WorldWideScience

Sample records for lep injection kickers

  1. New wave form surveillance and diagnostics for the LEP injection kickers

    CERN Document Server

    Carlier, E; Verhagen, H

    1995-01-01

    The introduction of the Bunch Train Scheme in LEP requires a more precise and automatic supervision of the stability of the LEP injection kickers in timing and amplitude. Comprehensive and user-friendly diagnostic tools are required for in-depth investigation of equipment behaviour. A new system is currently being prepared using to a large extent commercial data acquisition hardware and hardware independent software products.

  2. AA injection kicker in its tank

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    For single-turn injection of the antiprotons, a septum at the end of the injection line made the beam parallel to the injection orbit, and a quarter of a betatron-wavelength downstream a fast kicker corrected the angle. Kicker type: lumped delay line. PFN voltage 56 kV. Bending angle 7.5 mrad; kick-strength 0.9 Tm; fall-time 95%-5% in 150 ns. The injection orbit is to the left, the stack orbit to the far right. A fast shutter near the central orbit had to be closed before the kicker fired, so as to protect the stack core from being shaken by the kicker's fringe field. The shutter is shown in closed position.

  3. Electrostatic injection kicker for the KEK digital accelerator

    Directory of Open Access Journals (Sweden)

    Toshikazu Adachi

    2013-05-01

    Full Text Available An electrostatic injection kicker (ES-Kicker has been developed and installed in the KEK digital accelerator, which is a synchrotron aimed at accelerating all ion species. The ES-Kicker kicks an injected ion beam horizontally into the ring orbit and consists of two main electrodes for electric field generation and three intermediate electrodes to correct field homogeneity. In our single-turn injection scheme, the circulating beam and the injected beam both pass through the electrode aperture of the kicker, so the kicker field must be turned off before arrival of the first circulating beam. The ES-Kicker is therefore operated in a pulse mode. This means that the excitation circuit for the ES-Kicker must be carefully designed, since the falling edge of the electric field is strongly affected by parasitic capacitance of this circuit, and any remaining field may disturb the circulating beam. This paper describes performance of the ES-Kicker on the basis of simulations and measurement results.

  4. SPEAR 3 INJECTION KICKER

    International Nuclear Information System (INIS)

    2002-01-01

    The design of the SPEAR 3 injection kicker system is presented. This system will include three kicker magnets and their associated pulsers. The magnet design is based on the DELTA kicker magnets, which present a low RF impedance to the beam, and are relatively straight-forward to construct. The pulsers use cascaded IGBT stages that are based on the modulator pulsers developed by a SLAC/LLNL collaboration for the NLC. Design considerations and the results of prototype tests will be discussed

  5. Dual Power Supplies for PEP-II Injection Kickers

    CERN Document Server

    Olszewski, Joseph; Iverson, Richard; Kulikov, Artem; Pappas, Chris

    2005-01-01

    Originally the PEP-II injection kickers where powered by one power supply. Since the kicker magnets where not perfectly matched, the stored beam got excited by about 7% of the maximum kicker amplitude. This led to luminosity losses which were especially obvious for trickle injection when the detector is on for data taking. Therefore two independant power supplies with thyratrons in the tunnel next to the kicker magnet were installed. This also reduces the necessary power by about a factor of five since there are no long cables that have to be charged. The kickers are now independantly adjustable to eliminate any non-closure of the kicker system and therefore excitation of the stored beam. Setup, commissioning and fine tuning of this system are discussed.

  6. Dual Power Supplies for PEP-II Injection Kickers

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, J; Decker, F.-J.; Iverson, R.H.; Kulikov, A.; Pappas, C.; /SLAC

    2005-05-25

    Originally the PEP-II injection kickers were powered by one power supply. Since the kicker magnets where not perfectly matched, the stored beam got excited by about 7% of the maximum kicker amplitude. This led to luminosity losses which were especially obvious for trickle injection when the detector is on for data taking. Therefore two independent power supplies with thyratrons in the tunnel next to the kicker magnet were installed. This also reduces the necessary power by about a factor of four since there are no long cables that have to be charged. The kickers are now independently adjustable to eliminate any non-closure of the kicker system and therefore excitation of the stored beam. Setup, commissioning and fine tuning of this system are discussed.

  7. Dual Power Supplies for PEP-II Injection Kickers

    International Nuclear Information System (INIS)

    Olszewski, J; Decker, F.-J.; Iverson, R.H.; Kulikov, A.; Pappas, C.; SLAC

    2005-01-01

    Originally the PEP-II injection kickers were powered by one power supply. Since the kicker magnets where not perfectly matched, the stored beam got excited by about 7% of the maximum kicker amplitude. This led to luminosity losses which were especially obvious for trickle injection when the detector is on for data taking. Therefore two independent power supplies with thyratrons in the tunnel next to the kicker magnet were installed. This also reduces the necessary power by about a factor of four since there are no long cables that have to be charged. The kickers are now independently adjustable to eliminate any non-closure of the kicker system and therefore excitation of the stored beam. Setup, commissioning and fine tuning of this system are discussed

  8. The kicker magnet system for TRISTAN Accumulation Ring injection

    International Nuclear Information System (INIS)

    Sakamoto, Y.; Satoh, K.; Nakayama, H.

    1994-12-01

    The injection of electron beams to TRISTAN Accumulation Ring (AR) was started in November 1983 and the positron injection started in November 1985. For the injection of electron and positron beams to AR, the unique kicker system was developed. In the kicker power supply the charging to the main capacitor was done with the resonant charge system together with the auxiliary charging unit. The impedance matching circuit was added to the kicker magnet for getting the required current form with least reflecting oscillation. In this paper we report the performance of this kicker system. (author)

  9. The PEP II injection kicker system

    International Nuclear Information System (INIS)

    Pappas, G.C.; Donaldson, A.R.; Williams, D.

    1997-07-01

    PEP II or the B Factory consists of two asymmetric storage rings. The injection energy for electrons is 9 GeV, while that for positrons is 3.1 GeV. The bend angle into the high energy ring (HER) is 0.35 m-rad, and the angle into the low energy ring (LER) is 0.575 m-rad. The magnetic length for the HER kicker is 0.85 m, and 0.55 m for the LER kicker. The field produced by the magnet is therefore 123.5 G for the HER, and 132 G for the LER. Each ring has a kicker magnet upstream of the injection line which is used to distort the orbit of the stored beam. An identical magnet downstream of the injection line is used to restore the orbit of the stored beam and inject the incoming beam. The two magnets are driven in parallel by the modulator. The apeture of the magnets is 3.86x3.46 cm (HxV). Therefore the current required to drive the HER is 863 A, while for the LER it is 756 A. The inductance of the magnet is approximately 1.4 uH/m. The current pulse is a critically damped sinusoid with a rise time of less than 300 ns. A kicker system has been designed which can be used for injection of both beams by varying the charge of voltage. The modulator uses a conjugate circuit to match the impedance of the magnet, and coupling to the beam chamber

  10. SPS injection kicker magnet

    CERN Document Server

    1975-01-01

    One of the first-generation SPS injection kicker magnets. Lifting the tank-lid reveals the inner structure. For a more detailed description see 7502072X. See also 7502074X and Annual Report 1975, p.162. To the left: Roland Tröhler; to the right: Giacomo Busetta.

  11. Accelerator Technology: Injection and Extraction Related Hardware: Kickers and Septa

    CERN Document Server

    Barnes, M J; Mertens, V

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the the Section '8.7 Injection and Extraction Related Hardware: Kickers and Septa' of the Chapter '8 Accelerator Technology' with the content: 8.7 Injection and Extraction Related Hardware: Kickers and Septa 8.7.1 Fast Pulsed Systems (Kickers) 8.7.2 Electrostatic and Magnetic Septa

  12. Operational experience with the Fermilab 150 GeV injection kicker

    International Nuclear Information System (INIS)

    Trendler, R.C.

    1985-01-01

    The Fermilab E17 injection kicker has been in operation for more than 12000 filament hours and has logged almost 350,000 pulses since commissioning without major failure. The kicker system uses EEV 1193B and 1193C double-ended thyratrons in the MAIN, CLIP and DUMP configuration. In typical operation, the pulser produces 4800 A, 20 μs pulses at a charging voltage of 60kV and is capable of operating at a 80kV charging voltage. Any failure of the injection process can cause the Tevatron cryogenic magnets to quench. This includes any misfires of the injection kicker. Considerable effort was made to maximize reliability and provide interlocks to limit the problems that could happen from injection kicker misfires. The operating experience and reliability of the EEV thyratron will be discussed. Also, the use of the fiber optics, unique charging power supplies, and unusual digital interlocks and the role they play in improved reliability will be discussed

  13. RHIC injection kicker impedance

    International Nuclear Information System (INIS)

    Mane, V.; Peggs, S.; Trbojevic, D.; Zhang, W.

    1995-01-01

    The longitudinal impedance of the RHIC injection kicker is measured using the wire method up to a frequency of 3 GHz. The mismatch between the 50 ohm cable and the wire and pipe system is calibrated using the TRL calibration algorithm. Various methods of reducing the impedance, such as coated ceramic pipe and copper strips are investigated

  14. Upgrade of the LHC Injection Kicker Magnets

    CERN Document Server

    Barnes, M J; Baglin, V; Bregliozzi, G; Caspers, F; Calatroni, S; Day, H; Ducimetière, L; Garlaschè, M; Gomes Namora, V; Jimenez, J M; Magnin, N; Mertens, V; Métral, E; Salvant, B; Taborelli, M; Uythoven, J; Weterings, W

    2013-01-01

    Two LHC injection kicker systems, each comprising 4 magnets per ring, produce a kick of 1.3 T·m with a rise-time of less than 900 ns and a flattop ripple of less than ±0.5%. A beam screen is placed in the aperture of each magnet, to provide a path for the image current of the LHC beam and screen the ferrite yoke against wake fields. The screen consists of a ceramic tube with conductors in the inner wall. The initially implemented beam screen ensured a low rate of electrical breakdowns and an adequately low beam coupling impedance. Operation with increasingly higher intensity beams, stable for many hours at a time, has resulted in substantial heating of the ferrite yoke, sometimes requiring cool-down over several hours before the LHC can be refilled. During the long shutdown in 2013/2014 all eight kicker magnets will be upgraded with an improved beam screen and an increased emissivity of the vacuum tank. In addition equipment adjacent to the injection kickers and various vacuum components will be modified to...

  15. The LHC injection kicker magnet

    CERN Document Server

    Ducimetière, Laurent; Barnes, M J; Wait, G D

    2003-01-01

    Proton beams will be injected into LHC at 450 GeV by two kicker magnet systems, producing magnetic field pulses of approximately 900 ns rise time and up to 7.86 s flat top duration. One of the stringent design requirements of these systems is a flat top ripple of less than ± 0.5%. Both injection systems are composed of 4 travelling wave kicker magnets of 2.7 m length each, powered by pulse forming networks (PFN's). To achieve the required kick strength of 1.2 Tm, a low characteristic impedance has been chosen and ceramic plate capacitors are used to obtain 5 Omega. Conductive stripes in the aperture of the magnets limit the beam impedance and screen the ferrite. The electrical circuit has been designed with the help of PSpice computer modelling. A full size magnet prototype has been built and tested up to 60 kV with the magnet under ultra high vacuum (UHV). The pulse shape has been precision measured at a voltage of 15 kV. After reviewing the performance requirements the paper presents the magnet...

  16. SSC kicker impedances

    International Nuclear Information System (INIS)

    Colton, E.P.; Wang, T.F.

    1985-01-01

    The longitudinal and transverse complex impedances Z/sub l//n and Z/sub t/, respectively, have been calculated for both the SSC injection and abort kickers. The calculations assumed that no attempt was made to shield the beam from the kickers. We took the injection and abort kickers to be as specified. The injection kickers were ferrite with a single-turn design, and the abort kickers were of a ''window-frame design'' with tape wound cores

  17. The RHIC injection fast kicker

    International Nuclear Information System (INIS)

    Forsyth, E.B.; Pappas, G.C.; Tuozzolo, J.E.; Zhang, W.

    1995-01-01

    The purpose of the injection kicker is to provide the ultimate deflection to the incoming beam from the Alternating Gradient Synchrotron (AGS) into the Relativistic Heavy Ion Collider (RHIC). The beam is kicked in the vertical direction to place it on the equilibrium orbit of RHIC. Each bunch in the AGS is transferred separately, and stacked box-car fashion in the appropriate RHIC rf bucket. In order to achieve the required deflection angle four magnets powered by four pulsers will be used for each ring of RHIC. When the bunches are stacked in RHIC the last few rf buckets are left unfilled in order to provide a gap in the beam to facilitate the ejection or beam abort process. This also means there is not a severe constraint on the fall-time of the injection kicker. One prototype pulser has been built and tested. Much of the development effort has gone into the magnet design. Although lumped ferrite magnets are simpler to build and require less power to reach full field, a transmission line magnet was developed because of the very fast rise-time requirement and the tolerances imposed on the field variation and ripple

  18. Design of kicker magnet and power supply unit for synchrotron beam injection

    International Nuclear Information System (INIS)

    Wang, Ju.

    1991-03-01

    To inject beams from the positron accumulator ring (PAR) into the synchrotron, a pulsed kicker magnet is used. The specifications of this kicker magnet and the power supply unit are listed and discussed in this report

  19. Operational experience of the upgraded LHC injection kicker magnets during Run 2 and future plans

    Science.gov (United States)

    Barnes, M. J.; Adraktas, A.; Bregliozzi, G.; Goddard, B.; Ducimetière, L.; Salvant, B.; Sestak, J.; Vega Cid, L.; Weterings, W.; Vallgren, C. Yin

    2017-07-01

    During Run 1 of the LHC, one of the injection kicker magnets caused occasional operational delays due to beam induced heating with high bunch intensity and short bunch lengths. In addition, there were also sporadic issues with vacuum activity and electrical flashover of the injection kickers. An extensive program of studies was launched and significant upgrades were carried out during Long Shutdown 1 (LS 1). These upgrades included a new design of beam screen to reduce both beam coupling impedance of the kicker magnet and the electric field associated with the screen conductors, hence decreasing the probability of electrical breakdown in this region. This paper presents operational experience of the injection kicker magnets during the first years of Run 2 of the LHC, including a discussion of faults and kicker magnet issues that limited LHC operation. In addition, in light of these issues, plans for further upgrades are briefly discussed.

  20. Particle kickers

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    These devices are designed to provide a current pulse of 5000 Amps which will in turn generate a fast magnetic pulse that steers the incoming beam into the LHC. Today, the comprehensive upgrade of the LHC injection kicker system is entering its final stages. The upgraded system will ensure the LHC can be refilled without needing to wait for the kicker magnets to cool, thus enhancing the performance of the whole accelerator.   An upgraded kicker magnet in its vacuum tank, with an upgraded beam screen. The LHC is equipped with two kicker systems installed at the injection points (near points 2 and 8, see schematic diagram) where the particle beams coming from the SPS are injected into the accelerator’s orbit. Each system comprises four magnets and four pulse generators in which the field rises to 0.12 Tesla in less than 900 nanoseconds and for a duration of approximately 8 microseconds. Although the injection kickers only pulse 12 times to fill the LHC up with beam, the LHC beam circ...

  1. One of the 10 cells of AA Injection Kicker K4

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    The 3.5 GeV/c Antiproton Accumulator (AA) had 2 delay-line type injection kickers, K3 (12 cells) and K4 (10 cells). Here we see one of the K4 cells, with ferrite between stainless-steel plates. Pulse voltage: 61 kV; rise/fall-time 86 ns; flat-top 460 ns; top flatness +-2%. During injection, the open side of the C-shaped kickers was closed off with a fast shutter, so that their stray field would not perturb the stack of already accumulated antiprotons.

  2. Design of an Inductive Adder for the FCC injection kicker pulse generator

    Science.gov (United States)

    Woog, D.; Barnes, M. J.; Ducimetière, L.; Holma, J.; Kramer, T.

    2017-07-01

    The injection system for a 100 TeV centre-of-mass collider is an important part of the Future Circular Collider (FCC) study. Due to issues with conventional kicker systems, such as self-triggering and long term availability of thyratrons and limitations of HV-cables, innovative design changes are planned for the FCC injection kicker pulse generator. An inductive adder (IA) based on semiconductor (SC) switches is a promising technology for kicker systems. Its modular design, and the possibility of an active ripple suppression are significant advantages. Since the IA is a complex device, with multiple components whose characteristics are important, a detailed design study and construction of a prototype is necessary. This paper summarizes the system requirements and constraints, and describes the main components and design challenges of the prototype IA. It outlines the results from simulations and measurements on different magnetic core materials as well as on SC switches. The paper concludes on the design choices and progress for the prototype to be built at CERN.

  3. Cooling of the LHC Injection Kicker Magnet Ferrite Yoke: Measurements and Future Proposals

    CERN Document Server

    Sobiech, Z; Bouleghlimat, S; Ducimetière, L; Garlaschè, M; Kramer, T; Namora, V; Noulibos, R; Sillanoli, Y; Weterings, W

    2014-01-01

    LHC operation with high intensity beam, stable for many hours, resulted in significant heating of the ferrite yoke of the LHC Injection Kicker Magnets. For one kicker magnet the ferrite yoke approached its Curie temperature. As a result of a long thermal time-constant the yoke can require several hours to cool sufficiently to allow re-injection of beam, thus limiting the running efficiency of the LHC. The beam screen, which screens the ferrite yoke from wakefields, has been upgraded to limit ferrite heating. In addition it is important to improve the cooling of the ferrite yoke: one method is to increase the internal emissivity of the cylindrical vacuum tank, in which the kicker magnet is installed. This paper describes a method developed for measuring the emissivity of the inside of the tanks, which has been benchmarked against measurements of the ferrite yoke temperature during heat treatment in an oven and transient thermal simulations. Conclusions are drawn regarding an ion bombardment technique evaluated...

  4. Feasibility Study of the PS Injection for 2 GeV LIU Beams with an Upgraded KFA-45 Injection Kicker System Operating in Short Circuit Mode

    CERN Document Server

    Kramer, Thomas; Borburgh, Jan; Ducimetière, Laurent; Feliciano, Luis; Ferrero Colomo, Alvaro; Goddard, Brennan; Sermeus, Luc

    2016-01-01

    Under the scope of the LIU project the CERN PS Booster to PS beam transfer will be modified to match the requirements for the future 2 GeV beams. This paper describes the evaluation of the proposed upgrade of the PS injection kicker. Different schemes of an injection for LIU beams into the PS have been outlined in the past already under the aspect of individual transfer kicker rise and fall time performances. Homogeneous rise and fall time requirements in the whole PSB to PS transfer chain have been established which allowed to consider an upgrade option of the present injection kicker system operated in short circuit mode. The challenging pulse quality constraints require an improvement of the flat top and post pulse ripples. Both operation modes, terminated and short circuit mode are analysed and analogue circuit simulations for the present and upgraded system are outlined. Recent measurements on the installed kickers are presented and analysed together with the simulation data. First measurements verifying...

  5. Simulation of the LHC injection kicker impedance test bench

    CERN Document Server

    Tsutsui, H

    2003-01-01

    The coupling impedance measurements of the LHC injection kicker test bench are simulated by HFSS code. The simulation gives qualitatively good agreement with the measurement. In order to damp the resonances, some ferrite rings are tested in the simulation. Longitudinal resonances are damped by a ferrite ring of large tan$\\delta_{\\mu}$. The effect of the ferrite ring is small for damping the transverse impedance resonance around 30 MHz.

  6. Measurement report on the LHC injection kicker ripple denition and maximum pulse length (MD 1268)

    CERN Document Server

    Bartmann, Wolfgang; Kotzian, Gerd; Stoel, Linda; Velotti, Francesco Maria; Vlachodimitropoulos, Vasileios; Wiesner, Christoph; CERN. Geneva. ATS Department

    2016-01-01

    The present LHC lling scheme uses a batch spacing which corresponds to the design report specication of the injection kicker rise time. A reduction of the batch spacing can be directly used to increase luminosity without detrimental eect on beam stability. Therefore, measurements were performed to understand if a tighter batch spacing would lead to increased injection oscillations of a the rst and last bunches of a bunch train and eventually also a growth of the transverse emittance. The results of theses measurement were used to dene the minimum possible batch spacing for an acceptable emittance growth. Another measurement was performed to test if a batch consisting of 320 bunches can be injected instead of the nominal 288 bunch trains. This bunch train is dierently produced in the LHC injectors and features an optimum between beam stability and luminosity gain. The pulse length of the injection kicker was measured to ensure the full batch can be injected at once.

  7. The LEP injection monitors: Design and first results with beam

    International Nuclear Information System (INIS)

    Burtin, G.; Colchester, R.; Fischer, C.; Halvarsson, B.; Hemery, J.Y.; Jung, R.; Levitt, S.; Vouillot, J.M.

    1989-01-01

    The LEP injection monitors comprise of split foil monitors, luminescent screens and beam stoppers. The monitors are described with particular emphasis on their special features. These include: their low loss factors, their protection against synchrotron radiation and the screen read-out with a CCD chip. The results obtained during the positron injection tests in LEP in July 1988 are reported. 8 figs

  8. An Improved Beam Screen for the LHC Injection Kickers

    CERN Document Server

    Barnes, M J; Ducimetière, L; Garrel, N; Kroyer, T

    2007-01-01

    The two LHC injection kicker magnet systems must produce a kick of 1.3 T.m with a flattop duration variable up to 7860 ns, and rise and fall times of less than 900 ns and 3000 ns, respectively. Each system is composed of two resonant charging power supplies (RCPSs) and four 5 WW transmission line kicker magnets with matched terminating resistors and pulse forming networks (PFNs). A beam screen is placed in the aperture of the magnets: the screen consists of a ceramic tube with conductors on the inner wall. The conductors provide a path for the image current of the, high intensity, LHC beam and screen the ferrite against Wake fields. The conductors initially used gave adequately low beam coupling impedance however inter-conductor discharges occurred during pulsing of the magnet: an alternative design was discharge free at the nominal operating voltage but the impedance was too high for the ultimate LHC beam. This paper presents the results of a new development undertaken to meet the often conflicting requireme...

  9. The Beam Screen for the LHC Injection Kicker Magnets

    CERN Document Server

    Barnes, MJ; Ducimetière, L; Garrel, N; Kroyer, T

    2006-01-01

    The two LHC injection kicker magnet systems must each produce a kick of 1.2 T.m with a flattop duration variable up to 7.86 ìs, and rise and fall times of less than 0.9 ìs and 3 ìs, respectively. Each system is composed of four 5 Ù transmission line kicker magnets with matched terminating resistors and pulse forming networks (PFN). The LHC beam has a high intensity, hence a beam screen is required in the aperture of the magnets This screen consists of a ceramic tube with conducting ?stripes? on the inner wall. The stripes provide a path for the image current of the beam and screen the magnet ferrites against Wake fields. The stripes initially used gave adequately low beam impedance however stripe discharges occured during pulsing of the magnet: hence further development of the beam screen was undertaken. This paper presents options considered to meet the often conflicting needs for low beam impedance, shielding of the ferrite, fast field rise time and good electrical and vacuum behaviour.

  10. Pulsed modulator power supply for the g-2 muon storage ring injection kicker

    NARCIS (Netherlands)

    Mi, J.; Lee, Y. Y.; Morse, W. M.; Pai, C. I.; Pappas, G. C.; Sanders, R.; Semertzidis, Y. K.; Warburton, D.; Zapasek, R.; Jungmann, K.; Roberts, L.

    1999-01-01

    This paper describes the pulse modulator power supplies used to drive the kicker magnets that inject the muon beam into the g-2 storage ring that has been built at Brookhaven National Laboratory. Three modulators built into coaxial structures consisting of a series circuit of an energy storage

  11. SPS Injection and Beam Quality for LHC Heavy Ions With 150 ns Kicker Rise Time

    CERN Document Server

    Goddard, Brennan; Ducimetière, Laurent; Kotzian, Gerd; Uythoven, Jan; Velotti, Francesco

    2016-01-01

    As part of the LHC Injectors Upgrade project for LHC heavy ions, the SPS injection kicker system rise time needs reduction below its present 225 ns. One technically challenging option under consideration is the addition of fast Pulse Forming Lines in parallel to the existing Pulse Forming Networks for the 12 kicker magnets MKP-S, targeting a system field rise time of 100 ns. An alternative option is to optimise the system to approach the existing individual magnet field rise time (2-98%) of 150 ns. This would still significantly increase the number of colliding bunches in LHC while minimising the cost and effort of the system upgrade. The observed characteristics of the present system are described, compared to the expected system rise time, together with results of simulations and measurements with 175 and 150 ns injection batch spacing. The expected beam quality at injection into LHC is quantified, with the emittance growth and simulated tail population taking into account expected jitter and synchronisatio...

  12. High voltage measurements on a prototype PFN for the LHC injection kickers

    CERN Document Server

    Barnes, M J; Carlier, E; Ducimetière, L; Schröder, G; Vossenberg, Eugène B

    1999-01-01

    Two LHC injection kicker magnet systems must produce a kick of 1.3 T.m each with a flattop duration of 4.25 mu s or 6.5 mu s, a rise time of 900 ns, and a fall time of 3 mu s. The ripple in the field must be less than +or-0.5The electrical circuit of the complete system has been simulated with PSpice. The model includes a 66 kV resonant charging power supply (RCPS), a 5 Omega pulse forming network (PFN), a terminated 5 Omega kicker magnet, and all known parasitic quantities. Component selection for the PEN was made on the basis of models in which a theoretical field ripple of less than +or-0.1as attained. A prototype 66 kV RCPS was built at TRIUMF and shipped to CERN. A prototype 5 Omega system including a PFN, thyratron switches, and terminating resistors, was built at CERN. The system (without a kicker magnet) was assembled as designed without trimming of any PFN component values. The PFN was charged to 60 kV via the RCPS operating at 0.1 Hz. The thyratron timing was adjusted to provide a 30 kV, 5.5 mu s du...

  13. High Voltage Performance of the Beam Screen of the LHC Injection Kicker Magnets

    CERN Document Server

    Barnes, MJ; Bregliozzi, G; Calatroni, S; Costa Pinto, P; Day, H; Ducimetière, L; Kramer, T; Namora, V; Mertens, V; Taborelli, M

    2014-01-01

    The LHC injection kicker magnets include beam screens to shield the ferrite yokes against wakefields resulting from the high intensity beam. The screening is provided by conductors lodged in the inner wall of a ceramic support tube. The design of the beam screen has been upgraded to overcome limitations and permit LHC operation with increasingly higher bunch intensity and short bunch lengths: the new design also significantly reduces the electric field associated with the screen conductors, decreasing the probability of electrical breakdown. The high voltage conditioning process for the upgraded kicker magnets is presented and discussed. In addition a test setup has been utilized to study flashover, on the inner wall of the ceramic tube, as a function of both applied voltage and vacuum pressure: results from the test setup are presented.

  14. Reduction of Surface Flashover of the Beam Screen of the LHC Injection Kickers

    CERN Document Server

    Barnes, M J; Calatroni, S; Caspers, F; Ducimetière, L; Gomes Namora, V; Mertens, V; Noulibos, R; Taborelli, M; Teissandier, B; Uythoven, J; Weterings, W

    2013-01-01

    The LHC injection kicker magnets include beam screens to shield the ferrite yokes against wake fields resulting from the high intensity beam. The screening is provided by conductors lodged in the inner wall of a ceramic support tube. LHC operation with increasingly higher bunch intensity and short bunch lengths, requires improved ferrite screening. This will be implemented by additional conductors; however these must not compromise the good high-voltage behaviour of the kicker magnets. Extensive studies have been carried out to better satisfy the often conflicting requirements for low beam coupling impedance, fast magnetic field rise-time, ultra-high vacuum and good high voltage behaviour. A new design is proposed which significantly reduces the electric field associated with the screen conductors. Results of high voltage tests are also presented.

  15. Magnetic Waveform Measurements of the PS Injection Kicker KFA45 and Future Emittance Growth Estimates

    CERN Document Server

    Forte, Vincenzo; Ferrero Colomo, Alvaro; CERN. Geneva. ATS Department

    2018-01-01

    In the framework of the LHC Injectors Upgrade (LIU) project [1], this document summarises the beam-based measurement of the magnetic waveform of the PS injection kicker KFA45 [2], from data collected during several Machine Development (MD) sessions in 2016 and 2017. In the first part of the document, the measurement methodology is introduced and the results presented and compared with the specification required for a clean transfer of the bunches coming from the PSB after the upgrade. These measurements represent, to date, the only way to reconstruct the magnetic waveform. In the second part, kicker magnetic waveform PSpice®[3] simulations are compared and tuned to the measurements. Finally the simulated (validated through measurements) waveforms are used to estimate the future expected emittance growth for the different PS injection schemes, both for (LIU target) LHC and fixed target beams.

  16. Beam Induced Ferrite Heating of the LHC Injection Kickers and Proposals for Improved Cooling

    CERN Document Server

    Barnes, M J; Calatroni, S; Day, H; Ducimetière, L; Garlaschè, M; Gomes Namora, V; Mertens, V; Sobiech, Z; Taborelli, M; Uythoven, J; Weterings, W

    2013-01-01

    The two LHC injection kicker systems produce an integrated field strength of 1.3 T·m with a flattop duration variable up to 7860 ns, and rise and fall times of less than 900 ns and 3000 ns, respectively. A beam screen is placed in the aperture of each magnet, which consists of a ceramic tube with conductors in the inner wall. The conductors provide a path for the beam image current and screen the ferrite yoke against wakefields. Recent LHC operation, with high intensity beam stable for many hours, resulted in significant heating of both the ferrite yoke and beam impedance reduction ferrites. For one kicker magnet the ferrite yoke approached its Curie temperature. As a result of a long thermal time-constant the ferrite yoke can require several hours to cool sufficiently to allow re-injection of beam, thus limiting the running efficiency of the LHC. Thermal measurement data has been analysed, a thermal model developed and emissivity measurements carried out. Various measures to improve the ferrite cooling have...

  17. Test of very fast kicker for TESLA damping ring

    International Nuclear Information System (INIS)

    Grishanov, B.I.; Podgorny, F.V.; Shiltsev, V.D.

    1997-04-01

    We describe a very fast kicker with unique combination of high repetition rate and short pulse width. Constructionally, the device is a symmetrical counter traveling wave stripline kicker fed by semiconductor high-voltage pulse generator. Experimentally tested kicker has a full pulse width of about 7 ns, 1.4 MHz repetition rate and maximum kick strength of the order of 3 G·m. Recent achievements in high-voltage semiconductor field-effect transistors (FET) technology and goal-specific optimization of the kicker parameters allow many-fold increase of the strength, and the kicker can be very useful tool for bunch-by-bunch injection/extraction and other accelerator applications. 4 refs., 3 figs

  18. MEASURED TRANSVERSE COUPLING IMPEDANCE OF RHIC INJECTION AND ABORT KICKERS

    International Nuclear Information System (INIS)

    HAHN, H.; DAVINO, D.

    2001-01-01

    Concerns regarding possible transverse instabilities in RHIC and the SNS pointed to the need for measurements of the transverse coupling impedance of ring components. The impedance of the RHIC injection and abort kicker was measured using the conventional method based on the S 21 forward transmission coefficient. A commercial 450 Ω twin-wire Lecher line were used and the data was interpreted via the log-formula. All measurements, were performed in test stands fully representing operational conditions including pulsed power supplies and connecting cables. The measured values for the transverse coupling impedance in kick direction and perpendicular to it are comparable in magnitude, but differ from Handbook predictions

  19. Construction and 60 kV tests of the prototype pulser for the LHC injection kicker system

    CERN Document Server

    Barnes, M J; Carlier, E; Ducimetière, L; Schröder, G; Vossenberg, Eugène B

    1999-01-01

    The European Laboratory for Particle Physics (CERN) is constructing the Large Hadron Collider (LHC). Two counter-rotating proton beams will be injected into the LHC at an energy of 450 GeV by two kicker magnet systems, producing magnetic field pulses of approximately 900 ns rise time and 6.6 mu s flat top duration with a ripple of less than +or-0.5Both injection systems are composed of 4 travelling wave kicker magnets of 2.17 m length each, powered by pulse forming networks (PFNs). To achieve the high-required kick strength of 1.2 Tm, for a compact and cost efficient design, a characteristic impedance of 5 Ohms has been chosen. The design strategy for the magnets and generators has been defined after detailed analysis of existing systems. The electrical circuit has been optimised using the circuit analysis software PSpice. Most known parasitics have been modelled. A prototype PFN has been constructed at CERN and successfully tested at 60 kV. A calibration procedure has been developed and utilised for obtainin...

  20. Very fast kicker for accelerator applications

    International Nuclear Information System (INIS)

    Grishanov, B.I.; Podgorny, F.V.; Shiltsev, V.D.

    1996-11-01

    We describe a very fast counter traveling wave kicker with a full pulse width of about 7 ns. Successful test experiment has been done with hi-tech semiconductor technology FET pulse generator with a MHz- range repetition rates and maximum kick strength of the order of 3 G·m. Further. increase of the strength seems to be quite possible with the FET pursers, that makes the kicker to be very useful tool for bunch-by-bunch injection/extraction and other accelerator applications

  1. An IGBT Driven Slotted Beam Pipe Kicker for SPEAR III Injection

    International Nuclear Information System (INIS)

    2002-01-01

    The SPEAR III injection kicker system is composed of three kicker magnets, K1, K2, and K3. These magnets, along with the power modulators to drive them constitute an injection system which will be used to deflect an incoming electron beam with an energy of 3.3 GeV by an angle of 2.5 mrad for K1 and K3, and 1 mrad for K2. The pulse shape of the magnetic field in the three magnets must be matched in order to preserve a closed orbit. The pulse duration is required to be less than 780 ns, with rise and fall times of less than 375 ns, and a pulse repetition frequency of 10 Hz. The aperture of all three magnets is 60 x 34 mm in an 8 inch vacuum vessel. The magnetic length is 1.2 m for K1 and K3, and 0.6 m for K2 [1]. The magnet design employs a slotted beam pipe which is shorted at one end. A solid state IGBT based, induction type of modulator drives the magnets. Modulators for K1 and K3 consist of eight 4.5 kV, 600 A IGBTs, and eight Finemet magnet cores with four 22.5 Ohm output cables to drive 2381 A into the magnets. The modulator for K2 uses four IGBTs and cores, and 8 output cables to produce a 2619 A pulse. Cables of length greater than one half the pulse width must be used in order to avoid reflections from the shorted magnet. The design charge voltage for the modulators is 20 kV for K1 and K3. This paper describes the magnet and modulator design, as and presents test data from a prototype system

  2. LEP results

    International Nuclear Information System (INIS)

    Thresher, J.J.

    1990-01-01

    The first period of LEP operation ended on 22nd December 1989, rather less than two weeks before the start of this Conference. It brought to a close a most exciting time at CERN, starting in July 1989, when those involved in commissioning LEP attempted for the first time to start up the complete machine and then to give the experiments their first taste of what LEP had in store for them. By July almost all sections of LEP had been individually checked out. In particular, the entire injection chain had been tested with positrons a year earlier when a very successful injection test into the first completed LEP octant was carried out. Also by July the LEP detectors had been installed and were ready to take data with at least the most important sub-detector systems able to operate. By way of introduction a brief history of these first months of LEP operation is given in this paper. The first steps in bringing LEP into operation started on 14th July 1989 when positrons were injected into the ring for the first time. After only 55 minutes of magnet adjustments they had completed a full turn at the injection energy of 20 GeV. Further commissioning with positrons at this energy then followed to establish a stable circulating beam and then on 25th July the first electrons were successfully injected into LEP. By 31st July, after much work on beam accumulation had been done, a current of some 250 μA of positrons, i.e. about 60 μA in each of the four bunches was reached at 20 GeV and four days later on 4th August positrons were successfully ramped up to 47.5 GeV. Finally, at 23.15 on 13th August positrons were successfully ramped up to 47.5 GeV. Finally, at 23.15 on 13th August, just less than one month after the start of LEP commissioning, electrons and positrons were brought into collision at an energy of 45.5 GeV per beam

  3. The Booster to AGS beam transfer fast kicker systems

    International Nuclear Information System (INIS)

    Zhang, W.; Bunicci, J.; Soukas, A.V.; Zhang, S.Y.

    1992-01-01

    The Brookhaven AGS Booster has a very successful commissioning period in June 1991. The third phase of that commissioning was a beam extraction test. The Booster extraction fast kicker (F3) deflected a 1.2 GeV proton beam from the Booster circulating orbit into the extraction septum aperture, partially down the extraction line to a temporary beam stop. Now, the Booster is committed to the AGS operations program for both heavy ion and proton beams. Thus, the Booster extraction and the corresponding AGS injection systems must operate routinely up to a pulse repetition frequency of 7.5 Hertz, and up to a beam energy of 1.5 Gev. The injection fast kicker is located in the A5 section of the AGS ring and is used to deflect the proton or heavy ion beam into its final AGS closed orbit. A distinctive feature of the AGS injection fast kicker modulators is the tail-bitting function required for proton beam injection. This enables the system to produce a fast current fall time to go along with the high current pulse amplitude with a fast rise time. The AGS injection fast kicker system has three pulse modulators, and each modulator consists of two thyratrons. The main PFN thyratrons switch on the current, and the tail bitting thyratrons are used to force the magnet current to decrease rapidly. Two digital pulse delay generators are used to align the main thyratrons and the tail bitting thyratrons respectively. The system has been tested and installed. The final commissioning of the Booster to AGS beam transfer line and injection is currently being undertaken. In this article, the system design, realization techniques and performance data will be presented

  4. AA, stochastic precooling kicker

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    The freshly injected antiprotons were subjected to fast stochastic "precooling", while a shutter shielded the deeply cooled antiproton stack from the violent action of the precooling kicker. In this picture, the injection orbit is to the left, the stack orbit to the far right, the separating shutter is in open position. After several seconds of precooling (in momentum and in the vertical plane), the shutter was opened briefly, so that by means of RF the precooled antiprotons could be transferred to the stack tail, where they were subjected to further cooling in momentum and both transverse planes, until they ended up, deeply cooled, in the stack core. The fast shutter, which had to open and close in a fraction of a second was an essential item of the cooling scheme and a mechanical masterpiece. Here the shutter is in the open position. The precooling pickups were of the same design, with the difference that the kickers had cooling circuits and the pickups not. 8401150 shows a precooling pickup with the shutte...

  5. Considerations on a new fast extraction kicker concept for SPS

    CERN Document Server

    Barnes, M

    2010-01-01

    An alternative extraction kicker concept is investigated for the SPS, based on open C-type kickers and a fast-bumper system. The beam is moved into the kicker gap some tens of ms before extraction. The concept is illustrated in detail with the LSS4 extraction from the SPS – very similar parameters and considerations apply to LSS6. A similar concept could also be conceived for injection but is more difficult due to the larger beam size. The technical issues are presented and the potential impact on the machine impedance outlined.

  6. Some calculations for the RHIC kicker

    International Nuclear Information System (INIS)

    Claus, J.

    1996-12-01

    This paper starts with a brief discussion of the design of the RHIC injection kicker magnets which calls for longitudinal and capacitive sections of the same order as the aperture, not much larger nor much smaller. This makes accurate analytical prediction of their behavior very difficult. In order to gain at least some qualitative insight of that behavior, the author preformed calculations which are based on the actual dimensions of the kickers but which neglect the end effects of the individual sections. The effects of the sectionalization are therefore exaggerated relative to reality in the results

  7. Design Considerations of Fast Kicker Systems for High Intensity Proton Accelerators

    International Nuclear Information System (INIS)

    Zhang, W.; Sandberg, J.; Parson, W.M.; Walstrom, P.; Murray, M.M.; Cook, E.; Hartouni, E.

    2001-01-01

    In this paper, we discuss the specific issues related to the design of the Fast Kicker Systems for high intensity proton accelerators. To address these issues in the preliminary design stage can be critical since the fast kicker systems affect the machine lattice structure and overall design parameters. Main topics include system architecture, design strategy, beam current coupling, grounding, end user cost vs. system cost, reliability, redundancy and flexibility. Operating experience with the Alternating Gradient Synchrotron injection and extraction kicker systems at Brookhaven National Laboratory and their future upgrade is presented. Additionally, new conceptual designs of the extraction kicker for the Spallation Neutron Source at Oak Ridge and the Advanced Hydrotest Facility at Los Alamos are discussed

  8. SLC kicker magnet limitations

    International Nuclear Information System (INIS)

    Cassel, R.; Donaldson, A.; Mattison, T.; Bowden, G.; Weaver, J.; Bulos, F.; Fiander, D.

    1991-01-01

    The SLC Damping Ring kicker magnets requires a fast magnetic field rise time of 58 nsec, a peak field of 800 gauss, a pulse amplitude stability of 0.01%, and a reasonable operational lifetime. The original kicker magnets designed by SLAC and at Fermi were not able to fulfill the SLC kicker requirements. Extensive studies were conducted to determine the limitation in the magnets, response of the ferrite in kicker magnet, and the modifications needed to improve the kicker magnet performance. The paper details the SLAC and Fermi kicker magnets limitation of performance

  9. The new control system of the SPS injection kicker

    CERN Document Server

    Antoine, A; Marchand, A; Verhagen, H

    2002-01-01

    The SPS accelerator will be used as injector for the LHC and has to be adapted to the LHC requirements. The tight specification on beam blow-up and bunch spacing in the SPS has required an upgrade program of the SPS injection kicker in order to obtain a reduction of the magnetic field ripple to less than ± 0.5% and of the magnet current rise time to less than 145 ns. In this context, the slow control part has been entirely rebuilt on the basis of off-the-shelf industrial components. A hierarchical architecture based on a SIEMENS S7-400 master programmable logic controller interconnected through PROFIBUS-DP to S7-300 deported and decentralised I/Os has been implemented. Integration of in-house specific G-64 hardware systems inside this industrial environment has been done through a PROFIBUS-DP to G-64 intelligent interface based on an OEM fieldbus mezzanine board on one side and an FPGA implementing the required functionality on the other. Simultaneously, the fast timing system has been completely reshuffled ...

  10. HL-LHC kicker magnet (MKI)

    CERN Multimedia

    Brice, Maximilien

    2018-01-01

    HL-LHC kicker magnet (MKI): last vacuum test, preparation for transport to LHC transfer line in underground tunnel.The LHC injection kicker systems (MKIs) generate fast field pulses to inject the clockwise rotating beam at Point 2 and the anti-clockwise rotating beam at Point 8: there are eight MKI magnets installed in total. Each MKI magnet contains a high purity alumina tube: if an MKI magnet is replaced this tube requires conditioning with LHC beam: until it is properly conditioned, there can be high vacuum pressure due to the beam. This high pressure can also cause electrical breakdowns in the MKI magnets. A special coating (Cr2O3) has been applied to the inside of the alumina tube of an upgraded MKI magnet – this is expected to greatly reduce the pressure rise with beam. In addition, HL-LHC beam would result in excessive heating of the MKI magnets: the upgraded design includes modifications that will reduce heating, and move the power deposition to parts that will be easier to cool. Experience during 2...

  11. Comparison of the Window-Frame RHIC-abort kicker with C-type Kicker

    International Nuclear Information System (INIS)

    Tsoupas, N.; McMahan, Brandon

    2014-01-01

    The high intensity proton bunches (~2.5x10 11 p/bunch ) circulating in RHIC increase the temperature of the ferrite-made RHIC-abort-kickers above the Curie point; as a result, the kickers cannot provide the required field to abort the beam at the beam dump. A team of experts in the CAD department worked on modifying the design of the window-frame RHIC-abort kicker to minimize the hysteresis losses responsible for the increase of the ferrite's temperature. In this technical note we report some results from the study of two possible modifications of the window-frame RHIC-abort kicker, and we compare these results with those of a propose C-type RHIC-abort kicker. We also include an Appendix where we describe a method which may further reduce the hysteresis losses of the window-frame kicker.

  12. Steel septum magnets for the LHC beam injection and extraction

    CERN Document Server

    Bidon, S; Guinand, M; Gyr, Marcel; Sassowsky, M; Weisse, E; Weterings, W; Abramov, A; Ivanenko, A I; Kolatcheva, E; Lapyguina, O; Ludmirsky, E; Mishina, N; Podlesny, P; Riabov, A; Tyurin, N

    2002-01-01

    The Large Hadron Collider (LHC) will be a superconducting accelerator and collider to be installed in the existing underground LEP ring tunnel at CERN. It will provide proton-proton collisions with a centre of mass energy of 14 TeV. The proton beams coming from the SPS will be injected into the LHC at 450 GeV by vertically deflecting kicker magnets and horizontally deflecting steel septum magnets (MSI). The proton beams will be dumped from the LHC with the help of two extraction systems comprising horizontally deflecting kicker magnets and vertically deflecting steel septum magnets (MSD). The MSI and MSD septa are laminated iron-dominated magnets using an all welded construction. The yokes are constructed from two different half cores, called coil core and septum core. The septum cores comprise circular holes for the circulating beams. This avoids the need for careful alignment of the usually wedge-shaped septum blades used in classical Lambertson magnets. The MSI and MSD septum magnets were designed and buil...

  13. Kicker Magnet and Pulser

    Energy Technology Data Exchange (ETDEWEB)

    Bulos, Fatin [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2014-03-04

    The SLC Project utilizes several fast kicker magnets. Their requirements vary somewhat, however, the cooling rings kickers have the most stringent requirements. In this note we describe the design of the positron ring kickers, and the reasons that led to it.

  14. Development of Stripline Kickers for Low Emittance Rings: Application to the Beam Extraction Kicker for CLIC Damping Rings

    CERN Document Server

    AUTHOR|(SzGeCERN)728476; Toral Fernandez, Fernando

    In the framework of the design study of Future Linear Colliders, the Compact Linear Collider (CLIC) aims for electron-positron collisions with high luminosity at a nominal centre-of-mass energy of 3 TeV. To achieve the luminosity requirements, Pre-Damping Rings (PDRs) and Damping Rings (DRs) are required: they reduce the beam emittance before the beam is accelerated in the main linac. Several injection and extraction systems are needed to inject and extract the beam from the PDRs and DRs. The work of this Thesis consists of the design, fabrication and laboratory tests of the first stripline kicker prototype for beam extraction from the CLIC DRs, although the methodology proposed can be extended to stripline kickers for any low emittance ring. The excellent field homogeneity required, as well as a good transmission of the high voltage pulse through the electrodes, has been achieved by choosing a novel electrode shape. With this new geometry, it has been possible to benefit from all the advantages that the most...

  15. Beam-dump kicker magnets

    International Nuclear Information System (INIS)

    Bulos, F.; Odian, A.; Tomlin, B.

    1983-01-01

    The beam-dump kicker magnets are located in the final focus region and, in conjunction with septum magnets, extract the beams after they have passed the interaction point (IP) and direct them to their respective dumps. Two schemes for these kickers have been under consideration; ferrite transmission line magnets utilizing technology common with damping rings and positron target kickers, and current loop magnets which are possible only for the dump kickers, where the rise time of the magnetic pulse can be comparatively longer; approximately 400 nanoseconds as compared with 50 nanoseconds for the others. A prototype ferrite kicker has been built and is undergoing tests. Since the current loop requires lower voltage and power plus some additional savings in cost, we decided to build and test a prototype. This note describes in detail an optimized design for the current loop magnets and their associated pulse circuitry

  16. Measurement and analysis of SPS kicker magnet heating and outgassing with Different Bunch Spacing

    CERN Document Server

    Barnes, M J; Cornelis, K; Ducimetière, L; Mahner, E; Papotti, G; Rumolo, G; Senaj, V; Shaposhnikova, E

    2010-01-01

    Fast kicker magnets are used to inject beam into and eject beam out of the CERN SPS accelerator ring. These kickers are generally ferrite loaded transmission line type magnets with a rectangular shaped aperture through which the beam passes. Unless special precautions are taken the impedance of the ferrite yoke can provoke significant beam induced heating, over several hours, even above the Curie temperature of the ferrite. At present the nominal bunch spacing in the SPS is 25 ns, however for an early stage of LHC operation it is preferable to have 50 ns bunch spacing. Machine Development (MD) studies have been carried out with an inter-bunch spacing of 25 ns, 50 ns or 75 ns. For some of the SPS kicker magnets the 75 ns bunch spacing resulted in considerable beam induced heating. In addition the MDs showed that 50 ns bunch spacing could result in a very rapid pressure rise in the kicker magnet and thus cause an interlock. This paper discusses the MD observations of the SPS kickers and analyses the available d...

  17. Dynamic devices - pickups and kickers

    International Nuclear Information System (INIS)

    Lambertson, G.

    1986-08-01

    A given configuration of electrodes may be used either as a pickup or as a kicker; that duality is addressed. Some general relations between longitudinal and transverse effects and between the respones as pickup and as kicker are derived. Dynamic effects are seen to be entirely determined by the longitudinal electric fields in the direction of the beam current when the electrode is excited as a kicker. Response functions that serve as figures of merit are defined. The responses of specific examples of pickups and kickers are analyzed. An approach to the calculation of the transverse variation of coupling over the electrode aperture is preented

  18. Kicker magnet design

    International Nuclear Information System (INIS)

    Li, Z.; Thiessen, H.A.

    1989-01-01

    In this paper, the kicker magnet is studied by use of the program POISSON. For using the dc-code POISSON in the ac problem of the kicker magnet, an approximation of the ac effects is made, this simplifying the ac problem into a dc problem. The study of the magnet is taken in two steps: assuming the γ of the ferrite material is fixed in the calculation to get a preliminary design of the magnet; using the real B /minus/ H curve of the CMD5005 ferrite material in the calculation to get the final design of the magnet. The stored energy, the excitation curve and the excitation efficiency of the kicker magnet are also discussed. 10 figs., 7 tabs

  19. RHIC ABORT KICKER WITH REDUCED COUPLING IMPEDANCE

    International Nuclear Information System (INIS)

    HAHN, H.; DAVINO, D.

    2002-01-01

    Kicker magnets typically represent the most important contributors to the transverse impedance budget of accelerators and storage rings. Methods of reducing the impedance value of the SNS extraction kicker presently under construction and, in view of a future performance upgrade, that of the RHIC abort kicker have been thoroughly studied at this laboratory. In this paper, the investigation of a potential improvement from using ferrite different from the BNL standard CMD5005 is reported. Permeability measurements of several ferrite types have been performed. Measurements on two kicker magnets using CMD5005 and C2050 suggest that the impedance of a magnet without external resistive damping, such as the RHIC abort kicker, would benefit

  20. Preliminary testing of the LEB to MEB transfer kicker modulator prototype

    International Nuclear Information System (INIS)

    Pappas, G.C.; Askew, D.R.

    1993-01-01

    The extraction kicker for the Low Energy Booster (LEB) is used to deflect a 12 GeV/c proton beam from the synchrotron into a transfer line. A kicker system of similar design is used to inject the beam from the transfer line into the Medium Energy Booster (MEB). The modulator requirements for these kicker systems are to deliver a pulse train of seven 1.6 kA, 2.5 μs pulses at a pulse repetition frequency of 10 pps, every seven seconds for one hour. The impedance of the modulator is 12.5 Ω, resulting in a charge voltage of 40 kV. The 10-90% rise time of the pulses is 20 ns, and the 1-99% fall time is 2 μs. The allowable pulse ripple is ±1% of the peak current during the pulse, and ±0.3% from pulse to pulse. The shot-to-shot timing jitter requirement is less than 2 ns. This paper describes the design and performance of the prototype modulator which was fabricated to meet these specifications

  1. Preliminary testing of the LEB to MEB transfer kicker modulator prototype

    International Nuclear Information System (INIS)

    Pappas, G.C.; Askew, D.R.

    1993-05-01

    The extraction kicker for the Low Energy Booster (LEB) is used to deflect a 12 GeV/c proton beam from the synchrotron into a transfer line. A kicker system of similar design is used to inject the beam from the transfer line into the Medium Energy Booster (MEB). The modulator requirements for these kicker systems are to deliver a pulse train of seven 1.6kA, 2.5 μs pulses at a pulse repetition frequency of 20 pps, every seven seconds for one hour. The impedance of the modulator is 12.5 ω, resulting in a charge voltage of 40 kV. The 10--90% rise time of the pulses is 20 ns, and the 1--99% fall time is 2 μs. The allowable pulse ripple is ±1% of the peak current during the pulse, and ±0.3% from pulse to pulse. The shot -to-shot timing jitter requirement is less than ns. This paper describes the design and performance of the prototype modulator which was fabricated to meet these specifications

  2. LEP the large electron-positron project

    International Nuclear Information System (INIS)

    Schopper, H.

    1984-01-01

    LEP is an e + e - ring optimized for about 100 GeV per beam. The ring has a circumference of about 26.7 kilometers, and will be 80 to 125 meters deep underground. The existing accelerators, both the PS and the SPS, will be used as injectors. The cost of LEP is 910 million Swiss francs, at 1981 prices. This document describes the outline of the LEP project, especially, in relation to the present CERN site and experimental facilities. The present status of LEP, that is, machine ordering, installation or modification of the existing machines, is explained in the following areas: injection system, magnets, accelerating system, and experimental areas. As for the civil engineering works two international consortia are responsible for the excavation of the tunnel for the main ring. Some photographs are presented to show the status of the civil engineering works. For the transportation of both components and people, a monorail suspended from the ceiling of the tunnel is adopted. The first injection test into an octant is planned in the autumn of 1987, and the first beam all around the LEP will be at the end of 1988. (Aoki, K.)

  3. SNS EXTRACTION KICKER POWER SUPPLY PROTOTYPE TEST

    International Nuclear Information System (INIS)

    MI, J.L.; SANDBERG, J.; SANDERS, R.; SOUKAS, A.; ZHANG, W.

    2000-01-01

    The SNS (Spallation Neutron Source) accumulator ring Extraction System consists of a Fast kicker and a Lambertson Septum magnet. The proposed design will use 14 kicker magnets powered by an Extraction Kicker Power Supply System. They will eject the high power beam from the SNS accumulator ring into RTBT (Ring to Target Beam Tunnel) through a Lambertson Septum magnet. This paper describes some test results of the SNS Extraction Kicker power supply prototype. The high repetition rate of 60 pulse per second operation is the challenging part of the design. In the prototype testing, a 3 kA damp current of 700ns pulse-width, 200 nS rise time and 60 Hz repetition rate at 32 kV PFN operation voltage has been demonstrated. An Extraction kicker power supply system design diagram is depicted

  4. Design and simulation of fast pulsed kicker/bumper units for the positron accumulator ring at APS

    International Nuclear Information System (INIS)

    Wang, Ju; Volk, G.J.

    1991-01-01

    In the design of fast pulsed kicker/burner units for a positron accumulator ring (PAR) at APS, different pulse forming networks (PFN) are considered and different structures for the magnet are studied and simulated. Three fast pulsed kicker/bumper magnets are required in PAR for the beam injection and/or extraction at 450 MeV. These magnets have the same design because they have identical specifications and are expected to produce identical magnetic fields. Each kicker/bumper magnet is required to generate a magnetic field of 0.06 T with rise-time of 80 ns, a flat-top of 80 ns and a fall-time of 80 ns. This paper describes some design considerations and computer simulation results of different designs

  5. Electromagnetic cold-test characterization of the quad-driven stripline kicker

    International Nuclear Information System (INIS)

    Dunlap, J E; Nelson, S D.

    1998-01-01

    The first kicker concept design for beam deflection was constructed to allow stripline plates to be driven; thus directing, or kicking, the electron beam into two subsequent beam lines. This quad-driven stripline kicker is an eight port electromagnetic network and consists of two actively driven plates and two terminated plates. Electromagnetic measurements performed on the bi-kicker and quad-kicker were designed to determine: (1) the quality of the fabrication of the kicker, including component alignments; (2) quantification of the input feed transition regions from the input coax to the driven kicker plates; (3) identification of properties of the kicker itself without involving the effects of the electron beam; (4) coupling between a line current source and the plates of the kicker; and (5) the effects on the driven current to simulate an electron beam through the body of the kicker. Included in this are the angular variations inside the kicker to examine modal distributions. The goal of the simulated beam was to allow curved path and changing radius studies to be performed electromagnetically. The cold test results produced were then incorporated into beam models

  6. LEP dismantling starts

    CERN Multimedia

    2000-01-01

    Since the end of November, various teams have been getting stuck into dismantling the LEP accelerator and its four experiments. After making the installations safe, the dismantling and removal of 40,000 tonnes of equipment is underway. Down in the tunnel, it is a solemn moment. It is 10 o'clock on 13 December and Daniel Regin, one of those heading the dismantling work, moves in on a magnet, armed with a hydraulic machine. Surrounded by teams gathered there for a course in dismantling, he makes the first cut into LEP. The great deconstruction has begun. In little over than a year, the accelerator will have been cleared away to make room for its successor, the LHC. The start of the operation goes back to 27 November. Because before setting about the machine with hydraulic shears and monkey wrenches, LEP had first to be made safe - it was important to make sure the machine could be taken apart without risk. All the SPS beam injection systems to LEP were cut off. The fluids used for cooling the magnets and superc...

  7. The LEB to MEB transfer kicker system prototype

    International Nuclear Information System (INIS)

    Pappas, C.; Wilson, M.; Anderson, D.

    1994-01-01

    The design requirements for the Low Energy Booster (LEB) extraction kicker system at the Superconducting Super Collider Laboratory (SSCL) were to deflect a 12 GeV/c beam through an angle of 1.5 mrad. The circumference of the LEB was 540 M. This resulted in a 0.06 T-m integrated field, of 1.8 μs width with a 1% to 99% rise time of less than 80 ns and allowable pulse ripple of less than ±1%. The repetition frequency was 10 Hz and the allowable timing jitter was 2 ns. The field was required to be uniform over a 2x4 cm area to ±2.5%. The requirements for the Medium Energy Booster (MEB) injection kicker were similar except that a 99% to 1% pulse fall time of less than 2 μs was needed. Prototypes of the pulsed power system and magnet to meet these requirements were built and tested at the SSCL. This paper describes the results of that testing

  8. A Harmonic Kicker Scheme for the Circulator Cooler Ring in the Proposed Medium Energy Electron-Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Nissen, Edward W.; Hutton, Andrew M.; Kimber, Andrew J.

    2013-06-01

    The current electron cooler design for the proposed Medium Energy Electron-Ion collider (MEIC) at Jefferson Lab utilizes a circulator ring for reuse of the cooling electron bunch up to 100 times to cool the ion beams. This cooler requires a fast kicker system for injecting and extracting individual bunches in the circulator ring. Such a kicker must work at a high repetition rate, up to 7.5 to 75 MHz depending on the number of turns in the recirculator ring. It also must have a very short rise and fall time (of order of 1 ns) such that it will kick an individual bunch without disturbing the others in the ring. Both requirements are orders of magnitude beyond the present state-of-the-art as well as the goals of other on-going kicker R&D programs such as that for the ILC damping rings. In this paper we report a scheme of creating this fast, high repetition rate kicker by combining RF waveforms at multiple frequencies to create a kicker waveform that will, for example, kick every eleventh bunch while leaving the other ten unperturbed. We also present a possible implementation of this scheme as well as discuss its limitations.

  9. UP-GRADED RHIC INJECTION SYSTEM.

    Energy Technology Data Exchange (ETDEWEB)

    HAHN,H.FISCHER,W.SEMERTZIDIS,Y.K.WARBURTON,D.S.

    2003-05-12

    The design of the RHIC injection systems anticipated the possibility of filling and operating the rings with a 120 bunch pattern, corresponding to 110 bunches after allowing for the abort gap. Beam measurements during the 2002 run confirmed the possibility, although at the expense of severe transverse emittance growth and thus not on an operational basis. An improvement program was initiated with the goal of reducing the kicker rise time from 110 to {approx}95 ns and of minimizing pulse timing jitter and drift. The major components of the injection system are 4 kicker magnets and Blmlein pulsers using thyratron switches. The kicker terminating resistor and operating voltage was increased to reduce the rise time. Timing has been stabilized by using commercial trigger units and extremely stable dc supplies for the thyratron reservoir. A fiber optical connection between control room and the thyratron trigger unit has been provided, thereby allowing the operator to adjust timing individually for each kicker unit. The changes were successfully implemented for use in the RHIC operation.

  10. Impedance of a slotted-pipe kicker

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Feng [Academia Sinica, Beijing, BJ (China). Inst. of High Energy Physics

    1996-08-01

    This paper introduces the principle of a new slotted kicker simply, which is made by using vacuum pipe itself with proper slits as current conductors, and then, presents a rough estimation of its longitudinal and transverse impedance, respectively. Calculation shows that its impedance is reduced significantly compared to our present air-coil kicker. (author)

  11. Calculation of Metallization Resistivity and Thickness for MedAustron Kickers

    CERN Document Server

    Barnes, M J; Stadlbauer, T

    2011-01-01

    The MedAustron facility, to be built in Wiener Neustadt (Austria), will provide protons and ions for both cancer therapy and research [1]. Different types of kicker magnets will be used in the facility. The kicker magnets are outside machine vacuum: each kicker magnet has a ceramic beam chamber whose inner surface is metalized. The resistivity and thickness of the metallization are chosen such that the induced eddy currents, resulting from the pulsed kicker magnetic field, do not unduly affect the rise/fall times or homogeneity of the magnetic field. A comparison of an analytical calculation and measurement is reported for the effect of metallization of a ceramic chamber in an existing kicker system at CERN. Conclusions concerning the metallization of the ceramic chambers for the MedAustron kicker magnets are presented.

  12. A real time status monitor for transistor bank driver power limit resistor in boost injection kicker power supply

    Energy Technology Data Exchange (ETDEWEB)

    Mi, J.; Tan, Y.; Zhang, W.

    2011-03-28

    For years suffering of Booster Injection Kicker transistor bank driver regulator troubleshooting, a new real time monitor system has been developed. A simple and floating circuit has been designed and tested. This circuit monitor system can monitor the driver regulator power limit resistor status in real time and warn machine operator if the power limit resistor changes values. This paper will mainly introduce the power supply and the new designed monitoring system. This real time resistor monitor circuit shows a useful method to monitor some critical parts in the booster pulse power supply. After two years accelerator operation, it shows that this monitor works well. Previously, we spent a lot of time in booster machine trouble shooting. We will reinstall all 4 PCB into Euro Card Standard Chassis when the power supply system will be updated.

  13. Thermal Studies on the SPS Wideband Transverse Feedback Kicker

    CERN Document Server

    Roggen, Toon; Hofle, Wolfgang; Montesinos, Eric; CERN. Geneva. ATS Department

    2016-01-01

    As part of the SPS wideband transverse feedback system in the framework of the LHC Injector Upgrade (LIU) project, a wideband kicker design is being proposed. Vertical beam instabilities due to intensity dependent effects (electron cloud instability (ECI) and transverse mode coupling instability (TMCI)) are potentially suppressed by using a feedback system driving such a kicker system. One of the options for a kicker is a one meter long slotted-coaxial kicker, providing a substantial vertical kick strength (10ˉ5 –10ˉ4 eV.s/m) over a bandwidth ranging from nearly DC to 1 GHz. The necessary kick strength requires a total power of 4 kW. This note describes thermal studies that assisted in the material choice of the feedthroughs of the slotted-coaxial kicker and guided the design choices.

  14. submitter Measurements on a 20-layer 12.5 kV prototype inductive adder for the CLIC DR kickers

    CERN Document Server

    Holma, J

    2018-01-01

    The CLIC study is investigating the technical feasibility of an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The predamping rings and damping rings (DRs) will produce ultra-low emittance beam with high bunch charge. To avoid beam emittance increase, the DR kicker systems must provide extremely stable field pulses during injection and extraction of bunches. The DR extraction kicker system consists of a stripline kicker and two pulse modulators. The present specification for the modulators calls for pulses with 160 ns or 900 ns flat-top duration of nominally ±12.5 kV and 305 A, with ripple of not more than ±0.02% (±2.5 V). In addition, there is a proposal to use the same modulators and striplines for dumping the beam, with ±17.5 kV stripline pulse voltage. An inductive adder is a very promising approach to meeting the CLIC DR extraction kicker specifications because analogue modulation methods can be applied to adjust the shape of the flat-top of the output w...

  15. Challenges and Plans for Injection and Beam Dump

    Science.gov (United States)

    Barnes, M.; Goddard, B.; Mertens, V.; Uythoven, J.

    The injection and beam dumping systems of the LHC will need to be upgraded to comply with the requirements of operation with the HL-LHC beams. The elements of the injection system concerned are the fixed and movable absorbers which protect the LHC in case of an injection kicker error and the injection kickers themselves. The beam dumping system elements under study are the absorbers which protect the aperture in case of an asynchronous beam dump and the beam absorber block. The operational limits of these elements and the new developments in the context of the HL-LHC project are described.

  16. Injection system of teh SSC Medium Energy Booster

    International Nuclear Information System (INIS)

    Mao, N.; Gerig, R.; McGill, J.; Brown, K.

    1994-04-01

    The Medium Energy Booster (MEB) is the third of the SSCL accelerators and the largest of the resistive magnet synchrotrons. It accelerates protons from an injection momentum of 12 GeV/c to a top momentum of 200 GeV/c. A beam injection system has been designed to inject the beam transferred from the Low Energy Booster onto the MEB closed orbit in the MEB injection insertion region. The beam is injected via a vertical bending Lambertson septum magnet and a horizontal kicker with appropriate matching and very little beam loss and emittance dilution. The beam optics of the injection system is described in this paper. The required parameters of the Lambertson septum magnet and the injection kicker are given

  17. A New Kicker for the TLS Longitudinal Feedback System

    CERN Document Server

    Lau, Wai-Keung; Dehler, Micha; Hsu, Kuo-Tung; Hsu, San-Yuang; Jung Chou Ping; Wei Chen, Cheng; Yang Chen Huan; Yang Tze Te

    2005-01-01

    A new longitudinal kicker that is modified from the Swiss Light Source (SLS) design to fit into the TLS storage ring. It will be served as the actuator in the longitudinal multi-bunch feedback control loop. Beam coupling impedance has been calculated by Gdfidl with a PC cluster. Previous to the installation of this new kicker, bench measurement has been performed in the laboratory to characterize this new kicker. The experimental setups for bandwidth and coaxial wire measurement of longitudinal coupling impedance and their corresponding test results will be reported. As a cross check, bead-pull measurement has also been done to verify the beam coupling measurement by coaxial wire method at the kicker center frequency. Longitudinal field profile of the accelerating mode along the beam path has also been mapped. High order cavity modes of the kicker have also been observed and their effects on the beam are evaluated.

  18. Wake field in matched kicker magnet

    International Nuclear Information System (INIS)

    Miyahara, Y.

    1979-01-01

    Coherent transverse instability observed in KEK booster proton synchrotron has been reported previously. This instability is induced by the interaction of the beam with kicker magnet for the fast beam extraction. To understand the mechanism completely, it is necessary to know the wake field in detail. Here, the wake field or induced current in the kicker magnet which is terminated with matched resistance is considered

  19. Analysis of ferrite heating of the LHC injection kickers and proposals for future reduction of temperature

    CERN Document Server

    Barnes, M J; Garrel, N; Goddard, B; Mertens, V; Weterings, W

    2012-01-01

    The two LHC injection kicker magnet (MKI) systems must produce a kick of 1.3 T.m with a flat top duration variable up to 7860 ns, and rise and fall times of less than 900 ns and 3000 ns, respectively. A beam screen is placed in the aperture of the magnets: the screen consists of a ceramic tube with conductors on the inner wall. The conductors provide a path for the image current of the high intensity LHC beam and screen the ferrite against wake fields. The conductors initially used gave adequately low beam coupling impedance however screen conductor discharges occurred during pulsing of the magnet; hence an alternative design with fewer screen conductors was implemented to meet the often conflicting requirements for low beam coupling impedance, fast magnetic field rise-time and good high voltage behaviour. During 2011 the LHC was operated with high intensity beam, coasting for many hours at a time, resulting in heating of the ferrite yoke of the MKIs. This paper presents an analysis of thermal measurement dat...

  20. Ultrafast harmonic rf kicker design and beam dynamics analysis for an energy recovery linac based electron circulator cooler ring

    Directory of Open Access Journals (Sweden)

    Yulu Huang

    2016-08-01

    Full Text Available An ultrafast kicker system is being developed for the energy recovery linac (ERL based electron circulator cooler ring (CCR in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously named MEIC. In the CCR, the injected electron bunches can be recirculated while performing ion cooling for 10–30 turns before the extraction, thus reducing the recirculation beam current in the ERL to 1/10−1/30 (150  mA-50  mA of the cooling beam current (up to 1.5 A. Assuming a bunch repetition rate of 476.3 MHz and a recirculating factor of 10 in the CCR, the kicker is required to operate at a pulse repetition rate of 47.63 MHz with pulse width of around 2 ns, so that only every 10th bunch in the CCR will experience a transverse kick while the rest of the bunches will not be disturbed. Such a kicker pulse can be synthesized by ten harmonic modes of the 47.63 MHz kicker pulse repetition frequency, using up to four quarter wavelength resonator (QWR based deflecting cavities. In this paper, several methods to synthesize such a kicker waveform will be discussed and a comparison of their beam dynamics performance is made using ELEGANT. Four QWR cavities are envisaged with high transverse shunt impedance requiring less than 100 W of total rf power for a Flat-Top kick pulse. Multipole fields due to the asymmetry of this type of cavity are analyzed. The transverse emittance growth due to the sextupole component is simulated in ELEGANT. Off-axis injection and extraction issues and beam optics using a multicavity kick-drift scheme will also be discussed.

  1. Literature search on Kickers and Septa for the Amsterdam Pulse Stretcher

    International Nuclear Information System (INIS)

    Kuijt, J.; Linden, A. v.d.

    1988-01-01

    Literature search has yielded a qualitative and quantitative view on kickers. Quantitatively specifications on designs in literature have been collected. The UPDATE-kickers have been given the following specs: deflection angle 2 mrad, pulsewidth 2 μs, falltime 70 ns, available length about 2 m. Undertaken is a comparison of characteristic parameters: kick strength (energy x angle), pulse characteristics (pulsewidth/falltime) and required peak power. Realisation of the pulse characteristics will impose the greatest requirements on the UPDATE-kicker design. The comparison has shown correspondence with two ferrite kicker designs (CERN-CPS and ELSA), the Los Alamos TEM-kicker and the electrostatic kicker from Saskatoon. On account of the relative simplicity of construction and pulse forming network the Saskatoon kicker has been chosen as the starting point for a design study. Design calculations will proceed from a length of 1.6 m and a gap of 4 cm between two parallel plates at a potential difference of 50 kV. Literature search on septa resulted in an overview on septum magnets and electrostatic wire septa. 72 refs.; 14 figs.; 2 tabs

  2. Beam interaction of a pulsed, nonlinear in-vacuum injection magnet

    International Nuclear Information System (INIS)

    Rast, Helge

    2013-01-01

    Theme of this thesis is the study of the interaction of the injection magnet designed for BESSY II with the electron beam. The main topic of this thesis lies in the numerical and measurement-technical study of the loss factor, the wake potential, and the wake impedance of the nonlinear kicker magnet with the aim of an optimization of the magnet design, so that a stable operation of the kicker in the BESSY II storage ring is made possible. A further main topic of this thesis is a study on the matching of the injection scheme with a single kicker to the conditions of the DELTA storage ring, which is operated by the TU Dortmund.

  3. H5 fast-kicker-magnet pulser

    International Nuclear Information System (INIS)

    Frey, W.; Ghoshroy, S.; Cottingham, J.G.

    1982-01-01

    The fast extraction kicker magnet for the AGS is powered by a novel pulse generator. A pulse forming network (PFN) is discharged into nearly 100% mismatched load. The pulser delivers a current pulse of 3000 amperes peak pulse with a 2% flat-top ripple into a 1.4 μ H single turn ferrite core magnet. The pulse is 2.8 μsec wide with a 180 nsec rise time, at a 0.5 to 1.5 pps repetition rate. The pulse rise time is required to provide clean extraction of the 28 GeV proton beam by bringing the kicker magnet field up to 1.25 kG within the 220 nsec space between proton bunches in the machine. The pulser is mounted adjacent to the kicker magnet in the AGS ring. The thyratron's characteristics are not affected by the ionizing radiation environment during operation of the AGS

  4. CONSTRUCTION AND POWER TEST OF THE EXTRACTION KICKER MAGNET FOR SNS ACCUMULATOR RING

    International Nuclear Information System (INIS)

    PAI, C.; HAHN, H.; HSEUH, H.; LEE, Y.; MENG, W.; MI, J.; SANDBERG, J.; TODD, R.

    2005-01-01

    Two extraction kicker magnet assemblies that contain seven individual pulsed magnet modules each will kick the proton beam vertically out of the SNS accumulator ring into the aperture of the extraction Lambertson septum magnet. The proton beam then travels to the 1.4 MW SNS target assembly. The 14 kicker magnets and major components of the kicker assembly have been fabricated in BNL. The inner surfaces of the kicker magnets were coated with TiN to reduce the secondary electron yield. All 14 PFN power supplies have been built, tested and delivered to OWL. Before final installation, a partial assembly of the kicker system with three kicker magnets was assembled to test the functions of each critical component in the system. In this paper we report the progress of the construction of the kicker components, the TIN coating of the magnets, the installation procedure of the magnets and the full power test of the kicker with the PFN power supply

  5. Stripline kicker for integrable optics test accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, Sergey A.; Didenko, Alexander; Lebedev, Valeri; Valishev, Alexander

    2016-06-30

    We present a design of a stripline kicker for Integrable Optics Test Accelerator (IOTA). For its experimental program IOTA needs two full-aperture kickers, capable to create an arbitrary controllable kick in 2D. For that reason their strengths are variable in a wide range of amplitudes up to 16 mrad, and the pulse length 100 ns is less than a revolution period for electrons. In addition, the kicker should have a physical aperture of 40 mm for a proposed operation with proton beam, and an outer size of 70 mm to fit inside existing quadrupole magnets to save space in the ring. Computer simulations using CST Microwave Studio show high field uniformity and wave impedance close to 50 {\\Omega}.

  6. Kicker thyratron experience from SLC

    International Nuclear Information System (INIS)

    Donaldson, A.R.; Cassel, R.L.; Mattison, T.S.; Reginato, L.L.

    1991-05-01

    The SLAC Linear Collider has five fast kickers for the damping ring injectors, extractors, and the electron extractor for the positron target that use multi-gap Deuterium-filled thyratrons. The thyratrons operate with 30 to 70 kV anode voltages and 1 to 5 kA currents, to deliver pulses to kicker magnets with ∼ 30 ns rise times, up to ∼ 150 ns pulse widths, at 120 Hz. Operating and lifetime experience with several types of thyratrons and support electronics are discussed. Floating driver and power supply electronics were replaced by a ferrite choke isolator to allow grounding of the cathode support electronics with a commensurate increase in operating reliability. The construction of a 100 ns Blumlein enabled detailed measurements of the switching times for all SLC thyratrons under similar conditions. In the final focus area, the kickers dump the SLC beams after the e + e - collisions. These thyratrons function with 15 kV anode voltages and up to 2 kA currents to produce 1/2 sine pulses with ∼ 300 ns rise times, ∼ 550 ns FWHM, at 120 Hz. Operating experience with these thyratrons will also be presented. 7 refs., 1 fig., 3 tabs

  7. Electromagnetic simulations of simple models of ferrite loaded kickers

    CERN Document Server

    Zannini, Carlo; Salvant, B; Metral, E; Rumolo, G

    2010-01-01

    The kickers are major contributors to the CERN SPS beam coupling impedance. As such, they may represent a limitation to increasing the SPS bunch current in the frame of an intensity upgrade of the LHC. In this paper, CST Particle Studio time domain electromagnetic simulations are performed to obtain the longitudinal and transverse impedances/wake potentials of simplified models of ferrite loaded kickers. The simulation results have been successfully compared with some existing analytical expressions. In the transverse plane, the dipolar and quadrupolar contributions to the wake potentials have been estimated from the results of these simulations. For some cases, simulations have also been benchmarked against measurements on PS kickers. It turns out that the large simulated quadrupolar contributions of these kickers could explain both the negative total (dipolar+quadrupolar) horizontal impedance observed in bench measurements and the positive horizontal tune shift measured with the SPS beam.

  8. Single-bunch kicker pulser

    International Nuclear Information System (INIS)

    Frey, W.W.

    1983-01-01

    The single-bunch kicker magnet is powered by a capacitor discharge pulser. The ferrite-core magnet is used to kick out one of twelve proton bunches circulating in the AGS (Alternating Gradient Synchrotron) into the experimental area. The magnet current pulse has a half-sinusoid shape, with a peak current of 2800 A. The pulse current rises and falls to zero, with minimum undershoot, in 410 nsec to minimize effects on adjacent bunches. The magnet inductance is 1.0 μHy. The pulser is mounted on the kicker magnet in the AGS ring, and is exposed to ionizing radiation. The HVDC power supply, controls, monitoring, and auxiliary circuits are housed approximately 300 feet away external to the ring. A two-gap thyratron is used to discharge the energy storage capacitor. Two hydrogen diodes are series connected to function as an inverse diode

  9. Single-bunch kicker pulser

    Energy Technology Data Exchange (ETDEWEB)

    Frey, W.W.

    1983-01-01

    The single-bunch kicker magnet is powered by a capacitor discharge pulser. The ferrite-core magnet is used to kick out one of twelve proton bunches circulating in the AGS (Alternating Gradient Synchrotron) into the experimental area. The magnet current pulse has a half-sinusoid shape, with a peak current of 2800 A. The pulse current rises and falls to zero, with minimum undershoot, in 410 nsec to minimize effects on adjacent bunches. The magnet inductance is 1.0 ..mu..Hy. The pulser is mounted on the kicker magnet in the AGS ring, and is exposed to ionizing radiation. The HVDC power supply, controls, monitoring, and auxiliary circuits are housed approximately 300 feet away external to the ring. A two-gap thyratron is used to discharge the energy storage capacitor. Two hydrogen diodes are series connected to function as an inverse diode.

  10. The PEP-II abort kicker system

    International Nuclear Information System (INIS)

    Lamare, J de; Donaldson, A.; Kulikov, A. Lipari, J.

    1997-07-01

    The PEP-II project has two storage rings. The HER (High Energy Ring) has up to 1.48 A of electron beam at 9 GeV, and the LER (Low Energy Ring) has up to 2.14 A of positron beam at 3.1 GeV. To protect the HER and LER beam lines in the event of a ring component failure, each ring has an abort kicker system which directs the beam into a dump when a failure is detected. Due to the high current of the beams, the beam kick is tapered from 100% to 80% in 7.33 uS (the beam transit time around the time). This taper distributes the energy evenly across the window which separates the ring from the beam dump such that the window is not damaged. The abort kicker trigger is synchronized with the ion clearing gap of the beam allowing for the kicker field to rise from 0-80% in 370 nS. This report discusses the design of the system controls, interlocks, power supplies, and modulator

  11. A newly observed Effect affects the LEP Beam Energy

    CERN Document Server

    Brun, G; Galbraith, Peter; Henrichsen, K N; Koratzinos, M; Placidi, Massimo; Puzo, P; Drees, A; Geitz, M A

    1996-01-01

    The LEP magnetic bending field and therefore the beam energy is changed by a current flow over the vacuum chamber. The current is created by trains travelling between the Geneva main station and destinations in France. Some of the rail current leaks into earth and returns to the power station via the LEP tunnel, where the vacuum chamber is one of the conductors. Train leakage currents penetrate LEP at the injection lines from the SPS close to IP1 and between IP5 and IP7, thereby interacting with the magnetic dipole field. The observed changes in B field cause beam energy increases of several MeV.

  12. Injection quality measurements with diamond based particle detectors

    CERN Document Server

    Stein, Oliver; CERN. Geneva. ATS Department

    2016-01-01

    During the re-commissioning phase of the LHC after the long shutdown 1 very high beam losses were observed at the TDI during beam injection. The losses reached up to 90% of the dump threshold. To decrease the through beam losses induced stress on the accelerator components these loss levels need to be reduced. Measurements with diamond based particle detectors (dBLMs), which have nano-second time resolution, revealed that the majority of these losses come from recaptured SPS beam surrounding the nominal bunch train. In this MD the injection loss patterns and loss intensities were investigated in greater detail. Performed calibration shots on the TDI (internal beam absorber for injection) gave a conversion factor from impacting particles intensities to signal in the dBLMs (0.1Vs/109 protons). Using the SPS tune kicker for cleaning the recaptured beam in the SPS and changing the LHC injection kicker settings resulted in a reduction of the injection losses. For 144 bunch injections the loss levels were decreased...

  13. Slot-type pickup/kicker for AA stochastic cooling

    CERN Multimedia

    1979-01-01

    A "slotted transmission line" was used for both pickups and kickers of the stochastic cooling systems of the AA. They served for the cooling of the high-density antiproton stack, in momentum and both transverse planes. In the beginning, in a single band, 1-2 GHz, later in 2 bands, 2-4 and 4-8 GHz. View down the centre of a pickup or kicker. See also 7906189, 7906190, 7906583.

  14. Nanosecond high-voltage generators for supplying the kickers of charged particle accelerators

    International Nuclear Information System (INIS)

    Korchuganov, V.N.; Matveev, Yu.G.; Shvedov, D.A.

    2000-01-01

    The high-voltage nanosecond generators (VNG) of rectangular pulses, developed for supplying the injection and extraction kickers of the accelerator-storage complexes are considered in this work. The pulse hydrogen thyratrons and gas-filled discharges are used as commutators in those generators. If necessary, the VNG pulses fronts may be shortened up to 2-3 ns in the coaxial lines, filled with ferrite rings. The mechanism of the pulse fronts shortening was considered earlier. The basis parameters of the VNG various types are presented [ru

  15. Recent advances in kicker pulser technology for linear induction accelerators

    International Nuclear Information System (INIS)

    Chen, Y. J.; Cook, E.; Davis, B.; Dehope, W. J.; Yen, B.

    1999-01-01

    Recent progress in the development and understanding of linear induction accelerator have produced machines with 10s of MeV of beam energy and multi-kiloampere currents. Near-term machines, such as DARHT-2, are envisioned with microsecond pulselengths. Fast beam kickers, based on cylindrical electromagnetic stripline structures, will permit effective use of these extremely high-energy beams in an increasing number of applications. In one application, radiography, kickers were an essential element in resolving temporal evolution of hydrodynamic events by cleaving out individual pulses from long, microsecond beams. Advanced schemes are envisioned where these individual pulses are redirected through varying length beam lines and suitably recombined for stereographic imaging or tomographic reconstruction. Recent advances in fast kickers and their pulsed power technology are described. Kicker pulsers based on both planar triode and all solid-state componentry are discussed and future development plans are presented

  16. An Over-damped Cavity Longitudinal Kicker for the PEP-II LER

    CERN Document Server

    McIntosh, P

    2003-01-01

    Both rings of PEP-II use drift tube kickers in the longitudinal bunch-by-bunch feedback system. Efforts are now underway to increase the stored beam currents and luminosity of PEP-II, and beam-induced heating of these structures, particularly in the Low Energy Ring (LER) is of concern. An alternative kicker design based on the over-damped cavity kicker, first developed by INFN-Frascati is being built for PEP-II. This low loaded Q (or wide bandwidth) structure is fed by a network of ridged waveguides coupled to a simple pill-box cavity. Beam induced RF power is also coupled out of the cavity to external loads, so that the higher order modes (HOMs) excited in the structure are well-damped. This paper details the kicker design for PEP-II and discusses some of the design trade-offs between shunt impedance and bandwidth, as well as the influence of the feedthroughs on the kicker parameters. Estimates of the expected power deposition in the cavity are also provided.

  17. Measurement scheme of kicker impedances via beam-induced voltages of coaxial cables

    Energy Technology Data Exchange (ETDEWEB)

    Shobuda, Yoshihiro, E-mail: yoshihiro.shobuda@j-parc.jp [J-PARC Center, JAEA and KEK, 2-4 Shirakata Shirane, Tokaimura, Nakagun, Ibaraki 319-1195 (Japan); Irie, Yoshiro [KEK, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Toyama, Takeshi; Kamiya, Junichiro [J-PARC Center, JAEA and KEK, 2-4 Shirakata Shirane, Tokaimura, Nakagun, Ibaraki 319-1195 (Japan); Watanabe, Masao [Ministry of Education, Culture, Sports, Science and Technology, 3-2-2 Kasumigaseki, Chiyoda, Tokyo 100-8959 (Japan)

    2013-06-11

    A new theory, which satisfies the causality condition, is developed to describe impedances of kicker magnets with coaxial cables. The theoretical results well describe measurement results, which are obtained by standard wire methods. On the other hand, when beams pass through the kicker, voltages are induced at the terminals of coaxial cables. In other words, by analyzing the voltages, the kicker impedance for the beams can be obtained. The observed impedances are consistent with the theoretical results. The theory describes the impedance for non-relativistic beams, as well. The theoretical, simulation and measurement results indicate that the horizontal kicker impedance is drastically reduced by the non-relativistic effect. -- Highlights: ► We develop an innovative method to measure kicker impedance including power cable. ► By analyzing voltages at the ends of coaxial cables, the impedance is derived. ► The horizontal impedance is reduced as the beam becomes non-relativistic.

  18. Fast Extraction Kicker for the Accelerator Test Facility

    International Nuclear Information System (INIS)

    De Santis, Stefano; Urakawa, Junji; Naito, Takashi

    2007-01-01

    We present the results of a study for the design of a fast extraction kicker to be installed in the Accelerator Test Facility ring at KEK. This activity is carried on in the framework of the ATF2 project, which will be built on the KEK Tsukuba campus as an extension of the existing ATF, taking advantage of the worlds smallest normalized emittance achieved there. ATF2's primary goal is to operate as a test facility and establish the hardware and beam handling technologies envisaged for the International Linear Collider. In particular, the fast extraction kicker object of the present paper is an important component of the ILC damping rings, since its rise and fall time define the minimum distance between bunches and ultimately the damping rings length itself. Building on the initial results presented at EPAC '06, we report on the present status of the kicker design and define the minimum characteristics for pulsers and other subsystems. In addition to the original scheme with multiple stripline modules producing a total deflection of 5 mrad, we also investigated a scheme with a single kicker module for a reduced deflection of 1 mrad placed inside a closed orbit bump, which takes the electron closer to the extraction septum

  19. AN OVERVIEW OF HIGH VOLTAGE DIELECTRIC MATERIAL FOR TRAVELING WAVE KICKER MAGNET APPLICATION

    International Nuclear Information System (INIS)

    ZHANG, W.; SANDBERG, J.; TUOZZOLO, J.; CASSEL, R.; DUCIMETIERE, L.; JENSEN, C.; BARNES, M.; WAIT, G.; WANG, J.

    2002-01-01

    Pulsed high power fast kickers are being used to change beam trajectories in particle accelerators. The fast rise and fall time of pulse waveform demands a transmission line structure for the kicker deflector design. The ideal design will be parallel metal plates. However, it uses very long straight sections to achieve the required deflection. In accelerators with constrained straight sections, high permeability materials such as ferrite have to be used to gain deflection efficiency. The transmission line kicker magnet is also referred as traveling wave kicker magnet. Its construction is based on distributed 1-C cells along the longitudinal direction. The magnetic cells and capacitive cells are interleaved to simulate the characteristic impedance of a transmission line to minimize pulse reflection, and provide adequate frequency bandwidth to transmit the kicker pulse with fast rise and fall time. The magnetic cells are usually made of ferrite ceramics, but the capacitive cells have been made with different materials. For traveling wave kickers with higher impedance, the parallel plate vacuum capacitor has been used in CERN and KEK design. Others have used ceramic capacitors, printed circuit boards, and high permittivity ceramics as the capacitive cell. The high dielectric material has the advantage of compactness for low impedance kicker magnet construction. It continues to be very attractive for future kicker magnet applications. The high voltage phenomena associated with high dielectric ceramic materials have been widely reported in many industrial application areas. Their implication in the traveling wave magnet application has to be well understood. In this presentation, the areas requiring further quantitative study will be outlined

  20. Synchrotron radiation interferences between small dipoles at LEP

    International Nuclear Information System (INIS)

    Bovet, C.; Burns, A.; Meot, F.; Placidi, M.; Rossa, E.; Vries, J. de

    1997-06-01

    Synchrotron Radiation interferences between small dipoles in the very low (visible) frequency range have been studied at the LEP diagnostic mini-wiggler. Their understanding allowed a substantial brightness gain by adequate layout modifications. The phenomenon is described analytically in terms of time coherence effects. This serves as a basis for further detailed numerical simulations of the experiment by means of stepwise ray-tracing, and allows precise interpretation of the spectral, polarization and intensity measurements collected at LEP. It also provides guidelines for SR diagnostic at injection energy in LHC

  1. The Abort Kicker System for the PEP-II Storage Rings at SLAC.

    CERN Document Server

    Delamare, J E

    2003-01-01

    The PEP-II project has two storage rings. The HER (High Energy Ring) has up to 1.48 A of election beam at 9 GeV, and the LER (Low Energy Ring) has up to 2.14 A of positron beam at 3.1 GeV. To protect the HER and LER beam lines in the event of a ring component failure, each ring has an abort kicker system which directs the beam into a dump when a failure is detected. Due to the high current of the beams, the beam kick is tapered from 100% to 80% in 7.33 (micro)S (the beam transit time around the ring). This taper distributes the energy evenly across the window which separates the ring from the beam dump such that the window is not damaged. The abort kicker trigger is synchronized with the ion clearing gap of the beam allowing for the kicker field to rise from 0-80% while there is no beam in the kicker magnet. Originally the kicker system was designed for a rise time of 370nS [1], but because the ion clearing gap was reduced in half, so was the rise time requirement for the kicker. This report discusses the des...

  2. LEP vacuum chamber, early prototype

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    The structure of LEP, with long bending magnets and little access to the vacuum chamber between them, required distributed pumping. This is an early prototype for the LEP vacuum chamber, made from extruded aluminium. The main opening is for the beam. The small channel to the right is for cooling water, to carry away the heat deposited by the synchroton radiation from the beam. The 4 slots in the channel to the left house the strip-shaped ion-getter pumps (see 7810255). The ion-getter pumps depended on the magnetic field of the bending magnets, too low at injection energy for the pumps to function well. Also, a different design was required outside the bending magnets. This design was therefore abandoned, in favour of a thermal getter pump (see 8301153 and 8305170).

  3. Some fast beam kicker magnet systems at SLAC

    International Nuclear Information System (INIS)

    Bulos, F.; Cassel, R.L.; Donaldson, A.R.; Genova, L.F.; Grant, J.A.; Mihalka, A.M.; Sukiennicki, B.A.; Tomlin, W.T.; Veldhuizen, F.T.; Walz, D.R.

    1987-01-01

    The Stanford Linear Collider requires very fast rise and fall times from its kicker magnets. The damping rings and positron source need either one or two bunches deflected from two or three that are separated in time by about 59 ns. The final focus region kicker magnets need a rise time of less than 700 ns and each one deflects only one bunch. This paper discusses the design and characteristics of a thyratron-switched, castor-oil-filled, coaxial, Blumlein line used for one bunch kicking. It discharges a 118 ns (at the base), 50 kV, 3 kA pulse into a 33 cm long, ferrite-loaded, kicker magnet of rectangular coaxial-line geometry, which in turn is terminated by a matched load. Reference is made to a Fermilab (FNAL) designed magnet and a dual-thyratron pulser that deflects two serial bunches in or out of the electron ring. Also, a brief description of the final focus magnet is given

  4. The Abort Kicker System for the PEP-II Storage Rings at SLAC

    International Nuclear Information System (INIS)

    Delamare, Jeffrey E

    2003-01-01

    The PEP-II project has two storage rings. The HER (High Energy Ring) has up to 1.48 A of election beam at 9 GeV, and the LER (Low Energy Ring) has up to 2.14 A of positron beam at 3.1 GeV. To protect the HER and LER beam lines in the event of a ring component failure, each ring has an abort kicker system which directs the beam into a dump when a failure is detected. Due to the high current of the beams, the beam kick is tapered from 100% to 80% in 7.33 (micro)S (the beam transit time around the ring). This taper distributes the energy evenly across the window which separates the ring from the beam dump such that the window is not damaged. The abort kicker trigger is synchronized with the ion clearing gap of the beam allowing for the kicker field to rise from 0-80% while there is no beam in the kicker magnet. Originally the kicker system was designed for a rise time of 370nS [1], but because the ion clearing gap was reduced in half, so was the rise time requirement for the kicker. This report discusses the design of the system interlocks, diagnostics, and modulator with the modifications necessary to accommodate an ion clearing gap of 185nS

  5. In situ baking method for degassing of a kicker magnet in accelerator beam line

    International Nuclear Information System (INIS)

    Kamiya, Junichiro; Ogiwara, Norio; Yanagibashi, Toru; Kinsho, Michikazu; Yasuda, Yuichi

    2016-01-01

    In this study, the authors propose a new in situ degassing method by which only kicker magnets in the accelerator beam line are baked out without raising the temperature of the vacuum chamber to prevent unwanted thermal expansion of the chamber. By simply installing the heater and thermal radiation shield plates between the kicker magnet and the chamber wall, most of the heat flux from the heater directs toward the kicker magnet. The result of the verification test showed that each part of the kicker magnet was heated to above the target temperature with a small rise in the vacuum chamber temperature. A graphite heater was selected in this application to bake-out the kicker magnet in the beam line to ensure reliability and easy maintainability of the heater. The vacuum characteristics of graphite were suitable for heater operation in the beam line. A preliminary heat-up test conducted in the accelerator beam line also showed that each part of the kicker magnet was successfully heated and that thermal expansion of the chamber was negligibly small

  6. In situ baking method for degassing of a kicker magnet in accelerator beam line

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, Junichiro, E-mail: kamiya.junichiro@jaea.go.jp; Ogiwara, Norio; Yanagibashi, Toru; Kinsho, Michikazu [Japan Atomic Energy Agency, J-PARC Center, Ooaza Shirakata 2-4, Tokai, Naka, Ibaraki 319-1195 (Japan); Yasuda, Yuichi [SAKAGUCHI E.H VOC CORP., Sakura Dai-san Kogyodanchi 1-8-6, Osaku, Sakura, Chiba 285-0802 (Japan)

    2016-03-15

    In this study, the authors propose a new in situ degassing method by which only kicker magnets in the accelerator beam line are baked out without raising the temperature of the vacuum chamber to prevent unwanted thermal expansion of the chamber. By simply installing the heater and thermal radiation shield plates between the kicker magnet and the chamber wall, most of the heat flux from the heater directs toward the kicker magnet. The result of the verification test showed that each part of the kicker magnet was heated to above the target temperature with a small rise in the vacuum chamber temperature. A graphite heater was selected in this application to bake-out the kicker magnet in the beam line to ensure reliability and easy maintainability of the heater. The vacuum characteristics of graphite were suitable for heater operation in the beam line. A preliminary heat-up test conducted in the accelerator beam line also showed that each part of the kicker magnet was successfully heated and that thermal expansion of the chamber was negligibly small.

  7. Diagnosing the PEP-II Injection System

    Energy Technology Data Exchange (ETDEWEB)

    Decker, F.-J.; Donald, M.H.; Iverson, R.H.; Kulikov, A.; Pappas, G.C.; Weaver, M.; /SLAC

    2005-05-09

    The injection of beam into the PEP-II B-Factory, especially into the High Energy Ring (HER) has some challenges. A high background level in the BaBar detector has for a while inhibited us from trickling charge into the HER similar to the Low Energy Ring (LER). Analyzing the injection system has revealed many issues which could be improved. The injection bump between two kickers was not closed, mainly because the phase advance wasn't exactly 180{sup o} and the two kicker strengths were not balanced. Additionally we found reflections which kick the stored beam after the main kick and cause the average luminosity to drop about 3% for a 10 Hz injection rate. The strength of the overall kick is nearly twice as high as the design, indicating a much bigger effective septum thickness. Compared with single beam the background is worse when the HER beam is colliding with the LER beam. This hints that the beam-beam force and the observed vertical blow-up in the HER pushes the beam and especially the injected beam further out to the edge of the dynamic aperture or beyond.

  8. Diagnosing the PEP-II Injection System

    International Nuclear Information System (INIS)

    Decker, F.-J.; Donald, M.H.; Iverson, R.H.; Kulikov, A.; Pappas, G.C.; Weaver, M.; SLAC

    2005-01-01

    The injection of beam into the PEP-II B-Factory, especially into the High Energy Ring (HER) has some challenges. A high background level in the BaBar detector has for a while inhibited us from trickling charge into the HER similar to the Low Energy Ring (LER). Analyzing the injection system has revealed many issues which could be improved. The injection bump between two kickers was not closed, mainly because the phase advance wasn't exactly 180 o and the two kicker strengths were not balanced. Additionally we found reflections which kick the stored beam after the main kick and cause the average luminosity to drop about 3% for a 10 Hz injection rate. The strength of the overall kick is nearly twice as high as the design, indicating a much bigger effective septum thickness. Compared with single beam the background is worse when the HER beam is colliding with the LER beam. This hints that the beam-beam force and the observed vertical blow-up in the HER pushes the beam and especially the injected beam further out to the edge of the dynamic aperture or beyond

  9. Injection septum magnets for the Loma Linda medical accelerator

    International Nuclear Information System (INIS)

    Satti, J.A.

    1987-01-01

    The injection beamline runs over the last magnet before a long straight section and is then displaced downward 55.88 cm to the accelerator beamline. The displacement is magnetic and the final deflection onto the synchrotron orbit is by an electric kicker. The first component, the reverse septum magnet, bends the injection beam 25/degree/ downward. This is followed by the injection septum (20/degree/ bend upward) and the final injection kicker (5/degree/ bend upward). The septum magnets produce a peak field of 3.4 K gauss at a current of 28,000 amperes within a 0.1 msec long pulse. The electric kicker produces a field of 7.3 KV/cm with a pulse length of 0.0011 msec. The septum magnets are similar to each other in construction with a bending radium of 72.7 cm. The curvature is required to increase the effective aperture. Each magnet has a single-turn copper coil bonded to a stainless steel plate for reinforcement. This eliminates insulating material, which could be subject to radiation damage, at the septum. The stainless steel plate is welded to the magnet laminations. The current is confined to the septum by the insulation between the laminations, which are a standard core material. The total septum thickness with shield is 1.227 cm. Pulsing the magnet eliminates the need for water cooling. 2 refs., 4 figs

  10. LEP physics

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    Various aspects of the physics made at LEP 1 and LEP 2 (precision measurements and searches for new physics will be discussed, from the fundamental motivations to the publication of the results. The techniques and tools developed and applied to reach the a priori goals of LEP (beam energy measurement, luminosity determination, event selection,...) will be described with a few meaningful examples. The high level techniques & bright ideas which allowed LEP to exceed by a large amount its design performance, and the consequences outcome will also be presented.

  11. Kickers and power supplies for the Fermilab Tevatron I antiproton source

    International Nuclear Information System (INIS)

    Castellano, T.; Bartoszek, L.; Tilles, E.; Petter, J.; McCarthy, J.

    1985-05-01

    The Fermilab Antiproton Source Accumulator and Debuncher rings require 5 kickers in total. These range in design from conventional ferrite delay line type magnets, with ceramic beam tubes to mechanically complex shuttered kickers situated entirely in the Accumulator Ring's 10 -10 torr vacuum. Power supplies are thyratron switched pulse forming networks that produce microsecond width pulses of several kiloamps with less than 30 nanoseconds rise and fall times. Kicker and power supply design requirements for field strength, vacuum, rise and fall time, timing and magnetic shielding of the stacked beam in the accumulator by the eddy current shutter will be discussed. 8 refs., 3 figs., 2 tabs

  12. Revision of Booster to Storage Ring Transport Line Design and Injection Scheme for Top-Up Operation at NSRRC

    CERN Document Server

    Wang, Min-Huey; Chen, Jenny; Chen June Rong; Hsu, Kuo-Tung; Kuo, Chin-Cheng; Luo, Gwo-Huei

    2005-01-01

    In order to help the operation of constant current, the optics of booster to storage ring transport line (BTS) design is reinvestigated. The initial twiss parameters are derived by measurement. The optics of the transport line is readjusted according to the measured initial beam parameters. The design of pulse width of the injection kicker is also changed from 1.2μsecond to 2.0μsecond. The injection scheme is reviewed and the effects of the kicker error on both injected beam and stored beam are investigated and shown in this report.

  13. LEP beampipe section

    CERN Multimedia

    1989-01-01

    Short section of beampipe from the Large Electron Positron collider (LEP, for short). With its 27-kilometre circumference, LEP was the largest electron-positron accelerator ever built and ran from 1989 to 2000 at CERN. During 11 years of research, LEP's experiments provided a detailed study of the electroweak interaction. Measurements performed at LEP also proved that there are three – and only three – generations of particles of matter. LEP was closed down on 2 November 2000 to make way for the construction of the Large Hadron Collider in the same tunnel.

  14. Effect of saturating ferrite on the field in a prototype kicker magnet

    International Nuclear Information System (INIS)

    Barnes, M.J.; Wait, G.D.

    1994-06-01

    The field rise for kicker magnets is often specified between 1% and 99% of full strength. Three-gap thyratrons are frequently used as switches for kicker magnet systems. These thyratrons turn on in three stages: the collapse of voltage across one gap causes a displacement current to flow in the parasitic capacitance of off-state gap(s). The displacement current flows in the external circuit and can thus increase the effective rise-time of the field in the kicker magnet. One promising method of decreasing the effect of the displacement current involves the use of saturating ferrites. Another method for achieving the specified rise-time and 'flatness' for the kick strength is to utilize speed-up networks in the electrical circuit. Measurements have been carried out on a prototype kicker magnet with a speed-up network and various geometries of saturating ferrite. Measurements and PSpice calculations are presented. (author)

  15. Simulation study of electron cloud build up in the SPS MKD kickers

    CERN Document Server

    Rumolo, G

    2009-01-01

    During the 2008 run, an unusual behavior characterizing pressure and temperature increase in some of the dump kickers of the SPS was noticed. In particular, it was observed that 1) the MKDV2 kicker would exhibit maximum heating with 75 ns spaced LHC beams and 2) the pressure rise was specially critical in MKDV1 in presence of 50 ns spaced LHC beams [1]. While the anomalous heating of MKDV2 with 75 ns beams could be tentatively explained by the denser beam current spectrum that would more likely hit one of the kicker impedance peaks, the fast pressure rise in MKDV1 with 50 ns spaced beams was ascribed to a surface effect, namely beam induced multipacting leading to electron cloud formation. This report summarizes a simulation study that was done in order to check whether the electron cloud behavior in the dump kickers could explain the experimental observations.

  16. RHIC BEAM ABORT KICKER POWER SUPPLY SYSTEM COMMISSIONING EXPERIENCE AND REMAINING ISSUES

    International Nuclear Information System (INIS)

    ZHANG, W.; AHRENS, L.A.; MI, J.; OERTER, B.; SANDERS, R.; SANDBERG, J.

    2001-01-01

    The RHIC Beam Abort Kicker Power Supply Systems commissioning experience and the remaining issues will be reported in this paper. The RHIC Blue Ring Beam Abort Kicker Power Supply System initial commissioning took place in June 1999. Its identical system in Yellow Ring was brought on line during Spring 2000. Each of the RHIC Beam Abort Kicker Power Supply Systems consists of five high voltage modulators and subsystems. These systems are critical devices for RHIC machine protection and environmental protection. They are required to be effective, reliable and operating with sufficient redundancy to safely abort the beam to its beam dump at the end of accumulation or at any time when they are commanded. To deflect 66 GeV ion beam to the beam absorbers, the RHIC Beam Abort Kicker Power Supply Systems were operated at 22 kV level. The RHIC 2000 commissioning run was very successful

  17. LEP tunnel monorail

    CERN Multimedia

    1985-01-01

    A monorail from CERN's Large Electron Positron collider (LEP, for short). It ran around the 27km tunnel, transporting equipment and personnel. With its 27-kilometre circumference, LEP was the largest electron-positron accelerator ever built and ran from 1989 to 2000. During 11 years of research, LEP's experiments provided a detailed study of the electroweak interaction. Measurements performed at LEP also proved that there are three – and only three – generations of particles of matter. LEP was closed down on 2 November 2000 to make way for the construction of the Large Hadron Collider in the same tunnel.

  18. Simulation and measurement of the electrostatic beam kicker in the low-energy undulator test line

    International Nuclear Information System (INIS)

    Waldschmidt, G. J.

    1998-01-01

    An electrostatic kicker has been constructed for use in the Low-Energy Undulator Test Line (LEUTL) at the Advanced Photon Source (APS). The function of the kicker is to limit the amount of beam current to be accelerated by the APS linac. Two electrodes within the kicker create an electric field that adjusts the trajectory of the beam. This paper will explore the static fields that are set up between the offset electrode plates and determine the reaction of the beam to this field. The kicker was numerically simulated using the electromagnetic solver package MAFIA [1

  19. Design of fast kickers for the ISABELLE beam abort system

    International Nuclear Information System (INIS)

    Nawrocky, R.J.; Montemurro, P.A.; Baron, J.

    1981-01-01

    The ISA beam abort (extraction) system must be highly efficient, in the sense of producing minimum beam loss, and reliable to prevent serious damage to accelerator components by the circulating high-energy beams. Since the stored beams will be debunched, the low-loss requirement can be met only with ultra-thin extraction septa and/or fast-acting kickers. This paper examines the design of the ISA extraction kickers subject to a set of extraction channel constraints and a given maximum working voltage. Expressions are derived for determining system parameters for both a lumped parameter magnet and a delay-line magnet. Using these relationships, design parameters are worked out for several possible system configurations. The paper also describes the construction of a full-scale prototype module of the kicker and summarizes the preliminary test results obtained with the module

  20. Dynamic devices: A primer on pickups and kickers

    International Nuclear Information System (INIS)

    Goldberg, D.A.; Lambertson, G.R.

    1991-11-01

    A charged-particle beam generates electromagnetic fields which in turn interact with the beam's surroundings. These interactions can produce fields which act back on the beam itself, or, if the ''surroundings'' are of suitably designed form (e.g., sensing electrodes with electrical connection to the ''outside world''), can provide information on various properties of the beam; such electrodes are generally known as pickups. Similarly, charged- particle beams respond to the presence of externally imposed electromagnetic fields; devices used to generate such fields are generally known as kickers. As we shall show, the behavior of an electrode system when it functions as a pickup is intimately related to its behavior as a kicker. A number of papers on pickup behavior have appeared in recent years in most of which the primary emphasis has been on beam instrumentation; there have also been several workshops on the subject. There have been several papers which have treated both pickup and kicker behavior of a particular electrode system, but this has been done in the context of discussing a specialized application, such as a stochastic cooling system. The approach in the present paper is similar to that of earlier works by one of the authors, which is to provide a unified treatment of pickup and kicker behavior, and, it is hoped, to give the reader an understanding which is both general and fundamental enough to make the above references easily accessible to him. As implied by the revised title, we have done the re-writing with the non-expert in mind. We have made the introduction both lengthier and more detailed, and done the same with much of the explanatory material and discussion

  1. Dynamic devices: A primer on pickups and kickers

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, D.A.; Lambertson, G.R.

    1991-11-01

    A charged-particle beam generates electromagnetic fields which in turn interact with the beam`s surroundings. These interactions can produce fields which act back on the beam itself, or, if the ``surroundings`` are of suitably designed form (e.g., sensing electrodes with electrical connection to the ``outside world``), can provide information on various properties of the beam; such electrodes are generally known as pickups. Similarly, charged- particle beams respond to the presence of externally imposed electromagnetic fields; devices used to generate such fields are generally known as kickers. As we shall show, the behavior of an electrode system when it functions as a pickup is intimately related to its behavior as a kicker. A number of papers on pickup behavior have appeared in recent years in most of which the primary emphasis has been on beam instrumentation; there have also been several workshops on the subject. There have been several papers which have treated both pickup and kicker behavior of a particular electrode system, but this has been done in the context of discussing a specialized application, such as a stochastic cooling system. The approach in the present paper is similar to that of earlier works by one of the authors, which is to provide a unified treatment of pickup and kicker behavior, and, it is hoped, to give the reader an understanding which is both general and fundamental enough to make the above references easily accessible to him. As implied by the revised title, we have done the re-writing with the non-expert in mind. We have made the introduction both lengthier and more detailed, and done the same with much of the explanatory material and discussion.

  2. CERN: LEP in the Alps

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: In January, when CERN's LEP electron-positron collider is enjoying a well-earned break, it has now become traditional for the hard pressed LEP team to have no respite. Instead they pack their bags and depart for Chamonix in the nearby French Alps to review the past year's experience and plan for the future. In the cold January 1993 light of Chamonix, 1992 (January/February, page 4) was deemed to have been a good year for LEP operations, with the switch to 90° betatron phase operation having paid off. The 65% improvement in integrated luminosity over 1991 was attributed to longer beam lifetimes, faster filling and improved overall efficiency. The commissioning of the eight-bunch 'pretzel' scheme was facilitated with the new optics, and break-even quickly achieved, so that physics could benefit from more bunches in the machine. During 1992, the injection chain was fully tested with eight bunches, and when this comes into routine operation this year, the pretzel scheme will benefit. Pretzel running also opens the possibility of still higher luminosity, up to 2x10 31 per sq cm per s, doubling the present level. However the finishing touches to high luminosity running are still more an art ('haute cuisine') than a science. Continuing studies of the inter correlation of different LEP conditions will help make this more systematic. The main factors affecting performance at 45 GeV are transverse mode coupling instabilities. The present working point gives good results, but there are still potentially interesting regions which need to be checked out. Beam lifetime and background are both limited by beam size and aperture. Background was reduced by improved focusing, while beam size is dominated by beam-beam effects. 90° operation proved its worth in 1992, but the inability to produce polarized beams was a disappointment, and a combined 90°/60° horizontal/vertical combination looked like offering the best of both worlds. Although

  3. Some fast beam kicker magnet systems at SLAC

    International Nuclear Information System (INIS)

    Bulos, F.; Cassel, R.L.; Donaldson, A.R.

    1987-01-01

    The Stanford Linear Collider requires very fast rise and fall times from its kicker magnets. The damping rings and positron source need either one or two bunches deflected from two or three that are separated in time by about 59 ns. The final focus region kicker magnets need a rise time of less than 700 ns and each one deflects only one bunch. This paper discusses the design and characteristics of a thyratron-switched, castor-oil-filled, coaxial, Blumlein line used for one bunch kicking. It discharges a 118 ns (at the base), 50 kV, 3 kA pulse into a 33 cm long, ferrite-loaded, kicker magnet of rectangular coaxial-line geometry, which in turn is terminated by a matched load. Reference is made to a Fermilab (FNAL) designed magnet and a dual-thyratron pulsar that will deflect two serial bunches in or out of the electron ring. Also, a brief description of the final focus magnet is given. Work is continuing on the various subsystem components to decrease the pulse rise and fall time, flattop ripple and jitter and to reduce some of the sources of noise and hv breakdown

  4. Slot-type kicker for the AA stochastic cooling

    CERN Multimedia

    Photographic Service

    1979-01-01

    A "slotted transmission line" structure was used for both pickups and the kicker of one of the stochastic cooling systems of the Antiproton Accumulator (AA). They served for the cooling of the high-density stack, in momentum and in both transverse planes. In the beginning in a single band, 1-2 GHz, later in 3 bands, 1-2, 2-4 and 4-8 GHz. The kicker of the first generation, shown here, was located where the dispersion was zero and the beam size small, and thus had a quadratic cross-section. The pickups were rectangular and wider in the horizontal plane. See also 7906193

  5. Dynamic devices: A primer on pickups and kickers

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, D.A.; Lambertson, G.R.

    1991-11-01

    A charged-particle beam generates electromagnetic fields which in turn interact with the beam's surroundings. These interactions can produce fields which act back on the beam itself, or, if the surroundings'' are of suitably designed form (e.g., sensing electrodes with electrical connection to the outside world''), can provide information on various properties of the beam; such electrodes are generally known as pickups. Similarly, charged- particle beams respond to the presence of externally imposed electromagnetic fields; devices used to generate such fields are generally known as kickers. As we shall show, the behavior of an electrode system when it functions as a pickup is intimately related to its behavior as a kicker. A number of papers on pickup behavior have appeared in recent years in most of which the primary emphasis has been on beam instrumentation; there have also been several workshops on the subject. There have been several papers which have treated both pickup and kicker behavior of a particular electrode system, but this has been done in the context of discussing a specialized application, such as a stochastic cooling system. The approach in the present paper is similar to that of earlier works by one of the authors, which is to provide a unified treatment of pickup and kicker behavior, and, it is hoped, to give the reader an understanding which is both general and fundamental enough to make the above references easily accessible to him. As implied by the revised title, we have done the re-writing with the non-expert in mind. We have made the introduction both lengthier and more detailed, and done the same with much of the explanatory material and discussion.

  6. A Retrofit Technique for Kicker Beam-Coupling Impedance Reduction

    CERN Document Server

    Caspers, Friedhelm; Kroyer, T; Timmins, M; Uythoven, J; Kurennoy, S

    2004-01-01

    The reduction of the impedance of operational ferrite kicker structures may be desirable in order to avoid rebuilding such a device. Often resistively coated ceramic plates or tubes are installed for this purpose but at the expense of available aperture. Ceramic U-shaped profiles with a resistive coating fitting between the ellipse of the beam and the rectangular kicker aperture have been used to significantly reduce the impedance of the magnet, while having a limited effect on the available physical aperture. Details of this method, constraints, measurements and simulation results as well as practical aspects are presented and discussed.

  7. CERN: Physics at LEP2

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1994-12-15

    With the LEP2 project pushing ahead to boost CERN's LEP electronpositron collider to higher energy, in February a Workshop on Physics at LEP2 will review the studies for the preparation and interpretation of LEP2 data. The organization of this Workshop and its final report will resemble the 1989 Workshop on Z Physics at LEP1.

  8. Experience with Kicker Beam Coupling Reduction Techniques

    CERN Document Server

    Gaxiola, Enrique; Caspers, Friedhelm; Ducimetière, Laurent; Kroyer, Tom

    2005-01-01

    SPS beam impedance is still one of the worries for operation with nominal LHC beam over longer periods, once the final configuration will be installed in 2006. Several CERN SPS kickers suffer from significant beam induced ferrite heating. In specific cases, for instance beam scrubbing, the temperature of certain ferrite yokes went beyond the Curie point. Several retrofit impedance reduction techniques have been investigated theoretically and with practical tests. We report on experience gained during the 2004 SPS operation with resistively coated ceramic inserts in terms of kicker heating, pulse rise time, operating voltage, and vacuum behaviour. For another technique using interleaved metallic stripes we observed significant improvements in bench measurements. Advantages and drawbacks of both methods and potential combinations of them are discussed and simulation as well as measured data are shown. Prospects for further improvements beyond 2006 are briefly outlined.

  9. CERN: Physics at LEP2

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    With the LEP2 project pushing ahead to boost CERN's LEP electronpositron collider to higher energy, in February a Workshop on Physics at LEP2 will review the studies for the preparation and interpretation of LEP2 data. The organization of this Workshop and its final report will resemble the 1989 Workshop on Z Physics at LEP1

  10. The injection and extraction of SSRF booster

    International Nuclear Information System (INIS)

    Li Yuan; Li Haohu; Liu Guimin; Li Deming

    2008-01-01

    The layout of injection and extraction system were introduced in this paper. The horizontal and vertical injection acceptance are about 23 πmm·mrad and 37 πmm·mrad, respectively, while emittance of the injected beam is 9 πmm·mrad (3σ). This ensures the high injection efficiency. Three slow kickers can form a good bump. The inside position of the entrance of septum is set to 15 mm, where the bumped beam and the extraction beam are 10 mm and 22 mm, respectively, far from the booster central orbit. (authors)

  11. Design of barrier bucket kicker control system

    Science.gov (United States)

    Ni, Fa-Fu; Wang, Yan-Yu; Yin, Jun; Zhou, De-Tai; Shen, Guo-Dong; Zheng, Yang-De.; Zhang, Jian-Chuan; Yin, Jia; Bai, Xiao; Ma, Xiao-Li

    2018-05-01

    The Heavy-Ion Research Facility in Lanzhou (HIRFL) contains two synchrotrons: the main cooler storage ring (CSRm) and the experimental cooler storage ring (CSRe). Beams are extracted from CSRm, and injected into CSRe. To apply the Barrier Bucket (BB) method on the CSRe beam accumulation, a new BB technology based kicker control system was designed and implemented. The controller of the system is implemented using an Advanced Reduced Instruction Set Computer (RISC) Machine (ARM) chip and a field-programmable gate array (FPGA) chip. Within the architecture, ARM is responsible for data presetting and floating number arithmetic processing. The FPGA computes the RF phase point of the two rings and offers more accurate control of the time delay. An online preliminary experiment on HIRFL was also designed to verify the functionalities of the control system. The result shows that the reference trigger point of two different sinusoidal RF signals for an arbitrary phase point was acquired with a matched phase error below 1° (approximately 2.1 ns), and the step delay time better than 2 ns were realized.

  12. Fast Kicker for High Current Beam Manipulation in Large Aperture

    CERN Document Server

    Gambaryan, V

    2017-01-01

    The pulsed deflecting magnet (kicker) project was worked out in Budker Institute of Nuclear Physics. The kicker design parameters are: impulsive force, 1 mT*m; pulse edge, 5 ns; impulse duration, 200 ns. The unconventional approach is that the plates must be replaced by a set of cylinders. The obtained magnet construction enables the field homogeneity to be controlled by changing current magnitudes in cylinders. Furthermore, we demonstrated the method of field optimization. In addition, measurement technique for the harmonic components was considered and the possibility of control harmonic components value was demonstrated.

  13. Investigation of an Ultrafast Harmonic Resonant RF Kicker

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yulu [Univ. of Chinese Academy of Sciences (CAS), Beijing (China)

    2016-10-01

    square pulse, and get a Flat-Top waveform which will give a uniform kick over the bunch length of the kicked electron bunches, thus the transverse emittance of these kicked electron bunches can be maintained. By using two identical kickers with the betatron phase advance of 180 degree or its odd multiples, the residual kick voltage wave slopes at the unkicked bunch position will be totally cancelled out. Flat-Top waveform combined with two kicker scheme, the transverse emittance of the cooling electron bunches will be conserved during the whole injection, recirculation, and ejection processes. In the cavity design part, firstly, the cavity geometry is optimized to get high transverse shunt impedance thus less than 100 W of RF losses on the cavity wall can be achieved for all these 10 harmonic modes. To support all these 10 harmonic modes, group of four QWRs are adopted with the mode distribution of 5:3:1:1. In the multi-frequency cavities such as the five-mode-cavity and the three-mode-cavity, tunings are required to achieve the design frequencies for each mode. Slight segments of taper design on the inner conductor help to get the frequencies to be exactly on the odd harmonic modes. Stub tuners equal to the number of resonant modes are inserted to the outer conductor wall to compensate the frequency shifts due manufacturing errors and other perturbations during the operation such as the change of the cavity temperature. Single loop couple is designed for all harmonic modes in each cavity. By adjusting its loop size, position and rotation, it is possible to get the fundamental mode critical coupled and other higher harmonic modes slightly over coupled. A broadband circulator will be considered for absorbing the reflected power. Finally in this part, multipole field components due to the asymmetric cylindrical structure around the beam axis of the cavity as well as the beam-induced higher order mode (HOM) issues will be analyzed and discussed in this thesis. A half

  14. Spiral kicker for the beam abort system

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.L.

    1983-01-01

    A brief study was carried out to determine the feasibility of a special kicker to produce a damped spiral beam at the beam dump for the beam abort system. There appears to be no problem with realizing this concept at a reasonably low cost.

  15. Spiral kicker for the beam abort system

    International Nuclear Information System (INIS)

    Martin, R.L.

    1983-01-01

    A brief study was carried out to determine the feasibility of a special kicker to produce a damped spiral beam at the beam dump for the beam abort system. There appears to be no problem with realizing this concept at a reasonably low cost

  16. Leg mass characteristics of accurate and inaccurate kickers--an Australian football perspective.

    Science.gov (United States)

    Hart, Nicolas H; Nimphius, Sophia; Cochrane, Jodie L; Newton, Robert U

    2013-01-01

    Athletic profiling provides valuable information to sport scientists, assisting in the optimal design of strength and conditioning programmes. Understanding the influence these physical characteristics may have on the generation of kicking accuracy is advantageous. The aim of this study was to profile and compare the lower limb mass characteristics of accurate and inaccurate Australian footballers. Thirty-one players were recruited from the Western Australian Football League to perform ten drop punt kicks over 20 metres to a player target. Players were separated into accurate (n = 15) and inaccurate (n = 16) groups, with leg mass characteristics assessed using whole body dual energy x-ray absorptiometry (DXA) scans. Accurate kickers demonstrated significantly greater relative lean mass (P ≤ 0.004) and significantly lower relative fat mass (P ≤ 0.024) across all segments of the kicking and support limbs, while also exhibiting significantly higher intra-limb lean-to-fat mass ratios for all segments across both limbs (P ≤ 0.009). Inaccurate kickers also produced significantly larger asymmetries between limbs than accurate kickers (P ≤ 0.028), showing considerably lower lean mass in their support leg. These results illustrate a difference in leg mass characteristics between accurate and inaccurate kickers, highlighting the potential influence these may have on technical proficiency of the drop punt.

  17. Analysis of the electrical noise from the APS kicker magnet power supplies

    International Nuclear Information System (INIS)

    Carwardine, J.A.; Wang, J.

    1995-01-01

    The APS kicker magnet power supplies deliver damped sinusoidal currents in excess of 2400A peak with a half-period of 300ns to the kicker magnets. Conducted and radiated electromagnetic interference (EMI) is created by this system in the low megahertz range. This interference affects a number of beam diagnostics in the APS injector. The sources and coupling mechanisms for the EMI generated by this system are described and solutions discussed

  18. LEP Traceability

    CERN Document Server

    Billen, R

    2000-01-01

    After more than ten years of production for high energy physics, CERN's current flagship, LEP, will be closed down definitively October 1st, 2000. Starting immediately, some 30,000 tonnes of LEP materials will be removed from the tunnel to make room for LHC installation. The dismantling project is a major undertaking in terms of resources and constraints, which has to be completed in less than one year. Moreover, since LEP is classified as a nuclear installation in France (as if it was a nuclear power plant), special procedures have to be followed in addition to the normal environmental and safety issues. One major facet of the project is the "traceability" of everything that comes out of the LEP tunnel. This implies that each piece of equipment must be identified and tracked from its origin through any temporary storage to its final destination. Special procedures have to be followed for all materials even if they are not radioactive. As much of the equipment as possible will be recycled or disposed of. This...

  19. Kicker for the SLC electron damping ring

    International Nuclear Information System (INIS)

    Bartelson, L.; Crawford, C.; Dinkel, J.; Kerns, Q.; Howell, J.; Snowdon, S.; Walton, J.

    1987-01-01

    The SLC electron damping ring requires two kickers each providing a 5 mr kick at 1.2 GEV to pairs of electron bunches spaced 61.63 nsec apart. The exact shape of the kick is unimportant, but the specification applies to the field the bunches see

  20. Multijets at LEP

    CERN Document Server

    Lutz, P

    1996-01-01

    At LEP 2, multi-jet events will become an important subject, both for standard physics (measurements of the W boson mass and the three-boson couplings) and in direct searches for new particles within or beyond the Standard Model. This presentation gives a comprehensive report of what has been learnt in this field at LEP 1 and LEP 1.5, emphasizing the measurements of the colour factors in QCD and the difficulties encountered when searching Higgs bosons in multi-jet events.

  1. LEP is upgraded

    CERN Multimedia

    1995-01-01

    A superconducting radio-frequency cavity is installed on the Large Electron-Positron (LEP) collider. This upgrade, known as LEP-2, allowed the accelerator to reach new, higher energies and so investigate new areas of physics.

  2. Dilution kicker for the SPS beam dump

    CERN Multimedia

    1974-01-01

    In order to reduce thermal stress on the SPS dump material, the fast-ejected beam was swept horizontally across the dump. This was done with the "dilution kicker" MKDH, still in use at the time of writing. The person on the left is Manfred Mayer. See also 7404072X.

  3. submitter LEP Higgs

    CERN Document Server

    Mori, T

    2001-01-01

    As the LEP experiments verified the gauge interactions more and more rigorously, searches for the Higgs boson, which forms the very basis of the gauge theories, were taking on more and more importance in LEP physics. How this last missing particle in the Standard Model may be discovered (or totally excluded) will be the key to new physics beyond the Standard Model. Here I briefly describe how the LEP experiments together have closed in on this God particle during their 11 year running.

  4. Beam coupling impedance of fast stripline beam kickers

    International Nuclear Information System (INIS)

    Caporaso, G; Chen, Y J; Nelson, A D; Poole, B R

    1999-01-01

    A fast stripline beam kicker is used to dynamically switch a high current electron beam between two beamlines. The transverse dipole impedance of a stripline beam kicker has been previously determined from a simple transmission line model of the structure. This model did not include effects due to the long axial slots along the structure as well as the cavities and coaxial feed transition sections at the ends of the structure. 3-D time domain simulations show that the simple transmission line model underestimates the low frequency dipole beam coupling impedance by about 20% for our structure. In addition, the end cavities and transition sections can exhibit dipole impedances not included in the transmission line model. For high current beams, these additional dipole coupling terms can provide additional beam-induced steering effects not included in the transmission line model of the structure

  5. Fast luminosity monitor at LEP

    International Nuclear Information System (INIS)

    Bini, C.; De Pedis, D.; De Zorzi, G.; Diambrini-Palazzi, G.; Di Cosimo, G.; Di Domenico, A.; Gauzzi, P.; Zanello, D.

    1994-01-01

    In 1990 the LEP-5 experiment measured luminosity at LEP by detecting the single bremsstrahlung photons emitted in the e + e - collisions. In 1991 the experiment was upgraded to exploit the intrinsic high speed of the method which allows luminosity measurement of the single bunches of LEP. In this paper the LEP-5 upgrade is described and the results of a test performed are discussed. ((orig.))

  6. After LEP

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The idea emerged for a ring of superconducting magnets, installed above the LEP ring, to collide protons together (or protons with antiprotons) at as high an energy as possible. Some work has been done to firm up the ideas for the new Collider: determining the best configuration for the proton-proton option and establishing its advantages over a realistic proton-antiproton option; assessing collisions between the electron beam of LEP and one proton beam; designing a complete section of the machine; making tentative designs of superconducting magnets providing between 8 and 10 tesla, and working out a European magnet development programme towards this goal; outlining where and how the various types of collisions could be exploited in the LEP tunnel. (orig./HSI).

  7. Groundbreaking for LEP

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    On 13 September, CERN found itself once more in the international spotlight when President Frangois Mitterrand of France and President Pierre Aubert of Switzerland arrived for the official 'groundbreaking' ceremony for the 27-kilometre ring of the LEP electron-positron collider. As well as the Presidents of the two CERN host states under whose territory LEP will be constructed, there were ranking representatives of the CERN Member States, together with those of other countries who will take part in the first LEP experiments, expanding further the already large community of CERN users

  8. Steering the LEP project

    International Nuclear Information System (INIS)

    Adams, J.B.

    1979-01-01

    The plans for LEP are discussed with particular reference to the economic and political aspects rather than the scientific ones. The author outlines the steps which must be taken and the obstacles to be overcome before LEP can be built. Specific points considered are the energy of LEP, its size and siting and the cost and energy consumption. (W.D.L.)

  9. LEP superconducting cavity

    CERN Multimedia

    1995-01-01

    Engineers work in a clean room on one of the superconducting cavities for the upgrade to the LEP accelerator, known as LEP-2. The use of superconductors allow higher electric fields to be produced so that higher beam energies can be reached.

  10. A FET based kicker for a charge booster for the TRIUMF ISAC project

    International Nuclear Information System (INIS)

    Barnes, M.J.; Wait, G.D.

    2001-07-01

    A charge booster unit is required as part of an upgrade to the ISAC facility at TRIUMF. ISAC is an isotope separator coupled to an accelerator. ISAC is presently capable of accelerating only isotopes with atomic mass up to 30. The charge booster will allow ISAC to accelerate all the masses in the periodic table. A fast kicker system has been built to study the characteristics of an existing charge booster, designed by ISN in Grenoble, to assess the suitability of using this charge booster at TRIUMF. This fast kicker will subsequently be used in the TRIUMF ISAC facility for time of flight separation of the chosen charge and to recycle the higher and lower charges back to the charge booster. This will increase the efficiency from 10% to 60%. The kicker system includes a pair of deflector plates. One plate is charged up to -3.5 kV by a PET based modulator, while the other plate is held at ground potential. The modulator consists of two stacks of FETs operating in push pull with variable output voltage, pulse width, and repetition rate from virtually DC to 52 kHz. The measured high voltage output pulse rise and fall times are 63 ns and the minimum pulse width is 350 ns. The maximum pulse width is dependent upon the repetition rate. The large dynamic range for the repetition rate and pulse width required a novel circuit design and control technique, which also resulted in an energy efficient kicker system. This paper describes the design of the kicker system and shows the results of measurements. (author)

  11. CAD for LEP

    CERN Multimedia

    1983-01-01

    A work station of the Computer-Aided Design system which was installed in 1982 to aid in the mechanics design for LEP. Visible on the screen is a design made for a pick-up for LEP. See Annual Report 1982 p. 79, Fig. 2.

  12. submitter LEP precision results

    CERN Document Server

    Kawamoto, T

    2001-01-01

    Precision measurements at LEP are reviewed, with main focus on the electroweak measurements and tests of the Standard Model. Constraints placed by the LEP measurements on possible new physics are also discussed.

  13. Development of the kicker magnet system for the IHEP accelerator

    International Nuclear Information System (INIS)

    Andreev, V.N.; Kurnaev, O.V.; Sychev, V.A.; Trofimov, Yu.D.

    1982-01-01

    The KM-14 kicker magnet intended for joint operation with the KM-16 kicker magnet in the U-70 accelerator fast beam extraction system is described. The main characteristics and specific features of the magnet, pulse generators and power supplies are considered. The total aperture type KM-14 magnet (aperture height is equal to 100 mm, its width amounts 150 mm) consists of four modules which are supplied in pair-parallel by two pulse generators. The length of each module is 0.56 m, the field in a gap amounts 0.045 Tl. Joint use of the KM-14 and KM-16 magnets provides beam shooting into bending septum magnet when operating with the booster and beam extraction in the direction of the storage-accelerator complex

  14. Dealing with abort kicker prefire in the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Drozhdin, A.I.; Baishev, I.S.; Mokhov, N.V.; Parker, B.; Richardson, R.D.; Zhou, J.

    1993-05-01

    The Superconducting Super Collider uses a single-turn extraction abort system to divert the circulating beam to a massive graphite absorber at normal termination of the operating cycle or in case of any of a number of predefined fault modes. The Collider rings must be designed to be tolerant to abort extraction kicker prefires and misfires because of the large circulating beam energy. We have studied the consequences of beam loss in the accelerator due to such prefires and misfires in terms of material heating and radiation generation using full scale machine simulations and Monte-Carlo energy deposition calculations. Some results from these calculations as well as possible protective measures for minimizing the damaging effects of kicker prefire and misfire are discussed in this paper

  15. Injection and lessons for 2012

    International Nuclear Information System (INIS)

    Bracco, C.; Barnes, M.J.; Bartmann, W.; Cornelis, K.; Drosdal, L.N.; Goddard, B.; Kain, V.; Meddahi, M.; Mertens, V.; Uythoven, J.

    2012-01-01

    Injection of 144 bunches into the LHC became fully operational during the 2011 run and one nominal injection of 288 bunches was accomplished. Several mitigation solutions were put in place to minimise losses from the Transfer Line (TL) collimators and losses from kicking de-bunched beam during injection. Nevertheless, shot-by- shot and bunch-by-bunch trajectory variations, as well as long terms drifts, were observed and required a regular re-steering of the TL implying a non negligible amount of time spent for injection setup. Likely sources of instability have been identified (i.e. MKE and MSE ripples) and possible cures to optimise 2012 operation are presented. Well defined references for TL steering will be defined in a more rigorous way in order to allow a more straightforward and faster injection setup. Encountered and potential issues of the injection system, in particular the injection kickers MKI, are discussed also in view of injections with a higher number of bunches. (authors)

  16. Injection and lessons for 2012

    CERN Document Server

    Bracco, C; Bartmann, W; Cornelis, K; Drosdal, L N; Goddard, B; Kain, V; Meddahi, M; Mertens, V; Uythoven, J

    2012-01-01

    Injection of 144 bunches into the LHC became fully operational during the 2011 run and a nominal injection of 288 bunches was accomplished during MD time. Several mitigation solutions were put in place to minimise losses from the transfer line (TL) collimators and losses from kicking debunched beam during injection. Nevertheless, shot-by-shot and bunch-by-bunch trajectory variations, as well as long terms drifts, were observed and required a regular resteering of the TL implying a non negligible amount of time spent for injection setup. Likely sources of instability have been identified (i.e. MKE and MSE ripples) and possible cures to optimise 2012 operation are presented. Well defined references for TL steering will be defined in a more rigorous way in order to allow a more straightforward and faster injection setup. Encountered and potential issues of the injection system, in particular the injection kickers MKI, are discussed also in view of injections with a higher number of bunches.

  17. One magnet module of the full-aperture kicker

    CERN Multimedia

    CERN PhotoLab

    1973-01-01

    Nine such modules, in a single vacuum tank, form the complete kicker. Ferrite rings (not visible), in conjunction with the capacitance between the plates, create the electrical equivalent of a transmission line. A fast 40 kV pulse is applied, and field rise times of 70-80 nanoseconds can be obtained.

  18. CERN: End of LEP's Z era

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-11-15

    Full text: Achapter of history at CERN's LEP electron-positron collider closed in October when the four big experiments, Aleph, Delphi, L3 and Opal, logged their final data at the Z energy, just over six years after LEP's first Z was detected. The LEP Z era has been one of great success, both in terms of physics results and the advances which have been made with the machine itself. LEP now takes a step towards becoming LEP2, when the energy is wound up from around 45 GeV to about 70 GeV per beam (September, page 6). By the end of LEP's 1995 run, each of the four LEP experiments had seen almost five million Zs. Now the spotlight at LEP shifts to producing pairs of W particles, the electrically charged counterparts of the Z. LEP's first Zs were recorded in August 1989, one month after the machine's first circulating beam. The 30,000 Z decays recorded by each experiment in 1989 confirmed that matter comes in just three distinct families of quarks and leptons. The values of the Z mass and width quoted in 1990 were 91.161 ± 0.031 GeV and 2.534 ± 0.027 GeV. By the beginning of 1995, these had been fine-tuned to the extraordinary accuracy of 91.1884 ± 0.0022 GeV and 2.4963 ± 0.0032 GeV, and when data from this year's run is included, will be even better. These results, combined with precision data from neutrino experiments and from Fermilab's Tevatron protonantiproton collider, have put the Standard Model of quarks and leptons through its most gruelling test yet. Right from the start, collaboration between LEP experiments and the accelerator team has been close, with frequent scheduling meetings determining how the machine is run. For the first few years, LEP ran on a diet of four bunches of electrons and four of positrons, but by the end of 1992, a way had been found to increase the luminosity by squeezing in more bunches. In 1993, the 'pretzel' scheme (October 1992, page 17), so called because of the shape traced out by the circulating beams, was running with eight

  19. In situ degassing of the kicker magnet in J-PARC RCS

    International Nuclear Information System (INIS)

    Kamiya, Junichiro; Ogiwara, Norio; Hikichi, Yusuke; Yanagibashi, Toru; Kinsho, Michikazu

    2015-01-01

    The usual way to reduce outgassing from a device in vacuum is to heat up a whole vacuum chamber containing the device. However, the situation, where this method can be applied, is limited due to the heat expansion of the chamber. Especially in accelerators, where the vacuum chambers are connected with nearby beam pipes, this normal bake-out method may not be applied. If a heat source and heat shields are appropriately installed inside the chamber, heat flux is directed to the device. Therefore the device can be baked out without raising the temperature of the vacuum chamber. One candidate for such bake-out method to be applied is kicker magnets in J-PARC RCS, which are installed in large vacuum chambers. We performed the heating tests with some types of heaters in order to examine the effectiveness of this method and to decide the material and configuration of the heater. As a result, the graphite heater was selected for in-situ bake-out of the kickers in the RCS beam line. Using the method, the each material of kicker magnet was heated up above 100degC with keeping the temperature rise of the vacuum chamber below 30degC. (author)

  20. The LEP program

    International Nuclear Information System (INIS)

    Allaby, J.V.

    1986-01-01

    Details of the LEP program are discussed in this paper. LEP is an electron-positron collider 26 kms in circumference. At present, four interaction regions are to be equipped with experiments, although there is the potential for eight crossing points with four-bunch operation. Before reviewing the experiments, some basic facts about LEP are recalled. The collider is located underground between the outskirts of Geneva and the Jura mountains. The major part of the tunnel in which LEP will be installed will be bored by machine in the ''molasse'' (a kind of sandstone) that lies at depths of several tens of meters below the surface of the ground in this region, which is formed of glacial moraine. However, about one-eighth of the circumference lies under the foothills of the Jura and here the tunnel must pass through the limestone rock where a boring machine cannot be used. Since the surface of the ground is itself not flat over this huge area, the plane of the machine is not horizontal, but slightly inclined to minimize the distance from the surface to the interaction regions; hence, the cost of the access shafts

  1. Transverse beam emittance optimization for the injection into BESSY II

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Felix [Helmholtz Zentrum Berlin, Institut Beschleunigerphysik (Germany); Humboldt-Universitaet zu Berlin, Institut fuer Physik (Germany)

    2016-07-01

    For top up injection into the storage ring BESSY II an average injection efficiency of at least 90% is required. In low alpha mode the injection efficiency does not meet the requirements. Future BESSY II features will include shorter bunches in the storage ring (VSR) and user transparent injection with a non linear kicker. These will raise the demands on the quality of the injected beam even further. This work investigates the development of transverse emittance over the acceleration cycle in the synchrotron and the possibility of transverse emittance exchange by a sequence of skew quadrupoles in the transfer line. Results of emittance measurements and emittance exchange simulations will be given.

  2. LEP experiments take shape

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-05-15

    Excavation of the 27 kilometre tunnel and vast underground caverns for CERN's new LEP electronpositron collider is forging ahead, and equipment for the machine is arriving on the site in increasing quantities ready to attack the huge task of installation. At about the same time that LEP construction work began at CERN in 1983, physicists from some hundred research centres throughout the world began gearing up for the detailed design, construction and testing of the millions of components for the four big detectors – ALEPH, DELPHI, L3 and OPAL – which will study LEP's electron-positron collisions.

  3. LEP experiments take shape

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Excavation of the 27 kilometre tunnel and vast underground caverns for CERN's new LEP electronpositron collider is forging ahead, and equipment for the machine is arriving on the site in increasing quantities ready to attack the huge task of installation. At about the same time that LEP construction work began at CERN in 1983, physicists from some hundred research centres throughout the world began gearing up for the detailed design, construction and testing of the millions of components for the four big detectors – ALEPH, DELPHI, L3 and OPAL – which will study LEP's electron-positron collisions

  4. Thermal analysis of the LHC injection kicker magnets

    Science.gov (United States)

    Vega, L.; Abánades, A.; Barnes, M. J.; Vlachodimitropoulos, V.; Weterings, W.

    2017-07-01

    The CERN Large Hadron Collider LHC is equipped with two fast pulsed magnet systems (MKIs) that inject particle beams coming from the injector chain. Operation with high intensity beams for many hours can lead to significant beam induced heating of the ferrite yokes of the MKIs. When the ferrite exceeds the Curie temperature of 125°C it loses its magnetic properties, preventing further injection until the ferrite cools down, potentially causing a delay of several hours. Hence important upgrades of the beam-screen were implemented after Run 1 of LHC. However, the High-Luminosity (HL) LHC will be operated with significantly higher intensity beams and hence additional measures are required to limit the ferrite temperature. These magnets operate under ultra-high vacuum conditions: convection is negligible and, as a result of low emissivity of the inside of the vacuum tanks, thermal radiation is limited. A detailed study of the thermal behaviour of these magnets is reported and compared with measurements. In addition several options to improve cooling of the ferrites are presented and analysed.

  5. LEP commissioning

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    On 14 July, as ail France celebrated the bicentenary of its revolution, CERN was the scene of a revolution of a very different kind. At 16.30 hrs, a 20 GeV positron beam went round the 27 kilometres (most of which is under French territory) of CERN's new LEP electron-positron storage ring. After more than a decade of careful planning and preparation, almost six years after groundbreaking, and two years after the start of equipment installation, the LEP team delivered on the day they had told people to mark five years ago

  6. Multiplicities and Correlations at LEP

    International Nuclear Information System (INIS)

    Sarkisyan, E.K.G.

    2002-01-01

    A brief review on recent charge multiplicity and correlation measurements at LEP is given. The measurements of un biased gluon jet multiplicity are discussed. Recent results on charged particle Bose-Einstein and Fermi-Dirac correlations at LEP1 are reported. New results on two-particle correlations of neutral pions are given. Correlations of more than two particles (high-order correlations) obtained using different methods are performed. Recent Bose-Einstein correlation measurements at LEP2 are discussed. (author)

  7. Multiplicities and correlations at LEP

    CERN Document Server

    Sarkisyan-Grinbaum, E

    2002-01-01

    A brief review on recent charge multiplicity and correlation measurements at LEP is given. The measurements of unbiased gluon jet multiplicity are discussed. Recent results on charged particle Bose- Einstein and Fermi-Dirac correlations at LEP1. are reported. New results on two-particle correlations of neutral pions are given. Correlations of more than two particles (high-order correlations) obtained using different methods are performed. Recent Bose-Einstein correlation measurements at LEP2 are discussed. (13 refs).

  8. MKI UFOs at Injection

    CERN Document Server

    Baer, T; Bartmann, W; Bracco, C; Carlier, E; Chanavat, C; Drosdal, L; Garrel, N; Goddard, B; Kain, V; Mertens, V; Uythoven, J; Wenninger, J; Zerlauth, M

    2011-01-01

    During the MD, the production mechanism of UFOs at the injection kicker magnets (MKIs) was studied. This was done by pulsing the MKIs on a gap in the circulating beam, which led to an increased number of UFOs. In total 43 UFO type beam loss patterns at the MKIs were observed during the MD. The MD showed that pulsing the MKIs directly induces UFO type beam loss patterns. From the temporal characteristics of the loss profile, estimations about the dynamics of the UFOs are made.

  9. The LEP physics program

    International Nuclear Information System (INIS)

    Davier, M.

    1985-06-01

    The physics program of LEP is reviewed in the context of recent developments from the SpantipS collider. LEP offers the unique possibility to unambiguously explore the particle spectrum up to a mass of 100 GeV i.e. over the mass range typical of the electroweak symmetry breaking. 31 refs.

  10. Focus on LEP

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-12-15

    When it begins operations early in 1989, the LEP electron-positron Collider now being built at CERN will provide beams of some 60 GeV (120 GeV collision energy). However with superconducting radiofrequency acceleration equipment complementing the conventional units, the beam energy eventually could be boosted to about 100 GeV per beam. In parallel with LEP construction, a vigorous development programme for these superconducting cavities has been underway at CERN.

  11. Focus on LEP

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    When it begins operations early in 1989, the LEP electron-positron Collider now being built at CERN will provide beams of some 60 GeV (120 GeV collision energy). However with superconducting radiofrequency acceleration equipment complementing the conventional units, the beam energy eventually could be boosted to about 100 GeV per beam. In parallel with LEP construction, a vigorous development programme for these superconducting cavities has been underway at CERN

  12. The convergent LEP and SPS control systems

    International Nuclear Information System (INIS)

    Altaber, J.

    1987-01-01

    The major design contraint of the control system for LEP is the compatibility with the existing SPS control system. The first reason for this compatibility is to allow a long term convergence of the SPS control system towards the LEP one. The second reason is to operate both LEP and SPS machines from a unique main control room. The distributed architecture of LEP and the existing SPS control systems are described. The design of the equipment interface for both machines is explained. Finally, the infrastructure of the common main control room for LEP and SPS is described

  13. LEP and CEBAF polarimeters

    International Nuclear Information System (INIS)

    Placidi, M.; Burkert, V.; Rossmanith, R.

    1988-01-01

    This paper gives an overview on high energy electron (positron) polarimeters by describing in more detail the plans for the LEP polarimeter and the CEBAF polarimeters. Both LEP and CEBAF will have laser polarimeters. In addition CEBAF will be equipped with a Moller polarimeter (for currents below 1μA). 10 figs

  14. Slot-type pickup/kicker for AA stochastic cooling

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    A "slotted transmission line" was used for both pickups and kickers of the stochastic cooling systems of the AA. They served for the cooling of the high-density antiproton stack, in momentum and both transverse planes. In the beginning in a single band, 1-2 GHz, later in 2 bands, 2-4 and 4-8 GHz. See also 7906190, 7906193.

  15. The PEP injection system

    International Nuclear Information System (INIS)

    Brown, K.L.; Avery, R.T.; Peterson, J.M.

    1988-01-01

    A system to transport 10-to-15-GeV electron and positron beams from the Stanford Linear Accelerator and to inject them into the PEP storage ring under a wide variety of lattice configurations has been designed. Optically, the transport line consists of three 360/degree/ phase-shift sections of FODO lattice, with bending magnets interspersed in such a way as to provide achromaticity, convenience in energy and emittance definition, and independent tuning of the various optical parameters for matching into the ring. The last 360/degree/ of phase shift has 88 milliradians of bend in a vertical plane and deposits the beam at the injection septum via a Lambertson magnet. Injection is accomplished by launching the beam with several centimeters of radial betatron amplitude in a fast bump provided by a triad of pulsed kicker magnets. Radiation damping reduces the collective amplitude quickly enough to allow injection at a high repetition rate

  16. PSR extraction kicker system improvements

    International Nuclear Information System (INIS)

    Hardek, T.W.

    1991-01-01

    A program to improve the reliability of hardware required to operate the Los Alamos Proton Storage Ring has been under way for the past three years. The extraction kicker system for the PSR was identified as one candidate for improvement. Pulse modulators produce 50kV pulses 360 nsec in length at up to 24-Hz pulse repetition rate and drive two 4-meter-long stripline electrodes. Sources of difficulty with this system included short width switch tube lifetime, drive cable electrical breakdown, high-voltage connector failure, and occasional electrode breakdown. This paper discusses modifications completed on this system to correct these difficulties. 2 refs., 3 figs

  17. THE RHIC BEAM ABORT KICKER SYSTEM

    International Nuclear Information System (INIS)

    Hahn, H.

    1999-01-01

    THE ENERGY STORED IN THE RHIC BEAM IS ABOUT 200 KJ PER RING AT DESIGN ENERGY AND INTENSITY. TO PREVENT QUENCHING OF THE SUPERCONDUCTING MAGNETS OR MATERIAL DAMAGE, THE BEAM WILL BE SAFELY DISPOSED OF BY AN INTERNAL BEAM ABORT SYSTEM, WHICH INCLUDES THE KICKER MAGNETS, THE PULSED POWER SUPPLIES, AND THE DUMP ABSORBER. DISPOSAL OF HEAVY IONS, SUCH AS GOLD, IMPOSES DESIGN CONSTRAINTS MORE SEVERE THAN THOSE FOR PROTON BEAMS OF EQUAL INTENSITY. IN ORDER TO MINIMIZE THE THERMAL SHOCK IN THE CARBON-FIBER DUMP BLOCK, THE BUNCHES MUST BE LATERALLY DISPERSED

  18. Drilling a borehole for LEP

    CERN Multimedia

    1981-01-01

    Boreholes were drilled along the earlier proposed line of the LEP tunnel under the Jura to find out the conditions likely to be encountered during the construction of the LEP tunnel (Annual Report 1981 p. 106, Fig. 10).

  19. Monitoring the waste water of LEP

    CERN Document Server

    Rühl, I

    1999-01-01

    Along the LEP sites CERN is discharging water of differing quality and varying amounts into the local rivers. This wastewater is not only process water from different cooling circuits but also water that infiltrates into the LEP tunnel. The quality of the discharged wastewater has to conform to the local environmental legislation of our Host States and therefore has to be monitored constantly. The most difficult aspect regarding the wastewater concerns LEP Point 8 owing to an infiltration of crude oil (petroleum), which is naturally contained in the soil along octant 7-8 of the LEP tunnel. This paper will give a short summary of the modifications made to the oil/water separation unit at LEP Point 8. The aim was to obtain a satisfactory oil/water separation and to install a monitoring system for a permanent measurement of the amount of hydrocarbons in the wastewater.

  20. Precision electroweak physics at LEP

    Energy Technology Data Exchange (ETDEWEB)

    Mannelli, M.

    1994-12-01

    Copious event statistics, a precise understanding of the LEP energy scale, and a favorable experimental situation at the Z{sup 0} resonance have allowed the LEP experiments to provide both dramatic confirmation of the Standard Model of strong and electroweak interactions and to place substantially improved constraints on the parameters of the model. The author concentrates on those measurements relevant to the electroweak sector. It will be seen that the precision of these measurements probes sensitively the structure of the Standard Model at the one-loop level, where the calculation of the observables measured at LEP is affected by the value chosen for the top quark mass. One finds that the LEP measurements are consistent with the Standard Model, but only if the mass of the top quark is measured to be within a restricted range of about 20 GeV.

  1. Mechanical design of ceramic beam tube braze joints for NOvA kicker magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ader, C.R.; Reilly, R.E.; Wilson, J.H.; /Fermilab

    2010-05-01

    The NO?A Experiment will construct a detector optimized for electron neutrino detection in the existing NuMI neutrino beam. The NuMI beam line is capable of operating at 400 kW of primary beam power and the upgrade will allow up to 700 kW. Ceramic beam tubes are utilized in numerous kicker magnets in different accelerator rings at Fermi National Accelerator Laboratory. Kovar flanges are brazed onto each beam tube end, since kovar and high alumina ceramic have similar expansion curves. The tube, kovar flange, end piece, and braze foil alloy brazing material are stacked in the furnace and then brazed. The most challenging aspect of fabricating kicker magnets in recent years have been making hermetic vacuum seals on the braze joints between the ceramic and flange. Numerous process variables can influence the robustness of conventional metal/ceramic brazing processes. The ceramic-filler metal interface is normally the weak layer when failure does not occur within the ceramic. Differences between active brazing filler metal and the moly-manganese process will be discussed along with the applicable results of these techniques used for Fermilab production kicker tubes.

  2. Review of LEP results

    CERN Document Server

    Parodi, F

    2001-01-01

    I present a review of the results obtained during 10 years of activity in b-physics at LEP. Special emphasis is put on measurements that attained precisions not even envisaged at the beginning of the LEP programme (V/sub ub/ and Delta m/sub s/). Finally the impact of these measurements on the CKM parameters determination is presented. (16 refs).

  3. submitter Searches at LEP

    CERN Document Server

    Kawagoe, Kiyotomo

    2001-01-01

    Searches for new particles and new physics were extensively performed at LEP. Although no evidence for new particle/physics was discovered, the null results set very stringent limits to theories beyond the standard model. In this paper, searches at LEP and anomalies observed in the searches are presented. Future prospect of searches at the new energy frontier machines is also discussed.

  4. Raising the last LEP dipole

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    The last of the 3280 dipole magnets from the Large Electron-Positron (LEP) collider is seen on its journey to the surface on 12 February 2002. The LEP era, which began at CERN in 1989 and ended 2000, comes to an end.

  5. Physics at LEP

    International Nuclear Information System (INIS)

    Ellis, J.; Peccei, R.

    1986-01-01

    This report surveys physics which may be investigated at LEP, the Large Electron-Positron collider under construction at CERN. Five general areas are emphasized, namely: precision measurements at the Z 0 peak; studies of toponium; searches for possible new particles; QCD, γγ, and heavy quark studies; and experiments at the highest LEP energies up to and beyond the W + W - pair-production threshold. Wherever possible, full cross section formulae are given, together with references to the original literature where more details may be found. (orig.)

  6. Optimization of speed-up network component values for the 30 Ω resistively terminated prototype kicker magnet

    International Nuclear Information System (INIS)

    Barnes, M.J.; Wait, G.D.

    1993-01-01

    Kicker magnets are required for all ring-to-ring transfers in the 5 rings of the proposed KAON factory synchrotron. The kick must rise from 1% to 99% of full strength during the time interval of gaps created in the beam (80 ns to 160 ns) so that the beam can be extracted with minimum losses. In order to achieve the specified rise-time and open-quote flatness close-quote for the kick it is necessary to utilize speed-up networks, comprising a capacitor and a resistor, in the electrical circuit. Speed-up networks may be connected electrically on both the input and output of the kicker magnet. In addition it is advantageous to connect a open-quote speed-up close-quote network on the input of the resistive terminator(s). A sequence which may minimize the number of mathematical simulations required to optimize the values of the 8 possible speed-up components is presented. PE2D has been utilized to determine inductance and capacitance values for the resistive terminator; this data has been used in PSpice transient analyses. Results of the PE2D predictions are also presented. The research has culminated in a predicted kick rise time (1% to 99%) of less than 50 ns for a TRIUMF 10 cell prototype kicker magnet. The proposed improvements are currently being implemented on our prototype kicker system

  7. LEP takes to the hills

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    From 1-7 June the focal point of thinking about the European project for a very high energy electron-positron machine, LEP, moved up into the Swiss mountains. The European Committee for Future Accelerators, ECFA, organized a 'General Meeting on LEP' at the alpine resort of Villars. This was in the long tradition of ECFA meetings which try to ensure a broad consultation of the European High Energy Physics community before major decisions on CERN projects are taken. Over 400 physicists gathered at the Palace Hotel where they were very agreeably immersed in the happy Club Mediterranee ambience. The Conference was successful beyond expectation and left the feeling that the contacts and discussions had moved LEP significantly further towards its goals. Above all it demonstrated again the keenness of the community to become involved in the experimental programme of LEP and the great belief in the scientific promise of the machine

  8. At LEP, a new Physics. The dark matter

    International Nuclear Information System (INIS)

    Bouquet, A.; Haissinski, J.; Perrottet, M.; Renard, F.M.; Sadoulet, B.; Savoy, C.; Treille, D.

    1990-01-01

    The starting of LEP (European Large Electron-Positron storage rings) took place, in July 1989 and the 5 reports introduced during the 21th Summer School on Particle Physics (Ecole de Gif) locate, after a rapid recall of standard model, the problems that LEP will have to resolve in a more or less long time, LEP 100 or LEP 200. These reports are indexed separately [fr

  9. Slice of a LEP bending magnet

    CERN Multimedia

    This is a slice of a LEP dipole bending magnet, made as a concrete and iron sandwich. The bending field needed in LEP is small (about 1000 Gauss), equivalent to two of the magnets people stick on fridge doors. Because it is very difficult to keep a low field steady, a high field was used in iron plates embedded in concrete. A CERN breakthrough in magnet design, LEP dipoles can be tuned easily and are cheaper than conventional magnets.

  10. CERN: Towards LEP 200

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    In March a cryomodule with four superconducting radiofrequency accelerating cavities operated for the first time in CERN's new LEP electron-positron collider, the result of many years of careful research and development work and an important step on the road to boost LEP energies from their initial level around 50 GeV per beam to above the 82 GeV threshold for production of W pairs

  11. Strongly coupled SU(2v boson and LEP1 versus LEP2

    Directory of Open Access Journals (Sweden)

    M. Bilenky

    1993-10-01

    Full Text Available If new strong interactions exist in the electroweak bosonic sector (e.g., strong Higgs sector, dynamical electroweak breaking, etc., it is natural to expect new resonances, with potentially strong couplings. We consider an additional vector-boson triplet, V+-, V0, associated with an SU(2v local symmetry under the specific (but rather natural assumption that ordinary fermions are SU(2v singlets. Mixing of the V triplet with the W+-, Z0 bosons effectively leads to an SU(2L×U(1Y violating vector-boson-fermion interaction which is strongly bounded by LEP1 data. In contrast, the potentially large deviation of the Z0W+W- coupling from its SU(2L×U(1Y value is hardly constrained by LEP1 data. Results from experiments with direct access to the trilinear Z0W+W− coupling (LEP200, NLC are urgently needed.

  12. CERN: Higher energies at LEP

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    This year will be the last that CERN's 27-kilometre LEP electron-positron collider will run routinely at around 45 GeV per beam. In the run, scheduled to begin in May, the four big experiments will top up their harvest so far of over 12 million Z particles for a final polishing of precision Z data. Behind the scenes, LEP is being prepared for higher energy running and a new phase of physics. After a brief technical stop in October, the aim is for a test run of up to 70 GeV per beam before the end of the year. Higher energy demands more radiofrequency power, which will be supplied by superconducting cavities. With this goal in mind, a programme of development work began at CERN over ten years ago, when LEP was still on the drawing board. Initially this effort focused on cavities made from sheet niobium, but later switched to copper covered by a sputtered niobium film, which gives better thermal and r.f. performance (September 1990, page 24). The first industrially-manufactured four-cavity niobium coated module, complete with its cryostat and r.f plumbing, was installed in LEP in 1993. Although it quickly achieved its nominal accelerating gradient of 6 MV/m, its reliability was affected by unforeseen problems in the associated power couplers. This delayed the installation schedule, but after a crash programme of design and modification of the power couplers, together with improvements in actual cavity design and manufacture, module supply and testing has now attained a satisfactory rhythm. Two modules installed in LEP amassed between them over 50 days of continuous running in 1994, and confidence is now high that the emphasis can shift towards integrating the cavities into LEP, rather than running the cavities themselves. During LEP's 1994-5 winter shutdown, modules are being installed at Points 2 and 6. Later, additional cavities will be installed in Points 2, 6 and 8 prior to embarking on the higher energy test run at the end of the year. After

  13. Scenarios for physics at LEP

    International Nuclear Information System (INIS)

    Glashow, S.L.

    1979-01-01

    The author states his views regarding the importance of the experiments made possible if LEP is built. The main contribution of the LEP will be to understanding the physics of leptons, quarks and quantum chromodynamics. The author suggests the directions in which the new results might lead. (W.D.L.)

  14. Injection and extraction techniques in circular accelerators

    International Nuclear Information System (INIS)

    Tang Jingyu

    2008-01-01

    Injection and extraction are usually the key systems in circular accelerators. They play important roles in transferring the beam from one stage acceleration to the other or to experimental stations. It is also in the injection and extraction regions where beam losses happen mostly. Due to the tight space and to reduce the perturbation to the circulating orbit, the devices are usually designed to meet special requirements such as compactness, small stray field, fast rise time or fall time, etc. Usual injection and extraction devices include septum magnets, kicker magnets, electrostatic deflectors, slow bump magnets and strippers. In spite of different accelerators and specification for the injection and extraction devices, many techniques are shared in the design and manufacturing. This paper gives a general review on the techniques employed in the major circular accelerators in China. (authors)

  15. Development of an in situ bake-out method of outgassing reduction of kicker ferrite cores

    International Nuclear Information System (INIS)

    Kamiya, Junichiro; Ogiwara, Norio; Nishikawa, Masaaki; Hikichi, Yusuke; Yanagibashi, Toru; Suganuma, Kazuaki

    2012-01-01

    The usual way for reduce outgassing of a large structure in vacuum is to bake the whole vacuum chamber containing the structure. However, this method needs a huge heater capacity and there are limits caused by the heat expansion of the chamber. The solution is to raise the temperature of the structure inside without heating the vacuum chamber. This is achieved by installing a heat source inside the chamber and by inserting the heat shield between the structure and the chamber walls to direct the heat to the structure. In the particle accelerator field, it is often required to reduce outgassing of structures inside vacuum chambers. One example is a kicker magnet, which is installed in a vacuum chamber and consists mainly of ferrite and aluminum alloy. As known from former experience the main outgassing component from ferrite is water. We applied the above mentioned method to the outgassing reduction of such a kicker. We are able to direct most of the heat flow toward the kicker magnet by inserting the heat shielding plates and thus outgassing was successfully reduced. (author)

  16. Slot-type pickup/kicker for AA stochastic cooling

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    A "slotted transmission line" was used for both pickups and kickers of the cooling systems of the AA. They served for the cooling of the high-density antiproton stack, in momentum and both transverse planes. In the beginning in a single band, 1-2 GHz, later in 2 bands, 2-4 and 4-8 GHz. Here we see the slotted electrodes partly pulled out of the outer casing. See also 7906189, 7906581X, 7896193.

  17. LEP superconducting accelerating cavity module

    CERN Multimedia

    1995-01-01

    With its 27-kilometre circumference, the Large Electron-Positron (LEP) collider was the largest electron-positron accelerator ever built. The excavation of the LEP tunnel was Europe’s largest civil-engineering project prior to the Channel Tunnel. Three tunnel-boring machines started excavating the tunnel in February 1985 and the ring was completed three years later. In its first phase of operation, LEP consisted of 5176 magnets and 128 accelerating cavities. CERN’s accelerator complex provided the particles and four enormous detectors, ALEPH, DELPHI, L3 and OPAL, observed the collisions. LEP was commissioned in July 1989 and the first beam circulated in the collider on 14 July. The collider's initial energy was chosen to be around 91 GeV, so that Z bosons could be produced. The Z boson and its charged partner the W boson, both discovered at CERN in 1983, are responsible for the weak force, which drives the Sun, for example. Observing the creation and decay of the short-lived Z boson was a critical test of...

  18. Combination of the LEP II ffbar Results

    CERN Document Server

    Geweniger, C; Elsing, M; Goy, C; Holt, J; Liebig, W; Minard, M N; Renton, P B; Riemann, S; Sachs, K; Ward, P; Wynhoff, S

    2002-01-01

    Preliminary combinations of measurements of the 4 LEP collaborations of the process e+e-->ffbar at LEP-II are presented, using data from the full LEP-II data set where available. Cross-sections and forward-backward asymmetry measurements are combined for the full LEP-II data set. Combined differential cross-sections $\\frac{{\\rm d}\\sigma}{{\\rm d}\\cos\\theta}$ for electron-pairs, muon pair and tau-pair final states are presented. Measurements of the production of heavy flavours are combined. The combined results are interpreted in terms of contact interactions and the exchange Z' bosons and leptoquarks, and within models of low scale gravity in large extra dimensions.

  19. The DELPHI experiment at LEP

    International Nuclear Information System (INIS)

    Alekseev, G.D.; Bardin, D. Yu.; Bilen'kij, M.S.

    2000-01-01

    This paper summarizes the current status of the DELPHI experiment, which is operating at the Large Electron Positron (LEP) Collider at CERN. The results from running at the energies around the Z resonance (LEP1) are based on the full available data, while the results obtained at higher energies (LEP2) are based on the data collected up to 1998. The analysis of the data collected at the highest centre-of-mass energies (above 200 GeV) is still in progress and new results are expected. We present briefly some of the most important DELPHI results paying a special attention to the contribution of JINR group to the detector construction and data analysis

  20. submitter LEP W measurements

    CERN Document Server

    Saeki, Takayuki

    2001-01-01

    of pair-production of W bosons, and LEP2 experiments started. ALEPH, DELPHI, L3, and OPAL experiments observed the pair-production of W bosons for the first time in $e^{+}e^{-}$ collisions. Since then, the four experiments had been collecting data successfully at the energies of 161 - 209 GeV, and the data acquisition of LEP experiments was finished on 2nd November 2001. The total integrated luminosities amounted to about 710 pb$^{-1}$ per each experiment and about 46 k W-pair events were produced in total. In this article, the results on W physics in LEP2 are presented, which cover the total cross section of the W boson pair-production, the W decay branching fractions, the triple gauge-boson couplings and the mass of the W boson. All the results are consistent with the Standard Model expectations within the measurement errors.

  1. The PS Booster's ejection kicker: full house.

    CERN Multimedia

    CERN PhotoLab

    1971-01-01

    The modules of the Booster's four-storied full-aperture kicker pretty much fill their vacuum tank (front cover removed). In the original 800 MeV version, the delay-type modules were pulsed at 30 kV from a Pulse-Forming-Network (PFN), yielding a field risetime as short as 60 ns. The fieldstrength was 0.1 T at a current of 1200 A. The modules are made from steel plates and ferrite slabs. The ferrite's high initial outgassing rate presented a serious vacuum problem for a long time.

  2. Probing the Big Bang with LEP

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1990-06-01

    It is shown that LEP probes the Big Bang in two significant ways: (1) nucleosynthesis and (2) dark matter constraints. In the first case, LEP verifies the cosmological standard model prediction on the number of neutrino types, thus strengthening the conclusion that the cosmological baryon density is ∼6% of the critical value. In the second case, LEP shows that the remaining non-baryonic cosmological matter must be somewhat more massive and/or more weakly interacting that the favorite non-baryonic dark matter candidates of a few years ago. 59 refs., 4 figs., 2 tabs

  3. Probing the Big Bang with LEP

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N. (Chicago Univ., IL (USA) Fermi National Accelerator Lab., Batavia, IL (USA))

    1990-06-01

    It is shown that LEP probes the Big Bang in two significant ways: (1) nucleosynthesis and (2) dark matter constraints. In the first case, LEP verifies the cosmological standard model prediction on the number of neutrino types, thus strengthening the conclusion that the cosmological baryon density is {approximately}6% of the critical value. In the second case, LEP shows that the remaining non-baryonic cosmological matter must be somewhat more massive and/or more weakly interacting that the favorite non-baryonic dark matter candidates of a few years ago. 59 refs., 4 figs., 2 tabs.

  4. Probing the Big Bang with LEP

    Science.gov (United States)

    Schramm, David N.

    1990-01-01

    It is shown that LEP probes the Big Bang in two significant ways: (1) nucleosynthesis, and (2) dark matter constraints. In the first case, LEP verifies the cosmological standard model prediction on the number of neutrino types, thus strengthening the conclusion that the cosmological baryon density is approximately 6 percent of the critical value. In the second case, LEP shows that the remaining non-baryonic cosmological matter must be somewhat more massive and/or more weakly interacting than the favorite non-baryonic dark matter candidates of a few years ago.

  5. Prototype steel-concrete LEP dipole magnet

    CERN Multimedia

    1981-01-01

    The magnetic field needed in the LEP dipole magnets was rather low, of a fraction of tesla. This lead to the conception of a novel yoke structure consisting of stacks of 1.5 mm thick low-carbon steel laminations spaced by 4.1 mm with the spaces filled with concrete. The excitation coils were also very simple: aluminium bars insulated by polyester boxes in this prototype, by glass-epoxy in the final magnets. For details see LEP-Note 118,1978 and LEP-Note 233 1980. See also 8111529,7908528X.

  6. CERN: End of LEP's Z era

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Full text: Achapter of history at CERN's LEP electron-positron collider closed in October when the four big experiments, Aleph, Delphi, L3 and Opal, logged their final data at the Z energy, just over six years after LEP's first Z was detected. The LEP Z era has been one of great success, both in terms of physics results and the advances which have been made with the machine itself. LEP now takes a step towards becoming LEP2, when the energy is wound up from around 45 GeV to about 70 GeV per beam (September, page 6). By the end of LEP's 1995 run, each of the four LEP experiments had seen almost five million Zs. Now the spotlight at LEP shifts to producing pairs of W particles, the electrically charged counterparts of the Z. LEP's first Zs were recorded in August 1989, one month after the machine's first circulating beam. The 30,000 Z decays recorded by each experiment in 1989 confirmed that matter comes in just three distinct families of quarks and leptons. The values of the Z mass and width quoted in 1990 were 91.161 ± 0.031 GeV and 2.534 ± 0.027 GeV. By the beginning of 1995, these had been fine-tuned to the extraordinary accuracy of 91.1884 ± 0.0022 GeV and 2.4963 ± 0.0032 GeV, and when data from this year's run is included, will be even better. These results, combined with precision data from neutrino experiments and from Fermilab's Tevatron protonantiproton collider, have put the Standard Model of quarks and leptons through its most gruelling test yet. Right from the start, collaboration between LEP experiments and the accelerator team has been close, with frequent scheduling meetings determining how the machine is run. For the first few years, LEP ran on a diet of four bunches of electrons and four of positrons, but by the end of 1992, a way had been found to increase the luminosity by squeezing in more bunches. In 1993, the 'pretzel' scheme (October 1992, page 17), so called because of the shape traced out by

  7. The fast extraction kicker power supply for the main ring of J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    Koseki, Kunio, E-mail: kunio.koseki@kek.jp

    2013-11-21

    An effect induced by parasitic inductance in a pulsed power supply for a fast extraction kicker was studied. The parasitic inductance in high voltage capacitors for a low impedance pulse forming network disturbs a sharp rise of an excitation current. A high voltage capacitor with a coaxial structure to minimize the parasitic inductance is proposed. The effectiveness was confirmed experimentally. An impedance mismatch by a leakage inductance of a pulse transformer in a transmission line was studied. The effect is serious at the flat-top period of the excitation current. By introducing a compensation circuit, which is composed by a capacitor and a resistor, impedance matching was established. The pulsed power supply for the fast extraction kicker was operated at a charging voltage of 30 kV. A required rise time of less than 1.1 μs was achieved. The flatness was also confirmed to be in an acceptable value of less than 1%. -- Highlights: ●An effect by parasitic inductance of the energy storage capacitor of the PFN was studied. ●A faster rise time was achieved by introducing a coaxial structure for the PFN capacitor. ●An impedance mismatch by a leakage inductance of a pulse transformer was studied. ●Serious deterioration of the pulsed waveform was cured by a compensation circuit. ●The pulsed power supply for the fast extraction kicker was developed and operated successfully.

  8. Supersymmetric particles at LEP

    International Nuclear Information System (INIS)

    Barbiellini, G.; Coignet, G.; Gaillard, M.K.; Bonneaud, G.; Ellis, J.; Matteuzzi, C.; Wiik, H.

    1979-10-01

    The authors examine whether the supersymmetrization of nature at a mass scale up to 100 GeV can be confirmed or excluded by experiments with LEP. They review the qualitative features of the spectroscopy suggested by supersymmetric theories. Then they discuss possible production rates and means of detection of these particles at LEP. In this framework they make some remarks about other projects for future high energy physics machines which can be used for the study of supersymmetric phenomena. (HSI)

  9. B physics at LEP

    International Nuclear Information System (INIS)

    Kowalewski, R.V.; Rizzo, G.; Stocchi, A.

    1995-01-01

    LEP has contributed substantially to our knowledge of B hadrons. Results will be presented on the lifetimes of weakly decaying B hadrons and on BB oscillations; in each case the LEP results are the most precise measurements of these quantities. The first observations of orbitally excited beauty mesons and of Σ b and Σ b * baryons, obtained during the past year, will be reviewed. Recent measurements of charmonium production in B decays and searches for B c will also be presented. (orig.)

  10. The Heavy Baryon Physics by means LEP

    International Nuclear Information System (INIS)

    Lesiak, T.

    2000-07-01

    This report describes the experimental research about the heavy baryons which were obtained in the last decade at LEP. The most important among them concern the lifetimes of beauty baryons. The methods of theoretical description of heavy hadrons together with the LEP experimental apparatus are also discussed. Heavy baryon studies are shown in a broader perspective of other LEP results: the test of the standard model and the latest measurements concerning the beauty mesons. (author)

  11. Observations on LEP with a view to SSC

    International Nuclear Information System (INIS)

    Toohig, T.E.

    1984-01-01

    From 24-29 October 1984 a visit was made to the LEP project at CERN with a view to extracting from the LEP planning and experience what might be useful in planning an SSC. With a circumference of 26.7 km, in a reasonably densely-populated area outside the boundaries of the CERN site, LEP already faces most of the problems of environment, public relations, maintenance and operation that will be faced by an SSC project. Information is presented under the headings of: (1) radiation protection; (2) heating, ventilation, and airconditioning; (3) electrical power distribution; (4) LEP experiments/UA1, UA2; (5) civil; (6) infrastructure installation; (7) survey; (8) safety; and (9) LEP controls. Each report lists the CERN individuals who generously provided their insights and help

  12. Design and Testing of a Fast, 50 kV Solid-State Kicker Pulser

    International Nuclear Information System (INIS)

    Cook, E G; Hickman, B C; Lee, B S; Hawkins, S A; Gower, E J; Allen, F V; Walstrom, P L

    2002-01-01

    The ability to extract particle beam bunches from a ring accelerator in arbitrary order can greatly extend an accelerator's capabilities and applications. A prototype solid-state kicker pulser capable of generating asynchronous bursts of 50 kV pulses has been designed and tested into a 50(Omega) load. The pulser features fast rise and fall times and is capable of generating an arbitrary pattern of pulses with a maximum burst frequency exceeding 5 MHz If required, the pulse-width of each pulse in the burst is independently adjustable. This kicker modulator uses multiple solid-state modules stacked in an inductive-adder configuration where the energy is switched into each section of the adder by a parallel array of MOSFETs. Test data, capabilities, and limitations of the prototype pulser are described

  13. Electroweak physics with LEP

    International Nuclear Information System (INIS)

    Davier, M.

    1992-03-01

    The present status of electroweak physics at LEP is presented. The LEP machine and the detectors are described. The decays of Z neutral bosons in both leptonic and hadronic channels are studied. Neutral and charged sector are investigated, and a precise test of the Standard Model is given. Higgs boson searches and τ decay measurements are also described as well as quark mixing and B 0 B-bar 0 oscillations. All the seven contributions are individually indexed and abstracted for the INIS database. (K.A.) 100 refs

  14. Comparison of Different Methods for Transverse Emittance Measurement and Recent Results from LEP

    CERN Document Server

    Bovet, Claude; Jung, R

    1997-01-01

    The knowledge of its position and angular transverse distributions is of utmost interest to assess the good behaviour of a beam within an accelerator. After a short reminder of beam "emittance" definitions, a review is made of various measurement techniques used so far both in single pass machines and colliders. Results of measurements made at CERN in the future LHC injection complex and in LEP are presented and discussed.

  15. Z Physics at LEP 1. Vol. 3

    International Nuclear Information System (INIS)

    Altarelli, G.; Kleiss, R.; Verzegnassi, C.

    1989-01-01

    The contents of this final report from the Workshop on Z Physics at LEP can be divided into two parts. The first part, comprising Vols. 1 and 2, is a relatively concise but fairly complete handbook on the physics of e + e - annihilation near the Z peak (with normal LEP luminosity and unpolarized beams, appropriate for the first phase of LEP operation). The second part (Vol. 3) is devoted to a review of the existing Monte Carlo event generators for LEP physics. A special effort has been made to co-ordinate the different parts of this report, with the aim of achieving a systematic and balanced review of the subject, rather than having simply a collection of separate contributions. (orig.)

  16. Z physics at LEP 1. Vol. 1

    International Nuclear Information System (INIS)

    Altarelli, G.; Kleiss, R.; Verzegnassi, C.

    1989-01-01

    The contents of this final report from the Workshop on Z Physics at LEP can be divided into two parts. The first part, comprising Vols. 1 and 2, is a relatively concise but fairly complete handbook on the physics of e + e - annihilation near the Z peak (with normal LEP luminosity and unpolarized beams, appropriate for the first phase of LEP operation). The second part (Vol. 3) is devoted to a review of the existing Monte Carlo event generators for LEP physics. A special effort has been made to co-ordinate the different parts of this report, with the aim of achieving a systematic and balanced review of the subject, rather than having simply a collection of separate contributions. (orig.)

  17. LEP des inquiétudes subsistent

    CERN Multimedia

    1984-01-01

    Certains propriétaires de terrains et de constructions situés sur le pourtour du LEP restent inquiets: qu'arriverait-il an cas de contestation sur la valeur de réparation d'éventuels dommages causés par la construction du LEP? (1 page).

  18. LEP Inauguration

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    On 13 November, Heads of State, Heads of Government and Ministers from CERN's 14 Member States, together with more than a thousand invited guests, attended the inauguration ceremony of LEP, CERN's new 27-kilometre electron-positron collider

  19. Colour Reconnection at LEP2

    CERN Document Server

    Nandakumar, Raja

    2001-01-01

    Colour reconnection is the final state interaction between quarks from different sources. It is not yet fully understood and is a source of systematic error for W-boson mass and width measurements in hadronic \\WW decays at LEP2. The methods of measuring this effect and the results of the 4 LEP experiments at $183\\gev\\leq\\rts\\leq 202\\gev$ will be presented.

  20. 20 years ago: first collisions (at LEP)

    CERN Multimedia

    2009-01-01

    It’s been 20 years since the first electron positron collision at LEP, and I have to confess to a little self-indulgence in my message this week. Back then I was a member of the OPAL collaboration, the first to see collisions at LEP just before midnight on 13 August 1989 and almost exactly one month after the first circulating beam. It was a historic moment, and the atmosphere in the OPAL control room, 100 metres underground, was one of anticipation and excitement. We reported back to the LEP control room, champagne duly arrived, and over the next few hours, all the experiments were recording data. The pilot run was as smooth as it could be, and within weeks we were announcing new physics. It’s interesting to contrast the start-up of LEP with that of the LHC. With the benefit of hindsight, LEP seems to have got going without a hitch, and indeed it was a smooth start. We circulated beam on 14 July, much to the joy of one of our host states, and it was just a month ...

  1. Exotic searches at lep

    International Nuclear Information System (INIS)

    Seager, P.

    2001-01-01

    The search for exotic processes at LEP is presented. The Standard Model Higgs has as yet not been observed. This provides freedom to search for processes beyond the Standard Model and even beyond the minimal version of the supersymmetric extension to the Standard Model. This paper outlines the searches for charged Higgs bosons, fermiophobic Higgs bosons, invisibly decaying Higgs bosons, technicolor, leptoquarks, unstable heavy leptons and excited leptons. The results presented are those from the LEP collaborations using data taken up to a centre-of-mass energy of √s = 202 GeV. (author)

  2. LEP for twice the energy

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-01-15

    In 1995, CERN's 27-kilometre LEP electron-positron collider should start operating for physics at considerably higher energy. Since its commissioning in 1989, the machine has been operating around 45.5 GeV per beam to give collision energies that home in on the Z particle - the electrically neutral carrier of the weak nuclear force, with a mass of 91 GeV. The Z, discovered at CERN in 1983 by Carlo Rubbia's UA1 protonantiproton tour de force, was for a long time a rare physics jewel. Until LEP came along, only a handful had been seen. With millions now captured by the four LEP experiments - Aleph, Delphi, L3 and Opal - the Z has become everyday physics, and the accumulated precision Z data give an incisive view inside today's Standard Model. The self-consistency of these measurements make physicists confident that the sixth ('top') quark should turn up around 150 GeV. But the Z is only one side of the picture. For the self-consistency of the Standard Model to become really watertight, a precision fix is also needed on the W at 81 GeV, the electrically charged companion of the Z. While the neutral Z can be produced directly in electron-positron annihilations, the charged Ws can only be produced in pairs, hence the call for higher energies at LEP. (The project is known as LEP200, but 200 GeV is acknowledged as an optimistic energy target.) To roughly double beam energy from around 45 GeV for Z physics to the level needed for W production calls for an additional 1900 Megavolts of accelerating voltage.

  3. LEP for twice the energy

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    In 1995, CERN's 27-kilometre LEP electron-positron collider should start operating for physics at considerably higher energy. Since its commissioning in 1989, the machine has been operating around 45.5 GeV per beam to give collision energies that home in on the Z particle - the electrically neutral carrier of the weak nuclear force, with a mass of 91 GeV. The Z, discovered at CERN in 1983 by Carlo Rubbia's UA1 protonantiproton tour de force, was for a long time a rare physics jewel. Until LEP came along, only a handful had been seen. With millions now captured by the four LEP experiments - Aleph, Delphi, L3 and Opal - the Z has become everyday physics, and the accumulated precision Z data give an incisive view inside today's Standard Model. The self-consistency of these measurements make physicists confident that the sixth ('top') quark should turn up around 150 GeV. But the Z is only one side of the picture. For the self-consistency of the Standard Model to become really watertight, a precision fix is also needed on the W at 81 GeV, the electrically charged companion of the Z. While the neutral Z can be produced directly in electron-positron annihilations, the charged Ws can only be produced in pairs, hence the call for higher energies at LEP. (The project is known as LEP200, but 200 GeV is acknowledged as an optimistic energy target.) To roughly double beam energy from around 45 GeV for Z physics to the level needed for W production calls for an additional 1900 Megavolts of accelerating voltage

  4. Prototype superconducting radio-frequency cavity for LEP

    CERN Multimedia

    1985-01-01

    This niobium superconducting cavity was part of the prototype stages for an upgrade to LEP, known as LEP-2. Superconducting cavities would eventually replace the traditional copper cavities and allow beam energies of 100 GeV.

  5. slice of LEP beamtube with getter strip

    CERN Multimedia

    1989-01-01

    A section of the LEP beam pipe. This is the chamber in which LEP's counter-rotating electron and positron beams travel. It is made of lead-clad aluminium. The beams circulate in the oval cross-section part of the chamber. In the rectangular cross-section part, LEP's innovative getter-strip vacuum pump is installed. After heating to purify the surface of the getter, the strip acts like molecular sticky tape, trapping any stray molecules left behind after the accelerator's traditional vacuum pumps have done their job.

  6. UX-15 Reaches LEP

    CERN Multimedia

    2001-01-01

    The creation of the world's largest sandstone cavern, not a small feat! At the bottom, cave-in preventing steel mesh can be seen clinging to the top of the tunnel. The digging of UX-15, the cavern that will house ATLAS, reached the upper ceiling of LEP on October 10th. The breakthrough which took place nearly 100 metres underground occurred precisely on schedule and exactly as planned. But much caution was taken beforehand to make the LEP breakthrough clean and safe. To prevent the possibility of cave-ins in the side tunnels that will eventually be attached to the completed UX-15 cavern, reinforcing steel mesh was fixed into the walls with bolts. Obviously no people were allowed in the LEP tunnels below UX-15 as the breakthrough occurred. The area was completely evacuated and fences were put into place to keep all personnel out. However, while personnel were being kept out of the tunnels below, this has been anything but the case for the work taking place up above. With the creation of the world's largest...

  7. Last LEP superconducting module travels to surface

    CERN Multimedia

    Patrice Loïez

    2001-01-01

    The last superconducting module is raised from the Large Electron-Positron (LEP) collider tunnel, through the main shaft, to the surface. Superconducting modules were only used in the LEP-2 phase of the accelerator, from 1996 to 2000.

  8. Around the laboratories: CERN: LEP in the Alps; Putting four LEP experiments together; Heavier ions

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    With CERN's 27-kilometre LEP electron-positron collider shut down for the winter, LEP specialists met in Chamonix in the French Alps from 19-25 January to review the machine's 1991 performance and to look at the ways of improving it. ; Since they started taking data in August 1989, the four big LEP experiments - Aleph, Delphi, L3 and Opal - have been providing precision information about the Z particle, the electrically neutral carrier of the weak nuclear force and at 91 GeV the heavisest elementary particle known.; Work by a major international collaboration is progressing well for a new heavy ion system, capable of providing experiments at CERN with a wide range of heavy ions, extending up to the heaviest elements in the Periodic Table. First beams should be available in 1994

  9. Preparing last LEP superconducting module for removal

    CERN Multimedia

    Patrice Loïez

    2000-01-01

    The last superconducting module travels along the LEP tunnel towards one of the shafts where it will be lifted to the surface. Superconducting modules were only used in the LEP-2 phase of the accelerator, from 1996 to 2000.

  10. B physics at LEP

    International Nuclear Information System (INIS)

    Kowalewski, R.V.

    1993-01-01

    The experiments at LEP now dominate the world average b hadron lifetime, and have measured individual lifetimes for the pseudo-scalar B mesons and for b baryons with precisions of 15-20%. Measurements of the average mixing parameter [χ] at LEP suggest substantial B s mixing. Flavor oscillations have been observed directly for the B d , and searches for B s oscillations are underway. Some exclusive B decays have been reconstructed, and the mass of the B s has been measured. Most analyses are statistics limited, so further improvements can be expected as the data sample increases

  11. LEP Dismantling: Wagons Roll!

    CERN Multimedia

    2001-01-01

    The first trucks transporting material from LEP and its four experiments left CERN on 31 January. Since the LEP dismantling operation began, the material had been waiting to be removed from the sites of the four experiments and the special transit area on the Prévessin site. On the evening of 30 January, the French customs authorities gave the green light for the transport operation to begin. So first thing the next day, the two companies in charge of recycling the material, Jaeger & Bosshard (Switzerland) and Excoffier (France), set to work. Only 1500 truckloads to go before everything has been removed!

  12. LEP Electroweak and QCD Exhibition Lepton-Photon 2001

    CERN Multimedia

    2001-01-01

    The LEP collider an at centre-of-mass energies around the Z mass from 1989 to 1995 (LEP1).F om 1995 to 2000 (LEP2),the energy was gradually increased, crossing the W-pair production threshold in 1996,and eaching 208 GeV in 2000. Each of the four experiments,ALEPH,DELPHI,L3 and OPAL,observed around 4.5 million Z and 12 thousand W-pair events.

  13. W boson physics at LEP2

    International Nuclear Information System (INIS)

    Tonazzo, A.

    2000-01-01

    The precision study of W boson properties is one of the most important goals of the LEP2 physics programme. This paper provides an overview of the measurements performed by the four LEP experiments, with particular emphasis on the extraction of the W mass. A review of the results obtained with the data collected until 1999 is also presented

  14. Electroweak physics at LEP2

    CERN Document Server

    Hemingway, Richard J

    2002-01-01

    On 2 November 2000 the LEP machine was finally closed after 12 years of glorious running. With the 4 operating detectors, ALEPH, DELPHI, L3, and OPAL, an enormous wealth of new data at the highest centre- of-mass energies has been recorded. These lectures will focus on aspects of electroweak physics within the energy span of LEP2, namely 130-209 GeV. All current data are in very good agreement with the electroweak standard model. (50 refs).

  15. The radiological impact of the LEP project on the environment

    International Nuclear Information System (INIS)

    Goebel, K.

    1981-01-01

    The siting of the large electron-positron (LEP) accelerator, its experimental areas, and its supporting infrastructure are discussed with respect to the radiological impact on the surrounding areas and on the population in the Pays de Gex and the Canton de Geneve. The final conclusions are based on work done by the former LEP Study Group and by the LEP Radiation Working Group. The calculations and estimates show that the stray ionizing radiation, the radioactivity, and the radiation-induced noxious chemical products released by the LEP installation will have only an insignificant impact on the area, the individual members of the public, and the population as a whole. This result for LEP 'phase 85' can also be extrapolated under reasonable assumptions for LEP 125 - a possible future development phase of the present project. (orig.)

  16. Premiers résultats en provenance du LEP2

    CERN Multimedia

    CERN Press Office. Geneva

    1996-01-01

    CERN's Large Electron-Positron collider, LEP, produced its first pair of fundamental particles known as W+ and W- today, taking particle physics research into new and unexplored territory. This follows a busy winter of upgrades which have transformed LEP into a new accelerator, earning it the name LEP2. Hundreds of physicists from all over the world come to CERN to do their research at LEP2, which will be further upgraded over the coming years, bringing the possibility of new discoveries and extending our understanding of the Universe.

  17. Diagram of a LEP superconducting cavity

    CERN Multimedia

    1991-01-01

    This diagram gives a schematic representation of the superconducting radio-frequency cavities at LEP. Liquid helium is used to cool the cavity to 4.5 degrees above absolute zero so that very high electric fields can be produced, increasing the operating energy of the accelerator. Superconducting cavities were used only in the LEP-2 phase of the accelerator, from 1996 to 2000.

  18. The LEP2 superconducting RF system

    CERN Document Server

    Butterworth, A; Brunner, O; Ciapala, Edmond; Frischholz, Hans; Geschonke, Günther; Peschardt, E; Sladen, J

    2008-01-01

    The upgrade of LEP2 energy to beyond the W boson production threshold required the progressive installation of a completely new radio-frequency (RF) accelerating system. The new system used superconducting (SC) cavities, which complemented and partially replaced the original LEP1 RF system based on conventional copper cavity technology. The final system consisted of 56 copper and 288 SC cavities and provided a peak acceleration of more than 3600 MV/turn. This paper describes the main elements of the SC system and reviews the 5 years of LEP2 operation at gradients well beyond the design specification. Also presented are some of the main performance limitations and problems encountered together with the various solutions and procedures found to eliminate them or reduce their effects.

  19. 4-jet events at LEP

    CERN Document Server

    Bizouard, M A

    1997-01-01

    Results of a special study made by the four LEP experiments on 4-jet events recorded at Vs = 130 - 136 , 161 and 172 GeV are related. This study concerns the ALEPH analysis which has shown an excess of 4-jet events in data recorded at Vs = 130 - 136 GeV. No significant evidence has been found by the 3 other experiments. Results have been combined after several checks which did not show differences of performance between the four LEP experiments.

  20. CERN: A hinge between LEP and the LHC

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Later this year, if all goes well, the beam energy of CERN's LEP electron-positron collider should be increased to around 70 GeV per beam (collision energy 140 GeV), giving a foretaste of things to come. Since 1989, the 27-kilometre ring has been operating around 45 GeV per beam to feed its four physics experiments with a steady diet of Z particles, the electrically neutral carriers of the weak nuclear force. This has given precision results on vital parameters of the Standard Model. Meanwhile work has been steadily pushing ahead to upgrade LEP to LEP2, installing superconducting radiofrequency cavities (January 1994, page 6) and ancillary cryogenics equipment to boost the machine's energy and reach new areas of physics interest. The initial goal is to produce pairs of W particles, the electrically charged counterparts of the Z. As far as the machine is concerned, at these higher energies, the 'beambeam' interaction between the contra-rotating electrons and positrons is reduced, so more particles can be pumped into the ring. To achieve this, LEP has switched to the new 'bunch train' scheme (see page 14) each train containing several 'carriages' (bunches) of particles. To attain its physics objectives, LEP2's target is 500 inverse picobarns of integrated luminosity over the next few years. This is a challenge as LEP's integrated luminosity to date (since the machine was commissioned in 1989) is some 160 inverse picobarns, itself viewed as no mean achievement. To reach higher energies, the accelerating power at LEP is being increased with installation of superconducting radiofrequency cavities. After initial trials with solid niobium, LEP2 relies on the more reliable performance provided by copper, with its better heat conduction properties, coated with a superconducting film of niobium. Even so heroic preprocessing is required to ensure optimal performance. After initial trials revealed welding weaknesses, the

  1. τ physics at LEP

    International Nuclear Information System (INIS)

    Dam, M.

    1992-05-01

    Untill the end of the 1991 data taking period, the four LEP experiments have collected about 80000 τ + τ - pairs. Many precise measurements of the production and decay properties of the τ lepton at the Z o resonance have been performed. Accurate measurements of the τ lifetime along with measurements of inclusive and exclusive branching ratios provide interesting consistency tests in τ decays. Measurements from LEP confirm nonzero values of the average polarization of the τ, starting to yield precise measurements of the weak mixing parameter sin 2 θ w . A test of CP invariance in τ + τ - production has been performed. 23 refs., 6 tabs

  2. LEP Magnets Get a Second Lease of Life

    CERN Multimedia

    2001-01-01

    Removed one minute, recycled the next! Around 900 yokes from the LEP dipole magnets have been re-used as building material. 906 yokes from the LEP dipole magnets have been incorporated in the foundations of the new Building 954, where they have been used to create the underfloor space and reinforcements. The recycling of LEP is already under way. Over half of CERN's accelerator has been dismantled so far, and parts of its magnets are already beginning a new life: since 16 May, some of the LEP dipole magnet yokes have been re-used as building material. The dipole yokes, the only ones of their kind, are made up of steel plates and layers of concrete sandwiched together, thus forming blocks of reinforced concrete. It would be a painstaking task to separate the basic materials for re-use, which led to the idea of using the yokes intact as reinforcements. 906 LEP yokes have gone into the foundations of the brand-new Building 954 on the Prévessin site. They have been used to build the underfloor space ...

  3. Heavy flavour decays at LEP

    CERN Document Server

    Rousseau, D H

    2001-01-01

    Recent heavy flavour results from LEP experiments are presented. Special emphasis is put on complex inclusive B reconstruction methods with high potentialities for lifetime, mixing, CP violation studies and new measurements of IVubl· The new world average of r8-f'r8o is 1.08 ± 0.03. The new world average of Re parameter measured in inclusive B0 decay is 0.001 ± 0.009. The new LEP average of JV ub I measured from inclusive b->ulv branching fraction is 4.

  4. Selected topics on B physics at Lep

    International Nuclear Information System (INIS)

    Roudeau, P.

    1989-05-01

    I will consider mainly those aspects of B physics which are peculiarly relevant at LEP. I will envisage two scenarios for LEP operation: the standard one with the nominal luminosity and also a high luminosity run during which more than 10 8 hadronic Z 0 decays can be registered

  5. High precision measurements of the luminosity at LEP

    International Nuclear Information System (INIS)

    Pietrzyk, B.

    1994-01-01

    The art of the luminosity measurements at LEP is presented. First generation LEP detectors have measured the absolute luminosity with the precision of 0.3-0.5%. The most precise present detectors have reached the 0.07% precision and the 0.05% is not excluded in future. Center-of-mass energy dependent relative precision of the luminosity detectors and the use of the theoretical cross-section in the LEP experiments are also discussed. (author). 18 refs., 6 figs., 6 tabs

  6. Harmonic Kicker RF Cavity for the Jefferson Lab Electron-Ion Collider EM Simulation, Modification, and Measurements

    Science.gov (United States)

    Overstreet, Sarah; Wang, Haipeng

    2017-09-01

    An important step in the conceptual design for the future Jefferson Lab Electron-Ion Collider (JLEIC) is the development of supporting technologies for the Energy Recovery Linac (ERL) Electron Cooling Facility. The Harmonic Radiofrequency (RF) kicker cavity is one such device that is responsible for switching electron bunches in and out of the Circulator Cooling Ring (CCR) from and to the ERL, which is a critical part of the ion cooling process. Last year, a half scale prototype of the JLEIC harmonic RF kicker model was designed with resonant frequencies to support the summation of 5 odd harmonics (95.26 MHz, 285.78 MHz, 476.30 MHz, 666.82 MHz, and 857.35 MHz); however, the asymmetry of the kicker cavity gives rise to multipole components of the electric field at the electron-beam axis of the cavity. Previous attempts to symmetrize the electric field of this asymmetrical RF cavity have been unsuccessful. The aim of this study is to modify the existing prototype for a uniform electric field across the beam pathway so that the electron bunches will experience nearly zero beam current loading. In addition to this, we have driven the unmodified cavity with the harmonic sum and used the wire stretching method for an analysis of the multipole electric field components.

  7. Drift chamber vertex detectors for SLC/LEP

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, K G

    1988-03-01

    Factors influencing the design of drift chamber vertex detectors for SLC and LEP are discussed including global strategy, chamber gas, cell design, and signal processing. The designs of the vertex chambers for the L3 and OPAL experiments at LEP and the Mark II experiment at the SLC are described.

  8. Initial measurements on a prototype inductive adder for the CLIC kicker systems

    CERN Document Server

    Holma, Janne

    2013-01-01

    The CLIC study is exploring the scheme for an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The CLIC pre-damping rings and damping rings will produce, through synchrotron radiation, ultra-low emittance beam with high bunch charge. To avoid beam emittance increase, the damping ring kicker systems must provide extremely flat, high-voltage, pulses. The specifications for the extraction kickers of the DRs are particularly demanding: the flattops of the pulses must be ±12.5 kV with a combined ripple and droop of not more than ±0.02 % (±2.5 V). An inductive adder is a very promising approach to meeting the specifications. To achieve ultra-flat pulses with a fast rise time the output impedance of the inductive adder needs to be well matched to the system impedance. The parasitic circuit elements of the inductive adder have a significant effect upon the output impedance and these values are very difficult to calculate accurately analytically. To predict these paramet...

  9. The Prototype Inductive Adder With Droop Compensation for the CLIC Kicker Systems

    CERN Document Server

    Holma, J

    2014-01-01

    The Compact Linear Collider (CLIC) study is exploring the scheme for an electron-positron collider with high luminosity and a nominal center-of-mass energy of 3 TeV. The CLIC predamping rings and damping rings (DRs) will produce, through synchrotron radiation, an ultralow emittance beam with high bunch charge. To avoid beam emittance increase, the DR kicker systems must provide extremely flat, high-voltage, pulses. The specifications for the extraction kickers of the DRs are particularly demanding: the flattops of the pulses must be ±12.5 kV with a combined ripple and droop of not more than ±0.02% (±2.5 V). An inductive adder is a very promising approach to meeting the specifications. Recently, a five-layer prototype has been built at CERN. Passive analog modulation has been applied to compensate the voltage droop, for example of the pulse capacitors. The output waveforms of the prototype inductive adder have been compared with predictions of the voltage droop and pulse shape. Conclusions are drawn concern...

  10. Detectors for LEP: methods and techniques

    International Nuclear Information System (INIS)

    Fabjan, C.

    1979-01-01

    This note surveys detection methods and techniques of relevance for the LEP physics programme. The basic principles of the detector physics are sketched, as recent improvement in understanding points towards improvements and also limitations in performance. Development and present status of large detector systems is presented and permits some conservative extrapolations. State-of-the-art techniques and technologies are presented and their potential use in the LEP physics programme assessed. (Auth.)

  11. Pouring concrete to form a model LEP dipole yoke

    CERN Multimedia

    1979-01-01

    The magnetic field needed in the LEP dipole magnets was rather low, of a fraction of tesla. This lead to the conception of a novel yoke structure consisting of stacks of 1.5 mm thick low-carbon steel laminations spaced by 4.1 mm with the spaces filled with concrete. For details see LEP-Note 118,1978 and LEP-Note 233,1980. See also 8111529, 8111710X, 7901023X,7908294

  12. Pulse shape adjustment for the SLC damping ring kickers

    International Nuclear Information System (INIS)

    Mattison, T.; Cassel, R.; Donaldson, A.; Fischer, H.; Gough, D.

    1991-05-01

    The difficulties with damping ring kickers that prevented operation of the SLAC Linear Collider in full multiple bunch mode have been overcome by shaping the current pulse to compensate for imperfections in the magnets. The risetime was improved by a peaking capacitor, with a tunable inductor to provide a locally flat pulse. The pulse was flattened by an adjustable droop inductor. Fine adjustment was provided by pulse forming line tuners driven by stepping motors. Further risetime improvement will be obtained by a saturating ferrite pulse sharpener. 4 refs., 3 figs

  13. Light Higgs bosons at LEP

    International Nuclear Information System (INIS)

    Ekspong, G.

    1981-11-01

    Among possible production reactions for neutral Higgs bosons it is known that e + e - →Z 0 +H 0 offers advantages of relatively high production cross section and low background from other reactions. With Z 0 decaying to two electrons, which are measured, the existence of a Higgs candidate will be seen as a peak in the missing mass spectrum. It is shown that a sufficiently good mass resolution is obtainable to make a search for Higgs feasible at LEP. In its first phase, the energy of LEP limits the search to Higgs bosons of mass around 10 GeV. (Auth.)

  14. Le CERN fête le LEP

    CERN Multimedia

    CERN Press Office. Geneva

    2000-01-01

    Members of government from around the world gathered at CERN on 9 October to celebrate the achievements of the Large Electron Positron collider (LEP), the Laboratory's flagship particle accelerator. Over the eleven years of its operational lifetime, LEP has not only added greatly to mankind's pool of knowledge about the Universe, but has also changed the way that particle physics research is done, and proved to be a valuable training ground for young professionals in many walks of life.

  15. Determination of the LEP beam energy

    CERN Document Server

    Torrence, E

    2000-01-01

    This article describes the determination of the LEP beam energy above the production threshold for W boson pairs. A brief overview of the magnetic extrapolation method is presented which is currently used to determine the LEP beam energy to a relative precision of 2*10/sup -4 /. A new method for beam energy measurements based on an in-line energy spectrometer is presented, and current developments in the commissioning of this device are outlined. (2 refs).

  16. Search for new phenomena at LEP

    International Nuclear Information System (INIS)

    Richard, F.

    1992-01-01

    Recent searches for new particles and rare Z degree decays performed at LEP are reviewed. With the first few 10 4 events collected at LEP, many searches have already been performed: pair-produced heavy fermions and scalar bosons, light Higgs boson from the Standard Model (SM) and its most popular supersymmetric extension (MSSM). A large amount of territory has thus been already covered and one is left, after collecting 10 6 z 0 events with the four LEP experiments, with the difficult task to explore the Higgs sector and other Z 0 decays with very low branching ratios, typically a few 10 -5 . This experimental stuggle already pushes the various detectors at the limit of their capabilities and takes advantage of specific properties: momentum resolution for muons, energy resolution for electrons and photons, identification properties for leptons, hadronic calorimetry and hermeticity for neutrinos. 34 refs., 16 figs., 7 tabs

  17. Literature file on 'fast kickers and septa', componenets for deflection and separation of particle beams

    International Nuclear Information System (INIS)

    Linden, A. van der.

    1988-11-01

    The File consists of classified and numbered articles from the literature on the following subjects: 1 - Kickers: fast switching (electro-)magnetic or electrostatic components for small deflection; 2 - Septum Magnets: both small and great deflecting components, with the purpose to create or bridge over space between the deflected beam and the other, unperturbed beam; 3 - Electrostatic Septa: low loss, beam splitting components which give small deflection for the extracted part of the beam and no perturbation for the rest of the beam. The articles have been classified per institute or laboratory, eventually with further classification per project. The classified articles are then numbered chronologically. Extension of the File is still possible. The contents of the articles are summarized by means of catchwords. Specifications of the described kickers, septum magnets and electrostatic septa are represented in a tabular form

  18. Probing anomalous gauge boson couplings at LEP

    International Nuclear Information System (INIS)

    Dawson, S.; Valencia, G.

    1994-01-01

    We bound anomalous gauge boson couplings using LEP data for the Z → bar ∫∫ partial widths. We use an effective field theory formalism to compute the one-loop corrections resulting from non-standard model three and four gauge boson vertices. We find that measurements at LEP constrain the three gauge boson couplings at a level comparable to that obtainable at LEPII

  19. LEP shuts down after eleven years of forefront research

    CERN Multimedia

    2000-01-01

    After extended consultation with the appropriate scientific committees, CERN’s Director-General Luciano Maiani announced today that the LEP accelerator had been switched off for the last time. LEP was scheduled to close at the end of September 2000 but tantalising signs of possible new physics led to LEP’s run being extended until 2 November. At the end of this extra period, the four LEP experiments had produced a number of collisions compatible with the production of Higgs particles with a mass of around 115 GeV. These events were also compatible with other known processes. The new data was not sufficiently conclusive to justify running LEP in 2001, which would have inevitable impact on LHC construction and CERN’s scientific programme. The CERN Management decided that the best policy for the Laboratory is to proceed full-speed ahead with the Large Hadron Collider (LHC) project. Steve Myers, Head of SL Division, with members of the LEP team, pulling the symbolic rope to swich off the accelerator. CERN Co...

  20. Primary structure of Lep d I, the main Lepidoglyphus destructor allergen.

    Science.gov (United States)

    Varela, J; Ventas, P; Carreira, J; Barbas, J A; Gimenez-Gallego, G; Polo, F

    1994-10-01

    The most relevant allergen of the storage mite Lepidoglyphus destructor (Lep d I) has been characterized. Lep d I is a monomer protein of 13273 Da. The primary structure of Lep d I was determined by N-terminal Edman degradation and partially confirmed by cDNA sequencing. Sequence polymorphism was observed at six positions, with non-conservative substitutions in three of them. No potential N-glycosylation site was revealed by peptide sequencing. The 125-residue sequence of Lep d I shows approximately 40% identity (including the six cysteines) with the overlapping regions of group II allergens from the genus Dermatophagoides, which, however, do not share common allergenic epitopes with Lep d I.

  1. Abort kicker power supply systems at Fermilab

    International Nuclear Information System (INIS)

    Krafczyk, G.; Dugan, G.; Harrison, M.; Koepke, K.; Tilles, E.

    1985-01-01

    Over the past several years, Fermilab has been operating with a single turn proton abort system in both the superconducting Tevatron and the conventional Main Ring. The abort kicker power supply for this system discharges a lumped capacitance into the inductive magnet load, causing the beam to enter the abort channel. A unique feature of this design is the high voltage, high current diode assembly used to clip the recharge of the capacitor bank. This allows the current to decay slowly with the L/R time constant of the magnet and diode series combination. Special attention will be given to the diode characteristics needed for this passive switching element. Operational experience and proposed upgrades will be given for the two operational systems

  2. Single-cell LEP-type cavity on measurement stand

    CERN Multimedia

    CERN PhotoLab

    1982-01-01

    A single-cell cavity, made of copper, with tapered connectors for impedance measurements. It was used as a model of LEP-type superconducting cavities, to investigate impedance and higher-order modes and operated at around 600 MHz (the LEP acceleration frequency was 352.2 MHz). See 8202500.

  3. LEP inauguration

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-01-15

    13 November saw the culmination at CERN of weeks of intricate planning to put together a fitting formal inauguration of LEP, CERN's 27-kilometre electron-positron collider. The day was to witness an event worthy of the many years of assiduous endeavour to bring into being the world's largest scientific machine, a prime example of international collaboration and the portent of a new era in fundamental research.

  4. LEP at 90°

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-01-15

    With twice as many Z particles logged this year, the performance of CERN's LEP electron-positron collider continues to improve. Paradoxically, the improvement would have been even better had it not been for teething problems with new operating conditions which will eventually boost performance still higher. Now solidly established, these new conditions, notably the 90° (instead of the previous 60°) phase for transverse betatron oscillations, and the 'pretzel' scheme for eight bunches per beam instead of four (October, page 17), first had to be assimilated, and it took a few weeks before the LEP operating crews could add them to their full repertoire. Collision performance (measured by 'luminosity') continues to improve. Although in principle LEP has yet to deliver its 'design' luminosity of 1.3 x 10{sup 31} per sq cm per s at any one time, its best performance to date is not far off - 1.1 x 10{sup 31}. The crews have become very skilled at optimizing conditions during each beam coast, with continual careful grooming of the beams ensuring high collision rates. This, together with improved performance at the four detectors - Aleph, Delphi, L3, and Opal - have led to average efficiency increasing to 57% from 44% in 1991, so that the luminosity delivered over a day has exceeded what could have been expected initially, says Steve Myers.

  5. LEP at 90°

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    With twice as many Z particles logged this year, the performance of CERN's LEP electron-positron collider continues to improve. Paradoxically, the improvement would have been even better had it not been for teething problems with new operating conditions which will eventually boost performance still higher. Now solidly established, these new conditions, notably the 90° (instead of the previous 60°) phase for transverse betatron oscillations, and the 'pretzel' scheme for eight bunches per beam instead of four (October, page 17), first had to be assimilated, and it took a few weeks before the LEP operating crews could add them to their full repertoire. Collision performance (measured by 'luminosity') continues to improve. Although in principle LEP has yet to deliver its 'design' luminosity of 1.3 x 10 31 per sq cm per s at any one time, its best performance to date is not far off - 1.1 x 10 31 . The crews have become very skilled at optimizing conditions during each beam coast, with continual careful grooming of the beams ensuring high collision rates. This, together with improved performance at the four detectors - Aleph, Delphi, L3, and Opal - have led to average efficiency increasing to 57% from 44% in 1991, so that the luminosity delivered over a day has exceeded what could have been expected initially, says Steve Myers

  6. Studies on Transverse Painting for H- Injection into the PSB

    CERN Document Server

    Bracco, C; Fowler, T; Goddard, B; Grawer, G; Lallement, J B; Martini, M; Weterings, W

    2011-01-01

    Linac4 will inject 160 MeV H- ions into the CERN PS Booster (PSB). This will allow to reduce space charge effects and increase beam intensity but will require a substantial upgrade of the injection region. The PSB has to provide beam to several users with different requirements in terms of beam intensity and emittance. Four kicker magnets (KSW) will be used to accomplish painting in the horizontal phase space to match the injected beams to the required emittances. Multiple linear functions, with varying slopes for each user, have been defined for the KSW generators waveforms according to detailed beam dynamic studies for all target intensities and emittances. Preliminary studies have been carried out to evaluate how to obtain the required vertical emittance and the option of a transverse painting, also in the vertical plane, is explored.

  7. QCD at LEP

    CERN Document Server

    Metzger, W.J.

    2003-01-01

    Several preliminary QCD results from e+e- interactions at LEP are reported. These include studies of event shape variables, which are used to determine alpha_s and for studies of the validity of power corrections. Further, a study of color reconnection effects in 3-jet Z decays is reported.

  8. accelerating cavity from LEP

    CERN Multimedia

    This is an accelerating cavity from LEP, with a layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities are now used in LEP to double the energy of the particle beams.

  9. Experimentation at LEP

    International Nuclear Information System (INIS)

    Wiik, B.H.

    1979-01-01

    Some of the more basic processes in e + e - annihilation are discussed and the rates estimated. The following topics are treated: 1. Estimate of e + e - → hadrons. 2. Strong Interaction Issues. 3. Weak Interaction Issues. 4. The Higgs Particle(s). The contribution of experiments at LEP energies is assessed. (Auth.)

  10. LEP inauguration

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    13 November saw the culmination at CERN of weeks of intricate planning to put together a fitting formal inauguration of LEP, CERN's 27-kilometre electron-positron collider. The day was to witness an event worthy of the many years of assiduous endeavour to bring into being the world's largest scientific machine, a prime example of international collaboration and the portent of a new era in fundamental research.

  11. End view of steel-concrete prototype yoke for LEP dipoles

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    The magnetic field needed in the LEP dipole magnets was rather low, of a fraction of tesla. This lead to the conception of a novel yoke structure consisting of stacks of 1.5 mm thick low-carbon steel laminations spaced by 4.1 mm with the spaces filled with concrete. For details see LEP-Note 118,1978 and LEP-Note 233,1980. See also 7908528X, 8111710X, 8111529.

  12. Inside the LEP control room at start-up

    CERN Multimedia

    1989-01-01

    Physicists grouped around a screen in the LEP control room at the strat-up of LEP on 14 July 1989. The emotion of the moment is clear. Carlo Rubbia, Director-General of CERN at the time, is in the centre and on his left, Herwig Schopper, former Director-General of the Organization.

  13. LEP dominates LP-HEP

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, Gordon

    1991-09-15

    CERN's LEP electron-positron collider was the star of this year's major physics meeting - the Joint International Lepton-Photon Symposium and Europhysics Conference on High Energy Physics (LP-HEP) - held in Geneva from 25 July - 1 August.

  14. Components for the CERN LEP ring

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    One of the most important experimental setups at the LEP (Large Electron Positron Collider) ring is called OPAL (Omni Purpose Apparatus for LEP). Sulzer-Escher Wyss, Zurich, is to deliver the iron yoke, i.e. the mechanical part of one of the nine OPAL detectors. The contract for the yoke includes essentially the two side parts, each consisting of ten modules and two end caps, the middle part, four special modules and two supporting rings, as well as both the poles. The combined weight of all the supply items comes to some 2300 t. (Auth.).

  15. LepVax, a defined subunit vaccine that provides effective pre-exposure and post-exposure prophylaxis of M. leprae infection.

    Science.gov (United States)

    Duthie, Malcolm S; Pena, Maria T; Ebenezer, Gigi J; Gillis, Thomas P; Sharma, Rahul; Cunningham, Kelly; Polydefkis, Michael; Maeda, Yumi; Makino, Masahiko; Truman, Richard W; Reed, Steven G

    2018-01-01

    Sustained elimination of leprosy as a global health concern likely requires a vaccine. The current standard, BCG, confers only partial protection and precipitates paucibacillary (PB) disease in some instances. When injected into mice with the T helper 1 (Th1)-biasing adjuvant formulation Glucopyranosyl Lipid Adjuvant in stable emulsion (GLA-SE), a cocktail of three prioritized antigens (ML2055, ML2380 and ML2028) reduced M. leprae infection levels. Recognition and protective efficacy of a single chimeric fusion protein incorporating these antigens, LEP-F1, was confirmed in similar experiments. The impact of post-exposure immunization was then assessed in nine-banded armadillos that demonstrate a functional recapitulation of leprosy. Armadillos were infected with M. leprae 1 month before the initiation of post-exposure prophylaxis. While BCG precipitated motor nerve conduction abnormalities more rapidly and severely than observed for control infected armadillos, motor nerve injury in armadillos treated three times, at monthly intervals with LepVax was appreciably delayed. Biopsy of cutaneous nerves indicated that epidermal nerve fiber density was not significantly altered in M. leprae -infected animals although Remak Schwann cells of the cutaneous nerves in the distal leg were denser in the infected armadillos. Importantly, LepVax immunization did not exacerbate cutaneous nerve involvement due to M. leprae infection, indicating its safe use. There was no intraneural inflammation but a reduction of intra axonal edema suggested that LepVax treatment might restore some early sensory axonal function. These data indicate that post-exposure prophylaxis with LepVax not only appears safe but, unlike BCG, alleviates and delays the neurologic disruptions caused by M. leprae infection.

  16. The LEP alarm system

    International Nuclear Information System (INIS)

    Tyrrell, M.W.

    1992-01-01

    Unlike alarm systems for previous accelerators, the LEP alarm system caters not only for the operation of the accelerator but also for technical services and provides the direct channel for personnel safety. It was commissioned during 1989 and has seen a continued development up to the present day. The system, comprising over 50 computers including 5 different platforms and 4 different operating systems, is described. The hierarchical structure of the software is outlined from the interface to the equipment groups, through the front end computers to the central server, and finally to the operator consoles. Reasons are given for choosing a conventional, as opposed to a 'knowledge based' approach. Finally, references are made to a prototype real time expert system for surveying the power converters of LEP, which was conducted during 1990 as part of the alarm development program. (author)

  17. Bottonium production at LEP

    International Nuclear Information System (INIS)

    Abraham, K.J.

    1989-03-01

    The production of γ ('3S 1 ) and η b ( 1 S 0 ) with two gluons from Z decay is investigated. It is found that at LEP luminosities experimental detection will hardly be feasible. (author). 9 refs.; 1 fig

  18. LEP Dismantling Reaches Half-Way Stage

    CERN Multimedia

    2001-01-01

    LEP's last superconducting module leaves its home port... Just seven months into the operation, LEP dismantling is forging ahead. Two of the eight arcs which form the tunnel have already been emptied and the last of the accelerator's radiofrequency (RF) cavities has just been raised to the surface. The 160 people working on LEP dismantling have reason to feel pleased with their progress. All of the accelerator's 72 superconducting RF modules have already been brought to the surface, with the last one being extracted on 2nd May. This represents an important step in the dismantling process, as head of the project, John Poole, explains. 'This was the most delicate part of the project, because the modules are very big and they could only come out at one place', he says. The shaft at point 1.8 through which the RF cavity modules pass is 18 metres in diameter, while each module is 11.5 metres long. Some modules had to travel more than 10 kilometres to reach the shaft. ... is lifted up the PM 1.8 shaft, after a m...

  19. LEP dominates LP-HEP

    International Nuclear Information System (INIS)

    Fraser, Gordon

    1991-01-01

    CERN's LEP electron-positron collider was the star of this year's major physics meeting - the Joint International Lepton-Photon Symposium and Europhysics Conference on High Energy Physics (LP-HEP) - held in Geneva from 25 July - 1 August

  20. A look at LEP

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    While work on the tunnel linking England and France under the English Channel has not yet begun, the 26.6 kilometre ring being built at CERN for the LEP electron-positron collider is one of Europe's major engineering projects. (orig./HSI).

  1. LEP Vacuum Chamber

    CERN Multimedia

    1983-01-01

    This is a cut-out of a LEP vacuum chamber for dipole magnets showing the beam channel and the pumping channel with the getter (NEG) strip and its insulating supports. A water pipe connected to the cooling channel can also be seen at the back.The lead radiation shield lining is also shown. See also 8305563X.

  2. Studies on the construction of a new 80 MeV injector and a new injection scheme for the synchrotron of the Bonn accelerator facility ELSA

    International Nuclear Information System (INIS)

    Raecke, K.

    2001-09-01

    At the ELSA Accelerator Facility exists the opportunity to install a 80 MeV linear accelerator as an injector for the 2,5 GeV Booster Synchrotron. Because of its length the new structure cannot replace one of the linacs used today so possibilities to built up the accelerator and the transfer channels are worked out. Calculations comparing the injection efficiency of the present layout and the possible new layout show a recognizable improvement. The injection efficiency can be further improved using a single turn injection scheme. A septum magnet and a fast kicker for this injection scheme is designed. (orig.)

  3. LEP Dismantling - a first Step into New Era

    CERN Multimedia

    2000-01-01

    The aim of the project is to remove the LEP machine and most of the services from the underground areas in order to install the LHC within the time constraints of its civil engineering and installation programmes The dismantling of LEP will be the first project to be executed under the new INB (Installation Nucléaire de Base) convention for the LHC. This talk will give an overview of the LEP Dismantling project covering traceability, planning, infrastructure and execution. It will explain what it means for our accelerators to be classified as INB's and will introduce the changes in working and safety procedures, which will be enforced from the beginning of October. Note: The presentation will be made in French with the transparencies in English.

  4. The OPAL Detector (an~Omni~Purpose~Apparatus~for~Lep)

    CERN Multimedia

    Schaile, D A; Watson, N; Craciun, M; Hanson, G; Mcmahon, T J; Stokes, W; Wilson, G W; Carter, J; Plane, D; Scharff-hansen, P; Sahr, O M; Rembser, C; Saeki, T; Nisius, R; Campana, S; Kormos, L L; Marchant, T E; Takeda, H; Kupper, M; Hill, J C; Hajdu, C; Hauschild, M; Charlton, D; Kellogg, R; Kluth, S; Asai, S; Nellen, B; Bright-thomas, P; Polok, J; Guenther, P O; Keeler, R; Schwick, C; Stephens, K; Zankel, K; Watkins, P; Chang, C Y; Roney, M; Fischer, H; Dubbert, J

    2002-01-01

    The OPAL Detector (an Omni Purpose Apparatus for Lep) \\\\ \\\\OPAL, a general purpose detector, was designed to study a wide range of unexplored physics at LEP. \\\\ \\\\At LEP1, one of the central issues is the precise determination of the mass, width and couplings to quarks and leptons of the Z$^{0}$ boson. At LEP2 the mass and couplings of the W$^\\pm$ bosons are determined. Accurate measurements of these quantities might reveal the mechanisms by which symmetries are broken. Many topics relating to heavy flavours are studied, including the properties of tau leptons, and the spectroscopy, lifetimes and mixing of hadrons containing b-quarks. \\\\ \\\\There are very active QCD and Two-Photon groups. Among the topics being studied are the determination of the strong coupling constant, $ \\alpha _{S} $, tests of the group structure of QCD, differences between quark- and gluon-induced jets, many aspects of the fragmentation process measurements of many different final states in photon-photon collision, and measurement of str...

  5. Measurement of e-γ interactions at LEP

    International Nuclear Information System (INIS)

    Palomares, C.

    2001-01-01

    This report shows the studies of different eγ interaction processes at LEP. The cross-section of the quasi-real Compton scattering has been measured at centre-of-mass energies between 20 GeV and 185 GeV, using the L3 detector at LEP. The production of single neutral intermediate vector bosons in Compton scattering is analyzed by the DELPHI and OPAL experiments. The production of single excited electrons in a eγ interaction has bee consider as well. (author)

  6. LEP the lord of the collider rings at CERN 1980-2000

    CERN Document Server

    Schopper, Herwig Franz

    2009-01-01

    Housed by a 4 m diameter tunnel of 27 km circumference, with huge underground labs and numerous surface facilities, and set up with a precision of 0.1 mm per kilometer, the Large Electron-Positron Collider (LEP) was not only the largest but also one of the most sophisticated scientific research instrument ever created by Man. Located at CERN, near Geneva, LEP was built during the years 1983 - 1989, was operational until 2000, and corroborated the standard model of particle physics through continous high precision measurements. The Author, director-general of CERN during the crucial period of the construction of LEP, recounts vividly the convoluted decision-making and technical implementation processes - the tunnel alone being a highly challenging geo- and civil engineering project - and the subsequent extremely fruitful period of scientific research. Finally he describes the difficult decision to close down LEP, at a time when the discovery of the Higgs boson seemed within reach. LEP was eventually dismantled...

  7. The Influence of Train Leakage Currents on the LEP Dipole Field

    CERN Document Server

    Bravin, Enrico; Dehning, Bernd; Drees, A; Galbraith, Peter; Geitz, M A; Henrichsen, K N; Koratzinos, M; Mugnai, G

    1998-01-01

    The determination of the mass and the width of the Z boson at CERN's LEP accelerator, an e+e- storage ring with a circumference of approximately 27 kilometres, imposes heavy demands on the knowledge of the LEP counter-rotating electron and positron beam energies. The precision required is of the order of 1 MeV or »20 ppm frequency. Due to its size the LEP collider is influenced by various macroscopic and regional factors such as the position of the moon or seasonal changes of the rainfall in the area, as reported earlier. A new and not less surprising effect of the LEP energy was observed in 1995: railroad trains in the Geneva region perturb the dipole field. A parasitic flow of electricity, originating from the trains, travels along the LEP ground cable and the vacuum chamber, interacting with the dipole field. An account of the phenomenon with its explanation substantiated by dedicated measurements is presented.

  8. Rare B decays at LEP

    CERN Document Server

    Kluit, P M

    2001-01-01

    The results of the LEP experiments for rare B decays will be reviewed, covering hadronic final states, radiative and other rare decays and results for the inclusive charmless branching ratio. (8 refs).

  9. The Large Hadron Collider in the LEP tunnel

    International Nuclear Information System (INIS)

    Brianti, G.; Huebner, K.

    1987-01-01

    The status of the studies for the CERN Large Hadron Collider (LHC) is described. This collider will provide proton-proton collisions with 16 TeV centre-of-mass energy and a luminosity exceeding 10 33 cm -2 s -1 per interaction point. It can be installed in the tunnel of the Large Electron-Positron Storage Ring (LEP) above the LEP elements. It will use superconducting magnets of a novel, compact design, having two horizontally separated channels for the two counter-rotating bunched proton beams, which can collide in a maximum of seven interaction points. Collisions between protons of the LHC and electrons of LEP are also possible with a centre-of-mass energy of up to 1.8 TeV and a luminosity of up to 2 x 10 32 cm -2 s -1 . (orig.)

  10. Quark radiation from LEP

    Energy Technology Data Exchange (ETDEWEB)

    Cartwright, Susan

    1992-04-15

    Like any other electrically charged particles, quarks should give out electromagnetic radiation (photons) when they vibrate. One of the physics results from CERN's LEP collider is the first clear observation of this quark radiation from electron-positron collisions. At lower energies this radiation could only be inferred.

  11. LEP vacuum chamber, prototype

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    Final prototype for the LEP vacuum chamber, see 8305170 for more details. Here we see the strips of the NEG pump, providing "distributed pumping". The strips are made from a Zr-Ti-Fe alloy. By passing an electrical current, they were heated to 700 deg C.

  12. Precision Experiments at LEP

    CERN Document Server

    de Boer, Wim

    2015-01-01

    The Large Electron Positron Collider (LEP) established the Standard Model (SM) of particle physics with unprecedented precision, including all its radiative corrections. These led to predictions for the masses of the top quark and Higgs boson, which were beautifully confirmed later on. After these precision measurements the Nobel Prize in Physics was awarded in 1999 jointly to 't Hooft and Veltman "for elucidating the quantum structure of electroweak interactions in physics". Another hallmark of the LEP results were the precise measurements of the gauge coupling constants, which excluded unification of the forces within the SM, but allowed unification within the supersymmetric extension of the SM. This increased the interest in Supersymmetry (SUSY) and Grand Unified Theories, especially since the SM has no candidate for the elusive dark matter, while Supersymmetry provides an excellent candidate for dark matter. In addition, Supersymmetry removes the quadratic divergencies of the SM and {\\it predicts} the Hig...

  13. Design and test of the RHIC CMD10 abort kicker

    International Nuclear Information System (INIS)

    Hahn, H.; Blaskiewicz, M.; Drees, A.; Fischer, W.; Mi, J.; Meng, W.; Montag, C.; Pai, C.; Sandberg, J.; Tsoupas, N.; Tuozzolo, J. E.; Zhang, W.

    2015-01-01

    In recent RHIC operational runs, planned and unplanned pre-fire triggered beam aborts have been observed that resulted in quenches of SC main ring magnets, indicating a weakened magnet kick strength due to beam-induced ferrite heating. An improvement program was initiated to reduce the longitudinal coupling impedance with changes to the ferrite material and the eddy-current strip geometry. Results of the impedance measurements and of magnet heating tests with CMD10 ferrite up to 190°C are reported. All 10 abort kickers in the tunnel have been modified and were provided with a cooling system for the RUN 15.

  14. Searches for Higgs bosons and supersymmetry at LEP

    CERN Document Server

    van Vulpen, I B

    2004-01-01

    This note presents an overview of the main results from searches for Higgs bosons and supersymmetry at LEP. Most of the results presented here are combined results from the four LEP experiments (ALEPH, DELPHI, L3 and OPAL). No signal is observed and the (negative) search results are interpreted in a wide class of models allowing parameter space to be excluded. All limits are set at 95% CL.

  15. LEP a new instrument for high-energy physics

    CERN Document Server

    Udo, Fred

    1981-01-01

    Describes the LEP project of CERN. LEP (large electron/positron storage ring) is to be used to investigate electron/positron collisions at 44 to 260 GeV. The circumference of the ring will be 30.6 km. The theory is outlined. Two circular systems of beam bundles (electrons and positrons) move in opposite directions and are accelerated and focused (to 0.4 mm diameter) until collisions take place. (11 refs).

  16. LEP asymmetries and fits of the standard model

    International Nuclear Information System (INIS)

    Pietrzyk, B.

    1994-01-01

    The lepton and quark asymmetries measured at LEP are presented. The results of the Standard Model fits to the electroweak data presented at this conference are given. The top mass obtained from the fit to the LEP data is 172 -14-20 +13+18 GeV; it is 177 -11-19 +11+18 when also the collider, ν and A LR data are included. (author). 10 refs., 3 figs., 2 tabs

  17. Quark radiation from LEP

    International Nuclear Information System (INIS)

    Cartwright, Susan

    1992-01-01

    Like any other electrically charged particles, quarks should give out electromagnetic radiation (photons) when they vibrate. One of the physics results from CERN's LEP collider is the first clear observation of this quark radiation from electron-positron collisions. At lower energies this radiation could only be inferred

  18. LEP and results obtained by DELPHI after four years of operation; LEP i wyniki uzyskane przez DELPHI po czterech latach dzialania

    Energy Technology Data Exchange (ETDEWEB)

    Blocki, J. [Warsaw Univ. (Poland). Inst. Fizyki Doswiadczalnej; Brueckman de Renstrom, P.; Budziak, A. [Institute of Nuclear Physics, Cracow (Poland)] [and others

    1993-10-01

    We characterize the most important problems of modern elementary particles physics, for the solution of which the LEP (Large Electron Positron) accelerator was built. We present the characteristics of this accelerator. The structure and properties of the DELPHI detector are described with special emphasis on the contribution of Polish groups. The most important results obtained so far in the LEP accelerator are discussed. (author). 12 refs, 17 figs, 1 tab.

  19. Electroacoustic oscillations in the LEP SC. cavities

    CERN Document Server

    Boussard, Daniel; Tückmantel, Joachim

    1996-01-01

    The LEP superconducting cavities have been plagued by electroacoustic oscillations. Tests have been done to eliminate these by a special feed-back loop in the tuning circuit as well as a feed-forward path, but they could only be eliminated safely up to the design field by running the cavities close to tune neglecting beam-loading compensation. This technique proved successful during the first LEP2 test run at 70 GeV. The mechanism and essential parameters driving these oscillations have been analysed as well as the corresponding stronger loading of the power coupler.

  20. Measurement of the W mass at LEP

    CERN Document Server

    Przysiezniak, H

    2000-01-01

    The mass of the W boson is measured using W pair events collected with the ALEPH, DELPHI, L3 and OPAL detectors at LEP2. Three methods are used: the cross section method, the lepton energy spectrum method and the direct reconstruction method, where the latter is described more in detail. For data collected at E/sub cm/=161, 172 and 183 GeV, the following combined preliminary result is obtained: M/sub W//sup LEP/=80.37+or-0.08 GeV/c/sup 2/. (5 refs).

  1. Soft gluon coherence at LEP

    International Nuclear Information System (INIS)

    Gaidot, A.

    1993-01-01

    After a brief overview of the experimental status on colour coherence at LEP we will focus on two recent approaches to the subject: the sub-jet multiplicities and the azimuthal correlations between pair of particles. (author)

  2. Calibration Measurements of the LHC Beam Dumping System Extraction Kicker Magnets

    CERN Document Server

    Uythoven, J; Ducimetière, L; Goddard, B; Gräwer, G; Olivieri, F; Pereira, L; Vossenberg, Eugène B

    2006-01-01

    The LHC beam dumping system must protect the LHC machine from damage by reliably and safely extracting and absorbing the circulating beams when requested. Two sets of 15 extraction kicker magnets form the main active part of this system. They have been produced, tested and calibrated by measuring the integrated magnetic field and the magnet current at different beam energies. The calibration data have been analysed, and the critical parameters are compared with the specifications. Implications for the configuration, control and operation of the beam dumping system are discussed.

  3. Measurements on Prototype Inductive Adders with Ultra-Flat-Top Output Pulses for CLIC DR Kickers

    CERN Document Server

    Holma, J; Belver-Aguilar, C

    2014-01-01

    The CLIC study is investigating the technical feasibility of an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The CLIC pre-damping rings and damping rings (DRs) will produce ultra-low emittance beam with high bunch charge. To avoid beam emittance increase, the DR kicker systems must provide extremely flat, high-voltage, pulses. The specifications for the DR extraction kickers call for a 160 ns duration flat-top pulses of ±12.5 kV, 250 A, with a combined ripple and droop of not more than ±0.02 % (±2.5 V). An inductive adder is a very promising approach to meeting the specifications because this topology allows the use of both passive and analogue modulation methods to adjust the output waveform. Recently, two five-layer, 3.5 kV, prototype inductive adders have been built at CERN. The first of these has been used to test the passive and active analogue modulation methods to compensate voltage droop and ripple of the output pulses. Pulse waveforms have been reco...

  4. Testing the tau lepton universality at LEP

    CERN Document Server

    Dittmar, M

    1991-01-01

    Measurements of r lepton production and its decay properties at LEP are reviewed and compared with the corresponding µ results. Excellent agreement of lepton universality in z0 decays has been found, taking the average values from the four LEP experiments, the ratio of the partial width for z0 decays into r- and µ pairs is 0.996 ± 0.016. The search for flavour changing leptonic z0 decays is discussed; from the absence of any signal, stringent limits (95% c.l.) of the zo branching ratio of 7.2 x 10-5 and 35 x io-5 were obtained for z0 decays into er and µr. The first preliminary results on leptonic r branching ratios are in good agreement with the world average. Therefore the existing two sigma puzzle, the too small leptonic branching ratio or the too long r lifetime, remains. These first results indicate also that much higher precision should be achieved during the next years of LEP, sufficient to establish or resolve this problem. Finally, the r polarisation measurements are compared. The most accurate m...

  5. Compositeness at LEP

    International Nuclear Information System (INIS)

    Bardadin-Otwinowska, M.

    1992-01-01

    Searches for compositeness made by four LEP collaborations are reported. Limits are set on excited fermion masses and couplings. A limit on the branching ratio Z→γγγ is determined. Four-fermion and two-fermion, two-boson contact terms are studied in the reactions e + e - →l + l - and e + e - →γγ respectively and limits are obtained on the energy scale of a new interaction

  6. Niobium LEP 2 accelerating cavities

    CERN Multimedia

    An accelerating cavity from LEP. This could be cut open to show the layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities were used in an upgrade of the LEP accelerator to double the energy of the particle beams.

  7. Purification and characterization of Lep d I, a major allergen from the mite Lepidoglyphus destructor.

    Science.gov (United States)

    Ventas, P; Carreira, J; Polo, F

    1992-04-01

    A major allergen of the storage mite Lepidoglyphus destructor (Lep d I) has been purified by affinity chromatography using an anti-Lep d I monoclonal antibody. The purity of the protein obtained by this procedure was assessed by reverse-phase HPLC. Lep d I displayed a molecular weight of 14 kD on SDS-PAGE under non-reducing conditions, and 16 kD in the presence of a reducing agent. Analytical IEF revealed a little charge microheterogeneity, showing three bands with pIs 7.6-7.8. Purified Lep d I retained IgE-binding ability, as proved by immunoblotting experiments after SDS-PAGE and RAST with individual sera from L. destructor-sensitive patients. Results from the latter technique demonstrated that 87% of L. destructor-allergic patients had specific IgE to Lep d I, and a good correlation between IgE reactivity with L. destructor extract and Lep d I was found. In addition, RAST inhibition experiments showed that IgE-binding sites on Lep d I are major L. destructor-allergenic determinants, since Lep d I could inhibit up to 75% the binding of specific IgE to L. destructor extract; on the other hand, Lep d I did not cross-react with D. pteronyssinus allergens.

  8. New beam-based and direct magnetic waveform measurements of the BTx.KFA10(20) vertical recombination kickers and induced emittance blow-up simulations at 1.4 and 2 GeV

    CERN Document Server

    Forte, Vincenzo; Borburgh, Jan; Sermeus, Luc; CERN. Geneva. ATS Department

    2018-01-01

    In the framework of the LHC Injectors Upgrade (LIU) project [1], this document summarises a new reconstruction methodology for the measurement of the magnetic waveforms of the vertical re-combination kickers BT1.KFA10, BT4.KFA10 and BT2.KFA20, from data collected during several Machine Development (MD) sessions. The reconstruction has been performed in order to verify the LIU specification of the recombination kickers, which is required for a clean transfer of the longer bunches coming from the PSB after the upgrade. A beam-based methodology was developed to measure the transient magnetics dynamics of the kicker where the bunch length is comparable to the rise and/or fall times. These measurements represent a valuable way to reconstruct the mag-netic waveform of the kickers where removing them to make direct probe measurements is time consuming. A benchmarking of the beam-based measurements with field probe measurements is presented, together with realistic simulations of the vertical emittance blow-up at 1...

  9. Lack of specific hybridization between the lep genes of Salmonella typhimurium and Bacillus licheniformis

    NARCIS (Netherlands)

    van Dijl, J M; Jong, de Anne; Smith, H; Bron, Sierd; Venema, G

    1991-01-01

    This paper describes an attempt to clone the Bacillus licheniformis lep gene, encoding signal peptidase, using the Salmonella typhimurium lep gene as a hybridization probe. Although a hybridizing fragment was obtained, DNA sequence analysis indicated that it did not contain the lep gene. Instead,

  10. Polarization at LEP: Status and prospects

    International Nuclear Information System (INIS)

    Koutchouk, J.P.

    1993-01-01

    The first evidence of a measurable signal of transverse polarization was observed at the end of 1990. In 1991, polarized beams were repeatedly obtained with average and peak polarization levels of 10 and 19% and used to calibrate the beam energy by resonant depolarization. Simulation studies show that the polarization level can be increased above the 50% by harmonic spin matching. This is sufficient to open the possibility of doing physics with longitudinally polarized beams. A spin rotator has been designed for LEP. The feasibility study of operating LEP in this mode concludes at the possibility of providing polarized beams at a good performance level, if the high photon background can be reduced to a tolerable level. (author). 10 refs, 3 figs, 5 tabs

  11. NuMI proton kicker extraction magnet termination resistor system

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, S.R.; Jensen, C.C.; /Fermilab

    2005-05-01

    The temperature stability of the kicker magnet termination resistor assembly directly affects the field flatness and amplitude stability. Comprehensive thermal enhancements were made to the existing Main Injector resistor assembly design to satisfy NuMI performance specifications. Additionally, a fluid-processing system utilizing Fluorinert{reg_sign} FC-77 high-voltage dielectric was built to precisely control the setpoint temperature of the resistor assembly from 70 to 120F, required to maintain constant resistance during changing operational modes. The Fluorinert{reg_sign} must be continually processed to remove hazardous breakdown products caused by radiation exposure to prevent chemical attack of system components. Design details of the termination resistor assembly and Fluorinert{reg_sign} processing system are described. Early performance results will be presented.

  12. ADVANCEMENT OF THE RHIC BEAM ABORT KICKER SYSTEM

    International Nuclear Information System (INIS)

    ZHANG, W.; AHRENS, L.; MI, J.; OERTER, B.; SANDBERG, J.; WARBURTON, D.

    2003-01-01

    As one of the most critical system for RHIC operation, the beam abort kicker system has to be highly available, reliable, and stable for the entire operating range. Along with the RHIC commission and operation, consistent efforts have been spend to cope with immediate issues as well as inherited design issues. Major design changes have been implemented to achieve the higher operating voltage, longer high voltage hold-off time, fast retriggering and redundant triggering, and improved system protection, etc. Recent system test has demonstrated for the first time that both blue ring and yellow ring beam abort systems have achieved more than 24 hours hold off time at desired operating voltage. In this paper, we report break down, thyratron reverse arcing, and to build a fast re-trigger system to reduce beam spreading in event of premature discharge

  13. Biomechanical predictors of ball velocity during punt kicking in elite rugby league kickers

    OpenAIRE

    Sinclair, Jonathan Kenneth; Taylor, Paul John; Atkins, Stephen; Hobbs, Sarah Jane

    2016-01-01

    Punt kicking is integral to the attacking and defensive elements of rugby league and the ability to kick the ball with high\\ud velocity is desirable. This study aimed to identify important technical aspects of kicking linked to the generation of ball\\ud velocity. Maximal punt kicks were obtained from six elite rugby league kickers using a 10-camera motion capture system.\\ud Three-dimensional kinematics of the lower extremities was obtained. Regression analysis with ball velocity as criterion\\...

  14. Heavy quark physics from LEP

    International Nuclear Information System (INIS)

    Dornan, P.J.

    1997-01-01

    A review of some of the latest results on heavy flavor physics from the LEP Collaborations is presented. The emphasis is on B physics, particularly new results and those where discrepancies is given of the many techniques which have been developed to permit these analyses

  15. Heavy quark physics from LEP

    Energy Technology Data Exchange (ETDEWEB)

    Dornan, P.J. [Imperial College of Science Technology and Medicine, London (United Kingdom)

    1997-01-01

    A review of some of the latest results on heavy flavor physics from the LEP Collaborations is presented. The emphasis is on B physics, particularly new results and those where discrepancies is given of the many techniques which have been developed to permit these analyses.

  16. LEP shines light on dark matter

    International Nuclear Information System (INIS)

    Fox, Patrick J.; Harnik, Roni; Kopp, Joachim; Tsai, Yuhsin

    2011-01-01

    Dark matter pair production at high energy colliders may leave observable signatures in the energy and momentum spectra of the objects recoiling against the dark matter. We use LEP data on monophoton events with large missing energy to constrain the coupling of dark matter to electrons. Within a large class of models, our limits are complementary to and competitive with limits on dark matter annihilation and on WIMP-nucleon scattering from indirect and direct searches. Our limits, however, do not suffer from systematic and astrophysical uncertainties associated with direct and indirect limits. For example, we are able to rule out light (< or approx. 10 GeV) thermal relic dark matter with universal couplings exclusively to charged leptons. In addition, for dark matter mass below about 80 GeV, LEP limits are stronger than Fermi constraints on annihilation into charged leptons in dwarf spheroidal galaxies. Within its kinematic reach, LEP also provides the strongest constraints on the spin-dependent direct detection cross section in models with universal couplings to both quarks and leptons. In such models the strongest limit is also set on spin-independent scattering for dark matter masses below ∼4 GeV. Throughout our discussion, we consider both low energy effective theories of dark matter, as well as several motivated renormalizable scenarios involving light mediators.

  17. Summary of the Photon Structure Functions - Measurements at LEP

    International Nuclear Information System (INIS)

    Przybycien, M.

    2002-01-01

    The present status of the photon structure functions measurements at LEP is discussed. The short introduction to the kinematics and theoretical framework of the structure functions measurements at LEP is given first. Then follow presentations of the most important measurements, ranging from the QED photon structure function, through the hadronic structure functions of real and virtual photons, and at the end the first measurement of the electron structure function is shown. (author)

  18. Polarization at LEP. Vol. 2

    International Nuclear Information System (INIS)

    Alexander, G.; Altarelli, G.; Blondel, A.; Coignet, G.; Keil, E.; Plane, D.E.; Treille, D.

    1988-01-01

    This report contains a collection of papers covering the most important part of studies carried out by five study groups in view of a programme of experiments with polarized beams at LEP, the Large Electron-Positron collider under construction at CERN. The emphasis is on precision measurements at the Z peak. Such measurements are shown to be of considerable theoretical interest as well as very clean from the point of view of theoretical and experimental uncertainties. The measurement of the beam polarization can certainly be performed with sufficient accuracy, thanks to the availability of both e + and e - beam polarization. The normalization of the data taken with different beam helicities poses certain constraints that are described. Substantial progress has been made in understanding the possibility of providing longitudinally polarized beams in the LEP machine: The design of new wigglers and spin rotators, the study of correction procedures and results of numerical simulations are presented. (orig.)

  19. LEP superconducting cavities go into storage

    CERN Multimedia

    Patrice Loïez

    2001-01-01

    Superconducting radio-frequency cavities from the LEP-2 phase (1996-2000) are put into storage in the tunnel that once housed the Intersecting Storage Rings (ISR), the world’s first proton collider, located at CERN.

  20. Determination of the LEP Beam Energy using Radiative Fermion-pair Events, 2004

    CERN Document Server

    Abbiendi, G; Åkesson, P F; Alexander, G; Allison, J; Amaral, P; Anagnostou, G; Anderson, K J; Asai, S; Axen, D A; Bailey, I; Barberio, E; Barillari, T; Barlow, R J; Batley, J Richard; Bechtle, P; Behnke, T; Bell, K W; Bell, P J; Bella, G; Bellerive, A; Benelli, G; Bethke, Siegfried; Biebel, O; Boeriu, O; Bock, P; Boutemeur, M; Braibant, S; Brown, R M; Burckhart, H J; Campana, S; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Ciocca, C; Csilling, A; Cuffiani, M; Dado, S; de Roeck, A; De Wolf, E A; Desch, Klaus; Dienes, B; Donkers, M; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Etzion, E; Fabbri, Franco Luigi; Ferrari, P; Fiedler, F; Fleck, I; Ford, M; Frey, A; Gagnon, P; Gary, J W; Geich-Gimbel, C; Giacomelli, G; Giacomelli, P; Giunta, M; Goldberg, J; Gross, E; Grunhaus, Jacob; Gruwé, M; Günther, P O; Sen-Gupta, A; Hajdu, C; Hamann, M; Hanson, G G; Harel, A; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, R J; Herten, G; Heuer, R D; Hill, J C; Hoffman, K; Horváth, D; Igo-Kemenes, P; Ishii, K; Jeremie, H; Jovanovic, P; Junk, T R; Kanzaki, J; Karlen, Dean A; Kawagoe, K; Kawamoto, T; Keeler, R K; Kellogg, R G; Kennedy, B W; Kluth, S; Kobayashi, T; Kobel, M; Komamiya, S; Kramer, T; Krieger, P; Von Krogh, J; Kühl, T; Kupper, M; Lafferty, G D; Landsman, Hagar Yaël; Lanske, D; Lellouch, D; Letts, J; Levinson, L; Lillich, J; Lloyd, S L; Loebinger, F K; Lü, J; Ludwig, A; Ludwig, J; Mader, W; Marcellini, S; Martin, A J; Masetti, G; Mashimo, T; Mättig, P; McKenna, J A; McPherson, R A; Meijers, F; Menges, W; Merritt, F S; Mes, H; Meyer, N; Michelini, A; Mihara, S; Mikenberg, G; Miller, D J; Mohr, W; Mori, T; Mutter, A; Nagai, K; Nakamura, I; Nanjo, H; Neal, H A; Nisius, R; O'Neale, S W; Oh, A; Oreglia, M J; Orito, S; Pahl, C; Pásztor, G; Pater, J R; Pilcher, J E; Pinfold, J L; Plane, D E; Pooth, O; Przybycien, M B; Quadt, A; Rabbertz, K; Rembser, C; Renkel, P; Roney, J M; Rossi, A M; Rozen, Y; Runge, K; Sachs, K; Saeki, T; Sarkisyan-Grinbaum, E; Schaile, A D; Schaile, O; Scharff-Hansen, P; Schieck, J; Schörner-Sadenius, T; Schröder, M; Schumacher, M; Seuster, R; Shears, T G; Shen, B C; Sherwood, P; Skuja, A; Smith, A M; Sobie, R J; Söldner-Rembold, S; Spanó, F; Stahl, A; Strom, D; Ströhmer, R; Tarem, S; Tasevsky, M; Teuscher, R; Thomson, M A; Torrence, E; Toya, D; Tran, P; Trigger, I; Trócsányi, Z L; Tsur, E; Turner-Watson, M F; Ueda, I; Ujvári, B; Vollmer, C F; Vannerem, P; Vertesi, R; Verzocchi, M; Voss, H; Vossebeld, Joost Herman; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wengler, T; Wermes, N; Wilson, G W; Wilson, J A; Wolf, G; Wyatt, T R; Yamashita, S; Zer-Zion, D; Zivkovic, L

    2004-01-01

    We present a determination of the LEP beam energy using "radiative return" fermion-pair events recorded at centre-of-mass energies from 183 GeV to 209 GeV. We find no evidence of a disagreement between the OPAL data and the LEP Energy Workings Group's standard calibration. Including the energy- averaged 11 MeV uncertainty in the standard determination, the beam energy we obtain from the OPAL data is higher than that obtained from the LEP calibration by 0+-34(stat.)+-27(syst.)MeV

  1. Prospects for the Higgs boson in e+e- collisions at LEP 200

    International Nuclear Information System (INIS)

    Gross, E.; Lellouch, D.; Read, A.L.

    1998-05-01

    The authors evaluate the combined sensitivity of the four LEP collaborations to exclude or discover the Standard Model Higgs boson with the LEP collider at centre-of-mass energies of 189-200 GeV. It is argued that neighter Standard Model nor the Supersymmetric Higgs search benefits from an upgrade of LEP to its peak centre-of-mass energy (e.g. upgrade 198 GeV to 200 GeV) if this degrades the integrated luminosity by a factor of two or more. 7 refs., 11 figs

  2. A preliminary design of the Los Alamos fast Kicker Magnet Pulser and Power Supply

    International Nuclear Information System (INIS)

    Winje, R.A.

    1988-01-01

    The technical design of the Kicker Magnet Pulser and Power Supply is based on the switching of a precharged pulse forming network (pfn) into a matched load. Provisions are made through the selection of the main switch tube to accommodate loads that are not matched to the pfn impedance. The paper includes a description of the major components of the power supply and a summary of the performance parameters. 4 figs., 3 tabs

  3. CERN: LEP in action again

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    On 25 March, electron and positron beams were colliding again in LEP, CERN's new 27-kilometre electron-positron collider, marking the end of the winter shutdown and the commencement of a hefty run scheduled to last, with only minor interruptions, through to the end of August

  4. CERN: LEP to higher energy/LHC magnet string test

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    At 19.45 on 31 October, CERN's LEP electron-positron collider, equipped with superconducting radiofrequency accelerating cavities, registered its first events at a record collision energy of 130 GeV. During November, LEP went on to operate in the 130-140 GeV collision energy range. Fabrication and installation of the superconducting radiofrequency accelerating cavities needed to boost the energy of LEP's electron and positron beams have speeded up as confidence and expertise have increased. 16 additional cavities were installed in a brief technical stop during October. For the substantially upgraded machine to supply 65 GeV beams immediately and at luminosities comparable to those routinely attained before shows that the complicated technology needed for the superconducting cavities and mastering the machine itself are well under control - yet another remarkable achievement in CERN's tradition of remarkable achievements. Before the end-1995 run, LEP had been operating around the Z resonance at 91 GeV ever since its commissioning in 1989. LEP precision data on the Z, the electrically neutral carrier of the weak nuclear force, is now complete, and attention shifts toward the next major objective, accumulating data on the W, the Z's electrically charged counterpart. Unlike the Z, produced singly in electron-positron annihilations, the electrically charged Ws have to be produced in pairs. During the coming long shutdown, more superconducting modules will be installed to prepare for recommencement of operations in June, this time at collision energies of 161 GeV, allowing a first step across a longawaited 2W threshold. Later in the year more cavities will be ready to boost collision energies to 176 GeV. However in the meantime the LEP experiments, no longer blinded by the Z resonance, will be keeping a sharp eye open for new physics, and in particular for signs of as yet unseen supersymmetric particles. Theorists have long been convinced that our

  5. A new LAN concept for LEP machine networks

    CERN Document Server

    Guerrero, L E

    1995-01-01

    LEP networks, implemented in 1987, are based on two Token-ring backbones using TDM as the transmission medium. The general topology is based on routers and on a distributed backbone. To avoid the instabilities introduced by the TDM and all the conversion layers it has been decided to upgrade the LEP machine network and to evaluate a new concept for the overall network topology. The new concept will also fulfil the basic requirements for the future LHC network. The new approach relies on a large infrastructure which connects all the eight underground pits of LEP with single-mode fibres from the Prevessin control room (PCR). From the bottom of the pits, the two adjacent alcoves will be cabled with multi-mode fibres. FDDI has been selected as the MAC protocol. This new concept is based on switching and routing between the PCR and the eight pits. In each pit a hub will switch between the FDDI LMA backbone and the local Ethernet segments. Two of these segments will reach the alcoves by means of a 10Base-F link. In...

  6. LEP copper accelerating cavities

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    These copper cavities were used to generate the radio frequency electric field that was used to accelerate electrons and positrons around the 27-km Large Electron-Positron (LEP) collider at CERN, which ran from 1989 to 2000. The copper cavities were gradually replaced from 1996 with new superconducting cavities allowing the collision energy to rise from 90 GeV to 200 GeV by mid-1999.

  7. Deformation analysis of LEP

    International Nuclear Information System (INIS)

    Jin, F.; Mayoud, M.; Quesnel, J.P.

    1999-01-01

    LEP (Large Electron Positron Collider) is in an underground accelerator, located in a tunnel of 27 km circumference and from 40 to 160 m deep. It is the largest accelerator in the world. The electrons and positrons circulate in opposite directions and hit each other in four points. The collisions are observed by means of detectors, housed in large underground caverns. Due to the sensitivity of such accelerators to alignment errors a complete leveling is made every year, followed by a 'smoothing' process - i.e. an optimal refinement of successive positions - which makes that the accelerator is kept operational with respect to misalignments. The annual leveling of LEP can be characterised as follows: - A quasi circle of 27 km circumference in tunnel; - Measurements with a LEICA NA3000 (σ = ± 0.4 mm/km, statistically ± 0.04 to ± 0.05 mm/station, at intervals of 39.5 m); - Maximum height difference of 120 m between the highest point and the lowest point; - Measured points: alignment reference targets of the quadrupole magnets (entrance and exit points); -800 quadrupole magnets, 1600 points to measure; - Cholesky method, with two independent traverses (forward/backward loops). The data processing is made by least squares, according to a free network concept. In addition, a smoothing procedure (successive fits within a sliding window) is also carried out after each annual leveling measurement, in the purpose of refining the successive positions and finding the points being vertically too far (more than 0.3 mm in general) from the local smoothing curve. These points are then brought physically on their smoothed position (realignment) in order to keep the vertical configuration of LEP as optimal as possible. Tilt (transverse slope) measurements are also taken during this realignment process, thus putting the corrected element back to its right transverse position and reducing the correlated radial movement associated to this defect. (authors)

  8. Advances in particle physics: the LEP contribution, Conclusions and perspectives

    CERN Document Server

    Richard, F

    2002-01-01

    LEP1 precision measurements, combined with LEP2 searches for the Higgs boson, define the framework for future investigations in subatomic physics. In particular they define the energy and the luminosity which are needed at a future e sup + e sup - collider to settle the issue of the origin of mass and to complement the LHC on the various scenarios proposed beyond the Standard Model. (authors)

  9. Transmission line analysis of beam deflection in a BPM stripline kicker

    International Nuclear Information System (INIS)

    Caporaso, G.J.; Chen, Yu Ju; Poole, B.

    1997-05-01

    In the usual treatment of impedances of beamline structures the electromagnetic response is computed under the assumption that the source charge trajectory is parallel to the propagation axis and is unaffected by the wake of the structure. For high energy beams of relatively low current this is generally a valid assumption. Under certain conditions the assumption of a parallel source charge trajectory is no longer valid and the effects of the changing trajectory must be included in the analysis. Here the usual transmission line analysis that has been applied to BPM type transverse kickers is extended to include the self-consistent motion of the beam in the structure

  10. Arrêt du LEP après onze années de recherches de pointe

    CERN Multimedia

    CERN Press Office. Geneva

    2000-01-01

    After extended consultation with the appropriate scientific committees, CERN 's Director-General Luciano Maiani announced today that the LEP accelerator had been switched off for the last time. LEP was scheduled to close at the end of September 2000 but tantalising signs of possible new physics led to LEP's run being extended until 2 November. At the end of this extra period, the four LEP experiments had produced a number of collisions compatible with the production of Higgs particles with a mass of around 115 GeV.

  11. Measurement of triple-gauge-boson couplings in the experiment ALEPH and at LEP; Mesure des couplages a trois bosons dans l'experience ALEPH et au LEP

    Energy Technology Data Exchange (ETDEWEB)

    Bruneliere, R

    2003-04-01

    Precise measurements at LEP1 and SLD dramatically confirm the Standard Model predictions. Nevertheless, the most crucial consequence of a non-Abelian gauge theory, namely the specific form of the self-couplings of the W, Z and {gamma} was poorly tested. W pair production at LEP2 was a unique opportunity to measure accurately both W boson parameters and its gauge couplings. This thesis presents a study of WW events reconstruction on one hand, and a measurement of the anomalous couplings on the other hand. A precise measurement of the W mass (accuracy {approx} 10{sup -4}) is a major goal of the LEP2 program. The reconstruction of W mass disintegration products, used for this measurement, is very sensitive to the simulation defaults: an essential task is to understand and minimize their effects. This work presents a detailed study of the electromagnetic showers simulation in ALEPH. From this study, a new event reconstruction is proposed, which is tested on the LEP energy measurement obtained from Z return process. Triple gauge-boson couplings are measured from the data collected with the ALEPH detector between 1997 and 2000. Then, results are combined with the other three LEP experiments. This measurement directly confirms the non-Abelian nature of the electroweak sector. No deviation from the Standard Model is observed. (author)

  12. Model of Dipole Field Variations in the LEP Bending Magnets

    CERN Document Server

    Bravin, Enrico; Drees, A; Mugnai, G

    1998-01-01

    The determination of the Z mass at LEP requires a knowledge of the relative beam energy in the order of 10 ppm, therefore it is essential to understand the dipole field variations to the same level of accuracy. In LEP the bending magnet field shows a relative increase of the order of 100 ppm over 10 hours, which was found to be caused by leakage currents from railways flowing along the vacuum cham ber and temperature variations. A LEP dipole test bench was set up for systematic investigations. Field variations were monitored with NMR probes while the cooling water temperature of both coil and vacuum chamber was kept under control. The results lead to a parametrisation of the magnetic field variation as a function of the vacuum chamber current and temperature.

  13. Online Measurement of the Energy Spread of Multi-Turn Beam in the Fermilab Booster at Injection

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, J. [Brown U.; Bhat, C. M. [Fermilab; Hendricks, B. S. [Fermilab

    2017-07-01

    We have developed a computer program interfaced with the ACNET environment of Fermilab accelerators to measure energy spread of the proton beam from the LINAC at an injection into the Booster. It uses a digitizing oscilloscope and provides users an ability to configure the scope settings for optimal data acquisition from a resistive wall current monitor. When the program is launched, a) a one shot timeline is generated to initiate beam injection into the Booster, b) a gap of about 40 ns is produced in the injected beam using a set of fast kickers, c) collects line charge distribution data from the wall current monitor for the first 200 μs from the injection and d) performs complete data analysis to extract full beam energy spread of the beam. The program also gives the option to store the data for offline analyses. We illustrate a case with an example. We also present results on beam energy spread as a function of beam intensity from recent measurements.

  14. Program LEP to addition of gamma spectra from germanium detectors; Programa LEPS para suma de espectros gammas de detectores de germanio

    Energy Technology Data Exchange (ETDEWEB)

    Romero, L

    1986-07-01

    The LEP program, written in FORTRAN IV, performs the addition of two spectra, collected with different detectors, from the same sample. This application, adds the two gamma spectra obtained from two opposite LEPS Germanium Detectors (Low Energy Photon Spectrometer), correcting the differences (channel/energy) between both two spectra, and fitting them before adding. The total-spectrum is recorded at the computer memory as a single spectrum. The necessary equipment, to run this program is: - Two opposite germanium detectors, with their associate electronics. - Multichannel analyzer (2048 memory channel minimum) - Computer on-line interfacing to multichannel analyzer. (Author) 4 refs.

  15. L3 experiment dismantling at LEP

    CERN Multimedia

    Laurent Guiraud

    2001-01-01

    The last muon chamber is removed from the L3 experiment at the LEP collider, which was in operation from 1989 to 2000. The large red magnet yoke will be reused by the ALICE experiment when the LHC is constructed.

  16. The LEP impedance model

    Energy Technology Data Exchange (ETDEWEB)

    Zotter, B [European Organization for Nuclear Research, Geneva (Switzerland)

    1996-08-01

    This report describes a number of measurements and computations of the impedance of the Large Electron Positron collider LEP at CERN. The work has been performed over several years, together with D. Brandt, K. Cornelis, A. Hofmann, G. Sabbi and many others. The agreement between measurements of single bunch instabilities on the machine and computer simulations is in general excellent and gives confidence in the impedance model used. (author)

  17. Hall full of LEP magnets waiting to be installed in November 1987

    CERN Multimedia

    1987-01-01

    The white magnets in the background are LEP's innovative dipole magnets. They are made of plates of stell with the intervening spaces filled out with concrete. For the relatively low bending fields used in LEP, this technique offers a much cheaper alternative to solid steel costing about half the price. The blue magnets in the foreground are quadrupole focusing magnets and the small yellow magnets in the background are sextupoles which correct the beams "chromaticity", just as optical systems correct for the different wavelengths which make up light, these sextupoles correct for the spread of momenta in LEP's particle beams.

  18. Radiative four-fermion processes at LEP2

    International Nuclear Information System (INIS)

    Montagna, G.; Nicrosini, O.; Osmo, M.; Piccinini, F.; Moretti, M.

    2001-01-01

    The production of four fermions plus a visible photon in electron-positron collisions is analyzed, with particular emphasis on the LEP2 energy range. The study is based on the calculation of exact matrix elements, including the effect of fermion masses. In the light of the present measurements performed at LEP, triple and quartic anomalous gauge couplings are taken into account. Due to the presence of a visible photon in the final state, particular attention is paid to the treatment of higher-order QED corrections. Explicit results for integrated cross sections and differential distributions are shown and commented on. The features of the Monte Carlo program WRAP, used to perform the calculation and available for experimental analysis, are described. (orig.)

  19. Quantum chromodynamics studies at LEP2

    Indian Academy of Sciences (India)

    swaban swaban

    Studies of the annihilation process at LEP2 have given rise to results on jet rate, event ..... The electroweak theory explain the data at all these energies. .... like (a) smooth suppression of hadron-like and point-like 7 interaction, (b) dual parton.

  20. Maailmas lokkab globaalne terrorism / Ando Leps

    Index Scriptorium Estoniae

    Leps, Ando, 1935-

    2002-01-01

    29. märtsil moodustati Riias ülemaailmsel kuritegevuse- ja terrorismivastasel foorumil Läänemerega piirnevate riikide Kuritegevuse- ja Terrorismivastane Foorum. Võeti vastu põhikiri, nimetati ametisse juhatus ja büroo direktor. Foorumi üheks kaasesimeheks valiti Ando Leps. Autor: Keskerakond. Parlamendisaadik

  1. Globaliseeruv kuritegevus ja terror / Ando Leps

    Index Scriptorium Estoniae

    Leps, Ando, 1935-

    2002-01-01

    29. märtsil moodustati Riias ülemaailmsel kuritegevuse- ja terrorismivastasel foorumil Läänemerega piirnevate riikide Kuritegevuse- ja Terrorismivastane Foorum. Võeti vastu põhikiri, nimetati ametisse juhatus ja büroo direktor. Foorumi üheks kaasesimeheks valiti Ando Leps. Autor: Keskerakond. Parlamendisaadik

  2. Large hadron collider in the LEP tunnel. Proceedings. Vol. 2

    International Nuclear Information System (INIS)

    1984-01-01

    A Workshop, jointly organized by ECFA and CERN, took place at Lausanne and at CERN in March 1984 to study various options for a pp (or panti p) collider which might be installed at a later data alongside LEP in the LEP tunnel. Following the exploration of e + e - physics up to the highest energy now foreseeable, this would open up the opportunity to investigate hadron collisions in the new energy range of 10 to 20 TeV in the centre of mass. These proceedings put together the documents prepared in connection with this Workshop. They cover possible options for a Large Hadron Collider (LHC) in the LEP tunnel, the physics case as it stands at present, and studies of experimental possibilities in this energy range with luminosities as now considered. See hints under the relevant topics. (orig./HSI)

  3. Large hadron collider in the LEP tunnel. Proceedings. Vol. 1

    International Nuclear Information System (INIS)

    1984-01-01

    A Workshop, jointly organized by ECFA and CERN, took place at Lausanne and at CERN in March 1984 to study various options for a pp (or panti p) collider which might be installed at a later date alongside LEP in the LEP tunnel. Following the exploration of e + e - physics up to the highest energy now foreseeable, this would open up the opportunity to investigate hadron collisions in the new energy range of 10 to 20 TeV in the centre of mass. These proceedings put together the documents prepared in connection with this Workshop. They cover possible options for a Large Hadron Collider (LHC= in the LEP tunnel, the physics case at it stands at present, and studies of experimental possibilities in this energy range with luminosities as now considered. See hints under the relevant topics. (orig.)

  4. The Low-Level Control System for the CERN PS Multi-Turn Extraction Kickers

    CERN Document Server

    Schipper, J; Boucly, C; Carlier, E; Fowler, T; Gaudillet, H; Noulibos, R; Sermeus, L

    2010-01-01

    To reduce the beam losses when preparing high intensity proton beam for the CERN Neutrino to Gran Sasso (CNGS) facility, a new Multi-Turn extraction (MTE) scheme has been implemented in the PS, to replace the present Continuous Transfer (CT) to the SPS. Industrial off-the-shelf components have been used for the low-level part of the MTE kicker control system. National Instruments PXI systems are used to control the high voltage pulse generators and a SIEMENS programmable logic controller (PLC) handles the centralised oil cooling and gas insulation sub-systems

  5. Higgs particle searches at LEP

    International Nuclear Information System (INIS)

    Martin, J.P.

    1996-01-01

    Results on searches for the Higgs particle performed by the four LEP experiments are received in the framework of the Standard Model, Two Doublet Model, and Minimal Supersymmetric Model. The combined mass lower limit for the standard Higgs boson is 66 GeV/c 2 at 95 % CL for a statistics of 14.6 Million hadronic Z decays. (authors)

  6. Colour reconnection at LEP2

    CERN Document Server

    Abreu, P

    2002-01-01

    The preliminary results on the search of colour reconnection effects (CR) from the four experiments at LEP, ALEPH, DELPHI, L3 and OPAL, are reviewed. Extreme models are excluded by studies of standard variables, and on going studies of a method first suggested by L3, the particle flow method (D. Duchesneau, (2001)), are yet inconclusive. (22 refs).

  7. Early prototype of a superconducting RF cavity for LEP

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    As early as 1979, before LEP became an approved project, studies were located in the ISR Division. Although Cu-cavities were foreseen, certainly for the 1st energy-stage, superconducting cavities were explored as a possible alternative for the 2nd energy-stage. This began with very basic studies of manufacture and properties of Nb-cavities. This one, held by Mr.Girel, was made from bulk Nb-sheet, 2.5 mm thick. It was dimensioned for tests at 500 MHz (LEP accelerating RF was 352.2 MHz). See also 8004204, 8007354, 8209255, 8210054, 8312339.

  8. Hint of a Z' boson from the CERN LEP II data

    International Nuclear Information System (INIS)

    Gulov, A. V.; Skalozub, V. V.

    2007-01-01

    The many-parametric fits of the LEP2 data on e + e - →e + e - , μ + μ - , τ + τ - processes are performed with the goal to estimate the signals of the Abelian Z ' boson. Four independent parameters must be fitted, if the derived already low-energy relations between the Z ' couplings to the standard model fermions are taken into consideration. No signals are found when the complete LEP2 data set for these processes is treated. In the fit of the backward bins, the hint at the 1.3σ confidence level is detected. The Z ' couplings to the vector and axial-vector lepton currents are constrained. The comparisons with the one-parameter fits and with the corresponding LEP1 experiments are fulfilled

  9. Particle physics and the LEP project

    International Nuclear Information System (INIS)

    Roussarie, A.

    1985-01-01

    A very didactic chronological account of the last 20 years of elementary particle physics is presented. After some recall on matter constituents and interactions between these constituents, some details are given on researches which will be made in LEP, the e + -e - collider [fr

  10. section of an accelerating cavity from LEP

    CERN Multimedia

    This is a section of an accelerating cavity from LEP, cut in half to show the layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities are now used in LEP to double the energy of the particle beams.

  11. Demonstration model of LEP bending magnet

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    To save iron and raise the flux density, the LEP bending magnet laminations were separated by spacers and the space between the laminations was filled with concrete. This is a demonstration model, part of it with the spaced laminations only, the other part filled with concrete.

  12. Effect of kicker circuit inductance on the transmission-line discharging

    International Nuclear Information System (INIS)

    Feng Deren; Wang Xiangqi; Shang Lei; Pei Yuanji; Fan Kuanjun

    2004-01-01

    Circuit inductance exists at discharging circuit of transmission-line, it includes the inductance at the main switch of thyratron when conducts, the linking inductance between the linking cables, the matching resistance inductance and the load inductance. When a long pulse is generated by transmission-line, the circuit inductance can be omitted. However, when the pulse is short (such as shorter than 200 ns), especially when ferromagnetic core kicker acts as the load, the effect is obvious. The short pulse current is needed in order to generate long time interval synchronous radiation light pulses by using online assembly of pulse convex orbit and DC convex orbit. This paper analyses the effect and presents several experimental results. It also supposes two practical cases to decrease the rise time of the pulse

  13. Fast and reliable kicker magnets for the SLC damping rings

    International Nuclear Information System (INIS)

    Mattison, T.S.; Cassel, R.L.; Donaldson, A.R.; Gross, G.

    1995-01-01

    The design, construction, and operation of a kicker magnet with superior electromagnetic performance and greatly improved radiation tolerance is described. A short flux return of high mu ferrite improves the field strength and linearity with current, and novel metallic field-confining structures minimize the inductance. An 8-cell structure with capacitance integrated into each cell makes the magnet a nearly perfect transmission line. The capacitor dielectric is 1 cm thick alumina-loaded epoxy, processed to eliminate air voids, and cast in a multiple step procedure developed to circumvent epoxy shrinkage. The magnet operates with pulses of up to 40 kV and 3.2 kA at 120 Hz, with magnet transit times of less than 35 nsec and field rise and fall times of less than 60 nsec

  14. The LEP project

    International Nuclear Information System (INIS)

    Picasso, E.

    1988-01-01

    This paper reports on the present state of installation of utilities (electricity, cooling, ventilation, access equipment, lifts, travelling cranes, emergency exits, etc.) and machine components, closely followed the installation schedule. The controls and the beam instrumentation systems of LEP are being mounted and tested. It is in fact foreseen that the installation of 7 out of 8 octants will be completed at the beginning of next year and the last octant (under the Jura) required an accelerated installation program. The installation of the machine is under way simultaneously in at least three quarters of the ring

  15. Production of new particles in e+e- reactions at LEP I energies

    International Nuclear Information System (INIS)

    Dobado, A.

    1987-01-01

    The possibility of lep I of producing new particles is considered. We arrive at the general conclusion that lep I may make it possible to complete the detection of the particles that make up the ''standard model'' and, in addition, to discover some supersymmetric particle or to rule out most of the supersymmetric models. (author)

  16. A waveguide overloaded cavity as longitudinal kicker for the DA{Phi}NE bunch-by-bunch feedback system

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, A; Boni, R; Ghigo, A; Marcellini, F; Serio, M; Zobov, M [Instituto Nazionale de Fisica Nucleare, Frascati (Italy). Lab. Nazionale di Frascati

    1996-08-01

    The multibunch operation of DA{Phi}NE calls for a very efficient feedback system to damp the coupled-bunch longitudinal instabilities. A collaboration program among SLAC, LBL and LNF laboratories on this subject led to the development of a time domain, digital system based on digital signal processors that has been already successfully tested at ALS. The feedback chain ends with the longitudinal kicker, an electromagnetic structure capable of transferring the proper energy correction to each bunch. A cavity kicker for the DA{Phi}NE bunch-by-bunch longitudinal feedback system based on a pill-box loaded by six waveguides has been designed and a full-scale aluminium prototype has been fabricated at LNF. Both simulations and measurements have shown a peak shunt impedance of about 750 ohm and a bandwidth of about 220 MHz. The large shunt impedance allows to economize on the costly feedback power. Moreover, the damping waveguides drastically reduce the device HOM longitudinal and transverse impedances. One cavity pre ring will be sufficient to operate the machine up to 30 bunches while a second device per ring together with a feedback power improvement will be necessary to reach the ultimate current. (G.T.)

  17. Performance of the upgraded small angle tile calorimeter at LEP

    CERN Document Server

    Alvsvaag, S J; Barreira, G; Benvenuti, Alberto C; Bigi, M; Bonesini, M; Bozzo, M; Camporesi, T; Carling, H; Cassio, V; Castellani, L; Cereseto, R; Chignoli, F; Della Ricca, G; Dharmasiri, D R; Espirito-Santo, M C; Falk, E; Fenyuk, A; Ferrari, P; Gamba, D; Giordano, V; Guz, Yu; Guerzoni, M; Gumenyuk, S A; Hedberg, V; Jarlskog, G; Karyukhin, A N; Klovning, A; Konoplyannikov, A K; Kronkvist, I J; Lanceri, L; Leoni, R; Maeland, O A; Maio, A; Mazza, R; Migliore, E; Navarria, Francesco Luigi; Nossum, B; Obraztsov, V F; Onofre, A; Paganoni, M; Pegoraro, M; Peralta, L; Petrovykh, L P; Pimenta, M; Poropat, P; Prest, M; Read, A L; Romero, A; Shalanda, N A; Simonetti, L; Skaali, T B; Stugu, B; Terranova, F; Tomé, B; Torassa, E; Trapani, P P; Verardi, M G; Vallazza, E; Vlasov, E; Zaitsev, A

    1998-01-01

    The small angle tile calorimeter (STIC) provides calorimetric coverage in the very forward region of the DELPHI experiment at the CERN LEP collider. The structure of the calorimeters, built with so- called "shashlik" technique, $9 allows the insertion of tracking detectors within the sampling structure, in order to make it possible to determine the direction of the showering particle. Presented here are some results demonstrating the performance of the $9 calorimeter and of these tracking detectors at LEP. (5 refs).

  18. LEP1 measurement of heavy quark forward-backward asymmetries with Opal detector

    International Nuclear Information System (INIS)

    Lafoux, H.

    1996-01-01

    Using all data collected by OPAL during the first phase of LEP operation, called LEP1, we have measured the b and c quark forward-backward asymmetries on and around the Z 0 peak. The measurement, which is based on prompt leptons produced in semileptonic decays of heavy quarks, has been optimized using artificial neural networks whenever necessary, that is whenever the problem to solve implied taking into account simultaneously a large number of parameters. Our results are compatible with other LEP measurements and with the Standard Model predictions for a top quark of 174±31 GeV/c□ and a Higgs boson mass between 60 and 1000 GeV/c□. (author). 159 refs., 88 figs., 37 tabs

  19. Lep vertical tunnel movements - lessons for future colliders

    Energy Technology Data Exchange (ETDEWEB)

    Pitthan, R [CERN-Conseil Europeen pour la recherche nucleaire, Clic-Study Group and the Survey Group, Geneve (Switzerland)

    1999-07-01

    The data from 10 years of vertical surveys verify for all of LEP the previous observation, localized to region P1, that LEP floor movements are predominantly deterministic. This rules out the ATL model as being correct for this tunnel. If generalized, for yearly movements a random ATL model underestimates the possible maximum long-term motions. In contrast, extrapolation of the LEP vertical data to the short-term (hours and days) time-scale shows that the random approach predicts larger short-term movements than the deterministic model. This means that simulations using the ATL hypothesis are overtly pessimistic with regard to the frequency of operational realignments required. Depending on the constants chosen in the models these differences can be large, of the order of a magnitude and more. This paper deals solely with the directly measured months-to-years tunnel motions in rock, and the extrapolation of such ground motions to hourly or daily time-spans It does not, address the important question of the contribution of hourly-scale movements of the accelerator components, which could have a random part, to the combined motion. Nor does it address the question of movements of accelerator tunnels like HERA or TRISTAN which are built in water and debris, and not in solid rock. (author)

  20. Lep vertical tunnel movements - lessons for future colliders

    International Nuclear Information System (INIS)

    Pitthan, R.

    1999-01-01

    The data from 10 years of vertical surveys verify for all of LEP the previous observation, localized to region P1, that LEP floor movements are predominantly deterministic. This rules out the ATL model as being correct for this tunnel. If generalized, for yearly movements a random ATL model underestimates the possible maximum long-term motions. In contrast, extrapolation of the LEP vertical data to the short-term (hours and days) time-scale shows that the random approach predicts larger short-term movements than the deterministic model. This means that simulations using the ATL hypothesis are overtly pessimistic with regard to the frequency of operational realignments required. Depending on the constants chosen in the models these differences can be large, of the order of a magnitude and more. This paper deals solely with the directly measured months-to-years tunnel motions in rock, and the extrapolation of such ground motions to hourly or daily time-spans It does not, address the important question of the contribution of hourly-scale movements of the accelerator components, which could have a random part, to the combined motion. Nor does it address the question of movements of accelerator tunnels like HERA or TRISTAN which are built in water and debris, and not in solid rock. (author)

  1. Global voltage control for the LEP RF system

    International Nuclear Information System (INIS)

    Ciapala, E.; Butterworth, A.; Peschardt, E.

    1993-01-01

    The LEG RF system is installed as independent 16 cavity units. In addition to the eight copper cavity units originally installed 12 units with super-conducting cavities are being added for the LEP200 energy upgrade. The total RF voltage determines the synchrotron tune (Qs) and must be controlled precisely during energy ramping. Local function generators in each of the RF units are pre-loaded such that when triggered simultaneously by ramp timing events transmitted over the general timing system the total voltage varies to give the Qs function required. A disadvantage is that loss of RF in a unit at any time after the loading process cannot be corrected. As the number of RF units increases automatic control of the total RF voltage and its distribution around LEP becomes desirable. A global voltage control system, based on a central VME controller, has recently been installed. It has direct and rapid access to the RF units over the LEP time division multiplexing system. Initial tests on operation and performance at fixed energy and during energy ramping are described, as well as the implementation of a Qs loop in which Qs can be set directly using on-line synchrotron frequency measurements

  2. LEP and results obtained by DELPHI after four years of operation

    International Nuclear Information System (INIS)

    Blocki, J.

    1993-10-01

    We characterize the most important problems of modern elementary particles physics, for the solution of which the LEP (Large Electron Positron) accelerator was built. We present the characteristics of this accelerator. The structure and properties of the DELPHI detector are described with special emphasis on the contribution of Polish groups. The most important results obtained so far in the LEP accelerator are discussed. (author). 12 refs, 17 figs, 1 tab

  3. LEP1 measurement of heavy quark forward-backward asymmetries with Opal detector; Mesure de l`asymetrie avant-arriere des quarks lourds a LEP1 avec le detecteur Opal

    Energy Technology Data Exchange (ETDEWEB)

    Lafoux, H

    1996-04-30

    Using all data collected by OPAL during the first phase of LEP operation, called LEP1, we have measured the b and c quark forward-backward asymmetries on and around the Z{sup 0} peak. The measurement, which is based on prompt leptons produced in semileptonic decays of heavy quarks, has been optimized using artificial neural networks whenever necessary, that is whenever the problem to solve implied taking into account simultaneously a large number of parameters. Our results are compatible with other LEP measurements and with the Standard Model predictions for a top quark of 174{+-}31 GeV/c{open_square} and a Higgs boson mass between 60 and 1000 GeV/c{open_square}. (author). 159 refs., 88 figs., 37 tabs.

  4. LEP sees the end of the tunnel

    CERN Multimedia

    2002-01-01

    After 14 months, which have seen the removal of 30,000 tonnes of material from the tunnel, the LEP dismantling operation has now been completed. LHC installation, which will be subject to new safety rules, can go ahead.

  5. Colour reconnection in DELPHI at LEP

    International Nuclear Information System (INIS)

    Abreu, P.

    2003-01-01

    The preliminary results of two different methods for the search of colour reconnection effects (CR), used in the DELPHI experiment at LEP are presented. The methods were found to be largely uncorrelated, and a combined likelihood for values of the κ strength parameter in the SK-I model is given

  6. Semileptonic b branching fractions at LEP

    CERN Document Server

    Gagnon, P

    2000-01-01

    I review recent results on semileptonic branching fractions at LEP for Z/sup 0/ to bb data, for the average b hadron then for b baryons. From the inclusive BR(b to lX), one can obtain the most precise value for the CKM matrix element V/sub cb/. (14 refs).

  7. The Injection System of SAGA Light Source

    CERN Document Server

    Iwasaki, Yoshitaka; Ohgaki, Hideaki; Okajima, Toshihiro; Takabayashi, Yuichi; Tomimasu, Takio; Yoshida, Katuhide

    2005-01-01

    Saga light Source is a 1.4-GeV electron storage ring with a circumference of 75.6m. The injector is a 250-MeV linac producing 1 ms macro-pulse with a peak current of 12mA and repetition rate of 1Hz. The output beam from the linac is transported though a transport line, and injected into the ring though a septum magnet with a bending angle of 20-degree. The transport line consists of two bending magnets, two quadrupole doublelets, and a quadrupole singlet. The bump orbit is formed by four kicker magnets, two of which are installed at both sides of septum magnet, and other two are positioned apart by one magnet cell of the ring. They are excited by sinusoidal electric currents with a half width of 0.5 ms. The beam optics for the injection trajectory is computed and shown at control room, the parameters for which are provided directly from the power supply control server PC. The operator is able to see real-time result of the beam trajectory calculation. This tool is quite effective to optimize the magnets param...

  8. Search for charged Higgs bosons at LEP2 with Delphi detector; Recherche des bosons de higgs charges a LEP2 avec le detecteur DELPHI

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre, R

    1997-09-01

    Charged Higgs bosons are particles that are predicted by most theoretical models based on the minimal standard model, they are responsible for the breaking of the symmetry implied by the gauge group SU(2){sub L}*U(1){sub Y}. This work is devoted to the search after this particle in the experimental data collected by the DELPHI experiment. Different analysis strategies have been defined to study the 3 possible final states: H{sup +}H{sup -} {yields} {tau}{sup +}{nu}{sub {tau}}{tau}{sup -}{nu}-bar{sub {tau}}, H{sup +}H{sup -} {yields} cs{tau}{nu}{sub {tau}} and H{sup +}H{sup -} {yields} cs-bar c-bar s. Different hypothesis have been made about the value of the branching ratio of the hadronic decay of Higgs boson. After having analysed the experimental data collected when electron-positron collision energy was 161.3 GeV (in the mass center frame) the author concludes that: m{sub H} > 48.7 GeV/c{sup 2} if Br(H{sup +} {yields} hadrons) < 0.6 (90% CL). A similar analysis performed on all the experimental data leads to: m{sub H} > 52 GeV/c{sup 2} if Br(H{sup +} {yields} hadrons) < 0.7 (95% CL). At the end of 1995 the LEP collider entered a new operating phase (LEP2) which would eventually enable the collision energy to reach 192 GeV in the mass center frame. An analysis of a simulation representing LEP2 operating at 192 GeV has been made. From this analysis the author concludes first that it will be possible to discover a Higgs boson in LEP2 only if its mass is less than 60 GeV/c{sup 2}, secondly that if no Higgs boson is detected at the end of LEP2 phase, it will mean that its mass is greater than 70 GeV/c{sup 2}. (A.C.)

  9. Electroweak couplings from heavy flavors at LEP

    CERN Document Server

    Clare, R

    1991-01-01

    This talk presents the results of the four LEP experiments, Aleph, Delphi, 13 and Opal, on the partial widths for z0 --> cc and z0 --> bb (r cc and r biJ, and the forward-backward asymmetries Ace and Abb.

  10. Interlocks for the LEP Radio-Frequency System

    CERN Document Server

    Livesley, S

    2000-01-01

    Interlocks for the LEP RF system totalled more than 7000. They provided protection for the personnel and a wide range of equipment: copper cavities, superconducting cavities, klystrons and high voltage equipment. The interlock system layout, functionality and components are described.

  11. Performance of a shashlik calorimeter at LEP II

    CERN Document Server

    Ferrari, P; Klovning, A; Maeland, O A; Stugu, B; Benvenuti, Alberto C; Giordano, V; Guerzoni, M; Navarria, Francesco Luigi; Verardi, M G; Camporesi, T; Bozzo, M; Cereseto, R; Barreira, G; Espirito-Santo, M C; Maio, A; Onofre, A; Peralta, L; Pimenta, M; Tomé, B; Carling, H; Falk, E; Hedberg, V; Jarlskog, G; Kronkvist, I J; Bonesini, M; Chignoli, F; Gumenyuk, S A; Leoni, R; Mazza, R; Negri, P; Paganoni, M; Petrovykh, L P; Terranova, F; Dharmasiri, D R; Nossum, B; Read, A L; Skaali, T B; Castellani, L; Pegoraro, M; Fenyuk, A; Guz, Yu; Karyukhin, A N; Konoplyannikov, A K; Obraztsov, V F; Shalanda, N A; Vlasov, E; Zaitsev, A; Bigi, M; Cassio, V; Gamba, D; Migliore, E; Romero, A; Simonetti, L; Torassa, E; Trapani, P P; Bari, M D; Della Ricca, G; Lanceri, L; Poropat, P; Prest, M; Vallazza, E

    1999-01-01

    The small angle tile calorimeter (STIC) is a sampling lead- scintillator calorimeter, built with "shashlik" technique. Results are presented from extensive studies of the detector performance at LEP. (5 refs).

  12. The short circumference damping ring design for the ILC

    CERN Document Server

    Korostelev, Maxim S; Kuriki, Masao; Kuroda, Shigeru; Naito, Takashi; Ross, Marc; Urakawa, Junji; Zimmermann, Frank

    2005-01-01

    The ILC damping ring tentative design is driven by the operational scenario of the main linac, the beam-dynamics demand of producing a stable and high-quality beam, the injection/extraction scheme and the kicker performance. In this paper, a short circumference damping ring design based on TME cells is described. The ring accommodates injection kickers which provide a flat top of 280 nsec and a 60 nsec rise and fall time and very fast strip-line kickers for beam extraction with a 2 nsec rise and fall time for 3-MHz operation. The potential impact of collective effects and the possible degradation of the dynamic aperture by nonlinear-wiggler fields are estimated.

  13. Studies on the construction of a new 80 MeV injector and a new injection scheme for the synchrotron of the Bonn accelerator facility ELSA; Studien zum Aufbau eines neuen 80 MeV-Injektors und eines neuen Injektionsschemas fuer das Synchroton der Bonner Beschleunigeranlage ELSA

    Energy Technology Data Exchange (ETDEWEB)

    Raecke, K.

    2001-09-01

    At the ELSA Accelerator Facility exists the opportunity to install a 80 MeV linear accelerator as an injector for the 2,5 GeV Booster Synchrotron. Because of its length the new structure cannot replace one of the linacs used today so possibilities to built up the accelerator and the transfer channels are worked out. Calculations comparing the injection efficiency of the present layout and the possible new layout show a recognizable improvement. The injection efficiency can be further improved using a single turn injection scheme. A septum magnet and a fast kicker for this injection scheme is designed. (orig.)

  14. A Study of the Magnetic Dipole Field of LEP during the 1995 Energy Scan

    CERN Document Server

    Dehning, Bernd; Geitz, M A

    1996-01-01

    In preparation for the 1995 LEP energy scan additional instrumentation was installed in two tunnel dipoles to monitor the time evolution of the magnetic field during experimental fills. Significant increase of the bending field superimposed by day-time dependent fluctuations on a minute time scale were revealed. These unexpected features could be correlated with earth currents captured by the LEP vacuum chamber and the ground cable. The currents are produced in particular by trains circulating in the Geneva area. This study presents a summary of our understanding of the LEP dipole field.

  15. $B^{0}\\overline{B^{0}}$ oscillations at LEP

    CERN Document Server

    Palla, Fabrizio

    2001-01-01

    We report the LEP results on B/sup 0/B/sup 0/ oscillations, together with a review of the analysis strategies. Many measurements of the B /sub d//sup 0/ oscillation frequency have been performed giving an average, Delta m/sub d/=0.486+or-0.015 ps/sup -1/. Lower limits on Delta m/sub s/ are presented, giving a LEP-combined limit, Delta m /sub s/>11.8 ps/sup -1/, with an expected exclusion limit of 14.5 ps /sup -1/. When combined with SLD and CDF, a tantalising 2.5% effect at about 17 ps/sup -1/ is observed, having a probability of about 2.5% for a fluctuation of a sample where the true frequency is beyond the global sensitivity. (19 refs).

  16. Bose-Einstein correlations in W+ W- events at LEP2

    CERN Document Server

    van Dalen, Jorn A

    2000-01-01

    Analyses of Bose-Einstein Correlations in w+w- events at LEP2 by the four LEP collaborations are presented. In particular, Bose-Einstein correlations in w+w- overlap are investigated and the possible existence of these correlations between particles coming from different W's, which may influence the W mass measurements in the fully-hadronic channel e+e- --+ w+w- --+ qiihq3ij<. No evidence for such an inter-W Bose-Einstein correlation is found by L3 and ALEPH. Possible indication of these correlations by DELPHI is mentioned.

  17. A users view of the SPS and LEP control systems

    International Nuclear Information System (INIS)

    Bailey, R.

    1992-01-01

    Every accelerator has a control system; at present the SPS has two, both of which are needed to run the machine. Consequently a user of the SPS/LEP complex has to be concurrently familiar with three control systems. While this situation brings problems it allows, even forces, comparison between the different systems, which in turn enriches the user viewpoint. This paper assesses the SPS and LEP control systems from the point of view of the user, who may be an equipment specialist, operator, accelerator physicist or combinations thereof. (author)

  18. Particle Correlations at LEP

    CERN Document Server

    Kress, Thomas

    2002-01-01

    Particle correlations are extensively studied to obtain information about the dynamics of hadron production. From 1989 to 2000 the four LEP collaborations recorded more than 16 million hadronic Z0 decays and several thousand W+W- events. In Z0 decays, two-particle correlations were analysed in detail to study Bose-Einstein and Fermi-Dirac correlations for various particle species. In fully-hadronic W+W- decays, particle correlations were used to study whether the two W bosons decay independently. A review of selected results is presented.

  19. LEP constraints on grand unified theories

    International Nuclear Information System (INIS)

    Sarkar, Utpal

    1993-01-01

    Recent developments on grand unified theories (GUTs) in the context of the LEP measurements of the coupling constants are reviewed. The three coupling constants at the electroweak scale have been measured at LEP quite precisely. One can allow these couplings to evolve with energy following the renormalization group equations for the various groups and find out whether all the coupling constants meet at any energy. It was pointed out that the minimal SU(5) grand unified theory fails to satisfy this test. However, various extensions of the theory are still allowed. These extensions include (i) supersymmetric SU(5) GUT, with some arbitrariness in the susy breaking scale arising from the threshold corrections, (ii) non-susy SU(5) GUTs with additional fermions as well as Higgs multiplets, which has masses of the order of TeV, and (iii) non-renormalizable effect of gravity with a fine tuned relation among the coupling constants at the unification energy. The LEP results also constrain GUTs with an intermediate symmetry breaking scale. By adjusting the intermediate symmetry breaking scale, one usually can have unification, but these theories get constrained. For example, the left-right symmetric theories coming from GUTs can be broken only at energies higher than about ∼10 10 GeV. This implies that if right handed gauge bosons are found at energies lower than this scale, then that will rule out the possibility of grand unification. Another recent interesting development on the subject, namely, low energy unification, is discussed in this context. All the coupling constants are unified at energies of the order of ∼10 8 GeV when they are embedded in an SU(15)GUT, with some particular symmetry breaking pattern. But even in this case the results of the intermediate symmetry breaking scale remain unchanged. (author). 16 refs., 3 figs

  20. Fermion pair physics at LEP2

    International Nuclear Information System (INIS)

    Georgios, Anagnostou

    2004-01-01

    Combined measurements of the 4 LEP collaborations for the fermion pair processes e + e - →f anti f are presented. The results show no significant deviations when compared with the Standard Model predictions and are used to set limits on contact interactions, Z' gauge bosons and low scale gravity models with large extra dimensions. (orig.)

  1. [European particle accelerator conference, Rome, Italy, and visit to the LEP storage ring and LEP detectors L3 and ALEPH at CERN, Geneva, Switzerland, June 5-16, 1988]: Foreign trip report

    International Nuclear Information System (INIS)

    Blumberg, L.N.

    1988-01-01

    A selection of papers presented at the EPAC Conference relating to accelerator technology, facilities proposed, planned or under construction, and operating machines are discussed. Also noted are discussions at CERN with personnel from the LEP superconducting RF, the LEP L3 and ALEPH detectors, and the LHC superconducting magnet groups

  2. Electro-Magnetic Bunch Length Measurement in LEP

    CERN Document Server

    Vos, L

    1998-01-01

    Bunch lengths between 3 and 12 mm have been measured routinely in LEP in 1997 with a small (7 mm diameter) button electrode. The measurement method is based on the spectral analysis of the electrode signal and relies on the fact that the transfer function of the complete set-up, including the signal cable, can be computed rather exactly thus eliminating the need for external calibration. The information of beam intensity is recovered as a by-product. It provides an interesting internal validation of the measurement by comparison with the normal intensity measurement. The system has been used to detect subtle but real bunch length changes with bunch intensity which can be attributed to the inductive impedance in LEP. A value for the imaginary (inductive) longitudinal impedance is derived from the observations. An indication for the resistive part of the impedance is given as well.

  3. Determination of the bending field integral of the LEP spectrometer dipole

    International Nuclear Information System (INIS)

    Chritin, R.; Cornuet, D.; Dehning, B.; Hidalgo, A.; Hildreth, M.; Kalbreier, W.; Leclere, P.; Mugnai, G.; Palacios, J.; Roncarolo, F.; Torrence, E.; Wilkinson, G.

    2005-01-01

    The LEP spectrometer performed calibrations of the beam energy in the 2000 LEP run, in order to provide a kinematical constraint for the W boson mass measurement. The beam was deflected in the spectrometer by a steel core dipole, and the bending angle was measured by Beam-Position Monitors on either side of the magnet. The energy determination relies on measuring the change in bending angle when ramping the beam from a reference point at 50GeV to an energy within the LEP W physics regime, typically 93GeV. The ratio of integrated bending fields at these settings (approximately 1.18Tm/0.64Tm) must be known with a precision of a few 10 -5 . The paper reports on the field mapping measurements which were conducted to determine the bending integral under a range of excitation currents and coil temperatures. These were made in the laboratory before and after spectrometer operation, using a test-bench equipped with a moving arm, carrying an NMR probe and Hall probes, and in the LEP tunnel itself, with a mapping trolley inside the vacuum chamber. The mapping data are related to local readings supplied by fixed NMR probes in the dipole, and a predictive model developed which shows good consistency for all datasets within the estimated uncertainty, which is 14x10 -5 for the moving arm, and 3x10 -5 for the mapping trolley. Measurements are also presented of the field gradient inside the dipole, and of the environmental magnetic fields in the LEP tunnel. When applied to the spectrometer energy calibrations, the bending field model calculates the ratio of integrated fields with an estimated uncertainty of 1.5x10 -5

  4. New development of hadron physics at new laser electron beam line (LEP2) of SPring-8

    International Nuclear Information System (INIS)

    Muramatsu, Norihito; Niiyama, Masayuki; Yosoi, Masaru

    2015-01-01

    This paper introduces the outline of LEPS2 beam line and two types of large detectors (electromagnetic calorimeter BGOegg and solenoid spectrometer), LEPS2/BGOegg experiment, and the target physics using LEPS2 solenoid spectrometer. In LEPS2 beam line, experiments are performed with the improvement of beam intensity by nearly one digit due to the simultaneous incidence of multiple lasers of high output, as well as with the installation of a large solid angle high-resolution detector. In LEPS2/BGOegg experiment, direct observation with a large solid angle of mesons such as π 0 , η, η', and ω has become possible, which has given expectation for new physics. As one of the physics at the core of BGOegg experiments, there is the systematic examination of interaction between η' and nucleus/nucleon. In the physics using a solenoid spectrometer, the first target is the measurement of penta-quark particle Θ + . (A.O.)

  5. LEP - Large Electron Positron Exhibition LEPFest 2000

    CERN Multimedia

    2000-01-01

    The Large Electron-Positron Collider (LEP) is 27 km long. Its four detectors (ALEPH, DELPHI, L3, OPAL) measure precisely what happens in the collisions of electrons and positrons. These conditions only exist-ed in the Universe when it was about 10 -10 sec old.

  6. Study of event shape variables at LEP

    CERN Document Server

    Sarkar, Subir

    1997-01-01

    We present the LEP results on the study of the hadronic event shape variables. Excellent detector performance and improved theoretical calculations make it possible to study quantum chromodynamics with small experimental and theoretical uncertainties. QCD predictions describe data well at energies above the Z peak.

  7. AA, stochastic precooling pickup

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    The freshly injected antiprotons were subjected to fast stochastic "precooling". In this picture of a precooling pickup, the injection orbit is to the left, the stack orbit to the far right. After several seconds of precooling with the system's kickers (in momentum and in the vertical plane), the precooled antiprotons were transferred, by means of RF, to the stack tail, where they were subjected to further stochastic cooling in momentum and in both transverse planes, until they ended up, deeply cooled, in the stack core. During precooling, a shutter near the central orbit shielded the pickups from the signals emanating from the stack-core, whilst the stack-core was shielded from the violent action of the precooling kickers by a shutter on these. All shutters were opened briefly during transfer of the precooled antiprotons to the stack tail. Here, the shutter is not yet mounted. Precooling pickups and kickers had the same design, except that the kickers had cooling circuits and the pickups had none. Peering th...

  8. High accuracy magnetic field mapping of the LEP spectrometer magnet

    CERN Document Server

    Roncarolo, F

    2000-01-01

    The Large Electron Positron accelerator (LEP) is a storage ring which has been operated since 1989 at the European Laboratory for Particle Physics (CERN), located in the Geneva area. It is intended to experimentally verify the Standard Model theory and in particular to detect with high accuracy the mass of the electro-weak force bosons. Electrons and positrons are accelerated inside the LEP ring in opposite directions and forced to collide at four locations, once they reach an energy high enough for the experimental purposes. During head-to-head collisions the leptons loose all their energy and a huge amount of energy is concentrated in a small region. In this condition the energy is quickly converted in other particles which tend to go away from the interaction point. The higher the energy of the leptons before the collisions, the higher the mass of the particles that can escape. At LEP four large experimental detectors are accommodated. All detectors are multi purpose detectors covering a solid angle of alm...

  9. Une énergie record ouvre de nouvelles perspectives de découvertes au LEP

    CERN Document Server

    CERN Press Office. Geneva

    1999-01-01

    At CERN on 2 August 1999 at 11h15, beams of electrons and positrons were accelerated in the Large Electron Positron Collider (LEP) to 100 GeV and brought into collision for the first time at this energy. There were two reasons for the backslapping, cheering and popping of corks that followed in the LEP control room. First, the setting of a new energy record for an electron-positron accelerator, represents a tremendous technical achievement by CERN accelerator specialists. Second, the collision energy of 200 GeV opens up exciting new discovery potential for the LEP experiments.

  10. Scattering of thermal photons by a 46 GeV positron beam at LEP

    International Nuclear Information System (INIS)

    Bini, C.; De Zorzi, G.; Diambrini-Palazzi, G.; Di Cosimo, G.; Di Domenico, A.; Gauzzi, P.; Zanello, D.

    1991-01-01

    The scattering of thermal photons present in the vacuum pipe of LEP against the high energy positron beam has been detected. The spectrum of the back-scattered photons is presented for a positron beam energy of 46.1 GeV. Measurements have been performed in the interaction region 1 with the LEP-5 experiment calorimeter. (orig.)

  11. Mass of the W and trilinear gauge couplings at DELPHI and LEP

    International Nuclear Information System (INIS)

    Parzefall, Ulrich

    2000-01-01

    Preliminary measurements of the W boson mass and of the trilinear gauge boson couplings are presented using data taken by DELPHI at centre-of-mass energies of 189 GeV and below. Results from the other three LEP collaborations ALEPH, L3 and OPAL are included to obtain the combined LEP measurements. The experimental methods used in DELPHI to determine the W mass and the trilinear gauge couplings are described

  12. Search for new physics at LEP 2

    CERN Document Server

    Gross, Eilam

    1997-01-01

    The results of the search for Higgs bosons, Charginos, Neutralinos, Sleptons, Squarks and light Gravitinos with the LEP accelerator at 130-172 GeV center-of-mass energy are briefly described. Prospects for Standard Model Higgs search at higher center-of-mass energies are also given.

  13. Beam instrumentation in the LEP Pre-injector

    International Nuclear Information System (INIS)

    Battisti, S.; Bottollier, J.F.; Frammery, B.; Szeless, B.; Van Rooy, M.

    1987-01-01

    The main purpose of this paper is to review the beam instrumentation of the LEP pre-injector (LPI) including its design philosophy and software. The usefulness of these equipments for the LPI start-up is considered from an operational point of view and encountered problems are mentioned

  14. RF Trip and Beam Loss Diagnostics in LEP using GPS timing

    CERN Document Server

    Arnaudon, L; Beetham, G; Ciapala, Edmond; Juillard, J C; Olsen, R; CERN. Geneva. SPS and LEP Division

    2000-01-01

    A fast diagnostics system has been installed in LEP to allow precise time-stamping of RF unit trips. The system also monitors the fast decay of current when a beam loss occurs. From the information gathered it is now possible to determine which RF units have provoked a beam loss at high energy and which have tripped as a result. The system uses GPS equipment installed at all of the even points of LEP together with fast local DSP acquisition and event recording units in each RF sector. An overall control application driven by the LEPExec arms the system at the start of each fill, calculates and displays RF and trip beam loss events in sequence, then stores the results in a database. The system installation was completed in time for the LEP 2000 startup and initial problems were quickly resolved. Throughout the year it has proved invaluable for high energy running. The experience gained will also be very useful for similar diagnostics applications in LHC.

  15. Report of the 1997 LEP2 working group on 'searches'

    International Nuclear Information System (INIS)

    Allanach, B.C.; Blair, G.A.; Diaz, M.A.

    1997-08-01

    A number of research program reports are presented from the LEP2 positron-electron collider in the area of searches for Higgs bosons, supersymmetry and supergravity. Working groups' reports cover prospective sensitivity of Higgs boson searches, radiative corrections to chargino production, charge and colour breaking minima in minimal Supersymmetric Standard Model, R-party violation effects upon unification predictions, searches for new pair-produced particles, single sneutrino production and searches related to effects similar to HERA experiments. The final section of the report summarizes the LEP 2 searches, concentrating on gians from running at 200 GeV and alternative paradigms for supersymmetric phenomenology. (UK)

  16. Program LEPS to addition of gamma spectra from germanium detectors

    International Nuclear Information System (INIS)

    Romero, L.

    1986-01-01

    The LEP program, written in FORTRAN IV, performs the addition of two spectra, collected with different detectors, from the same sample. This application, adds the two gamma spectra obtained from two opposite LEPS Germanium Detectors (Low Energy Photon Spectrometer), correcting the differences (channel/energy) between both two spectra, and fitting them before adding. The total-spectrum is recorded at the computer memory as a single spectrum. The necessary equipment, to run this program is: - Two opposite germanium detectors, with their associate electronics. - Multichannel analyzer (2048 memory channel minimum) - Computer on-line interfacing to multichannel analyzer. (Author) 4 refs

  17. Statistical methods and the Higgs at 115 GeV at LEP; Methodes statistiques et le Higgs a 115 GeV au LEP

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, P

    2001-07-01

    The purpose of these lectures is to give the means to understand the results provided by the Higgs working group (HWG) that combines data from 4 experiments concerning the search for the Higgs boson at LEP. The first part deals with experimental analysis, it means phenomenology and how to select the interesting events. In the second part, the author presents statistical methods and statistical tools that are used to process data, it is shown that combining different analyses may increase the sensitivity level. The third part is dedicated to the situation at the LEP concerning the search for the Higgs boson by July 2001. Data are consistent for either a standard Higgs at around 115.6 GeV or a minimal supersymmetric model scenario.

  18. CERN: A big year for LEP

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    In April this year's data-taking period for CERN's big LEP electron-positron collider got underway, and is scheduled to continue until November. The immediate objective of the four big experiments - Aleph, Delphi, L3 and Opal - will be to increase considerably their stock of carefully recorded Z decays, currently totalling about three-quarters of a million

  19. Production of excited charmed mesons at LEP

    CERN Document Server

    Abbaneo, D

    2000-01-01

    Studies od the production of orbitally excited charmed and charmed strange mesons in e+e- collisions, performed by the LEP collaborations are reviewed. Measurements of the production rates of orbitally excited charmed mesons in semileptonic b decays are presented. Searches for charmed meson radial excitations are also briefly discussed.

  20. On radiative corrections to supersymmetric Higgs boson masses and their implications for LEP searches

    International Nuclear Information System (INIS)

    Ellis, J.; Zwirner, F.

    1991-01-01

    We present calculations of the one-loop radiative corrections to the mass of the neutral CP-odd Higgs boson (A) in the minimal supersymmetric extension of the standard model, as well as to the neutral CP-even Higgs (h, H) masses and mixing angles. We use these results to recalculate the cross-sections for Higgs production at LEP in the h + (Z * + fanti f), h (H)Z 0 and h (H) A final states. We delineate the domains of parameter space accessible at LEP at the Z 0 peak and at LEP II with a center-of-mass energy of 180, 190 or 200 GeV. (orig.)

  1. Search for neutral MSSM Higgs bosons at LEP

    CERN Document Server

    Schael, S.; Bruneliere, R.; De Bonis, I.; Decamp, D.; Goy, C.; Jezequel, S.; Lees, J.P.; Martin, F.; Merle, E.; Minard, M.N.; Pietrzyk, B.; Trocme, B.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Martinez, M.; Pacheco, A.; Ruiz, H.; Colaleo, A.; Creanza, D.; De Filippis, N.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Barklow, T.; Buchmuller, O.; Cattaneo, M.; Clerbaux, B.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Hansen, J.B.; Harvey, J.; Hutchcroft, D.E.; Janot, P.; Jost, B.; Kado, M.; Mato, P.; Moutoussi, A.; Ranjard, F.; Rolandi, L.; Schlatter, D.; Teubert, F.; Valassi, A.; Videau, I.; Badaud, F.; Dessagne, S.; Falvard, A.; Fayolle, D.; Gay, P.; Jousset, J.; Michel, B.; Monteil, S.; Pallin, D.; Pascolo, J.M.; Perret, P.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Kraan, A.C.; Nilsson, B.S.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J.C.; Machefert, F.; Rouge, A.; Videau, H.; Ciulli, V.; Focardi, E.; Parrini, G.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bossi, F.; Capon, G.; Cerutti, F.; Chiarella, V.; Mannocchi, G.; Laurelli, P.; Mannocchi, G.; Murtas, G.P.; Passalacqua, L.; Kennedy, J.; Lynch, J.G.; Negus, P.; O'Shea, V.; Thompson, A.S.; Wasserbaech, S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E.E.; Putzer, A.; Stenzel, H.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Cameron, W.; Davies, G.; Dornan, P.J.; Girone, M.; Marinelli, N.; Nowell, J.; Rutherford, S.A.; Sedgbeer, J.K.; Thompson, J.C.; White, R.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C.K.; Clarke, D.P.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Pearson, M.R.; Robertson, N.A.; Smizanska, M.; van der Aa, O.; Delaere, C.; Leibenguth, G.; Lemaitre, V.; Blumenschein, U.; Holldorfer, F.; Jakobs, K.; Kayser, F.; Muller, A.S.; Renk, B.; Sander, H.G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Payre, P.; Tilquin, A.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Manner, W.; Moser, H.G.; Settles, R.; Villegas, M.; Wolf, G.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, P.; Jacholkowska, A.; Serin, L.; Veillet, J.J.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Foa, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciaba, A.; Sguazzoni, G.; Spagnolo, P.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Awunor, O.; Blair, G.A.; Cowan, G.; Garcia-Bellido, A.; Green, M.G.; Medcalf, T.; Misiejuk, A.; Strong, J.A.; Teixeira-Dias, P.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Tomalin, I.R.; Ward, J.J.; Bloch-Devaux, B.; Boumediene, D.; Colas, P.; Fabbro, B.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Tuchming, B.; Vallage, B.; Litke, A.M.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Hodgson, P.N.; Lehto, M.; Thompson, L.F.; Bohrer, A.; Brandt, S.; Grupen, C.; Hess, J.; Ngac, A.; Prange, G.; Borean, C.; Giannini, G.; He, H.; Putz, J.; Rothberg, J.; Armstrong, S.R.; Berkelman, K.; Cranmer, K.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P.A.; Nielsen, J.; Pan, Y.B.; von Wimmersperg-Toeller, J.H.; Wiedenmann, W.; Wu, J.; Wu, S.L.; Wu, X.; Zobernig, G.; Dissertori, G.; Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alderweireld, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P.P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J.E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G.J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P.S.L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T.J.V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J.M.; Buschbeck, B.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, P.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S.U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M.J.; Crennell, D.; Cuevas, J.; D'Hondt, J.; Dalmau, J.; da Silva, T.; Da Silva, W.; Della Ricca, G.; De Angelis, A.; De Boer, W.; De Clercq, C.; De Lotto, B.; De Maria, N.; De Min, A.; de Paula, L.; Di Ciaccio, L.; Di Simone, A.; Doroba, K.; Drees, J.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M.C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, P.; Gazis, E.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S.O.; Holt, P.J.; Houlden, M.A.; Hultqvist, K.; Jackson, J.N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E.K.; Johansson, P.D.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B.P.; Kerzel, U.; King, B.T.; Kjaer, N.J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J.H.; Lopez, J.M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Mc Nulty, R.; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Monig, Klaus; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J.P.; Palka, H.; Papadopoulou, T.D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M.E.; Polok, G.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Rames, J.; Read, A.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Sander, C.; Savoy-Navarro, A.; Schwickerath, U.; Segar, A.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A.C.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.L.; Tyapkin, I.A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; Van Dam, P.; Van Eldik, J.; van Remortel, N.; Van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A.J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimine, N.I.; Zintchenko, A.; Achard, P.; Zupan, M.; Adriani, O.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, V.P.; Anselmo, F.; Arefiev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Dehmelt, K.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duda, M.; Echenard, B.; Eline, A.; El Hage, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Yu.; Ganguli, S.N.; Garcia-Abia, P.; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, G.; Grimm, O.; Gruenewald, M.W.; Guida, M.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hatzifotiadou, D.; Hebbeker, T.; Herve, A.; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Hu, J.; Jin, B.N.; Jindal, P.; Jones, L.W.; de Jong, P.; Josa-Mutuberra, I.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, J.; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Novak, T.; Nowak, H.; Ofierzynski, R.; Organtini, G.; Pal, I.; Palomares, C.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, T.; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Piccolo, D.; Pierella, F.; Pieri, M.; Pioppi, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofiev, D.; Rahal-Callot, G.; Rahaman, M.A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Rembeczki, S.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosemann, C.; Rosenbleck, C.; Rosier-Lees, S.; Roth, S.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Schafer, C.; Schegelsky, V.; Schopper, H.; Schotanus, D.J.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, C.; Ting, S.C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Vasquez, R.; Vesztergombi, G.; Vetlitsky, I.; Viertel, G.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobyov, A.A.; Wadhwa, M.; Wang, Q.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, An.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zimmermann, B.; Zoller, M.; Abbiendi, G.; Ainsley, C.; Akesson, P.F.; Alexander, G.; Allison, J.; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barillari, T.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, K.W.; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, R.M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, D.G.; Ciocca, C.; Csilling, A.; Cuffiani, M.; Dado, S.; de Jong, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Gagnon, P.; Gary, J.W.; Gascon-Shotkin, S.M.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, M.; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harel, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, K.; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jost, U.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kramer, T.; Krieger, P.; von Krogh, J.; Kruger, K.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, A.; Ludwig, J.; Mader, W.; Marcellini, S.; Martin, A.J.; Masetti, G.; Mashimo, T.; Mattig, P.; McKenna, J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Meyer, N.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Pilcher, J.E.; Pinfold, J.; Plane, D.E.; Poli, B.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J.M.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schorner-Sadenius, T.; Schroder, M.; Schumacher, M.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Strom, D.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, L.; Heinemeyer, S.; Pilaftsis, A.; Weiglein, G.

    2006-01-01

    The four LEP collaborations, ALEPH, DELPHI, L3 and OPAL, have searched for the neutral Higgs bosons which are predicted by the Minimal Supersymmetric Standard Model (MSSM). The data of the four collaborations are statistically combined and examined for their consistency with the background hypothesis and with a possible Higgs boson signal. The combined LEP data show no significant excess of events which would indicate the production of Higgs bosons. The search results are used to set upper bounds on the cross-sections of various Higgs-like event topologies. The results are interpreted within the MSSM in a number of ``benchmark" models, including CP-conserving and CP-violating scenarios. These interpretations lead in all cases to large exclusions in the MSSM parameter space. Absolute limits are set on the parameter tanb and, in some scenarios, on the masses of neutral Higgs bosons.

  2. Comparison of LEP and QST and their contribution to standard sensory diagnostic assessment of spinal lesions: a pilot study.

    Science.gov (United States)

    Geber, Christian; Baumgärtner, Ulf; Fechir, Marcel; Vogt, Thomas; Birklein, Frank; Treede, Rolf-Detlef

    2011-06-01

    This study evaluates the additional use of laser-evoked potentials (LEP) and quantitative sensory testing (QST) in the sensory assessment of spinal lesions. Four consecutive patients with spinal lesions verified by MRI and clinical evidence for mild spinothalamic tract involvement were included. The electrophysiological workup [somatosensory evoked potentials (SEP) and LEP] was compared to QST. Electrophysiology and QST were reassessed after about 6 months. LEP detected impaired spinothalamic tract function in 7/8 examinations. QST pointed to spinothalamic tract lesions by loss of thermal function (3/8); most frequent positive sensory signs (3/8) were paradoxical heat sensations. LEP and QST results were concordant in 6/8 examinations. SEPs were abnormal in 2/8 examinations. Congruent results between SEP and both LEP and QST were obtained in 3/8 examinations. LEP detected more deficits than any single QST parameter or their combination but additional QST allows the detection of positive sensory signs. The diagnostic gain of SEP was limited.

  3. Physics at LEP2. Vol. 2

    International Nuclear Information System (INIS)

    Altarelli, G.; Sjoestrand, T.; Zwirner, F.

    1995-01-01

    This is final report of the Workshop on Physics at LEP2, held at CERN during 1995. The first part of vol. 1 is devoted to aspects of machine physics of particular relevance to experiments, including the energy, luminosity and interaction regions, as well as the measurement of beam energy. The second part of vol. 1 is a relatively concise, but fairly complete, handbook on the physics of e + e - annihilation above the WW threshold and up to √s∼200 GeV. It contains discussions on WW cross-sections and distributions, W mass determination, Standard Model processes, QCD and gamma-gamma physics, as well as aspects of discovery physics, such as Higgs, new particle searches, triple gauge boson couplings and Z'. The second volume contains a review of the existing Monte Carlo generators for LEP2 physics. These include generators for WW physics, QCD and gamma-gamma processes, Bhabha scattering and discovery physics. A special effort was made to co-ordinate the different parts, with a view to achieving a systematic and balanced review of the subject, rather than just publishing a collection of separate contributions. (orig.)

  4. Physics at LEP2. Vol. 1

    International Nuclear Information System (INIS)

    Altarelli, G.; Sjoestrand, T.; Zwirner, F.

    1996-01-01

    This is the final report of the Workshop on Physics at LEP2, held at CERN during 1995. The first part of vol. 1 is devoted to aspects of machine physics of particular relevance to experiments, including the energy, luminosity and interaction regions, as well as the measurement of beam energy. The second part of vol. 1 is a relatively concise, but fairly complete, handbook on the physics of e + e - annihilation above the WW threshold and up to √s∼200 GeV. It contains discussions on WW cross-sections and distributions, W mass determination, Standard Model processes, QCD and gamma-gamma physics, as well as aspects of discovery physics, such as Higgs, new particle searches, triple gauge boson couplings and Z'. The second volume contains a review of the existing Monte Carlo generators for LEP2 physics. These include generators for WW physics, QCD and gamma-gamma processes, Bhabha scattering and discovery physics. A special effort was made to co-ordinate the different parts, with a view to achieving a systematic and balanced review of the subject, rather than just publishing a collection of separate contributions. (orig.)

  5. Physics at LEP2. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Altarelli, G [ed.; Sjoestrand, T [ed.; Zwirner, F [ed.

    1995-02-19

    This is final report of the Workshop on Physics at LEP2, held at CERN during 1995. The first part of vol. 1 is devoted to aspects of machine physics of particular relevance to experiments, including the energy, luminosity and interaction regions, as well as the measurement of beam energy. The second part of vol. 1 is a relatively concise, but fairly complete, handbook on the physics of e{sup +}e{sup -} annihilation above the WW threshold and up to {radical}s{approx}200 GeV. It contains discussions on WW cross-sections and distributions, W mass determination, Standard Model processes, QCD and gamma-gamma physics, as well as aspects of discovery physics, such as Higgs, new particle searches, triple gauge boson couplings and Z`. The second volume contains a review of the existing Monte Carlo generators for LEP2 physics. These include generators for WW physics, QCD and gamma-gamma processes, Bhabha scattering and discovery physics. A special effort was made to co-ordinate the different parts, with a view to achieving a systematic and balanced review of the subject, rather than just publishing a collection of separate contributions. (orig.).

  6. Lessons on Ancient China for LEP Adolescents.

    Science.gov (United States)

    Wigglesworth, Pierre Giles

    A unit in a Glendale, California sixth grade social studies curriculum is presented as a model for addressing two problems in the instruction of the growing population of limited English-proficient (LEP) students: (1) inadequate teacher training; and (2) shortage of appropriate, effective instructional materials. For the curriculum segment on…

  7. Future frontiers for e+e- collisions: physics of SLC and LEP

    International Nuclear Information System (INIS)

    Dorfan, J.M.

    1986-04-01

    A brief historical review is given of the contribution to particle physics of e + e - interactions, followed by a discussion of the LEP and SLC machines and the reasons for developing linear colliders. A brief overview of the Standard Model and some essential formalism for the process e + e - → f anti f are presented, followed by a discussion of detectors. Tests of the Standard Model and physics beyond the Standard Model that can be made running at the Z 0 are considered. LEP physics at energies above the Z 0 is discussed

  8. Logistics of LEP installation

    International Nuclear Information System (INIS)

    Genier, C.; Capper, S.

    1988-01-01

    The size of the LEP project, coupled with the tight construction schedules, calls for organized planning, logistics, monitoring and control. This is being carried out at present using tools such as ORACLE the Relational Database Management System, running on a VAX cluster for data storage and transfer, micro-computers for on-site follow-up, and PC's running Professional ORACLE, DOS and XENIX linked to a communications network to receive data feedback concerning transport and handling means. Following over 2 years of installations, this paper presents the methods used for the logistics of installation and their results

  9. Jet physics at LEP

    International Nuclear Information System (INIS)

    Venus, W.

    1991-01-01

    The results of studies of the jet structure of hadronic Z 0 decays performed in the first year of Large Electron-Positron collider (LEP) operation are reviewed. The measurements of the quantum chromodynamics (QCD) coupling constant α s (M z )and the detection of the presence of the triple gluon vertex are summarized. After a brief review of the promising status of QCD in relation to even the very soft processes, the running of the coupling constants to high energy is considered in the context of grand unified theories. The necessity and importance of further theoretical work is stressed. (author)

  10. Fermion pair production at LEP2 and interpretations

    International Nuclear Information System (INIS)

    Abbiendi, G.

    2001-01-01

    Preliminary results on e + e - → f f-bar, f = e, μ, τ, q, including all LEP2 data are discussed. Good agreement is found with the Standard Model up to the highest energies. Limits on possible new physics are extracted

  11. The DELPHI Trigger System at LEP2 Energies

    CERN Document Server

    Augustinus, A; Charpentier, P; De Wulf, J P; Fontanelli, F; Formenti, F; Gaspar, C; Gavillet, P; Goorens, R; Laugier, J P; Musico, P; Paganoni, M; Sannino, M; Valenti, G

    2003-01-01

    In this paper we describe the modifications carried out on the DELPHI trigger complex since the beginning of the high energy runs of LEP. The descriptions of the trigger configurations and performances for the 2000 data taking period are also presented.

  12. Potentials of heat recovery from 850C LEP cooling water

    International Nuclear Information System (INIS)

    Koelling, M.

    1982-06-01

    Most of the cooling water from LEP has a too low temperature (30 to 40 0 C) to be considered for economical recovery of energy. However, it is hoped that the heat from the klystrons be removed at a temperature of 85 0 C and that this part of the LEP cooling water might be used for saving primary energy. In this study different possibilities have been investigated to make use of the waste heat for heating purposes during winter time, for saving energy in the refrigeration process in summer and for power generation. Cost estimates for these installations are also given and show their economic drawbacks. (orig.)

  13. Small-x physics at LEP/LHC

    International Nuclear Information System (INIS)

    Bartels, J.; Schuler, G.A.

    1990-12-01

    The small-x behavior of deep inelastic structure functions in QCD is discussed. After a brief review of theoretical ideas we describe numerical estimates which show that LEP/LHC will be extremely useful for distinguishing between 'standard QCD' and 'new' physics in the low-x region. We also discuss which measurements will be useful for unravelling the new features of small-x physics. (orig.)

  14. Non-local Fast Extraction from the CERN SPS at 100 and 440 GeV

    CERN Document Server

    Velotti, F M; Bartmann, W; Carlier, E; Cornelis, K; Efthymiopoulos, I; Goddard, B; Jensen, L K; Kain, V; Kowalska, M; Mertens, V; Steerenberg, R

    2013-01-01

    The Long Straight Section 2 (LSS2) of the CERN SPS is connected with the North Area (NA), to which the beam to date has always been extracted using a resonant extraction technique. For new proposed short- and long-baseline neutrino experiments, a fast single turn extraction to this experimental area is required. As there are no kickers in LSS2, and the integration of any new kickers with the existing electrostatic septum would be problematic, a solution has been developed to fast extract the beam using non-local extraction with other SPS kickers. Two different kicker systems have been used, the injection kicker in LSS1 and the stronger extraction kicker in LSS6 to extract 100 and 440 GeV beam, respectively. For both solutions a large emittance beam was extracted after 5 or 9 full betatron periods. The concept and simulation details are presented with the analysis of the aperture and beam loss considerations and experimental results collected during a series of beam tests.

  15. LEP Radio Frequency Copper Cavity

    CERN Multimedia

    The pulse of a particle accelerator. 128 of these radio frequency cavities were positioned around CERN's 27-kilometre LEP ring to accelerate electrons and positrons. The acceleration was produced by microwave electric oscillations at 352 MHz. The electrons and positrons were grouped into bunches, like beads on a string, and the copper sphere at the top stored the microwave energy between the passage of individual bunches. This made for valuable energy savings as it reduced the heat generated in the cavity.

  16. The LEP project

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    At its 64th Session on 19-20 December, the CERN Council received a document from its Scientific Policy Committee entitled 'Proposal for the next major accelerator project at CERN'. Following the studies which have been carried out over the past few years, the SPC recommended that the 'Design Study of a 22 to 130 GeV electronpositron colliding beam machine (LEP)' should be used as the basis for planning the next accelerator for CERN and recommended that the accelerator should be built adjacent to the existing Laboratory.These recommendations were mostly favourably received by the delegates of the CERN Member States and the stage seems set for the formal presentation of the project in June of this year

  17. At work on LEP, the world’s most powerful electron–positron collider

    CERN Document Server

    Patrice Loiez,

    1999-01-01

    The LHC will be built inside the same tunnel as an existing accelerator, the Large Electron Positron (LEP) collider which came on stream in 1989. LEP will be removed from the tunnel at the end of this year to make way for the LHC. Here technicians make delicate adjustments to one of LEP’s thousands of magnets.

  18. QCD measurements in photon-photon collisions at LEP

    OpenAIRE

    Csilling, Akos

    2001-01-01

    An overview of the latest results of the LEP collaborations on QCD measurements in photon-photon collisions is presented, including measurements of the total hadronic cross-section, the production of heavy quarks and dijets and the structure functions of real and virtual photons.

  19. Exclusive Channels in Photon-Photon Collisions at LEP

    OpenAIRE

    Braccini, Saverio

    2002-01-01

    The study of exclusive channels in photon-photon collisions at e+e- colliders allows to investigate the structure and the properties of hadrons in a very clean experimental environment. A concise review of the most recent results obtained at LEP is presented.

  20. Measurement of the W mass at LEP 200

    International Nuclear Information System (INIS)

    Bijnens, J.; Zeppenfeld, D.; Kunszt, Z.

    1987-01-01

    Each of the four LEP experiments can measure in at least three ways the mass of the W boson at LEP 200 with an accuracy of the order of 100 MeV (or better). W mass measurement from the threshold behavior of σ (e + e - →W + W - ), W mass reconstruction using the W decay products, and W mass reconstruction from the end point of the lepton energy spectrum. The integrated luminosity of 500 events/pb used in this study provides a better statistical accuracy (50-60 MeV) but it appears difficult to control the systematical uncertainties at such a level. All the methods proposed in this report require the knowledge of the machine beam energy which gives in any case an absolute limit on the W mass measurement accuracy. Then, the theoretical interest in measuring M W at the 1 o/oo level is discussed. 22 figs; 25 refs

  1. Tests of electroweak interactions at CERN's LEP Collider

    Science.gov (United States)

    Fearnley, T. A.

    1995-08-01

    Precision measurements of electroweak interactions at the Z0 energy are performed at four experiments at the Large Electron Positron (LEP) Collider at CERN in Geneva, Switzerland. The large amount of data obtained from 1989 until today allows detailed comparisons with the predictions made by the Standard Model. Within the experimental errors the agreement with the Standard Model is good. Fits to the LEP data allow an indirect determination of the mass of the top quark: Mt=173+12+18-13-20 GeV, assuming a Higgs boson mass of 300 GeV. The first errors reflect the experimental errors (systematic and statistical) on the measurements. The second errors correspond to the variation of the central value when varying the Higgs mass between 60 and 1000 GeV. This paper reviews the results of the measurements of electroweak interactions, and compares the results with predictions made by the Standard Model.

  2. Hypothalamic growth hormone receptor (GHR) controls hepatic glucose production in nutrient-sensing leptin receptor (LepRb) expressing neurons.

    Science.gov (United States)

    Cady, Gillian; Landeryou, Taylor; Garratt, Michael; Kopchick, John J; Qi, Nathan; Garcia-Galiano, David; Elias, Carol F; Myers, Martin G; Miller, Richard A; Sandoval, Darleen A; Sadagurski, Marianna

    2017-05-01

    The GH/IGF-1 axis has important roles in growth and metabolism. GH and GH receptor (GHR) are active in the central nervous system (CNS) and are crucial in regulating several aspects of metabolism. In the hypothalamus, there is a high abundance of GH-responsive cells, but the role of GH signaling in hypothalamic neurons is unknown. Previous work has demonstrated that the Ghr gene is highly expressed in LepRb neurons. Given that leptin is a key regulator of energy balance by acting on leptin receptor (LepRb)-expressing neurons, we tested the hypothesis that LepRb neurons represent an important site for GHR signaling to control body homeostasis. To determine the importance of GHR signaling in LepRb neurons, we utilized Cre/loxP technology to ablate GHR expression in LepRb neurons (Lepr EYFPΔGHR ). The mice were generated by crossing the Lepr cre on the cre-inducible ROSA26-EYFP mice to GHR L/L mice. Parameters of body composition and glucose homeostasis were evaluated. Our results demonstrate that the sites with GHR and LepRb co-expression include ARH, DMH, and LHA neurons. Leptin action was not altered in Lepr EYFPΔGHR mice; however, GH-induced pStat5-IR in LepRb neurons was significantly reduced in these mice. Serum IGF-1 and GH levels were unaltered, and we found no evidence that GHR signaling regulates food intake and body weight in LepRb neurons. In contrast, diminished GHR signaling in LepRb neurons impaired hepatic insulin sensitivity and peripheral lipid metabolism. This was paralleled with a failure to suppress expression of the gluconeogenic genes and impaired hepatic insulin signaling in Lepr EYFPΔGHR mice. These findings suggest the existence of GHR-leptin neurocircuitry that plays an important role in the GHR-mediated regulation of glucose metabolism irrespective of feeding.

  3. Hypothalamic growth hormone receptor (GHR controls hepatic glucose production in nutrient-sensing leptin receptor (LepRb expressing neurons

    Directory of Open Access Journals (Sweden)

    Gillian Cady

    2017-05-01

    Full Text Available Objective: The GH/IGF-1 axis has important roles in growth and metabolism. GH and GH receptor (GHR are active in the central nervous system (CNS and are crucial in regulating several aspects of metabolism. In the hypothalamus, there is a high abundance of GH-responsive cells, but the role of GH signaling in hypothalamic neurons is unknown. Previous work has demonstrated that the Ghr gene is highly expressed in LepRb neurons. Given that leptin is a key regulator of energy balance by acting on leptin receptor (LepRb-expressing neurons, we tested the hypothesis that LepRb neurons represent an important site for GHR signaling to control body homeostasis. Methods: To determine the importance of GHR signaling in LepRb neurons, we utilized Cre/loxP technology to ablate GHR expression in LepRb neurons (LeprEYFPΔGHR. The mice were generated by crossing the Leprcre on the cre-inducible ROSA26-EYFP mice to GHRL/L mice. Parameters of body composition and glucose homeostasis were evaluated. Results: Our results demonstrate that the sites with GHR and LepRb co-expression include ARH, DMH, and LHA neurons. Leptin action was not altered in LeprEYFPΔGHR mice; however, GH-induced pStat5-IR in LepRb neurons was significantly reduced in these mice. Serum IGF-1 and GH levels were unaltered, and we found no evidence that GHR signaling regulates food intake and body weight in LepRb neurons. In contrast, diminished GHR signaling in LepRb neurons impaired hepatic insulin sensitivity and peripheral lipid metabolism. This was paralleled with a failure to suppress expression of the gluconeogenic genes and impaired hepatic insulin signaling in LeprEYFPΔGHR mice. Conclusion: These findings suggest the existence of GHR-leptin neurocircuitry that plays an important role in the GHR-mediated regulation of glucose metabolism irrespective of feeding. Keywords: Growth hormone receptor, Hypothalamus, Leptin receptor, Glucose production, Liver

  4. Heavy quark production at SLC and LEP

    International Nuclear Information System (INIS)

    Hearty, C.

    1990-06-01

    Experiments at SLC and LEP have made preliminary measurements of the relative partial widths of the c and b quarks. Using D* tagging, DELPHI has found R c bar c triple-bond/Γ c bar c/Γ hadr. = 0.162 ± 0.032 ± 0.031, in good agreement with the Standard Model value of 0.171. ALEPH has used semileptonic decays of charm to obtain 0.148 ± 0.044 -0.038 +0.045 . Three experiments have used semileptonic Β decays to measurement R b bar b: R b bar b = 0.23 ± 0.10 (Mark II), 0.218 ± 0.010 ± 0.021 (L3), and 0.220 ± 0.016 ± 0.024 (ALEPH). All agree well with the expected value of 0.217. The uncertainty in branching ratios of c and b hadrons is the largest systematic error in all of the results. Future LEP measurements of the branching ratios may reduce the errors. R b bar b will also be measured with different, and possibly lower, systematic errors by Mark II using impact parameter tagging

  5. Capability of LEP-type surfaces to describe noncollinear reactions 2 - Polyatomic systems

    CERN Document Server

    Espinosa-Garcia, Joaquin

    2001-01-01

    In this second article of the series, the popular LEP-type surface for collinear reaction paths and a "bent" surface, which involves a saddle point geometry with a nonlinear central angle, were used to examine the capacity of LEP-type surfaces to describe the kinetics and dynamics of noncollinear reaction paths in polyatomic systems. Analyzing the geometries, vibrational frequencies, curvature along the reaction path (to estimate the tunneling effect and the reaction coordinate-bound modes coupling), and the variational transition- state theory thermal rate constants for the NH//3 + O(**3P) reaction, we found that the "collinear" LEP-type and the "bent" surfaces for this polyatomic system show similar behavior, thus allowing a considerable saving in time and computational effort. This agreement is especially encouraging for this polyatomic system because in the Cs symmetry the reaction proceeds via two electronic states of symmetries **3A prime and **3A double prime , which had to be independently calibrated....

  6. Search for Excited Leptons at LEP

    CERN Document Server

    Achard, P.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; van Dalen, J.A.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Dehmelt, K.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duda, M.; Echenard, B.; Eline, A.; El Hage, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hakobyan, R.S.; Hansen, J.M.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Hu, Y.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Pal, I.; Palomares, C.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pioppi, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, Mohammad Azizur; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Roth, Stefan; Rosenbleck, C.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Schafer, C.; Schegelsky, V.; Schopper, H.; Schotanus, D.J.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Vasquez, R.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobyov, A.A.; Wadhwa, M.; Wang, Q.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wienemann, P.; Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, A.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zimmermann, B.; Zoller, M.

    2003-01-01

    A search for charged and neutral excited leptons is performed in 217 pb-1 of data collected with the L3 detector at LEP at centre-of-mass energies up to 209 GeV. The pair- and single-production mechanisms are investigated and no signals are detected. Combining with L3 results from searches at lower centre-of-mass energies, gives improved limits on the masses and couplings of excited leptons.

  7. Structural analyses of Legionella LepB reveal a new GAP fold that catalytically mimics eukaryotic RasGAP.

    Science.gov (United States)

    Yu, Qin; Hu, Liyan; Yao, Qing; Zhu, Yongqun; Dong, Na; Wang, Da-Cheng; Shao, Feng

    2013-06-01

    Rab GTPases are emerging targets of diverse bacterial pathogens. Here, we perform biochemical and structural analyses of LepB, a Rab GTPase-activating protein (GAP) effector from Legionella pneumophila. We map LepB GAP domain to residues 313-618 and show that the GAP domain is Rab1 specific with a catalytic activity higher than the canonical eukaryotic TBC GAP and the newly identified VirA/EspG family of bacterial RabGAP effectors. Exhaustive mutation analyses identify Arg444 as the arginine finger, but no catalytically essential glutamine residues. Crystal structures of LepB313-618 alone and the GAP domain of Legionella drancourtii LepB in complex with Rab1-GDP-AlF3 support the catalytic role of Arg444, and also further reveal a 3D architecture and a GTPase-binding mode distinct from all known GAPs. Glu449, structurally equivalent to TBC RabGAP glutamine finger in apo-LepB, undergoes a drastic movement upon Rab1 binding, which induces Rab1 Gln70 side-chain flipping towards GDP-AlF3 through a strong ionic interaction. This conformationally rearranged Gln70 acts as the catalytic cis-glutamine, therefore uncovering an unexpected RasGAP-like catalytic mechanism for LepB. Our studies highlight an extraordinary structural and catalytic diversity of RabGAPs, particularly those from bacterial pathogens.

  8. OPAL: selection and acquisition of LEP data

    International Nuclear Information System (INIS)

    Le Du, P.

    1985-01-01

    The OPAL project (Omni Purpose aparatus for LEP) is presented. It will be a frame and an example to explain the main problems and limitations concerning the mode of event selection, acquisition and information transfer to the final registering system. A quick review of the different problems related to data selection and acquisition is made [fr

  9. Synchro-betatron resonance excitation in LEP

    International Nuclear Information System (INIS)

    Myers, S.

    1987-01-01

    The excitation of synchrotro-betatron resonances due to spurious dispersion and induced transverse deflecting fields at the RF cavities has been simulated for the LEP storage ring. These simulations have been performed for various possible modes of operation. In particular, a scenario has been studied in which LEP is operated at the maximum possible value of the synchrotron tune throughout the acceleration cycle, in an attempt to maximise the threshold intensity at which the Transverse Mode Coupling Instability (TMCI) occurs. This mode of operation necessitates the crossing of synchro-betatron resonances at some points in the acceleration cycle if low order non-linear machine resonances are to be avoided. Simulations have been performed in which the machine tune is swept across these synchro-betratron resonances at a rate given by the bandwidth of the magnet plus power supply circuits of the main quadrupole chain. The effect of longitudinal and transverse wake-fields on the excitation of these resonances has been investigated. These studies indicate that the distortion of the RF potential well caused by the longitudinal wake fields increases the non-linear content of the synchrotron motion and consequently increases significantly the excitation of the higher order synchro-betatron resonances

  10. LEP Higgs boson searches beyond the standard model

    Indian Academy of Sciences (India)

    These include the searches for charged Higgs bosons, models with two Higgs field doublets, searches for 'fermiophobic' Higgs decay, invisible Higgs boson decays, decay-mode independent searches, and limits on Yukawa and anomalous Higgs couplings. I review the searches done by the four LEP experiments and ...

  11. Measurement of the W boson mass and width in e+e- collisions at LEP

    International Nuclear Information System (INIS)

    Schael, S.; Barate, R.; Bruneliere, R.; De Bonis, I.; Decamp, D.; Goy, C.; Jezequel, S.; Lees, J.-P.; Martin, F.; Merle, E.; Minard, M.-N.; Pietrzyk, B.; Trocme, B.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Martinez, M.; Pacheco, A.; Ruiz, H.; Colaleo, A.; Creanza, D.; De Filippis, N.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Barklow, T.; Buchmueller, O.; Cattaneo, M.; Clerbaux, B.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Hansen, J.B.; Harvey, J.; Hutchcroft, D.E.; Janot, P.; Jost, B.; Kado, M.; Mato, P.; Moutoussi, A.; Ranjard, F.; Rolandi, L.; Schlatter, D.; Teubert, F.; Valassi, A.; Videau, I.; Badaud, F.; Dessagne, S.; Falvard, A.; Fayolle, D.; Gay, P.; Jousset, J.; Michel, B.; Monteil, S.; Pallin, D.; Pascolo, J.M.; Perret, P.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Kraan, A.C.; Nilsson, B.S.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J.-C.; Machefert, F.; Rouge, A.; Videau, H.; Ciulli, V.; Focardi, E.; Parrini, G.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bossi, F.; Capon, G.; Cerutti, F.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, G.P.; Passalacqua, L.; Kennedy, J.; Lynch, J.G.; Negus, P.; O'Shea, V.; Thompson, A.S.; Wasserbaech, S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E.E.; Putzer, A.; Stenzel, H.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Cameron, W.; Davies, G.; Dornan, P.J.; Girone, M.; Marinelli, N.; Nowell, J.; Rutherford, S.A.; Sedgbeer, J.K.; Thompson, J.C.; White, R.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C.K.; Clarke, D.P.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Pearson, M.R.; Robertson, N.A.; Sloan, T.; Smizanska, M.; van der Aa, O.; Delaere, C.; Leibenguth, G.; Lemaitre, V.; Blumenschein, U.; Hoelldorfer, F.; Jakobs, K.; Kayser, F.; Mueller, A.-S.; Renk, B.; Sander, H.-G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Payre, P.; Tilquin, A.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Huettmann, K.; Luetjens, G.; Maenner, W.; Moser, H.-G.; Settles, R.; Villegas, M.; Wolf, G.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, P.; Jacholkowska, A.; Serin, L.; Veillet, J.-J.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Foa, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciaba, A.; Sguazzoni, G.; Spagnolo, P.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Awunor, O.; Blair, G.A.; Cowan, G.; Garcia-Bellido, A.; Green, M.G.; Medcalf, T.; Misiejuk, A.; Strong, J.A.; Teixeira-Dias, P.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Tomalin, I.R.; Ward, J.J.; Bloch-Devaux, B.; Boumediene, D.; Colas, P.; Fabbro, B.; Lancon, E.; Lemaire, M.-C.; Locci, E.; Perez, P.; Rander, J.; Trabelsi, A.; Tuchming, B.; Vallage, B.; Litke, A.M.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Hodgson, P.N.; Lehto, M.; Thompson, L.F.; Boehrer, A.; Brandt, S.; Grupen, C.; Hess, J.; Ngac, A.; Prange, G.; Borean, C.; Giannini, G.; He, H.; Putz, J.; Rothberg, J.; Armstrong, S.R.; Berkelman, K.; Cranmer, K.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara III, P.A.; Nielsen, J.; Pan, Y.B.; von Wimmersperg-Toeller, J.H.; Wiedenmann, W.; Wu, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.

    2006-01-01

    The mass of the W boson is determined from the direct reconstruction of W decays in WW→q anti qq anti q and WW→lνq anti q events in e + e - collisions at LEP. The data sample corresponds to an integrated luminosity of 683 pb -1 collected with the ALEPH detector at centre-of-mass energies up to 209 GeV. To minimise any effect from colour reconnection a new procedure is adopted in which low energy particles are not considered in the mass determination from the q anti qq anti q channel. The combined result from all channels is m W=80.440 ±0.043 (stat.) ±0.024 (syst.) ±0.009 (FSI) ±0.009 (LEP) GeV/c 2 , where FSI represents the possible effects of final state interactions in the q anti qq anti q channel and LEP indicates the uncertainty in the beam energy. From two-parameter fits to the W mass and width, the W width is found to be Γ W = 2.14 ±0.09 (stat.) ±0.04 (syst.) ±0.05 (FSI) ±0.01 (LEP) GeV. (orig.)

  12. Searches at LEP

    CERN Document Server

    Junk, Tom

    2000-01-01

    Searches have been conducted for a broad range of new phenomena by the four experiments ALEPH, DELPHI, L3, and OPAL, at LEP2. Each experiment contributes approximately 150 pb-1 of e+e- annihilation data with a mean sqrt(s) of 205.9 GeV in 2000 to these searches (data prepared for the September 5 LEPC meeting). The statistical procedure for setting limits and evaluating the significance of excesses observed in the data is reviewed. Search results are presented for the Standard Model Higgs boson, the neutral Higgs bosons in the MSSM, charged Higgs bosons, invisibly decaying Higgs bosons produced by Higgs-strahlung, and fermiophobic Higgs bosons. Search results are briefly summarized for gauginos, stops, and staus. The photon recoil spectrum is checked for hints of new physics.

  13. AA precooling pickup

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    The freshly injected antiprotons, while circulating on the injection orbit, were subjected to fast stochastic "precooling" for several seconds (in momentum and in the vertical plane). This precooling pickup is being readied by Gerard Laurent for installation in its tank. Precooling PUs and kickers were of identical construction (except for the kickers having cooling circuits), with C-shaped ferrites sandwiched between C-shaped metal plates and couplers at the back of the C. For reasons explained in 8002234, they were also equipped with shutters which closed the open side of the C when there was beam on the injection orbit. For more on precooling see 8020234, 8004064.

  14. Study of electroweak parameters at LEP

    International Nuclear Information System (INIS)

    Blum, W.

    1991-10-01

    The measurement of the line shape and asymmetry parameters of the Z 0 in its leptonic and hadronic decays are reviewed. Progress is reported about a considerable increase in measurement accuracy. Several tests of the Standard Model confirm it to better than one per cent. New values for the effective mixing parameter are derived from the line shape parameters averaged over the four LEP experiments. The corresponding limits on the top mass are presented. (orig.)

  15. A Digital Language Divide? The Relationship between Internet Medication Refills and Medication Adherence among Limited English Proficient (LEP) Patients.

    Science.gov (United States)

    Casillas, Alejandra; Moreno, Gerardo; Grotts, Jonathan; Tseng, Chi-Hong; Morales, Leo S

    2018-03-29

    Use of an Internet portal to refill medicines positively affects medication adherence among English-speakers. No prior studies, however, have specifically examined the relationship between Internet refills and medication adherence among patients who are limited English proficient (LEP). (1) Examine the relationship between Internet medication refill system use and medication adherence among linguistically diverse patients with chronic conditions and (2) compare this relationship between LEP and English-proficient (EP) patients. We analyzed 2013-2014 cross-sectional data from 509 surveyed adults in the Group Health Cooperative. Surveys were merged with plan enrollment, claims data, and electronic medical records. Medication adherence was calculated by the "Continuous Measure of Medication Gaps" (CMG) method. For Internet refill system use, patients were asked, "Have you used the health systems Internet site to refill any medications in the last 12 months?" LEP status was captured in the electronic medical record by a non-English primary language and a claims record of interpreter use in at least one clinical encounter between 2005 and 2012. We used multivariate linear regression models to examine Internet refill system use and medication adherence and compared the association between LEP and EP patients. Three hundred eighty-four patients (75%) had a calculable CMG: 134 EP and 250 LEP in the adherence analyses. In unadjusted analyses, LEP patients had lower use of the Internet refill system (p < .001) and lower adherence versus the EP group (p < .001). In multivariate analyses, LEP status (β = - 0.022, p = .047) was negatively associated with adherence, while use of the Internet refill system (β = 0.030, p = .002) was positively associated. In stratified models, use of Internet refills was positively associated with adherence, even when examining LEP (β = 0.029, p = .003) and EP patients (β = 0.027, p = .049) separately

  16. Two-photon physics at LEP

    International Nuclear Information System (INIS)

    Ginzburg, I.F.

    1988-01-01

    The two-photon production of hadrons in e + e - collisions e + e - →e + e - h from which the γγ→h cross sections are extracted is discussed. The common features of these processes are: hadrons move, as a rule, along e + e - beam axis, their total transverse momentum K perpendicular or perpendicular to is small; the total hadron energy is usually less than √S/2. Physical problems of soft processes, exotics, hard processes, semihard processes are considered. New possibilities of LEP, the most interesting and real are presented

  17. Anomalous couplings at LEP2

    International Nuclear Information System (INIS)

    Fayolle, D.

    2002-01-01

    In its second phase, LEP has allowed to study four fermion processes never observed before. Results are presented on the charged triple gauge boson couplings (TGC) from the W-pair, Single W and Single γ production. The anomalous quartic gauge couplings (QGC) are constrained using production of WWγ, νν-barγγ and Z γγ final states. Finally, limits on the neutral anomalous gauge couplings (NGC) using the Z γ and ZZ production processes are also reported. All results are consistent with the Standard Model expectations. (authors)

  18. Vacuum Chambers for LEP sections

    CERN Multimedia

    1983-01-01

    The picture shows sections of the LEP vacuum chambers to be installed in the dipole magnets (left) and in the quadrupoles (right). The dipole chamber has three channels: the beam chamber, the pumping duct where the NEG (non-evaporabe getter) is installed and the water channel for cooling (on top in the picture). The pumping duct is connected to the beam chamber through holes in the separating wall. The thick lead lining to shield radiation can also be seen. These chambers were manufactured as extruded aluminium alloy profiles.

  19. Simulations of Merging Helion Bunches on the AGS Injection Porch

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, C. J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-08-29

    During the setup of helions for the FY2014 RHIC run it was discovered that the standard scheme for merging bunches on the AGS injection porch required an injection kicker pulse shorter than what was available. To overcome this difficulty, K. Zeno proposed and developed an interesting and unusual alternative which uses RF harmonic numbers 12, 4, 2 (rather than the standard 8, 4, 2) to merge 8 helion bunches into 2. In this note we carry out simulations that illustrate how the alternative scheme works and how it compares with the standard scheme. This is done in Sections 13 and 14. A scheme in which 6 bunches are merged into 1 is simulated in Section 15. This may be useful if more helions per merged bunch are needed in future runs. General formulae for the simulations are given in Sections 9 through 12. For completeness, Sections 1 through 8 give a derivation of the turn-by-turn equations of longitudinal motion at constant magnetic field. The derivation is based on the work of MacLachlan. The reader may wish to skip over these Sections and start with Section 9.

  20. Simulations of Merging Helion Bunches on the AGS Injection Porch

    International Nuclear Information System (INIS)

    Gardner, C. J.

    2014-01-01

    During the setup of helions for the FY2014 RHIC run it was discovered that the standard scheme for merging bunches on the AGS injection porch required an injection kicker pulse shorter than what was available. To overcome this difficulty, K. Zeno proposed and developed an interesting and unusual alternative which uses RF harmonic numbers 12, 4, 2 (rather than the standard 8, 4, 2) to merge 8 helion bunches into 2. In this note we carry out simulations that illustrate how the alternative scheme works and how it compares with the standard scheme. This is done in Sections 13 and 14. A scheme in which 6 bunches are merged into 1 is simulated in Section 15. This may be useful if more helions per merged bunch are needed in future runs. General formulae for the simulations are given in Sections 9 through 12. For completeness, Sections 1 through 8 give a derivation of the turn-by-turn equations of longitudinal motion at constant magnetic field. The derivation is based on the work of MacLachlan. The reader may wish to skip over these Sections and start with Section 9.

  1. Search for the Standard Model Higgs Boson at LEP

    CERN Document Server

    Barate, R.; De Bonis, I.; Decamp, D.; Goy, C.; Jezequel, S.; Lees, J.P.; Martin, F.; Merle, E.; Minard, M.N.; Pietrzyk, B.; Trocme, B.; Boix, G.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Grauges, E.; Lopez, J.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L.M.; Pacheco, A.; Paneque, D.; Ruiz, H.; Heister, A.; Schael, S.; Colaleo, A.; Creanza, D.; De Filippis, N.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Quyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Azzurri, P.; Barklow, T.; Buchmuller, O.; Cattaneo, M.; Cerutti, F.; Clerbaux, B.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Greening, T.C.; Hansen, J.B.; Harvey, J.; Hutchcroft, D.E.; Janot, P.; Jost, B.; Kado, M.; Maley, P.; Mato, P.; Moutoussi, A.; Ranjard, F.; Rolandi, Gigi; Schlatter, D.; Sguazzoni, G.; Tejessy, W.; Teubert, F.; Valassi, A.; Videau, I.; Ward, J.J.; Badaud, F.; Dessagne, S.; Falvard, A.; Fayolle, D.; Gay, P.; Jousset, J.; Michel, B.; Monteil, S.; Pallin, D.; Pascolo, J.M.; Perret, P.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Waananen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J.C.; Machefert, F.; Rouge, A.; Swynghedauw, M.; Tanaka, R.; Videau, H.; Ciulli, V.; Focardi, E.; Parrini, G.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G.P.; Passalacqua, L.; Pepe-Altarelli, M.; Spagnolo, P.; Kennedy, J.; Lynch, J.G.; Negus, P.; O'Shea, V.; Smith, D.; Thompson, A.S.; Wasserbaech, S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E.E.; Leibenguth, G.; Putzer, A.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D.M.; Cameron, W.; Davies, G.; Dornan, P.J.; Girone, M.; Hill, R.D.; Marinelli, N.; Nowell, J.; Przysiezniak, H.; Rutherford, S.A.; Sedgbeer, J.K.; Thompson, J.C.; White, R.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C.K.; Clarke, D.P.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Pearson, M.R.; Robertson, N.A.; Smizanska, M.; Lemaitre, V.; Blumenschein, U.; Holldorfer, F.; Jakobs, K.; Kayser, F.; Kleinknecht, K.; Muller, A.S.; Quast, G.; Renk, B.; Sander, H.G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Carr, J.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Leroy, O.; Kachelhoffer, T.; Payre, P.; Rousseau, D.; Tilquin, A.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Mannert, C.; Manner, W.; Moser, H.G.; Settles, R.; Wolf, G.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, P.; Jacholkowska, A.; Loomis, C.; Serin, L.; Veillet, J.J.; de Vivie de Regie, J.B.; Yuan, C.; Bagliesi, Giuseppe; Boccali, T.; Foa, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciaba, A.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Awunor, O.; Blair, G.A.; Coles, J.; Cowan, G.; Garcia-Bellido, A.; Green, M.G.; Jones, L.T.; Medcalf, T.; Misiejuk, A.; Strong, J.A.; Teixeira-Dias, P.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Tomalin, I.R.; Bloch-Devaux, Brigitte; Boumediene, D.; Colas, P.; Fabbro, B.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.F.; Rosowsky, A.; Seager, P.; Trabelsi, A.; Tuchming, B.; Vallage, B.; Konstantinidis, N.; Litke, A.M.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Hodgson, P.N.; Lehto, M.; Thompson, L.F.; Affholderbach, K.; Boehrer, Armin; Brandt, S.; Grupen, C.; Hess, J.; Ngac, A.; Prange, G.; Sieler, U.; Borean, C.; Giannini, G.; He, H.; Putz, J.; Rothberg, J.; Armstrong, S.R.; Berkelman, Karl; Cranmer, K.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P.A., III; Nielsen, J.; Pan, Y.B.; von Wimmersperg-Toeller, J.H.; Wiedenmann, W.; Wu, J.; Wu, S.L.; Wu, X.; Zobernig, G.; Dissertori, G.; Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alderweireld, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P.P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J.E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G.J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P.S.L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T.J.V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J.M.; Bugge, L.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, Nuno Filipe; Cavallo, F.; Chapkin, M.; Charpentier, P.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S.U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M.J.; Crawley, B.; Crennell, D.; Cuevas, J.; DHondt, J.; Dalmau, J.; da Silva, T.; Da Silva, W.; Della Ricca, G.; De Angelis, A.; De Boer, W.; De Clercq, C.; De Lotto, B.; De Maria, N.; De Min, A.; de Paula, L.; Di Ciaccio, L.; Di Simone, A.; Doroba, K.; Drees, J.; Dris, M.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M.C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, P.; Gazis, Evangelos; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Hansen, J.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S.O.; Holt, P.J.; Houlden, M.A.; Hultqvist, K.; Jackson, John Neil; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, Erik Karl; Johansson, P.D.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, Frederic; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B.P.; Kiiskinen, A.; King, B.T.; Kjaer, N.J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, Fabienne; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J.H.; Lopez, J.M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; McNulty, R.; Meroni, C.; Meyer, W.T.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Monig, Klaus; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J.P.; Palka, H.; Papadopoulou, T.D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M.E.; Polok, G.; Poropat, P.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Rames, J.; Ramler, L.; Read, Alexander L.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Rosenberg, E.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Savoy-Navarro, A.; Schwickerath, U.; Segar, A.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A.C.; Tegenfeldt, F.; Timmermans, Jan; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.L.; Tyapkin, I.A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; Van Dam, Piet; Van Eldik, J.; Van Lysebetten, A.; Van Remortel, N.; Van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verbeure, F.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A.J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimine, N.I.; Zintchenko, A.; Zupan, M.; Achard, P.; Adriani, O.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefiev, A.; Azemoon, T.; Aziz, T.; Baarmand, M.; Bagnaia, P.; Bajox, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Buijs, A.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casau, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; Dai, T.S.; van Dalen, J.A.; de Asmundis, R.; Deglont, P.; Debreczeni, J.; Degre, A.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; De Notaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; van Dierendonck, D.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duinker, P.; Echenard, B.; Eline, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Ewers, A.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Holzner, G.; Hou, S.R.; Hu, Y.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Krenz, W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Lee, H.J.; Le Goff, J.M.; Leiste, R.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Lubelsmeyer, K.; Luci, C.; Luckey, David; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mangeol, D.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Niessen, T.; Nisati, A.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Palomares, C.; Pandoulas, D.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Postema, H.; Pothier, J.; Prokofiev, D.O.; Prokofiev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, Mohammad Azizur; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lee, S.; Roth, Stefan; Rosenbleck, C.; Roux, B.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Sanders, M.P.; Schafer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schmitz, D.; Schopper, H.; Schotanus, D.J.; Schwering, G.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Siedenburg, T.; Son, D.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Uchida, Y.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobyov, A.A.; Wadhwa, M.; Wallraff, W.; Wang, M.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wienemann, P.; Wilkens, H.; Wu, S.X.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, A.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zilizi, G.; Zimmermann, B.; Zoller, M.; Abbiendi, G.; Ainsley, C.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Boeriu, O.; Bock, P.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Dallison, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Elfgren, E.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hauschildt, J.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Homer, R.J.; Horvath, D.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kormos, Laura L.; Kowalewski, Robert V.; Kramer, T.; Kress, T.; Krieger, P.; von Krogh, J.; Krop, D.; Kruger, K.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, J.; Macpherson, A.; Mader, W.; Marcellini, S.; Marchant, T.E.; Martin, A.J.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.J.; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; ONeale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Rick, H.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sahr, O.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Spano, F.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trefzger, T.; Tricoli, A.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vachon, B.; Vollmer, C.F.; Vannerem, P.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija; Heinemeyer, S.; Weiglein, G.

    2003-01-01

    The four LEP collaborations, ALEPH, DELPHI, L3 and OPAL, have collected a total of 2461 pb-1 of e+e- collision data at centre-of-mass energies between 189 and 209 GeV. The data are used to search for the Standard Model Higgs boson. The search results of the four collaborations are combined and examined in a likelihood test for their consistency with two hypotheses: the background hypothesis and the signal plus background hypothesis. The corresponding confidences have been computed as functions of the hypothetical Higgs boson mass. A lower bound of 114.4 GeV/c2 is established, at the 95% confidence level, on the mass of the Standard Model Higgs boson. The LEP data are also used to set upper bounds on the HZZ coupling for various assumptions concerning the decay of the Higgs boson.

  2. Power corrections and event shapes at LEP

    CERN Document Server

    Sanders, Michiel P

    2000-01-01

    Measurements of event shape variables from hadronic events collected by the LEP experiments, corresponding to hadronic center of mass energies between 30 GeV and 202 GeV are presented. Fits are performed to extract a, and the effective infrared strong coupling o with the power correction ansatz. Universality is observed for the effective coupling and comparisons are made with fragmentation models.

  3. Modelling Bose-Einstein correlations at LEP-2

    International Nuclear Information System (INIS)

    Loennblad, L.

    1998-01-01

    Some pros and cons of different strategies for modelling Bose-Einstein correlations in event generators for fully hadronic WW events at LEP-2 are discussed. A few new algorithms based on shifting final-state momenta of identical bosons in WW events generated by PYTHIA are also presented and the resulting predictions for the effects on the W mass measurement are discussed. (author)

  4. Installation and management of the SPS and LEP control system computers

    International Nuclear Information System (INIS)

    Bland, Alastair

    1994-01-01

    Control of the CERN SPS and LEP accelerators and service equipment on the two CERN main sites is performed via workstations, file servers, Process Control Assemblies (PCAs) and Device Stub Controllers (DSCs). This paper describes the methods and tools that have been developed to manage the file servers, PCAs and DSCs since the LEP startup in 1989. There are five operational DECstation 5000s used as file servers and boot servers for the PCAs and DSCs. The PCAs consist of 90 SCO Xenix 386 PCs, 40 LynxOS 486 PCs and more than 40 older NORD 100s. The DSCs consist of 90 OS-968030 VME crates and 10 LynxOS 68030 VME crates. In addition there are over 100 development systems. The controls group is responsible for installing the computers, starting all the user processes and ensuring that the computers and the processes run correctly. The operators in the SPS/LEP control room and the Services control room have a Motif-based X window program which gives them, in real time, the state of all the computers and allows them to solve problems or reboot them. ((orig.))

  5. Search for Charged Higgs bosons: Combined Results Using LEP data

    CERN Document Server

    Abbiendi, G.; CERN. Geneva; Akesson, P.F.; Alexander, G.; Anagnostou, G.; Anderson, K.J.; Asai, S.; Axen, D.; Bailey, I.; Barberio, E.; Barillari, T.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, K.W.; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brown, Robert M.; Burckhart, H.J.; Campana, S.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, D.G.; Ciocca, C.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallavalle, M.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Gagnon, P.; Gary, John William; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harel, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Herten, G.; Heuer, R.D.; Hill, J.C.; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanzaki, J.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kramer, T.; Krasznahorkay, A., Jr.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, A.; Ludwig, J.; Mader, W.; Marcellini, S.; Martin, A.J.; Mashimo, T.; Mattig, P.; McKenna, J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Meyer, N.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Pilcher, J.E.; Pinfold, J.; Plane, D.E.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J.M.; Rossi, A.M.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schorner-Sadenius, T.; Schroder, M.; Schumacher, M.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Strom, D.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija; Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alderweireld, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P.P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J.E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P.S.L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T.J.V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J.M.; Bugge, L.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, Nuno Filipe; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S.U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M.J.; Crennell, D.; Cuevas, J.; D'Hondt, J.; Dalmau, J.; da Silva, T.; Da Silva, W.; Della Ricca, G.; De Angelis, A.; De Boer, W.; De Clercq, C.; De Lotto, B.; De Maria, N.; De Min, A.; de Paula, L.; Di Ciaccio, L.; Di Simone, A.; Doroba, K.; Drees, J.; Dris, M.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M.C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, Evangelos; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S.O.; Holt, P.J.; Houlden, M.A.; Hultqvist, K.; Jackson, John Neil; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, Erik Karl; Johansson, P.D.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, Frederic; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B.P.; Kerzel, U.; Kiiskinen, A.; King, B.T.; Kjaer, N.J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, Fabienne; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J.H.; Lopez, J.M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; McNulty, R.; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Monig, Klaus; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J.P.; Palka, H.; Papadopoulou, Th.D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M.E.; Polok, G.; Poropat, P.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Rames, J.; Ramler, L.; Read, Alexander L.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Savoy-Navarro, A.; Schwickerath, U.; Segar, A.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A.C.; Tegenfeldt, F.; Timmermans, Jan; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.L.; Tyapkin, I.A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; Van Dam, Piet; Van Eldik, J.; Van Lysebetten, A.; van Remortel, N.; Van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A.J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimine, N.I.; Zintchenko, A.; Zupan, M.; Achard, P.; Adriani, O.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; van Dalen, J.A.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Dehmelt, K.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duda, M.; Echenard, B.; Eline, A.; El Hage, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Hu, Y.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Novak, T.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Pal, I.; Palomares, C.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pioppi, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, Mohammad Azizur; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Roth, Stefan; Rosenbleck, C.; Roux, B.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Schafer, C.; Schegelsky, V.; Schopper, H.; Schotanus, D.J.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Vasquez, R.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobyov, A.A.; Wadhwa, M.; Wang, Q.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wienemann, P.; Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, A.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zimmermann, B.; Zoller, M.; Heister, A.; Schael, S.; Barate, R.; Bruneliere, R.; De Bonis, I.; Decamp, D.; Goy, C.; Jezequel, S.; Lees, J.P.; Martin, F.; Merle, E.; Minard, M.N.; Pietrzyk, B.; Trocme, B.; Boix, G.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Grauges, E.; Lopez, J.; Martinez, M.; Merino, G.; Pacheco, A.; Paneque, D.; Ruiz, H.; Colaleo, A.; Creanza, D.; De Filippis, N.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Azzurri, P.; Barklow, T.; Buchmuller, O.; Cattaneo, M.; Cerutti, F.; Clerbaux, B.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Greening, T.C.; Hansen, J.B.; Harvey, J.; Hutchcroft, D.E.; Janot, P.; Jost, B.; Kado, M.; Mato, P.; Moutoussi, A.; Ranjard, F.; Rolandi, Gigi; Schlatter, D.; Sguazzoni, G.; Tejessy, W.; Teubert, F.; Valassi, A.; Videau, I.; Ward, J.J.; Badaud, F.; Dessagne, S.; Falvard, A.; Fayolle, D.; Gay, P.; Jousset, J.; Michel, B.; Monteil, S.; Pallin, D.; Pascolo, J.M.; Perret, P.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J.C.; Machefert, F.; Rouge, A.; Swynghedauw, M.; Tanaka, R.; Videau, H.; Ciulli, V.; Focardi, E.; Parrini, G.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bossi, F.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, G.P.; Passalacqua, L.; Kennedy, J.; Lynch, J.G.; Negus, P.; O'Shea, V.; Thompson, A.S.; Wasserbaech, S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E.E.; Leibenguth, G.; Putzer, A.; Stenzel, H.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Cameron, W.; Davies, G.; Dornan, P.J.; Girone, M.; Hill, R.D.; Marinelli, N.; Nowell, J.; Rutherford, S.A.; Sedgbeer, J.K.; Thompson, J.C.; White, R.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C.K.; Clarke, D.P.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Pearson, M.R.; Robertson, N.A.; Smizanska, M.; van der Aa, O.; Delaere, C.; Lemaitre, V.; Blumenschein, U.; Holldorfer, F.; Jakobs, K.; Kayser, F.; Kleinknecht, K.; Muller, A.S.; Quast, G.; Renk, B.; Sander, H.G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Payre, P.; Tilquin, A.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Manner, W.; Moser, H.G.; Settles, R.; Wolf, G.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, P.; Jacholkowska, A.; Serin, L.; Veillet, J.J.; de Vivie de Regie, J.B.; Yuan, C.; Bagliesi, Giuseppe; Boccali, T.; Foa, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciaba, A.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Awunor, O.; Blair, G.A.; Cowan, G.; Garcia-Bellido, A.; Green, M.G.; Jones, L.T.; Medcalf, T.; Misiejuk, A.; Strong, J.A.; Teixeira-Dias, P.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Tomalin, I.R.; Bloch-Devaux, Brigitte; Boumediene, D.; Colas, P.; Fabbro, B.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Tuchming, B.; Vallage, B.; Konstantinidis, N.; Litke, A.M.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Hodgson, P.N.; Lehto, M.; Thompson, L.F.; Boehrer, Armin; Brandt, S.; Grupen, C.; Hess, J.; Ngac, A.; Prange, G.; Sieler, U.; Borean, C.; Giannini, G.; He, H.; Putz, J.; Rothberg, J.; Armstrong, S.R.; Berkelman, Karl; Cranmer, K.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P.A., III; Nielsen, J.; Pan, Y.B.; von Wimmersperg-Toeller, J.H.; Wiedenmann, W.; Wu, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.; Dissertori, G.; Heinemeyer, S.

    2013-01-01

    The four LEP collaborations, ALEPH, DELPHI, L3 and OPAL, have searched for pair-produced charged Higgs bosons in the framework of Two Higgs Doublet Models (2HDMs). The data of the four experiments are statistically combined. The results are interpreted within the 2HDM for Type I and Type II benchmark scenarios. No statistically significant excess has been observed when compared to the Standard Model background prediction, and the combined LEP data exclude large regions of the model parameter space. Charged Higgs bosons with mass below 80 GeV/c$^2$ (Type II scenario) or 72.5 GeV/c$^2$ (Type I scenario, for pseudo-scalar masses above 12 GeV/c$^2$) are excluded at the 95% confidence level.

  6. Internal lecture | LEP I era (1984-1994) | Celebration of Herwig Schopper's 90th birthday | Main Auditorium | 16 September

    CERN Multimedia

    2014-01-01

    "LEP I era (1984-1994)" with a celebration of H. Schopper's 90th birthday, by John Ellis, Horst Wenninger and Herwig Schopper     3.30 – 3.45 p.m.: Coffee     3.45 - 4.30 p.m. LEP1 the Ascent of the Standard Model by John Ellis Abstract When LEP was conceived, the Standard Model was not a phrase that appeared in the titles of particle physics papers. By the end of LEP1, the Standard Model had been established as the theory describing the visible matter in the Universe. In addition to testing the Standard Model, the accurate measurements at LEP1 enabled predictions to be made for new physics, such as the masses of the top quark and the Higgs boson, and provided a hint for possible physics beyond the Standard Model, such as grand unification. Biography John Ellis is Maxwell Professor of Theoretical Physics at King's College in London. After obtaining a PhD from Cambridge University and post-doctoral positions at SL...

  7. Prompt photon production in hadronic events at LEP

    CERN Document Server

    Boutigny, D

    1992-01-01

    We review some recent results on photon emission off quarks obtained by the four LEP experiments. These experimental results are compared to different Monte-Carlo predictions and to an exact matrix element calculation at the order (ems). The estimation of the background coming from neutral hadron decays is also discussed.

  8. Searches for new particles at LEP

    International Nuclear Information System (INIS)

    Jimack, M.P.

    1991-01-01

    A review of searches for new particles at LEP is presented, including top b' quark searches; L ± , L 0 searches; searches for SUSY particles, the minimal standard mode Higgs boson; search for the h 0 (A 0 ); search for the H ± ; composite systems. No evidence for new physics has been seen, and mass limits are placed on new quarks and leptons, supersymmetric particles, Higgs particles and composite objects. (R.P.) 27 refs., 14 figs., 7 tabs

  9. Reduction of outgas from the components of the J-PARC kicker magnet

    International Nuclear Information System (INIS)

    Kamiya, Junichiro; Ogiwara, Norio; Kinsho, Michikazu; Takayanagi, Tomohiro

    2005-01-01

    The extraction kickers in Rapid Cycling Synchrotron (RCS) of Japan Proton Accelerator Research Complex (J-PARC) are installed in the vacuum chamber against electrical discharge. Therefore, outgas from the components have large effects on the vacuum system of the accelerator. We have succeeded in reducing the outgas from the components, which are made of ferrite core and aluminum alloy, by baking them before construction of the magnet. The ferrite cores were baked at 200degC in the vacuum about 300 hours, while the components made of aluminum alloy at 150degC about 70 hours. Main outgas from both materials was known to be water by mass spectroscopy, and the pressure after baking has been decreased by two or three order of magnitude. We also report the reduction method for outgas while the magnet is stored in. (author)

  10. Results from LEP

    International Nuclear Information System (INIS)

    Pohl, M.

    1995-01-01

    Selected results from LEP on electroweak neutral currents and strong interactions are reviewed. In the first part, total cross sections, angular and polarization symmetries are interpreted in terms of basic electroweak parameters, like the mass, total and partial widths of the Z and neutral current couplings. Special attention is given to two apparent problems: the discrepancy between the measurements with final state vs. initial state polarization; and the deviation of the measured width of the Z into heavy quarks from Standard Model expectations. These discrepancies are not very significant, but they are the only ones observed at this point and thus deserve attention. In the second part, I outline results on final state strong interactions, namely measurements pertaining to differences between quark and gluon jets and the QCD group structure. (author) 19 figs., 4 tabs., 21 refs

  11. Electroweak Measurements in Electron-Positron Collisions at W-Boson-Pair Energies at LEP

    CERN Document Server

    Schael, S.; Bruneliere, R.; Buskulic, D.; De Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Jezequel, S.; Lees, J.P.; Lucotte, A.; Martin, F.; Merle, E.; Minard, M.N.; Nief, J.Y.; Odier, P.; Pietrzyk, B.; Trocme, B.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Comas, P.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Grauges, E.; Juste, A.; Martinez, M.; Merino, G.; Miquel, R.; Mir, Ll. M.; Orteu, S.; Pacheco, A.; Park, I.C.; Perlas, J.; Riu, I.; Ruiz, H.; Sanchez, F.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Bazarko, A.; Becker, U.; Boix, G.; Bird, F.; Blucher, E.; Bonvicini, B.; Bright-Thomas, P.; Barklow, T.; Buchmuller, O.; Cattaneo, M.; Cerutti, F.; Ciulli, V.; Clerbaux, B.; Drevermann, H.; Forty, R.W.; Frank, M.; Greening, T.C.; Hagelberg, R.; Halley, A.W.; Gianotti, F.; Girone, M.; Hansen, J.B.; Harvey, J.; Jacobsen, R.; Hutchcroft, D.E.; Janot, P.; Jost, B.; Knobloch, J.; Kado, M.; Lehraus, I.; Lazeyras, P.; Maley, P.; Mato, P.; May, J.; Moutoussi, A.; Pepe-Altarelli, M.; Ranjard, F.; Rolandi, L.; Schlatter, D.; Schmitt, B.; Schneider, O.; Tejessy, W.; Teubert, F.; Tomalin, I.R.; Tournefier, E.; Veenhof, R.; Valassi, A.; Wiedenmann, W.; Wright, A.E.; Ajaltouni, Z.; Badaud, F.; Chazelle, G.; Deschamps, O.; Dessagne, S.; Falvard, A.; Ferdi, C.; Fayolle, D.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.C.; Pallin, D.; Pascolo, J.M.; Perret, P.; Podlyski, F.; Bertelsen, H.; Fernley, T.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Kraan, A.C.; Lindahl, A.; Mollerud, R.; Nilsson, B.S.; Rensch, B.; Waananen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J.C.; Machefert, F.; Rouge, A.; Rumpf, M.; Swynghedauw, M.; Tanaka, R.; Verderi, M.; Videau, H.; Ciulli, V.; Focardi, E.; Parrini, G.; Zachariadou, K.; Corden, M.; Georgiopoulos, C.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, G.P.; Passalacqua, L.; Picchi, P.; Colrain, P.; ten Have, I.; Hughes, I.S.; Kennedy, J.; Knowles, I.G.; Lynch, J.G.; Morton, W.T.; Negus, P.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J.M.; Smith, K.; Thompson, A.S.; Turnbull, R.M.; Wasserbaech, S.; Buchmuller, O.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E.E.; Putzer, A.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, W.; Wunsch, M.; Beuselinck, R.; Binnie, D.M.; Cameron, W.; Davies, G.; Dornan, P.J.; Goodsir, S.; Marinelli, N.; Martin, E.B.; Nash, J.; Nowell, J.; Rutherford, S.A.; Sedgbeer, J.K.; Thompson, J.C.; White, R.; Williams, M.D.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C.K.; Buck, P.G.; Clarke, D.P.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Keemer, N.R.; Pearson, M.R.; Robertson, N.A.; Sloan, T.; Smizanska, M.; Snow, S.W.; Williams, M.I.; van der Aa, O.; Delaere, C.; Leibenguth, G.; Lemaitre, V.; Bauerdick, L.A.T.; Blumenschein, U.; van Gemmeren, P.; Giehl, I.; Holldorfer, F.; Jakobs, K.; Kasemann, M.; Kayser, F.; Kleinknecht, K.; Muller, A.S.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.G.; Schmeling, S.; Wachsmuth, H.; Wanke, R.; Zeitnitz, C.; Ziegler, T.; Aubert, J.J.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Curtil, C.; Ealet, A.; Etienne, F.; Fouchez, D.; Motsch, F.; Payre, P.; Rousseau, D.; Tilquin, A.; Talby, M.; Thulasidas, M.; Aleppo, M.; Antonelli, M.; Ragusa, F.; Buscher, V.; David, A.; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Mannert, C.; Manner, W.; Moser, H.G.; Settles, R.; Seywerd, H.; Stenzel, H.; Villegas, M.; Wiedenmann, W.; Wolf, G.; Azzurri, P.; Boucrot, J.; Callot, O.; Chen, S.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, Ph.; Jacholkowska, A.; Le Diberder, F.; Lefrancois, J.; Mutz, A.M.; Schune, M.H.; Serin, L.; Veillet, J.J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Bettarini, S.; Boccali, T.; Bozzi, C.; Calderini, G.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Fidecaro, F.; Foa, L.; Giammanco, A.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P.S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sciaba, A.; Sguazzoni, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Vannini, C.; Venturi, A.; Verdini, P.G.; Awunor, O.; Blair, G.A.; Cowan, G.; Garcia-Bellido, A.; Green, M.G.; Medcalf, T.; Misiejuk, A.; Strong, J.A.; Teixeira-Dias, P.; Botterill, D.R.; Clifft, R.W.; Edgecock, T.R.; Edwards, M.; Haywood, S.J.; Norton, P.R.; Tomalin, I.R.; Ward, J.J.; Bloch-Devaux, B.; Boumediene, D.; Colas, P.; Emery, S.; Fabbro, B.; Kozanecki, W.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.F.; Roussarie, A.; Schuller, J.P.; Schwindling, J.; Tuchming, B.; Vallage, B.; Black, S.N.; Dann, J.H.; Kim, H.Y.; Konstantinidis, N.; Litke, A.M.; McNeil, M.A.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Hodgson, P.N.; Lehto, M.; Thompson, L.F.; Affholderbach, K.; Barberio, E.; Bohrer, A.; Brandt, S.; Burkhardt, H.; Feigl, E.; Grupen, C.; Hess, J.; Lutters, G.; Meinhard, H.; Minguet-Rodriguez, J.; Mirabito, L.; Misiejuk, A.; Neugebauer, E.; Ngac, A.; Prange, G.; Rivera, F.; Saraiva, P.; Schafer, U.; Sieler, U.; Smolik, L.; Stephan, F.; Trier, H.; Apollonio, M.; Borean, C.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Pitis, L.; He, H.; Kim, H.; Putz, J.; Rothberg, J.; Armstrong, S.R.; Bellantoni, L.; Berkelman, K.; Cinabro, D.; Conway, J.S.; Cranmer, K.; Elmer, P.; Feng, Z.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Grahl, J.; Harton, J.L.; Hayes, O.J.; Hu, H.; Jin, S.; Johnson, R.P.; Kile, J.; McNamara, P.A., III; Nielsen, J.; Orejudos, W.; Pan, Y.B.; Saadi, Y.; Scott, I.J.; Sharma, V.; Walsh, A.M.; Walsh, J.; Wear, J.; von Wimmersperg-Toeller, J.H.; Wiedenmann, W.; Wu, J.; Wu, S.L.; Wu, X.; Yamartino, J.M.; Zobernig, G.; Dissertori, G.; Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P.P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J.E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G.J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K-H.; Begalli, M.; Behrmann, A.; Belous, K.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P.S.L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T.J.V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J.M.; Bugge, L.; Buschbeck, B.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M.J.; Crawley, B.; Crennell, D.; Cuevas, J.; D'Hondt, J.; Dalmau, J.; da Silva, T.; Da Silva, W.; Della Ricca, G.; De Angelis, A.; De Boer, W.; De Clercq, C.; De Lotto, B.; De Maria, N.; De Min, A.; De Paula, L.; Di Ciaccio, L.; Di Simone, A.; Doroba, K.; Drees, J.; Dris, M.; Duperrin, A.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M.C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gele, D.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S-O.; Holt, P.J.; Houlden, M.A.; Hultqvist, K.; Jackson, J.N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E.K.; Johansson, P.D.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B.P.; Kerzel, U.; Kiiskinen, A.; King, B.T.; Kjaer, N.J.; Kluit, P.; Kokkinias, P.; Kostioukhine, V.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Libby, J.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J.H.; Lopez, J.M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Nulty, R.Mc; Meroni, C.; Meyer, W.T.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nemecek, S.; Nicolaidou, R.; Nikolaenko, V.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J.P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Podobnik, T.; Poireau, V.; Pol, M.E.; Polok, G.; Poropat, P.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Rames, J.; Ramler, L.; Read, A.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Ripp-Baudot, I.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Rosenberg, E.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Sander, C.; Savoy-Navarro, A.; Schwickerath, U.; Segar, A.; Sekulin, R.; Siebel, M.; Simard, L.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A.C.; Tegenfeldt, F.; Terranova, F.; Thomas, J.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M-L.; Tyapkin, I.A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; Van Dam, P.; Van Eldik, J.; Van Lysebetten, A.; van Remortel, N.; Van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verbeure, F.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A.J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimine, N.I.; Zintchenko, A.; Achard, P.; Adriani, O.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, V.P.; Anselmo, F.; Arefiev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; De Asmundis, R.; D'eglon, P.; Debreczeni, J.; Degre, A.; Dehmelt, K.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duda, M.; Echenard, B.; Eline, A.; El Hage, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Yu.; Ganguli, S.N.; Garcia-Abia, P.; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, G.; Grimm, O.; Gruenewald, M.W.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hatzifotiadou, D.; Hebbeker, T.; Herve, A.; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Jin, B.N.; Jindal, P.; Jones, L.W.; de Jong, P.; Josa-Mutuberria, I.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, J.; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Novak, T.; Nowak, H.; Ofierzynski, R.; Organtini, G.; Palomares, C.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, T.; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Piccolo, D.; Pierella, F.; Pieri, M.; Pioppi, M.; Pirou'e, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofiev, D.; Rahal-Callot, G.; Rahaman, M.A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Rembeczki, S.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, K.; Roe, B.P.; Romero, L.; Rosca, A.; Rosemann, C.; Rosenbleck, C.; Rosier-Lees, S.; Roth, S.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Schafer, C.; Schegelsky, V.; Schopper, H.; Schotanus, D.J.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, C.; Ting, S.C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Vasquez, R.; Vesztergombi, G.; Vetlitsky, I.; Viertel, G.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobyov, A.A.; Wadhwa, M.; Wang, Q.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, An.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zimmermann, B.; Zoller, M.; Abbiendi, G.; Ackerstaff, K.; Ainsley, C.; Akesson, P.F.; Alexander, G.; Allison, J.; Altekamp, N.; Ametewee, K.; Anagnostou, G.; Anderson, K.J.; Anderson, S.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Ball, A.H.; Bailey, I.; Barberio, E.; Barillari, T.; Barlow, R.J.; Bartoldus, R.; Batley, R.J.; Baumann, S.; Bechtle, P.; Bechtluft, J.; Beeston, C.; Behnke, T.; Bell, K.W.; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bentvelsen, S.; Berlich, P.; Bethke, S.; Biebel, O.; Boeriu, O.; Blobel, V.; Bloodworth, I.J.; Bloomer, J.E.; Bobinski, M.; Bock, P.; Bonacorsi, D.; Bosch, H.M.; Boutemeur, M.; Bouwens, B.T.; Braibant, S.; Bright-Thomas, P.; Brigliadori, L.; Brown, R.M.; Burckhart, H.J.; Burgard, C.; Burgin, R.; Cammin, J.; Campana, S.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, D.G.; Chrisman, D.; Ciocca, C.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Conboy, J.E.; Cooke, O.C.; Couchman, J.; Couyoumtzelis, C.; Coxe, R.L.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallapiccola, C.; Dallavalle, M.; Dallison, S.; de Jong, S.; De Roeck, A.; Dervan, P.; De Wolf, E.A.; del Pozo, L.A.; Desch, K.; Dienes, B.; Dixit, M.S.; do Couto e Silva, E.; Donkers, M.; Doucet, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Edwards, J.E.G.; Estabrooks, P.G.; Etzion, E.; Evans, H.G.; Evans, M.; Fabbri, F.; Fanti, M.; Fath, P.; Feld, L.; Ferrari, P.; Fiedler, F.; Fierro, M.; Fischer, H.M.; Fleck, I.; Folman, R.; Fong, D.G.; Ford, M.; Foucher, M.; Frey, A.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gascon, J.; Gascon-Shotkin, S.M.; Gaycken, G.; Geddes, N.I.; Geich-Gimbel, C.; Geralis, T.; Giacomelli, G.; Giacomelli, P.; Giacomelli, R.; Gibson, V.; Gibson, W.R.; Gingrich, D.M.; Giunta, M.; Glenzinski, D.; Goldberg, J.; Goodrick, M.J.; Gorn, W.; Graham, K.; Grandi, C.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Harder, K.; Harel, A.; Hargrove, C.K.; Harin-Dirac, M.; Hart, P.A.; Hartmann, C.; Hauke, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herndon, M.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hillier, S.J.; Hilse, T.; Hobson, P.R.; Hocker, A.; Hoffman, K.; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Hughes-Jones, R.E.; Huntemeyer, P.; Hutchcroft, D.E.; Igo-Kemenes, P.; Imrie, D.C.; Ingram, M.R.; Ishii, K.; Jacob, F.R.; Jawahery, A.; Jeffreys, P.W.; Jeremie, H.; Jimack, M.; Joly, A.; Jones, C.R.; Jones, G.; Jones, M.; Jones, R.W.L.; Jost, U.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; King, B.J.; Kirk, J.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Koetke, D.S.; Kokott, T.P.; Kolrep, M.; Komamiya, S.; Kowalewski, R.V.; Kramer, T.; Krasznahorkay, A., Jr.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kupper, M.; Kyberd, P.; Lafferty, G.D.; Lahmann, R.; Lai, W.P.; Landsman, H.; Lanske, D.; Lauber, J.; Lautenschlager, S.R.; Lawson, I.; Layter, J.G.; Lazic, D.; Lee, A.M.; Lefebvre, E.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Lewis, C.; Liebisch, R.; Lillich, J.; List, B.; List, J.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Lu, J.; Ludwig, A.; Ludwig, J.; Macchiolo, A.; Macpherson, A.; Mader, W.; Mannelli, M.; Marcellini, S.; Marchant, T.E.; Markus, C.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Matthews, W.; Mattig, P.; McDonald, W.J.; McKenna, J.; Mckigney, E.A.; McMahon, T.J.; McNab, A.I.; McPherson, R.A.; Mendez-Lorenzo, P.; Meijers, F.; Menges, W.; Menke, S.; Merritt, F.S.; Mes, H.; Meyer, N.; Meyer, J.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mir, R.; Mohr, W.; Montanari, A.; Mori, T.; Morii, M.; Muller, U.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nellen, B.; Nijjhar, B.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Oh, A.; Okpara, A.; Oldershaw, N.J.; Omori, T.; Oreglia, M.J.; Orito, S.; Pahl, C.; Palinkas, J.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Pearce, M.J.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, D.E.; Poffenberger, P.; Polok, J.; Poli, B.; Pooth, O.; Posthaus, A.; Przybycien, M.; Przysiezniak, H.; Quadt, A.; Rabbertz, K.; Rees, D.L.; Rembser, C.; Renkel, P.; Rick, H.; Rigby, D.; Robertson, S.; Robins, S.A.; Rodning, N.; Roney, J.M.; Rooke, A.; Ros, E.; Rosati, S.; Roscoe, K.; Rossi, A.M.; Rosvick, M.; Routenburg, P.; Rozen, Y.; Runge, K.; Runolfsson, O.; Ruppel, U.; Rust, D.R.; Rylko, R.; Sachs, K.; Saeki, T.; Sahr, O.; Sarkisyan, E.K.G.; Sasaki, M.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schenk, P.; Schieck, J.; Schmitt, S.; Schorner-Sadenius, T.; Schroder, M.; Schultz-Coulon, H.C.; Schulz, M.; Schumacher, M.; Schutz, P.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Sittler, A.; Skillman, A.; Skuja, A.; Smith, A.M.; Smith, T.J.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Spano, F.; Springer, R.W.; Sproston, M.; Stahl, A.; Steiert, M.; Stephens, K.; Steuerer, J.; Stockhausen, B.; Stoll, K.; Strom, D.; Strohmer, R.; Strumia, F.; Stumpf, L.; Surrow, B.; Szymanski, P.; Tafirout, R.; Talbot, S.D.; Tanaka, S.; Taras, P.; Tarem, S.; Taylor, R.J.; Tasevsky, M.; Teuscher, R.; Thiergen, M.; Thomas, J.; Thomson, M.A.; von Torne, E.; Torrence, E.; Towers, S.; Toya, D.; Trefzger, T.; Trigger, I.; Trocsanyi, Z.; Tsukamoto, T.; Tsur, E.; Turcot, A.S.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Utzat, P.; Vachon, B.; Van Kooten, R.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Vikas, P.; Vincter, M.; Vokurka, E.H.; Vollmer, C.F.; Voss, H.; Vossebeld, J.; Wackerle, F.; Wagner, A.; Waller, D.; Ward, C.P.; Ward, D.R.; Ward, J.J.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; White, J.S.; Wilkens, B.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wotton, S.; Wyatt, T.R.; Yamashita, S.; Yekutieli, G.; Zacek, V.; Zer-Zion, D.; Zivkovic, L.

    2013-01-01

    Electroweak measurements performed with data taken at the electron-positron collider LEP at CERN from 1995 to 2000 are reported. The combined data set considered in this report corresponds to a total luminosity of about 3~fb$^{-1}$ collected by the four LEP experiments ALEPH, DELPHI, L3 and OPAL, at centre-of-mass energies ranging from $130~GeV$ to $209~GeV$. Combining the published results of the four LEP experiments, the measurements include total and differential cross-sections in photon-pair, fermion-pair and four-fermion production, the latter resulting from both double-resonant WW and ZZ production as well as singly resonant production. Total and differential cross-sections are measured precisely, providing a stringent test of the Standard Model at centre-of-mass energies never explored before in electron-positron collisions. Final-state interaction effects in four-fermion production, such as those arising from colour reconnection and Bose-Einstein correlations between the two W decay systems arising ...

  12. Evidence for validity within workplace assessment: the Longitudinal Evaluation of Performance (LEP).

    Science.gov (United States)

    Prescott-Clements, Linda; van der Vleuten, Cees P M; Schuwirth, Lambert W T; Hurst, Yvonne; Rennie, James S

    2008-05-01

    The drive towards valid and reliable assessment methods for health professions' training is becoming increasingly focused towards authentic models of workplace performance assessment. This study investigates the validity of such a method, longitudinal evaluation of performance (LEP), which has been implemented in the assessment of postgraduate dental trainees in Scotland. Although it is similar in format to the mini-CEX (mini clinical evaluation exercise) and other tools that use global ratings for assessing performance in the workplace, a number of differences exist in the way in which the LEP has been implemented. These include the use of a reference point for evaluators' judgement that represents the standard expected upon completion of the training, flexibility, a greater range of cases assessed and the use of frequency scores within feedback to identify trainees' progress over time. A range of qualitative and quantitative data were collected and analysed from 2 consecutive cohorts of trainees in Scotland (2002-03 and 2003-04). There is rich evidence supporting the validity, educational impact and feasibility of the LEP. In particular, a great deal of support was given by trainers for the use of a fixed reference point for judgements, despite initial concerns that this might be demotivating to trainees. Trainers were highly positive about this approach and considered it useful in identifying trainees' progress and helping to drive learning. The LEP has been successful in combining a strong formative approach to continuous assessment with the collection of evidence on performance within the workplace that (alongside other tools within an assessment system) can contribute towards a summative decision regarding competence.

  13. Software engineering experience from the LEP experiment OPAL

    International Nuclear Information System (INIS)

    Schaile, O.

    1990-01-01

    This contribution describes some of the activities within the OPAL collaboration at LEP to apply Software Engineering Techniques for program development and data documentation. It concentrates on two aspects: Structured Analysis Techniques and a data documentation system developed within OPAL. As far as evaluations are given they are the authors view and opinion

  14. Lifetimes and masses of b-hadrons at LEP

    International Nuclear Information System (INIS)

    Lesiak, T.

    1994-07-01

    Latest LEP results concerning hadrons containing b-quarks are reviewed. The average lifetime of the b-hadrons together with the lifetimes of the B u + , B d 0 , B s and Λ b and first mass measurements of the B s and Λ b are presented. (author). 34 refs, 7 figs, 4 tabs

  15. $l l \\gamma \\gamma$ events at LEP

    CERN Document Server

    Chang, Yuan-Hann

    1993-01-01

    The results of studies on the ef.7-y events with high 'Y'Y mass from the L3 experiment at LEP is reported. A clustering of events with 'Y'Y invariant mass around 60 GeV is observed. The clustering could come from decay of a heavy particle, however, QED fluctuation cannot be ruled out. More data are needed to ascertain the origin of these events.

  16. Pulse Power Modulator development for the CLIC Damping Ring Kickers

    CERN Document Server

    Holma, Janne

    2012-01-01

    The Compact Linear Collider (CLIC) study is exploring the scheme for an electron-positron collider with high luminosity (10-34 – 10-35 cm-2s-1) and a nominal centre-of-mass energy of 3 TeV: CLIC would complement LHC physics in the multi-TeV range. The CLIC design relies on Pre-Damping Rings (PDR) and Damping Rings (DR) to achieve the very low emittance, through synchrotron radiation, needed for the luminosity requirements of CLIC. To limit the beam emittance blow-up due to oscillations, the pulse power modulators for the DR kickers must provide extremely flat, high-voltage pulses: the 2 GHz specification called for a 160 ns duration flat-top of 12.5 kV, 250 A, with a combined ripple and droop of not more than ±0.02 %. In order to meet these demanding specifications, a combination of broadband impedance matching, optimized electrical circuit layout and advanced control techniques is required. A solid-state modulator, the inductive adder, is the most promising approach to meeting the demanding specifications...

  17. ECFA workshop on LEP 200. Vol. 1 and 2

    International Nuclear Information System (INIS)

    Boehm, A.; Hoogland, W.

    1987-01-01

    On the initiative of the European Committee for Future Accelerators, a workshop was organized to study experimental and theoretical aspects of the physics feasible at LEP with the beam energy increased to its design value of 100 GeV per beam. These two volumes provide the written versions of the reports presented by nine working groups to the workshop, as well as the presentations on the machine upgrade itself and the potential of hadron colliders and of HERA for LEP 200 physics. Each working group studied a specific topic, evaluating in some detail the requirements both for the detectors and for the machine of W mass measurements, W decay properties, W production dynamics, electroweak radiative corrections, two-photon physics, new heavy quarks and leptons, Higgs particles, supersymmetric particles, and composite models. The proceedings also include some of the more detailed work done in the framework of the working groups. (orig.)

  18. A Study of $W^{+}W^{-}\\gamma$ Events at LEP

    CERN Document Server

    Abbiendi, G; Åkesson, P F; Alexander, G; Allison, J; Amaral, P; Anagnostou, G; Anderson, K J; Arcelli, S; Asai, S; Axen, D A; Azuelos, Georges; Bailey, I; Barberio, E; Barlow, R J; Batley, J Richard; Bechtle, P; Behnke, T; Bell, K W; Bell, P J; Bella, G; Bellerive, A; Benelli, G; Bethke, Siegfried; Biebel, O; Boeriu, O; Bock, P; Boutemeur, M; Braibant, S; Brigliadori, L; Brown, R M; Büsser, K; Burckhart, H J; Campana, S; Carnegie, R K; Caron, B; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Csilling, Akos; Cuffiani, M; Dado, S; de Roeck, A; De Wolf, E A; Desch, Klaus; Dienes, B; Donkers, M; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Etzion, E; Fabbri, Franco Luigi; Feld, L; Ferrari, P; Fiedler, F; Fleck, I; Ford, M; Frey, A; Fürtjes, A; Gagnon, P; Gary, J W; Gaycken, G; Geich-Gimbel, C; Giacomelli, G; Giacomelli, P; Giunta, M; Goldberg, J; Gross, E; Grunhaus, Jacob; Gruwé, M; Günther, P O; Sen-Gupta, A; Hajdu, C; Hamann, M; Hanson, G G; Harder, K; Harel, A; Harin-Dirac, M; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Hensel, C; Herten, G; Heuer, R D; Hill, J C; Hoffman, K; Horváth, D; Igo-Kemenes, P; Ishii, K; Jeremie, H; Jovanovic, P; Junk, T R; Kanaya, N; Kanzaki, J; Karapetian, G V; Karlen, Dean A; Kawagoe, K; Kawamoto, T; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Kim, D H; Klein, K; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Komamiya, S; Kormos, L L; Kramer, T; Krieger, P; Von Krogh, J; Krüger, K; Kühl, T; Kupper, M; Lafferty, G D; Landsman, Hagar Yaël; Lanske, D; Layter, J G; Leins, A; Lellouch, D; Letts, J; Levinson, L; Lillich, J; Lloyd, S L; Loebinger, F K; Lü, J; Ludwig, J; MacPherson, A; Mader, W; Marcellini, S; Martin, A J; Masetti, G; Mashimo, T; Mättig, P; McDonald, W J; McKenna, J A; McMahon, T J; McPherson, R A; Meijers, F; Menges, W; Merritt, F S; Mes, H; Michelini, Aldo; Mihara, S; Mikenberg, G; Miller, D J; Moed, S; Mohr, W; Mori, T; Mutter, A; Nagai, K; Nakamura, I; Nanjo, H; Neal, H A; Nisius, R; O'Neale, S W; Oh, A; Okpara, A N; Oreglia, M J; Orito, S; Pahl, C; Pásztor, G; Pater, J R; Patrick, G N; Pilcher, J E; Pinfold, J L; Plane, D E; Poli, B; Polok, J; Pooth, O; Przybycien, M B; Quadt, A; Rabbertz, K; Rembser, C; Renkel, P; Roney, J M; Rosati, S; Rozen, Y; Runge, K; Sachs, K; Saeki, T; Sarkisyan-Grinbaum, E; Schaile, A D; Schaile, O; Scharff-Hansen, P; Schieck, J; Schörner-Sadenius, T; Schröder, M; Schumacher, M; Schwick, C; Scott, W G; Seuster, R; Shears, T G; Shen, B C; Sherwood, P; Siroli, G P; Skuja, A; Smith, A M; Sobie, R J; Söldner-Rembold, S; Spanó, F; Stahl, A; Stephens, K; Strom, D; Ströhmer, R; Tarem, S; Tasevsky, M; Taylor, R J; Teuscher, R; Thomson, M A; Torrence, E; Toya, D; Tran, P; Trigger, I; Trócsányi, Z L; Tsur, E; Turner-Watson, M F; Ueda, I; Ujvári, B; Vollmer, C F; Vannerem, P; Vertesi, R; Verzocchi, M; Voss, H; Vossebeld, Joost Herman; Waller, D; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wengler, T; Wermes, N; Wetterling, D; Wilson, G W; Wilson, J A; Wolf, G; Wyatt, T R; Yamashita, S; Zer-Zion, D; Zivkovic, L

    2004-01-01

    A study of W+W- events accomanied by hard photon radiation produced in e+e- collisions at LEP is presented. Events consistent with being two on-shell W bosons and an isolated photon are selected from 681 pb^-1 of data recorded at 180 GeV < sqrt(s) < 209 GeV. For these data , 187 W+W- candidates are selected with photon energies greater than 2.5 GeV. The selected events are used to determine the W+ W- gamma cross section at five values of sqrt(s). The results are consistent with the Standard Model expectation. These data provide constraints on the related O(alpha) systematic uncertainties on the measurement of the W boson mass at LEP. Finally, the data are used to derive 95% C.L. upper limits on possible anomalous contributions to the W+ W- gamma gamma and W+ W- Z0 gamma vertices.

  19. The $\\eta_c$(2980) formation in two-photon collisions at LEP energies

    CERN Document Server

    Abdallah, J; Adam, W; Adzic, P; Albrecht, T; Alderweireld, T; Alemany-Fernandez, R; Allmendinger, T; Allport, P P; Amaldi, Ugo; Amapane, N; Amato, S; Anashkin, E; Andreazza, A; Andringa, S; Anjos, N; Antilogus, P; Apel, W D; Arnoud, Y; Ask, S; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Ballestrero, A; Bambade, P; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Ben-Haim, E; Benekos, N C; Benvenuti, Alberto C; Bérat, C; Berggren, M; Berntzon, L; Bertrand, D; Besançon, M; Besson, N; Bloch, D; Blom, M; Bluj, M; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Botner, O; Bouquet, B; Bowcock, T J V; Boyko, I; Bracko, M; Brenner, R; Brodet, E; Brückman, P; Brunet, J M; Bugge, L; Buschmann, P; Calvi, M; Camporesi, T; Canale, V; Carena, F; Castro, N; Cavallo, F R; Chapkin, M M; Charpentier, P; Checchia, P; Chierici, R; Shlyapnikov, P; Chudoba, J; Chung, S U; Cieslik, K; Collins, P; Contri, R; Cosme, G; Cossutti, F; Costa, M J; Crawley, B; Crennell, D J; Cuevas-Maestro, J; D'Hondt, J; Dalmau, J; Da Silva, T; Da Silva, W; Della Ricca, G; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Maria, N; De Min, A; De Paula, L S; Di Ciaccio, Lucia; Di Simone, A; Doroba, K; Drees, J; Dris, M; Eigen, G; Ekelöf, T J C; Ellert, M; Elsing, M; Espirito-Santo, M C; Fanourakis, G K; Fassouliotis, D; Feindt, M; Fernández, J; Ferrer, A; Ferro, F; Flagmeyer, U; Föth, H; Fokitis, E; Fulda-Quenzer, F; Fuster, J A; Gandelman, M; García, C; Gavillet, P; Gazis, E N; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; Graziani, E; Grosdidier, G; Grzelak, K; Guy, J; Haag, C; Hallgren, A; Hamacher, K; Hamilton, K; Hansen, J; Haug, S; Hauler, F; Hedberg, V; Hennecke, M; Herr, H; Hoffman, J; Holmgren, S O; Holt, P J; Houlden, M A; Hultqvist, K; Jackson, J N; Jarlskog, G; Jarry, P; Jeans, D; Johansson, E K; Johansson, P D; Jonsson, P; Joram, C; Jungermann, L; Kapusta, F; Katsanevas, S; Katsoufis, E C; Kernel, G; Kersevan, Borut P; Kiiskinen, A P; King, B T; Kjaer, N J; Kluit, P; Kokkinias, P; Kourkoumelis, C; Kuznetsov, O; Krumshtein, Z; Kucharczyk, M; Lamsa, J; Leder, G; Ledroit, F; Leinonen, L; Leitner, R; Lemonne, J; Lepeltier, V; Lesiak, T; Liebig, W; Liko, D; Lipniacka, A; Lopes, J H; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J; Malek, A; Maltezos, S; Mandl, F; Marco, J; Marco, R; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Mazzucato, F; Mazzucato, M; McNulty, R; Meroni, C; Meyer, W T; Migliore, E; Mitaroff, W A; Mjörnmark, U; Moa, T; Moch, M; Mönig, K; Monge, R; Montenegro, J; Moraes, D; Moreno, S; Morettini, P; Müller, U; Münich, K; Mulders, M; Mundim, L M; Murray, W; Muryn, B; Myatt, Gerald; Myklebust, T; Nassiakou, M; Navarria, Francesco Luigi; Nawrocki, K; Nicolaidou, R; Nikolenko, M; Oblakowska-Mucha, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Österberg, K; Ouraou, A; Oyanguren, A; Paganoni, M; Paiano, S; Palacios, J P; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Peralta, L; Perepelitsa, V F; Perrotta, A; Petrolini, A; Piedra, J; Pieri, L; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Pukhaeva, N; Pullia, Antonio; Rames, J; Ramler, L; Read, A; Rebecchi, P; Rehn, J; Reid, D; Reinhardt, R; Renton, P B; Richard, F; Rídky, J; Rivero, M; Rodríguez, D; Romero, A; Ronchese, P; Rosenberg, E I; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ryabtchikov, D; Sadovskii, A; Salmi, L; Salt, J; Savoy-Navarro, A; Schwickerath, U; Segar, A; Sekulin, R L; Siebel, M; Sissakian, A N; Smadja, G; Smirnova, O G; Sokolov, A; Sopczak, A; Sosnowski, R; Spassoff, Tz; Stanitzki, M; Stocchi, A; Strauss, J; Stugu, B; Szczekowski, M; Szeptycka, M; Szumlak, T; Tabarelli de Fatis, T; Taffard, A C; Tegenfeldt, F; Timmermans, J; Tkatchev, L G; Tobin, M; Todorovova, S; Tomé, B; Tonazzo, A; Tortosa, P; Travnicek, P; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Uvarov, V; Valenti, G; van Dam, P; Van Eldik, J; Van Lysebetten, A; Van Remortel, N; Van Vulpen, I B; Vegni, G; Veloso, F; Venus, W A; Verbeure, F; Verdier, P; Verzi, V; Vilanova, D; Vitale, L; Vrba, V; Wahlen, H; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J H; Wilkinson, G; Winter, M; Witek, M; Yushchenko, O P; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zhuravlov, V; Zimin, N I; Zinchenko, A I; Zupan, M

    2003-01-01

    eta_c(2980) production in gammagamma interactions has been detected via its decays into K0_sK+-pi-+, K+K-K+K- and K+K-pi+pi- in the data taken with the DELPHI detector at LEP1 and LEP2 energies. The two-photon radiative width averaged over all observed decay channels is Gamma_gammagamma = 13.9+-2.0(stat.)+-1.4(syst.)+-2.7(BR)keV. No direct decay channel eta_c -> pi+pi-pi+pi- has been observed. An upper limit Gamma_gammagamma<5.5keV at 95% confidence level has been evaluated for this decay mode.

  20. Determination of the LEP centre-of-mass energy from Z$\\gamma$ events

    CERN Document Server

    Barate, R.; Ghez, Philippe; Goy, C.; Jezequel, S.; Lees, J.P.; Martin, F.; Merle, E.; Minard, M.N.; Pietrzyk, B.; Przysiezniak, H.; Alemany, R.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Grauges, E.; Juste, A.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L.M.; Morawitz, P.; Pacheco, A.; Park, I.C.; Riu, I.; Colaleo, A.; Creanza, D.; De Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Becker, U.; Boix, G.; Cattaneo, M.; Cerutti, F.; Ciulli, V.; Dissertori, G.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Greening, T.C.; Halley, A.W.; Hansen, J.B.; Harvey, John; Janot, P.; Jost, B.; Lehraus, I.; Leroy, O.; Loomis, C.; Maley, P.; Mato, P.; Minten, A.; Moutoussi, A.; Ranjard, F.; Rolandi, Gigi; Schlatter, D.; Schmitt, M.; Schneider, O.; Spagnolo, P.; Tejessy, W.; Teubert, F.; Tomalin, I.R.; Tournefier, E.; Wright, A.E.; Ajaltouni, Z.; Badaud, F.; Chazelle, G.; Deschamps, O.; Dessagne, S.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.C.; Pallin, D.; Perret, P.; Podlyski, F.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Rensch, B.; Waananen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Blondel, A.; Brient, J.C.; Machefert, F.; Rouge, A.; Swynghedauw, M.; Tanaka, R.; Valassi, A.; Videau, H.; Focardi, E.; Parrini, G.; Zachariadou, K.; Cavanaugh, R.; Corden, M.; Georgiopoulos, C.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G.P.; Passalacqua, L.; Pepe-Altarelli, M.; Chalmers, M.; Curtis, L.; Lynch, J.G.; Negus, P.; O'Shea, V.; Raeven, B.; Raine, C.; Smith, D.; Teixeira-Dias, P.; Thompson, A.S.; Ward, J.J.; Buchmuller, O.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E.E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D.M.; Cameron, W.; Dornan, P.J.; Girone, M.; Goodsir, S.; Marinelli, N.; Martin, E.B.; Nash, J.; Nowell, J.; Sciaba, A.; Sedgbeer, J.K.; Thomson, Evelyn J.; Williams, M.D.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C.K.; Buck, P.G.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Robertson, N.A.; Smizanska, M.; Williams, M.I.; Giehl, I.; Holldorfer, F.; Jakobs, K.; Kleinknecht, K.; Krocker, M.; Muller, A.S.; Nurnberger, H.A.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Aubert, J.J.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Ealet, A.; Fouchez, D.; Motsch, F.; Payre, P.; Rousseau, D.; Talby, M.; Thulasidas, M.; Tilquin, A.; Aleppo, M.; Antonelli, M.; Gilardoni, Simone S.; Ragusa, F.; Buescher, Volker; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Mannert, C.; Manner, W.; Moser, H.G.; Schael, S.; Settles, R.; Seywerd, H.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Azzurri, P.; Boucrot, J.; Callot, O.; Chen, S.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, P.; Jacholkowska, A.; Kado, M.; Lefrancois, J.; Serin, L.; Veillet, J.J.; Videau, I.; de Viviede Regie, J.B.; Zerwas, D.; Bagliesi, Giuseppe; Bettarini, S.; Boccali, T.; Bozzi, C.; Calderini, G.; Dell'Orso, R.; Ferrante, I.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P.S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sguazzoni, G.; Tenchini, R.; Vannini, C.; Venturi, A.; Verdini, P.G.; Blair, G.A.; Coles, J.; Cowan, G.; Green, M.G.; Hutchcroft, D.E.; Jones, L.T.; Medcalf, T.; Strong, J.A.; von Wimmersperg-Toeller, J.H.; Botterill, D.R.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Thompson, J.C.; Bloch-Devaux, Brigitte; Colas, P.; Fabbro, B.; Faif, G.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.F.; Rosowsky, A.; Trabelsi, A.; Tuchming, B.; Vallage, B.; Black, S.N.; Dann, J.H.; Kim, H.Y.; Konstantinidis, N.; Litke, A.M.; McNeil, M.A.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Hodgson, P.N.; Kelly, M.S.; Lehto, M.; Thompson, L.F.; Affholderbach, K.; Boehrer, Armin; Brandt, S.; Grupen, C.; Hess, J.; Misiejuk, A.; Prange, G.; Sieler, U.; Giannini, G.; Gobbo, B.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Williams, R.W.; Armstrong, S.R.; Elmer, P.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; McNamara, P.A., III; Nielsen, J.; Orejudos, W.; Pan, Y.B.; Saadi, Y.; Scott, I.J.; Walsh, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.

    1999-01-01

    Radiative returns to the Z resonance (Z\\gamma events) are used to determine the LEP2 centre-of-mass energy from the data collected with the ALEPH detector in 1997. The average centre-of-mass energy is measured to be: E_CM = 182.50 +- 0.19 (stat.) +- 0.08 (syst.) GeV in good agreement with the precise determination by the LEP energy working group of 182.652 +- 0.050 GeV. If applied to the measurement of the W mass, its precision translates into a systematic error on M_W which is smaller than the statistical error achieved from the corresponding dataset.

  1. Electroweak interactions at LEP energies

    International Nuclear Information System (INIS)

    McKellar, B.H.J.

    1990-01-01

    Some of the processes that have been observed at LEP energies, particularly the decay rate for Z 0 →ff-bar, and the forward-backward asymmetry in the process e +e- →ff-bar are presented. It is also discussed how measurement of Z 0 width counts the number of light neutrinos and how one can look for the Higgs particle and for other exotic particles in the decay of the Z 0 and calculate some of the expected rates. The important role played by radiative corrections in the analysis of data is emphasised. 33 refs., 5 tabs., 7 figs

  2. Digital control of the superconducting cavities for the LEP energy upgrade

    International Nuclear Information System (INIS)

    Gavallari, G.; Ciapala, E.

    1992-01-01

    The superconducting (SC) cavities for the LEP200 energy upgrade will be installed in units of 16 as for the present copper cavity system. Similar equipment will be used for RF power generation and distribution, for the low-level RF system and for digital control. The SC cavities and their associated equipment however require different interface hardware and new control software. To simplify routine operation control of the SC cavity units is made to resemble as closely as possible that of the existing units. Specific controls for the SC cavities at the equipment level, the facilities available and the integration of the SC cavity units into the LEP RF control system are described. (author)

  3. CP-violating MSSM Higgs bosons in the light of LEP 2

    International Nuclear Information System (INIS)

    Carena, M.; Ellis, J.; Pilaftsis, A.; Wagner, C.E.M.

    2000-01-01

    In the MSSM, the CP parities of the neutral Higgs bosons may be mixed by radiative effects induced by explicit CP violation in the third generation of squarks. To allow for this possibility, we argue that the charged Higgs-boson mass and tanβ should be used to parametrize the MSSM Higgs sector. We introduce a new benchmark scenario of maximal CP violation appropriate for direct searches of CP-violating MSSM Higgs bosons. We show that the bounds established by LEP 2 on the MSSM Higgs sector may be substantially relaxed at low and intermediate values of tanβ in the presence of CP violation, and comment on possible Higgs boson signatures at LEP 2 within this framework.

  4. A very light Higgs at LEP

    International Nuclear Information System (INIS)

    Brown, N.

    1990-01-01

    If the standard Higgs particle is very light (≤50 MeV) then it will be sufficiently long lived that it could decay outside the detectors at LEP. This could give a signal of two final state leptons which are not back-to-back, with missing transverse momentum. We show that with suitable cuts this Higgs signal can be distinguished from backgrounds with a large enough rate that such a light Higgs will either be discovered or completely ruled out. (author)

  5. Z-boson-exchange contributions to the luminosity measurements at LEP and c.m.s.-energy-dependent theoretical errors

    International Nuclear Information System (INIS)

    Beenakker, W.; Martinez, M.; Pietrzyk, B.

    1995-02-01

    The precision of the calculation of Z-boson-exchange contributions to the luminosity measurements at LEP is studied for both the first and second generation of LEP luminosity detectors. It is shown that the theoretical errors associated with these contributions are sufficiently small so that the high-precision measurements at LEP, based on the second generation of luminosity detectors, are not limited. The same is true for the c.m.s.-energy-dependent theoretical errors of the Z line-shape formulae. (author) 19 refs.; 3 figs.; 7 tabs

  6. Bose-Einstein correlations in DELPHI WW events at LEP2

    International Nuclear Information System (INIS)

    Abreua, P.

    2006-01-01

    The preliminary results on the study of Bose-Einstein Correlations between particles coming from different W bosons, in DELPHI WW events at LEP2, are presented. This manuscript is dedicated to the memory of Frans Verbeure

  7. The η6 at LEP and TRISTAN

    International Nuclear Information System (INIS)

    Kang, K.

    1993-01-01

    The η 6 is a open-quotes heavy axionclose quotes remnant of dynamical electroweak symmetry breaking by a color sextet quark condensate. Electroweak scale color instanton interactions allow it to be both very massive and yet be responsible for Strong CP conservation in the color triplet quark sector. It may have been seen at LEP via its two-photon decay mode and at TRISTAN via its hadronic decay modes

  8. Large-angle Bhabha scattering at LEP 1

    Science.gov (United States)

    Beenakker, Wim; Passarino, Giampiero

    1998-04-01

    A critical assessment is given of the theoretical uncertainty in the predicted cross-sections for large-angle Bhabha scattering at LEP 1, with or without t-channel subtraction. To this end a detailed comparison is presented of the results obtained with the programs ALIBABA and TOPAZ0. Differences in the implementation of the radiative corrections and the effect of missing higher-order terms are critically discussed. © 1998

  9. Two-photon collisions at very low Q2 from LEP2. Forthcoming results

    International Nuclear Information System (INIS)

    Almehed, S.; Jarlskog, G.; Mjornmark, U.; Nygren, A.; Zimin, N.; Kapusta, F.; Tyapkin, I.

    1998-01-01

    Experimental results that may soon be obtained in two-photon collisions at very low momentum transfer Q 2 at LEP2 are reviewed. A kinematical range is presented for both the forward and very forward detectors used to measure scattered electrons and positrons. A new acceptance, after this year's upgrade of the beam pipe at the position of the very forward detectors, is evaluated. The corresponding statistics is calculated for an integrated luminosity of 400 pb -1 , that must be collected by the end of LEP2 operation according to current plans

  10. The receptor-like kinase SOBIR1 interacts with Brassica napus LepR3 and is required for Leptosphaeria maculans AvrLm1-triggered immunity

    Directory of Open Access Journals (Sweden)

    Lisong eMa

    2015-10-01

    Full Text Available AbstractThe fungus Leptosphaeria maculans (L. maculans is the causal agent of blackleg disease of canola/oilseed rape (Brassica napus worldwide. We previously reported cloning of the B. napus blackleg resistance gene, LepR3, which encodes a receptor-like protein. LepR3 triggers localised cell death upon recognition of its cognate Avr protein, AvrLm1. Here, we exploited the Nicotiana benthamiana model plant to investigate the recognition mechanism of AvrLm1 by LepR3. Co-expression of the LepR3/AvrLm1 gene pair in N. benthamiana resulted in development of a hypersensitive response (HR. However, a truncated AvrLm1 lacking its indigenous signal peptide was compromised in its ability to induce LepR3-mediated HR, indicating that AvrLm1 is perceived by LepR3 extracellularly. Structure-function analysis of the AvrLm1 protein revealed that the C-terminal region of AvrLm1 was required for LepR3-mediated HR in N. benthamiana and for resistance to L. maculans in B. napus. LepR3 was shown to be physically interacting with the B. napus receptor like kinase, SOBIR1 (BnSOBIR1. Silencing of NbSOBIR1 or NbSERK3 (BAK1 compromised LepR3-AvrLm1-dependent HR in N. benthamiana, suggesting that LepR3-mediated resistance to L. maculans in B. napus requires SOBIR1 and BAK1/SERK3. Using this model system, we determined that BnSOBIR1 and SERK3/BAK1 are essential partners in the LepR3 signalling complex and were able to define the AvrLm1 effector domain.

  11. Reports of the working groups on precision calculations for LEP2 physics. Proceedings

    International Nuclear Information System (INIS)

    Jadach, S.; Passarino, G.; Pittau, R.

    2000-01-01

    This is the report of the LEP2 Monte Carlo Workshop held at CERN from 1999 to 2000. It consists of four parts. In the first part, the most recent developments in the calculation of four-fermion processes in electron-positron collisions at LEP2 are presented, concentrating on predictions for four main reactions: W-pair production, visible photons in four-fermion events, single-W production, and Z-pair production. Based on a comparison of results within different approaches, theoretical uncertainties on these prediction are established. The second part is devoted to QCD issues, focusing on improving the understanding and the Monte Carlo simulation of multijet final states due to hard QCD processes at LEP, i.e. quark-antiquark plus multigluon and/or secondary quark production, with particular emphasis on four-jet final states and b-quark mass effects. Specific topics covered are: relevant developments in the main event generators; description and tuning of inclusive (all-flavour) jet rates; quark mass effects in the three- and four-jet rates; mass, higher-order and hadronization effects in four-jet angular and shape distributions; b-quark fragmentation and gluon splitting into b-quarks. In the third part, γγ physics is discussed. After a detailed description of the physics modelling of the most recent versions of the currently available codes, comparisons between the results of the different event generators, as well as between LEP data and the theoretical predictions are presented, together with the problem of background due to γγ processes in searches for new particles. In the last part, recent developments in the theoretical calculation of two-fermion processes are reported. The Bhabha process and the production of muon, tau, neutrino and quark pairs is covered. On the basis of comparison of various calculations, theoretical uncertainties are estimated and compared with those needed for the final LEP2 data analysis. The subjects for further study are identified

  12. Radiation problems in the design of the large electron-positron collider (LEP)

    International Nuclear Information System (INIS)

    Fasso, A.; Goebel, K.; Hoefert, M.; Rau, G.; Schoenbacher, H.; Stevenson, G.R.; Sullivan, A.H.; Swanson, W.P.; Tuyn, J.W.N.

    1984-01-01

    This is a comprehensive review of the radiation problems taken into account in the design studies for the Large Electron-Positron collider (LEP) now under construction at CERN. It provides estimates and calculations of the magnitude of the most important hazards, including those from non-ionizing radiations and magnetic fields as well as from ionizing radiation, and describes the measures to be taken in the design, construction, and operation to limit them. Damage to components is considered as well as the risk to people. More general explanations are given of the physical processes and technical parameters that influence the production and effects of radiation, and a comprehensive bibliography provides access to the basic theories and other discussions of the subject. The report effectively summarizes the findings of the Working Group on LEP radiation problems and parallels the results of analogous studies made for the previous large accelerator. The concluding chapters describe the LEP radiation protection system, which is foreseen to reduce doses far below the legal limits for all those working with the machine or living nearby, and summarize the environmental impact. Costs are also briefly considered. (orig.)

  13. Leptospiral outer membrane protein LipL41 is not essential for acute leptospirosis but requires a small chaperone protein, lep, for stable expression.

    Science.gov (United States)

    King, Amy M; Bartpho, Thanatchaporn; Sermswan, Rasana W; Bulach, Dieter M; Eshghi, Azad; Picardeau, Mathieu; Adler, Ben; Murray, Gerald L

    2013-08-01

    Leptospirosis is a worldwide zoonosis caused by pathogenic Leptospira spp., but knowledge of leptospiral pathogenesis remains limited. However, the development of mutagenesis systems has allowed the investigation of putative virulence factors and their involvement in leptospirosis. LipL41 is the third most abundant lipoprotein found in the outer membranes of pathogenic leptospires and has been considered a putative virulence factor. LipL41 is encoded on the large chromosome 28 bp upstream of a small open reading frame encoding a hypothetical protein of unknown function. This gene was named lep, for LipL41 expression partner. In this study, lipL41 was found to be cotranscribed with lep. Two transposon mutants were characterized: a lipL41 mutant and a lep mutant. In the lep mutant, LipL41 protein levels were reduced by approximately 90%. Lep was shown through cross-linking and coexpression experiments to bind to LipL41. Lep is proposed to be a molecular chaperone essential for the stable expression of LipL41. The roles of LipL41 and Lep in the pathogenesis of Leptospira interrogans were investigated; surprisingly, neither of these two unique proteins was essential for acute leptospirosis.

  14. Monitoring and control of the muon detector in the L3 experiment at LEP

    International Nuclear Information System (INIS)

    Gonzalez, E.

    1990-01-01

    In this report the monitoring system of the muon spectrometer of the L3 detector in LEP at CERN is presented. The system is based on a network of VME's using the OS9 operating system. The design guiding lines and the present system configuration are described both from the hardware and the software point of view. In addition, the report contains the description of the monitored parameters showing typical data collected durintg the first months of LEP operation. (Author)

  15. Measurement of the triple gauge-boson couplings {gamma}WW and ZWW in ALEPH and at LEP; Mesure des couplages {gamma}WW et ZWW dans ALEPH et au LEP

    Energy Technology Data Exchange (ETDEWEB)

    Jezequel, St

    2005-03-15

    This document deals with the couplings between the W boson and Z and gamma particles. WWZ and WW{gamma} vertex are predicted by the electroweak theory based on the symmetry group SU(2){sub L}*U(1){sub Y}, their existence is confirmed by the measurement of the production cross-section of W pairs at LEP. The effective values of the couplings are modified by the introduction of standard model particle loops at the vertex level, the impact on the coupling value is assessed to reach 10{sup -3}. These loops can also include beyond-the-standard-model particles, their impact is in the magnitude order of 10{sup -3} for most models. The fully description of these loops requires the values of 14 complex parameters whose measurement will give information about the existence of new particles. Nevertheless the number of events at LEP is not sufficient to measure all the parameters simultaneously. As a consequence the analysis is limited to the 3 most promising parameters: g{sub 1}{sup Z}, {kappa}{sub {gamma}} and {lambda}{sub {gamma}}. At LEP the events sensitive to these couplings are the final states WW and We{nu}. Their differential and total production cross-sections are the variables used to compute the value of couplings. The uncertainties on these measurements mainly stem from the angular distribution analysis of the final state WW {yields} {nu}qq. All the data collected by the ALEPH experiment has been processed. The combination of the measurement of the 4 LEP experiments (ALEPH, DELPHI, L3 and OPAL) leads to an uncertainty cut by half: g{sub 1}{sup Z} = 0.991 (+0.022-0.021); {kappa}{sub {gamma}} 0.984 (+0.042-0.047) and {lambda}{sub {gamma}} = -0.016 (+0.021-0.023). (A.C.)

  16. A Computer Program to Measure the Energy Spread of Multi-turn Beam in the Fermilab Booster at Injection

    Science.gov (United States)

    Nelson, Jovan; Bhat, Chandrashekhara; Hendricks, Brian

    2016-03-01

    We have developed a computer program interfaced with the ACNET environment for Fermilab accelerators in order to measure the energy spread of the injected proton beam from the LINAC, at the energy of 400 MeV. This program allows the user to configure a digitizing oscilloscope and timing devices to optimize data acquisition from a resistive wall current monitor. When the program is launched, it secures control of the oscilloscope and then generates a ``one-shot'' timeline which initiates injection into the Booster. Once this is complete, a kicker is set to create a notch in the beam and the line charge distribution data is collected by the oscilloscope. The program then analyzes this data in order to obtain notch width, beam revolution period, and beam energy spread. This allows the program to be a possible useful diagnostic tool for the beginning of the acceleration cycle for the proton beam. Thank you to the SIST program at Fermilab.

  17. Measurement of the W boson Mass and Width in $e^{+}e^{-}$ Collisions at LEP

    CERN Document Server

    Schael, S; Brunelière, R; De Bonis, I; Décamp, D; Goy, C; Jézéquel, S; Lees, J P; Martin, F; Merle, E; Minard, M N; Pietrzyk, B; Trocmé, B; Bravo, S; Casado, M P; Chmeissani, M; Crespo, J M; Fernández, E; Fernández-Bosman, M; Garrido, L; Martínez, M; Pacheco, A; Ruiz, H; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Iaselli, G; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Barklow, T; Buchmüller, O L; Cattaneo, M; Clerbaux, B; Drevermann, H; Forty, R W; Frank, M; Gianotti, F; Hansen, J B; Harvey, J; Hutchcroft, D E; Janot, P; Jost, B; Kado, M; Mato, P; Moutoussi, A; Ranjard, F; Rolandi, Luigi; Schlatter, W D; Teubert, F; Valassi, A; Videau, I; Badaud, F; Dessagne, S; Falvard, A; Fayolle, D; Gay, P; Jousset, J; Michel, B; Monteil, S; Pallin, D; Pascolo, J M; Perret, P; Hansen, J D; Hansen, J R; Hansen, P H; Kraan, A C; Nilsson, B S; Kyriakis, A; Markou, C; Simopoulou, E; Vayaki, A; Zachariadou, K; Blondel, A; Brient, J C; Machefert, F; Rougé, A; Videau, H L; Ciulli, V; Focardi, E; Parrini, G; Antonelli, A; Antonelli, M; Bencivenni, G; Bossi, F; Capon, G; Cerutti, F; Chiarella, V; Laurelli, P; Mannocchi, G; Murtas, G P; Passalacqua, L; Kennedy, J; Lynch, J G; Negus, P; O'Shea, V; Thompson, A S; Wasserbaech, S; Cavanaugh, R J; Dhamotharan, S; Geweniger, C; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Stenzel, H; Tittel, K; Wunsch, M; Beuselinck, R; Cameron, W; Davies, G; Dornan, P J; Girone, M; Marinelli, N; Nowell, J; Rutherford, S A; Sedgbeer, J K; Thompson, J C; White, R; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bouhova-Thacker, E; Bowdery, C K; Clarke, D P; Ellis, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Pearson, M R; Robertson, N A; Sloan, T; Smizanska, M; van der Aa, O; Delaere, C; Leibenguth, G; Lemaître, V; Blumenschein, U; Hölldorfer, F; Jakobs, K; Kayser, F; Müller, A S; Renk, B; Sander, H G; Schmeling, S; Wachsmuth, H W; Zeitnitz, C; Ziegler, T; Bonissent, A; Coyle, P; Curtil, C; Ealet, A; Fouchez, D; Payre, P; Tilquin, A; Ragusa, F; David, A; Dietl, H; Ganis, G; Hüttmann, K; Lütjens, G; Männer, W; Moser, H G; Settles, R; Villegas, M; Wolf, G; Boucrot, J; Callot, O; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacholkowska, A; Serin, L; Veillet, J J; Azzurri, P; Bagliesi, G; Boccali, T; Foà, L; Giammanco, A; Giassi, A; Ligabue, F; Messineo, A; Palla, F; Sanguinetti, G; Sciabà, A; Sguazzoni, G; Spagnolo, P; Tenchini, R; Venturi, A; Verdini, P G; Awunor, O; Blair, G A; Cowan, G; García-Bellido, A; Green, M G; Medcalf, T; Misiejuk, A; Strong, J A; Teixeira-Dias, P; Clifft, R W; Edgecock, T R; Norton, P R; Tomalin, I R; Ward, J J; Bloch-Devaux, B; Boumediene, D E; Colas, P; Fabbro, B; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Trabelsi, A; Tuchming, B; Vallage, B; Litke, A M; Taylor, G; Booth, C N; Cartwright, S; Combley, F; Hodgson, P N; Lehto, M H; Thompson, L F; Böhrer, A; Brandt, S; Grupen, C; Hess, J; Ngac, A; Prange, G; Borean, C; Giannini, G; He, H; Pütz, J; Rothberg, J E; Armstrong, S R; Berkelman, K; Cranmer, K; Ferguson, D P S; Gao, Y; González, S; Hayes, O J; Hu, H; Jin, S; Kile, J; McNamara, P A; Nielsen, J; Pan, Y B; Von Wimmersperg-Töller, J H; Wiedenmann, W; Wu, J; Wu, S L; Wu, X; Zobernig, G; Dissertori, G

    2006-01-01

    The mass of the W boson is determined from the direct reconstruction of its decays into purely hadronic and semi-leptonic events in e+e- collisions at LEP. The data sample corresponds to an integrated luminosity of 683 inverse picobarns collected with the ALEPH detector at centre-of-mass energies up to 209 GeV. To minimise any effect from colour reconnection a new procedure is adopted in which low energy particles are not considered in the mass determination from the purely hadronic channel. The combined result from all channels is Mw = 80.440+-0.043(stat.)+-0.024(syst.)+-0.009(FSI)+-0.009(LEP) GeV/c**2 where FSI represents the possible effects of final state interactions in the purely hadronic channel. From two-parameter fits to the W mass and width, the W width is found to be Gw = 2.14+-0.09(stat.)+-0.04(syst.)+-0.05(FSI)+-0.01(LEP) GeV

  18. Cross-Sections and Leptonic Forward-Backward Asymmetries from the $Z^0$ Running of LEP

    CERN Document Server

    Abreu, P; Adye, T; Adzic, P; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Anassontzis, E G; Andersson, P; Andreazza, A; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Benvenuti, Alberto C; Bérat, C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bianchi, F; Bigi, M; Bilenky, S M; Bizouard, M A; Bloch, D; Bonesini, M; Bonivento, W; Boonekamp, M; Booth, P S L; Borgland, A W; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Boyko, I; Bozovic, I; Bozzo, M; Branchini, P; Brenke, T; Brenner, R A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Cerruti, C; Chabaud, V; Chapkin, M M; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Shlyapnikov, P; Chochula, P; Chorowicz, V; Chudoba, J; Collins, P; Colomer, M; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; D'Almagne, B; Damgaard, G; Davenport, Martyn; Da Silva, W; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; De Lotto, B; De Min, A; De Paula, L S; Dijkstra, H; Di Ciaccio, Lucia; Di Diodato, A; Djannati, A; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Duperrin, A; Durand, J D; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Ellert, M; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fanourakis, G K; Fassouliotis, D; Fayot, J; Feindt, Michael; Fenyuk, A; Ferrari, P; Ferrer, A; Fichet, S; Firestone, A; Fischer, P A; Flagmeyer, U; Föth, H; Fokitis, E; Fontanelli, F; Franek, B J; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gaspar, M; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gerdyukov, L N; Ghodbane, N; Gil, I; Glege, F; Gokieli, R; Golob, B; Gonçalves, P; González-Caballero, I; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Grahl, J; Graziani, E; Green, C; Grefrath, A; Gris, P; Grzelak, K; Günther, M; Guy, J; Hahn, F; Hahn, S; Haider, S; Hallgren, A; Hamacher, K; Harris, F J; Hedberg, V; Heising, S; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, P E; Joram, C; Juillot, P; Kapusta, F; Karafasoulis, K; Katsanevas, S; Katsoufis, E C; Keränen, R; Khomenko, B A; Khovanskii, N N; Kiiskinen, A P; King, B J; Kjaer, N J; Klapp, O; Klein, H; Kluit, P M; Knoblauch, D; Kokkinias, P; Konoplyannikov, A K; Koratzinos, M; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kreuter, C; Kriznic, E; Krstic, J; Krumshtein, Z; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Lapin, V; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Leinonen, L; Leisos, A; Leitner, R; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Lethuillier, M; Libby, J; Liko, D; Lipniacka, A; Lippi, I; Lörstad, B; Lokajícek, M; Loken, J G; Lopes, J H; López, J M; López-Fernandez, R; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Mahon, J R; Maio, A; Malek, A; Malmgren, T G M; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Masik, J; Mazzucato, F; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; McPherson, G; Meroni, C; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Moreau, X; Morettini, P; Morton, G A; Münich, K; Mulders, M; Mulet-Marquis, C; Muresan, R; Murray, W J; Muryn, B; Myatt, Gerald; Myklebust, T; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Neufeld, N; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Nikolenko, M; Nomokonov, V P; Normand, Ainsley; Nygren, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Orazi, G; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Paiano, S; Pain, R; Paiva, R; Palacios, J; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Pegoraro, M; Peralta, L; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rakoczy, D; Ratoff, P N; Read, A L; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Rídky, J; Rinaudo, G; Røhne, O M; Romero, A; Ronchese, P; Rosenberg, E I; Rosinsky, P; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ruiz, A; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sampsonidis, D; Sannino, M; Schneider, H; Schwemling, P; Schwickerath, U; Schyns, M A E; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Sekulin, R L; Shellard, R C; Sheridan, A; Silvestre, R; Simard, L C; Simonetto, F; Sissakian, A N; Skaali, T B; Smadja, G; Smirnova, O G; Smith, G R; Sopczak, André; Sosnowski, R; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stampfer, D; Stanescu, C; Stanic, S; Stapnes, Steinar; Stevenson, K; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tegenfeldt, F; Terranova, F; Thomas, J; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Todorova-Nová, S; Toet, D Z; Tomaradze, A G; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; Van der Velde, C; van Apeldoorn, G W; van Dam, P; Van Doninck, W K; Van Eldik, J; Van Lysebetten, A; Van Vulpen, I B; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Verzi, V; Vilanova, D; Vitale, L; Vlasov, E; Vodopyanov, A S; Voulgaris, G; Vrba, V; Wahlen, H; Walck, C; Weiser, C; Wetherell, Alan M; Wicke, D; Wickens, J H; Wilkinson, G R; Winter, M; Witek, M; Wlodek, T; Wolf, G; Yi, J; Yushchenko, O P; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zucchelli, G C; Zumerle, G

    2000-01-01

    During 1993 and 1995 LEP was run at 3 energies near the Z$^0$ peak in order to give improved measurements of the mass and width of the resonance. During 1994, LEP operated only at the Z$^0$peak. In total DELPHI accumulated data corresponding to an integrated luminosity of approximately 116~pb$^{-1}$. Analyses ofthe hadronic cross-sections and of the cross-sections and forward-backward asymmetries in the leptonic channels used the most precise evaluations of the LEP energies. In the dimuon channel, events with a photon radiated from the initialstate have been used to probe the cross-sections and asymmetries down to PETRA energies.Model independent fits to all DELPHI lineshape and asymmetry data from 1990 to 1995have been carried out giving values ofthe resonance parameters:\\MZ & = & 91.1863\\pm0.0028~\\GeV \\\\\\GZ & = & ~2.4876\\pm0.0041~\\GeV \\\\ \\sigma_{0} & = & 41.578\\pm0.069~\

  19. Recent physics results from LEP

    International Nuclear Information System (INIS)

    Augustin, J.E.

    1990-12-01

    The LEP machine operations, the recent observation of transverse beam polarization, and the luminosity measurements are summarized. The results obtained up to now on the tests of the electroweak sector of the Standard Model are reviewed. This includes the Z neutral boson excitation curve parameters in hadronic and leptonic modes, the forward-backward asymmetries of the leptons, the detection of the polarization of the taus, and the corresponding results on the number of light neutrinos, on the electroweak coupling constants and mixing angle, and on the top quark mass. Some hadronic physics results and QCD studies are reported. The results for particle searches, notably the Higgs boson are summarized

  20. LEP vacuum chamber, cross-section

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    Cross-section of the final prototype for the LEP vacuum chamber. The elliptic main-opening is for the beam. The small channel to the left is for the cooling water, to carry away the heat deposited by the synchrotron radiation. The square channel to the right houses the Non-Evaporable Getter (NEG) pump. The chamber is made from extruded aluminium. Its outside is clad with lead, to stop the synchrotron radiation emitted by the beam. For good adherence between Pb and Al, the Al chamber was coated with a thin layer of Ni. Ni being slightly magnetic, some resulting problems had to be overcome. See also 8301153.

  1. Precision tests of the standard model at LEP

    International Nuclear Information System (INIS)

    Mele, Barbara; Universita La Sapienza, Rome

    1994-01-01

    Recent LEP results on electroweak precision measurements are reviewed. Line-shape and asymmetries analysis on the Z 0 peak is described. Then, the consistency of the Standard Model predictions with experimental data and consequent limits on the top mass are discussed. Finally, the possibility of extracting information and constrains on new theoretical models from present data is examined. (author). 20 refs., 5 tabs

  2. Two-photon physics and online beam monitoring using the DELPHI detector at LEP

    International Nuclear Information System (INIS)

    Bjarne, J.

    1994-01-01

    This thesis is based on work done during 1989-1993 using the DELPHI detector at LEP, which is summarized in five articles. It consists of three main parts. The first part describes the Very Small Angle Tagger (VSAT), which is a sub-detector of the DELPHI detector at LEP. It consists of four silicon-tungsten electromagnetic calorimeter modules having a silicon strip planes for position determination. The modules are placed adjacent to the beam pipe, at ±7.7 m from the interaction point and after superconducting quadrupole magnets, allowing the detection of electrons in a polar angle range of 4 to 13 mrad. The second part is devoted to two-photon physics at DELPHI, with strong emphasis on a VSAT single-tagged event analysis. Here is shown, for the first time, evidence of hard scattering processes in single-tagged two-photon collisions. A QCD Resolved Photon Contribution (QCD-RPC) model is introduced. Data is then seen to be well described by a full VDM+(QCD-RPC) model. Different parton density functions are compared with data. The third part first describes the system for online monitoring of LEP beam background and luminosity at the DELPHI interaction point. Details are given of contributing sub-detector signals and program structure. Then follows a description of the VSAT online monitoring program (VSAT-MONITOR). A good agreement is found between the VSAT-MONITOR estimates of luminosity and beam spot and those of other detectors. Finally, results are presented of VSAT measurements of a LEP beam separation scan. 75 refs, figs

  3. Arrêt du L.E.P annoncé au CERN

    CERN Multimedia

    Causse, M

    2000-01-01

    Ruining the hopes of researchers that they might soon make an incredible discovery, the director of CERN has announced the closure of LEP at the end of the year and acceleration of the construction of the LHC (1/2 page).

  4. Geodesy and metrology of the LEP

    International Nuclear Information System (INIS)

    Mayoud, M.

    1985-01-01

    The accurate installation of an accelerator of 8,500 m diameter requires the most refined geodetic techniques. The instrumentation in use incorporates not only lasers and eventually satellites, but also the simple nylon wire. Over 20,000 measurement will be made to install to within 0.1 mm the 5,000 fonctional elements of the LEP machine (Large Electron-Positron Collider). This work will be controlled and checked by portable computers. Each instrument will be automatic and will contain a miniature micro-computer (on a ''flexible-rigid'' card) [fr

  5. On sbottom hadronization at LEP 200

    International Nuclear Information System (INIS)

    Gris, Ph.

    1997-01-01

    The question of the hadronization of the sbottom is of interest for experimental searches. A study concerning this feature is presented for masses accessible at LEP 200 assuming that the sbottom is the lightest squark. Numerical evaluations of the decay modes b-bar 1 → b X -bar 1 0 and b-bar 1 → b X -bar 2 0 are done by varying the SUSY space parameters M 2 and μ. The results obtained allow to assert in which conditions the sbottom hadronizes and which decay dominates. (authors)

  6. Contribution of terms containing Z-boson exchange to the luminosity measurements at LEP

    Science.gov (United States)

    Beenakker, W.; Pietrzyk, B.

    1992-12-01

    We have investigated the contribution of terms containing Z-boson exchange to the luminosity measurements at LEP. Comparing the Monte Carlo program BABAMC and the semi-analytical program ALIBABA, we have determined the technical precision of the corresponding O( α) calculation in BABAMC to be 0.03%. Using the ALIBABA program we have assessed the higher-order corrections to these Z-boson exchange contributions to be of the order of 0.1% for the present luminosity measurements. The total theoretical error on the luminosity calculation for LEP experiments is at present not larger than 0.3%.

  7. Development of the LEP high level control system using ORACLE as an online database

    International Nuclear Information System (INIS)

    Bailey, R.; Belk, A.; Collier, P.; Lamont, M.; De Rijk, G.; Tarrant, M.

    1994-01-01

    A complete rewrite of the high level application software for the control of LEP has been carried out. ORACLE was evaluated and subsequently used as the on-line database in the implementation of the system. All control information and settings are stored on this database. This paper describes the project development cycle, the method used, the use of CASE and the project management used by the team. The performance of the system and the database and their impact on the LEP performance is discussed. ((orig.))

  8. A method for using the purely leptonic channels for W physics measurements at LEP

    CERN Document Server

    Chierici, R

    2002-01-01

    A new method for the analysis of W pair production at LEP2 in fully leptonic final states is presented. The method is based on the reconstruction of the W boost probability density function under simple kinematic assumptions and allows a straightforward inclusion of the detector resolution. The reliability and performance of the method are tested at generator level with a simplified detector response in the case of the determination of the W mass. The results are discussed and extrapolated to LEP2 final statistics. (7 refs).

  9. The long-term performance of the S-band klystron modulator system in the CERN LEP pre-injector

    CERN Document Server

    McMonagle, G; Rossat, G

    2000-01-01

    The Large Electron-Positron collider (LEP) is the final machine in a chain of four accelerators that are used to create particle collisions for high-energy physics experiments. LEP collides bunches of electrons (e/sup -/) with bunches of positrons (e/sup +/) that have originated in the LEP Injector Linac (LIL). These particles travel around the 27 km circumference of the LEP ring in opposite directions at velocities close to the speed of light. When bunches of particles collide, bursts of very high energy are created during a tiny fraction of a second, emulating the state of the early Universe. Four huge detector assemblies record the tracks of particles created in this way, and provide the physicists with a means of looking at the behaviour of matter at these high energies. LIL is at the front end of this chain and is used to produce the sequence of e/sup -/ and e/sup +/ beam pulses that are accumulated in 4 or 8 bunches, at a 100 Hz rate, in the Electron Positron Accumulator (EPA). The klystron- modulators,...

  10. Precision LEP data, supersymmetric GUTs and string unification

    International Nuclear Information System (INIS)

    Ellis, J.; Kelley, S.; Nanopoulos, D.V.; Houston Area Research Center

    1990-01-01

    The precision of sin 2 θ w MS (m Z ) extracted from LEP data (0.233±0.001) confirms the prediction of minimal supersymmetric GUTs (0.235±0.004) within the errors of about 2%. Moreover, supersymmetric GUTs with three generations and a heavy top quark also predict m b =5.2±0.3 GeV in perfect agreement with potential model estimates (5.0±0.2 GeV). String unification would require that the effective grand unification scale m GUT be no larger than the effective string unification scale m SU , which is indeed consistent with the LEP data, which indicate m GUT ≅ 2x10 16 GeV in a minimal supersymmetric GUT, compared with the theoretical estimate m SU ≅ 10 17 GeV. Specific choices of the string model moduli could enforce m GUT =m SU even in minimal supersymmetric GUTs, whilst non-minimal supersymmetric GUTs can reconcile the successful predictions of sin 2 θ w with m GUT = m SU for generic values of the moduli, but tend to have m b too large. (orig.)

  11. DELPHI $\\tau$ lifetime results using all LEP-1 data

    CERN Document Server

    McNulty, R

    2001-01-01

    Using events collected by the DELPHI detector at LEP in the years 1991-1995, the tau lepton lifetime has been measured to be (290.7+-1.5+-1.0) fs. Three different methods have been exploited utilising decays of the tau into final states containing one or three charged tracks. (6 refs).

  12. LEP precision electroweak measurements from the Z{sup 0} resonance

    Energy Technology Data Exchange (ETDEWEB)

    Strom, D. [Univ. of Oregon, Eugene, OR (United States)

    1997-01-01

    Preliminary electroweak measurements from the LEP Collaboration from data taken at the Z{sup 0} resonance are presented. Most of the results presented are based on a total data sample of 12 x 10{sup 6} recorded Z{sup 0} events which included data from the 1993 and 1994 LEP runs. The Z{sup 0} resonance parameters, including hadronic and leptonic cross sections and asymmetries, {tau} polarization and its asymmetry, and heavy-quark asymmetries and partial widths, are evaluated and confronted with the predictions of the Standard Model. This comparison incorporates the constraints provided by the recent determination of the top-quark mass at the Tevatron. The Z{sup 0} resonance parameters are found to be in good agreement with the Standard Model prediction using the Tevatron top-quark mass, with the exception of the partial widths for Z{sup 0} decays to pairs of b and c quarks.

  13. Search for neutralinos in the Z0 decay at LEP

    International Nuclear Information System (INIS)

    Hidaka, K.; Ratcliffe, P.

    1991-01-01

    We investigate neutralino production process e - e + →Z 0 →z k z k' at the Z 0 peak. Recent LEP and SLC data on Z 0 decays (such as total and invisible width of Z 0 and unsuccessful searches for chargino pairs and acoplanar charged lepton pairs and jet pairs) and the gluino search experiments at S(p-bar)pS and TEVATRON significantly constrain the mass matrix parameters of chargino and neutralino sectors. We find that despite these constraints there still remains a sizable 'window' in the parameter space really open for discovering neutralinos in the Z 0 decay at LEP. Encouraged by this observation we evaluate the event distributions for the detected particles in this process. The information these can provide would be valuable in identifying this production mechanism and the new particles responsible for it, including their spins, masses and couplings. (author)

  14. Multivariate analysis methods to tag b quark events at LEP/SLC

    International Nuclear Information System (INIS)

    Brandl, B.; Falvard, A.; Guicheney, C.; Henrard, P.; Jousset, J.; Proriol, J.

    1992-01-01

    Multivariate analyses are applied to tag Z → bb-bar events at LEP/SLC. They are based on the specific b-event shape caused by the large b-quark mass. Discriminant analyses, classification trees and neural networks are presented and their performances are compared. It is shown that the neural network approach, due to its non-linearity, copes best with the complexity of the problem. As an example for an application of the developed methods the measurement of Γ(Z → bb-bar) is discussed. The usefulness of methods based on the global event shape is limited by the uncertainties introduced by the necessity of event simulation. As solution a double tag method is presented which can be applied to many tasks of LEP/SLC heavy flavour physics. (author) 29 refs.; 6 figs.; 1 tab

  15. LEP measurements of $V_{cb}$ and $V_{ub}$

    CERN Document Server

    Hawkings, R

    2001-01-01

    The measurements of the magnitudes of the CKM matrix elements V/sub cb/ and V/sub ub/ from LEP are reviewed. V/sub cb/ is measured using the decay B/sup 0/ to D*/sup +/l/sup -/ nu , whilst V/sub ub/ is measured using inclusive charmless semileptonic b decays. Particular attention is paid to the limiting systematic errors in each case. (20 refs).

  16. CERN: TeV Electron-Positron Linear Collider Studies; More polarization in LEP

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-09-15

    The world's highest energy electronpositron collider - CERN's LEP, with a circumference of 27 kilometres - will also be the last such machine to be built as a storage ring. With interest growing in electronpositron physics at energies beyond those attainable at LEP, the next generation of electron-positron colliders must be linear if prohibitive synchrotron radiation power losses are to be avoided. Very high energy linear colliders present many technical challenges but mastery of SLC at Stanford, the world's first electron-positron linear collider, is encouraging. The physics issues of a linear collider have been examined by the international community in ICFA workshops in Saariselka, Finland (September 1991) and most recently in Hawaii (April 1993). The emerging consensus is for a collider with an initial collision energy around 500 GeV, and which can be upgraded to over 1 TeV. A range of very different collider designs are being studied at Laboratories in Europe, the US, Japan and Russia. Following the report of the 1987 CERN Long Range Planning Committee chaired by Carlo Rubbia, studies for a 2 TeV linear collider have progressed at CERN alongside work towards the Laboratory's initial objective - the LHC high energy proton-proton collider in the LEP tunnel.

  17. CERN: TeV Electron-Positron Linear Collider Studies; More polarization in LEP

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The world's highest energy electronpositron collider - CERN's LEP, with a circumference of 27 kilometres - will also be the last such machine to be built as a storage ring. With interest growing in electronpositron physics at energies beyond those attainable at LEP, the next generation of electron-positron colliders must be linear if prohibitive synchrotron radiation power losses are to be avoided. Very high energy linear colliders present many technical challenges but mastery of SLC at Stanford, the world's first electron-positron linear collider, is encouraging. The physics issues of a linear collider have been examined by the international community in ICFA workshops in Saariselka, Finland (September 1991) and most recently in Hawaii (April 1993). The emerging consensus is for a collider with an initial collision energy around 500 GeV, and which can be upgraded to over 1 TeV. A range of very different collider designs are being studied at Laboratories in Europe, the US, Japan and Russia. Following the report of the 1987 CERN Long Range Planning Committee chaired by Carlo Rubbia, studies for a 2 TeV linear collider have progressed at CERN alongside work towards the Laboratory's initial objective - the LHC high energy proton-proton collider in the LEP tunnel

  18. Differences between quark and gluon jets as seen at LEP

    International Nuclear Information System (INIS)

    Tasevsky, M.

    2001-01-01

    The differences between quark and gluon jets are studied using LEP results on jet widths, scale dependent multiplicities, ratios of multiplicities, slopes and curvatures and fragmentation functions. It is emphasized that the observed differences stem primarily from the different quark and gluon colour factors

  19. Differences between Quark and Gluon jets as seen at LEP

    CERN Document Server

    Tasevsky, Marek

    2001-01-01

    The differences between quark and gluon jets are studied using LEP results on jet widths, scale dependent multiplicities, ratios of multiplicities, slopes and curvatures and fragmentation functions. It is emphasized that the observed differences stem primarily from the different quark and gluon colour factors.

  20. The performance of the DELPHI hadron calorimeter at LEP

    International Nuclear Information System (INIS)

    Ajinenko, I.; Beloous, K.; Chudoba, J.

    1996-01-01

    The DELPHI Hadron Calorimeter was conceived more than ten years ago, as an instrument to measure the energy of hadrons and hadronic jets from e + e - collisions at the CERN collider LEP. In addition it was expected to provide a certain degree of discrimination between pions and muons. The detector is a rather simple and relatively inexpensive device consisting of around 20,000 limited streamer plastic tubes, with inductive pad read-out, embedded in the iron yoke of the 1.2 T DELPHI magnet. Its depth is at minimum 6.6 nuclear interaction lengths. The electronics necessary for the pad readout was designed to have an adequate performance for a reasonable cost. This detector has proved over six years of operation to have an entirely satisfactory performance and great reliability; for example less than 1% of the streamer tubes have failed and electronic problems remain at the per mil level. During the past two years an improvement program has been under way. It has been found possible to use the streamer tubes as strips, hence giving better granularity and particle tracking, by reading out the cathode of individual tubes. The constraints on this were considerable because of the inaccessibility of the detectors in the magnet yoke. However, a cheap and feasible solution has been found. The cathode readout leads to an improved energy resolution, better μ identification, a better π/μ separation and to possibilities of neutral particle separation. The simultaneous anode read-out of several planes of the endcaps of the detector will provide a fast trigger in the forward/backward direction which is an important improvement for LEP200. On the barrel the system will provide a cosmic trigger which is very useful for calibration as counting rates at LEP200 will be very low