WorldWideScience

Sample records for leptin receptor signaling

  1. Severe energy deficit upregulates leptin receptors, leptin signaling, and PTP1B in human skeletal muscle.

    Science.gov (United States)

    Perez-Suarez, Ismael; Ponce-González, Jesús Gustavo; de La Calle-Herrero, Jaime; Losa-Reyna, Jose; Martin-Rincon, Marcos; Morales-Alamo, David; Santana, Alfredo; Holmberg, Hans-Christer; Calbet, Jose A L

    2017-11-01

    In obesity, leptin receptors (OBR) and leptin signaling in skeletal muscle are downregulated. To determine whether OBR and leptin signaling are upregulated with a severe energy deficit, 15 overweight men were assessed before the intervention (PRE), after 4 days of caloric restriction (3.2 kcal·kg body wt -1 ·day -1 ) in combination with prolonged exercise (CRE; 8 h walking + 45 min single-arm cranking/day) to induce an energy deficit of ~5,500 kcal/day, and following 3 days of control diet (isoenergetic) and reduced exercise (CD). During CRE, the diet consisted solely of whey protein ( n = 8) or sucrose ( n = 7; 0.8 g·kg body wt -1 ·day -1 ). Muscle biopsies were obtained from the exercised and the nonexercised deltoid muscles and from the vastus lateralis. From PRE to CRE, serum glucose, insulin, and leptin were reduced. OBR expression was augmented in all examined muscles associated with increased maximal fat oxidation. Compared with PRE, after CD, phospho-Tyr 1141 OBR, phospho-Tyr 985 OBR, JAK2, and phospho-Tyr 1007/1008 JAK2 protein expression were increased in all muscles, whereas STAT3 and phospho-Tyr 705 STAT3 were increased only in the arms. The expression of protein tyrosine phosphatase 1B (PTP1B) in skeletal muscle was increased by 18 and 45% after CRE and CD, respectively ( P < 0.05). Suppressor of cytokine signaling 3 (SOCS3) tended to increase in the legs and decrease in the arm muscles (ANOVA interaction: P < 0.05). Myosin heavy chain I isoform was associated with OBR protein expression ( r  = -0.75), phospho-Tyr 985 OBR ( r  = 0.88), and phospho-Tyr 705 STAT3/STAT3 ( r = 0.74). In summary, despite increased PTP1B expression, skeletal muscle OBR and signaling are upregulated by a severe energy deficit with greater response in the arm than in the legs likely due to SOCS3 upregulation in the leg muscles. NEW & NOTEWORTHY This study shows that the skeletal muscle leptin receptors and their corresponding signaling cascade are upregulated in

  2. Lipoprotein receptor LRP1 regulates leptin signaling and energy homeostasis in the adult central nervous system.

    Science.gov (United States)

    Liu, Qiang; Zhang, Juan; Zerbinatti, Celina; Zhan, Yan; Kolber, Benedict J; Herz, Joachim; Muglia, Louis J; Bu, Guojun

    2011-01-11

    Obesity is a growing epidemic characterized by excess fat storage in adipocytes. Although lipoprotein receptors play important roles in lipid uptake, their role in controlling food intake and obesity is not known. Here we show that the lipoprotein receptor LRP1 regulates leptin signaling and energy homeostasis. Conditional deletion of the Lrp1 gene in the brain resulted in an obese phenotype characterized by increased food intake, decreased energy consumption, and decreased leptin signaling. LRP1 directly binds to leptin and the leptin receptor complex and is required for leptin receptor phosphorylation and Stat3 activation. We further showed that deletion of the Lrp1 gene specifically in the hypothalamus by Cre lentivirus injection is sufficient to trigger accelerated weight gain. Together, our results demonstrate that the lipoprotein receptor LRP1, which is critical in lipid metabolism, also regulates food intake and energy homeostasis in the adult central nervous system.

  3. Lipoprotein receptor LRP1 regulates leptin signaling and energy homeostasis in the adult central nervous system.

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    2011-01-01

    Full Text Available Obesity is a growing epidemic characterized by excess fat storage in adipocytes. Although lipoprotein receptors play important roles in lipid uptake, their role in controlling food intake and obesity is not known. Here we show that the lipoprotein receptor LRP1 regulates leptin signaling and energy homeostasis. Conditional deletion of the Lrp1 gene in the brain resulted in an obese phenotype characterized by increased food intake, decreased energy consumption, and decreased leptin signaling. LRP1 directly binds to leptin and the leptin receptor complex and is required for leptin receptor phosphorylation and Stat3 activation. We further showed that deletion of the Lrp1 gene specifically in the hypothalamus by Cre lentivirus injection is sufficient to trigger accelerated weight gain. Together, our results demonstrate that the lipoprotein receptor LRP1, which is critical in lipid metabolism, also regulates food intake and energy homeostasis in the adult central nervous system.

  4. Acute up-regulation of the rat brain somatostatin receptor-effector system by leptin is related to activation of insulin signaling and may counteract central leptin actions.

    Science.gov (United States)

    Perianes-Cachero, A; Burgos-Ramos, E; Puebla-Jiménez, L; Canelles, S; Frago, L M; Hervás-Aguilar, A; de Frutos, S; Toledo-Lobo, M V; Mela, V; Viveros, M P; Argente, J; Chowen, J A; Arilla-Ferreiro, E; Barrios, V

    2013-11-12

    Leptin and somatostatin (SRIF) have opposite effects on food seeking and ingestive behaviors, functions partially regulated by the frontoparietal cortex and hippocampus. Although it is known that the acute suppression of food intake mediated by leptin decreases with time, the counter-regulatory mechanisms remain unclear. Our aims were to analyze the effect of acute central leptin infusion on the SRIF receptor-effector system in these areas and the implication of related intracellular signaling mechanisms in this response. We studied 20 adult male Wister rats including controls and those treated intracerebroventricularly with a single dose of 5 μg of leptin and sacrificed 1 or 6h later. Density of SRIF receptors was unchanged at 1h, whereas leptin increased the density of SRIF receptors at 6h, which was correlated with an elevated capacity of SRIF to inhibit forskolin-stimulated adenylyl cyclase activity in both areas. The functional capacity of SRIF receptors was unaltered as cell membrane levels of αi1 and αi2 subunits of G inhibitory proteins were unaffected in both brain areas. The increased density of SRIF receptors was due to enhanced SRIF receptor subtype 2 (sst2) protein levels that correlated with higher mRNA levels for this receptor. These changes in sst2 mRNA levels were concomitant with increased activation of the insulin signaling, c-Jun and cyclic AMP response element-binding protein (CREB); however, activation of signal transducer and activator of transcription 3 was reduced in the cortex and unchanged in the hippocampus and suppressor of cytokine signaling 3 remained unchanged in these areas. In addition, the leptin antagonist L39A/D40A/F41A blocked the leptin-induced changes in SRIF receptors, leptin signaling and CREB activation. In conclusion, increased activation of insulin signaling after leptin infusion is related to acute up-regulation of the SRIF receptor-effector system that may antagonize short-term leptin actions in the rat brain

  5. Impaired clearance of influenza A virus in obese, leptin receptor deficient mice is independent of leptin signaling in the lung epithelium and macrophages.

    Directory of Open Access Journals (Sweden)

    Kathryn A Radigan

    Full Text Available During the recent H1N1 outbreak, obese patients had worsened lung injury and increased mortality. We used a murine model of influenza A pneumonia to test the hypothesis that leptin receptor deficiency might explain the enhanced mortality in obese patients.We infected wild-type, obese mice globally deficient in the leptin receptor (db/db and non-obese mice with tissue specific deletion of the leptin receptor in the lung epithelium (SPC-Cre/LepR fl/fl or macrophages and alveolar type II cells (LysM-Cre/Lepr fl/fl with influenza A virus (A/WSN/33 [H1N1] (500 and 1500 pfu/mouse and measured mortality, viral clearance and several markers of lung injury severity.The clearance of influenza A virus from the lungs of mice was impaired in obese mice globally deficient in the leptin receptor (db/db compared to normal weight wild-type mice. In contrast, non-obese, SP-C-Cre+/+/LepR fl/fl and LysM-Cre+/+/LepR fl/fl had improved viral clearance after influenza A infection. In obese mice, mortality was increased compared with wild-type mice, while the SP-C-Cre+/+/LepR fl/fl and LysM-Cre+/+/LepR fl/fl mice exhibited improved survival.Global loss of the leptin receptor results in reduced viral clearance and worse outcomes following influenza A infection. These findings are not the result of the loss of leptin signaling in lung epithelial cells or macrophages. Our results suggest that factors associated with obesity or with leptin signaling in non-myeloid populations such as natural killer and T cells may be associated with worsened outcomes following influenza A infection.

  6. Leptin receptor signaling inhibits ovarian follicle development and egg laying in chicken hens

    Science.gov (United States)

    2014-01-01

    Background Nutrition intake during growth strongly influences ovarian follicle development and egg laying in chicken hens, yet the underlying endocrine regulatory mechanism is still poorly understood. The relevant research progress is hindered by difficulties in detection of leptin gene and its expression in the chicken. However, a functional leptin receptor (LEPR) is present in the chicken which has been implicated to play a regulatory role in ovarian follicle development and egg laying. The present study targeted LEPR by immunizing against its extracellular domain (ECD), and examined the resultant ovarian follicle development and egg-laying rate in chicken hens. Methods Hens that have been immunized four times with chicken LEPR ECD were assessed for their egg laying rate and feed intake, numbers of ovarian follicles, gene expression profiles, serum lipid parameters, as well as STAT3 signaling pathway. Results Administrations of cLEPR ECD antigen resulted in marked reductions in laying rate that over time eventually recovered to the levels exhibited by the Control hens. Together with the decrease in egg laying rate, cLEPR-immunized hens also exhibited significant reductions in feed intake, plasma concentrations of glucose, triglyceride, high-density lipoprotein, and low-density lipoprotein. Parallelled by reductions in feed intake, mRNA gene expression levels of AgRP, orexin, and NPY were down regulated, but of POMC, MC4R and lepR up-regulated in Immunized hen hypothalamus. cLEPR-immunization also promoted expressions of apoptotic genes such as caspase3 in theca and fas in granulosa layer, but severely depressed IGF-I expression in both theca and granulosa layers. Conclusions Immunization against cLEPR ECD in egg-laying hens generated antibodies that mimic leptin bioactivity by enhancing leptin receptor transduction. This up-regulated apoptotic gene expression in ovarian follicles, negatively regulated the expression of genes that promote follicular development

  7. Somato-dendritic localization and signaling by leptin receptors in hypothalamic POMC and AgRP neurons.

    Directory of Open Access Journals (Sweden)

    Sangdeuk Ha

    Full Text Available Leptin acts via neuronal leptin receptors to control energy balance. Hypothalamic pro-opiomelanocortin (POMC and agouti-related peptide (AgRP/Neuropeptide Y (NPY/GABA neurons produce anorexigenic and orexigenic neuropeptides and neurotransmitters, and express the long signaling form of the leptin receptor (LepRb. Despite progress in the understanding of LepRb signaling and function, the sub-cellular localization of LepRb in target neurons has not been determined, primarily due to lack of sensitive anti-LepRb antibodies. Here we applied light microscopy (LM, confocal-laser scanning microscopy (CLSM, and electron microscopy (EM to investigate LepRb localization and signaling in mice expressing a HA-tagged LepRb selectively in POMC or AgRP/NPY/GABA neurons. We report that LepRb receptors exhibit a somato-dendritic expression pattern. We further show that LepRb activates STAT3 phosphorylation in neuronal fibers within several hypothalamic and hindbrain nuclei of wild-type mice and rats, and specifically in dendrites of arcuate POMC and AgRP/NPY/GABA neurons of Leprb (+/+ mice and in Leprb (db/db mice expressing HA-LepRb in a neuron specific manner. We did not find evidence of LepRb localization or STAT3-signaling in axon-fibers or nerve-terminals of POMC and AgRP/NPY/GABA neurons. Three-dimensional serial EM-reconstruction of dendritic segments from POMC and AgRP/NPY/GABA neurons indicates a high density of shaft synapses. In addition, we found that the leptin activates STAT3 signaling in proximity to synapses on POMC and AgRP/NPY/GABA dendritic shafts. Taken together, these data suggest that the signaling-form of the leptin receptor exhibits a somato-dendritic expression pattern in POMC and AgRP/NPY/GABA neurons. Dendritic LepRb signaling may therefore play an important role in leptin's central effects on energy balance, possibly through modulation of synaptic activity via post-synaptic mechanisms.

  8. Polymorphism in leptin receptor gene was associated with obesity in ...

    African Journals Online (AJOL)

    The mutation in leptin receptor (LEPR) gene causes splicing abnormality that resulted in truncated receptor, aberrant signal transduction, leptin resistance, and obesity. This study aims to determine the association of LEPR gene polymorphisms, rs1137100 and rs1137101, on phenotype and leptin level between obese and ...

  9. Leptin responsiveness to energy restriction: genetic variation in the leptin receptor gene

    NARCIS (Netherlands)

    Mars, M.; Rossum, van C.T.M.; Graaf, de C.; Hoebee, B.; Groot, de C.P.G.M.; Kok, F.J.

    2004-01-01

    Serum leptin concentrations are an important afferent signal in energy balance homeostasis. It has been speculated that the leptin responsiveness to energy restriction is affected by the functionality of the leptin receptor. The purpose of this analysis was to explore the effect of polymorphisms in

  10. Orexin A/Hypocretin Modulates Leptin Receptor-Mediated Signaling by Allosteric Modulations Mediated by the Ghrelin GHS-R1A Receptor in Hypothalamic Neurons.

    Science.gov (United States)

    Medrano, Mireia; Aguinaga, David; Reyes-Resina, Irene; Canela, Enric I; Mallol, Josefa; Navarro, Gemma; Franco, Rafael

    2018-06-01

    The hypothalamus is a key integrator of nutrient-seeking signals in the form of hormones and metabolites originated in both the central nervous system and the periphery. The main autocrine and paracrine target of orexinergic-related hormones such as leptin, orexin/hypocretin, and ghrelin are neuropeptide Y neurons located in the arcuate nucleus of the hypothalamus. The aim of this study was to investigate the expression and the molecular and functional relationships between leptin, orexin/hypocretin and ghrelin receptors. Biophysical studies in a heterologous system showed physical interactions between them, with potential formation of heterotrimeric complexes. Functional assays showed robust allosteric interactions particularly different when the three receptors are expressed together. Further biochemical and pharmacological assays provided evidence of heterotrimer functional expression in primary cultures of hypothalamic neurons. These findings constitute evidence of close relationships in the action of the three hormones already starting at the receptor level in hypothalamic cells.

  11. Relationship between peripheral leptin receptor and leptin in obese subjects

    International Nuclear Information System (INIS)

    Sun Junjiang; Du Tongxin; Wang Zizheng; Wang Shukui; Huang Min

    2002-01-01

    Objective: To investigate the relationship between leptin resistance and leptin receptor in obese subjects. Methods: Forty-four individuals undergoing surgery, exclusive of diabetic mellitus, chronic inflammatory and malignant diseases, were divided into 3 groups according to the body mass index (BMI), normal controls (n=15), weight excess (n=14), and obesity group (n=15). Fasting serum leptin were detected via ELISA kits, leptin receptor (Bmax) in peripheral adipose tissues was detected by radioligand assay. Results: Serum leptin levels were higher significantly in weight excess and obesity cases groups (10.3±4.45 and 13.2±3.26 vs 5.51±3.23 μg/L, both P<0.05, respectively) compared with normal control group, suggesting the existence of leptin resistance, while the leptin receptor of the weight excess and obese groups decreased significantly than that of normal control group (36.9 ± 5.89 and 24.3 ± 3.95 vs 76.5 ± 35.3 fmol/mg protein, both P<0.01, respectively), there was no statistical differences for Kd value among three groups. Also, there was a negative correlation between BMI and leptin receptor (r=-0.613, P<0.05), and no significant correlation was found between serum leptin and peripheral leptin receptor. Conclusion: The result suggested that there was expression of leptin receptor in peripheral adipose tissues and low level of leptin receptor expression may contribute to the development of leptin resistance and obesity

  12. Adiponectin, Leptin, and Leptin Receptor in Obese Patients with Type 2 Diabetes Treated with Insulin Detemir

    Directory of Open Access Journals (Sweden)

    Paweł Olczyk

    2017-07-01

    Full Text Available The aim of the present study is to quantitatively assess the expression of selected regulatory molecules, such as leptin, leptin receptor, and adiponectin in the blood of obese patients with type 2 diabetes both before treatment and after six months of pharmacological therapy with the long-lasting insulin analogue, insulin detemir. A significant decrease in the analysed regulatory molecules, i.e., leptin receptor and adiponectin, was found in blood plasma of the patients with untreated type 2 diabetes. These changes were accompanied by an increase in plasma leptin concentrations. Insulin treatment resulted in the normalization of plasma leptin receptor and adiponectin concentrations. The circulating leptin level did not change following anti-diabetic therapy with insulin detemir. Gender was a significant factor modifying the circulating level of all the analysed regulatory active compounds. Bioinformatic analysis was performed using Matlab with the Signal Processing Toolbox. The conducted discriminant analysis revealed that the leptin receptor, Δw(19, and adiponectin, Δw(21, were the parameters undergoing the most significant quantitative changes during the six-month therapy with insulin detemir. The conducted examinations indicated the contribution of adipocytokines—the biologically-active mediators of systemic metabolism, such as leptin and adiponectin in the pathomechanism of disorders being the basis for obesity which leads to development of insulin resistance, which, in turn, results in the occurrence of type 2 diabetes.

  13. Deficiency of leptin receptor in myeloid cells disrupts hypothalamic metabolic circuits and causes body weight increase

    Directory of Open Access Journals (Sweden)

    Yuanqing Gao

    2018-01-01

    Conclusions: Myeloid cell leptin receptor deficient mice partially replicate the db/db phenotype. Leptin signaling in hypothalamic microglia is important for microglial function and a correct formation of the hypothalamic neuronal circuit regulating metabolism.

  14. Regulation of Blood Pressure, Appetite, and Glucose by Leptin After Inactivation of Insulin Receptor Substrate 2 Signaling in the Entire Brain or in Proopiomelanocortin Neurons.

    Science.gov (United States)

    do Carmo, Jussara M; da Silva, Alexandre A; Wang, Zhen; Freeman, Nathan J; Alsheik, Ammar J; Adi, Ahmad; Hall, John E

    2016-02-01

    Insulin receptor substrate 2 (IRS2) is one of the 3 major leptin receptor signaling pathways, but its role in mediating the chronic effects of leptin on blood pressure, food intake, and glucose regulation is unclear. We tested whether genetic inactivation of IRS2 in the entire brain (IRS2/Nestin-cre mice) or specifically in proopiomelanocortin (POMC) neurons (IRS2/POMC-cre mice) attenuates the chronic cardiovascular, metabolic, and antidiabetic effects of leptin. Mice were instrumented with telemetry probes for measurement of blood pressure and heart rate and with venous catheters for intravenous infusions. After a 5-day control period, mice received leptin infusion (2 μg/kg per minute) for 7 days. Compared with control IRS2(flox/flox) mice, IRS2/POMC-cre mice had similar body weight and food intake (33±1 versus 35±1 g and 3.6±0.5 versus 3.8±0.2 g per day) but higher mean arterial pressure (MAP) and heart rate (110±2 versus 102±2 mm Hg and 641±9 versus 616±5 bpm). IRS2/Nestin-cre mice were heavier (38±2 g), slightly hyperphagic (4.5±1.0 g per day), and had higher MAP and heart rate (108±2 mm Hg and 659±9 bpm) compared with control mice. Leptin infusion gradually increased MAP despite decreasing food intake by 31% in IRS2(flox/flox) and in Nestin-cre control mice. In contrast, leptin infusion did not change MAP in IRS2/Nestin-cre or IRS2/POMC-cre mice. The anorexic and antidiabetic effects of leptin, however, were similar in all 3 groups. These results indicate that IRS2 signaling in the central nervous system, and particularly in POMC neurons, is essential for the chronic actions of leptin to raise MAP but not for its anorexic or antidiabetic effects. © 2015 American Heart Association, Inc.

  15. Discovery of the elusive leptin in birds: identification of several 'missing links' in the evolution of leptin and its receptor.

    Directory of Open Access Journals (Sweden)

    Jeremy W Prokop

    Full Text Available Leptin is a pleiotropic protein best known for regulation of appetite and fat storage in mammals. While many leptin orthologs have been identified among vertebrates, an authentic leptin in birds has remained elusive and controversial. Here we identify leptin sequence from the Peregrine falcon, Falco peregrinus (pfleptin, and identify sequences from two other birds (mallard and zebra finch, and 'missing' vertebrates (elephant shark, alligator, Indian python, Chinese soft-shelled turtle, and coelacanth. The pattern of genes surrounding leptin (snd1, rbm28 is syntenic between the falcon and mammalian genomes. Phylogenetic analysis of all known leptin protein sequences improves our understanding of leptin's evolution. Structural modeling of leptin orthologs highlights a highly conserved hydrophobic core in the four-helix cytokine packing domain. A docked model of leptin with the leptin receptor for Peregrine falcon reveals several conserved amino acids important for the interaction and possible coevolution of leptin with its receptor. We also show for the first time, an authentic avian leptin sequence that activates the JAK-STAT signaling pathway. These newly identified sequences, structures, and tools for avian leptin and its receptor will allow elucidation of the function of these proteins in feral and domestic birds.

  16. Leptin, soluble leptin receptor, and free leptin index in patients with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Elena N. Smirnova

    2017-06-01

    Full Text Available Aim. To assess the levels of leptin, its soluble receptor, and index of the formation of free leptin in metabolic syndrome (MS. Materials and methods. The study included 110 individuals with obesity and overweight. The group 1 consisted of 70 patients with MS (IDF, 2005, the average body mass index (BMI 38.4 ± 4.4 kg/m2, aged 48.2 ± 2.4 years, with arterial hypertension (AH 1–2 degree, without regular antihypertensive therapy. Group 2 – "healthy" obesity accounted for 40 patients aged 38.4 ± 6.2 years, BMI 36.0 ± 5.5 kg/m2 without hypertension and metabolic disorders. Group 3 consisted of 30 healthy persons, BMI 27.1 ± 1.3 kg/m2. All patients were evaluated for insulin, HOMA index, leptin, leptin receptor, leptin free index (calculated as the ratio of leptin (ng/ml to the leptin receptor (ng/ml, multiplied by 100. Results: In patients with MS as compared to other two groups there were higher levels of HOMA IR index, leptin and free leptin index. Values of leptin receptor in groups 1 and 2 did not differ significantly and were lower than in healthy persons. The free leptin index was significantly higher in MS group relative to the group 2 and 15 times higher than in the healthy individuals. Free leptin index correlated with values of BMI (R = 0.32; p = 0.02, blood pressure (R = 0.3; p = 0.04, uric acid (R = 0.27; p = 0.04, triglycerides (R = 0.42; p = 0.02, index HOMA-IR (R = 0.45; p = 0.02. Conclusions: Reduction of soluble leptin receptor, depending on the degree of abdominal obesity, may cause progression of leptin resistance in patients with MS. The levels of leptin and soluble leptin receptor appears to have dramatical gender differences. Calculation of free leptin index should be used for the objective evaluation of leptin resistance, regardless of gender, degree of obesity, and other metabolic parameters.

  17. Phocid seal leptin: tertiary structure and hydrophobic receptor binding site preservation during distinct leptin gene evolution.

    Directory of Open Access Journals (Sweden)

    John A Hammond

    Full Text Available The cytokine hormone leptin is a key signalling molecule in many pathways that control physiological functions. Although leptin demonstrates structural conservation in mammals, there is evidence of positive selection in primates, lagomorphs and chiropterans. We previously reported that the leptin genes of the grey and harbour seals (phocids have significantly diverged from other mammals. Therefore we further investigated the diversification of leptin in phocids, other marine mammals and terrestrial taxa by sequencing the leptin genes of representative species. Phylogenetic reconstruction revealed that leptin diversification was pronounced within the phocid seals with a high dN/dS ratio of 2.8, indicating positive selection. We found significant evidence of positive selection along the branch leading to the phocids, within the phocid clade, but not over the dataset as a whole. Structural predictions indicate that the individual residues under selection are away from the leptin receptor (LEPR binding site. Predictions of the surface electrostatic potential indicate that phocid seal leptin is notably different to other mammalian leptins, including the otariids. Cloning the grey seal leptin binding domain of LEPR confirmed that this was structurally conserved. These data, viewed in toto, support a hypothesis that phocid leptin divergence is unlikely to have arisen by random mutation. Based upon these phylogenetic and structural assessments, and considering the comparative physiology and varying life histories among species, we postulate that the unique phocid diving behaviour has produced this selection pressure. The Phocidae includes some of the deepest diving species, yet have the least modified lung structure to cope with pressure and volume changes experienced at depth. Therefore, greater surfactant production is required to facilitate rapid lung re-inflation upon surfacing, while maintaining patent airways. We suggest that this additional

  18. Leptin responsiveness to energy restriction: genetic variation in the leptin receptor gene.

    Science.gov (United States)

    Mars, Monica; van Rossum, Caroline T M; de Graaf, Cees; Hoebee, Barbara; De Groot, Lisette C P G M; Kok, Frans J

    2004-03-01

    Serum leptin concentrations are an important afferent signal in energy balance homeostasis. It has been speculated that the leptin responsiveness to energy restriction is affected by the functionality of the leptin receptor. The purpose of this analysis was to explore the effect of polymorphisms in the LEPR gene on the acute decline in leptin after 4 days of 65% energy restriction. Leptin concentrations of the study group (n = 44; all men) declined by 2.3 +/- 1.5 micro g/L [-39.4% (95% confidence interval: -43.6 to -34.9)]. Leptin responses did not statistically differ between noncarriers and carriers of three mutant variants of the polymorphisms: Lys109/Lys109 (-41.4%) vs. Arg109/+ (-37.0%) (p = 0.33); Gln223/Gln223 (-41.5%) vs. Arg223/+ (-37.8%) (p = 0.40); Lys656/Lys656 (-39.5%) vs. Asn656/+ (-39.3%) (p = 0.96). No effect of the assessed polymorphisms in the LEPR gene on the acute decline in leptin after energy restriction was observed. Power calculations are provided for future studies on the leptin responsiveness to energy restriction.

  19. Influence of age on leptin induced skeletal muscle signaling

    DEFF Research Database (Denmark)

    Guadalupe Grau, Amelia; Larsen, Steen; Guerra, Borja

    2014-01-01

    transducer and activator of transcription 3 (STAT3), insulin receptor substrate 1 (IRS-1), AMP-activated protein kinase (AMPK) and acetyl-coenzyme A carboxylase (ACC), combined with the leptin signaling inhibitors suppressor of cytokine signaling 3 (SOCS3) and protein tyrosine phosphatase 1B (PTP1B) in human...

  20. Leptin receptor 170 kDa (OB-R170) protein expression is reduced in obese human skeletal muscle: a potential mechanism of leptin resistance

    DEFF Research Database (Denmark)

    Fuentes, T; Ara, I; Guadalupe-Grau, A

    2010-01-01

    To examine whether obesity-associated leptin resistance could be due to down-regulation of leptin receptors (OB-Rs) and/or up-regulation of suppressor of cytokine signalling 3 (SOCS3) and protein tyrosine phosphatase 1B (PTP1B) in skeletal muscle, which blunt janus kinase 2-dependent leptin...

  1. Leptin Increases Striatal Dopamine D2 Receptor Binding in Leptin-Deficient Obese (ob/ob) Mice

    Energy Technology Data Exchange (ETDEWEB)

    Pfaffly, J.; Michaelides, M.; Wang, G-J.; Pessin, J.E.; Volkow, N.D.; Thanos, P.K.

    2010-06-01

    Peripheral and central leptin administration have been shown to mediate central dopamine (DA) signaling. Leptin-receptor deficient rodents show decreased DA D2 receptor (D2R) binding in striatum and unique DA profiles compared to controls. Leptin-deficient mice show increased DA activity in reward-related brain regions. The objective of this study was to examine whether basal D2R-binding differences contribute to the phenotypic behaviors of leptin-deficient ob/ob mice, and whether D2R binding is altered in response to peripheral leptin treatment in these mice. Leptin decreased body weight, food intake, and plasma insulin concentration in ob/ob mice but not in wild-type mice. Basal striatal D2R binding (measured with autoradiography [{sup 3}H] spiperone) did not differ between ob/ob and wild-type mice but the response to leptin did. In wild-type mice, leptin decreased striatal D2R binding, whereas, in ob/ob mice, leptin increased D2R binding. Our findings provide further evidence that leptin modulates D2R expression in striatum and that these effects are genotype/phenotype dependent.

  2. Leptin signaling molecular actions and drug target in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Jiang N

    2014-11-01

    Full Text Available Nan Jiang,1,* Rongtong Sun,2,* Qing Sun3 1Shandong University School of Medicine, Jinan, Shandong Province, People’s Republic of China; 2Weihai Municipal Hospital, Weihai, Shandong Province, People’s Republic of China; 3Department of Pathology, QianFoShan Hospital Affiliated to Shandong University, Jinan, Shandong Province, People’s Republic of China *These authors contributed equally to this work Abstract: Previous reports indicate that over 13 different tumors, including hepatocellular carcinoma (HCC, are related to obesity. Obesity-associated inflammatory, metabolic, and endocrine mediators, as well as the functioning of the gut microbiota, are suspected to contribute to tumorigenesis. In obese people, proinflammatory cytokines/chemokines including tumor necrosis factor-alpha, interleukin (IL-1 and IL-6, insulin and insulin-like growth factors, adipokines, plasminogen activator inhibitor-1, adiponectin, and leptin are found to play crucial roles in the initiation and development of cancer. The cytokines induced by leptin in adipose tissue or tumor cells have been intensely studied. Leptin-induced signaling pathways are critical for biological functions such as adiposity, energy balance, endocrine function, immune reaction, and angiogenesis as well as oncogenesis. Leptin is an activator of cell proliferation and anti-apoptosis in several cell types, and an inducer of cancer stem cells; its critical roles in tumorigenesis are based on its oncogenic, mitogenic, proinflammatory, and pro-angiogenic actions. This review provides an update of the pathological effects of leptin signaling with special emphasis on potential molecular mechanisms and therapeutic targeting, which could potentially be used in future clinical settings. In addition, leptin-induced angiogenic ability and molecular mechanisms in HCC are discussed. The stringent binding affinity of leptin and its receptor Ob-R, as well as the highly upregulated expression of both

  3. Presence and distribution of leptin and leptin receptor in the canine gallbladder.

    Science.gov (United States)

    Lee, Sungin; Lee, Aeri; Kweon, Oh-Kyeong; Kim, Wan Hee

    2016-09-01

    The hormone leptin is produced by mature adipocytes and plays an important role in regulating food intake and energy metabolism through its interaction with the leptin receptor. In addition to roles in obesity and obesity-related diseases, leptin has been reported to affect the components and secretion of bile in leptin-deficient mice. Furthermore, gallbladder diseases such as cholelithiasis are known to be associated with serum leptin concentrations in humans. We hypothesized that the canine gallbladder is a source of leptin and that the leptin receptor may be localized in the gallbladder, where it plays a role in regulating the function of this organ. The aim of this study was to demonstrate the presence and expression patterns of leptin and its receptors in normal canine gallbladders using reverse transcriptase-PCR (RT-PCR) and immunohistochemistry. Clinically normal gallbladder tissue samples were obtained from four healthy beagle dogs with similar body condition scores. RT-PCR and sequencing of the amplified PCR products revealed the presence of leptin mRNA and its receptors in the gallbladder. Immunohistochemical investigations demonstrated the expression of leptin and its receptors in the luminal single columnar and tubuloalveolar glandular epithelial cells. In conclusion, the results of this study demonstrated the presence of leptin and its receptors in the gallbladders of dogs. Leptin and its receptor were both localized throughout the cytoplasm of luminal and glandular epithelial cells. These results suggested that the gallbladder is not only a source of leptin, but also a target of leptin though autocrine/paracrine mechanisms. The results of this study could increase the understanding of both the normal physiological functions of the gallbladder and the pathophysiological mechanisms of gallbladder diseases characterized by leptin system dysfunction. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  4. Genetic Variation in the Leptin Receptor Gene, Leptin, and Weight Gain in Young Dutch Adults

    NARCIS (Netherlands)

    Rossum, van C.T.M.; Hoebee, B.; Baak, van M.A.; Mars, M.; Saris, W.H.M.; Seidell, J.C.

    2003-01-01

    Objective: To investigate the association between leptin levels, polymorphisms in the leptin receptor (LEPR) gene, and weight gain. Research Methods and Procedures: From two large prospective cohorts in The Netherlands (n = 17, 500), we compared the baseline leptin of 259 subjects who had gained an

  5. Gene Expression of Leptin and Long Leptin Receptor Isoform in Endometriosis: A Case-Control Study

    Directory of Open Access Journals (Sweden)

    Andrea Prestes Nácul

    2013-01-01

    Full Text Available In this study, leptin/BMI ratio in serum and peritoneal fluid and gene expression of leptin and long form leptin receptor (OB-RL were assessed in eutopic and ectopic endometria of women with endometriosis and controls. Increased serum leptin/BMI ratio was found in endometriosis patients. Leptin and OB-RL gene expression was significantly higher in ectopic versus eutopic endometrium of patients and controls. A positive, significant correlation was observed between leptin and OB-RL transcripts in ectopic endometria and also in eutopic endometria in endometriosis and control groups. A negative and significant correlation was found between OB-RL mRNA expression and peritoneal fluid leptin/BMI ratio only in endometriosis. These data suggest that, through a modulatory interaction with its active receptor, leptin might play a role in the development of endometrial implants.

  6. [Serum leptin levels and soluble leptin receptors in female patients with anorexia nervosa].

    Science.gov (United States)

    Jiskra, J; Haluzík, M; Svobodová, J; Haluzíková, D; Nedvídková, J; Parízková, J; Kotrlíková, E

    2000-10-25

    Leptin action in peripheral tissues is enabled by an interaction with specific transmembrane receptors. Several of leptin receptor isoforms were identified, including soluble leptin receptor isoform structurally identical to extracellular domain of the the long leptin receptor isoform. The soluble receptor isoform is released to the circulation and acts probably as leptin-binding factor. The aim of our study was to measure serum concentrations of the soluble leptin receptor in patients with anorexia nervosa and in the control group of healthy women. Relationships of soluble leptin receptor levels to body mass index (BMI), body fat content, serum leptin, TNF-alpha and insulin levels were also studied. 16 patients with anorexia nervosa and 16 age-matched lean healthy women were included into the study. All of the subjects were measured and weighed, the body fat content was estimated from the skinfold thickness measurement. The blood for the determination of leptin, soluble leptin receptor and other hormonal parameters was obtained from all subjects after the overnight fasting. BMI, body fat content, serum leptin and insulin levels in patients with anorexia nervosa were significantly lower than in the control group (BMI: 14.98 +/- 2.32 vs. 22.21 +/- 2.48, p anorexia nervosa were significantly higher compared the to control group (24.67 +/- 8.3 U.ml-1 vs. 15.71 +/- 2.79 U.ml-1, p anorexia nervosa were significantly higher in comparison with the healthy subjects. Except of the negative correlation between serum soluble leptin receptor levels and BMI no statistically significant relationships between serum soluble leptin receptor and the rest of parameters studied were found.

  7. Mechanism of protein tyrosine phosphatase 1B-mediated inhibition of leptin signalling

    DEFF Research Database (Denmark)

    Lund, I K; Hansen, J A; Andersen, H S

    2005-01-01

    Upon leptin binding, the leptin receptor is activated, leading to stimulation of the JAK/STAT signal transduction cascade. The transient character of the tyrosine phosphorylation of JAK2 and STAT3 suggests the involvement of protein tyrosine phosphatases (PTPs) as negative regulators...

  8. Limited impact on glucose homeostasis of leptin receptor deletion from insulin- or proglucagon-expressing cells

    Directory of Open Access Journals (Sweden)

    Helen Soedling

    2015-09-01

    Conclusions/interpretation: The use here of a highly selective Cre recombinase indicates that leptin signalling plays a relatively minor, age- and sex-dependent role in the control of β cell function in the mouse. No in vivo role for leptin receptors on α cells, nor in other proglucagon-expressing cells, was detected in this study.

  9. Creating leptin-like biofunctions by active immunization against chicken leptin receptor in growing chickens.

    Science.gov (United States)

    Lei, M M; Wu, S Q; Shao, X B; Li, X W; Chen, Z; Ying, S J; Shi, Z D

    2015-01-01

    In this study, immunization against chicken leptin receptor (cLEPR) extracellular domain (ECD) was applied to investigate leptin regulation and LEPR biofunction in growing chicken pullets. A recombinant protein (cLEPR ECD) based on the cLEPR complemenary DNA sequence corresponding to the 582nd to 796th amino acid residues of cLEPR mature peptide was prepared and used as antigen. Immunization against cLEPR ECD in growing chickens increased anti-cLEPR ECD antibody titers in blood, enhanced proportions of phosphorylated janus kinase 2 (JAK2) and served as signal transducer and activator of transcription 3 (STAT3) protein in liver tissue. Chicken live weight gain and abdominal fat mass were significantly decreased (P chickens. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Genetic variation in the leptin receptor gene, leptin, and weight gain in young Dutch adults.

    Science.gov (United States)

    van Rossum, Caroline T M; Hoebee, Barbara; van Baak, Marleen A; Mars, Monica; Saris, Wim H M; Seidell, Jacob C

    2003-03-01

    To investigate the association between leptin levels, polymorphisms in the leptin receptor (LEPR) gene, and weight gain. From two large prospective cohorts in The Netherlands (n = 17,500), we compared the baseline leptin of 259 subjects who had gained an average of 12.6 kg (range 5.5 to 33 kg) with 277 subjects who kept stable weight (range -2.6 to 3.1 kg) after a mean follow-up of 6.8 years. Three polymorphisms in the LEPR gene (Lys109Arg, Gln223Arg, and Lys656Asn) were determined. Weight gainers had significantly higher baseline leptin levels than those who kept stable weight (odds ratio = 1.27, 95% confidence interval 1.1 to 1.5, per SD increase in log(e)-transformed leptin). Weight gainers with the Arg109 or the Arg223 alleles had higher leptin levels compared with the noncarriers of these alleles. Only among men, the association between leptin and weight gain tended to be stronger among those with an Arg223 allele compared with those without this mutation. Relatively high leptin levels predict weight gain, suggesting that leptin resistance plays a role in the development of obesity in the general population. Higher leptin levels for those with a Lys109Arg or Gln223Arg mutation (or a linked other marker) may imply that these subjects have a modified functional leptin receptor. However, the role of these mutations on weight gain is limited.

  11. Leptin Receptor Deficiency is Associated With Upregulation of Cannabinoid 1 Receptors in Limbic Brain Regions

    Science.gov (United States)

    THANOS, PANAYOTIS K.; RAMALHETE, ROBERTO C.; MICHAELIDES, MICHAEL; PIYIS, YIANNI K.; WANG, GENE-JACK; VOLKOW, NORA D.

    2009-01-01

    Leptin receptor dysfunction results in overeating and obesity. Leptin regulates hypothalamic signaling that underlies the motivation to hyperphagia, but the interaction between leptin and cannabinoid signaling is poorly understood. We evaluated the role of cannabinoid 1 receptors (CB1R) in overeating and the effects of food deprivation on CB1R in the brain. One-month-old Zucker rats were divided into unrestricted and restricted (fed 70% of unrestricted rats) diet groups and maintained until adulthood (4 months). Levels of relative binding sites of CB1R (CB1R binding levels) were assessed using [3H] SR141716A in vitro autoradiography. These levels were higher (except cerebellum and hypothalamus) at 4 months than at 1 month of age. One month CB1R binding levels for most brain regions did not differ between Ob and Lean (Le) rats (except in frontal and cingulate cortices in Le and in the hypothalamus in Ob). Four month Ob rats had higher CB1R binding levels than Le in most brain regions and food restriction was associated with higher CB1R levels in all brain regions in Ob, but not in Le rats. CB1R binding levels increased between adolescence and young adulthood which we believe was influenced by leptin and food availability. The high levels of CB1R in Ob rats suggest that leptin's inhibition of food-intake is in part mediated by downregulation of CB1R and that leptin interferes with CB1R upregulation under food-deprivation conditions. These results are consistent with prior findings showing increased levels of endogenous cannabinoids in the Ob rats corroborating the regulation of cannabinoid signaling by leptin. PMID:18563836

  12. Sheep oocyte expresses leptin and functional leptin receptor mRNA

    Directory of Open Access Journals (Sweden)

    Seyyed Jalil Taheri

    2016-09-01

    Conclusions: The result of present study reveals that leptin and its functional receptor (Ob-Rb mRNA are expressed in sheep oocyte and further studies should investigate the role(s of leptin on sheep oocyte physiology and embryo development.

  13. Hypoxic Living and Exercise Training Alter Adipose Tissue Leptin/Leptin Receptor in Rats

    Directory of Open Access Journals (Sweden)

    Yingli Lu

    2016-11-01

    Full Text Available Background: Hypobaric hypoxia results in weight loss in obese individuals, and exercise training is advocated for the treatment of obesity and its related metabolic dysfunctions. The purpose of this study was to investigate the effects of hypoxic living and exercise training on obesity and adipose tissue leptin/leptin receptor in dietary-induced obese rats. Methods: One hundred and thirty high-fat diet fed Sprague-Dawley rats were assigned into one of the following groups (n=10 each: control, sedentary hypoxic living for 1 to 4 weeks (SH1, SH2, SH3, and SH4, living and exercise training in normoxic conditions for 1 to 4 weeks (TN1, TN2, TN3, and TN4, and living and exercise training in hypoxic conditions for 1 to 4 weeks (TN1, TN2, TN3, and TN4. Epididymal adipose tissue expression levels of leptin and leptin receptor were determined. Results: Compared to hypoxic living and living and exercise training in normoxic conditions, living and exercise training in hypoxic conditions for 3-4 weeks resulted in lower Lee index (P<0.05 to P<0.01, and higher expression of leptin and leptin receptor (P<0.05 to P<0.01 in adipose tissue. Conclusion: In a rodent model of altitude training, living and exercise training in hypoxic conditions resulted in greater alterations in obesity and adipose tissue leptin/leptin receptor than hypoxic living alone and living and exercise training in normoxic conditions.

  14. Leptin receptor in peripheral adipose tissues of obese subjects

    International Nuclear Information System (INIS)

    Du Tongxin; Sun Junjiang; Wang Zizheng; Wang Shukui; Fu Lei; Han Liu

    2002-01-01

    Objective: To investigate the relationship between leptin receptor and obesity by studying the leptin receptor density B max and dissociation constant K d in peripheral adipose tissue in subjects with different body weight mass (BMI). Methods: Leptin receptor density B max and K d were assayed via radioligand method in 71 cases, including 32 classified as obese, 19 over-weight and 20 normal control. Results: With the escalating of BMI, the leptin receptor density significantly decreased in obese and over-weight group compared with that in normal control (both P d values were of no differences among all three groups suggesting no correlation between the binding ability of leptin to its receptor and BMI. A negative correlation between BMI and B max (r=-0.76, P<0.01) displayed after all. Conclusion: Leptin receptor density correlates with the BMI in obese cases and it suggests that the down-regulation of leptin receptor may contribute to the occurrence of leptin resistance and obesity after-wards

  15. Liraglutide, leptin and their combined effects on feeding: additive intake reduction through common intracellular signalling mechanisms.

    Science.gov (United States)

    Kanoski, S E; Ong, Z Y; Fortin, S M; Schlessinger, E S; Grill, H J

    2015-03-01

    To investigate the behavioural and intracellular mechanisms by which the glucagon like peptide-1 (GLP-1) receptor agonist, liraglutide, and leptin in combination enhance the food intake inhibitory and weight loss effects of either treatment alone. We examined the effects of liraglutide (a long-acting GLP-1 analogue) and leptin co-treatment, delivered in low or moderate doses subcutaneously (s.c.) or to the third ventricle, respectively, on cumulative intake, meal patterns and hypothalamic expression of intracellular signalling proteins [phosphorylated signal transducer and activator of transcription-3 (pSTAT3) and protein tyrosine phosphatase-1B (PTP1B)] in lean rats. A low-dose combination of liraglutide (25 µg/kg) and leptin (0.75 µg) additively reduced cumulative food intake and body weight, a result mediated predominantly through a significant reduction in meal frequency that was not present with either drug alone. Liraglutide treatment alone also reduced meal size; an effect not enhanced with leptin co-administration. Moderate doses of liraglutide (75 µg/kg) and leptin (4 µg), examined separately, each reduced meal frequency, cumulative food intake and body weight; only liraglutide reduced meal size. In combination these doses did not further enhance the anorexigenic effects of either treatment alone. Ex vivo immunoblot analysis showed elevated pSTAT3 in the hypothalamic tissue after liraglutide-leptin co-treatment, an effect which was greater than that of leptin treatment alone. In addition, s.c. liraglutide reduced the expression of PTP1B (a negative regulator of leptin receptor signalling), revealing a potential mechanism for the enhanced pSTAT3 response after liraglutide-leptin co-administration. Collectively, these results show novel behavioural and molecular mechanisms underlying the additive reduction in food intake and body weight after liraglutide-leptin combination treatment. © 2014 John Wiley & Sons Ltd.

  16. Leptin-dependent neuronal NO signaling in the preoptic hypothalamus facilitates reproduction.

    Science.gov (United States)

    Bellefontaine, Nicole; Chachlaki, Konstantina; Parkash, Jyoti; Vanacker, Charlotte; Colledge, William; d'Anglemont de Tassigny, Xavier; Garthwaite, John; Bouret, Sebastien G; Prevot, Vincent

    2014-06-01

    The transition to puberty and adult fertility both require a minimum level of energy availability. The adipocyte-derived hormone leptin signals the long-term status of peripheral energy stores and serves as a key metabolic messenger to the neuroendocrine reproductive axis. Humans and mice lacking leptin or its receptor fail to complete puberty and are infertile. Restoration of leptin levels in these individuals promotes sexual maturation, which requires the pulsatile, coordinated delivery of gonadotropin-releasing hormone to the pituitary and the resulting surge of luteinizing hormone (LH); however, the neural circuits that control the leptin-mediated induction of the reproductive axis are not fully understood. Here, we found that leptin coordinated fertility by acting on neurons in the preoptic region of the hypothalamus and inducing the synthesis of the freely diffusible volume-based transmitter NO, through the activation of neuronal NO synthase (nNOS) in these neurons. The deletion of the gene encoding nNOS or its pharmacological inhibition in the preoptic region blunted the stimulatory action of exogenous leptin on LH secretion and prevented the restoration of fertility in leptin-deficient female mice by leptin treatment. Together, these data indicate that leptin plays a central role in regulating the hypothalamo-pituitary-gonadal axis in vivo through the activation of nNOS in neurons of the preoptic region.

  17. Leptin as well as Free Leptin Receptor Is Associated with Polycystic Ovary Syndrome in Young Women

    Science.gov (United States)

    Rizk, Nasser M.; Sharif, Elham

    2015-01-01

    Background and Aim. Leptin has two forms in the circulation: free and bound forms. The soluble leptin receptor (sOB-R) circulates in the blood and can bind to leptin. The aim of this study is to assess the concentrations of the leptin and the sOB-R in PCOS and its relation to adiposity, insulin resistance, and androgens. Methods. A cross-sectional study included 78 female students aged 17–25 years. Fasting serum leptin and sOB-R concentrations were measured. The anthropometric variables and the hormonal profile such as insulin, female and male sex hormones, and prolactin were assessed. Results. In PCOS, leptin level (ng/ml) and free leptin index (FLI) increased significantly while sOB-R (ng/ml) significantly decreased compared to control subjects. In age-matched subjects, obese PCOS had increased leptin level in ng/ml (median level with interquartile levels) of 45.67 (41.98–48.04) and decreased sOB-R in ng/ml 11.47 (7.59–16.44) compared to lean PCOS 16.97 (10.60–45.55) for leptin and 16.62 (11.61–17.96) for sOB-R with p values 0.013 and 0.042, respectively. However, body mass index (BMI) is significantly correlated with leptin and s-OBR, while no significant correlations with parameters of insulin resistance were detected. Conclusion. PCOS is associated with hyperleptinemia and increased free leptin index. Decreased sOB-R could be a compensatory mechanism for the defective action of leptin. PMID:26180527

  18. Leptin as well as Free Leptin Receptor Is Associated with Polycystic Ovary Syndrome in Young Women

    Directory of Open Access Journals (Sweden)

    Nasser M. Rizk

    2015-01-01

    Full Text Available Background and Aim. Leptin has two forms in the circulation: free and bound forms. The soluble leptin receptor (sOB-R circulates in the blood and can bind to leptin. The aim of this study is to assess the concentrations of the leptin and the sOB-R in PCOS and its relation to adiposity, insulin resistance, and androgens. Methods. A cross-sectional study included 78 female students aged 17–25 years. Fasting serum leptin and sOB-R concentrations were measured. The anthropometric variables and the hormonal profile such as insulin, female and male sex hormones, and prolactin were assessed. Results. In PCOS, leptin level (ng/ml and free leptin index (FLI increased significantly while sOB-R (ng/ml significantly decreased compared to control subjects. In age-matched subjects, obese PCOS had increased leptin level in ng/ml (median level with interquartile levels of 45.67 (41.98–48.04 and decreased sOB-R in ng/ml 11.47 (7.59–16.44 compared to lean PCOS 16.97 (10.60–45.55 for leptin and 16.62 (11.61–17.96 for sOB-R with p values 0.013 and 0.042, respectively. However, body mass index (BMI is significantly correlated with leptin and s-OBR, while no significant correlations with parameters of insulin resistance were detected. Conclusion. PCOS is associated with hyperleptinemia and increased free leptin index. Decreased sOB-R could be a compensatory mechanism for the defective action of leptin.

  19. Increased leptin/leptin receptor pathway affects systemic and airway inflammation in COPD former smokers

    Directory of Open Access Journals (Sweden)

    Bruno A

    2011-05-01

    Full Text Available Andreina Bruno1, Marinella Alessi2, Simona Soresi2, Anna Bonanno1, Loredana Riccobono1, Angela Marina Montalbano1, Giusy Daniela Albano1, Mark Gjomarkaj1, Mirella Profita11Institute of Biomedicine and Molecular Immunology, Italian National Research Council, Palermo, Italy; 2Dipartimento Biomedico di Biomedicina Interna e Specialistica, University Palermo, ItalyBackground: Leptin, a hormone produced mainly by adipose tissue, regulates food intake and energy expenditure. It is involved in inflammatory diseases such as chronic obstructive pulmonary disease (COPD and its deficiency is associated with increased susceptibility to the infection. The leptin receptor is expressed in the lung and in the neutrophils.Methods: We measured the levels of leptin, tumor necrosis factor alpha (TNF-a and soluble form of intercellular adhesion molecule-1 (sICAM-1 in sputum and plasma from 27 smoker and former smoker patients with stable COPD using ELISA methods. Further we analyzed leptin and its receptor expression in sputum cells from 16 COPD patients using immunocytochemistry.Results: In plasma of COPD patients, leptin was inversely correlated with TNF-a and positively correlated with the patient weight, whereas the levels of sICAM-1 were positively correlated with TNF-a. In sputum of COPD patients leptin levels were correlated with forced expiratory volume in 1 second/forced vitality capacity. Additionally, increased levels of sputum leptin and TNF-a were observed in COPD former smokers rather than smokers. Further the expression of leptin receptor in sputum neutrophils was significantly higher in COPD former smokers than in smokers, and the expression of leptin and its receptor was positively correlated in neutrophils of COPD former smokers.Conclusion: Our findings suggest a role of leptin in the local and systemic inflammation of COPD and, taking into account the involvement of neutrophils in this inflammatory disease, describe a novel aspect of the leptin/leptin

  20. Insulin and Leptin Signaling Interact in the Mouse Kiss1 Neuron during the Peripubertal Period.

    Directory of Open Access Journals (Sweden)

    Xiaoliang Qiu

    Full Text Available Reproduction requires adequate energy stores for parents and offspring to survive. Kiss1 neurons, which are essential for fertility, have the potential to serve as the central sensors of metabolic factors that signal to the reproductive axis the presence of stored calories. Paradoxically, obesity is often accompanied by infertility. Despite excess circulating levels of insulin and leptin, obese individuals exhibit resistance to both metabolic factors in many neuron types. Thus, resistance to insulin or leptin in Kiss1 neurons could lead to infertility. Single deletion of the receptors for either insulin or the adipokine leptin from Kiss1 neurons does not impair adult reproductive dysfunction. However, insulin and leptin signaling pathways may interact in such a way as to obscure their individual functions. We hypothesized that in the presence of genetic or obesity-induced concurrent insulin and leptin resistance, Kiss1 neurons would be unable to maintain reproductive function. We therefore induced a chronic hyperinsulinemic and hyperleptinemic state in mice lacking insulin receptors in Kiss1 neurons through high fat feeding and examined the impact on fertility. In an additional, genetic model, we ablated both leptin and insulin signaling in Kiss1 neurons (IR/LepRKiss mice. Counter to our hypothesis, we found that the addition of leptin insensitivity did not alter the reproductive phenotype of IRKiss mice. We also found that weight gain, body composition, glucose and insulin tolerance were normal in mice of both genders. Nonetheless, leptin and insulin receptor deletion altered pubertal timing as well as LH and FSH levels in mid-puberty in a reciprocal manner. Our results confirm that Kiss1 neurons do not directly mediate the critical role that insulin and leptin play in reproduction. However, during puberty kisspeptin neurons may experience a critical window of susceptibility to the influence of metabolic factors that can modify the onset of

  1. Circulating Ghrelin, Leptin, and Soluble Leptin Receptor Concentrations and Cardiometabolic Risk Factors in a Community-Based Sample

    OpenAIRE

    Ingelsson, Erik; Larson, Martin G.; Yin, Xiaoyan; Wang, Thomas J.; Meigs, James B.; Lipinska, Izabella; Benjamin, Emelia J.; Keaney, John F.; Vasan, Ramachandran S.

    2008-01-01

    Context: The conjoint effects and relative importance of ghrelin, leptin, and soluble leptin receptor (sOB-R), adipokines involved in appetite control and energy expenditure in mediating cardiometabolic risk, is unknown.

  2. Leptin interferes with 3',5'-Cyclic Adenosine Monophosphate (cAMP signaling to inhibit steroidogenesis in human granulosa cells

    Directory of Open Access Journals (Sweden)

    HoYuen Basil

    2009-10-01

    Full Text Available Abstract Background Obesity has been linked to an increased risk of female infertility. Leptin, an adipocytokine which is elevated during obesity, may influence gonadal function through modulating steroidogenesis in granulosa cells. Methods The effect of leptin on progesterone production in simian virus 40 immortalized granulosa (SVOG cells was examined by Enzyme linked immunosorbent assay (ELISA. The effect of leptin on the expression of the steroidogenic enzymes (StAR, P450scc, 3betaHSD in SVOG cells was examined by real-time PCR and Western blotting. The mRNA expression of leptin receptor isoforms in SVOG cells were examined by using PCR. SVOG cells were co-treated with leptin and specific pharmacological inhibitors to identify the signaling pathways involved in leptin-reduced progesterone production. Silencing RNA against leptin receptor was used to determine that the inhibition of leptin on cAMP-induced steroidogenesis acts in a leptin receptor-dependent manner. Results and Conclusion In the present study, we investigated the cellular mechanisms underlying leptin-regulated steroidogenesis in human granulosa cells. We show that leptin inhibits 8-bromo cAMP-stimulated progesterone production in a concentration-dependent manner. Furthermore, we show that leptin inhibits expression of the cAMP-stimulated steroidogenic acute regulatory (StAR protein, the rate limiting de novo protein in progesterone synthesis. Leptin induces the activation of ERK1/2, p38 and JNK but only the ERK1/2 (PD98059 and p38 (SB203580 inhibitors attenuate the leptin-induced inhibition of cAMP-stimulated StAR protein expression and progesterone production. These data suggest that the leptin-induced MAPK signal transduction pathway interferes with cAMP/PKA-stimulated steroidogenesis in human granulosa cells. Moreover, siRNA mediated knock-down of the endogenous leptin receptor attenuates the effect of leptin on cAMP-induced StAR protein expression and progesterone

  3. Screening of synthetic phage display scFv libraries yields competitive ligands of human leptin receptor.

    Science.gov (United States)

    Molek, Peter; Vodnik, Miha; Strukelj, Borut; Bratkovič, Tomaž

    2014-09-26

    Initially considered the main endogenous anorexigenic factor, fat-derived leptin turned out to be a markedly pleiotropic hormone, influencing diverse physiological processes. Moreover, hyperleptinemia in obese individuals has been linked to the onset or progression of serious disorders, such as cancer, autoimmune diseases, and atherosclerosis, and antagonizing peripheral leptin's signalization has been shown to improve these conditions. To develop an antibody-based leptin antagonist we have devised a tailored panning procedure and screened two phage display libraries of single chain variable antibody fragments (scFvs) against recombinant leptin receptor. One of the scFvs was expressed in Escherichia coli and its interaction with leptin receptor was characterized in more detail. It was found to recognize a discontinuous epitope and to compete with leptin for receptor binding with IC50 and Kd values in the nanomolar range. The reported scFv represents a lead for development of leptin antagonists that may ultimately find use in therapy of various hyperleptinemia-related disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Leptin and glucocorticoid signaling pathways in the hypothalamus of female and male fructose-fed rats

    Directory of Open Access Journals (Sweden)

    Vojnović-Milutinović Danijela

    2014-01-01

    Full Text Available Alterations in leptin and glucocorticoid signaling pathways in the hypothalamus of male and female rats subjected to a fructose-enriched diet were studied. The level of expression of the key components of the leptin signaling pathway (neuropeptide Y /NPY/ and suppressor of cytokine signaling 3 /SOCS3/, and the glucocorticoid signaling pathway (glucocorticoid receptor /GR/, 11β-hydroxysteroid dehydrogenase type 1 /11βHSD1/ and hexose-6-phosphate dehydrogenase /H6PDH/ did not differ between fructose-fed rats and control animals of both genders. However, in females, a fructose-enriched diet provoked increases in the adiposity index, plasma leptin and triglyceride concentrations, and displayed a tendency to decrease the leptin receptor (ObRb protein and mRNA levels. In male rats, the fructose diet caused elevations in plasma non-esterified fatty acids and triglycerides, as well as in both plasma and hypothalamic leptin concentrations. Our results suggest that a fructose-enriched diet can induce hyperleptinemia in both female and male rats, but with a more pronounced effect on hypothalamic leptin sensitivity in females, probably contributing to the observed development of visceral adiposity. [Projekat Ministarstva nauke Republike Srbije, br. III41009

  5. Leptin signaling in GABA neurons, but not glutamate neurons, is required for reproductive function.

    Science.gov (United States)

    Zuure, Wieteke A; Roberts, Amy L; Quennell, Janette H; Anderson, Greg M

    2013-11-06

    The adipocyte-derived hormone leptin acts in the brain to modulate the central driver of fertility: the gonadotropin releasing hormone (GnRH) neuronal system. This effect is indirect, as GnRH neurons do not express leptin receptors (LEPRs). Here we test whether GABAergic or glutamatergic neurons provide the intermediate pathway between the site of leptin action and the GnRH neurons. Leptin receptors were deleted from GABA and glutamate neurons using Cre-Lox transgenics, and the downstream effects on puberty onset and reproduction were examined. Both mouse lines displayed the expected increase in body weight and region-specific loss of leptin signaling in the hypothalamus. The GABA neuron-specific LEPR knock-out females and males showed significantly delayed puberty onset. Adult fertility observations revealed that these knock-out animals have decreased fecundity. In contrast, glutamate neuron-specific LEPR knock-out mice displayed normal fertility. Assessment of the estrogenic hypothalamic-pituitary-gonadal axis regulation in females showed that leptin action on GABA neurons is not necessary for estradiol-mediated suppression of tonic luteinizing hormone secretion (an indirect measure of GnRH neuron activity) but is required for regulation of a full preovulatory-like luteinizing hormone surge. In conclusion, leptin signaling in GABAergic (but not glutamatergic neurons) plays a critical role in the timing of puberty onset and is involved in fertility regulation throughout adulthood in both sexes. These results form an important step in explaining the role of central leptin signaling in the reproductive system. Limiting the leptin-to-GnRH mediators to GABAergic cells will enable future research to focus on a few specific types of neurons.

  6. Leptin Suppresses the Rewarding Effects of Running via STAT3 Signaling in Dopamine Neurons.

    Science.gov (United States)

    Fernandes, Maria Fernanda A; Matthys, Dominique; Hryhorczuk, Cécile; Sharma, Sandeep; Mogra, Shabana; Alquier, Thierry; Fulton, Stephanie

    2015-10-06

    The adipose hormone leptin potently influences physical activity. Leptin can decrease locomotion and running, yet the mechanisms involved and the influence of leptin on the rewarding effects of running ("runner's high") are unknown. Leptin receptor (LepR) signaling involves activation of signal transducer and activator of transcription-3 (STAT3), including in dopamine neurons of the ventral tegmental area (VTA) that are essential for reward-relevant behavior. We found that mice lacking STAT3 in dopamine neurons exhibit greater voluntary running, an effect reversed by viral-mediated STAT3 restoration. STAT3 deletion increased the rewarding effects of running whereas intra-VTA leptin blocked it in a STAT3-dependent manner. Finally, STAT3 loss-of-function reduced mesolimbic dopamine overflow and function. Findings suggest that leptin influences the motivational effects of running via LepR-STAT3 modulation of dopamine tone. Falling leptin is hypothesized to increase stamina and the rewarding effects of running as an adaptive means to enhance the pursuit and procurement of food. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Kinetics of leptin binding to the Q223R leptin receptor.

    Directory of Open Access Journals (Sweden)

    Hans Verkerke

    Full Text Available Studies in human populations and mouse models of disease have linked the common leptin receptor Q223R mutation to obesity, multiple forms of cancer, adverse drug reactions, and susceptibility to enteric and respiratory infections. Contradictory results cast doubt on the phenotypic consequences of this variant. We set out to determine whether the Q223R substitution affects leptin binding kinetics using surface plasmon resonance (SPR, a technique that allows sensitive real-time monitoring of protein-protein interactions. We measured the binding and dissociation rate constants for leptin to the extracellular domain of WT and Q223R murine leptin receptors expressed as Fc-fusion proteins and found that the mutant receptor does not significantly differ in kinetics of leptin binding from the WT leptin receptor. (WT: ka 1.76×106±0.193×106 M-1 s-1, kd 1.21×10-4±0.707×10-4 s-1, KD 6.47×10-11±3.30×10-11 M; Q223R: ka 1.75×106±0.0245×106 M-1 s-1, kd 1.47×10-4±0.0505×10-4 s-1, KD 8.43×10-11±0.407×10-11 M. Our results support earlier findings that differences in affinity and kinetics of leptin binding are unlikely to explain mechanistically the phenotypes that have been linked to this common genetic variant. Future studies will seek to elucidate the mechanism by which this mutation influences susceptibility to metabolic, infectious, and malignant pathologies.

  8. Influence of the metabolic syndrome on leptin and leptin receptor in breast cancer.

    Science.gov (United States)

    Carroll, Paul A; Healy, Laura; Lysaght, Joanne; Boyle, Terry; Reynolds, John V; Kennedy, M John; Pidgeon, Graham; Connolly, Elizabeth M

    2011-08-01

    Obesity and its associated metabolic syndrome (MetS) are recognized risk factors for breast cancer. The molecular basis for this association remains largely unknown. Adipokines, in particular leptin and adiponectin, are thought to form part of the mechanism linking obesity with cancer through their altered expression/production either systemically (endocrine pathway) or locally (paracrine/autocrine pathway). Using quantitative PCR, mRNA expression of adiponectin (AdipoQ) and leptin (Ob) in mammary adipose tissue (MAT), intratumoral leptin and associated ligand receptors (ObR, AdipoR1, and AdipoR2) was examined in 77 patients with complete anthropomorphic and serological data. Expression of Ob in MAT, and ObR in matched tumor tissue was significantly higher in patients with MetS compared to obese only or normal weight cancer patients (P < 0.005). There was no difference in intratumoral leptin adiponectin or its ligand receptors in the same groups. Individual features of MetS correlated with Ob and ObR expression, but not obesity markers (BMI, waist circumference). mRNA expression of leptin (Ob) and ObR, in adipose tissue and matched tumor samples, respectively, appear to be associated with obesity status in breast cancer. Increasing insulin resistance is a predominant feature of this higher Ob/ObR expression observed. These novel data indicate that the MetS may be an amenable risk factor for breast cancer. Copyright © 2011 Wiley-Liss, Inc.

  9. Analysis of changes of serum leptin, C-peptide levels and peripheral fat tissue leptin receptor expression in obesity

    International Nuclear Information System (INIS)

    Du Tongxin; Sun Junjiang; Wang Shukui; Fu Lei

    2002-01-01

    Objective: To explore the mechanism of obesity and obesity accompanied type two diabetes mellitus by investigating changes of serum leptin, C-peptide (C-P) levels and leptin receptor expression in peripheral adipose tissues. Methods: Peripheral leptin receptor density was measured via radio-ligand binding method, serum leptin and C - P levels were measured via radioimmunoassay in 91 cases (38 in obesity group, 23 in over weight, and 30 in normal controls). Results: With the increase of body mass index (BMI), the peripheral leptin receptor density of the over weight and obese cases decreased and was mash less than that of normal cases (both p<0.01, respectively). There was no statistical differences for Kd value among the three groups, suggesting no associated change between the binding ability of leptin receptor to its ligand. There was a negative correlation between BMI and leptin receptor density (r = -0.70, p < 0.01). The serum leptin and C-P levels in weight excess and obese subjects with type two DM were both increased, but significantly higher in obese group than those in weight excess group (p < 0.01). The increase of C-P was much marked than that of leptin. Serum C-P level was positively correlated with BMI. Conclusion: Changes of serum leptin, C-P levels and peripheral leptin receptor expression in cases with simple obesity and obesity accompanied with type two DM were related closely with BMI. Type 2 DM in obese subjects was related with leptin resistance and insulin resistance

  10. Leptin receptor Gln223Arg polymorphism and breast cancer risk in Nigerian women: A case control study

    International Nuclear Information System (INIS)

    Okobia, Michael N; Taioli, Emanuela; Bunker, Clareann H; Garte, Seymour J; Zmuda, Joseph M; Ezeome, Emmanuel R; Anyanwu, Stanley N; Uche, Emmanuel E; Kuller, Lewis H; Ferrell, Robert E

    2008-01-01

    Leptin, a 16 kDa polypeptide hormone, implicated in various physiological processes, exerts its action through the leptin receptor, a member of the class I cytokine receptor family. Both leptin and leptin receptor have recently been implicated in processes leading to breast cancer initiation and progression in animal models and humans. An A to G transition mutation in codon 223 in exon 6 of the leptin receptor gene, resulting in glutamine to arginine substitution (Gln223Arg), lies within the first of two putative leptin-binding regions and may be associated with impaired signaling capacity of the leptin receptor. This study was designed to assess the role of this polymorphism in breast cancer susceptibility in Nigerian women. We utilized a polymerase chain reaction (PCR)-based restriction fragment length polymorphism (RFLP) assay to evaluate the association between the Gln223Arg polymorphism of the leptin receptor gene and breast risk in Nigeria in a case control study involving 209 women with breast cancer and 209 controls without the disease. Study participants were recruited from surgical outpatient clinics and surgical wards of four University Teaching Hospitals located in Midwestern and southeastern Nigeria between September 2002 and April 2004. Premenopausal women carrying at least one LEPR 223Arg allele were at a modestly increased risk of breast cancer after adjusting for confounders (OR = 1.8, 95% confidence interval [CI] 1.0–3.2, p = 0.07). There was no association with postmenopausal breast cancer risk (OR = 0.9, 95% CI 0.4–1.8, p = 0.68). Our results suggest that the LEPR Gln223Arg polymorphism in the extracellular domain of the LEPR receptor gene is associated with a modestly increased risk of premenopausal breast cancer in Nigerian women

  11. Alterations in mouse hypothalamic adipokine gene expression and leptin signaling following chronic spinal cord injury and with advanced age.

    Directory of Open Access Journals (Sweden)

    Gregory E Bigford

    Full Text Available Chronic spinal cord injury (SCI results in an accelerated trajectory of several cardiovascular disease (CVD risk factors and related aging characteristics, however the molecular mechanisms that are activated have not been explored. Adipokines and leptin signaling are known to play a critical role in neuro-endocrine regulation of energy metabolism, and are now implicated in central inflammatory processes associated with CVD. Here, we examine hypothalamic adipokine gene expression and leptin signaling in response to chronic spinal cord injury and with advanced age. We demonstrate significant changes in fasting-induced adipose factor (FIAF, resistin (Rstn, long-form leptin receptor (LepRb and suppressor of cytokine-3 (SOCS3 gene expression following chronic SCI and with advanced age. LepRb and Jak2/stat3 signaling is significantly decreased and the leptin signaling inhibitor SOCS3 is significantly elevated with chronic SCI and advanced age. In addition, we investigate endoplasmic reticulum (ER stress and activation of the uncoupled protein response (UPR as a biological hallmark of leptin resistance. We observe the activation of the ER stress/UPR proteins IRE1, PERK, and eIF2alpha, demonstrating leptin resistance in chronic SCI and with advanced age. These findings provide evidence for adipokine-mediated inflammatory responses and leptin resistance as contributing to neuro-endocrine dysfunction and CVD risk following SCI and with advanced age. Understanding the underlying mechanisms contributing to SCI and age related CVD may provide insight that will help direct specific therapeutic interventions.

  12. Alteration of brain insulin and leptin signaling promotes energy homeostasis impairment and neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Taouis Mohammed

    2011-09-01

    Full Text Available The central nervous system (CNS controls vital functions, by efficiently coordinating peripheral and central cascades of signals and networks in a coordinated manner. Historically, the brain was considered to be an insulin-insensitive tissue. But, new findings demonstrating that insulin is present in different regions of themammalian brain, in particular the hypothalamus and the hippocampus. Insulin acts through specific receptors and dialogues with numerous peptides, neurotransmitters and adipokines such as leptin. The cross-talk between leptin and insulin signaling pathways at the hypothalamic level is clearly involved in the control of energy homeostasis. Both hormones are anorexigenic through their action on hypothalamic arcuate nucleus by inducing the expression of anorexigenic neuropetides such as POMC (pro-opiomelanocortin, the precursor of aMSH and reducing the expression of orexigenic neuropeptide such as NPY (Neuropeptide Y. Central defect of insulin and leptin signaling predispose to obesity (leptin-resistant state and type-2 diabetes (insulin resistant state. Obesity and type-2 diabetes are associated to deep alterations in energy homeostasis control but also to other alterations of CNS functions as the predisposition to neurodegenerative diseases such as Alzheimer’s disease (AD. AD is a neurodegenerative disorder characterized by distinct hallmarks within the brain. Postmortem observation of AD brains showed the presence of parenchymal plaques due to the accumulation of the amyloid beta (AB peptide and neurofibrillary tangles. These accumulations result from the hyperphosphorylation of tau (a mictrotubule-interacting protein. Both insulin and leptin have been described to modulate tau phosphorylation and therefore in leptin and insulin resistant states may contribute to AD. The concentrations of leptin and insulin cerebrospinal fluid are decreased type2 diabetes and obese patients. In addition, the concentration of insulin in the

  13. Interplay between glucose and leptin signalling determines the strength of GABAergic synapses at POMC neurons.

    Science.gov (United States)

    Lee, Dong Kun; Jeong, Jae Hoon; Chun, Sung-Kun; Chua, Streamson; Jo, Young-Hwan

    2015-03-26

    Regulation of GABAergic inhibitory inputs and alterations in POMC neuron activity by nutrients and adiposity signals regulate energy and glucose homeostasis. Thus, understanding how POMC neurons integrate these two signal molecules at the synaptic level is important. Here we show that leptin's action on GABA release to POMC neurons is influenced by glucose levels. Leptin stimulates the JAK2-PI3K pathway in both presynaptic GABAergic terminals and postsynaptic POMC neurons. Inhibition of AMPK activity in presynaptic terminals decreases GABA release at 10 mM glucose. However, postsynaptic TRPC channel opening by the PI3K-PLC signalling pathway in POMC neurons enhances spontaneous GABA release via activation of presynaptic MC3/4 and mGlu receptors at 2.5 mM glucose. High-fat feeding blunts AMPK-dependent presynaptic inhibition, whereas PLC-mediated GABAergic feedback inhibition remains responsive to leptin. Our data indicate that the interplay between glucose and leptin signalling in glutamatergic POMC neurons is critical for determining the strength of inhibitory tone towards POMC neurons.

  14. Leptin, its receptor and aromatase expression in deep infiltrating endometriosis.

    Science.gov (United States)

    Gonçalves, Helder F; Zendron, Carolina; Cavalcante, Fernanda S; Aiceles, Verônica; Oliveira, Marco Aurélio P; Manaia, Jorge Henrique M; Babinski, Márcio A; Ramos, Cristiane F

    2015-08-05

    The aim of this study was to evaluate the leptin levels in the serum and peritoneal fluid (PF) and the protein expression in three different peritoneal ectopic implants in patients who underwent surgery for deep infiltrating endometriosis. All patients had been treated at the Department of Gynecology of the Pedro Ernesto University Hospital, Rio de Janeiro. The study group consisted of 15 patients who underwent surgery for adnexal masses and infertility, while the control group consisted of ten women who underwent surgery for tubal ligation. Peritoneal fluid and samples tissues were collected during surgery. Serum samples were obtained before anesthesia. In this study, the leptin levels in the serum and peritoneal fluid (PF) were evaluated by ELISA. The protein expression of leptin and its receptors (ObR) and aromatase enzyme were evaluated by Western blot analysis of the intestine, uterosacral ligament and vaginal septum in the ectopic implants. The t-test and one-way ANOVA with Holm-Sìdak post-test were used, and p endometriosis = 19.2 ng/mL ± 1.84, p endometriosis = 7.71 ng/mL ± 0.59, p = 0.18). Comparing women with and without ovarian implants, the leptin levels in both the serum and PF were significantly higher in women without ovarian implants (serum: with ovarian implant = 15.85 ± 1.99; without ovarian implant = 23.14 ± 2.60; ng/mL, p = 0.04; PF: with ovarian implant = 4.28 ± 1.30; without ovarian implant = 11.18 ± 2.98;ng/mL, p = 0.048). The leptin, ObR and aromatase protein expression levels were increased in lesions in the vaginal septum and were decreased in the intestine lesions. This study reports several interesting associations between the leptin levels in serum, peritoneal fluid, and tissue samples and the localization of the ectopic endometrium. Although this study does not provide a clear picture of the role of leptin in the development and progression of peritoneal implants

  15. VMAT2-mediated neurotransmission from midbrain leptin receptor neurons in feeding regulation

    Science.gov (United States)

    Leptin receptors (LepRs) expressed in the midbrain contribute to the action of leptin on feeding regulation. The midbrain neurons release a variety of neurotransmitters including dopamine (DA), glutamate and GABA. However, which neurotransmitter mediates midbrain leptin action on feeding remains unc...

  16. The features of leptin and its receptor expression in metastatic cutaneous melanoma

    Directory of Open Access Journals (Sweden)

    A. A. Lushnikova

    2015-01-01

    Full Text Available Leptin is a multifunctional hormone with the activity of cytokines, which regulates critical signaling pathways that can induce cell proliferation, invasion, angiogenesis and tumor growth. Leptin plays an important role in the regulation of metabolism, energy exchange, functions of the neuro-endocrine system, including the pituitary, hypothalamus, adrenals, and immune system functions. Recently, some evidences have been appeared concerning the role of leptin in induction of chronic inflammatory processes, autoimmune pathologies, type 2 diabetes and cancer. An elevated blood level of the hormone is considered as a risk factor for different neoplasm developmentObjective. Analysis of the hormone leptin (Lep, the long and short isoforms of its receptor (LepR1 and LepR2 expression in blood, tumor cells and normal skin fibroblasts in the patients with metastatic cutaneous melanoma (CM with various clinico-pathological characteristics for prognostic assessment.Materials and methods. 15 patients with metastatic CM (10 women and 5 men, aged 22 to 67 years with body mass from normal to obese have been studied. The expression of Lep / LepR in the patient and donor blood sera, tumor and normal skin fibroblasts were determined using enzyme-linked immunosorbent assay (ELISA and RT PCR using total RNAs isolated from pairs of tumor samples and normal tissue.Results. Average level of leptin in the blood of CM patients and in tumor cells exceeds the normal one. Concentration of lepin in female CM patients was higher than in male patients. The expression level of Lep and LepR1 genes (but not LepR2 in tumor cells was relatively higher than in normal skin fibroblasts of these patients, and above the level of GAPDH gene expression. In the female patients with overweight (body mass index = 25,00–29,99 kg/m2 there was a trend to higher concentrations of leptin in the blood in comparison of the patients with normal body mass and leptin level in the sera of male CM

  17. Early childhood BMI trajectories in monogenic obesity due to leptin, leptin receptor, and melanocortin 4 receptor deficiency.

    Science.gov (United States)

    Kohlsdorf, Katja; Nunziata, Adriana; Funcke, Jan-Bernd; Brandt, Stephanie; von Schnurbein, Julia; Vollbach, Heike; Lennerz, Belinda; Fritsch, Maria; Greber-Platzer, Susanne; Fröhlich-Reiterer, Elke; Luedeke, Manuel; Borck, Guntram; Debatin, Klaus-Michael; Fischer-Posovszky, Pamela; Wabitsch, Martin

    2018-02-27

    To evaluate whether early childhood body mass index (BMI) is an appropriate indicator for monogenic obesity. A cohort of n = 21 children living in Germany or Austria with monogenic obesity due to congenital leptin deficiency (group LEP, n = 6), leptin receptor deficiency (group LEPR, n = 6) and primarily heterozygous MC4 receptor deficiency (group MC4R, n = 9) was analyzed. A control group (CTRL) was defined that consisted of n = 22 obese adolescents with no mutation in the above mentioned genes. Early childhood (0-5 years) BMI trajectories were compared between the groups at selected time points. The LEP and LEPR group showed a tremendous increase in BMI during the first 2 years of life with all patients displaying a BMI >27 kg/m 2 (27.2-38.4 kg/m 2 ) and %BMI P95 (percentage of the 95th percentile BMI for age and sex) >140% (144.8-198.6%) at the age of 2 years and a BMI > 33 kg/m 2 (33.3-45.9 kg/m 2 ) and %BMI P95  > 184% (184.1-212.6%) at the age of 5 years. The MC4R and CTRL groups had a later onset of obesity with significantly lower BMI values at both time points (p BMI trajectories in this pediatric cohort with monogenic obesity we suggest that BMI values >27.0 kg/m 2 or %BMI P95  > 140% at the age of 2 years and BMI values >33.0 kg/m 2 or %BMI P95  > 184% at the age of 5 years may be useful cut points to identify children who should undergo genetic screening for monogenic obesity due to functionally relevant mutations in the leptin gene or leptin receptor gene.

  18. Importance of leptin signaling and signal transducer and activator of transcription-3 activation in mediating the cardiac hypertrophy associated with obesity.

    Science.gov (United States)

    Leifheit-Nestler, Maren; Wagner, Nana-Maria; Gogiraju, Rajinikanth; Didié, Michael; Konstantinides, Stavros; Hasenfuss, Gerd; Schäfer, Katrin

    2013-07-11

    The adipokine leptin and its receptor are expressed in the heart, and leptin has been shown to promote cardiomyocyte hypertrophy in vitro. Obesity is associated with hyperleptinemia and hypothalamic leptin resistance as well as an increased risk to develop cardiac hypertrophy and heart failure. However, the role of cardiac leptin signaling in mediating the cardiomyopathy associated with increased body weight is unclear, in particular, whether it develops subsequently to cardiac leptin resistance or overactivation of hypertrophic signaling pathways via elevated leptin levels. The cardiac phenotype of high-fat diet (HFD)-induced obese wildtype (WT) mice was examined and compared to age-matched genetically obese leptin receptor (LepR)-deficient (LepRdb/db) or lean WT mice. To study the role of leptin-mediated STAT3 activation during obesity-induced cardiac remodeling, mice in which tyrosine residue 1138 within LepR had been replaced with a serine (LepRS1138) were also analyzed. Obesity was associated with hyperleptinemia and elevated cardiac leptin expression in both diet-induced and genetically obese mice. Enhanced LepR and STAT3 phosphorylation levels were detected in hearts of obese WT mice, but not in those with LepR mutations. Moreover, exogenous leptin continued to induce cardiac STAT3 activation in diet-induced obese mice. Although echocardiography revealed signs of cardiac hypertrophy in all obese mice, the increase in left ventricular (LV) mass and diameter was significantly more pronounced in LepRS1138 animals. LepRS1138 mice also exhibited an increased activation of signaling proteins downstream of LepR, including Jak2 (1.8-fold), Src kinase (1.7-fold), protein kinase B (1.3-fold) or C (1.6-fold). Histological analysis of hearts revealed that the inability of leptin to activate STAT3 in LepRdb/db and LepRS1138 mice was associated with reduced cardiac angiogenesis as well as increased apoptosis and fibrosis. Our findings suggest that hearts from obese mice

  19. Interaction between leptin and leptin receptor in gastric carcinoma: Gene ontology analysis Interacción entre la leptina y su receptor en el carcinoma gástrico: análisis de ontología genética

    Directory of Open Access Journals (Sweden)

    V. Wiwanitkit

    2007-04-01

    Full Text Available Gastric carcinoma is a rare but important malignancy. The link between leptin, a cytokine that is elevated in obese individuals, and cancer development has been proposed. It is noted that leptin and its receptor may play a positive role in the progression in gastric cancer. However, the exact mechanism resulting form the interaction between leptin and leptin receptor has never been clarified. Here, the author used a new gene ontology technology to predict the molecular function and biological process due to the interaction between leptin and leptin receptor. Comparing to leptin and leptin receptor, the leptin-leptin receptor poses the same function and biological process as leptin receptor. This can confirm that leptin receptor has a significant suppressive effect on the expression of leptin. Loss of hormone activity and disturbance of normal cell signaling pathway of leptin can be seen. Blocking of receptor might be rational therapeutic strategy.El carcinoma gástrico es un cáncer muy poco frecuente pero importante. Se ha postulado que la leptina, una citocina que aparece elevada en las personas obesas, está relacionada con el cáncer. Se sabe que la leptina y su receptor pueden desempeñar un papel positivo en la progresión del cáncer gástrico. Sin embargo, nunca se ha dilucidado el mecanismo exacto al que daría lugar la interacción entre la leptina y el receptor de leptina. Aquí, el autor empleó una nueva tecnología de ontología genética para predecir la función molecular y el proceso biológico resultantes de la interacción entre la leptina y su receptor. Frente a la leptina y su receptor, el compuesto leptina-receptor realiza la misma función y el mismo proceso biológico que el receptor de leptina. Esto puede confirmar que el receptor de leptina ejerce un importante efecto supresor sobre la expresión de leptina. Pueden observarse una pérdida de actividad hormonal y la alteración de la vía normal de señalización celular

  20. Imbalance in leptin-adiponectin levels and leptin receptor expression as chief contributors to triple negative breast cancer progression in Northeast India.

    Science.gov (United States)

    Sultana, Rizwana; Kataki, Amal Ch; Borthakur, Bibhuti Bhusan; Basumatary, Tarun K; Bose, Sujoy

    2017-07-20

    Triple-Negative breast cancer (TNBC), accounts for a large percentage of breast cancer cases in India including Northeast India. TNBC has an unclear molecular aetiology and hence limited targeted therapies. Human breast is comprised of glandular, ductal, connective, and adipose tissues. Adipose tissue is composed of adipocytes. The adipocytes apart from being energy storage depots, are also active sources of adipocytokines and/or adipokines. The role of adipokines in breast cancer including TNBC has been sporadically documented. Two adipokines in particular, leptin and adiponectin, have come to be recognized for their influence on breast cancer risk and tumour biology. Therefore, the aim of this study was to understand the association of differential expression of critical adipokines and associated cellular mechanism in the susceptibility and severity of TNBC in northeast Indian population. We collected 68 TNBC and 63 controls cases and examined for serum leptin and adiponectin levels using enzyme linked immunosorbent assay (ELISA). Leptin Receptor (Ob-R) mRNA expression was determined by real-time polymerase chain reaction (RT-PCR) assay. Differential Ob-R mRNA expression and correlation with cancer stem cell (CSC) markers was evaluated, and correlated with severity. The serum leptin levels were significantly associated with TNBC severity, while the adiponectin levels were comparative. The serum leptin levels correlated inversely with the adiponetin levels. Serum leptin levels were unaffected with difference in parity. The difference in leptin levels in pre and post menopausal cases were found to be statistically non-significant. Higher leptin levels were also found to be associated obesity, mortality and recurrence. Obesity was found to be a factor for TNBC pathogenesis and severity. Increased Ob-R mRNA expression was associated with TNBC, significantly with TNBC severity, and was significantly higher in obese patients with higher grade TNBC cases. The Ob-R gene

  1. Interplay between glucose and leptin signaling determines the strength of GABAergic synapses at POMC neurons

    Science.gov (United States)

    Lee, Dong Kun; Jeong, Jae Hoon; Chun, Sung-Kun; Chua, Streamson; Jo, Young-Hwan

    2015-01-01

    Regulation of GABAergic inhibitory inputs and alterations in POMC neuron activity by nutrients and adiposity signals regulate energy and glucose homeostasis. Thus, understanding how POMC neurons integrate these two signal molecules at the synaptic level is important. Here we show that leptin’s action on GABA release to POMC neurons is influenced by glucose levels. Leptin stimulates the JAK2-PI3K pathway in both presynaptic GABAergic terminals and postsynaptic POMC neurons. Inhibition of AMPK activity in presynaptic terminals decreases GABA release at 10 mM glucose. However, postsynaptic TRPC channel opening by the PI3K-PLC signaling pathway in POMC neurons enhances spontaneous GABA release via activation of presynaptic MC3/4 and mGlu receptors at 2.5 mM glucose. High-fat feeding blunts AMPK-dependent presynaptic inhibition, whereas PLC-mediated GABAergic feedback inhibition remains responsive to leptin. Our data indicate that the interplay between glucose and leptin signaling in glutamatergic POMC neurons is critical for determining the strength of inhibitory tone towards POMC neurons. PMID:25808323

  2. Cooperative ethylene receptor signaling

    OpenAIRE

    Liu, Qian; Wen, Chi-Kuang

    2012-01-01

    The gaseous plant hormone ethylene is perceived by a family of five ethylene receptor members in the dicotyledonous model plant Arabidopsis. Genetic and biochemical studies suggest that the ethylene response is suppressed by ethylene receptor complexes, but the biochemical nature of the receptor signal is unknown. Without appropriate biochemical measures to trace the ethylene receptor signal and quantify the signal strength, the biological significance of the modulation of ethylene responses ...

  3. Leptin signaling in skeletal muscle after bed rest in healthy humans

    DEFF Research Database (Denmark)

    Guerra, Borja; Ponce-Gonzalez, Jesus Gustavo; Morales-Alamo, David

    2014-01-01

    . Leptin receptor isoforms (OB-Rs), suppressor of cytokine signaling 3 (SOCS3) and protein tyrosine phosphatase 1B (PTP1B) protein expression and signal transducer and activator of transcription 3 (STAT3) phosphorylation were analyzed by Western blot. RESULTS: After bed rest basal insulin concentration.......4-fold after bed rest (P PTP1B in the deltoid. PTP1B was increased by 90% with bed rest in the vastus lateralis (P ... between the increase in vastus lateralis PTP1B and the increase in both basal insulin concentrations (r = 0.66, P

  4. Enhancement of Bovine oocyte maturation by leptin is accompanied by an upregulation in mRNA expression of leptin receptor isoforms in cumulus cells

    NARCIS (Netherlands)

    van Tol, Helena T A; van Eerdenburg, Frank J C M; Colenbrander, Ben; Roelen, Bernard A J

    In this study, the mechanisms of supposed leptin action on oocyte maturation were examined. Expression of leptin mRNA, as determined with RT-PCR, was present in oocytes but not in cumulus cells. The long isoform of the leptin receptor (ObR-L) was expressed exclusively in cumulus cells after 7 and 23

  5. Relationship between expression of leptin receptors mRNA in breast tissue, plasma leptin level in breast cancer patients with obesity and clinical pathologic data

    International Nuclear Information System (INIS)

    Li Chunrui; Liu Wenli; Sun Hanying; Zhou Jianfeng

    2007-01-01

    In order to investigate the expression of leptin receptors mRNA in breast tissue and plasma leptin levels in breast cancer patients with obesity and their relationship with clinical pathologic data, 124 subjects who were either obesity or had suffered from breast benign disease with obesity, or breast cancer with obesity were entered into this study. The levels of plasma leptin in all subjects were determined and leptin receptors mRNA expression levels were measured by RT-PCR in breast tissue of breast cancer patients with obesity and breast benign disease with obesity. The results showed that plasma leptin levels in breast cancer patients with obesity were significantly higher than those in breast benign disease with obesity and obesity patients alone (P<0.05). The expression of the leptin receptor long form [-Lep-R(L)-] mRNA and the leptin receptor short form [-Lep-R(S)-] mRNA in breast tissue of breast cancer patients with obesity were significantly higher than that in breast tissue of breast benign disease patients with obesity (P<0.05). The plasma leptin level had remarkable positive correlation with the expressions of the Lep-R(L) mRNA and the Lep-R(S) mRNA. The plasma leptin level and leptin receptors mRNA expression levels in patients were not correlated with the axillary node metastasis, menopause, the TNM stage or pathological type. Therefore, leptin may have a promoting effect on the carcinogenesis of breast cancer. (authors)

  6. Circulating ghrelin, leptin, and soluble leptin receptor concentrations and cardiometabolic risk factors in a community-based sample.

    Science.gov (United States)

    Ingelsson, Erik; Larson, Martin G; Yin, Xiaoyan; Wang, Thomas J; Meigs, James B; Lipinska, Izabella; Benjamin, Emelia J; Keaney, John F; Vasan, Ramachandran S

    2008-08-01

    The conjoint effects and relative importance of ghrelin, leptin, and soluble leptin receptor (sOB-R), adipokines involved in appetite control and energy expenditure in mediating cardiometabolic risk, is unknown. The objective of the study was to study the cross-sectional relations of these adipokines to cardiometabolic risk factors in a community-based sample. We measured circulating ghrelin, leptin, and sOB-R in 362 participants (mean age 45 yr; 54% women) of the Framingham Third Generation Cohort. Body mass index, waist circumference (WC), blood pressure, lipid measures, fasting glucose, smoking, and metabolic syndrome (MetS) were measured. Ghrelin and leptin concentrations were significantly higher in women (P risk.

  7. Control of blood pressure, appetite, and glucose by leptin in mice lacking leptin receptors in proopiomelanocortin neurons.

    Science.gov (United States)

    do Carmo, Jussara M; da Silva, Alexandre A; Cai, Zhengwei; Lin, Shuying; Dubinion, John H; Hall, John E

    2011-05-01

    Although the central nervous system melanocortin system is an important regulator of energy balance, the role of proopiomelanocortin (POMC) neurons in mediating the chronic effects of leptin on appetite, blood pressure, and glucose regulation is unknown. Using Cre/loxP technology we tested whether leptin receptor deletion in POMC neurons (LepR(flox/flox)/POMC-Cre mice) attenuates the chronic effects of leptin to increase mean arterial pressure (MAP), enhance glucose use and oxygen consumption, and reduce appetite. LepR(flox/flox)/POMC-Cre, wild-type, LepR(flox/flox), and POMC-Cre mice were instrumented for MAP and heart rate measurement by telemetry and venous catheters for infusions. LepR(flox/flox)/POMC-Cre mice were heavier, hyperglycemic, hyperinsulinemic, and hyperleptinemic compared with wild-type, LepR(flox/flox), and POMC-Cre mice. Despite exhibiting features of metabolic syndrome, LepR(flox/flox)/POMC-Cre mice had normal MAP and heart rate compared with LepR(flox/flox) but lower MAP and heart rate compared with wild-type mice. After a 5-day control period, leptin was infused (2 μg/kg per minute, IV) for 7 days. In control mice, leptin increased MAP by ≈5 mm Hg despite decreasing food intake by ≈35%. In contrast, leptin infusion in LepR(flox/flox)/POMC-Cre mice reduced MAP by ≈3 mm Hg and food intake by ≈28%. Leptin significantly decreased insulin and glucose levels in control mice but not in LepR(flox/flox)/POMC-Cre mice. Leptin increased oxygen consumption in LepR(flox/flox)/POMC-Cre and wild-type mice. Activation of POMC neurons is necessary for the chronic effects of leptin to raise MAP and reduce insulin and glucose levels, whereas leptin receptors in other areas of the brain other than POMC neurons appear to play a key role in mediating the chronic effects of leptin on appetite and oxygen consumption.

  8. Selective Deletion of Leptin Signaling in Endothelial Cells Enhances Neointima Formation and Phenocopies the Vascular Effects of Diet-Induced Obesity in Mice.

    Science.gov (United States)

    Hubert, Astrid; Bochenek, Magdalena L; Schütz, Eva; Gogiraju, Rajinikanth; Münzel, Thomas; Schäfer, Katrin

    2017-09-01

    Obesity is associated with elevated circulating leptin levels and hypothalamic leptin resistance. Leptin receptors (LepRs) are expressed on endothelial cells, and leptin promotes neointima formation in a receptor-dependent manner. Our aim was to examine the importance of endothelial LepR (End.LepR) signaling during vascular remodeling and to determine whether the cardiovascular consequences of obesity are because of hyperleptinemia or endothelial leptin resistance. Mice with loxP-flanked LepR alleles were mated with mice expressing Cre recombinase controlled by the inducible endothelial receptor tyrosine kinase promoter. Obesity was induced with high-fat diet. Neointima formation was examined after chemical carotid artery injury. Morphometric quantification revealed significantly greater intimal hyperplasia, neointimal cellularity, and proliferation in End.LepR knockout mice, and similar findings were obtained in obese, hyperleptinemic End.LepR wild-type animals. Analysis of primary endothelial cells confirmed abrogated signal transducer and activator of transcription-3 phosphorylation in response to leptin in LepR knockout and obese LepR wild-type mice. Quantitative PCR, ELISA, and immunofluorescence analyses revealed increased expression and release of endothelin-1 in End.LepR-deficient and LepR-resistant cells, and ET receptor A/B antagonists abrogated their paracrine effects on murine aortic smooth muscle cell proliferation. Reduced expression of peroxisome proliferator-activated receptor-γ and increased nuclear activator protein-1 staining was observed in End.LepR-deficient and LepR-resistant cells, and peroxisome proliferator-activated receptor-γ antagonization increased endothelial endothelin-1 expression. Our findings suggest that intact endothelial leptin signaling limits neointima formation and that obesity represents a state of endothelial leptin resistance. These observations and the identification of endothelin-1 as soluble mediator of the

  9. Role of GABA Release From Leptin Receptor-Expressing Neurons in Body Weight Regulation

    Science.gov (United States)

    Xu, Yuanzhong; O'Brien, William G.; Lee, Cheng-Chi; Myers, Martin G.

    2012-01-01

    It is well established that leptin regulates energy balance largely through isoform B leptin receptor-expressing neurons (LepR neurons) in the brain and that leptin activates one subset of LepR neurons (leptin-excited neurons) while inhibiting the other (leptin-inhibited neurons). However, the neurotransmitters released from LepR neurons that mediate leptin action in the brain are not well understood. Previous results demonstrate that leptin mainly acts on γ-aminobutyric acid (GABA)ergic neurons to reduce body weight, and that leptin activates proopiomelanocortin neuron activity by reducing GABA release onto these neurons, suggesting a body weight-promoting role for GABA released from leptin-inhibited neurons. To directly examine the role of GABA release from LepR neurons in body weight regulation, mice with disruption of GABA release specifically from LepR neurons were generated by deletion of vesicular GABA transporter in LepR neurons. Interestingly, these mice developed mild obesity on chow diet and were sensitive to diet-induced obesity, which were associated with higher food intake and lower energy expenditure. Moreover, these mice showed blunted responses in both food intake and body weight to acute leptin administration. These results demonstrate that GABA plays an important role in mediating leptin action. In combination with the previous studies that leptin reduces GABA release onto proopiomelanocortin neurons through leptin-inhibited neurons and that disruption of GABA release from agouti gene-related protein neurons, one subset of LepR-inhibited neurons, leads to a lean phenotype, our results suggest that, under our experimental conditions, GABA release from leptin-excited neuron dominates over leptin-inhibited ones. PMID:22334723

  10. Euglycemia Restoration by Central Leptin in Type 1 Diabetes Requires STAT3 Signaling but Not Fast-Acting Neurotransmitter Release.

    Science.gov (United States)

    Xu, Yuanzhong; Chang, Jeffrey T; Myers, Martin G; Xu, Yong; Tong, Qingchun

    2016-04-01

    Central leptin action is sufficient to restore euglycemia in insulinopenic type 1 diabetes (T1D); however, the underlying mechanism remains poorly understood. To examine the role of intracellular signal transducer and activator of transcription 3 (STAT3) pathways, we used LepRs/s mice with disrupted leptin-phosphorylated STAT3 signaling to test the effect of central leptin on euglycemia restoration. These mice developed streptozocin-induced T1D, which was surprisingly not associated with hyperglucagonemia, a typical manifestation in T1D. Further, leptin action on euglycemia restoration was abrogated in these mice, which was associated with refractory hypercorticosteronemia. To examine the role of fast-acting neurotransmitters glutamate and γ-aminobutyric acid (GABA), two major neurotransmitters in the brain, from leptin receptor (LepR) neurons, we used mice with disrupted release of glutamate, GABA, or both from LepR neurons. Surprisingly, all mice responded normally to leptin-mediated euglycemia restoration, which was associated with expected correction from hyperglucagonemia and hyperphagia. In contrast, mice with loss of glutamate and GABA appeared to develop an additive obesity effect over those with loss of single neurotransmitter release. Thus, our study reveals that STAT3 signaling, but not fast-acting neurotransmitter release, is required for leptin action on euglycemia restoration and that hyperglucagonemia is not required for T1D. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  11. Leptin receptor blockade reduces intrahepatic vascular resistance and portal pressure in an experimental model of rat liver cirrhosis.

    Science.gov (United States)

    Delgado, María Gabriela; Gracia-Sancho, Jordi; Marrone, Giusi; Rodríguez-Vilarrupla, Aina; Deulofeu, Ramon; Abraldes, Juan G; Bosch, Jaume; García-Pagán, Juan Carlos

    2013-10-01

    Increased hepatic vascular resistance mainly due to elevated vascular tone and to fibrosis is the primary factor in the development of portal hypertension in cirrhosis. Leptin, a hormone associated with reduction in nitric oxide bioavailability, vascular dysfunction, and liver fibrosis, is increased in patients with cirrhosis. We aimed at evaluating whether leptin influences the increased hepatic resistance in portal hypertension. CCl4-cirrhotic rats received the leptin receptor-blocker ObR antibody, or its vehicle, every other day for 1 wk. Hepatic and systemic hemodynamics were measured in both groups. Hepatic nitric oxide production and bioavailability, together with oxidative stress, nitrotyrosinated proteins, and liver fibrosis, were evaluated. In cirrhotic rats, leptin-receptor blockade significantly reduced portal pressure without modifying portal blood flow, suggesting a reduction in the intrahepatic resistance. Portal pressure reduction was associated with increased nitric oxide bioavailability and with decreased O2(-) levels and nitrotyrosinated proteins. No changes in systemic hemodynamics and liver fibrosis were observed. In conclusion, the present study shows that blockade of the leptin signaling pathway in cirrhosis significantly reduces portal pressure. This effect is probably due to a nitric oxide-mediated reduction in the hepatic vascular tone.

  12. NUTRIGENOMICS ANALYZE OF EXPRESSION OF EXTRACELLULAR LEPTIN RECEPTOR BY THE FOLLOWING ESSENTIAL OIL MONITORING AT THE AVIAN MODELS

    Directory of Open Access Journals (Sweden)

    Pavol Bajzík

    2011-04-01

    Full Text Available Leptin gene was identified in 1994 by positional cloning. His mutation is considered extreme obesity surface phenotype and infertility in ob/ob mice. Most of the research, which followed the discovery of this hormone, focused on the role of leptin in regulating body weight,  in order to clarify the pathophysiology of obesity. Many research results show that leptin is not only important in regulating food intake and energy balance, but also performs functions such as metabolic and neuroendocrine hormone. Using herbs and essential oils depends on their antimicrobial activity. Most plants have favorable multifunctional properties, which are the specific content of bioactive components. Some authors characterize fytogénne substance such as natural substancese plant origin, which leave no residues in animal products and is not necessary to keep the trade period before slaughter animals. Analyses suggest that the structural function of the receptor exists as a dimer constructively in the plasma membrane. Each receptor dimer pair is reversibly bound to one molecule of leptin. When bound, signaling pathways are responsible for beginning the activation receptor associated Janus kinase 2 (JAK2 and tyrosine phosphorylation of two key residues in the intracellular part of receptor.doi:10.5219/128 

  13. Preferential effects of leptin on CD4 T cells in central and peripheral immune system are critically linked to the expression of leptin receptor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, So Yong; Lim, Ju Hyun [Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746 (Korea, Republic of); Choi, Sung Won [Department of Molecular Biology, School of Arts and Sciences (S.W.C), Cornell University, Ithaca, NY 18450 (United States); Kim, Miyoung; Kim, Seong-Tae [Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746 (Korea, Republic of); Kim, Min-Seon; Cho, You Sook [Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-600 (Korea, Republic of); Chun, Eunyoung, E-mail: chun.eunyoung@gmail.com [Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746 (Korea, Republic of); Lee, Ki-Young, E-mail: thylee@med.skku.ac.kr [Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746 (Korea, Republic of)

    2010-04-09

    Leptin can enhance thymopoiesis and modulate the T-cell immune response. However, it remains controversial whether these effects correlate with the expression of leptin receptor, ObR. We herein addressed this issue by using in vivo animal models and in vitro culture systems. Leptin treatment in both ob/ob mice and normal young mice induced increases of CD4 SP thymocytes in thymus and CD4 T cells in the periphery. Interestingly, expression of the long form ObR was significantly restricted to DN, DP and CD4 SP, but not CD8 SP thymocytes. Moreover, in the reaggregated DP thymocyte cultures with leptin plus TSCs, leptin profoundly induced differentiation of CD4 SP but not CD8 SP thymocytes, suggesting that the effects of leptin on thymocyte differentiation might be closely related to the expression of leptin receptor in developing thymocytes. Surprisingly, ObR expression was markedly higher in peripheral CD4 T cells than that in CD8 T cells. Furthermore, leptin treatment with or without IL-2 and PHA had preferential effects on cell proliferation of CD4 T cells compared to that of CD8 T cells. Collectively, these data provide evidence that the effects of leptin on differentiation and proliferation of CD4 T cells might be closely related to the expression of leptin receptor.

  14. Preferential effects of leptin on CD4 T cells in central and peripheral immune system are critically linked to the expression of leptin receptor

    International Nuclear Information System (INIS)

    Kim, So Yong; Lim, Ju Hyun; Choi, Sung Won; Kim, Miyoung; Kim, Seong-Tae; Kim, Min-Seon; Cho, You Sook; Chun, Eunyoung; Lee, Ki-Young

    2010-01-01

    Leptin can enhance thymopoiesis and modulate the T-cell immune response. However, it remains controversial whether these effects correlate with the expression of leptin receptor, ObR. We herein addressed this issue by using in vivo animal models and in vitro culture systems. Leptin treatment in both ob/ob mice and normal young mice induced increases of CD4 SP thymocytes in thymus and CD4 T cells in the periphery. Interestingly, expression of the long form ObR was significantly restricted to DN, DP and CD4 SP, but not CD8 SP thymocytes. Moreover, in the reaggregated DP thymocyte cultures with leptin plus TSCs, leptin profoundly induced differentiation of CD4 SP but not CD8 SP thymocytes, suggesting that the effects of leptin on thymocyte differentiation might be closely related to the expression of leptin receptor in developing thymocytes. Surprisingly, ObR expression was markedly higher in peripheral CD4 T cells than that in CD8 T cells. Furthermore, leptin treatment with or without IL-2 and PHA had preferential effects on cell proliferation of CD4 T cells compared to that of CD8 T cells. Collectively, these data provide evidence that the effects of leptin on differentiation and proliferation of CD4 T cells might be closely related to the expression of leptin receptor.

  15. Leptin signaling in the medial nucleus tractus solitarius reduces food seeking and willingness to work for food.

    Science.gov (United States)

    Kanoski, Scott E; Alhadeff, Amber L; Fortin, Samantha M; Gilbert, Jennifer R; Grill, Harvey J

    2014-02-01

    The adipose-derived hormone leptin signals in the medial nucleus tractus solitarius (mNTS) to suppress food intake, in part, by amplifying within-meal gastrointestinal (GI) satiation signals. Here we show that mNTS leptin receptor (LepRb) signaling also reduces appetitive and motivational aspects of feeding, and that these effects can depend on energy status. Using the lowest dose that significantly suppressed 3-h cumulative food intake, unilateral leptin (0.3 μg) administration to the mNTS (3 h before testing) reduced operant lever pressing for sucrose under increasing work demands (progressive ratio reinforcement schedule) regardless of whether animals were energy deplete (food restricted) or replete (ad libitum fed). However, in a separate test of food-motivated responding in which there was no opportunity to consume food (conditioned place preference (CPP) for an environment previously associated with a palatable food reward), mNTS leptin administration suppressed food-seeking behavior only in chronically food-restricted rats. On the other hand, mNTS LepRb signaling did not reduce CPP expression for morphine reinforcement regardless of energy status, suggesting that mNTS leptin signaling differentially influences motivated responding for food vs opioid reward. Overall results show that mNTS LepRb signaling reduces food intake and appetitive food-motivated responding independent of energy status in situations involving orosensory and postingestive contact with food, whereas food-seeking behavior independent of food consumption is only reduced by mNTS LepRb activation in a state of energy deficit. These findings reveal a novel appetitive role for LepRb signaling in the mNTS, a brain region traditionally linked with processing of meal-related GI satiation signals.

  16. Electroacupuncture Reduces Weight Gain Induced by Rosiglitazone through PPARγ and Leptin Receptor in CNS

    Directory of Open Access Journals (Sweden)

    Xinyue Jing

    2016-01-01

    Full Text Available We investigate the effect of electroacupuncture (EA on protecting the weight gain side effect of rosiglitazone (RSG in type 2 diabetes mellitus (T2DM rats and its possible mechanism in central nervous system (CNS. Our study showed that RSG (5 mg/kg significantly increased the body weight and food intake of the T2DM rats. After six-week treatment with RSG combined with EA, body weight, food intake, and the ratio of IWAT to body weight decreased significantly, whereas the ratio of BAT to body weight increased markedly. HE staining indicated that the T2DM-RSG rats had increased size of adipocytes in their IWAT, but EA treatment reduced the size of adipocytes. EA effectively reduced the lipid contents without affecting the antidiabetic effect of RSG. Furthermore, we noticed that the expression of PPARγ gene in hypothalamus was reduced by EA, while the expressions of leptin receptor and signal transducer and activator of transcription 3 (STAT3 were increased. Our results suggest that EA is an effective approach for inhibiting weight gain in T2DM rats treated by RSG. The possible mechanism might be through increased levels of leptin receptor and STAT3 and decreased PPARγ expression, by which food intake of the rats was reduced and RSG-induced weight gain was inhibited.

  17. Abalation of Ghrelin receptor in leptin-deficient mice has paradoxical effects on glucose homeostasis compared to Ghrelin-abalated Leptin-deficient mice

    Science.gov (United States)

    Ghrelin is produced predominantly in stomach and is known to be the endogenous ligand of the growth hormone secretagogue receptor (GHSR). Ghrelin is a GH stimulator and an orexigenic hormone. In contrast, leptin is an anorexic hormone, and leptin-deficient ob/ob mice are obese and diabetic. To study...

  18. Leptin Regulation of Gonadotrope Gonadotropin-Releasing Hormone Receptors As a Metabolic Checkpoint and Gateway to Reproductive Competence

    Directory of Open Access Journals (Sweden)

    Angela K. Odle

    2018-01-01

    Full Text Available The adipokine leptin signals the body’s nutritional status to the brain, and particularly, the hypothalamus. However, leptin receptors (LEPRs can be found all throughout the body and brain, including the pituitary. It is known that leptin is permissive for reproduction, and mice that cannot produce leptin (Lep/Lep are infertile. Many studies have pinpointed leptin’s regulation of reproduction to the hypothalamus. However, LEPRs exist at all levels of the hypothalamic–pituitary–gonadal axis. We have previously shown that deleting the signaling portion of the LEPR specifically in gonadotropes impairs fertility in female mice. Our recent studies have targeted this regulation to the control of gonadotropin releasing hormone receptor (GnRHR expression. The hypotheses presented here are twofold: (1 cyclic regulation of pituitary GnRHR levels sets up a target metabolic checkpoint for control of the reproductive axis and (2 multiple checkpoints are required for the metabolic signaling that regulates the reproductive axis. Here, we emphasize and explore the relationship between the hypothalamus and the pituitary with regard to the regulation of GnRHR. The original data we present strengthen these hypotheses and build on our previous studies. We show that we can cause infertility in 70% of female mice by deleting all isoforms of LEPR specifically in gonadotropes. Our findings implicate activin subunit (InhBa mRNA as a potential leptin target in gonadotropes. We further show gonadotrope-specific upregulation of GnRHR protein (but not mRNA levels following leptin stimulation. In order to try and understand this post-transcriptional regulation, we tested candidate miRNAs (identified with in silico analysis that may be binding the Gnrhr mRNA. We show significant upregulation of one of these miRNAs in our gonadotrope-Lepr-null females. The evidence provided here, combined with our previous work, lay the foundation for metabolically regulated post

  19. Regulation of leptin and insulin signaling by the t cell protein tyrosine phosphatase

    OpenAIRE

    Loh, Kim Yong

    2017-01-01

    The prevalence of obesity and diabetes are increasing at alarming rates. Both are major health concerns worldwide. Food intake, energy expenditure and hepatic glucose production are regulated by hypothalamic neuronal circuits that respond to peripheral signals including leptin and insulin. Leptin is produced by adipose tissue and acts in the hypothalamus via the JAK2/STAT3 signaling pathway to decrease food intake and increase energy expenditure. It is now also widely appreciated that insulin...

  20. The Association of Polymorphisms in Leptin/Leptin Receptor Genes and Ghrelin/Ghrelin Receptor Genes With Overweight/Obesity and the Related Metabolic Disturbances: A Review.

    Science.gov (United States)

    Ghalandari, Hamid; Hosseini-Esfahani, Firoozeh; Mirmiran, Parvin

    2015-07-01

    Leptin and ghrelin are two important appetite and energy balance-regulating peptides. Common polymorphisms in the genes coding these peptides and their related receptors are shown to be associated with body weight, different markers of obesity and metabolic abnormalities. This review article aims to investigate the association of common polymorphisms of these genes with overweight/obesity and the metabolic disturbances related to it. The keywords leptin, ghrelin, polymorphism, single-nucleotide polymorphism (SNP), obesity, overweight, Body Mass Index, metabolic syndrome, and type 2 diabetes mellitus (T2DM) (MeSH headings) were used to search in the following databases: Pubmed, Sciencedirect (Elsevier), and Google scholar. Overall, 24 case-control studies, relevant to our topic, met the criteria and were included in the review. The most prevalent leptin/leptin receptor genes (LEP/LEPR) and ghrelin/ghrelin receptor genes (GHRL/GHSR) single nucleotide polymorphisms studied were LEP G-2548A, LEPR Q223R, and Leu72Met, respectively. Nine studies of the 17 studies on LEP/LEPR, and three studies of the seven studies on GHRL/GHSR showed significant relationships. In general, our study suggests that the association between LEP/LEPR and GHRL/GHSR with overweight/obesity and the related metabolic disturbances is inconclusive. These results may be due to unidentified gene-environment interactions. More investigations are needed to further clarify this association.

  1. Hypothalamic growth hormone receptor (GHR) controls hepatic glucose production in nutrient-sensing leptin receptor (LepRb) expressing neurons.

    Science.gov (United States)

    Cady, Gillian; Landeryou, Taylor; Garratt, Michael; Kopchick, John J; Qi, Nathan; Garcia-Galiano, David; Elias, Carol F; Myers, Martin G; Miller, Richard A; Sandoval, Darleen A; Sadagurski, Marianna

    2017-05-01

    The GH/IGF-1 axis has important roles in growth and metabolism. GH and GH receptor (GHR) are active in the central nervous system (CNS) and are crucial in regulating several aspects of metabolism. In the hypothalamus, there is a high abundance of GH-responsive cells, but the role of GH signaling in hypothalamic neurons is unknown. Previous work has demonstrated that the Ghr gene is highly expressed in LepRb neurons. Given that leptin is a key regulator of energy balance by acting on leptin receptor (LepRb)-expressing neurons, we tested the hypothesis that LepRb neurons represent an important site for GHR signaling to control body homeostasis. To determine the importance of GHR signaling in LepRb neurons, we utilized Cre/loxP technology to ablate GHR expression in LepRb neurons (Lepr EYFPΔGHR ). The mice were generated by crossing the Lepr cre on the cre-inducible ROSA26-EYFP mice to GHR L/L mice. Parameters of body composition and glucose homeostasis were evaluated. Our results demonstrate that the sites with GHR and LepRb co-expression include ARH, DMH, and LHA neurons. Leptin action was not altered in Lepr EYFPΔGHR mice; however, GH-induced pStat5-IR in LepRb neurons was significantly reduced in these mice. Serum IGF-1 and GH levels were unaltered, and we found no evidence that GHR signaling regulates food intake and body weight in LepRb neurons. In contrast, diminished GHR signaling in LepRb neurons impaired hepatic insulin sensitivity and peripheral lipid metabolism. This was paralleled with a failure to suppress expression of the gluconeogenic genes and impaired hepatic insulin signaling in Lepr EYFPΔGHR mice. These findings suggest the existence of GHR-leptin neurocircuitry that plays an important role in the GHR-mediated regulation of glucose metabolism irrespective of feeding.

  2. Leptin, Leptin Soluble Receptor, and the Free Leptin Index following a Diet and Physical Activity Lifestyle Intervention in Obese Males and Females

    Directory of Open Access Journals (Sweden)

    Jeffrey E. Herrick

    2016-01-01

    Full Text Available Leptin (LEP is associated with appetite regulation and metabolism. Concentration is linear with adiposity, suggesting LEP resistance. LEP circulates freely and bound with its soluble receptor (sOB-r; the ratio is the free leptin index (FLI, an index of leptin resistance; lower FLI suggests reduced biological action. Purpose. The aim was to determine the effect of changes in adipose tissue distribution on LEP, sOB-r, and FLI following 6 months (6 M of a diet/exercise weight loss program (WLP. In addition, we aim to identify predictors of the FLI. Methods. 6 M WLP consisted of diet/lifestyle interventions following ADA guidelines. Body composition was assessed by DXA. LEP and sOB-r analysis were done via ELISA. Results. 10 adults completed the WLP. Significant reductions were seen in total fat percentage (% fat, nontrunk fat, (NTF, and trunk fat (TF from base to 3 m and 6 M (p≤0.05. The FLI were reduced at 3 M and 6 M for males and 6 M for females. Total body fat and body weight predicted the FLI in both sexes. Conclusions. LEP and FLI reductions following 6 M of WLP were achieved independent of sOB-r changes. We also demonstrate that the FLI can be predicted noninvasively through total fat mass and body weight in kilograms.

  3. Hippocampal leptin signaling reduces food intake and modulates food-related memory processing.

    Science.gov (United States)

    Kanoski, Scott E; Hayes, Matthew R; Greenwald, Holly S; Fortin, Samantha M; Gianessi, Carol A; Gilbert, Jennifer R; Grill, Harvey J

    2011-08-01

    The increase in obesity prevalence highlights the need for a more comprehensive understanding of the neural systems controlling food intake; one that extends beyond food intake driven by metabolic need and considers that driven by higher-order cognitive factors. The hippocampus, a brain structure involved in learning and memory function, has recently been linked with food intake control. Here we examine whether administration of the adiposity hormone leptin to the dorsal and ventral sub-regions of the hippocampus influences food intake and memory for food. Leptin (0.1 μg) delivered bilaterally to the ventral hippocampus suppressed food intake and body weight measured 24 h after administration; a higher dose (0.4 μg) was needed to suppress intake following dorsal hippocampal delivery. Leptin administration to the ventral but not dorsal hippocampus blocked the expression of a conditioned place preference for food and increased the latency to run for food in an operant runway paradigm. Additionally, ventral but not dorsal hippocampal leptin delivery suppressed memory consolidation for the spatial location of food, whereas hippocampal leptin delivery had no effect on memory consolidation in a non-spatial appetitive response paradigm. Collectively these findings indicate that ventral hippocampal leptin signaling contributes to the inhibition of food-related memories elicited by contextual stimuli. To conclude, the results support a role for hippocampal leptin signaling in the control of food intake and food-related memory processing.

  4. No association of defined variability in leptin, leptin receptor, adiponectin, proopiomelanocortin and ghrelin gene with food preferences in the Czech population.

    Science.gov (United States)

    Bienertova-Vasku, Julie; Bienert, Petr; Tomandl, Josef; Forejt, Martin; Vavrina, Martin; Kudelkova, Jana; Vasku, Anna

    2008-02-01

    Previously, it has been reported that mutations in the genes encoding for adipokines may be associated with impaired food intake and may serve as potential obesity biomarkers. The aim of this study was to investigate the possible associations of defined variability in leptin, leptin receptor, adiponectin, proopiomelanocortin and ghrelin genes with food preferences in the obese and non-obese Czech population and evaluate their potential as the obesity susceptibility genes. Using PCR followed by restriction analysis, we studied 185 volunteers. Basic anthropometrical characteristics associated to obesity were measured and the food intake was monitored using a 7-day record method. In the group of obese individuals, a subset of 34 morbidly obese patients was studied for plasma leptin and soluble leptin receptor levels. None of the examined polymorphisms was associated to anthropometrical or demographic characteristics of the study subjects. The Gln223Arg polymorphism within the leptin receptor gene was significantly associated with lower plasma leptin levels (the RR genotype being more frequent in patients with lower plasma leptin levels; P = 0.001). No associations of the examined polymorphisms with food preferences was observed. Based on our results, the examined polymorphisms in the adipokine genes do not seem to be the major risk factor for obesity development in the Czech population nor significantly affect food preferences.

  5. Genetic variants of estrogen beta and leptin receptors may cause gynecomastia in adolescent.

    Science.gov (United States)

    Eren, Erdal; Edgunlu, Tuba; Korkmaz, Huseyin Anil; Cakir, Esra Deniz Papatya; Demir, Korcan; Cetin, Esin Sakalli; Celik, Sevim Karakas

    2014-05-15

    Gynecomastia is a benign breast enlargement in males that affects approximately one-third of adolescents. The exact mechanism is not fully understood; however, it has been proposed that estrogen receptors and aromatase enzyme activity may play important roles in the pathogenesis of gynecomastia. While many studies have reported that aromatase enzyme (CYP19) gene polymorphism is associated with gynecomastia, only one study has shown a relationship between estrogen receptor (ER) alpha and beta gene polymorphism and gynecomastia. Thus, the aim of this study was to evaluate the relationships between CYP19 (rs2414096), ER alpha (rs2234693), ER beta (rs4986938), leptin (rs7799039), and leptin receptor (rs1137101) gene polymorphisms and gynecomastia. This study included 107 male adolescents with gynecomastia and 97 controls. Total serum testosterone (T) and estradiol (E2) levels were measured, and DNA was extracted from whole blood using the PCR-RFLP technique. The polymorphic distributions of CYP19, ER alpha, ER beta, leptin and leptin receptor genes were compared. The median E2 level was 12.41 (5.00-65.40) pg/ml in the control group and 16.86 (2.58-78.47) pg/ml in the study group (pgynecomastia and leptin receptor rs1137101 (p=0.002) and ER beta receptor rs4986938 gene polymorphisms (p=0.002). According to our results, increased E2 level and ER beta gene rs4986938 polymorphism might explain why some adolescents have gynecomastia. Leptin receptor gene rs1137101 polymorphism might affect susceptibility to gynecomastia. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Hypothalamic growth hormone receptor (GHR controls hepatic glucose production in nutrient-sensing leptin receptor (LepRb expressing neurons

    Directory of Open Access Journals (Sweden)

    Gillian Cady

    2017-05-01

    Full Text Available Objective: The GH/IGF-1 axis has important roles in growth and metabolism. GH and GH receptor (GHR are active in the central nervous system (CNS and are crucial in regulating several aspects of metabolism. In the hypothalamus, there is a high abundance of GH-responsive cells, but the role of GH signaling in hypothalamic neurons is unknown. Previous work has demonstrated that the Ghr gene is highly expressed in LepRb neurons. Given that leptin is a key regulator of energy balance by acting on leptin receptor (LepRb-expressing neurons, we tested the hypothesis that LepRb neurons represent an important site for GHR signaling to control body homeostasis. Methods: To determine the importance of GHR signaling in LepRb neurons, we utilized Cre/loxP technology to ablate GHR expression in LepRb neurons (LeprEYFPΔGHR. The mice were generated by crossing the Leprcre on the cre-inducible ROSA26-EYFP mice to GHRL/L mice. Parameters of body composition and glucose homeostasis were evaluated. Results: Our results demonstrate that the sites with GHR and LepRb co-expression include ARH, DMH, and LHA neurons. Leptin action was not altered in LeprEYFPΔGHR mice; however, GH-induced pStat5-IR in LepRb neurons was significantly reduced in these mice. Serum IGF-1 and GH levels were unaltered, and we found no evidence that GHR signaling regulates food intake and body weight in LepRb neurons. In contrast, diminished GHR signaling in LepRb neurons impaired hepatic insulin sensitivity and peripheral lipid metabolism. This was paralleled with a failure to suppress expression of the gluconeogenic genes and impaired hepatic insulin signaling in LeprEYFPΔGHR mice. Conclusion: These findings suggest the existence of GHR-leptin neurocircuitry that plays an important role in the GHR-mediated regulation of glucose metabolism irrespective of feeding. Keywords: Growth hormone receptor, Hypothalamus, Leptin receptor, Glucose production, Liver

  7. LEPTIN RESISTANCE AND TYPE 2 DIABETES

    Directory of Open Access Journals (Sweden)

    O. M. Oleshchuk

    2017-07-01

    Full Text Available Leptin is one of adipocyte-secreted hormones. It signals to the brain and other tissues about the status of body energy reserves. Circulating leptin levels are directly proportional to the amount of the body fat. Leptin concentration increases when surfeit and decreases during fasting. Obese patients are hyperleptinemic compared with thin persons and they are tolerant to the central hypothalamic effects of leptin. The reduced sensitivity toward exogenous and endogenous leptin is commonly referred to as leptin resistance. Alterations in the signaling of the long isoform of the leptin receptor play the crucial role in leptin resistance. Surfeit may induce leptin resistance and other metabolic sequelae of obesity. Leptin insensitivity and insulin resistance play a major role in the development of type 2 diabetes. Metformin remains the preferred first-line pharmacologic agent for the treatment of type 2 diabetes. It reduces hepatic glucose production, increases glucose uptake in peripheral tissue and can lead to weight loss. Metformin decreases both insulin and leptin concentration, restores the sensitivity to these hormones. But some studies have shown poor relationship between metformin action and leptin level. And the mechanism of metformin action on leptin resistance remains unclear. Thus, these issues should be studied as well as polymorphisms in genes encoding metformin action.

  8. Influence of serum leptin levels and Q223R leptin receptor polymorphism on clinical characteristic of patients with rheumatoid arthritis from Western Mexico.

    Science.gov (United States)

    Angel-Chávez, Luis I; Ruelas-Cinco, Elizabeth; Hernández-Bello, Jorge; Castro, Elena; Vázquez-Villamar, Mirna; Parra-Rojas, Isela; Brennan-Bourdon, L Michele; Muñoz-Barrios, Salvador; Guerrero-Velázquez, Celia; Muñoz-Valle, José Francisco

    2018-04-01

    The aim of the present study was to evaluate the possible association between the Q223R Leptin receptor (LEPR) polymorphism (A>G; rs1137101) and leptin levels in patients with rheumatoid arthritis (RA) from Western Mexico. A cross-sectional study was performed with 70 RA patients and 74 controls subject (CS). Disease activity was evaluated using DAS28 score, the Q223R LEPR polymorphism was determined by the Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) and serum leptin levels, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP) and rheumatoid factor (RF) were quantified. RA patients had significant high serum leptin levels compared with CS; leptin levels correlated strongly with body composition measures, but not with inflammatory markers, disease evolution, and activity. The genotype and allele frequencies of the Q223R LEPR polymorphism were not associated with RA. Similarly, leptin levels did not differ between Q223R LEPR genotypes. The LEPR Q223R polymorphism was not associated with RA risk in patients from Mexican population, even though high levels of serum leptin were present and these could explain the low weight observed in RA patients when they were compared to control subjects. However, the serum leptin levels did not correlate with inflammatory markers, severity and disease evolution.

  9. The Association of Polymorphisms in Leptin/Leptin Receptor Genes and Ghrelin/Ghrelin Receptor Genes With Overweight/Obesity and the Related Metabolic Disturbances: A Review

    OpenAIRE

    Ghalandari; Hosseini-Esfahani; Mirmiran

    2015-01-01

    Context Leptin and ghrelin are two important appetite and energy balance-regulating peptides. Common polymorphisms in the genes coding these peptides and their related receptors are shown to be associated with body weight, different markers of obesity and metabolic abnormalities. This review article aims to investigate the association of common polymorphisms of these genes with overweight/obesity and the metabolic disturbances related to it. E...

  10. Polymorphism in leptin receptor gene was associated with obesity in ...

    African Journals Online (AJOL)

    Pramudji Hastuti

    2016-01-11

    Jan 11, 2016 ... This study aims to determine the association of LEPR gene polymorphisms, rs1137100 and rs1137101, on .... and that leptin levels were correlated with type 2 diabetes mel- .... Research using statistical meta-analysis [36,37] found ... and changes in glucose homeostasis in response to regular exercise.

  11. The anti-tumor activity of a neutralizing nanobody targeting leptin receptor in a mouse model of melanoma.

    Directory of Open Access Journals (Sweden)

    Travis McMurphy

    Full Text Available Environmental and genetic activation of a brain-adipocyte axis inhibits cancer progression. Leptin is the primary peripheral mediator of this anticancer effect in a mouse model of melanoma. In this study we assessed the effect of a leptin receptor antagonist on melanoma progression. Local administration of a neutralizing nanobody targeting the leptin receptor at low dose adjacent to tumor decreased tumor mass with no effects on body weight or food intake. In contrast, systemic administration of the nanobody failed to suppress tumor growth. Daily intraperitoneal injection of high-dose nanobody led to weight gain, hyperphagia, increased adiposity, hyperleptinemia, and hyperinsulinemia, and central effects mimicking leptin deficiency. The blockade of central actions of leptin by systemic delivery of nanobody may compromise its anticancer effect, underscoring the need to develop peripherally acting leptin antagonists coupled with efficient cancer-targeting delivery.

  12. The anti-tumor activity of a neutralizing nanobody targeting leptin receptor in a mouse model of melanoma.

    Science.gov (United States)

    McMurphy, Travis; Xiao, Run; Magee, Daniel; Slater, Andrew; Zabeau, Lennart; Tavernier, Jan; Cao, Lei

    2014-01-01

    Environmental and genetic activation of a brain-adipocyte axis inhibits cancer progression. Leptin is the primary peripheral mediator of this anticancer effect in a mouse model of melanoma. In this study we assessed the effect of a leptin receptor antagonist on melanoma progression. Local administration of a neutralizing nanobody targeting the leptin receptor at low dose adjacent to tumor decreased tumor mass with no effects on body weight or food intake. In contrast, systemic administration of the nanobody failed to suppress tumor growth. Daily intraperitoneal injection of high-dose nanobody led to weight gain, hyperphagia, increased adiposity, hyperleptinemia, and hyperinsulinemia, and central effects mimicking leptin deficiency. The blockade of central actions of leptin by systemic delivery of nanobody may compromise its anticancer effect, underscoring the need to develop peripherally acting leptin antagonists coupled with efficient cancer-targeting delivery.

  13. Effects of high-fat diet and/or body weight on mammary tumor leptin and apoptosis signaling pathways in MMTV-TGF-α mice

    Science.gov (United States)

    Dogan, Soner; Hu, Xin; Zhang, Yan; Maihle, Nita J; Grande, Joseph P; Cleary, Margot P

    2007-01-01

    Introduction Obesity is a risk factor for postmenopausal breast cancer and is associated with shortened mammary tumor (MT) latency in MMTV-TGF-α mice with dietary-induced obesity. One link between obesity and breast cancer is the adipokine, leptin. Here, the focus is on diet-induced obesity and MT and mammary fat pad (MFP) leptin and apoptotic signaling proteins. Methods MMTV-TGF-α mice were fed low-fat or high-fat diets from 10 to 85 weeks of age. High-Fat mice were divided into Obesity-Prone and Obesity-Resistant groups based on final body weights. Mice were followed to assess MT development and obtain serum, MFP, and MT. Results Incidence of palpable MTs was significantly different: Obesity-Prone > Obesity-Resistant > Low-Fat. Serum leptin was significantly higher in Obesity-Prone compared with Obesity-Resistant and Low-Fat mice. Low-Fat mice had higher MFP and MT ObRb (leptin receptor) protein and Jak2 (Janus kinase 2) protein and mRNA levels in comparison with High-Fat mice regardless of body weight. Leptin (mRNA) and pSTAT3 (phosphorylated signal transducer and activator of transcription 3) (mRNA and protein) also were higher in MTs from Low-Fat versus High-Fat mice. Expression of MT and MFP pro-apoptotic proteins was higher in Low-Fat versus High-Fat mice. Conclusion These results confirm a connection between body weight and MT development and between body weight and serum leptin levels. However, diet impacts MT and MFP leptin and apoptosis signaling proteins independently of body weight. PMID:18162139

  14. Cross-talk between estrogen and leptin signaling in the hypothalamus.

    Science.gov (United States)

    Gao, Qian; Horvath, Tamas L

    2008-05-01

    Obesity, characterized by enhanced food intake (hyperphagia) and reduced energy expenditure that results in the accumulation of body fat, is a major risk factor for various diseases, including diabetes, cardiovascular disease, and cancer. In the United States, more than half of adults are overweight, and this number continues to increase. The adipocyte-secreted hormone leptin and its downstream signaling mediators play crucial roles in the regulation of energy balance. Leptin decreases feeding while increasing energy expenditure and permitting energy-intensive neuroendocrine processes, such as reproduction. Thus, leptin also modulates the neuroendocrine reproductive axis. The gonadal steroid hormone estrogen plays a central role in the regulation of reproduction and also contributes to the regulation of energy balance. Estrogen deficiency promotes feeding and weight gain, and estrogen facilitates, and to some extent mimics, some actions of leptin. In this review, we examine the functions of estrogen and leptin in the brain, with a focus on mechanisms by which leptin and estrogen cooperate in the regulation of energy homeostasis.

  15. 7A.06: MATERNAL OBESITY AND THE DEVELOPMENTAL PROGRAMMING OF HYPERTENSION: ALTERED LEPTIN SIGNALLING PATHWAY IN THE CENTRAL NERVOUS SYSTEM.

    Science.gov (United States)

    Lim, J; Burke, S; Head, G A

    2015-06-01

    The prevalence of obesity in women among child baring age is increasing and this has been parallel to the increase in obesity in general population around the world. We investigated the trans-generational 'programming' of leptin signalling in the central nervous system (CNS) to increase blood pressure (BP), heart rate (HR) and renal sympathetic nerve activity (RSNA) following a high fat diet (HFD)feeding in mothers. Female New Zealand White rabbits were fed a high fat (13%) diet (mHFD) or a control diet (mCD) prior mating and during pregnancy. Kittens from mCD rabbits were subdivided and fed HFD for 10days (mCD10dHFD) at 15 weeks of age. All rabbits received an intracerebroventricular (ICV) catheter into the lateral ventricle and a recording electrode on the left renal nerve. Experiments were conducted in conscious rabbits and BP, HR and RSNA was measured. Rabbits received an increasing doses of ICV Melanocortin receptor antagonist (SHU9119),alpha-Melanocortin stimulating hormone (alpha-MSH) and a single dose of Leptin antagonist. ICV SHU9119 reduced BP (-5.8 ± 0.7mmHg and -4.1 ± 0.9mmHg) and RSNA (-2.4 ± 0.3 nu and -0.7 ± 0.3 nu) in mHFD and mCD10dHFD rabbits (P fat was increased (50%) in all rabbits that had HFD. Obesity during pregnancy 'programs' leptin signalling pathway in the CNS of the offspring during development. Leptin via activation of melanocirtin pathway plays a key role in the CNS contributing to the pressor and tachycardic effects as well as renal sympathetic nerve activity in the pathophysiology of obesity.

  16. The daidzein- and estradiol- induced anorectic action in CCK or leptin receptor deficiency rats.

    Science.gov (United States)

    Fujitani, Mina; Mizushige, Takafumi; Bhattarai, Keshab; Iwahara, Asami; Aida, Ryojiro; Kishida, Taro

    2015-01-01

    We investigated the effect of daidzein feeding and estradiol treatment on food intake in cholecystokinin-1 receptor (CCK1R) deficiency, leptin receptor (ObRb) deficiency rats and their wild-type rats. These rats underwent an ovariectomy or a sham operation. For the 5 week experiment, each rat was divided in three groups: control, daidzein (150 mg/kg diet), and estradiol (4.2 μg/rat/day) groups. In both CCK1R+ and CCK1R- rats, daidzein feeding and estradiol treatment significantly decreased food intake. Daidzein feeding significantly reduced food intake in ovariectomized ObRb- rats, although not in ObRb+ rats. Estradiol treatment significantly lowered food intake in ovariectomized ObRb+ and ObRb- rats. In the ovariectomized rats, estradiol treatment significantly increases uterine weight, while daidzein feeding did not change it, suggesting that daidzein might have no or weak estrogenic effect in our experiment. These results suggest that CCK1R and ObRb signalings were not essential for the daidzein- and estradiol-induced anorectic action.

  17. Frequency of distribution of leptin receptor gene polymorphism in obstructive sleep apnea patients.

    Science.gov (United States)

    Popko, K; Gorska, E; Wasik, M; Stoklosa, A; Pływaczewski, R; Winiarska, M; Gorecka, D; Sliwinski, P; Demkow, U

    2007-11-01

    Leptin is an adipocyte-derived hormone regulating energy homeostasis and body weight. Leptin concentration is increased in patients with the obstructive sleep apnea syndrome (OSAS). Leptin receptor (LEPR) is a single transmembrane protein belonging to the superfamily of cytokine receptors related by a structure to the hemopoietin receptor family. The aim of the present study was to evaluate the frequency of distribution of leptin receptor gene polymorphism GLN223ARG in OSAS patients compared with healthy controls. The examined group included 179 subjects: 102 OSAS patients (74 men and 28 women) and 77 non-apneic controls (39 men and 38 women). Genomic DNA was isolated with the use of a column method and genotyping of DNA sequence variation was carried out by restriction enzyme analysis of PCR-amplified DNA. The results revealed a significant correlation between the polymorphism of LEPR and OSAS. Carriers of Arg allele in homozygotic genotype Arg/Arg and heterozygotic genotype Gln/Arg were more often obese and developed OSAS than the group of carriers of homozygotic Gln/Gln genotype. This tendency was observed in the whole examined population and in the group of obese women. We also found the highest levels of total cholesterol, LDL, HDL, and triglycerides in the group of homozygotic Arg/Arg genotype carriers, lower in heterozygotic Gln/Arg genotype carriers, and the lowest in the group of persons carring homozygotic Gln/Gln genotype. The presence of Arg allel seems linked to a higher risk of obesity and higher lipid levels in OSAS patients. OSAS may have a strong genetic basis due to the effects from a variety of genes including those for leptin receptor.

  18. The Gln223Arg polymorphism of the leptin receptor in Pima Indians: influence on energy expenditure, physical activity and lipid metabolism

    DEFF Research Database (Denmark)

    Stefan, N; Vozarova, B; Del Parigi, A

    2002-01-01

    Leptin regulates body weight by its receptor-mediated anorectic, thermogenic and antisteatotic effects. Recently, lower leptin binding to the soluble form of the leptin receptor (LEPR) was shown in carriers of the Arg223-encoding allele of the Gln223Arg polymorphism of the LEPR. To investigate wh...

  19. Duplicated leptin receptors in two species of eel bring new insights into the evolution of the leptin system in vertebrates

    DEFF Research Database (Denmark)

    Morini, M.; Pasquier, J.; van den Thillart, G.

    2015-01-01

    Since its discovery in mammals as a key-hormone in reproduction and metabolism, leptin has been identified in an increasing number of tetrapods and teleosts. Tetrapods possess only one leptin gene, while most teleosts possess two leptin genes, as a result of the teleost third whole genome duplica...

  20. Polychlorinated biphenyls (PCB 101, PCB 153 and PCB 180) alter leptin signaling and lipid metabolism in differentiated 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Ferrante, Maria C.; Amero, Paola; Santoro, Anna; Monnolo, Anna; Simeoli, Raffaele; Di Guida, Francesca; Mattace Raso, Giuseppina; Meli, Rosaria

    2014-01-01

    Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) are highly lipophilic environmental contaminants that accumulate in lipid-rich tissues, such as adipose tissue. Here, we reported the effects induced by PCBs 101, 153 and 180, three of the six NDL-PCBs defined as indicators, on mature 3T3-L1 adipocytes. We observed an increase in lipid content, in leptin gene expression and a reduction of leptin receptor expression and signaling, when cells were exposed to PCBs, alone or in combination. These modifications were consistent with the occurrence of “leptin-resistance” in adipose tissue, a typical metabolic alteration related to obesity. Therefore, we investigated how PCBs affect the expression of pivotal proteins involved in the signaling of leptin receptor. We evaluated the PCB effect on the intracellular pathway JAK/STAT, determining the phosphorylation of STAT3, a downstream activator of the transcription of leptin gene targets, and the expression of SOCS3 and PTP1B, two important regulators of leptin resistance. In particular, PCBs 153 and 180 or all PCB combinations induced a significant reduction in pSTAT3/STAT3 ratio and an increase in PTP1B and SOCS3, evidencing an additive effect. The impairment of leptin signaling was associated with the reduction of AMPK/ACC pathway activation, leading to the increase in lipid content. These pollutants were also able to increase the transcription of inflammatory cytokines (IL-6 and TNFα). It is worthy to note that the PCB concentrations used are comparable to levels detectable in human adipose tissue. Our data strongly support the hypothesis that NDL-PCBs may interfere with the lipid metabolism contributing to the development of obesity and related diseases. - Highlights: • NDL-PCBs alter lipid content and metabolism in 3T3-L1 adipocytes. • Impairment of leptin signaling was induced by NDL-PCBs. • NDL-PCBs reduce AMPK and ACC activation. • NDL-PCBs induce the synthesis of pro-inflammatory cytokine by

  1. Polychlorinated biphenyls (PCB 101, PCB 153 and PCB 180) alter leptin signaling and lipid metabolism in differentiated 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ferrante, Maria C. [Department of Veterinary Medicine and Animal Productions, Federico II University of Naples, Via Delpino 1, 80137 Naples (Italy); Amero, Paola; Santoro, Anna [Department of Pharmacy, Federico II University of Naples, Via Montesano 49, 80131 Naples (Italy); Monnolo, Anna [Department of Veterinary Medicine and Animal Productions, Federico II University of Naples, Via Delpino 1, 80137 Naples (Italy); Simeoli, Raffaele; Di Guida, Francesca [Department of Pharmacy, Federico II University of Naples, Via Montesano 49, 80131 Naples (Italy); Mattace Raso, Giuseppina, E-mail: mattace@unina.it [Department of Pharmacy, Federico II University of Naples, Via Montesano 49, 80131 Naples (Italy); Meli, Rosaria, E-mail: meli@unina.it [Department of Pharmacy, Federico II University of Naples, Via Montesano 49, 80131 Naples (Italy)

    2014-09-15

    Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) are highly lipophilic environmental contaminants that accumulate in lipid-rich tissues, such as adipose tissue. Here, we reported the effects induced by PCBs 101, 153 and 180, three of the six NDL-PCBs defined as indicators, on mature 3T3-L1 adipocytes. We observed an increase in lipid content, in leptin gene expression and a reduction of leptin receptor expression and signaling, when cells were exposed to PCBs, alone or in combination. These modifications were consistent with the occurrence of “leptin-resistance” in adipose tissue, a typical metabolic alteration related to obesity. Therefore, we investigated how PCBs affect the expression of pivotal proteins involved in the signaling of leptin receptor. We evaluated the PCB effect on the intracellular pathway JAK/STAT, determining the phosphorylation of STAT3, a downstream activator of the transcription of leptin gene targets, and the expression of SOCS3 and PTP1B, two important regulators of leptin resistance. In particular, PCBs 153 and 180 or all PCB combinations induced a significant reduction in pSTAT3/STAT3 ratio and an increase in PTP1B and SOCS3, evidencing an additive effect. The impairment of leptin signaling was associated with the reduction of AMPK/ACC pathway activation, leading to the increase in lipid content. These pollutants were also able to increase the transcription of inflammatory cytokines (IL-6 and TNFα). It is worthy to note that the PCB concentrations used are comparable to levels detectable in human adipose tissue. Our data strongly support the hypothesis that NDL-PCBs may interfere with the lipid metabolism contributing to the development of obesity and related diseases. - Highlights: • NDL-PCBs alter lipid content and metabolism in 3T3-L1 adipocytes. • Impairment of leptin signaling was induced by NDL-PCBs. • NDL-PCBs reduce AMPK and ACC activation. • NDL-PCBs induce the synthesis of pro-inflammatory cytokine by

  2. Running on Empty: Leptin Signaling in VTA Regulates Reward from Physical Activity.

    Science.gov (United States)

    Chen, Zuxin; Kenny, Paul J

    2015-10-06

    Hunger increases physical activity and stamina to support food-directed foraging behaviors, but underlying mechanisms are unclear. In this issue, Fernandes et al. (2015) show that disruption of leptin-regulated STAT3 signaling in midbrain dopamine neurons increases the rewarding effects of running in mice, which could explain the "high" experienced by endurance runners. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Living without insulin: the role of leptin signaling in the hypothalamus

    Directory of Open Access Journals (Sweden)

    Teppei eFujikawa

    2015-03-01

    Full Text Available Since its discovery in 1922, insulin has been thought to be required for normal metabolic homeostasis and survival. However, this view would need to be revised as recent results from different laboratories have convincingly indicated that life without insulin is possible in rodent models. These data indicate that particular neuronal circuitries, which include hypothalamic leptin-responsive neurons, are empowered with the capability of permitting life in complete absence of insulin. Here, we review the neuronal and peripheral mechanisms by which leptin signaling in the central nervous system (CNS regulates glucose metabolism in an insulin-independent manner.

  4. Characterization of Leptin Intracellular Trafficking

    Directory of Open Access Journals (Sweden)

    E Walum

    2009-12-01

    Full Text Available Leptin is produced by adipose tissue, and its concentration in plasma is related to the amount of fat in the body. The leptin receptor (OBR is a member of the class I cytokine receptor family and several different isoforms, produced by alternative mRNA splicing are found in many tissues, including the hypothalamus. The two predominant isoforms includes a long form (OBRl with an intracellular domain of 303 amino acids and a shorter form (OBRs with an intracellular domain of 34 amino acids. Since OBRl is mainly expressed in the hypotalamus, it has been suggested to be the main signalling form. The peripheral production of leptin by adipocyte tissue and its effects as a signal of satiety in the central nervous system imply that leptin gains access to regions of the brain regulating in energy balance by crossing the blood-brain barrier. In an attempt to characterize the intracellular transport of leptin, we have followed binding internalization and degradation of leptin in HEK293 cells. We have also monitored the intracellular transport pathway of fluorescent conjugated leptin in HEK293 cells. Phenylarsine oxide, a general inhibitor of endocytosis, as well as incubation at mild hypertonic conditions, prevented the uptake of leptin, confirming a receptor-mediated internalization process. When internalized, 125I-leptin was rapidly accumulated inside the cells and reached a maximum after 10 min. After 70 minutes about 40-50% of total counts in each time point were found in the medium as TCA-soluble material. Leptin sorting, at the level of early endosomes, did not seem to involve recycling endosomes, since FITC-leptin was sorted from Cy3- transferrin containing compartments at 37°C. At 45 minutes of continuos internalization, FITC-leptin appeared mainly accumulated in late endocytic structures colocalizing with internalized rhodamine coupled epidermial growth factor (EGF and the lysosomal marker protein lamp-1. The transport of leptin was also shown

  5. Effects of Acute Exercise and Chronic Exercise on the Liver Leptin-AMPK-ACC Signaling Pathway in Rats with Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Xuejie Yi

    2013-01-01

    Full Text Available Aim. To investigate the effects of acute and chronic exercise on glucose and lipid metabolism in liver of rats with type 2 diabetes caused by a high fat diet and low dose streptozotocin (STZ. Methods. Animals were classified into control (CON, diabetes (DC, diabetic chronic exercise (DCE, and diabetic acute exercise (DAE groups. Results. Compared to CON, the leptin levels in serum and liver and ACC phosphorylation were significantly higher in DC, but the levels of liver leptin receptor, AMPKα1/2, AMPKα1, and ACC proteins expression and phosphorylation were significantly lower in DC. In addition, the levels of liver glycogen reduced significantly, and the levels of TG and FFA increased significantly in DC compared to CON. Compared to DC, the levels of liver AMPKα1/2, AMPKα2, AMPKα1, and ACC phosphorylation significantly increased in DCE and DAE. However, significant increase of the level of liver leptin receptor and glycogen as well as significant decrease of the level of TG and FFA were observed only in DEC. Conclusion. Our study demonstrated that both acute and chronic exercise indirectly activated the leptin-AMPK-ACC signaling pathway and increased insulin sensitivity in the liver of type 2 diabetic rats. However, only chronic and long-term exercise improved glucose and lipid metabolism of the liver.

  6. Effects of body fat on the associations of high-molecular-weight adiponectin, leptin and soluble leptin receptor with metabolic syndrome in Chinese.

    Directory of Open Access Journals (Sweden)

    Danxia Yu

    Full Text Available BACKGROUND: Little is known regarding the associations between high-molecular-weight (HMW- adiponectin, leptin and soluble leptin receptor (sOB-R and metabolic syndrome (MetS in Chinese. Also few studies elucidate the effects of inflammation and body fat mass on the relations. METHODS: Plasma HMW-adiponectin, leptin and sOB-R were measured among 1055 Chinese men and women (35∼54 yrs. Whole body and trunk fat mass were determined by Dual-energy X-ray absorptiometry. MetS was defined by the updated NCEP/ATPIII criterion for Asian-Americans. RESULTS: HMW-adiponectin was inversely associated with MetS in multivariate model including fat mass index (FMI, inflammatory markers, leptin and sOB-R (OR in the highest quartile= 0.30, 95%CI 0.18∼0.50, P<.0001. Plasma sOB-R was also inversely associated with MetS independent of body fatness and inflammatory markers, whereas the association was somewhat attenuated after adjusting HMW-adiponectin (OR for the highest quartile = 0.78, 95%CI 0.47∼1.32, P = 0.15. In contrast, leptin was associated with increased odds of MetS independent of inflammatory markers, HMW-adiponectin, and sOB-R (OR for the highest quartile= 2.64, 95%CI 1.35∼5.18, P = 0.006, although further adjustment for FMI abolished this association. CONCLUSIONS: HMW-adiponectin exhibited strong inverse associations with MetS independent of body composition, inflammation, leptin and sOB-R; while the associations of leptin and sOB-R were largely explained by fat mass or HMW-adiponectin, respectively.

  7. Prostaglandin Receptor Signaling in Disease

    Directory of Open Access Journals (Sweden)

    Toshiyuki Matsuoka

    2007-01-01

    Full Text Available Prostanoids, consisting of the prostaglandins (PGs and the thromboxanes (TXs, are a group of lipid mediators formed in response to various stimuli. They include PGD2, PGE2, PGF2α, PGI2, and TXA2. They are released outside of the cells immediately after synthesis, and exert their actions by binding to a G-protein coupled rhodopsin-type receptor on the surface of target cells. There are eight types of the prostanoid receptors conserved in mammals from mouse to human. They are the PGD receptor (DP, four subtypes of the PGE receptor (EP1, EP2, EP3, and EP4, the PGF receptor (FP, PGI receptor (IP, and TXA receptor (TP. Recently, mice deficient in each of these prostanoid receptors were generated and subjected to various experimental models of disease. These studies have revealed the roles of PG receptor signaling in various pathological conditions, and suggest that selective manipulation of the prostanoid receptors may be beneficial in treatment of the pathological conditions. Here we review these recent findings of roles of prostanoid receptor signaling and their therapeutic implications.

  8. Leptin regulates bone formation via the sympathetic nervous system

    Science.gov (United States)

    Takeda, Shu; Elefteriou, Florent; Levasseur, Regis; Liu, Xiuyun; Zhao, Liping; Parker, Keith L.; Armstrong, Dawna; Ducy, Patricia; Karsenty, Gerard

    2002-01-01

    We previously showed that leptin inhibits bone formation by an undefined mechanism. Here, we show that hypothalamic leptin-dependent antiosteogenic and anorexigenic networks differ, and that the peripheral mediators of leptin antiosteogenic function appear to be neuronal. Neuropeptides mediating leptin anorexigenic function do not affect bone formation. Leptin deficiency results in low sympathetic tone, and genetic or pharmacological ablation of adrenergic signaling leads to a leptin-resistant high bone mass. beta-adrenergic receptors on osteoblasts regulate their proliferation, and a beta-adrenergic agonist decreases bone mass in leptin-deficient and wild-type mice while a beta-adrenergic antagonist increases bone mass in wild-type and ovariectomized mice. None of these manipulations affects body weight. This study demonstrates a leptin-dependent neuronal regulation of bone formation with potential therapeutic implications for osteoporosis.

  9. Nuclear Receptor Signaling Atlas (NURSA)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Nuclear Receptor Signaling Atlas (NURSA) is designed to foster the development of a comprehensive understanding of the structure, function, and role in disease...

  10. Enhanced leptin sensitivity and improved glucose homeostasis in mice lacking suppressor of cytokine signaling-3 in POMC-expressing cells.

    Science.gov (United States)

    Kievit, Paul; Howard, Jane K; Badman, Michael K; Balthasar, Nina; Coppari, Roberto; Mori, Hiroyuki; Lee, Charlotte E; Elmquist, Joel K; Yoshimura, Akihiko; Flier, Jeffrey S

    2006-08-01

    Suppressor of cytokine signaling-3 (Socs-3) negatively regulates the action of various cytokines, as well as the metabolic hormones leptin and insulin. Mice with haploinsufficiency of Socs-3, or those with neuronal deletion of Socs-3, are lean and more leptin and insulin sensitive. To examine the role of Socs-3 within specific neurons critical to energy balance, we created mice with selective deletion of Socs-3 within pro-opiomelanocortin (POMC)-expressing cells. These mice had enhanced leptin sensitivity, measured by weight loss and food intake after leptin infusion. On chow diet, glucose homeostasis was improved despite normal weight gain. On a high-fat diet, the rate of weight gain was reduced, due to increased energy expenditure rather than decreased food intake; glucose homeostasis and insulin sensitivity were substantially improved. These studies demonstrate that Socs-3 within POMC neurons regulates leptin sensitivity and glucose homeostasis, and plays a key role in linking high-fat diet to disordered metabolism.

  11. Role of leptin in farm animals: a review.

    Science.gov (United States)

    Mácajová, M; Lamosová, D; Zeman, M

    2004-05-01

    The discovery of hormone leptin has led to better understanding of the energy balance control. In addition to its effects on food intake and energy expenditure, leptin has now been implicated as a mediator of diverse physiological functions. Recently, leptin has been cloned in several domestic species. The sequence similarity suggests a common function or mechanism of this peptide hormone across species. Leptin receptors are expressed in most of tissues, which is consistent with the multiplicity of leptin functions. The main goal of this review was to summarize knowledge about effect of leptin on physiology of farm animals. Experiments point to a stimulatory action of leptin on growth hormone (GH) secretion, normal growth and development of the brain. Surprisingly, leptin is synthesized at a high rate in placenta and may function as a growth factor for fetus, signalling the nutritional status from the mother to her offspring. Maturation of reproductive system can be stimulated by leptin administration. Morphological and hormonal changes, consistent with a major role of leptin in the reproductive system, have also been described, including the stimulation of the release of luteinizing hormone (LH), follicle-stimulating hormone (FSH) and prolactin. Leptin has a substantial effect on food intake and feeding behaviour in animals. Administration of leptin reduces food intake. Its level decrease within hours after initiation of fasting. Leptin also serves as a mediator of the adaptation to fasting, and this role may be the primary function for which was the molecule evolved.

  12. The effect of leptin receptor deficiency and fasting on cannabinoid receptor 1 mRNA expression in the rat hypothalamus, brainstem and nodose ganglion.

    Science.gov (United States)

    Jelsing, Jacob; Larsen, Philip Just; Vrang, Niels

    2009-10-02

    Despite ample evidence for the involvement of the endocannabinoid system in the control of appetite, food intake and energy balance, relatively little is known about the regulation of cannabinoid receptor 1 (CB(1)R) expression in respect to leptin signalling and fasting. In the present study, we examined CB(1)R mRNA levels in lean (Fa/?) and obese (fa/fa) male Zucker rats under basal and food-restricted conditions. Using stereological sampling principles coupled with semi-quantitative radioactive in situ hybridization we provide semi-quantitative estimates of CB(1)R mRNA expression in key appetite regulatory hypothalamic and brainstem areas, as well as in the nodose ganglia. Whereas no effect of fasting were determined on CB(1)R mRNA levels in the paraventricular (PVN) and ventromedial hypothalamic (VMH) nucleus, in the brainstem dorsal vagal complex or nodose ganglion of lean Zucker rats, CB(1)R mRNA levels were consistently elevated in obese Zucker rats pointing to a direct influence of disrupted leptin signalling on CB(1)R mRNA regulation.

  13. Polymorphisms in genes encoding leptin, ghrelin and their receptors in German multiple sclerosis patients.

    Science.gov (United States)

    Rey, Linda K; Wieczorek, Stefan; Akkad, Denis A; Linker, Ralf A; Chan, Andrew; Hoffjan, Sabine

    2011-01-01

    Multiple sclerosis (MS) is a neuro-inflammatory, autoimmune disease influenced by environmental and polygenic components. There is growing evidence that the peptide hormone leptin, known to regulate energy homeostasis, as well as its antagonist ghrelin play an important role in inflammatory processes in autoimmune diseases, including MS. Recently, single nucleotide polymorphisms (SNPs) in the genes encoding leptin, ghrelin and their receptors were evaluated, amongst others, in Wegener's granulomatosis and Churg-Strauss syndrome. The Lys656Asn SNP in the LEPR gene showed a significant but contrasting association with these vasculitides. We therefore aimed at investigating these polymorphisms in a German MS case-control cohort. Twelve SNPs in the LEP, LEPR, GHRL and GHSR genes were genotyped in 776 MS patients and 878 control subjects. We found an association of a haplotype in the GHSR gene with MS that could not be replicated in a second cohort. Otherwise, no significant differences in allele or genotype frequencies were observed between patients and controls in this particular cohort. Thus, the present results do not support the hypothesis that genetic variation in the leptin/ghrelin system contributes substantially to the pathogenesis of MS. However, a modest effect of GHSR variation cannot be ruled out and needs to be further evaluated in future studies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Peripheral Signals of Food Intake in Response to Low Leptin Levels Induced by Centrifugation

    Science.gov (United States)

    Moran, M. M.; Wade, Charles E.; Stein, T. P.; Dalton, Bonnie P. (Technical Monitor)

    2001-01-01

    The focus of the study was to examine leptin and other peripheral signals of energy balance, following hypergravity. The study was conducted in two experiments. In experiment 1 rats were centrifuged at either 1.5, 2, or remained at 1 G. During days 8 to 14 of experiment 1, mean body mass of the 1.5 and 2 G groups was significantly (p<0.05) lower than controls. No differences were found in food intake (g/day/100 g body mass). Epididymal fat in the 2 G group was 21% lower than controls and 14% lower than the 1.5 G group. Plasma leptin was reduced from controls in the 1.5 and 2 G groups by 45 and 63%, respectively. A significant correlation was found between G load and urinary catecholamines. In experiment 2, rats were centrifuged at either 1.25, 1.5, or remained at 1 G. During days 8 to 14, body mass and food intake were similar between the 1, 1.25, and 1.5 G groups. Epididymal fat was reduced from controls in the 1.25 (14%) and 1.5 (19%) G groups. Leptin was reduced from controls in the 1.25 (45%) and 1.5 (46%) G groups. No differences were found in urinary epinephrine. Urinary norepinephrine levels were significantly higher than controls in each centrifuge group. During hypergravity exposure, food intake is the result of a complex relationship between multiple pathways, which abates the importance of leptin as a primary signal.

  15. Leptin and its cardiovascular effects: Focus on angiogenesis

    Directory of Open Access Journals (Sweden)

    Zoya Tahergorabi

    2015-01-01

    Full Text Available Leptin is an endocrine hormone synthesized by adipocytes. It plays a key role in the energy homeostasis in central and peripheral tissues and has additional roles are attributed to it, such as the regulation of reproduction, immune function, bone homeostasis, and angiogenesis. The plasma concentration of leptin significantly increases in obese individuals. In the present review, we give an introduction concerning leptin, its receptors, signaling pathways, and its effect on cardiovascular system, especially on angiogenesis.

  16. Leptin-induced cardioprotection involves JAK/STAT signaling that may be linked to the mitochondrial permeability transition pore

    OpenAIRE

    Smith, Christopher C. T.; Dixon, Richard A.; Wynne, Abigail M.; Theodorou, Louise; Ong, Sang-Ging; Subrayan, Sapna; Davidson, Sean M.; Hausenloy, Derek J.; Yellon, Derek M.

    2010-01-01

    Leptin-induced protection against myocardial ischemia-reperfusion (I/R) injury involves the activation of the reperfusion injury salvage kinase pathway, incorporating phosphatidylinositol 3-kinase-Akt/protein kinase B and p44/42 MAPK, and the inhibition of the mitochondrial permeability transition pore (MPTP). Recently published data indicate that the JAK/STAT signaling pathway, which mediates the metabolic actions of leptin, also plays a pivotal role in cardioprotection. Consequently, in the...

  17. The role of insulin receptor signaling in the brain.

    Science.gov (United States)

    Plum, Leona; Schubert, Markus; Brüning, Jens C

    2005-03-01

    The insulin receptor (IR) is expressed in various regions of the developing and adult brain, and its functions have become the focus of recent research. Insulin enters the central nervous system (CNS) through the blood-brain barrier by receptor-mediated transport to regulate food intake, sympathetic activity and peripheral insulin action through the inhibition of hepatic gluconeogenesis and reproductive endocrinology. On a molecular level, some of the effects of insulin converge with those of the leptin signaling machinery at the point of activation of phosphatidylinositol 3-kinase (PI3K), resulting in the regulation of ATP-dependent potassium channels. Furthermore, insulin inhibits neuronal apoptosis via activation of protein kinase B in vitro, and it regulates phosphorylation of tau, metabolism of the amyloid precursor protein and clearance of beta-amyloid from the brain in vivo. These findings indicate that neuronal IR signaling has a direct role in the link between energy homeostasis, reproduction and the development of neurodegenerative diseases.

  18. Association Analysis of the Leptin and Ghrelin Receptor Gene Polymorphism in the Human with BMI

    Directory of Open Access Journals (Sweden)

    Zuzana Lieskovská

    2011-05-01

    Full Text Available The aim of this work was identification of Leptin and Ghrelin receptor gene polymorphism in the population. Leptin is a product of obese (ob gene expression that plays a role in energy metabolism and body weight. The human leptin gene is located in the 17 chromosome. The restriction site is located at the position 2549 bp (C→A. Ghrelin, a peptide hormone predominantly produced by the stomach, was isolated as the endogenous ligand for the growth hormone secretagogue receptor. Ghrelin is a potent stimulator of growth hormone (GH secretion and is the only circulatory hormone known to potently enhance feeding and weight gain and to regulate energy homeostasis following central and systemic administration. Therapeutic intervention with ghrelin in catabolic situations may induce a combination of enhanced food intake, increased gastric emptying and nutrient storage, coupled with an increase in GH thereby linking nutrient partitioning with growth and repair processes. The present study included 35 human samples. The average value of BMI was estimate on 24.45. The size of amplified PCR product is 242bp. Subsequently we used the specific restriction enzyme HhaI and length of fragments is 181+61 bp in the homozygote CC, 242+181+61 bp in the heterozygote AC and 242 bp in the homozygote AA. The restriction site is located at the position 171T/C. Examination of the polymorphism of the GHSR gene was accomplished used PCR-RFLP method. We used amplified the 593 bp product, which was subsequently digested with restriction enzyme LweI and length of fragmetnts is 593 bp in the homozygote TT, 593+567+26 bp in the heterozygote TC and 593+26 bp in the homozygote CC. We assume that this mutation has connection with human obesity level.

  19. Expression of feeding-related peptide receptors mRNA in GT1-7 cell line and roles of leptin and orexins in control of GnRH secretion.

    Science.gov (United States)

    Yang, Ying; Zhou, Li-bin; Liu, Shang-quan; Tang, Jing-feng; Li, Feng-yin; Li, Rong-ying; Song, Huai-dong; Chen, Ming-dao

    2005-08-01

    To investigate the expression of feeding-related peptide receptors mRNA in GT1-7 cell line and roles of leptin and orexins in the control of GnRH secretion. Receptors of bombesin3, cholecystokinin (CCK)-A, CCK-B, glucagon-like peptide (GLP)1, melanin-concentrating hormone (MCH)1, orexin1, orexin2, neuromedin-B, neuropeptide Y (NPY)1 and NPY5, neurotensin (NT)1, NT2, NT3, and leptin receptor long form mRNA in GT1-7 cells were detected by reversed transcriptase-polymerase chain reaction. GT1-7 cells were treated with leptin, orexin A and orexin B at a cohort of concentrations for different lengths of time, and GnRH in medium was determined by radioimmunoassay (RIA). Receptors of bombesin 3, CCK-B, GLP1, MCH1, orexin1, neuromedin-B, NPY1, NPY5, NT1, NT3, and leptin receptor long form mRNA were expressed in GT1-7 cells, of which, receptors of GLP1, neuromedin-B, NPY1, and NT3 were highly expressed. No amplified fragments of orexin2, NT2, and CCK-A receptor cDNA were generated with GT1-7 RNA, indicating that the GT1-7 cells did not express mRNA of them. Leptin induced a significant stimulation of GnRH release, the results being most significant at 0.1 nmol/L for 15 min. In contrast to other studies in hypothalamic explants, neither orexin A nor orexin B affected basal GnRH secretion over a wide range of concentrations ranging from 1 nmol/L to 500 nmol/Lat 15, 30, and 60 min. Feeding and reproductive function are closely linked. Many orexigenic and anorexigenic signals may control feeding behavior as well as alter GnRH secretion through their receptors on GnRH neurons.

  20. TAM receptor signaling in development.

    Science.gov (United States)

    Burstyn-Cohen, Tal

    2017-01-01

    TYRO3, AXL and MERTK comprise the TAM family of receptor protein tyrosine kinases. Activated by their ligands, protein S (PROS1) and growth-arrest-specific 6 (GAS6), they mediate numerous cellular functions throughout development and adulthood. Expressed by a myriad of cell types and tissues, they have been implicated in homeostatic regulation of the immune, nervous, vascular, bone and reproductive systems. The loss-of-function of TAM signaling in adult tissues culminates in the destruction of tissue homeostasis and diseased states, while TAM gain-of-function in various tumors promotes cancer phenotypes. Combinatorial ligand-receptor interactions may elicit different molecular and cellular responses. Many of the TAM regulatory functions are essentially developmental, taking place both during embryogenesis and postnatally. This review highlights current knowledge on the role of TAM receptors and their ligands during these developmental processes in the immune, nervous, vascular and reproductive systems.

  1. Leptin and cancer: Pathogenesis and modulation

    Directory of Open Access Journals (Sweden)

    Deep Dutta

    2012-01-01

    Full Text Available Leptin, a product of Ob gene from adipocytes regulates appetite, energy expenditure and body mass composition by decreasing orexigenic and increasing anorexigenic neuropeptide release from hypothalamus. Research over the past few years have suggested leptin/leptin receptor dysregulation to have a role in the development of a large variety of malignancies like breast ca, thyroid ca, endometrial ca and gastrointestinal malignancies, predominantly through JAK/STAT pathway which modulates PI3K/AKT3 signaling, ERK1/2 signaling, expression of antiapoptotic proteins (like XIAP, systemic inflammation (TNF-α, IL6, angiogenic factors (VEGF and hypoxia inducible factor-1a (HIF-1a expression. In this review, the current understanding of leptin′s role in carcinogenesis has been elaborated. Also a few agents modulating leptin signaling to inhibit cancer cell growth has been described.

  2. Sweet taste receptor serves to activate glucose- and leptin-responsive neurons in the hypothalamic arcuate nucleus and participates in glucose responsiveness.

    Directory of Open Access Journals (Sweden)

    Daisuke Kohno

    2016-11-01

    Full Text Available The hypothalamic feeding center plays an important role in energy homeostasis. In the feeding center, whole-body energy signals including hormones and nutrients are sensed, processed, and integrated. As a result, food intake and energy expenditure are regulated. Two types of glucose-sensing neurons exist in the hypothalamic arcuate nucleus (ARC: glucose-excited neurons and glucose-inhibited neurons. While some molecules are known to be related to glucose sensing in the hypothalamus, the mechanism underlying glucose sensing in the hypothalamus are not fully understood. The sweet taste receptor is a heterodimer of taste type 1 receptor 2 (T1R2 and taste type 1 receptor 3 (T1R3 and senses sweet tastes. T1R2 and T1R3 receptors are distributed in multiple organs including the tongue, pancreas, adipose tissue, and hypothalamus. However, the role of sweet taste receptors in the ARC remains to be clarified. To examine the role of sweet taste receptors in the ARC, cytosolic Ca2+ concentration ([Ca2+]i in isolated single ARC neurons were measured using Fura-2 fluorescent imaging. An artificial sweetener, sucralose at 10-5 M-10-2 M dose dependently increased [Ca2+]i in 12-16% of ARC neurons. The sucralose-induced [Ca2+]i increase was suppressed by a sweet taste receptor inhibitor, gurmarin. The sucralose-induced [Ca2+]i increase was inhibited under an extracellular Ca2+-free condition and in the presence of an L-type Ca2+ channel blocker, nitrendipine. Sucralose-responding neurons were activated by high-concentration of glucose. This response to glucose was markedly suppressed by gurmarin. More than half of sucralose-responding neurons were activated by leptin but not ghrelin. Percentage of proopiomelanocortin (POMC neurons among sucralose-responding neurons and sweet taste receptor expressing neurons were low, suggesting that majority of sucralose-responding neurons are non-POMC neurons. These data suggest that sweet taste receptor-mediated cellular

  3. [Leptin--an interim evaluation].

    Science.gov (United States)

    Bodner, J; Ebenbichler, C F; Lechleitner, M; Ritsch, A; Sandhofer, A; Gander, R; Wolf, H J; Huter, O; Patsch, J R

    1998-03-27

    The discovery of leptin, the product of the obese (ob)-gene, has broadened the horizons of research on energy balance. This hormone, produced and secreted by adipose tissue and some placental cells, finds its way to the hypothalamus, where it binds to the leptin receptors and signals satiety through the neuroendocrine axis. The fact that adipose tissue is not merely a storage depot, but also an important endocrine tissue, has revived the interest in the "lipostatic" theory of body fat regulation and has initiated many research efforts in the field of obesity, anorexia nervosa, bulimia, reproduction and haematology.

  4. Genetic polymorphisms at the leptin receptor gene in three beef cattle breeds

    Directory of Open Access Journals (Sweden)

    Sabrina E.M. Almeida

    2008-01-01

    Full Text Available The genetic diversity of a single nucleotide polymorphism (SNP at the exon 20 (T945M of the leptin receptor gene (LEPR and of three short tandem repeats (STRs BM7225, BMS694, and BMS2145 linked to LEPR was investigated in three beef cattle herds (Brangus Ibagé, Charolais, and Aberdeen Angus. A cheap and effective new method to analyze the T945M polymorphism in cattle populations was developed and the possible role of these polymorphisms in reproduction and weight gain of postpartum cows was evaluated. High levels of genetic diversity were observed with the average heterozygosity of STRs ranging from 0.71 to 0.81. No significant association was detected between LEPR markers and reproductive parameters or daily weight gain. These negative results suggest that the LEPR gene polymorphisms, at least those herein described, do not influence postpartum cows production.

  5. Effects of obesity and exercise on testicular leptin signal transduction and testosterone biosynthesis in male mice.

    Science.gov (United States)

    Yi, Xuejie; Gao, Haining; Chen, Dequan; Tang, Donghui; Huang, Wanting; Li, Tao; Ma, Tie; Chang, Bo

    2017-04-01

    To explore the role of the testicular leptin and JAK-STAT[leptin (LEP)-JAK-STAT] pathway in testosterone biosynthesis during juvenile stages and exercise for weight loss, male C57BL/6J mice were randomly divided into normal-diet and high-fat diet groups. After 10 wk, mice in the high-fat diet-fed group were further divided randomly into obese control, obese moderate-volume exercise, and obese high-volume exercise groups. Mice in the obese moderate-volume exercise group were provided with 2 h/day, 6 days/wk swimming exercise for 8 wk, and mice in the obese high-volume exercise group underwent twice the amount of daily exercise intervention as the obese moderate-volume exercise group. The results showed that a high-fat diet causes obesity, leptin resistance, inhibition of the testicular LEP-JAK-STAT pathway, decreased mRNA and protein expression of steroidogenic factor-1, steroidogenic acute regulatory protein, and the P -450 side-chain cleavage enzyme, a decrease in the serum testosterone-to-estradiol ratio, and declines in sperm quality parameters. Both moderate and high-volume exercise were able to reduce body fat and increase the mRNA and protein expression of LEP-JAK-STAT, but only moderate exercise significantly increased the mRNA and protein expression of steroidogenic factor-1, steroidogenic acute regulatory protein, and P -450 side-chain cleavage enzyme and significantly reversed the serum testosterone-to-estradiol ratio and sperm quality parameters. These findings suggest that by impairing the testicular LEP-JAK-STAT pathway, early-stage obesity inhibits the biosynthesis of testosterone and sexual development and reduces male reproductive potential. Long-term moderate and high-volume exercise can effectively reduce body fat and improve obesity-induced abnormalities in testicular leptin signal transduction, whereas only moderate-volume exercise can reverse the negative impacts of obesity on male reproductive function. Copyright © 2017 the American

  6. HF diets increase hypothalamic PTP1B and induce leptin resistance through both leptin-dependent and -independent mechanisms

    Science.gov (United States)

    White, Christy L.; Whittington, Amy; Barnes, Maria J.; Wang, Zhong; Bray, George A.; Morrison, Christopher D.

    2009-01-01

    Protein tyrosine phosphatase 1B (PTP1B) contributes to leptin resistance by inhibiting intracellular leptin receptor signaling. Mice with whole body or neuron-specific deletion of PTP1B are hypersensitive to leptin and resistant to diet-induced obesity. Here we report a significant increase in PTP1B protein levels in the mediobasal hypothalamus (P = 0.003) and a concomitant reduction in leptin sensitivity following 28 days of high-fat (HF) feeding in rats. A significant increase in PTP1B mRNA levels was also observed in rats chronically infused with leptin (3 μg/day icv) for 14 days (P = 0.01) and in leptin-deficient ob/ob mice infused with leptin (5 μg/day sc for 14 days; P = 0.003). When saline-infused ob/ob mice were placed on a HF diet for 14 days, an increase in hypothalamic PTP1B mRNA expression was detected (P = 0.001) despite the absence of circulating leptin. In addition, although ob/ob mice were much more sensitive to leptin on a low-fat (LF) diet, a reduction in this sensitivity was still observed following exposure to a HF diet. Taken together, these data indicate that hypothalamic PTP1B is specifically increased during HF diet-induced leptin resistance. This increase in PTP1B is due in part to chronic hyperleptinemia, suggesting that hyperleptinemia is one mechanism contributing to the development of leptin resistance. However, these data also indicate that leptin is not required for the increase in hypothalamic PTP1B or the development of leptin resistance. Therefore, additional, leptin-independent mechanisms must exist that increase hypothalamic PTP1B and contribute to leptin resistance. PMID:19017730

  7. Sweet Taste Receptor Serves to Activate Glucose- and Leptin-Responsive Neurons in the Hypothalamic Arcuate Nucleus and Participates in Glucose Responsiveness.

    Science.gov (United States)

    Kohno, Daisuke; Koike, Miho; Ninomiya, Yuzo; Kojima, Itaru; Kitamura, Tadahiro; Yada, Toshihiko

    2016-01-01

    The hypothalamic feeding center plays an important role in energy homeostasis. In the feeding center, whole-body energy signals including hormones and nutrients are sensed, processed, and integrated. As a result, food intake and energy expenditure are regulated. Two types of glucose-sensing neurons exist in the hypothalamic arcuate nucleus (ARC): glucose-excited neurons and glucose-inhibited neurons. While some molecules are known to be related to glucose sensing in the hypothalamus, the mechanisms underlying glucose sensing in the hypothalamus are not fully understood. The sweet taste receptor is a heterodimer of taste type 1 receptor 2 (T1R2) and taste type 1 receptor 3 (T1R3) and senses sweet tastes. T1R2 and T1R3 are distributed in multiple organs including the tongue, pancreas, adipose tissue, and hypothalamus. However, the role of sweet taste receptors in the ARC remains to be clarified. To examine the role of sweet taste receptors in the ARC, cytosolic Ca 2+ concentration ([Ca 2+ ] i ) in isolated single ARC neurons were measured using Fura-2 fluorescent imaging. An artificial sweetener, sucralose at 10 -5 -10 -2 M dose dependently increased [Ca 2+ ] i in 12-16% of ARC neurons. The sucralose-induced [Ca 2+ ] i increase was suppressed by a sweet taste receptor inhibitor, gurmarin. The sucralose-induced [Ca 2+ ] i increase was inhibited under an extracellular Ca 2+ -free condition and in the presence of an L-type Ca 2+ channel blocker, nitrendipine. Sucralose-responding neurons were activated by high-concentration of glucose. This response to glucose was markedly suppressed by gurmarin. More than half of sucralose-responding neurons were activated by leptin but not ghrelin. Percentages of proopiomelanocortin (POMC) neurons among sucralose-responding neurons and sweet taste receptor expressing neurons were low, suggesting that majority of sucralose-responding neurons are non-POMC neurons. These data suggest that sweet taste receptor-mediated cellular activation

  8. High fat diet blunts the effects of leptin on ventilation and on carotid body activity.

    Science.gov (United States)

    Ribeiro, Maria J; Sacramento, Joana F; Gallego-Martin, Teresa; Olea, Elena; Melo, Bernardete F; Guarino, Maria P; Yubero, Sara; Obeso, Ana; Conde, Silvia V

    2017-12-22

    Leptin plays a role in the control of breathing, acting mainly on central nervous system; however, leptin receptors have been recently shown to be expressed in the carotid body (CB), and this finding suggests a physiological role for leptin in the regulation of CB function. Leptin increases minute ventilation in both basal and hypoxic conditions in rats. It increases the frequency of carotid sinus nerve discharge in basal conditions, as well as the release of adenosine from the CB. However, in a metabolic syndrome animal model, the effects of leptin in ventilatory control, carotid sinus nerve activity and adenosine release by the CB are blunted. Although leptin may be involved in triggering CB overactivation in initial stages of obesity and dysmetabolism, resistance to leptin signalling and blunting of responses develops in metabolic syndrome animal models. Leptin plays a role in the control of breathing, acting mainly on central nervous system structures. Leptin receptors are expressed in the carotid body (CB) and this finding has been associated with a putative physiological role of leptin in the regulation of CB function. Since, the CBs are implicated in energy metabolism, here we tested the effects of different concentrations of leptin administration on ventilatory parameters and on carotid sinus nerve (CSN) activity in control and high-fat (HF) diet fed rats, in order to clarify the role of leptin in ventilation control in metabolic disease states. We also investigated the expression of leptin receptors and the neurotransmitters involved in leptin signalling in the CBs. We found that in non-disease conditions, leptin increases minute ventilation in both basal and hypoxic conditions. However, in the HF model, the effect of leptin in ventilatory control is blunted. We also observed that HF rats display an increased frequency of CSN discharge in basal conditions that is not altered by leptin, in contrast to what is observed in control animals. Leptin did not

  9. Leptin and Pro-Inflammatory Stimuli Synergistically Upregulate MMP-1 and MMP-3 Secretion in Human Gingival Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Rachel C Williams

    Full Text Available Gingival fibroblast-mediated extracellular matrix remodelling is implicated in the pathogenesis of periodontitis, yet the stimuli that regulate this response are not fully understood. The immunoregulatory adipokine leptin is detectable in the gingiva, human gingival fibroblasts express functional leptin receptor mRNA and leptin is known to regulate extracellular matrix remodelling responses in cardiac fibroblasts. We therefore hypothesised that leptin would enhance matrix metalloproteinase secretion in human gingival fibroblasts.We used in vitro cell culture to investigate leptin signalling and the effect of leptin on mRNA and protein expression in human gingival fibroblasts. We confirmed human gingival fibroblasts expressed cell surface leptin receptor, found leptin increased matrix metalloproteinase-1, -3, -8 and -14 expression in human gingival fibroblasts compared to unstimulated cells, and observed that leptin stimulation activated MAPK, STAT1/3 and Akt signalling in human gingival fibroblasts. Furthermore, leptin synergised with IL-1 or the TLR2 agonist pam2CSK4 to markedly enhance matrix metalloproteinase-1 and -3 production by human gingival fibroblasts. Signalling pathway inhibition demonstrated ERK was required for leptin-stimulated matrix metalloproteinase-1 expression in human gingival fibroblasts; whilst ERK, JNK, p38 and STAT3 were required for leptin+IL-1- and leptin+pam2CSK4-induced matrix metalloproteinase-1 expression. A genome-wide expression array and gene ontology analysis confirmed genes differentially expressed in leptin+IL-1-stimulated human gingival fibroblasts (compared to unstimulated cells were enriched for extracellular matrix organisation and disassembly, and revealed that matrix metalloproteinase-8 and -12 were also synergistically upregulated by leptin+IL-1 in human gingival fibroblasts.We conclude that leptin selectively enhances the expression and secretion of certain matrix metalloproteinases in human gingival

  10. A potent, selective, and orally bioavailable inhibitor of the protein-tyrosine phosphatase PTP1B improves insulin and leptin signaling in animal models.

    Science.gov (United States)

    Krishnan, Navasona; Konidaris, Konstantis F; Gasser, Gilles; Tonks, Nicholas K

    2018-02-02

    The protein-tyrosine phosphatase PTP1B is a negative regulator of insulin and leptin signaling and a highly validated therapeutic target for diabetes and obesity. Conventional approaches to drug development have produced potent and specific PTP1B inhibitors, but these inhibitors lack oral bioavailability, which limits their potential for drug development. Here, we report that DPM-1001, an analog of the specific PTP1B inhibitor trodusquemine (MSI-1436), is a potent, specific, and orally bioavailable inhibitor of PTP1B. DPM-1001 also chelates copper, which enhanced its potency as a PTP1B inhibitor. DPM-1001 displayed anti-diabetic properties that were associated with enhanced signaling through insulin and leptin receptors in animal models of diet-induced obesity. Therefore, DPM-1001 represents a proof of concept for a new approach to therapeutic intervention in diabetes and obesity. Although the PTPs have been considered undruggable, the findings of this study suggest that allosteric PTP inhibitors may help reinvigorate drug development efforts that focus on this important family of signal-transducing enzymes. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Association of leptin/receptor and TNF-α gene variants with adolescent obesity in Malaysia.

    Science.gov (United States)

    Ng, Zoe Yi; Veerapen, Muthu Kumar; Hon, Wei Min; Lim, Renee Lay Hong

    2014-10-01

    Leptin (LEP) G-2548A (rs7799039), leptin receptor (LEPR) Q223R (rs1137101) and tumor necrosis factor (TNF)-α G-308A (rs1800629) gene variants have been reported to be associated with obesity, although results for subjects from different countries have been controversial. The aim of this study was to determine the prevalence of overweight and obesity in Malaysian adolescents and the association of these polymorphisms with overweight and obese or over-fat adolescents. A total of 613 adolescents (241 Malay, 219 Chinese, 153 Indian) were enrolled. Anthropometric measurements of body mass index (BMI) and body fat percentage were used to classify subjects as controls (non-overweight/obese or normal fat) or as cases (overweight/obese or over-fat). Genomic DNA was extracted from oral buccal mucosa cells for genotyping using polymerase chain reaction-restriction fragment length polymorphism and data obtained were statistically analyzed. A total of 23.3% of subjects were overweight/obese whereas 11.4% were over-fat; there were significantly more overweight/obese and over-fat Indian and Malay adolescents compared to Chinese (P obesity (P = 0.025; odds ratio, 3.64; 95% confidence interval: 1.15-11.54). Despite the lack of association observed for LEPR Q223R and TNF-α G-308A, Indian and Chinese subjects with AA risk genotype for LEPR Q223R/LEP G-2548A and TNF-α G-308A/LEP G-2548A, respectively, had increased mean BMI (P = 0.049, P = 0.016). Genotype distribution and association of these polymorphisms with overweight/obesity vary between ethnic groups and genders. Nevertheless, the LEP G-2548A risk allele may be associated with overweight/obese Indian male adolescents in Malaysia. © 2014 Japan Pediatric Society.

  12. Dietary components in the development of leptin resistance.

    Science.gov (United States)

    Vasselli, Joseph R; Scarpace, Philip J; Harris, Ruth B S; Banks, William A

    2013-03-01

    Classically, leptin resistance has been associated with increased body fat and circulating leptin levels, and the condition is believed to contribute to the onset and/or maintenance of obesity. Although a great deal is known about the central nervous system mechanisms mediating leptin resistance, considerably less is known about the role of diet in establishing and maintaining this altered hormonal state. An exciting new finding has recently been published demonstrating the existence of leptin resistance in normal-weight rats with lean leptin levels by feeding them a high-concentration-fructose diet. This finding has opened the possibility that specific macronutrients may be capable of inducing leptin resistance, independently of the amount of body fat or circulating leptin present in the treated animals. This review describes several lines of research that have recently emerged indicating that specific types of dietary sugars and fats are capable of inducing leptin resistance in experimental rodent models. The results further show that diet-induced leptin resistance is capable of increasing energy intake and elevating body weight gain under appropriate dietary challenges. It appears that biological mechanisms on multiple levels may underlie the dietary induction of leptin resistance, including alterations in the leptin blood-to-brain transport system, in peripheral glucose metabolism, and in central leptin receptor signaling pathways. What is clear from the findings reviewed here is that diet-induced leptin resistance can occur in the absence of elevated circulating leptin levels and body weight, rendering it a potential cause and/or predisposing factor to excess body weight gain and obesity.

  13. Dietary Components in the Development of Leptin Resistance123

    Science.gov (United States)

    Vasselli, Joseph R.; Scarpace, Philip J.; Harris, Ruth B. S.; Banks, William A.

    2013-01-01

    Classically, leptin resistance has been associated with increased body fat and circulating leptin levels, and the condition is believed to contribute to the onset and/or maintenance of obesity. Although a great deal is known about the central nervous system mechanisms mediating leptin resistance, considerably less is known about the role of diet in establishing and maintaining this altered hormonal state. An exciting new finding has recently been published demonstrating the existence of leptin resistance in normal-weight rats with lean leptin levels by feeding them a high-concentration-fructose diet. This finding has opened the possibility that specific macronutrients may be capable of inducing leptin resistance, independently of the amount of body fat or circulating leptin present in the treated animals. This review describes several lines of research that have recently emerged indicating that specific types of dietary sugars and fats are capable of inducing leptin resistance in experimental rodent models. The results further show that diet-induced leptin resistance is capable of increasing energy intake and elevating body weight gain under appropriate dietary challenges. It appears that biological mechanisms on multiple levels may underlie the dietary induction of leptin resistance, including alterations in the leptin blood-to-brain transport system, in peripheral glucose metabolism, and in central leptin receptor signaling pathways. What is clear from the findings reviewed here is that diet-induced leptin resistance can occur in the absence of elevated circulating leptin levels and body weight, rendering it a potential cause and/or predisposing factor to excess body weight gain and obesity. PMID:23493533

  14. Ablation of the Leptin receptor in Myeloid Cells Impairs Pulmonary Clearance of Streptococcus Pneumoniae and Alveolar Macrophage Bactericidal Function.

    Science.gov (United States)

    Mancuso, Peter; Curtis, Jeffrey L; Freeman, Christine M; Peters-Golden, Marc; Weinberg, Jason B; Myers, Martin G

    2018-03-22

    Leptin is a pleiotropic hormone produced by white adipose tissue that regulates appetite and many physiologic functions including the immune response to infection. Genetic leptin deficiency in humans and mice impairs host defenses against respiratory tract infections. Since leptin deficiency is associated with obesity and other metabolic abnormalities, we generated mice that lack the leptin receptor (LepRb) in cells of the myeloid linage (LysM-LepRb-KO) to evaluate its impact in lean metabolically normal mice in a murine model of pneumococcal pneumonia. We observed higher lung and spleen bacterial burdens in LysM-LepRb-KO mice following an intratracheal challenge with S. pneumoniae. Although numbers of leukocytes recovered from bronchoalveolar lavage fluid did not differ between groups, we did observe higher levels of pulmonary IL-13 and TNFα in LysM-LepRb-KO mice 48 h post-infection. Phagocytosis and killing of ingested S. pneumoniae were also impaired in alveolar macrophages (AM)s from LysM-LepRb-KO mice in vitro, and was associated with reduced LTB4 and enhanced PGE2 synthesis in vitro. Pretreatment of AMs with LTB4 and the cyclooxygenase inhibitor, indomethacin, restored phagocytosis but not bacterial killing in vitro. These results, confirm our previous observations in leptin-deficient (ob/ob) and fasted mice, and demonstrate that decreased leptin action, as opposed to metabolic irregularities associated with obesity or starvation, are responsible for the defective host defense against pneumococcal pneumonia. They also provide novel targets for therapeutic intervention in humans with bacterial pneumonia.

  15. Reduced anorexigenic efficacy of leptin, but not of the melanocortin receptor agonist melanotan-II, predicts diet-induced obesity in rats

    NARCIS (Netherlands)

    van Dijk, G; de Vries, K; Nyakas, C; Buwalda, B; Adage, T; Kuipers, F; Kas, M.J.H.; Adan, RAH; Wilkinson, CW; Thiele, TE; Scheurink, AJW

    2005-01-01

    Leptin gains access to the central nervous system where it influences activity of neuronal networks involved in ingestive behavior, neuroendocrine activity, and metabolism. In particular, the brain melanocortin (MC) system is important in leptin signaling and maintenance of energy balance. Although

  16. Leptin Stimulates Prolactin mRNA Expression in the Goldfish Pituitary through a Combination of the PI3K/Akt/mTOR, MKK3/6/p38MAPK and MEK1/2/ERK1/2 Signalling Pathways.

    Science.gov (United States)

    Yan, Aifen; Chen, Yanfeng; Chen, Shuang; Li, Shuisheng; Zhang, Yong; Jia, Jirong; Yu, Hui; Liu, Lian; Liu, Fang; Hu, Chaoqun; Tang, Dongsheng; Chen, Ting

    2017-12-20

    Leptin actions at the pituitary level have been extensively investigated in mammalian species, but remain insufficiently characterized in lower vertebrates, especially in teleost fish. Prolactin (PRL) is a pituitary hormone of central importance to osmoregulation in fish. Using goldfish as a model, we examined the global and brain-pituitary distribution of a leptin receptor (lepR) and examined the relationship between expression of lepR and major pituitary hormones in different pituitary regions. The effects of recombinant goldfish leptin-AI and leptin-AII on PRL mRNA expression in the pituitary were further analysed, and the mechanisms underlying signal transduction for leptin-induced PRL expression were determined by pharmacological approaches. Our results showed that goldfish lepR is abundantly expressed in the brain-pituitary regions, with highly overlapping PRL transcripts within the pituitary. Recombinant goldfish leptin-AI and leptin-AII proteins could stimulate PRL mRNA expression in dose- and time-dependent manners in the goldfish pituitary, by both intraperitoneal injection and primary cell incubation approaches. Moreover, the PI3K/Akt/mTOR, MKK 3/6 /p 38 MAPK, and MEK 1/2 /ERK 1/2 -but not JAK2/STAT 1, 3 and 5 cascades-were involved in leptin-induced PRL mRNA expression in the goldfish pituitary.

  17. Leptin reverses corticosterone-induced inhibition of neural stem cell proliferation through activating the NR2B subunits of NMDA receptors

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Wen-Zhu [Anesthesia and Operation Center, Hainan Branch of Chinese PLA General Hospital, Hainan 572013 (China); Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing 100853 (China); Miao, Yu-Liang [Department of Anesthesiology, PLA No. 306 Hospital, Beijing 100101 (China); Guo, Wen-Zhi [Department of Anesthesiology, Beijing Military General Hospital of Chinese People’s Liberation Army, Beijing 100700 (China); Wu, Wei, E-mail: wwzwgk@163.com [Department of Head and Neck Surgery of Otolaryngology, PLA No. 306 Hospital, Beijing 100101 (China); Li, Bao-Wei [Department of Head and Neck Surgery of Otolaryngology, PLA No. 306 Hospital, Beijing 100101 (China); An, Li-Na [Department of Anesthesiology, Armed Police General Hospital, Beijing 100039 (China); Fang, Wei-Wu [Department of Anesthesiology, PLA No. 306 Hospital, Beijing 100101 (China); Mi, Wei-Dong, E-mail: elite2005gg@163.com [Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing 100853 (China)

    2014-04-25

    Highlights: • Leptin promotes the proliferation of neural stem cells isolated from embryonic mouse hippocampus. • Leptin reverses corticosterone-induced inhibition of neural stem cell proliferation. • The effects of leptin are partially mediated by upregulating NR2B subunits. - Abstract: Corticosterone inhibits the proliferation of hippocampal neural stem cells (NSCs). The removal of corticosterone-induced inhibition of NSCs proliferation has been reported to contribute to neural regeneration. Leptin has been shown to regulate brain development, improve angiogenesis, and promote neural regeneration; however, its effects on corticosterone-induced inhibition of NSCs proliferation remain unclear. Here we reported that leptin significantly promoted the proliferation of hippocampal NSCs in a concentration-dependent pattern. Also, leptin efficiently reversed the inhibition of NSCs proliferation induced by corticosterone. Interestingly, pre-treatment with non-specific NMDA antagonist MK-801, specific NR2B antagonist Ro 25-6981, or small interfering RNA (siRNA) targeting NR2B, significantly blocked the effect of leptin on corticosterone-induced inhibition of NSCs proliferation. Furthermore, corticosterone significantly reduced the protein expression of NR2B, whereas pre-treatment with leptin greatly reversed the attenuation of NR2B expression caused by corticosterone in cultured hippocampal NSCs. Our findings demonstrate that leptin reverses the corticosterone-induced inhibition of NSCs proliferation. This process is, at least partially mediated by increased expression of NR2B subunits of NMDA receptors.

  18. Variability in the leptin, leptin receptor and heart fatty acid binding protein genes in relationship with meat quality traits in pigs

    Directory of Open Access Journals (Sweden)

    Renata Mikolášová

    2005-01-01

    Full Text Available The leptin (LEP-HinfI, leptin receptor (LEPR-HpaII and heart fatty acid binding protein (H-FABP-HinfI genes and their genotypes combination (LEP-HinfI *LEPR-HpaII were tested for associations with the pH1, pH24, myoglobin content (mg/100 g, intramuscular fat content (% and remission (%. The genotypes were determined in Large White, Landrace and Duroc breeds (n = 106, 56 and 4, respectively. The allele frequencies were: LEP-HinfI: C = 0.133 T = 0.867; LEPR-HpaII: A = 0.331 B = 0.669; H-FABP-HinfI: H = 0.745 h = 0.255. The populations of breeds were in the genetic equilibrium according to the χ2 test in the tested loci. The combinations of LEP-HinfI and LEPR-HpaII were significantly associated with the pH24 and remission. The H-FABP-HinfI locus was significantly associated with intramuscular fat content.

  19. Validity of leptin receptor-deficiency (db/db) type 2 diabetes mellitus mice as a model of secondary osteoporosis

    Science.gov (United States)

    Huang, Le; You, Yong-Ke; Zhu, Tracy Y.; Zheng, Li-Zhen; Huang, Xiao-Ru; Chen, Hai-Yong; Yao, Dong; Lan, Hui-Yao; Qin, Ling

    2016-06-01

    This study aimed to evaluate the validation of the leptin receptor-deficient mice model for secondary osteoporosis associated with type 2 diabetes mellitus (T2DM) at bone micro-architectural level. Thirty three 36-week old male mice were divided into four groups: normal control (db/m) (n = 7), leptin receptor-deficient T2DM (db/db) (n = 8), human C-reactive protein (CRP) transgenic normal control (crp/db/m) (n = 7), and human CRP transgenic T2DM (crp/db/db) (n = 11). Lumber vertebrae (L5) and bilateral lower limbs were scanned by micro-CT to analyze trabecular and cortical bone quality. Right femora were used for three-point bending to analyze the mechanical properties. Trabecular bone quality at L5 was better in db/db or crp/db/db group in terms of bone mineral density (BMD), bone volume fraction, connectivity density, trabecular number and separation (all p  0.05). Maximum loading and energy yield in mechanical test were similar among groups while the elastic modulus in db/db and crp/db/db significantly lower than db/m. The leptin-receptor mice is not a proper model for secondary osteoporosis associated with T2DM.

  20. Shp2 signaling in POMC neurons is important for leptin's actions on blood pressure, energy balance, and glucose regulation.

    Science.gov (United States)

    do Carmo, Jussara M; da Silva, Alexandre A; Ebaady, Sabira E; Sessums, Price O; Abraham, Ralph S; Elmquist, Joel K; Lowell, Bradford B; Hall, John E

    2014-12-15

    Previous studies showed that Src homology-2 tyrosine phosphatase (Shp2) is an important regulator of body weight. In this study, we examined the impact of Shp2 deficiency specifically in proopiomelanocortin (POMC) neurons on metabolic and cardiovascular function and on chronic blood pressure (BP) and metabolic responses to leptin. Mice with Shp2 deleted in POMC neurons (Shp2/Pomc-cre) and control mice (Shp2(flox/flox)) were implanted with telemetry probes and venous catheters for measurement of mean arterial pressure (MAP) and leptin infusion. After at least 5 days of stable control measurements, mice received leptin infusion (2 μg·kg(-1)·day(-1) iv) for 7 days. Compared with Shp2(flox/flox) controls, Shp2/Pomc-cre mice at 22 wk of age were slightly heavier (34 ± 1 vs. 31 ± 1 g) but consumed a similar amount of food (3.9 ± 0.3 vs. 3.8 ± 0.2 g/day). Leptin infusion reduced food intake in Shp2(flox/flox) mice (2.6 ± 0.5 g) and Shp2/Pomc-cre mice (3.2 ± 0.3 g). Despite decreasing food intake, leptin infusion increased MAP in control mice, whereas no significant change in MAP was observed in Shp2/Pomc-cre mice. Leptin infusion also decreased plasma glucose and insulin levels in controls (12 ± 1 to 6 ± 1 μU/ml and 142 ± 12 to 81 ± 8 mg/100 ml) but not in Shp2/Pomc-cre mice. Leptin increased V̇o2 by 16 ± 2% in controls and 7 ± 1% in Shp2/Pomc-cre mice. These results indicate that Shp2 signaling in POMC neurons contributes to the long-term BP and antidiabetic actions of leptin and may play a modest role in normal regulation of body weight. Copyright © 2014 the American Physiological Society.

  1. [Expression of neuropeptide Y and long leptin receptor in gastrointestinal tract of giant panda].

    Science.gov (United States)

    Luo, Qihui; Tang, Xiuying; Chen, Zhengli; Wang, Kaiyu; Wang, Chengdong; Li, Desheng; Li, Caiwu

    2015-08-01

    To study the expression and distribution of neuropeptide Y (NPY) and long leptin receptor (OB-Rb) in the gastrointestinal tract of giant panda, samples of three animals were collected from the key laboratory for reproduction and conservation genetics of endangered wildlife of Sichuan province, China conservation and research center for the giant panda. Paraffin sections of giant panda gastrointestinal tissue samples were observed using hematoxylin-eosin staining (HE) and strept actividin-biotin complex immunohistochemical staining (IHC). The results show that the intestinal histology of three pandas was normal and no pathological changes, and there were rich single-cell and multi-cell mucous glands, long intestinal villi and thick muscularis mucosa and muscle layer. Positive cells expressing NPY and OB-Rb were widely detected in the gastrointestinal tract by IHC methods. NPY positive nerve fibers and neuronal cell were widely distributed in submucosal plexus and myenteric plexus, especially in the former. They were arranged beaded or point-like shape. NPY positive cells were observed in the shape of ellipse and polygon and mainly located in the mucous layer and intestinal glands. OB-Rb positive cells were mainly distributed in the mucous layer and the laminae propria, especially the latter. These results confirmed that NPY and OB-Rb are widely distributed in the gut of the giant panda, which provide strong reference for the research between growth and development, digestion and absorption, and immune function.

  2. Leptin receptor and ghrelin genes polymorphisms in relation to the metabolism of lipids

    Directory of Open Access Journals (Sweden)

    Anna Trakovická

    2015-10-01

    Full Text Available The aim of this work was to analyse genetic polymorphisms in genes encoding leptin receptor (LEPR and ghrelin (GHR as genetic markers of metabolic disorders in human nutrition. Genomic DNA was obtained from in total 84 human blood samples. Effect of analysed genetic markers was evaluated for three biochemical parameters: total cholesterol, HDL and LDL cholesterol. The PCR-RFLP method was used for identification of SNPs in LEPR (Gln223Arg and GHR (171T/C genes. In analysed population prevalence of heterozygous LEPRAG (47.62% and GHRCT (40.48% genotypes was observed. Frequency of LEPRA and LEPRB alleles were 0.55 and 0.45, respectively. Similar the GHRC allele had only slight predominance than GHRT allele (0.54/0.46. In population was found higher level of observed heterozygosity across loci (0.44. For both SNPs was found high effective allele number (1.98 which was also transferred to the median level of polymorphic information content (0.37. Association analysis of LEPR and GHR genotypes effect on selected biochemical parameters was performed using GLM procedure. Significant association was found only for levels of LDL cholesterol (P<0.01. Our study shows that both genes are involved in nutritional status and therefore can be considered as candidate genes of lipids metabolism disorders and obesity.

  3. [Association between feeding behavior, and genetic polymorphism of leptin and its receptor in obese Chilean children].

    Science.gov (United States)

    Valladares, Macarena; Obregón, Ana María; Weisstaub, Gerardo; Burrows, Raquel; Patiño, Ana; Ho-Urriola, Judith; Santos, José Luis

    2014-09-12

    Leptin (LEP) is mainly produced in adipose tissue and acts in the hypothalamus to regulate energy intake. Mutations in the LEP gene or its receptor (LEPR) that produce monogenic obesity are infrequent. However, LEP and LEPR polymorphisms have been associated with obesity multifactorial, due to the association found with body weight and eating behavior. Measure the association between LEP and LEPR polymorphisms with childhood obesity and eating behavior. 221 Chilean obese children (BMI above the 95th percentile) were recruited. Parents of 134 of these children were also recruited to determine the association between LEP and LEPR polymorphisms with obesity in a case study-parent trio. Eating behavior was measured through the questionnaire of three factors progenitors' version (TFEQ-P19) and eating behavior in children (CEBQ). No significant difference between the studied polymorphisms and childhood obesity, after correction for multiple comparisons, was observed. The dimensions; "Slow eating", "emotional eating", "enjoyment of food" and "uncontrolling eating" were significant associated with certain polymorphisms of LEP and LEPR. There would be an association between polymorphisms of the LEP and LEPR genes with eating behavior in Chilean obese children. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  4. Androgen Receptor Signaling in Bladder Cancer

    OpenAIRE

    Li, Peng; Chen, Jinbo; Miyamoto, Hiroshi

    2017-01-01

    Emerging preclinical findings have indicated that steroid hormone receptor signaling plays an important role in bladder cancer outgrowth. In particular, androgen-mediated androgen receptor signals have been shown to correlate with the promotion of tumor development and progression, which may clearly explain some sex-specific differences in bladder cancer. This review summarizes and discusses the available data, suggesting the involvement of androgens and/or the androgen receptor pathways in u...

  5. The interleukin-4 receptor: signal transduction by a hematopoietin receptor.

    Science.gov (United States)

    Keegan, A D; Pierce, J H

    1994-02-01

    Over the last several years, the receptors for numerous cytokines have been molecularly characterized. Analysis of their amino acid sequences shows that some of these receptors bear certain motifs in their extracellular domains that define a family of receptors called the Hematopoietin receptor superfamily. Significant advances in characterizing the structure, function, and mechanisms of signal transduction have been made for several members of this family. The purpose of this review is to discuss the recent advances made for one of the family members, the interleukin (IL) 4 receptor. Other receptor systems have recently been reviewed elsewhere. The IL-4 receptor consists of, at the minimum, the cloned 140 kDa IL-4-binding chain with the potential for associating with other chains. The IL-4 receptor transduces its signal by activating a tyrosine kinase that phosphorylates cellular substrates, including the receptor itself, and the 170 kDa substrate called 4PS. Phosphorylated 4PS interacts with the SH2 domain of the enzyme PI-3'-kinase and increases its enzymatic activity. These early events in the IL-4 receptor initiated signaling pathway may trigger a series of signals that will ultimately lead to an IL-4 specific biologic outcome.

  6. Expressão do gene da leptina e seu receptor Ob-Rb no parênquima mamário de novilhas leiteiras Leptin and leptin receptor Ob-Rb gene expression in mammary parenchyma of dairy heifers

    Directory of Open Access Journals (Sweden)

    Betina Joyce Lew

    2012-05-01

    Full Text Available Objetivou-se com este trabalho avaliar os efeitos de uma dieta de alto nível de energia e proteína combinada com a aplicação de bST no perfil de expressão dos genes da leptina e de seu receptor Ob-Rb no parênquima mamário de novilhas leiteiras. Foram utilizadas amostras de parênquima mamário de 32 novilhas holandesas distribuídas aleatoriamente em quatro tratamentos (n=8: dieta com alto ou baixo teor de energia e proteína combinada ou não com a aplicação de bST. O delineamento utilizado foi em blocos casualizados com arranjo de tratamentos em esquema fatorial 2 × 2. A extração do RNA total das amostras de tecido foi feita e o nível de expressão gênica foi analisado por qRT-PCR utilizando-se o gene da glicuronidase β como controle, pelo método 2-ΔΔCt. Animais que receberam a dieta com alto conteúdo de energia e proteína apresentaram maior expressão de mRNA de leptina, com aumento de 56%, e menor expressão de mRNA do receptor Ob-Rb, com redução de 18%. Por outro lado, a aplicação de bST resultou em diminuição da expressão do mRNA de leptina e do receptor Ob-Rb em 74% e 23%, respectivamente. Não houve interação entre dieta e aplicação de bST. O aumento na expressão de leptina pode explicar, ao menos em parte, os efeitos negativos da dieta de alta energia e proteína, oferecida no período pré-púbere, sobre a produção de leite de novilhas leiteiras.The objective of this study was to examine the effects of a diet with high level of energy and protein, combined with bST injections, on leptin and leptin-receptor (Ob-Rb gene expression profile in the mammary parenchyma of dairy heifers. Mammary parenchyma samples from 32 Holstein heifers, randomly assigned to one of four treatments (n=8, were utilized: high or low energy and protein diet, with or without bST injection. The experiment was designed in randomized blocks and arranged in a 2 × 2 factorial arrangement. Total RNA was extracted from tissue samples

  7. SH2-B promotes insulin receptor substrate 1 (IRS1)- and IRS2-mediated activation of the phosphatidylinositol 3-kinase pathway in response to leptin.

    Science.gov (United States)

    Duan, Chaojun; Li, Minghua; Rui, Liangyou

    2004-10-15

    Leptin regulates energy homeostasis primarily by binding and activating its long form receptor (LRb). Deficiency of either leptin or LRb causes morbid obesity. Leptin stimulates LRb-associated JAK2, thus initiating multiple pathways including the Stat3 and phosphatidylinositol (PI) 3-kinase pathways that mediate leptin biological actions. Here we report that SH2-B, a JAK2-interacting protein, promotes activation of the PI 3-kinase pathway by recruiting insulin receptor substrate 1 (IRS1) and IRS2 in response to leptin. SH2-B directly bound, via its PH and SH2 domain, to both IRS1 and IRS2 both in vitro and in intact cells and mediated formation of a JAK2/SH2-B/IRS1 or IRS2 tertiary complex. Consequently, SH2-B dramatically enhanced leptin-stimulated tyrosine phosphorylation of IRS1 and IRS2 in HEK293 cells stably expressing LRb, thus promoting association of IRS1 and IRS2 with the p85 regulatory subunit of PI 3-kinase and phosphorylation and activation of Akt. SH2-B mutants with lower affinity for IRS1 and IRS2 exhibited reduced ability to promote association of JAK2 with IRS1, tyrosine phosphorylation of IRS1, and association of IRS1 with p85 in response to leptin. Moreover, deletion of the SH2-B gene impaired leptin-stimulated tyrosine phosphorylation of endogenous IRS1 in mouse embryonic fibroblasts (MEF), which was reversed by reintroduction of SH2-B. Similarly, SH2-B promoted growth hormone-stimulated tyrosine phosphorylation of IRS1 in both HEK293 and MEF cells. Our data suggest that SH2-B is a novel mediator of the PI 3-kinase pathway in response to leptin or other hormones and cytokines that activate JAK2.

  8. [Association of leptin receptor gene polymorphrism with metabolic syndrome in older Han adults from major cities in China].

    Science.gov (United States)

    Wu, Jinghuan; Zhuo, Qin; Chen, Xi; Tian, Yuan; Piao, Jianhua; Yang, Xiaoguang

    2016-05-01

    To investigate the relationship of leptin receptor gene rs1137100 and rs1137101 single nucleotide polymorphrism (SNP) with metabolic syndrome (MS) in older Han adults from major cities in China. A total of 2082 older Han adults were selected from 18 major cities including 15 provinces/municipalities of China National Nutrition and Health Survey in 2002. According to the MS definition proposed by Joint Interim Statement (JIS), the subjects were divided into MS and control groups. Plasma leptin and insulin levels were measured. The genotypes of rs1137100 and rs1137101 were detected by Taqman method. Association of genotypes of leptin receptor gene SNPs with MS was investigated. The MS group showed higher body mass index (BMI), waist circumference, fasting serum glucose, systolic blood pressure (SBP) and diastolic blood pressure (DBP), triglycerides (TG), serum total cholesterol (TC), insulin, homeostasis model of assessment for insulin resistence index (HOMA-IR) and leptin levels than those of control individuals, while the high density lipoprotein cholesterol (HDL-c) was significantly lower than the control group. The, GG, AA, GA genotypes distribution and the A allele frequency of rs1137100 and rs1137101 were similar between the two groups. The DBP and SBP level were obviously higher in AA genotype. The HDL-c concentration Was significantly lower in AA and GA + AA genotype. The AA and GA genotypes carriers in rs1137100 had similar risk for MS when comparing with the GG genotypes, and the OR values were 1.23 (95% CI 0.90-1.67) and 2.23 (95% CI 0.83-6.44), respectively. The AA and GA genotypes carriers in rs1137101 had similar risk for MS when comparing with the GG genotypes, and the OR values were 1.23 (95% CI 0.90-1.67) and 2.23 (95% CI 0.83-6.44), respectively. Leptin receptor genes rs1137100 and rs1137101 are not associated with pathogenesis of MS in older Han adults, but it may relate with hypertension or lipid abnormality.

  9. Leptin receptor (Ob-R) mRNA expression and serum leptin concentration in patients with colorectal and metastatic colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Erkasap, N.; Ozkurt, M. [Department of Physiology, Osmangazi University Medical Faculty, Meselik, Eskisehir (Turkey); Erkasap, S.; Yasar, F. [Department of General Surgery, Osmangazi University Medical Faculty, Meselik, Eskisehir (Turkey); Uzuner, K. [Department of Physiology, Osmangazi University Medical Faculty, Meselik, Eskisehir (Turkey); Ihtiyar, E. [Department of General Surgery, Osmangazi University Medical Faculty, Meselik, Eskisehir (Turkey); Uslu, S.; Kara, M. [Department of Biochemistry, Osmangazi University Medical Faculty, Meselik, Eskisehir (Turkey); Bolluk, O. [Department of Biostatistics, Osmangazi University Medical Faculty, Meselik, Eskisehir (Turkey)

    2013-03-19

    The objective of the present study was to investigate the effect of leptin on the progression of colorectal carcinoma to metastatic disease by analyzing the serum leptin concentration and Ob-R gene expression in colon cancer tissues. Tissue samples were obtained from 31 patients who underwent surgical resection for colon (18 cases) and metastatic colon (13 cases) cancer. Serum leptin concentration was determined by an enzyme-linked immunosorbent assay (ELISA) and Ob-R mRNA expression by real-time polymerase chain reaction (RT-PCR) for both groups. ELISA data were analyzed by the Student t-test and RT-PCR data were analyzed by the Mann-Whitney U-test. RT-PCR results demonstrated that mRNA expression of Ob-R in human metastatic colorectal cancer was higher than in local colorectal cancer tissues. On the other hand, mean serum leptin concentration was significantly higher in local colorectal cancer patients compared to patients with metastatic colorectal cancer. The results of the present study suggest a role for leptin in the progression of colon cancer to metastatic disease without weight loss. In other words, significantly increased Ob-R mRNA expression and decreased serum leptin concentration in patients with metastatic colon cancer indicate that sensitization to leptin activity may be a major indicator of metastasis to the colon tissue and the determination of leptin concentration and leptin gene expression may be used to aid the diagnosis.

  10. Leptin receptor (Ob-R) mRNA expression and serum leptin concentration in patients with colorectal and metastatic colorectal cancer

    International Nuclear Information System (INIS)

    Erkasap, N.; Ozkurt, M.; Erkasap, S.; Yasar, F.; Uzuner, K.; Ihtiyar, E.; Uslu, S.; Kara, M.; Bolluk, O.

    2013-01-01

    The objective of the present study was to investigate the effect of leptin on the progression of colorectal carcinoma to metastatic disease by analyzing the serum leptin concentration and Ob-R gene expression in colon cancer tissues. Tissue samples were obtained from 31 patients who underwent surgical resection for colon (18 cases) and metastatic colon (13 cases) cancer. Serum leptin concentration was determined by an enzyme-linked immunosorbent assay (ELISA) and Ob-R mRNA expression by real-time polymerase chain reaction (RT-PCR) for both groups. ELISA data were analyzed by the Student t-test and RT-PCR data were analyzed by the Mann-Whitney U-test. RT-PCR results demonstrated that mRNA expression of Ob-R in human metastatic colorectal cancer was higher than in local colorectal cancer tissues. On the other hand, mean serum leptin concentration was significantly higher in local colorectal cancer patients compared to patients with metastatic colorectal cancer. The results of the present study suggest a role for leptin in the progression of colon cancer to metastatic disease without weight loss. In other words, significantly increased Ob-R mRNA expression and decreased serum leptin concentration in patients with metastatic colon cancer indicate that sensitization to leptin activity may be a major indicator of metastasis to the colon tissue and the determination of leptin concentration and leptin gene expression may be used to aid the diagnosis

  11. Leptin receptor (Ob-R mRNA expression and serum leptin concentration in patients with colorectal and metastatic colorectal cancer

    Directory of Open Access Journals (Sweden)

    N. Erkasap

    Full Text Available The objective of the present study was to investigate the effect of leptin on the progression of colorectal carcinoma to metastatic disease by analyzing the serum leptin concentration and Ob-R gene expression in colon cancer tissues. Tissue samples were obtained from 31 patients who underwent surgical resection for colon (18 cases and metastatic colon (13 cases cancer. Serum leptin concentration was determined by an enzyme-linked immunosorbent assay (ELISA and Ob-R mRNA expression by real-time polymerase chain reaction (RT-PCR for both groups. ELISA data were analyzed by the Student t-test and RT-PCR data were analyzed by the Mann-Whitney U-test. RT-PCR results demonstrated that mRNA expression of Ob-R in human metastatic colorectal cancer was higher than in local colorectal cancer tissues. On the other hand, mean serum leptin concentration was significantly higher in local colorectal cancer patients compared to patients with metastatic colorectal cancer. The results of the present study suggest a role for leptin in the progression of colon cancer to metastatic disease without weight loss. In other words, significantly increased Ob-R mRNA expression and decreased serum leptin concentration in patients with metastatic colon cancer indicate that sensitization to leptin activity may be a major indicator of metastasis to the colon tissue and the determination of leptin concentration and leptin gene expression may be used to aid the diagnosis.

  12. Protection against high-fat diet-induced obesity in Helz2-deficient male mice due to enhanced expression of hepatic leptin receptor.

    Science.gov (United States)

    Yoshino, Satoshi; Satoh, Tetsurou; Yamada, Masanobu; Hashimoto, Koshi; Tomaru, Takuya; Katano-Toki, Akiko; Kakizaki, Satoru; Okada, Shuichi; Shimizu, Hiroyuki; Ozawa, Atsushi; Tuchiya, Takafumi; Ikota, Hayato; Nakazato, Yoichi; Mori, Munemasa; Matozaki, Takashi; Sasaki, Tsutomu; Kitamura, Tadahiro; Mori, Masatomo

    2014-09-01

    Obesity arises from impaired energy balance, which is centrally coordinated by leptin through activation of the long form of leptin receptor (Leprb). Obesity causes central leptin resistance. However, whether enhanced peripheral leptin sensitivity could overcome central leptin resistance remains obscure. A peripheral metabolic organ targeted by leptin is the liver, with low Leprb expression. We here show that mice fed a high-fat diet (HFD) and obese patients with hepatosteatosis exhibit increased expression of hepatic helicase with zinc finger 2, a transcriptional coactivator (Helz2), which functions as a transcriptional coregulator of several nuclear receptors, including peroxisome proliferator-activated receptor γ in vitro. To explore the physiological importance of Helz2, we generated Helz2-deficient mice and analyzed their metabolic phenotypes. Helz2-deficient mice showing hyperleptinemia associated with central leptin resistance were protected against HFD-induced obesity and had significantly up-regulated hepatic Leprb expression. Helz2 deficiency and adenovirus-mediated liver-specific exogenous Leprb overexpression in wild-type mice significantly stimulated hepatic AMP-activated protein kinase on HFD, whereas Helz2-deficient db/db mice lacking functional Leprb did not. Fatty acid-β oxidation was increased in Helz2-deficeint hepatocytes, and Helz2-deficient mice revealed increased oxygen consumption and decreased respiratory quotient in calorimetry analyses. The enhanced hepatic AMP-activated protein kinase energy-sensing pathway in Helz2-deficient mice ameliorated hyperlipidemia, hepatosteatosis, and insulin resistance by reducing lipogenic gene expression and stimulating lipid-burning gene expression in the liver. These findings together demonstrate that Helz2 deficiency ameliorates HFD-induced metabolic abnormalities by stimulating endogenous hepatic Leprb expression, despite central leptin resistance. Hepatic HELZ2 might be a novel target molecule for

  13. Analysis of Gln223Agr Polymorphism of Leptin Receptor Gene in Type II Diabetic Mellitus Subjects among Malaysians

    Directory of Open Access Journals (Sweden)

    Chong Pei Pei

    2013-09-01

    Full Text Available Leptin is known as the adipose peptide hormone. It plays an important role in the regulation of body fat and inhibits food intake by its action. Moreover, it is believed that leptin level deductions might be the cause of obesity and may play an important role in the development of Type 2 Diabetes Mellitus (T2DM, as well as in cardiovascular diseases (CVD. The Leptin Receptor (LEPR gene and its polymorphisms have not been extensively studied in relation to the T2DM and its complications in various populations. In this study, we have determined the association of Gln223Agr loci of LEPR gene in three ethnic groups of Malaysia, namely: Malays, Chinese and Indians. A total of 284 T2DM subjects and 281 healthy individuals were recruited based on International Diabetes Federation (IDF criteria. Genomic DNA was extracted from the buccal specimens of the subjects. The commercial polymerase chain reaction (PCR method was carried out by proper restriction enzyme MSP I to both amplify and digest the Gln223Agr polymorphism. The p-value among the three studied races was 0.057, 0.011 and 0.095, respectively. The values such as age, WHR, FPG, HbA1C, LDL, HDL, Chol and Family History were significantly different among the subjects with Gln223Agr polymorphism of LEPR (p < 0.05.

  14. Analysis of Gln223Agr polymorphism of Leptin Receptor Gene in type II diabetic mellitus subjects among Malaysians.

    Science.gov (United States)

    Etemad, Ali; Ramachandran, Vasudevan; Pishva, Seyyed Reza; Heidari, Farzad; Aziz, Ahmad Fazli Abdul; Yusof, Ahmad Khairuddin Mohamed; Pei, Chong Pei; Ismail, Patimah

    2013-09-18

    Leptin is known as the adipose peptide hormone. It plays an important role in the regulation of body fat and inhibits food intake by its action. Moreover, it is believed that leptin level deductions might be the cause of obesity and may play an important role in the development of Type 2 Diabetes Mellitus (T2DM), as well as in cardiovascular diseases (CVD). The Leptin Receptor (LEPR) gene and its polymorphisms have not been extensively studied in relation to the T2DM and its complications in various populations. In this study, we have determined the association of Gln223Agr loci of LEPR gene in three ethnic groups of Malaysia, namely: Malays, Chinese and Indians. A total of 284 T2DM subjects and 281 healthy individuals were recruited based on International Diabetes Federation (IDF) criteria. Genomic DNA was extracted from the buccal specimens of the subjects. The commercial polymerase chain reaction (PCR) method was carried out by proper restriction enzyme MSP I to both amplify and digest the Gln223Agr polymorphism. The p-value among the three studied races was 0.057, 0.011 and 0.095, respectively. The values such as age, WHR, FPG, HbA1C, LDL, HDL, Chol and Family History were significantly different among the subjects with Gln223Agr polymorphism of LEPR (p < 0.05).

  15. Adiponectin receptor 2 is regulated by nutritional status, leptin and pregnancy in a tissue-specific manner.

    Science.gov (United States)

    González, Carmen Ruth; Caminos, Jorge Eduardo; Gallego, Rosalía; Tovar, Sulay; Vázquez, María Jesús; Garcés, María Fernanda; Lopez, Miguel; García-Caballero, Tomás; Tena-Sempere, Manuel; Nogueiras, Rubén; Diéguez, Carlos

    2010-01-12

    The aim of the present work was to study the regulation of circulating adiponectin levels and the expression of adiponectin receptor 2 (Adipo-R2) in several rat tissues in relation to fasting, leptin challenge, pregnancy, and chronic undernutrition. Using real-time PCR, we found Adipo-R2 mRNA expression in the liver, stomach, white and brown adipose tissues (WAT and BAT) of adult rats. Immunohistochemical studies confirmed protein expression in the same tissues. Adipo-R2 mRNA levels were decreased in liver after fasting, with no changes in the other tissues. Leptin decreased Adipo-R2 expression in liver and stomach, but increased its expression in WAT and BAT. Chronic caloric restriction in normal rats increased Adipo-R2 gene expression in stomach, while it decreased hepatic Adipo-R2 levels in pregnant rats. Using radioimmunoassay, we found that plasma adiponectin levels were diminished by fasting and leptin. Conversely, circulating adiponectin was increased in food-restricted rats, whereas its levels decreased in food-restricted pregnant rats by the end of gestation. In conclusion our findings provide the first evidence that (a) Adipo-R2 mRNA is regulated in a tissue-specific manner by fasting, but leptin is not responsible for those changes; (b) chronic caloric restriction in normal and pregnant rats also regulate Adipo-R2 mRNA in a tissue-specific manner; and (c) Adipo-R2 mRNA does not show a clear correlation with plasma adiponectin levels.

  16. The Expression of Leptin, Estrogen Receptors, and Vitellogenin mRNAs in Migrating Female Chum Salmon, : The Effects of Hypo-osmotic Environmental Changes

    Directory of Open Access Journals (Sweden)

    Young Jae Choi

    2014-04-01

    Full Text Available Leptin plays an important role in energy homeostasis and reproductive function in fish, especially in reproduction. Migrating fish, such as salmonoids, are affected by external environmental factors, and salinity changes are a particularly important influence on spawning migrations. The aim of this study was to test whether changes in salinity affect the expression of leptin, estrogen receptors (ERs, and vitellogenin (VTG in chum salmon (Oncorhynchus keta. The expression and activity of leptin, the expression of ERs and VTG, and the levels of estradiol-17β and cortisol increased after the fish were transferred to FW, demonstrating that changes in salinity stimulate the HPG axis in migrating female chum salmon. These findings reveal details about the role of elevated leptin levels and sex steroid hormones in stimulating sexual maturation and reproduction in response to salinity changes in chum salmon.

  17. Leptin induces CYP1B1 expression in MCF-7 cells through ligand-independent activation of the ERα pathway

    Energy Technology Data Exchange (ETDEWEB)

    Khanal, Tilak; Kim, Hyung Gyun; Do, Minh Truong; Choi, Jae Ho; Won, Seong Su [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Kang, Wonku [College of Pharmacy, Yeungnam University, Gyeongsan (Korea, Republic of); Chung, Young Chul [Department of Food Science and Culinary, International University of Korea, Jinju (Korea, Republic of); Jeong, Tae Cheon, E-mail: taecheon@ynu.ac.kr [College of Pharmacy, Yeungnam University, Gyeongsan (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2014-05-15

    Leptin, a hormone with multiple biological actions, is produced predominantly by adipose tissue. Among its functions, leptin can stimulate tumour cell growth. Oestrogen receptor α (ERα), which plays an essential role in breast cancer development, can be transcriptionally activated in a ligand-independent manner. In this study, we investigated the effect of leptin on CYP1B1 expression and its mechanism in breast cancer cells. Leptin induced CYP1B1 protein, messenger RNA expression and promoter activity in ERα-positive MCF-7 cells but not in ERα-negative MDA-MB-231 cells. Additionally, leptin increased 4-hydroxyoestradiol in MCF-7 cells. Also, ERα knockdown by siRNA significantly blocked the induction of CYP1B1 expression by leptin, indicating that leptin induced CYP1B1 expression via an ERα-dependent mechanism. Transient transfection with CYP1B1 deletion promoter constructs revealed that the oestrogen response element (ERE) plays important role in the up-regulation of CYP1B1 by leptin. Furthermore, leptin stimulated phosphorylation of ERα at serine residues 118 and 167 and increased ERE-luciferase activity, indicating that leptin induced CYP1B1 expression by ERα activation. Finally, we found that leptin activated ERK and Akt signalling pathways, which are upstream kinases related to ERα phosphorylation induced by leptin. Taken together, our results indicate that leptin-induced CYP1B1 expression is mediated by ligand-independent activation of the ERα pathway as a result of the activation of ERK and Akt in MCF-7 cells. - Highlights: • Leptin increased 4-hydroxyoestradiol in MCF-7 breast cancer cells. • Leptin activated ERK and Akt kinases related to ERα phosphorylation. • Leptin induces phosphorylation of ERα at serine residues 118 and 167. • Leptin induces ERE-luciferase activity.

  18. Muscarinic Receptor Signaling in Colon Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Rosenvinge, Erik C. von, E-mail: evonrose@medicine.umaryland.edu; Raufman, Jean-Pierre [University of Maryland School of Medicine, Division of Gastroenterology & Hepatology, 22 S. Greene Street, N3W62, Baltimore, MD 21201 (United States); Department of Veterans Affairs, VA Maryland Health Care System, 10 North Greene Street, Baltimore, MD 21201 (United States)

    2011-03-02

    According to the adenoma-carcinoma sequence, colon cancer results from accumulating somatic gene mutations; environmental growth factors accelerate and augment this process. For example, diets rich in meat and fat increase fecal bile acids and colon cancer risk. In rodent cancer models, increased fecal bile acids promote colon dysplasia. Conversely, in rodents and in persons with inflammatory bowel disease, low-dose ursodeoxycholic acid treatment alters fecal bile acid composition and attenuates colon neoplasia. In the course of elucidating the mechanism underlying these actions, we discovered that bile acids interact functionally with intestinal muscarinic receptors. The present communication reviews muscarinic receptor expression in normal and neoplastic colon epithelium, the role of autocrine signaling following synthesis and release of acetylcholine from colon cancer cells, post-muscarinic receptor signaling including the role of transactivation of epidermal growth factor receptors and activation of the ERK and PI3K/AKT signaling pathways, the structural biology and metabolism of bile acids and evidence for functional interaction of bile acids with muscarinic receptors on human colon cancer cells. In murine colon cancer models, deficiency of subtype 3 muscarinic receptors attenuates intestinal neoplasia; a proof-of-concept supporting muscarinic receptor signaling as a therapeutic target for colon cancer.

  19. Muscarinic Receptor Signaling in Colon Cancer

    International Nuclear Information System (INIS)

    Rosenvinge, Erik C. von; Raufman, Jean-Pierre

    2011-01-01

    According to the adenoma-carcinoma sequence, colon cancer results from accumulating somatic gene mutations; environmental growth factors accelerate and augment this process. For example, diets rich in meat and fat increase fecal bile acids and colon cancer risk. In rodent cancer models, increased fecal bile acids promote colon dysplasia. Conversely, in rodents and in persons with inflammatory bowel disease, low-dose ursodeoxycholic acid treatment alters fecal bile acid composition and attenuates colon neoplasia. In the course of elucidating the mechanism underlying these actions, we discovered that bile acids interact functionally with intestinal muscarinic receptors. The present communication reviews muscarinic receptor expression in normal and neoplastic colon epithelium, the role of autocrine signaling following synthesis and release of acetylcholine from colon cancer cells, post-muscarinic receptor signaling including the role of transactivation of epidermal growth factor receptors and activation of the ERK and PI3K/AKT signaling pathways, the structural biology and metabolism of bile acids and evidence for functional interaction of bile acids with muscarinic receptors on human colon cancer cells. In murine colon cancer models, deficiency of subtype 3 muscarinic receptors attenuates intestinal neoplasia; a proof-of-concept supporting muscarinic receptor signaling as a therapeutic target for colon cancer

  20. Muscarinic Receptor Signaling in Colon Cancer

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Raufman

    2011-03-01

    Full Text Available According to the adenoma-carcinoma sequence, colon cancer results from accumulating somatic gene mutations; environmental growth factors accelerate and augment this process. For example, diets rich in meat and fat increase fecal bile acids and colon cancer risk. In rodent cancer models, increased fecal bile acids promote colon dysplasia. Conversely, in rodents and in persons with inflammatory bowel disease, low-dose ursodeoxycholic acid treatment alters fecal bile acid composition and attenuates colon neoplasia. In the course of elucidating the mechanism underlying these actions, we discovered that bile acids interact functionally with intestinal muscarinic receptors. The present communication reviews muscarinic receptor expression in normal and neoplastic colon epithelium, the role of autocrine signaling following synthesis and release of acetylcholine from colon cancer cells, post-muscarinic receptor signaling including the role of transactivation of epidermal growth factor receptors and activation of the ERK and PI3K/AKT signaling pathways, the structural biology and metabolism of bile acids and evidence for functional interaction of bile acids with muscarinic receptors on human colon cancer cells. In murine colon cancer models, deficiency of subtype 3 muscarinic receptors attenuates intestinal neoplasia; a proof-of-concept supporting muscarinic receptor signaling as a therapeutic target for colon cancer.

  1. Leptin Signaling Is Required for Adaptive Changes in Food Intake, but Not Energy Expenditure, in Response to Different Thermal Conditions

    Science.gov (United States)

    Kaiyala, Karl J.; Ogimoto, Kayoko; Nelson, Jarrell T.; Schwartz, Michael W.; Morton, Gregory J.

    2015-01-01

    Survival of free-living animals depends on the ability to maintain core body temperature in the face of rapid and dramatic changes in their thermal environment. If food intake is not adjusted to meet the changing energy demands associated with changes of ambient temperature, a serious challenge to body energy stores can occur. To more fully understand the coupling of thermoregulation to energy homeostasis in normal animals and to investigate the role of the adipose hormone leptin to this process, comprehensive measures of energy homeostasis and core temperature were obtained in leptin-deficient ob/ob mice and their wild-type (WT) littermate controls when housed under cool (14°C), usual (22°C) or ∼ thermoneutral (30°C) conditions. Our findings extend previous evidence that WT mice robustly defend normothermia in response to either a lowering (14°C) or an increase (30°C) of ambient temperature without changes in body weight or body composition. In contrast, leptin-deficient, ob/ob mice fail to defend normothermia at ambient temperatures lower than thermoneutrality and exhibit marked losses of both body fat and lean mass when exposed to cooler environments (14°C). Our findings further demonstrate a strong inverse relationship between ambient temperature and energy expenditure in WT mice, a relationship that is preserved in ob/ob mice. However, thermal conductance analysis indicates defective heat retention in ob/ob mice, irrespective of temperature. While a negative relationship between ambient temperature and energy intake also exists in WT mice, this relationship is disrupted in ob/ob mice. Thus, to meet the thermoregulatory demands of different ambient temperatures, leptin signaling is required for adaptive changes in both energy intake and thermal conductance. A better understanding of the mechanisms coupling thermoregulation to energy homeostasis may lead to the development of new approaches for the treatment of obesity. PMID:25756181

  2. Probing Biased Signaling in Chemokine Receptors

    DEFF Research Database (Denmark)

    Amarandi, Roxana Maria; Hjortø, Gertrud Malene; Rosenkilde, Mette Marie

    2016-01-01

    The chemokine system mediates leukocyte migration during homeostatic and inflammatory processes. Traditionally, it is described as redundant and promiscuous, with a single chemokine ligand binding to different receptors and a single receptor having several ligands. Signaling of chemokine receptors...... of others has been termed signaling bias and can accordingly be grouped into ligand bias, receptor bias, and tissue bias. Bias has so far been broadly overlooked in the process of drug development. The low number of currently approved drugs targeting the chemokine system, as well as the broad range...... of failed clinical trials, reflects the need for a better understanding of the chemokine system. Thus, understanding the character, direction, and consequence of biased signaling in the chemokine system may aid the development of new therapeutics. This review describes experiments to assess G protein...

  3. Erythropoietin Receptor Signaling Is Membrane Raft Dependent

    Science.gov (United States)

    McGraw, Kathy L.; Fuhler, Gwenny M.; Johnson, Joseph O.; Clark, Justine A.; Caceres, Gisela C.; Sokol, Lubomir; List, Alan F.

    2012-01-01

    Upon erythropoietin (Epo) engagement, Epo-receptor (R) homodimerizes to activate JAK2 and Lyn, which phosphorylate STAT5. Although recent investigations have identified key negative regulators of Epo-R signaling, little is known about the role of membrane localization in controlling receptor signal fidelity. Here we show a critical role for membrane raft (MR) microdomains in creation of discrete signaling platforms essential for Epo-R signaling. Treatment of UT7 cells with Epo induced MR assembly and coalescence. Confocal microscopy showed that raft aggregates significantly increased after Epo stimulation (mean, 4.3±1.4(SE) vs. 25.6±3.2 aggregates/cell; p≤0.001), accompanied by a >3-fold increase in cluster size (p≤0.001). Raft fraction immunoblotting showed Epo-R translocation to MR after Epo stimulation and was confirmed by fluorescence microscopy in Epo stimulated UT7 cells and primary erythroid bursts. Receptor recruitment into MR was accompanied by incorporation of JAK2, Lyn, and STAT5 and their activated forms. Raft disruption by cholesterol depletion extinguished Epo induced Jak2, STAT5, Akt and MAPK phosphorylation in UT7 cells and erythroid progenitors. Furthermore, inhibition of the Rho GTPases Rac1 or RhoA blocked receptor recruitment into raft fractions, indicating a role for these GTPases in receptor trafficking. These data establish a critical role for MR in recruitment and assembly of Epo-R and signal intermediates into discrete membrane signaling units. PMID:22509308

  4. Glucocorticoid receptor signaling in health and disease

    Science.gov (United States)

    Kadmiel, Mahita; Cidlowski, John A.

    2013-01-01

    Glucocorticoids are steroid hormones regulated in a circadian and stres-associated manner to maintain various metabolic and homeostatic functions that are necessary for life. Synthetic glucocorticoids are widely prescribed drugs for many conditions including asthma, chronic obstructive pulmonary disease (COPD), and inflammatory disorders of the eye. Research in the last few years has begun to unravel the profound complexity of glucocorticoid signaling and has contributed remarkably to improved therapeutic strategies. Glucocorticoids signal through the glucocorticoid receptor, a member of the superfamily of nuclear receptors, in both genomic and non-genomic ways in almost every tissue in the human body. In this review, we will provide an update on glucocorticoid receptor signaling and highlight the role of GR signaling in physiological and pathophysiological conditions in the major organ systems in the human body. PMID:23953592

  5. Whole-Body Vibration Mimics the Metabolic Effects of Exercise in Male Leptin Receptor-Deficient Mice.

    Science.gov (United States)

    McGee-Lawrence, Meghan E; Wenger, Karl H; Misra, Sudipta; Davis, Catherine L; Pollock, Norman K; Elsalanty, Mohammed; Ding, Kehong; Isales, Carlos M; Hamrick, Mark W; Wosiski-Kuhn, Marlena; Arounleut, Phonepasong; Mattson, Mark P; Cutler, Roy G; Yu, Jack C; Stranahan, Alexis M

    2017-05-01

    Whole-body vibration (WBV) has gained attention as a potential exercise mimetic, but direct comparisons with the metabolic effects of exercise are scarce. To determine whether WBV recapitulates the metabolic and osteogenic effects of physical activity, we exposed male wild-type (WT) and leptin receptor-deficient (db/db) mice to daily treadmill exercise (TE) or WBV for 3 months. Body weights were analyzed and compared with WT and db/db mice that remained sedentary. Glucose and insulin tolerance testing revealed comparable attenuation of hyperglycemia and insulin resistance in db/db mice following TE or WBV. Both interventions reduced body weight in db/db mice and normalized muscle fiber diameter. TE or WBV also attenuated adipocyte hypertrophy in visceral adipose tissue and reduced hepatic lipid content in db/db mice. Although the effects of leptin receptor deficiency on cortical bone structure were not eliminated by either intervention, exercise and WBV increased circulating levels of osteocalcin in db/db mice. In the context of increased serum osteocalcin, the modest effects of TE and WBV on bone geometry, mineralization, and biomechanics may reflect subtle increases in osteoblast activity in multiple areas of the skeleton. Taken together, these observations indicate that WBV recapitulates the effects of exercise on metabolism in type 2 diabetes.

  6. Leptin stimulates pituitary prolactin release through an extracellular signal-regulated kinase-dependent pathway

    DEFF Research Database (Denmark)

    Tipsmark, Christian K; Strom, Christina N; Bailey, Sean T

    2008-01-01

    pituitary model system. This advantageous system allows isolation of a nearly pure population of lactotropes in their natural, in situ aggregated state. The rostral pars distalis were dissected from tilapia pituitaries and exposed to varying concentrations of leptin (0, 1, 10, 100 nM) for 1 h. Release...

  7. Receptor tyrosine kinase signaling: a view from quantitative proteomics

    DEFF Research Database (Denmark)

    Dengjel, Joern; Kratchmarova, Irina; Blagoev, Blagoy

    2009-01-01

    Growth factor receptor signaling via receptor tyrosine kinases (RTKs) is one of the basic cellular communication principals found in all metazoans. Extracellular signals are transferred via membrane spanning receptors into the cytoplasm, reversible tyrosine phosphorylation being the hallmark of all...

  8. Androgen Receptor Signaling in Bladder Cancer

    Science.gov (United States)

    Li, Peng; Chen, Jinbo; Miyamoto, Hiroshi

    2017-01-01

    Emerging preclinical findings have indicated that steroid hormone receptor signaling plays an important role in bladder cancer outgrowth. In particular, androgen-mediated androgen receptor signals have been shown to correlate with the promotion of tumor development and progression, which may clearly explain some sex-specific differences in bladder cancer. This review summarizes and discusses the available data, suggesting the involvement of androgens and/or the androgen receptor pathways in urothelial carcinogenesis as well as tumor growth. While the precise mechanisms of the functions of the androgen receptor in urothelial cells remain far from being fully understood, current evidence may offer chemopreventive or therapeutic options, using androgen deprivation therapy, in patients with bladder cancer. PMID:28241422

  9. Androgen Receptor Signaling in Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Peng Li

    2017-02-01

    Full Text Available Emerging preclinical findings have indicated that steroid hormone receptor signaling plays an important role in bladder cancer outgrowth. In particular, androgen-mediated androgen receptor signals have been shown to correlate with the promotion of tumor development and progression, which may clearly explain some sex-specific differences in bladder cancer. This review summarizes and discusses the available data, suggesting the involvement of androgens and/or the androgen receptor pathways in urothelial carcinogenesis as well as tumor growth. While the precise mechanisms of the functions of the androgen receptor in urothelial cells remain far from being fully understood, current evidence may offer chemopreventive or therapeutic options, using androgen deprivation therapy, in patients with bladder cancer.

  10. Leptin as a critical regulator of hepatocellular carcinoma development through modulation of human telomerase reverse transcriptase

    Directory of Open Access Journals (Sweden)

    Stefanou Nikolaos

    2010-08-01

    Full Text Available Abstract Background Numerous epidemiological studies have documented that obesity is associated with hepatocellular carcinoma (HCC. The aim of this study was to investigate the biological actions regulated by leptin, the obesity biomarker molecule, and its receptors in HCC and the correlation between leptin and human telomerase reverse transcriptase (hTERT, a known mediator of cellular immortalization. Methods We investigated the relationship between leptin, leptin receptors and hTERT mRNA expression in HCC and healthy liver tissue samples. In HepG2 cells, chromatin immunoprecipitation assay was used to study signal transducer and activator of transcription-3 (STAT3 and myc/mad/max transcription factors downstream of leptin which could be responsible for hTERT regulation. Flow cytometry was used for evaluation of cell cycle modifications and MMP1, 9 and 13 expression after treatment of HepG2 cells with leptin. Blocking of leptin's expression was achieved using siRNA against leptin and transfection with liposomes. Results We showed, for the first time, that leptin's expression is highly correlated with hTERT expression levels in HCC liver tissues. We also demonstrated in HepG2 cells that leptin-induced up-regulation of hTERT and TA was mediated through binding of STAT3 and Myc/Max/Mad network proteins on hTERT promoter. We also found that leptin could affect hepatocellular carcinoma progression and invasion through its interaction with cytokines and matrix mettaloproteinases (MMPs in the tumorigenic microenvironment. Furthermore, we showed that histone modification contributes to leptin's gene regulation in HCC. Conclusions We propose that leptin is a key regulator of the malignant properties of hepatocellular carcinoma cells through modulation of hTERT, a critical player of oncogenesis.

  11. The role of leptin in gastric cancer: Clinicopathologic features and molecular mechanisms

    International Nuclear Information System (INIS)

    Lee, Kang Nyeong; Choi, Ho Soon; Yang, Sun Young; Park, Hyun Ki; Lee, Young Yiul; Lee, Oh Young; Yoon, Byung Chul; Hahm, Joon Soo; Paik, Seung Sam

    2014-01-01

    Highlights: • Leptin and Ob-R are expressed in gastric adenoma and early and advanced cancer. • Leptin is more likely associated with differentiated gastric cancer or cardia cancer. • Leptin proliferates gastric cancer cells via activating the STAT3 and ERK1/2 pathways. - Abstract: Obesity is associated with certain types of cancer, including gastric cancer. However, it is still unclear whether obesity-related cytokine, leptin, is implicated in gastric cancer. Therefore, we aimed to investigate the role of leptin in gastric cancer. The expression of leptin and its receptor, Ob-R, was assessed by immunohistochemical staining and was compared in patients with gastric adenoma (n = 38), early gastric cancer (EGC) (n = 38), and advanced gastric cancer (AGC) (n = 38), as a function of their clinicopathological characteristics. Gastric cancer cell lines were studied to investigate the effects of leptin on the signal transducer and activator of transcription-3 (STAT3) and extracellular receptor kinase 1/2 (ERK1/2) signaling pathways using MTT assays, immunoblotting, and inhibition studies. Leptin was expressed in gastric adenomas (42.1%), EGCs (47.4%), and AGCs (43.4%). Ob-R expression tended to increase from gastric adenoma (2%), through EGC (8%), to AGC (18%). Leptin induced the proliferation of gastric cancer cells by activating STAT3 and ERK1/2 and up-regulating the expression of vascular endothelial growth factor (VEGF). Blocking Ob-R with pharmacological inhibitors and by RNAi decreased both the leptin-induced activation of STAT3 and ERK1/2 and the leptin-induced expression of VEGF. Leptin plays a role in gastric cancer by stimulating the proliferation of gastric cancer cells via activating the STAT3 and ERK1/2 pathways

  12. Deletion of Suppressor of Cytokine Signaling 3 from Forebrain Neurons Delays Infertility and Onset of Hypothalamic Leptin Resistance in Response to a High Caloric Diet.

    Science.gov (United States)

    McEwen, Hayden J L; Inglis, Megan A; Quennell, Janette H; Grattan, David R; Anderson, Greg M

    2016-07-06

    The cellular processes that cause high caloric diet (HCD)-induced infertility are poorly understood but may involve upregulation of suppressor of cytokine signaling (SOCS-3) proteins that are associated with hypothalamic leptin resistance. Deletion of SOCS-3 from brain cells is known to protect mice from diet-induced obesity, but the effects on HCD-induced infertility are unknown. We used neuron-specific SOCS3 knock-out mice to elucidate this and the effects on regional hypothalamic leptin resistance. As expected, male and female neuron-specific SOCS3 knock-out mice were protected from HCD-induced obesity. While female wild-type mice became infertile after 4 months of HCD feeding, infertility onset in knock-out females was delayed by 4 weeks. Similarly, knock-out mice had delayed leptin resistance development in the medial preoptic area and anteroventral periventricular nucleus, regions important for generation of the surge of GnRH and LH that induces ovulation. We therefore tested whether the suppressive effects of HCD on the estradiol-induced GnRH/LH surge were overcome by neuron-specific SOCS3 knock-out. Although only 20% of control HCD-mice experienced a preovulatory-like LH surge, LH surges could be induced in almost all neuron-specific SOCS3 knock-out mice on this diet. In contrast to females, HCD-fed male mice did not exhibit any fertility decline compared with low caloric diet-fed males despite their resistance to the satiety effects of leptin. These data show that deletion of SOCS3 delays the onset of leptin resistance and infertility in HCD-fed female mice, but given continued HCD feeding this state does eventually occur, presumably in response to other mechanisms inhibiting leptin signal transduction. Obesity is commonly associated with infertility in humans and other animals. Treatments for human infertility show a decreased success rate with increasing body mass index. A hallmark of obesity is an increase in circulating leptin levels; despite this, the

  13. Signal transduction by growth factor receptors: signaling in an instant

    DEFF Research Database (Denmark)

    Dengjel, Joern; Akimov, Vyacheslav; Blagoev, Blagoy

    2007-01-01

    Phosphorylation-based signaling events happening within the first minute of receptor stimulation have so far only been analyzed by classical cell biological approaches like live-cell microscopy. The development of a quench flow system with a time resolution of one second coupled to a read...

  14. Living without insulin: the role of leptin signaling in the hypothalamus

    OpenAIRE

    Fujikawa Teppei; Coppari Roberto

    2015-01-01

    Since its discovery in 1922, insulin has been thought to be required for normal metabolic homeostasis and survival. However, this view would need to be revised as recent results from different laboratories have convincingly indicated that life without insulin is possible in rodent models. These data indicate that particular neuronal circuitries, which include hypothalamic leptin-responsive neurons, are empowered with the capability of permitting life in complete absence of insulin. Here, we r...

  15. Relationships between hypoxia markers and the leptin system, estrogen receptors in human primary and metastatic breast cancer: effects of preoperative chemotherapy

    International Nuclear Information System (INIS)

    Koda, Mariusz; Kanczuga-Koda, Luiza; Sulkowska, Mariola; Surmacz, Eva; Sulkowski, Stanislaw

    2010-01-01

    Tumor hypoxia is marked by enhanced expression of hypoxia-inducible factor-α (HIF-1α) and glucose transporter-1 (Glut-1). Hypoxic conditions have also been associated with overexpression of angiogenic factors, such as leptin. The aim of our study was to analyze the relationships between hypoxia markers HIF-1α, Glut-1, leptin, leptin receptor (ObR) and other breast cancer biomarkers in primary and metastatic breast cancer in patients treated or untreated with preoperative chemotherapy. The expression of different biomarkers was examined by immunohistochemistry in 116 primary breast cancers and 65 lymph node metastases. Forty five of these samples were obtained form patients who received preoperative chemotherapy and 71 from untreated patients. In primary tumors without preoperative chemotherapy, HIF-1α and Glut-1 were positively correlated (p = 0.02, r = 0.437). HIF-1α in primary and metastatic tumors without preoperative therapy positively correlated with leptin (p < 0.0001, r = 0.532; p = 0.013, r = 0.533, respectively) and ObR (p = 0.002, r = 0.319; p = 0.083, r = 0.387, respectively). Hypoxia markers HIF-1α and Glut-1 were negatively associated with estrogen receptor alpha (ERα) and positively correlated with estrogen receptor beta (ERβ). In this group of tumors, a positive correlation between Glut-1 and proliferation marker Ki-67 (p = 0.017, r = 0.433) was noted. The associations between HIF-1α and Glut-1, HIF-1α and leptin, HIF-1α and ERα as well as Glut-1 and ERβ were lost following preoperative chemotherapy. Intratumoral hypoxia in breast cancer is marked by coordinated expression of such markers as HIF-1α, Glut-1, leptin and ObR. The relationships among these proteins can be altered by preoperative chemotherapy

  16. The Prader-Willi syndrome proteins MAGEL2 and necdin regulate leptin receptor cell surface abundance through ubiquitination pathways.

    Science.gov (United States)

    Wijesuriya, Tishani Methsala; De Ceuninck, Leentje; Masschaele, Delphine; Sanderson, Matthea R; Carias, Karin Vanessa; Tavernier, Jan; Wevrick, Rachel

    2017-11-01

    In Prader-Willi syndrome (PWS), obesity is caused by the disruption of appetite-controlling pathways in the brain. Two PWS candidate genes encode MAGEL2 and necdin, related melanoma antigen proteins that assemble into ubiquitination complexes. Mice lacking Magel2 are obese and lack leptin sensitivity in hypothalamic pro-opiomelanocortin neurons, suggesting dysregulation of leptin receptor (LepR) activity. Hypothalamus from Magel2-null mice had less LepR and altered levels of ubiquitin pathway proteins that regulate LepR processing (Rnf41, Usp8, and Stam1). MAGEL2 increased the cell surface abundance of LepR and decreased their degradation. LepR interacts with necdin, which interacts with MAGEL2, which complexes with RNF41 and USP8. Mutations in the MAGE homology domain of MAGEL2 suppress RNF41 stabilization and prevent the MAGEL2-mediated increase of cell surface LepR. Thus, MAGEL2 and necdin together control LepR sorting and degradation through a dynamic ubiquitin-dependent pathway. Loss of MAGEL2 and necdin may uncouple LepR from ubiquitination pathways, providing a cellular mechanism for obesity in PWS. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Correlation between leptin receptor gene polymorphism and type 2 diabetes in Chinese population: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Miao HE

    2015-11-01

    Full Text Available Objective To evaluate the correlation between leptin receptor gene (LEPR polymorphism and type 2 diabetes (T2DM in Chinese population. Methods The literature concerning the correlation between LEPR polymorphism and T2DM in Chinese population were searched from Chinese databases (CNKI, VIP, WanFang, CBM with "leptin receptor gene" and "type 2 diabetes" as keywords, and from English databases (PubMed, Web of Knowledge, EBSCO with "leptin receptor gene", "LEPR", "OBR", "OB-R", "type 2 diabetes" and "T2DM" as keywords. The relevant articles were searched up to September 20, 2014. Then, meta-analysis was performed using RevMan 5.1 and Stata 11.0 software. The Newcastle-Ottawa Scale was applied to assess methodological quality of included articles from 3 aspects, namely, selection of participants, comparability and outcome assessment. Results Seventeen case-control studies involving 12 533 cases of T2DM and 3348 controls were included in Meta-analysis. A significant correlation was found between rs1137100 polymorphism in LEPR gene and T2DM (for recessive genetic model: OR=0.67, 95%CI 0.52-0.88, P=0.00; for allele contrast genetic model: OR=1.46, 95%CI 1.15-1.85, P=0.00. A strong correlation was also found between rs1137101 polymorphism and T2DM (for additive genetic model: OR=1.54, 95%CI 1.20-1.98, P=0.00; for allele contrast genetic model: OR=1.15, 95%CI 1.01-1.30, P=0.00. In addition, rs1805096 polymorphism was closely correlated with T2DM (for dominant genetic model: OR=1.32, 95%CI 1.07-1.62, P=0.00; for recessive genetic model: OR=1.30, 95%CI 1.09-1.54, P=0.00; for allele contrast genetic model: OR=0.67, 95%CI 0.59-0.75, P=0.00. Conclusions There is a significant correlation between rs1137100, rs1805096 of LEPR gene and T2DM in Chinese population under allele contrast genetic model as well as in recessive genetic model. Rs1137101 of LEPR gene is closely correlated with T2DM in Chinese population under additive genetic model. For dominant

  18. Contrasting association of a non-synonymous leptin receptor gene polymorphism with Wegener's granulomatosis and Churg-Strauss syndrome.

    Science.gov (United States)

    Wieczorek, Stefan; Holle, Julia U; Bremer, Jan P; Wibisono, David; Moosig, Frank; Fricke, Harald; Assmann, Gunter; Harper, Lorraine; Arning, Larissa; Gross, Wolfgang L; Epplen, Joerg T

    2010-05-01

    There is evidence that the leptin/ghrelin system is involved in T-cell regulation and plays a role in (auto)immune disorders such as SLE, RA and ANCA-associated vasculitides (AAVs). Here, we evaluate the genetic background of this system in WG. We screened variations in the genes encoding leptin, ghrelin and their receptors, the leptin receptor (LEPR) and the growth hormone secretagogue receptor (GHSR). Three single nucleotide polymorphisms (SNPs) in each gene region were analysed in 460 German WG cases and 878 ethnically matched healthy controls. A three-SNP haplotype of GHSR was significantly associated with WG [P = 0.0067; corrected P-value (P(c)) = 0.026; odds ratio (OR) = 1.30; 95% CI 1.08, 1.57], as was one non-synonymous SNP in LEPR (Lys656Asn, P = 0.0034; P(c) = 0.013; OR = 0.72; 95% CI 0.58, 0.90). These four SNPs were re-analysed in independent cohorts of 226 German WG cases and 519 controls. While the GHSR association was not confirmed, allele frequencies of the LEPR SNP were virtually identical to those from the initial cohorts. Analysis of this SNP in the combined WG and control panels revealed a significant association of the LEPR 656Lys allele with WG (P = 0.00032; P(c) = 0.0013; OR = 0.72; 95% CI 0.60, 0.86). Remarkably, the Lys656Asn SNP showed contrasting allele distribution in two cohorts of 108 and 88 German cases diagnosed with Churg-Strauss syndrome (CSS, combined P = 0.0067; OR = 1.41; 95% CI 1.10, 1.81), whereas identical allele frequencies were revealed when comparing British WG and microscopic polyangiitis cases. While GHSR has to be further evaluated, these data provide profound evidence for an association of the LEPR Lys656Asn SNP with AAV, resulting in opposing effects in WG and CSS.

  19. Erythropoietin receptor signaling is membrane raft dependent

    NARCIS (Netherlands)

    K.L. McGraw (Kathy); G.M. Fuhler (Gwenny); J.O. Johnson (Joseph); J.A. Clark (Justine); G.C. Caceres (Gisela); L. Sokol (Lubomir); A.F. List (Alan)

    2012-01-01

    textabstractUpon erythropoietin (Epo) engagement, Epo-receptor (R) homodimerizes to activate JAK2 and Lyn, which phosphorylate STAT5. Although recent investigations have identified key negative regulators of Epo-R signaling, little is known about the role of membrane localization in controlling

  20. Allelic polymorphism of Makoei sheep leptin gene identified by ...

    African Journals Online (AJOL)

    use

    2011-12-05

    Dec 5, 2011 ... Lord et al., 1998) have shed light on the influence of leptin on both the .... A weak correlation between leptin serum levels and cow body condition ... Detection of polymorphisms in the ovine leptin (LEP) gene: .... Signals that.

  1. Treatment with a GLP-1 receptor agonist diminishes the decrease in free plasma leptin during maintenance of weight loss

    DEFF Research Database (Denmark)

    Iepsen, E W; Lundgren, J; Dirksen, C

    2015-01-01

    of weight gain, low-calorie diet products were allowed to replace up to two meals per day to achieve equal weight maintenance. Glucose tolerance and hormone responses were investigated before and after weight loss and after 52 weeks weight maintenance. Primary end points: increase in soluble leptin receptor.......3 kg (95% CI=-0.6 to -4.0)), and had fewer meal replacements per day compared with the control group (minus one meal per day (95% CI=-0.6 to -1)), P....3±0.1 mmol l(-1) to the level before weight loss (-0.5mmol l(-1) (95% CI=-0.1 to -0.9)), PMeal response of peptide PYY3-36 was higher at week 52 in the GLP-1RA group compared with the control group, P

  2. Modulation of the mesolimbic dopamine system by leptin.

    Science.gov (United States)

    Opland, Darren M; Leinninger, Gina M; Myers, Martin G

    2010-09-02

    Nutritional status modulates many forms of reward-seeking behavior, with caloric restriction increasing the drive for drugs of abuse as well as for food. Understanding the interactions between the mesolimbic dopamine (DA) system (which mediates the incentive salience of natural and artificial rewards) and the neural and hormonal systems that sense and regulate energy balance is thus of significant importance. Leptin, which is produced by adipocytes in proportion to fat content as a hormonal signal of long-term energy stores, acts via its receptor (LepRb) on multiple populations of central nervous system neurons to modulate neural circuits in response to body energy stores. Leptin suppresses feeding and plays a central role in the control of energy balance. In addition to demonstrating that leptin modulates hypothalamic and brainstem circuits to promote satiety, recent work has begun to explore the mechanisms by which leptin influences the mesolimbic DA system and related behaviors. Indeed, leptin diminishes several measures of drug and food reward, and promotes a complex set of changes in the mesolimbic DA system. While many of the details remain to be worked out, several lines of evidence suggest that leptin regulates the mesolimbic DA system via multiple neural pathways and processes, and that distinct sets of LepRb neurons each modulate unique aspects of the mesolimbic DA system and behavior in response to leptin. 2010 Elsevier B.V. All rights reserved.

  3. Leptin stimulates hepatic growth hormone receptor and insulin-like growth factor gene expression in a teleost fish, the hybrid striped bass.

    Science.gov (United States)

    Won, Eugene T; Douros, Jonathan D; Hurt, David A; Borski, Russell J

    2016-04-01

    Leptin is an anorexigenic peptide hormone that circulates as an indicator of adiposity in mammals, and functions to maintain energy homeostasis by balancing feeding and energy expenditure. In fish, leptin tends to be predominantly expressed in the liver, another important energy storing tissue, rather than in fat depots as it is in mammals. The liver also produces the majority of circulating insulin-like growth factors (IGFs), which comprise the mitogenic component of the growth hormone (GH)-IGF endocrine growth axis. Based on similar regulatory patterns of leptin and IGFs that we have documented in previous studies on hybrid striped bass (HSB: Morone saxatilis×Morone chrysops), and considering the co-localization of these peptides in the liver, we hypothesized that leptin might regulate the endocrine growth axis in a manner that helps coordinate somatic growth with energy availability. Using a HSB hepatocyte culture system to simulate autocrine or paracrine exposure that might occur within the liver, this study examines the potential for leptin to modulate metabolism and growth through regulation of IGF gene expression directly, or indirectly through the regulation of GH receptors (GHR), which mediate GH-induced IGF expression. First, we verified that GH (50nM) has a classical stimulatory effect on IGF-1 and additionally show it stimulates IGF-2 transcription in hepatocytes. Leptin (5 and/or 50nM) directly stimulated in vitro GHR2 gene expression within 8h of exposure, and both GHR1 and GHR2 as well as IGF-1 and IGF-2 gene expression after 24h. Cells were then co-incubated with submaximal concentrations of leptin and GH (25nM each) to test if they had a synergistic effect on IGF gene expression, possibly through increased GH sensitivity following GHR upregulation by leptin. In combination, however, the treatments only had an additive effect on stimulating IGF-1 mRNA despite their capacity to increase GHR mRNA abundance. This suggests that leptin's stimulatory

  4. Leptin Deficiency: Clinical Implications and Opportunities for Therapeutic Interventions

    OpenAIRE

    Bl?her, Susan; Shah, Sunali; Mantzoros, Christos S.

    2009-01-01

    The discovery of leptin has significantly advanced our understanding of the metabolic importance of adipose tissue and has revealed that both leptin deficiency and leptin excess are associated with severe metabolic, endocrine, and immunological consequences. We and others have shown that a prominent role of leptin in humans is to mediate the neuroendocrine adaptation to energy deprivation. Humans with genetic mutations in the leptin and leptin receptor genes have deregulated food intake and e...

  5. Inhibitory effect of leptin on rosiglitazone-induced differentiation of primary adipocytes prepared from TallyHO/Jng mice

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Young; Kim, Joo Young; Sung, Yoon-Young; Jung, Won Hoon; Kim, Hee-Youn; Park, Ji Seon; Cheon, Hyae Gyeong [Medicinal Science Division, Korea Research Institute of Chemical Technology, 100 Jang-dong, Yuseong, 305-600 Daejon (Korea, Republic of); Rhee, Sang Dal, E-mail: sdrhee@krict.re.kr [Medicinal Science Division, Korea Research Institute of Chemical Technology, 100 Jang-dong, Yuseong, 305-600 Daejon (Korea, Republic of)

    2011-03-25

    Research highlights: {yields} In this study, we investigated the effects of leptin on adipocyte differentiation prepared from subcutaneous fat of TallyHo mice. {yields} Leptin inhibited the adipocytes differentiation at physiological concentration via inhibition of PPAR{gamma} expression. {yields} Inhibitors of ERK and STAT1 restored the leptin's inhibitory activity both in vitro and in vivo. -- Abstract: The effects of leptin on rosiglitazone-induced adipocyte differentiation were investigated in the primary adipocytes prepared from subcutaneous fat of TallyHO/Jng (TallyHO) mouse, a recently developed model animal for type 2 diabetes mellitus (T2DM). The treatment of leptin inhibited the rosiglitazone-induced adipocyte differentiation with a decreased expression of peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) a key adipogenic transcription factor, both in mRNA and protein levels. Leptin (10 nM) was sufficient to inhibit the adipocyte differentiation, which seemed to come from increased expression of leptin receptor genes in the fat of TallyHO mice. The inhibition of adipogenesis by leptin was restored by the treatment of inhibitors for extracellular-signal-regulated kinase (ERK) (PD98059) and signal transducer and activator of transcription-1 (STAT1) (fludarabine). Furthermore, in vivo intraperitoneal administration of PD98059 and fludarabine increased the PPAR{gamma} expression in the subcutaneous fat of TallyHO mice. These data suggest that leptin could inhibit the PPAR{gamma} expression and adipocyte differentiation in its physiological concentration in TallyHO mice.

  6. Improved leptin sensitivity as a potential candidate responsible for the spontaneous food restriction of the Lou/C rat.

    Directory of Open Access Journals (Sweden)

    Christelle Veyrat-Durebex

    Full Text Available The Lou/C rat, an inbred strain of Wistar origin, was described as a model of resistance to age- and diet-induced obesity. Although such a resistance involves many metabolic parameters described in our previous studies, Lou/C rats also exhibit a spontaneous food restriction due to decreased food consumption during the nocturnal period. We then attempted to delineate the leptin sensitivity and mechanisms implicated in this strain, using different protocols of acute central and peripheral leptin administration. A first analysis of the meal patterns revealed that Lou/C rats eat smaller meals, without any change in meal number compared to age-matched Wistar animals. Although the expression of the recognized leptin transporters (leptin receptors and megalin measured in the choroid plexus was normal in Lou/C rats, the decreased triglyceridemia observed in these animals is compatible with an increased leptin transport across the blood brain barrier. Improved hypothalamic leptin signaling in Lou/C rats was also suggested by the higher pSTAT3/STAT3 (signal transducer and activator of transcription 3 ratio observed following acute peripheral leptin administration, as well as by the lower hypothalamic mRNA expression of the suppressor of cytokine signaling 3 (SOCS3, known to downregulate leptin signaling. To conclude, spontaneous hypophagia of Lou/C rats appears to be related to improved leptin sensitivity. The main mechanism underlying such a phenomenon consists in improved leptin signaling through the Ob-Rb leptin receptor isoform, which seems to consequently lead to overexpression of brain-derived neurotrophic factor (BDNF and thyrotropin-releasing hormone (TRH.

  7. Maternal protein restriction during pregnancy and lactation alters central leptin signalling, increases food intake, and decreases bone mass in 1 year old rat offspring.

    Science.gov (United States)

    Qasem, Rani J; Li, Jing; Tang, Hee Man; Pontiggia, Laura; D'mello, Anil P

    2016-04-01

    The effects of perinatal nutrition on offspring physiology have mostly been examined in young adult animals. Aging constitutes a risk factor for the progressive loss of metabolic flexibility and development of disease. Few studies have examined whether the phenotype programmed by perinatal nutrition persists in aging offspring. Persistence of detrimental phenotypes and their accumulative metabolic effects are important for disease causality. This study determined the effects of maternal protein restriction during pregnancy and lactation on food consumption, central leptin sensitivity, bone health, and susceptibility to high fat diet-induced adiposity in 1-year-old male offspring. Sprague-Dawley rats received either a control or a protein restricted diet throughout pregnancy and lactation and pups were weaned onto laboratory chow. One-year-old low protein (LP) offspring exhibited hyperphagia. The inability of an intraperitoneal (i.p.) leptin injection to reduce food intake indicated that the hyperphagia was mediated by decreased central leptin sensitivity. Hyperphagia was accompanied by lower body weight suggesting increased energy expenditure in LP offspring. Bone density and bone mineral content that are negatively regulated by leptin acting via the sympathetic nervous system (SNS), were decreased in LP offspring. LP offspring did not exhibit increased susceptibility to high fat diet induced metabolic effects or adiposity. The results presented here indicate that the programming effects of perinatal protein restriction are mediated by specific decreases in central leptin signalling to pathways involved in the regulation of food intake along with possible enhancement of different CNS leptin signalling pathways acting via the SNS to regulate bone mass and energy expenditure. © 2016 John Wiley & Sons Australia, Ltd.

  8. TAM Receptor Signaling in Immune Homeostasis

    Science.gov (United States)

    Rothlin, Carla V.; Carrera-Silva, Eugenio A.; Bosurgi, Lidia; Ghosh, Sourav

    2015-01-01

    The TAM receptor tyrosine kinases (RTKs)—TYRO3, AXL, and MERTK—together with their cognate agonists GAS6 and PROS1 play an essential role in the resolution of inflammation. Deficiencies in TAM signaling have been associated with chronic inflammatory and autoimmune diseases. Three processes regulated by TAM signaling may contribute, either independently or collectively, to immune homeostasis: the negative regulation of the innate immune response, the phagocytosis of apoptotic cells, and the restoration of vascular integrity. Recent studies have also revealed the function of TAMs in infectious diseases and cancer. Here, we review the important milestones in the discovery of these RTKs and their ligands and the studies that underscore the functional importance of this signaling pathway in physiological immune settings and disease. PMID:25594431

  9. Inositol trisphosphate receptor mediated spatiotemporal calcium signalling.

    Science.gov (United States)

    Miyazaki, S

    1995-04-01

    Spatiotemporal Ca2+ signalling in the cytoplasm is currently understood as an excitation phenomenon by analogy with electrical excitation in the plasma membrane. In many cell types, Ca2+ waves and Ca2+ oscillations are mediated by inositol 1,4,5-trisphosphate (IP3) receptor/Ca2+ channels in the endoplasmic reticulum membrane, with positive feedback between cytosolic Ca2+ and IP3-induced Ca2+ release creating a regenerative process. Remarkable advances have been made in the past year in the analysis of subcellular Ca2+ microdomains using confocal microscopy and of Ca2+ influx pathways that are functionally coupled to IP3-induced Ca2+ release. Ca2+ signals can be conveyed into the nucleus and mitochondria. Ca2+ entry from outside the cell allows repetitive Ca2+ release by providing Ca2+ to refill the endoplasmic reticulum stores, thus giving rise to frequency-encoded Ca2+ signals.

  10. The unique cysteine knot regulates the pleotropic hormone leptin.

    Directory of Open Access Journals (Sweden)

    Ellinor Haglund

    Full Text Available Leptin plays a key role in regulating energy intake/expenditure, metabolism and hypertension. It folds into a four-helix bundle that binds to the extracellular receptor to initiate signaling. Our work on leptin revealed a hidden complexity in the formation of a previously un-described, cysteine-knotted topology in leptin. We hypothesized that this unique topology could offer new mechanisms in regulating the protein activity. A combination of in silico simulation and in vitro experiments was used to probe the role of the knotted topology introduced by the disulphide-bridge on leptin folding and function. Our results surprisingly show that the free energy landscape is conserved between knotted and unknotted protein, however the additional complexity added by the knot formation is structurally important. Native state analyses led to the discovery that the disulphide-bond plays an important role in receptor binding and thus mediate biological activity by local motions on distal receptor-binding sites, far removed from the disulphide-bridge. Thus, the disulphide-bridge appears to function as a point of tension that allows dissipation of stress at a distance in leptin.

  11. Therapeutic effects of the allosteric protein tyrosine phosphatase 1B inhibitor KY-226 on experimental diabetes and obesity via enhancements in insulin and leptin signaling in mice

    Directory of Open Access Journals (Sweden)

    Yuma Ito

    2018-05-01

    Full Text Available The anti-diabetic and anti-obesity effects of the allosteric protein tyrosine phosphatase 1B (PTP1B inhibitor 4-(biphenyl-4-ylmethylsulfanylmethyl-N-(hexane-1-sulfonylbenzoylamide (KY-226 were pharmacologically evaluated. KY-226 inhibited human PTP1B activity (IC50 = 0.28 μM, but did not exhibit peroxisome proliferator-activated receptor γ (PPARγ agonist activity. In rodent preadipocytes (3T3-L1, KY-226 up to 10 μM had no effects on adipocyte differentiation, whereas pioglitazone, a PPARγ agonist, markedly promoted it. In human hepatoma-derived cells (HepG2, KY-226 (0.3–10 μM increased the phosphorylated insulin receptor (pIR produced by insulin. In db/db mice, the oral administration of KY-226 (10 and 30 mg/kg/day, 4 weeks significantly reduced plasma glucose and triglyceride levels as well as hemoglobin A1c values without increasing body weight gain, while pioglitazone exerted similar effects with increases in body weight gain. KY-226 attenuated plasma glucose elevations in the oral glucose tolerance test. KY-226 also increased pIR and phosphorylated Akt in the liver and femoral muscle. In high-fat diet-induced obese mice, the oral administration of KY-226 (30 and 60 mg/kg/day, 4 weeks decreased body weight gain, food consumption, and fat volume gain with increases in phosphorylated STAT3 in the hypothalamus. In conclusion, KY-226 exerted anti-diabetic and anti-obesity effects by enhancing insulin and leptin signaling, respectively. Keywords: PTP1B inhibitor, Diabetes, Obesity, Allosteric inhibitor, db/db mouse

  12. Taste Receptor Signaling-- From Tongues to Lungs

    Science.gov (United States)

    Kinnamon, Sue C.

    2013-01-01

    Taste buds are the transducing endorgans of gustation. Each taste bud comprises 50–100 elongated cells, which extend from the basal lamina to the surface of the tongue, where their apical microvilli encounter taste stimuli in the oral cavity. Salts and acids utilize apically located ion channels for transduction, while bitter, sweet and umami (glutamate) stimuli utilize G protein coupled receptors (GPCRs) and second messenger signaling mechanisms. This review will focus on GPCR signaling mechanisms. Two classes of taste GPCRs have been identified, the T1Rs for sweet and umami (glutamate) stimuli, and the T2Rs for bitter stimuli. These low affinity GPCRs all couple to the same downstream signaling effectors that include Gβγ activation of PLCβ2, IP3-mediated release of Ca2+ from intracellular stores, and Ca2+-dependent activation of the monovalent selective cation channel, TrpM5. These events lead to membrane depolarization, action potentials, and release of ATP as a transmitter to activate gustatory afferents. The Gα subunit, α-gustducin, activates a phosphodiesterase to decrease intracellular cAMP levels, although the precise targets of cAMP have not been identified. With the molecular identification of the taste GPCRs, it has become clear that taste signaling is not limited to taste buds, but occurs in many cell types of the airways. These include solitary chemosensory cells, ciliated epithelial cells, and smooth muscle cells. Bitter receptors are most abundantly expressed in the airways, where they respond to irritating chemicals and promote protective airway reflexes, utilizing the same downstream signaling effectors as taste cells. PMID:21481196

  13. Steroid Hormone Receptor Signals as Prognosticators for Urothelial Tumor

    Directory of Open Access Journals (Sweden)

    Hiroki Ide

    2015-01-01

    Full Text Available There is a substantial amount of preclinical or clinical evidence suggesting that steroid hormone receptor-mediated signals play a critical role in urothelial tumorigenesis and tumor progression. These receptors include androgen receptor, estrogen receptors, glucocorticoid receptor, progesterone receptor, vitamin D receptor, retinoid receptors, peroxisome proliferator-activated receptors, and others including orphan receptors. In particular, studies using urothelial cancer tissue specimens have demonstrated that elevated or reduced expression of these receptors as well as alterations of their upstream or downstream pathways correlates with patient outcomes. This review summarizes and discusses available data suggesting that steroid hormone receptors and related signals serve as biomarkers for urothelial carcinoma and are able to predict tumor recurrence or progression.

  14. Hypothalamic CART is a new anorectic peptide regulated by leptin.

    Science.gov (United States)

    Kristensen, P; Judge, M E; Thim, L; Ribel, U; Christjansen, K N; Wulff, B S; Clausen, J T; Jensen, P B; Madsen, O D; Vrang, N; Larsen, P J; Hastrup, S

    1998-05-07

    The mammalian hypothalamus strongly influences ingestive behaviour through several different signalling molecules and receptor systems. Here we show that CART (cocaine- and amphetamine-regulated transcript), a brain-located peptide, is a satiety factor and is closely associated with the actions of two important regulators of food intake, leptin and neuropeptide Y. Food-deprived animals show a pronounced decrease in expression of CART messenger RNA in the arcuate nucleus. In animal models of obesity with disrupted leptin signalling, CART mRNA is almost absent from the arcuate nucleus. Peripheral administration of leptin to obese mice stimulates CART mRNA expression. When injected intracerebroventricularly into rats, recombinant CART peptide inhibits both normal and starvation-induced feeding, and completely blocks the feeding response induced by neuropeptide Y. An antiserum against CART increases feeding in normal rats, indicating that CART may be an endogenous inhibitor of food intake in normal animals.

  15. Proliferative signaling initiated in ACTH receptors

    Directory of Open Access Journals (Sweden)

    C.F.P. Lotfi

    2000-10-01

    Full Text Available This article reviews recent results of studies aiming to elucidate modes of integrating signals initiated in ACTH receptors and FGF2 receptors, within the network system of signal transduction found in Y1 adrenocortical cells. These modes of signal integration should be central to the mechanisms underlying the regulation of the G0->G1->S transition in the adrenal cell cycle. FGF2 elicits a strong mitogenic response in G0/G1-arrested Y1 adrenocortical cells, that includes a rapid and transient activation of extracellular signal-regulated kinases-mitogen-activated protein kinases (ERK-MAPK (2 to 10 min, b transcription activation of c-fos, c-jun and c-myc genes (10 to 30 min, c induction of c-Fos and c-Myc proteins by 1 h and cyclin D1 protein by 5 h, and d onset of DNA synthesis stimulation within 8 h. ACTH, itself a weak mitogen, interacts with FGF2 in a complex manner, blocking the FGF2 mitogenic response during the early and middle G1 phase, keeping ERK-MAPK activation and c-Fos and cyclin D1 induction at maximal levels, but post-transcriptionally inhibiting c-Myc expression. c-Fos and c-Jun proteins are mediators in both the strong and the weak mitogenic responses respectively triggered by FGF2 and ACTH. Induction of c-Fos and stimulation of DNA synthesis by ACTH are independent of PKA and are inhibited by the PKC inhibitor GF109203X. In addition, ACTH is a poor activator of ERK-MAPK, but c-Fos induction and DNA synthesis stimulation by ACTH are strongly inhibited by the inhibitor of MEK1 PD98059.

  16. Mechanical Vibration Mitigates the Decrease of Bone Quantity and Bone Quality of Leptin Receptor-Deficient Db/Db Mice by Promoting Bone Formation and Inhibiting Bone Resorption.

    Science.gov (United States)

    Jing, Da; Luo, Erping; Cai, Jing; Tong, Shichao; Zhai, Mingming; Shen, Guanghao; Wang, Xin; Luo, Zhuojing

    2016-09-01

    Leptin, a major hormonal product of adipocytes, is involved in regulating appetite and energy metabolism. Substantial studies have revealed the anabolic actions of leptin on skeletons and bone cells both in vivo and in vitro. Growing evidence has substantiated that leptin receptor-deficient db/db mice exhibit decreased bone mass and impaired bone microstructure despite several conflicting results previously reported. We herein systematically investigated bone microarchitecture, mechanical strength, bone turnover and its potential molecular mechanisms in db/db mice. More importantly, we also explored an effective approach for increasing bone mass in leptin receptor-deficient animals in an easy and noninvasive manner. Our results show that deterioration of trabecular and cortical bone microarchitecture and decreases of skeletal mechanical strength-including maximum load, yield load, stiffness, energy, tissue-level modulus and hardness-in db/db mice were significantly ameliorated by 12-week, whole-body vibration (WBV) with 0.5 g, 45 Hz via micro-computed tomography (μCT), three-point bending, and nanoindentation examinations. Serum biochemical analysis shows that WBV significantly decreased serum tartrate-resistant acid phosphatase 5b (TRACP5b) and CTx-1 levels and also mitigated the reduction of serum osteocalcin (OCN) in db/db mice. Bone histomorphometric analysis confirmed that decreased bone formation-lower mineral apposition rate, bone formation rate, and osteoblast numbers in cancellous bone-in db/db mice were suppressed by WBV. Real-time PCR assays show that WBV mitigated the reductions of tibial alkaline phosphatase (ALP), OCN, Runt-related transcription factor 2 (RUNX2), type I collagen (COL1), BMP2, Wnt3a, Lrp6, and β-catenin mRNA expression, and prevented the increases of tibial sclerostin (SOST), RANK, RANKL, RANL/osteoprotegerin (OPG) gene levels in db/db mice. Our results show that WBV promoted bone quantity and quality in db/db mice with obvious

  17. LEPTIN AND OBESITY – NEUROENDOCRINE , METABOLIC AND ATHEROGENIC EFFECTS OF LEPTIN

    Directory of Open Access Journals (Sweden)

    Mišo Šabovič

    2003-01-01

    Full Text Available Background. Leptin is an adipocyte-derived hormone that was recently discovered. Leptin and leptin resistance play an important role in the pathogenesis of obesity. Leptin acts by binding to specific receptors in the hypothalamus to alter the expression of several neuropeptides that regulate food intake and energy expenditure. As commonly found, obese persons have leptin resistance and consequently attenuated effects of leptin. Mechanism underlying leptin resistance has not been explained yet: it might be the result of a receptor or post receptor defect, impaired transport of leptin through cerebrovascular barrier or inactivation of leptin by binding proteins. Phase I and II clinical trials proved that recombinant leptin administration to humans is safe. First results of the current phase III clinical trials demonstrated that leptin is moderately effective in the treatment of obesity.Conclusions. Beside anti-obesity effect, leptin can have important metabolic and neuroendocrine effects. It is involved in glucose metabolism and insulin secretion, pathogenesis of polymetabolic syndrome, diabetes and arterial hypertension. In addition it affects some processes of atherothrombosis. It interacts with and significantly influences hypothalamic-pituitaryadrenal, thyroid, sexual glands and growth hormone axes. Explaining the mechanism of leptin resistance could be important for understanding the pathogenesis of obesity and associated pathologic states as polymetabolic syndrom, diabetes, arterial hipertension and atherothrombosis.

  18. Specific Features of the Hypothalamic Leptin Signaling Response to Cold Exposure Are Reflected in Peripheral Blood Mononuclear Cells in Rats and Ferrets

    Directory of Open Access Journals (Sweden)

    Bàrbara Reynés

    2017-08-01

    Full Text Available Objectives: Cold exposure induces hyperphagia to counteract fat loss related to lipid mobilization and thermogenic activation. The aim of this study was investigate on the molecular mechanisms involved in cold-induced compensatory hyperphagia.Methods: We analyzed the effect of cold exposure on gene expression of orexigenic and anorexigenic peptides, and of leptin signaling-related genes in the hypothalamus of rats at different ages (1, 2, 4, and 6 months, as well as in ferrets. We also evaluated the potential of peripheral blood mononuclear cells to reflect hypothalamic molecular responses.Results: As expected, cold exposure induced hypoleptinemia in rats, which could be responsible for the increased ratio of orexigenic/anorexigenic peptides gene expression in the hypothalamus, mainly due to decreased anorexigenic gene expression, especially in young animals. In ferrets, which resemble humans more closely, cold exposure induced greater changes in hypothalamic mRNA levels of orexigenic genes. Despite the key role of leptin in food intake control, the effect of cold exposure on the expression of key hypothalamic leptin signaling cascade genes is not clear. In our study, cold exposure seemed to affect leptin signaling in 4-month-old rats (increased Socs3 and Lepr expression, likely associated with the smaller-increase in food intake and decreased body weight observed at this particular age. Similarly, cold exposed ferrets showed greater hypothalamic Socs3 and Stat3 gene expression. Interestingly, peripheral blood mononuclear cells (PBMC mimicked the hypothalamic increase in Lepr and Socs3 observed in 4-month-old rats, and the increased Socs3 mRNA expression observed in ferrets in response to cold exposure.Conclusions: The most outstanding result of our study is that PBMC reflected the specific modulation of leptin signaling observed in both animal models, rats and ferrets, which points forwards PBMC as easily obtainable biological material to be

  19. Biased and g protein-independent signaling of chemokine receptors

    DEFF Research Database (Denmark)

    Steen, Anne; Larsen, Olav; Thiele, Stefanie

    2014-01-01

    ), different receptors (with the same ligand), or different tissues or cells (for the same ligand-receptor pair). Most often biased signaling is differentiated into G protein-dependent and β-arrestin-dependent signaling. Yet, it may also cover signaling differences within these groups. Moreover, it may...

  20. Elsevier Trophoblast Research Award lecture: Molecular mechanisms underlying estrogen functions in trophoblastic cells--focus on leptin expression.

    Science.gov (United States)

    Gambino, Y P; Maymó, J L; Pérez Pérez, A; Calvo, J C; Sánchez-Margalet, V; Varone, C L

    2012-02-01

    The steroid hormone 17β-estradiol is an estrogen that influences multiple aspects of placental function and fetal development in humans. During early pregnancy it plays a role in the regulation of blastocyst implantation, trophoblast differentiation and invasiveness, remodeling of uterine arteries, immunology and trophoblast production of hormones such as leptin. Estradiol exerts some effects through the action of classical estrogen receptors ERα and ERβ, which act as ligand-activated transcription factors and regulate gene expression. In addition, estradiol can elicit rapid responses from membrane-associated receptors, like activation of protein-kinase pathways. Thus, the cellular effects of estradiol will depend on the specific receptors expressed and the integration of their signaling events. Leptin, the 16,000MW protein product of the obese gene, was originally considered an adipocyte-derived signaling molecule for the central control of metabolism. However, pleiotropic effects of leptin have been identified in reproduction and pregnancy. The leptin gene is expressed in placenta, where leptin promotes proliferation and survival of trophoblastic cells. Expression of leptin in placenta is highly regulated by key pregnancy molecules as hCG and estradiol. The aim of this paper is to review the molecular mechanisms underlying estrogen functions in trophoblastic cells; focusing on mechanisms involved in estradiol regulation of placental leptin expression. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Leptin/HER2 crosstalk in breast cancer: in vitro study and preliminary in vivo analysis

    International Nuclear Information System (INIS)

    Fiorio, Elena; Bonetti, Franco; Giordano, Antonio; Cetto, Gian Luigi; Surmacz, Eva; Mercanti, Anna; Terrasi, Marianna; Micciolo, Rocco; Remo, Andrea; Auriemma, Alessandra; Molino, Annamaria; Parolin, Veronica; Di Stefano, Bruno

    2008-01-01

    Obesity in postmenopausal women is associated with increased breast cancer risk, development of more aggressive tumors and resistance to certain anti-breast cancer treatments. Some of these effects might be mediated by obesity hormone leptin, acting independently or modulating other signaling pathways. Here we focused on the link between leptin and HER2. We tested if HER2 and the leptin receptor (ObR) can be coexpressed in breast cancer cell models, whether these two receptors can physically interact, and whether leptin can transactivate HER2. Next, we studied if leptin/ObR can coexist with HER2 in breast cancer tissues, and if presence of these two systems correlates with specific clinicopathological features. Expression of ObR, HER2, phospo-HER2 was assessed by immonoblotting. Physical interactions between ObR and HER2 were probed by immunoprecipitation and fluorescent immunostaining. Expression of leptin and ObR in breast cancer tissues was detected by immunohistochemistry (IHC). Associations among markers studied by IHC were evaluated using Fisher's exact test for count data. HER2 and ObR were coexpressed in all studied breast cancer cell lines. In MCF-7 cells, HER2 physically interacted with ObR and leptin treatment increased HER2 phosphorylation on Tyr 1248. In 59 breast cancers, the presence of leptin was correlated with ObR (the overall association was about 93%). This result was confirmed both in HER2-positive and in HER2-negative subgroups. The expression of leptin or ObR was numerically more frequent in larger (> 10 mm) tumors. Coexpression of HER2 and the leptin/ObR system might contribute to enhanced HER2 activity and reduced sensitivity to anti-HER2 treatments

  2. Molecular mechanisms of glucocorticoid receptor signaling

    Directory of Open Access Journals (Sweden)

    Marta Labeur

    2010-10-01

    Full Text Available This review highlights the most recent findings on the molecular mechanisms of the glucocorticoid receptor (GR. Most effects of glucocorticoids are mediated by the intracellular GR which is present in almost every tissue and controls transcriptional activation via direct and indirect mechanisms. Nevertheless the glucocorticoid responses are tissue -and gene- specific. GR associates selectively with corticosteroid ligands produced in the adrenal gland in response to changes of humoral homeostasis. Ligand interaction with GR promotes either GR binding to genomic glucocorticoid response elements, in turn modulating gene transcription, or interaction of GR monomers with other transcription factors activated by other signalling pathways leading to transrepression. The GR regulates a broad spectrum of physiological functions, including cell differentiation, metabolism and inflammatory responses. Thus, disruption or dysregulation of GR function will result in severe impairments in the maintenance of homeostasis and the control of adaptation to stress.

  3. Goldfish Leptin-AI and Leptin-AII: Function and Central Mechanism in Feeding Control

    Directory of Open Access Journals (Sweden)

    Ai-Fen Yan

    2016-05-01

    Full Text Available In mammals, leptin is a peripheral satiety factor that inhibits feeding by regulating a variety of appetite-related hormones in the brain. However, most of the previous studies examining leptin in fish feeding were performed with mammalian leptins, which share very low sequence homologies with fish leptins. To elucidate the function and mechanism of endogenous fish leptins in feeding regulation, recombinant goldfish leptin-AI and leptin-AII were expressed in methylotrophic yeast and purified by immobilized metal ion affinity chromatography (IMAC. By intraperitoneal (IP injection, both leptin-AI and leptin-AII were shown to inhibit the feeding behavior and to reduce the food consumption of goldfish in 2 h. In addition, co-treatment of leptin-AI or leptin-AII could block the feeding behavior and reduce the food consumption induced by neuropeptide Y (NPY injection. High levels of leptin receptor (lepR mRNA were detected in the hypothalamus, telencephalon, optic tectum and cerebellum of the goldfish brain. The appetite inhibitory effects of leptins were mediated by downregulating the mRNA levels of orexigenic NPY, agouti-related peptide (AgRP and orexin and upregulating the mRNA levels of anorexigenic cocaine-amphetamine-regulated transcript (CART, cholecystokinin (CCK, melanin-concentrating hormone (MCH and proopiomelanocortin (POMC in different areas of the goldfish brain. Our study, as a whole, provides new insights into the functions and mechanisms of leptins in appetite control in a fish model.

  4. Bilirubin Increases Insulin Sensitivity in Leptin-Receptor Deficient and Diet-Induced Obese Mice Through Suppression of ER Stress and Chronic Inflammation

    Science.gov (United States)

    Dong, Huansheng; Huang, Hu; Yun, Xinxu; Kim, Do-sung; Yue, Yinan; Wu, Hongju; Sutter, Alton; Chavin, Kenneth D.; Otterbein, Leo E.; Adams, David B.; Kim, Young-Bum

    2014-01-01

    Obesity-induced endoplasmic reticulum (ER) stress causes chronic inflammation in adipose tissue and steatosis in the liver, and eventually leads to insulin resistance and type 2 diabetes (T2D). The goal of this study was to understand the mechanisms by which administration of bilirubin, a powerful antioxidant, reduces hyperglycemia and ameliorates obesity in leptin-receptor-deficient (db/db) and diet-induced obese (DIO) mouse models. db/db or DIO mice were injected with bilirubin or vehicle ip. Blood glucose and body weight were measured. Activation of insulin-signaling pathways, expression of inflammatory cytokines, and ER stress markers were measured in skeletal muscle, adipose tissue, and liver of mice. Bilirubin administration significantly reduced hyperglycemia and increased insulin sensitivity in db/db mice. Bilirubin treatment increased protein kinase B (PKB/Akt) phosphorylation in skeletal muscle and suppressed expression of ER stress markers, including the 78-kDa glucose-regulated protein (GRP78), CCAAT/enhancer-binding protein (C/EBP) homologous protein, X box binding protein (XBP-1), and activating transcription factor 4 in db/db mice. In DIO mice, bilirubin treatment significantly reduced body weight and increased insulin sensitivity. Moreover, bilirubin suppressed macrophage infiltration and proinflammatory cytokine expression, including TNF-α, IL-1β, and monocyte chemoattractant protein-1, in adipose tissue. In liver and adipose tissue of DIO mice, bilirubin ameliorated hepatic steatosis and reduced expression of GRP78 and C/EBP homologous protein. These results demonstrate that bilirubin administration improves hyperglycemia and obesity by increasing insulin sensitivity in both genetically engineered and DIO mice models. Bilirubin or bilirubin-increasing drugs might be useful as an insulin sensitizer for the treatment of obesity-induced insulin resistance and type 2 diabetes based on its profound anti-ER stress and antiinflammatory properties. PMID

  5. Membrane Trafficking of Death Receptors: Implications on Signalling

    Directory of Open Access Journals (Sweden)

    Wulf Schneider-Brachert

    2013-07-01

    Full Text Available Death receptors were initially recognised as potent inducers of apoptotic cell death and soon ambitious attempts were made to exploit selective ignition of controlled cellular suicide as therapeutic strategy in malignant diseases. However, the complexity of death receptor signalling has increased substantially during recent years. Beyond activation of the apoptotic cascade, involvement in a variety of cellular processes including inflammation, proliferation and immune response was recognised. Mechanistically, these findings raised the question how multipurpose receptors can ensure selective activation of a particular pathway. A growing body of evidence points to an elegant spatiotemporal regulation of composition and assembly of the receptor-associated signalling complex. Upon ligand binding, receptor recruitment in specialized membrane compartments, formation of receptor-ligand clusters and internalisation processes constitute key regulatory elements. In this review, we will summarise the current concepts of death receptor trafficking and its implications on receptor-associated signalling events.

  6. Adult exposure to tributyltin affects hypothalamic neuropeptide Y, Y1 receptor distribution, and circulating leptin in mice.

    Science.gov (United States)

    Bo, E; Farinetti, A; Marraudino, M; Sterchele, D; Eva, C; Gotti, S; Panzica, G

    2016-07-01

    Tributyltin (TBT), a pesticide used in antifouling paints, is toxic for aquatic invertebrates. In vertebrates, TBT may act in obesogen- inducing adipogenetic gene transcription for adipocyte differentiation. In a previous study, we demonstrated that acute administration of TBT induces c-fos expression in the arcuate nucleus. Therefore, in this study, we tested the hypothesis that adult exposure to TBT may alter a part of the nervous pathways controlling animal food intake. In particular, we investigated the expression of neuropeptide Y (NPY) immunoreactivity. This neuropeptide forms neural circuits dedicated to food assumption and its action is mediated by Y1 receptors that are widely expressed in the hypothalamic nuclei responsible for the regulation of food intake and energy homeostasis. To this purpose, TBT was orally administered at a dose of 0.025 mg/kg/day/body weight to adult animals [male and female C57BL/6 (Y1-LacZ transgenic mice] for 4 weeks. No differences were found in body weight and fat deposition, but we observed a significant increase in feed efficiency in TBT-treated male mice and a significant decrease in circulating leptin in both sexes. Computerized quantitative analysis of NPY immunoreactivity and Y1-related β-galactosidase activity demonstrated a statistically significant reduction in NPY and Y1 transgene expression in the hypothalamic circuit controlling food intake of treated male mice in comparison with controls. In conclusion, the present results indicate that adult exposure to TBT is profoundly interfering with the nervous circuits involved in the stimulation of food intake. © 2016 American Society of Andrology and European Academy of Andrology.

  7. Effects of high fat diet, ovariectomy, and physical activity on leptin receptor expression in rat brain and white fat tissue.

    Science.gov (United States)

    Blažetić, Senka; Labak, Irena; Viljetić, Barbara; Balog, Marta; Vari, Sandor G; Krivošíková, Zora; Gajdoš, Martin; Kramárová, Patrícia; Kebis, Anton; Vuković, Rosemary; Puljak, Livia; Has-Schön, Elizabeta; Heffer, Marija

    2014-06-01

    To evaluate in a rat animal model whether ovariectomy, high fat diet (HFD), and physical activity in the form of running affect leptin receptor (Ob-R) distribution in the brain and white fat tissue compared to sham (Sh) surgery, standard diet (StD), and sedentary conditions. The study included 48 female laboratory Wistar rats (4 weeks old). Following eight weeks of feeding with standard or HFD, rats were subjected to either OVX or Sh surgery. After surgery, all animals continued StD or HFD for the next 10 weeks. During these 10 weeks, ovariectomy and Sh groups were subjected to physical activity or sedentary conditions. Free-floating immunohistochemistry and Western blot methods were carried out to detect Ob-R in the brain and adipose tissue. StD-ovariectomy-sedentary group had a greater number of Ob-R positive neurons in lateral hypothalamic nuclei than StD-Sh-sedentary group. There was no difference in Ob-R positive neurons in arcuatus nuclei between all groups. Ob-R distribution in the barrel cortex was higher in HFD group than in StD group. Ob-R presence in perirenal and subcutaneous fat was decreased in StD-ovariectomy group. HFD and ovariectomy increased Ob-R distribution in lateral hypothalamic nuclei, but there was no effect on arcuatus nuclei. Our results are first to suggest that HFD, ovariectomy, and physical activity affect Ob-R distribution in the barrel cortex, which might be correlated with the role of Ob-R in election of food in rats.

  8. Sweet Taste Receptor Signaling Network: Possible Implication for Cognitive Functioning

    Directory of Open Access Journals (Sweden)

    Menizibeya O. Welcome

    2015-01-01

    Full Text Available Sweet taste receptors are transmembrane protein network specialized in the transmission of information from special “sweet” molecules into the intracellular domain. These receptors can sense the taste of a range of molecules and transmit the information downstream to several acceptors, modulate cell specific functions and metabolism, and mediate cell-to-cell coupling through paracrine mechanism. Recent reports indicate that sweet taste receptors are widely distributed in the body and serves specific function relative to their localization. Due to their pleiotropic signaling properties and multisubstrate ligand affinity, sweet taste receptors are able to cooperatively bind multiple substances and mediate signaling by other receptors. Based on increasing evidence about the role of these receptors in the initiation and control of absorption and metabolism, and the pivotal role of metabolic (glucose regulation in the central nervous system functioning, we propose a possible implication of sweet taste receptor signaling in modulating cognitive functioning.

  9. SOCS proteins in regulation of receptor tyrosine kinase signaling

    DEFF Research Database (Denmark)

    Kazi, Julhash U.; Kabir, Nuzhat N.; Flores Morales, Amilcar

    2014-01-01

    Receptor tyrosine kinases (RTKs) are a family of cell surface receptors that play critical roles in signal transduction from extracellular stimuli. Many in this family of kinases are overexpressed or mutated in human malignancies and thus became an attractive drug target for cancer treatment....... The signaling mediated by RTKs must be tightly regulated by interacting proteins including protein-tyrosine phosphatases and ubiquitin ligases. The suppressors of cytokine signaling (SOCS) family proteins are well-known negative regulators of cytokine receptors signaling consisting of eight structurally similar...

  10. Nuclear Receptor Signaling Atlas: Opening Access to the Biology of Nuclear Receptor Signaling Pathways.

    Science.gov (United States)

    Becnel, Lauren B; Darlington, Yolanda F; Ochsner, Scott A; Easton-Marks, Jeremy R; Watkins, Christopher M; McOwiti, Apollo; Kankanamge, Wasula H; Wise, Michael W; DeHart, Michael; Margolis, Ronald N; McKenna, Neil J

    2015-01-01

    Signaling pathways involving nuclear receptors (NRs), their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA) is a Consortium focused around a Hub website (www.nursa.org) that annotates and integrates diverse 'omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs). These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy "Web 2.0" technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA's Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field.

  11. Nuclear Receptor Signaling Atlas: Opening Access to the Biology of Nuclear Receptor Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Lauren B Becnel

    Full Text Available Signaling pathways involving nuclear receptors (NRs, their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA is a Consortium focused around a Hub website (www.nursa.org that annotates and integrates diverse 'omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs. These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy "Web 2.0" technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA's Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field.

  12. Leptin deficiency: clinical implications and opportunities for therapeutic interventions.

    Science.gov (United States)

    Blüher, Susan; Shah, Sunali; Mantzoros, Christos S

    2009-10-01

    The discovery of leptin has significantly advanced our understanding of the metabolic importance of adipose tissue and has revealed that both leptin deficiency and leptin excess are associated with severe metabolic, endocrine, and immunological consequences. We and others have shown that a prominent role of leptin in humans is to mediate the neuroendocrine adaptation to energy deprivation. Humans with genetic mutations in the leptin and leptin receptor genes have deregulated food intake and energy expenditure leading to a morbidly obese phenotype and a disrupted regulation in neuroendocrine and immune function and in glucose and fat metabolism. Observational and interventional studies in humans with (complete) congenital leptin deficiency caused by mutations in the leptin gene or with relative leptin deficiency as seen in states of negative energy balance such as lipoatrophy, anorexia nervosa, or exercise-induced hypothalamic and neuroendocrine dysfunction have contributed to the elucidation of the pathophysiological role of leptin in these conditions and of the clinical significance of leptin administration in these subjects. More specifically, interventional studies have demonstrated that several neuroendocrine, metabolic, or immune disturbances in these states could be restored by leptin administration. Leptin replacement therapy is currently available through a compassionate use program for congenital complete leptin deficiency and under an expanded access program to subjects with leptin deficiency associated with congenital or acquired lipoatrophy. In addition, leptin remains a potentially forthcoming treatment for several other states of energy deprivation including anorexia nervosa or milder forms of hypothalamic amenorrhea pending appropriate clinical trials.

  13. The association of serum leptin levels with metabolic diseases

    Directory of Open Access Journals (Sweden)

    Jen-Pi Tsai

    2017-01-01

    Full Text Available Leptin is a 167-amino-acid protein released by white adipose tissue and encoded by the obese gene. It has a role as a negative regulator of appetite control through sending a satiety signal to act on receptors within the hypothalamus. At normal levels, leptin can exert its effects on weight regulation according to white fat mass, induce sodium excretion, maintain vascular tone, and repair the myocardium. Beyond these effects, elevated serum leptin levels have been implicated in the pathogenesis of metabolic syndrome, diabetes mellitus, hypertension, and multiple cardiovascular diseases. In addition, hyperleptinemia had been reported to contribute to renal diseases through multiple mechanisms resulting in glomerulopathy presenting with a decreased glomerular filtration rate, increased albuminuria, and related clinical symptoms, which are pathophysiological features of chronic kidney disease. Because these cardiovascular and metabolic disorders are great challenges for physicians, understanding the related pathophysiological association with leptin might become a valuable aid in handling patients in daily clinical practice. This review will discuss the roles of leptin in the regulation of biological functions of multiple organs beyond the maintenance of feeding and metabolism.

  14. Leptin promotes wound healing in the skin.

    Directory of Open Access Journals (Sweden)

    Susumu Tadokoro

    Full Text Available Leptin, a 16 kDa anti-obesity hormone, exhibits various physiological properties. Interestingly, skin wound healing was proven to delay in leptin-deficient ob/ob mice. However, little is known on the mechanisms of this phenomenon. In this study, we attempted to elucidate a role of leptin in wound healing of skin.Immunohistochemical analysis was performed to confirm the expression of the leptin receptor (Ob-R in human and mouse skin. Leptin was topically administered to chemical wounds created in mouse back skin along with sustained-release absorbable hydrogel. The process of wound repair was histologically observed and the area of ulceration was measured over time. The effect of leptin on the proliferation, differentiation and migration of human epidermal keratinocytes was investigated.Ob-R was expressed in epidermal cells of human and mouse skin. Topical administration of leptin significantly promoted wound healing. Histological analysis showed more blood vessels in the dermal connective tissues in the leptin-treated group. The proliferation, differentiation/function and migration of human epidermal keratinocytes were enhanced by exogenous leptin.Topically administered leptin was proven to promote wound healing in the skin by accelerating proliferation, differentiation/function and migration of epidermal keratinocytes and enhancing angiogenesis around the wounded area. These results strongly suggest that topical administration of leptin may be useful as a treatment to promote wound healing in the skin.

  15. Genetic polymorphisms and protein structures in growth hormone, growth hormone receptor, ghrelin, insulin-like growth factor 1 and leptin in Mehraban sheep.

    Science.gov (United States)

    Bahrami, A; Behzadi, Sh; Miraei-Ashtiani, S R; Roh, S-G; Katoh, K

    2013-09-15

    The somatotropic axis, the control system for growth hormone (GH) secretion and its endogenous factors involved in the regulation of metabolism and energy partitioning, has promising potentials for producing economically valuable traits in farm animals. Here we investigated single nucleotide polymorphisms (SNPs) of the genes of factors involved in the somatotropic axis for growth hormone (GH1), growth hormone receptor (GHR), ghrelin (GHRL), insulin-like growth factor 1 (IGF-I) and leptin (LEP), using polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) and DNA sequencing methods in 452 individual Mehraban sheep. A nonradioactive method to allow SSCP detection was used for genomic DNA and PCR amplification of six fragments: exons 4 and 5 of GH1; exon 10 of GH receptor (GHR); exon 1 of ghrelin (GHRL); exon 1 of insulin-like growth factor-I (IGF-I), and exon 3 of leptin (LEP). Polymorphisms were detected in five of the six PCR products. Two electrophoretic patterns were detected for GH1 exon 4. Five conformational patterns were detected for GH1 exon 5 and LEP exon 3, and three for IGF-I exon 1. Only GHR and GHRL were monomorphic. Changes in protein structures due to variable SNPs were also analyzed. The results suggest that Mehraban sheep, a major breed that is important for the animal industry in Middle East countries, has high genetic variability, opening interesting prospects for future selection programs and preservation strategies. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Insulin and leptin induce Glut4 plasma membrane translocation and glucose uptake in a human neuronal cell line by a phosphatidylinositol 3-kinase- dependent mechanism.

    Science.gov (United States)

    Benomar, Yacir; Naour, Nadia; Aubourg, Alain; Bailleux, Virginie; Gertler, Arieh; Djiane, Jean; Guerre-Millo, Michèle; Taouis, Mohammed

    2006-05-01

    The insulin-sensitive glucose transporter Glut4 is expressed in brain areas that regulate energy homeostasis and body adiposity. In contrast with peripheral tissues, however, the impact of insulin on Glut4 plasma membrane (PM) translocation in neurons is not known. In this study, we examined the role of two anorexic hormones (leptin and insulin) on Glut4 translocation in a human neuronal cell line that express endogenous insulin and leptin receptors. We show that insulin and leptin both induce Glut4 translocation to the PM of neuronal cells and activate glucose uptake. Wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase, totally abolished insulin- and leptin-dependent Glut4 translocation and stimulation of glucose uptake. Thus, Glut4 translocation is a phosphatidylinositol 3-kinase-dependent mechanism in neuronal cells. Next, we investigated the impact of chronic insulin and leptin treatments on Glut4 expression and translocation. Chronic exposure of neuronal cells to insulin or leptin down-regulates Glut4 proteins and mRNA levels and abolishes the acute stimulation of glucose uptake in response to acute insulin or leptin. In addition, chronic treatment with either insulin or leptin impaired Glut4 translocation. A cross-desensitization between insulin and leptin was apparent, where exposure to insulin affects leptin-dependent Glut4 translocation and vice versa. This cross-desensitization could be attributed to the increase in suppressor of cytokine signaling-3 expression, which was demonstrated in response to each hormone. These results provide evidence to suggest that Glut4 translocation to neuronal PM is regulated by both insulin and leptin signaling pathways. These pathways might contribute to an in vivo glucoregulatory reflex involving a neuronal network and to the anorectic effect of insulin and leptin.

  17. SOCS3 deficiency in leptin receptor-expressing cells mitigates the development of pregnancy-induced metabolic changes

    Directory of Open Access Journals (Sweden)

    Thais T. Zampieri

    2015-03-01

    Conclusions: Our study identified the increased hypothalamic expression of SOCS3 as a key mechanism responsible for triggering pregnancy-induced leptin resistance and metabolic adaptations. These findings not only help to explain a common phenomenon of the mammalian physiology, but it may also aid in the development of approaches to prevent and treat gestational metabolic imbalances.

  18. Dynamics of the actin cytoskeleton mediates receptor cross talk: An emerging concept in tuning receptor signaling

    Science.gov (United States)

    Mattila, Pieta K.; Batista, Facundo D.

    2016-01-01

    Recent evidence implicates the actin cytoskeleton in the control of receptor signaling. This may be of particular importance in the context of immune receptors, such as the B cell receptor, where dysregulated signaling can result in autoimmunity and malignancy. Here, we discuss the role of the actin cytoskeleton in controlling receptor compartmentalization, dynamics, and clustering as a means to regulate receptor signaling through controlling the interactions with protein partners. We propose that the actin cytoskeleton is a point of integration for receptor cross talk through modulation of protein dynamics and clustering. We discuss the implication of this cross talk via the cytoskeleton for both ligand-induced and low-level constitutive (tonic) signaling necessary for immune cell survival. PMID:26833785

  19. Correlation between maternal and cord blood leptin and fetal growth

    African Journals Online (AJOL)

    SERVER

    2007-09-05

    Sep 5, 2007 ... IL -2 and growth hormone. The long form of the leptin receptor functions similarly to cytokine ... regulation of leptin synthesis and the risk for obesity in the offspring. In species such as the human and sheep, ..... Hormonal regulation of leptin levels in the fetus and neonate might be different from the endocrine ...

  20. Role of protein dynamics in transmembrane receptor signalling

    DEFF Research Database (Denmark)

    Wang, Yong; Bugge, Katrine Østergaard; Kragelund, Birthe Brandt

    2018-01-01

    Cells are dependent on transmembrane receptors to communicate and transform chemical and physical signals into intracellular responses. Because receptors transport 'information', conformational changes and protein dynamics play a key mechanistic role. We here review examples where experiment...... to function. Because the receptors function in a heterogeneous environment and need to be able to switch between distinct functional states, they may be particularly sensitive to small perturbations that complicate studies linking dynamics to function....

  1. Ciliary neurotrophic factor activates leptin-like pathways and reduces body fat, without cachexia or rebound weight gain, even in leptin-resistant obesity.

    Science.gov (United States)

    Lambert, P D; Anderson, K D; Sleeman, M W; Wong, V; Tan, J; Hijarunguru, A; Corcoran, T L; Murray, J D; Thabet, K E; Yancopoulos, G D; Wiegand, S J

    2001-04-10

    Ciliary Neurotrophic Factor (CNTF) was first characterized as a trophic factor for motor neurons in the ciliary ganglion and spinal cord, leading to its evaluation in humans suffering from motor neuron disease. In these trials, CNTF caused unexpected and substantial weight loss, raising concerns that it might produce cachectic-like effects. Countering this possibility was the suggestion that CNTF was working via a leptin-like mechanism to cause weight loss, based on the findings that CNTF acts via receptors that are not only related to leptin receptors, but also similarly distributed within hypothalamic nuclei involved in feeding. However, although CNTF mimics the ability of leptin to cause fat loss in mice that are obese because of genetic deficiency of leptin (ob/ob mice), CNTF is also effective in diet-induced obesity models that are more representative of human obesity, and which are resistant to leptin. This discordance again raised the possibility that CNTF might be acting via nonleptin pathways, perhaps more analogous to those activated by cachectic cytokines. Arguing strongly against this possibility, we now show that CNTF can activate hypothalamic leptin-like pathways in diet-induced obesity models unresponsive to leptin, that CNTF improves prediabetic parameters in these models, and that CNTF acts very differently than the prototypical cachectic cytokine, IL-1. Further analyses of hypothalamic signaling reveals that CNTF can suppress food intake without triggering hunger signals or associated stress responses that are otherwise associated with food deprivation; thus, unlike forced dieting, cessation of CNTF treatment does not result in binge overeating and immediate rebound weight gain.

  2. Ablation of ghrelin receptor in leptin-deficient ob/ob mice has paradoxical effects on glucose homeostasis when compared with ablation of ghrelin in ob/ob mice

    Science.gov (United States)

    The orexigenic hormone ghrelin is important in diabetes because it has an inhibitory effect on insulin secretion. Ghrelin ablation in leptin-deficient ob/ob (Ghrelin(-/-):ob/ob) mice increases insulin secretion and improves hyperglycemia. The physiologically relevant ghrelin receptor is the growth ...

  3. Association of bovine leptin polymorphisms with energy output and energy storage traits in progeny tested Holstein-Friesian dairy cattle sires

    Directory of Open Access Journals (Sweden)

    Waters Sinead M

    2010-07-01

    Full Text Available Abstract Background Leptin modulates appetite, energy expenditure and the reproductive axis by signalling via its receptor the status of body energy stores to the brain. The present study aimed to quantify the associations between 10 novel and known single nucleotide polymorphisms in genes coding for leptin and leptin receptor with performance traits in 848 Holstein-Friesian sires, estimated from performance of up to 43,117 daughter-parity records per sire. Results All single nucleotide polymorphisms were segregating in this sample population and none deviated (P > 0.05 from Hardy-Weinberg equilibrium. Complete linkage disequilibrium existed between the novel polymorphism LEP-1609, and the previously identified polymorphisms LEP-1457 and LEP-580. LEP-2470 associated (P Conclusions Several leptin polymorphisms (LEP-2470, LEP-1238, LEP-963, Y7F and R25C associated with the energetically expensive process of lactogenesis. Only SNP Y7F associated with energy storage. Associations were also observed between leptin polymorphisms and calving difficulty, gestation length and calf perinatal mortality. The lack of an association between the leptin variants investigated with calving interval in this large data set would question the potential importance of these leptin variants, or indeed leptin, in selection for improved fertility in the Holstein-Friesian dairy cow.

  4. Regulation of chick bone growth by leptin and catecholamines.

    Science.gov (United States)

    Mauro, L J; Wenzel, S J; Sindberg, G M

    2010-04-01

    Leptin and the sympathetic nervous system have a unique role in linking nutritional status to skeletal metabolism in mammals. Such a regulatory mechanism has not been identified in birds but would be beneficial to signal information about energy reserves to an organ system essential for locomotion, reproduction, and survival. To explore this potential role of leptin and the sympathetic nervous system in birds, an ex vivo chick tibiotarsal model was used to test the effects of leptin and sympathetic activity on longitudinal bone growth and the expression of chondrocyte markers. Reverse transcription-PCR analysis revealed the expression of chicken leptin receptor mRNA as well as both alpha-adrenergic (alpha1A, alpha2A, alpha2B, alpha2C) and beta adrenergic (beta1, beta2) receptor subtype mRNA in the whole bone. Incubation with norepinephrine (NE; 0, 10, or 100 microM for 4 d) caused a significant increase in distal condyle length as compared with vehicle-treated, contralateral tibiotarsi. In contrast, no change in condyle length was detected after leptin treatment (0 or 10 nM or 1 microM for 4 d). Analysis of cell proliferation by bromodeoxyuridine incorporation revealed no increase in bromodeoxyuridine-positive cells in the condyles in response to leptin or NE treatments. Real-time PCR analysis showed that NE enhanced type X collagen mRNA expression, a marker of mature hypertrophic chondrocytes, with no effect on type II collagen mRNA, the matrix protein secreted by proliferating chondrocytes. Leptin treatment had no effect on the expression of either matrix protein. Treatment with agonists specific for alpha- or beta-adrenergic receptors indicates that the activation of alpha-adrenergic receptors is most likely responsible for the sympathetic effect on type X collagen gene expression. These results suggest that NE and other sympathetic agonists have positive effects on bone elongation and the changes in critical genes associated with this process. These

  5. Modulation of β-catenin signaling by glucagon receptor activation.

    Directory of Open Access Journals (Sweden)

    Jiyuan Ke

    Full Text Available The glucagon receptor (GCGR is a member of the class B G protein-coupled receptor family. Activation of GCGR by glucagon leads to increased glucose production by the liver. Thus, glucagon is a key component of glucose homeostasis by counteracting the effect of insulin. In this report, we found that in addition to activation of the classic cAMP/protein kinase A (PKA pathway, activation of GCGR also induced β-catenin stabilization and activated β-catenin-mediated transcription. Activation of β-catenin signaling was PKA-dependent, consistent with previous reports on the parathyroid hormone receptor type 1 (PTH1R and glucagon-like peptide 1 (GLP-1R receptors. Since low-density-lipoprotein receptor-related protein 5 (Lrp5 is an essential co-receptor required for Wnt protein mediated β-catenin signaling, we examined the role of Lrp5 in glucagon-induced β-catenin signaling. Cotransfection with Lrp5 enhanced the glucagon-induced β-catenin stabilization and TCF promoter-mediated transcription. Inhibiting Lrp5/6 function using Dickkopf-1(DKK1 or by expression of the Lrp5 extracellular domain blocked glucagon-induced β-catenin signaling. Furthermore, we showed that Lrp5 physically interacted with GCGR by immunoprecipitation and bioluminescence resonance energy transfer assays. Together, these results reveal an unexpected crosstalk between glucagon and β-catenin signaling, and may help to explain the metabolic phenotypes of Lrp5/6 mutations.

  6. Functionally biased signalling properties of 7TM receptors - opportunities for drug development for the ghrelin receptor

    DEFF Research Database (Denmark)

    Sivertsen, B; Holliday, N; Madsen, A N

    2013-01-01

    UNLABELLED: The ghrelin receptor is a 7 transmembrane (7TM) receptor involved in a variety of physiological functions including growth hormone secretion, increased food intake and fat accumulation as well as modulation of reward and cognitive functions. Because of its important role in metabolism...... and energy expenditure, the ghrelin receptor has become an important therapeutic target for drug design and the development of anti-obesity compounds. However, none of the compounds developed so far have been approved for commercial use. Interestingly, the ghrelin receptor is able to signal through several...... review, we have described how ligands and mutations in the 7TM receptor may bias the receptors to favour either one G-protein over another or to promote G-protein independent signalling pathways rather than G-protein-dependent pathways. For the ghrelin receptor, both agonist and inverse agonists have...

  7. Protein kinase C alpha controls erythropoietin receptor signaling.

    NARCIS (Netherlands)

    M.M. von Lindern (Marieke); M. Parren-Van Amelsvoort (Martine); T.B. van Dijk (Thamar); E. Deiner; B. Löwenberg (Bob); E. van den Akker (Emile); S. van Emst-de Vries (Sjenet); P.J. Willems (Patrick); H. Beug (Hartmut)

    2000-01-01

    textabstractProtein kinase C (PKC) is implied in the activation of multiple targets of erythropoietin (Epo) signaling, but its exact role in Epo receptor (EpoR) signal transduction and in the regulation of erythroid proliferation and differentiation remained elusive. We

  8. Protein kinase C alpha controls erythropoietin receptor signaling

    NARCIS (Netherlands)

    von Lindern, M.; Parren-van Amelsvoort, M.; van Dijk, T.; Deiner, E.; van den Akker, E.; van Emst-de Vries, S.; Willems, P.; Beug, H.; Löwenberg, B.

    2000-01-01

    Protein kinase C (PKC) is implied in the activation of multiple targets of erythropoietin (Epo) signaling, but its exact role in Epo receptor (EpoR) signal transduction and in the regulation of erythroid proliferation and differentiation remained elusive. We analyzed the effect of PKC inhibitors

  9. Leptin deficiency-induced obesity exacerbates ultraviolet B radiation-induced cyclooxygenase-2 expression and cell survival signals in ultraviolet B-irradiated mouse skin

    International Nuclear Information System (INIS)

    Sharma, Som D.; Katiyar, Santosh K.

    2010-01-01

    Obesity has been implicated in several inflammatory diseases and in different types of cancer. Chronic inflammation induced by exposure to ultraviolet (UV) radiation has been implicated in various skin diseases, including melanoma and nonmelanoma skin cancers. As the relationship between obesity and susceptibility to UV radiation-caused inflammation is not clearly understood, we assessed the role of obesity on UVB-induced inflammation, and mediators of this inflammatory response, using the genetically obese (leptin-deficient) mouse model. Leptin-deficient obese (ob/ob) mice and wild-type counterparts (C57/BL6 mice) were exposed to UVB radiation (120 mJ/cm 2 ) on alternate days for 1 month. The mice were then euthanized and skin samples collected for analysis of biomarkers of inflammatory responses using immunohistochemistry, western blotting, ELISA and real-time PCR. Here, we report that the levels of inflammatory responses were higher in the UVB-exposed skin of the ob/ob obese mice than those in the UVB-exposed skin of the wild-type non-obese mice. The levels of UVB-induced cyclooxygenase-2 expression, prostaglandin-E 2 production, proinflammatory cytokines (i.e., tumor necrosis factor-α, interleukin-1β, interleukin-6), and proliferating cell nuclear antigen and cell survival signals (phosphatidylinositol-3-kinase and p-Akt-Ser 473 ) were higher in the skin of the ob/ob obese mice than the those in skin of their wild-type non-obese counterparts. Compared with the wild-type non-obese mice, the leptin-deficient obese mice also exhibited greater activation of NF-κB/p65 and fewer apoptotic cells in the UVB-irradiated skin. Our study suggests for the first time that obesity in mice is associated with greater susceptibility to UVB-induced inflammatory responses and, therefore, obesity may increase susceptibility to UVB-induced inflammation-associated skin diseases, including the risk of skin cancer.

  10. Cocaine Inhibits Dopamine D2 Receptor Signaling via Sigma-1-D2 Receptor Heteromers

    Science.gov (United States)

    Navarro, Gemma; Moreno, Estefania; Bonaventura, Jordi; Brugarolas, Marc; Farré, Daniel; Aguinaga, David; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Lluís, Carmen; Ferre, Sergi

    2013-01-01

    Under normal conditions the brain maintains a delicate balance between inputs of reward seeking controlled by neurons containing the D1-like family of dopamine receptors and inputs of aversion coming from neurons containing the D2-like family of dopamine receptors. Cocaine is able to subvert these balanced inputs by altering the cell signaling of these two pathways such that D1 reward seeking pathway dominates. Here, we provide an explanation at the cellular and biochemical level how cocaine may achieve this. Exploring the effect of cocaine on dopamine D2 receptors function, we present evidence of σ1 receptor molecular and functional interaction with dopamine D2 receptors. Using biophysical, biochemical, and cell biology approaches, we discovered that D2 receptors (the long isoform of the D2 receptor) can complex with σ1 receptors, a result that is specific to D2 receptors, as D3 and D4 receptors did not form heteromers. We demonstrate that the σ1-D2 receptor heteromers consist of higher order oligomers, are found in mouse striatum and that cocaine, by binding to σ1 -D2 receptor heteromers, inhibits downstream signaling in both cultured cells and in mouse striatum. In contrast, in striatum from σ1 knockout animals these complexes are not found and this inhibition is not seen. Taken together, these data illuminate the mechanism by which the initial exposure to cocaine can inhibit signaling via D2 receptor containing neurons, destabilizing the delicate signaling balance influencing drug seeking that emanates from the D1 and D2 receptor containing neurons in the brain. PMID:23637801

  11. Averrhoa carambola free phenolic extract ameliorates nonalcoholic hepatic steatosis by modulating mircoRNA-34a, mircoRNA-33 and AMPK pathways in leptin receptor-deficient db/db mice.

    Science.gov (United States)

    Pang, Daorui; You, Lijun; Zhou, Lin; Li, Tong; Zheng, Bisheng; Liu, Rui Hai

    2017-12-13

    The objective of the present study is to investigate the hepatic steatosis relieving effect of Averrhoa carambola free phenolic extract (ACF) on leptin receptor-deficient (db/db) mice and elucidate the modulation hepatic lipogenesis mechanisms. The serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) assays, accompanying hematoxylin and eosin (H&E) staining, were applied to identify the alleviation of liver histopathological changes. Serum and hepatic lipid assays, combined with oil red O staining, were used to investigate the amelioration of lipid accumulation. Further assessments by quantitative real-time PCR and western blot assays were used to elucidate the suppression of the fatty acid and triglyceride (TG) synthesis mechanisms underlying ACF protection. These results indicated that ACF treatment significantly reduced the liver TG of db/db mice (p < 0.05). The mechanisms are partly through phosphorylation of AMPK α and down-regulation of SREBP-1c expression, and further down-regulation of FAS and SCD1 (p < 0.05). In addition, the expression levels of mircoRNA-34a and mircoRNA-33, which modulate this signaling pathway, were significantly down-regulated by ACF treatment (p < 0.05). Collectively, these results revealed that ACF exhibited a potent hepatic steatosis relieving effect partly by inhibiting the signal transduction of hepatic lipogenesis.

  12. The effects of leptin in combination with a cannabinoid receptor 1 antagonist, AM 251, or cannabidiol on food intake and body weight in rats fed a high-fat or a free-choice high sugar diet.

    Science.gov (United States)

    Wierucka-Rybak, M; Wolak, M; Bojanowska, E

    2014-08-01

    High intake of fats and sugars has prompted a rapid growth in the number of obese individuals worldwide. To further investigate whether simultaneous pharmacological intervention in the leptin and cannabinoid system might change food and water intake, preferences for palatable foods, and body weight, we have examined the effects of concomitant intraperitoneal administration of leptin and AM 251, a cannabinoid 1 (CB1) receptor antagonist, or cannabidiol (CBD), a plant cannabinoid, in rats maintained on either a high-fat (HF) diet (45% energy from fat) or free-choice (FC) diet consisting of high-sucrose and normal rat chow (83% and 61% energy from carbohydrates, respectively). Leptin at a dose of 100 μg/kg injected individually for 3 subsequent days to rats fed a HF diet reduced significantly the daily caloric intake and inhibited body weight gain. The hormone had no significant effects, however, on either caloric intake, body weight or food preferences in rats fed an FC diet. Co-injection of leptin and 1 mg/kg AM 251 resulted in a further significant decrease in HF diet intake and a profound reduction in body weight gain both in HF diet- and FC diet-fed rats. This drug combination, however, had no effect on the consumption of high-sucrose chow. In contrast, 3mg/kg of CBD co-injected with leptin did not modify leptin effects on food intake in rats maintained on an FC or HF diet. None of the drug combinations affected water consumption. It is concluded that the concomitant treatment with leptin and AM 251 attenuated markedly body weight gain in rats maintained on high-calorie diets rich in fat and carbohydrates but did not affect preferences for sweet food.

  13. Modulation of leptin resistance by food compounds.

    Science.gov (United States)

    Aragonès, Gerard; Ardid-Ruiz, Andrea; Ibars, Maria; Suárez, Manuel; Bladé, Cinta

    2016-08-01

    Leptin is mainly secreted by white adipose tissue and regulates energy homeostasis by inhibiting food intake and stimulating energy expenditure through its action in neuronal circuits in the brain, particularly in the hypothalamus. However, hyperleptinemia coexists with the loss of responsiveness to leptin in common obese conditions. This phenomenon has been defined as leptin resistance and the restoration of leptin sensitivity is considered to be a useful strategy to treat obesity. This review summarizes the existing literature on potentially valuable nutrients and food components to reverse leptin resistance. Notably, several food compounds, such as teasaponins, resveratrol, celastrol, caffeine, and taurine among others, are able to restore the leptin signaling in neurons by overexpressing anorexigenic peptides (proopiomelanocortin) and/or repressing orexigenic peptides (neuropeptide Y/agouti-related peptide), thus decreasing food intake. Additionally, some nutrients, such as vitamins A and D, can improve leptin transport through the blood-brain barrier. Therefore, food components can improve leptin resistance by acting at different levels of the leptin pathway; moreover, some compounds are able to target more than one feature of leptin resistance. However, systematic studies are necessary to define the actual effectiveness of each compound. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Cysteinyl-Leukotriene Receptors and Cellular Signals

    Directory of Open Access Journals (Sweden)

    G. Enrico Rovati

    2007-01-01

    Full Text Available Cysteinyl-leukotrienes (cysteinyl-LTs exert a range of proinflammatory effects, such as constriction of airways and vascular smooth muscle, increase of endothelial cell permeability leading to plasma exudation and edema, and enhanced mucus secretion. They have proved to be important mediators in asthma, allergic rhinitis, and other inflammatory conditions, including cardiovascular diseases, cancer, atopic dermatitis, and urticaria. The classification into subtypes of the cysteinyl-LT receptors (CysLTRs was based initially on binding and functional data, obtained using the natural agonists and a wide range of antagonists. CysLTRs have proved remarkably resistant to cloning. However, in 1999 and 2000, the CysLT1R and CysLT2R were successfully cloned and both shown to be members of the G-protein coupled receptors (GPCRs superfamily. Molecular cloning has confirmed most of the previous pharmacological characterization and identified distinct expression patterns only partially overlapping. Recombinant CysLTRs couple to the Gq/11 pathway that modulates inositol phospholipids hydrolysis and calcium mobilization, whereas in native systems, they often activate a pertussis toxin-insensitive Gi/o-protein, or are coupled promiscuously to both G-proteins. Interestingly, recent data provide evidence for the existence of an additional receptor subtype that seems to respond to both cysteinyl-LTs and uracil nucleosides, and of an intracellular pool of CysLTRs that may have roles different from those of plasma membrane receptors. Finally, a cross-talk between the cysteinyl-LT and the purine systems is being delineated. This review will summarize recent data derived from studies on the molecular and cellular pharmacology of CysLTRs.

  15. Role of leptin in delayed embryonic development in the Indian short-nosed fruit bat, Cynopterus sphinx.

    Science.gov (United States)

    Banerjee, A; Meenakumari, K J; Krishna, A

    2010-08-01

    An adiposity-associated rise in leptin occurs at the time of delayed embryonic development in Cynopterus sphinx. The aim of present study was to examine the mechanism by which leptin may inhibit progesterone, and therefore could be responsible for delayed development. The study showed a significant increase in circulating leptin level during the period of increased fat accumulation, which coincided with significant decrease in serum progesterone level and delayed embryonic development in C. sphinx. The study showed increased Ob-R expression in the corpus luteum and in the utero-embryonic unit during the period of delayed embryonic development. The in vitro study showed suppressive effect of leptin on progesterone synthesis. The effect of high dose of leptin on ovarian steroidogenesis was found to be mediated through decreased expression of StAR and LH-R proteins in the ovary. The treatment with leptin caused increased expression of STAT 3 and iNOS proteins in the ovary, which correlated with decreased expression of StAR protein in the ovary. The inhibitory effects of leptin on progesterone synthesis in the ovary are thus mediated through STAT 3 and iNOS-NO signaling pathways. This study further demonstrated low expression of PCNA coinciding with the increased concentration of the leptin receptor in the utero-embryonic unit and high circulating leptin level during November. In conclusion, adiposity associated increased leptin level during November-December might play role in suppressing progesterone synthesis in the corpus luteum as well as suppressing the rate of cell-proliferation in the utero-embryonic unit thereby causing delayed embryonic development in C. sphinx. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Signal transduction through the IL-4 and insulin receptor families.

    Science.gov (United States)

    Wang, L M; Keegan, A; Frankel, M; Paul, W E; Pierce, J H

    1995-07-01

    Activation of tyrosine kinase-containing receptors and intracellular tyrosine kinases by ligand stimulation is known to be crucial for mediating initial and subsequent events involved in mitogenic signal transduction. Receptors for insulin and insulin-like growth factor 1 (IGF-1) contain cytoplasmic tyrosine kinase domains that undergo autophosphorylation upon ligand stimulation. Activation of these receptors also leads to pronounced and rapid tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1) in cells of connective tissue origin. A related substrate, designated 4PS, is similarly phosphorylated by insulin and IGF-1 stimulation in many hematopoietic cell types. IRS-1 and 4PS possess a number of tyrosine phosphorylation sites that are within motifs that bind specific SH2-containing molecules known to be involved in mitogenic signaling such as PI-3 kinase, SHPTP-2 (Syp) and Grb-2. Thus, they appear to act as docking substrates for a variety of signaling molecules. The majority of hematopoietic cytokines bind to receptors that do not possess intrinsic kinase activity, and these receptors have been collectively termed as members of the hematopoietin receptor superfamily. Despite their lack of tyrosine kinase domains, stimulation of these receptors has been demonstrated to activate intracellular kinases leading to tyrosine phosphorylation of multiple substrates. Recent evidence has demonstrated that activation of different members of the Janus family of tyrosine kinases is involved in mediating tyrosine phosphorylation events by specific cytokines. Stimulation of the interleukin 4 (IL-4) receptor, a member of the hematopoietin receptor superfamily, is thought to result in activation of Jak1, Jak3, and/or Fes tyrosine kinases.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Leptin modulates human Sertoli cells acetate production and glycolytic profile: a novel mechanism of obesity-induced male infertility?

    Science.gov (United States)

    Martins, Ana D; Moreira, Ana C; Sá, Rosália; Monteiro, Mariana P; Sousa, Mário; Carvalho, Rui A; Silva, Branca M; Oliveira, Pedro F; Alves, Marco G

    2015-09-01

    Human feeding behavior and lifestyle are gradually being altered, favoring the development of metabolic diseases, particularly type 2 diabetes and obesity. Leptin is produced by the adipose tissue acting as a satiety signal. Its levels have been positively correlated with fat mass and hyperleptinemia has been proposed to negatively affect male reproductive function. Nevertheless, the molecular mechanisms by which this hormone affects male fertility remain unknown. Herein, we hypothesize that leptin acts on human Sertoli cells (hSCs), the "nurse cells" of spermatogenesis, altering their metabolism. To test our hypothesis, hSCs were cultured without or with leptin (5, 25 and 50ng/mL). Leptin receptor was identified by qPCR and Western blot. Protein levels of glucose transporters (GLUT1, GLUT2 and GLUT3), phosphofructokinase, lactate dehydrogenase (LDH) and monocarboxylate transporter 4 (MCT4) were determined by Western Blot. LDH activity was assessed and metabolite production/consumption determined by proton nuclear magnetic resonance. Oxidative damage was evaluated by assessing lipid peroxidation, protein carbonilation and nitration. Our data shows that leptin receptor is expressed in hSCs. The concentration of leptin found in lean, healthy patients, upregulated GLUT2 protein levels and concentrations of leptin found in lean and obese patients increased LDH activity. Of note, all leptin concentrations decreased hSCs acetate production illustrating a novel mechanism for this hormone action. Moreover, our data shows that leptin does not induce or protect hSCs from oxidative damage. We report that this hormone modulates the nutritional support of spermatogenesis, illustrating a novel mechanism that may be linked to obesity-induced male infertility. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Role of leptin in energy expenditure : The hypothalamic perspective

    NARCIS (Netherlands)

    Pandit, R.; Beerens, S.; Adan, R. A.H.

    2017-01-01

    The adipocyte-derived hormone leptin is a peripheral signal that informs the brain about the metabolic status of an organism. Although traditionally viewed as an appetite-suppressing hormone, studies in the past decade have highlighted the role of leptin in energy expenditure. Leptin has been shown

  19. CSF-1 Receptor Signaling in Myeloid Cells

    Science.gov (United States)

    Stanley, E. Richard; Chitu, Violeta

    2014-01-01

    The CSF-1 receptor (CSF-1R) is activated by the homodimeric growth factors colony-stimulating factor-1 (CSF-1) and interleukin-34 (IL-34). It plays important roles in development and in innate immunity by regulating the development of most tissue macrophages and osteoclasts, of Langerhans cells of the skin, of Paneth cells of the small intestine, and of brain microglia. It also regulates the differentiation of neural progenitor cells and controls functions of oocytes and trophoblastic cells in the female reproductive tract. Owing to this broad tissue expression pattern, it plays a central role in neoplastic, inflammatory, and neurological diseases. In this review we summarize the evolution, structure, and regulation of expression of the CSF-1R gene. We review, the structures of CSF-1, IL-34, and the CSF-1R and the mechanism of ligand binding to and activation of the receptor. We further describe the pathways regulating macrophage survival, proliferation, differentiation, and chemotaxis downstream from the CSF-1R. PMID:24890514

  20. Obesity, Inflammation and Acute Myocardial Infarction - Expression of leptin, IL-6 and high sensitivity-CRP in Chennai based population

    Directory of Open Access Journals (Sweden)

    Rajendran Karthick

    2012-08-01

    Full Text Available Abstract Background Obesity, characterised by increased fat mass and is currently regarded as a pro-inflammatory state and often associated with increased risk of cardiovascular diseases (CVD including Myocardial infarction. There is an upregulation of inflammatory markers such as interleukin-6, interleukin-6 receptor and acute phase protein CRP in Acute Myocardial Infarction (AMI patients but the exact mechanism linking obesity and inflammation is not known. It is of our interest to investigate if serum leptin (ob gene product is associated with AMI and correlated with inflammatory proteins namely Interleukin-6 (IL-6 and high sensitivity - C reactive protein (hs-CRP. Results Serum leptin levels were significantly higher in AMI patients when compared to Non-CVD controls. IL-6 and hs-CRP were also elevated in the AMI group and leptin correlated positively with IL-6 and hs-CRP. Incidentally this is the first report from Chennai based population, India. Conclusions The strong correlation between serum levels of leptin and IL-6 implicates an involvement of leptin in the upregulation of inflammatory cytokines during AMI. We hypothesise that the increase in values of IL-6, hs-CRP and their correlation to leptin in AMI patients could be due to participation of leptin in the signaling cascade after myocardial ischemia.

  1. Obesity, Inflammation and Acute Myocardial Infarction - Expression of leptin, IL-6 and high sensitivity-CRP in Chennai based population.

    Science.gov (United States)

    Rajendran, Karthick; Devarajan, Nalini; Ganesan, Manohar; Ragunathan, Malathi

    2012-08-14

    Obesity, characterised by increased fat mass and is currently regarded as a pro-inflammatory state and often associated with increased risk of cardiovascular diseases (CVD) including Myocardial infarction. There is an upregulation of inflammatory markers such as interleukin-6, interleukin-6 receptor and acute phase protein CRP in Acute Myocardial Infarction (AMI) patients but the exact mechanism linking obesity and inflammation is not known. It is of our interest to investigate if serum leptin (ob gene product) is associated with AMI and correlated with inflammatory proteins namely Interleukin-6 (IL-6) and high sensitivity - C reactive protein (hs-CRP). Serum leptin levels were significantly higher in AMI patients when compared to Non-CVD controls. IL-6 and hs-CRP were also elevated in the AMI group and leptin correlated positively with IL-6 and hs-CRP. Incidentally this is the first report from Chennai based population, India. The strong correlation between serum levels of leptin and IL-6 implicates an involvement of leptin in the upregulation of inflammatory cytokines during AMI. We hypothesise that the increase in values of IL-6, hs-CRP and their correlation to leptin in AMI patients could be due to participation of leptin in the signaling cascade after myocardial ischemia.

  2. Signal transduction by the platelet-derived growth factor receptor

    International Nuclear Information System (INIS)

    Williams, L.T.; Escobedo, J.A.; Keating, M.T.; Coughlin, S.R.

    1988-01-01

    The mitogenic effects of platelet-derived growth factor (PDGF) are mediated by the PDGF receptor. The mouse PDGF receptor was recently purified on the basis of its ability to become tyrosine phosphorylated in response to the A-B human platelet form of PDGF, and the receptor amino acid sequence was determined from a full-length cDNA clone. Both the human and mouse receptor cDNA sequences have been expressed in Chinese hamster ovary fibroblast (CHO) cells that normally lack PDGF receptors. This paper summarizes recent results using this system to study signal transduction by the PDGF receptor. Some of the findings show that the KI domain of the PDGF receptor plays an important role in the stimulation of DNA synthesis by PDGF. Surprisingly, the kinase insert region is not essential for PDGF stimulation of PtdIns turnover, pH change, increase in cellular calcium, and receptor autophosphorylation. In addition, PDGF stimulates a conformational change in the receptor

  3. Presynaptic Regulation of Leptin in a Defined Lateral Hypothalamus-Ventral Tegmental Area Neurocircuitry Depends on Energy State.

    Science.gov (United States)

    Liu, Jing-Jing; Bello, Nicholas T; Pang, Zhiping P

    2017-12-06

    Synaptic transmission controls brain activity and behaviors, including food intake. Leptin, an adipocyte-derived hormone, acts on neurons located in the lateral hypothalamic area (LHA) to maintain energy homeostasis and regulate food intake behavior. The specific synaptic mechanisms, cell types, and neural projections mediating this effect remain unclear. In male mice, using pathway-specific retrograde tracing, whole-cell patch-clamp recordings and post hoc cell type identification, we found that leptin reduces excitatory synaptic strength onto both melanin-concentrating hormone- and orexin-expressing neurons projecting from the LHA to the ventral tegmental area (VTA), which may affect dopamine signaling and motivation for feeding. A presynaptic mechanism mediated by distinct intracellular signaling mechanisms may account for this regulation by leptin. The regulatory effects of leptin depend on intact leptin receptor signaling. Interestingly, the synaptic regulatory function of leptin in the LHA-to-VTA neuronal pathway is highly sensitive to energy states: both energy deficiency (acute fasting) and excessive energy storage (high-fat diet-induced obesity) blunt the effect of leptin. These data revealed that leptin may regulate synaptic transmission in the LHA-to-VTA neurocircuitry in an inverted "U-shape" fashion dependent on plasma glucose levels and related to metabolic states. SIGNIFICANCE STATEMENT The lateral hypothalamic area (LHA) to ventral tegmental area (VTA) projection is an important neural pathway involved in balancing whole-body energy states and reward. We found that the excitatory synaptic inputs to both orexin- and melanin-concentrating hormone expressing LHA neurons projecting to the VTA were suppressed by leptin, a peptide hormone derived from adipocytes that signals peripheral energy status to the brain. Interestingly, energy states seem to affect how leptin regulates synaptic transmission since both the depletion of energy induced by acute food

  4. The leptin system and its expression at different nutritional and pregnant stages in lined seahorse (Hippocampus erectus)

    OpenAIRE

    Huixian Zhang; Geng Qin; Yanhong Zhang; Shuisheng Li; Qiang Lin

    2016-01-01

    ABSTRACT Leptin is an essential hormone for the regulation of energy metabolism and food intake in vertebrate animals. To better understand the physiological roles of leptin in nutrient regulation in paternal ovoviviparous fish (family Syngnathidae), the present study cloned the full-length of leptin-a and leptin receptor (lepr) genes in lined seahorse (Hippocampus erectus). Results showed that there was a 576-bp intron between two exons in leptin-a gene but no leptin-b gene in seahorse. Alth...

  5. Signal Diversity of Receptor for Advanced Glycation End Products.

    Science.gov (United States)

    Sakaguchi, Masakiyo; Kinoshita, Rie; Putranto, Endy Widya; Ruma, I Made Winarsa; Sumardika, I Wayan; Youyi, Chen; Tomonobu, Naoko; Yamamoto, Ken-Ichi; Murata, Hitoshi

    2017-12-01

    The receptor for advanced glycation end products (RAGE) is involved in inflammatory pathogenesis. It functions as a receptor to multiple ligands such as AGEs, HMGB1 and S100 proteins, activating multiple intracellular signaling pathways with each ligand binding. The molecular events by which ligand-activated RAGE controls diverse signaling are not well understood, but some progress was made recently. Accumulating evidence revealed that RAGE has multiple binding partners within the cytoplasm and on the plasma membrane. It was first pointed out in 2008 that RAGE's cytoplasmic tail is able to recruit Diaphanous-1 (Dia-1), resulting in the acquisition of increased cellular motility through Rac1/Cdc42 activation. We also observed that within the cytosol, RAGE's cytoplasmic tail behaves similarly to a Toll-like receptor (TLR4)-TIR domain, interacting with TIRAP and MyD88 adaptor molecules that in turn activate multiple downstream signals. Subsequent studies demonstrated the presence of an alternative adaptor molecule, DAP10, on the plasma membrane. The coupling of RAGE with DAP10 is critical for enhancing the RAGE-mediated survival signal. Interestingly, RAGE interaction on the membrane was not restricted to DAP10 alone. The chemotactic G-protein-coupled receptors (GPCRs) formyl peptide receptors1 and 2 (FPR1 and FPR2) also interacted with RAGE on the plasma membrane. Binding interaction between leukotriene B4 receptor 1 (BLT1) and RAGE was also demonstrated. All of the interactions affected the RAGE signal polarity. These findings indicate that functional interactions between RAGE and various molecules within the cytoplasmic area or on the membrane area coordinately regulate multiple ligand-mediated RAGE responses, leading to typical cellular phenotypes in several pathological settings. Here we review RAGE's signaling diversity, to contribute to the understanding of the elaborate functions of RAGE in physiological and pathological contexts.

  6. Hindbrain ghrelin receptor signaling is sufficient to maintain fasting glucose.

    Directory of Open Access Journals (Sweden)

    Michael M Scott

    Full Text Available The neuronal coordination of metabolic homeostasis requires the integration of hormonal signals with multiple interrelated central neuronal circuits to produce appropriate levels of food intake, energy expenditure and fuel availability. Ghrelin, a peripherally produced peptide hormone, circulates at high concentrations during nutrient scarcity. Ghrelin promotes food intake, an action lost in ghrelin receptor null mice and also helps maintain fasting blood glucose levels, ensuring an adequate supply of nutrients to the central nervous system. To better understand mechanisms of ghrelin action, we have examined the roles of ghrelin receptor (GHSR expression in the mouse hindbrain. Notably, selective hindbrain ghrelin receptor expression was not sufficient to restore ghrelin-stimulated food intake. In contrast, the lowered fasting blood glucose levels observed in ghrelin receptor-deficient mice were returned to wild-type levels by selective re-expression of the ghrelin receptor in the hindbrain. Our results demonstrate the distributed nature of the neurons mediating ghrelin action.

  7. Vitamin D Receptor Signaling and Cancer.

    Science.gov (United States)

    Campbell, Moray J; Trump, Donald L

    2017-12-01

    The vitamin D receptor (VDR) binds the secosteroid hormone 1,25(OH) 2 D 3 with high affinity and regulates gene programs that control a serum calcium levels, as well as cell proliferation and differentiation. A significant focus has been to exploit the VDR in cancer settings. Although preclinical studies have been strongly encouraging, to date clinical trials have delivered equivocal findings that have paused the clinical translation of these compounds. However, it is entirely possible that mining of genomic data will help to refine precisely what are the key anticancer actions of vitamin D compounds and where these can be used most effectively. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Receptor downregulation and desensitization enhance the information processing ability of signalling receptors

    Directory of Open Access Journals (Sweden)

    Resat Haluk

    2007-11-01

    Full Text Available Abstract Background In addition to initiating signaling events, the activation of cell surface receptors also triggers regulatory processes that restrict the duration of signaling. Acute attenuation of signaling can be accomplished either via ligand-induced internalization of receptors (endocytic downregulation or via ligand-induced receptor desensitization. These phenomena have traditionally been viewed in the context of adaptation wherein the receptor system enters a refractory state in the presence of sustained ligand stimuli and thereby prevents the cell from over-responding to the ligand. Here we use the epidermal growth factor receptor (EGFR and G-protein coupled receptors (GPCR as model systems to respectively examine the effects of downregulation and desensitization on the ability of signaling receptors to decode time-varying ligand stimuli. Results Using a mathematical model, we show that downregulation and desensitization mechanisms can lead to tight and efficient input-output coupling thereby ensuring synchronous processing of ligand inputs. Frequency response analysis indicates that upstream elements of the EGFR and GPCR networks behave like low-pass filters with the system being able to faithfully transduce inputs below a critical frequency. Receptor downregulation and desensitization increase the filter bandwidth thereby enabling the receptor systems to decode inputs in a wider frequency range. Further, system-theoretic analysis reveals that the receptor systems are analogous to classical mechanical over-damped systems. This analogy enables us to metaphorically describe downregulation and desensitization as phenomena that make the systems more resilient in responding to ligand perturbations thereby improving the stability of the system resting state. Conclusion Our findings suggest that in addition to serving as mechanisms for adaptation, receptor downregulation and desensitization can play a critical role in temporal information

  9. The Cannabinoid Receptor CB1 Modulates the Signaling Properties of the Lysophosphatidylinositol Receptor GPR55*

    Science.gov (United States)

    Kargl, Julia; Balenga, Nariman; Parzmair, Gerald P.; Brown, Andrew J.; Heinemann, Akos; Waldhoer, Maria

    2012-01-01

    The G protein-coupled receptor (GPCR) 55 (GPR55) and the cannabinoid receptor 1 (CB1R) are co-expressed in many tissues, predominantly in the central nervous system. Seven transmembrane spanning (7TM) receptors/GPCRs can form homo- and heteromers and initiate distinct signaling pathways. Recently, several synthetic CB1 receptor inverse agonists/antagonists, such as SR141716A, AM251, and AM281, were reported to activate GPR55. Of these, SR141716A was marketed as a promising anti-obesity drug, but was withdrawn from the market because of severe side effects. Here, we tested whether GPR55 and CB1 receptors are capable of (i) forming heteromers and (ii) whether such heteromers could exhibit novel signaling patterns. We show that GPR55 and CB1 receptors alter each others signaling properties in human embryonic kidney (HEK293) cells. We demonstrate that the co-expression of FLAG-CB1 receptors in cells stably expressing HA-GPR55 specifically inhibits GPR55-mediated transcription factor activation, such as nuclear factor of activated T-cells and serum response element, as well as extracellular signal-regulated kinases (ERK1/2) activation. GPR55 and CB1 receptors can form heteromers, but the internalization of both receptors is not affected. In addition, we observe that the presence of GPR55 enhances CB1R-mediated ERK1/2 and nuclear factor of activated T-cell activation. Our data provide the first evidence that GPR55 can form heteromers with another 7TM/GPCR and that this interaction with the CB1 receptor has functional consequences in vitro. The GPR55-CB1R heteromer may play an important physiological and/or pathophysiological role in tissues endogenously co-expressing both receptors. PMID:23161546

  10. New insights into how trafficking regulates T cell receptor signaling

    Directory of Open Access Journals (Sweden)

    Jieqiong Lou

    2016-07-01

    Full Text Available AbstractThere is emerging evidence that exocytosis plays an important role in regulating T cell receptor (TCR signaling. The trafficking molecules involved in lytic granule (LG secretion in cytotoxic T lymphocytes (CTL have been well studied due to the immune disorder known as familial hemophagocytic lymphohisiocytosis (FHLH. However, the knowledge of trafficking machineries regulating the exocytosis of receptors and signaling molecules remains quite limited. In this review, we summarize the reported trafficking molecules involved in the transport of the TCR and downstream signaling molecules to the cell surface. By combining this information with the known knowledge of LG exocytosis and general exocytic trafficking machinery, we attempt to draw a more complete picture of how the TCR signaling network and exocytic trafficking matrix are interconnected to facilitate T cell activation. This also highlights how membrane compartmentalization facilitates the spatiotemporal organization of cellular responses that are essential for immune functions.

  11. The Janus face of death receptor signalling during tumour immunoediting.

    Directory of Open Access Journals (Sweden)

    Eimear O' Reilly

    2016-10-01

    Full Text Available Cancer immune-surveillance is essential for the inhibition of carcinogenesis. Malignantly transformed cells can be recognised by both the innate and adaptive immune systems through different mechanisms. Immune effector cells induce extrinsic cell death in the identified tumour cells by expressing death ligand cytokines of the tumour necrosis factor ligand family. However, some tumour cells can escape immune elimination and progress. Acquisition of resistance to the death-ligand induced apoptotic pathway can be obtained through cleavage of effector-cell expressed death-ligands into a poorly active form, mutations or silencing of the death receptors or overexpression of decoy receptors and pro-survival proteins. Although the immune system is highly effective in the elimination of malignantly transformed cells, abnormal/ dysfunctional death-ligand signalling curbs its cytotoxicity. Moreover, death receptors can also transmit pro-survival and pro-migratory signals. Consequently, dysfunctional death receptor-mediated apoptosis/necroptosis signalling does not only give a passive resistance against cell death, but actively drives tumour cell motility, invasion and contributes to consequent metastasis. This dual contribution of the death ligand-death receptor signalling in both the early, elimination phase and then in the late, escape phase of the tumour immunoediting process is discussed in this review. Death receptor agonists still hold potential for cancer therapy since they can execute the tumour-eliminating immune-effector function even in the absence of activation of the immune system against the tumour. The opportunities and challenges of developing death receptor agonists into effective cancer therapeutics are also discussed.

  12. Mechanism of inhibition of growth hormone receptor signaling by suppressor of cytokine signaling proteins

    DEFF Research Database (Denmark)

    Hansen, J A; Lindberg, K; Hilton, D J

    1999-01-01

    In this study we have investigated the role of suppressor of cytokine signaling (SOCS) proteins in GH receptor-mediated signaling. GH-induced transcription was inhibited by SOCS-1 and SOCS-3, while SOCS-2 and cytokine inducible SH2-containing protein (CIS) had no effect By using chimeric SOCS pro...

  13. To eat or not to eat: ontogeny of hypothalamic feeding controls and a role for leptin in modulating life-history transition in amphibian tadpoles.

    Science.gov (United States)

    Bender, Melissa Cui; Hu, Caroline; Pelletier, Chris; Denver, Robert J

    2018-03-28

    Many animal life histories entail changing feeding ecology, but the molecular bases for these transitions are poorly understood. The amphibian tadpole is typically a growth and dispersal life-history stage. Tadpoles are primarily herbivorous, and they capitalize on growth opportunities to reach a minimum body size to initiate metamorphosis. During metamorphic climax, feeding declines, at which time the gastrointestinal (GI) tract remodels to accommodate the carnivorous diet of the adult frog. Here we show that anorexigenic hypothalamic feeding controls are absent in the tadpole, but develop during metamorphosis concurrent with the production of the satiety signal leptin. Before metamorphosis there is a large increase in leptin mRNA in fat tissue. Leptin receptor mRNA increased during metamorphosis in the preoptic area/hypothalamus, the key brain region involved with the control of food intake and metabolism. This corresponded with an increase in functional leptin receptor, as evidenced by induction of socs3 mRNA and phosphorylated STAT3 immunoreactivity, and suppression of feeding behaviour after injection of recombinant frog leptin. Furthermore, we found that immunoneutralization of leptin in tadpoles at metamorphic climax caused them to resume feeding. The absence of negative regulation of food intake in the tadpole allows the animal to maximize growth prior to metamorphosis. Maturation of leptin-responsive neural circuits suppresses feeding during metamorphosis to facilitate remodelling of the GI tract. © 2018 The Author(s).

  14. Diverse FGF receptor signaling controls astrocyte specification and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kyungjun [School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Song, Mi-Ryoung, E-mail: msong@gist.ac.kr [School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Bioimaging Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of)

    2010-05-07

    During CNS development, pluripotency neuronal progenitor cells give rise in succession to neurons and glia. Fibroblast growth factor-2 (FGF-2), a major signal that maintains neural progenitors in the undifferentiated state, is also thought to influence the transition from neurogenesis to gliogenesis. Here we present evidence that FGF receptors and underlying signaling pathways transmit the FGF-2 signals that regulate astrocyte specification aside from its mitogenic activity. Application of FGF-2 to cortical progenitors suppressed neurogenesis whereas treatment with an FGFR antagonist in vitro promoted neurogenesis. Introduction of chimeric FGFRs with mutated tyrosine residues into cortical progenitors and drug treatments to specifically block individual downstream signaling pathways revealed that the overall activity of FGFR rather than individual autophosphorylation sites is important for delivering signals for glial specification. In contrast, a signal for cell proliferation by FGFR was mainly delivered by MAPK pathway. Together our findings indicate that FGFR activity promotes astrocyte specification in the developing CNS.

  15. Diverse FGF receptor signaling controls astrocyte specification and proliferation

    International Nuclear Information System (INIS)

    Kang, Kyungjun; Song, Mi-Ryoung

    2010-01-01

    During CNS development, pluripotency neuronal progenitor cells give rise in succession to neurons and glia. Fibroblast growth factor-2 (FGF-2), a major signal that maintains neural progenitors in the undifferentiated state, is also thought to influence the transition from neurogenesis to gliogenesis. Here we present evidence that FGF receptors and underlying signaling pathways transmit the FGF-2 signals that regulate astrocyte specification aside from its mitogenic activity. Application of FGF-2 to cortical progenitors suppressed neurogenesis whereas treatment with an FGFR antagonist in vitro promoted neurogenesis. Introduction of chimeric FGFRs with mutated tyrosine residues into cortical progenitors and drug treatments to specifically block individual downstream signaling pathways revealed that the overall activity of FGFR rather than individual autophosphorylation sites is important for delivering signals for glial specification. In contrast, a signal for cell proliferation by FGFR was mainly delivered by MAPK pathway. Together our findings indicate that FGFR activity promotes astrocyte specification in the developing CNS.

  16. Glucagon-like peptide 1 interacts with ghrelin and leptin to regulate glucose metabolism and food intake through vagal afferent neuron signaling.

    Science.gov (United States)

    Ronveaux, Charlotte C; Tomé, Daniel; Raybould, Helen E

    2015-04-01

    Emerging evidence has suggested a possible physiologic role for peripheral glucagon-like peptide 1 (GLP-1) in regulating glucose metabolism and food intake. The likely site of action of GLP-1 is on vagal afferent neurons (VANs). The vagal afferent pathway is the major neural pathway by which information about ingested nutrients reaches the central nervous system and influences feeding behavior. Peripheral GLP-1 acts on VANs to inhibit food intake. The mechanism of the GLP-1 receptor (GLP-1R) is unlike other gut-derived receptors; GLP-1Rs change their cellular localization according to feeding status rather than their protein concentrations. It is possible that several gut peptides are involved in mediating GLP-1R translocation. The mechanism of peripheral GLP-1R translocation still needs to be elucidated. We review data supporting the role of peripheral GLP-1 acting on VANs in influencing glucose homeostasis and feeding behavior. We highlight evidence demonstrating that GLP-1 interacts with ghrelin and leptin to induce satiation. Our aim was to understand the mechanism of peripheral GLP-1 in the development of noninvasive antiobesity treatments. © 2015 American Society for Nutrition.

  17. Signalling through C-type lectin receptors: shaping immune responses

    NARCIS (Netherlands)

    Geijtenbeek, Teunis B. H.; Gringhuis, Sonja I.

    2009-01-01

    C-type lectin receptors (CLRs) expressed by dendritic cells are crucial for tailoring immune responses to pathogens. Following pathogen binding, CLRs trigger distinct signalling pathways that induce the expression of specific cytokines which determine T cell polarization fates. Some CLRs can induce

  18. Environmental obesogen tributyltin chloride leads to abnormal hypothalamic-pituitary-gonadal axis function by disruption in kisspeptin/leptin signaling in female rats

    Energy Technology Data Exchange (ETDEWEB)

    Sena, Gabriela C.; Freitas-Lima, Leandro C.; Merlo, Eduardo; Podratz, Priscila L.; Araújo, Julia F.P. de [Department of Morphology, Federal University of Espírito Santo (Brazil); Brandão, Poliane A.A.; Carneiro, Maria T.W.D. [Department of Chemistry, Federal University of Espírito Santo (Brazil); Zicker, Marina C. [Department of Food Science, Faculty of Pharmacy, Federal University of Minas Gerais (Brazil); Ferreira, Adaliene V.M. [Department of Basic Nursing, Nursing School, Federal University of Minas Gerais (Brazil); Takiya, Christina M.; Lemos Barbosa, Carolina M. de; Morales, Marcelo M. [Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (Brazil); Santos-Silva, Ana Paula [Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (Brazil); Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro (Brazil); Postgraduate Program in Endocrinology, School of Medicine, Federal University of Rio de Janeiro (Brazil); Miranda-Alves, Leandro [Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro (Brazil); Postgraduate Program in Endocrinology, School of Medicine, Federal University of Rio de Janeiro (Brazil); Silva, Ian V. [Department of Morphology, Federal University of Espírito Santo (Brazil); Graceli, Jones B., E-mail: jbgraceli@gmail.com [Department of Morphology, Federal University of Espírito Santo (Brazil)

    2017-03-15

    be associated with abnormal HPG function. A strong negative correlation between the hyperleptinemia and lower Kiss responsiveness was observed in the TBT rats. These findings provide evidence that TBT leads to toxic effects direct on the HPG axis and/or indirectly by abnormal metabolic regulation of the HPG axis. - Highlights: • TBT disrupted proper functioning of the HPG axis in female rats. • TBT leads to obesity and abnormal kisspeptin/leptin signaling in female rats. • TBT impairs GnRH neurons function, estrogen negative feedback role and fertility in female rats. • TBT leads to hyperleptinemia that may be associated at least in part with abnormal HPG function.

  19. Environmental obesogen tributyltin chloride leads to abnormal hypothalamic-pituitary-gonadal axis function by disruption in kisspeptin/leptin signaling in female rats

    International Nuclear Information System (INIS)

    Sena, Gabriela C.; Freitas-Lima, Leandro C.; Merlo, Eduardo; Podratz, Priscila L.; Araújo, Julia F.P. de; Brandão, Poliane A.A.; Carneiro, Maria T.W.D.; Zicker, Marina C.; Ferreira, Adaliene V.M.; Takiya, Christina M.; Lemos Barbosa, Carolina M. de; Morales, Marcelo M.; Santos-Silva, Ana Paula; Miranda-Alves, Leandro; Silva, Ian V.; Graceli, Jones B.

    2017-01-01

    be associated with abnormal HPG function. A strong negative correlation between the hyperleptinemia and lower Kiss responsiveness was observed in the TBT rats. These findings provide evidence that TBT leads to toxic effects direct on the HPG axis and/or indirectly by abnormal metabolic regulation of the HPG axis. - Highlights: • TBT disrupted proper functioning of the HPG axis in female rats. • TBT leads to obesity and abnormal kisspeptin/leptin signaling in female rats. • TBT impairs GnRH neurons function, estrogen negative feedback role and fertility in female rats. • TBT leads to hyperleptinemia that may be associated at least in part with abnormal HPG function

  20. Bone mass regulation of leptin and postmenopausal osteoporosis with obesity.

    Science.gov (United States)

    Legiran, Siswo; Brandi, Maria Luisa

    2012-09-01

    Leptin has been known to play a role in weight regulation through food intake and energy expenditure. Leptin also has an important role in bone metabolism. The role of leptin is determined by leptin receptors, either central or peripheral to the bones. We discuss the role of leptin on bone and molecular genetics of osteoporosis in postmenopausal obese women. The role of leptin in bone preserves bone mineral density (BMD) through increased OPG levels leading to bind RANKL, resulting in reducing osteoclast activity. The estrogen role on bone is also mediated by RANKL and OPG. In postmenopausal women who have estrogen deficiency, it increases the rate of RANKL, which increases osteoclastogenesis. Obese individuals who have a high level of leptin will be effected by bone protection. There are similarities in the mechanism between estrogen and leptin in influencing the process of bone remodeling. It may be considered that the role of estrogen can be replaced by leptin. Molecular genetic aspects that play a role in bone remodeling, such as leptin, leptin receptors, cytokines (e.g. RANK, RANKL, and OPG), require further study to be useful, especially regarding osteoporosis therapy based on genetic analysis.

  1. [The role of alterations in the brain signaling systems regulated by insulin, IGF-1 and leptin in the transition of impaired glucose tolerance to overt type 2 diabetes mellitus].

    Science.gov (United States)

    Shpakov, A O

    2014-01-01

    One of the crucial factors leading to the development of pre-diabetes and type 2 diabetes mellitus (DM2) are the disturbances in the brain hormonal signaling systems regulated by insulin, insulin-like growth factor-1 (IGF-1) and leptin. The causes of these disturbances are the changes in the redox balance and lipid metabolism leading to lipotoxicity and endoplasmic reticulum stress in neuronal cells, as well as the dysfunctions in neurotransmitter systems of the brain that are functionally associated with insulin, IGF-1 and leptin signaling systems. The identification of molecular disturbances in insulin, IGF-1 and leptin systems of the brain in pre-diabetes and DM2 can be used for early diagnostics of these diseases, and to develop new strategies for preventive treatment of DM2 at the pre-diabetic stage. In the review, the literature data and the results of own investigations concerning the changes in the insulin, IGF-1 and leptin systems of the brain in pre-diabetes and DM2 and their role in the etiology and pathogenesis of DM2 are analyzed, and the approaches to restore the functional activity of these systems are discussed.

  2. Role of Estrogen Receptor Signaling in Breast Cancer Metastasis

    International Nuclear Information System (INIS)

    Roy, S.S.; Vadlamudi, R.K.

    2012-01-01

    Metastatic breast cancer is a life-threatening stage of cancer and is the leading cause of death in advanced breast cancer patients. Estrogen signaling and the estrogen receptor (ER) are implicated in breast cancer progression, and the majority of the human breast cancers start out as estrogen dependent. Accumulating evidence suggests that ER signaling is complex, involving coregulatory proteins and extranuclear actions. ER-coregualtory proteins are tightly regulated under normal conditions with miss expression primarily reported in cancer. Deregulation of ER coregualtors or ER extranuclear signaling has potential to promote metastasis in ER-positive breast cancer cells. This review summarizes the emerging role of ER signaling in promoting metastasis of breast cancer cells, discusses the molecular mechanisms by which ER signaling contributes to metastasis, and explores possible therapeutic targets to block ER-driven metastasis

  3. Neurotransmitter receptors as signaling platforms in anterior pituitary cells

    Czech Academy of Sciences Publication Activity Database

    Zemková, Hana; Stojilkovic, S. S.

    2018-01-01

    Roč. 463, C (2018), s. 49-64 ISSN 0303-7207 R&D Projects: GA ČR(CZ) GA16-12695S; GA ČR(CZ) GBP304/12/G069; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 Keywords : pituitary * ligand-gated receptor channels * G protein -coupled receptors * neurotransmitters * action potentials * calcium signaling * hormone secretion Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 3.754, year: 2016

  4. Physiological Signaling and Structure of the HGF Receptor MET

    Directory of Open Access Journals (Sweden)

    Gianluca Baldanzi

    2014-12-01

    Full Text Available The “hepatocyte growth factor” also known as “scatter factor”, is a multifunctional cytokine with the peculiar ability of simultaneously triggering epithelial cell proliferation, movement and survival. The combination of those proprieties results in the induction of an epithelial to mesenchymal transition in target cells, fundamental for embryogenesis but also exploited by tumor cells during metastatization. The hepatocyte growth factor receptor, MET, is a proto-oncogene and a prototypical transmembrane tyrosine kinase receptor. Inhere we discuss the MET molecular structure and the hepatocyte growth factor driven physiological signaling which coordinates epithelial proliferation, motility and morphogenesis.

  5. The impact of leptin on perinatal development and psychopathology.

    Science.gov (United States)

    Valleau, Jeanette C; Sullivan, Elinor L

    2014-11-01

    Leptin has long been associated with metabolism as it is a critical regulator of both food intake and energy expenditure, but recently, leptin dysregulation has been proposed as a mechanism of psychopathology. This review discusses the evidence supporting a role for leptin in mental health disorders and describes potential mechanisms that may underlie this association. Leptin plays a critical role in pregnancy and in fetal growth and development. Leptin's role and profile during development is examined in available human studies, and the validity of applying studies conducted in animal models to the human population are discussed. Rodents experience a postnatal leptin surge, which does not occur in humans or larger animal models. This suggests that further research using large mammal models, which have a leptin profile across pregnancy and development similar to humans, are of high importance. Maternal obesity and hyperleptinemia correlate with increased leptin levels in the umbilical cord, placenta, and fetus. Leptin levels are thought to impact fetal brain development; likely by activating proinflammatory cytokines that are known to impact many of the neurotransmitter systems that regulate behavior. Leptin is likely involved in behavioral regulation as leptin receptors are widely distributed in the brain, and leptin influences cortisol release, the mesoaccumbens dopamine pathway, serotonin synthesis, and hippocampal synaptic plasticity. In humans, both high and low levels of leptin are reported to be associated with psychopathology. This inconsistency is likely due to differences in the metabolic state of the study populations. Leptin resistance, which occurs in the obese state, may explain how both high and low levels of leptin are associated with psychopathology, as well as the comorbidity of obesity with numerous mental illnesses. Leptin resistance is likely to influence disorders such as depression and anxiety where high leptin levels have been correlated

  6. 20 years of leptin: leptin and reproduction: past milestones, present undertakings, and future endeavors.

    Science.gov (United States)

    Chehab, Farid F

    2014-10-01

    The association between leptin and reproduction originated with the leptin-mediated correction of sterility in ob/ob mice and initiation of reproductive function in normal female mice. The uncovering of a central leptin pathway regulating food intake prompted the dissection of neuroendocrine mechanisms involving leptin in the metabolic control of reproduction. The absence of leptin receptors on GnRH neurons incited a search for intermediary neurons situated between leptin-responsive and GnRH neurons. This review addresses the most significant findings that have furthered our understanding of recent progress in this new field. The role of leptin in puberty was impacted by the discovery of neurons that co-express kisspeptin, neurokinin B, and dynorphin and these could act as leptin intermediates. Furthermore, the identification of first-order leptin-responsive neurons in the premammilary ventral nucleus and other brain regions opens new avenues to explore their relationship to GnRH neurons. Central to these advances is the unveiling that agouti-related protein/neuropeptide Y neurons project onto GnRH and kisspeptin neurons, allowing for a crosstalk between food intake and reproduction. Finally, while puberty is a state of leptin sensitivity, mid-gestation represents a state of leptin resistance aimed at building energy stores to sustain pregnancy and lactation. The mechanisms underlying leptin resistance in pregnancy have lagged; however, the establishment of this natural state is significant. Reproduction and energy balance are tightly controlled and backed up by redundant mechanisms that are critical for the survival of our species. It will be the goal of the following decade to shed new light on these complex and essential pathways. © 2014 Society for Endocrinology.

  7. CD147 is a signaling receptor for cyclophilin B.

    Science.gov (United States)

    Yurchenko, V; O'Connor, M; Dai, W W; Guo, H; Toole, B; Sherry, B; Bukrinsky, M

    2001-11-09

    Cyclophilins A and B (CyPA and CyPB) are cyclosporin A binding proteins that can be secreted in response to inflammatory stimuli. We recently identified CD147 as a cell-surface receptor for CyPA and demonstrated that CD147 is an essential component in the CyPA-initiated signaling cascade that culminates in ERK activation and chemotaxis. Here we demonstrate that CD147 also serves as a receptor for CyPB. CyPB induced Ca(2+) flux and chemotaxis of CD147-transfected, but not control, CHO cells, and the chemotactic response of primary human neutrophils to CyPB was blocked by antibodies to CD147. These results suggest that CD147 serves as a receptor for extracellular cyclophilins. Copyright 2001 Academic Press.

  8. Nicotine enhances modulation of food-cue reactivity by leptin and ghrelin in the ventromedial prefrontal cortex.

    Science.gov (United States)

    Kroemer, Nils B; Wuttig, Franziska; Bidlingmaier, Martin; Zimmermann, Ulrich S; Smolka, Michael N

    2015-07-01

    Endocrine signals such as ghrelin and leptin are known to modulate the mesocorticolimbic dopaminergic system and, consequently, show associations with food and drug reward. In animal models, nicotine was demonstrated to reduce body weight by attenuating food intake and effects of leptin and ghrelin are partly modulated by nicotinic acetylcholine receptors which hint at potential interactions. However, the neuropharmacological modulation of endocrine signals by nicotine in healthy humans remains to be tested experimentally. We used functional magnetic resonance imaging to investigate food-cue reactivity after an overnight fast and following a caloric load (oral glucose tolerance test, OGTT) in 26 healthy normal-weight never-smokers. Moreover, we administered either nicotine (2 mg) or placebo gums using a randomized cross-over design and assessed blood plasma levels of ghrelin and leptin. During fasting, nicotine administration decreased correlations with ghrelin levels in the mesocorticolimbic system whereas correlations with leptin were increased. After the OGTT, nicotine increased the modulatory effects of ghrelin and leptin on food-cue reactivity, particularly in the ventromedial prefrontal cortex (vmPFC) and the amygdala. Critically, this led to an indirect modulation of the behavioral 'appetizer effect' (i.e. cue-induced increases in subjective appetite) by homeostatic feedback signals via food-cue reactivity in vmPFC. We conclude that nicotine enhances the effect of ghrelin and leptin in the valuation and relevance network which might, in turn, reduce appetite. This highlights that amplifying the impact of homeostatic signals such as ghrelin and leptin in normal-weight individuals might hint at a mechanism contributing to nicotine's anorexic potential. © 2014 Society for the Study of Addiction.

  9. Nuclear receptor TLX inhibits TGF-β signaling in glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Erik; Zhai, Qiwei [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden); Zeng, Zhao-jun [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden); Molecular Biology Research Center, School of Life Sciences, Central South University, 110, Xiangya Road, Changsha, Hunan 410078 (China); Yoshida, Takeshi [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden); Funa, Keiko, E-mail: keiko.funa@gu.se [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden)

    2016-05-01

    TLX (also called NR2E1) is an orphan nuclear receptor that maintains stemness of neuronal stem cells. TLX is highly expressed in the most malignant form of glioma, glioblastoma multiforme (GBM), and is important for the proliferation and maintenance of the stem/progenitor cells of the tumor. Transforming Growth Factor-β (TGF-β) is a cytokine regulating many different cellular processes such as differentiation, migration, adhesion, cell death and proliferation. TGF-β has an important function in cancer where it can work as either a tumor suppressor or oncogene, depending on the cancer type and stage of tumor development. Since glioblastoma often have dysfunctional TGF-β signaling we wanted to find out if there is any interaction between TLX and TGF-β in glioblastoma cells. We demonstrate that knockdown of TLX enhances the canonical TGF-β signaling response in glioblastoma cell lines. TLX physically interacts with and stabilizes Smurf1, which can ubiquitinate and target TGF-β receptor II for degradation, whereas knockdown of TLX leads to stabilization of TGF-β receptor II, increased nuclear translocation of Smad2/3 and enhanced expression of TGF-β target genes. The interaction between TLX and TGF-β may play an important role in the regulation of proliferation and tumor-initiating properties of glioblastoma cells. - Highlights: • TLX knockdown enhances TGF-β dependent Smad signaling in glioblastoma cells • TLX knockdown increases the protein level of TGF-β receptor II. • TLX stabilizes and retains Smurf1 in the cytoplasm. • TLX enhances Smurf1-dependent ubiquitination and degradation of TGF-β receptor II.

  10. Nuclear receptor TLX inhibits TGF-β signaling in glioblastoma

    International Nuclear Information System (INIS)

    Johansson, Erik; Zhai, Qiwei; Zeng, Zhao-jun; Yoshida, Takeshi; Funa, Keiko

    2016-01-01

    TLX (also called NR2E1) is an orphan nuclear receptor that maintains stemness of neuronal stem cells. TLX is highly expressed in the most malignant form of glioma, glioblastoma multiforme (GBM), and is important for the proliferation and maintenance of the stem/progenitor cells of the tumor. Transforming Growth Factor-β (TGF-β) is a cytokine regulating many different cellular processes such as differentiation, migration, adhesion, cell death and proliferation. TGF-β has an important function in cancer where it can work as either a tumor suppressor or oncogene, depending on the cancer type and stage of tumor development. Since glioblastoma often have dysfunctional TGF-β signaling we wanted to find out if there is any interaction between TLX and TGF-β in glioblastoma cells. We demonstrate that knockdown of TLX enhances the canonical TGF-β signaling response in glioblastoma cell lines. TLX physically interacts with and stabilizes Smurf1, which can ubiquitinate and target TGF-β receptor II for degradation, whereas knockdown of TLX leads to stabilization of TGF-β receptor II, increased nuclear translocation of Smad2/3 and enhanced expression of TGF-β target genes. The interaction between TLX and TGF-β may play an important role in the regulation of proliferation and tumor-initiating properties of glioblastoma cells. - Highlights: • TLX knockdown enhances TGF-β dependent Smad signaling in glioblastoma cells • TLX knockdown increases the protein level of TGF-β receptor II. • TLX stabilizes and retains Smurf1 in the cytoplasm. • TLX enhances Smurf1-dependent ubiquitination and degradation of TGF-β receptor II.

  11. Assembly of Oligomeric Death Domain Complexes during Toll Receptor Signaling*

    OpenAIRE

    Moncrieffe, Martin C.; Grossmann, J. Günter; Gay, Nicholas J.

    2008-01-01

    The Drosophila Toll receptor is activated by the endogenous protein ligand Spätzle in response to microbial stimuli in immunity and spatial cues during embryonic development. Downstream signaling is mediated by the adaptor proteins Tube, the kinase Pelle, and the Drosophila homologue of myeloid differentiation primary response protein (dMyD88). Here we have characterized heterodimeric (dMyD88-Tube) and heterotrimeric (dMyD88-Tube-Pelle) death domain complexes. We show ...

  12. Leptin and Pathological Indexes in Women with Breast Cancer

    Directory of Open Access Journals (Sweden)

    B Noori Alavicheh

    2015-06-01

    Full Text Available Background & aim: Breast cancer is the most common cancer among women and one of the factors threatening the health of women worldwide. Leptin is a 16 kD glycoprotein hormone produced predominantly by white adipose tissue. Leptin binds to receptors in the hypothalamus and plays a key role in regulation of metabolism. Both leptin and leptin receptor have recently been implicated in processes and progress leading to breast cancer initiation. The aim of this study was to identify if there is association between leptin and pathological indexes in patients with breast cancer Methods: 45women with breast cancer were enrolled. Serum leptin levels of patients were measured by the ELISA method. Pathological information such as stage of the breast cancer, Hormonal receptor (ER, PR and Her2 status in these patients were determined. Result: Results revealed that the patients who were in stage one and two, the mean serum leptin level was (34.18±21.22 ng/ml And patients who were in stage three and four, the mean serum leptin level was (32.21±21/93 ng/ml. Also the mean serum leptin levels in patients whose receptor status of ER, PR and HER2 positive were (35.90±23.55, 35.74±23.91and 37.02±24.25ng/ml, respectively. The Patients whose receptor status of ER, PR and HER2 negative were 26.64±13.13, 28.17±14.26and31.32±19.9ng/ml respectively. No significant association was found between leptin leveland stage of the breast cancer, hormonal receptor (ER, PR and Her2 status in Patients with Breast cancer(p>0.05. Conclusions: In this study, no association was found between serum leptin level and pathological indices in women with Breast cancer in Yasuj, Iran.

  13. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yasuko Kitagishi

    2013-10-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer.

  14. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Satoru, E-mail: smatsuda@cc.nara-wu.ac.jp; Kitagishi, Yasuko [Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506 (Japan)

    2013-10-21

    Peroxisome proliferator-activated receptors (PPARs) are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR) signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer.

  15. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    International Nuclear Information System (INIS)

    Matsuda, Satoru; Kitagishi, Yasuko

    2013-01-01

    Peroxisome proliferator-activated receptors (PPARs) are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR) signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer

  16. DMPD: Is HIV infection a TNF receptor signalling-driven disease? [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18178131 Is HIV infection a TNF receptor signalling-driven disease? Herbein G, Khan... KA. Trends Immunol. 2008 Feb;29(2):61-7. (.png) (.svg) (.html) (.csml) Show Is HIV infection a TNF receptor signalling-driven dise...ase? PubmedID 18178131 Title Is HIV infection a TNF receptor signalling-driven diseas

  17. DMPD: TGF-beta signaling from receptors to the nucleus. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10611754 TGF-beta signaling from receptors to the nucleus. Roberts AB. Microbes Inf...ect. 1999 Dec;1(15):1265-73. (.png) (.svg) (.html) (.csml) Show TGF-beta signaling from receptors to the nucleus.... PubmedID 10611754 Title TGF-beta signaling from receptors to the nucleus. Authors Roberts AB. Publicat

  18. DMPD: Signals and receptors involved in recruitment of inflammatory cells. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 7744810 Signals and receptors involved in recruitment of inflammatory cells. Ben-Ba...ow Signals and receptors involved in recruitment of inflammatory cells. PubmedID 7744810 Title Signals and receptors involved in recr...uitment of inflammatory cells. Authors Ben-Baruch A, Mic

  19. DMPD: Lysophospholipid receptors: signaling and biology. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15189145 Lysophospholipid receptors: signaling and biology. Ishii I, Fukushima N, Y...e X, Chun J. Annu Rev Biochem. 2004;73:321-54. (.png) (.svg) (.html) (.csml) Show Lysophospholipid receptors...: signaling and biology. PubmedID 15189145 Title Lysophospholipid receptors: signaling and biology. Authors

  20. The Growth Hormone Receptor: Mechanism of Receptor Activation, Cell Signaling, and Physiological Aspects

    Directory of Open Access Journals (Sweden)

    Farhad Dehkhoda

    2018-02-01

    Full Text Available The growth hormone receptor (GHR, although most well known for regulating growth, has many other important biological functions including regulating metabolism and controlling physiological processes related to the hepatobiliary, cardiovascular, renal, gastrointestinal, and reproductive systems. In addition, growth hormone signaling is an important regulator of aging and plays a significant role in cancer development. Growth hormone activates the Janus kinase (JAK–signal transducer and activator of transcription (STAT signaling pathway, and recent studies have provided a new understanding of the mechanism of JAK2 activation by growth hormone binding to its receptor. JAK2 activation is required for growth hormone-mediated activation of STAT1, STAT3, and STAT5, and the negative regulation of JAK–STAT signaling comprises an important step in the control of this signaling pathway. The GHR also activates the Src family kinase signaling pathway independent of JAK2. This review covers the molecular mechanisms of GHR activation and signal transduction as well as the physiological consequences of growth hormone signaling.

  1. Differential Effects of Leptin on the Invasive Potential of Androgen-Dependent and -Independent Prostate Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Dayanand D. Deo

    2008-01-01

    Full Text Available Obesity has been linked with an increased risk of prostate cancer. The formation of toxic free oxygen radicals has been implicated in obesity mediated disease processes. Leptin is one of the major cytokines produced by adipocytes and controls body weight homeostasis through food intake and energy expenditure. The rationale of the study was to determine the impact of leptin on the metastatic potential of androgen-sensitive (LNCaP cells as well as androgen-insensitive (PC-3 and DU-145 cells. At a concentration of 200_nm, LNCaP cells showed a significant increase (20% above control; P<.0001 in cellular proliferation without any effect on androgen-insensitive cells. Furthermore, exposure to leptin caused a significant (P<.01 to P<.0001 dose-dependent decrease in migration and invasion of PC3 and Du-145 prostate carcinoma cell lines. At the molecular level, exposure of androgen-independent prostate cancer cells to leptin stimulates the phosphorylation of MAPK at early time point as well as the transcription factor STAT3, suggesting the activation of the intracellular signaling cascade upon leptin binding to its cognate receptor. Taken together, these results suggest that leptin mediates the invasive potential of prostate carcinoma cells, and that this effect is dependent on their androgen sensitivity.

  2. Design principles of nuclear receptor signaling: how complex networking improves signal transduction

    Science.gov (United States)

    Kolodkin, Alexey N; Bruggeman, Frank J; Plant, Nick; Moné, Martijn J; Bakker, Barbara M; Campbell, Moray J; van Leeuwen, Johannes P T M; Carlberg, Carsten; Snoep, Jacky L; Westerhoff, Hans V

    2010-01-01

    The topology of nuclear receptor (NR) signaling is captured in a systems biological graphical notation. This enables us to identify a number of ‘design' aspects of the topology of these networks that might appear unnecessarily complex or even functionally paradoxical. In realistic kinetic models of increasing complexity, calculations show how these features correspond to potentially important design principles, e.g.: (i) cytosolic ‘nuclear' receptor may shuttle signal molecules to the nucleus, (ii) the active export of NRs may ensure that there is sufficient receptor protein to capture ligand at the cytoplasmic membrane, (iii) a three conveyor belts design dissipating GTP-free energy, greatly aids response, (iv) the active export of importins may prevent sequestration of NRs by importins in the nucleus and (v) the unspecific nature of the nuclear pore may ensure signal-flux robustness. In addition, the models developed are suitable for implementation in specific cases of NR-mediated signaling, to predict individual receptor functions and differential sensitivity toward physiological and pharmacological ligands. PMID:21179018

  3. Leptin's effect on taste bud calcium responses and transmitter secretion.

    Science.gov (United States)

    Meredith, Tricia L; Corcoran, Alan; Roper, Stephen D

    2015-05-01

    Leptin, a peptide hormone released by adipose tissue, acts on the hypothalamus to control cravings and appetite. Leptin also acts to decrease taste responses to sweet substances, though there is little detailed information regarding where leptin acts in the taste transduction cascade. The present study examined the effects of leptin on sweet-evoked responses and neuro transmitter release from isolated taste buds. Our results indicate that leptin moderately decreased sweet-evoked calcium mobilization in isolated mouse taste buds. We also employed Chinese hamster ovary biosensor cells to examine taste transmitter release from isolated taste buds. Leptin reduced ATP and increased serotonin release in response to sweet stimulation. However, leptin has no effect on bitter-evoked transmitter release, further showing that the action of leptin is sweet specific. Our results support those of previous studies, which state that leptin acts on taste tissue via the leptin receptor, most likely on Type II (Receptor) cells, but also possibly on Type III (Presynaptic) cells. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Adipocyte Versus Pituitary Leptin in the Regulation of Pituitary Hormones: Somatotropes Develop Normally in the Absence of Circulating Leptin

    Science.gov (United States)

    Odle, Angela K.; Haney, Anessa; Allensworth-James, Melody; Akhter, Noor

    2014-01-01

    Leptin is a cytokine produced by white fat cells, skeletal muscle, the placenta, and the pituitary gland among other tissues. Best known for its role in regulating appetite and energy expenditure, leptin is produced largely by and in proportion to white fat cells. Leptin is also important to the maintenance and function of the GH cells of the pituitary. This was shown when the deletion of leptin receptors on somatotropes caused decreased numbers of GH cells, decreased circulating GH, and adult-onset obesity. To determine the source of leptin most vital to GH cells and other pituitary cell types, we compared two different leptin knockout models with Cre-lox technology. The global Lep-null model is like the ob/ob mouse, whereby only the entire exon 3 is deleted. The selective adipocyte-Lep-null model lacks adipocyte leptin but retains pituitary leptin, allowing us to investigate the pituitary as a potential source of circulating leptin. Male and female mice lacking adipocyte leptin (Adipocyte-lep-null) did not produce any detectable circulating leptin and were infertile, suggesting that the pituitary does not contribute to serum levels. In the presence of only pituitary leptin, however, these same mutants were able to maintain somatotrope numbers and GH mRNA levels. Serum GH trended low, but values were not significant. However, hypothalamic GHRH mRNA was significantly reduced in these animals. Other serum hormone and pituitary mRNA differences were observed, some of which varied from previous results reported in ob/ob animals. Whereas pituitary leptin is capable of maintaining somatotrope numbers and GH mRNA production, the decreased hypothalamic GHRH mRNA and low (but not significant) serum GH levels indicate an important role for adipocyte leptin in the regulation of GH secretion in the mouse. Thus, normal GH secretion may require the coordinated actions of both adipocyte and pituitary leptin. PMID:25116704

  5. Differential modulation of Beta-adrenergic receptor signaling by trace amine-associated receptor 1 agonists.

    Directory of Open Access Journals (Sweden)

    Gunnar Kleinau

    Full Text Available Trace amine-associated receptors (TAAR are rhodopsin-like G-protein-coupled receptors (GPCR. TAAR are involved in modulation of neuronal, cardiac and vascular functions and they are potentially linked with neurological disorders like schizophrenia and Parkinson's disease. Subtype TAAR1, the best characterized TAAR so far, is promiscuous for a wide set of ligands and is activated by trace amines tyramine (TYR, phenylethylamine (PEA, octopamine (OA, but also by thyronamines, dopamine, and psycho-active drugs. Unfortunately, effects of trace amines on signaling of the two homologous β-adrenergic receptors 1 (ADRB1 and 2 (ADRB2 have not been clarified yet in detail. We, therefore, tested TAAR1 agonists TYR, PEA and OA regarding their effects on ADRB1/2 signaling by co-stimulation studies. Surprisingly, trace amines TYR and PEA are partial allosteric antagonists at ADRB1/2, whereas OA is a partial orthosteric ADRB2-antagonist and ADRB1-agonist. To specify molecular reasons for TAAR1 ligand promiscuity and for observed differences in signaling effects on particular aminergic receptors we compared TAAR, tyramine (TAR octopamine (OAR, ADRB1/2 and dopamine receptors at the structural level. We found especially for TAAR1 that the remarkable ligand promiscuity is likely based on high amino acid similarity in the ligand-binding region compared with further aminergic receptors. On the other hand few TAAR specific properties in the ligand-binding site might determine differences in ligand-induced effects compared to ADRB1/2. Taken together, this study points to molecular details of TAAR1-ligand promiscuity and identified specific trace amines as allosteric or orthosteric ligands of particular β-adrenergic receptor subtypes.

  6. Deletion of protein tyrosine phosphatase 1b in proopiomelanocortin neurons reduces neurogenic control of blood pressure and protects mice from leptin- and sympatho-mediated hypertension.

    Science.gov (United States)

    Bruder-Nascimento, Thiago; Butler, Benjamin R; Herren, David J; Brands, Michael W; Bence, Kendra K; Belin de Chantemèle, Eric J

    2015-12-01

    Protein tyrosine phosphatase 1b (Ptp1b), which represses leptin signaling, is a promising therapeutic target for obesity. Genome wide deletion of Ptp1b, increases leptin sensitivity, protects mice from obesity and diabetes, but alters cardiovascular function by increasing blood pressure (BP). Leptin-control of metabolism is centrally mediated and involves proopiomelanocortin (POMC) neurons. Whether these neurons contribute to leptin-mediated increases in BP remain unclear. We hypothesized that increasing leptin signaling in POMC neurons with Ptp1b deletion will sensitize the cardiovascular system to leptin and enhance neurogenic control of BP. We analyzed the cardiovascular phenotype of Ptp1b+/+ and POMC-Ptp1b-/- mice, at baseline and after 7 days of leptin infusion or sympatho-activation with phenylephrine. POMCPtp1b deletion did not alter baseline cardiovascular hemodynamics (BP, heart rate) but reduced BP response to ganglionic blockade and plasma catecholamine levels that suggests a decreased neurogenic control of BP. In contrast, POMC-Ptp1b deletion increased vascular adrenergic reactivity and aortic α-adrenergic receptors expression. Chronic leptin treatment reduced vascular adrenergic reactivity and blunted diastolic and mean BP increases in POMC-Ptp1b-/- mice only. Similarly POMC-Ptp1b-/- mice exhibited a blunted increased in diastolic and mean BP accompanied by a gradual reduction in adrenergic reactivity in response to chronic vascular sympatho-activation with phenylephrine. Together these data rule out our hypothesis but suggest that deletion of Ptp1b in POMC neurons protects from leptin- and sympatho-mediated increases in BP. Vascular adrenergic desensitization appears as a protective mechanism against hypertension, and POMC-Ptp1b as a key therapeutic target for the treatment of metabolic and cardiovascular dysfunctions associated with obesity. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Phosphorylation site dynamics of early T-cell receptor signaling

    DEFF Research Database (Denmark)

    Chylek, Lily A; Akimov, Vyacheslav; Dengjel, Jörn

    2014-01-01

    In adaptive immune responses, T-cell receptor (TCR) signaling impacts multiple cellular processes and results in T-cell differentiation, proliferation, and cytokine production. Although individual protein-protein interactions and phosphorylation events have been studied extensively, we lack...... that diverse dynamic patterns emerge within seconds. We detected phosphorylation dynamics as early as 5 s and observed widespread regulation of key TCR signaling proteins by 30 s. Development of a computational model pointed to the presence of novel regulatory mechanisms controlling phosphorylation of sites...... a systems-level understanding of how these components cooperate to control signaling dynamics, especially during the crucial first seconds of stimulation. Here, we used quantitative proteomics to characterize reshaping of the T-cell phosphoproteome in response to TCR/CD28 co-stimulation, and found...

  8. Elevated hypothalamic TCPTP in obesity contributes to cellular leptin resistance

    Science.gov (United States)

    Loh, Kim; Fukushima, Atsushi; Zhang, Xinmei; Galic, Sandra; Briggs, Dana; Enriori, Pablo J.; Simonds, Stephanie; Wiede, Florian; Reichenbach, Alexander; Hauser, Christine; Sims, Natalie A.; Bence, Kendra K.; Zhang, Sheng; Zhang, Zhong-Yin; Kahn, Barbara B.; Neel, Benjamin G.; Andrews, Zane B.; Cowley, Michael A.; Tiganis, Tony

    2011-01-01

    SUMMARY In obesity, anorectic responses to leptin are diminished, giving rise to the concept of ‘leptin resistance’. Increased expression of protein tyrosine phosphatase 1B (PTP1B) has been associated with the attenuation of leptin signaling and development of cellular leptin resistance. Here we report that hypothalamic levels of the tyrosine phosphatase TCPTP are also elevated in obesity to attenuate the leptin response. We show that mice that lack TCPTP in neuronal cells have enhanced leptin sensitivity and are resistant to high fat diet-induced weight gain and the development of leptin resistance. Also, intracerebroventricular administration of a TCPTP inhibitor enhances leptin signaling and responses in mice. Moreover, the combined deletion of TCPTP and PTP1B in neuronal cells has additive effects in the prevention of diet-induced obesity. Our results identify TCPTP as a critical negative regulator of hypothalamic leptin signaling and causally link elevated TCPTP to the development of cellular leptin resistance in obesity. PMID:22000926

  9. Tyrosine Phosphorylation in Toll-Like Receptor Signaling

    Science.gov (United States)

    Chattopadhyay, Saurabh; Sen, Ganes C.

    2014-01-01

    There is a wealth of knowledge about how different Ser/Thr protein kinases participate in Toll-like receptor (TLR) signaling. In many cases, we know the identities of the Ser/Thr residues of various components of the TLR-signaling pathways that are phosphorylated, the functional consequences of the phosphorylation and the responsible protein kinases. In contrast, the analysis of Tyr-phosphorylation of TLRs and their signaling proteins is currently incomplete, because several existing analyses are not systematic or they do not rely on robust experimental data. Nevertheless, it is clear that many TLRs require, for signaling, ligand-dependent phosphorylation of specific Tyr residues in their cytoplasmic domains; the list includes TLR2, TLR3, TLR4, TLR5, TLR8 and TLR9. In this article, we discuss the current status of knowledge on the effect of Tyr-phosphorylation of TLRs and their signaling proteins on their biochemical and biological functions, the possible identities of the relevant protein tyrosine kinases (PTKs) and the nature of regulations of PTK-mediated activation of TLR signaling pathways. PMID:25022196

  10. Postoperative ileus involves interleukin-1 receptor signaling in enteric glia.

    Science.gov (United States)

    Stoffels, Burkhard; Hupa, Kristof Johannes; Snoek, Susanne A; van Bree, Sjoerd; Stein, Kathy; Schwandt, Timo; Vilz, Tim O; Lysson, Mariola; Veer, Cornelis Van't; Kummer, Markus P; Hornung, Veit; Kalff, Joerg C; de Jonge, Wouter J; Wehner, Sven

    2014-01-01

    Postoperative ileus (POI) is a common consequence of abdominal surgery that increases the risk of postoperative complications and morbidity. We investigated the cellular mechanisms and immune responses involved in the pathogenesis of POI. We studied a mouse model of POI in which intestinal manipulation leads to inflammation of the muscularis externa and disrupts motility. We used C57BL/6 (control) mice as well as mice deficient in Toll-like receptors (TLRs) and cytokine signaling components (TLR-2(-/-), TLR-4(-/-), TLR-2/4(-/-), MyD88(-/-), MyD88/TLR adaptor molecule 1(-/-), interleukin-1 receptor [IL-1R1](-/-), and interleukin (IL)-18(-/-) mice). Bone marrow transplantation experiments were performed to determine which cytokine receptors and cell types are involved in the pathogenesis of POI. Development of POI did not require TLRs 2, 4, or 9 or MyD88/TLR adaptor molecule 2 but did require MyD88, indicating a role for IL-1R1. IL-1R1(-/-) mice did not develop POI; however, mice deficient in IL-18, which also signals via MyD88, developed POI. Mice given injections of an IL-1 receptor antagonist (anakinra) or antibodies to deplete IL-1α and IL-1β before intestinal manipulation were protected from POI. Induction of POI activated the inflammasome in muscularis externa tissues of C57BL6 mice, and IL-1α and IL-1β were released in ex vivo organ bath cultures. In bone marrow transplantation experiments, the development of POI required activation of IL-1 receptor in nonhematopoietic cells. IL-1R1 was expressed by enteric glial cells in the myenteric plexus layer, and cultured primary enteric glia cells expressed IL-6 and the chemokine monocyte chemotactic protein 1 in response to IL-1β stimulation. Immunohistochemical analysis of human small bowel tissue samples confirmed expression of IL-1R1 in the ganglia of the myenteric plexus. IL-1 signaling, via IL-1R1 and MyD88, is required for development of POI after intestinal manipulation in mice. Agents that interfere with

  11. Assembly of Oligomeric Death Domain Complexes during Toll Receptor Signaling*

    Science.gov (United States)

    Moncrieffe, Martin C.; Grossmann, J. Günter; Gay, Nicholas J.

    2008-01-01

    The Drosophila Toll receptor is activated by the endogenous protein ligand Spätzle in response to microbial stimuli in immunity and spatial cues during embryonic development. Downstream signaling is mediated by the adaptor proteins Tube, the kinase Pelle, and the Drosophila homologue of myeloid differentiation primary response protein (dMyD88). Here we have characterized heterodimeric (dMyD88-Tube) and heterotrimeric (dMyD88-Tube-Pelle) death domain complexes. We show that both the heterodimeric and heterotrimeric complexes form kidney-shaped structures and that Tube is bivalent and has separate high affinity binding sites for dMyD88 and Pelle. Additionally we found no interaction between the isolated death domains of Pelle and dMyD88. These results indicate that the mode of assembly of the heterotrimeric dMyD88-Tube-Pelle complex downstream of the activated Toll receptor is unique. The measured dissociation constants for the interaction between the death domains of dMyD88 and Tube and of Pelle and a preformed dMyD88-Tube complex are used to propose a model of the early postreceptor events in Drosophila Toll receptor signaling. PMID:18829464

  12. Assembly of oligomeric death domain complexes during Toll receptor signaling.

    Science.gov (United States)

    Moncrieffe, Martin C; Grossmann, J Günter; Gay, Nicholas J

    2008-11-28

    The Drosophila Toll receptor is activated by the endogenous protein ligand Spätzle in response to microbial stimuli in immunity and spatial cues during embryonic development. Downstream signaling is mediated by the adaptor proteins Tube, the kinase Pelle, and the Drosophila homologue of myeloid differentiation primary response protein (dMyD88). Here we have characterized heterodimeric (dMyD88-Tube) and heterotrimeric (dMyD88-Tube-Pelle) death domain complexes. We show that both the heterodimeric and heterotrimeric complexes form kidney-shaped structures and that Tube is bivalent and has separate high affinity binding sites for dMyD88 and Pelle. Additionally we found no interaction between the isolated death domains of Pelle and dMyD88. These results indicate that the mode of assembly of the heterotrimeric dMyD88-Tube-Pelle complex downstream of the activated Toll receptor is unique. The measured dissociation constants for the interaction between the death domains of dMyD88 and Tube and of Pelle and a preformed dMyD88-Tube complex are used to propose a model of the early postreceptor events in Drosophila Toll receptor signaling.

  13. Nuclear receptor TLX inhibits TGF-β signaling in glioblastoma.

    Science.gov (United States)

    Johansson, Erik; Zhai, Qiwei; Zeng, Zhao-Jun; Yoshida, Takeshi; Funa, Keiko

    2016-05-01

    TLX (also called NR2E1) is an orphan nuclear receptor that maintains stemness of neuronal stem cells. TLX is highly expressed in the most malignant form of glioma, glioblastoma multiforme (GBM), and is important for the proliferation and maintenance of the stem/progenitor cells of the tumor. Transforming Growth Factor-β (TGF-β) is a cytokine regulating many different cellular processes such as differentiation, migration, adhesion, cell death and proliferation. TGF-β has an important function in cancer where it can work as either a tumor suppressor or oncogene, depending on the cancer type and stage of tumor development. Since glioblastoma often have dysfunctional TGF-β signaling we wanted to find out if there is any interaction between TLX and TGF-β in glioblastoma cells. We demonstrate that knockdown of TLX enhances the canonical TGF-β signaling response in glioblastoma cell lines. TLX physically interacts with and stabilizes Smurf1, which can ubiquitinate and target TGF-β receptor II for degradation, whereas knockdown of TLX leads to stabilization of TGF-β receptor II, increased nuclear translocation of Smad2/3 and enhanced expression of TGF-β target genes. The interaction between TLX and TGF-β may play an important role in the regulation of proliferation and tumor-initiating properties of glioblastoma cells. Copyright © 2016. Published by Elsevier Inc.

  14. Optodynamic simulation of β-adrenergic receptor signalling.

    Science.gov (United States)

    Siuda, Edward R; McCall, Jordan G; Al-Hasani, Ream; Shin, Gunchul; Il Park, Sung; Schmidt, Martin J; Anderson, Sonya L; Planer, William J; Rogers, John A; Bruchas, Michael R

    2015-09-28

    Optogenetics has provided a revolutionary approach to dissecting biological phenomena. However, the generation and use of optically active GPCRs in these contexts is limited and it is unclear how well an opsin-chimera GPCR might mimic endogenous receptor activity. Here we show that a chimeric rhodopsin/β2 adrenergic receptor (opto-β2AR) is similar in dynamics to endogenous β2AR in terms of: cAMP generation, MAP kinase activation and receptor internalization. In addition, we develop and characterize a novel toolset of optically active, functionally selective GPCRs that can bias intracellular signalling cascades towards either G-protein or arrestin-mediated cAMP and MAP kinase pathways. Finally, we show how photoactivation of opto-β2AR in vivo modulates neuronal activity and induces anxiety-like behavioural states in both fiber-tethered and wireless, freely moving animals when expressed in brain regions known to contain β2ARs. These new GPCR approaches enhance the utility of optogenetics and allow for discrete spatiotemporal control of GPCR signalling in vitro and in vivo.

  15. Plant cell surface receptor-mediated signaling - a common theme amid diversity.

    Science.gov (United States)

    He, Yunxia; Zhou, Jinggeng; Shan, Libo; Meng, Xiangzong

    2018-01-29

    Sessile plants employ a diverse array of plasma membrane-bound receptors to perceive endogenous and exogenous signals for regulation of plant growth, development and immunity. These cell surface receptors include receptor-like kinases (RLKs) and receptor-like proteins (RLPs) that harbor different extracellular domains for perception of distinct ligands. Several RLK and RLP signaling pathways converge at the somatic embryogenesis receptor kinases (SERKs), which function as shared co-receptors. A repertoire of receptor-like cytoplasmic kinases (RLCKs) associate with the receptor complexes to relay intracellular signaling. Downstream of the receptor complexes, mitogen-activated protein kinase (MAPK) cascades are among the key signaling modules at which the signals converge, and these cascades regulate diverse cellular and physiological responses through phosphorylation of different downstream substrates. In this Review, we summarize the emerging common theme that underlies cell surface receptor-mediated signaling pathways in Arabidopsis thaliana : the dynamic association of RLKs and RLPs with specific co-receptors and RLCKs for signal transduction. We further discuss how signaling specificities are maintained through modules at which signals converge, with a focus on SERK-mediated receptor signaling. © 2018. Published by The Company of Biologists Ltd.

  16. A dangerous liaison: Leptin and sPLA2-IIA join forces to induce proliferation and migration of astrocytoma cells.

    Directory of Open Access Journals (Sweden)

    Rubén Martín

    Full Text Available Glioblastoma, the most aggressive type of primary brain tumour, shows worse prognosis linked to diabetes or obesity persistence. These pathologies are chronic inflammatory conditions characterized by altered profiles of inflammatory mediators, including leptin and secreted phospholipase A2-IIA (sPLA2-IIA. Both proteins, in turn, display diverse pro-cancer properties in different cell types, including astrocytes. Herein, to understand the underlying relationship between obesity and brain tumors, we investigated the effect of leptin, alone or in combination with sPLA2-IIA on astrocytoma cell functions. sPLA2-IIA induced up-regulation of leptin receptors in 1321N1 human astrocytoma cells. Leptin, as well as sPLA2-IIA, increased growth and migration in these cells, through activation/phosphorylation of key proteins of survival cascades. Leptin, at concentrations with minimal or no activating effects on astrocytoma cells, enhanced growth and migration promoted by low doses of sPLA2-IIA. sPLA2-IIA alone induced a transient phosphorylation pattern in the Src/ERK/Akt/mTOR/p70S6K/rS6 pathway through EGFR transactivation, and co-addition of leptin resulted in a sustained phosphorylation of these signaling regulators. Mechanistically, EGFR transactivation and tyrosine- and serine/threonine-protein phosphatases revealed a key role in this leptin-sPLA2-IIA cross-talk. This cooperative partnership between both proteins was also found in primary astrocytes. These findings thus indicate that the adipokine leptin, by increasing the susceptibility of cells to inflammatory mediators, could contribute to worsen the prognosis of tumoral and neurodegenerative processes, being a potential mediator of some obesity-related medical complications.

  17. Negative regulation of Toll-like receptor signalling 

    Directory of Open Access Journals (Sweden)

    Halina Antosz

    2013-04-01

    Full Text Available The mechanism of innate immunity is based on the pattern recognition receptors (PRR that recognize molecular patterns associated with pathogens (PAMPs. Among PRR receptors Toll-like receptors (TLR are distinguished. As a result of contact with pathogens, TLRs activate specific intracellular signaling pathways. It happens through proteins such as adaptor molecules, e.g. MyD88, TIRAP, TRIF, TRAM, and IPS-1, which participate in the cascade activation of kinases (IKK, MAP, RIP-1, TBK-1 as well as transcription factors (NF-κB, AP-1 and regulatory factor (IRF3. The result of this activation is the production of active proinflammatory cytokines, chemokines, interferons and enzymes. The PRR pathways are controlled by extra – and intracellular molecules to prevent overexpression of PRR. They include soluble receptors (sTLR, transmembrane proteins (ST2, SIGIRR, RP105, TRAIL-R and intracellular inhibitors (SOCS-1, SOCS-3, sMyD88, TOLLIP, IRAK-M, SARM, A20, β-arrestin, CYLD, SHP. These molecules maintain the balance between activation and inhibition and ensure balancing of the beneficial and adverse effects of antigen recognition.

  18. Hypothalamic leptin action is mediated by histone deacetylase 5

    DEFF Research Database (Denmark)

    Kabra, Dhiraj G; Pfuhlmann, Katrin; García-Cáceres, Cristina

    2016-01-01

    Hypothalamic leptin signalling has a key role in food intake and energy-balance control and is often impaired in obese individuals. Here we identify histone deacetylase 5 (HDAC5) as a regulator of leptin signalling and organismal energy balance. Global HDAC5 KO mice have increased food intake and...

  19. Pivotal role of leptin in insulin effects

    Directory of Open Access Journals (Sweden)

    R.B. Ceddia

    1998-06-01

    Full Text Available The OB protein, also known as leptin, is secreted by adipose tissue, circulates in the blood, probably bound to a family of binding proteins, and acts on central neural networks regulating ingestive behavior and energy balance. The two forms of leptin receptors (long and short forms have been identified in various peripheral tissues, a fact that makes them possible target sites for a direct action of leptin. It has been shown that the OB protein interferes with insulin secretion from pancreatic islets, reduces insulin-stimulated glucose transport in adipocytes, and increases glucose transport, glycogen synthesis and fatty acid oxidation in skeletal muscle. Under normoglycemic and normoinsulinemic conditions, leptin seems to shift the flux of metabolites from adipose tissue to skeletal muscle. This may function as a peripheral mechanism that helps control body weight and prevents obesity. Data that substantiate this hypothesis are presented in this review.

  20. Mammary gland leptin in relation to lactogenesis in the periparturient dairy goat

    DEFF Research Database (Denmark)

    Rasmussen, Alice Neess; Nielsen, Mette Olaf; Tauson, Anne-Helene

    2008-01-01

    The role of leptin in development of mammary gland secretory function was studied during the periparturient period in dairy goats. Changes in mammary leptin and leptin receptor (short cytoplasmic form) expression were evaluated by real-time RT-PCR and related to changes in milk and plasma leptin...... peak in milk leptin 2 days post-partum needs to be understood. We did not find evidence that milk leptin can be absorbed, and thus play a role in systemic regulation, of the neonatal goat....

  1. The neuroanatomical function of leptin in the hypothalamus.

    Science.gov (United States)

    van Swieten, M M H; Pandit, R; Adan, R A H; van der Plasse, G

    2014-11-01

    The anorexigenic hormone leptin plays an important role in the control of food intake and feeding-related behavior, for an important part through its action in the hypothalamus. The adipose-derived hormone modulates a complex network of several intercommunicating orexigenic and anorexigenic neuropeptides in the hypothalamus to reduce food intake and increase energy expenditure. In this review we present an updated overview of the functional role of leptin in respect to feeding and feeding-related behavior per distinct hypothalamic nuclei. In addition to the arcuate nucleus, which is a major leptin sensitive hub, leptin-responsive neurons in other hypothalamic nuclei, including the, dorsomedial-, ventromedial- and paraventricular nucleus and the lateral hypothalamic area, are direct targets of leptin. However, leptin also modulates hypothalamic neurons in an indirect manner, such as via the melanocortin system. The dissection of the complexity of leptin's action on the networks involved in energy balance is subject of recent and future studies. A full understanding of the role of hypothalamic leptin in the regulation of energy balance requires cell-specific manipulation using of conditional deletion and expression of leptin receptors. In addition, optogenetic and pharmacogenetic tools in combination with other pharmacological (such as the recent discovery of a leptin receptor antagonist) and neuronal tracing techniques to map the circuit, will be helpful to understand the role of leptin receptor expressing neurons. Better understanding of these circuits and the involvement of leptin could provide potential sites for therapeutic interventions in obesity and metabolic diseases characterized by dysregulation of energy balance. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Metazoan-like signaling in a unicellular receptor tyrosine kinase

    Directory of Open Access Journals (Sweden)

    Schultheiss Kira P

    2013-02-01

    Full Text Available Abstract Background Receptor tyrosine kinases (RTKs are crucial components of signal transduction systems in multicellular animals. Surprisingly, numerous RTKs have been identified in the genomes of unicellular choanoflagellates and other protists. Here, we report the first biochemical study of a unicellular RTK, namely RTKB2 from Monosiga brevicollis. Results We cloned, expressed, and purified the RTKB2 kinase, and showed that it is enzymatically active. The activity of RTKB2 is controlled by autophosphorylation, as in metazoan RTKs. RTKB2 possesses six copies of a unique domain (designated RM2 in its C-terminal tail. An isolated RM2 domain (or a synthetic peptide derived from the RM2 sequence served as a substrate for RTKB2 kinase. When phosphorylated, the RM2 domain bound to the Src homology 2 domain of MbSrc1 from M. brevicollis. NMR structural studies of the RM2 domain indicated that it is disordered in solution. Conclusions Our results are consistent with a model in which RTKB2 activation stimulates receptor autophosphorylation within the RM2 domains. This leads to recruitment of Src-like kinases (and potentially other M. brevicollis proteins and further phosphorylation, which may serve to increase or dampen downstream signals. Thus, crucial features of signal transduction circuitry were established prior to the evolution of metazoans from their unicellular ancestors.

  3. Signaling flux redistribution at toll-like receptor pathway junctions.

    Directory of Open Access Journals (Sweden)

    Kumar Selvarajoo

    Full Text Available Various receptors on cell surface recognize specific extracellular molecules and trigger signal transduction altering gene expression in the nucleus. Gain or loss-of-function mutations of one molecule have shown to affect alternative signaling pathways with a poorly understood mechanism. In Toll-like receptor (TLR 4 signaling, which branches into MyD88- and TRAM-dependent pathways upon lipopolysaccharide (LPS stimulation, we investigated the gain or loss-of-function mutations of MyD88. We predict, using a computational model built on the perturbation-response approach and the law of mass conservation, that removal and addition of MyD88 in TLR4 activation, enhances and impairs, respectively, the alternative TRAM-dependent pathway through signaling flux redistribution (SFR at pathway branches. To verify SFR, we treated MyD88-deficient macrophages with LPS and observed enhancement of TRAM-dependent pathway based on increased IRF3 phosphorylation and induction of Cxcl10 and Ifit2. Furthermore, increasing the amount of MyD88 in cultured cells showed decreased TRAM binding to TLR4. Investigating another TLR4 pathway junction, from TRIF to TRAF6, RIP1 and TBK1, the removal of MyD88-dependent TRAF6 increased expression of TRAM-dependent Cxcl10 and Ifit2. Thus, we demonstrate that SFR is a novel mechanism for enhanced activation of alternative pathways when molecules at pathway junctions are removed. Our data suggest that SFR may enlighten hitherto unexplainable intracellular signaling alterations in genetic diseases where gain or loss-of-function mutations are observed.

  4. Crammed signaling motifs in the T-cell receptor.

    Science.gov (United States)

    Borroto, Aldo; Abia, David; Alarcón, Balbino

    2014-09-01

    Although the T cell antigen receptor (TCR) is long known to contain multiple signaling subunits (CD3γ, CD3δ, CD3ɛ and CD3ζ), their role in signal transduction is still not well understood. The presence of at least one immunoreceptor tyrosine-based activation motif (ITAM) in each CD3 subunit has led to the idea that the multiplication of such elements essentially serves to amplify signals. However, the evolutionary conservation of non-ITAM sequences suggests that each CD3 subunit is likely to have specific non-redundant roles at some stage of development or in mature T cell function. The CD3ɛ subunit is paradigmatic because in a relatively short cytoplasmic sequence (∼55 amino acids) it contains several docking sites for proteins involved in intracellular trafficking and signaling, proteins whose relevance in T cell activation is slowly starting to be revealed. In this review we will summarize our current knowledge on the signaling effectors that bind directly to the TCR and we will propose a hierarchy in their response to TCR triggering. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Role of Ubiquitination in IGF-1 Receptor Signaling and Degradation

    OpenAIRE

    Sehat, Bita; Andersson, Sandra; Vasilcanu, Radu; Girnita, Leonard; Larsson, Olle

    2007-01-01

    BACKGROUND: The insulin-like growth factor 1 receptor (IGF-1R) plays numerous crucial roles in cancer biology. The majority of knowledge on IGF-1R signaling is concerned with its role in the activation of the canonical phosphatidyl inositol-3 kinase (PI3K)/Akt and MAPK/ERK pathways. However, the role of IGF-1R ubiquitination in modulating IGF-1R function is an area of current research. In light of this we sought to determine the relationship between IGF-1R phosphorylation, ubiquitination, and...

  6. Kinetics in Signal Transduction Pathways Involving Promiscuous Oligomerizing Receptors Can Be Determined by Receptor Specificity : Apoptosis Induction by TRAIL

    NARCIS (Netherlands)

    Szegezdi, Eva; van der Sloot, Almer M.; Mahalingam, Devalingam; O'Leary, Lynda; Cool, Robbert H.; Munoz, Ines G.; Montoya, Guillermo; Quax, Wim J.; de Jong, Steven; Samali, Afshin; Serrano, Luis

    Here we show by computer modeling that kinetics and outcome of signal transduction in case of hetero-oligomerizing receptors of a promiscuous ligand largely depend on the relative amounts of its receptors. Promiscuous ligands can trigger the formation of nonproductive receptor complexes, which slows

  7. Plant cell wall signalling and receptor-like kinases.

    Science.gov (United States)

    Wolf, Sebastian

    2017-02-15

    Communication between the extracellular matrix and the cell interior is essential for all organisms as intrinsic and extrinsic cues have to be integrated to co-ordinate development, growth, and behaviour. This applies in particular to plants, the growth and shape of which is governed by deposition and remodelling of the cell wall, a rigid, yet dynamic, extracellular network. It is thus generally assumed that cell wall surveillance pathways exist to monitor the state of the wall and, if needed, elicit compensatory responses such as altered expression of cell wall remodelling and biosynthesis genes. Here, I highlight recent advances in the field of cell wall signalling in plants, with emphasis on the role of plasma membrane receptor-like kinase complexes. In addition, possible roles for cell wall-mediated signalling beyond the maintenance of cell wall integrity are discussed. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  8. Novel method for the study of receptor Ca2+ signalling exemplified by the NK1 receptor

    DEFF Research Database (Denmark)

    Heding, A; Elling, C E; Schwartz, T W

    2002-01-01

    We have used a novel technology (NovoStar from BMG Labtechnologies) for the study of the Ca2+ signalling of the human tackykinin NK1 (hNK-I receptor). The NovoStar is a microplate reader based on fluorescence and luminescence. The instrument implements a robotic pipettor arm and two microplate...... carriers, typically one for samples and one for cells. The robotic pipettor arm can transfer sample (agonist or antagonist) from the sample plate or other liquid containers to the cell plate, facilitating the study of Ca2+ signalling to such a degree that the instrument can be used for Medium Throughput...

  9. TSH Receptor Signaling Abrogation by a Novel Small Molecule.

    Science.gov (United States)

    Latif, Rauf; Realubit, Ronald B; Karan, Charles; Mezei, Mihaly; Davies, Terry F

    2016-01-01

    Pathological activation of the thyroid-stimulating hormone receptor (TSHR) is caused by thyroid-stimulating antibodies in patients with Graves' disease (GD) or by somatic and rare genomic mutations that enhance constitutive activation of the receptor influencing both G protein and non-G protein signaling. Potential selective small molecule antagonists represent novel therapeutic compounds for abrogation of such abnormal TSHR signaling. In this study, we describe the identification and in vitro characterization of a novel small molecule antagonist by high-throughput screening (HTS). The identification of the TSHR antagonist was performed using a transcription-based TSH-inhibition bioassay. TSHR-expressing CHO cells, which also expressed a luciferase-tagged CRE response element, were optimized using bovine TSH as the activator, in a 384 well plate format, which had a Z score of 0.3-0.6. Using this HTS assay, we screened a diverse library of ~80,000 compounds at a final concentration of 16.7 μM. The selection criteria for a positive hit were based on a mean signal threshold of ≥50% inhibition of control TSH stimulation. The screening resulted in 450 positive hits giving a hit ratio of 0.56%. A secondary confirmation screen against TSH and forskolin - a post receptor activator of adenylyl cyclase - confirmed one TSHR-specific candidate antagonist molecule (named VA-K-14). This lead molecule had an IC 50 of 12.3 μM and a unique chemical structure. A parallel analysis for cell viability indicated that the lead inhibitor was non-cytotoxic at its effective concentrations. In silico docking studies performed using a TSHR transmembrane model showed the hydrophobic contact locations and the possible mode of inhibition of TSHR signaling. Furthermore, this molecule was capable of inhibiting TSHR stimulation by GD patient sera and monoclonal-stimulating TSHR antibodies. In conclusion, we report the identification of a novel small molecule TSHR inhibitor, which has the

  10. Association between Salivary Leptin Levels and Taste Perception in Children

    Directory of Open Access Journals (Sweden)

    Lénia Rodrigues

    2017-01-01

    Full Text Available The satiety inducing hormone leptin acts not only at central nervous system but also at peripheral level. Leptin receptors are found in several sense related organs, including the mouth. A role of leptin in sweet taste response has been suggested but, until now, studies have been based on in vitro experiments, or in assessing the levels of the hormone in circulation. The present study investigated whether the levels of leptin in saliva are related to taste perception in children and whether Body Mass Index (BMI affects such relationship. Sweet and bitter taste sensitivity was assessed for 121 children aged 9-10 years and unstimulated whole saliva was collected for leptin quantification, using ELISA technique. Children females with lower sweet taste sensitivity presented higher salivary leptin levels, but this is only in the normal weight ones. For bitter taste, association between salivary leptin and caffeine threshold detection was observed only in preobese boys, with higher levels of salivary hormone in low sensitive individuals. This study is the first presenting evidences of a relationship between salivary leptin levels and taste perception, which is sex and BMI dependent. The mode of action of salivary leptin at taste receptor level should be elucidated in future studies.

  11. DMPD: Modulation of Toll-interleukin 1 receptor mediated signaling. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15662540 Modulation of Toll-interleukin 1 receptor mediated signaling. Li X, Qin J.... J Mol Med. 2005 Apr;83(4):258-66. Epub 2005 Jan 21. (.png) (.svg) (.html) (.csml) Show Modulation of Toll-i...nterleukin 1 receptor mediated signaling. PubmedID 15662540 Title Modulation of Toll-interleukin 1 receptor

  12. Leptin actions on food intake and body temperature are mediated by IL-1

    OpenAIRE

    Luheshi, Giamal N.; Gardner, Jason D.; Rushforth, David A.; Loudon, Andrew S.; Rothwell, Nancy J.

    1999-01-01

    Leptin regulates energy balance through its actions in the brain on appetite and energy expenditure and also shares properties with cytokines such as IL-1. We report here that leptin, injected into rats intracerebroventricularly or peripherally, induces significant dose-dependent increases in core body temperature as well as suppression of appetite. Leptin failed to affect food intake or body temperature in obese (fa/fa) Zucker rats, which posses a defective leptin receptor. Furthermore, inje...

  13. A leptin-regulated circuit controls glucose mobilization during noxious stimuli.

    Science.gov (United States)

    Flak, Jonathan N; Arble, Deanna; Pan, Warren; Patterson, Christa; Lanigan, Thomas; Goforth, Paulette B; Sacksner, Jamie; Joosten, Maja; Morgan, Donald A; Allison, Margaret B; Hayes, John; Feldman, Eva; Seeley, Randy J; Olson, David P; Rahmouni, Kamal; Myers, Martin G

    2017-08-01

    Adipocytes secrete the hormone leptin to signal the sufficiency of energy stores. Reductions in circulating leptin concentrations reflect a negative energy balance, which augments sympathetic nervous system (SNS) activation in response to metabolically demanding emergencies. This process ensures adequate glucose mobilization despite low energy stores. We report that leptin receptor-expressing neurons (LepRb neurons) in the periaqueductal gray (PAG), the largest population of LepRb neurons in the brain stem, mediate this process. Application of noxious stimuli, which often signal the need to mobilize glucose to support an appropriate response, activated PAG LepRb neurons, which project to and activate parabrachial nucleus (PBN) neurons that control SNS activation and glucose mobilization. Furthermore, activating PAG LepRb neurons increased SNS activity and blood glucose concentrations, while ablating LepRb in PAG neurons augmented glucose mobilization in response to noxious stimuli. Thus, decreased leptin action on PAG LepRb neurons augments the autonomic response to noxious stimuli, ensuring sufficient glucose mobilization during periods of acute demand in the face of diminished energy stores.

  14. Retinoid receptor signaling and autophagy in acute promyelocytic leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Orfali, Nina [Cork Cancer Research Center, University College Cork, Cork (Ireland); Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA. (United States); McKenna, Sharon L. [Cork Cancer Research Center, University College Cork, Cork (Ireland); Cahill, Mary R. [Department of Hematology, Cork University Hospital, Cork (Ireland); Gudas, Lorraine J., E-mail: ljgudas@med.cornell.edu [Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA. (United States); Mongan, Nigel P., E-mail: nigel.mongan@nottingham.ac.uk [Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, LE12 5RD (United Kingdom); Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA. (United States)

    2014-05-15

    Retinoids are a family of signaling molecules derived from vitamin A with well established roles in cellular differentiation. Physiologically active retinoids mediate transcriptional effects on cells through interactions with retinoic acid (RARs) and retinoid-X (RXR) receptors. Chromosomal translocations involving the RARα gene, which lead to impaired retinoid signaling, are implicated in acute promyelocytic leukemia (APL). All-trans-retinoic acid (ATRA), alone and in combination with arsenic trioxide (ATO), restores differentiation in APL cells and promotes degradation of the abnormal oncogenic fusion protein through several proteolytic mechanisms. RARα fusion-protein elimination is emerging as critical to obtaining sustained remission and long-term cure in APL. Autophagy is a degradative cellular pathway involved in protein turnover. Both ATRA and ATO also induce autophagy in APL cells. Enhancing autophagy may therefore be of therapeutic benefit in resistant APL and could broaden the application of differentiation therapy to other cancers. Here we discuss retinoid signaling in hematopoiesis, leukemogenesis, and APL treatment. We highlight autophagy as a potential important regulator in anti-leukemic strategies. - Highlights: • Normal and aberrant retinoid signaling in hematopoiesis and leukemia is reviewed. • We suggest a novel role for RARα in the development of X-RARα gene fusions in APL. • ATRA therapy in APL activates transcription and promotes onco-protein degradation. • Autophagy may be involved in both onco-protein degradation and differentiation. • Pharmacologic autophagy induction may potentiate ATRA's therapeutic effects.

  15. Orphan nuclear receptor TLX regulates astrogenesis by modulating BMP signaling

    Directory of Open Access Journals (Sweden)

    Song eQin

    2014-04-01

    Full Text Available Neural stem cells (NSCs are self-renewing multipotent progenitors that generate both neurons and glia. The precise control of NSC behavior is fundamental to the architecture and function of the central nervous system. We previously demonstrated that the orphan nuclear receptor TLX is required for postnatal NSC activation and neurogenesis in the neurogenic niche. Here, we show that TLX modulates BMP-SMAD signaling to control the timing of postnatal astrogenesis. Genes involved in the BMP signaling pathway, such as Bmp4, Hes1, and Id3, are upregulated in postnatal brains lacking Tlx. Chromatin immunoprecipitation and electrophoretic mobility shift assays reveal that TLX can directly bind the enhancer region of Bmp4. In accordance with elevated BMP signaling, the downstream effectors SMAD1/5/8 are activated by phosphorylation in Tlx mutant mice. Consequently, Tlx mutant brains exhibit an early appearance and increased number of astrocytes with marker expression of glial fibrillary acidic protein (GFAP and S100B. Taken together, these results suggest that TLX tightly controls postnatal astrogenesis through the modulation of BMP-SMAD signaling pathway activity.

  16. Orphan nuclear receptor TLX regulates astrogenesis by modulating BMP signaling.

    Science.gov (United States)

    Qin, Song; Niu, Wenze; Iqbal, Nida; Smith, Derek K; Zhang, Chun-Li

    2014-01-01

    Neural stem cells (NSCs) are self-renewing multipotent progenitors that generate both neurons and glia. The precise control of NSC behavior is fundamental to the architecture and function of the central nervous system. We previously demonstrated that the orphan nuclear receptor TLX is required for postnatal NSC activation and neurogenesis in the neurogenic niche. Here, we show that TLX modulates bone morphogenetic protein (BMP)-SMAD signaling to control the timing of postnatal astrogenesis. Genes involved in the BMP signaling pathway, such as Bmp4, Hes1, and Id3, are upregulated in postnatal brains lacking Tlx. Chromatin immunoprecipitation and electrophoretic mobility shift assays reveal that TLX can directly bind the enhancer region of Bmp4. In accordance with elevated BMP signaling, the downstream effectors SMAD1/5/8 are activated by phosphorylation in Tlx mutant mice. Consequently, Tlx mutant brains exhibit an early appearance and increased number of astrocytes with marker expression of glial fibrillary acidic protein (GFAP) and S100B. Taken together, these results suggest that TLX tightly controls postnatal astrogenesis through the modulation of BMP-SMAD signaling pathway activity.

  17. Retinoid receptor signaling and autophagy in acute promyelocytic leukemia

    International Nuclear Information System (INIS)

    Orfali, Nina; McKenna, Sharon L.; Cahill, Mary R.; Gudas, Lorraine J.; Mongan, Nigel P.

    2014-01-01

    Retinoids are a family of signaling molecules derived from vitamin A with well established roles in cellular differentiation. Physiologically active retinoids mediate transcriptional effects on cells through interactions with retinoic acid (RARs) and retinoid-X (RXR) receptors. Chromosomal translocations involving the RARα gene, which lead to impaired retinoid signaling, are implicated in acute promyelocytic leukemia (APL). All-trans-retinoic acid (ATRA), alone and in combination with arsenic trioxide (ATO), restores differentiation in APL cells and promotes degradation of the abnormal oncogenic fusion protein through several proteolytic mechanisms. RARα fusion-protein elimination is emerging as critical to obtaining sustained remission and long-term cure in APL. Autophagy is a degradative cellular pathway involved in protein turnover. Both ATRA and ATO also induce autophagy in APL cells. Enhancing autophagy may therefore be of therapeutic benefit in resistant APL and could broaden the application of differentiation therapy to other cancers. Here we discuss retinoid signaling in hematopoiesis, leukemogenesis, and APL treatment. We highlight autophagy as a potential important regulator in anti-leukemic strategies. - Highlights: • Normal and aberrant retinoid signaling in hematopoiesis and leukemia is reviewed. • We suggest a novel role for RARα in the development of X-RARα gene fusions in APL. • ATRA therapy in APL activates transcription and promotes onco-protein degradation. • Autophagy may be involved in both onco-protein degradation and differentiation. • Pharmacologic autophagy induction may potentiate ATRA's therapeutic effects

  18. [Leptin and the feedback regulation of body weight].

    Science.gov (United States)

    Wang, X; Ye, G; Sun, J

    1999-09-30

    Body weight may be controlled by a negative feedback loop. Recent studies have identified that the ob gene product, leptin, apparently and exclusively expressed in adipose tissue, is a part of the negative feedback loop. Leptin is proposed to act as an afferent signal in the negative feedback loop to hypothalamus that limiting food-intake, controlling energy homeostasis and regulating the mass of adipose tissue. The dificiency of or resistance to leptin causes severe obesity.

  19. Growth Hormone Overexpression Disrupts Reproductive Status Through Actions on Leptin

    Directory of Open Access Journals (Sweden)

    Ji Chen

    2018-03-01

    Full Text Available Growth and reproduction are closely related. Growth hormone (GH-transgenic common carp exhibit accelerated growth and delayed reproductive development, which provides an amenable model to study hormone cross talk between the growth and reproductive axes. We analyzed the energy status and reproductive development in GH-transgenic common carp by using multi-tissue RNA sequencing, real-time-PCR, Western blotting, ELISA, immunofluorescence, and in vitro incubation. The expression of gys (glycogen synthase and igfbp1 (insulin-like growth factor binding protein as well as blood glucose concentrations are lower in GH-transgenic carp. Agrp1 (agouti-related protein 1 and sla (somatolactin a, which are related to appetite and lipid catabolism, are significantly higher in GH-transgenic carp. Low glucose content and increased appetite indicate disrupted metabolic and energy deprivation status in GH-transgenic carp. Meanwhile, the expression of genes, such as gnrhr2 (gonadotropin-releasing hormone receptor 2, gthα (gonadotropin hormone, alpha polypeptide, fshβ (follicle stimulating hormone, beta polypeptide, lhβ [luteinizing hormone, beta polypeptide] in the pituitary, cyp19a1a (aromatase A in the gonad, and cyp19a1b (aromatase B in the hypothalamus, are decreased in GH-transgenic carp. In contrast, pituitary gnih (gonadotropin inhibitory hormone, drd1 (dopamine receptor D1, drd3 (dopamine receptor D3, and drd4 (dopamine receptor D4 exhibit increased expression, which were associated with the retarded reproductive development. Leptin receptor mRNA was detected by fluorescence in situ hybridization in the pituitary including the pars intermedia and proximal pars distalis, suggesting a direct effect of leptin on LH. Recombinant carp Leptin protein was shown to stimulate pituitary gthα, fshβ, lhβ expression, and ovarian germinal vesicle breakdown in vitro. In addition to neuroendocrine factors, we suggest that reduced hepatic leptin signaling to the

  20. Targeting fibroblast growth factor receptor signaling inhibits prostate cancer progression.

    Science.gov (United States)

    Feng, Shu; Shao, Longjiang; Yu, Wendong; Gavine, Paul; Ittmann, Michael

    2012-07-15

    Extensive correlative studies in human prostate cancer as well as studies in vitro and in mouse models indicate that fibroblast growth factor receptor (FGFR) signaling plays an important role in prostate cancer progression. In this study, we used a probe compound for an FGFR inhibitor, which potently inhibits FGFR-1-3 and significantly inhibits FGFR-4. The purpose of this study is to determine whether targeting FGFR signaling from all four FGFRs will have in vitro activities consistent with inhibition of tumor progression and will inhibit tumor progression in vivo. Effects of AZ8010 on FGFR signaling and invasion were analyzed using immortalized normal prostate epithelial (PNT1a) cells and PNT1a overexpressing FGFR-1 or FGFR-4. The effect of AZ8010 on invasion and proliferation in vitro was also evaluated in prostate cancer cell lines. Finally, the impact of AZ8010 on tumor progression in vivo was evaluated using a VCaP xenograft model. AZ8010 completely inhibits FGFR-1 and significantly inhibits FGFR-4 signaling at 100 nmol/L, which is an achievable in vivo concentration. This results in marked inhibition of extracellular signal-regulated kinase (ERK) phosphorylation and invasion in PNT1a cells expressing FGFR-1 and FGFR-4 and all prostate cancer cell lines tested. Treatment in vivo completely inhibited VCaP tumor growth and significantly inhibited angiogenesis and proliferation and increased cell death in treated tumors. This was associated with marked inhibition of ERK phosphorylation in treated tumors. Targeting FGFR signaling is a promising new approach to treating aggressive prostate cancer.

  1. Association of bovine leptin polymorphisms with energy output and energy storage traits in progeny tested Holstein-Friesian dairy cattle sires

    Science.gov (United States)

    2010-01-01

    Background Leptin modulates appetite, energy expenditure and the reproductive axis by signalling via its receptor the status of body energy stores to the brain. The present study aimed to quantify the associations between 10 novel and known single nucleotide polymorphisms in genes coding for leptin and leptin receptor with performance traits in 848 Holstein-Friesian sires, estimated from performance of up to 43,117 daughter-parity records per sire. Results All single nucleotide polymorphisms were segregating in this sample population and none deviated (P > 0.05) from Hardy-Weinberg equilibrium. Complete linkage disequilibrium existed between the novel polymorphism LEP-1609, and the previously identified polymorphisms LEP-1457 and LEP-580. LEP-2470 associated (P body condition score, reduced milk yield and shorter gestation (P fertility in the Holstein-Friesian dairy cow. PMID:20670403

  2. Exponential signaling gain at the receptor level enhances signal-to-noise ratio in bacterial chemotaxis.

    Directory of Open Access Journals (Sweden)

    Silke Neumann

    Full Text Available Cellular signaling systems show astonishing precision in their response to external stimuli despite strong fluctuations in the molecular components that determine pathway activity. To control the effects of noise on signaling most efficiently, living cells employ compensatory mechanisms that reach from simple negative feedback loops to robustly designed signaling architectures. Here, we report on a novel control mechanism that allows living cells to keep precision in their signaling characteristics - stationary pathway output, response amplitude, and relaxation time - in the presence of strong intracellular perturbations. The concept relies on the surprising fact that for systems showing perfect adaptation an exponential signal amplification at the receptor level suffices to eliminate slowly varying multiplicative noise. To show this mechanism at work in living systems, we quantified the response dynamics of the E. coli chemotaxis network after genetically perturbing the information flux between upstream and downstream signaling components. We give strong evidence that this signaling system results in dynamic invariance of the activated response regulator against multiplicative intracellular noise. We further demonstrate that for environmental conditions, for which precision in chemosensing is crucial, the invariant response behavior results in highest chemotactic efficiency. Our results resolve several puzzling features of the chemotaxis pathway that are widely conserved across prokaryotes but so far could not be attributed any functional role.

  3. Chronic sleep fragmentation during the sleep period induces hypothalamic endoplasmic reticulum stress and PTP1b-mediated leptin resistance in male mice.

    Science.gov (United States)

    Hakim, Fahed; Wang, Yang; Carreras, Alba; Hirotsu, Camila; Zhang, Jing; Peris, Eduard; Gozal, David

    2015-01-01

    Sleep fragmentation (SF) is highly prevalent and may constitute an important contributing factor to excessive weight gain and the metabolic syndrome. Increased endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) leading to the attenuation of leptin receptor signaling in the hypothalamus leads to obesity and metabolic dysfunction. Mice were exposed to SF and sleep control (SC) for varying periods of time during which ingestive behaviors were monitored. UPR pathways and leptin receptor signaling were assessed in hypothalami. To further examine the mechanistic role of ER stress, changes in leptin receptor (ObR) signaling were also examined in wild-type mice treated with the ER chaperone tauroursodeoxycholic acid (TUDCA), as well as in CHOP-/+ transgenic mice. Fragmented sleep in male mice induced increased food intake starting day 3 and thereafter, which was preceded by increases in ER stress and activation of all three UPR pathways in the hypothalamus. Although ObR expression was unchanged, signal transducer and activator of transcription 3 (STAT3) phosphorylation was decreased, suggesting reduced ObR signaling. Unchanged suppressor of cytokine signaling-3 (SOCS3) expression and increases in protein-tyrosine phosphatase 1B (PTP1B) expression and activity emerged with SF, along with reduced p-STAT3 responses to exogenous leptin. SF-induced effects were reversed following TUDCA treatment and were absent in CHOP -/+ mice. SF induces hyperphagic behaviors and reduced leptin signaling in hypothalamus that are mediated by activation of ER stress, and ultimately lead to increased PTP1B activity. ER stress pathways are therefore potentially implicated in SF-induced weight gain and metabolic dysfunction, and may represent a viable therapeutic target. © 2014 Associated Professional Sleep Societies, LLC.

  4. Adiponectin potentiates the acute effects of leptin in arcuate Pomc neurons

    Directory of Open Access Journals (Sweden)

    Jia Sun

    2016-10-01

    Full Text Available Objective: Adiponectin receptors (AdipoRs are located on neurons of the hypothalamus involved in metabolic regulation – including arcuate proopiomelanocortin (Pomc and Neuropeptide Y/Agouti-related peptide (NPY/AgRP neurons. AdipoRs play a critical role in regulating glucose and fatty acid metabolism by initiating several signaling cascades overlapping with Leptin receptors (LepRs. However, the mechanism by which adiponectin regulates cellular activity in the brain remains undefined. Methods: In order to resolve this issue, we utilized neuron-specific transgenic mouse models to identify Pomc and NPY/AgRP neurons which express LepRs for patch-clamp electrophysiology experiments. Results: We found that leptin and adiponectin synergistically activated melanocortin neurons in the arcuate nucleus. Conversely, NPY/AgRP neurons were inhibited in response to adiponectin. The adiponectin-induced depolarization of arcuate Pomc neurons occurred via activation of Phosphoinositide-3-kinase (PI3K signaling, independent of 5′ AMP-activated protein kinase (AMPK activity. Adiponectin also activated melanocortin neurons at various physiological glucose levels. Conclusions: Our results demonstrate a requirement for PI3K signaling in the acute adiponectin-induced effects on the cellular activity of arcuate melanocortin neurons. Moreover, these data provide evidence for PI3K as a substrate for both leptin and adiponectin to regulate energy balance and glucose metabolism via melanocortin activity. Author Video: Author Video Watch what authors say about their articles Keywords: Melanocortin, Obesity, Diabetes, Energy balance, Patch-clamp, Electrophysiology

  5. Signal interaction of Hedgehog/GLI and epidermal growth factor receptor signaling in cancer development

    International Nuclear Information System (INIS)

    Eberl, M.

    2012-01-01

    The subject of this PhD thesis is based on the cooperation of Hedgehog (HH)/GLI with epidermal growth factor receptor (EGFR) signaling synergistically promoting oncogenic transformation and cancer growth. In previous studies we have demonstrated that the HH/GLI and EGFR signaling pathways interact synergistically resulting not only in selective induction of HH/GLI-EGFR target genes, but also in the onset of oncogenic transformation and tumor formation (Kasper, Schnidar et al. 2006; Schnidar, Eberl et al. 2009). However, the molecular key mediators acting downstream of HH/GLI and EGFR signal cooperation were largely unknown and the in vivo evidence for the therapeutic relevance of HH/GLI and EGFR signal cooperation in HH-associated cancers was lacking. During my PhD thesis I could demonstrate that the integration of EGFR and HH/GLI signaling involves activation of RAS/MEK/ERK and JUN/AP1 signaling in response to EGFR activation. Furthermore I succeeded in identifying genes, including stem cell- (SOX2, SOX9), tumor growth- (JUN, TGFA, FGF19) and metastasis-associated genes (SPP1/osteopontin, CXCR4) that showed synergistic transcriptional activation by HH/GLI-EGFR signal integration. Importantly, I could demonstrate that these genes arrange themselves within a stable interdependent signaling network, which is required for in vivo growth of basal cell carcinoma (BCC) and tumor-initiating pancreatic cancer cells. These data validate EGFR signaling as additional drug target in HH/GLI driven cancers and provide new therapeutic strategies based on combined targeting of cooperative HH/GLI-EGFR signaling and selected downstream target genes (Eberl, Klingler et al. 2012). (author) [de

  6. Leptin promotes wound healing in the oral mucosa.

    Science.gov (United States)

    Umeki, Hirochika; Tokuyama, Reiko; Ide, Shinji; Okubo, Mitsuru; Tadokoro, Susumu; Tezuka, Mitsuki; Tatehara, Seiko; Satomura, Kazuhito

    2014-01-01

    Leptin, a 16 kDa circulating anti-obesity hormone, exhibits many physiological properties. Recently, leptin was isolated from saliva; however, its function in the oral cavity is still unclear. In this study, we investigated the physiological role of leptin in the oral cavity by focusing on its effect on wound healing in the oral mucosa. Immunohistochemical analysis was used to examine the expression of the leptin receptor (Ob-R) in human/rabbit oral mucosa. To investigate the effect of leptin on wound healing in the oral mucosa, chemical wounds were created in rabbit oral mucosa, and leptin was topically administered to the wound. The process of wound repair was histologically observed and quantitatively analyzed by measuring the area of ulceration and the duration required for complete healing. The effect of leptin on the proliferation, differentiation and migration of human oral mucosal epithelial cells (RT7 cells) was investigated using crystal violet staining, reverse transcription polymerase chain reaction (RT-PCR) and a wound healing assay, respectively. Ob-R was expressed in spinous/granular cells in the epithelial tissue and vascular endothelial cells in the subepithelial connective tissue of the oral mucosa. Topical administration of leptin significantly promoted wound healing and shortened the duration required for complete healing. Histological analysis of gingival tissue beneath the ulceration showed a denser distribution of blood vessels in the leptin-treated group. Although the proliferation and differentiation of RT7 cells were not affected by leptin, the migration of these cells was accelerated in the presence of leptin. Topically administered leptin was shown to promote wound healing in the oral mucosa by accelerating epithelial cell migration and enhancing angiogenesis around the wounded area. These results strongly suggest that topical administration of leptin may be useful as a treatment to promote wound healing in the oral mucosa.

  7. Human GH Receptor-IGF-1 Receptor Interaction: Implications for GH Signaling

    Science.gov (United States)

    Gan, Yujun; Buckels, Ashiya; Liu, Ying; Zhang, Yue; Paterson, Andrew J.; Jiang, Jing; Zinn, Kurt R.

    2014-01-01

    GH signaling yields multiple anabolic and metabolic effects. GH binds the transmembrane GH receptor (GHR) to activate the intracellular GHR-associated tyrosine kinase, Janus kinase 2 (JAK2), and downstream signals, including signal transducer and activator of transcription 5 (STAT5) activation and IGF-1 gene expression. Some GH effects are partly mediated by GH-induced IGF-1 via IGF-1 receptor (IGF-1R), a tyrosine kinase receptor. We previously demonstrated in non-human cells that GH causes formation of a GHR-JAK2-IGF-1R complex and that presence of IGF-1R (even without IGF-1 binding) augments proximal GH signaling. In this study, we use human LNCaP prostate cancer cells as a model system to further study the IGF-1R's role in GH signaling. GH promoted JAK2 and GHR tyrosine phosphorylation and STAT5 activation in LNCaP cells. By coimmunoprecipitation and a new split luciferase complementation assay, we find that GH augments GHR/IGF-1R complex formation, which is inhibited by a Fab of an antagonistic anti-GHR monoclonal antibody. Short hairpin RNA-mediated IGF-1R silencing in LNCaP cells reduced GH-induced GHR, JAK2, and STAT5 phosphorylation. Similarly, a soluble IGF-1R extracellular domain fragment (sol IGF-1R) interacts with GHR in response to GH and blunts GH signaling. Sol IGF-1R also markedly inhibits GH-induced IGF-1 gene expression in both LNCaP cells and mouse primary osteoblast cells. On the basis of these and other findings, we propose a model in which IGF-1R augments GH signaling by allowing a putative IGF-1R-associated molecule that regulates GH signaling to access the activated GHR/JAK2 complex and envision sol IGF-1R as a dominant-negative inhibitor of this IGF-1R-mediated augmentation. Physiological implications of this new model are discussed. PMID:25211187

  8. Retinoid receptor signaling and autophagy in acute promyelocytic leukemia.

    LENUS (Irish Health Repository)

    Orfali, Nina

    2014-05-15

    Retinoids are a family of signaling molecules derived from vitamin A with well established roles in cellular differentiation. Physiologically active retinoids mediate transcriptional effects on cells through interactions with retinoic acid (RARs) and retinoid-X (RXR) receptors. Chromosomal translocations involving the RARα gene, which lead to impaired retinoid signaling, are implicated in acute promyelocytic leukemia (APL). All-trans-retinoic acid (ATRA), alone and in combination with arsenic trioxide (ATO), restores differentiation in APL cells and promotes degradation of the abnormal oncogenic fusion protein through several proteolytic mechanisms. RARα fusion-protein elimination is emerging as critical to obtaining sustained remission and long-term cure in APL. Autophagy is a degradative cellular pathway involved in protein turnover. Both ATRA and ATO also induce autophagy in APL cells. Enhancing autophagy may therefore be of therapeutic benefit in resistant APL and could broaden the application of differentiation therapy to other cancers. Here we discuss retinoid signaling in hematopoiesis, leukemogenesis, and APL treatment. We highlight autophagy as a potential important regulator in anti-leukemic strategies.

  9. Hyperleptinemia is required for the development of leptin resistance.

    Directory of Open Access Journals (Sweden)

    Zachary A Knight

    2010-06-01

    Full Text Available Leptin regulates body weight by signaling to the brain the availability of energy stored as fat. This negative feedback loop becomes disrupted in most obese individuals, resulting in a state known as leptin resistance. The physiological causes of leptin resistance remain poorly understood. Here we test the hypothesis that hyperleptinemia is required for the development of leptin resistance in diet-induced obese mice. We show that mice whose plasma leptin has been clamped to lean levels develop obesity in response to a high-fat diet, and the magnitude of this obesity is indistinguishable from wild-type controls. Yet these obese animals with constant low levels of plasma leptin remain highly sensitive to exogenous leptin even after long-term exposure to a high fat diet. This shows that dietary fats alone are insufficient to block the response to leptin. The data also suggest that hyperleptinemia itself can contribute to leptin resistance by downregulating cellular response to leptin as has been shown for other hormones.

  10. Tyrosine 769 of the keratinocyte growth factor receptor is required for receptor signaling but not endocytosis

    International Nuclear Information System (INIS)

    Ceridono, Mara; Belleudi, Francesca; Ceccarelli, Simona; Torrisi, Maria Rosaria

    2005-01-01

    Keratinocyte growth factor receptor (KGFR) is a receptor tyrosine kinase expressed on epithelial cells which belongs to the family of fibroblast growth factor receptors (FGFRs). Following ligand binding, KGFR is rapidly autophosphorylated on specific tyrosine residues in the intracellular domain, recruits substrate proteins, and is rapidly internalized by clathrin-mediated endocytosis. The role of different autophosphorylation sites in FGFRs, and in particular the role of the tyrosine 766 in FGFR1, first identified as PLCγ binding site, has been extensively studied. We analyzed here the possible role of the tyrosine 769 in KGFR, corresponding to tyrosine 766 in FGFR1, in the regulation of KGFR signal transduction and MAPK activation as well as in the control of the endocytic process of KGFR. A mutant KGFR in which tyrosine 769 was substituted by phenylalanine was generated and transfected in NIH3T3 and HeLa cells. Our results indicate that tyrosine 769 is required for the binding to KGFR and tyrosine phosphorylation of PLCγ as well as for the full activation of MAPKs and for cell proliferation through the regulation of FRS2 tyrosine phosphorylation, suggesting that this residue represents a key regulator of KGFR signal transduction. Our data also show that tyrosine 769 is not involved in the regulation of the endocytic process of KGFR

  11. Leptin Suppresses Mouse Taste Cell Responses to Sweet Compounds.

    Science.gov (United States)

    Yoshida, Ryusuke; Noguchi, Kenshi; Shigemura, Noriatsu; Jyotaki, Masafumi; Takahashi, Ichiro; Margolskee, Robert F; Ninomiya, Yuzo

    2015-11-01

    Leptin is known to selectively suppress neural and behavioral responses to sweet-tasting compounds. However, the molecular basis for the effect of leptin on sweet taste is not known. Here, we report that leptin suppresses sweet taste via leptin receptors (Ob-Rb) and KATP channels expressed selectively in sweet-sensitive taste cells. Ob-Rb was more often expressed in taste cells that expressed T1R3 (a sweet receptor component) than in those that expressed glutamate-aspartate transporter (a marker for Type I taste cells) or GAD67 (a marker for Type III taste cells). Systemically administered leptin suppressed taste cell responses to sweet but not to bitter or sour compounds. This effect was blocked by a leptin antagonist and was absent in leptin receptor-deficient db/db mice and mice with diet-induced obesity. Blocking the KATP channel subunit sulfonylurea receptor 1, which was frequently coexpressed with Ob-Rb in T1R3-expressing taste cells, eliminated the effect of leptin on sweet taste. In contrast, activating the KATP channel with diazoxide mimicked the sweet-suppressing effect of leptin. These results indicate that leptin acts via Ob-Rb and KATP channels that are present in T1R3-expressing taste cells to selectively suppress their responses to sweet compounds. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  12. Studies on leptin and its feedback system for weight regulation

    International Nuclear Information System (INIS)

    Lei Chengzhi

    2002-01-01

    Recently the hormone leptin has been regarded as hormonal signal linking adipose tissue status with a number of key central nervous system circuits. The role of leptin and its feedback system in man is partly revealed. Hypothalamic centers appear to control appetite, metabolic rate and activity level in a co-ordinate manner. Within the hypothalamus, known weight regulatory molecules include leptin, neuropeptide Y and POMC. The authors integrated new information into a revised model for understanding this important regulatory process. The model of energy homeostasis propose that the interaction of leptin with various neuroendocrine pathway in the brain and in the periphery to affect food-take

  13. The transcriptomics of glucocorticoid receptor signaling in developing zebrafish.

    Directory of Open Access Journals (Sweden)

    Dinushan Nesan

    Full Text Available Cortisol is the primary corticosteroid in teleosts that is released in response to stressor activation of the hypothalamus-pituitary-interrenal axis. The target tissue action of this hormone is primarily mediated by the intracellular glucocorticoid receptor (GR, a ligand-bound transcription factor. In developing zebrafish (Danio rerio embryos, GR transcripts and cortisol are maternally deposited into the oocyte prior to fertilization and influence early embryogenesis. To better understand of the molecular mechanisms involved, we investigated changes in the developmental transcriptome prior to hatch, in response to morpholino oligonucleotide knockdown of GR using the Agilent zebrafish microarray platform. A total of 1313 and 836 mRNA transcripts were significantly changed at 24 and 36 hours post fertilization (hpf, respectively. Functional analysis revealed numerous developmental processes under GR regulation, including neurogenesis, eye development, skeletal and cardiac muscle formation. Together, this study underscores a critical role for glucocorticoid signaling in programming molecular events essential for zebrafish development.

  14. Current Views of Toll-Like Receptor Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Masahiro Yamamoto

    2010-01-01

    Full Text Available On microbial invasion, the host immediately evokes innate immune responses. Recent studies have demonstrated that Toll-like receptors (TLRs play crucial roles in innate responses that lead not only to the clearance of pathogens but also to the efficient establishment of acquired immunity by directly detecting molecules from microbes. In terms of intracellular TLR-mediated signaling pathways, cytoplasmic adaptor molecules containing Toll/IL-1R (TIR domains play important roles in inflammatory immune responses through the production of proinflammatory cytokines, nitric oxide, and type I interferon, and upregulation of costimulatory molecules. In this paper, we will describe our current understanding of the relationship between TLRs and their ligands derived from pathogens such as viruses, bacteria, fungi, and parasites. Moreover, we will review the historical and current literature to describe the mechanisms behind TLR-mediated activation of innate immune responses.

  15. Progesterone receptors (PR) mediate STAT actions: PR and prolactin receptor signaling crosstalk in breast cancer models.

    Science.gov (United States)

    Leehy, Katherine A; Truong, Thu H; Mauro, Laura J; Lange, Carol A

    2018-02-01

    Estrogen is the major mitogenic stimulus of mammary gland development during puberty wherein ER signaling acts to induce abundant PR expression. PR signaling, in contrast, is the primary driver of mammary epithelial cell proliferation in adulthood. The high circulating levels of progesterone during pregnancy signal through PR, inducing expression of the prolactin receptor (PRLR). Cooperation between PR and prolactin (PRL) signaling, via regulation of downstream components in the PRL signaling pathway including JAKs and STATs, facilitates the alveolar morphogenesis observed during pregnancy. Indeed, these pathways are fully integrated via activation of shared signaling pathways (i.e. JAKs, MAPKs) as well as by the convergence of PRs and STATs at target genes relevant to both mammary gland biology and breast cancer progression (i.e. proliferation, stem cell outgrowth, tissue cell type heterogeneity). Thus, rather than a single mediator such as ER, transcription factor cascades (ER>PR>STATs) are responsible for rapid proliferative and developmental programming in the normal mammary gland. It is not surprising that these same mediators typify uncontrolled proliferation in a majority of breast cancers, where ER and PR are most often co-expressed and may cooperate to drive malignant tumor progression. This review will primarily focus on the integration of PR and PRL signaling in breast cancer models and the importance of this cross-talk in cancer progression in the context of mammographic density. Components of these PR/PRL signaling pathways could offer alternative drug targets and logical complements to anti-ER or anti-estrogen-based endocrine therapies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The Pseudo signal peptide of the corticotropin-releasing factor receptor type 2A prevents receptor oligomerization.

    Science.gov (United States)

    Teichmann, Anke; Rutz, Claudia; Kreuchwig, Annika; Krause, Gerd; Wiesner, Burkhard; Schülein, Ralf

    2012-08-03

    N-terminal signal peptides mediate the interaction of native proteins with the translocon complex of the endoplasmic reticulum membrane and are cleaved off during early protein biogenesis. The corticotropin-releasing factor receptor type 2a (CRF(2(a))R) possesses an N-terminal pseudo signal peptide, which represents a so far unique domain within the large protein family of G protein-coupled receptors (GPCRs). In contrast to a conventional signal peptide, the pseudo signal peptide remains uncleaved and consequently forms a hydrophobic extension at the N terminus of the receptor. The functional consequence of the presence of the pseudo signal peptide is not understood. Here, we have analyzed the significance of this domain for receptor dimerization/oligomerization in detail. To this end, we took the CRF(2(a))R and the homologous corticotropin-releasing factor receptor type 1 (CRF(1)R) possessing a conventional cleaved signal peptide and conducted signal peptide exchange experiments. Using single cell and single molecule imaging methods (fluorescence resonance energy transfer and fluorescence cross-correlation spectroscopy, respectively) as well as biochemical experiments, we obtained two novel findings; we could show that (i) the CRF(2(a))R is expressed exclusively as a monomer, and (ii) the presence of the pseudo signal peptide prevents its oligomerization. Thus, we have identified a novel functional domain within the GPCR protein family, which plays a role in receptor oligomerization and which may be useful to study the functional significance of this process in general.

  17. B cell antigen receptor signaling and internalization are mutually exclusive events.

    Directory of Open Access Journals (Sweden)

    Ping Hou

    2006-07-01

    Full Text Available Engagement of the B cell antigen receptor initiates two concurrent processes, signaling and receptor internalization. While both are required for normal humoral immune responses, the relationship between these two processes is unknown. Herein, we demonstrate that following receptor ligation, a small subpopulation of B cell antigen receptors are inductively phosphorylated and selectively retained at the cell surface where they can serve as scaffolds for the assembly of signaling molecules. In contrast, the larger population of non-phosphorylated receptors is rapidly endocytosed. Each receptor can undergo only one of two mutually exclusive fates because the tyrosine-based motifs that mediate signaling when phosphorylated mediate internalization when not phosphorylated. Mathematical modeling indicates that the observed competition between receptor phosphorylation and internalization enhances signaling responses to low avidity ligands.

  18. Biased signaling of G protein-coupled receptors - From a chemokine receptor CCR7 perspective

    DEFF Research Database (Denmark)

    Jørgensen, Astrid Sissel; Rosenkilde, Mette M; Hjortø, Gertrud M

    2018-01-01

    of CCL21 displays an extraordinarily strong glycosaminoglycan (GAG) binding, CCR7 plays a central role in coordinating the meeting between mature antigen presenting DCs and naïve T-cells which normally takes place in the lymph nodes (LNs). This process is a prerequisite for the initiation of an antigen...... the cell-based immune system is controlled. Bias comes in three forms; ligand-, receptor- and tissue-bias. Biased signaling is increasingly being recognized as playing an important role in contributing to the fine-tuned coordination of immune cell chemotaxis. In the current review we discuss the recent...

  19. The importance of leptin in animal science

    Directory of Open Access Journals (Sweden)

    Mirela Ahmadi

    2016-05-01

    Full Text Available There are two different neurons that control the energetic homeostasis in animals: appetite-stimulating and appetite-suppressing neurons. Leptin is a peptide hormone (also known as “satiety hormone”, released by adipose cells, being an anorexigenic compound which inhibit the hunger. Leptin function in animal organism is opposite by the action of ghrelin – a peptide hormone acting as an orexigenic compound that activate the hunger sensation. The quantity of leptin produced in organism is correlated by the size and the number of adipocytes, and of course by the lipid tissue mass. The action of leptin is in accordance with the neuropeptide Y that signaling the brain to increase the appetite and make the animal to eat. When the animals lose weight, the mass of adipose tissue is diminished, that has as consequence a decrease the leptin concentration in the blood. Blood leptin is correlated also with other characteristics, such as: fasting for a short term, stress, physical activity, sleep duration (prehibernation and hibernation, insulin concentration, obesity and diabetes.

  20. Leptin and Reproduction: Past Milestones, Present Undertakings and Future Endeavors

    Science.gov (United States)

    Chehab, Farid F.

    2014-01-01

    The association between leptin and reproduction originated with the leptin-mediated correction of sterility in ob/ob mice and initiation of reproductive function in normal female mice. The uncovering of a central leptin pathway regulating food intake prompted the dissection of neuroendocrine mechanisms involving leptin in the metabolic control of reproduction. The absence of leptin receptors on GnRH neurons incited a search for intermediary neurons situated between leptin responsive and GnRH neurons. This review addresses the most significant findings that have furthered our understanding of recent progress in this new field. The role of leptin in puberty was impacted by the discovery of neurons that co-express kisspeptin, neurokinin B and dynorphin and that could act as leptin intermediates. Furthermore, the identification of first-order leptin-responsive neurons in the premammilary ventral nucleus and other brain regions opens new avenues to explore their relationship to GnRH neurons. Central to these advances is the unveiling that AgRP/NPY neurons project onto GnRH and kisspeptin neurons, allowing a crosstalk between food intake and reproduction. Finally, whereas puberty is a state of leptin sensitivity, mid-gestation represents a state of leptin resistance aimed at building energy stores to sustain pregnancy and lactation. Mechanisms underlying leptin resistance in pregnancy have lagged, however the establishment of this natural state is significant. Reproduction and energy balance are tightly controlled and backed up by redundant mechanisms that are critical for the survival of our species. It will be the goal of the next decade to shed new light on these complex and essential pathways. PMID:25118207

  1. Receptor activity-independent recruitment of βarrestin2 reveals specific signalling modes

    Science.gov (United States)

    Terrillon, Sonia; Bouvier, Michel

    2004-01-01

    The roles of βarrestins in regulating G protein coupling and receptor endocytosis following agonist stimulation of G protein-coupled receptors are well characterised. However, their ability to act on their own as direct modulators or activators of signalling remains poorly characterised. Here, βarrestin2 intrinsic signalling properties were assessed by forcing the recruitment of this accessory protein to vasopressin V1a or V2 receptors independently of agonist-promoted activation of the receptors. Such induction of a stable interaction with βarrestin2 initiated receptor endocytosis leading to intracellular accumulation of the βarrestin/receptor complexes. Interestingly, βarrestin2 association to a single receptor protomer was sufficient to elicit receptor dimer internalisation. In addition to recapitulating βarrestin2 classical actions on receptor trafficking, the receptor activity-independent recruitment of βarrestin2 activated the extracellular signal-regulated kinases. In the latter case, recruitment to the receptor itself was not required since kinase activation could be mediated by βarrestin2 translocation to the plasma membrane in the absence of any interacting receptor. These data demonstrate that βarrestin2 can act as a ‘bonafide' signalling molecule even in the absence of activated receptor. PMID:15385966

  2. β1-adrenergic receptor stimulation by agonist Compound 49b restores insulin receptor signal transduction in vivo

    Science.gov (United States)

    Jiang, Youde; Zhang, Qiuhua; Ye, Eun-Ah

    2014-01-01

    Purpose Determine whether Compound 49b treatment ameliorates retinal changes due to the lack of β2-adrenergic receptor signaling. Methods Using retinas from 3-month-old β2-adrenergic receptor-deficient mice, we treated mice with our novel β1-/β2-adrenergic receptor agonist, Compound 49b, to assess the effects of adrenergic agonists acting only on β1-adrenergic receptors due to the absence of β2-adrenergic receptors. Western blotting or enzyme-linked immunosorbent assay (ELISA) analyses were performed for β1- and β2-adrenergic receptors, as well as key insulin resistance proteins, including TNF-α, SOCS3, IRS-1Ser307, and IRTyr960. Analyses were also performed on key anti- and proapoptotic proteins: Akt, Bcl-xL, Bax, and caspase 3. Electroretinogram analyses were conducted to assess functional changes, while histological assessment was conducted for changes in retinal thickness. Results A 2-month treatment of β2-adrenergic receptor-deficient mice with daily eye drops of 1 mM Compound 49b, a novel β1- and β2-adrenergic receptor agonist, reversed the changes in insulin resistance markers (TNF-α and SOCS3) observed in untreated β2-adrenergic receptor-deficient mice, and concomitantly increased morphological integrity (retinal thickness) and functional responses (electroretinogram amplitude). These results suggest that stimulating β1-adrenergic receptors on retinal endothelial cells or Müller cells can compensate for the loss of β2-adrenergic receptor signaling on Müller cells, restore insulin signal transduction, reduce retinal apoptosis, and enhance retinal function. Conclusions Since our previous studies with β1-adrenergic receptor knockout mice confirmed that the reverse also occurs (β2-adrenergic receptor stimulation can compensate for the loss of β1-adrenergic receptor activity), it appears that increased activity in either of these pathways alone is sufficient to block insulin resistance–based retinal cell apoptosis. PMID:24966659

  3. The effect of obesity on inflammatory cytokine and leptin production following acute mental stress.

    Science.gov (United States)

    Caslin, H L; Franco, R L; Crabb, E B; Huang, C J; Bowen, M K; Acevedo, E O

    2016-02-01

    Obesity may contribute to cardiovascular disease (CVD) risk by eliciting chronic systemic inflammation and impairing the immune response to additional stressors. There has been little assessment of the effect of obesity on psychological stress, an independent risk factor for CVD. Therefore, it was of interest to examine interleukin-6, tumor necrosis factor-α, interleukin-1β (IL-1β), interleukin-1 receptor antagonist (IL-1Ra), and leptin following an acute mental stress task in nonobese and obese males. Twenty college-aged males (21.3 ± 0.56 years) volunteered to participate in a 20-min Stroop color-word and mirror-tracing task. Subjects were recruited for obese (body mass index: BMI > 30) and nonobese (BMI stress task elicited an increase in heart rate, catecholamines, and IL-1β in all subjects. Additionally, acute mental stress increased cortisol concentrations in the nonobese group. There was a significant reduction in leptin in obese subjects 30 min posttask compared with a decrease in nonobese subjects 120 min posttask. Interestingly, the relationship between the percent change in leptin and IL-1Ra at 120 min posttask in response to an acute mental stress task was only observed in nonobese individuals. This is the first study to suggest that adiposity in males may impact leptin and inflammatory signaling mechanisms following acute mental stress. © 2015 Society for Psychophysiological Research.

  4. Role of leptin as a link between metabolism and the immune system.

    Science.gov (United States)

    Pérez-Pérez, Antonio; Vilariño-García, Teresa; Fernández-Riejos, Patricia; Martín-González, Jenifer; Segura-Egea, Juan José; Sánchez-Margalet, Víctor

    2017-06-01

    Leptin is an adipocyte-derived hormone not only with an important role in the central control of energy metabolism, but also with many pleiotropic effects in different physiological systems. One of these peripheral functions of leptin is a regulatory role in the interplay between energy metabolism and the immune system, being a cornerstone of the new field of immunometabolism. Leptin receptor is expressed throughout the immune system and the regulatory effects of leptin include cells from both the innate and adaptive immune system. Leptin is one of the adipokines responsible for the inflammatory state found in obesity that predisposes not only to type 2 diabetes, metabolic syndrome and cardiovascular disease, but also to autoimmune and allergic diseases. Leptin is an important mediator of the immunosuppressive state in undernutrition status. Placenta is the second source of leptin and it may play a role in the immunomodulation during pregnancy. Finally, recent work has pointed to the participation of leptin and leptin receptor in the pathophysiology of inflammation in oral biology. Therefore, leptin and leptin receptor should be considered for investigation as a marker of inflammation and immune activation in the frontier of innate-adaptive system, and as possible targets for intervention in the immunometabolic mediated pathophysiology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Leptin actions on food intake and body temperature are mediated by IL-1.

    Science.gov (United States)

    Luheshi, G N; Gardner, J D; Rushforth, D A; Loudon, A S; Rothwell, N J

    1999-06-08

    Leptin regulates energy balance through its actions in the brain on appetite and energy expenditure and also shares properties with cytokines such as IL-1. We report here that leptin, injected into rats intracerebroventricularly or peripherally, induces significant dose-dependent increases in core body temperature as well as suppression of appetite. Leptin failed to affect food intake or body temperature in obese (fa/fa) Zucker rats, which posses a defective leptin receptor. Furthermore, injection of leptin increased levels of the proinflammatory cytokine IL-1beta in the hypothalamus of normal Sprague-Dawley rats. Central injection of IL-1 receptor antagonist (IL-1ra) inhibited the suppression of food intake caused by central or peripheral injection of leptin (60 and 84%, respectively) and abolished the leptin-induced increase in body temperature in both cases. Mice lacking (gene knockout) the main IL-1 receptor (80 kDa, R1) responsible for IL-1 actions showed no reduction in food intake in response to leptin. These data indicate that leptin actions in the brain depend on IL-1, and we show further that the effect of leptin on fever, but not food intake, is abolished by a cyclooxygenase inhibitor. Thus, we propose that in addition to its role in body weight regulation, leptin may mediate neuroimmune responses via actions in the brain dependent on release of IL-1 and prostaglandins.

  6. Leptin and insulin up-regulate miR-4443 to suppress NCOA1 and TRAF4, and decrease the invasiveness of human colon cancer cells

    International Nuclear Information System (INIS)

    Meerson, Ari; Yehuda, Hila

    2016-01-01

    Obesity is a risk factor for colorectal cancer (CRC). Normal and tumor cells respond to metabolic hormones, such as leptin and insulin. Thus, obesity-associated resistance to these hormones likely leads to changes in gene expression and behavior of tumor cells. However, the mechanisms affected by leptin and insulin signaling in CRC cells remain mostly unknown. We hypothesized that microRNAs (miRNAs) are involved in the regulation of tumorigenesis-related gene expression in CRC cells by leptin and insulin. To test this hypothesis, miRNA levels in the CRC-derived cell lines HCT-116, HT-29 and DLD-1 were profiled, following leptin and insulin treatment. Candidate miRNAs were validated by RT-qPCR. Predicted miRNA targets with known roles in cancer, were validated by immunoblots and reporter assays in HCT-116 cells. Transfection of HCT-116 cells with candidate miRNA mimic was used to test in vitro effects on proliferation and invasion. Of ~800 miRNAs profiled, miR-4443 was consistently up-regulated by leptin and insulin in HCT-116 and HT-29, but not in DLD-1, which lacked normal leptin receptor expression. Dose response experiments showed that leptin at 100 ng/ml consistently up-regulated miR-4443 in HCT-116 cells, concomitantly with a significant decrease in cell invasion ability. Transfection with miR-4443 mimic decreased invasion and proliferation of HCT-116 cells. Moreover, leptin and miR-4443 transfection significantly down-regulated endogenous NCOA1 and TRAF4, both predicted targets of miR-4443 with known roles in cancer metastasis. miR-4443 was found to directly regulate TRAF4 and NCOA1, as validated by a reporter assay. The up-regulation of miR-4443 by leptin or insulin was attenuated by the inhibition of MEK1/2. Our findings suggest that miR-4443 acts in a tumor-suppressive manner by down-regulating TRAF4 and NCOA1 downstream of MEK-C/EBP-mediated leptin and insulin signaling, and that insulin and/or leptin resistance (e.g. in obesity) may suppress this pathway

  7. Distinct Phosphorylation Clusters Determine the Signaling Outcome of Free Fatty Acid Receptor 4/G Protein-Coupled Receptor 120

    DEFF Research Database (Denmark)

    Prihandoko, Rudi; Alvarez-Curto, Elisa; Hudson, Brian D

    2016-01-01

    of these phosphoacceptor sites to alanine completely prevented phosphorylation of mFFA4 but did not limit receptor coupling to extracellular signal regulated protein kinase 1 and 2 (ERK1/2) activation. Rather, an inhibitor of Gq/11proteins completely prevented receptor signaling to ERK1/2. By contrast, the recruitment...... activation. These unique observations define differential effects on signaling mediated by phosphorylation at distinct locations. This hallmark feature supports the possibility that the signaling outcome of mFFA4 activation can be determined by the pattern of phosphorylation (phosphorylation barcode...

  8. Receptor density balances signal stimulation and attenuation in membrane-assembled complexes of bacterial chemotaxis signaling proteins

    Science.gov (United States)

    Besschetnova, Tatiana Y.; Montefusco, David J.; Asinas, Abdalin E.; Shrout, Anthony L.; Antommattei, Frances M.; Weis, Robert M.

    2008-01-01

    All cells possess transmembrane signaling systems that function in the environment of the lipid bilayer. In the Escherichia coli chemotaxis pathway, the binding of attractants to a two-dimensional array of receptors and signaling proteins simultaneously inhibits an associated kinase and stimulates receptor methylation—a slower process that restores kinase activity. These two opposing effects lead to robust adaptation toward stimuli through a physical mechanism that is not understood. Here, we provide evidence of a counterbalancing influence exerted by receptor density on kinase stimulation and receptor methylation. Receptor signaling complexes were reconstituted over a range of defined surface concentrations by using a template-directed assembly method, and the kinase and receptor methylation activities were measured. Kinase activity and methylation rates were both found to vary significantly with surface concentration—yet in opposite ways: samples prepared at high surface densities stimulated kinase activity more effectively than low-density samples, whereas lower surface densities produced greater methylation rates than higher densities. FRET experiments demonstrated that the cooperative change in kinase activity coincided with a change in the arrangement of the membrane-associated receptor domains. The counterbalancing influence of density on receptor methylation and kinase stimulation leads naturally to a model for signal regulation that is compatible with the known logic of the E. coli pathway. Density-dependent mechanisms are likely to be general and may operate when two or more membrane-related processes are influenced differently by the two-dimensional concentration of pathway elements. PMID:18711126

  9. Regulation of G protein-coupled receptor signalling: focus on the cardiovascular system and regulator of G protein signalling proteins

    NARCIS (Netherlands)

    Hendriks-Balk, Mariëlle C.; Peters, Stephan L. M.; Michel, Martin C.; Alewijnse, Astrid E.

    2008-01-01

    G protein-coupled receptors (GPCRs) are involved in many biological processes. Therefore, GPCR function is tightly controlled both at receptor level and at the level of signalling components. Well-known mechanisms by which GPCR function can be regulated comprise desensitization/resensitization

  10. ZINC-INDUCED EGF RECEPTOR SIGNALING REQUIRES SRC-MEDIATED PHOSPHORYLATION OF THE EGF RECEPTOR ON TYROSINE 845 (Y845)

    Science.gov (United States)

    ZINC-INDUCED EGF RECEPTOR SIGNALING REQUIRES Src-MEDIATED PHOSPHORYLATION OF THE EGF RECEPTOR ON TYROSINE 845 (Y845)Weidong Wu1, Lee M. Graves2, Gordon N. Gill3 and James M. Samet4 1Center for Environmental Medicine and Lung Biology; 2Department of Pharmacology, University o...

  11. Evidence for positive selection on the leptin gene in Cetacea and Pinnipedia.

    Directory of Open Access Journals (Sweden)

    Li Yu

    Full Text Available The leptin gene has received intensive attention and scientific investigation for its importance in energy homeostasis and reproductive regulation in mammals. Furthermore, study of the leptin gene is of crucial importance for public health, particularly for its role in obesity, as well as for other numerous physiological roles that it plays in mammals. In the present work, we report the identification of novel leptin genes in 4 species of Cetacea, and a comparison with 55 publicly available leptin sequences from mammalian genome assemblies and previous studies. Our study provides evidence for positive selection in the suborder Odontoceti (toothed whales of the Cetacea and the family Phocidae (earless seals of the Pinnipedia. We also detected positive selection in several leptin gene residues in these two lineages. To test whether leptin and its receptor evolved in a coordinated manner, we analyzed 24 leptin receptor gene (LPR sequences from available mammalian genome assemblies and other published data. Unlike the case of leptin, our analyses did not find evidence of positive selection for LPR across the Cetacea and Pinnipedia lineages. In line with this, positively selected sites identified in the leptin genes of these two lineages were located outside of leptin receptor binding sites, which at least partially explains why co-evolution of leptin and its receptor was not observed in the present study. Our study provides interesting insights into current understanding of the evolution of mammalian leptin genes in response to selective pressures from life in an aquatic environment, and leads to a hypothesis that new tissue specificity or novel physiologic functions of leptin genes may have arisen in both odontocetes and phocids. Additional data from other species encompassing varying life histories and functional tests of the adaptive role of the amino acid changes identified in this study will help determine the factors that promote the adaptive

  12. Real-time trafficking and signaling of the glucagon-like peptide-1 receptor

    DEFF Research Database (Denmark)

    Roed, Sarah Noerklit; Wismann, Pernille; Underwood, Christina Rye

    2014-01-01

    The glucagon-like peptide-1 incretin receptor (GLP-1R) of family B G protein-coupled receptors (GPCRs) is a major drug target in type-2-diabetes due to its regulatory effect on post-prandial blood-glucose levels. The mechanism(s) controlling GLP-1R mediated signaling are far from fully understood....... A fundamental mechanism controlling the signaling capacity of GPCRs is the post-endocytic trafficking of receptors between recycling and degradative fates. Here, we combined microscopy with novel real-time assays to monitor both receptor trafficking and signaling in living cells. We find that the human GLP-1R...

  13. Prenatal caffeine exposure induced a lower level of fetal blood leptin mainly via placental mechanism

    International Nuclear Information System (INIS)

    Wu, Yi-meng; Luo, Han-wen; Kou, Hao; Wen, Yin-xian; Shen, Lang; Pei, Ling-guo; Zhou, Jin; Zhang, Yuan-zhen; Wang, Hui

    2015-01-01

    It's known that blood leptin level is reduced in intrauterine growth retardation (IUGR) fetus, and placental leptin is the major source of fetal blood leptin. This study aimed to investigate the decreased fetal blood leptin level by prenatal caffeine exposure (PCE) and its underlying placental mechanisms. Pregnant Wistar rats were intragastrically administered caffeine (30–120 mg/kg day) from gestational day 9 to 20. The level of fetal serum leptin and the expression of placental leptin-related genes were analyzed. Furthermore, we investigated the molecular mechanism of the reduced placental leptin's expression by treatment with caffeine (0.8–20 μM) in the BeWo cells. In vivo, PCE significantly decreased fetal serum leptin level in caffeine dose-dependent manner. Meanwhile, placental mRNA expression of adenosine A2a receptor (Adora2a), cAMP-response element binding protein (CREB), a short-type leptin receptor (Ob-Ra) and leptin was reduced in the PCE groups. In vitro, caffeine significantly decreased the mRNA expression of leptin, CREB and ADORA2A in concentration and time-dependent manners. The addition of ADORA2A agonist or adenylyl cyclase (AC) agonist reversed the inhibition of leptin expression induced by caffeine. PCE induced a lower level of fetal blood leptin, which the primary mechanism is that caffeine inhibited antagonized Adora2a and AC activities to decreased cAMP synthesis, thus inhibited the expression of the transcription factor CREB and target gene leptin in the placenta. Meantime, the reduced transportation of maternal leptin by placental Ob-Ra also contributed to the reduced fetal blood leptin. Together, PCE decreased fetal blood leptin mainly via reducing the expression and transportation of leptin in the placenta. - Highlights: • Caffeine reduced fetal blood leptin level. • Caffeine inhibited placental leptin production and transport. • Caffeine down-regulated placental leptin expression via antagonizing ADORA2.

  14. Prenatal caffeine exposure induced a lower level of fetal blood leptin mainly via placental mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yi-meng [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Luo, Han-wen [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Kou, Hao [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Wen, Yin-xian [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Shen, Lang; Pei, Ling-guo; Zhou, Jin [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Zhang, Yuan-zhen [Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071 (China); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071 (China)

    2015-11-15

    It's known that blood leptin level is reduced in intrauterine growth retardation (IUGR) fetus, and placental leptin is the major source of fetal blood leptin. This study aimed to investigate the decreased fetal blood leptin level by prenatal caffeine exposure (PCE) and its underlying placental mechanisms. Pregnant Wistar rats were intragastrically administered caffeine (30–120 mg/kg day) from gestational day 9 to 20. The level of fetal serum leptin and the expression of placental leptin-related genes were analyzed. Furthermore, we investigated the molecular mechanism of the reduced placental leptin's expression by treatment with caffeine (0.8–20 μM) in the BeWo cells. In vivo, PCE significantly decreased fetal serum leptin level in caffeine dose-dependent manner. Meanwhile, placental mRNA expression of adenosine A2a receptor (Adora2a), cAMP-response element binding protein (CREB), a short-type leptin receptor (Ob-Ra) and leptin was reduced in the PCE groups. In vitro, caffeine significantly decreased the mRNA expression of leptin, CREB and ADORA2A in concentration and time-dependent manners. The addition of ADORA2A agonist or adenylyl cyclase (AC) agonist reversed the inhibition of leptin expression induced by caffeine. PCE induced a lower level of fetal blood leptin, which the primary mechanism is that caffeine inhibited antagonized Adora2a and AC activities to decreased cAMP synthesis, thus inhibited the expression of the transcription factor CREB and target gene leptin in the placenta. Meantime, the reduced transportation of maternal leptin by placental Ob-Ra also contributed to the reduced fetal blood leptin. Together, PCE decreased fetal blood leptin mainly via reducing the expression and transportation of leptin in the placenta. - Highlights: • Caffeine reduced fetal blood leptin level. • Caffeine inhibited placental leptin production and transport. • Caffeine down-regulated placental leptin expression via antagonizing ADORA2.

  15. The Role of Cgrp-Receptor Component Protein (Rcp in Cgrp-Mediated Signal Transduction

    Directory of Open Access Journals (Sweden)

    M. A. Prado

    2001-01-01

    Full Text Available The calcitonin gene-related peptide (CGRP-receptor component protein (RCP is a 17-kDa intracellular peripheral membrane protein required for signal transduction at CGRP receptors. To determine the role of RCP in CGRP-mediated signal transduction, RCP was depleted from NIH3T3 cells using antisense strategy. Loss of RCP protein correlated with loss of cAMP production by CGRP in the antisense cells. In contrast, loss of RCP had no effect on CGRP-mediated binding; therefore RCP is not acting as a chaperone for the CGRP receptor. Instead, RCP is a novel signal transduction molecule that couples the CGRP receptor to the cellular signal transduction machinery. RCP thus represents a prototype for a new class of signal transduction proteins that are required for regulation of G protein-coupled receptors.

  16. Growth hormone receptor-deficient pigs resemble the pathophysiology of human Laron syndrome and reveal altered activation of signaling cascades in the liver

    Directory of Open Access Journals (Sweden)

    Arne Hinrichs

    2018-05-01

    significantly reduced. In contrast, phosphorylation of JAK2 was significantly increased, possibly due to the increased serum leptin levels and increased hepatic leptin receptor expression and activation in GHR-KO pigs. In addition, increased mTOR phosphorylation was observed in GHR-KO liver samples, and phosphorylation studies of downstream substrates suggested the activation of mainly mTOR complex 2. Conclusion: GHR-KO pigs resemble the pathophysiology of LS and are an interesting model for mechanistic studies and treatment trials. Keywords: Growth hormone receptor, Laron syndrome, Pig model, Dwarfism, Hypoglycemia, Insulin-like growth factor 1, Signaling

  17. Cocaine Disrupts Histamine H3 Receptor Modulation of Dopamine D1 Receptor Signaling: σ1-D1-H3 Receptor Complexes as Key Targets for Reducing Cocaine's Effects

    Science.gov (United States)

    Moreno, Estefanía; Moreno-Delgado, David; Navarro, Gemma; Hoffmann, Hanne M.; Fuentes, Silvia; Rosell-Vilar, Santi; Gasperini, Paola; Rodríguez-Ruiz, Mar; Medrano, Mireia; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Lluís, Carme; Ferré, Sergi; Ortiz, Jordi; Canela, Enric

    2014-01-01

    The general effects of cocaine are not well understood at the molecular level. What is known is that the dopamine D1 receptor plays an important role. Here we show that a key mechanism may be cocaine's blockade of the histamine H3 receptor-mediated inhibition of D1 receptor function. This blockade requires the σ1 receptor and occurs upon cocaine binding to σ1-D1-H3 receptor complexes. The cocaine-mediated disruption leaves an uninhibited D1 receptor that activates Gs, freely recruits β-arrestin, increases p-ERK 1/2 levels, and induces cell death when over activated. Using in vitro assays with transfected cells and in ex vivo experiments using both rats acutely treated or self-administered with cocaine along with mice depleted of σ1 receptor, we show that blockade of σ1 receptor by an antagonist restores the protective H3 receptor-mediated brake on D1 receptor signaling and prevents the cell death from elevated D1 receptor signaling. These findings suggest that a combination therapy of σ1R antagonists with H3 receptor agonists could serve to reduce some effects of cocaine. PMID:24599455

  18. Innate immune receptor Toll-like receptor 4 signalling in neuropsychiatric diseases.

    Science.gov (United States)

    García Bueno, B; Caso, J R; Madrigal, J L M; Leza, J C

    2016-05-01

    The innate immunity is a stereotyped first line of defense against pathogens and unspecified damage signals. One of main actors of innate immunity are the Toll-like receptors (TLRs), and one of the better characterized members of this family is TLR-4, that it is mainly activated by Gram-negative bacteria lipopolysaccharide. In brain, TLR-4 organizes innate immune responses against infections or cellular damage, but also possesses other physiological functions. In the last years, some evidences suggest a role of TLR-4 in stress and stress-related neuropsychiatric diseases. Peripheral and brain TLR-4 activation triggers sickness behavior, and its expression is a risk factor of depression. Some elements of the TLR-4 signaling pathway are up-regulated in peripheral samples and brain post-mortem tissue from depressed and suicidal patients. The "leaky gut" hypothesis of neuropsychiatric diseases is based on the existence of an increase of the intestinal permeability which results in bacterial translocation able to activate TLR-4. Enhanced peripheral TLR-4 expression/activity has been described in subjects diagnosed with schizophrenia, bipolar disorder and in autistic children. A role for TLR-4 in drugs abuse has been also proposed. The therapeutic potential of pharmacological/genetic modulation of TLRs signaling pathways in neuropsychiatry is promising, but a great preclinical/clinical scientific effort is still needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. SGIP1 alters internalization and modulates signaling of activated cannabinoid receptor 1 in a biased manner

    Czech Academy of Sciences Publication Activity Database

    Hájková, Alena; Techlovská, Šárka; Dvořáková, Michaela; Chambers, Jayne Nicole; Kumpošt, Jiří; Hubálková, Pavla; Prezeau, L.; Blahoš, Jaroslav

    2016-01-01

    Roč. 107, léto (2016), s. 201-214 ISSN 0028-3908 R&D Projects: GA ČR GAP303/12/2408 Institutional support: RVO:68378050 Keywords : Seven transmembrane receptors * G-protein coupled receptors * Cannabinoid receptor 1 * Protein-protein interactions * Bias signaling * Receptor endocytosis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.012, year: 2016

  20. Roux-en-Y gastric bypass surgery suppresses hypothalamic PTP1B protein level and alleviates leptin resistance in obese rats.

    Science.gov (United States)

    Liu, Jia-Yu; Mu, Song; Zhang, Shu-Ping; Guo, Wei; Li, Qi-Fu; Xiao, Xiao-Qiu; Zhang, Jun; Wang, Zhi-Hong

    2017-09-01

    The present study aimed to explore the effect of Roux-en-Y gastric bypass (RYGB) surgery on protein tyrosine phosphatase 1B (PTP1B) expression levels and leptin activity in hypothalami of obese rats. Obese rats induced by a high-fat diet (HFD) that underwent RYGB (n=11) or sham operation (SO, n=9), as well as an obese control cohort (Obese, n=10) and an additional normal-diet group (ND, n=10) were used. Food efficiency was measured at 8 weeks post-operation. Plasma leptin levels were evaluated and hypothalamic protein tyrosine phosphatase 1B (PTP1B) levels and leptin signaling activity were examined at the genetic and protein levels. The results indicated that food efficiency was typically lower in RYGB rats compared with that in the Obese and SO rats. In the RYGB group, leptin receptor expression and proopiomelanocortin was significantly higher, while Neuropeptide Y levels were lower than those in the Obese and SO groups. Furthermore, the gene and protein expression levels of PTP1B in the RYGB group were lower, while levels of phosphorylated signal transducer and activator of transcription 3 protein were much higher compared with those in the Obese and SO groups. In conclusion, RYGB surgery significantly suppressed hypothalamic PTP1B protein expression. PTP1B regulation may partially alleviate leptin resistance.

  1. Quercetin suppresses insulin receptor signaling through inhibition of the insulin ligand–receptor binding and therefore impairs cancer cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng [Department of Gastroenterology, The Tenth People’s Hospital of Shanghai, Tongji University, Shanghai 200072 (China); Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Yang, Yong, E-mail: yyang@houstonmethodist.org [Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Department of Medicine, Weill Cornell Medical College, New York, NY 10065 (United States)

    2014-10-03

    Graphical abstract: - Highlights: • Quercetin inhibits insulin ligand–receptor interactions. • Quercetin reduces downstream insulin receptor signaling. • Quercetin blocks insulin induced glucose uptake. • Quercetin suppresses insulin stimulated cancer cell proliferation and tumor growth. - Abstract: Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers.

  2. Quercetin suppresses insulin receptor signaling through inhibition of the insulin ligand–receptor binding and therefore impairs cancer cell proliferation

    International Nuclear Information System (INIS)

    Wang, Feng; Yang, Yong

    2014-01-01

    Graphical abstract: - Highlights: • Quercetin inhibits insulin ligand–receptor interactions. • Quercetin reduces downstream insulin receptor signaling. • Quercetin blocks insulin induced glucose uptake. • Quercetin suppresses insulin stimulated cancer cell proliferation and tumor growth. - Abstract: Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers

  3. Cell surface receptors for signal transduction and ligand transport: a design principles study.

    Directory of Open Access Journals (Sweden)

    Harish Shankaran

    2007-06-01

    Full Text Available Receptors constitute the interface of cells to their external environment. These molecules bind specific ligands involved in multiple processes, such as signal transduction and nutrient transport. Although a variety of cell surface receptors undergo endocytosis, the systems-level design principles that govern the evolution of receptor trafficking dynamics are far from fully understood. We have constructed a generalized mathematical model of receptor-ligand binding and internalization to understand how receptor internalization dynamics encodes receptor function and regulation. A given signaling or transport receptor system represents a particular implementation of this module with a specific set of kinetic parameters. Parametric analysis of the response of receptor systems to ligand inputs reveals that receptor systems can be characterized as being: i avidity-controlled where the response control depends primarily on the extracellular ligand capture efficiency, ii consumption-controlled where the ability to internalize surface-bound ligand is the primary control parameter, and iii dual-sensitivity where both the avidity and consumption parameters are important. We show that the transferrin and low-density lipoprotein receptors are avidity-controlled, the vitellogenin receptor is consumption-controlled, and the epidermal growth factor receptor is a dual-sensitivity receptor. Significantly, we show that ligand-induced endocytosis is a mechanism to enhance the accuracy of signaling receptors rather than merely serving to attenuate signaling. Our analysis reveals that the location of a receptor system in the avidity-consumption parameter space can be used to understand both its function and its regulation.

  4. Signaling properties and pharmacological analysis of two sulfakinin receptors from the red flour beetle, Tribolium castaneum.

    Directory of Open Access Journals (Sweden)

    Sven Zels

    Full Text Available Sulfakinin is an insect neuropeptide that constitutes an important component of the complex network of hormonal and neural factors that regulate feeding and digestion. The key modulating functions of sulfakinin are mediated by binding and signaling via G-protein coupled receptors. Although a substantial amount of functional data have already been reported on sulfakinins in different insect species, only little information is known regarding the properties of their respective receptors. In this study, we report on the molecular cloning, functional expression and characterization of two sulfakinin receptors in the red flour beetle, Tribolium castaneum. Both receptor open reading frames show extensive sequence similarity with annotated sulfakinin receptors from other insects. Comparison of the sulfakinin receptor sequences with homologous vertebrate cholecystokinin receptors reveals crucial conserved regions for ligand binding and receptor activation. Quantitative reverse transcriptase PCR shows that transcripts of both receptors are primarily expressed in the central nervous system of the beetle. Pharmacological characterization using 29 different peptide ligands clarified the essential requirements for efficient activation of these sulfakinin receptors. Analysis of the signaling pathway in multiple cell lines disclosed that the sulfakinin receptors of T. castaneum can stimulate both the Ca²⁺ and cyclic AMP second messenger pathways. This in depth characterization of two insect sulfakinin receptors may provide useful leads for the further development of receptor ligands with a potential applicability in pest control and crop protection.

  5. Signaling properties and pharmacological analysis of two sulfakinin receptors from the red flour beetle, Tribolium castaneum.

    Science.gov (United States)

    Zels, Sven; Verlinden, Heleen; Dillen, Senne; Vleugels, Rut; Nachman, Ronald J; Vanden Broeck, Jozef

    2014-01-01

    Sulfakinin is an insect neuropeptide that constitutes an important component of the complex network of hormonal and neural factors that regulate feeding and digestion. The key modulating functions of sulfakinin are mediated by binding and signaling via G-protein coupled receptors. Although a substantial amount of functional data have already been reported on sulfakinins in different insect species, only little information is known regarding the properties of their respective receptors. In this study, we report on the molecular cloning, functional expression and characterization of two sulfakinin receptors in the red flour beetle, Tribolium castaneum. Both receptor open reading frames show extensive sequence similarity with annotated sulfakinin receptors from other insects. Comparison of the sulfakinin receptor sequences with homologous vertebrate cholecystokinin receptors reveals crucial conserved regions for ligand binding and receptor activation. Quantitative reverse transcriptase PCR shows that transcripts of both receptors are primarily expressed in the central nervous system of the beetle. Pharmacological characterization using 29 different peptide ligands clarified the essential requirements for efficient activation of these sulfakinin receptors. Analysis of the signaling pathway in multiple cell lines disclosed that the sulfakinin receptors of T. castaneum can stimulate both the Ca²⁺ and cyclic AMP second messenger pathways. This in depth characterization of two insect sulfakinin receptors may provide useful leads for the further development of receptor ligands with a potential applicability in pest control and crop protection.

  6. Ric-8A, a Gα protein guanine nucleotide exchange factor potentiates taste receptor signaling

    Directory of Open Access Journals (Sweden)

    Claire J Fenech

    2009-10-01

    Full Text Available Taste receptors for sweet, bitter and umami tastants are G-protein coupled receptors (GPCRs. While much effort has been devoted to understanding G-protein-receptor interactions and identifying the components of the signalling cascade downstream of these receptors, at the level of the G-protein the modulation of receptor signal transduction remains relatively unexplored. In this regard a taste-specific regulator of G-protein signaling (RGS, RGS21, has recently been identified. To study whether guanine nucleotide exchange factors (GEFs are involved in the transduction of the signal downstream of the taste GPCRs we investigated the expression of Ric-8A and Ric-8B in mouse taste cells and their interaction with G-protein subunits found in taste buds. Mammalian Ric-8 proteins were initially identified as potent GEFs for a range of Gα subunits and Ric-8B has recently been shown to amplify olfactory signal transduction. We find that both Ric-8A and Ric-8B are expressed in a large portion of taste bud cells and that most of these cells contain IP3R-3 a marker for sweet, umami and bitter taste receptor cells. Ric-8A interacts with Gα-gustducin and Gαi2 through which it amplifies the signal transduction of hTas2R16, a receptor for bitter compounds. Overall, these findings are consistent with a role for Ric-8 in mammalian taste signal transduction.

  7. The Role of (BETA)-Catenin in Androgen Receptor Signaling

    National Research Council Canada - National Science Library

    Bhowmick, Neil A

    2006-01-01

    .... Our preliminary data seem indicate stromally derived paracrine Wnt family members activate theepithelial frizzled receptor to enable prostate epithelial survival in an androgen deficient environment...

  8. Optogenetic activation of leptin- and glucose-regulated GABAergic neurons in dorsomedial hypothalamus promotes food intake via inhibitory synaptic transmission to paraventricular nucleus of hypothalamus

    Directory of Open Access Journals (Sweden)

    Zesemdorj Otgon-Uul

    2016-08-01

    Full Text Available Objective: The dorsomedial hypothalamus (DMH has been considered an orexigenic nucleus, since the DMH lesion reduced food intake and body weight and induced resistance to diet-induced obesity. The DMH expresses feeding regulatory neuropeptides and receptors including neuropeptide Y (NPY, cocaine- and amphetamine-regulated transcript (CART, cholecystokinin (CCK, leptin receptor, and melanocortin 3/4 receptors. However, the principal neurons generating the orexigenic function in the DMH remain to be defined. This study aimed to clarify the role of the DMH GABAergic neurons in feeding regulation by using optogenetics and electrophysiological techniques. Methods: We generated the mice expressing ChRFR-C167A, a bistable chimeric channelrhodopsin, selectively in GABAergic neurons of DMH via locally injected adeno-associated virus 2. Food intake after optogenetic activation of DMH GABAergic neurons was measured. Electrophysiological properties of DMH GABAergic neurons were measured using slice patch clamp. Results: Optogenetic activation of DMH GABAergic neurons promoted food intake. Leptin hyperpolarized and lowering glucose depolarized half of DMH GABAergic neurons, suggesting their orexigenic property. Optical activation of axonal terminals of DMH GABAergic neurons at the paraventricular nucleus of hypothalamus (PVN, where anorexigenic neurons are localized, increased inhibitory postsynaptic currents on PVN neurons and promoted food intake. Conclusion: DMH GABAergic neurons are regulated by metabolic signals leptin and glucose and, once activated, promote food intake via inhibitory synaptic transmission to PVN. Keywords: Dorsomedial hypothalamus, GABAergic neuron, Feeding, Leptin, Glucose, Optogenetics

  9. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling.

    Science.gov (United States)

    Mutoh, Shingo; Sobhany, Mack; Moore, Rick; Perera, Lalith; Pedersen, Lee; Sueyoshi, Tatsuya; Negishi, Masahiko

    2013-05-07

    Phenobarbital is a central nervous system depressant that also indirectly activates nuclear receptor constitutive active androstane receptor (CAR), which promotes drug and energy metabolism, as well as cell growth (and death), in the liver. We found that phenobarbital activated CAR by inhibiting epidermal growth factor receptor (EGFR) signaling. Phenobarbital bound to EGFR and potently inhibited the binding of EGF, which prevented the activation of EGFR. This abrogation of EGFR signaling induced the dephosphorylation of receptor for activated C kinase 1 (RACK1) at Tyr(52), which then promoted the dephosphorylation of CAR at Thr(38) by the catalytic core subunit of protein phosphatase 2A. The findings demonstrated that the phenobarbital-induced mechanism of CAR dephosphorylation and activation is mediated through its direct interaction with and inhibition of EGFR.

  10. Leptin acts on neoplastic behavior and expression levels of genes related to hypoxia, angiogenesis, and invasiveness in oral squamous cell carcinoma.

    Science.gov (United States)

    Sobrinho Santos, Eliane Macedo; Guimarães, Talita Antunes; Santos, Hércules Otacílio; Cangussu, Lilian Mendes Borborema; de Jesus, Sabrina Ferreira; Fraga, Carlos Alberto de Carvalho; Cardoso, Claudio Marcelo; Santos, Sérgio Henrique Souza; de Paula, Alfredo Maurício Batista; Gomez, Ricardo Santiago; Guimarães, André Luiz Sena; Farias, Lucyana Conceição

    2017-05-01

    Leptin, one of the main hormones controlling energy homeostasis, has been associated with different cancer types. In oral cancer, its effect is not well understood. We investigated, through in vitro and in vivo assays, whether leptin can affect the neoplastic behavior of oral squamous cell carcinoma. Expression of genes possibly linked to the leptin pathway was assessed in leptin-treated oral squamous cell carcinoma cells and also in tissue samples of oral squamous cell carcinoma and oral mucosa, including leptin, leptin receptor, hypoxia-inducible factor 1-alpha, E-cadherin, matrix metalloproteinase-2, matrix metalloproteinase-9, Col1A1, Ki67, and mir-210. Leptin treatment favored higher rates of cell proliferation and migration, and reduced apoptosis. Accordingly, leptin-treated oral squamous cell carcinoma cells show decreased messenger RNA caspase-3 expression, and increased levels of E-cadherin, Col1A1, matrix metalloproteinase-2, matrix metalloproteinase-9, and mir-210. In tissue samples, hypoxia-inducible factor 1-alpha messenger RNA and protein expression of leptin and leptin receptor were high in oral squamous cell carcinoma cases. Serum leptin levels were increased in first clinical stages of the disease. In animal model, oral squamous cell carcinoma-induced mice show higher leptin receptor expression, and serum leptin level was increased in dysplasia group. Our findings suggest that leptin seems to exert an effect on oral squamous cell carcinoma cells behavior and also on molecular markers related to cell proliferation, migration, and tumor angiogenesis.

  11. Testin, a novel binding partner of the calcium-sensing receptor, enhances receptor-mediated Rho-kinase signalling

    International Nuclear Information System (INIS)

    Magno, Aaron L.; Ingley, Evan; Brown, Suzanne J.; Conigrave, Arthur D.; Ratajczak, Thomas; Ward, Bryan K.

    2011-01-01

    Highlights: → A yeast two-hybrid screen revealed testin bound to the calcium-sensing receptor. → The second zinc finger of LIM domain 1 of testin is critical for interaction. → Testin bound to a region of the receptor tail important for cell signalling. → Testin and receptor interaction was confirmed in mammalian (HEK293) cells. → Overexpression of testin enhanced receptor-mediated Rho signalling in HEK293 cells. -- Abstract: The calcium-sensing receptor (CaR) plays an integral role in calcium homeostasis and the regulation of other cellular functions including cell proliferation and cytoskeletal organisation. The multifunctional nature of the CaR is manifested through ligand-dependent stimulation of different signalling pathways that are also regulated by partner binding proteins. Following a yeast two-hybrid library screen using the intracellular tail of the CaR as bait, we identified several novel binding partners including the focal adhesion protein, testin. Testin has not previously been shown to interact with cell surface receptors. The sites of interaction between the CaR and testin were mapped to the membrane proximal region of the receptor tail and the second zinc-finger of LIM domain 1 of testin, the integrity of which was found to be critical for the CaR-testin interaction. The CaR-testin association was confirmed in HEK293 cells by coimmunoprecipitation and confocal microscopy studies. Ectopic expression of testin in HEK293 cells stably expressing the CaR enhanced CaR-stimulated Rho activity but had no effect on CaR-stimulated ERK signalling. These results suggest an interplay between the CaR and testin in the regulation of CaR-mediated Rho signalling with possible effects on the cytoskeleton.

  12. The orphan receptor ALK7 and the Activin receptor ALK4 mediate signaling by Nodal proteins during vertebrate development

    Science.gov (United States)

    Reissmann, Eva; Jörnvall, Henrik; Blokzijl, Andries; Andersson, Olov; Chang, Chenbei; Minchiotti, Gabriella; Persico, M. Graziella; Ibáñez, Carlos F.; Brivanlou, Ali H.

    2001-01-01

    Nodal proteins have crucial roles in mesendoderm formation and left–right patterning during vertebrate development. The molecular mechanisms of signal transduction by Nodal and related ligands, however, are not fully understood. In this paper, we present biochemical and functional evidence that the orphan type I serine/threonine kinase receptor ALK7 acts as a receptor for mouse Nodal and Xenopus Nodal-related 1 (Xnr1). Receptor reconstitution experiments indicate that ALK7 collaborates with ActRIIB to confer responsiveness to Xnr1 and Nodal. Both receptors can independently bind Xnr1. In addition, Cripto, an extracellular protein genetically implicated in Nodal signaling, can independently interact with both Xnr1 and ALK7, and its expression greatly enhances the ability of ALK7 and ActRIIB to respond to Nodal ligands. The Activin receptor ALK4 is also able to mediate Nodal signaling but only in the presence of Cripto, with which it can also interact directly. A constitutively activated form of ALK7 mimics the mesendoderm-inducing activity of Xnr1 in Xenopus embryos, whereas a dominant-negative ALK7 specifically blocks the activities of Nodal and Xnr1 but has little effect on other related ligands. In contrast, a dominant-negative ALK4 blocks all mesoderm-inducing ligands tested, including Nodal, Xnr1, Xnr2, Xnr4, and Activin. In agreement with a role in Nodal signaling, ALK7 mRNA is localized to the ectodermal and organizer regions of Xenopus gastrula embryos and is expressed during early stages of mouse embryonic development. Therefore, our results indicate that both ALK4 and ALK7 can mediate signal transduction by Nodal proteins, although ALK7 appears to be a receptor more specifically dedicated to Nodal signaling. PMID:11485994

  13. Molecular and functional profiling of histamine receptor-mediated calcium ion signals in different cell lines.

    Science.gov (United States)

    Meisenberg, Annika; Kaschuba, Dagmar; Balfanz, Sabine; Jordan, Nadine; Baumann, Arnd

    2015-10-01

    Calcium ions (Ca(2+)) play a pivotal role in cellular physiology. Often Ca(2+)-dependent processes are studied in commonly available cell lines. To induce Ca(2+) signals on demand, cells may need to be equipped with additional proteins. A prominent group of membrane proteins evoking Ca(2+) signals are G-protein coupled receptors (GPCRs). These proteins register external signals such as photons, odorants, and neurotransmitters and convey ligand recognition into cellular responses, one of which is Ca(2+) signaling. To avoid receptor cross-talk or cross-activation with introduced proteins, the repertoire of cell-endogenous receptors must be known. Here we examined the presence of histamine receptors in six cell lines frequently used as hosts to study cellular signaling processes. In a concentration-dependent manner, histamine caused a rise in intracellular Ca(2+) in HeLa, HEK 293, and COS-1 cells. The concentration for half-maximal activation (EC50) was in the low micromolar range. In individual cells, transient Ca(2+) signals and Ca(2+) oscillations were uncovered. The results show that (i) HeLa, HEK 293, and COS-1 cells express sufficient amounts of endogenous receptors to study cellular Ca(2+) signaling processes directly and (ii) these cell lines are suitable for calibrating Ca(2+) biosensors in situ based on histamine receptor evoked responses. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Glycosylation as a Main Regulator of Growth and Death Factor Receptors Signaling

    Directory of Open Access Journals (Sweden)

    Inês Gomes Ferreira

    2018-02-01

    Full Text Available Glycosylation is a very frequent and functionally important post-translational protein modification that undergoes profound changes in cancer. Growth and death factor receptors and plasma membrane glycoproteins, which upon activation by extracellular ligands trigger a signal transduction cascade, are targets of several molecular anti-cancer drugs. In this review, we provide a thorough picture of the mechanisms bywhich glycosylation affects the activity of growth and death factor receptors in normal and pathological conditions. Glycosylation affects receptor activity through three non-mutually exclusive basic mechanisms: (1 by directly regulating intracellular transport, ligand binding, oligomerization and signaling of receptors; (2 through the binding of receptor carbohydrate structures to galectins, forming a lattice thatregulates receptor turnover on the plasma membrane; and (3 by receptor interaction with gangliosides inside membrane microdomains. Some carbohydrate chains, for example core fucose and β1,6-branching, exert a stimulatory effect on all receptors, while other structures exert opposite effects on different receptors or in different cellular contexts. In light of the crucial role played by glycosylation in the regulation of receptor activity, the development of next-generation drugs targeting glyco-epitopes of growth factor receptors should be considered a therapeutically interesting goal.

  15. Cross-talk between an activator of nuclear receptors-mediated transcription and the D1 dopamine receptor signaling pathway.

    Science.gov (United States)

    Schmidt, Azriel; Vogel, Robert; Rutledge, Su Jane; Opas, Evan E; Rodan, Gideon A; Friedman, Eitan

    2005-03-01

    Nuclear receptors are transcription factors that usually interact, in a ligand-dependent manner, with specific DNA sequences located within promoters of target genes. The nuclear receptors can also be controlled in a ligand-independent manner via the action of membrane receptors and cellular signaling pathways. 5-Tetradecyloxy-2-furancarboxylic acid (TOFA) was shown to stimulate transcription from the MMTV promoter via chimeric receptors that consist of the DNA binding domain of GR and the ligand binding regions of the PPARbeta or LXRbeta nuclear receptors (GR/PPARbeta and GR/LXRbeta). TOFA and hydroxycholesterols also modulate transcription from NF-kappaB- and AP-1-controlled reporter genes and induce neurite differentiation in PC12 cells. In CV-1 cells that express D(1) dopamine receptors, D(1) dopamine receptor stimulation was found to inhibit TOFA-stimulated transcription from the MMTV promoter that is under the control of chimeric GR/PPARbeta and GR/LXRbeta receptors. Treatment with the D(1) dopamine receptor antagonist, SCH23390, prevented dopamine-mediated suppression of transcription, and by itself increased transcription controlled by GR/LXRbeta. Furthermore, combined treatment of CV-1 cells with TOFA and SCH23390 increased transcription controlled by the GR/LXRbeta chimeric receptor synergistically. The significance of this in vitro synergy was demonstrated in vivo, by the observation that SCH23390 (but not haloperidol)-mediated catalepsy in rats was potentiated by TOFA, thus showing that an agent that mimics the in vitro activities of compounds that activate members of the LXR and PPAR receptor families can influence D1 dopamine receptor elicited responses.

  16. Receptor protein tyrosine phosphatase alpha enhances rheumatoid synovial fibroblast signaling and promotes arthritis in mice

    NARCIS (Netherlands)

    Stanford, Stephanie M; Svensson, Mattias N D; Sacchetti, Cristiano; Pilo, Caila A; Wu, Dennis J; Kiosses, William B; Hellvard, Annelie; Bergum, Brith; Aleman Muench, German R; Elly, Christian; Liu, Yun-Cai; den Hertog, Jeroen; Elson, Ari; Sap, Jan; Mydel, Piotr; Boyle, David L; Corr, Maripat; Firestein, Gary S; Bottini, Nunzio

    2016-01-01

    OBJECTIVE: During rheumatoid arthritis (RA), fibroblast-like synoviocytes (FLS) critically promote disease pathogenesis by aggressively invading the joint extracellular matrix. The focal adhesion kinase (FAK) signaling pathway is emerging as a contributor to RA FLS anomalous behavior. The receptor

  17. The Role of Stat3 Activation in Androgen Receptor Signaling and Prostate Cancer

    National Research Council Canada - National Science Library

    Gao, Allen C

    2006-01-01

    .... The experiments proposed in this application are based upon the hypothesis that Stat3 activation alters androgen receptor signaling pathways which in turn results in the loss of growth control in prostate cancer cells...

  18. The Role of Stat3 Activation in Androgen Receptor Signaling and Prostate Cancer

    National Research Council Canada - National Science Library

    Gao, Allen

    2004-01-01

    .... The experiments proposed in this application are based upon the hypothesis that stat3 activation alters androgen receptor signaling pathways, that in turn results in the loss of growth control in prostate cancer cells...

  19. The Role of Stat3 Activation in Androgen Receptor Signaling and Prostate Cancer

    National Research Council Canada - National Science Library

    Gao, Allen

    2002-01-01

    .... The experiments proposed in this application are based upon the hypothesis that Stat3 activation alters androgen receptor signaling pathways, that in turn results in the loss of growth control in prostate cancer cells...

  20. The Role of Stat3 Activation in Androgen Receptor Signaling and Prostate Cancer

    National Research Council Canada - National Science Library

    Gao, Allen C

    2005-01-01

    .... The experiments proposed in this application are based upon the hypothesis that Stat3 activation alters androgen receptor signaling pathways, that in turn results in the loss of growth control in prostate cancer cells...

  1. The Role of Stat3 Activation in Androgen Receptor Signaling and Prostate Cancer

    National Research Council Canada - National Science Library

    Gao, Allen

    2003-01-01

    .... The experiments proposed in this application are based upon the hypothesis that Stat3 activation alters androgen receptor signaling pathways, that in turn results in the loss of growth control in prostate cancer cells...

  2. Regulation of EGF Receptor Signaling by Histone Deacetylase 6 (HDAC6)-Mediated Reversible Acetylation

    National Research Council Canada - National Science Library

    Kovacs, Jeffrey J

    2005-01-01

    One of the hallmarks of cancer is uncontrolled cell growth and proliferation. In cells, a group of proteins called growth factor receptors are responsible for responding to the signals that trigger proliferation...

  3. The Effects of High-fat-diet Combined with Chronic Unpredictable Mild Stress on Depression-like Behavior and Leptin/LepRb in Male Rats.

    Science.gov (United States)

    Yang, Jin Ling; Liu, De Xiang; Jiang, Hong; Pan, Fang; Ho, Cyrus Sh; Ho, Roger Cm

    2016-10-14

    Leptin plays a key role in the pathogenesis of obesity and depression via the long form of leptin receptor (LepRb). An animal model of comorbid obesity and depression induced by high-fat diet (HFD) combined with chronic unpredictable mild stress (CUMS) was developed to study the relationship between depression/anxiety-like behavior, levels of plasma leptin and LepRb in the brains between four groups of rats, the combined obesity and CUMS (Co) group, the obese (Ob) group, the CUMS group and controls. Our results revealed that the Co group exhibited most severe depression-like behavior in the open field test (OFT), anxiety-like behavior in elevated plus maze test (EMT) and cognitive impairment in the Morris water maze (MWM). The Ob group had the highest weight and plasma leptin levels while the Co group had the lowest levels of protein of LepRb in the hypothalamus and hippocampus. Furthermore, depressive and anxiety-like behaviors as well as cognitive impairment were positively correlated with levels of LepRb protein and mRNA in the hippocampus and hypothalamus. The down-regulation of leptin/LepRb signaling might be associated with depressive-like behavior and cognitive impairment in obese rats facing chronic mild stress.

  4. β1-adrenergic receptors activate two distinct signaling pathways in striatal neurons

    Science.gov (United States)

    Meitzen, John; Luoma, Jessie I.; Stern, Christopher M.; Mermelstein, Paul G.

    2010-01-01

    Monoamine action in the dorsal striatum and nucleus accumbens plays essential roles in striatal physiology. Although research often focuses on dopamine and its receptors, norepinephrine and adrenergic receptors are also crucial in regulating striatal function. While noradrenergic neurotransmission has been identified in the striatum, little is known regarding the signaling pathways activated by β-adrenergic receptors in this brain region. Using cultured striatal neurons, we characterized a novel signaling pathway by which activation of β1-adrenergic receptors leads to the rapid phosphorylation of cAMP Response Element Binding Protein (CREB), a transcription-factor implicated as a molecular switch underlying long-term changes in brain function. Norepinephrine-mediated CREB phosphorylation requires β1-adrenergic receptor stimulation of a receptor tyrosine kinase, ultimately leading to the activation of a Ras/Raf/MEK/MAPK/MSK signaling pathway. Activation of β1-adrenergic receptors also induces CRE-dependent transcription and increased c-fos expression. In addition, stimulation of β1-adrenergic receptors produces cAMP production, but surprisingly, β1-adrenergic receptor activation of adenylyl cyclase was not functionally linked to rapid CREB phosphorylation. These findings demonstrate that activation of β1-adrenergic receptors on striatal neurons can stimulate two distinct signaling pathways. These adrenergic actions can produce long-term changes in gene expression, as well as rapidly modulate cellular physiology. By elucidating the mechanisms by which norepinephrine and β1-adrenergic receptor activation affects striatal physiology, we provide the means to more fully understand the role of monoamines in modulating striatal function, specifically how norepinephrine and β1-adrenergic receptors may affect striatal physiology. PMID:21143600

  5. ITAM-like signalling for efficient phagocytosis : The paradigm of the granulocyte receptor CEACAM3

    OpenAIRE

    Pils, Stefan

    2010-01-01

    Human CEACAM3 is a tailor-made receptor of the innate immune system to fight pathogens exploiting epithelial CEACAM-family members for colonisation and invasion of their host. Previous studies established CEACAM3 as the receptor facilitating rapid phagocytosis and elimination of N. gonorrhoeae by human granulocytes. The studies reported here set out to shed light on the evolution of this highly specialised receptor and the associated signalling machinery.CEACAM3 arose from exon shuffling afte...

  6. Analysis of receptor signaling pathways by mass spectrometry: identification of vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors

    DEFF Research Database (Denmark)

    Pandey, A; Podtelejnikov, A V; Blagoev, B

    2000-01-01

    Oligomerization of receptor protein tyrosine kinases such as the epidermal growth factor receptor (EGFR) by their cognate ligands leads to activation of the receptor. Transphosphorylation of the receptor subunits is followed by the recruitment of signaling molecules containing src homology 2 (SH2...

  7. The role of Ryk and Ror receptor tyrosine kinases in Wnt signal transduction

    NARCIS (Netherlands)

    Green, J.; Nusse, R.; van Amerongen, R.

    2014-01-01

    Receptor tyrosine kinases of the Ryk and Ror families were initially classified as orphan receptors because their ligands were unknown. They are now known to contain functional extracellular Wnt-binding domains and are implicated in Wnt-signal transduction in multiple species. Although their

  8. PKCζ regulates Notch receptor routing and activity in a Notch signaling-dependent manner

    NARCIS (Netherlands)

    Sjöqvist, M.; Antfolk, D.; Ferraris, S.; Rraklli, V.; Haga, C.; Antila, C.; Mutvei, A.; Imanishi, S.Y.; Holmberg, J.; Jin, S.; Eriksson, J.E.; Lendahl, U.; Sahlgren, C.M.

    Activation of Notch signaling requires intracellular routing of the receptor, but the mechanisms controlling the distinct steps in the routing process is poorly understood. We identify PKCζ as a key regulator of Notch receptor intracellular routing. When PKCζ was inhibited in the developing chick

  9. Leptin Action on GABAergic Neurons Prevents Obesity and Reduces Inhibitory Tone to POMC Neurons

    OpenAIRE

    Vong, Linh; Ye, Chianping; Yang, Zongfang; Choi, Brian; Chua, Streamson; Lowell, Bradford B.

    2011-01-01

    Leptin acts in the brain to prevent obesity. The underlying neurocircuitry responsible for this is poorly understood, in part due to incomplete knowledge regarding first order, leptin-responsive neurons. To address this, we and others have been removing leptin receptors from candidate first order neurons. While functionally relevant neurons have been identified, the observed effects have been small suggesting that most first order neurons remain unidentified. Here we take an alternative appro...

  10. The role of leptin in nutritional status and reproductive function.

    Science.gov (United States)

    Keisler, D H; Daniel, J A; Morrison, C D

    1999-01-01

    Infertility associated with suboptimal nutrition is a major concern among livestock producers. Undernourished prepubertal animals will not enter puberty until they are well fed; similarly, adult, normally cyclic females will stop cycling when faced with extreme undernutrition. Work in our laboratory has focused on how body fat (or adiposity) of an animal can communicate to the brain and regulate reproductive competence. In 1994, the discovery in rodents of the obese (ob) gene product leptin, secreted as a hormone from adipocytes, provided a unique opportunity to understand and hence regulate whole body compositional changes. There is now evidence that similar mechanisms are functioning in livestock species in which food intake, body composition, and reproductive performance are of considerable economic importance. Leptin has been reported to be a potent regulator of food intake and reproduction in rodents. There is evidence indicating that at least some of the effects of leptin occur through receptor-mediated regulation of the hypothalamic protein neuropeptide Y (NPY). NPY is a potent stimulator of food intake, is present at high concentrations in feed-restricted cattle and ewes, and is an inhibitor of LH secretion in these livestock species. In our investigations in sheep, we have cloned a partial cDNA corresponding to the ovine long-form leptin receptor, presumably the only fully active form, and have localized the long-form leptin receptor in the ventromedial and arcuate nuclei of the hypothalamus. Leptin receptor mRNA expression was colocalized with NPY mRNA-containing cell bodies in those regions. We have also determined that hypothalamic leptin receptor expression is greater in feed-restricted ewes than in well-fed ewes. These observations provide a foundation for future investigations into the nutritional modulators of reproduction in livestock.

  11. Growth hormone receptor-deficient pigs resemble the pathophysiology of human Laron syndrome and reveal altered activation of signaling cascades in the liver.

    Science.gov (United States)

    Hinrichs, Arne; Kessler, Barbara; Kurome, Mayuko; Blutke, Andreas; Kemter, Elisabeth; Bernau, Maren; Scholz, Armin M; Rathkolb, Birgit; Renner, Simone; Bultmann, Sebastian; Leonhardt, Heinrich; de Angelis, Martin Hrabĕ; Nagashima, Hiroshi; Hoeflich, Andreas; Blum, Werner F; Bidlingmaier, Martin; Wanke, Rüdiger; Dahlhoff, Maik; Wolf, Eckhard

    2018-05-01

    Laron syndrome (LS) is a rare, autosomal recessive disorder in humans caused by loss-of-function mutations of the growth hormone receptor (GHR) gene. To establish a large animal model for LS, pigs with GHR knockout (KO) mutations were generated and characterized. CRISPR/Cas9 technology was applied to mutate exon 3 of the GHR gene in porcine zygotes. Two heterozygous founder sows with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous F1 offspring were intercrossed to produce GHR-KO, heterozygous GHR mutant, and wild-type pigs. Since the latter two groups were not significantly different in any parameter investigated, they were pooled as the GHR expressing control group. The characterization program included body and organ growth, body composition, endocrine and clinical-chemical parameters, as well as signaling studies in liver tissue. GHR-KO pigs lacked GHR and had markedly reduced serum insulin-like growth factor 1 (IGF1) levels and reduced IGF-binding protein 3 (IGFBP3) activity but increased IGFBP2 levels. Serum GH concentrations were significantly elevated compared with control pigs. GHR-KO pigs had a normal birth weight. Growth retardation became significant at the age of five weeks. At the age of six months, the body weight of GHR-KO pigs was reduced by 60% compared with controls. Most organ weights of GHR-KO pigs were reduced proportionally to body weight. However, the weights of liver, kidneys, and heart were disproportionately reduced, while the relative brain weight was almost doubled. GHR-KO pigs had a markedly increased percentage of total body fat relative to body weight and displayed transient juvenile hypoglycemia along with decreased serum triglyceride and cholesterol levels. Analysis of insulin receptor related signaling in the liver of adult fasted pigs revealed increased phosphorylation of IRS1 and PI3K. In agreement with the loss of GHR, phosphorylation of STAT5 was significantly reduced. In contrast, phosphorylation

  12. In vivo characterization of high Basal signaling from the ghrelin receptor

    DEFF Research Database (Denmark)

    Petersen, Pia Steen; Woldbye, David P D; Madsen, Andreas Nygaard

    2009-01-01

    The receptor for the orexigenic peptide, ghrelin, is one of the most constitutively active 7TM receptors known, as demonstrated under in vitro conditions. Change in expression of a constitutively active receptor is associated with change in signaling independent of the endogenous ligand. In the f......The receptor for the orexigenic peptide, ghrelin, is one of the most constitutively active 7TM receptors known, as demonstrated under in vitro conditions. Change in expression of a constitutively active receptor is associated with change in signaling independent of the endogenous ligand....... In the following study, we found that the expression of the ghrelin receptor in the hypothalamus was up-regulated approximately 2-fold in rats both during 48-h fasting and by streptozotocin-induced hyperphagia. In a separate experiment, to probe for the effect of the high basal signaling of the ghrelin receptor...... in vivo, we used intracerebroventricular administration by osmotic pumps of a peptide [D-Arg(1), D-Phe(5), D-Trp(7,9), Leu(11)]-substance P. This peptide selectively displays inverse agonism at the ghrelin receptor as compared with an inactive control peptide with just a single amino acid substitution...

  13. P2X receptor-mediated ATP purinergic signaling in health and disease

    Directory of Open Access Journals (Sweden)

    Jiang LH

    2012-09-01

    Full Text Available Lin-Hua JiangSchool of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United KingdomAbstract: Purinergic P2X receptors are plasma membrane proteins present in a wide range of mammalian cells where they act as a cellular sensor, enabling cells to detect and respond to extracellular adenosine triphosphate (ATP, an important signaling molecule. P2X receptors function as ligand-gated Ca2+-permeable cationic channels that open upon ATP binding to elevate intracellular Ca2+ concentrations and cause membrane depolarization. In response to sustained activation, P2X receptors induce formation of a pore permeable to large molecules. P2X receptors also interact with distinct functional proteins and membrane lipids to form specialized signaling complexes. Studies have provided compelling evidence to show that such P2X receptor-mediated ATP-signaling mechanisms determine and regulate a growing number and diversity of important physiological processes, including neurotransmission, muscle contraction, and cytokine release. There is accumulating evidence to support strong causative relationships of altered receptor expression and function with chronic pain, inflammatory diseases, cancers, and other pathologies or diseases. Numerous high throughput screening drug discovery programs and preclinical studies have thus far demonstrated the proof of concepts that the P2X receptors are druggable targets and selective receptor antagonism is a promising therapeutics approach. This review will discuss the recent progress in understanding the mammalian P2X receptors with respect to the ATP-signaling mechanisms, physiological and pathophysiological roles, and development and preclinical studies of receptor antagonists.Keywords: extracellular ATP, ion channel, large pore, signaling complex, chronic pain, inflammatory diseases

  14. Role of leptin in female reproduction.

    Science.gov (United States)

    Pérez-Pérez, Antonio; Sánchez-Jiménez, Flora; Maymó, Julieta; Dueñas, José L; Varone, Cecilia; Sánchez-Margalet, Víctor

    2015-01-01

    Reproductive function is dependent on energy resources. The role of weight, body composition, fat distribution and the effect of diet have been largely investigated in experimental female animals as well as in women. Any alteration in diet and/or weight may induce abnormalities in timing of sexual maturation and fertility. However, the cellular mechanisms involved in the fine coordination of energy balance and reproduction are largely unknown. The brain and hypothalamic structures receive endocrine and/or metabolic signals providing information on the nutritional status and the degree of fat stores. Adipose tissue acts both as a store of energy and as an active endocrine organ, secreting a large number of biologically important molecules termed adipokines. Adipokines have been shown to be involved in regulation of the reproductive functions. The first adipokine described was leptin. Extensive research over the last 10 years has shown that leptin is not only an adipose tissue-derived messenger of the amount of energy stores to the brain, but also a crucial hormone/cytokine for a number of diverse physiological processes, such as inflammation, angiogenesis, hematopoiesis, immune function, and most importantly, reproduction. Leptin plays an integral role in the normal physiology of the reproductive system with complex interactions at all levels of the hypothalamic-pituitary gonadal (HPG) axis. In addition, leptin is also produced by placenta, where it plays an important autocrine function. Observational studies have demonstrated that states of leptin excess, deficiency, or resistance can be associated with abnormal reproductive function. This review focuses on the leptin action in female reproduction.

  15. Control of leptin by metabolic state and its regulatory interactions with pituitary growth hormone and hepatic growth hormone receptors and insulin like growth factors in the tilapia (Oreochromis mossambicus).

    Science.gov (United States)

    Douros, Jonathan D; Baltzegar, David A; Mankiewicz, Jamie; Taylor, Jordan; Yamaguchi, Yoko; Lerner, Darren T; Seale, Andre P; Grau, E Gordon; Breves, Jason P; Borski, Russell J

    2017-01-01

    Leptin is an important cytokine for regulating energy homeostasis, however, relatively little is known about its function and control in teleost fishes or other ectotherms, particularly with regard to interactions with the growth hormone (GH)/insulin-like growth factors (IGFs) growth regulatory axis. Here we assessed the regulation of LepA, the dominant paralog in tilapia (Oreochromis mossambicus) and other teleosts under altered nutritional state, and evaluated how LepA might alter pituitary growth hormone (GH) and hepatic insulin-like growth factors (IGFs) that are known to be disparately regulated by metabolic state. Circulating LepA, and lepa and lepr gene expression increased after 3-weeks fasting and declined to control levels 10days following refeeding. This pattern of leptin regulation by metabolic state is similar to that previously observed for pituitary GH and opposite that of hepatic GHR and/or IGF dynamics in tilapia and other fishes. We therefore evaluated if LepA might differentially regulate pituitary GH, and hepatic GH receptors (GHRs) and IGFs. Recombinant tilapia LepA (rtLepA) increased hepatic gene expression of igf-1, igf-2, ghr-1, and ghr-2 from isolated hepatocytes following 24h incubation. Intraperitoneal rtLepA injection, on the other hand, stimulated hepatic igf-1, but had little effect on hepatic igf-2, ghr1, or ghr2 mRNA abundance. LepA suppressed GH accumulation and gh mRNA in pituitaries in vitro, but had no effect on GH release. We next sought to test if abolition of pituitary GH via hypophysectomy (Hx) affects the expression of hepatic lepa and lepr. Hypophysectomy significantly increases hepatic lepa mRNA abundance, while GH replacement in Hx fish restores lepa mRNA levels to that of sham controls. Leptin receptor (lepr) mRNA was unchanged by Hx. In in vitro hepatocyte incubations, GH inhibits lepa and lepr mRNA expression at low concentrations, while higher concentration stimulates lepa expression. Taken together, these findings

  16. Ethylene Regulates Levels of Ethylene Receptor/CTR1 Signaling Complexes in Arabidopsis thaliana*

    Science.gov (United States)

    Shakeel, Samina N.; Gao, Zhiyong; Amir, Madiha; Chen, Yi-Feng; Rai, Muneeza Iqbal; Haq, Noor Ul; Schaller, G. Eric

    2015-01-01

    The plant hormone ethylene is perceived by a five-member family of receptors in Arabidopsis thaliana. The receptors function in conjunction with the Raf-like kinase CTR1 to negatively regulate ethylene signal transduction. CTR1 interacts with multiple members of the receptor family based on co-purification analysis, interacting more strongly with receptors containing a receiver domain. Levels of membrane-associated CTR1 vary in response to ethylene, doing so in a post-transcriptional manner that correlates with ethylene-mediated changes in levels of the ethylene receptors ERS1, ERS2, EIN4, and ETR2. Interactions between CTR1 and the receptor ETR1 protect ETR1 from ethylene-induced turnover. Kinetic and dose-response analyses support a model in which two opposing factors control levels of the ethylene receptor/CTR1 complexes. Ethylene stimulates the production of new complexes largely through transcriptional induction of the receptors. However, ethylene also induces turnover of receptors, such that levels of ethylene receptor/CTR1 complexes decrease at higher ethylene concentrations. Implications of this model for ethylene signaling are discussed. PMID:25814663

  17. Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists

    DEFF Research Database (Denmark)

    Christensen, Gitte L; Kelstrup, Christian D; Lyngsø, Christina

    2010-01-01

    (q)-dependent and -independent AT(1)R signaling. This study provides substantial novel insight into angiotensin II signal transduction and is the first study dissecting the differences between a full agonist and a biased agonist from a 7TMR on a systems-wide scale. Importantly, it reveals a previously unappreciated diversity......Seven-transmembrane receptors (7TMRs) signal through the well described heterotrimeric G proteins but can also activate G protein-independent signaling pathways of which the impact and complexity are less understood. The angiotensin II type 1 receptor (AT(1)R) is a prototypical 7TMR...... and quantity of Galpha(q) protein-independent signaling and uncovers novel signaling pathways. We foresee that the amount and diversity of G protein-independent signaling may be more pronounced than previously recognized for other 7TMRs as well. Quantitative mass spectrometry is a promising tool for evaluation...

  18. ENU mutagenesis identifies mice with morbid obesity and severe hyperinsulinemia caused by a novel mutation in leptin.

    Directory of Open Access Journals (Sweden)

    Chen-Jee Hong

    Full Text Available BACKGROUND: Obesity is a multifactorial disease that arises from complex interactions between genetic predisposition and environmental factors. Leptin is central to the regulation of energy metabolism and control of body weight in mammals. METHODOLOGY/PRINCIPAL FINDINGS: To better recapitulate the complexity of human obesity syndrome, we applied N-ethyl-N-nitrosourea (ENU mutagenesis in combination with a set of metabolic assays in screening mice for obesity. Mapping revealed linkage to the chromosome 6 within a region containing mouse Leptin gene. Sequencing on the candidate genes identified a novel T-to-A mutation in the third exon of Leptin gene, which translates to a V145E amino acid exchange in the leptin propeptide. Homozygous Leptin(145E/145E mutant mice exhibited morbid obesity, accompanied by adipose hypertrophy, energy imbalance, and liver steatosis. This was further associated with severe insulin resistance, hyperinsulinemia, dyslipidemia, and hyperleptinemia, characteristics of human obesity syndrome. Hypothalamic leptin actions in inhibition of orexigenic peptides NPY and AgRP and induction of SOCS1 and SOCS3 were attenuated in Leptin(145E/145E mice. Administration of exogenous wild-type leptin attenuated hyperphagia and body weight increase in Leptin(145E/145E mice. However, mutant V145E leptin coimmunoprecipitated with leptin receptor, suggesting that the V145E mutation does not affect the binding of leptin to its receptor. Molecular modeling predicted that the mutated residue would form hydrogen bond with the adjacent residues, potentially affecting the structure and formation of an active complex with leptin receptor within that region. CONCLUSIONS/SIGNIFICANCE: Thus, our evolutionary, structural, and in vivo metabolic information suggests the residue 145 as of special function significance. The mouse model harboring leptin V145E mutation will provide new information on the current understanding of leptin biology and novel mouse

  19. Circulating leptin and thyroid dysfunction

    DEFF Research Database (Denmark)

    Zimmermann-Belsing, Tina; Brabant, Georg; Holst, Jens Juul

    2003-01-01

    and triiodothyronine are involved in the starvation-induced decrease in thermogenesis. Both rodent and human studies of leptin have failed to show any consistent relationship between thyroid function and serum leptin concentrations. However, leptin might have an important role in thyroid pathophysiology due to thyroid...

  20. Molecular, pharmacological, and signaling properties of octopamine receptors from honeybee (Apis mellifera) brain.

    Science.gov (United States)

    Balfanz, Sabine; Jordan, Nadine; Langenstück, Teresa; Breuer, Johanna; Bergmeier, Vera; Baumann, Arnd

    2014-04-01

    G protein-coupled receptors are important regulators of cellular signaling processes. Within the large family of rhodopsin-like receptors, those binding to biogenic amines form a discrete subgroup. Activation of biogenic amine receptors leads to transient changes of intracellular Ca²⁺-([Ca²⁺](i)) or 3',5'-cyclic adenosine monophosphate ([cAMP](i)) concentrations. Both second messengers modulate cellular signaling processes and thereby contribute to long-lasting behavioral effects in an organism. In vivo pharmacology has helped to reveal the functional effects of different biogenic amines in honeybees. The phenolamine octopamine is an important modulator of behavior. Binding of octopamine to its receptors causes elevation of [Ca²⁺](i) or [cAMP](i). To date, only one honeybee octopamine receptor that induces Ca²⁺ signals has been molecularly and pharmacologically characterized. Here, we examined the pharmacological properties of four additional honeybee octopamine receptors. When heterologously expressed, all receptors induced cAMP production after binding to octopamine with EC₅₀(s) in the nanomolar range. Receptor activity was most efficiently blocked by mianserin, a substance with antidepressant activity in vertebrates. The rank order of inhibitory potency for potential receptor antagonists was very similar on all four honeybee receptors with mianserin > cyproheptadine > metoclopramide > chlorpromazine > phentolamine. The subroot of octopamine receptors activating adenylyl cyclases is the largest that has so far been characterized in arthropods, and it should now be possible to unravel the contribution of individual receptors to the physiology and behavior of honeybees. © 2013 International Society for Neurochemistry.

  1. Flurbiprofen ameliorates glucose deprivation-induced leptin resistance

    Directory of Open Access Journals (Sweden)

    Toru Hosoi

    2016-09-01

    Full Text Available Leptin resistance is one of the mechanisms involved in the pathophysiology of obesity. The present study showed that glucose deprivation inhibited leptin-induced phosphorylation of signal transducer and activator of transcription 3 (STAT3 and signal transducer and activator of transcription 5 (STAT5 in neuronal cells. Flurbiprofen reversed glucose deprivation-mediated attenuation of STAT3, but not STAT5 activation, in leptin-treated cells. Glucose deprivation increased C/EBP-homologous protein (CHOP and glucose regulated protein 78 (GRP78 induction, indicating the activation of unfolded protein responses (UPR. Flurbiprofen did not affect the glucose deprivation-induced activation of UPR, but did attenuate the glucose deprivation-mediated induction of AMP-activated protein kinase (AMPK phosphorylation. Flurbiprofen may ameliorate glucose deprivation-induced leptin resistance in neuronal cells.

  2. Recruitment of SHP-1 protein tyrosine phosphatase and signalling by a chimeric T-cell receptor-killer inhibitory receptor

    DEFF Research Database (Denmark)

    Christensen, M D; Geisler, C

    2000-01-01

    Receptors expressing the immunoreceptor tyrosine-based inhibitory motif (ITIM) in their cytoplasmic tail play an important role in the negative regulation of natural killer and B-cell activation. A subpopulation of T cells expresses the ITIM containing killer cell inhibitory receptor (KIR), which...... recognize MHC class I molecules. Following coligation of KIR with an activating receptor, the tyrosine in the ITIM is phosphorylated and the cytoplasmic protein tyrosine phosphatase SHP-1 is recruited to the ITIM via its SH2 domains. It is still not clear how SHP-1 affects T-cell receptor (TCR) signalling...... regarding total protein tyrosine phosphorylation, TCR down-regulation, mobilization of intracellular free calcium, or induction of the activation markers CD69 and CD25....

  3. Receptor activity modifying proteins (RAMPs) interact with the VPAC1 receptor: evidence for differential RAMP modulation of multiple signalling pathways

    International Nuclear Information System (INIS)

    Christopoulos, G.; Morfis, M.; Sexton, P.M.; Christopoulos, A.; Laburthe, M.; Couvineau, A.

    2001-01-01

    Full text: Receptor activity modifying proteins (RAMP) constitute a family of three accessory proteins that affect the expression and/or phenotype of the calcitonin receptor (CTR) or CTR-like receptor (CRLR). In this study we screened a range of class II G protein-coupled receptors (PTH1, PTH2, GHRH, VPAC1, VPAC2 receptors) for possible RAMP interactions by measurement of receptor-induced translocation of c-myc tagged RAMP1 or HA tagged RAMP3. Of these, only the VPAC1 receptor caused significant translocation of c-myc-RAMP1 or HA-RAMP3 to the cell surface. Co-transfection of VPAC1 and RAMPs did not alter 125 I-VIP binding and specificity. VPAC1 receptor function was subsequently analyzed through parallel determinations of cAMP accumulation and phosphoinositide (PI) hydrolysis in the presence and absence of each of the three RAMPs. In contrast to CTR-RAMP interaction, where there was an increase in cAMP Pharmacologisand a decrease in PI hydrolysis, VPAC1-RAMP interaction was characterized by a specific increase in agonist-mediated PI hydrolysis when co-transfected with RAMP2. This change was due to an enhancement of Emax with no change in EC 50 value for VIP. No significant change in cAMP accumulation was observed. This is the first demonstration of an interaction of RAMPs with a G protein-coupled receptor outside the CTR family and may suggest a more generalized role for RAMPs in modulating G protein-coupled receptor signaling. Copyright (2001) Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists

  4. ß-Adrenergic Receptor Signaling and Modulation of Long-Term Potentiation in the Mammalian Hippocampus

    Science.gov (United States)

    O'Dell, Thomas J.; Connor, Steven A.; Guglietta, Ryan; Nguyen, Peter V.

    2015-01-01

    Encoding new information in the brain requires changes in synaptic strength. Neuromodulatory transmitters can facilitate synaptic plasticity by modifying the actions and expression of specific signaling cascades, transmitter receptors and their associated signaling complexes, genes, and effector proteins. One critical neuromodulator in the…

  5. MicroRNAs regulate B-cell receptor signaling-induced apoptosis

    NARCIS (Netherlands)

    Kluiver, J. L.; Chen, C-Z

    Apoptosis induced by B-cell receptor (BCR) signaling is critical for antigen-driven selection, a process critical to tolerance and immunity. Here, we examined the roles of microRNAs (miRNAs) in BCR signaling-induced apoptosis using the widely applied WEHI-231 model. Comparison of miRNA levels in

  6. β-Adrenergic receptor signaling and modulation of long-term potentiation in the mammalian hippocampus

    OpenAIRE

    O'Dell, Thomas J.; Connor, Steven A.; Guglietta, Ryan; Nguyen, Peter V.

    2015-01-01

    Encoding new information in the brain requires changes in synaptic strength. Neuromodulatory transmitters can facilitate synaptic plasticity by modifying the actions and expression of specific signaling cascades, transmitter receptors and their associated signaling complexes, genes, and effector proteins. One critical neuromodulator in the mammalian brain is norepinephrine (NE), which regulates multiple brain functions such as attention, perception, arousal, sleep, learning, and memory. The m...

  7. Obesity, Fat Mass and Immune System: Role for Leptin

    Directory of Open Access Journals (Sweden)

    Vera Francisco

    2018-06-01

    Full Text Available Obesity is an epidemic disease characterized by chronic low-grade inflammation associated with a dysfunctional fat mass. Adipose tissue is now considered an extremely active endocrine organ that secretes cytokine-like hormones, called adipokines, either pro- or anti-inflammatory factors bridging metabolism to the immune system. Leptin is historically one of most relevant adipokines, with important physiological roles in the central control of energy metabolism and in the regulation of metabolism-immune system interplay, being a cornerstone of the emerging field of immunometabolism. Indeed, leptin receptor is expressed throughout the immune system and leptin has been shown to regulate both innate and adaptive immune responses. This review discusses the latest data regarding the role of leptin as a mediator of immune system and metabolism, with particular emphasis on its effects on obesity-associated metabolic disorders and autoimmune and/or inflammatory rheumatic diseases.

  8. Signaling by purinergic receptors and channels in the pituitary gland

    Czech Academy of Sciences Publication Activity Database

    Stojilkovic, S. S.; He, M. L.; Koshimizu, T.; Balík, A.; Zemková, Hana

    2010-01-01

    Roč. 314, č. 2 (2010), s. 184-191 ISSN 0303-7207 R&D Projects: GA ČR(CZ) GA305/07/0681 Institutional research plan: CEZ:AV0Z50110509 Keywords : purinergic receptors * ATP * anterior pituitary Subject RIV: ED - Physiology Impact factor: 4.119, year: 2010

  9. Pattern-recognition receptors: signaling pathways and dysregulation in canine chronic enteropathies-brief review.

    Science.gov (United States)

    Heilmann, Romy M; Allenspach, Karin

    2017-11-01

    Pattern-recognition receptors (PRRs) are expressed by innate immune cells and recognize pathogen-associated molecular patterns (PAMPs) as well as endogenous damage-associated molecular pattern (DAMP) molecules. With a large potential for synergism or convergence between their signaling pathways, PRRs orchestrate a complex interplay of cellular mediators and transcription factors, and thus play a central role in homeostasis and host defense. Aberrant activation of PRR signaling, mutations of the receptors and/or their downstream signaling molecules, and/or DAMP/PAMP complex-mediated receptor signaling can potentially lead to chronic auto-inflammatory diseases or development of cancer. PRR signaling pathways appear to also present an interesting new avenue for the modulation of inflammatory responses and to serve as potential novel therapeutic targets. Evidence for a dysregulation of the PRR toll-like receptor (TLR)2, TLR4, TLR5, and TLR9, nucleotide-binding oligomerization domain-containing protein (NOD)2, and the receptor of advanced glycation end products (RAGE) exists in dogs with chronic enteropathies. We describe the TLR, NOD2, and RAGE signaling pathways and evaluate the current veterinary literature-in comparison to human medicine-to determine the role of TLRs, NOD2, and RAGE in canine chronic enteropathies.

  10. Leptin regulates the pro-inflammatory response in human epidermal keratinocytes.

    Science.gov (United States)

    Lee, Moonyoung; Lee, Eunyoung; Jin, Sun Hee; Ahn, Sungjin; Kim, Sae On; Kim, Jungmin; Choi, Dalwoong; Lim, Kyung-Min; Lee, Seung-Taek; Noh, Minsoo

    2018-05-01

    The role of leptin in cutaneous wound healing process has been suggested in genetically obese mouse studies. However, the molecular and cellular effects of leptin on human epidermal keratinocytes are still unclear. In this study, the whole-genome-scale microarray analysis was performed to elucidate the effect of leptin on epidermal keratinocyte functions. In the leptin-treated normal human keratinocytes (NHKs), we identified the 151 upregulated and 53 downregulated differentially expressed genes (DEGs). The gene ontology (GO) enrichment analysis with the leptin-induced DEGs suggests that leptin regulates NHKs to promote pro-inflammatory responses, extracellular matrix organization, and angiogenesis. Among the DEGs, the protein expression of IL-8, MMP-1, fibronectin, and S100A7, which play roles in which is important in the regulation of cutaneous inflammation, was confirmed in the leptin-treated NHKs. The upregulation of the leptin-induced proteins is mainly regulated by the STAT3 signaling pathway in NHKs. Among the downregulated DEGs, the protein expression of nucleosome assembly-associated centromere protein A (CENPA) and CENPM was confirmed in the leptin-treated NHKs. However, the expression of CENPA and CENPM was not coupled with those of other chromosome passenger complex like Aurora A kinase, INCENP, and survivin. In cell growth kinetics analysis, leptin had no significant effect on the cell growth curves of NHKs in the normal growth factor-enriched condition. Therefore, leptin-dependent downregulation of CENPA and CENPM in NHKs may not be directly associated with mitotic regulation during inflammation.

  11. DMPD: G-protein-coupled receptor expression, function, and signaling in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17456803 G-protein-coupled receptor expression, function, and signaling in macropha...2007 Apr 24. (.png) (.svg) (.html) (.csml) Show G-protein-coupled receptor expression, function, and signali...ng in macrophages. PubmedID 17456803 Title G-protein-coupled receptor expression, function

  12. Intercellular calcium signaling occurs between human osteoblasts and osteoclasts and requires activation of osteoclast P2X7 receptors

    DEFF Research Database (Denmark)

    Jørgensen, Niklas R; Henriksen, Zanne; Sørensen, Ole

    2002-01-01

    that human osteoclasts expressed functional P2Y1 receptors, but, unexpectedly, desensitization of P2Y1 did not block calcium signaling to osteoclasts. We also found that osteoclasts expressed functional P2X7 receptors and showed that pharmacological inhibition of these receptors blocked calcium signaling...

  13. Purinergic receptors have different effects in rat exocrine pancreas. Calcium signals monitored by fura-2 using confocal microscopy

    DEFF Research Database (Denmark)

    Novak, Ivana; Nitschke, Roland; Amstrup, Jan

    2002-01-01

    Pancreatic ducts have several types of purinergic P2 receptors, however, nothing is known about P2 receptors in acini. The aim was to establish whether acini express functional P2 receptors coupled to intracellular Ca2+ signals and to measure the signals ratiometrically in a confocal laser scanning...

  14. Quantitative phosphoproteomics dissection of 7TM receptor signaling using full and biased agonists

    DEFF Research Database (Denmark)

    Christensen, Gitte L; Kelstrup, Christian D; Lyngsø, Christina

    2010-01-01

    only activates the Gaq protein-independent signaling.e quantified more than ten thousand phosphorylation sites of which 1183 were regulated by Angiotensin II or its analogue SII Angiotensin II. 36% of the AT1R regulated phosphorylations were regulated by SII Angiotensin II. Analysis of phosphorylation...... into Angiotensin II signal transduction and is the first study dissecting the differences between a full agonist and a biased agonist from a 7TMR on a systems-wide scale. Importantly, it reveals a previously unappreciated diversity and quantity of Gaq protein-independent signaling and uncovers novel signaling......Seven-transmembrane receptors (7TMRs) signal through the well described heterotrimeric G proteins, but can also activate G protein-independent signaling pathways of which the impact and complexity are less understood. The Angiotensin II type 1 receptor (AT1R) is a prototypical 7TMR and an important...

  15. Leptin promoter gene polymorphism on -2549 position decreases plasma leptin and increases appetite in normal weight volunteers

    Directory of Open Access Journals (Sweden)

    Sandra Bragança Coelho

    2014-05-01

    Full Text Available Introduction: Investigate whether polymorphism in the promoter region encoding leptin and leptin receptor gene, in normal weight individuals, affects hormonal and appetite responses to peanuts.Materials and methods: Appetite, anthropometric indices, body composition, physical activity, dietary intake and leptin, ghrelin and insulin levels were monitored. Polymorphism analyses were also carried out.Results: None of the treatments led to statistical differences in the analyzed hormones. No polymorphism was found for leptin receptor gene, while for leptin gene, 50% of the volunteers presented one polymorphic allele and 13% presented both polymorphic alleles. These last ones presented lower body fat mass, leptin and ghrelin plasma concentrations, and fullness rates. They also presented higher hunger, desire to eat, and desire to eat sweet and salty foods.Conclusions: Peanut did not affect appetite and presented no different hormonal responses, compared to other foods studied. Polymorphic allele carriers in both alleles presented higher probability to develop obesity. However, the magnitude of this probability could not be measured.

  16. The Beneficial Effects of Leptin on REM Sleep Deprivation-Induced Cognitive Deficits in Mice

    Science.gov (United States)

    Chang, Hsiao-Fu; Su, Chun-Lin; Chang, Chih-Hua; Chen, Yu-Wen; Gean, Po-Wu

    2013-01-01

    Leptin, a 167 amino acid peptide, is synthesized predominantly in the adipose tissues and plays a key role in the regulation of food intake and body weight. Recent studies indicate that leptin receptor is expressed with high levels in many brain regions that may regulate synaptic plasticity. Here we show that deprivation of rapid eye movement…

  17. Plant immune and growth receptors share common signalling components but localise to distinct plasma membrane nanodomains.

    Science.gov (United States)

    Bücherl, Christoph A; Jarsch, Iris K; Schudoma, Christian; Segonzac, Cécile; Mbengue, Malick; Robatzek, Silke; MacLean, Daniel; Ott, Thomas; Zipfel, Cyril

    2017-03-06

    Cell surface receptors govern a multitude of signalling pathways in multicellular organisms. In plants, prominent examples are the receptor kinases FLS2 and BRI1, which activate immunity and steroid-mediated growth, respectively. Intriguingly, despite inducing distinct signalling outputs, both receptors employ common downstream signalling components, which exist in plasma membrane (PM)-localised protein complexes. An important question is thus how these receptor complexes maintain signalling specificity. Live-cell imaging revealed that FLS2 and BRI1 form PM nanoclusters. Using single-particle tracking we could discriminate both cluster populations and we observed spatiotemporal separation between immune and growth signalling platforms. This finding was confirmed by visualising FLS2 and BRI1 within distinct PM nanodomains marked by specific remorin proteins and differential co-localisation with the cytoskeleton. Our results thus suggest that signalling specificity between these pathways may be explained by the spatial separation of FLS2 and BRI1 with their associated signalling components within dedicated PM nanodomains.

  18. Evaluation of Intracellular Signaling Downstream Chimeric Antigen Receptors.

    Directory of Open Access Journals (Sweden)

    Hannah Karlsson

    Full Text Available CD19-targeting CAR T cells have shown potency in clinical trials targeting B cell leukemia. Although mainly second generation (2G CARs carrying CD28 or 4-1BB have been investigated in patients, preclinical studies suggest that third generation (3G CARs with both CD28 and 4-1BB have enhanced capacity. However, little is known about the intracellular signaling pathways downstream of CARs. In the present work, we have analyzed the signaling capacity post antigen stimulation in both 2G and 3G CARs. 3G CAR T cells expanded better than 2G CAR T cells upon repeated stimulation with IL-2 and autologous B cells. An antigen-driven accumulation of CAR+ cells was evident post antigen stimulation. The cytotoxicity of both 2G and 3G CAR T cells was maintained by repeated stimulation. The phosphorylation status of intracellular signaling proteins post antigen stimulation showed that 3G CAR T cells had a higher activation status than 2G. Several proteins involved in signaling downstream the TCR were activated, as were proteins involved in the cell cycle, cell adhesion and exocytosis. In conclusion, 3G CAR T cells had a higher degree of intracellular signaling activity than 2G CARs which may explain the increased proliferative capacity seen in 3G CAR T cells. The study also indicates that there may be other signaling pathways to consider when designing or evaluating new generations of CARs.

  19. Arabidopsis CPR5 regulates ethylene signaling via molecular association with the ETR1 receptor.

    Science.gov (United States)

    Wang, Feifei; Wang, Lijuan; Qiao, Longfei; Chen, Jiacai; Pappa, Maria Belen; Pei, Haixia; Zhang, Tao; Chang, Caren; Dong, Chun-Hai

    2017-11-01

    The plant hormone ethylene plays various functions in plant growth, development and response to environmental stress. Ethylene is perceived by membrane-bound ethylene receptors, and among the homologous receptors in Arabidopsis, the ETR1 ethylene receptor plays a major role. The present study provides evidence demonstrating that Arabidopsis CPR5 functions as a novel ETR1 receptor-interacting protein in regulating ethylene response and signaling. Yeast split ubiquitin assays and bi-fluorescence complementation studies in plant cells indicated that CPR5 directly interacts with the ETR1 receptor. Genetic analyses indicated that mutant alleles of cpr5 can suppress ethylene insensitivity in both etr1-1 and etr1-2, but not in other dominant ethylene receptor mutants. Overexpression of Arabidopsis CPR5 either in transgenic Arabidopsis plants, or ectopically in tobacco, significantly enhanced ethylene sensitivity. These findings indicate that CPR5 plays a critical role in regulating ethylene signaling. CPR5 is localized to endomembrane structures and the nucleus, and is involved in various regulatory pathways, including pathogenesis, leaf senescence, and spontaneous cell death. This study provides evidence for a novel regulatory function played by CPR5 in the ethylene receptor signaling pathway in Arabidopsis. © 2017 Institute of Botany, Chinese Academy of Sciences.

  20. Leptin and psychiatry

    African Journals Online (AJOL)

    QuickSilver

    and functions as a metabolic and neuro-endocrine hormone. Leptin has been shown to .... a study of 36 patients, Hinze Selch et al concluded that weight gain induced by .... European Journal ... and its encoded protein in Rodents: Impact of nutrition and obe- sity. Journal ... Psychology Annals 1989:19;488–493. 15. Elke D.

  1. Insulin signaling inhibits the 5-HT2C receptor in choroid plexus via MAP kinase

    Directory of Open Access Journals (Sweden)

    Guan Kunliang

    2003-06-01

    Full Text Available Abstract Background G protein-coupled receptors (GPCRs interact with heterotrimeric GTP-binding proteins (G proteins to modulate acute changes in intracellular messenger levels and ion channel activity. In contrast, long-term changes in cellular growth, proliferation and differentiation are often mediated by tyrosine kinase receptors and certain GPCRs by activation of mitogen-activated protein (MAP kinases. Complex interactions occur between these signaling pathways, but the specific mechanisms of such regulatory events are not well-understood. In particular it is not clear whether GPCRs are modulated by tyrosine kinase receptor-MAP kinase pathways. Results Here we describe tyrosine kinase receptor regulation of a GPCR via MAP kinase. Insulin reduced the activity of the 5-HT2C receptor in choroid plexus cells which was blocked by the MAP kinase kinase (MEK inhibitor, PD 098059. We demonstrate that the inhibitory effect of insulin and insulin-like growth factor type 1 (IGF-1 on the 5-HT2C receptor is dependent on tyrosine kinase, RAS and MAP kinase. The effect may be receptor-specific: insulin had no effect on another GPCR that shares the same G protein signaling pathway as the 5-HT2C receptor. This effect is also direct: activated MAP kinase mimicked the effect of insulin, and removing a putative MAP kinase site from the 5-HT2C receptor abolished the effect of insulin. Conclusion These results show that insulin signaling can inhibit 5-HT2C receptor activity and suggest that MAP kinase may play a direct role in regulating the function of a specific GPCR.

  2. Interplay between TGF-β signaling and receptor tyrosine kinases in tumor development.

    Science.gov (United States)

    Shi, Qiaoni; Chen, Ye-Guang

    2017-10-01

    Transforming growth factor-β (TGF-β) signaling regulates cell proliferation, differentiation, migration and death, and plays a critical role in embryogenesis and tissue homeostasis. Its deregulation results in various diseases including tumor formation. Receptor tyrosine kinases (RTKs), such as epidermal growth factor receptor (EGFR), fibroblast growth factor receptor (FGFR), vascular endothelial growth factor receptor (VEGFR) and platelet-derived growth factor receptor (PDGFR), also play key roles in the development and progression of many types of tumors. It has been realized that TGF-β signaling and RTK pathways interact with each other and their interplay is important for cancer development. They are mutually regulated and cooperatively modulate cell survival and migration, epithelial-mesenchymal transition, and tumor microenvironment to accelerate tumorigenesis and tumor metastasis. RTKs can modulate Smad-dependent transcription or cooperate with TGF-β to potentiate its oncogenic activity, while TGF-β signaling can in turn control RTK signaling by regulating their activities or expression. This review summarizes current understandings of the interplay between TGF-β signaling and RTKs and its influence on tumor development.

  3. Leptin rapidly improves glucose homeostasis in obese mice by increasing hypothalamic insulin sensitivity.

    Science.gov (United States)

    Koch, Christiane; Augustine, Rachael A; Steger, Juliane; Ganjam, Goutham K; Benzler, Jonas; Pracht, Corinna; Lowe, Chrishanthi; Schwartz, Michael W; Shepherd, Peter R; Anderson, Greg M; Grattan, David R; Tups, Alexander

    2010-12-01

    Obesity is associated with resistance to the actions of both leptin and insulin via mechanisms that remain incompletely understood. To investigate whether leptin resistance per se contributes to insulin resistance and impaired glucose homeostasis, we investigated the effect of acute leptin administration on glucose homeostasis in normal as well as leptin- or leptin receptor-deficient mice. In hyperglycemic, leptin-deficient Lep(ob/ob) mice, leptin acutely and potently improved glucose metabolism, before any change of body fat mass, via a mechanism involving the p110α and β isoforms of phosphatidylinositol-3-kinase (PI3K). Unlike insulin, however, the anti-diabetic effect of leptin occurred independently of phospho-AKT, a major downstream target of PI3K, and instead involved enhanced sensitivity of the hypothalamus to insulin action upstream of PI3K, through modulation of IRS1 (insulin receptor substrate 1) phosphorylation. These data suggest that leptin resistance, as occurs in obesity, reduces the hypothalamic response to insulin and thereby impairs peripheral glucose homeostasis, contributing to the development of type 2 diabetes.

  4. Environmental obesogen tributyltin chloride leads to abnormal hypothalamic-pituitary-gonadal axis function by disruption in kisspeptin/leptin signaling in female rats.

    Science.gov (United States)

    Sena, Gabriela C; Freitas-Lima, Leandro C; Merlo, Eduardo; Podratz, Priscila L; de Araújo, Julia F P; Brandão, Poliane A A; Carneiro, Maria T W D; Zicker, Marina C; Ferreira, Adaliene V M; Takiya, Christina M; de Lemos Barbosa, Carolina M; Morales, Marcelo M; Santos-Silva, Ana Paula; Miranda-Alves, Leandro; Silva, Ian V; Graceli, Jones B

    2017-03-15

    Tributyltin chloride (TBT) is a xenobiotic used as a biocide in antifouling paints that has been demonstrated to induce endocrine-disrupting effects, such as obesity and reproductive abnormalities. An integrative metabolic control in the hypothalamus-pituitary-gonadal (HPG) axis was exerted by leptin. However, studies that have investigated the obesogenic TBT effects on the HPG axis are especially rare. We investigated whether metabolic disorders as a result of TBT are correlated with abnormal hypothalamus-pituitary-gonadal (HPG) axis function, as well as kisspeptin (Kiss) action. Female Wistar rats were administered vehicle and TBT (100ng/kg/day) for 15days via gavage. We analyzed their effects on the tin serum and ovary accumulation (as biomarker of TBT exposure), estrous cyclicity, surge LH levels, GnRH expression, Kiss action, fertility, testosterone levels, ovarian apoptosis, uterine inflammation, fibrosis, estrogen negative feedback, body weight gain, insulin, leptin, adiponectin levels, as well as the glucose tolerance (GTT) and insulin sensitivity tests (IST). TBT led to increased serum and ovary tin levels, irregular estrous cyclicity, and decreased surge LH levels, GnRH expression and Kiss responsiveness. A strong negative correlation between the serum and ovary tin levels with lower Kiss responsiveness and GnRH mRNA expression was observed in TBT rats. An increase in the testosterone levels, ovarian and uterine fibrosis, ovarian apoptosis, and uterine inflammation and a decrease in fertility and estrogen negative feedback were demonstrated in the TBT rats. We also identified an increase in the body weight gain and abnormal GTT and IST tests, which were associated with hyperinsulinemia, hyperleptinemia and hypoadiponectinemia, in the TBT rats. TBT disrupted proper functioning of the HPG axis as a result of abnormal Kiss action. The metabolic dysfunctions co-occur with the HPG axis abnormalities. Hyperleptinemia as a result of obesity induced by TBT may be

  5. A model for the biosynthesis and transport of plasma membrane-associated signaling receptors to the cell surface

    Directory of Open Access Journals (Sweden)

    Sorina Claudia Popescu

    2012-04-01

    Full Text Available Intracellular protein transport is emerging as critical in determining the outcome of receptor-activated signal transduction pathways. In plants, relatively little is known about the nature of the molecular components and mechanisms involved in coordinating receptor synthesis and transport to the cell surface. Recent advances in this field indicate that signaling pathways and intracellular transport machinery converge and coordinate to render receptors competent for signaling at their plasma membrane activity sites. The biogenesis and transport to the cell surface of signaling receptors appears to require both general trafficking and receptor-specific factors. Several molecular determinants, residing or associated with compartments of the secretory pathway and known to influence aspects in receptor biogenesis, are discussed and integrated into a predictive cooperative model for the functional expression of signaling receptors at the plasma membrane.

  6. Association of cannabis use during adolescence, prefrontal CB1 receptor signaling and schizophrenia

    Directory of Open Access Journals (Sweden)

    Adriana eCaballero

    2012-05-01

    Full Text Available The cannabinoid receptor 1 (CB1R is the G-protein coupled receptor responsible for the majority of the endocannabinoid signaling in the human brain. It is widely distributed in the limbic system, basal ganglia, and cerebellum, which are areas responsible for cognition, memory, and motor control. Because of this widespread distribution, it is not surprising that drugs that co-opt CB1R have expected behavioral outcomes consistent with dysregulated signaling from these areas (e.g. memory loss, cognitive deficits, etc. In the context of this review, we present evidence for the role of CB1R signaling in the prefrontal cortex (PFC, an area involved in executive functions, with emphasis on the developmental regulation of CB1R signaling in the acquisition of mature PFC function. We further hypothesize how alterations of CB1R signaling specifically during adolescent maturation might confer liability to psychiatric disorders.

  7. The leptin system and its expression at different nutritional and pregnant stages in lined seahorse (Hippocampus erectus

    Directory of Open Access Journals (Sweden)

    Huixian Zhang

    2016-10-01

    Full Text Available Leptin is an essential hormone for the regulation of energy metabolism and food intake in vertebrate animals. To better understand the physiological roles of leptin in nutrient regulation in paternal ovoviviparous fish (family Syngnathidae, the present study cloned the full-length of leptin-a and leptin receptor (lepr genes in lined seahorse (Hippocampus erectus. Results showed that there was a 576-bp intron between two exons in leptin-a gene but no leptin-b gene in seahorse. Although the primary amino acid sequence conservation of seahorse leptin-a was very low, the 3-D structure modeling of seahorse leptin-a revealed strong conservation of tertiary structure with other vertebrates. Seahorse leptin-a mRNA was highly expressed in brain, whereas lepr mRNA was mainly expressed in ovary and gill. Interestingly, both leptin-a and lepr mRNA were expressed in the brood pouch of male seahorse, suggesting the leptin system plays a role during the male pregnancy. Physiological experiments showed that the expression of hepatic leptin-a and lepr mRNA in unfed seahorses was significantly higher than that in those fed 100%, as well as 60%, of their food during the fasting stage, showing that seahorse might initiate the leptin system to regulate its energy metabolism while starving. Moreover, the expression of leptin-a in the brood pouch of pregnant seahorse was significantly upregulated compared with non-pregnant seahorse, whereas the expression of lepr was downregulated, suggesting that the leptin system might be involved in the male pregnancy. In conclusion, the leptin system plays a role in the energy metabolism and food intake, and might provide new insights into molecular regulation of male pregnancy in seahorse.

  8. The leptin system and its expression at different nutritional and pregnant stages in lined seahorse (Hippocampus erectus).

    Science.gov (United States)

    Zhang, Huixian; Qin, Geng; Zhang, Yanhong; Li, Shuisheng; Lin, Qiang

    2016-10-15

    Leptin is an essential hormone for the regulation of energy metabolism and food intake in vertebrate animals. To better understand the physiological roles of leptin in nutrient regulation in paternal ovoviviparous fish (family Syngnathidae), the present study cloned the full-length of leptin-a and leptin receptor (lepr) genes in lined seahorse (Hippocampus erectus). Results showed that there was a 576-bp intron between two exons in leptin-a gene but no leptin-b gene in seahorse. Although the primary amino acid sequence conservation of seahorse leptin-a was very low, the 3-D structure modeling of seahorse leptin-a revealed strong conservation of tertiary structure with other vertebrates. Seahorse leptin-a mRNA was highly expressed in brain, whereas lepr mRNA was mainly expressed in ovary and gill. Interestingly, both leptin-a and lepr mRNA were expressed in the brood pouch of male seahorse, suggesting the leptin system plays a role during the male pregnancy. Physiological experiments showed that the expression of hepatic leptin-a and lepr mRNA in unfed seahorses was significantly higher than that in those fed 100%, as well as 60%, of their food during the fasting stage, showing that seahorse might initiate the leptin system to regulate its energy metabolism while starving. Moreover, the expression of leptin-a in the brood pouch of pregnant seahorse was significantly upregulated compared with non-pregnant seahorse, whereas the expression of lepr was downregulated, suggesting that the leptin system might be involved in the male pregnancy. In conclusion, the leptin system plays a role in the energy metabolism and food intake, and might provide new insights into molecular regulation of male pregnancy in seahorse. © 2016. Published by The Company of Biologists Ltd.

  9. Imaging of persistent cAMP signaling by internalized G protein-coupled receptors.

    Science.gov (United States)

    Calebiro, Davide; Nikolaev, Viacheslav O; Lohse, Martin J

    2010-07-01

    G protein-coupled receptors (GPCRs) are the largest family of plasma membrane receptors. They mediate the effects of several endogenous cues and serve as important pharmacological targets. Although many biochemical events involved in GPCR signaling have been characterized in great detail, little is known about their spatiotemporal dynamics in living cells. The recent advent of optical methods based on fluorescent resonance energy transfer allows, for the first time, to directly monitor GPCR signaling in living cells. Utilizing these methods, it has been recently possible to show that the receptors for two protein/peptide hormones, the TSH and the parathyroid hormone, continue signaling to cAMP after their internalization into endosomes. This type of intracellular signaling is persistent and apparently triggers specific cellular outcomes. Here, we review these recent data and explain the optical methods used for such studies. Based on these findings, we propose a revision of the current model of the GPCR-cAMP signaling pathway to accommodate receptor signaling at endosomes.

  10. Evidence for cooperative signal triggering at the extracellular loops of the TSH receptor.

    Science.gov (United States)

    Kleinau, Gunnar; Jaeschke, Holger; Mueller, Sandra; Raaka, Bruce M; Neumann, Susanne; Paschke, Ralf; Krause, Gerd

    2008-08-01

    The mechanisms governing transition of the thyroid stimulating hormone (TSH) receptor (TSHR) from basal to active conformations are poorly understood. Considering that constitutively activating mutations (CAMs) and inactivating mutations in each of the extracellular loops (ECLs) trigger only partial TSHR activation or inactivation, respectively, we hypothesized that full signaling occurs via multiple extracellular signal propagation events. Therefore, individual CAMs in the extracellular region were combined to create double and triple mutants. In support of our hypothesis, combinations of mutants in the ECLs are in some cases additive, while in others they are even synergistic, with triple mutant I486A/I568V/V656F exhibiting a 70-fold increase in TSH-independent signaling. The proximity but likely different spatial orientation of the residues of activating and inactivating mutations in each ECL supports a dual functionality to facilitate signal induction and conduction, respectively. This is the first report for G-protein coupled receptors, suggesting that multiple and cooperative signal propagating events at all three ECLs are required for full receptor activation. Our findings provide new insights concerning molecular signal transmission from extracellular domains toward the transmembrane helix bundle of the glycoprotein hormone receptors.

  11. ATAR, a novel tumor necrosis factor receptor family member, signals through TRAF2 and TRAF5.

    Science.gov (United States)

    Hsu, H; Solovyev, I; Colombero, A; Elliott, R; Kelley, M; Boyle, W J

    1997-05-23

    Members of tumor necrosis factor receptor (TNFR) family signal largely through interactions with death domain proteins and TRAF proteins. Here we report the identification of a novel TNFR family member ATAR. Human and mouse ATAR contain 283 and 276 amino acids, respectively, making them the shortest known members of the TNFR superfamily. The receptor is expressed mainly in spleen, thymus, bone marrow, lung, and small intestine. The intracellular domains of human and mouse ATAR share only 25% identity, yet both interact with TRAF5 and TRAF2. This TRAF interaction domain resides at the C-terminal 20 amino acids. Like most other TRAF-interacting receptors, overexpression of ATAR activates the transcription factor NF-kappaB. Co-expression of ATAR with TRAF5, but not TRAF2, results in synergistic activation of NF-kappaB, suggesting potentially different roles for TRAF2 and TRAF5 in post-receptor signaling.

  12. Age-related changes in expression and signaling of TAM receptor inflammatory regulators in monocytes.

    Science.gov (United States)

    Wang, Xiaomei; Malawista, Anna; Qian, Feng; Ramsey, Christine; Allore, Heather G; Montgomery, Ruth R

    2018-02-09

    The multifactorial immune deterioration in aging--termed "inflamm-aging"--is comprised of a state of low-grade, chronic inflammation and complex dysregulation of responses to immune stimulation. The TAM family (Tyro 3, Axl, and Mer) of receptor tyrosine kinases are negative regulators of Toll like receptor-mediated immune responses that broadly inhibit cytokine receptor cascades to inhibit inflammation. Here we demonstrate elevated expression of TAM receptors in monocytes of older adults, and an age-dependent difference in signaling mediator AKT resulting in dysregulated responses to signaling though Mer. Our results may be especially significant in tissue, where levels of Mer are highest, and may present avenues for modulation of chronic tissue inflammation noted in aging.

  13. Running from Disease: Molecular Mechanisms Associating Dopamine and Leptin Signaling in the Brain with Physical Inactivity, Obesity, and Type 2 Diabetes.

    Science.gov (United States)

    Ruegsegger, Gregory N; Booth, Frank W

    2017-01-01

    Physical inactivity is a primary contributor to diseases such as obesity, cardiovascular disease, and type 2 diabetes. Accelerometry data suggest that a majority of US adults fail to perform substantial levels of physical activity needed to improve health. Thus, understanding the molecular factors that stimulate physical activity, and physical inactivity, is imperative for the development of strategies to reduce sedentary behavior and in turn prevent chronic disease. Despite many of the well-known health benefits of physical activity being described, little is known about genetic and biological factors that may influence this complex behavior. The mesolimbic dopamine system regulates motivating and rewarding behavior as well as motor movement. Here, we present data supporting the hypothesis that obesity may mechanistically lower voluntary physical activity levels via dopamine dysregulation. In doing so, we review data that suggest mesolimbic dopamine activity is a strong contributor to voluntary physical activity behavior. We also summarize findings suggesting that obesity leads to central dopaminergic dysfunction, which in turn contributes to reductions in physical activity that often accompany obesity. Additionally, we highlight examples in which central leptin activity influences physical activity levels in a dopamine-dependent manner. Future elucidation of these mechanisms will help support strategies to increase physical activity levels in obese patients and prevent diseases caused by physical inactivity.

  14. Running from Disease: Molecular Mechanisms Associating Dopamine and Leptin Signaling in the Brain with Physical Inactivity, Obesity, and Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Gregory N. Ruegsegger

    2017-05-01

    Full Text Available Physical inactivity is a primary contributor to diseases such as obesity, cardiovascular disease, and type 2 diabetes. Accelerometry data suggest that a majority of US adults fail to perform substantial levels of physical activity needed to improve health. Thus, understanding the molecular factors that stimulate physical activity, and physical inactivity, is imperative for the development of strategies to reduce sedentary behavior and in turn prevent chronic disease. Despite many of the well-known health benefits of physical activity being described, little is known about genetic and biological factors that may influence this complex behavior. The mesolimbic dopamine system regulates motivating and rewarding behavior as well as motor movement. Here, we present data supporting the hypothesis that obesity may mechanistically lower voluntary physical activity levels via dopamine dysregulation. In doing so, we review data that suggest mesolimbic dopamine activity is a strong contributor to voluntary physical activity behavior. We also summarize findings suggesting that obesity leads to central dopaminergic dysfunction, which in turn contributes to reductions in physical activity that often accompany obesity. Additionally, we highlight examples in which central leptin activity influences physical activity levels in a dopamine-dependent manner. Future elucidation of these mechanisms will help support strategies to increase physical activity levels in obese patients and prevent diseases caused by physical inactivity.

  15. Recent Advances on the Role of G Protein-Coupled Receptors in Hypoxia-Mediated Signaling

    OpenAIRE

    Lappano, Rosamaria; Rigiracciolo, Damiano; De Marco, Paola; Avino, Silvia; Cappello, Anna Rita; Rosano, Camillo; Maggiolini, Marcello; De Francesco, Ernestina Marianna

    2016-01-01

    G protein-coupled receptors (GPCRs) are cell surface proteins mainly involved in signal transmission; however, they play a role also in several pathophysiological conditions. Chemically heterogeneous molecules like peptides, hormones, lipids, and neurotransmitters activate second messengers and induce several biological responses by binding to these seven transmembrane receptors, which are coupled to heterotrimeric G proteins. Recently, additional molecular mechanisms have been involved in GP...

  16. Signal Transduction of Sphingosine-1-Phosphate G Protein—Coupled Receptors

    Directory of Open Access Journals (Sweden)

    Nicholas Young

    2006-01-01

    Full Text Available Sphingosine-1-phosphate (S1P is a bioactive lipid capable of eliciting dramatic effects in a variety of cell types. Signaling by this molecule is by a family of five G protein—coupled receptors named S1P1–5 that signal through a variety of pathways to regulate cell proliferation, migration, cytoskeletal organization, and differentiation. These receptors are expressed in a wide variety of tissues and cell types, and their cellular effects contribute to important biological and pathological functions of S1P in many processes, including angiogenesis, vascular development, lymphocyte trafficking, and cancer. This review will focus on the current progress in the field of S1P receptor signaling and biology.

  17. Non-genomic actions of aldosterone: From receptors and signals to membrane targets.

    LENUS (Irish Health Repository)

    2012-02-01

    In tissues which express the mineralocorticoid receptor (MR), aldosterone modulates the expression of membrane targets such as the subunits of the epithelial Na(+) channel, in combination with important signalling intermediates such as serum and glucocorticoid-regulated kinase-1. In addition, the rapid \\'non-genomic\\' activation of protein kinases and secondary messenger signalling cascades has also been detected in aldosterone-sensitive tissues of the nephron, distal colon and cardiovascular system. These rapid actions are variously described as being coupled to MR or to an as yet unidentified, membrane-associated aldosterone receptor. The rapidly activated signalling cascades add a level of fine-tuning to the activity of aldosterone-responsive membrane transporters and also modulate the aldosterone-induced changes in gene expression through receptor and transcription factor phosphorylation.

  18. Non-genomic actions of aldosterone: From receptors and signals to membrane targets.

    LENUS (Irish Health Repository)

    Dooley, Ruth

    2011-07-26

    In tissues which express the mineralocorticoid receptor (MR), aldosterone modulates the expression of membrane targets such as the subunits of the epithelial Na(+) channel, in combination with important signalling intermediates such as serum and glucocorticoid-regulated kinase-1. In addition, the rapid \\'non-genomic\\' activation of protein kinases and secondary messenger signalling cascades has also been detected in aldosterone-sensitive tissues of the nephron, distal colon and cardiovascular system. These rapid actions are variously described as being coupled to MR or to an as yet unidentified, membrane-associated aldosterone receptor. The rapidly activated signalling cascades add a level of fine-tuning to the activity of aldosterone-responsive membrane transporters and also modulate the aldosterone-induced changes in gene expression through receptor and transcription factor phosphorylation.

  19. Delineation of the GPRC6A Receptor Signaling Pathways Using a Mammalian Cell Line Stably Expressing the Receptor

    DEFF Research Database (Denmark)

    Jacobsen, Stine Engesgaard; Nørskov-Lauritsen, Lenea; Thomsen, Alex Rojas Bie

    2013-01-01

    receptor has been suggested to couple to multiple G protein classes albeit via indirect methods. Thus, the exact ligand preferences and signaling pathways are yet to be elucidated. In the present study, we generated a Chinese hamster ovary (CHO) cell line that stably expresses mouse GPRC6A. In an effort...... and divalent cations, and for the first time, we conclusively show that these responses are mediated through the Gq pathway. We were not able to confirm previously published data demonstrating Gi- and Gs-mediated signaling; neither could we detect agonistic activity of testosterone and osteocalcin. Generation...... of the stable CHO cell line with robust receptor responsiveness and optimization of the highly sensitive homogeneous time resolved fluorescence technology allow fast assessment of Gq activation without previous manipulations like cotransfection of mutated G proteins. This cell-based assay system for GPRC6A...

  20. Leptin differentially regulates chondrogenesis in mouse vertebral and tibial growth plates.

    Science.gov (United States)

    Yu, Bo; Jiang, Kaibiao; Chen, Bin; Wang, Hantao; Li, Xinfeng; Liu, Zude

    2017-05-31

    Leptin plays an important role in mediating chondrogenesis of limb growth plate. Previous studies suggest that bone structures and development of spine and limb are different. The expression of Ob-Rb, the gene that encodes leptin receptors, is vertebral and appendicular region-specific, suggesting the regulation of leptin on VGP and TGP chondrogenesis may be very different. The aim of the present study was to investigate the differential regulation of leptin on the chondrogenesis of vertebral growth plate (VGP) and tibial growth plate (TGP). We compared the VGP and TGP from wild type (C57BL/6) and leptin-deficient (ob/ob) mice. We then generated primary cultures of TGP and VGP chondrocytes. By treating the primary cells with different concentrations of leptin in vitro, we analyzed proliferation and apoptosis of the primary chondrocytes from TGP and VGP. We further measured expression of chondrogenic-related genes in these cells that had been incubated with different doses of leptin. Leptin-deficient mice of 8-week-old had shorter tibial and longer vertebral lengths than the wide type mice. Disturbed columnar structure was observed for TGP but not for VGP. In primary chondrocyte cultures, leptin inhibited VGP chondrocyte proliferation but promoted their apoptosis. Collagen IIA and aggrecan mRNA, and the protein levels of proliferation- and chondrogenesis-related markers, including PCNA, Sox9, and Smad4, were downregulated by leptin in a dose-dependent manner. In contrast, leptin stimulated the proliferation and chondrogenic differentiation of TGP chondrocytes at physiological levels (i.e., 10 and 50 ng/mL) but not at high levels (i.e., 100 and 1000 ng/mL). Leptin exerts a stimulatory effect on the proliferation and chondrogenic differentiation of the long bone growth plate but an inhibitory effect on the spine growth plate. The ongoing study will shed light on the regulatory mechanisms of leptin in bone development and metabolism.

  1. Reference values for serum leptin in healthy non-obese children and adolescents.

    Science.gov (United States)

    Lausten-Thomsen, Ulrik; Christiansen, Michael; Louise Hedley, Paula; Esmann Fonvig, Cilius; Stjernholm, Theresa; Pedersen, Oluf; Hansen, Torben; Holm, Jens-Christian

    2016-11-01

    Adipokines are biologically active, low-molecular weight peptides, which play a major role in metabolic homeostasis in humans. Leptin has gained increasing attention in pediatrics as a biomarker for various metabolic pathologies. Yet, its usefulness is hampered by the relative lack of reference values from pediatric settings. Accordingly, this study aims to evaluate serum concentrations of leptin, soluble leptin receptor (sOB-R), and free leptin index (FLI) in healthy Danish schoolchildren aged 6-18 years and subsequently to establish reference intervals across sex and age groups. A total of 1193 healthy, non-obese Danish schoolchildren (730 girls, 463 boys) aged 6-18 years (median 11.9) were examined by trained medical staff. Serum leptin and sOB-R concentrations in venous fasting blood samples were quantitated by immunoassay. Percentile curves of leptin, sOB-R, and free leptin index were calculated using the General Additive Model for Location Scale and Shape (GAMLSS). Significant age and sex-dependent differences in circulating leptin levels were found. In boys, the median leptin concentration for all ages combined was 3.35 μg/L (95%-interval: 0.71-22.47) and in girls, it was 9.89 ng/L (95%-interval: 2.06-41.49). For SOB-R, no sex-specific difference was found, and the median sOB-R concentration was 8.24 μg/L (IQR: 3.58-23.74; range: < 1.56-744.15). We demonstrated an age-dependent correlation with both serum leptin concentration and free leptin index with a gradual and significant increase in girls throughout childhood and adolescence and a significantly higher leptin concentration and free leptin index bell-shaped peak in early adolescence in boys.

  2. Activation of GABAB receptors inhibits protein kinase B /Glycogen Synthase Kinase 3 signaling

    Directory of Open Access Journals (Sweden)

    Lu Frances Fangjia

    2012-11-01

    Full Text Available Abstract Accumulated evidence has suggested that potentiation of cortical GABAergic inhibitory neurotransmission may be a key mechanism in the treatment of schizophrenia. However, the downstream molecular mechanisms related to GABA potentiation remain unexplored. Recent studies have suggested that dopamine D2 receptor antagonists, which are used in the clinical treatment of schizophrenia, modulate protein kinase B (Akt/glycogen synthase kinase (GSK-3 signaling. Here we report that activation of GABAB receptors significantly inhibits Akt/GSK-3 signaling in a β-arrestin-dependent pathway. Agonist stimulation of GABAB receptors enhances the phosphorylation of Akt (Thr-308 and enhances the phosphorylation of GSK-3α (Ser-21/β (Ser-9 in both HEK-293T cells expressing GABAB receptors and rat hippocampal slices. Furthermore, knocking down the expression of β-arrestin2 using siRNA abolishes the GABAB receptor-mediated modulation of GSK-3 signaling. Our data may help to identify potentially novel targets through which GABAB receptor agents may exert therapeutic effects in the treatment of schizophrenia.

  3. Phytomelatonin receptor PMTR1-mediated signaling regulates stomatal closure in Arabidopsis thaliana.

    Science.gov (United States)

    Wei, Jian; Li, Dong-Xu; Zhang, Jia-Rong; Shan, Chi; Rengel, Zed; Song, Zhong-Bang; Chen, Qi

    2018-04-27

    Melatonin has been detected in plants in 1995; however, the function and signaling pathway of this putative phytohormone are largely undetermined due to a lack of knowledge about its receptor. Here, we discovered the first phytomelatonin receptor (CAND2/PMTR1) in Arabidopsis thaliana and found that melatonin governs the receptor-dependent stomatal closure. The application of melatonin induced stomatal closure through the heterotrimeric G protein α subunit-regulated H 2 O 2 and Ca 2+ signals. The Arabidopsis mutant lines lacking AtCand2 that encodes a candidate G protein-coupled receptor were insensitive to melatonin-induced stomatal closure. Accordingly, the melatonin-induced H 2 O 2 production and Ca 2+ influx were completely abolished in cand2. CAND2 is a membrane protein that interacts with GPA1 and the expression of AtCand2 was tightly regulated by melatonin in various organs and guard cells. CAND2 showed saturable and specific 125 I-melatonin binding, with apparent K d (dissociation constant) of 0.73 ± 0.10 nmol/L (r 2  = .99), demonstrating this protein is a phytomelatonin receptor (PMTR1). Our results suggest that the phytomelatonin regulation of stomatal closure is dependent on its receptor CAND2/PMTR1-mediated H 2 O 2 and Ca 2+ signaling transduction cascade. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Proinflammatory adipokine leptin mediates disinfection byproduct bromodichloromethane-induced early steatohepatitic injury in obesity

    International Nuclear Information System (INIS)

    Das, Suvarthi; Kumar, Ashutosh; Seth, Ratanesh Kumar; Tokar, Erik J.; Kadiiska, Maria B.; Waalkes, Michael P.; Mason, Ronald P.; Chatterjee, Saurabh

    2013-01-01

    Today's developed world faces a major public health challenge in the rise in the obese population and the increased incidence in fatty liver disease. There is a strong association among diet induced obesity, fatty liver disease and development of nonalcoholic steatohepatitis but the environmental link to disease progression remains unclear. Here we demonstrate that in obesity, early steatohepatitic lesions induced by the water disinfection byproduct bromodichloromethane are mediated by increased oxidative stress and leptin which act in synchrony to potentiate disease progression. Low acute exposure to bromodichloromethane (BDCM), in diet-induced obesity produced oxidative stress as shown by increased lipid peroxidation, protein free radical and nitrotyrosine formation and elevated leptin levels. Exposed obese mice showed histopathological signs of early steatohepatitic injury and necrosis. Spontaneous knockout mice for leptin or systemic leptin receptor knockout mice had significantly decreased oxidative stress and TNF-α levels. Co-incubation of leptin and BDCM caused Kupffer cell activation as shown by increased MCP-1 release and NADPH oxidase membrane assembly, a phenomenon that was decreased in Kupffer cells isolated from leptin receptor knockout mice. In obese mice that were BDCM-exposed, livers showed a significant increase in Kupffer cell activation marker CD68 and, increased necrosis as assessed by levels of isocitrate dehydrogenase, events that were decreased in the absence of leptin or its receptor. In conclusion, our results show that exposure to the disinfection byproduct BDCM in diet-induced obesity augments steatohepatitic injury by potentiating the effects of leptin on oxidative stress, Kupffer cell activation and cell death in the liver. - Highlights: ► BDCM acute exposure sensitizes liver to increased free radical stress in obesity. ► BDCM-induced higher leptin contributes to early steatohepatitic lesions. ► Increased leptin mediates protein

  5. Proinflammatory adipokine leptin mediates disinfection byproduct bromodichloromethane-induced early steatohepatitic injury in obesity

    Energy Technology Data Exchange (ETDEWEB)

    Das, Suvarthi [Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208 (United States); Kumar, Ashutosh [Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, Research Triangle Park, NC 27709 (United States); Seth, Ratanesh Kumar [Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208 (United States); Tokar, Erik J. [Inorganic Toxicology Group, National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (United States); Kadiiska, Maria B. [Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, Research Triangle Park, NC 27709 (United States); Waalkes, Michael P. [Inorganic Toxicology Group, National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (United States); Mason, Ronald P. [Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, Research Triangle Park, NC 27709 (United States); Chatterjee, Saurabh, E-mail: schatt@mailbox.sc.edu [Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208 (United States)

    2013-06-15

    Today's developed world faces a major public health challenge in the rise in the obese population and the increased incidence in fatty liver disease. There is a strong association among diet induced obesity, fatty liver disease and development of nonalcoholic steatohepatitis but the environmental link to disease progression remains unclear. Here we demonstrate that in obesity, early steatohepatitic lesions induced by the water disinfection byproduct bromodichloromethane are mediated by increased oxidative stress and leptin which act in synchrony to potentiate disease progression. Low acute exposure to bromodichloromethane (BDCM), in diet-induced obesity produced oxidative stress as shown by increased lipid peroxidation, protein free radical and nitrotyrosine formation and elevated leptin levels. Exposed obese mice showed histopathological signs of early steatohepatitic injury and necrosis. Spontaneous knockout mice for leptin or systemic leptin receptor knockout mice had significantly decreased oxidative stress and TNF-α levels. Co-incubation of leptin and BDCM caused Kupffer cell activation as shown by increased MCP-1 release and NADPH oxidase membrane assembly, a phenomenon that was decreased in Kupffer cells isolated from leptin receptor knockout mice. In obese mice that were BDCM-exposed, livers showed a significant increase in Kupffer cell activation marker CD68 and, increased necrosis as assessed by levels of isocitrate dehydrogenase, events that were decreased in the absence of leptin or its receptor. In conclusion, our results show that exposure to the disinfection byproduct BDCM in diet-induced obesity augments steatohepatitic injury by potentiating the effects of leptin on oxidative stress, Kupffer cell activation and cell death in the liver. - Highlights: ► BDCM acute exposure sensitizes liver to increased free radical stress in obesity. ► BDCM-induced higher leptin contributes to early steatohepatitic lesions. ► Increased leptin mediates

  6. Quantitative properties and receptor reserve of the IP(3) and calcium branch of G(q)-coupled receptor signaling.

    Science.gov (United States)

    Dickson, Eamonn J; Falkenburger, Björn H; Hille, Bertil

    2013-05-01

    Gq-coupled plasma membrane receptors activate phospholipase C (PLC), which hydrolyzes membrane phosphatidylinositol 4,5-bisphosphate (PIP2) into the second messengers inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). This leads to calcium release, protein kinase C (PKC) activation, and sometimes PIP2 depletion. To understand mechanisms governing these diverging signals and to determine which of these signals is responsible for the inhibition of KCNQ2/3 (KV7.2/7.3) potassium channels, we monitored levels of PIP2, IP3, and calcium in single living cells. DAG and PKC are monitored in our companion paper (Falkenburger et al. 2013. J. Gen. Physiol. http://dx.doi.org/10.1085/jgp.201210887). The results extend our previous kinetic model of Gq-coupled receptor signaling to IP3 and calcium. We find that activation of low-abundance endogenous P2Y2 receptors by a saturating concentration of uridine 5'-triphosphate (UTP; 100 µM) leads to calcium release but not to PIP2 depletion. Activation of overexpressed M1 muscarinic receptors by 10 µM Oxo-M leads to a similar calcium release but also depletes PIP2. KCNQ2/3 channels are inhibited by Oxo-M (by 85%), but not by UTP (calcium responses can be elicited even after PIP2 was partially depleted by overexpressed inducible phosphatidylinositol 5-phosphatases, suggesting that very low amounts of IP3 suffice to elicit a full calcium release. Hence, weak PLC activation can elicit robust calcium signals without net PIP2 depletion or KCNQ2/3 channel inhibition.

  7. Anxiolytic-Like Effects of Increased Ghrelin Receptor Signaling in the Amygdala

    DEFF Research Database (Denmark)

    Jensen, Morten; Ratner, Cecilia; Rudenko, Olga

    2016-01-01

    BACKGROUND: Besides the well-known effects of ghrelin on adiposity and food intake regulation, the ghrelin system has been shown to regulate aspects of behavior including anxiety and stress. However, the effect of virus-mediated overexpression of the ghrelin receptor in the amygdala has...... not previously been addressed directly. METHOD: First, we examined the acute effect of peripheral ghrelin administration on anxiety- and depression-like behavior using the open field, elevated plus maze, forced swim and tail suspension tests. Next, we examined the effect of peripheral ghrelin administration...... and ghrelin receptor deficiency on stress in a familiar and social environment using the Intellicage system. Importantly, we also used a novel approach to study ghrelin receptor signaling in the brain by overexpressing the ghrelin receptor in the amygdala. We examined the effect of ghrelin receptor...

  8. A single amino acid residue controls Ca2+ signaling by an octopamine receptor from Drosophila melanogaster.

    Science.gov (United States)

    Hoff, Max; Balfanz, Sabine; Ehling, Petra; Gensch, Thomas; Baumann, Arnd

    2011-07-01

    Rhythmic activity of cells and cellular networks plays an important role in physiology. In the nervous system oscillations of electrical activity and/or second messenger concentrations are important to synchronize neuronal activity. At the molecular level, rhythmic activity can be initiated by different routes. We have recently shown that an octopamine-activated G-protein-coupled receptor (GPCR; DmOctα1Rb, CG3856) from Drosophila initiates Ca(2+) oscillations. Here, we have unraveled the molecular basis of cellular Ca(2+) signaling controlled by the DmOctα1Rb receptor using a combination of pharmacological intervention, site-directed mutagenesis, and functional cellular Ca(2+) imaging on heterologously expressed receptors. Phosphorylation of a single amino acid residue in the third intracellular loop of the GPCR by PKC is necessary and sufficient to desensitize the receptor. From its desensitized state, DmOctα1Rb is resensitized by dephosphorylation, and a new Ca(2+) signal occurs on octopamine stimulation. Our findings show that transient changes of the receptor's surface profile have a strong effect on its physiological signaling properties. We expect that the detailed knowledge of DmOctα1Rb-dependent signal transduction fosters the identification of specific drugs that can be used for GPCR-mediated pest control, since octopamine serves important physiological and behavioral functions in arthropods.

  9. Negative Regulation of Receptor Tyrosine Kinase (RTK Signaling: A Developing Field

    Directory of Open Access Journals (Sweden)

    Fernanda Ledda

    2007-01-01

    Full Text Available ophic factors control cellular physiology by activating specific receptor tyrosine kinases (RTKs. While the over activation of RTK signaling pathways is associated with cell growth and cancer, recent findings support the concept that impaired down-regulation or deactivation of RTKs may also be a mechanism involved in tumor formation. Under this perspective, the molecular determinants of RTK signaling inhibition may act as tumor-suppressor genes and have a potential role as tumor markers to monitor and predict disease progression. Here, we review the current understanding of the physiological mechanisms that attenuate RTK signaling and discuss evidence that implicates deregulation of these events in cancer.Abbreviations: BDP1: Brain-derived phosphatase 1; Cbl: Casitas B-lineage lymphoma; CIN-85: Cbl-interacting protein of 85 kDa; DER: Drosophila EGFR; EGFR: Epidermal growth factor receptor; ERK 1/2: Extracellular signal-regulated kinase 1/2; Grb2: Growth factor receptor-bound protein 2; HER2: Human epidermal growth factor receptor 2; LRIG: Leucine-rich repeats and immunoglobulin-like domain 1; MAPK: Mitogen-activated protein kinase; Mig 6: Mitogen-inducible gene 6; PTEN: Phosphatase and tensin homologue; RET: Rearranged in transformation; RTK: Receptor tyrosine kinase. SH2 domain: Src-homology 2 domain; SH3 domain: Src-homology 3 domain; Spry: Sprouty.

  10. Death receptor Fas (CD95) signaling in the central nervous system: tuning neuroplasticity?

    Science.gov (United States)

    Reich, Arno; Spering, Christopher; Schulz, Jörg B

    2008-09-01

    For over a decade, neuroscientific research has focused on processes of apoptosis and its contribution to the pathophysiology of neurological diseases. In the central nervous system, the degree of intrinsic mitochondrial-mediated apoptotic signaling expresses a cell's individual metabolic stress, whereas activation of the extrinsic death receptor-induced cascade is regarded as a sign of imbalanced cellular networks. Under physiological conditions, most neurons possess death receptors without being sensitive to receptor-mediated apoptosis. This paradox raises two questions: what is the evolutionary advantage of expressing potentially harmful proteins? How is their signaling controlled? This review summarizes the functional relevance of FasL-Fas signali