, metronidazole (enhancement ratio = 1.53). It was shown that hypoxic cell radiosensitizers interfere with the cellular energy metabolism. These interferences were found dependent on the electron affinity of drugs. In addition, those radiosensitizers producing a decrease in oxygen consumption caused a supplementary oxygenation of both normal and tumour tissues. It is concluded that the improvement of therapeutic efficiency of radiosensitizers by reducing their aerobic toxicity might be achieved by diminishing their effects on the energy metabolism or by the stimulation of this metabolism and restoration of tissue redox equilibrium

  10. Lumbar Myeloid Cell Trafficking into Locomotor Networks after Thoracic Spinal Cord Injury

    Science.gov (United States)

    Hansen, Christopher N.; Norden, Diana M.; Faw, Timothy D.; Deibert, Rochelle; S.Wohleb, Eric; Sheridan, John F.; P.Godbout, Jonathan; Basso, D. Michele

    2016-01-01

    Spinal cord injury (SCI) promotes inflammation along the neuroaxis that jeopardizes plasticity, intrinsic repair and recovery. While inflammation at the injury site is well-established, less is known within remote spinal networks. The presence of bone marrow-derived immune (myeloid) cells in these areas may further impede functional recovery. Previously, high levels of the gelatinase, matrix metalloproteinase-9 (MMP-9) occurred within the lumbar enlargement after thoracic SCI and impeded activity-dependent recovery. Since SCI-induced MMP-9 potentially increases vascular permeability, myeloid cell infiltration may drive inflammatory toxicity in locomotor networks. Therefore, we examined neurovascular reactivity and myeloid cell infiltration in the lumbar cord after thoracic SCI. We show evidence of region-specific recruitment of myeloid cells into the lumbar but not cervical region. Myeloid infiltration occurred with concomitant increases in chemoattractants (CCL2) and cell adhesion molecules (ICAM-1) around lumbar vasculature 24 hours and 7 days post injury. Bone marrow GFP chimeric mice established robust infiltration of bone marrow-derived myeloid cells into the lumbar gray matter 24 hours after SCI. This cell infiltration occurred when the blood-spinal cord barrier was intact, suggesting active recruitment across the endothelium. Myeloid cells persisted as ramified macrophages at 7 days post injury in parallel with increased inhibitory GAD67 labeling. Importantly, macrophage infiltration required MMP-9. PMID:27191729

  11. Mechanisms of injury and protection in cells and tissues at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Mazur, P.

    1976-06-01

    The survival of frozen-thawed cells is importantly influenced by the cooling rate. In general, cells exhibit maximum survival at an intermediate cooling rate, the numerical value of which depends on the type of cell, the additive present, and the warming rate. Theory and experiment now strongly indicate that death at supraoptimal cooling rates is the result of the formation of intracellular ice crystals during cooling and their growth to damaging size during warming. The causes of death in cells cooled at suboptimal rates, on the other hand, are more complex and more uncertain. Although additives like glycerol and dimethyl sulfoxide do not protect against injury at supraoptimal rates, they are generally essential for the survival of slowly frozen mammalian cells. The two major theories of slow freezing injury predict that protection is chiefly a colligative effect and that it requires the presence of additive inside the cell as well as outside. The evidence of the colligative aspects of protection is conflicting. The evidence on the requirement for permeation is increasingly negative, a fact which suggests that to protect the whole cell it may be sufficient to protect the cell surface. Slow freezing injury appears due to a number of sequential events. The first may well be high electrolyte concentrations. Additives protect against these, but may themselves introduce other forms of injury, the most likely of which is osmotic shock.

  12. ROLE OF MELATONIN IN EXPRESSION OF MALONDIALDEHYDE ON MICROGLIA CELLS OF RAT INDUCED HEAD INJURY

    Directory of Open Access Journals (Sweden)

    K. I. Nasution

    2015-08-01

    Full Text Available Background: brain injury is condition that harm human life. This study examines the application of melatonin in reducing oxidant status and barriers to the formation of cerebral edema in a rat brain injury model. The main purpose of this study is to prove the role of melatonin on the expression of Malondialdehyde (MDA and histological injury in a rat head injury model. Methods: This study was a randomized experimental posttest only control group design. This experimental was carried out on male Sprague Dawley strain Rattus novergicus, aged of 10-12 weeks, and weight of 300 g. Rat brain injury model was performed based on Marmarou (1994.1 Histology were observed using hematoxilen-eosin staining and immunohistochemistry, MDA was assessed using antibodies specific to each MDA protein. Observation and calculation of immunohistochemistry studies were also performed. Results: In this study, histological observation area covers an area of bleeding, number of immune-competent cells and the diameter of the arteries. Histology observation results showed that there is a significant reduction in diameter of arterial blood vessels of the brain injury tissue. Immunohisto-chemistry results showed that there is a significant reduction of MDA expression amount microglia cells of brain injury tissue. Conclusion: From this study, it can be concluded that Melatonin is a potent hydrogen peroxide scavenger that reduce the production of MDA. 

  13. Sphere-forming cells from peripheral cornea demonstrate a wound-healing response to injury.

    Science.gov (United States)

    Huang, Stephanie U; Yoon, Jinny J; Ismail, Salim; McGhee, Jennifer J; Sherwin, Trevor

    2015-11-01

    The cornea is the initial refractive interface of the eye. Its transparency is critical for clear vision and is maintained by stem cells which also act to repair injury inflicted by external insults, such as chemical and thermal burns. Damage to the epithelium compromises its clarity and can reduce or eliminate the stem cell population, diminishing the ability for self-repair. This condition has been termed "limbal stem cell deficiency"; severe cases can lead to corneal blindness. Sphere-forming cells isolated from peripheral cornea are a potential source of stem and progenitor cells for corneal repair. When provided with appropriate substrate, these spheres have the ability to adhere and for cells to migrate outwards akin to that of their natural environment. Direct compression injury and remote scratch injury experiments were conducted on the sphere cells to gauge their wound healing capacity. Measures of proliferation, differentiation, and migration were assessed by immunohistochemical detection of EdU incorporation, α-smooth muscle actin expression and confocal image analysis, respectively. Both modes of injury were observed to draw responses from the spheres indicating wound healing processes. Direct wounding induced a rapid, but transient increase in expression of α-SMA, a marker of corneal myofibroblasts, followed by a proliferative and increasing migratory response. The spheres were observed to respond to remote injury as entire units, with no directional response seen for targeted repair over the scratch injury area. These results give strength to the future use of these peripheral corneal spheres as transplantable units for the regeneration of corneal tissue. © 2015 International Federation for Cell Biology.

  14. Mitotic delay of irradiated cells and its connection with quantity of radiation injuries

    International Nuclear Information System (INIS)

    Lobachevskij, P.N.; Fominykh, E.V.

    1989-01-01

    The study is dedicated to development of mathematical approach to interpret radiation-induced mitosic delay. An assumption is made that mitotic delay is conditioned by discrete injuries distributed in cells according to stochasticity of interaction of radiation and target substance. It is supposed to consider the problem on injuries nature causing mitotic delay and to use the developed method for accounting the effect of radiation-induced mitotic delay on registered chromosomal aberration yield. 10 refs.; 2 figs.; 3 tabs

  15. [Facial nerve injuries cause changes in central nervous system microglial cells].

    Science.gov (United States)

    Cerón, Jeimmy; Troncoso, Julieta

    2016-12-01

    Our research group has described both morphological and electrophysiological changes in motor cortex pyramidal neurons associated with contralateral facial nerve injury in rats. However, little is known about those neural changes, which occur together with changes in surrounding glial cells. To characterize the effect of the unilateral facial nerve injury on microglial proliferation and activation in the primary motor cortex. We performed immunohistochemical experiments in order to detect microglial cells in brain tissue of rats with unilateral facial nerve lesion sacrificed at different times after the injury. We caused two types of lesions: reversible (by crushing, which allows functional recovery), and irreversible (by section, which produces permanent paralysis). We compared the brain tissues of control animals (without surgical intervention) and sham-operated animals with animals with lesions sacrificed at 1, 3, 7, 21 or 35 days after the injury. In primary motor cortex, the microglial cells of irreversibly injured animals showed proliferation and activation between three and seven days post-lesion. The proliferation of microglial cells in reversibly injured animals was significant only three days after the lesion. Facial nerve injury causes changes in microglial cells in the primary motor cortex. These modifications could be involved in the generation of morphological and electrophysiological changes previously described in the pyramidal neurons of primary motor cortex that command facial movements.

  16. What is the potential of oligodendrocyte progenitor cells to successfully treat human spinal cord injury?

    Directory of Open Access Journals (Sweden)

    Yeung Trevor M

    2011-09-01

    Full Text Available Abstract Background Spinal cord injury is a serious and debilitating condition, affecting millions of people worldwide. Long seen as a permanent injury, recent advances in stem cell research have brought closer the possibility of repairing the spinal cord. One such approach involves injecting oligodendrocyte progenitor cells, derived from human embryonic stem cells, into the injured spinal cord in the hope that they will initiate repair. A phase I clinical trial of this therapy was started in mid 2010 and is currently underway. Discussion The theory underlying this approach is that these myelinating progenitors will phenotypically replace myelin lost during injury whilst helping to promote a repair environment in the lesion. However, the importance of demyelination in the pathogenesis of human spinal cord injury is a contentious issue and a body of literature suggests that it is only a minor factor in the overall injury process. Summary This review examines the validity of the theory underpinning the on-going clinical trial as well as analysing published data from animal models and finally discussing issues surrounding safety and purity in order to assess the potential of this approach to successfully treat acute human spinal cord injury.

  17. Regenerative Potential of Ependymal Cells for Spinal Cord Injuries Over Time

    Directory of Open Access Journals (Sweden)

    Xiaofei Li

    2016-11-01

    Full Text Available Stem cells have a high therapeutic potential for the treatment of spinal cord injury (SCI. We have shown previously that endogenous stem cell potential is confined to ependymal cells in the adult spinal cord which could be targeted for non-invasive SCI therapy. However, ependymal cells are an understudied cell population. Taking advantage of transgenic lines, we characterize the appearance and potential of ependymal cells during development. We show that spinal cord stem cell potential in vitro is contained within these cells by birth. Moreover, juvenile cultures generate more neurospheres and more oligodendrocytes than adult ones. Interestingly, juvenile ependymal cells in vivo contribute to glial scar formation after severe but not mild SCI, due to a more effective sealing of the lesion by other glial cells. This study highlights the importance of the age-dependent potential of stem cells and post-SCI environment in order to utilize ependymal cell's regenerative potential.

  18. Rapamycin protects kidney against ischemia reperfusion injury through recruitment of NKT cells.

    Science.gov (United States)

    Zhang, Chao; Zheng, Long; Li, Long; Wang, Lingyan; Li, Liping; Huang, Shang; Gu, Chenli; Zhang, Lexi; Yang, Cheng; Zhu, Tongyu; Rong, Ruiming

    2014-08-19

    NKT cells play a protective role in ischemia reperfusion (IR) injury, of which the trafficking in the body and recruitment in injured organs can be influenced by immunosuppressive therapy. Therefore, we investigated the effects of rapamycin on kidneys exposed to IR injury in early stage and on trafficking of NKT cells in a murine model. Balb/c mice were subjected to kidney 30 min ischemia followed by 24 h reperfusion. Rapamycin (2.5 ml/kg) was administered by gavage daily, starting 1 day before the operation. Renal function and histological changes were assessed. The proportion of NKT cells in peripheral blood, spleen and kidney was detected by flow cytometry. The chemokines and corresponding receptor involved in NKT cell trafficking were determined by RT-PCR and flow cytometry respectively. Rapamycin significantly improved renal function and ameliorated histological injury. In rapamycin-treated group, the proportion of NKT cells in spleen was significantly decreased but increased in peripheral blood and kidney. In addition, the CXCR3+ NKT cell in the kidney increased remarkably in the rapamycin-treated group. The chemokines, CXCL9 and CXCL10, as the ligands of CXCR3, were also increased in the rapamycin-treated kidney. Rapamycin may recruit NKT cells from spleen to the IR-induced kidney to ameliorate renal IR injury in the early stage.

  19. Neural Responses to Injury: Prevention, Protection and Repair; Volume 7: Role Growth Factors and Cell Signaling in the Response of Brain and Retina to Injury

    National Research Council Canada - National Science Library

    Bazan, Nicolas

    1996-01-01

    ...: Prevention, Protection, and Repair, Subproject: Role of Growth Factors and Cell Signaling in the Response of Brain and Retina to Injury, are as follows: Species Rat(Albino Wistar), Number Allowed...

  20. Histones activate the NLRP3 Inflammasome in Kupffer Cells during Sterile Inflammatory Liver Injury

    Science.gov (United States)

    Huang, Hai; Chen, Hui-Wei; Evankovich, John; Yan, Wei; Rosborough, Brian R.; Nace, Gary W.; Ding, Qing; Loughran, Patricia; Beer-Stolz, Donna; Billiar, Timothy R.; Esmon, Charles T.; Tsung, Allan

    2013-01-01

    Cellular processes that drive sterile inflammatory injury after hepatic ischemia/reperfusion (I/R) injury are not completely understood. Activation of the inflammasome plays a key role in response to invading intracellular pathogens, but mounting evidence suggests it also plays a role in inflammation driven by endogenous danger-associate molecular pattern (DAMP) molecules released after ischemic injury. The nucleotide-binding domain, leucine-rich repeat containing protein 3 (NLRP3) inflammasome is one such process, and the mechanism by which its activation results in damage and inflammatory responses following liver I/R is unknown. Here we report that both NLRP3 and its downstream target Caspase-1 are activated I/R and are essential for hepatic I/R injury as both NLRP3 and Caspase-1 KO mice are protected from injury. Furthermore, inflammasome-mediated injury is dependent on Caspase-1 expression in liver non-parenchymal cells. While upstream signals that activate the inflammasome during ischemic injury are not well characterized, we show that endogenous extracellular histones activate the NLRP3 inflammasome during liver I/R through Toll-like Receptor-9 (TLR9). This occurs through TLR9-dependent generation of reactive oxygen species. This mechanism is operant in resident liver Kupffer cells, which drive innate immune responses after I/R injury by recruiting additional cell types, including neutrophils and inflammatory monocytes. These novel findings illustrate a new mechanism by which extracellular histones and activation of NLRP3 inflammasome contribute to liver damage and activation of innate immunity during sterile inflammation. PMID:23904166

  1. The Efficacy of Mesenchymal Stem Cell Transplantation in Caustic Esophagus Injury: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Murat Kantarcioglu

    2014-01-01

    Full Text Available Introduction. Ingestion of corrosive substances may lead to stricture formation in esophagus as a late complication. Full thickness injury seems to exterminate tissue stem cells of esophagus. Mesenchymal stem cells (MSCs can differentiate into specific cell lineages and have the capacity of homing in sites of injury. Aim and Methods. We aimed to investigate the efficacy of MSC transplantation, on prevention of esophageal damage and stricture formation after caustic esophagus injury in rats. 54 rats were allocated into four groups; 4 rats were sacrificed for MSC production. Group 1, untreated controls (n: 10. Group 2, membrane labeled MSCs-treated rats (n: 20. Group 3, biodistribution of fluorodeoxyglucose labeled MSCs via positron emission tomography (PET imaging (n: 10. Group 4, sham operated (n: 10. Standard caustic esophageal burns were created and MSCs were transplanted 24 hours after. All rats were sacrificed at the 21st days. Results. PET scan images revealed the homing behavior of MSCs to the injury site. The histopathology damage score was not significantly different from controls. However, we demonstrated Dil labeled epithelial and muscle cells which were originating from transplanted MSCs. Conclusion. MSC transplantation after caustic esophageal injury may be a helpful treatment modality; however, probably repeated infusions are needed.

  2. Concise Review: Reactive Astrocytes and Stem Cells in Spinal Cord Injury: Good Guys or Bad Guys?

    Czech Academy of Sciences Publication Activity Database

    Lukovic, D.; Stojkovic, M.; Moreno-Manzano, V.; Jendelová, Pavla; Syková, Eva; Bhattacharya, S.S.; Erceg, Slaven

    2015-01-01

    Roč. 33, APR (2015), s. 1036-1041 ISSN 1066-5099 R&D Projects: GA ČR(CZ) GBP304/12/G069; GA MŠk(CZ) LO1309 Institutional support: RVO:68378041 Keywords : glia * induced pluripotent stem cells * neural differentiation * neural stem cell * spinal cord injury * stem cell transplantation Subject RIV: ED - Physiology Impact factor: 5.902, year: 2015

  3. Theories of Lethal Mutagenesis: From Error Catastrophe to Lethal Defection.

    Science.gov (United States)

    Tejero, Héctor; Montero, Francisco; Nuño, Juan Carlos

    2016-01-01

    RNA viruses get extinct in a process called lethal mutagenesis when subjected to an increase in their mutation rate, for instance, by the action of mutagenic drugs. Several approaches have been proposed to understand this phenomenon. The extinction of RNA viruses by increased mutational pressure was inspired by the concept of the error threshold. The now classic quasispecies model predicts the existence of a limit to the mutation rate beyond which the genetic information of the wild type could not be efficiently transmitted to the next generation. This limit was called the error threshold, and for mutation rates larger than this threshold, the quasispecies was said to enter into error catastrophe. This transition has been assumed to foster the extinction of the whole population. Alternative explanations of lethal mutagenesis have been proposed recently. In the first place, a distinction is made between the error threshold and the extinction threshold, the mutation rate beyond which a population gets extinct. Extinction is explained from the effect the mutation rate has, throughout the mutational load, on the reproductive ability of the whole population. Secondly, lethal defection takes also into account the effect of interactions within mutant spectra, which have been shown to be determinant for the understanding the extinction of RNA virus due to an augmented mutational pressure. Nonetheless, some relevant issues concerning lethal mutagenesis are not completely understood yet, as so survival of the flattest, i.e. the development of resistance to lethal mutagenesis by evolving towards mutationally more robust regions of sequence space, or sublethal mutagenesis, i.e., the increase of the mutation rate below the extinction threshold which may boost the adaptability of RNA virus, increasing their ability to develop resistance to drugs (including mutagens). A better design of antiviral therapies will still require an improvement of our knowledge about lethal

  4. PKA activity exacerbates hypoxia-induced ROS formation and hypoxic injury in PC-12 cells.

    Science.gov (United States)

    Gozal, Evelyne; Metz, Cynthia J; Dematteis, Maurice; Sachleben, Leroy R; Schurr, Avital; Rane, Madhavi J

    2017-09-05

    Hypoxia is a primary factor in many pathological conditions. Hypoxic cell death is commonly attributed to metabolic failure and oxidative injury. cAMP-dependent protein kinase A (PKA) is activated in hypoxia and regulates multiple enzymes of the mitochondrial electron transport chain, thus may be implicated in cellular energy depletion and hypoxia-induced cell death. Wild type (WT) PC-12 cells and PKA activity-deficient 123.7 PC-12 cells were exposed to 3, 6, 12 and 24h hypoxia (0.1% or 5% O 2 ). Hypoxia, at 24h 0.1% O 2 , induced cell death and increased reactive oxygen species (ROS) in WT PC-12 cells. Despite lower ATP levels in normoxic 123.7 cells than in WT cells, hypoxia only decreased ATP levels in WT cells. However, menadione-induced oxidative stress similarly affected both cell types. While mitochondrial COX IV expression remained consistently higher in 123.7 cells, hypoxia decreased COX IV expression in both cell types. N-acetyl cysteine antioxidant treatment blocked hypoxia-induced WT cell death without preventing ATP depletion. Transient PKA catα expression in 123.7 cells partially restored hypoxia-induced ROS but did not alter ATP levels or COX IV expression. We conclude that PKA signaling contributes to hypoxic injury, by regulating oxidative stress rather than by depleting ATP levels. Therapeutic strategies targeting PKA signaling may improve cellular adaptation and recovery in hypoxic pathologies. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. An update on application of nanotechnology and stem cells in spinal cord injury regeneration.

    Science.gov (United States)

    Nejati-Koshki, Kazem; Mortazavi, Yousef; Pilehvar-Soltanahmadi, Younes; Sheoran, Sumit; Zarghami, Nosratollah

    2017-06-01

    Spinal cord injury (SCI) is damage to the spinal cord that leads to sudden loss of motor and autonomic function and sensory under the level of the injury. The pathophysiological advancement of SCI is divided into two categories: primary injury and secondary injury. Due to the loss of motor, sensory, or cognitive function, a patient's quality of life is likely reduced and places a great burden on society in order to supply health care costs. Therefore, it is important to develop suitable therapeutic strategies for SCI therapy. Nano biomedical systems and stem cell based therapy have the potential to provide new therapeutic availability and efficacy over conventional medicine. Due to their unique properties, nanomaterials and mesenchymal stem cells can be used to offer efficient treatments. Nanoparticles have a potential to deliver therapeutic molecules to the target tissue of interest, reducing side effects of untargeted therapies in unwanted areas. Mesenchymal stem cells (MSCs) can reduce activating inflammation responses that lead to cell death and promote functional recovery and cell growth. We review recent uses of nanomaterials and stem cells in regeneration of SCI. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Age-Dependent Schwann Cell Phenotype Regulation Following Peripheral Nerve Injury.

    Science.gov (United States)

    Chen, Wayne A; Luo, T David; Barnwell, Jonathan C; Smith, Thomas L; Li, Zhongyu

    2017-12-01

    Schwann cells are integral to the regenerative capacity of the peripheral nervous system, which declines after adolescence. The mechanisms underlying this decline are poorly understood. This study sought to compare the protein expression of Notch, c-Jun, and Krox-20 after nerve crush injury in adolescent and young adult rats. We hypothesized that these Schwann cell myelinating regulatory factors are down-regulated after nerve injury in an age-dependent fashion. Adolescent (2 months old) and young adult (12 months old) rats (n = 48) underwent sciatic nerve crush injury. Protein expression of Notch, c-Jun, and Krox-20 was quantified by Western blot analysis at 1, 3, and 7 days post-injury. Functional recovery was assessed in a separate group of animals (n = 8) by gait analysis (sciatic functional index) and electromyography (compound motor action potential) over an 8-week post-injury period. Young adult rats demonstrated a trend of delayed onset of the dedifferentiating regulatory factors, Notch and c-Jun, corresponding to the delayed functional recovery observed in young adult rats compared to adolescent rats. Compound motor action potential area was significantly greater in adolescent rats relative to young adult rats, while amplitude and velocity trended toward statistical significance. The process of Schwann cell dedifferentiation following peripheral nerve injury shows different trends with age. These trends of delayed onset of key regulatory factors responsible for Schwann cell myelination may be one of many possible factors mediating the significant differences in functional recovery between adolescent and young adult rats following peripheral nerve injury.

  7. Effects of abdominal lavage fluid from rats with radiation injury and combined radiation-burn injury on growth of hematopoietic progenitor cells

    International Nuclear Information System (INIS)

    Su, Y.-P.; Cheng, T.-M.; Guo, C.-H.; Liu, X.-H.; Qu, J.-F.

    2003-01-01

    Full text: Objective: To observe the effects of abdominal lavage fluid from rats with radiation injury, burn injury and combined radiation-burn injury on growth of hematopoietic progenitor cells. Methods Rats were irradiated with a single dose of 12 Gy γ-ray of 60Co, combined with 30% of total body surface area (TBSA) generated under a 5 KW bromo-tungsten lamp for 25 s. Lavage fluid from the peritoneum was collected 3, 12, 24, 48 and 72 hours after injury. Then the lavage fluid was added to the culture media of erythrocyte progenitor cells (CFU-E, BFE-E) or of granulocyte-macrophage progenitor cells (CFU-GM) at 40 mg/ml final concentration. Results The formed clones of CFU-E, BFU-E and CFU-GM of the lavage fluid from rats with radiation injury or combined radiation-burn injury at 3h, 12h, 24h, 48h and 72h time points were significantly higher than those from normal. They reached their peaks at 24h after injury (215.7%, 202.3%, or 241.2% from burned rats and 188.1%, 202.3% or 204.6% from rats inflected with combined radiation-burn injury as compared with those from normal rats). However, few CFU-E, BFU-E or CFU-GM clones were found after addition of lavage fluid from irradiated rats. Conclusion Peritoneal lavage fluid from rats with burn injury or combined radiation-burn injury enhances the growth of erythrocytes and granulocyte progenitor cells. On the contrary, the lavage fluid from irradiated rats shows inhibitory effects

  8. The primary study on protective effects of vallinin derivative on cell injury induced by radiation

    International Nuclear Information System (INIS)

    Zheng Hong; Wang Siying; Yan Yuqian; Wang Lin; Xu Qinzhi; Cong Jianbo; Zhou Pingkun

    2008-01-01

    In this paper, the protective effects of vallinin derivative VND3207 on cell injury induced by radiation were studied by the methods of methyl thiazolyl tetrazolium colorimetric assay (MTT) and electron spin resonance (ESR). At first, MTF method was used to evaluate the cytotoxicity of vallinin derivatives (VND3202-VND3209) in HFS cells. Then, MTT method was used to measure the proliferation activity of HeLa cells with 2 Gy irradiation treated with vallinin derivatives and measure the proliferation of AHH-1 cells treated with VND3207 before exposed to 4 Gy irradiation. And ESR detected the antioxidation activity of vallinin and VND3207. The results showed that VND3207 and VND3206 presented no toxin within 50 panol/L, and VND3207 and VND3209 had no proliferous effects on HeLa cells while VND3206 could expedite the tumor cell proliferation at 30 μmol/L, and by comrades VND3208 showed increased radiosensitivity of the HeLa cells. For the AHH1 cells exposed to 4 Gy irradiation, VND3207 presented the protective effects against radiation injury. ESR results also suggested that VND3207 could clean out free radicals. Its effect was far more potent than that of vanillin. From this study we primarily screened out the vallinin derivative VND3207 which has protective effects on cell injury induced by radiation and provided data for future research work. (authors)

  9. Ambulatory cell phone injuries in the United States: an emerging national concern.

    Science.gov (United States)

    Smith, Daniel C; Schreiber, Kristin M; Saltos, Andreas; Lichenstein, Sarah B; Lichenstein, Richard

    2013-12-01

    Over the past 15 years, the use of cell phones has increased 8-fold in the United States. Cell phone use has been shown to increase crash risks for drivers, but no systematic analyses have described injuries related to ambulatory cell phone use. The purpose of this study is to describe and quantitate injuries and deaths among persons using cell phones while walking. We searched the National Electronic Injury Surveillance System (NEISS) for emergency department (ED) reports of injuries related to phone use. The cases that returned were screened initially using words that would eliminate cases unlikely to be related to cell phone use and walking, possibly linked to distraction. The resulting cases were randomized and evaluated for consistency with predetermined case definitions by two authors blinded to the dates of the incidents. Cases that were disagreed upon were evaluated in a second screening by both authors for final case determination. National ED visit rates were estimated based on NEISS sampling methods. Annual variations were analyzed using linear regression with a restricted maximum likelihood approach. Our screening process identified 5,754 possible cases that occurred between 2000 and 2011, and 310 were agreed on as cases of cell-phone-induced distraction. The majority of the patients were female (68%) and 40 years of age or younger (54%). The primary mechanism of injury was a fall (72%), and most patients were treated and released from the ED (85%). No patients died from their injuries while they were in the ED. Linear modeling by year revealed a statistically significant increase in distraction injury rates over the years of study (pcell phone use has been increasing. More research is needed to determine the risks associated with walking and talking on a cell phone and to develop strategies for intervention. Cell phone use continues to increase both at home and outdoor environments. The use of smart phones, with their more enticing features, increases

  10. DRAM1 Protects Neuroblastoma Cells from Oxygen-Glucose Deprivation/Reperfusion-Induced Injury via Autophagy

    Directory of Open Access Journals (Sweden)

    Mengqiang Yu

    2014-10-01

    Full Text Available DNA damage-regulated autophagy modulator protein 1 (DRAM1, a multi-pass membrane lysosomal protein, is reportedly a tumor protein p53 (TP53 target gene involved in autophagy. During cerebral ischemia/reperfusion (I/R injury, DRAM1 protein expression is increased, and autophagy is activated. However, the functional significance of DRAM1 and the relationship between DRAM1 and autophagy in brain I/R remains uncertain. The aim of this study is to investigate whether DRAM1 mediates autophagy activation in cerebral I/R injury and to explore its possible effects and mechanisms. We adopt the oxygen-glucose deprivation and reperfusion (OGD/R Neuro-2a cell model to mimic cerebral I/R conditions in vitro, and RNA interference is used to knock down DRAM1 expression in this model. Cell viability assay is performed using the LIVE/DEAD viability/cytotoxicity kit. Cell phenotypic changes are analyzed through Western blot assays. Autophagy flux is monitored through the tandem red fluorescent protein–Green fluorescent protein–microtubule associated protein 1 light chain 3 (RFP–GFP–LC3 construct. The expression levels of DRAM1 and microtubule associated protein 1 light chain 3II/I (LC3II/I are strongly up-regulated in Neuro-2a cells after OGD/R treatment and peaked at the 12 h reperfusion time point. The autophagy-specific inhibitor 3-Methyladenine (3-MA inhibits the expression of DRAM1 and LC3II/I and exacerbates OGD/R-induced cell injury. Furthermore, DRAM1 knockdown aggravates OGD/R-induced cell injury and significantly blocks autophagy through decreasing autophagosome-lysosome fusion. In conclusion, our data demonstrate that DRAM1 knockdown in Neuro-2a cells inhibits autophagy by blocking autophagosome-lysosome fusion and exacerbated OGD/R-induced cell injury. Thus, DRAM1 might constitute a new therapeutic target for I/R diseases.

  11. Novel method to dynamically load cells in 3D-hydrogels culture for blast injury studies

    Science.gov (United States)

    Sory, David R.; Areias, Anabela C.; Overby, Darryl R.; Proud, William G.

    2017-01-01

    For at least a century explosive devices have been one of the most important causes of injuries in military conflicts as well as in terrorist attacks. Although significant experimental and modelling efforts have been focussed on blast injuries at the organ or tissue level, few studies have investigated the mechanisms of blast injuries at the cellular level. This paper introduces an in vitro method compatible with living cells to examine the effects of high stress and short-duration pulses relevant to blast loadings and blunt trauma. The experimental phase involves high strain-rate axial compression of cylindrical specimens within an hermetically sealed chamber made of biocompatible polymer. Numerical simulations were performed in order to verify the experimental loading conditions and to characterize the loading path within the sample. A proof of concept is presented so as to establish a new window to address fundamental questions regarding blast injury at the cellular level.

  12. Intraoperative Detection of Cell Injury and Cell Death with an 800 nm Near-Infrared Fluorescent Annexin V Derivative

    Science.gov (United States)

    Ohnishi, Shunsuke; Vanderheyden, Jean-Luc; Tanaka, Eiichi; Patel, Bhavesh; De Grand, Alec; Laurence, Rita G.; Yamashita, Kenichiro; Frangioni, John V.

    2008-01-01

    The intraoperative detection of cell injury and cell death is fundamental to human surgeries such as organ transplantation and resection. Because of low autofluorescence background and relatively high tissue penetration, invisible light in the 800 nm region provides sensitive detection of disease pathology without changing the appearance of the surgical field. In order to provide surgeons with real-time intraoperative detection of cell injury and death after ischemia/reperfusion (I/R), we have developed a bioactive derivative of human annexin V (annexin800), which fluoresces at 800 nm. Total fluorescence yield, as a function of bioactivity, was optimized in vitro, and final performance was assessed in vivo. In liver, intestine and heart animal models of I/R, an optimal signal to background ratio was obtained 30 min after intravenous injection of annexin800, and histology confirmed concordance between planar reflectance images and actual deep tissue injury. In summary, annexin800 permits sensitive, real-time detection of cell injury and cell death after I/R in the intraoperative setting, and can be used during a variety of surgeries for rapid assessment of tissue and organ status. PMID:16869796

  13. Circulating osteogenic cells: implications for injury, repair, and regeneration

    DEFF Research Database (Denmark)

    Pignolo, Robert J; Kassem, Moustapha

    2011-01-01

    The aim of this review is to provide a critical reading of recent literature pertaining to the presence of circulating, fluid-phase osteoblastic cells and their possible contribution to bone formation. We have termed this group of cells collectively as circulating osteogenic precursor (COP) cells...

  14. Effect of transplantation of olfactory ensheathing cell conditioned medium induced bone marrow stromal cells on rats with spinal cord injury

    Science.gov (United States)

    Feng, Linjie; Gan, Hongquan; Zhao, Wenguo; Liu, Yingjie

    2017-01-01

    Spinal cord injury is a serious threat to human health and various techniques have been deployed to ameliorate or cure its effects. Stem cells transplantation is one of the promising methods. The primary aim of the present study was to investigate the effect of the transplantation of olfactory ensheathing cell (OEC) conditioned medium-induced bone marrow stromal cells (BMSCs) on spinal cord injury. Rat spinal cord compression injury animal models were generated, and the rats divided into the following three groups: Group A, (control) Dulbecco's modified Eagle's medium-treated group; group B, normal BMSC-treated group; group C, OEC conditioned medium-induced BMSC-treated group. The animals were sacrificed at 2, 4 and 8 weeks following transplantation for hematoxylin and eosin staining, and fluorescence staining of neurofilament protein, growth associated protein-43 and neuron-specific nuclear protein. The cavity area of the spinal cord injury was significantly reduced at 2 and 4 weeks following transplantation in group C, and a significant difference between the Basso, Beattie and Bresnahan score in group C and groups A and B was observed. Regenerated nerve fibers were observed in groups B and C; however, a greater number of regenerated nerve fibers were observed in group C. BMSCs induced by OEC conditioned medium survived in vivo, significantly reduced the cavity area of spinal cord injury, promoted nerve fiber regeneration following spinal cord injury and facilitated recovery of motor function. The present study demonstrated a novel method to repair spinal cord injury by using induced BMSCs, with satisfactory results. PMID:28656221

  15. Transplantation of human embryonic stem cell-derived oligodendrocyte progenitors into rat spinal cord injuries does not cause harm.

    Science.gov (United States)

    Cloutier, Frank; Siegenthaler, Monica M; Nistor, Gabriel; Keirstead, Hans S

    2006-07-01

    Demyelination contributes to loss of function following spinal cord injury. We have shown previously that transplantation of human embryonic stem cell-derived oligodendrocyte progenitors into adult rat 200 kD contusive spinal cord injury sites enhances remyelination and promotes recovery of motor function. Previous studies using oligodendrocyte lineage cells have noted a correlation between the presence of demyelinating pathology and the survival and migration rate of the transplanted cells. The present study compared the survival and migration of human embryonic stem cell-derived oligodendrocyte progenitors injected 7 days after a 200 or 50 kD contusive spinal cord injury, as well as the locomotor outcome of transplantation. Our findings indicate that a 200 kD spinal cord injury induces extensive demyelination, whereas a 50 kD spinal cord injury induces no detectable demyelination. Cells transplanted into the 200 kD injury group survived, migrated, and resulted in robust remyelination, replicating our previous studies. In contrast, cells transplanted into the 50 kD injury group survived, exhibited limited migration, and failed to induce remyelination as demyelination in this injury group was absent. Animals that received a 50 kD injury displayed only a transient decline in locomotor function as a result of the injury. Importantly, human embryonic stem cell-derived oligodendrocyte progenitor transplants into the 50 kD injury group did not cause a further decline in locomotion. Our studies highlight the importance of a demyelinating pathology as a prerequisite for the function of transplanted myelinogenic cells. In addition, our results indicate that transplantation of human embryonic stem cell-derived oligodendrocyte progenitor cells into the injured spinal cord is not associated with a decline in locomotor function.

  16. Relationship between Sublethal Injury and Inactivation of Yeast Cells by the Combination of Sorbic Acid and Pulsed Electric Fields▿

    OpenAIRE

    Somolinos, M.; García, D.; Condón, S.; Mañas, P.; Pagán, R.

    2007-01-01

    The objective of this study was to investigate the occurrence of sublethal injury after the pulsed-electric-field (PEF) treatment of two yeasts, Dekkera bruxellensis and Saccharomyces cerevisiae, as well as the relation of sublethal injury to the inactivating effect of the combination of PEF and sorbic acid. PEF caused sublethal injury in both yeasts: more than 90% of surviving D. bruxellensis cells and 99% of surviving S. cerevisiae cells were sublethally injured after 50 pulses at 12 kV/cm ...

  17. Visual bone marrow mesenchymal stem cell transplantation in the repair of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Rui-ping Zhang

    2015-01-01

    Full Text Available An important factor in improving functional recovery from spinal cord injury using stem cells is maximizing the number of transplanted cells at the lesion site. Here, we established a contusion model of spinal cord injury by dropping a weight onto the spinal cord at T 7-8 . Superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells were transplanted into the injured spinal cord via the subarachnoid space. An outer magnetic field was used to successfully guide the labeled cells to the lesion site. Prussian blue staining showed that more bone marrow mesenchymal stem cells reached the lesion site in these rats than in those without magnetic guidance or superparamagnetic iron oxide labeling, and immunofluorescence revealed a greater number of complete axons at the lesion site. Moreover, the Basso, Beattie and Bresnahan (BBB locomotor rating scale scores were the highest in rats with superparamagnetic labeling and magnetic guidance. Our data confirm that superparamagnetic iron oxide nanoparticles effectively label bone marrow mesenchymal stem cells and impart sufficient magnetism to respond to the external magnetic field guides. More importantly, superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells can be dynamically and non-invasively tracked in vivo using magnetic resonance imaging. Superparamagnetic iron oxide labeling of bone marrow mesenchymal stem cells coupled with magnetic guidance offers a promising avenue for the clinical treatment of spinal cord injury.

  18. Cell Injury and Repair Resulting from Sleep Loss and Sleep Recovery in Laboratory Rats

    Science.gov (United States)

    Everson, Carol A.; Henchen, Christopher J.; Szabo, Aniko; Hogg, Neil

    2014-01-01

    Study Objectives: Increased cell injury would provide the type of change in constitution that would underlie sleep disruption as a risk factor for multiple diseases. The current study was undertaken to investigate cell injury and altered cell fate as consequences of sleep deprivation, which were predicted from systemic clues. Design: Partial (35% sleep reduction) and total sleep deprivation were produced in rats for 10 days, which was tolerated and without overtly deteriorated health. Recovery rats were similarly sleep deprived for 10 days, then allowed undisturbed sleep for 2 days. The plasma, liver, lung, intestine, heart, and spleen were analyzed and compared to control values for damage to DNA, proteins, and lipids; apoptotic cell signaling and death; cell proliferation; and concentrations of glutathione peroxidase and catalase. Measurements and Results: Oxidative DNA damage in totally sleep deprived rats was 139% of control values, with organ-specific effects in the liver (247%), lung (166%), and small intestine (145%). Overall and organ-specific DNA damage was also increased in partially sleep deprived rats. In the intestinal epithelium, total sleep deprivation resulted in 5.3-fold increases in dying cells and 1.5-fold increases in proliferating cells, compared with control. Two days of recovery sleep restored the balance between DNA damage and repair, and resulted in normal or below-normal metabolic burdens and oxidative damage. Conclusions: These findings provide physical evidence that sleep loss causes cell damage, and in a manner expected to predispose to replication errors and metabolic abnormalities; thereby providing linkage between sleep loss and disease risk observed in epidemiological findings. Properties of recovery sleep include biochemical and molecular events that restore balance and decrease cell injury. Citation: Everson CA, Henchen CJ, Szabo A, Hogg N. Cell injury and repair resulting from sleep loss and sleep recovery in laboratory rats

  19. Kidney stone matrix proteins ameliorate calcium oxalate monohydrate induced apoptotic injury to renal epithelial cells.

    Science.gov (United States)

    Narula, Shifa; Tandon, Simran; Singh, Shrawan Kumar; Tandon, Chanderdeep

    2016-11-01

    Kidney stone formation is a highly prevalent disease, affecting 8-10% of the human population worldwide. Proteins are the major constituents of human kidney stone's organic matrix and considered to play critical role in the pathogenesis of disease but their mechanism of modulation still needs to be explicated. Therefore, in this study we investigated the effect of human kidney stone matrix proteins on the calcium oxalate monohydrate (COM) mediated cellular injury. The renal epithelial cells (MDCK) were exposed to 200μg/ml COM crystals to induce injury. The effect of proteins isolated from human kidney stone was studied on COM injured cells. The alterations in cell-crystal interactions were examined by phase contrast, polarizing, fluorescence and scanning electron microscopy. Moreover, its effect on the extent of COM induced cell injury, was quantified by flow cytometric analysis. Our study indicated the antilithiatic potential of human kidney stone proteins on COM injured MDCK cells. Flow cytometric analysis and fluorescence imaging ascertained that matrix proteins decreased the extent of apoptotic injury caused by COM crystals on MDCK cells. Moreover, the electron microscopic studies of MDCK cells revealed that matrix proteins caused significant dissolution of COM crystals, indicating cytoprotection against the impact of calcium oxalate injury. The present study gives insights into the mechanism implied by urinary proteins to restrain the pathogenesis of kidney stone disease. This will provide a better understanding of the formation of kidney stones which can be useful for the proper management of the disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. A neonatal mouse spinal cord injury model for assessing post-injury adaptive plasticity and human stem cell integration.

    Directory of Open Access Journals (Sweden)

    Jean-Luc Boulland

    Full Text Available Despite limited regeneration capacity, partial injuries to the adult mammalian spinal cord can elicit variable degrees of functional recovery, mediated at least in part by reorganization of neuronal circuitry. Underlying mechanisms are believed to include synaptic plasticity and collateral sprouting of spared axons. Because plasticity is higher in young animals, we developed a spinal cord compression (SCC injury model in the neonatal mouse to gain insight into the potential for reorganization during early life. The model provides a platform for high-throughput assessment of functional synaptic connectivity that is also suitable for testing the functional integration of human stem and progenitor cell-derived neurons being considered for clinical cell replacement strategies. SCC was generated at T9-T11 and functional recovery was assessed using an integrated approach including video kinematics, histology, tract tracing, electrophysiology, and high-throughput optical recording of descending inputs to identified spinal neurons. Dramatic degeneration of axons and synaptic contacts was evident within 24 hours of SCC, and loss of neurons in the injured segment was evident for at least a month thereafter. Initial hindlimb paralysis was paralleled by a loss of descending inputs to lumbar motoneurons. Within 4 days of SCC and progressively thereafter, hindlimb motility began to be restored and descending inputs reappeared, but with examples of atypical synaptic connections indicating a reorganization of circuitry. One to two weeks after SCC, hindlimb motility approached sham control levels, and weight-bearing locomotion was virtually indistinguishable in SCC and sham control mice. Genetically labeled human fetal neural progenitor cells injected into the injured spinal cord survived for at least a month, integrated into the host tissue and began to differentiate morphologically. This integrative neonatal mouse model provides opportunities to explore early

  1. Mesenchymal stem cell-conditioned medium prevents radiation-induced liver injury by inhibiting inflammation and protecting sinusoidal endothelial cells

    International Nuclear Information System (INIS)

    Chen Yixing; Zeng Zhaochong; Sun Jing; Huang Yan; Zhang Zhenyu; Zeng Haiying

    2015-01-01

    Current management of radiation-induced liver injury is limited. Sinusoidal endothelial cell (SEC) apoptosis and inflammation are considered to be initiating events in hepatic damage. We hypothesized that mesenchymal stem cells (MSCs) possess anti-apoptotic and anti-inflammatory actions during hepatic irradiation, acting via paracrine mechanisms. This study aims to examine whether MSC-derived bioactive components are protective against radiation-induced liver injury in rats. MSC-conditioned medium (MSC-CM) was generated from rat bone marrow–derived MSCs. The effect of MSC-CM on the viability of irradiated SECs was examined by flow cytometric analysis. Activation of the Akt and ERK pathways was analyzed by western blot. MSC-CM was also delivered to Sprague–Dawley rats immediately before receiving liver irradiation, followed by testing for pathological features, changes in serum hyaluronic acid, ALT, and inflammatory cytokine levels, and liver cell apoptosis. MSC-CM enhanced the viability of irradiated SECs in vitro and induced Akt and ERK phosphorylation in these cells. Infusion of MSC-CM immediately before liver irradiation provided a significant anti-apoptotic effect on SECs and improved the histopathological features of injury in the irradiated liver. MSC-CM also reduced the secretion and expression of inflammatory cytokines and increased the expression of anti-inflammatory cytokines. MSC-derived bioactive components could be a novel therapeutic approach for treating radiation-induced liver injury. (author)

  2. The tissue injury and repair in cancer radiotherapy

    International Nuclear Information System (INIS)

    Matsuzawa, Taiju

    1975-01-01

    One of the difficulties in cancer radiotherapy arises from the fact that the tissue tolerance dose is much smaller than the tumor lethal dose. In our opinion the former depends upon the tolerance of the endothelial cell of the blood vessel in the normal tissue. In this introduction, a new concept regarding the estimation of tissue radiosensitivity was described, and the possible significance of the mode of radiation injury and the repair capability of normal tissue in the cancer radiotheraphy was discussed. (author)

  3. Hypoxia-preconditioned mesenchymal stem cells ameliorate ischemia/reperfusion-induced lung injury.

    Directory of Open Access Journals (Sweden)

    Yung-Yang Liu

    Full Text Available Hypoxia preconditioning has been proven to be an effective method to enhance the therapeutic action of mesenchymal stem cells (MSCs. However, the beneficial effects of hypoxic MSCs in ischemia/reperfusion (I/R lung injury have yet to be investigated. In this study, we hypothesized that the administration of hypoxic MSCs would have a positive therapeutic impact on I/R lung injury at molecular, cellular, and functional levels.I/R lung injury was induced in isolated and perfused rat lungs. Hypoxic MSCs were administered in perfusate at a low (2.5×105 cells and high (1×106 cells dose. Rats ventilated with a low tidal volume of 6 ml/kg served as controls. Hemodynamics, lung injury indices, inflammatory responses and activation of apoptotic pathways were determined.I/R induced permeability pulmonary edema with capillary leakage and increased levels of reactive oxygen species (ROS, pro-inflammatory cytokines, adhesion molecules, cytosolic cytochrome C, and activated MAPK, NF-κB, and apoptotic pathways. The administration of a low dose of hypoxic MSCs effectively attenuated I/R pathologic lung injury score by inhibiting inflammatory responses associated with the generation of ROS and anti-apoptosis effect, however this effect was not observed with a high dose of hypoxic MSCs. Mechanistically, a low dose of hypoxic MSCs down-regulated P38 MAPK and NF-κB signaling but upregulated glutathione, prostaglandin E2, IL-10, mitochondrial cytochrome C and Bcl-2. MSCs infused at a low dose migrated into interstitial and alveolar spaces and bronchial trees, while MSCs infused at a high dose aggregated in the microcirculation and induced pulmonary embolism.Hypoxic MSCs can quickly migrate into extravascular lung tissue and adhere to other inflammatory or structure cells and attenuate I/R lung injury through anti-oxidant, anti-inflammatory and anti-apoptotic mechanisms. However, the dose of MSCs needs to be optimized to prevent pulmonary embolism and thrombosis.

  4. Effect of adoptive transfer or depletion of regulatory T cells on triptolide-induced liver injury

    Directory of Open Access Journals (Sweden)

    Xinzhi eWang

    2016-04-01

    Full Text Available ObjectiveThe aim of this study is to clarify the role of regulatory T cell (Treg in triptolide (TP-induced hepatotoxicity. MethodsFemale C57BL/6 mice received either adoptive transfer of Tregs or depletion of Tregs, then underwent TP administration and were sacrificed 24 hours after TP administration. Liver injury was determined according to ALT and AST levels in serum and histopathological change in liver tissue. Hepatic frequencies of Treg cells and the mRNA expression levles of transcription factor FoxP3 and RORγt, IL-10, SOCS and Notch/Notch ligand were investigated.ResultsDuring TP-induced liver injury, hepatic Treg and IL-10 decreased, while Th17 cell transcription factor RORγt, SOCS signaling and Notch signaling increased, accompanied with liver inflammation. Adoptive transfer of Tregs ameliorated the severity of TP-induced liver injury, accompanied with increased levels of hepatic Treg and IL-10. Adoptive transfer of Tregs remarkably inhibited the expression of RORγt, SOCS3, Notch1 and Notch3. On the contrary, depletion of Treg cells in TP-administered mice resulted in a notable increase of RORγt, SOCS1, SOCS3 and Notch3, while the Treg and IL-10 of liver decreased. Consistent with the exacerbation of liver injury, higher serum levels of ALT and AST were detected in Treg-depleted mice. ConclusionsThese results showed that adoptive transfer or depletion of Tregs attenuated or aggravated TP-induced liver injury, suggesting that Tregs could play important roles in the progression of liver injury. SOCS proteins and Notch signaling affected Tregs, which may contribute to the pathogenesis of TP-induced hepatotoxicity.

  5. Allosuppressor and allohelper T cells in acute and chronic graft-vs-host disease. I. Alloreactive suppressor cells rather than killer T cells appear to be the decisive effector cells in lethal graft-vs.-host disease

    NARCIS (Netherlands)

    Rolink, A. G.; Radaszkiewicz, T.; Pals, S. T.; van der Meer, W. G.; Gleichmann, E.

    1982-01-01

    Splenic T cells from B10 donors were injected into irradiated (B10 x DBA/2)F1 mice. Either 5 or 6 d later, activated donor T cells were recovered from the spleens of these primary F1 (1 degree F1) recipients and transferred to groups of nonirradiated syngeneic F1 (2 degrees F1) recipients. Whereas

  6. The Phenotypic Fate of Bone Marrow-Derived Stem Cells in Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Guowei Feng

    2013-11-01

    Full Text Available Background: Despite increasing attention on the role of bone marrow derived stem cells in repair or rejuvenation of tissues and organs, cellular mechanisms of such cell-based therapy remain poorly understood. Methods: We reconstituted hematopoiesis in recipient C57BL/6J mice by transplanting syngeneic GFP+ bone marrow (BM cells. Subsequently, the recipients received subcutaneous injection of granulocyte-colony stimulating factor (G-CSF and were subjected to acute renal ischemic injury. Flow cytometry and immunostaining were performed at various time points to assess engraftment and phenotype of BM derived stem cells. Results: Administration of G-CSF increased the release of BM derived stem cells into circulation and enhanced the ensuing recruitment of BM derived stem cells into injured kidney. During the second month post injury, migrated BM derived stem cells lost hematopoietic phenotype (CD45 but maintained the expression of other markers (Sca-1, CD133 and CD44, suggesting their potential of transdifferentiation into renal stem cells. Moreover, G-CSF treatment enhanced the phenotypic conversion. Conclusion: Our work depicted a time-course dependent transition of phenotypic characteristics of BM derived stem cells, demonstrated the existence of BM derived stem cells in damaged kidney and revealed the effects of G-CSF on cell transdifferentiation.

  7. CXCL12 Promotes Stem Cell Recruitment and Uterine Repair after Injury in Asherman’s Syndrome

    Directory of Open Access Journals (Sweden)

    Gulcin Sahin Ersoy

    2017-03-01

    Full Text Available Asherman’s syndrome is an acquired condition of uterine fibrosis and adhesions in response to injury that adversely affects fertility and pregnancy. We have previously demonstrated that bone marrow-derived mesenchymal stem cells (BMDSCs contribute to uterine repair after injury and that stem cells supplementation improves fertility. Here, we demonstrate that CXCL12 is the chemokine that mediates stem cell engraftment and functional improvement using a murine model of Asherman’s syndrome. After uterine injury, we demonstrate that CXCL12 augmentation increased BMDSC engraftment and that the CXCL12 receptor (CXCR4 antagonist, ADM3100, blocked stem cell recruitment. CXCL12 reduced, whereas ADM3100 increased fibrosis. CXCL12 treatment led to improved fertility and litter size, whereas ADM3100 treatment reduced fertility and litter size. ADM3100 prevented optimal spontaneous uterine repair mediated by endogenous CXCL12 production, reducing pregnancies after injury in the absence of supplemental CXCL12 administration; however, ADM3100 treatment could be partially rescued by CXCL12 augmentation. CXCL12 or other CXCR4 receptor agonists may be useful in the treatment of infertility or adverse pregnancy outcomes in Asherman’s syndrome and other related uterine disorders.

  8. T-cells contribute to hypertension but not to renal injury in mice with subtotal nephrectomy

    NARCIS (Netherlands)

    Oosterhuis, Nynke R.; Papazova, Diana A.; Gremmels, Hendrik; Joles, Jaap A.; Verhaar, Marianne C.

    2017-01-01

    Background: The pathological condition of chronic kidney disease may not be adequately recapitulated in immunocompromised mice due to the lack of T-cells, which are important for the development of hypertension and renal injury. We studied the role of the immune system in relation to salt-sensitive

  9. Stem cell injury and restitution after ionizing irradiation in intestine, liver, salivary gland, mesenteric lymph node

    International Nuclear Information System (INIS)

    Lee, Jae Hyun; Cho, Kyung Ja; Lee, Sun Joo; Jang, Won Suk

    1998-01-01

    There is little information about radiation injury on stem cell resident in other organs. In addition there is little experimental model in which radiation plays a role on proliferation stem cell in adult organ. This study was carried out to evaluate the early response of tissue injury and restitution in intestine, liver, salivary gland and lymph node, and to develop in vivo model to investigate stem cell biology by irradiation. The study is to assay the early response to radiation and setup an animal model for radiation effect on cellular response. Duodenal intestine, liver, submandibular salivary gland and mesenteric lymph node were selected to compare apoptosis and proliferating cell nuclear antigen (PCNA) expression to radiosensitivity. For the effect of radiation on cellular responses, rats were irradiated during starvation. Conclusionly, this study showed the value of apoptosis in detection system for evaluating cellular damage against radiation injury. Because apoptosis was regularly inducted depending on tissue-specific pattern, dose and time sequence as well as cellular activity. Furthermore in vivo model in the study will be helped in the further study to elucidate the relationship between radiation injury and starvation or malnutrition. (author). 22 refs., 6 figs

  10. Programmed Necrosis: A Prominent Mechanism of Cell Death following Neonatal Brain Injury

    Directory of Open Access Journals (Sweden)

    Raul Chavez-Valdez

    2012-01-01

    Full Text Available Despite the introduction of therapeutic hypothermia, neonatal hypoxic ischemic (HI brain injury remains a common cause of developmental disability. Development of rational adjuvant therapies to hypothermia requires understanding of the pathways of cell death and survival modulated by HI. The conceptualization of the apoptosis-necrosis “continuum” in neonatal brain injury predicts mechanistic interactions between cell death and hydrid forms of cell death such as programmed or regulated necrosis. Many of the components of the signaling pathway regulating programmed necrosis have been studied previously in models of neonatal HI. In some of these investigations, they participate as part of the apoptotic pathways demonstrating clear overlap of programmed death pathways. Receptor interacting protein (RIP-1 is at the crossroads between types of cellular death and survival and RIP-1 kinase activity triggers formation of the necrosome (in complex with RIP-3 leading to programmed necrosis. Neuroprotection afforded by the blockade of RIP-1 kinase following neonatal HI suggests a role for programmed necrosis in the HI injury to the developing brain. Here, we briefly review the state of the knowledge about the mechanisms behind programmed necrosis in neonatal brain injury recognizing that a significant proportion of these data derive from experiments in cultured cell and some from in vivo adult animal models. There are still more questions than answers, yet the fascinating new perspectives provided by the understanding of programmed necrosis in the developing brain may lay the foundation for new therapies for neonatal HI.

  11. An Optic Nerve Crush Injury Murine Model to Study Retinal Ganglion Cell Survival

    Science.gov (United States)

    Tang, Zhongshu; Zhang, Shuihua; Lee, Chunsik; Kumar, Anil; Arjunan, Pachiappan; Li, Yang; Zhang, Fan; Li, Xuri

    2011-01-01

    Injury to the optic nerve can lead to axonal degeneration, followed by a gradual death of retinal ganglion cells (RGCs), which results in irreversible vision loss. Examples of such diseases in human include traumatic optic neuropathy and optic nerve degeneration in glaucoma. It is characterized by typical changes in the optic nerve head, progressive optic nerve degeneration, and loss of retinal ganglion cells, if uncontrolled, leading to vision loss and blindness. The optic nerve crush (ONC) injury mouse model is an important experimental disease model for traumatic optic neuropathy, glaucoma, etc. In this model, the crush injury to the optic nerve leads to gradual retinal ganglion cells apoptosis. This disease model can be used to study the general processes and mechanisms of neuronal death and survival, which is essential for the development of therapeutic measures. In addition, pharmacological and molecular approaches can be used in this model to identify and test potential therapeutic reagents to treat different types of optic neuropathy. Here, we provide a step by step demonstration of (I) Baseline retrograde labeling of retinal ganglion cells (RGCs) at day 1, (II) Optic nerve crush injury at day 4, (III) Harvest the retinae and analyze RGC survival at day 11, and (IV) Representative result. PMID:21540827

  12. Exploiting endogenous fibrocartilage stem cells to regenerate cartilage and repair joint injury

    Science.gov (United States)

    Embree, Mildred C.; Chen, Mo; Pylawka, Serhiy; Kong, Danielle; Iwaoka, George M.; Kalajzic, Ivo; Yao, Hai; Shi, Chancheng; Sun, Dongming; Sheu, Tzong-Jen; Koslovsky, David A.; Koch, Alia; Mao, Jeremy J.

    2016-01-01

    Tissue regeneration using stem cell-based transplantation faces many hurdles. Alternatively, therapeutically exploiting endogenous stem cells to regenerate injured or diseased tissue may circumvent these challenges. Here we show resident fibrocartilage stem cells (FCSCs) can be used to regenerate and repair cartilage. We identify FCSCs residing within the superficial zone niche in the temporomandibular joint (TMJ) condyle. A single FCSC spontaneously generates a cartilage anlage, remodels into bone and organizes a haematopoietic microenvironment. Wnt signals deplete the reservoir of FCSCs and cause cartilage degeneration. We also show that intra-articular treatment with the Wnt inhibitor sclerostin sustains the FCSC pool and regenerates cartilage in a TMJ injury model. We demonstrate the promise of exploiting resident FCSCs as a regenerative therapeutic strategy to substitute cell transplantation that could be beneficial for patients suffering from fibrocartilage injury and disease. These data prompt the examination of utilizing this strategy for other musculoskeletal tissues. PMID:27721375

  13. Lgr5 Identifies Progenitor Cells Capable of Taste Bud Regeneration after Injury.

    Directory of Open Access Journals (Sweden)

    Norifumi Takeda

    Full Text Available Taste buds are composed of a variety of taste receptor cell types that develop from tongue epithelium and are regularly replenished under normal homeostatic conditions as well as after injury. The characteristics of cells that give rise to regenerating taste buds are poorly understood. Recent studies have suggested that Lgr5 (leucine-rich repeat-containing G-protein coupled receptor 5 identifies taste bud stem cells that contribute to homeostatic regeneration in adult circumvallate and foliate taste papillae, which are located in the posterior region of the tongue. Taste papillae in the adult anterior region of the tongue do not express Lgr5. Here, we confirm and extend these studies by demonstrating that Lgr5 cells give rise to both anterior and posterior taste buds during development, and are capable of regenerating posterior taste buds after injury induced by glossopharyngeal nerve transection.

  14. Lgr5 Identifies Progenitor Cells Capable of Taste Bud Regeneration after Injury.

    Science.gov (United States)

    Takeda, Norifumi; Jain, Rajan; Li, Deqiang; Li, Li; Lu, Min Min; Epstein, Jonathan A

    2013-01-01

    Taste buds are composed of a variety of taste receptor cell types that develop from tongue epithelium and are regularly replenished under normal homeostatic conditions as well as after injury. The characteristics of cells that give rise to regenerating taste buds are poorly understood. Recent studies have suggested that Lgr5 (leucine-rich repeat-containing G-protein coupled receptor 5) identifies taste bud stem cells that contribute to homeostatic regeneration in adult circumvallate and foliate taste papillae, which are located in the posterior region of the tongue. Taste papillae in the adult anterior region of the tongue do not express Lgr5. Here, we confirm and extend these studies by demonstrating that Lgr5 cells give rise to both anterior and posterior taste buds during development, and are capable of regenerating posterior taste buds after injury induced by glossopharyngeal nerve transection.

  15. Macrophage-independent T cell infiltration to the site of injury-induced brain inflammation

    DEFF Research Database (Denmark)

    Fux, Michaela; van Rooijen, Nico; Owens, Trevor

    2008-01-01

    We have addressed the role of macrophages in glial response and T cell entry to the CNS after axonal injury, by using intravenous injection of clodronate-loaded mannosylated liposomes, in C57BL6 mice. As expected, clodronate-liposome treatment resulted in depletion of peripheral macrophages which...... delay in the expansion of CD45(dim) CD11b(+) microglia in clodronate-liposome treated mice, but macrophage depletion had no effect on the percentage of infiltrating T cells in the lesion-reactive hippocampus. Lesion-induced TNFalpha mRNA expression was not affected by macrophage depletion, suggesting...... that activated glial cells are the primary source of this cytokine in the axonal injury-reactive brain. This identifies a potentially important distinction from inflammatory autoimmune infiltration in EAE, where macrophages are a prominent source of TNFalpha and their depletion prevents parenchymal T cell...

  16. Non-Lethal Weapons Program

    Science.gov (United States)

    Sheets Frequently Asked Questions Non-Lethal Weapons FAQs Active Denial System FAQs Human Electro -Muscular Incapacitation FAQs Related Links Business Opportunities Contact JNLWD Congressional Engagement , Wednesday, Sept 20, 2017. The Active Denial System, blunt-impact munitions, dazzling lasers, LRAD 100X

  17. Expression of lectin-like oxidized LDL receptor-1 in smooth muscle cells after vascular injury

    International Nuclear Information System (INIS)

    Eto, Hideyuki; Miyata, Masaaki; Kume, Noriaki; Minami, Manabu; Itabe, Hiroyuki; Orihara, Koji; Hamasaki, Shuichi; Biro, Sadatoshi; Otsuji, Yutaka; Kita, Toru; Tei, Chuwa

    2006-01-01

    Lectin-like oxidized LDL receptor-1 (LOX-1) is an oxidized LDL receptor, and its role in restenosis after angioplasty remains unknown. We used a balloon-injury model of rabbit aorta, and reverse transcription-polymerase chain reaction revealed that LOX-1 mRNA expression was modest in the non-injured aorta, reached a peak level 2 days after injury, and remained elevated until 24 weeks after injury. Immunohistochemistry and in situ hybridization showed that LOX-1 was not detected in the media of non-injured aorta but expressed in both medial and neointimal smooth muscle cells (SMC) at 2 and 24 weeks after injury. Low concentrations of ox-LDL (10 μg/mL) stimulated the cultured SMC proliferation, which was inhibited by antisense oligonucleotides of LOX-1 mRNA. Double immunofluorescense staining showed the colocalization of LOX-1 and proliferating cell nuclear antigen in human restenotic lesion. These results suggest that LOX-1 mediates ox-LDL-induced SMC proliferation and plays a role in neointimal formation after vascular injury

  18. Retinal ganglion cell survival and axon regeneration after optic nerve injury in naked mole-rats.

    Science.gov (United States)

    Park, Kevin K; Luo, Xueting; Mooney, Skyler J; Yungher, Benjamin J; Belin, Stephane; Wang, Chen; Holmes, Melissa M; He, Zhigang

    2017-02-01

    In the adult mammalian central nervous system (CNS), axonal damage often triggers neuronal cell death and glial activation, with very limited spontaneous axon regeneration. In this study, we performed optic nerve injury in adult naked mole-rats, the longest living rodent, with a maximum life span exceeding 30 years, and found that injury responses in this species are quite distinct from those in other mammalian species. In contrast to what is seen in other mammals, the majority of injured retinal ganglion cells (RGCs) survive with relatively high spontaneous axon regeneration. Furthermore, injured RGCs display activated signal transducer and activator of transcription-3 (STAT3), whereas astrocytes in the optic nerve robustly occupy and fill the lesion area days after injury. These neuron-intrinsic and -extrinsic injury responses are reminiscent of those in "cold-blooded" animals, such as fish and amphibians, suggesting that the naked mole-rat is a powerful model for exploring the mechanisms of neuronal injury responses and axon regeneration in mammals. J. Comp. Neurol. 525:380-388, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Cell density signal protein suitable for treatment of connective tissue injuries and defects

    Science.gov (United States)

    Schwarz, Richard I.

    2002-08-13

    Identification, isolation and partial sequencing of a cell density protein produced by fibroblastic cells. The cell density signal protein comprising a 14 amino acid peptide or a fragment, variant, mutant or analog thereof, the deduced cDNA sequence from the 14 amino acid peptide, a recombinant protein, protein and peptide-specific antibodies, and the use of the peptide and peptide-specific antibodies as therapeutic agents for regulation of cell differentiation and proliferation. A method for treatment and repair of connective tissue and tendon injuries, collagen deficiency, and connective tissue defects.

  20. Repair of tracheal epithelium by basal cells after chlorine-induced injury

    Directory of Open Access Journals (Sweden)

    Musah Sadiatu

    2012-11-01

    Full Text Available Abstract Background Chlorine is a widely used toxic compound that is considered a chemical threat agent. Chlorine inhalation injures airway epithelial cells, leading to pulmonary abnormalities. Efficient repair of injured epithelium is necessary to restore normal lung structure and function. The objective of the current study was to characterize repair of the tracheal epithelium after acute chlorine injury. Methods C57BL/6 mice were exposed to chlorine and injected with 5-ethynyl-2′-deoxyuridine (EdU to label proliferating cells prior to sacrifice and collection of tracheas on days 2, 4, 7, and 10 after exposure. Airway repair and restoration of a differentiated epithelium were examined by co-localization of EdU labeling with markers for the three major tracheal epithelial cell types [keratin 5 (K5 and keratin 14 (K14 for basal cells, Clara cell secretory protein (CCSP for Clara cells, and acetylated tubulin (AcTub for ciliated cells]. Morphometric analysis was used to measure proliferation and restoration of a pseudostratified epithelium. Results Epithelial repair was fastest and most extensive in proximal trachea compared with middle and distal trachea. In unexposed mice, cell proliferation was minimal, all basal cells expressed K5, and K14-expressing basal cells were absent from most sections. Chlorine exposure resulted in the sloughing of Clara and ciliated cells from the tracheal epithelium. Two to four days after chlorine exposure, cell proliferation occurred in K5- and K14-expressing basal cells, and the number of K14 cells was dramatically increased. In the period of peak cell proliferation, few if any ciliated or Clara cells were detected in repairing trachea. Expression of ciliated and Clara cell markers was detected at later times (days 7–10, but cell proliferation was not detected in areas in which these differentiated markers were re-expressed. Fibrotic lesions were observed at days 7–10 primarily in distal trachea. Conclusion

  1. Prevention of lethal murine graft versus host disease by treatment of donor cells with L-leucyl-L-leucine methyl ester

    International Nuclear Information System (INIS)

    Charley, M.; Thiele, D.L.; Bennett, M.; Lipsky, P.E.

    1986-01-01

    Graft vs. host disease (GVHD) remains one of the main problems associated with bone marrow transplantation. The current studies were undertaken to determine whether treatment of the donor inoculum with the anticytotoxic cell compound L-leucyl-L-leucine methyl ester (Leu-Leu-OMe) would alter the development of GVHD in a murine model. Irradiated recipient mice transplanted with a mixture of control bone marrow and spleen cells from naive semiallogeneic donors died rapidly from GVHD, whereas the recipients of cells incubated with 250 microM Leu-Leu-OMe all survived. In addition, Leu-Leu-OMe treatment of cells obtained from donors immunized against host alloantigens resulted in significantly prolonged survival. Phenotypic characterization of spleen cells from the various groups of mice that had received Leu-Leu-OMe-treated cells and survived consistently revealed the donor phenotype. Treatment of marrow cells with 250 microM Leu-Leu-OMe appeared to have no adverse effects on stem cell function. Erythropoiesis was undiminished, as assayed by splenic 5-iodo-2'-deoxyuridine- 125 I uptake. Moreover, granulocytic and megakaryocytic regeneration were histologically equivalent in the spleens of recipients of control or Leu-Leu-OMe-treated cells. Treatment of the donor inoculum with Leu-Leu-OMe thus prevents GVHD in this murine strain combination with no apparent stem cell toxicity

  2. Diabetes increases susceptibility of primary cultures of rat proximal tubular cells to chemically induced injury

    International Nuclear Information System (INIS)

    Zhong Qing; Terlecky, Stanley R.; Lash, Lawrence H.

    2009-01-01

    Diabetic nephropathy is characterized by increased oxidative stress and mitochondrial dysfunction. In the present study, we prepared primary cultures of proximal tubular (PT) cells from diabetic rats 30 days after an ip injection of streptozotocin and compared their susceptibility to oxidants (tert-butyl hydroperoxide, methyl vinyl ketone) and a mitochondrial toxicant (antimycin A) with that of PT cells isolated from age-matched control rats, to test the hypothesis that PT cells from diabetic rats exhibit more cellular and mitochondrial injury than those from control rats when exposed to these toxicants. PT cells from diabetic rats exhibited higher basal levels of reactive oxygen species (ROS) and higher mitochondrial membrane potential, demonstrating that the PT cells maintain the diabetic phenotype in primary culture. Incubation with either the oxidants or mitochondrial toxicant resulted in greater necrotic and apoptotic cell death, greater evidence of morphological damage, greater increases in ROS, and greater decreases in mitochondrial membrane potential in PT cells from diabetic rats than in those from control rats. Pretreatment with either the antioxidant N-acetyl-L-cysteine or a catalase mimetic provided equivalent protection of PT cells from both diabetic and control rats. Despite the greater susceptibility to oxidative and mitochondrial injury, both cytoplasmic and mitochondrial glutathione concentrations were markedly higher in PT cells from diabetic rats, suggesting an upregulation of antioxidant processes in diabetic kidney. These results support the hypothesis that primary cultures of PT cells from diabetic rats are a valid model in which to study renal cellular function in the diabetic state.

  3. Bone Marrow–Derived Cells Home to and Regenerate Retinal Pigment Epithelium after Injury

    Science.gov (United States)

    Harris, Jeffrey R.; Brown, Gary A. J.; Jorgensen, Marda; Kaushal, Shalesh; Ellis, E. Ann; Grant, Maria B.; Scott, Edward W.

    2013-01-01

    Purpose To determine whether hematopoietic stem and progenitor cells (HSCs/HPCs) can home to and regenerate the retinal pigment epithelium (RPE) after induced injury. Methods Enriched HSCs/HPCs from green fluorescent protein (gfp) transgenic mice were transplanted into irradiated recipient mice to track bone marrow–derived cells. Physical damage was induced by breaching Bruch’s membrane and inducing vascular endothelial growth factor A (VEGFa) expression to promote neovascularization. RPE damage was also induced by sodium iodate injection (40 mg/kg) into wild-type or albino C57Bl/6 mice. Cell morphology, gfp expression, the presence of the Y chromosome, and the presence of melanosomes were used to determine whether the injured RPE was being repaired by the donor bone marrow. Results Injury to the RPE recruits HSC/HPC–derived cells to incorporate into the RPE layer and differentiate into an RPE phenotype. A portion of the HSCs/HPCs adopt RPE morphology, express melanosomes, and integrate into the RPE without cell fusion. Conclusions HSCs/HPCs can migrate to the RPE layer after physical or chemical injury and regenerate a portion of the damaged cell layer. PMID:16639022

  4. Cell transplantation for the treatment of spinal cord injury - bone marrow stromal cells and choroid plexus epithelial cells

    Directory of Open Access Journals (Sweden)

    Chizuka Ide

    2016-01-01

    Full Text Available Transplantation of bone marrow stromal cells (BMSCs enhanced the outgrowth of regenerating axons and promoted locomotor improvements of rats with spinal cord injury (SCI. BMSCs did not survive long-term, disappearing from the spinal cord within 2-3 weeks after transplantation. Astrocyte-devoid areas, in which no astrocytes or oligodendrocytes were found, formed at the epicenter of the lesion. It was remarkable that numerous regenerating axons extended through such astrocyte-devoid areas. Regenerating axons were associated with Schwann cells embedded in extracellular matrices. Transplantation of choroid plexus epithelial cells (CPECs also enhanced axonal regeneration and locomotor improvements in rats with SCI. Although CPECs disappeared from the spinal cord shortly after transplantation, an extensive outgrowth of regenerating axons occurred through astrocyte-devoid areas, as in the case of BMSC transplantation. These findings suggest that BMSCs and CPECs secret neurotrophic factors that promote tissue repair of the spinal cord, including axonal regeneration and reduced cavity formation. This means that transplantation of BMSCs and CPECs promotes "intrinsic" ability of the spinal cord to regenerate. The treatment to stimulate the intrinsic regeneration ability of the spinal cord is the safest method of clinical application for SCI. It should be emphasized that the generally anticipated long-term survival, proliferation and differentiation of transplanted cells are not necessarily desirable from the clinical point of view of safety.

  5. Cetuximab modified collagen scaffold directs neurogenesis of injury-activated endogenous neural stem cells for acute spinal cord injury repair.

    Science.gov (United States)

    Li, Xing; Zhao, Yannan; Cheng, Shixiang; Han, Sufang; Shu, Muya; Chen, Bing; Chen, Xuyi; Tang, Fengwu; Wang, Nuo; Tu, Yue; Wang, Bin; Xiao, Zhifeng; Zhang, Sai; Dai, Jianwu

    2017-08-01

    Studies have shown that endogenous neural stem cells (NSCs) activated by spinal cord injury (SCI) primarily generate astrocytes to form glial scar. The NSCs do not differentiate into neurons because of the adverse microenvironment. In this study, we defined the activation timeline of endogenous NSCs in rats with severe SCI. These injury-activated NSCs then migrated into the lesion site. Cetuximab, an EGFR signaling antagonist, significantly increased neurogenesis in the lesion site. Meanwhile, implanting cetuximab modified linear ordered collagen scaffolds (LOCS) into SCI lesion sites in dogs resulted in neuronal regeneration, including neuronal differentiation, maturation, myelination, and synapse formation. The neuronal regeneration eventually led to a significant locomotion recovery. Furthermore, LOCS implantation could also greatly decrease chondroitin sulfate proteoglycan (CSPG) deposition at the lesion site. These findings suggest that endogenous neurogenesis following acute complete SCI is achievable in species ranging from rodents to large animals via functional scaffold implantation. LOCS-based Cetuximab delivery system has a promising therapeutic effect on activating endogenous neurogenesis, reducing CSPGs deposition and improving motor function recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Early events of lethal action by tobramycin in Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Raulston, J.E.

    1988-01-01

    The immediate activities of the aminoglycoside antibiotic, tobramycin, were investigated in Pseudomonas aeruginosa PAO1. The influence of carbon growth substate and the antibiotic exposure environment in the magnitude of activity were examined. Lethality by 8 μg/ml tobramycin occurred rapidly (1 to 3 minutes). The release of specific cellular components into the supernatant was associated with lethality. This material was initially detected as an increase in UV-absorbance. Magnesium in the reaction mixture provided protection against lethality and leakage, but did not reverse lethal damage after a 3 minute tobramycin treatment. Also, uptake of 3 H-tobramycin was reduced in the presence of magnesium. Cells grown with glucose as a carbon source were more susceptible than organic acid grown cells as was the rapidity and amount of cell damage. Analyses of the leakage material revealed a 2-fold increase of protein in the supernatant after a 1-3 minute treatment which paralleled lethality. A prominent 29 kDa protein was observed by SDS-PAGE in the released material, which has been identified as the periplasmic enzyme, β-lactamase. The immediate activities of tobramycin did not involve (i) release of overall cell protein, (ii) massive loss of total pool amino acids, (iii) cell lysis, (iv) inhibition of proline uptake, (v) release of lipopolysaccharide, or (vi) leakage of ATP. Electron microscopy showed no apparent damage after a 3 minute exposure. 40% inhibition of protein synthesis had occurred by 3 minutes of exposure, while release of UV-absorbing material and lethality were detectable after only 1 minute. Resistant cystic fibrosis isolates of P. aeruginosa did not leak under the same experimental conditions, but one of two susceptible strains examined did show increased UV-absorbance following treatment

  7. Cell cycle arrest and the evolution of chronic kidney disease from acute kidney injury.

    Science.gov (United States)

    Canaud, Guillaume; Bonventre, Joseph V

    2015-04-01

    For several decades, acute kidney injury (AKI) was generally considered a reversible process leading to complete kidney recovery if the individual survived the acute illness. Recent evidence from epidemiologic studies and animal models, however, have highlighted that AKI can lead to the development of fibrosis and facilitate the progression of chronic renal failure. When kidney injury is mild and baseline function is normal, the repair process can be adaptive with few long-term consequences. When the injury is more severe, repeated, or to a kidney with underlying disease, the repair can be maladaptive and epithelial cell cycle arrest may play an important role in the development of fibrosis. Indeed, during the maladaptive repair after a renal insult, many tubular cells that are undergoing cell division spend a prolonged period in the G2/M phase of the cell cycle. These tubular cells recruit intracellular pathways leading to the synthesis and the secretion of profibrotic factors, which then act in a paracrine fashion on interstitial pericytes/fibroblasts to accelerate proliferation of these cells and production of interstitial matrix. Thus, the tubule cells assume a senescent secretory phenotype. Characteristic features of these cells may represent new biomarkers of fibrosis progression and the G2/M-arrested cells may represent a new therapeutic target to prevent, delay or arrest progression of chronic kidney disease. Here, we summarize recent advances in our understanding of the biology of the cell cycle and how cell cycle arrest links AKI to chronic kidney disease. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  8. Cell proliferation and apoptosis in optic nerve and brain integration centers of adult trout Oncorhynchus mykiss after optic nerve injury

    Science.gov (United States)

    Pushchina, Evgeniya V.; Shukla, Sachin; Varaksin, Anatoly A.; Obukhov, Dmitry K.

    2016-01-01

    Fishes have remarkable ability to effectively rebuild the structure of nerve cells and nerve fibers after central nervous system injury. However, the underlying mechanism is poorly understood. In order to address this issue, we investigated the proliferation and apoptosis of cells in contralateral and ipsilateral optic nerves, after stab wound injury to the eye of an adult trout Oncorhynchus mykiss. Heterogenous population of proliferating cells was investigated at 1 week after injury. TUNEL labeling gave a qualitative and quantitative assessment of apoptosis in the cells of optic nerve of trout 2 days after injury. After optic nerve injury, apoptotic response was investigated, and mass patterns of cell migration were found. The maximal concentration of apoptotic bodies was detected in the areas of mass clumps of cells. It is probably indicative of massive cell death in the area of high phagocytic activity of macrophages/microglia. At 1 week after optic nerve injury, we observed nerve cell proliferation in the trout brain integration centers: the cerebellum and the optic tectum. In the optic tectum, proliferating cell nuclear antigen (PCNA)-immunopositive radial glia-like cells were identified. Proliferative activity of nerve cells was detected in the dorsal proliferative (matrix) area of the cerebellum and in parenchymal cells of the molecular and granular layers whereas local clusters of undifferentiated cells which formed neurogenic niches were observed in both the optic tectum and cerebellum after optic nerve injury. In vitro analysis of brain cells of trout showed that suspension cells compared with monolayer cells retain higher proliferative activity, as evidenced by PCNA immunolabeling. Phase contrast observation showed mitosis in individual cells and the formation of neurospheres which gradually increased during 1–4 days of culture. The present findings suggest that trout can be used as a novel model for studying neuronal regeneration. PMID:27212918

  9. Cross-activating invariant NKT cells and kupffer cells suppress cholestatic liver injury in a mouse model of biliary obstruction.

    Directory of Open Access Journals (Sweden)

    Caroline C Duwaerts

    Full Text Available Both Kupffer cells and invariant natural killer T (iNKT cells suppress neutrophil-dependent liver injury in a mouse model of biliary obstruction. We hypothesize that these roles are interdependent and require iNKT cell-Kupffer cell cross-activation. Female, wild-type and iNKT cell-deficient C57Bl/6 mice were injected with magnetic beads 3 days prior to bile duct ligation (BDL in order to facilitate subsequent Kupffer cell isolation. On day three post-BDL, the animals were euthanized and the livers dissected. Necrosis was scored; Kupffer cells were isolated and cell surface marker expression (flow cytometry, mRNA expression (qtPCR, nitric oxide (NO (. production (Griess reaction, and protein secretion (cytometric bead-array or ELISAs were determined. To address the potential role of NO (. in suppressing neutrophil accumulation, a group of WT mice received 1400W, a specific inducible nitric oxide synthase (iNOS inhibitor, prior to BDL. To clarify the mechanisms underlying Kupffer cell-iNKT cell cross-activation, WT animals were administered anti-IFN-γ or anti-lymphocyte function-associated antigen (LFA-1 antibody prior to BDL. Compared to their WT counterparts, Kupffer cells obtained from BDL iNKT cell-deficient mice expressed lower iNOS mRNA levels, produced less NO (. , and secreted more neutrophil chemoattractants. Both iNOS inhibition and IFN-γ neutralization increased neutrophil accumulation in the livers of BDL WT mice. Anti-LFA-1 pre-treatment reduced iNKT cell accumulation in these same animals. These data indicate that the LFA-1-dependent cross-activation of iNKT cells and Kupffer cells inhibits neutrophil accumulation and cholestatic liver injury.

  10. Normal Female Germ Cell Differentiation Requires the Female X Chromosome to Autosome Ratio and Expression of Sex-Lethal in DROSOPHILA MELANOGASTER

    OpenAIRE

    Schüpbach, Trudi

    1985-01-01

    In somatic cells of Drosophila, the ratio of X chromosomes to autosomes (X:A ratio) determines sex and dosage compensation. The present paper addresses the question of whether germ cells also use the X:A ratio for sex determination and dosage compensation. Triploid female embryos were generated which, through the loss of an unstable ring-X chromosome, contained some germ cells of 2X;3A constitution in their ovaries. Such germ cells were shown to differentiate along one of two alternative pat...

  11. Rapid generation of OPC-like cells from human pluripotent stem cells for treating spinal cord injury.

    Science.gov (United States)

    Kim, Dae-Sung; Jung, Se Jung; Lee, Jae Souk; Lim, Bo Young; Kim, Hyun Ah; Yoo, Jeong-Eun; Kim, Dong-Wook; Leem, Joong Woo

    2017-07-28

    Remyelination via the transplantation of oligodendrocyte precursor cells (OPCs) has been considered as a strategy to improve the locomotor deficits caused by traumatic spinal cord injury (SCI). To date, enormous efforts have been made to derive OPCs from human pluripotent stem cells (hPSCs), and significant progress in the transplantation of such cells in SCI animal models has been reported. The current methods generally require a long period of time (>2 months) to obtain transplantable OPCs, which hampers their clinical utility for patients with SCI. Here we demonstrate a rapid and efficient method to differentiate hPSCs into neural progenitors that retain the features of OPCs (referred to as OPC-like cells). We used cell sorting to select A2B5-positive cells from hPSC-derived neural rosettes and cultured the selected cells in the presence of signaling cues, including sonic hedgehog, PDGF and insulin-like growth factor-1. This method robustly generated neural cells positive for platelet-derived growth factor receptor-α (PDGFRα) and NG2 (~90%) after 4 weeks of differentiation. Behavioral tests revealed that the transplantation of the OPC-like cells into the spinal cords of rats with contusive SCI at the thoracic level significantly improved hindlimb locomotor function. Electrophysiological assessment revealed enhanced neural conduction through the injury site. Histological examination showed increased numbers of axon with myelination at the injury site and graft-derived myelin formation with no evidence of tumor formation. Our method provides a cell source from hPSCs that has the potential to recover motor function following SCI.

  12. Dendritic cells limit fibroinflammatory injury in nonalcoholic steatohepatitis in mice.

    Science.gov (United States)

    Henning, Justin R; Graffeo, Christopher S; Rehman, Adeel; Fallon, Nina C; Zambirinis, Constantinos P; Ochi, Atsuo; Barilla, Rocky; Jamal, Mohsin; Deutsch, Michael; Greco, Stephanie; Ego-Osuala, Melvin; Bin-Saeed, Usama; Rao, Raghavendra S; Badar, Sana; Quesada, Juan P; Acehan, Devrim; Miller, George

    2013-08-01

    Nonalcoholic steatohepatitis (NASH) is the most common etiology of chronic liver dysfunction in the United States and can progress to cirrhosis and liver failure. Inflammatory insult resulting from fatty infiltration of the liver is central to disease pathogenesis. Dendritic cells (DCs) are antigen-presenting cells with an emerging role in hepatic inflammation. We postulated that DCs are important in the progression of NASH. We found that intrahepatic DCs expand and mature in NASH liver and assume an activated immune phenotype. However, rather than mitigating the severity of NASH, DC depletion markedly exacerbated intrahepatic fibroinflammation. Our mechanistic studies support a regulatory role for DCs in NASH by limiting sterile inflammation through their role in the clearance of apoptotic cells and necrotic debris. We found that DCs limit CD8(+) T-cell expansion and restrict Toll-like receptor expression and cytokine production in innate immune effector cells in NASH, including Kupffer cells, neutrophils, and inflammatory monocytes. Consistent with their regulatory role in NASH, during the recovery phase of disease, ablation of DC populations results in delayed resolution of intrahepatic inflammation and fibroplasia. Our findings support a role for DCs in modulating NASH. Targeting DC functional properties may hold promise for therapeutic intervention in NASH. Copyright © 2013 American Association for the Study of Liver Diseases.

  13. Dendritic Cells Limit Fibro-Inflammatory Injury in NASH

    Science.gov (United States)

    Henning, Justin R.; Graffeo, Christopher S.; Rehman, Adeel; Fallon, Nina C.; Zambirinis, Constantinos P.; Ochi, Atsuo; Barilla, Rocky; Jamal, Mohsin; Deutsch, Michael; Greco, Stephanie; Ego-Osuala, Melvin; Saeed, Usama Bin; Rao, Raghavendra S.; Badar, Sana; Quesada, Juan P.; Acehan, Devrim; Miller, George

    2013-01-01

    Non-alcoholic steatohepatitis (NASH) is the most common etiology of chronic liver dysfunction in the United States and can progress to cirrhosis and liver failure. Inflammatory insult resulting from fatty infiltration of the liver is central to disease pathogenesis. Dendritic cells (DC) are antigen presenting cells with an emerging role in hepatic inflammation. We postulated that DC are important in the progression of NASH. We found that intrahepatic DC expand and mature in NASH liver and assume an activated immune-phenotype. However, rather than mitigating the severity of NASH, DC depletion markedly exacerbated intrahepatic fibro-inflammation. Our mechanistic studies support a regulatory role for DC in NASH by limiting sterile inflammation via their role in clearance of apoptotic cells and necrotic debris. We found that DC limit CD8+ T cell expansion and restrict Toll-like receptor expression and cytokine production in innate immune effector cells in NASH, including Kupffer cells, neutrophils, and inflammatory monocytes. Consistent with their regulatory role in NASH, during the recovery phase of disease, ablation of DC populations results in delayed resolution of intrahepatic inflammation and fibroplasia. Conclusion Our findings support a role for DC in modulating NASH. Targeting DC functional properties may hold promise for therapeutic intervention in NASH. PMID:23322710

  14. Autologous Stem Cell Injection for Spinal Cord Injury - A Clinical Study from India.

    Directory of Open Access Journals (Sweden)

    Ravikumar R

    2007-01-01

    Full Text Available We studied 100 patients with Spinal Cord injury (SCI after Autologous Stem cell Injection in the Spinal fluid with a Follow up of 6 months post Stem cell injection. There were 69 males and 31 females; age ranging from 8 years to 55 years.? Time after Spinal Injury ranged from 11 years - 3 months (Average: 4.5 years. The Level of Injury ranged from Upper Thoracic (T1-T7 - 34 pts, Lower thoracic (T7-T12 -45 pts, Lumbar -12, Cervical-9 pts. All patients had an MRI Scan, urodynamic study and SSEP (somatosensory Evoked Potential tests before and 3 months after Stem cell Injection.80% of patients had Grade 0 power in the Lower limbs and rest had grade 1-2 power before stem cell injections. 70% of cases had complete lack of Bladder control and 95% had reduced detrusor function.We Extracted CD34 and CD 133 marked Stem cells from 100 ml of Bone marrow Aspirate using Ficoll Gradient method with Cell counting done using flowcytometry.15 ml of the Stem cell concentrate was injected into the Lumbar spinal fluid in aseptic conditions. The CD 34/CD45 counts ranged from 120-400 million cells in the total volume.6 months after Injection, 8 patients had more than 2 grades of Motor power improvement, 3 are able to walk with support. 1 patient with T12/L1 injury was able to walk without support. 12 had sensory tactile and Pain perception improvement and 8 had objective improvement in bladder control and Bladder Muscle contractility. A total of 18 patients had reported or observed improvement in Neurological status. 85% of patients who had motor Improvement had Lesions below T8. MRI, SSEP and Urodynamic Study data are gathered at regular intervals. Conclusion: This study shows that Quantitative and qualitative Improvement in the Neurological status of paralyzed patients after Spinal cord injury is possible after autologous bone marrow Stem cell Injections in select patients. There was no report of Allodynia indicating the safety of the procedure. Further studies to

  15. Potentially lethal damage and its repair

    International Nuclear Information System (INIS)

    Utsumi, Hiroshi

    1989-01-01

    Two forms termed fast-and slow-potentially lethal lethal damage (PLD) are introduced and discussed. The effect on the survival of x-irradiated Chinese hamster cells (V79) of two different post-treatments is examined in plateau- and in log-phases of growth. The postirradiation treatments used : a) incubation in hypertonic solution, and b) incubation in conditioned medium obtained from plateau-phase. Similar reduction in survival was caused by postirradiation treatment with hypertonic phosphate buffered saline, and similar increased in survival was effected by treatment in conditioned medium in plateau- and in log-phases cells. However, repair of PLD sensitive to hypertonic treatment was faster (half time, 5-10 min)(f-PLD repair) and independent from the repair of PLD (half time, 1-2 hour)(s-PLD repair) observed in conditioned medium. The results indicate the induction of two forms of PLD by radiation. Induction of both PLD was found to decrease with increasing LET of the radiation used. Identification of the molecular processes underlying repair and fixation of PLD is a task of particular interest, since it may allow replacement of a phenomenological definition with a molecular definition. Evidence is reviewed indicating the DNA double strand breaks (directly or indirectly induced) may be the DNA lesions underlying PLD. (author)

  16. The Effects of Anthrax Lethal Toxin on Host Barrier Function

    Directory of Open Access Journals (Sweden)

    David M. Frucht

    2011-06-01

    Full Text Available The pathological actions of anthrax toxin require the activities of its edema factor (EF and lethal factor (LF enzyme components, which gain intracellular access via its receptor-binding component, protective antigen (PA. LF is a metalloproteinase with specificity for selected mitogen-activated protein kinase kinases (MKKs, but its activity is not directly lethal to many types of primary and transformed cells in vitro. Nevertheless, in vivo treatment of several animal species with the combination of LF and PA (termed lethal toxin or LT leads to morbidity and mortality, suggesting that LT-dependent toxicity is mediated by cellular interactions between host cells. Decades of research have revealed that a central hallmark of this toxicity is the disruption of key cellular barriers required to maintain homeostasis. This review will focus on the current understanding of the effects of LT on barrier function, highlighting recent progress in establishing the molecular mechanisms underlying these effects.

  17. Agmatine Attenuates Brain Edema and Apoptotic Cell Death after Traumatic Brain Injury.

    Science.gov (United States)

    Kim, Jae Young; Lee, Yong Woo; Kim, Jae Hwan; Lee, Won Taek; Park, Kyung Ah; Lee, Jong Eun

    2015-07-01

    Traumatic brain injury (TBI) is associated with poor neurological outcome, including necrosis and brain edema. In this study, we investigated whether agmatine treatment reduces edema and apoptotic cell death after TBI. TBI was produced by cold injury to the cerebral primary motor cortex of rats. Agmatine was administered 30 min after injury and once daily until the end of the experiment. Animals were sacrificed for analysis at 1, 2, or 7 days after the injury. Various neurological analyses were performed to investigate disruption of the blood-brain barrier (BBB) and neurological dysfunction after TBI. To examine the extent of brain edema after TBI, the expression of aquaporins (AQPs), phosphorylation of mitogen-activated protein kinases (MAPKs), and nuclear translocation of nuclear factor-κB (NF-κB) were investigated. Our findings demonstrated that agmatine treatment significantly reduces brain edema after TBI by suppressing the expression of AQP1, 4, and 9. In addition, agmatine treatment significantly reduced apoptotic cell death by suppressing the phosphorylation of MAPKs and by increasing the nuclear translocation of NF-κB after TBI. These results suggest that agmatine treatment may have therapeutic potential for brain edema and neural cell death in various central nervous system diseases.

  18. Salidroside Suppresses HUVECs Cell Injury Induced by Oxidative Stress through Activating the Nrf2 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yao Zhu

    2016-08-01

    Full Text Available Oxidative stress plays an important role in the pathogenesis of cardiovascular diseases. Salidroside (SAL, one of the main effective constituents of Rhodiola rosea, has been reported to suppress oxidative stress-induced cardiomyocyte injury and necrosis by promoting transcription of nuclear factor E2-related factor 2 (Nrf2-regulated genes such as heme oxygenase-1 (HO-1 and NAD(PH dehydrogenase (quinone1 (NQO1. However, it has not been indicated whether SAL might ameliorate endothelial injury induced by oxidative stress. Here, our study demonstrated that SAL might suppress HUVEC cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. The results of our study indicated that SAL decreased the levels of intercellular reactive oxygen species (ROS and malondialdehyde (MDA, and improved the activities of superoxide dismutase (SOD and catalase (CAT, resulting in protective effects against oxidative stress-induced cell damage in HUVECs. It suppressed oxidative stress damage by inducing Nrf2 nuclear translocation and activating the expression of Nrf2-regulated antioxidant enzyme genes such as HO-1 and NQO1 in HUVECs. Knockdown of Nrf2 with siRNA abolished the cytoprotective effects against oxidative stress, decreased the expression of Nrf2, HO-1, and NQO1, and inhibited the nucleus translocation of Nrf2 in HUVECs. This study is the first to demonstrate that SAL suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway.

  19. Vaccination of mice using the West Nile virus E-protein in a DNA prime-protein boost strategy stimulates cell-mediated immunity and protects mice against a lethal challenge.

    Directory of Open Access Journals (Sweden)

    Marina De Filette

    Full Text Available West Nile virus (WNV is a mosquito-borne flavivirus that is endemic in Africa, the Middle East, Europe and the United States. There is currently no antiviral treatment or human vaccine available to treat or prevent WNV infection. DNA plasmid-based vaccines represent a new approach for controlling infectious diseases. In rodents, DNA vaccines have been shown to induce B cell and cytotoxic T cell responses and protect against a wide range of infections. In this study, we formulated a plasmid DNA vector expressing the ectodomain of the E-protein of WNV into nanoparticles by using linear polyethyleneimine (lPEI covalently bound to mannose and examined the potential of this vaccine to protect against lethal WNV infection in mice. Mice were immunized twice (prime--boost regime with the WNV DNA vaccine formulated with lPEI-mannose using different administration routes (intramuscular, intradermal and topical. In parallel a heterologous boost with purified recombinant WNV envelope (E protein was evaluated. While no significant E-protein specific humoral response was generated after DNA immunization, protein boosting of DNA-primed mice resulted in a marked increase in total neutralizing antibody titer. In addition, E-specific IL-4 T-cell immune responses were detected by ELISPOT after protein boost and CD8(+ specific IFN-γ expression was observed by flow cytometry. Challenge experiments using the heterologous immunization regime revealed protective immunity to homologous and virulent WNV infection.

  20. Burn injury triggered dysfunction in dendritic cell response to TLR9 activation and resulted in skewed T cell functions.

    Directory of Open Access Journals (Sweden)

    Haitao Shen

    Full Text Available Severe trauma such as burn injury is often associated with a systemic inflammatory syndrome characterized by a hyperactive innate immune response and suppressed adaptive immune function. Dendritic cells (DCs, which sense pathogens via their Toll-like receptors (TLRs, play a pivotal role in protecting the host against infections. The effect of burn injury on TLR-mediated DC function is a debated topic and the mechanism controlling the purported immunosuppressive response remains to be elucidated. Here we examined the effects of burn injury on splenic conventional DC (cDC and plasmacytoid DC (pDC responses to TLR9 activation. We demonstrate that, following burn trauma, splenic cDCs' cytokine production profile in response to TLR9 activation became anti-inflammatory dominant, with high production of IL-10 (>50% increase and low production of IL-6, TNF-α and IL-12p70 (∼25-60% reduction. CD4+ T cells activated by these cDCs were defective in producing Th1 and Th17 cytokines. Furthermore, burn injury had a more accentuated effect on pDCs than on cDCs. Following TLR9 activation, pDCs displayed an immature phenotype with an impaired ability to secrete pro-inflammatory cytokines (IFN-α, IL-6 and TNF-α and to activate T cell proliferation. Moreover, cDCs and pDCs from burn-injured mice had low transcript levels of TLR9 and several key molecules of the TLR signaling pathway. Although hyperactive innate immune response has been associated with severe injury, our data show to the contrary that DCs, as a key player in the innate immune system, had impaired TLR9 reactivity, an anti-inflammatory phenotype, and a dysfunctional T cell-priming ability. We conclude that burn injury induced impairments in DC immunobiology resulting in suppression of adaptive immune response. Targeted DC immunotherapies to promote their ability in triggering T cell immunity may represent a strategy to improve immune defenses against infection following burn injury.

  1. Stem cell therapy in spinal cord injury: Hollow promise or promising science?

    Directory of Open Access Journals (Sweden)

    Aimee Goel

    2016-01-01

    Full Text Available Spinal cord injury (SCI remains one of the most physically, psychologically and socially debilitating conditions worldwide. While rehabilitation measures may help limit disability to some extent, there is no effective primary treatment yet available. The efficacy of stem cells as a primary therapeutic option in spinal cord injury is currently an area under much scrutiny and debate. Several laboratory and some primary clinical studies into the use of bone marrow mesenchymal stem cells or embryonic stem cell-derived oligodentrocyte precursor cells have shown some promising results in terms of remyelination and regeneration of damaged spinal nerve tracts. More recently,laboratory and early clinical experiments into the use of Olfactory Ensheathing Cells, a type of glial cell derived from olfactory bulb and mucosa have provided some phenomenal preliminary evidence as to their neuroregenerative and neural bridging capacity. This report compares and evaluates some current research into selected forms of embryonic and mesenchymal stem cell therapy as well as olfactory ensheathing cell therapy in SCI, and also highlights some legal and ethical issues surrounding their use. While early results shows promise, more rigorous large scaleclinical trials are needed to shed light on the safety, efficacy and long term viability of stem cell and cellular transplant techniques in SCI.

  2. HEXIM1 controls satellite cell expansion after injury to regulate skeletal muscle regeneration

    Science.gov (United States)

    Hong, Peng; Chen, Kang; Huang, Bihui; Liu, Min; Cui, Miao; Rozenberg, Inna; Chaqour, Brahim; Pan, Xiaoyue; Barton, Elisabeth R.; Jiang, Xian-Cheng; Siddiqui, M.A.Q.

    2012-01-01

    The native capacity of adult skeletal muscles to regenerate is vital to the recovery from physical injuries and dystrophic diseases. Currently, the development of therapeutic interventions has been hindered by the complex regulatory network underlying the process of muscle regeneration. Using a mouse model of skeletal muscle regeneration after injury, we identified hexamethylene bisacetamide inducible 1 (HEXIM1, also referred to as CLP-1), the inhibitory component of the positive transcription elongation factor b (P-TEFb) complex, as a pivotal regulator of skeletal muscle regeneration. Hexim1-haplodeficient muscles exhibited greater mass and preserved function compared with those of WT muscles after injury, as a result of enhanced expansion of satellite cells. Transplanted Hexim1-haplodeficient satellite cells expanded and improved muscle regeneration more effectively than WT satellite cells. Conversely, HEXIM1 overexpression restrained satellite cell proliferation and impeded muscle regeneration. Mechanistically, dissociation of HEXIM1 from P-TEFb and subsequent activation of P-TEFb are required for satellite cell proliferation and the prevention of early myogenic differentiation. These findings suggest a crucial role for the HEXIM1/P-TEFb pathway in the regulation of satellite cell–mediated muscle regeneration and identify HEXIM1 as a potential therapeutic target for degenerative muscular diseases. PMID:23023707

  3. Diacylglycerol kinase regulation of protein kinase D during oxidative stress-induced intestinal cell injury

    International Nuclear Information System (INIS)

    Song Jun; Li Jing; Mourot, Joshua M.; Mark Evers, B.; Chung, Dai H.

    2008-01-01

    We recently demonstrated that protein kinase D (PKD) exerts a protective function during oxidative stress-induced intestinal epithelial cell injury; however, the exact role of DAG kinase (DGK)ζ, an isoform expressed in intestine, during this process is unknown. We sought to determine the role of DGK during oxidative stress-induced intestinal cell injury and whether DGK acts as an upstream regulator of PKD. Inhibition of DGK with R59022 compound or DGKζ siRNA transfection decreased H 2 O 2 -induced RIE-1 cell apoptosis as measured by DNA fragmentation and increased PKD phosphorylation. Overexpression of kinase-dead DGKζ also significantly increased PKD phosphorylation. Additionally, endogenous nuclear DGKζ rapidly translocated to the cytoplasm following H 2 O 2 treatment. Our findings demonstrate that DGK is involved in the regulation of oxidative stress-induced intestinal cell injury. PKD activation is induced by DGKζ, suggesting DGK is an upstream regulator of oxidative stress-induced activation of the PKD signaling pathway in intestinal epithelial cells

  4. Cell Therapy and Tissue Engineering Products for Chondral Knee Injuries

    Directory of Open Access Journals (Sweden)

    Adriana Flórez Cabrera

    2017-07-01

    Full Text Available The articular cartilage is prone to suffer lesions of different etiology, being the articular cartilage lesions of the knee the most common. Although most conventional treatments reduce symptoms they lead to the production of fibrocartilage, which has different characteristics than the hyaline cartilage of the joint. There are few therapeutic approaches that promote the replacement of damaged tissue by functional hyaline cartilage. Among them are the so-called advanced therapies, which use cells and tissue engineering products to promote cartilage regeneration. Most of them are based on scaffolds made of different biomaterials, which seeded or not with endogenous or exogenous cells, can be used as cartilage artificial replacement to improve joint function. This paper reviews some therapeutic approaches focused on the regeneration of articular cartilage of the knee and the biomaterials used to develop scaffolds for cell therapy and tissue engineering of cartilage.

  5. Induction and repair of lethal and oncogenic lesions and their relationship to cytogenetic changes in UV-irradiated mouse 10T1/2 cells

    International Nuclear Information System (INIS)

    Chan, G.L.; Nagasawa, H.; Little, J.B.

    1979-01-01

    While bacterial system is valuable for the pragmatic purpose of screening potential environmental carcinogens, the fundamental difference between prokaryotes and mammalian cells warrant caution against the use of bacterial mutagenic mechanisms to explain the oncogenic process in mammalian cells. The 10 T1/2 cells exposed to UV light in the plateau phase and subcultured immediately to low density to assay for clonogenic survival were extremely resistant to the cytotoxic effect of UV light. Purely physical considerations such as the increased thickness of plateau phase cells and the increased cytoplasmic shielding of UV light from the nuclei were insufficient to account for this unusual resistance. The effect of caffeine on the repair processes in UV-irradiated mammalian cells appears to be exerted during the first DNA synthetic phase after the UV exposure. The daughter DNA synthesized on a UV-irradiated template is of reduced molecular weight. 10 T1/2 cells were exposed in the log phase of growth to UV light, and then they were cultured for the next 48 hours in the complete growth medium containing the specific concentration of caffeine. Parallel experiments were performed, in which cells were exposed for 48 hours to caffeine only with no prior exposure to UV light. It was found that caffeine did not potentiate the transformation by UV light. Caffeine alone induced sister chromatid exchange (SCE), whereas the caffeine given after UV light had no effect. The class of UV-induced lesions which induce SCE also leads to malignant transformation. (Yamashita, S.)

  6. Chloroquine Improves Survival and Hematopoietic Recovery After Lethal Low-Dose-Rate Radiation

    International Nuclear Information System (INIS)

    Lim Yiting; Hedayati, Mohammad; Merchant, Akil A.; Zhang Yonggang; Yu, Hsiang-Hsuan M.; Kastan, Michael B.; Matsui, William; DeWeese, Theodore L.

    2012-01-01

    Purpose: We have previously shown that the antimalarial agent chloroquine can abrogate the lethal cellular effects of low-dose-rate (LDR) radiation in vitro, most likely by activating the ataxia-telangiectasia mutated (ATM) protein. Here, we demonstrate that chloroquine treatment also protects against lethal doses of LDR radiation in vivo. Methods and Materials: C57BL/6 mice were irradiated with a total of 12.8 Gy delivered at 9.4 cGy/hour. ATM null mice from the same background were used to determine the influence of ATM. Chloroquine was administered by two intraperitoneal injections of 59.4 μg per 17 g of body weight, 24 hours and 4 hours before irradiation. Bone marrow cells isolated from tibia, fibula, and vertebral bones were transplanted into lethally irradiated CD45 congenic recipient mice by retroorbital injection. Chimerism was assessed by flow cytometry. In vitro methylcellulose colony-forming assay of whole bone marrow cells and fluorescence activated cell sorting analysis of lineage depleted cells were used to assess the effect of chloroquine on progenitor cells. Results: Mice pretreated with chloroquine before radiation exhibited a significantly higher survival rate than did mice treated with radiation alone (80% vs. 31%, p = 0.0026). Chloroquine administration before radiation did not affect the survival of ATM null mice (p = 0.86). Chloroquine also had a significant effect on the early engraftment of bone marrow cells from the irradiated donor mice 6 weeks after transplantation (4.2% vs. 0.4%, p = 0.015). Conclusion: Chloroquine administration before radiation had a significant effect on the survival of normal but not ATM null mice, strongly suggesting that the in vivo effect, like the in vitro effect, is also ATM dependent. Chloroquine improved the early engraftment of bone marrow cells from LDR-irradiated mice, presumably by protecting the progenitor cells from radiation injury. Chloroquine thus could serve as a very useful drug for protection

  7. Fluoxetine Prevents Oligodendrocyte Cell Death by Inhibiting Microglia Activation after Spinal Cord Injury

    Science.gov (United States)

    Lee, Jee Y.; Kang, So R.

    2015-01-01

    Abstract Oligodendrocyte cell death and axon demyelination after spinal cord injury (SCI) are known to be important secondary injuries contributing to permanent neurological disability. Thus, blocking oligodendrocyte cell death should be considered for therapeutic intervention after SCI. Here, we demonstrated that fluoxetine, an antidepressant drug, alleviates oligodendrocyte cell death by inhibiting microglia activation after SCI. After injury at the T9 level with a Precision Systems and Instrumentation (Lexington, KY) device, fluoxetine (10 mg/kg, intraperitoneal) was administered once a day for the indicated time points. Immunostaining with CD11b (OX-42) antibody and quantification analysis showed that microglia activation was significantly inhibited by fluoxetine at 5 days after injury. Fluoxetine also significantly inhibited activation of p38 mitogen-activated protein kinase (p38-MAPK) and expression of pro-nerve growth factor (pro-NGF), which is known to mediate oligodendrocyte cell death through the p75 neurotrophin receptor after SCI. In addition, fluoxetine attenuated activation of Ras homolog gene family member A and decreased the level of phosphorylated c-Jun and, ultimately, alleviated caspase-3 activation and significantly reduced cell death of oligodendrocytes at 5 days after SCI. Further, the decrease of myelin basic protein, myelin loss, and axon loss in white matter was also significantly blocked by fluoxetine, as compared to vehicle control. These results suggest that fluoxetine inhibits oligodendrocyte cell death by inhibiting microglia activation and p38-MAPK activation, followed by pro-NGF production after SCI, and provide a potential usage of fluoxetine for a therapeutic agent after acute SCI in humans. PMID:25366938

  8. The alteration in intestinal secretory immunoglobulin A and its secreting cells during ischemia/reperfusion injury

    Directory of Open Access Journals (Sweden)

    Li-qun SUN

    2012-04-01

    Full Text Available Objective To investigate the change in intestinal secretion immunoglobulin A (sIgA level and IgA-secreting cells during ischemia/reperfusion (I/R injury. Methods Forty-eight BALB/c mice were randomly divided into 6 experimental groups in accordance with different reperfusion times (R2h, R6h, R12h, R24h, and R72h group, and one sham group (n=8. Bacterial translocation to distant organs (lung, spleen, and mesenteric lymph nodes was observed. The sIgA level of the intestinal tract was measured by enzyme-linked immunosorbent assay (ELISA. The B cell subgroup in the lymphocytes related to the intestinal tract was measured by flow cytometry. Results The bacterial translocation occurred during I/R injury, and the intestinal sIgA level decreased, and they showed an obvious negative correlation (r2=0.729. With the increase in intestinal I/R injury, the ratio of IgM+B220+ cells in the gut-associated lymphoid tissue increased, whereas the proportion of IgA+B220+ cells decreased. The most significant change was found in R12h group (P < 0.01. Conclusions The proportion of IgM+ B cells in the gut-associated lymphoid tissue increased, whereas that of IgA+ B cells reduced during I/R injury. These phenomena may cause sIgA level to reduce and bacterial translocation of the distant organs to occur.

  9. High Ca2+ Influx During Traumatic Brain Injury Leads to Caspase-1-Dependent Neuroinflammation and Cell Death.

    Science.gov (United States)

    Abdul-Muneer, P M; Long, Mathew; Conte, Adriano Andrea; Santhakumar, Vijayalakshmi; Pfister, Bryan J

    2017-08-01

    We investigated the hypothesis that high Ca 2+ influx during traumatic brain injury induces the activation of the caspase-1 enzyme, which triggers neuroinflammation and cell apoptosis in a cell culture model of neuronal stretch injury and an in vivo model of fluid percussion injury (FPI). We first established that stretch injury causes a rapid increase in the intracellular Ca 2+ level, which activates interleukin-converting enzyme caspase-1. The increase in the intracellular Ca 2+ level and subsequent caspase-1 activation culminates into neuroinflammation via the maturation of IL-1β. Further, we analyzed caspase-1-mediated apoptosis by TUNEL staining and PARP western blotting. The voltage-gated sodium channel blocker, tetrodotoxin, mitigated the stretch injury-induced neuroinflammation and subsequent apoptosis by blocking Ca 2+ influx during the injury. The effect of tetrodotoxin was similar to the caspase-1 inhibitor, zYVAD-fmk, in neuronal culture. To validate the in vitro results, we demonstrated an increase in caspase-1 activity, neuroinflammation and neurodegeneration in fluid percussion-injured animals. Our data suggest that neuronal injury/traumatic brain injury (TBI) can induce a high influx of Ca 2+ to the cells that cause neuroinflammation and cell death by activating caspase-1, IL-1β, and intrinsic apoptotic pathways. We conclude that excess IL-1β production and cell death may contribute to neuronal dysfunction and cognitive impairment associated with TBI.

  10. Elevation of susceptibility to ozone-induced acute tracheobronchial injury in transgenic mice deficient in Clara cell secretory protein

    International Nuclear Information System (INIS)

    Plopper, C.G.; Mango, G.W.; Hatch, G.E.; Wong, V.J.; Toskala, E.; Reynolds, S.D.; Tarkington, B.K.; Stripp, B.R.

    2006-01-01

    Increases in Clara cell abundance or cellular expression of Clara cell secretory protein (CCSP) may cause increased tolerance of the lung to acute oxidant injury by repeated exposure to ozone (O 3 ). This study defines how disruption of the gene for CCSP synthesis affects the susceptibility of tracheobronchial epithelium to acute oxidant injury. Mice homozygous for a null allele of the CCSP gene (CCSP-/-) and wild type (CCSP+/+) littermates were exposed to ozone (0.2 ppm, 8 h; 1 ppm, 8 h) or filtered air. Injury was evaluated by light and scanning electron microscopy, and the abundance of necrotic, ciliated, and nonciliated cells was estimated by morphometry. Proximal and midlevel intrapulmonary airways and terminal bronchioles were evaluated. There was no difference in airway epithelial composition between CCSP+/+ and CCSP-/- mice exposed to filtered air, and exposure to 0.2 ppm ozone caused little injury to the epithelium of both CCSP+/+ and CCSP-/- mice. After exposure to 1.0 ppm ozone, CCSP-/- mice suffered from a greater degree of epithelial injury throughout the airways compared to CCSP+/+ mice. CCSP-/- mice had both ciliated and nonciliated cell injury. Furthermore, lack of CCSP was associated with a shift in airway injury to include proximal airway generations. Therefore, we conclude that CCSP modulates the susceptibility of the epithelium to oxidant-induced injury. Whether this is due to the presence of CCSP on the acellular lining layer surface and/or its intracellular distribution in the secretory cell population needs to be defined

  11. Cell injury and repair resulting from sleep loss and sleep recovery in laboratory rats.

    Science.gov (United States)

    Everson, Carol A; Henchen, Christopher J; Szabo, Aniko; Hogg, Neil

    2014-12-01

    Increased cell injury would provide the type of change in constitution that would underlie sleep disruption as a risk factor for multiple diseases. The current study was undertaken to investigate cell injury and altered cell fate as consequences of sleep deprivation, which were predicted from systemic clues. Partial (35% sleep reduction) and total sleep deprivation were produced in rats for 10 days, which was tolerated and without overtly deteriorated health. Recovery rats were similarly sleep deprived for 10 days, then allowed undisturbed sleep for 2 days. The plasma, liver, lung, intestine, heart, and spleen were analyzed and compared to control values for damage to DNA, proteins, and lipids; apoptotic cell signaling and death; cell proliferation; and concentrations of glutathione peroxidase and catalase. Oxidative DNA damage in totally sleep deprived rats was 139% of control values, with organ-specific effects in the liver (247%), lung (166%), and small intestine (145%). Overall and organ-specific DNA damage was also increased in partially sleep deprived rats. In the intestinal epithelium, total sleep deprivation resulted in 5.3-fold increases in dying cells and 1.5-fold increases in proliferating cells, compared with control. Recovery sleep restored the balance between DNA damage and repair, and resulted in normal or below-normal metabolic burdens and oxidative damage. These findings provide physical evidence that sleep loss causes cell damage, and in a manner expected to predispose to replication errors and metabolic abnormalities; thereby providing linkage between sleep loss and disease risk observed in epidemiological findings. Properties of recovery sleep include biochemical and molecular events that restore balance and decrease cell injury. © 2014 Associated Professional Sleep Societies, LLC.

  12. Serratia marcescens is injurious to intestinal epithelial cells.

    Science.gov (United States)

    Ochieng, John B; Boisen, Nadia; Lindsay, Brianna; Santiago, Araceli; Ouma, Collins; Ombok, Maurice; Fields, Barry; Stine, O Colin; Nataro, James P

    2014-01-01

    Diarrhea causes substantial morbidity and mortality in children in low-income countries. Although numerous pathogens cause diarrhea, the etiology of many episodes remains unknown. Serratia marcescens is incriminated in hospital-associated infections, and HIV/AIDS associated diarrhea. We have recently found that Serratia spp. may be found more commonly in the stools of patients with diarrhea than in asymptomatic control children. We therefore investigated the possible enteric pathogenicity of S. marcescens in vitro employing a polarized human colonic epithelial cell (T84) monolayer. Infected monolayers were assayed for bacterial invasion, transepithelial electrical resistance (TEER), cytotoxicity, interleukin-8 (IL-8) release and morphological changes by scanning electron microscopy. We observed significantly greater epithelial cell invasion by S. marcescens compared to Escherichia coli strain HS (p = 0.0038 respectively). Cell invasion was accompanied by reduction in TEER and secretion of IL-8. Lactate dehydrogenase (LDH) extracellular concentration rapidly increased within a few hours of exposure of the monolayer to S. marcescens. Scanning electron microscopy of S. marcescens-infected monolayers demonstrated destruction of microvilli and vacuolization. Our results suggest that S. marcescens interacts with intestinal epithelial cells in culture and induces dramatic alterations similar to those produced by known enteric pathogens.

  13. Stem cells and treatment of brain and spinal cord injury

    Czech Academy of Sciences Publication Activity Database

    Syková, Eva

    2009-01-01

    Roč. 276, Suppl.1 (2009), s. 40-40 ISSN 1742-464X. [Congress of the Federation-of-European-Biochemical-Societies /34./. 04.07.2009-09.07.2009, Prague] Institutional research plan: CEZ:AV0Z50390703 Keywords : Stem cells Subject RIV: FH - Neurology

  14. Restoring efficiency of hemopoietic cell transplantation in a mouse lethally irradiated by a total exposure to X rays; L'efficacite restauratrice de la greffe de cellules hemopoietiques chez la souris letalement irradiee par une exposition totale aux rayons X

    Energy Technology Data Exchange (ETDEWEB)

    Doria, Gino

    1959-10-15

    This research thesis reports the study of possibility of treatments (or restoration) of a mouse which has been submitted to a lethal dose of X rays. More particularly, the author compared the restoring efficiency of bone marrow and fetal liver injected in a mouse which had been lethally irradiated by a total exposure to X rays. He also studied the functional status of the hemopoietic graft, and the emergence of the secondary disease in mice which had been as well lethally irradiated and then restored by injection of bone marrow and fetal liver. The author then addressed the influence of the induction of immune tolerance of the host with respect to the donor on the survival of a mouse lethally irradiated and restored by homologue bone marrow [French] Des resultats des recherches que nous avons conduites permettent, dans les limites de nos conditions experimentales, d'eclaircir certains aspects du probleme de la restauration des animaux irradies par la greffe de cellules hemopoietiques. On peut admettre que la moelle osseuse de 30 jours est 2 fois plus efficace que le foie foetal de 16 jours, pour ce qui concerne la survie 30 jours; ceci aussi bien en cas de restauration isologue que homologue. En outre, le foie foetal de 16 jours permet une survie d'environ 50 pc plus elevee que les foies foetaux de 13 ou 19 jours; ceci en cas de restauration isologue. On a aussi montre que les degres de capacite restauratrice des differents tissus hemopoietiques dependent du nombre de cellules souches, progenitrices des granulocytes polynucleaires. Nous avons mis en evidence, en cas de restauration par la moelle osseuse homologue, que la presence d'un greffon hemopoietique fonctionnel est necessaire et suffisante pour l'apparition de la maladie secondaire et que celle-ci est une cause suffisante et non necessaire de la mortalite tardive. La constatation experimentale que la viabilite du greffon est une cause suffisante et non necessaire de la mortalite tardive en est la preuve

  15. NK1.1+ cells promote sustained tissue injury and inflammation after trauma with hemorrhagic shock.

    Science.gov (United States)

    Chen, Shuhua; Hoffman, Rosemary A; Scott, Melanie; Manson, Joanna; Loughran, Patricia; Ramadan, Mostafa; Demetris, Anthony J; Billiar, Timothy R

    2017-07-01

    Various cell populations expressing NK1.1 contribute to innate host defense and systemic inflammatory responses, but their role in hemorrhagic shock and trauma remains uncertain. NK1.1 + cells were depleted by i.p. administration of anti-NK1.1 (or isotype control) on two consecutive days, followed by hemorrhagic shock with resuscitation and peripheral tissue trauma (HS/T). The plasma levels of IL-6, MCP-1, alanine transaminase (ALT), and aspartate aminotransferase (AST) were measured at 6 and 24 h. Histology in liver and gut were examined at 6 and 24 h. The number of NK cells, NKT cells, neutrophils, and macrophages in liver, as well as intracellular staining for TNF-α, IFN-γ, and MCP-1 in liver cell populations were determined by flow cytometry. Control mice subjected to HS/T exhibited end organ damage manifested by marked increases in circulating ALT, AST, and MCP-1 levels, as well as histologic evidence of hepatic necrosis and gut injury. Although NK1.1 + cell-depleted mice exhibited a similar degree of organ damage as nondepleted animals at 6 h, NK1.1 + cell depletion resulted in marked suppression of both liver and gut injury by 24 h after HS/T. These findings indicate that NK1.1 + cells contribute to the persistence of inflammation leading to end organ damage in the liver and gut. © Society for Leukocyte Biology.

  16. Intravenous Infusion of Bone Marrow–Derived Mesenchymal Stem Cells Reduces Erectile Dysfunction Following Cavernous Nerve Injury in Rats

    OpenAIRE

    Yohei Matsuda, MD; Masanori Sasaki, MD, PhD; Yuko Kataoka-Sasaki, MD, PhD; Akio Takayanagi, MD, PhD; Ko Kobayashi, MD, PhD; Shinichi Oka, MD, PhD; Masahito Nakazaki, MD, PhD; Naoya Masumori, MD, PhD; Jeffery D. Kocsis, PhD; Osamu Honmou, MD, PhD

    2018-01-01

    Introduction: Intravenous preload (delivered before cavernous nerve [CN] injury) of bone marrow–derived mesenchymal stem cells (MSCs) can prevent or decrease postoperative erectile dysfunction (J Sex Med 2015;12:1713–1721). In the present study, the potential therapeutic effects of intravenously administered MSCs on postoperative erectile dysfunction were evaluated in a rat model of CN injury. Methods: Male Sprague-Dawley rats were randomized into 2 groups after electric CN injury. Intrave...

  17. Lethal mechanisms in gastric volvulus.

    Science.gov (United States)

    Omond, Kimberley J; Byard, Roger W

    2017-01-01

    A 55-year-old wheelchair-bound woman with severe cerebral palsy was found at autopsy to have marked distention of the stomach due to a volvulus. The stomach was viable, and filled with air and fluid and had pushed the left dome of the diaphragm upwards causing marked compression of the left lung with a mediastinal shift to the right (including the heart). There was no evidence of gastric perforation, ischaemic necrosis or peritonitis. Removal of the organ block revealed marked kyphoscoliosis. Histology confirmed the viability of the stomach and biochemistry showed no dehydration. Death in cases of acute gastric volvulus usually occurs because of compromise of the gastric blood supply resulting in ischaemic necrosis with distention from swallowed air and fluid resulting in perforation with lethal peritonitis. Hypovolaemic shock may also occur. However, the current case demonstrates an alternative lethal mechanism, that of respiratory compromise due to marked thoracic organ compression.

  18. In vivo tracking of neuronal-like cells by magnetic resonance in rabbit models of spinal cord injury

    Science.gov (United States)

    Zhang, Ruiping; Zhang, Kun; Li, Jianding; Liu, Qiang; Xie, Jun

    2013-01-01

    In vitro experiments have demonstrated that neuronal-like cells derived from bone marrow mesenchymal stem cells can survive, migrate, integrate and help to restore the function and behaviors of spinal cord injury models, and that they may serve as a suitable approach to treating spinal cord injury. However, it is very difficult to track transplanted cells in vivo. In this study, we injected superparamagnetic iron oxide-labeled neuronal-like cells into the subarachnoid space in a rabbit model of spinal cord injury. At 7 days after cell transplantation, a small number of dot-shaped low signal intensity shadows were observed in the spinal cord injury region, and at 14 days, the number of these shadows increased on T2-weighted imaging. Perl's Prussian blue staining detected dot-shaped low signal intensity shadows in the spinal cord injury region, indicative of superparamagnetic iron oxide nanoparticle-labeled cells. These findings suggest that transplanted neuronal-like cells derived from bone marrow mesenchymal stem cells can migrate to the spinal cord injury region and can be tracked by magnetic resonance in vivo. Magnetic resonance imaging represents an efficient noninvasive technique for visually tracking transplanted cells in vivo. PMID:25206659

  19. 18α-Glycyrrhetinic acid lethality for neuroblastoma cells via de-regulating the Beclin-1/Bcl-2 complex and inducing apoptosis.

    Science.gov (United States)

    Rahman, Md Ataur; Bishayee, Kausik; Habib, Khadija; Sadra, Ali; Huh, Sung-Oh

    2016-10-01

    18α-Glycyrrhetinic acid (18-GA) is a known gap-junction inhibitor with demonstrated anticancer effects. However, the different modes of cell cytotoxicity for 18-GA remain to be characterized. In this study, 18-GA reduced the expression of cell-cell interaction proteins (N- and VE-cadherin), and led to a dose-dependent increase in cytotoxicity of the neuroblastoma cells tested, but was less toxic toward actively dividing human embryonic kidney cells. We found that 18-GA could induce both autophagy and apoptosis. 18-GA mediated autophagy was due to accumulation of Atg5, Atg7 and LC3II and degradation of p62. Individual siRNAs against Atg5 and Atg7 prevented autophagy and resulted in a further loss of viability with 18-GA. In addition, combination of 18-GA with autophagy inhibitor chloroquine produced a more significant cell death. This implied a pro-survival function for autophagy induction with 18-GA. 18-GA also led to the destabilization of Bcl-2/Beclin-1 interaction and cleavage of Beclin-1, a protein known to play role in apoptosis and autophagy induction. Treatment of cells by a pan-caspase inhibitor or a caspase-3 siRNA prevented a large portion of 18-GA mediated cytotoxicity, demonstrating that caspase-dependent apoptosis induction was responsible for most of the observed cytotoxicity. In terms of signaling, 18-GA led to reduced phosphorylation of all three classes of MAP kinases. Taken together, 18-GA or its pathways may lead to more effective, targeted therapeutics against neuroblastoma. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Mast Cell Activation in Brain Injury, Stress, and Post-traumatic Stress Disorder and Alzheimer's Disease Pathogenesis

    Directory of Open Access Journals (Sweden)

    Duraisamy Kempuraj

    2017-12-01

    Full Text Available Mast cells are localized throughout the body and mediate allergic, immune, and inflammatory reactions. They are heterogeneous, tissue-resident, long-lived, and granulated cells. Mast cells increase their numbers in specific site in the body by proliferation, increased recruitment, increased survival, and increased rate of maturation from its progenitors. Mast cells are implicated in brain injuries, neuropsychiatric disorders, stress, neuroinflammation, and neurodegeneration. Brain mast cells are the first responders before microglia in the brain injuries since mast cells can release prestored mediators. Mast cells also can detect amyloid plaque formation during Alzheimer's disease (AD pathogenesis. Stress conditions activate mast cells to release prestored and newly synthesized inflammatory mediators and induce increased blood-brain barrier permeability, recruitment of immune and inflammatory cells into the brain and neuroinflammation. Stress induces the release of corticotropin-releasing hormone (CRH from paraventricular nucleus of hypothalamus and mast cells. CRH activates glial cells and mast cells through CRH receptors and releases neuroinflammatory mediators. Stress also increases proinflammatory mediator release in the peripheral systems that can induce and augment neuroinflammation. Post-traumatic stress disorder (PTSD is a traumatic-chronic stress related mental dysfunction. Currently there is no specific therapy to treat PTSD since its disease mechanisms are not yet clearly understood. Moreover, recent reports indicate that PTSD could induce and augment neuroinflammation and neurodegeneration in the pathogenesis of neurodegenerative diseases. Mast cells play a crucial role in the peripheral inflammation as well as in neuroinflammation due to brain injuries, stress, depression, and PTSD. Therefore, mast cells activation in brain injury, stress, and PTSD may accelerate the pathogenesis of neuroinflammatory and neurodegenerative diseases

  1. Mast Cell Activation in Brain Injury, Stress, and Post-traumatic Stress Disorder and Alzheimer's Disease Pathogenesis.

    Science.gov (United States)

    Kempuraj, Duraisamy; Selvakumar, Govindhasamy P; Thangavel, Ramasamy; Ahmed, Mohammad E; Zaheer, Smita; Raikwar, Sudhanshu P; Iyer, Shankar S; Bhagavan, Sachin M; Beladakere-Ramaswamy, Swathi; Zaheer, Asgar

    2017-01-01

    Mast cells are localized throughout the body and mediate allergic, immune, and inflammatory reactions. They are heterogeneous, tissue-resident, long-lived, and granulated cells. Mast cells increase their numbers in specific site in the body by proliferation, increased recruitment, increased survival, and increased rate of maturation from its progenitors. Mast cells are implicated in brain injuries, neuropsychiatric disorders, stress, neuroinflammation, and neurodegeneration. Brain mast cells are the first responders before microglia in the brain injuries since mast cells can release prestored mediators. Mast cells also can detect amyloid plaque formation during Alzheimer's disease (AD) pathogenesis. Stress conditions activate mast cells to release prestored and newly synthesized inflammatory mediators and induce increased blood-brain barrier permeability, recruitment of immune and inflammatory cells into the brain and neuroinflammation. Stress induces the release of corticotropin-releasing hormone (CRH) from paraventricular nucleus of hypothalamus and mast cells. CRH activates glial cells and mast cells through CRH receptors and releases neuroinflammatory mediators. Stress also increases proinflammatory mediator release in the peripheral systems that can induce and augment neuroinflammation. Post-traumatic stress disorder (PTSD) is a traumatic-chronic stress related mental dysfunction. Currently there is no specific therapy to treat PTSD since its disease mechanisms are not yet clearly understood. Moreover, recent reports indicate that PTSD could induce and augment neuroinflammation and neurodegeneration in the pathogenesis of neurodegenerative diseases. Mast cells play a crucial role in the peripheral inflammation as well as in neuroinflammation due to brain injuries, stress, depression, and PTSD. Therefore, mast cells activation in brain injury, stress, and PTSD may accelerate the pathogenesis of neuroinflammatory and neurodegenerative diseases including AD. This

  2. Target cell and mode of radiation injury in rhesus salivary glands

    International Nuclear Information System (INIS)

    Stephens, L.C.; Kian Ang, K.; Schultheiss, T.E.; King, G.K.; Brock, W.A.; Peters, L.J.

    1986-01-01

    Morphological alterations of parotid and submandibular salivary glands of rhesus monkeys were studied 1-72 h and 16-40 weeks postirradiation (PI) with single photon doses of 2.5-15.0 Gy, or 10.2 Gy given in 6 fractions. Acute degeneration and necrosis of serous cells in both parotid and submandibular glands were clearly expressed by 24 h PI and occurred in a dose-related fashion. In submandibular glands, doses of 12.5 or 15.0 Gy damaged mucous cells, but to a considerably lesser extent than the serous cells in the same glands. No significant sparing was evident with dose fractionation. These observations demonstrate the unique sensitivity of serous cells which appear to undergo interphase cell death after irradiation. The results also show that late atrophy was the direct result of acute loss of serous acini and reflects a lack of regeneration of acinar cells receiving acute injury. (Auth.)

  3. Syringe needle skull penetration reduces brain injuries and secondary inflammation following intracerebral neural stem cell transplantation.

    Science.gov (United States)

    Gao, Mou; Dong, Qin; Zhang, Hongtian; Yang, Yang; Zhu, Jianwei; Yang, Zhijun; Xu, Minhui; Xu, Ruxiang

    2017-03-01

    Intracerebral neural stem cell (NSC) transplantation is beneficial for delivering stem cell grafts effectively, however, this approach may subsequently result in brain injury and secondary inflammation. To reduce the risk of promoting brain injury and secondary inflammation, two methods were compared in the present study. Murine skulls were penetrated using a drill on the left side and a syringe needle on the right. Mice were randomly divided into three groups (n=84/group): Group A, receiving NSCs in the left hemisphere and PBS in the right; group B, receiving NSCs in the right hemisphere and PBS in the left; and group C, receiving equal NSCs in both hemispheres. Murine brains were stained for morphological analysis and subsequent evaluation of infiltrated immune cells. ELISA was performed to detect neurotrophic and immunomodulatory factors in the brain. The findings indicated that brain injury and secondary inflammation in the left hemisphere were more severe than those in the right hemisphere, following NSC transplantation. In contrast to the left hemisphere, more neurotrophic factors but less pro-inflammatory cytokines were detected in the right hemisphere. In addition, increased levels of neurotrophic factors and interleukin (IL)-10 were observed in the NSC transplantation side when compared with the PBS-treated hemispheres, although lower levels of IL-6 and tumor necrosis factor-α were detected. In conclusion, the present study indicated that syringe needle skull penetration vs. drill penetration is an improved method that reduces the risk of brain injury and secondary inflammation following intracerebral NSC transplantation. Furthermore, NSCs have the potential to modulate inflammation secondary to brain injuries.

  4. Regulation of Injury-Induced Ovarian Regeneration by Activation of Oogonial Stem Cells.

    Science.gov (United States)

    Erler, Piril; Sweeney, Alexandra; Monaghan, James R

    2017-01-01

    Some animals have the ability to generate large numbers of oocytes throughout life. This raises the question whether persistent adult germline stem cell populations drive continuous oogenesis and whether they are capable of mounting a regenerative response after injury. Here we demonstrate the presence of adult oogonial stem cells (OSCs) in the adult axolotl salamander ovary and show that ovarian injury induces OSC activation and functional regeneration of the ovaries to reproductive capability. Cells that have morphological similarities to germ cells were identified in the developing and adult ovaries via histological analysis. Genes involved in germ cell maintenance including Vasa, Oct4, Sox2, Nanog, Bmp15, Piwil1, Piwil2, Dazl, and Lhx8 were expressed in the presumptive OSCs. Colocalization of Vasa protein with H3 mitotic marker showed that both oogonial and spermatogonial adult stem cells were mitotically active. Providing evidence of stemness and viability of adult OSCs, enhanced green fluorescent protein (EGFP) adult OSCs grafted into white juvenile host gonads gave rise to EGFP OSCs, and oocytes. Last, the axolotl ovaries completely regenerated after partial ovariectomy injury. During regeneration, OSC activation resulted in rapid differentiation into new oocytes, which was demonstrated by Vasa + /BrdU + coexpression. Furthermore, follicle cell proliferation promoted follicle maturation during ovarian regeneration. Overall, these results show that adult oogenesis occurs via proliferation of endogenous OSCs in a tetrapod and mediates ovarian regeneration. This study lays the foundations to elucidate mechanisms of ovarian regeneration that will assist regenerative medicine in treating premature ovarian failure and reduced fertility. Stem Cells 2017;35:236-247. © 2016 AlphaMed Press.

  5. Curcumin-loaded embryonic stem cell exosomes restored neurovascular unit following ischemia-reperfusion injury.

    Science.gov (United States)

    Kalani, Anuradha; Chaturvedi, Pankaj; Kamat, Pradip K; Maldonado, Claudio; Bauer, Philip; Joshua, Irving G; Tyagi, Suresh C; Tyagi, Neetu

    2016-10-01

    We tested whether the combined nano-formulation, prepared with curcumin (anti-inflammatory and neuroprotective molecule) and embryonic stem cell exosomes (MESC-exo cur ), restored neurovascular loss following an ischemia reperfusion (IR) injury in mice. IR-injury was created in 8-10 weeks old mice and divided into two groups. Out of two IR-injured groups, one group received intranasal administration of MESC-exo cur for 7days. Similarly, two sham groups were made and one group received MESC-exo cur treatment. The study determined that MESC-exo cur treatment reduced neurological score, infarct volume and edema following IR-injury. As compared to untreated IR group, MESC-exo cur treated-IR group showed reduced inflammation and N-methyl-d-aspartate receptor expression. Treatment of MESC-exo cur also reduced astrocytic GFAP expression and alleviated the expression of NeuN positive neurons in IR-injured mice. In addition, MESC-exo cur treatment restored vascular endothelial tight (claudin-5 and occludin) and adherent (VE-cadherin) junction proteins in IR-injured mice as compared to untreated IR-injured mice. These results suggest that combining the potentials of embryonic stem cell exosomes and curcumin can help neurovascular restoration following ischemia-reperfusion injury in mice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Activated STAT5 Confers Resistance to Intestinal Injury by Increasing Intestinal Stem Cell Proliferation and Regeneration

    Directory of Open Access Journals (Sweden)

    Shila Gilbert

    2015-02-01

    Full Text Available Intestinal epithelial stem cells (IESCs control the intestinal homeostatic response to inflammation and regeneration. The underlying mechanisms are unclear. Cytokine-STAT5 signaling regulates intestinal epithelial homeostasis and responses to injury. We link STAT5 signaling to IESC replenishment upon injury by depletion or activation of Stat5 transcription factor. We found that depletion of Stat5 led to deregulation of IESC marker expression and decreased LGR5+ IESC proliferation. STAT5-deficient mice exhibited worse intestinal histology and impaired crypt regeneration after γ-irradiation. We generated a transgenic mouse model with inducible expression of constitutively active Stat5. In contrast to Stat5 depletion, activation of STAT5 increased IESC proliferation, accelerated crypt regeneration, and conferred resistance to intestinal injury. Furthermore, ectopic activation of STAT5 in mouse or human stem cells promoted LGR5+ IESC self-renewal. Accordingly, STAT5 promotes IESC proliferation and regeneration to mitigate intestinal inflammation. STAT5 is a functional therapeutic target to improve the IESC regenerative response to gut injury.

  7. Can mesenchymal stem cells reverse chronic stress-induced impairment of lung healing following traumatic injury?

    Science.gov (United States)

    Gore, Amy V; Bible, Letitia E; Livingston, David H; Mohr, Alicia M; Sifri, Ziad C

    2015-04-01

    One week following unilateral lung contusion (LC), rat lungs demonstrate full histologic recovery. When animals undergo LC plus the addition of chronic restraint stress (CS), wound healing is significantly delayed. Mesenchymal stem cells (MSCs) are pluripotent cells capable of immunomodulation, which have been the focus of much research in wound healing and tissue regeneration. We hypothesize that the addition of MSCs will improve wound healing in the setting of CS. Male Sprague-Dawley rats (n = 6-7 per group) were subjected to LC/CS with or without the injection of MSCs. MSCs were given as a single intravenous dose of 5 × 10 cells in 1 mL Iscove's Modified Dulbecco's Medium at the time of LC. Rats were subjected to 2 hours of restraint stress on Days 1 to 6 following LC. Seven days following injury, rats were sacrificed, and the lungs were examined for histologic evidence of wound healing using a well-established histologic lung injury score (LIS) to grade injury. LIS examines inflammatory cells/high-power field (HPF) averaged over 30 fields, interstitial edema, pulmonary edema, and alveolar integrity, with scores ranging from 0 (normal) to 11 (highly damaged). Peripheral blood was analyzed by flow cytometry for the presence of T-regulatory (C4CD25FoxP3) cells. Data were analyzed by analysis of variance followed by Tukey's multiple comparison test, expressed as mean (SD). As previously shown, 7 days following isolated LC, LIS has returned to 0.83 (0.41), with a subscore of zero for inflammatory cells/HPF. The addition of CS results in an LIS of 4.4 (2.2), with a subscore of 1.9 (0.7) for inflammatory cells/HPF. Addition of MSC to LC/CS decreased LIS to 1.7 (0.8), with a subscore of zero for inflammatory cells/HPF. Furthermore, treatment of animals undergoing LC/CS with MSCs increased the %T-regulatory cells by 70% in animals undergoing LC/CS alone (12.9% [2.4]% vs. 6.2% [1.3%]). Stress-induced impairment of wound healing is reversed by the addition of MSCs given

  8. Lethal effect of short-wave (254 nm) UV-radiation on cells of Chlamidomonas reinhardii strains with different carotenoid content

    International Nuclear Information System (INIS)

    Kamchatova, I.E.; Chunaev, A.S.; Bronnikov, V.A.

    1987-01-01

    In experiments on related Chlamidomonas reinhardii strains of similar mating type a study was made of sensitivity of cells with different carotenoid content to UV-radiation of 254 nm. Mutants having a lower, as opposed to the wild type strain, content of carotenoids exhibited an increased radiosensitivity. A carotenoid-free mutant was found to possess a higher sensitivity to UV-radiation which was typical of the strain with the impaired excision repair system. The studied subclone of the UV-radiosensitive strain CC-888 was unable to photoreactivate the UV-induced damages which was typical of the wild-type strain. The content of carotenoids in cells of this subnuclone exceeded that in cells of mutants with the reduced pigmentation

  9. Pattern of MAP kinases p44/42 and JNK activation by non-lethal doses of tributyltin in human natural killer cells

    Energy Technology Data Exchange (ETDEWEB)

    Aluoch, Aloice O. [Tennessee State University, Department of Biological Sciences, Nashville, TN (United States); Odman-Ghazi, Sabah O.; Whalen, Margaret M. [Tennessee State University, Department of Chemistry, Nashville, TN (United States)

    2007-04-15

    Tributyltin (TBT) has been shown to disrupt the ability of natural killer (NK) cells to destroy tumor targets in vitro even at exposures of 25 nM for 24 h, but cell viability was not significantly impacted. Thus, evaluation of intracellular molecular events that regulate cell viability in TBT exposed NK cells are of interest. It has been suggested that activation of the mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), may promote apoptosis while activation of the MAPK p44/42 may be crucial in mediating anti-apoptotic stimuli. However, it is well established that increases in pro-apoptotic BCL-2 family members, such as Bax, results in cell death. We have set out to study the effects of a range of TBT concentrations on the MAPKs, JNK and p44/42. Additionally, we examined the effects of TBT on the levels of pro-apoptotic proteins Bax and p53 as well as anti-apoptotic protein Bcl-2. The results show that 300-25 nM TBT activated JNK within 10 min. MAPK p44/42 was also activated by 300-50 nM TBT within 10 min. These data show that while 300-200 nM TBT activates p44/42 significantly more than JNK, the pattern of 100-25 nM TBT activation of these MAPKs may be similar. TBT exposure alters neither pro-apoptotic proteins Bax and p53 nor anti-apoptotic protein Bcl-2 levels at any exposure studied. The results suggest that exposure to TBT activated the anti-apoptotic regulatory p44/42 pathway to a greater extent than the pro-apoptotic JNK pathway, which may explain to some extent how NK cell viability is maintained. (orig.)

  10. Drug-Induced Liver Injury: Cascade of Events Leading to Cell Death, Apoptosis or Necrosis

    Directory of Open Access Journals (Sweden)

    Andrea Iorga

    2017-05-01

    Full Text Available Drug-induced liver injury (DILI can broadly be divided into predictable and dose dependent such as acetaminophen (APAP and unpredictable or idiosyncratic DILI (IDILI. Liver injury from drug hepatotoxicity (whether idiosyncratic or predictable results in hepatocyte cell death and inflammation. The cascade of events leading to DILI and the cell death subroutine (apoptosis or necrosis of the cell depend largely on the culprit drug. Direct toxins to hepatocytes likely induce oxidative organelle stress (such as endoplasmic reticulum (ER and mitochondrial stress leading to necrosis or apoptosis, while cell death in idiosyncratic DILI (IDILI is usually the result of engagement of the innate and adaptive immune system (likely apoptotic, involving death receptors (DR. Here, we review the hepatocyte cell death pathways both in direct hepatotoxicity such as in APAP DILI as well as in IDILI. We examine the known signaling pathways in APAP toxicity, a model of necrotic liver cell death. We also explore what is known about the genetic basis of IDILI and the molecular pathways leading to immune activation and how these events can trigger hepatotoxicity and cell death.

  11. Feasibility of combination allogeneic stem cell therapy for spinal cord injury: a case report

    Directory of Open Access Journals (Sweden)

    Ichim Thomas E

    2010-11-01

    Full Text Available Abstract Cellular therapy for spinal cord injury (SCI is overviewed focusing on bone marrow mononuclear cells, olfactory ensheathing cells, and mesenchymal stem cells. A case is made for the possibility of combining cell types, as well as for allogeneic use. We report the case of 29 year old male who suffered a crush fracture of the L1 vertebral body, lacking lower sensorimotor function, being a score A on the ASIA scale. Stem cell therapy comprised of intrathecal administration of allogeneic umbilical cord blood ex-vivo expanded CD34 and umbilical cord matrix MSC was performed 5 months, 8 months, and 14 months after injury. Cell administration was well tolerated with no adverse effects observed. Neuropathic pain subsided from intermittent 10/10 to once a week 3/10 VAS. Recovery of muscle, bowel and sexual function was noted, along with a decrease in ASIA score to "D". This case supports further investigation into allogeneic-based stem cell therapies for SCI.

  12. Disturbance of copper homeostasis is a mechanism for homocysteine-induced vascular endothelial cell injury.

    Directory of Open Access Journals (Sweden)

    Daoyin Dong

    Full Text Available Elevation of serum homocysteine (Hcy levels is a risk factor for cardiovascular diseases. Previous studies suggested that Hcy interferes with copper (Cu metabolism in vascular endothelial cells. The present study was undertaken to test the hypothesis that Hcy-induced disturbance of Cu homeostasis leads to endothelial cell injury. Exposure of human umbilical vein endothelial cells (HUVECs to concentrations of Hcy at 0.01, 0.1 or 1 mM resulted in a concentration-dependent decrease in cell viability and an increase in necrotic cell death. Pretreatment of the cells with a final concentration of 5 µM Cu in cultures prevented the effects of Hcy. Hcy decreased intracellular Cu concentrations. HPLC-ICP-MS analysis revealed that Hcy caused alterations in the distribution of intracellular Cu; more Cu was redistributed to low molecular weight fractions. ESI-Q-TOF detected the formation of Cu-Hcy complexes. Hcy also decreased the protein levels of Cu chaperone COX17, which was accompanied by a decrease in the activity of cytochrome c oxidase (CCO and a collapse of mitochondrial membrane potential. These effects of Hcy were all preventable by Cu pretreatment. The study thus demonstrated that Hcy disturbs Cu homeostasis and limits the availability of Cu to critical molecules such as COX17 and CCO, leading to mitochondrial dysfunction and endothelial cell injury.

  13. Resveratrol prevents endothelial cells injury in high-dose interleukin-2 therapy against melanoma.

    Directory of Open Access Journals (Sweden)

    Hongbing Guan

    Full Text Available Immunotherapy with high-dose interleukin-2 (HDIL-2 is an effective treatment for patients with metastatic melanoma and renal cell carcinoma. However, it is accompanied by severe toxicity involving endothelial cell injury and induction of vascular leak syndrome (VLS. In this study, we found that resveratrol, a plant polyphenol with anti-inflammatory and anti-cancer properties, was able to prevent the endothelial cell injury and inhibit the development of VLS while improving the efficacy of HDIL-2 therapy in the killing of metastasized melanoma. Specifically, C57BL/6 mice were injected with B16F10 cells followed by resveratrol by gavage the next day and continued treatment with resveratrol once a day. On day 9, mice received HDIL-2. On day 12, mice were evaluated for VLS and tumor metastasis. We found that resveratrol significantly inhibited the development of VLS in lung and liver by protecting endothelial cell integrity and preventing endothelial cells from undergoing apoptosis. The metastasis and growth of the tumor in lung were significantly inhibited by HDIL-2 and HDIL-2 + resveratrol treatment. Notably, HDIL-2 + resveratrol co-treatment was more effective in inhibiting tumor metastasis and growth than HDIL-2 treatment alone. We also analyzed the immune status of Gr-1(+CD11b(+ myeloid-derived suppressor cells (MDSC and FoxP3(+CD4(+ regulatory T cells (Treg. We found that resveratrol induced expansion and suppressive function of MDSC which inhibited the development of VLS after adoptive transfer. However, resveratrol suppressed the HDIL-2-induced expansion of Treg cells. We also found that resveratrol enhanced the susceptibility of melanoma to the cytotoxicity of IL-2-activated killer cells, and induced the expression of the tumor suppressor gene FoxO1. Our results suggested the potential use of resveratrol in HDIL-2 treatment against melanoma. We also demonstrated, for the first time, that MDSC is the dominant suppressor cell than regulatory

  14. Bone marrow mesenchymal stem cells repair spinal cord ischemia/reperfusion injury by promoting axonal growth and anti-autophagy

    Science.gov (United States)

    Yin, Fei; Meng, Chunyang; Lu, Rifeng; Li, Lei; Zhang, Ying; Chen, Hao; Qin, Yonggang; Guo, Li

    2014-01-01

    Bone marrow mesenchymal stem cells can differentiate into neurons and astrocytes after transplantation in the spinal cord of rats with ischemia/reperfusion injury. Although bone marrow mesenchymal stem cells are known to protect against spinal cord ischemia/reperfusion injury through anti-apoptotic effects, the precise mechanisms remain unclear. In the present study, bone marrow mesenchymal stem cells were cultured and proliferated, then transplanted into rats with ischemia/reperfusion injury via retro-orbital injection. Immunohistochemistry and immunofluorescence with subsequent quantification revealed that the expression of the axonal regeneration marker, growth associated protein-43, and the neuronal marker, microtubule-associated protein 2, significantly increased in rats with bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Furthermore, the expression of the autophagy marker, microtubule-associated protein light chain 3B, and Beclin 1, was significantly reduced in rats with the bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Western blot analysis showed that the expression of growth associated protein-43 and neurofilament-H increased but light chain 3B and Beclin 1 decreased in rats with the bone marrow mesenchymal stem cell transplantation. Our results therefore suggest that bone marrow mesenchymal stem cell transplantation promotes neurite growth and regeneration and prevents autophagy. These responses may likely be mechanisms underlying the protective effect of bone marrow mesenchymal stem cells against spinal cord ischemia/reperfusion injury. PMID:25374587

  15. Evidence for the induction of two types of potentially lethal damage after exposure of plateau phase Chinese hamster V79 cells to γ-rays

    International Nuclear Information System (INIS)

    Iliakis, G.

    1985-01-01

    The fixation of γ-rays induced potentially damage (PLD) caused after treatment either with β-araA or in medium made hypertonic by the addition of sodium chloride was studied in plateauphase chinese hamster V79 cells. Treatment with β-araA was found to affect a sector of PLD, the fixation of which specifically reduced the shoulder width of the survival curve. The effect was maximized when cell survival reached levels corresponding to an exponential line, with a slope similar to the final slope of the survival curve of untreated cells. This effect was achieved by a four hour treatment with β-araA at concentrations above 150 μM. Longer treatment times or incubation at higher β-araA concentrations did not significantly enhance the effect. Treatment in hypertonic medium, on the other hand, enhanced cell killing in a concentration dependent (NaCl-concentration) way and the survival reached values much lower than those corresponding to an exponential line. No indication for a plateau in the effect, indicating complete fixation of the sector of PLD that reacts sensitively to this treatment, was obtained. Boht the slope and the shoulder width of the survival curve were affected, the slope first being increaseed after short treatment times (up to 10 min), followed by a decrease in the shoulder width after longer treatment times (longer than 10 min). (orig./WL)

  16. Protection of Escherichia coli cells against the lethal effects of ultraviolet and X-irradiation by prior X-irradiation. A genetic and physiological study

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K C; Martignoni, K D [Stanford Univ., Calif. (USA). Dept. of Radiology

    1976-12-01

    When log phase cells of wild-type E.coli K-12 were maintained in growth medium after X-irradiation, they became progressively more resistant to a subsequent exposure to UV or X-radiation. The time to achieve maximum resistance was about 60 min. The uvrB, uvrD, polA and certain exrA strains (W3110 background) also demonstrated this X-ray-induced resistance to subsequent UV or X-irradiation but recA, recB, lex (AB1157 or W3110 backgrounds) and other exrA strains (AB1157 background) did not. The resistance induced in wild-type, uvrB and uvrD cells was characterized by the production or enhancement of a shoulder on the survival curves obtained for the second irradiation, while the resistance induced in the W3110 exrA strains was expressed only as a change in slope. The induction of resistance in the W3110 exrA strain was not inhibited by the presence of chloramphenical, but that in the wild-type cells appeared to be. The production or enhancement of a shoulder on the survival curves of the rec/sup +/ lex/sup +/ exr/sup +/ cells is consistent with the concept of the radiation induction of repair enzymes. Alternative explanations, however, are discussed.

  17. Inhibition of X-ray-induced protection of Escherichia coli K-12 cells against the lethal effects of ultra-violet light by nitrofurantoin

    Energy Technology Data Exchange (ETDEWEB)

    Martignoni, K D [Muenchen Univ. (Germany, F.R.). Strahlenbiologisches Inst.

    1978-06-01

    Wild-type cells of E.coli K-12 showed increasing U.V. resistance if they were X-irradiated and incubated at 37/sup 0/C in growth medium before the U.V. exposure. Development of higher U.V. resistance could be inhibited by incubating the X-irradiated cells either at temperatures below 15/sup 0/C, or in the presence of 0.01 M KCN. Nitrofurantoin (NF), which was recently found specifically to inhibit inducible enzyme synthesis, had only a transient inhibitory effect on X-ray-induced U.V. resistance. Cells grown in glucose medium showed less inhibition by NF of X-radiation-induced resistance to U.V.-radiation than did cells grown in glycerol, or in glucose medium with added cyclic AMP. It is suggested that X-ray-induced U.V. resistance requires active cellular metabolism, but it is not subject to catabolite repression. The following hypothesis is offered to explain the action of NF : Under de-repressed conditions (without catabolite repression by glucose) nitrofurantoin could counteract the radiation-induced inhibition of a repair inhibitor (such as post-irradiation DNA degradation).

  18. The Potential of Stem Cells in Treatment of Traumatic Brain Injury.

    Science.gov (United States)

    Weston, Nicole M; Sun, Dong

    2018-01-25

    Traumatic brain injury (TBI) is a global public health concern, with limited treatment options available. Despite improving survival rate after TBI, treatment is lacking for brain functional recovery and structural repair in clinic. Recent studies have suggested that the mature brain harbors neural stem cells which have regenerative capacity following brain insults. Much progress has been made in preclinical TBI model studies in understanding the behaviors, functions, and regulatory mechanisms of neural stem cells in the injured brain. Different strategies targeting these cell population have been assessed in TBI models. In parallel, cell transplantation strategy using a wide range of stem cells has been explored for TBI treatment in pre-clinical studies and some in clinical trials. This review summarized strategies which have been explored to enhance endogenous neural stem cell-mediated regeneration and recent development in cell transplantation studies for post-TBI brain repair. Thus far, neural regeneration through neural stem cells either by modulating endogenous neural stem cells or by stem cell transplantation has attracted much attention. It is highly speculated that targeting neural stem cells could be a potential strategy to repair and regenerate the injured brain. Neuroprotection and neuroregeneration are major aspects for TBI therapeutic development. With technique advancement, it is hoped that stem cell-based therapy targeting neuroregeneration will be able to translate to clinic in not so far future.

  19. Quantifying cellular mechanics and adhesion in renal tubular injury using single cell force spectroscopy.

    Science.gov (United States)

    Siamantouras, Eleftherios; Hills, Claire E; Squires, Paul E; Liu, Kuo-Kang

    2016-05-01

    Tubulointerstitial fibrosis represents the major underlying pathology of diabetic nephropathy where loss of cell-to-cell adhesion is a critical step. To date, research has predominantly focussed on the loss of cell surface molecular binding events that include altered protein ligation. In the current study, atomic force microscopy single cell force spectroscopy (AFM-SCFS) was used to quantify changes in cellular stiffness and cell adhesion in TGF-β1 treated kidney cells of the human proximal tubule (HK2). AFM indentation of TGF-β1 treated HK2 cells showed a significant increase (42%) in the elastic modulus (stiffness) compared to control. Fluorescence microscopy confirmed that increased cell stiffness is accompanied by reorganization of the cytoskeleton. The corresponding changes in stiffness, due to F-actin rearrangement, affected the work of detachment by changing the separation distance between two adherent cells. Overall, our novel data quantitatively demonstrate a correlation between cellular elasticity, adhesion and early morphologic/phenotypic changes associated with tubular injury. Diabetes affects many patients worldwide. One of the long term problems is diabetic nephropathy. Here, the authors utilized atomic force microscopy single cell force spectroscopy (AFM- SCFS) to study cellular stiffness and cell adhesion after TGF1 treatment in human proximal tubule kidney cells. The findings would help further understand the overall disease mechanism in diabetic patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Indirect induction of endothelial cell injury by PU- or PTFE-mediated activation of monocytes.

    Science.gov (United States)

    Liu, Xin; Xue, Yang; Sun, Jiao

    2010-01-01

    Polyurethanes (PUs) and polytetrafluoroethylene (PTFE) are widely used for making cardiovascular devices, but thrombus formation on the surfaces of these devices is inevitable. Since endothelial injury can lead to thrombosis, most of the studies on PUs or PTFE focused on their damage to endothelial cells. However, few studies have attempted to clarify whether the use of foreign objects as biomaterials can cause endothelial injury by activating the innate immune system. In this study, we aimed to investigate the roles of PU- or PTFE-stimulated immune cells in endothelial-cell injury. First, monocytes (THP-1 cells) were stimulated with PU or PTFE for 24 h and, subsequently, human umbilical vein endothelial cells (HUVECs) were treated with the supernatants of the stimulated cells for 24 h. We measured the generation of intracellular reactive oxygen species (ROS) from THP-1 cells treated with PU and PTFE for 24 h, meanwhile hydrogen dioxide (H(2)O(2)), tumor necrosis factor (TNF)-α and interleukin (IL)-1β in the supernatants were also detected. Then, we assessed the apoptosis rate of the HUVECs and determined the expression of NO, inducible nitric oxide synthase (iNOS), and apoptosis-related proteins (p53, Bax, Bcl-2) in the HUVECs. The results showed that large amounts of ROS and low levels of pro-inflammatory cytokines (TNF-α and IL-1β) were produced by the stimulated THP-1 cells. After culturing with the supernatants of the PU- or PTFE-stimulated THP-1 cells, the apoptosis rate, NO production and expression of iNOS, p53 and Bax in the HUVECs were up-regulated, while Bcl-2 expression was down-regulated. In conclusion, the release of ROS by PU- or PTFE-treated THP-1 cells may induce iNOS expression and cause apoptosis in HUVECs via the p53, Bax and Bcl-2 proteins. These data provide the interesting finding that endothelial injury in the process of biomaterial-induced thrombosis can be initiated through the release of soluble mediators by monocytes.

  1. Transplantation of human amniotic epithelial cells repairs brachial plexus injury:pathological and biomechanical analyses

    Institute of Scientific and Technical Information of China (English)

    Qi Yang; Min Luo; Peng Li; Hai Jin

    2014-01-01

    A brachial plexus injury model was established in rabbits by stretching the C6 nerve root. Imme-diately after the stretching, a suspension of human amniotic epithelial cells was injected into the injured brachial plexus. The results of tensile mechanical testing of the brachial plexus showed that the tensile elastic limit strain, elastic limit stress, maximum stress, and maximum strain of the injured brachial plexuses were signiifcantly increased at 24 weeks after the injection. The treat-ment clearly improved the pathological morphology of the injured brachial plexus nerve, as seen by hematoxylin eosin staining, and the functions of the rabbit forepaw were restored. These data indicate that the injection of human amniotic epithelial cells contributed to the repair of brachial plexus injury, and that this technique may transform into current clinical treatment strategies.

  2. Pulmonary heat shock protein expression after exposure to a metabolically activated Clara cell toxicant: relationship to protein adduct formation

    International Nuclear Information System (INIS)

    Williams, Kurt J.; Cruikshank, Michael K.; Plopper, Charles G.

    2003-01-01

    Heat shock proteins/stress proteins (Hsps) participate in regulation of protein synthesis and degradation and serve as general cytoprotectants, yet their role in lethal Clara cell injury is not clear. To define the pattern of Hsp expression in acute lethal Clara cell injury, mice were treated with the Clara cell-specific toxicant naphthalene (NA), and patterns of expression compared to electrophilic protein adduction and previously established organellar degradation and gluathione (GSH) depletion. In sites of lethal injury (distal bronchiole), prior to organellar degradation (1 h post-NA), protein adduction is detectable and ubiquitin, Hsp 25, Hsp 72, and heme-oxygenase 1 (HO-1) are increased. Maximal Hsp expression, protein adduction, and GSH depletion occur simultaneous (by 2-3 h) with early organelle disruption. Hsp expression is higher later (6-24 h), only in exfoliating cells. In airway sites (proximal bronchiole) with nonlethal Clara cell injury elevation of Hsp 25, 72, and HO-1 expression follows significant GSH depletion (greater than 50% 2 h post-NA). This data build upon our previous studies and we conclude that (1) in lethal (terminal bronchiole) and nonlethal (proximal bronchiole) Clara cell injury, Hsp induction is associated with the loss of GSH and increased protein adduction, and (2) in these same sites, organelle disruption is not a prerequisite for Hsp induction

  3. The contribution of apoptosis and necrosis in freezing injury of sea urchin embryonic cells.

    Science.gov (United States)

    Boroda, Andrey V; Kipryushina, Yulia O; Yakovlev, Konstantin V; Odintsova, Nelly A

    2016-08-01

    Sea urchins have recently been reported to be a promising tool for investigations of oxidative stress, UV light perturbations and senescence. However, few available data describe the pathway of cell death that occurs in sea urchin embryonic cells after cryopreservation. Our study is focused on the morphological and functional alterations that occur in cells of these animals during the induction of different cell death pathways in response to cold injury. To estimate the effect of cryopreservation on sea urchin cell cultures and identify the involved cell death pathways, we analyzed cell viability (via trypan blue exclusion test, MTT assay and DAPI staining), caspase activity (via flow cytometry and spectrophotometry), the level of apoptosis (via annexin V-FITC staining), and cell ultrastructure alterations (via transmission electron microscopy). Using general caspase detection, we found that the level of caspase activity was low in unfrozen control cells, whereas the number of apoptotic cells with activated caspases rose after freezing-thawing depending on cryoprotectants used, also as the number of dead cells and cells in a late apoptosis. The data using annexin V-binding assay revealed a very high apoptosis level in all tested samples, even in unfrozen cells (about 66%). Thus, annexin V assay appears to be unsuitable for sea urchin embryonic cells. Typical necrotic cells with damaged mitochondria were not detected after freezing in sea urchin cell cultures. Our results assume that physical cell disruption but not freezing-induced apoptosis or necrosis is the predominant reason of cell death in sea urchin cultures after freezing-thawing with any cryoprotectant combination. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. CD34+ mesenchymal cells are a major component of the intestinal stem cells niche at homeostasis and after injury.

    Science.gov (United States)

    Stzepourginski, Igor; Nigro, Giulia; Jacob, Jean-Marie; Dulauroy, Sophie; Sansonetti, Philippe J; Eberl, Gérard; Peduto, Lucie

    2017-01-24

    The intestinal epithelium is continuously renewed by intestinal epithelial stem cells (IESCs) positioned at the base of each crypt. Mesenchymal-derived factors are essential to maintain IESCs; however, the cellular composition and development of such mesenchymal niche remains unclear. Here, we identify pericryptal CD34 + Gp38 + αSMA - mesenchymal cells closely associated with Lgr5 + IESCs. We demonstrate that CD34 + Gp38 + cells are the major intestinal producers of the niche factors Wnt2b, Gremlin1, and R-spondin1, and are sufficient to promote maintenance of Lgr5 + IESCs in intestinal organoids, an effect mainly mediated by Gremlin1. CD34 + Gp38 + cells develop after birth in the intestinal submucosa and expand around the crypts during the third week of life in mice, independently of the microbiota. We further show that pericryptal CD34 + gp38 + cells are rapidly activated by intestinal injury, up-regulating niche factors Gremlin1 and R-spondin1 as well as chemokines, proinflammatory cytokines, and growth factors with key roles in gut immunity and tissue repair, including IL-7, Ccl2, Ptgs2, and Amphiregulin. Our results indicate that CD34 + Gp38 + mesenchymal cells are programmed to develop in the intestine after birth to constitute a specialized microenvironment that maintains IESCs at homeostasis and contribute to intestinal inflammation and repair after injury.

  5. Hypoxia Potentiates the Radiation-Sensitizing Effect of Olaparib in Human Non-Small Cell Lung Cancer Xenografts by Contextual Synthetic Lethality

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yanyan; Verbiest, Tom; Devery, Aoife M.; Bokobza, Sivan M.; Weber, Anika M.; Leszczynska, Katarzyna B.; Hammond, Ester M.; Ryan, Anderson J., E-mail: anderson.ryan@oncology.ox.ac.uk

    2016-06-01

    Purpose: Poly(ADP-ribose) polymerase (PARP) inhibitors potentiate radiation therapy in preclinical models of human non-small cell lung cancer (NSCLC) and other types of cancer. However, the mechanisms underlying radiosensitization in vivo are incompletely understood. Herein, we investigated the impact of hypoxia on radiosensitization by the PARP inhibitor olaparib in human NSCLC xenograft models. Methods and Materials: NSCLC Calu-6 and Calu-3 cells were irradiated in the presence of olaparib or vehicle under normoxic (21% O{sub 2}) or hypoxic (1% O{sub 2}) conditions. In vitro radiosensitivity was assessed by clonogenic survival assay and γH2AX foci assay. Established Calu-6 and Calu-3 subcutaneous xenografts were treated with olaparib (50 mg/kg, daily for 3 days), radiation (10 Gy), or both. Tumors (n=3/group) were collected 24 or 72 hours after the first treatment. Immunohistochemistry was performed to assess hypoxia (carbonic anhydrase IX [CA9]), vessels (CD31), DNA double strand breaks (DSB) (γH2AX), and apoptosis (cleaved caspase 3 [CC3]). The remaining xenografts (n=6/group) were monitored for tumor growth. Results: In vitro, olaparib showed a greater radiation-sensitizing effect in Calu-3 and Calu-6 cells in hypoxic conditions (1% O{sub 2}). In vivo, Calu-3 tumors were well-oxygenated, whereas Calu-6 tumors had extensive regions of hypoxia associated with down-regulation of the homologous recombination protein RAD51. Olaparib treatment increased unrepaired DNA DSB (P<.001) and apoptosis (P<.001) in hypoxic cells of Calu-6 tumors following radiation, whereas it had no significant effect on radiation-induced DNA damage response in nonhypoxic cells of Calu-6 tumors or in the tumor cells of well-oxygenated Calu-3 tumors. Consequently, olaparib significantly increased radiation-induced growth inhibition in Calu-6 tumors (P<.001) but not in Calu-3 tumors. Conclusions: Our data suggest that hypoxia potentiates the radiation-sensitizing effects of

  6. Decay Accelerating Factor (CD55) Protects Neuronal Cells from Chemical Hypoxia-Induced Injury

    Science.gov (United States)

    2010-04-09

    Pavlakovic G, Isom GE: Dopaminergic neurotoxicity of cyanide: neurochemical, histological and behavioral characterization. Toxicol Appl Pharmacol...provided the original work is properly cited. ResearchDecay accelerating factor (CD55) protects neuronal cells from chemical hypoxia-induced injury...deposition of C3a/C5a and membrane attack complex (MAC or C5b-9) production. The present study investigates the ability of DAF to protect primary cultured

  7. Lung Injury; Relates to Real-Time Endoscopic Monitoring of Single Cells Respiratory Health in Lung

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-16-1-0253 TITLE: Lung Injury; Relates to Real- Time Endoscopic Monitoring of Single Cells Respiratory Health in Lung...2017 TYPE OF REPORT: Annual PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION ...STATEMENT: Approved for Public Release; Distribution Unlimited The views, opinions and/or findings contained in this report are those of the author(s

  8. Schwann cell-mediated delivery of glial cell line-derived neurotrophic factor restores erectile function after cavernous nerve injury.

    Science.gov (United States)

    May, Florian; Buchner, Alexander; Schlenker, Boris; Gratzke, Christian; Arndt, Christian; Stief, Christian; Weidner, Norbert; Matiasek, Kaspar

    2013-03-01

    To evaluate the time-course of functional recovery after cavernous nerve injury using glial cell line-derived neurotrophic factor-transduced Schwann cell-seeded silicon tubes. Sections of the cavernous nerves were excised bilaterally (5 mm), followed by immediate bilateral surgical repair. A total of 20 study nerves per group were reconstructed by interposition of empty silicon tubes and silicon tubes seeded with either glial cell line-derived neurotrophic factor-overexpressing or green fluorescent protein-expressing Schwann cells. Control groups were either sham-operated or received bilateral nerve transection without nerve reconstruction. Erectile function was evaluated by relaparotomy, electrical nerve stimulation and intracavernous pressure recording after 2, 4, 6, 8 and 10 weeks. The animals underwent re-exploration only once, and were killed afterwards. The nerve grafts were investigated for the maturation state of regenerating nerve fibers and the fascular composition. Recovery of erectile function took at least 4 weeks in the current model. Glial cell line-derived neurotrophic factor-transduced Schwann cell grafts restored erectile function better than green fluorescent protein-transduced controls and unseeded conduits. Glial cell line-derived neurotrophic factor-transduced grafts promoted an intact erectile response (4/4) at 4, 6, 8 and 10 weeks that was overall significantly superior to negative controls (P cell line-derived neurotrophic factor-transduced grafts compared with negative controls (P = 0.018) and unseeded tubes (P = 0.034). Return of function was associated with the electron microscopic evidence of preganglionic myelinated nerve fibers and postganglionic unmyelinated axons. Schwann cell-mediated delivery of glial cell line-derived neurotrophic factor presents a viable approach for the treatment of erectile dysfunction after cavernous nerve injury. © 2013 The Japanese Urological Association.

  9. Profound protection against respiratory challenge with a lethal H7N7 influenza A virus by increasing the magnitude of CD8(+) T-cell memory

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Doherty, P C; Branum, K C

    2000-01-01

    The recall of CD8(+) T-cell memory established by infecting H-2(b) mice with an H1N1 influenza A virus provided a measure of protection against an extremely virulent H7N7 virus. The numbers of CD8(+) effector and memory T cells specific for the shared, immunodominant D(b)NP(366) epitope were...... greatly increased subsequent to the H7N7 challenge, and though lung titers remained as high as those in naive controls for 5 days or more, the virus was cleared more rapidly. Expanding the CD8(+) memory T-cell pool (10%) by sequential priming with two different influenza A viruses (H3N2-->H1N1......) gave much better protection. Though the H7N7 virus initially grew to equivalent titers in the lungs of naive and double-primed mice, the replicative phase was substantially controlled within 3 days. This tertiary H7N7 challenge caused little increase in the magnitude of the CD8(+) D(b)NP(366)(+) T...

  10. Long-term injury in B-lymphocyte precursor cells in repeatedly-irradiated mice

    International Nuclear Information System (INIS)

    Hendry, J.H.; Clarke, D.; Testa, N.; Kimber, J.

    1984-01-01

    Mice irradiated with 4 doses of 4,5 Gy X-rays at 3-week intervals, demonstrated long-term proliferative defects in B lymphocytes. There was a reduced mitogenic response to bacterial polysaccharide (30%), a lower concentration (35%) of B-lymphocyte colony-forming cells (BL-CFC) in agar with an increased proportion of clusters (x2), and a reduced concentration (30%) of plaque-forming cells. Grafts of thymocytes were able to restore the levels of BL-CFC in the short term, but in the long term large grafts of femoral marrow cells were much better in restoring the numbers of BL-CFC. The reduced mitogenesis (25%) of splenocytes by concanavalin A and the diminished number of plaque-forming cells, may suggest persistent injury in T-B cell cooperation

  11. Bone marrow-derived cells in the population of spinal microglia after peripheral nerve injury

    Science.gov (United States)

    Tashima, Ryoichi; Mikuriya, Satsuki; Tomiyama, Daisuke; Shiratori-Hayashi, Miho; Yamashita, Tomohiro; Kohro, Yuta; Tozaki-Saitoh, Hidetoshi; Inoue, Kazuhide; Tsuda, Makoto

    2016-01-01

    Accumulating evidence indicates that peripheral nerve injury (PNI) activates spinal microglia that are necessary for neuropathic pain. Recent studies using bone marrow (BM) chimeric mice have reported that after PNI, circulating BM-derived cells infiltrate into the spinal cord and differentiate into microglia-like cells. This raises the possibility that the population of spinal microglia after PNI may be heterogeneous. However, the infiltration of BM cells in the spinal cord remains controversial because of experimental adverse effects of strong irradiation used for generating BM chimeric mice. In this study, we evaluated the PNI-induced spinal infiltration of BM-derived cells not only by irradiation-induced myeloablation with various conditioning regimens, but also by parabiosis and mice with genetically labelled microglia, models without irradiation and BM transplantation. Results obtained from these independent approaches provide compelling evidence indicating little contribution of circulating BM-derived cells to the population of spinal microglia after PNI. PMID:27005516

  12. Injury-activated glial cells promote wound healing of the adult skin in mice.

    Science.gov (United States)

    Parfejevs, Vadims; Debbache, Julien; Shakhova, Olga; Schaefer, Simon M; Glausch, Mareen; Wegner, Michael; Suter, Ueli; Riekstina, Una; Werner, Sabine; Sommer, Lukas

    2018-01-16

    Cutaneous wound healing is a complex process that aims to re-establish the original structure of the skin and its functions. Among other disorders, peripheral neuropathies are known to severely impair wound healing capabilities of the skin, revealing the importance of skin innervation for proper repair. Here, we report that peripheral glia are crucially involved in this process. Using a mouse model of wound healing, combined with in vivo fate mapping, we show that injury activates peripheral glia by promoting de-differentiation, cell-cycle re-entry and dissemination of the cells into the wound bed. Moreover, injury-activated glia upregulate the expression of many secreted factors previously associated with wound healing and promote myofibroblast differentiation by paracrine modulation of TGF-β signalling. Accordingly, depletion of these cells impairs epithelial proliferation and wound closure through contraction, while their expansion promotes myofibroblast formation. Thus, injury-activated glia and/or their secretome might have therapeutic potential in human wound healing disorders.

  13. Chitosan nanoparticle-based neuronal membrane sealing and neuroprotection following acrolein-induced cell injury

    Directory of Open Access Journals (Sweden)

    Shi Riyi

    2010-01-01

    Full Text Available Abstract Background The highly reactive aldehyde acrolein is a very potent endogenous toxin with a long half-life. Acrolein is produced within cells after insult, and is a central player in slow and progressive "secondary injury" cascades. Indeed, acrolein-biomolecule complexes formed by cross-linking with proteins and DNA are associated with a number of pathologies, especially central nervous system (CNS trauma and neurodegenerative diseases. Hydralazine is capable of inhibiting or reducing acrolein-induced damage. However, since hydralazine's principle activity is to reduce blood pressure as a common anti-hypertension drug, the possible problems encountered when applied to hypotensive trauma victims have led us to explore alternative approaches. This study aims to evaluate such an alternative - a chitosan nanoparticle-based therapeutic system. Results Hydralazine-loaded chitosan nanoparticles were prepared using different types of polyanions and characterized for particle size, morphology, zeta potential value, and the efficiency of hydralazine entrapment and release. Hydralazine-loaded chitosan nanoparticles ranged in size from 300 nm to 350 nm in diameter, and with a tunable, or adjustable, surface charge. Conclusions We evaluated the utility of chitosan nanoparticles with an in-vitro model of acrolein-mediated cell injury using PC -12 cells. The particles effectively, and statistically, reduced damage to membrane integrity, secondary oxidative stress, and lipid peroxidation. This study suggests that a chitosan nanoparticle-based therapy to interfere with "secondary" injury may be possible.

  14. An effective strategy of magnetic stem cell delivery for spinal cord injury therapy

    Science.gov (United States)

    Tukmachev, Dmitry; Lunov, Oleg; Zablotskii, Vitalii; Dejneka, Alexandr; Babic, Michal; Syková, Eva; Kubinová, Šárka

    2015-02-01

    Spinal cord injury (SCI) is a condition that results in significant mortality and morbidity. Treatment of SCI utilizing stem cell transplantation represents a promising therapy. However, current conventional treatments are limited by inefficient delivery strategies of cells into the injured tissue. In this study, we designed a magnetic system and used it to accumulate stem cells labelled with superparamagnetic iron oxide nanoparticles (SPION) at a specific site of a SCI lesion. The loading of stem cells with engineered SPIONs that guarantees sufficient attractive magnetic forces was achieved. Further, the magnetic system allowed rapid guidance of the SPION-labelled cells precisely to the lesion location. Histological analysis of cell distribution throughout the cerebrospinal channel showed a good correlation with the calculated distribution of magnetic forces exerted onto the transplanted cells. The results suggest that focused targeting and fast delivery of stem cells can be achieved using the proposed non-invasive magnetic system. With future implementation the proposed targeting and delivery strategy bears advantages for the treatment of disease requiring fast stem cell transplantation.Spinal cord injury (SCI) is a condition that results in significant mortality and morbidity. Treatment of SCI utilizing stem cell transplantation represents a promising therapy. However, current conventional treatments are limited by inefficient delivery strategies of cells into the injured tissue. In this study, we designed a magnetic system and used it to accumulate stem cells labelled with superparamagnetic iron oxide nanoparticles (SPION) at a specific site of a SCI lesion. The loading of stem cells with engineered SPIONs that guarantees sufficient attractive magnetic forces was achieved. Further, the magnetic system allowed rapid guidance of the SPION-labelled cells precisely to the lesion location. Histological analysis of cell distribution throughout the cerebrospinal

  15. [A case of the fatal injury by technical electricity from a mobile device (cell phone) connected to the circuit].

    Science.gov (United States)

    Rudenko, I A; Kil'dyushov, E M; Koludarova, E M; Morozov, V Yu; Fetisov, V A

    2015-01-01

    The authors report a case of the fatal injury by technical electricity from a mobile device (cell phone) attached to the circuit in a moist environment as a result of the unsafe handling of the gadget (when taking the bath).

  16. Transplantation of neurotrophin-3-transfected bone marrow mesenchymal stem cells for the repair of spinal cord injury.

    Science.gov (United States)

    Dong, Yuzhen; Yang, Libin; Yang, Lin; Zhao, Hongxing; Zhang, Chao; Wu, Dapeng

    2014-08-15

    Bone marrow mesenchymal stem cell transplantation has been shown to be therapeutic in the repair of spinal cord injury. However, the low survival rate of transplanted bone marrow mesenchymal stem cells in vivo remains a problem. Neurotrophin-3 promotes motor neuron survival and it is hypothesized that its transfection can enhance the therapeutic effect. We show that in vitro transfection of neurotrophin-3 gene increases the number of bone marrow mesenchymal stem cells in the region of spinal cord injury. These results indicate that neurotrophin-3 can promote the survival of bone marrow mesenchymal stem cells transplanted into the region of spinal cord injury and potentially enhance the therapeutic effect in the repair of spinal cord injury.

  17. Transplantation of mononuclear cells from human umbilical cord blood promotes functional recovery after traumatic spinal cord injury in Wistar rats

    International Nuclear Information System (INIS)

    Rodrigues, L.P.; Iglesias, D.; Nicola, F.C.; Steffens, D.; Valentim, L.; Witczak, A.; Zanatta, G.; Achaval, M.; Pranke, P.; Netto, C.A.

    2011-01-01

    Cell transplantation is a promising experimental treatment for spinal cord injury. The aim of the present study was to evaluate the efficacy of mononuclear cells from human umbilical cord blood in promoting functional recovery when transplanted after a contusion spinal cord injury. Female Wistar rats (12 weeks old) were submitted to spinal injury with a MASCIS impactor and divided into 4 groups: control, surgical control, spinal cord injury, and one cell-treated lesion group. Mononuclear cells from umbilical cord blood of human male neonates were transplanted in two experiments: a) 1 h after surgery, into the injury site at a concentration of 5 x 10 6 cells diluted in 10 µL 0.9% NaCl (N = 8-10 per group); b) into the cisterna magna, 9 days after lesion at a concentration of 5 x 10 6 cells diluted in 150 µL 0.9% NaCl (N = 12-14 per group). The transplanted animals were immunosuppressed with cyclosporin-A (10 mg/kg per day). The BBB scale was used to evaluate motor behavior and the injury site was analyzed with immunofluorescent markers to label human transplanted cells, oligodendrocytes, neurons, and astrocytes. Spinal cord injury rats had 25% loss of cord tissue and cell treatment did not affect lesion extension. Transplanted cells survived in the injured area for 6 weeks after the procedure and both transplanted groups showed better motor recovery than the untreated ones (P < 0.05). The transplantation of mononuclear cells from human umbilical cord blood promoted functional recovery with no evidence of cell differentiation

  18. Transplantation of mononuclear cells from human umbilical cord blood promotes functional recovery after traumatic spinal cord injury in Wistar rats

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, L.P. [Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Iglesias, D. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Nicola, F.C. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Steffens, D. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Valentim, L.; Witczak, A.; Zanatta, G. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Achaval, M. [Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Pranke, P. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Netto, C.A. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    2011-12-23

    Cell transplantation is a promising experimental treatment for spinal cord injury. The aim of the present study was to evaluate the efficacy of mononuclear cells from human umbilical cord blood in promoting functional recovery when transplanted after a contusion spinal cord injury. Female Wistar rats (12 weeks old) were submitted to spinal injury with a MASCIS impactor and divided into 4 groups: control, surgical control, spinal cord injury, and one cell-treated lesion group. Mononuclear cells from umbilical cord blood of human male neonates were transplanted in two experiments: a) 1 h after surgery, into the injury site at a concentration of 5 x 10{sup 6} cells diluted in 10 µL 0.9% NaCl (N = 8-10 per group); b) into the cisterna magna, 9 days after lesion at a concentration of 5 x 10{sup 6} cells diluted in 150 µL 0.9% NaCl (N = 12-14 per group). The transplanted animals were immunosuppressed with cyclosporin-A (10 mg/kg per day). The BBB scale was used to evaluate motor behavior and the injury site was analyzed with immunofluorescent markers to label human transplanted cells, oligodendrocytes, neurons, and astrocytes. Spinal cord injury rats had 25% loss of cord tissue and cell treatment did not affect lesion extension. Transplanted cells survived in the injured area for 6 weeks after the procedure and both transplanted groups showed better motor recovery than the untreated ones (P < 0.05). The transplantation of mononuclear cells from human umbilical cord blood promoted functional recovery with no evidence of cell differentiation.

  19. Dominant-lethal mutations and heritable translocations in mice

    International Nuclear Information System (INIS)

    Generoso, W.M.

    1983-01-01

    Chromosome aberrations are a major component of radiation or chemically induced genetic damage in mammalian germ cells. The types of aberration produced are dependent upon the mutagen used and the germ-cell stage treated. For example, in male meiotic and postmeiotic germ cells certain alkylating chemicals induce both dominant-lethal mutations and heritable translocations while others induce primarily dominant-lethal mutations. Production of these two endpoints appears to be determined by the stability of alkylation products with the chromosomes. If the reaction products are intact in the male chromosomes at the time of sperm entry, they may be repaired in fertilized eggs. If repair is not effected and the alkylation products persist to the time of pronuclear chromosome replication, they lead to chromatid-type aberrations and eventually to dominant-lethality. The production of heritable translocations, on the other hand, requires a transformation of unstable alkylation products into suitable intermediate lesions. The process by which these lesions are converted into chromosome exchange within the male genome takes place after sperm enters the egg but prior to the time of pronuclear chromosome replication (i.e., chromosome-type). Thus, dominant-lethal mutations result from both chromatid- and chromosome-type aberrations while heritable translocations result primarily from the latter type. DNA target sites associated with the production of these two endpoints are discussed

  20. Dominant-lethal mutations and heritable translocations in mice

    Energy Technology Data Exchange (ETDEWEB)

    Generoso, W.M.

    1983-01-01

    Chromosome aberrations are a major component of radiation or chemically induced genetic damage in mammalian germ cells. The types of aberration produced are dependent upon the mutagen used and the germ-cell stage treated. For example, in male meiotic and postmeiotic germ cells certain alkylating chemicals induce both dominant-lethal mutations and heritable translocations while others induce primarily dominant-lethal mutations. Production of these two endpoints appears to be determined by the stability of alkylation products with the chromosomes. If the reaction products are intact in the male chromosomes at the time of sperm entry, they may be repaired in fertilized eggs. If repair is not effected and the alkylation products persist to the time of pronuclear chromosome replication, they lead to chromatid-type aberrations and eventually to dominant-lethality. The production of heritable translocations, on the other hand, requires a transformation of unstable alkylation products into suitable intermediate lesions. The process by which these lesions are converted into chromosome exchange within the male genome takes place after sperm enters the egg but prior to the time of pronuclear chromosome replication (i.e., chromosome-type). Thus, dominant-lethal mutations result from both chromatid- and chromosome-type aberrations while heritable translocations result primarily from the latter type. DNA target sites associated with the production of these two endpoints are discussed.

  1. Role of alveolar epithelial Early growth response-1 (Egr-1) in CD8+ T Cell mediated Lung Injury

    OpenAIRE

    Ramana, Chilakamarti V.; Cheng, Guang-Shing; Kumar, Aseem; Kwon, Hyung- Joo; Enelow, Richard I.

    2009-01-01

    Influenza infection of the distal airways results in severe lung injury, a considerable portion of which is immunopathologic and attributable to the host responses. We have used a mouse model to specifically investigate the role of antiviral CD8+ T cells in this injury, and have found that the critical effector molecule is TNF-α expressed by the T cells upon antigen recognition. Interestingly, the immunopathology which ensues is characterized by significant accumulation of host inflammatory c...

  2. Stem cells and biomaterials for the treatment of spinal cord injury

    Czech Academy of Sciences Publication Activity Database

    Jendelová, Pavla; Hejčl, Aleš; Romanyuk, Nataliya; Amemori, Takashi; Syková, Eva

    2011-01-01

    Roč. 59, S1 (2011), S14-S14 ISSN 0894-1491. [European meeting on Glia l Cells in Health and Disease /10./. 13.09.2011-17.09.2011, Prague] R&D Projects: GA MŠk 1M0538; GA AV ČR IAA500390902; GA ČR GAP108/10/1560; GA ČR GA203/09/1242 Institutional research plan: CEZ:AV0Z50390703 Keywords : spinal cord injuri * stem cells * regeneration and repair Subject RIV: FH - Neurology

  3. Regulatory T cells suppress muscle inflammation and injury in muscular dystrophy

    Science.gov (United States)

    Villalta, S. Armando; Rosenthal, Wendy; Martinez, Leonel; Kaur, Amanjot; Sparwasser, Tim; Tidball, James G.; Margeta, Marta; Spencer, Melissa J.; Bluestone, Jeffrey A.

    2016-01-01

    We examined the hypothesis that regulatory T cells (Tregs) modulate muscle injury and inflammation in the mdx mouse model of Duchenne muscular dystrophy (DMD). Although Tregs were largely absent in the muscle of wildtype mice and normal human muscle, they were present in necrotic lesions, displayed an activated phenotype and showed increased expression of interleukin (IL)-10 in dystrophic muscle from mdx mice. Depletion of Tregs exacerbated muscle injury and the severity of muscle inflammation, which was characterized by an enhanced interferon-gamma (IFNγ) response and activation of M1 macrophages. To test the therapeutic value of targeting Tregs in muscular dystrophy, we treated mdx mice with IL-2/anti-IL-2 complexes (IL-2c), and found that Tregs and IL-10 concentrations were increased in muscle, resulting in reduced expression of cyclooygenase-2 and decreased myofiber injury. These findings suggest that Tregs modulate the progression of muscular dystrophy by suppressing type 1 inflammation in muscle associated with muscle fiber injury, and highlight the potential of Treg-modulating agents as therapeutics for DMD. PMID:25320234

  4. Autophagy Limits Endotoxemic Acute Kidney Injury and Alters Renal Tubular Epithelial Cell Cytokine Expression.

    Directory of Open Access Journals (Sweden)

    Jeremy S Leventhal

    Full Text Available Sepsis related acute kidney injury (AKI is a common in-hospital complication with a dismal prognosis. Our incomplete understanding of disease pathogenesis has prevented the identification of hypothesis-driven preventive or therapeutic interventions. Increasing evidence in ischemia-reperfusion and nephrotoxic mouse models of AKI support the theory that autophagy protects renal tubular epithelial cells (RTEC from injury. However, the role of RTEC autophagy in septic AKI remains unclear. We observed that lipopolysaccharide (LPS, a mediator of gram-negative bacterial sepsis, induces RTEC autophagy in vivo and in vitro through TLR4-initiated signaling. We modeled septic AKI through intraperitoneal LPS injection in mice in which autophagy-related protein 7 was specifically knocked out in the renal proximal tubules (ATG7KO. Compared to control littermates, ATG7KO mice developed more severe renal dysfunction (24hr BUN 100.1mg/dl +/- 14.8 vs 54.6mg/dl +/- 11.3 and parenchymal injury. After injection with LPS, analysis of kidney lysates identified higher IL-6 expression and increased STAT3 activation in kidney lysates from ATG7KO mice compared to controls. In vitro experiments confirmed an altered response to LPS in RTEC with genetic or pharmacological impairment of autophagy. In conclusion, RTEC autophagy protects against endotoxin induced injury and regulates downstream effects of RTEC TLR4 signaling.

  5. Recovery from UV-induced potentially lethal damage in systemic lupus erythematosus skin fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Zamansky, G B

    1986-08-01

    The repair of ultraviolet light-induced potentially lethal damage was investigated in density-inhibited skin fibroblast cell strains derived from patients with systemic lupus erythematosus. The effect of exposure to polychromatic ultraviolet light composed of environmentally relevant wavelengths or to the more commonly studied, short wavelength (254 nm) ultraviolet light was studied. Systemic lupus erythematosus cells, which are hypersensitive to ultraviolet light under growth promoting conditions, were able to repair potentially lethal damage as well as normal cells.

  6. Recovery from UV-induced potentially lethal damage in systemic lupus erythematosus skin fibroblasts

    International Nuclear Information System (INIS)

    Zamansky, G.B.

    1986-01-01

    The repair of ultraviolet light-induced potentially lethal damage was investigated in density-inhibited skin fibroblast cell strains derived from patients with systemic lupus erythematosus. The effect of exposure to polychromatic ultraviolet light composed of environmentally relevant wavelengths or to the more commonly studied, short wavelength (254 nm) ultraviolet light was studied. Systemic lupus erythematosus cells, which are hypersensitive to ultraviolet light under growth promoting conditions, were able to repair potentially lethal damage as well as normal cells. (author)

  7. Structure-function Evaluation of Stem Cell Therapies for Spinal Cord Injury.

    Science.gov (United States)

    Zhang, Fuguo

    2018-02-23

    Spinal cord injuries (SCI) are prevalent, devastating for quality and expectancy of life, and cause heavy economic burdens. Stem cell therapies hold promise in complete structural and functional restoration of SCI. This review focuses on the methods currently used to evaluate the stem cell therapies for SCI. Various kinds of stem cells involving embryonic stem cells (ESCs), bone marrow stromal cells (BMSCs), neural stem cells (NSCs) and induced pluripotent stem cells (iPSCs) are extensively used in regenerative research of SCI. For evaluation, the survival and integration of transplanted cells, spinal cord reconstruction and functional recovery all should be considered. Histological and histochemistrical, microscopic, and colorimetric assays, and real-time RT-PCR techniques are applied to determine the outcome. From the three main aspects-transplanted cells, spinal cord structure, and functional recovery-we summarize and discuss these methods with certain instances of applications in SCI models. Importantly, for the evaluations of function, neuronal transmitting, electrophysiological analysis and behavioral score are included. Wider conjunction of established technologies, as well as the further development of nondestructive methods might make a big difference in testing stem cell therapies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Bone-marrow-derived mesenchymal stem cells inhibit gastric aspiration lung injury and inflammation in rats.

    Science.gov (United States)

    Zhou, Jing; Jiang, Liyan; Long, Xuan; Fu, Cuiping; Wang, Xiangdong; Wu, Xiaodan; Liu, Zilong; Zhu, Fen; Shi, Jindong; Li, Shanqun

    2016-09-01

    Gastric aspiration lung injury is one of the most common clinical events. This study investigated the effects of bone-marrow-derived mesenchymal stem cells (BMSCs) on combined acid plus small non-acidified particle (CASP)-induced aspiration lung injury. Enhanced green fluorescent protein (EGFP(+) ) or EGFP(-) BMSCs or 15d-PGJ2 were injected via the tail vein into rats immediately after CASP-induced aspiration lung injury. Pathological changes in lung tissues, blood gas analysis, the wet/dry weight ratio (W/D) of the lung, levels of total proteins and number of total cells and neutrophils in bronchoalveolar lavage fluid (BALF) were determined. The cytokine levels were measured using ELISA. Protein expression was determined by Western blot. Bone-marrow-derived mesenchymal stem cells treatment significantly reduced alveolar oedema, exudation and lung inflammation; increased the arterial partial pressure of oxygen; and decreased the W/D of the lung, the levels of total proteins and the number of total cells and neutrophils in BALF in the rats with CASP-induced lung injury. Bone-marrow-derived mesenchymal stem cells treatment decreased the levels of tumour necrosis factor-α and Cytokine-induced neutrophil chemoattractant (CINC)-1 and the expression of p-p65 and increased the levels of interleukin-10 and 15d-PGJ2 and the expression of peroxisome proliferator-activated receptor (PPAR)-γ in the lung tissue in CASP-induced rats. Tumour necrosis factor-α stimulated BMSCs to secrete 15d-PGJ2 . A tracking experiment showed that EGFP(+) BMSCs were able to migrate to local lung tissues. Treatment with 15d-PGJ2 also significantly inhibited CASP-induced lung inflammation and the production of pro-inflammatory cytokines. Our results show that BMSCs can protect lung tissues from gastric aspiration injury and inhibit lung inflammation in rats. A beneficial effect might be achieved through BMSC-derived 15d-PGJ2 activation of the PPAR-γ receptor, reducing the production of

  9. Enteroendocrine L Cells Sense LPS after Gut Barrier Injury to Enhance GLP-1 Secretion

    Directory of Open Access Journals (Sweden)

    Lorène J. Lebrun

    2017-10-01

    Full Text Available Summary: Glucagon-like peptide 1 (GLP-1 is a hormone released from enteroendocrine L cells. Although first described as a glucoregulatory incretin hormone, GLP-1 also suppresses inflammation and promotes mucosal integrity. Here, we demonstrate that plasma GLP-1 levels are rapidly increased by lipopolysaccharide (LPS administration in mice via a Toll-like receptor 4 (TLR4-dependent mechanism. Experimental manipulation of gut barrier integrity after dextran sodium sulfate treatment, or via ischemia/reperfusion experiments in mice, triggered a rapid rise in circulating GLP-1. This phenomenon was detected prior to measurable changes in inflammatory status and plasma cytokine and LPS levels. In human subjects, LPS administration also induced GLP-1 secretion. Furthermore, GLP-1 levels were rapidly increased following the induction of ischemia in the human intestine. These findings expand traditional concepts of enteroendocrine L cell biology to encompass the sensing of inflammatory stimuli and compromised mucosal integrity, linking glucagon-like peptide secretion to gut inflammation. : Lebrun et al. demonstrate that enteroendocrine L cells sense lipopolysaccharides (pro-inflammatory bacterial compounds after gut injury and respond by secreting glucagon-like peptide 1. These findings expand concepts of L cell function to include roles as both a nutrient and pathogen sensor, linking glucagon-like peptide secretion to gut inflammation. Keywords: glucagon-like peptide 1, lipopolysaccharides, enteroendocrine cells, TLR4, gut injury, intestinal ischemia, inflammation

  10. Quantitative analysis of immune cell subset infiltration of supraspinatus muscle after severe rotator cuff injury.

    Science.gov (United States)

    Krieger, J R; Tellier, L E; Ollukaren, M T; Temenoff, J S; Botchwey, E A

    2017-06-01

    Rotator cuff tears cause muscle degeneration that is characterized by myofiber atrophy, fatty infiltration, and fibrosis and is minimally responsive to current treatment options. The underlying pathogenesis of rotator cuff muscle degeneration remains to be elucidated, and increasing evidence implicates immune cell infiltration as a significant factor. Because immune cells are comprised of highly heterogeneous subpopulations that exert divergent effects on injured tissue, understanding trafficking and accumulation of immune subpopulations may hold the key to more effective therapies. The present study quantifies subpopulations of immune cells infiltrating the murine supraspinatus muscle after severe rotator cuff injury that includes tenotomy and denervation. Rotator cuff injury stimulates dramatic infiltration of mononuclear phagocytes, enriches mononuclear phagocytes in non-classical subpopulations, and enriches T lymphocytes in T H and T reg subpopulations. The combination of tenotomy plus denervation significantly increases mononuclear phagocyte infiltration, enriches macrophages in the non-classical subpopulation, and decreases T lymphocyte enrichment in T H cells compared to tenotomy alone. Depletion of circulating monocytes via liposomal clodronate accelerates supraspinatus atrophy after tenotomy and denervation. The study may aid rational design of immunologically smart therapies that harness immune cells to enhance outcomes after rotator cuff tears.

  11. Melatonin-mediated cytoprotection against hyperglycemic injury in Müller cells.

    Directory of Open Access Journals (Sweden)

    Tingting Jiang

    Full Text Available Oxidative stress is a contributing factor to the development and progression of diabetic retinopathy, a leading cause of blindness in people at working age worldwide. Recent studies showed that Müller cells play key roles in diabetic retinopathy and produce vascular endothelial growth factor (VEGF that regulates retinal vascular leakage and proliferation. Melatonin is a potent antioxidant capable of protecting variety of retinal cells from oxidative damage. In addition to the pineal gland, the retina produces melatonin. In the current study, we investigated whether melatonin protects against hyperglycemia-induced oxidative injury to Müller cells and explored the potential underlying mechanisms. Our results show that both melatonin membrane receptors, MT1 and MT2, are expressed in cultured primary Müller cells and are upregulated by elevated glucose levels. Both basal and high glucose-induced VEGF production was attenuated by melatonin treatment in a dose-dependent manner. Furthermore, we found that melatonin is a potent activator of Akt in Müller