WorldWideScience

Sample records for lensless ghost diffraction

  1. Defocusing effects of lensless ghost imaging and ghost diffraction with partially coherent sources

    Science.gov (United States)

    Zhou, Shuang-Xi; Sheng, Wei; Bi, Yu-Bo; Luo, Chun-Ling

    2018-04-01

    The defocusing effect is inevitable and degrades the image quality in the conventional optical imaging process significantly due to the close confinement of the imaging lens. Based on classical optical coherent theory and linear algebra, we develop a unified formula to describe the defocusing effects of both lensless ghost imaging (LGI) and lensless ghost diffraction (LGD) systems with a partially coherent source. Numerical examples are given to illustrate the influence of defocusing length on the quality of LGI and LGD. We find that the defocusing effects of the test and reference paths in the LGI or LGD systems are entirely different, while the LGD system is more robust against defocusing than the LGI system. Specifically, we find that the imaging process for LGD systems can be viewed as pinhole imaging, which may find applications in ultra-short-wave band imaging without imaging lenses, e.g. x-ray diffraction and γ-ray imaging.

  2. Lensless ghost imaging through the strongly scattering medium

    International Nuclear Information System (INIS)

    Yang Zhe; Zhao Xueliang; Li Junlin; Zhao Lianjie; Qin Wei

    2016-01-01

    Lensless ghost imaging has attracted much interest in recent years due to its profound physics and potential applications. In this paper we report studies of the robust properties of the lensless ghost imaging system with a pseudo-thermal light source in a strongly scattering medium. The effects of the positions of the strong medium on the ghost imaging are investigated. In the lensless ghost imaging system, a pseudo-thermal light is split into two correlated beams by a beam splitter. One beam goes to a charge-coupled detector camera, labeled as CCD2. The other beam goes to an object and then is collected in another charge-coupled detector camera, labeled as CCD1, which serves as a bucket detector. When the strong medium, a pane of ground glass disk, is placed between the object and CCD1, the bucket detector, the quality of ghost imaging is barely affected and a good image could still be obtained. The quality of the ghost imaging can also be maintained, even when the ground glass is rotating, which is the strongest scattering medium so far. However, when the strongly scattering medium is present in the optical path from the light source to CCD2 or the object, the lensless ghost imaging system hardly retrieves the image of the object. A theoretical analysis in terms of the second-order correlation function is also provided. (paper)

  3. Experimental Investigation of Quality of Lensless Ghost Imaging with Pseudo-Thermal Light

    International Nuclear Information System (INIS)

    Xia, Shen; Yan-Feng, Bai; Tao, Qin; Shen-Sheng, Han

    2008-01-01

    Factors influencing the quality of lensless ghost imaging are investigated. According to the experimental results, we find that the imaging quality is determined by the number of independent sub light sources on the imaging plane of the reference arm. A qualitative picture based on advanced wave optics is presented to explain the physics behind the experimental phenomena. The present results will be helpful to provide a basis for improving the quality of ghost imaging systems in future works. (fundamental areas of phenomenology(including applications))

  4. Suppressing Ghost Diffraction in E-Beam-Written Gratings

    Science.gov (United States)

    Wilson, Daniel; Backlund, Johan

    2009-01-01

    A modified scheme for electron-beam (E-beam) writing used in the fabrication of convex or concave diffraction gratings makes it possible to suppress the ghost diffraction heretofore exhibited by such gratings. Ghost diffraction is a spurious component of diffraction caused by a spurious component of grating periodicity as described below. The ghost diffraction orders appear between the main diffraction orders and are typically more intense than is the diffuse scattering from the grating. At such high intensity, ghost diffraction is the dominant source of degradation of grating performance. The pattern of a convex or concave grating is established by electron-beam writing in a resist material coating a substrate that has the desired convex or concave shape. Unfortunately, as a result of the characteristics of electrostatic deflectors used to control the electron beam, it is possible to expose only a small field - typically between 0.5 and 1.0 mm wide - at a given fixed position of the electron gun relative to the substrate. To make a grating larger than the field size, it is necessary to move the substrate to make it possible to write fields centered at different positions, so that the larger area is synthesized by "stitching" the exposed fields.

  5. Ghost imaging and ghost diffraction with pseudo-thermal light generated by means of a programmable SLM

    International Nuclear Information System (INIS)

    Capeluto, M G; Schmiegelow, C T; Francisco, D; Ledesma, S; Iemmi, C; Duisterwinkel, H

    2011-01-01

    Ghost imaging and ghost diffraction are techniques in which information about the object or about its diffraction pattern is extracted by measuring the correlation between a reference beam and a beam that passes through the object. Although first experiments were carried on by using entangled photons, it was demonstrated that this technique can be performed by splitting incoherent pseudo-thermal radiation such as that obtained with a laser passing through a moving diffuser. In this work we implemented the use of a programmable phase spatial light modulator (SLM) in order to replace the rotating ground glass. In this way the random phase distributions obtained from the moving diffuser can be emulated by displaying onto the SLM different realizations of a random function with uniform distribution. Based on the programmability of the modulator we have studied the influence of diverse parameters such as speckle size or phase distributions in the final image quality. We carry on the experiment for two different cases ghost imaging and far field ghost diffraction.

  6. Two-Photon Ghost Image and Interference-Diffraction

    Science.gov (United States)

    Shih, Y. H.; Sergienko, A. V.; Pittman, T. B.; Strekalov, D. V.; Klyshko, D. N.

    1996-01-01

    convex lens. Surprisingly, an image of this aperture is observed in the idler beam, by scanning the idler photon detector in the transverse plane of the idler beam, if we are sure that the idler photon detector 'catches' the 'twin brother' of the signal, which can be easily performed by a coincidence measurement. This effect is even more striking when we found that the object-lens-image relationship satisfies the Gaussian thin lens equation. The second experiment demonstrates two-photon 'ghost' interference-diffraction. The experimental set up is similar to the image experiment, except that rather than a lens and an aperture it is a Young's double-slit (or a single-slit) inserted into the path of the signal beam. We could not find any interference (or diffraction) pattern behind the slit. Surprisingly, an interference (or diffraction) pattern is observed when scanning the detector in the idler beam, if we are sure that the idler photon detector 'catches' the 'twin brother' of the signal.

  7. Computational wavelength resolution for in-line lensless holography: phase-coded diffraction patterns and wavefront group-sparsity

    Science.gov (United States)

    Katkovnik, Vladimir; Shevkunov, Igor; Petrov, Nikolay V.; Egiazarian, Karen

    2017-06-01

    In-line lensless holography is considered with a random phase modulation at the object plane. The forward wavefront propagation is modelled using the Fourier transform with the angular spectrum transfer function. The multiple intensities (holograms) recorded by the sensor are random due to the random phase modulation and noisy with Poissonian noise distribution. It is shown by computational experiments that high-accuracy reconstructions can be achieved with resolution going up to the two thirds of the wavelength. With respect to the sensor pixel size it is a super-resolution with a factor of 32. The algorithm designed for optimal superresolution phase/amplitude reconstruction from Poissonian data is based on the general methodology developed for phase retrieval with a pixel-wise resolution in V. Katkovnik, "Phase retrieval from noisy data based on sparse approximation of object phase and amplitude", http://www.cs.tut.fi/ lasip/DDT/index3.html.

  8. Reconstruction of Stress and Composition Profiles from X-ray Diffraction Experiments - How to Avoid Ghost Stresses?

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A.J.

    2004-01-01

    On evaluating lattice strain-depth or stress-depth profiles with X-ray diffraction, the variation of the information depth while combining various tilt angles,psi, in combination with lattice spacing gradients leads to artefacts,so-called ghost or fictitious stresses. X-ray diffraction lattice...... method for the evaluation of stress/strain and composition profiles, while minimising the risk for ghost stresses....

  9. Experimental investigation of Popper’s proposed ghost-diffraction experiment

    Science.gov (United States)

    Bolduc, Eliot; Karimi, Ebrahim; Piché, Kevin; Leach, Jonathan; Boyd, Robert W.

    2017-10-01

    In an effort to challenge the Copenhagen interpretation of quantum mechanics, Karl Popper proposed an experiment involving spatially separated entangled particles. In this experiment, one of the particles passes through a very narrow slit, and thereby its position becomes well-defined. This particle therefore diffracts into a large divergence angle; this effect can be understood as a consequence of the Heisenberg uncertainty principle. Popper further argued that its entangled partner would become comparably localized in position, and that, according to his understanding of the Copenhagen interpretation of quantum mechanics, the ‘mere knowledge’ of the position of this particle would cause it also to diffract into a large divergence angle. Popper recognized that such behavior could violate the principle of causality in that the slit could be removed and the partner particle would be expected to respond instantaneously. Popper thus concluded that it was most likely the case that, in an actual experiment, the partner photon would not undergo increased diffractive spreading and thus that the Copenhagen interpretation is incorrect. Here, we report and analyze the results of an implementation of Popper’s proposal. We find that the partner beam does not undergo increased diffractive spreading. Our work helps to clarify the issues raised in Popper’s proposal, and it provides further insight into the nature of entanglement and its relation to the uncertainty principle as applied to correlated particles.

  10. Ghost imaging with a single detector

    International Nuclear Information System (INIS)

    Bromberg, Yaron; Katz, Ori; Silberberg, Yaron

    2009-01-01

    We experimentally demonstrate pseudothermal ghost imaging and ghost diffraction using only a single detector. We achieve this by replacing the high-resolution detector of the reference beam with a computation of the propagating field, following a recent proposal by Shapiro [Phys. Rev. A 78, 061802(R) (2008)]. Since only a single detector is used, this provides experimental evidence that pseudothermal ghost imaging does not rely on nonlocal quantum correlations. In addition, we show the depth-resolving capability of this ghost imaging technique.

  11. Lensless imaging for wide field of view

    Science.gov (United States)

    Nagahara, Hajime; Yagi, Yasushi

    2015-02-01

    It is desirable to engineer a small camera with a wide field of view (FOV) because of current developments in the field of wearable cameras and computing products, such as action cameras and Google Glass. However, typical approaches for achieving wide FOV, such as attaching a fisheye lens and convex mirrors, require a trade-off between optics size and the FOV. We propose camera optics that achieve a wide FOV, and are at the same time small and lightweight. The proposed optics are a completely lensless and catoptric design. They contain four mirrors, two for wide viewing, and two for focusing the image on the camera sensor. The proposed optics are simple and can be simply miniaturized, since we use only mirrors for the proposed optics and the optics are not susceptible to chromatic aberration. We have implemented the prototype optics of our lensless concept. We have attached the optics to commercial charge-coupled device/complementary metal oxide semiconductor cameras and conducted experiments to evaluate the feasibility of our proposed optics.

  12. Ghostly footsteps

    DEFF Research Database (Denmark)

    Pinder, David

    2001-01-01

    ), which is set in east London. Connections are also drawn with other recent projects in the same area by Rachel Lichtenstein and Iain Sinclair. The paper discusses how these artists raise important issues about the cultural geographies of the city relating to subjectivity, representation and memory....... Cardiff’s audio-walk in particular works with connections between the self and the city, between the conscious and unconscious, and between multiple selves and urban footsteps. In so doing, she directs attention to the significance of dreams and ghostly matters for thinking about the real and imagined...

  13. Surpassing digital holography limits by lensless object scanning holography.

    Science.gov (United States)

    Micó, Vicente; Ferreira, Carlos; García, Javier

    2012-04-23

    We present lensless object scanning holography (LOSH) as a fully lensless method, capable of improving image quality in reflective digital Fourier holography, by means of an extremely simplified experimental setup. LOSH is based on the recording and digital post-processing of a set of digital lensless holograms and results in a synthetic image with improved resolution, field of view (FOV), signal-to-noise ratio (SNR), and depth of field (DOF). The superresolution (SR) effect arises from the generation of a synthetic aperture (SA) based on the linear movement of the inspected object. The same scanning principle enlarges the object FOV. SNR enhancement is achieved by speckle suppression and coherent artifacts averaging due to the coherent addition of the multiple partially overlapping bandpass images. And DOF extension is performed by digital refocusing to different object's sections. Experimental results showing an impressive image quality improvement are reported for a one-dimensional reflective resolution test target. © 2012 Optical Society of America

  14. Multi-angle lensless digital holography for depth resolved imaging on a chip

    Science.gov (United States)

    Su, Ting-Wei; Isikman, Serhan O.; Bishara, Waheb; Tseng, Derek; Erlinger, Anthony; Ozcan, Aydogan

    2010-01-01

    A multi-angle lensfree holographic imaging platform that can accurately characterize both the axial and lateral positions of cells located within multi-layered micro-channels is introduced. In this platform, lensfree digital holograms of the micro-objects on the chip are recorded at different illumination angles using partially coherent illumination. These digital holograms start to shift laterally on the sensor plane as the illumination angle of the source is tilted. Since the exact amount of this lateral shift of each object hologram can be calculated with an accuracy that beats the diffraction limit of light, the height of each cell from the substrate can be determined over a large field of view without the use of any lenses. We demonstrate the proof of concept of this multi-angle lensless imaging platform by using light emitting diodes to characterize various sized microparticles located on a chip with sub-micron axial and lateral localization over ~60 mm2 field of view. Furthermore, we successfully apply this lensless imaging approach to simultaneously characterize blood samples located at multi-layered micro-channels in terms of the counts, individual thicknesses and the volumes of the cells at each layer. Because this platform does not require any lenses, lasers or other bulky optical/mechanical components, it provides a compact and high-throughput alternative to conventional approaches for cytometry and diagnostics applications involving lab on a chip systems. PMID:20588819

  15. Coherent diffractive imaging methods for semiconductor manufacturing

    Science.gov (United States)

    Helfenstein, Patrick; Mochi, Iacopo; Rajeev, Rajendran; Fernandez, Sara; Ekinci, Yasin

    2017-12-01

    The paradigm shift of the semiconductor industry moving from deep ultraviolet to extreme ultraviolet lithography (EUVL) brought about new challenges in the fabrication of illumination and projection optics, which constitute one of the core sources of cost of ownership for many of the metrology tools needed in the lithography process. For this reason, lensless imaging techniques based on coherent diffractive imaging started to raise interest in the EUVL community. This paper presents an overview of currently on-going research endeavors that use a number of methods based on lensless imaging with coherent light.

  16. Ghost story. II. The midpoint ghost vertex

    International Nuclear Information System (INIS)

    Bonora, L; Maccaferri, C; Scherer Santos, R.J.; Tolla, D D

    2009-01-01

    We construct the ghost number 9 three strings vertex for OSFT in the natural normal ordering. We find two versions, one with a ghost insertion at z = i and a twist-conjugate one with insertion at z = -i. For this reason we call them midpoint vertices. We show that the relevant Neumann matrices commute among themselves and with the matrix G representing the operator K 1 . We analyze the spectrum of the latter and find that beside a continuous spectrum there is a (so far ignored) discrete one. We are able to write spectral formulas for all the Neumann matrices involved and clarify the important role of the integration contour over the continuous spectrum. We then pass to examine the (ghost) wedge states. We compute the discrete and continuous eigenvalues of the corresponding Neumann matrices and show that they satisfy the appropriate recursion relations. Using these results we show that the formulas for our vertices correctly define the star product in that, starting from the data of two ghost number 0 wedge states, they allow us to reconstruct a ghost number 3 state which is the expected wedge state with the ghost insertion at the midpoint, according to the star recursion relation.

  17. Ghost cell lesions

    Directory of Open Access Journals (Sweden)

    E Rajesh

    2015-01-01

    Full Text Available Ghost cells have been a controversy for a long time. Ghost cell is a swollen/enlarged epithelial cell with eosnophilic cytoplasm, but without a nucleus. In routine H and E staining these cells give a shadowy appearance. Hence these cells are also called as shadow cells or translucent cells. The appearance of these cells varies from lesion to lesion involving odontogenic and nonodontogenic lesions. This article review about the origin, nature and significance of ghost cells in different neoplasms.

  18. Classical and quantum ghosts

    International Nuclear Information System (INIS)

    Sbisà, Fulvio

    2015-01-01

    The aim of these notes is to provide a self-contained review of why it is generically a problem when a solution of a theory possesses ghost fields among the perturbation modes. We define what a ghost field is and we show that its presence is associated with a classical instability whenever the ghost field interacts with standard fields. We then show that the instability is more severe at quantum level, and that perturbative ghosts can exist only in low energy effective theories. However, if we do not consider very ad hoc choices, compatibility with observational constraints implies that low energy effective ghosts can exist only at the price of giving up Lorentz invariance or locality above the cut-off, in which case the cut-off has to be much lower that the energy scales we currently probe in particle colliders. We also comment on the possible role of extra degrees of freedom which break Lorentz invariance spontaneously. (paper)

  19. Ghost D-branes

    International Nuclear Information System (INIS)

    Okuda, Takuya; Takayanagi, Tadashi

    2006-01-01

    We define a ghost D-brane in superstring theories as an object that cancels the effects of an ordinary D-brane. The supergroups U(N|M) and OSp(N/M) arise as gauge symmetries in the supersymmetric world-volume theory of D-branes and ghost D-branes. A system with a pair of D-brane and ghost D-brane located at the same location is physically equivalent to the closed string vacuum. When they are separated, the system becomes a new brane configuration. We generalize the type I/heterotic duality by including n ghost D9-branes on the type I side and by considering the heterotic string whose gauge group is OSp(32+2n/2n). Motivated by the type IIB S-duality applied to D9- and ghost D9-branes, we also find type II-like closed superstrings with U(n/n) gauge symmetry

  20. Ghost counting in supergravity

    International Nuclear Information System (INIS)

    Nielsen, N.K.

    1978-04-01

    The elimination of unphysical degrees of freedom from a quantized massless Rarita-Schwinger field interacting with a (quantized or classical) gravitational field is analyzed on the one-loop level. It is shown that, besides the ordinary Faddeev-Popov ghosts, an extra ghost is needed to remove the effects of unphysical modes. The new ghost only couples to the S matrix if the gauge-fixing of the Rarita-Schwinger field involves the gravitational field, but it is necessary in the partition function for other gauge choices. (Auth.)

  1. Ghost counting in supergravity

    International Nuclear Information System (INIS)

    Nielsen, N.K.

    1978-01-01

    The elimination of unphysical degrees of freedom from a quantized massless Rarita-Schwinger field interacting with a (quantized or classical) gravitational field is analyzed on the one-loop level. It is shown that, besides the ordinary Faddeev-Popov ghosts, an extra ghost is needed to remove the effects of unphysical modes. The new ghost only couples to the S-matrix if the gauge-fixing of the Rarita-Schwinger field involves the gravitational field, but it is necessary in the partition function for other gauge choices. (Auth.)

  2. Ghost basis for neutrino

    International Nuclear Information System (INIS)

    Novello, M.

    1976-07-01

    A class of solutions of DIRAC'S equation in gravitational fields for ghost neutrinos is given. Comments are restricted to the neutrino cosmological model recently found by M. Novello e I.D. Soares [pt

  3. New Mexico Ghost Towns

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This data provides locations and non-spatial attributes of many ghost towns in the State of New Mexico, compiled from various sources. Locations provided with...

  4. Geometric ghosts and unitarity

    International Nuclear Information System (INIS)

    Ne'eman, Y.

    1980-09-01

    A review is given of the geometrical identification of the renormalization ghosts and the resulting derivation of Unitarity equations (BRST) for various gauges: Yang-Mills, Kalb-Ramond, and Soft-Group-Manifold

  5. Study of key technology of ghost imaging via compressive sensing for a phase object based on phase-shifting digital holography

    International Nuclear Information System (INIS)

    Leihong, Zhang; Dong, Liang; Bei, Li; Zilan, Pan; Dawei, Zhang; Xiuhua, Ma

    2015-01-01

    In this article, the algorithm of compressing sensing is used to improve the imaging resolution and realize ghost imaging via compressive sensing for a phase object based on the theoretical analysis of the lensless Fourier imaging of the algorithm of ghost imaging based on phase-shifting digital holography. The algorithm of ghost imaging via compressive sensing based on phase-shifting digital holography uses the bucket detector to measure the total light intensity of the interference and the four-step phase-shifting method is used to obtain the total light intensity of differential interference light. The experimental platform is built based on the software simulation, and the experimental results show that the algorithm of ghost imaging via compressive sensing based on phase-shifting digital holography can obtain the high-resolution phase distribution figure of the phase object. With the same sampling times, the phase clarity of the phase distribution figure obtained by the algorithm of ghost imaging via compressive sensing based on phase-shifting digital holography is higher than that obtained by the algorithm of ghost imaging based on phase-shift digital holography. In this article, this study further extends the application range of ghost imaging and obtains the phase distribution of the phase object. (letter)

  6. Ghost telescope and ghost Fourier telescope with thermal light

    International Nuclear Information System (INIS)

    Gong Wenlin; Han Shensheng

    2011-01-01

    As important observation tools, telescopes are very useful in remote observations. We report a proof-of-principle experimental demonstration of ghost telescope scheme and show that, by measuring the intensity correlation of two light fields and only changing the position of the detector in the reference path, ghost telescope and ghost Fourier telescope can be obtained even if a single-pixel detector is fixed in Fresnel region of the object. Differences between conventional telescope and ghost telescope are also discussed.

  7. On ghost fermions

    International Nuclear Information System (INIS)

    Grensing, G.

    2002-01-01

    The path integral for ghost fermions, which is heuristically made use of in the Batalin-Fradkin-Vilkovisky approach to quantization of constrained systems, is derived from first principles. The derivation turns out to be rather different from that of physical fermions since the definition of Dirac states for ghost fermions is subtle. With these results at hand, it is then shown that the nonminimal extension of the Becchi-Rouet-Stora-Tyutin operator must be chosen differently from the notorious choice made in the literature in order to avoid the boundary terms that have always plagued earlier treatments. Furthermore it is pointed out that the elimination of states with nonzero ghost number requires the introduction of a thermodynamic potential for ghosts; the reason is that Schwarz's Lefschetz formula for the partition function of the time-evolution operator is not capable, despite claims to the contrary, to get rid of nonzero ghost number states on its own. Finally, we comment on the problems of global topological nature that one faces in the attempt to obtain the solutions of the Dirac condition for physical states in a configuration space of nontrivial geometry; such complications give rise to anomalies that do not obey the Wess-Zumino consistency conditions. (orig.)

  8. GHOST balloons around Antarctica

    Science.gov (United States)

    Stearns, Charles R.

    1988-01-01

    The GHOST balloon position as a function of time data shows that the atmospheric circulation around the Antarctic Continent at the 100 mb and 200 mb levels is complex. The GHOST balloons supposedly follow the horizontal trajectory of the air at the balloon level. The position of GHOST balloon 98Q for a three month period in 1968 is shown. The balloon moved to within 2 deg of the South Pole on 1 October 1968 and then by 9 December 1968 was 35 deg from the South Pole and close to its position on 1 September 1968. The balloon generally moved from west to east but on two occasions moved in the opposite direction for a few days. The latitude of GHOST balloons 98Q and 149Z which was at 200 mb is given. Both balloons tended to get closer to the South Pole in September and October. Other GHOST balloons at the same pressure and time period may not indicate similar behavior.

  9. Ghost tablet in feces.

    Science.gov (United States)

    Iwamuro, Masaya; Morishita, Yosuke; Urata, Haruo; Okada, Hiroyuki

    2017-12-01

    Recently, we encountered a female patient who identified the presence of a ghost tablet in her fecal matter. Interestingly, although the patient was prescribed potassium chloride capsules, elemental composition analysis by energy-dispersive X-ray spectroscopy was unable to detect the presence of either potassium or chloride in the fecal tablet remnant.

  10. Giving up the ghost

    International Nuclear Information System (INIS)

    Bender, Carl M; Mannheim, Philip D

    2008-01-01

    The Pais-Uhlenbeck model is a quantum theory described by a higher-derivative field equation. It has been believed for many years that this model possesses ghost states (quantum states of negative norm) and therefore that this model is a physically unacceptable quantum theory. The existence of such ghost states was believed to be attributable to the field equation having more than two derivatives. This paper shows that the Pais-Uhlenbeck model does not possess any ghost states at all and that it is a perfectly acceptable quantum theory. The supposed ghost states in this model arise if the Hamiltonian of the model is (incorrectly) treated as being Dirac Hermitian (invariant under combined matrix transposition and complex conjugation). However, the Hamiltonian is not Dirac Hermitian, but rather it is PT symmetric. When it is quantized correctly according to the rules of PT quantum mechanics, the energy spectrum is real and bounded below and all of the quantum states have positive norm

  11. Ghost imaging with atoms

    Science.gov (United States)

    Khakimov, R. I.; Henson, B. M.; Shin, D. K.; Hodgman, S. S.; Dall, R. G.; Baldwin, K. G. H.; Truscott, A. G.

    2016-12-01

    Ghost imaging is a counter-intuitive phenomenon—first realized in quantum optics—that enables the image of a two-dimensional object (mask) to be reconstructed using the spatio-temporal properties of a beam of particles with which it never interacts. Typically, two beams of correlated photons are used: one passes through the mask to a single-pixel (bucket) detector while the spatial profile of the other is measured by a high-resolution (multi-pixel) detector. The second beam never interacts with the mask. Neither detector can reconstruct the mask independently, but temporal cross-correlation between the two beams can be used to recover a ‘ghost’ image. Here we report the realization of ghost imaging using massive particles instead of photons. In our experiment, the two beams are formed by correlated pairs of ultracold, metastable helium atoms, which originate from s-wave scattering of two colliding Bose-Einstein condensates. We use higher-order Kapitza-Dirac scattering to generate a large number of correlated atom pairs, enabling the creation of a clear ghost image with submillimetre resolution. Future extensions of our technique could lead to the realization of ghost interference, and enable tests of Einstein-Podolsky-Rosen entanglement and Bell’s inequalities with atoms.

  12. Getting started with Ghost

    CERN Document Server

    Bracey, Kezz; Balderston, David

    2014-01-01

    If you are new to Ghost, this book is ideal for you. You might be completely new to content management systems or you might have experience with others such as WordPress. Some knowledge of web design basics such as HTML and CSS will be useful, but the book is designed so you can enter at the point relevant to you.

  13. Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring.

    Science.gov (United States)

    Wu, Yichen; Ozcan, Aydogan

    2018-03-01

    Optical compound microscope has been a major tool in biomedical imaging for centuries. Its performance relies on relatively complicated, bulky and expensive lenses and alignment mechanics. In contrast, the lensless microscope digitally reconstructs microscopic images of specimens without using any lenses, as a result of which it can be made much smaller, lighter and lower-cost. Furthermore, the limited space-bandwidth product of objective lenses in a conventional microscope can be significantly surpassed by a lensless microscope. Such lensless imaging designs have enabled high-resolution and high-throughput imaging of specimens using compact, portable and cost-effective devices to potentially address various point-of-care, global-health and telemedicine related challenges. In this review, we discuss the operation principles and the methods behind lensless digital holographic on-chip microscopy. We also go over various applications that are enabled by cost-effective and compact implementations of lensless microscopy, including some recent work on air quality monitoring, which utilized machine learning for high-throughput and accurate quantification of particulate matter in air. Finally, we conclude with a brief future outlook of this computational imaging technology. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Machine Learning Based Single-Frame Super-Resolution Processing for Lensless Blood Cell Counting

    Directory of Open Access Journals (Sweden)

    Xiwei Huang

    2016-11-01

    Full Text Available A lensless blood cell counting system integrating microfluidic channel and a complementary metal oxide semiconductor (CMOS image sensor is a promising technique to miniaturize the conventional optical lens based imaging system for point-of-care testing (POCT. However, such a system has limited resolution, making it imperative to improve resolution from the system-level using super-resolution (SR processing. Yet, how to improve resolution towards better cell detection and recognition with low cost of processing resources and without degrading system throughput is still a challenge. In this article, two machine learning based single-frame SR processing types are proposed and compared for lensless blood cell counting, namely the Extreme Learning Machine based SR (ELMSR and Convolutional Neural Network based SR (CNNSR. Moreover, lensless blood cell counting prototypes using commercial CMOS image sensors and custom designed backside-illuminated CMOS image sensors are demonstrated with ELMSR and CNNSR. When one captured low-resolution lensless cell image is input, an improved high-resolution cell image will be output. The experimental results show that the cell resolution is improved by 4×, and CNNSR has 9.5% improvement over the ELMSR on resolution enhancing performance. The cell counting results also match well with a commercial flow cytometer. Such ELMSR and CNNSR therefore have the potential for efficient resolution improvement in lensless blood cell counting systems towards POCT applications.

  15. Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring

    KAUST Repository

    Wu, Yichen; Ozcan, Aydogan

    2017-01-01

    Optical compound microscope has been a major tool in biomedical imaging for centuries. Its performance relies on relatively complicated, bulky and expensive lenses and alignment mechanics. In contrast, the lensless microscope digitally reconstructs microscopic images of specimens without using any lenses, as a result of which it can be made much smaller, lighter and lower-cost. Furthermore, the limited space-bandwidth product of objective lenses in a conventional microscope can be significantly surpassed by a lensless microscope. Such lensless imaging designs have enabled high-resolution and high-throughput imaging of specimens using compact, portable and cost-effective devices to potentially address various point-of-care, global-health and telemedicine related challenges. In this review, we discuss the operation principles and the methods behind lensless digital holographic on-chip microscopy. We also go over various applications that are enabled by cost-effective and compact implementations of lensless microscopy, including some recent work on air quality monitoring, which utilized machine learning for high-throughput and accurate quantification of particulate matter in air. Finally, we conclude with a brief future outlook of this computational imaging technology.

  16. Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring

    KAUST Repository

    Wu, Yichen

    2017-08-31

    Optical compound microscope has been a major tool in biomedical imaging for centuries. Its performance relies on relatively complicated, bulky and expensive lenses and alignment mechanics. In contrast, the lensless microscope digitally reconstructs microscopic images of specimens without using any lenses, as a result of which it can be made much smaller, lighter and lower-cost. Furthermore, the limited space-bandwidth product of objective lenses in a conventional microscope can be significantly surpassed by a lensless microscope. Such lensless imaging designs have enabled high-resolution and high-throughput imaging of specimens using compact, portable and cost-effective devices to potentially address various point-of-care, global-health and telemedicine related challenges. In this review, we discuss the operation principles and the methods behind lensless digital holographic on-chip microscopy. We also go over various applications that are enabled by cost-effective and compact implementations of lensless microscopy, including some recent work on air quality monitoring, which utilized machine learning for high-throughput and accurate quantification of particulate matter in air. Finally, we conclude with a brief future outlook of this computational imaging technology.

  17. Birefringent coherent diffraction imaging

    Science.gov (United States)

    Karpov, Dmitry; dos Santos Rolo, Tomy; Rich, Hannah; Kryuchkov, Yuriy; Kiefer, Boris; Fohtung, E.

    2016-10-01

    Directional dependence of the index of refraction contains a wealth of information about anisotropic optical properties in semiconducting and insulating materials. Here we present a novel high-resolution lens-less technique that uses birefringence as a contrast mechanism to map the index of refraction and dielectric permittivity in optically anisotropic materials. We applied this approach successfully to a liquid crystal polymer film using polarized light from helium neon laser. This approach is scalable to imaging with diffraction-limited resolution, a prospect rapidly becoming a reality in view of emergent brilliant X-ray sources. Applications of this novel imaging technique are in disruptive technologies, including novel electronic devices, in which both charge and spin carry information as in multiferroic materials and photonic materials such as light modulators and optical storage.

  18. Ghost Stories, Ghost Estates: Melancholia in Irish Recession Literature

    Directory of Open Access Journals (Sweden)

    Molly Slavin

    2017-01-01

    Full Text Available This article considers representations of melancholia in post-Celtic Tiger Irish literature. By situating their post-recession fictions in “ghost estates,” or largely uninhabited housing developments, Donal Ryan and Tana French present neoliberally-inflected varieties of melancholia for their contemporary readers to contemplate. The settings of the ghost estates – and the accompanying supernatural elements to the texts – call to mind ghosts of Ireland’s past and legacies of recent economically unsound policies, spurring the reader to think about the imagined loss of futurity that accompanied the Irish economic crash. “Ghost stories for ghost estates,” then, represent an important contribution to the growing field of post-recession Irish literature.

  19. Ghost quintessence in fractal gravity

    Indian Academy of Sciences (India)

    In this study, using the time-like fractal theory of gravity, we mainly focus on the ghost dark energy model which was recently suggested to explain the present acceleration of the cosmic expansion. Next, we establish a connection between the quintessence scalar field and fractal ghost dark energy density.

  20. Magnetic ghosts and monopoles

    International Nuclear Information System (INIS)

    Vandewalle, N; Dorbolo, S

    2014-01-01

    While the physics of equilibrium systems composed of many particles is well known, the interplay between small-scale physics and global properties is still a mystery for athermal systems. Non-trivial patterns and metastable states are often reached in those systems. We explored the various arrangements adopted by magnetic beads along chains and rings. Here, we show that it is possible to create mechanically stable defects in dipole arrangements keeping the memory of dipole frustration. Such defects, nicknamed ‘ghost junctions’, seem to act as macroscopic magnetic monopoles, in a way reminiscent of spin ice systems. (paper)

  1. Ghost-Story Telling: Keeping It Appropriate.

    Science.gov (United States)

    Weintraub, Jeff

    1996-01-01

    Guidelines for telling ghost stories at camp involve considering children's fears at different ages, telling age appropriate stories, determining appropriate times for telling ghost stories, and minimizing fear when a child becomes frightened by a ghost story. Includes tips on the selection, preparation, and presentation of ghost stories. (LP)

  2. Living with ghosts

    International Nuclear Information System (INIS)

    Hawking, S.W.; Hertog, Thomas

    2002-01-01

    Perturbation theory for gravity in dimensions greater than two requires higher derivatives in the free action. Higher derivatives seem to lead to ghosts, states with negative norm. We consider a fourth order scalar field theory and show that the problem with ghosts arises because, in the canonical treatment, φ and □φ are regarded as two independent variables. Instead, we base quantum theory on a path integral, evaluated in Euclidean space and then Wick rotated to Lorentzian space. The path integral requires that quantum states be specified by the values of φ and φ ,τ . To calculate probabilities for observations, one has to trace out over φ ,τ on the final surface. Hence one loses unitarity, but one can never produce a negative norm state or get a negative probability. It is shown that transition probabilities tend toward those of the second order theory, as the coefficient of the fourth order term in the action tends to zero. Hence unitarity is restored at the low energies that now occur in the universe

  3. Cosmology with a light ghost

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Mikhail M.; Tokareva, Anna A., E-mail: mikhail.ivanov@cern.ch, E-mail: anna.tokareva@epfl.ch [Institute of Physics, LPPC, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne (Switzerland)

    2016-12-01

    We study the creation and evolution of cosmological perturbations in renormalizable quadratic gravity with a Weyl term. We adopt a prescription that implies the stability of the vacuum at the price of introducing a massive spin-two ghost state, leading to the loss of unitarity. The theory may still be predictive regardless the interpretation of non-unitary processes provided that their rate is negligible compared to the Universe expansion rate. This implies that the ghost is effectively stable. In such a setup, there are two scalar degrees of freedom excited during inflation. The first one is the usual curvature perturbation whose power spectrum appears to coincide with that of single-field inflation. The second one is a scalar component of the ghost encoded in the shift vector of the metric in the uniform inflaton gauge. The amplitudes of primordial tensor and vector perturbations are strongly suppressed. After inflation the ghost field starts to oscillate and its energy density shortly becomes dominant in the Universe. For all ghost masses allowed by laboratory constraints ghosts should have ''overclosed'' the Universe at temperatures higher than that of primordial nucleosynthesis. Thus, the model with the light Weyl ghost is ruled out.

  4. Theoretical study of ghost imaging with cold atomic waves under the condition of partial coherence

    International Nuclear Information System (INIS)

    Chen, Jun; Liu, Yun-Xian

    2014-01-01

    A matter wave ghost imaging mechanism is proposed and demonstrated theoretically. This mechanism is based on the Talbot-Lau effect. Periodic gratings of matter wave density, which appear as a result of interference of atoms diffracted by pulses of an optical standing wave, are utilized to produce the reference wave and the signal wave simultaneously for the ghost imaging. An advantage of this mechanism is that during the imaging process, the beam-splitter is not needed, which highly simplifies the experimental setup and makes the ghost imaging possible in the field of matter wave

  5. Inflation with light Weyl ghost

    Directory of Open Access Journals (Sweden)

    Tokareva Anna

    2016-01-01

    Full Text Available Inflationary perturbations are considered in a renormalizable but non-unitary theory of gravity with the additional Weyl term. We obtained that ghost degrees of freedom do not spoil the inflation and the scalar perturbation amplitude at the linear level even in a case of the ghost with mass smaller than Hubble parameter at inflation. The ghost impact to the observables is also estimated to be negligible for the range of masses allowed by the experiment. The non-linear level of the theory and its possible application are also discussed.

  6. Ghost Imaging of Space Objects

    Data.gov (United States)

    National Aeronautics and Space Administration — Ghost imaging is an optical imaging technique that utilizes the correlations between optical fields in two channels. One of the channels contains the object, however...

  7. Witten's ghost vertex made simple

    International Nuclear Information System (INIS)

    Belov, D.M.

    2004-01-01

    First, we diagonalize the bc-ghost 3-string Neumann matrices using the technique described in Phys. Rev. D 68, 066003 (2003). Their eigenvalues are in complete agreement with the previous authors. Second, we diagonalize the N-string gluing vertices for the bosonized ghost system. Third, we verify the descent and associativity relations for the combined bosonic matter+ghost gluing vertices. We find that in order for these relations to be true, the vertices must be normalized by the factor Z N . Here Z N is the partition function of the bosonic matter+ghost CFT on the gluing surface, which is the unit disk with the Neumann boundary conditions and the midpoint conelike singularity specified by the angle excess π(N-2)

  8. Ghost Head Nebula

    Science.gov (United States)

    1999-01-01

    Looking like a colorful holiday card, a new image from NASA's Hubble Space Telescope reveals a vibrant green and red nebula far from Earth. The image of NGC 2080, taken by Hubble's Wide Field and Planetary Camera 2, designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif., is available online at http://www.jpl.nasa.gov/images/wfpc . Images like this help astronomers investigate star formation in nebulas. NGC 2080, nicknamed 'The Ghost Head Nebula,' is one of a chain of star-forming regions lying south of the 30 Doradus nebula in the Large Magellanic Cloud. 30 Doradus is the largest star-forming complex in the local group of galaxies. This 'enhanced color' picture is composed of three narrow-band-filter images obtained by Hubble on March 28, 2000. The red and blue light come from regions of hydrogen gas heated by nearby stars. The green light on the left comes from glowing oxygen. The energy to illuminate the green light is supplied by a powerful stellar wind, a stream of high-speed particles coming from a massive star just outside the image. The central white region is a combination of all three emissions and indicates a core of hot, massive stars in this star-formation region. Intense emission from these stars has carved a bowl-shaped cavity in surrounding gas. In the white region, the two bright areas (the 'eyes of the ghost') - named A1 (left) and A2 (right) -- are very hot, glowing 'blobs' of hydrogen and oxygen. The bubble in A1 is produced by the hot, intense radiation and powerful stellar wind from one massive star. A2 contains more dust and several hidden, massive stars. The massive stars in A1 and A2 must have formed within the last 10,000 years, since their natal gas shrouds are not yet disrupted by the powerful radiation of the newborn stars. The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract with the Goddard Space Flight Center, Greenbelt, Md. The

  9. Multispectral digital lensless holographic microscopy: from femtosecond laser to white light LED

    International Nuclear Information System (INIS)

    Garcia-Sucerquia, J

    2015-01-01

    The use of femtosecond laser radiation and super bright white LED in digital lensless holographic microscopy is presented. For the ultrafast laser radiation two different configurations of operation of the microscope are presented and the dissimilar performance of each one analyzed. The microscope operating with a super bright white light LED in combination with optical filters shows very competitive performance as it is compared with more expensive optical sources. The broadband emission of both radiation sources allows the multispectral imaging of biological samples to obtain spectral responses and/or full color images of the microscopic specimens; sections of the head of a Drosophila melanogaster fly are imaged in this contribution. The simple, solid, compact, lightweight, and reliable architecture of digital lensless holographic microscopy operating with broadband light sources to image biological specimens exhibiting micrometer-sized details is evaluated in the present contribution. (paper)

  10. Using Ghost Reflections Rather than Removing Them

    NARCIS (Netherlands)

    Blacquiere, G.; Berkhout, A.J.

    2015-01-01

    In marine acquisition both a direct wavefield and a ghost wavefield are produced as well as recorded. Hence, the seismic data can be considered to be a natural blend of four wavefields related to the real sources, ghost sources, real detectors and ghost detectors respectively. We consider deghosting

  11. Confessions of Academic Ghost Authors

    Directory of Open Access Journals (Sweden)

    Ehsan Shahghasemi

    2015-02-01

    Full Text Available Academic plagiarism exists in all academic spheres, but contextual factors determine the level, intensity, and forms of it. Over the last few years, the phenomenon of “Ghost Authorship” has become widespread in Iran, and concerns have been expressed regarding this issue, not only by academicians but also by officials. In this study, 143 students participated in a two-step interview study in which they spoke about their experiences on either seeing a ghost author doing the research of someone else in exchange of money or they themselves being a ghost author. In all, 29 students said that they had done it once or so. The in-depth interviews with these 29 students showed how the plagiarism industry works in Iran, who the customers are, how they find each other, and so on.

  12. Ghost condensate and generalized second law

    International Nuclear Information System (INIS)

    Mukohyama, Shinji

    2009-01-01

    Dubovsky and Sibiryakov recently proposed a scenario in which particles of different species propagate with different speeds due to their direct couplings to ghost condensate. It was argued that this extended version of ghost condensate allows a gedanken experiment leading to violation of the generalized second law. However, in the original ghost condensate scenario, difference in propagation speeds is suppressed by M 2 /M Pl 2 , where M is the order parameter of spontaneous Lorentz breaking and M Pl is the Planck scale. In this case the energy transfer necessary for the gedanken experiment is so slow that the timescale of decrease of entropy, if any, is always longer than the Jeans timescale of ghost condensate. Hence the generalized second law is not violated by the gedanken experiment in the original ghost condensate scenario. This conclusion trivially extends to gauged ghost condensation by taking into account accretion of gauged ghost condensate into a black hole.

  13. Unexorcized ghost in DGP brane world

    International Nuclear Information System (INIS)

    Izum, Keisuke; Tanaka, Takahiro; Koyama, Kazuya

    2007-01-01

    The brane world model proposed by Dvali-Gabadadze-Porrati realizes self-acceleration of the universe. However, it is known that this cosmological solution contains a spin-2 ghost. We study the possibility of avoiding the appearance of the ghost by slightly modifying the model via the introduction of a second brane. First, we consider a simple model without stabilization of the brane separation. By changing the separation between the branes, we find that we can erase the spin-2 ghost. However, this can be done only at the expense of the appearance of a spin-0 ghost instead. We discuss why these two different types of ghosts are correlated. Then, we examine a model with stabilization of the brane separation. Even in this case, we find that the correlation between spin-0 and spin-2 ghosts remains. As a result we find that we cannot avoid the appearance of a ghost by introducing a second brane in the model

  14. Black holes in the ghost condensate

    International Nuclear Information System (INIS)

    Mukohyama, Shinji

    2005-01-01

    We investigate how the ghost condensate reacts to black holes immersed in it. A ghost condensate defines a hypersurface-orthogonal congruence of timelike curves, each of which has the tangent vector u μ =-g μν ∂ ν φ. It is argued that the ghost condensate in this picture approximately corresponds to a congruence of geodesics. In other words, the ghost condensate accretes into a black hole just like a pressureless dust. Correspondingly, if the energy density of the ghost condensate at large distance is set to an extremely small value by cosmic expansion then the late-time accretion rate of the ghost condensate should be negligible. The accretion rate remains very small even if effects of higher derivative terms are taken into account, provided that the black hole is sufficiently large. It is also discussed how to reconcile the black-hole accretion with the possibility that the ghost condensate might behave like dark matter

  15. Ghost quintessence in fractal gravity

    Indian Academy of Sciences (India)

    In this study, using the time-like fractal theory of gravity, we mainly focus on the ghost ... Here a(t) is the cosmic scale factor and it measures the expansion of the Universe. ..... effectively appear as self-conserved dark energy, with a non-trivial ...

  16. Correspondence between quantum gauge theories without ghost fields and their covariantly quantized theories with ghost fields

    International Nuclear Information System (INIS)

    Cheng Hung; Tsai Ercheng

    1986-01-01

    We give a correspondence formula which equates transition amplitudes in a quantum gauge field theory without ghost fields to those in a quantum theory with the gauge fields covariantly quantized and coupled to ghost fields. (orig.)

  17. Ghost signals in Allison emittance scanners

    International Nuclear Information System (INIS)

    Stockli, Martin P.; Leitner, M.; Moehs, D.P.; Keller, R.; Welton, R.F.

    2004-01-01

    For over 20 years, Allison scanners have been used to measure emittances of low-energy ion beams. We show that scanning large trajectory angles produces ghost signals caused by the sampled beamlet impacting on an electric deflection plate. The ghost signal strength is proportional to the amount of beam entering the scanner. Depending on the ions, and their velocity, the ghost signals can have the opposite or the same polarity as the main beam signals. The ghost signals cause significant errors in the emittance estimates because they appear at large trajectory angles. These ghost signals often go undetected because they partly overlap with the real signals, are mostly below the 1% level, and often hide in the noise. A simple deflection plate modification is shown to reduce the ghost signal strength by over 99%

  18. Ghost Signals In Allison Emittance Scanners

    International Nuclear Information System (INIS)

    Stockli, Martin P.; Leitner, M.; Keller, R.; Moehs, D.P.; Welton, R. F.

    2005-01-01

    For over 20 years, Allison scanners have been used to measure emittances of low-energy ion beams. We show that scanning large trajectory angles produces ghost signals caused by the sampled beamlet impacting on an electric deflection plate. The ghost signal strength is proportional to the amount of beam entering the scanner. Depending on the ions, and their velocity, the ghost signals can have the opposite or the same polarity as the main beam signals. The ghost signals cause significant errors in the emittance estimates because they appear at large trajectory angles. These ghost signals often go undetected because they partly overlap with the real signals, are mostly below the 1% level, and often hide in the noise. A simple deflection plate modification is shown to reduce the ghost signal strength by over 99%

  19. Ghost properties of generalized theories of gravitation

    International Nuclear Information System (INIS)

    Mann, R.B.; Moffat, J.W.

    1982-01-01

    We investigate theories of gravitation, in which spacetime is non-Riemannian and the metric g/sub munu/ is nonsymmetric, for ghosts and tachyons, using a spin-projection operator formalism. Ghosts are removed not by gauge invariance but by a Lagrange multiplier W/sub μ/, which occurs due to the breaking of projective invariance in the theory. Unified theories based on a Lagrangian containing a term lambdag/sup munu/g/sub / are proved to contain ghosts or tachyons

  20. Peripheral dentinogenic ghost cell tumor

    Directory of Open Access Journals (Sweden)

    Sushant S Kamat

    2013-01-01

    Full Text Available Dentinogenic ghost cell tumors (DGCT are uncommon lesions mainly with rare peripheral types. This report presents a case of peripheral DGCT on the left side of the mandibular alveolar ridge of a heavy smoker, a 68-year-old man, with main presenting feature as a mild pain. Submandibular lymphadenopathy and radiological "saucerization" were evident. Differential diagnosis included fibroma, neurofibroma, peripheral ameloblastoma, peripheral odontogenic fibroma, and peripheral giant cell granuloma. Histologically, ameloblastoma-like epithelial elements were seen in association with grouped ghost cells. Proliferating polyhedral cells and stellate reticulum-like cells with various densities were spread over a wide range of the field. The lesion was curetted and after 2 years of follow up, it did not recur.

  1. UV-extending Ghost Inflation

    CERN Document Server

    Ivanov, Mikhail M

    2014-01-01

    We present a setup that provides a partial UV-completion of the ghost inflation model up to a scale which can be almost as high as the Planck mass. This is achieved by coupling the inflaton to the Lorentz-violating sector described by the Einstein-aether theory or its khronometric version. Compared to previous works on ghost inflation our setup allows to go beyond the study of small perturbations and include the background dynamics in a unified framework. In the specific regime when the expansion of the Universe is dominated by the kinetic energy of the inflaton we find that the model predicts rather high tensor-to-scalar ratio r ~ 0.02 $\\div$ 0.2 and non-Gaussianity of equilateral type with f_NL in the range from -50 to -5.

  2. Recovering a hidden polarization by ghost polarimetry.

    Science.gov (United States)

    Janassek, Patrick; Blumenstein, Sébastien; Elsäßer, Wolfgang

    2018-02-15

    By exploiting polarization correlations of light from a broadband fiber-based amplified spontaneous emission source we succeed in reconstructing a hidden polarization in a ghost polarimetry experiment in close analogy to ghost imaging and ghost spectroscopy. Thereby, an original linear polarization state in the object arm of a Mach-Zehnder interferometer configuration which has been camouflaged by a subsequent depolarizer is recovered by correlating it with light from a reference beam. The variation of a linear polarizer placed inside the reference beam results in a Malus law type second-order intensity correlation with high contrast, thus measuring a ghost polarigram.

  3. Entangled spins and ghost-spins

    Directory of Open Access Journals (Sweden)

    Dileep P. Jatkar

    2017-09-01

    Full Text Available We study patterns of quantum entanglement in systems of spins and ghost-spins regarding them as simple quantum mechanical toy models for theories containing negative norm states. We define a single ghost-spin as in [20] as a 2-state spin variable with an indefinite inner product in the state space. We find that whenever the spin sector is disentangled from the ghost-spin sector (both of which could be entangled within themselves, the reduced density matrix obtained by tracing over all the ghost-spins gives rise to positive entanglement entropy for positive norm states, while negative norm states have an entanglement entropy with a negative real part and a constant imaginary part. However when the spins are entangled with the ghost-spins, there are new entanglement patterns in general. For systems where the number of ghost-spins is even, it is possible to find subsectors of the Hilbert space where positive norm states always lead to positive entanglement entropy after tracing over the ghost-spins. With an odd number of ghost-spins however, we find that there always exist positive norm states with negative real part for entanglement entropy after tracing over the ghost-spins.

  4. Exorcising ghosts in induced gravity

    Energy Technology Data Exchange (ETDEWEB)

    Narain, Gaurav [Chinese Academy of Sciences (CAS), Key Laboratory of Theoretical Physics, Kavli Institute for Theoretical Physics China (KITPC), Institute of Theoretical Physics, Beijing (China)

    2017-10-15

    Unitarity of the scale-invariant coupled theory of higher-derivative gravity and matter is investigated. A scalar field coupled with a Dirac fermion is taken as the matter sector. Following the idea of induced gravity the Einstein-Hilbert term is generated via dynamical symmetry breaking of scale invariance. The renormalisation group flows are computed and one-loop RG improved effective potential of scalar is calculated. The scalar field develops a new minimum via the Coleman-Weinberg procedure inducing the Newton constant and masses in the matter sector. The spin-2 problematic ghost and the spin-0 mode of the metric fluctuation get a mass in the broken phase of the theory. The energy dependence of the vacuum expectation value in the RG improved scenario implies a running for the induced parameters. This sets up platform to ask whether it is possible to evade the spin-2 ghost by keeping its mass always above the running energy scale? In broken phase this question is satisfactorily answered for a large domain of coupling parameter space where the ghost is evaded. The spin-0 mode can be made physically realisable or not depending upon the choice of the initial parameters. The induced Newton constant is seen to vanish in the ultraviolet case. By properly choosing parameters it is possible to make the matter fields physically unrealisable. (orig.)

  5. Ghost Imaging of Space Objects

    International Nuclear Information System (INIS)

    Strekalov, Dmitry V; Erkmen, Baris I; Yu Nan

    2013-01-01

    The term 'ghost imaging' was coined in 1995 when an optical correlation measurement in combination with an entangled photon-pair source was used to image a mask placed in one optical channel by raster-scanning a detector in the other, empty, optical channel. Later, it was shown that the entangled photon source could be replaced with thermal sources of light, which are abundantly available as natural illumination sources. It was also shown that the bucket detector could be replaced with a remote point-like detector, opening the possibility to remote-sensing imaging applications. In this paper, we discuss the application of ghost-imaging-like techniques to astronomy, with the objective of detecting intensity-correlation signatures resulting from space objects of interest, such as exo-planets, gas clouds, and gravitational lenses. An important aspect of being able to utilize ghost imaging in astronomy, is the recognition that in interstellar imaging geometries the object of interest can act as an effective beam splitter, yielding detectable variations in the intensity-correlation signature.

  6. Reconstruction of on-axis lensless Fourier transform digital hologram with the screen division method

    Science.gov (United States)

    Jiang, Hongzhen; Liu, Xu; Liu, Yong; Li, Dong; Chen, Zhu; Zheng, Fanglan; Yu, Deqiang

    2017-10-01

    An effective approach for reconstructing on-axis lensless Fourier Transform digital hologram by using the screen division method is proposed. Firstly, the on-axis Fourier Transform digital hologram is divided into sub-holograms. Then the reconstruction result of every sub-hologram is obtained according to the position of corresponding sub-hologram in the hologram reconstruction plane with Fourier transform operation. Finally, the reconstruction image of on-axis Fourier Transform digital hologram can be acquired by the superposition of the reconstruction result of sub-holograms. Compared with the traditional reconstruction method with the phase shifting technology, in which multiple digital holograms are required to record for obtaining the reconstruction image, this method can obtain the reconstruction image with only one digital hologram and therefore greatly simplify the recording and reconstruction process of on-axis lensless Fourier Transform digital holography. The effectiveness of the proposed method is well proved with the experimental results and it will have potential application foreground in the holographic measurement and display field.

  7. Simple concept for a wide-field lensless digital holographic microscope using a laser diode

    Directory of Open Access Journals (Sweden)

    Adinda-Ougba A.

    2015-09-01

    Full Text Available Wide-field, lensless digital holographic microscopy is a new microscopic imaging technique for telemedicine and for resource limited setting [1]. In this contribution we propose a very simple wide-field lensless digital holographic microscope using a laser diode. It is based on in-line digital holography which is capable to provide amplitude and phase images of a sample resulting from numerical reconstruction. The numerical reconstruction consists of the angular spectrum propagation method together with a phase retrieval algorithm. Amplitude and phase images of the sample with a resolution of ∽2 µm and with ∽24 mm2 field of view are obtained. We evaluate our setup by imaging first the 1951 USAF resolution test chart to verify the resolution. Second, we record holograms of blood smear and diatoms. The individual specimen can be easily identified after the numerical reconstruction. Our system is a very simple, compact and low-cost possibility of realizing a microscope capable of imaging biological samples. The availability of the phase provide topographic information of the sample extending the application of this system to be not only for biological sample but also for transparent microstructure. It is suitable for fault detection, shape and roughness measurements of these structures.

  8. In-line X-ray lensless imaging with lithium fluoride film detectors

    International Nuclear Information System (INIS)

    Bonfigli, F.; Cecilia, A.; Bateni, S. Heidari; Nichelatti, E.; Pelliccia, D.; Somma, F.; Vagovic, P.; Vincenti, M.A.; Baumbach, T.; Montereali, R.M.

    2013-01-01

    In this work, we present preliminary in-line X-ray lensless projection imaging results at a synchrotron facility by using novel solid-state detectors based on non-destructive readout of photoluminescent colour centres in lithium fluoride thin films. The peculiarities of LiF radiation detectors are high spatial resolution on a large field of view, wide dynamic range, versatility and simplicity of use. These properties offered the opportunity to test a broadband X-ray synchrotron source for lensless projection imaging experiments at the TopoTomo beamline of the ANKA synchrotron facility by using a white beam spectrum (3–40 keV). Edge-enhancement effects were observed for the first time on a test object; they are discussed and compared with simulations, on the basis of the colour centre photoluminescence linear response found in the investigated irradiation conditions. -- Highlights: ► We performed broadband X-ray imaging at synchrotron by novel LiF imaging detectors. ► X-ray phase contrast experiments on LiF crystals and thin films were performed. ► Photoluminescent high-quality X-images on a LiF film only 1 μm thick were obtained. ► Edge-enhancement effects were detected and compared with simulations. ► A linearity of colour centre fluorescence response of LiF film was found

  9. Infrared behavior of gluons and ghosts in ghost-antighost symmetric gauges

    International Nuclear Information System (INIS)

    Alkofer, R.; Fischer, C.S.; Reinhardt, H.; Smekal, L. von

    2003-01-01

    To investigate the possibility of a ghost-antighost condensate, the coupled Dyson-Schwinger equations for the gluon and ghost propagators in Yang-Mills theories are derived in general covariant gauges, including ghost-antighost symmetric gauges. The infrared behavior of these two-point functions is studied in a bare-vertex truncation scheme which has proven to be successful in the Landau gauge. In all linear covariant gauges the same infrared behavior as in the Landau gauge is found: The gluon propagator is infrared-suppressed whereas the ghost propagator is infrared-enhanced. This infrared singular behavior provides an indication against a ghost-antighost condensate. In the ghost-antighost symmetric gauges we find that the infrared behavior of the gluon and ghost propagators cannot be determined when replacing all dressed vertices by bare ones. The question of a BRS invariant dimension-2 condensate remains to be further studied

  10. Ghost Children: Invisible Middle Level Students

    Science.gov (United States)

    Matteson, Shirley M.

    2014-01-01

    For this study, 119 middle level teacher candidates identified, observed, and documented their interactions with middle school "ghost children" as part of their field placement activities. About two thirds of the 124 ghost children identified for this study were male. The teacher candidates documented additional characteristics of ghost…

  11. Some issues in the ghost condensation scenario

    International Nuclear Information System (INIS)

    Anisimov, A.

    2004-01-01

    In the recently proposed 'ghost condensation' scenario a model of consistent infrared modification of gravity was suggested. We first review the basic ideas of this scenario. We discuss various phenomenological aspects of the ghost condensation, such as stability of the condensate, bounds on the UV cut-off scale of the corresponding effective field theory and other issues. (author)

  12. Are ghosts necessary in planar gauges?

    International Nuclear Information System (INIS)

    Kummer, W.

    1988-01-01

    The introduction of Faddeev-Popov ghosts in axial gauges and especially in the ones of the planar type is not a technical necessity for the general proof of renormalization and gauge independence. It is shown that all necessary identities for Green's functions and for one-particle-irreducible vertices arise in a completely ghost-free formulation as well

  13. Variational method for lattice spectroscopy with ghosts

    International Nuclear Information System (INIS)

    Burch, Tommy; Hagen, Christian; Gattringer, Christof; Glozman, Leonid Ya.; Lang, C.B.

    2006-01-01

    We discuss the variational method used in lattice spectroscopy calculations. In particular we address the role of ghost contributions which appear in quenched or partially quenched simulations and have a nonstandard euclidean time dependence. We show that the ghosts can be separated from the physical states. Our result is illustrated with numerical data for the scalar meson

  14. Accretion of Ghost Condensate by Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Frolov, A

    2004-06-02

    The intent of this letter is to point out that the accretion of a ghost condensate by black holes could be extremely efficient. We analyze steady-state spherically symmetric flows of the ghost fluid in the gravitational field of a Schwarzschild black hole and calculate the accretion rate. Unlike minimally coupled scalar field or quintessence, the accretion rate is set not by the cosmological energy density of the field, but by the energy scale of the ghost condensate theory. If hydrodynamical flow is established, it could be as high as tenth of a solar mass per second for 10MeV-scale ghost condensate accreting onto a stellar-sized black hole, which puts serious constraints on the parameters of the ghost condensate model.

  15. Polarization-multiplexing ghost imaging

    Science.gov (United States)

    Dongfeng, Shi; Jiamin, Zhang; Jian, Huang; Yingjian, Wang; Kee, Yuan; Kaifa, Cao; Chenbo, Xie; Dong, Liu; Wenyue, Zhu

    2018-03-01

    A novel technique for polarization-multiplexing ghost imaging is proposed to simultaneously obtain multiple polarimetric information by a single detector. Here, polarization-division multiplexing speckles are employed for object illumination. The light reflected from the objects is detected by a single-pixel detector. An iterative reconstruction method is used to restore the fused image containing the different polarimetric information by using the weighted sum of the multiplexed speckles based on the correlation coefficients obtained from the detected intensities. Next, clear images of the different polarimetric information are recovered by demultiplexing the fused image. The results clearly demonstrate that the proposed method is effective.

  16. Non-perturbative materialization of ghosts

    International Nuclear Information System (INIS)

    Emparan, Roberto; Garriga, Jaume

    2006-01-01

    In theories with a hidden ghost sector that couples to visible matter through gravity only, empty space can decay into ghosts and ordinary matter by graviton exchange. Perturbatively, such processes can be very slow provided that the gravity sector violates Lorentz invariance above some cut-off scale. Here, we investigate non-perturbative decay processes involving ghosts, such as the spontaneous creation of self-gravitating lumps of ghost matter, as well as pairs of Bondi dipoles (i.e. lumps of ghost matter chasing after positive energy objects). We find the corresponding instantons and calculate their Euclidean action. In some cases, the instantons induce topology change or have negative Euclidean action. To shed some light on the meaning of such peculiarities, we also consider the nucleation of concentrical domain walls of ordinary and ghost matter, where the Euclidean calculation can be compared with the canonical (Lorentzian) description of tunneling. We conclude that non-perturbative ghost nucleation processes can be safely suppressed in phenomenological scenarios

  17. IR finiteness of the ghost dressing function from numerical resolution of the ghost SD equation

    International Nuclear Information System (INIS)

    Boucaud, Ph.; Leroy, J.P.; Yaouanc, A. Le; Micheli, J.; Pene, O.; RodrIguez-Quintero, J.

    2008-01-01

    We solve numerically the Schwinger-Dyson ghost equation in the Landau gauge for a given, finite at k = 0 gluon propagator (i.e. the infrared exponent of its dressing function, α gluon , is 1) and under the usual assumption of constancy of the ghost-gluon vertex ; we show that there exist two possible types of ghost dressing function solutions, as we have previously inferred from analytical considerations: one which is singular at zero momentum (the infrared exponent of its dressing function, α ghost , (We shall use α G and α F as shorthands for α gluon and α ghost respectively; let us recall that we denote the gluon by a G and the ghost by a F, for ''fantome''.) is gluon +2α ghost = 0 and has therefore α ghost = -1/2, and another one which is finite at the origin with α ghost = 0 and violates the relation. It is most important that the type of solution which is realized depends on the value of the coupling constant. There are regular ones - α F = 0 - for any coupling below some value, while there is only one singular solution - α F <0 -, obtained for a single critical value of the coupling. For all momenta k <.5 GeV where they can be trusted, our lattice data exclude neatly the singular one, and agree very well with the regular solution we obtain at a coupling constant compatible with the bare lattice value.

  18. The ghost propagator in Coulomb gauge

    International Nuclear Information System (INIS)

    Watson, P.; Reinhardt, H.

    2011-01-01

    We present results for a numerical study of the ghost propagator in Coulomb gauge whereby lattice results for the spatial gluon propagator are used as input to solving the ghost Dyson-Schwinger equation. We show that in order to solve completely, the ghost equation must be supplemented by a boundary condition (the value of the inverse ghost propagator dressing function at zero momentum) which determines if the solution is critical (zero value for the boundary condition) or subcritical (finite value). The various solutions exhibit a characteristic behavior where all curves follow the same (critical) solution when going from high to low momenta until 'forced' to freeze out in the infrared to the value of the boundary condition. The boundary condition can be interpreted in terms of the Gribov gauge-fixing ambiguity; we also demonstrate that this is not connected to the renormalization. Further, the connection to the temporal gluon propagator and the infrared slavery picture of confinement is discussed.

  19. Tensor ghosts in the inflationary cosmology

    International Nuclear Information System (INIS)

    Clunan, Tim; Sasaki, Misao

    2010-01-01

    Theories with curvature-squared terms in the action are known to contain ghost modes in general. However, if we regard curvature-squared terms as quantum corrections to the original theory, the emergence of ghosts may be simply due to the perturbative truncation of a full non-perturbative theory. If this is the case, there should be a way to live with ghosts. In this paper, we take the Euclidean path integral approach, in which ghost degrees of freedom can be, and are integrated out in the Euclideanized spacetime. We apply this procedure to Einstein gravity with a Weyl curvature-squared correction in the inflationary background. We find that the amplitude of tensor perturbations is modified by a term of O(α 2 H 2 ) where α 2 is a coupling constant in front of the Weyl-squared term and H is the Hubble parameter during inflation.

  20. High-quality compressive ghost imaging

    Science.gov (United States)

    Huang, Heyan; Zhou, Cheng; Tian, Tian; Liu, Dongqi; Song, Lijun

    2018-04-01

    We propose a high-quality compressive ghost imaging method based on projected Landweber regularization and guided filter, which effectively reduce the undersampling noise and improve the resolution. In our scheme, the original object is reconstructed by decomposing of regularization and denoising steps instead of solving a minimization problem in compressive reconstruction process. The simulation and experimental results show that our method can obtain high ghost imaging quality in terms of PSNR and visual observation.

  1. Ghost lines in Moessbauer relaxation spectra

    International Nuclear Information System (INIS)

    Price, D.C.

    1985-01-01

    The appearance in Moessbauer relaxation spectra of 'ghost' lines, which are narrow lines that do not correspond to transitions between real hyperfine energy levels of the resonant system, is examined. It is shown that in many cases of interest, the appearance of these 'ghost' lines can be interpreted in terms of the relaxational averaging of one or more of the static interactions of the ion. (orig.)

  2. Observability of complex ghosts and tachyons

    International Nuclear Information System (INIS)

    Yamamoto, Hiroshi

    1976-01-01

    The complex ghost introduced previously by the present author is studied from a standpoint whether its effects are observable by experiments or not. According to the theory of complex ghost the scattering cross section of two real particles shows some particular properties. It has a kind of resonance peak at a certain energy which does not conform to the Breit-Wigner formula. It has also a peak for a certain energy transfer, if there exist tachyons. The tachyon is a kind of ghost and is allowed to exist in the theory. Using these properties the complex ghosts are expected to be detected by experiments. The recently observed resonance psi(3.1) is supposed to be the complex ghost of photon, since they have the same quantum numbers. If it is assumed, some properties of the resonance known by experiments are explained naturally to a certain extent. Along the same line it is not unnatural to expect that the photon is also accompanied by a tachyon as a ghost. An experiment to detect the tachyon is proposed. If the angular distribution of elastic electron-positron or electron-electron scattering is observed at a suitably high energy, then a peak will be found in the domain -1< cos theta<1, where it is assumed that the exchanged photon accompanies a tachyon. (auth.)

  3. Infra-red ghost contribution to the gluon Green's functions

    International Nuclear Information System (INIS)

    Paccanoni, F.

    1985-01-01

    The Schwinger-Dyson equations for the ghost propagator and the ghost-ghost-gluon vertex function are studied in the Landau gauge. A confining infra-red singularity is assumed for the gluon propagator and a suitable approximation is devised for the solution of the integral equations. It is found that the bare values of the ghost propagator and coupling cannot be a consistent solution of either equation. It is determined a possible behaviour of the correction factor for the ghost propagator in the small-momentum limit and discussed the consistency of the approximation schemes for the gluon propagator that neglet Faddeev-Popov ghost

  4. Fast ghost imaging and ghost encryption based on the discrete cosine transform

    International Nuclear Information System (INIS)

    Tanha, Mehrdad; Ahmadi-Kandjani, Sohrab; Kheradmand, Reza

    2013-01-01

    We introduce the discrete cosine transform as an advanced compression tool for images in computational ghost imaging. A novel approach to fast imaging and encryption, the discrete cosine transform, promotes the security level of ghost images and reduces the image retrieval time. To discuss the advantages of this technique we compare experimental outcomes with simulated ones. (paper)

  5. Existence, uniqueness and cohomology of the classical BRST charge with ghosts of ghosts

    International Nuclear Information System (INIS)

    Fisch, J.; Stasheff, J.

    1989-01-01

    A complete canonical formulation of the BRST theory of systems with redundant gauge symmetries is presented. These systems include p-form gauge fields, the superparticle, and the superstring. We first define the Koszul-Tate differential and explicitly show how the introduction of the momenta conjugate to the ghosts of ghosts makes it acyclic. The global existence of the BRST generator is then demonstrated, and the BRST charge is proved to be unique up to canonical transformations in the extended phase space, which includes the ghosts. Finally, the BRST cohomology in classical mechanics is investigated and shown to be equal to the cohomology of the exterior derivative along the gauge orbits, as in the irreducible case. This is done by re-expressing the exterior algebra along the gauge orbits as a free differential algebra containing generators of higher degree, which are identified with the ghosts of ghosts. The quantum cohomology is not dealt with. (orig.)

  6. Coherent diffraction microscopy at SPring-8: instrumentation, data acquisition and data analysis

    International Nuclear Information System (INIS)

    Xu, Rui; Salha, Sara; Raines, Kevin S.; Jiang, Huaidong; Chen, Chien-Chun; Takahashi, Yukio; Kohmura, Yoshiki; Nishino, Yoshinori; Song, Changyong; Ishikawa, Tetsuya; Miao, Jianwei

    2011-01-01

    An instrumentation and data analysis review of coherent diffraction microscopy at SPring-8 is given. This work will be of interest to those who want to apply coherent diffraction imaging to studies of materials science and biological samples. Since the first demonstration of coherent diffraction microscopy in 1999, this lensless imaging technique has been experimentally refined by continued developments. Here, instrumentation and experimental procedures for measuring oversampled diffraction patterns from non-crystalline specimens using an undulator beamline (BL29XUL) at SPring-8 are presented. In addition, detailed post-experimental data analysis is provided that yields high-quality image reconstructions. As the acquisition of high-quality diffraction patterns is at least as important as the phase-retrieval procedure to guarantee successful image reconstructions, this work will be of interest for those who want to apply this imaging technique to materials science and biological samples

  7. Neutron Ghost Imaging Technology Research on CARR Reactor

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Ghost imaging is also known as quantum imaging. Different from the classical imaging, the neutron ghost imaging is based on the quantum mechanics properties of light field and its intrinsic parallel characteristic, and developed by new optical

  8. Noncanonical quantization-on the coexistence of particles and ghosts

    International Nuclear Information System (INIS)

    Saller, H.

    1988-01-01

    Local interactions of quantized fields are sometimes parametrized with the aid of ghostlike degrees of freedom, e.g., in non-Abelian gauge theories. These ghosts do not necessarily lead to eigenstates of energy. Such a situation requires a discussion of the asymptotic boundary condition for the ghosts, leading to ghost propagation only for timelike distance. Coexisting particle and ghost degrees of freedom in one basic field operator allow the formulation of interactions for such a field without local ambiguities

  9. Are ghost surfaces quadratic-flux-minimizing?

    International Nuclear Information System (INIS)

    Hudson, S.R.; Dewar, R.L.

    2009-01-01

    Two candidates for 'almost-invariant' toroidal surfaces passing through magnetic islands, namely quadratic-flux-minimizing (QFMin) surfaces and ghost surfaces, use families of periodic pseudo-orbits (i.e. paths for which the action is not exactly extremal). QFMin pseudo-orbits, which are coordinate-dependent, are field lines obtained from a modified magnetic field, and ghost-surface pseudo-orbits are obtained by displacing closed field lines in the direction of steepest descent of magnetic action, ∫A.dl. A generalized Hamiltonian definition of ghost surfaces is given and specialized to the usual Lagrangian definition. A modified Hamilton's Principle is introduced that allows the use of Lagrangian integration for calculation of the QFMin pseudo-orbits. Numerical calculations show QFMin and Lagrangian ghost surfaces give very similar results for a chaotic magnetic field perturbed from an integrable case, and this is explained using a perturbative construction of an auxiliary poloidal angle for which QFMin and Lagrangian ghost surfaces are the same up to second order. While presented in the context of 3-dimensional magnetic field line systems, the concepts are applicable to defining almost-invariant tori in other 11/2 degree-of-freedom nonintegrable Lagrangian/Hamiltonian systems.

  10. HyperCube: A Small Lensless Position Sensing Device for the Tracking of Flickering Infrared LEDs

    Directory of Open Access Journals (Sweden)

    Thibaut Raharijaona

    2015-07-01

    Full Text Available An innovative insect-based visual sensor is designed to perform active marker tracking. Without any optics and a field-of-view of about 60°, a novel miniature visual sensor is able to locate flickering markers (LEDs with an accuracy much greater than the one dictated by the pixel pitch. With a size of only 1 cm3 and a mass of only 0.33 g, the lensless sensor, called HyperCube, is dedicated to 3D motion tracking and fits perfectly with the drastic constraints imposed by micro-aerial vehicles. Only three photosensors are placed on each side of the cubic configuration of the sensing device, making this sensor very inexpensive and light. HyperCube provides the azimuth and elevation of infrared LEDs flickering at a high frequency (>1 kHz with a precision of 0.5°. The minimalistic design in terms of small size, low mass and low power consumption of this visual sensor makes it suitable for many applications in the field of the cooperative flight of unmanned aerial vehicles and, more generally, robotic applications requiring active beacons. Experimental results show that HyperCube provides useful angular measurements that can be used to estimate the relative position between the sensor and the flickering infrared markers.

  11. HyperCube: A Small Lensless Position Sensing Device for the Tracking of Flickering Infrared LEDs.

    Science.gov (United States)

    Raharijaona, Thibaut; Mignon, Paul; Juston, Raphaël; Kerhuel, Lubin; Viollet, Stéphane

    2015-07-08

    An innovative insect-based visual sensor is designed to perform active marker tracking. Without any optics and a field-of-view of about 60°, a novel miniature visual sensor is able to locate flickering markers (LEDs) with an accuracy much greater than the one dictated by the pixel pitch. With a size of only 1 cm3 and a mass of only 0.33 g, the lensless sensor, called HyperCube, is dedicated to 3D motion tracking and fits perfectly with the drastic constraints imposed by micro-aerial vehicles. Only three photosensors are placed on each side of the cubic configuration of the sensing device, making this sensor very inexpensive and light. HyperCube provides the azimuth and elevation of infrared LEDs flickering at a high frequency (>1 kHz) with a precision of 0.5°. The minimalistic design in terms of small size, low mass and low power consumption of this visual sensor makes it suitable for many applications in the field of the cooperative flight of unmanned aerial vehicles and, more generally, robotic applications requiring active beacons. Experimental results show that HyperCube provides useful angular measurements that can be used to estimate the relative position between the sensor and the flickering infrared markers.

  12. Lensless high-resolution photoacoustic imaging scanner for in vivo skin imaging

    Science.gov (United States)

    Ida, Taiichiro; Iwazaki, Hideaki; Omuro, Toshiyuki; Kawaguchi, Yasushi; Tsunoi, Yasuyuki; Kawauchi, Satoko; Sato, Shunichi

    2018-02-01

    We previously launched a high-resolution photoacoustic (PA) imaging scanner based on a unique lensless design for in vivo skin imaging. The design, imaging algorithm and characteristics of the system are described in this paper. Neither an optical lens nor an acoustic lens is used in the system. In the imaging head, four sensor elements are arranged quadrilaterally, and by checking the phase differences for PA waves detected with these four sensors, a set of PA signals only originating from a chromophore located on the sensor center axis is extracted for constructing an image. A phantom study using a carbon fiber showed a depth-independent horizontal resolution of 84.0 ± 3.5 µm, and the scan direction-dependent variation of PA signals was about ± 20%. We then performed imaging of vasculature phantoms: patterns of red ink lines with widths of 100 or 200 μm formed in an acrylic block co-polymer. The patterns were visualized with high contrast, showing the capability for imaging arterioles and venues in the skin. Vasculatures in rat burn models and healthy human skin were also clearly visualized in vivo.

  13. High resolution x-ray lensless imaging by differential holographic encoding

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, D.; Guizar-Sicairos, M.; Wu, B.; Scherz, A.; Acremann, Y.; Tylisczcak, T.; Fischer, P.; Friedenberger, N.; Ollefs, K.; Farle, M.; Fienup, J. R.; Stohr, J.

    2009-11-02

    X-ray free electron lasers (X-FEL{sub s}) will soon offer femtosecond pulses of laterally coherent x-rays with sufficient intensity to record single-shot coherent scattering patterns for nanoscale imaging. Pulse trains created by splitand-delay techniques even open the door for cinematography on unprecedented nanometer length and femtosecond time scales. A key to real space ultrafast motion pictures is fast and reliable inversion of the recorded reciprocal space scattering patterns. Here we for the first time demonstrate in the x-ray regime the power of a novel technique for lensless high resolution imaging, previously suggested by Guizar-Sicairos and Fienup termed holography with extended reference by autocorrelation linear differential operation, HERALD0. We have achieved superior resolution over conventional x-ray Fourier transform holography (FTH) without sacrifices in SNR or significant increase in algorithmic complexity. By combining images obtained from individual sharp features on an extended reference, we further show that the resolution can be even extended beyond the reference fabrication limits. Direct comparison to iterative phase retrieval image reconstruction and images recorded with stateof- the-art zone plate microscopes is presented. Our results demonstrate the power of HERALDO as a favorable candidate for robust inversion of single-shot coherent scattering patterns.

  14. High-Resolution X-Ray Lensless Imaging by Differential Holographic Encoding

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Diling [Stanford Univ., CA (United States). Dept. of Applied Physics; SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Inst. for Material and Energy Science; Guizar-Sicairos, Manuel [Univ. of Rochester, NY (United States). Inst. of Optics; Wu, Benny [Stanford Univ., CA (United States). Dept. of Applied Physics; SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Inst. for Material and Energy Science; Scherz, Andreas [SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Inst. for Material and Energy Science; Acremann, Yves [SLAC National Accelerator Lab., Menlo Park, CA (United States). Photon Ultrafast Laser Science and Engineering Inst. (PULSE); Tyliszczak, Tolek [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Fischer, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Center for X-ray Optics; Friedenberger, Nina [Universitat Duisburg-Essen (Germany). Dept. of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE); Ollefs, Katharina [Universitat Duisburg-Essen (Germany). Dept. of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE); Farle, Michael [Universitat Duisburg-Essen (Germany). Dept. of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE); Fienup, James R. [Univ. of Rochester, NY (United States). Inst. of Optics; Stöhr, Joachim [SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)

    2010-07-01

    X-ray free electron lasers (X-FELs) will soon offer femtosecond pulses of laterally coherent x-rays with sufficient intensity to record single-shot coherent scattering patterns for nanoscale imaging. Pulse trains created by split and- delay techniques even open the door for cinematography on unprecedented nanometer length and femtosecond time scales. A key to real space ultrafast motion pictures is fast and reliable inversion of the recorded reciprocal space scattering patterns. Here we for the first time demonstrate in the x-ray regime the power of a novel technique for lensless high resolution imaging, previously suggested by Guizar-Sicairos and Fienup termed holography with extended reference by autocorrelation linear differential operation, HERALD0. We have achieved superior resolution over conventional x-ray Fourier transform holography (FTH) without sacrifices in SNR or significant increase in algorithmic complexity. By combining images obtained from individual sharp features on an extended reference, we further show that the resolution can be even extended beyond the reference fabrication limits. Direct comparison to iterative phase retrieval image reconstruction and images recorded with state of-the-art zone plate microscopes is presented. Our results demonstrate the power of HERALDO as a favorable candidate for robust inversion of single-shot coherent scattering patterns.

  15. Ghost hunting—an assessment of ghost particle detection and removal methods for tomographic-PIV

    International Nuclear Information System (INIS)

    Elsinga, G E; Tokgoz, S

    2014-01-01

    This paper discusses and compares several methods, which aim to remove spurious peaks, i.e. ghost particles, from the volume intensity reconstruction in tomographic-PIV. The assessment is based on numerical simulations of time-resolved tomographic-PIV experiments in linear shear flows. Within the reconstructed volumes, intensity peaks are detected and tracked over time. These peaks are associated with particles (either ghosts or actual particles) and are characterized by their peak intensity, size and track length. Peak intensity and track length are found to be effective in discriminating between most ghosts and the actual particles, although not all ghosts can be detected using only a single threshold. The size of the reconstructed particles does not reveal an important difference between ghosts and actual particles. The joint distribution of peak intensity and track length however does, under certain conditions, allow a complete separation of ghosts and actual particles. The ghosts can have either a high intensity or a long track length, but not both combined, like all the actual particles. Removing the detected ghosts from the reconstructed volume and performing additional MART iterations can decrease the particle position error at low to moderate seeding densities, but increases the position error, velocity error and tracking errors at higher densities. The observed trends in the joint distribution of peak intensity and track length are confirmed by results from a real experiment in laminar Taylor–Couette flow. This diagnostic plot allows an estimate of the number of ghosts that are indistinguishable from the actual particles. (paper)

  16. GHOST: global hepatitis outbreak and surveillance technology.

    Science.gov (United States)

    Longmire, Atkinson G; Sims, Seth; Rytsareva, Inna; Campo, David S; Skums, Pavel; Dimitrova, Zoya; Ramachandran, Sumathi; Medrzycki, Magdalena; Thai, Hong; Ganova-Raeva, Lilia; Lin, Yulin; Punkova, Lili T; Sue, Amanda; Mirabito, Massimo; Wang, Silver; Tracy, Robin; Bolet, Victor; Sukalac, Thom; Lynberg, Chris; Khudyakov, Yury

    2017-12-06

    Hepatitis C is a major public health problem in the United States and worldwide. Outbreaks of hepatitis C virus (HCV) infections associated with unsafe injection practices, drug diversion, and other exposures to blood are difficult to detect and investigate. Effective HCV outbreak investigation requires comprehensive surveillance and robust case investigation. We previously developed and validated a methodology for the rapid and cost-effective identification of HCV transmission clusters. Global Hepatitis Outbreak and Surveillance Technology (GHOST) is a cloud-based system enabling users, regardless of computational expertise, to analyze and visualize transmission clusters in an independent, accurate and reproducible way. We present and explore performance of several GHOST implemented algorithms using next-generation sequencing data experimentally obtained from hypervariable region 1 of genetically related and unrelated HCV strains. GHOST processes data from an entire MiSeq run in approximately 3 h. A panel of seven specimens was used for preparation of six repeats of MiSeq libraries. Testing sequence data from these libraries by GHOST showed a consistent transmission linkage detection, testifying to high reproducibility of the system. Lack of linkage among genetically unrelated HCV strains and constant detection of genetic linkage between HCV strains from known transmission pairs and from follow-up specimens at different levels of MiSeq-read sampling indicate high specificity and sensitivity of GHOST in accurate detection of HCV transmission. GHOST enables automatic extraction of timely and relevant public health information suitable for guiding effective intervention measures. It is designed as a virtual diagnostic system intended for use in molecular surveillance and outbreak investigations rather than in research. The system produces accurate and reproducible information on HCV transmission clusters for all users, irrespective of their level of bioinformatics

  17. Exorcising the Ostrogradsky ghost in coupled systems

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Remko; Roest, Diederik [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands)

    2016-07-27

    The Ostrogradsky theorem implies that higher-derivative terms of a single mechanical variable are either trivial or lead to additional, ghost-like degrees of freedom. In this letter we systematically investigate how the introduction of additional variables can remedy this situation. Employing a Lagrangian analysis, we identify conditions on the Lagrangian to ensure the existence of primary and secondary constraints that together imply the absence of Ostrogradsky ghosts. We also show the implications of these conditions for the structure of the equations of motion as well as possible redefinitions of the variables. We discuss applications to analogous higher-derivative field theories such as multi-Galileons and beyond Horndeski.

  18. Exorcising the Ostrogradsky ghost in coupled systems

    International Nuclear Information System (INIS)

    Klein, Remko; Roest, Diederik

    2016-01-01

    The Ostrogradsky theorem implies that higher-derivative terms of a single mechanical variable are either trivial or lead to additional, ghost-like degrees of freedom. In this letter we systematically investigate how the introduction of additional variables can remedy this situation. Employing a Lagrangian analysis, we identify conditions on the Lagrangian to ensure the existence of primary and secondary constraints that together imply the absence of Ostrogradsky ghosts. We also show the implications of these conditions for the structure of the equations of motion as well as possible redefinitions of the variables. We discuss applications to analogous higher-derivative field theories such as multi-Galileons and beyond Horndeski.

  19. Compact, Light-weight and Cost-effective Microscope based on Lensless Incoherent Holography for Telemedicine Applications

    Science.gov (United States)

    Mudanyali, Onur; Tseng, Derek; Oh, Chulwoo; Isikman, Serhan O.; Sencan, Ikbal; Bishara, Waheb; Oztoprak, Cetin; Seo, Sungkyu; Khademhosseini, Bahar; Ozcan, Aydogan

    2010-01-01

    Despite the rapid progress in optical imaging, most of the advanced microscopy modalities still require complex and costly set-ups that unfortunately limit their use beyond well equipped laboratories. In the meantime, microscopy in resource-limited settings has requirements significantly different from those encountered in advanced laboratories, and such imaging devices should be cost-effective, compact, light-weight and appropriately accurate and simple to be usable by minimally trained personnel. Furthermore, these portable microscopes should ideally be digitally integrated as part of a telemedicine network that connects various mobile health-care providers to a central laboratory or hospital. Toward this end, here we demonstrate a lensless on-chip microscope weighing ~46 grams with dimensions smaller than 4.2cm × 4.2cm × 5.8cm that achieves sub-cellular resolution over a large field of view of ~24 mm2. This compact and light-weight microscope is based on digital in-line holography and does not need any lenses, bulky optical/mechanical components or coherent sources such as lasers. Instead, it utilizes a simple light-emitting-diode (LED) and a compact opto-electronic sensor-array to record lensless holograms of the objects, which then permits rapid digital reconstruction of regular transmission or differential interference contrast (DIC) images of the objects. Because this lensless incoherent holographic microscope has orders-of-magnitude improved light collection efficiency and is very robust to mechanical misalignments it may offer a cost-effective tool especially for telemedicine applications involving various global health problems in resource limited settings. PMID:20401422

  20. Ghost number anomaly in the Polyakov's light-cone gauge

    International Nuclear Information System (INIS)

    Suzuki, Hiroshi.

    1990-06-01

    The conformal (Weyl) anomaly of the ghost-anti-ghost system in the two-dimentional quantum gravity is calculated. A background covariant formalism allows us to treat the Polyakov's light-cone gauge in a systematic way. The anomaly gives a contribution to the central charge, -28, which agrees with the result of Kniznik, Polyakov and Zamolodchikov. The ghost number anomaly is also calculated, and the metric corrections to the naive ghost number current are given. It is suggested that a general scalar density in the light-cone gauge carries a screening ghost number. (author)

  1. Numerical Study of the Ghost-Ghost-Gluon Vertex on the Lattice

    International Nuclear Information System (INIS)

    Mihara, A.; Cucchieri, A.; Mendes, T.

    2004-01-01

    It is well known that, in Landau gauge, the renormalization function of the ghost-ghost-gluon vertex Z-tilde1 (p2) is finite and constant, at least to all orders of perturbation theory. On the other hand, a direct non-perturbative verification of this result using numerical simulations of lattice QCD is still missing. Here we present a preliminary numerical study of the ghost-ghost-gluon vertex and of its corresponding renormalization function using Monte Carlo simulations in SU(2) lattice Landau gauge. Data were obtained in 4 dimensions for lattice couplings β = 2.2, 2.3, 2.4 and lattice sides N = 4, 8, 16

  2. Numerical study of the ghost-ghost-gluon vertex on the lattice

    International Nuclear Information System (INIS)

    Mihara, A.; Cucchieri, A.; Mendes, T.

    2004-01-01

    It is well known that, in Landau gauge, the renormalization function of the ghost-ghost-gluon vertex Z∼ 1 1(p 2 ) is finite and constant, at least to all orders of perturbation theory. On the other hand, a direct non-perturbative verification of this result using numerical simulations of lattice QCD is still missing. Here we present a preliminary numerical study of the ghost-ghost-gluon vertex and of its corresponding renormalization function using Monte Carlo simulations in SU(2) lattice Landau gauge. Data were obtained in 4 dimensions for lattice couplings β= 2.2, 2.3, 2.4 and lattice sides N = 4, 8, 16. (author)

  3. Stray light characteristics of the diffractive telescope system

    Science.gov (United States)

    Liu, Dun; Wang, Lihua; Yang, Wei; Wu, Shibin; Fan, Bin; Wu, Fan

    2018-02-01

    Diffractive telescope technology is an innovation solution in construction of large light-weight space telescope. However, the nondesign orders of diffractive optical elements (DOEs) may affect the imaging performance as stray light. To study the stray light characteristics of a diffractive telescope, a prototype was developed and its stray light analysis model was established. The stray light characteristics including ghost, point source transmittance, and veiling glare index (VGI) were analyzed. During the star imaging test of the prototype, the ghost images appeared around the star image as the exposure time of the charge-coupled device improving, consistent with the simulation results. The test result of VGI was 67.11%, slightly higher than the calculated value 57.88%. The study shows that the same order diffraction of the diffractive primary lens and correcting DOE is the main factor that causes ghost images. The stray light sources outside the field of view can illuminate the image plane through nondesign orders diffraction of the primary lens and contributes to more than 90% of the stray light flux on the image plane. In summary, it is expected that these works will provide some guidance for optimizing the imaging performance of diffractive telescopes.

  4. Three-dimensional visualization of a human chromosome using coherent x-ray diffraction

    International Nuclear Information System (INIS)

    Nishino, Yoshinori; Ishikawa, Tetsuya; Takahashi, Yukio; Imamoto, Naoko; Maeshima, Kazuhiro

    2010-01-01

    We succeeded in observing a human chromosome in two- and three-dimensions using x-ray diffraction microscopy. X-ray diffraction microscopy is a lens-less imaging technique utilizing coherent x-ray diffraction, and can overcome various limitations in conventional lens-based x-ray microscopy. Biological applications of the method have been limited to 2D observation, and 3D observation has been long waited. We found that the reconstructed chromosome images contain high-density axial structure, which has not been observed under unstained or unlabeled conditions. The result experimentally demonstrates the effectiveness of x-ray diffraction microscopy in observing internal structures of unstained biological samples with high image contrast. (author)

  5. 'Ghost of Mirach' Rears its Spooky Head

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Visible/DSS Click on image for larger version Ultraviolet/GALEX Click on image for larger version Poster Version Click on image for larger version The 'Ghost of Mirach' galaxy is shown in visible light on the left, and in ultraviolet as seen by NASA's Galaxy Evolution Explorer on the right. The fields of view are identical in both pictures, with the Ghost of Mirach a galaxy called NGC 404 seen as the whitish spot in the center of the images. Mirach is a red giant star that looms large in visible light. Because NGC 404 is lost in the glare of this star, it was nicknamed the Ghost of Mirach. But when the galaxy is viewed in ultraviolet light, it comes to 'life,' revealing a never-before-seen ring. This ring, seen in blue in the picture on the right, contains new stars a surprise considering that the galaxy was previously thought to be, essentially, dead. The field of view spans 55,000 light years across. The Ghost of Mirach is located 11 million light-years from Earth. The star Mirach is very close in comparison it is only 200 light-years away and is visible with the naked eye. The visible data come from the Digitized Sky Survey of the Space Telescope Science Institute in Baltimore, Md.

  6. Optical encryption with selective computational ghost imaging

    International Nuclear Information System (INIS)

    Zafari, Mohammad; Kheradmand, Reza; Ahmadi-Kandjani, Sohrab

    2014-01-01

    Selective computational ghost imaging (SCGI) is a technique which enables the reconstruction of an N-pixel image from N measurements or less. In this paper we propose an optical encryption method based on SCGI and experimentally demonstrate that this method has much higher security under eavesdropping and unauthorized accesses compared with previous reported methods. (paper)

  7. Gribov's horizon and the ghost dressing function

    International Nuclear Information System (INIS)

    Boucaud, Ph.; Leroy, J. P.; Le Yaouanc, A.; Micheli, J.; Pene, O.; Rodriguez-Quintero, J.

    2009-01-01

    We study a relation recently derived by K. Kondo at zero momentum between the Zwanziger's horizon function, the ghost dressing function and Kugo's functions u and w. We agree with this result as far as bare quantities are considered. However, assuming the validity of the horizon gap equation, we argue that the solution w(0)=0 is not acceptable since it would lead to a vanishing renormalized ghost dressing function. On the contrary, when the cutoff goes to infinity, u(0)→∞, w(0)→-∞ such that u(0)+w(0)→-1. Furthermore w and u are not multiplicatively renormalizable. Relaxing the gap equation allows w(0)=0 with u(0)→-1. In both cases the bare ghost dressing function, F(0,Λ), goes logarithmically to infinity at infinite cutoff. We show that, although the lattice results provide bare results not so different from the F(0,Λ)=3 solution, this is an accident due to the fact that the lattice cutoffs lie in the range 1-3 GeV -1 . We show that the renormalized ghost dressing function should be finite and nonzero at zero momentum and can be reliably estimated on the lattice up to powers of the lattice spacing; from published data on a 80 4 lattice at β=5.7 we obtain F R (0,μ=1.5 GeV)≅2.2.

  8. The Ghostly Workings of Danish Accountability Policies

    Science.gov (United States)

    Pors, Justine Grønbaek

    2016-01-01

    This article proposes a framework for thinking about the ghostly, thus arguing that policy can be understood as a landscape of intersecting and colliding temporalities from which arouse curious workings of barely-there forces, spooky energies and vibrating saturations of affective ambivalences. I present an empirical study of a policy agenda of…

  9. Lucia's Ghosts: Sonic, Gothic, and Postmodern

    DEFF Research Database (Denmark)

    Fillerup, Jessie

    2016-01-01

    In this article, I use an intertextual interference – the spectral presence of Norma Desmond in a performance of Donizetti’s Lucia di Lammermoor – as a locus through which to explore the consequences of the ‘open’ text in theatrical spectatorship, criticism and historical study. Norma’s ghosting...

  10. The Color Antisymmetric Ghost Propagator and One-Loop Vertex Renormalization

    OpenAIRE

    Furui, Sadataka

    2007-01-01

    The color matrix elements of the ghost triangle diagram that appears in the triple gluon vertex and the ghost-ghost-gluon triangle diagram that appears in the ghost-gluon-ghost vertex are calculated. The ghost-ghost-gluon triangle contains a loop consisting of two color diagonal ghosts and one gluon and a loop consisting of two color antisymmetric ghosts and one gluon. Consequently, the pQCD argument in the infrared region based on the one particle irreducible diagram should be modified. Impl...

  11. The color antisymmetric ghost propagator and one-loop vertex renormalization

    International Nuclear Information System (INIS)

    Furui, Sadataka

    2008-01-01

    The color matrix elements of the ghost triangle diagram that appears in the triple gluon vertex and the ghost-ghost-gluon triangle diagram that appears in the ghost-gluon-ghost vertex are calculated. The ghost-ghost-gluon triangle contains a loop consisting of two color diagonal ghosts and one gluon and a loop consisting of two color antisymmetric ghosts and one gluon. Consequently, the pQCD argument in the infrared region based on the one particle irreducible diagram should be modified. Implications for the Kugo-Ojima color confinement and the QCD running coupling are discussed. (author)

  12. In situ micro-focused X-ray beam characterization with a lensless camera using a hybrid pixel detector

    International Nuclear Information System (INIS)

    Kachatkou, Anton; Marchal, Julien; Silfhout, Roelof van

    2014-01-01

    Position and size measurements of a micro-focused X-ray beam, using an X-ray beam imaging device based on a lensless camera that collects radiation scattered from a thin foil placed in the path of the beam at an oblique angle, are reported. Results of studies on micro-focused X-ray beam diagnostics using an X-ray beam imaging (XBI) instrument based on the idea of recording radiation scattered from a thin foil of a low-Z material with a lensless camera are reported. The XBI instrument captures magnified images of the scattering region within the foil as illuminated by the incident beam. These images contain information about beam size, beam position and beam intensity that is extracted during dedicated signal processing steps. In this work the use of the device with beams for which the beam size is significantly smaller than that of a single detector pixel is explored. The performance of the XBI device equipped with a state-of-the-art hybrid pixel X-ray imaging sensor is analysed. Compared with traditional methods such as slit edge or wire scanners, the XBI micro-focused beam characterization is significantly faster and does not interfere with on-going experiments. The challenges associated with measuring micrometre-sized beams are described and ways of optimizing the resolution of beam position and size measurements of the XBI instrument are discussed

  13. Diffractive interactions

    International Nuclear Information System (INIS)

    Del Duca, V.; Marage, P.

    1996-08-01

    The general framework of diffractive deep inelastic scattering is introduced and reports given in the session on diffractive interactions at the international workshop on deep-inelastic scattering and related phenomena, Rome, April 1996, are presented. (orig.)

  14. Diffraction theory

    NARCIS (Netherlands)

    Bouwkamp, C.J.

    1954-01-01

    A critical review is presented of recent progress in classical diffraction theory. Both scalar and electromagnetic problems are discussed. The report may serve as an introduction to general diffraction theory although the main emphasis is on diffraction by plane obstacles. Various modifications of

  15. THE REPRESENTATION OF THE GHOST ARCHETYPE IN THE CANTERVILLE GHOST BY OSCAR WILDE

    Directory of Open Access Journals (Sweden)

    Safaryan Agata Vladimirovna

    2015-03-01

    Full Text Available The article touches upon the actual interdisciplinary problems of modern cognitive linguistics, psychology, literary criticism and is related to the study of the archetypal representations of ethnicity and changes reflected in the linguistic consciousness. These changes are mainly influenced by the works of fiction and the role of writer's worldview in their formation. Guided by the thesis of universality of the archetypes, the author mentions that though the archetype represents the inherent characteristics of certain ethnic and cultural space, it retains the features which make an image recognizable at all times. By this fact the author explains the existence of beliefs in ghosts with different embodiments in all cultures. The awakening of the archetype is caused by certain historical events, i.e. the revival and further embodiment of the ghost archetype was the result of reversion to the cultural heritage during the Victorian England. The complex analysis of the means of speech representation that called up the realization of the ghost archetype in Oscar Wilde's short story The Canterville Ghost allowed to reveal that alongside with features that constitute the archetypal nature of ghosts in general, there appear the ones peculiar to the author's individual worldview, which either complement or change the existing notions about this being from another world.

  16. Infrared finite ghost propagator in the Feynman gauge

    International Nuclear Information System (INIS)

    Aguilar, A. C.; Papavassiliou, J.

    2008-01-01

    We demonstrate how to obtain from the Schwinger-Dyson equations of QCD an infrared finite ghost propagator in the Feynman gauge. The key ingredient in this construction is the longitudinal form factor of the nonperturbative gluon-ghost vertex, which, contrary to what happens in the Landau gauge, contributes nontrivially to the gap equation of the ghost. The detailed study of the corresponding vertex equation reveals that in the presence of a dynamical infrared cutoff this form factor remains finite in the limit of vanishing ghost momentum. This, in turn, allows the ghost self-energy to reach a finite value in the infrared, without having to assume any additional properties for the gluon-ghost vertex, such as the presence of massless poles. The implications of this result and possible future directions are briefly outlined

  17. Kinetic k-essence ghost dark energy model

    International Nuclear Information System (INIS)

    Rozas-Fernández, Alberto

    2012-01-01

    A ghost dark energy model has been recently put forward to explain the current accelerated expansion of the Universe. In this model, the energy density of ghost dark energy, which comes from the Veneziano ghost of QCD, is proportional to the Hubble parameter, ρ D =αH. Here α is a constant of order Λ QCD 3 where Λ QCD ∼100 MeV is the QCD mass scale. We consider a connection between ghost dark energy with/without interaction between the components of the dark sector and the kinetic k-essence field. It is shown that the cosmological evolution of the ghost dark energy dominated Universe can be completely described a kinetic k-essence scalar field. We reconstruct the kinetic k-essence function F(X) in a flat Friedmann-Robertson-Walker Universe according to the evolution of ghost dark energy density.

  18. Ghost problem of quantum field theories with higher derivatives

    International Nuclear Information System (INIS)

    Gavrielides, A.; Kuo, T.K.; Lee, S.Y.

    1976-01-01

    Second-order theories, i.e., theories described by Lagrangians quadratic in second derivatives of the fields, are carefully examined and their ghost problems are isolated and clearly exhibited. In particular, theories with gauge symmetry are shown to have precisely the same ghost problems as theories without gauge symmetry. It is also shown that massless theories of the same nature are the limit of massive theories containing ghost states

  19. BRST cohomology of the superstring at arbitrary ghost number

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Myers, R.C.; Martin, S.P.

    1989-01-01

    We investigate the cohomology of the BRST operator of the NSR superstring. No restriction is placed on the ghost number of the states. It is shown that every cohomology class can be written as a picture changed version of one of the known cohomology classes at a fixed ghost number. A generalization of this result is also found for the cohomology in the large algebra of a new bosonization of the superconformal ghosts. (orig.)

  20. Building Shadow Detection from Ghost Imagery

    Science.gov (United States)

    Zhou, G.; Sha, J.; Yue, T.; Wang, Q.; Liu, X.; Huang, S.; Pan, Q.; Wei, J.

    2018-05-01

    Shadow is one of the basic features of remote sensing image, it expresses a lot of information of the object which is loss or interference, and the removal of shadow is always a difficult problem to remote sensing image processing. In this paper, it is mainly analyzes the characteristics and properties of shadows from the ghost image (traditional orthorectification). The DBM and the interior and exterior orientation elements of the image are used to calculate the zenith angle of sun. Then this paper combines the scope of the architectural shadows which has be determined by the zenith angle of sun with the region growing method to make the detection of architectural shadow areas. This method lays a solid foundation for the shadow of the repair from the ghost image later. It will greatly improve the accuracy of shadow detection from buildings and make it more conducive to solve the problem of urban large-scale aerial imagines.

  1. Ghost imaging based on Pearson correlation coefficients

    International Nuclear Information System (INIS)

    Yu Wen-Kai; Yao Xu-Ri; Liu Xue-Feng; Li Long-Zhen; Zhai Guang-Jie

    2015-01-01

    Correspondence imaging is a new modality of ghost imaging, which can retrieve a positive/negative image by simple conditional averaging of the reference frames that correspond to relatively large/small values of the total intensity measured at the bucket detector. Here we propose and experimentally demonstrate a more rigorous and general approach in which a ghost image is retrieved by calculating a Pearson correlation coefficient between the bucket detector intensity and the brightness at a given pixel of the reference frames, and at the next pixel, and so on. Furthermore, we theoretically provide a statistical interpretation of these two imaging phenomena, and explain how the error depends on the sample size and what kind of distribution the error obeys. According to our analysis, the image signal-to-noise ratio can be greatly improved and the sampling number reduced by means of our new method. (paper)

  2. BUILDING SHADOW DETECTION FROM GHOST IMAGERY

    Directory of Open Access Journals (Sweden)

    G. Zhou

    2018-05-01

    Full Text Available Shadow is one of the basic features of remote sensing image, it expresses a lot of information of the object which is loss or interference, and the removal of shadow is always a difficult problem to remote sensing image processing. In this paper, it is mainly analyzes the characteristics and properties of shadows from the ghost image (traditional orthorectification. The DBM and the interior and exterior orientation elements of the image are used to calculate the zenith angle of sun. Then this paper combines the scope of the architectural shadows which has be determined by the zenith angle of sun with the region growing method to make the detection of architectural shadow areas. This method lays a solid foundation for the shadow of the repair from the ghost image later. It will greatly improve the accuracy of shadow detection from buildings and make it more conducive to solve the problem of urban large-scale aerial imagines.

  3. Superrenormalizable quantum gravity with complex ghosts

    Directory of Open Access Journals (Sweden)

    Leonardo Modesto

    2016-04-01

    Full Text Available We suggest and briefly review a new sort of superrenormalizable models of higher derivative quantum gravity. The higher derivative terms in the action can be introduced in such a way that all the unphysical massive states have complex poles. According to the literature on Lee–Wick quantization, in this case the theory can be formulated as unitary, since all massive ghosts-like degrees of freedom are unstable. Keywords: Quantum gravity, Higher derivatives, Complex poles

  4. Honorary and ghost authorship in nursing publications.

    Science.gov (United States)

    Kennedy, Maureen Shawn; Barnsteiner, Jane; Daly, John

    2014-11-01

    The purposes of this study were to (a) assess the prevalence of articles with honorary authors and ghost authors in 10 leading peer-reviewed nursing journals between 2010 to 2012; (b) compare the results to prevalence reported by authors of articles published in high-impact medical journals; and (c) assess the experiences of editors in the International Academy of Nursing Editors with honorary and guest authorship. Corresponding authors of articles published in 10 nursing journals between 2010 and 2012 were invited to complete an online survey about the contributions of coauthors to see if the International Committee of Medical Journal Editors () criteria for authorship were met. Additionally, members of the International Academy of Nursing Editors were invited to complete an online survey about their experiences in identifying honorary or ghost authors in articles submitted for publication. The prevalence of articles published in 10 nursing journals with honorary authors was 42%, and the prevalence of ghost authorship was 27.6%. This is a greater prevalence than what has been reported among medical journals. Qualitative data yielded five themes: lack of awareness around the rules for authorship; acknowledged need for debate, discussion, and promotion of ethical practice; knowingly tolerating, and sometimes deliberately promoting, transgressions in practice; power relations and expectations; and avoiding scrutiny. Among the 60 respondents to the editor survey, 22 (36.7%) reported identifying honorary authors and 13 (21.7%) reported ghost authors among papers submitted to their publications. Inappropriate authorship is a significant problem among scholarly nursing publications. If nursing scholarship is to maintain integrity and be considered trustworthy, and if publications are to be a factor in professional advancement, editors, nursing leaders, and faculty need to disseminate and adhere to ethical authorship practices. © 2014 Sigma Theta Tau International.

  5. Lucia's Ghosts: Sonic, Gothic, and Postmodern

    DEFF Research Database (Denmark)

    Fillerup, Jessie

    2016-01-01

    In this article, I use an intertextual interference – the spectral presence of Norma Desmond in a performance of Donizetti’s Lucia di Lammermoor – as a locus through which to explore the consequences of the ‘open’ text in theatrical spectatorship, criticism and historical study. Norma’s ghosting...... the lens of Sunset Boulevard inverts chronological sequence, it acknowledges the temporal contradictions inherent in historical work and assigns productive meaning to nostalgic impulses that engage a reflective mode of thought....

  6. Ghost Imaging Using Orbital Angular Momentum

    Institute of Scientific and Technical Information of China (English)

    赵生妹; 丁建; 董小亮; 郑宝玉

    2011-01-01

    We present a novel encoding scheme in a ghost-imaging system using orbital angular momentum. In the signal arm, object spatial information is encoded as a phase matrix. For an N-grey-scale object, different phase matrices, varying from 0 to K with increment n/N, are used for different greyscales, and then they are modulated to a signal beam by a spatial light modulator. According to the conservation of the orbital angular momentum in the ghost imaging system, these changes will give different coincidence rates in measurement, and hence the object information can be extracted in the idler arm. By simulations and experiments, the results show that our scheme can improve the resolution of the image effectively. Compared with another encoding method using orbital angular momentum, our scheme has a better performance for both characters and the image object.%We present a novel encoding scheme in a ghost-imaging system using orbital angular momentum.In the signal arm,object spatial information is encoded as a phase matrix.For an N-grey-scale object,different phase matrices,varying from 0 to π with increment π/N,are used for different greyscales,and then they are modulated to a signal beam by a spatial light modulator.According to the conservation of the orbital angular momentum in the ghost imaging system,these changes will give different coincidence rates in measurement,and hence the object information can be extracted in the idler arm.By simulations and experiments,the results show that our scheme can improve the resolution of the image effectively.Compared with another encoding method using orbital angular momentum,our scheme has a better performance for both characters and the image object.

  7. Superconformal ghost correlators and picture changing

    International Nuclear Information System (INIS)

    Bonini, M.; Iengo, R.; Nunez, C.

    1988-12-01

    We compute the correlation functions for the system of superconformal ghosts β, γ(λ=3/2), including the corresponding spin fields, on arbitrary Riemann surfaces. Using fermionization, defined as a change of variables in the functional integration, we derive and generalize previous results obtained by bosonization. As an application we study the picture changing mechanism in the Ramond sector of the superstring. (author). 11 refs

  8. Superrenormalizable quantum gravity with complex ghosts

    Energy Technology Data Exchange (ETDEWEB)

    Modesto, Leonardo, E-mail: lmodesto@fudan.edu.cn [Department of Physics & Center for Field Theory and Particle Physics, Fudan University, 200433, Shanghai (China); Shapiro, Ilya L., E-mail: shapiro@fisica.ufjf.br [Departamento de Fisica – ICE, Universidade Federal de Juiz de Fora, 33036-900 Juiz de Fora, Minas Gerais (Brazil); Tomsk State Pedagogical University and Tomsk State University, 634041, Tomsk (Russian Federation)

    2016-04-10

    We suggest and briefly review a new sort of superrenormalizable models of higher derivative quantum gravity. The higher derivative terms in the action can be introduced in such a way that all the unphysical massive states have complex poles. According to the literature on Lee–Wick quantization, in this case the theory can be formulated as unitary, since all massive ghosts-like degrees of freedom are unstable.

  9. Vertex operators of ghost number three in Type IIB supergravity

    International Nuclear Information System (INIS)

    Mikhailov, Andrei

    2016-01-01

    We study the cohomology of the massless BRST complex of the Type IIB pure spinor superstring in flat space. In particular, we find that the cohomology at the ghost number three is nontrivial and transforms in the same representation of the supersymmetry algebra as the solutions of the linearized classical supergravity equations. Modulo some finite dimensional spaces, the ghost number three cohomology is the same as the ghost number two cohomology. We also comment on the difference between the naive and semi-relative cohomology, and the role of b-ghost.

  10. QCD ghost f(T)-gravity model

    Energy Technology Data Exchange (ETDEWEB)

    Karami, K.; Abdolmaleki, A.; Asadzadeh, S. [University of Kurdistan, Department of Physics, Sanandaj (Iran, Islamic Republic of); Safari, Z. [Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of)

    2013-09-15

    Within the framework of modified teleparallel gravity, we reconstruct a f(T) model corresponding to the QCD ghost dark energy scenario. For a spatially flat FRW universe containing only the pressureless matter, we obtain the time evolution of the torsion scalar T (or the Hubble parameter). Then, we calculate the effective torsion equation of state parameter of the QCD ghost f(T)-gravity model as well as the deceleration parameter of the universe. Furthermore, we fit the model parameters by using the latest observational data including SNeIa, CMB and BAO data. We also check the viability of our model using a cosmographic analysis approach. Moreover, we investigate the validity of the generalized second law (GSL) of gravitational thermodynamics for our model. Finally, we point out the growth rate of matter density perturbation. We conclude that in QCD ghost f(T)-gravity model, the universe begins a matter dominated phase and approaches a de Sitter regime at late times, as expected. Also this model is consistent with current data, passes the cosmographic test, satisfies the GSL and fits the data of the growth factor well as the {Lambda}CDM model. (orig.)

  11. Computational Ghost Imaging for Remote Sensing

    Science.gov (United States)

    Erkmen, Baris I.

    2012-01-01

    This work relates to the generic problem of remote active imaging; that is, a source illuminates a target of interest and a receiver collects the scattered light off the target to obtain an image. Conventional imaging systems consist of an imaging lens and a high-resolution detector array [e.g., a CCD (charge coupled device) array] to register the image. However, conventional imaging systems for remote sensing require high-quality optics and need to support large detector arrays and associated electronics. This results in suboptimal size, weight, and power consumption. Computational ghost imaging (CGI) is a computational alternative to this traditional imaging concept that has a very simple receiver structure. In CGI, the transmitter illuminates the target with a modulated light source. A single-pixel (bucket) detector collects the scattered light. Then, via computation (i.e., postprocessing), the receiver can reconstruct the image using the knowledge of the modulation that was projected onto the target by the transmitter. This way, one can construct a very simple receiver that, in principle, requires no lens to image a target. Ghost imaging is a transverse imaging modality that has been receiving much attention owing to a rich interconnection of novel physical characteristics and novel signal processing algorithms suitable for active computational imaging. The original ghost imaging experiments consisted of two correlated optical beams traversing distinct paths and impinging on two spatially-separated photodetectors: one beam interacts with the target and then illuminates on a single-pixel (bucket) detector that provides no spatial resolution, whereas the other beam traverses an independent path and impinges on a high-resolution camera without any interaction with the target. The term ghost imaging was coined soon after the initial experiments were reported, to emphasize the fact that by cross-correlating two photocurrents, one generates an image of the target. In

  12. Comparative analysis of the modified enclosed energy metric for self-focusing holograms from digital lensless holographic microscopy.

    Science.gov (United States)

    Trujillo, Carlos; Garcia-Sucerquia, Jorge

    2015-06-01

    A comparative analysis of the performance of the modified enclosed energy (MEE) method for self-focusing holograms recorded with digital lensless holographic microscopy is presented. Notwithstanding the MEE analysis previously published, no extended analysis of its performance has been reported. We have tested the MEE in terms of the minimum axial distance allowed between the set of reconstructed holograms to search for the focal plane and the elapsed time to obtain the focused image. These parameters have been compared with those for some of the already reported methods in the literature. The MEE achieves better results in terms of self-focusing quality but at a higher computational cost. Despite its longer processing time, the method remains within a time frame to be technologically attractive. Modeled and experimental holograms have been utilized in this work to perform the comparative study.

  13. Ghost Whisperer's Ghost in the Machine: An example of pop cultural representation of virtual worlds

    DEFF Research Database (Denmark)

    Reinhard, CarrieLynn D.

    2009-01-01

    Analysis of an episode of the CBS series "Ghost Whisperer" for how it depicts a) what is a virtual world and b) the tensions that are involved in discussing the uses and effects of a virtual world.  Discussion focuses on the overriding negative reception of virtual worlds in popular culture due...

  14. Visions of Inflation in World History: Ghost Story III

    Science.gov (United States)

    Niederjohn, M. Scott; Schug, Mark C.; Wood, William C.

    2013-01-01

    This article represents the third in a "ghost story" series by the same authors. Readers may recall that Mr. Bernanke was "visited" by the ghosts of Adam Smith and John Maynard Keynes in the March/April 2010 issue of "Social Education" as these two famous economists debated the economic recovery (see EJ878912). Mr.…

  15. High visibility temporal ghost imaging with classical light

    Science.gov (United States)

    Liu, Jianbin; Wang, Jingjing; Chen, Hui; Zheng, Huaibin; Liu, Yanyan; Zhou, Yu; Li, Fu-li; Xu, Zhuo

    2018-03-01

    High visibility temporal ghost imaging with classical light is possible when superbunching pseudothermal light is employed. In the numerical simulation, the visibility of temporal ghost imaging with pseudothermal light, equaling (4 . 7 ± 0 . 2)%, can be increased to (75 ± 8)% in the same scheme with superbunching pseudothermal light. The reasons for that the retrieved images are different for superbunching pseudothermal light with different values of degree of second-order coherence are discussed in detail. It is concluded that high visibility and high quality temporal ghost image can be obtained by collecting sufficient number of data points. The results are helpful to understand the difference between ghost imaging with classical light and entangled photon pairs. The superbunching pseudothermal light can be employed to improve the image quality in ghost imaging applications.

  16. Beam Dumping Ghost Signals in Electric Sweep Scanners

    International Nuclear Information System (INIS)

    Stockli, M.P.; Leitner, M.; Keller, R.; Moehs, D.P.; Welton, R.F.

    2005-01-01

    Over the last 20 years many labs started to use Allison scanners to measure low-energy ion beam emittances. We show that large trajectory angles produce ghost signals due to the impact of the beamlet on the electric deflection plates. The strength of the ghost signal is proportional to the amount of beam entering the scanner. Depending on the ions and their velocity, ghost signals can have the opposite polarity as the main beam signals or the same polarity. These ghost signals are easily overlooked because they partly overlap the real signals, they are mostly below the 1% level, and they are often hidden in the noise. However, they cause significant errors in emittance estimates because they are associated with large trajectory angles. The strength of ghost signals, and the associated errors, can be drastically reduced with a simple modification of the deflection plates

  17. Beam dumping ghost signals in electric sweep scanners

    International Nuclear Information System (INIS)

    Stockli, M.P.; SNS Project, Oak Ridge; Tennessee U.; Leitner, M.; LBL, Berkeley; Moehs, D.P.; Keller, R.; LBL, Berkeley; Welton, R.F.; SNS Project, Oak Ridge

    2004-01-01

    Over the last 20 years many labs started to use Allison scanners to measure loW--energy ion beam emittances. We show that large trajectory angles produce ghost signals due to the impact of the beamlet on the electric deflection plates. The strength of the ghost signal is proportional to the amount of beam entering the scanner. Depending on the ions and their velocity, ghost signals can have the opposite polarity as the main beam signals or the same polarity. These ghost signals are easily overlooked because they partly overlap the real signals, they are mostly below the 1% level, and they are often hidden in the noise. However, they cause significant errors in emittance estimates because they are associated with large trajectory angles. The strength of ghost signals, and the associated errors, can be drastically reduced with a simple modification of the deflection plates

  18. Accretion of a ghost condensate by black holes

    International Nuclear Information System (INIS)

    Frolov, Andrei V.

    2004-01-01

    The intent of this paper is to point out that the accretion of a ghost condensate by black holes could be extremely efficient. We analyze steady-state spherically symmetric flows of the ghost fluid in the gravitational field of a Schwarzschild black hole and calculate the accretion rate. Unlike minimally coupled scalar field or quintessence, the accretion rate is set not by the cosmological energy density of the field, but by the energy scale of the ghost condensate theory. If hydrodynamical flow is established, it could be as high as a tenth of a solar mass per second for 10 MeV scale ghost condensate accreting onto a stellar-sized black hole, which puts serious constraints on the parameters of the ghost condensate model

  19. Interacting ghost dark energy in Brans-Dicke theory

    International Nuclear Information System (INIS)

    Ebrahimi, Esmaeil; Sheykhi, Ahmad

    2011-01-01

    We investigate the QCD ghost model of dark energy in the framework of Brans-Dicke cosmology. First, we study the non-interacting ghost dark energy in a flat Brans-Dicke theory. In this case we obtain the equation of state and the deceleration parameters and a differential equation governing the evolution of ghost energy density. Interestingly enough, we find that the equation of state parameter of the non-interacting ghost dark energy can cross the phantom line (w D =-1) provided the parameters of the model are chosen suitably. Then, we generalize the study to the interacting ghost dark energy in both flat and non-flat Brans-Dicke framework and find out that the transition of w D to phantom regime can be more easily achieved for than when resort to the Einstein field equations is made.

  20. Low-momentum ghost dressing function and the gluon mass

    International Nuclear Information System (INIS)

    Boucaud, Ph.; Leroy, J. P.; Le Yaouanc, A.; Micheli, J.; Pene, O.; Gomez, M. E.; Rodriguez-Quintero, J.

    2010-01-01

    We study the low-momentum ghost propagator Dyson-Schwinger equation in the Landau gauge, assuming for the truncation a constant ghost-gluon vertex, as it is extensively done, and a simple model for a massive gluon propagator. Then, regular Dyson-Schwinger equation solutions (the zero-momentum ghost dressing function not diverging) appear to emerge, and we show the ghost propagator to be described by an asymptotic expression reliable up to the order O(q 2 ). That expression, depending on the gluon mass and the zero-momentum Taylor-scheme effective charge, is proven to fit pretty well some low-momentum ghost propagator data [I. L. Bogolubsky, E. M. Ilgenfritz, M. Muller-Preussker, and A. Sternbeck, Phys. Lett. B 676, 69 (2009); Proc. Sci., LAT2007 (2007) 290] from big-volume lattice simulations where the so-called ''simulated annealing algorithm'' is applied to fix the Landau gauge.

  1. Ghost imaging with third-order correlated thermal light

    International Nuclear Information System (INIS)

    Ou, L-H; Kuang, L-M

    2007-01-01

    In this paper, we propose a ghost imaging scheme with third-order correlated thermal light. We show that it is possible to produce the spatial information of an object at two different places in a nonlocal fashion by means of a third-order correlated imaging process with a third-order correlated thermal source and third-order correlation measurement. Concretely, we propose a protocol to create two ghost images at two different places from one object. This protocol involves two optical configurations. We derive the Gaussian thin lens equations and plot the geometrical optics of the ghost imaging processes for the two configurations. It is indicated that third-order correlated ghost imaging with thermal light exhibits richer correlated imaging effects than second-order correlated ghost imaging with thermal light

  2. The Ghostly Workings of Danish Accountability Policies

    DEFF Research Database (Denmark)

    Pors, Justine Grønbæk

    2016-01-01

    present an empirical study of a policy agenda of introducing an assessment culture and improving the management of the Danish public school. I explore how all the routines and habits deemed outdated and sought annihilated by a new policy paradigm continue to haunt head teachers as seething presence...... of lurking resistance towards the policy aims as well as insidious doubts. Thinking about the ghostly contributes to studies of education policy by locating the reality of power in the mundane everyday doings and experiences of educational practitioners and insisting on the very tangled way people sense...... and intuit the complexities of contemporary forms of power....

  3. Ghosted images: old lesbians on screen.

    Science.gov (United States)

    Krainitzki, Eva

    2015-01-01

    Screen images of old lesbians combine modes of representing female gender, lesbian sexuality, and old age, all of which contain layers of otherness within a hetero-patriarchal and youth-centered society. Analyzing a range of films, from independent to mainstream cinema, this article explores how the ghosted lesbian paradigm intersects with narratives of aging as decline in representations of lesbian characters who are over the age of sixty. The spectral matters of illness, death, mourning, and widowhood inevitably culminate in an unhappy ending. Removed from a lesbian community context, intergenerational continuity vanishes and the old lesbian emerges as the cultural other.

  4. Plato's ghost the modernist transformation of mathematics

    CERN Document Server

    Gray, Jeremy

    2008-01-01

    Plato's Ghost is the first book to examine the development of mathematics from 1880 to 1920 as a modernist transformation similar to those in art, literature, and music. Jeremy Gray traces the growth of mathematical modernism from its roots in problem solving and theory to its interactions with physics, philosophy, theology, psychology, and ideas about real and artificial languages. He shows how mathematics was popularized, and explains how mathematical modernism not only gave expression to the work of mathematicians and the professional image they sought to create for themselves, but how modernism also introduced deeper and ultimately unanswerable questions

  5. Ghost Remains After Black Hole Eruption

    Science.gov (United States)

    2009-05-01

    NASA's Chandra X-ray Observatory has found a cosmic "ghost" lurking around a distant supermassive black hole. This is the first detection of such a high-energy apparition, and scientists think it is evidence of a huge eruption produced by the black hole. This discovery presents astronomers with a valuable opportunity to observe phenomena that occurred when the Universe was very young. The X-ray ghost, so-called because a diffuse X-ray source has remained after other radiation from the outburst has died away, is in the Chandra Deep Field-North, one of the deepest X-ray images ever taken. The source, a.k.a. HDF 130, is over 10 billion light years away and existed at a time 3 billion years after the Big Bang, when galaxies and black holes were forming at a high rate. "We'd seen this fuzzy object a few years ago, but didn't realize until now that we were seeing a ghost", said Andy Fabian of the Cambridge University in the United Kingdom. "It's not out there to haunt us, rather it's telling us something - in this case what was happening in this galaxy billions of year ago." Fabian and colleagues think the X-ray glow from HDF 130 is evidence for a powerful outburst from its central black hole in the form of jets of energetic particles traveling at almost the speed of light. When the eruption was ongoing, it produced prodigious amounts of radio and X-radiation, but after several million years, the radio signal faded from view as the electrons radiated away their energy. HDF 130 Chandra X-ray Image of HDF 130 However, less energetic electrons can still produce X-rays by interacting with the pervasive sea of photons remaining from the Big Bang - the cosmic background radiation. Collisions between these electrons and the background photons can impart enough energy to the photons to boost them into the X-ray energy band. This process produces an extended X-ray source that lasts for another 30 million years or so. "This ghost tells us about the black hole's eruption long after

  6. Diffraction dissociation

    International Nuclear Information System (INIS)

    Abarbanel, H.

    1972-01-01

    An attempt is made to analyse the present theoretical situation in the field of diffraction scattering. Two not yet fully answered questions related with a typical diffraction process AB→CD, namely: what is the structure of the transition matrix elements, and what is the structure of the exchange mechanism responsible for the scattering, are formulated and various proposals for answers are reviewed. Interesting general statement that the products (-1)sup(J)P, where J and P are respectively spin and parity, is conserved at each vertex has been discussed. The exchange mechanism in diffractive scattering has been considered using the language of the complex J-plane as the most appropriate. The known facts about the exchange mechanism are recalled and several routs to way out are proposed. The idea to consider the moving pole and associated branch points as like a particle and the associated two and many particle unitarity cuts is described in more details. (S.B.)

  7. Diffraction attraction

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Elastic scattering – when colliding particles 'bounce' off each other like billiard balls – has always had a special interest for high energy physicists. While its simplicity makes for deep analogies with classical ideas like diffraction, its jbtle details also test our understanding of the intricate inner mechanisms which drive particle interactions. With a new stock of elastic scattering data now available thanks to experiments at the CERN proton-antiproton Collider, and with studies at higher energies imminent or planned, some seventy physicists gathered in the magnificent chateau at Blois, France, for a 'Workshop on Elastic and Diffractive Scattering at the Collider and Beyond'

  8. Diffractive scattering

    CERN Document Server

    De Wolf, E.A.

    2002-01-01

    We discuss basic concepts and properties of diffractive phenomena in soft hadron collisions and in deep-inelastic scattering at low Bjorken-x. The paper is not a review of the rapidly developing field but presents an attempt to show in simple terms the close inter-relationship between the dynamics of high-energy hadronic and deep-inelastic diffraction. Using the saturation model of Golec-Biernat and Wusthoff as an example, a simple explanation of geometrical scaling is presented. The relation between the QCD anomalous multiplicity dimension and the Pomeron intercept is discussed.

  9. Diffractive Scattering

    International Nuclear Information System (INIS)

    Wolf, E.A. de

    2002-01-01

    We discuss basic concepts and properties of diffractive phenomena in soft hadron collisions and in deep-inelastic scattering at low Bjorken - x. The paper is not a review of the rapidly developing field but presents an attempt to show in simple terms the close inter-relationship between the dynamics of high-energy hadronic and deep-inelastic diffraction. Using the saturation model of Golec-Biernat and Wuesthoff as an example, a simple explanation of geometrical scaling is presented. The relation between the QCD anomalous multiplicity dimension and the Pomeron intercept is discussed. (author)

  10. Diffraction attraction

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-03-15

    Elastic scattering – when colliding particles 'bounce' off each other like billiard balls – has always had a special interest for high energy physicists. While its simplicity makes for deep analogies with classical ideas like diffraction, its jbtle details also test our understanding of the intricate inner mechanisms which drive particle interactions. With a new stock of elastic scattering data now available thanks to experiments at the CERN proton-antiproton Collider, and with studies at higher energies imminent or planned, some seventy physicists gathered in the magnificent chateau at Blois, France, for a 'Workshop on Elastic and Diffractive Scattering at the Collider and Beyond'.

  11. Ghost imaging with bucket detection and point detection

    Science.gov (United States)

    Zhang, De-Jian; Yin, Rao; Wang, Tong-Biao; Liao, Qing-Hua; Li, Hong-Guo; Liao, Qinghong; Liu, Jiang-Tao

    2018-04-01

    We experimentally investigate ghost imaging with bucket detection and point detection in which three types of illuminating sources are applied: (a) pseudo-thermal light source; (b) amplitude modulated true thermal light source; (c) amplitude modulated laser source. Experimental results show that the quality of ghost images reconstructed with true thermal light or laser beam is insensitive to the usage of bucket or point detector, however, the quality of ghost images reconstructed with pseudo-thermal light in bucket detector case is better than that in point detector case. Our theoretical analysis shows that the reason for this is due to the first order transverse coherence of the illuminating source.

  12. Vertex operator construction of superconformal ghosts and string field theory

    International Nuclear Information System (INIS)

    Ezawa, Z.F.; Nakamura, S.; Tezuka, A.

    1987-01-01

    Superconformal ghosts in string theories are characterized by the SU(1,1) Kac-Moody algebra with central charge -1/2. These ghost fields are constructed as the vertex operators realizing spinor representations of the Kac-Moody algebra. Representations of the canonical commutation relations of the superconformal ghosts are analyzed extensively. All irreducible representations are found to possess only the trivial inner product but for one exceptional case. Consequently, in superstring field theory it is necessary to consider reducible representations in general. Hilbert spaces with a non-trivial inner product are explicitly obtained upon which second quantization of superstring may be carried out. (orig.)

  13. Ghost neutrinos as test fields in curved space-time

    International Nuclear Information System (INIS)

    Audretsch, J.

    1976-01-01

    Without restricting to empty space-times, it is shown that ghost neutrinos (their energy-momentum tensor vanishes) can only be found in algebraically special space-times with a neutrino flux vector parallel to one of the principal null vectors of the conformal tensor. The optical properties are studied. There are no ghost neutrinos in the Kerr-Newman and in spherically symmetric space-times. The example of a non-vacuum gravitational pp-wave accompanied by a ghost neutrino pp-wave is discussed. (Auth.)

  14. Exorcising the ghost of the Sputnik crisis.

    Science.gov (United States)

    Kolberg, Espen Skarstein; Holt, Heidi Marie; Klevan, Ingvild

    2017-10-01

    Drug calculation is not immune to the undesirable impact of math anxiety and negative attitudes on test outcomes in nursing studies, and several studies indicate that math anxiety is present in the student population at such a degree that it is likely to interfere with these students' mathematical ability. Examining the educational system through the lens of history and adding a dash of cultural theory, a contributing cause to the math anxiety may be found in the Sputnik Crisis of the late 1950s, the ghostly remnants of which are still present in the stereotypes of mathematics promoted by mass media. In an effort to reshape the culturally conditioned attitudes which may be responsible for math anxiety, we suggest using elements from popular culture to diversify the perception and image of mathematics in drug calculation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Testing the ghost with the machine

    International Nuclear Information System (INIS)

    De Zubicaray, G.

    2002-01-01

    Since its introduction during the 1990s, functional magnetic resonance imaging (fMRI) has been used to investigate brain activity occurring during a bewildering variety of sensory, motor and cognitive tasks. That is, a machine is being used to test 'the ghost in the machine' - the human mind. The use of imaging techniques to investigate these issues has even led to the emergence of a new scientific field called cognitive neuroscience. Currently, there are only a few groups in Australia actively publishing fMRI studies in the international literature, and the majority of these laboratories are clustered on the east coast. My own research with fMRI has focused on areas such as language and memory, with a special interest in how we solve competitive processes in our thinking

  16. Computational ghost imaging using deep learning

    Science.gov (United States)

    Shimobaba, Tomoyoshi; Endo, Yutaka; Nishitsuji, Takashi; Takahashi, Takayuki; Nagahama, Yuki; Hasegawa, Satoki; Sano, Marie; Hirayama, Ryuji; Kakue, Takashi; Shiraki, Atsushi; Ito, Tomoyoshi

    2018-04-01

    Computational ghost imaging (CGI) is a single-pixel imaging technique that exploits the correlation between known random patterns and the measured intensity of light transmitted (or reflected) by an object. Although CGI can obtain two- or three-dimensional images with a single or a few bucket detectors, the quality of the reconstructed images is reduced by noise due to the reconstruction of images from random patterns. In this study, we improve the quality of CGI images using deep learning. A deep neural network is used to automatically learn the features of noise-contaminated CGI images. After training, the network is able to predict low-noise images from new noise-contaminated CGI images.

  17. Correspondence normalized ghost imaging on compressive sensing

    International Nuclear Information System (INIS)

    Zhao Sheng-Mei; Zhuang Peng

    2014-01-01

    Ghost imaging (GI) offers great potential with respect to conventional imaging techniques. It is an open problem in GI systems that a long acquisition time is be required for reconstructing images with good visibility and signal-to-noise ratios (SNRs). In this paper, we propose a new scheme to get good performance with a shorter construction time. We call it correspondence normalized ghost imaging based on compressive sensing (CCNGI). In the scheme, we enhance the signal-to-noise performance by normalizing the reference beam intensity to eliminate the noise caused by laser power fluctuations, and reduce the reconstruction time by using both compressive sensing (CS) and time-correspondence imaging (CI) techniques. It is shown that the qualities of the images have been improved and the reconstruction time has been reduced using CCNGI scheme. For the two-grayscale ''double-slit'' image, the mean square error (MSE) by GI and the normalized GI (NGI) schemes with the measurement number of 5000 are 0.237 and 0.164, respectively, and that is 0.021 by CCNGI scheme with 2500 measurements. For the eight-grayscale ''lena'' object, the peak signal-to-noise rates (PSNRs) are 10.506 and 13.098, respectively using GI and NGI schemes while the value turns to 16.198 using CCNGI scheme. The results also show that a high-fidelity GI reconstruction has been achieved using only 44% of the number of measurements corresponding to the Nyquist limit for the two-grayscale “double-slit'' object. The qualities of the reconstructed images using CCNGI are almost the same as those from GI via sparsity constraints (GISC) with a shorter reconstruction time. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  18. The Ghosts of Acetylcholine : structure-activity relationships of ...

    African Journals Online (AJOL)

    The Ghosts of Acetylcholine : structure-activity relationships of muscle relaxants : registrar communication. ... AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's ...

  19. Half-integer ghost states and simple BRST quantization

    International Nuclear Information System (INIS)

    Marnelius, R.

    1987-01-01

    Quantum mechanical BRST systems are considered. As is well known an odd number of ghost operators has a representation with respect to the ghost number operator consisting of states with half-integer ghost numbers. Here it is shown that an eigenstate representation of the ghost operators requires a particular mixed Grassmann character of the states. It is also shown that such states always may be avoided provided only one starts from a lagrangian where the fundamental constraints are generated by Lagrange multipliers. In the latter case there also exists an anti-BRST charge. Some relevant properties of the different BRST approaches are displayed. The existence of inequivalent physical representations is demonstrated. (orig.)

  20. The b ghost of the pure spinor formalism is nilpotent

    Energy Technology Data Exchange (ETDEWEB)

    Chandia, Osvaldo, E-mail: osvaldo.chandia@uai.c [Departamento de Ciencias, Facultad de Artes Liberales and Facultad de Ingenieria y Ciencias, Universidad Adolfo Ibanez, Santiago (Chile)

    2011-01-10

    The ghost for world-sheet reparametrization invariance is not a fundamental field in the pure spinor formalism. It is written as a combination of pure spinor variables which have conformal dimension two and such that it commutes with the BRST operator to give the world-sheet stress tensor. We show that the ghost variable defined in this way is nilpotent since the OPE of b with itself does not have singularities.

  1. Powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Hart, M.

    1995-12-31

    the importance of x-ray powder diffraction as an analytical tool for phase identification of materials was first pointed out by Debye and Scherrer in Germany and, quite independently, by Hull in the US. Three distinct periods of evolution lead to ubiquitous application in many fields of science and technology. In the first period, until the mid-1940`s, applications were and developed covering broad categories of materials including inorganic materials, minerals, ceramics, metals, alloys, organic materials and polymers. During this formative period, the concept of quantitative phase analysis was demonstrated. In the second period there followed the blossoming of technology and commercial instruments became widely used. The history is well summarized by Parrish and by Langford and Loueer. By 1980 there were probably 10,000 powder diffractometers in routine use, making it the most widely used of all x-ray crystallographic instruments. In the third, present, period data bases became firmly established and sophisticated pattern fitting and recognition software made many aspects of powder diffraction analysis routine. High resolution, tunable powder diffractometers were developed at sources of synchrotron radiation. The tunability of the spectrum made it possible to exploit all the subtleties of x-ray spectroscopy in diffraction experiments.

  2. Powder diffraction

    International Nuclear Information System (INIS)

    Hart, M.

    1995-01-01

    The importance of x-ray powder diffraction as an analytical tool for phase identification of materials was first pointed out by Debye and Scherrer in Germany and, quite independently, by Hull in the US. Three distinct periods of evolution lead to ubiquitous application in many fields of science and technology. In the first period, until the mid-1940's, applications were and developed covering broad categories of materials including inorganic materials, minerals, ceramics, metals, alloys, organic materials and polymers. During this formative period, the concept of quantitative phase analysis was demonstrated. In the second period there followed the blossoming of technology and commercial instruments became widely used. The history is well summarized by Parrish and by Langford and Loueer. By 1980 there were probably 10,000 powder diffractometers in routine use, making it the most widely used of all x-ray crystallographic instruments. In the third, present, period data bases became firmly established and sophisticated pattern fitting and recognition software made many aspects of powder diffraction analysis routine. High resolution, tunable powder diffractometers were developed at sources of synchrotron radiation. The tunability of the spectrum made it possible to exploit all the subtleties of x-ray spectroscopy in diffraction experiments

  3. Publication ethics and the ghost management of medical publication.

    Science.gov (United States)

    Sismondo, Sergio; Doucet, Mathieu

    2010-07-01

    It is by now no secret that some scientific articles are ghost authored - that is, written by someone other than the person whose name appears at the top of the article. Ghost authorship, however, is only one sort of ghosting. In this article, we present evidence that pharmaceutical companies engage in the ghost management of the scientific literature, by controlling or shaping several crucial steps in the research, writing, and publication of scientific articles. Ghost management allows the pharmaceutical industry to shape the literature in ways that serve its interests. This article aims to reinforce and expand publication ethics as an important area of concern for bioethics. Since ghost-managed research is primarily undertaken in the interests of marketing, large quantities of medical research violate not just publication norms but also research ethics. Much of this research involves human subjects, and yet is performed not primarily to increase knowledge for broad human benefit, but to disseminate results in the service of profits. Those who sponsor, manage, conduct, and publish such research therefore behave unethically, since they put patients at risk without justification. This leads us to a strong conclusion: if medical journals want to ensure that the research they publish is ethically sound, they should not publish articles that are commercially sponsored.

  4. Infrared Behavior of Gluon and Ghost Propagators in Landau Gauge QCD

    International Nuclear Information System (INIS)

    von Smekal, L.; Hauck, A.; Alkofer, R.

    1997-01-01

    A truncation scheme for the Dyson-Schwinger equations of Euclidean QCD in Landau gauge is presented. It implements the Slavnov-Taylor identities for the three-gluon and ghost-gluon vertices, whereas irreducible four-gluon couplings as well as the gluon-ghost and ghost-ghost scattering kernels are neglected. The infrared behavior of gluon and ghost propagators is obtained analytically: The gluon propagator vanishes for small momenta, whereas the ghost propagator diverges strongly. The numerical solutions are compared with recent lattice results. The running coupling approaches a fixed point, α c ≅9.5 , in the infrared. copyright 1997 The American Physical Society

  5. Diffraction gauging

    International Nuclear Information System (INIS)

    Wilkens, P.H.

    1978-01-01

    This system of gauging is now being designed to fit on an Excello NC lathe to measure the form, accuracy, and size of external contoured surfaces as they approach the finish machined size. A template profile of the finished workpiece, but 0.003 in. bigger on radius, will be aligned with the workpiece using a reference diameter and face on the machining fixture to leave a gap between the profile of the template and workpiece. A helium--neon laser beam will be projected through this gap using a rotating retroreflector and a fixed laser. The resulting diffraction pattern produced by the laser beam passing through the template to workpiece gap will be reflected and focused on a fixed diode array via a second retroreflector which moves and remains in optical alignment with the first. These retroreflectors will be rotated about a center that will enable the laser beam, which is shaped in a long slit, to scan the template workpiece gap from the pole to the equator of the workpiece. The characteristic diffraction pattern will be detected by the fixed diode array, and the signal levels from this array will be processed in a mini-computer programmed to produce a best fit through the two minima of the diode signals. The separation of the two minima will yield the size of the workpiece to template gap and this information will be presented to the machine tool operator

  6. Proton diffraction

    International Nuclear Information System (INIS)

    Den Besten, J.L.; Jamieson, D.N.; Allen, L.J.

    1998-01-01

    The Lindhard theory on ion channeling in crystals has been widely accepted throughout ion beam analysis for use in simulating such experiments. The simulations use a Monte Carlo method developed by Barret, which utilises the classical 'billiard ball' theory of ions 'bouncing' between planes or tubes of atoms in the crystal. This theory is not valid for 'thin' crystals where the planes or strings of atoms can no longer be assumed to be of infinite proportions. We propose that a theory similar to that used for high energy electron diffraction can be applied to MeV ions, especially protons, in thin crystals to simulate the intensities of transmission channeling and of RBS spectra. The diffraction theory is based on a Bloch wave solution of the Schroedinger equation for an ion passing through the periodic crystal potential. The widely used universal potential for proton-nucleus scattering is used to construct the crystal potential. Absorption due to thermal diffuse scattering is included. Experimental parameters such as convergence angle, beam tilt and scanning directions are considered in our calculations. Comparison between theory and experiment is encouraging and suggests that further work is justified. (authors)

  7. Multiwavelength Absolute Phase Retrieval from Noisy Diffractive Patterns: Wavelength Multiplexing Algorithm

    Directory of Open Access Journals (Sweden)

    Vladimir Katkovnik

    2018-05-01

    Full Text Available We study the problem of multiwavelength absolute phase retrieval from noisy diffraction patterns. The system is lensless with multiwavelength coherent input light beams and random phase masks applied for wavefront modulation. The light beams are formed by light sources radiating all wavelengths simultaneously. A sensor equipped by a Color Filter Array (CFA is used for spectral measurement registration. The developed algorithm targeted on optimal phase retrieval from noisy observations is based on maximum likelihood technique. The algorithm is specified for Poissonian and Gaussian noise distributions. One of the key elements of the algorithm is an original sparse modeling of the multiwavelength complex-valued wavefronts based on the complex-domain block-matching 3D filtering. Presented numerical experiments are restricted to noisy Poissonian observations. They demonstrate that the developed algorithm leads to effective solutions explicitly using the sparsity for noise suppression and enabling accurate reconstruction of absolute phase of high-dynamic range.

  8. Lensless coherent imaging of proteins and supramolecular assemblies: Efficient phase retrieval by the charge flipping algorithm.

    Science.gov (United States)

    Dumas, Christian; van der Lee, Arie; Palatinus, Lukáš

    2013-05-01

    Diffractive imaging using the intense and coherent beam of X-ray free-electron lasers opens new perspectives for structural studies of single nanoparticles and biomolecules. Simulations were carried out to generate 3D oversampled diffraction patterns of non-crystalline biological samples, ranging from peptides and proteins to megadalton complex assemblies, and to recover their molecular structure from nanometer to near-atomic resolutions. Using these simulated data, we show here that iterative reconstruction methods based on standard and variant forms of the charge flipping algorithm, can efficiently solve the phase retrieval problem and extract a unique and reliable molecular structure. Contrary to the case of conventional algorithms, where the estimation and the use of a compact support is imposed, our approach does not require any prior information about the molecular assembly, and is amenable to a wide range of biological assemblies. Importantly, the robustness of this ab initio approach is illustrated by the fact that it tolerates experimental noise and incompleteness of the intensity data at the center of the speckle pattern. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. An Improved Ghost-cell Immersed Boundary Method for Compressible Inviscid Flow Simulations

    KAUST Repository

    Chi, Cheng

    2015-01-01

    This study presents an improved ghost-cell immersed boundary approach to represent a solid body in compressible flow simulations. In contrast to the commonly used approaches, in the present work ghost cells are mirrored through the boundary

  10. An improved ghost-cell immersed boundary method for compressible flow simulations

    KAUST Repository

    Chi, Cheng; Lee, Bok Jik; Im, Hong G.

    2016-01-01

    This study presents an improved ghost-cell immersed boundary approach to represent a solid body in compressible flow simulations. In contrast to the commonly used approaches, in the present work ghost cells are mirrored through the boundary

  11. Ghost suppression in image restoration filtering

    Science.gov (United States)

    Riemer, T. E.; Mcgillem, C. D.

    1975-01-01

    An optimum image restoration filter is described in which provision is made to constrain the spatial extent of the restoration function, the noise level of the filter output and the rate of falloff of the composite system point-spread away from the origin. Experimental results show that sidelobes on the composite system point-spread function produce ghosts in the restored image near discontinuities in intensity level. By redetermining the filter using a penalty function that is zero over the main lobe of the composite point-spread function of the optimum filter and nonzero where the point-spread function departs from a smoothly decaying function in the sidelobe region, a great reduction in sidelobe level is obtained. Almost no loss in resolving power of the composite system results from this procedure. By iteratively carrying out the same procedure even further reductions in sidelobe level are obtained. Examples of original and iterated restoration functions are shown along with their effects on a test image.

  12. Short term depression unmasks the ghost frequency.

    Directory of Open Access Journals (Sweden)

    Tjeerd V Olde Scheper

    Full Text Available Short Term Plasticity (STP has been shown to exist extensively in synapses throughout the brain. Its function is more or less clear in the sense that it alters the probability of synaptic transmission at short time scales. However, it is still unclear what effect STP has on the dynamics of neural networks. We show, using a novel dynamic STP model, that Short Term Depression (STD can affect the phase of frequency coded input such that small networks can perform temporal signal summation and determination with high accuracy. We show that this property of STD can readily solve the problem of the ghost frequency, the perceived pitch of a harmonic complex in absence of the base frequency. Additionally, we demonstrate that this property can explain dynamics in larger networks. By means of two models, one of chopper neurons in the Ventral Cochlear Nucleus and one of a cortical microcircuit with inhibitory Martinotti neurons, it is shown that the dynamics in these microcircuits can reliably be reproduced using STP. Our model of STP gives important insights into the potential roles of STP in self-regulation of cortical activity and long-range afferent input in neuronal microcircuits.

  13. Dermot Bolger’s Ghosting the War

    Directory of Open Access Journals (Sweden)

    Aleksandra Kędzierska

    2017-10-01

    Full Text Available Dermot Bolger’s Walking the Road (2007 is a tribute to Francis Ledwidge (1887–1917, one of the greatest Irish poets of the First World War. Focusing on the life and afterlife of Ledwidge who, as depicted in Bolger’s play, emblematizes the condition of other Great War combatants doomed to oblivion, this essay, concerned with the various functions of the deployment of ghosts in Bolger’s drama, argues that spectrality can become an effective means of revealing the plight of the war dead: the unremembered, whose names were effectively erased from public memory and who, thus turned into homeless revenants, were forced into a continual involvement in the war from which they cannot escape, even after death. As a spectral witness who moves between pre-war Ireland and the world of the trenches, Bolger’s hero makes one aware how similar these realities are. Furthermore, as a classic case of shell shock, he demonstrates the role of haunting in the narrative of trauma, identity and memory. Last but not least, whilst enhancing the gothic dimension of the war, Frank’s perceptions, as well as his spectral discourse, not only contribute significantly to illuminating the enigma which he personified, but, by providing an insight into his search for himself, they convey the plight of truth seekers who grasp, yet never fully encompass the Irish experience of the war.

  14. Evidence of ghost suppression in gluon mass scale dynamics

    Science.gov (United States)

    Aguilar, A. C.; Binosi, D.; Figueiredo, C. T.; Papavassiliou, J.

    2018-03-01

    In this work we study the impact that the ghost sector of pure Yang-Mills theories may have on the generation of a dynamical gauge boson mass scale, which hinges on the appearance of massless poles in the fundamental vertices of the theory, and the subsequent realization of the well-known Schwinger mechanism. The process responsible for the formation of such structures is itself dynamical in nature, and is governed by a set of Bethe-Salpeter type of integral equations. While in previous studies the presence of massless poles was assumed to be exclusively associated with the background-gauge three-gluon vertex, in the present analysis we allow them to appear also in the corresponding ghost-gluon vertex. The full analysis of the resulting Bethe-Salpeter system reveals that the contribution of the poles associated with the ghost-gluon vertex are particularly suppressed, their sole discernible effect being a slight modification in the running of the gluon mass scale, for momenta larger than a few GeV. In addition, we examine the behavior of the (background-gauge) ghost-gluon vertex in the limit of vanishing ghost momentum, and derive the corresponding version of Taylor's theorem. These considerations, together with a suitable Ansatz, permit us the full reconstruction of the pole sector of the two vertices involved.

  15. CLONING HARDDISK MELALUI JARINGAN KOMPUTER DENGAN MENGGUNAKAN SOFTWARE GHOST

    Directory of Open Access Journals (Sweden)

    M Mufadhol

    2009-07-01

    Full Text Available Kloning adalah proses duplikat isi harddisk ke harddisk yang lain. Jadi isi kedua harddisk adalah sama persis. Kloning harddisk dilakukan untuk mempercepat proses instalasi perangkat lunak dengan spesifikasi hardware yang sama. Kloning harddisk melalui jaringan komputer dapat dilakukan dari harddisk master ke harddisk slave atau harddisk tujuan. Pada proses kloning harddisk melalui jaringan komputer hardis induk berada di komputer server saja sedangkan slave harddisk berada di komputer klien saja. Harddisk setiap komputer tidak perlu digandeng (diparalel. Dalam melakukan kloning harddisk melalui jaringan komputer diperlukan beberapa program aplikasi antara lain: Ghost Cast Server, Boot Wizard, LAN Boot Floppy Klien, Ghost Explore. Aplikasi yang sering digunakan untuk kloning adalah software Ghost yang dirilis oleh Symantect Coorporation.

  16. Ghost free dual vector theories in 2+1 dimensions

    International Nuclear Information System (INIS)

    Dalmazi, Denis

    2006-01-01

    We explore here the issue of duality versus spectrum equivalence in dual theories generated through the master action approach. Specifically we examine a generalized self-dual (GSD) model where a Maxwell term is added to the self-dual model. A gauge embedding procedure applied to the GSD model leads to a Maxwell-Chern-Simons (MCS) theory with higher derivatives. We show here that the latter contains a ghost mode contrary to the original GSD model. By figuring out the origin of the ghost we are able to suggest a new master action which interpolates between the local GSD model and a nonlocal MCS model. Those models share the same spectrum and are ghost free. Furthermore, there is a dual map between both theories at classical level which survives quantum correlation functions up to contact terms. The remarks made here may be relevant for other applications of the master action approach

  17. Modelling of classical ghost images obtained using scattered light

    International Nuclear Information System (INIS)

    Crosby, S; Castelletto, S; Aruldoss, C; Scholten, R E; Roberts, A

    2007-01-01

    The images obtained in ghost imaging with pseudo-thermal light sources are highly dependent on the spatial coherence properties of the incident light. Pseudo-thermal light is often created by reducing the coherence length of a coherent source by passing it through a turbid mixture of scattering spheres. We describe a model for simulating ghost images obtained with such partially coherent light, using a wave-transport model to calculate the influence of the scattering on initially coherent light. The model is able to predict important properties of the pseudo-thermal source, such as the coherence length and the amplitude of the residual unscattered component of the light which influence the resolution and visibility of the final ghost image. We show that the residual ballistic component introduces an additional background in the reconstructed image, and the spatial resolution obtainable depends on the size of the scattering spheres

  18. Ghost anomalous dimension in asymptotically safe quantum gravity

    International Nuclear Information System (INIS)

    Eichhorn, Astrid; Gies, Holger

    2010-01-01

    We compute the ghost anomalous dimension within the asymptotic-safety scenario for quantum gravity. For a class of covariant gauge fixings and using a functional renormalization group scheme, the anomalous dimension η c is negative, implying an improved UV behavior of ghost fluctuations. At the non-Gaussian UV fixed point, we observe a maximum value of η c ≅-0.78 for the Landau-deWitt gauge within the given scheme and truncation. Most importantly, the backreaction of the ghost flow onto the Einstein-Hilbert sector preserves the non-Gaussian fixed point with only mild modifications of the fixed-point values for the gravitational coupling and cosmological constant and the associated critical exponents; also their gauge dependence is slightly reduced. Our results provide further evidence for the asymptotic-safety scenario of quantum gravity.

  19. Ombud’s corner: Do you believe in ghosts?

    CERN Multimedia

    Sudeshna Datta-Cockerill

    2014-01-01

    “Ghosting” is the common term used to describe situations when a piece of work is done by somebody but credited to somebody else. Ghosting often occurs in creative fields, such as writing texts, music, developing graphic charters or translating. Let’s celebrate Halloween this year by acknowledging the contributions of all the CERN ghosts who work tirelessly behind the scenes in all areas of the Organization.   “Ghosting” is a recognised job with international professional associations, particularly in the field of text writing. The role requires strict anonymity, good reciprocal trust and understanding between the people involved, and the professional flexibility to be able to adapt to different situations and different styles of expression as needed. At CERN there are many ghosts: you can find them in the Translation and Minute-writing service, whose members also provide valuable editing and proof-reading skills; in the Communications group w...

  20. The Ghost Tradition: Helen Of Troy In The Elizabethan Era

    Directory of Open Access Journals (Sweden)

    RADUCANU ADRIANA

    2014-12-01

    Full Text Available Reputedly the most beautiful woman who has ever lived, Helen of Troy (or Sparta is less well known for her elusive, ghost-like dimension. Homer wrote that the greatest war of Western classical antiquity started because of Helen's adultery followed by her elopement to Troy. Other ancient writers and historians, among theme Aeschylus, Stesichorus, Hesiod, Pausanias, Aristophanes, Euripides and Gorgias of Leontini, challenged the Homeric version, in various ways and attempted to exonerate Helen either by focusing on her phantom/ ghost/ as the generic object of man's desire and scorn or by casting doubt on the mechanisms of the blaming process. This paper argues that the Elizabethans Christopher Marlowe and William Shakespeare adopted and adapted the anti-Homer version of the depiction of Helen, what I here call “the ancient Helen ghost tradition”; nevertheless, in so doing they further reinforced the character's demonic features and paradoxically achieved a return to the adulterous Homeric Helen.

  1. Non-perturbative power corrections to ghost and gluon propagators

    International Nuclear Information System (INIS)

    Boucaud, Philippe; Leroy, Jean-Pierre; Yaouanc, Alain Le; Lokhov, Alexey; Micheli, Jacques; Pene, Olivier; RodrIguez-Quintero, Jose; Roiesnel, Claude

    2006-01-01

    We study the dominant non-perturbative power corrections to the ghost and gluon propagators in Landau gauge pure Yang-Mills theory using OPE and lattice simulations. The leading order Wilson coefficients are proven to be the same for both propagators. The ratio of the ghost and gluon propagators is thus free from this dominant power correction. Indeed, a purely perturbative fit of this ratio gives smaller value ( ≅ 270MeV) of Λ M-barS-bar than the one obtained from the propagators separately( ≅ 320MeV). This argues in favour of significant non-perturbative ∼ 1/q 2 power corrections in the ghost and gluon propagators. We check the self-consistency of the method

  2. Modelling of classical ghost images obtained using scattered light

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, S; Castelletto, S; Aruldoss, C; Scholten, R E; Roberts, A [School of Physics, University of Melbourne, Victoria, 3010 (Australia)

    2007-08-15

    The images obtained in ghost imaging with pseudo-thermal light sources are highly dependent on the spatial coherence properties of the incident light. Pseudo-thermal light is often created by reducing the coherence length of a coherent source by passing it through a turbid mixture of scattering spheres. We describe a model for simulating ghost images obtained with such partially coherent light, using a wave-transport model to calculate the influence of the scattering on initially coherent light. The model is able to predict important properties of the pseudo-thermal source, such as the coherence length and the amplitude of the residual unscattered component of the light which influence the resolution and visibility of the final ghost image. We show that the residual ballistic component introduces an additional background in the reconstructed image, and the spatial resolution obtainable depends on the size of the scattering spheres.

  3. Ghost-free, finite, fourth-order D = 3 gravity.

    Science.gov (United States)

    Deser, S

    2009-09-04

    Canonical analysis of a recently proposed linear + quadratic curvature gravity model in D = 3 establishes its pure, irreducibly fourth derivative, quadratic curvature limit as both ghost-free and power-counting UV finite, thereby maximally violating standard folklore. This limit is representative of a generic class whose kinetic terms are conformally invariant in any dimension, but it is unique in simultaneously avoiding the transverse-traceless graviton ghosts plaguing D > 3 quadratic actions as well as double pole propagators in its other variables. While the two-term model is also unitary, its additional mode's second-derivative nature forfeits finiteness.

  4. Ghost responses of the FitzHugh–Nagumo system induced by colored noise

    International Nuclear Information System (INIS)

    Bordet, M.; Morfu, S.; Marquié, P.

    2015-01-01

    We investigate both numerically and experimentally how the triggering of Ghost Stochastic Resonance is affected by colored noise in a FitzHugh–Nagumo circuit. It is experimentally shown that when the circuit is excited with a bichromatic signal, weak colored noise can induce a response with a main ghost frequency which is not present in the excitation. We analyze the occurrence of this ghost frequency versus the noise intensity and the correlation time of the colored noise. Numerical simulations and experiments confirm that for larger noise correlation time, submultiples of this ghost frequency dominate the system response while the previous expected ghost frequency is less observed

  5. Weyl and ghost number anomalies in the Polyakov's light-cone gauge

    International Nuclear Information System (INIS)

    Suzuki, H.

    1991-01-01

    In this paper the conformal (Weyl) anomaly of the ghost-anti-ghost system in the 2-dimensional quantum gravity is calculated. A background covariant formalism allows us to treat the Polyakov's light-cone gauge in a systematic way. The anomaly gives a contribution to the central charge, -28, which agrees with the result of Kniznik, Polyakov, and Zamolodchikov. The ghost number anomaly is also calculated, and the metric corrections to the naive ghost number current are given. It is suggested that a general scalar density in the light-cone gauge carries a screening ghost number

  6. Theoretical scheme of thermal-light many-ghost imaging by Nth-order intensity correlation

    International Nuclear Information System (INIS)

    Liu Yingchuan; Kuang Leman

    2011-01-01

    In this paper, we propose a theoretical scheme of many-ghost imaging in terms of Nth-order correlated thermal light. We obtain the Gaussian thin lens equations in the many-ghost imaging protocol. We show that it is possible to produce N-1 ghost images of an object at different places in a nonlocal fashion by means of a higher order correlated imaging process with an Nth-order correlated thermal source and correlation measurements. We investigate the visibility of the ghost images in the scheme and obtain the upper bounds of the visibility for the Nth-order correlated thermal-light ghost imaging. It is found that the visibility of the ghost images can be dramatically enhanced when the order of correlation becomes larger. It is pointed out that the many-ghost imaging phenomenon is an observable physical effect induced by higher order coherence or higher order correlations of optical fields.

  7. Harriot, Digges, and the Ghost in Hamlet.

    Science.gov (United States)

    Usher, P. D.

    1998-12-01

    The cosmic allegorical interpretation of Hamlet (BAAS 28, 1305, 1996; 29, 1262, 1997; Giornale di Astronomia 24:3, 27, 1998) may be regarded as a Galilean postulatum with testable consequences. It associates leading characters in the play with cosmologists from the time of Ptolemy (Claudius) to Tycho Brahe (Rosencrantz and Guildenstern) and Thomas Digges (Hamlet). Lines 3.3.8-23 describe how the concepts of geocentricism and the sphere of fixed stars shared by the Ptolemaic and Tychonic models are imperiled by the Infinite Universe of Digges. Hitherto baffling lines 5.2.100-125 list in short order at least 16 attributes of Thomas Harriot, including his short bibliography (``soul of great article'') which may explain why he receives mention only in passing. The Ghost is Thomas Digges' father Leonard, who is a ``mole'' in the ``cellarage.'' That Leonard may have gone underground following restoration of his lands is supported by the range of years (1559-1574) of his alleged death, and conspicuous absence of a gravesite. Circumstances of his disappearance have remained mysterious (N&Q 2:X, 162, 1860; 6:X, 368, 515, 1884; 8:V, 186, 1894.) I suggest that, having been saved from execution and restored to gentility, he continued to work, writing in the tradition of his confrere's father Thomas Wyatt, Sr. who pioneered the English sonnet. The first Dowden series of sonnets reflects his love for his only child. The history of the perspective glass explains lines in Sonnets 14 and 103 (``my blunt invention'') and in the I.M.S. encomium wherein he did ``rowle back the heavens'' with a ``cleere and equall surface'' that is ``reflecting ages past.'' A portrait of Tycho helps date Sonnet 16 to between 1581 and 1585. Sonnets 18 and 87 would date to 1583 and 1595. Allusions to old age are not surprising. I.M.'s words: ``Wee wondred (Shake-speare) that thou went'st so soone'' and ``An Actors Art, can dye, and liue to acte a second part'' are explained, as are sources for The

  8. Elimination of ghost markers during dual sensor-based infrared tracking of multiple individual reflective markers

    International Nuclear Information System (INIS)

    Stroian, G.; Falco, T.; Seuntjens, J.P.

    2004-01-01

    The accuracy of dose delivery in radiotherapy is affected by the uncertainty in tumor localization. Motion of internal anatomy due to physiological processes such as respiration may lead to significant displacements which compromise tumor coverage and generate irradiation of healthy tissue. Real-time tracking with infrared-based systems is often used for tracking thoracic motion in radiation therapy. We studied the origin of ghost markers ('crosstalk') which may appear during dual sensor-based infrared tracking of independent reflective markers. Ghost markers occur when two or more reflective markers are coplanar with each other and with the sensors of the two camera-based infrared tracking system. Analysis shows that sensors are not points but they have a finite extent and this extent determines for each marker a 'ghost volume'. If one reflective marker enters the ghost volume of another marker, ghost markers will be reported by the tracking system; if the reflective markers belong to a surface their 'ghost volume' is reduced to a 'ghost surface' (ghost zone). Appearance of ghost markers is predicted for markers taped on the torso of an anthropomorphic phantom. This study illustrates the dependence of the shape, extent, and location of the ghost zones on the shape of the anthropomorphic phantom, the angle of view of the tracking system, and the distance between the tracking system and the anthropomorphic phantom. It is concluded that the appearance of ghost markers can be avoided by positioning the markers outside the ghost zones of the other markers. However, if this is not possible and the initial marker configuration is ghost marker-free, ghost markers can be eliminated during real-time tracking by virtue of the fact that they appear in the coordinate data sequence only temporarily

  9. Teen Girls' Resistance and the Disappearing Social in "Ghost World."

    Science.gov (United States)

    Giroux, Henry A.

    2002-01-01

    Examines "Ghost World," a Hollywood film about youth, friendship, alienation, and survival, critically investigating how popular representations of youth signal a particular crisis of the social through a discourse of privatization, which fails to locate youth and problems they face within the related geographies of the social and political. The…

  10. Ghost crabs on a treadmill: Oxygen Uptake and Haemocyanin ...

    African Journals Online (AJOL)

    Ghost crabs Ocypode ceratophthalmus were exercised on a specially constructed treadmill. At a running speed of 13,3 cm s-1, most crabs ran for 2 h before getting fatigued. At this speed the oxygen consumption rate (MO2) was measured in time intervals for a total of 52 min. For exercised crabs the MO2 values are about ...

  11. Cinematography in Motherhood: a Hong Kong film adaptation of Ghosts

    Directory of Open Access Journals (Sweden)

    Kwok-kan Tam

    2015-02-01

    Full Text Available This is a study of a Hong Kong Chinese film adaptation of Ghosts made in 1960. It deals with processes of cross-cultural and cross-media adaptation, and probes issues of how stage techniques are turned into cinematographic devices. Ibsen’s plays, except Ghosts, have been adapted numerous times for the Chinese stage and screen in Hong Kong and China. Unlike in China, the reception of Ibsen in Hong Kong is not meant for political purposes. In most Hong Kong adaptations, Ibsen is valued for the purpose of theatrical experimentation. Among the stage adaptations, A Doll’s House and The Master Builder are the most popular. However, there was a film adaptation of Ghosts in 1960, which has never been discussed in Ibsen scholarship. In this adaptation, Director Tso Kea borrowed the plot from Ghosts and made a perfect Chinese melodrama film highlighting the Chinese emotions and relations in a wealthy family that undergoes a crisis. In traditional Chinese drama, there is the lack of psychological rendering in characterization and characters act according to moral considerations. In Tso Kea’s film, the portrayal of the mother provides a new sense of characterization by combining Mrs Alving with the traditional Chinese mother figure. The borrowing from Ibsen makes it possible for the Chinese film to create a character with emotional and psychological complexities. Images from the film are selected as illustration in the article.

  12. Ghost fringe removal techniques using Lissajous data presentation.

    Science.gov (United States)

    Erskine, David J; Eggert, J H; Celliers, P M; Hicks, D G

    2016-03-01

    A VISAR (Velocity Interferometer System for Any Reflector) is a Doppler velocity interferometer which is an important optical diagnostic in shockwave experiments at the national laboratories, used to measure equation of state (EOS) of materials under extreme conditions. Unwanted reflection of laser light from target windows can produce an additional component to the VISAR fringe record that can distort and obscure the true velocity signal. Accurately removing this so-called ghost artifact component is essential for achieving high accuracy EOS measurements, especially when the true light signal is only weakly reflected from the shock front. Independent of the choice of algorithm for processing the raw data into a complex fringe signal, we have found it beneficial to plot this signal as a Lissajous and seek the proper center of this path, even under time varying intensity which can shift the perceived center. The ghost contribution is then solved by a simple translation in the complex plane that recenters the Lissajous path. For continuous velocity histories, we find that plotting the fringe magnitude vs nonfringing intensity and optimizing linearity is an invaluable tool for determining accurate ghost offsets. For discontinuous velocity histories, we have developed graphically inspired methods which relate the results of two VISARs having different velocity per fringe proportionalities or assumptions of constant fringe magnitude to find the ghost offset. The technique can also remove window reflection artifacts in generic interferometers, such as in the metrology of surfaces.

  13. AXAF-I ghost ray study: On orbit case

    Science.gov (United States)

    Gaetz, T. J.

    1993-01-01

    The problem of baffles for control of singly reflected (and nonreflected) ghost rays is considered. The theory of baffle design for Wolter Type I grazing incidence optics is reviewed, and a set of sample baffle parameters is obtained subject to the assumptions of nominal mirror figures and perfect manufacture and alignment of baffles. It is found that baffles forward of the optics (in the thermal precollimator) and between the mirror elements (at the CAP) are sufficient to allow the simultaneous ghost image and vignetting requirements to be satisfied for HRMA shells P1H1, P3H3, and P4H4. However, these baffles are not sufficient for the innermost shell P6H6; at best the requirements are slightly violated and there is no margin for tolerances. The addition of a baffle interior to the P6 space at an axial station about one third of the way forward from the aft end of the paraboloid will allow the ghost ray and vignetting requirements to be met. The minimum ghost ray angles and the vignetting angles are sensitive functions of the baffle positions and radii; tolerances of considerably better than 1 mm will be required. The sensitivities are coupled and correlated; further investigations should be undertaken in order to obtain baffle parameters which, combined with likely achievable tolerances, will minimize the risk of the vignetting/ghost ray requirements not being met. The lightweight carbon-epoxy composite used for thermal baffles has insufficient X-ray opacity to be a suitable material for construction of the controlling X-ray baffles; further study is needed to determine an appropriate material and to investigate its thermal and mechanical implications.

  14. Biological imaging by soft X-ray diffraction microscopy

    Science.gov (United States)

    Shapiro, David

    We have developed a microscope for soft x-ray diffraction imaging of dry or frozen hydrated biological specimens. This lensless imaging system does not suffer from the resolution or specimen thickness limitations that other short wavelength microscopes experience. The microscope, currently situated at beamline 9.0.1 of the Advanced Light Source, can collect diffraction data to 12 nm resolution with 750 eV photons and 17 nm resolution with 520 eV photons. The specimen can be rotated with a precision goniometer through an angle of 160 degrees allowing for the collection of nearly complete three-dimensional diffraction data. The microscope is fully computer controlled through a graphical user interface and a scripting language automates the collection of both two-dimensional and three-dimensional data. Diffraction data from a freeze-dried dwarf yeast cell, Saccharomyces cerevisiae carrying the CLN3-1 mutation, was collected to 12 run resolution from 8 specimen orientations spanning a total rotation of 8 degrees. The diffraction data was phased using the difference map algorithm and the reconstructions provide real space images of the cell to 30 nm resolution from each of the orientations. The agreement of the different reconstructions provides confidence in the recovered, and previously unknown, structure and indicates the three dimensionality of the cell. This work represents the first imaging of the natural complex refractive contrast from a whole unstained cell by the diffraction microscopy method and has achieved a resolution superior to lens based x-ray tomographic reconstructions of similar specimens. Studies of the effects of exposure to large radiation doses were also carried out. It was determined that the freeze-dried cell suffers from an initial collapse, which is followed by a uniform, but slow, shrinkage. This structural damage to the cell is not accompanied by a diminished ability to see small features in the specimen. Preliminary measurements on frozen

  15. Comparison of the signal-to-noise characteristics of quantum versus thermal ghost imaging

    International Nuclear Information System (INIS)

    O'Sullivan, Malcolm N.; Chan, Kam Wai Clifford; Boyd, Robert W.

    2010-01-01

    We present a theoretical comparison of the signal-to-noise characteristics of quantum versus thermal ghost imaging. We first calculate the signal-to-noise ratio of each process in terms of its controllable experimental conditions. We show that a key distinction is that a thermal ghost image always resides on top of a large background; the fluctuations in this background constitutes an intrinsic noise source for thermal ghost imaging. In contrast, there is a negligible intrinsic background to a quantum ghost image. However, for practical reasons involving achievable illumination levels, acquisition times for thermal ghost images are often much shorter than those for quantum ghost images. We provide quantitative predictions for the conditions under which each process provides superior performance. Our conclusion is that each process can provide useful functionality, although under complementary conditions.

  16. Masslessness of ghosts in equivariantly gauge-fixed Yang-Mills theories

    International Nuclear Information System (INIS)

    Golterman, Maarten; Zimmerman, Leah

    2005-01-01

    We show that the one-loop ghost self-energy in an equivariantly gauge-fixed Yang-Mills theory vanishes at zero momentum. A ghost mass is forbidden by equivariant BRST symmetry, and our calculation confirms this explicitly. The four-ghost self interaction which appears in the equivariantly gauge-fixed Yang-Mills theory is needed in order to obtain this result

  17. Long-distance thermal temporal ghost imaging over optical fibers

    Science.gov (United States)

    Yao, Xin; Zhang, Wei; Li, Hao; You, Lixing; Wang, Zhen; Huang, Yidong

    2018-02-01

    A thermal ghost imaging scheme between two distant parties is proposed and experimentally demonstrated over long-distance optical fibers. In the scheme, the weak thermal light is split into two paths. Photons in one path are spatially diffused according to their frequencies by a spatial dispersion component, then illuminate the object and record its spatial transmission information. Photons in the other path are temporally diffused by a temporal dispersion component. By the coincidence measurement between photons of two paths, the object can be imaged in a way of ghost imaging, based on the frequency correlation between photons in the two paths. In the experiment, the weak thermal light source is prepared by the spontaneous four-wave mixing in a silicon waveguide. The temporal dispersion is introduced by single mode fibers of 50 km, which also could be looked as a fiber link. Experimental results show that this scheme can be realized over long-distance optical fibers.

  18. Pseudo color ghost coding imaging with pseudo thermal light

    Science.gov (United States)

    Duan, De-yang; Xia, Yun-jie

    2018-04-01

    We present a new pseudo color imaging scheme named pseudo color ghost coding imaging based on ghost imaging but with multiwavelength source modulated by a spatial light modulator. Compared with conventional pseudo color imaging where there is no nondegenerate wavelength spatial correlations resulting in extra monochromatic images, the degenerate wavelength and nondegenerate wavelength spatial correlations between the idle beam and signal beam can be obtained simultaneously. This scheme can obtain more colorful image with higher quality than that in conventional pseudo color coding techniques. More importantly, a significant advantage of the scheme compared to the conventional pseudo color coding imaging techniques is the image with different colors can be obtained without changing the light source and spatial filter.

  19. Use of the Location Inverse Solution to Reduce Ghost Images

    Directory of Open Access Journals (Sweden)

    Yong-Zhong Hu

    2010-01-01

    Full Text Available Through-the-wall imaging (TWI is a difficult but important task for both law enforcement and military missions. Acquiring information on both the internal features of a structure and the location of people inside plays an important role in many fields such as antiterrorism, hostage search and rescue, and barricade situations. Up to now, a number of promising experimental systems have been developed to validate and evaluate diverse imaging methods, most of which are based on a linear antenna array to obtain an image of the objects. However, these methods typically use the backward projection (BP algorithm based on ellipse curves, which usually generates additional ghost images. In this paper, the algorithm using the location inverse solution (LIS to reduce the ghost images is proposed and simulated. The results of simulation show that this approach is feasible.

  20. On the state space of the dipole ghost

    International Nuclear Information System (INIS)

    Binegar, B.

    1984-01-01

    A particular representation of SO(4, 2) is identified with the state space of the free dipole ghost. This representation is then given an explicit realization as the solution space of a 4th-order wave equation on a spacetime locally isomorphic to Minkowski space. A discrete basis for this solution space is given, as well as an explicit expression for its SO(4, 2) invariant inner product. The connection between the modes of dipole field and those of the massless scalar field is clarified, and a recent conjecture concerning the restriction of the dipole representation to the Poincare subgroup is confirmed. A particular coordinate transformation then reveals the theory of the dipole ghost in Minkowski space. Finally, it is shown that the solution space of the dipole equation is not unitarizable in a Poincare invariant manner. (orig.)

  1. Phantom dark ghost in Einstein-Cartan gravity

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yu-Chiao [National Taiwan University, Department of Physics, Taipei (China); National Taiwan University, LeCosPA, Taipei (China); Bouhmadi-Lopez, Mariam [University of the Basque Country UPV/EHU, Department of Theoretical Physics, P.O. Box 644, Bilbao (Spain); Basque Foundation for Science, IKERBASQUE, Bilbao (Spain); Chen, Pisin [National Taiwan University, Department of Physics, Taipei (China); National Taiwan University, LeCosPA, Taipei (China); National Taiwan University, Graduate Institute of Astrophysics, Taipei (China); SLAC National Accelerator Laboratory, Stanford University, Kavli Institute for Particle Astrophysics and Cosmology, Stanford, CA (United States)

    2017-05-15

    A class of dynamical dark energy models is constructed through an extended version of fermion fields corresponding to phantom dark ghost spinors, which are spin 1/2 with mass dimension 1. We find that if these spinors interact with torsion fields in a homogeneous and isotropic universe, then it does not imply any future dark energy singularity or any abrupt event, though the fermion has a negative kinetic energy. In fact, the equation of state of this dark energy model will asymptotically approach the value w = -1 from above without crossing the phantom divide and inducing therefore a de Sitter state. Consequently, we expect the model to be stable because no real phantom fields will be created. At late time, the torsion fields will vanish as the corresponding phantom dark ghost spinors dilute. As would be expected, intuitively, this result is unaffected by the presence of cold dark matter although the proof is not as straightforward as in general relativity. (orig.)

  2. Field theory of interacting open superstrings of fermionic ghost representation

    International Nuclear Information System (INIS)

    Aref'eva, I.Ya.; Medvedev, P.V.

    1987-01-01

    Field theory of interacting open superstring in fermionic ghost representation based on anticommuting and commuting ghosts corresponding respectively to world sheet bosonic x μ and fermionic φ μ coordinates is presented. The author have to revise once more the field theory of the free Ramond (R) string and starting from general algebraic point of view they obtain that the number of degrees of freedom in the R and NS (Neveu-Schwartz) sectors equalise themselves permitting to construct a supersymmetric operator. It is proposed to solve a specific equation guaranteeing superinvariance in order to find the R-R-NS and NS-R-R vertices in the term of the NS-NS-NS vertex

  3. Ghost imaging with paired x-ray photons

    Science.gov (United States)

    Schori, A.; Borodin, D.; Tamasaku, K.; Shwartz, S.

    2018-06-01

    We report the experimental observation of ghost imaging with paired x-ray photons, which are generated by parametric downconversion. We use the one-to-one relation between the photon energies and the emission angles and the anticorrelation between the k -vectors of the signal and the idler photons to reconstruct the images of slits with nominally zero background levels. Further extension of our procedure can be used for the observation of various quantum phenomena at x-ray wavelengths.

  4. Ghost circles in lattice Aubry-Mather theory

    Science.gov (United States)

    Mramor, Blaz; Rink, Bob

    Monotone lattice recurrence relations such as the Frenkel-Kontorova lattice, arise in Hamiltonian lattice mechanics, as models for ferromagnetism and as discretization of elliptic PDEs. Mathematically, they are a multi-dimensional counterpart of monotone twist maps. Such recurrence relations often admit a variational structure, so that the solutions x:Z→R are the stationary points of a formal action function W(x). Given any rotation vector ω∈R, classical Aubry-Mather theory establishes the existence of a large collection of solutions of ∇W(x)=0 of rotation vector ω. For irrational ω, this is the well-known Aubry-Mather set. It consists of global minimizers and it may have gaps. In this paper, we study the parabolic gradient flow {dx}/{dt}=-∇W(x) and we will prove that every Aubry-Mather set can be interpolated by a continuous gradient-flow invariant family, the so-called 'ghost circle'. The existence of these ghost circles is known in dimension d=1, for rational rotation vectors and Morse action functions. The main technical result of this paper is therefore a compactness theorem for lattice ghost circles, based on a parabolic Harnack inequality for the gradient flow. This implies the existence of lattice ghost circles of arbitrary rotation vectors and for arbitrary actions. As a consequence, we can give a simple proof of the fact that when an Aubry-Mather set has a gap, then this gap must be filled with minimizers, or contain a non-minimizing solution.

  5. Interacting viscous ghost tachyon, K-essence and dilaton scalar field models of dark energy

    International Nuclear Information System (INIS)

    Karami, K; Fahimi, K

    2013-01-01

    We study the correspondence between the interacting viscous ghost dark energy model with the tachyon, K-essence and dilaton scalar field models in the framework of Einstein gravity. We consider a spatially non-flat FRW universe filled with interacting viscous ghost dark energy and dark matter. We reconstruct both the dynamics and potential of these scalar field models according to the evolutionary behavior of the interacting viscous ghost dark energy model, which can describe the accelerated expansion of the universe. Our numerical results show that the interaction and viscosity have opposite effects on the evolutionary properties of the ghost scalar field models. (paper)

  6. Roles of the color antisymmetric ghost propagator in the Infrared QCD

    International Nuclear Information System (INIS)

    Furui, S.

    2009-01-01

    The results of Coulomb gauge and Landau gauge lattice QCD simulation do not agree completely with continuum theory. There are indications that the ghost propagator in the infrared region has strong fluctuation whose modulus is compatible with that of the color diagonal ghost propagator. After presenting lattice simulation of configurations produced with Kogut-Susskind fermion (MILC collaboration) and those with domain wall fermion (RBC/UKQCD collaboration), I investigate in triple gluon vertex and the ghost-gluon-ghost vertex how the square of the color antisymmetric ghost contributes. Then the effect of the vertex correction to the gluon propagator and the ghost propagator is investigated. Recent Dyson-Schwinger equation analysis suggests the ghost dressing function G(0) = finite and no infrared enhancement or a G = 0. But the ghost propagator renormalized by the loop containing a product of color antisymmetric ghost is expected to behave as [cc] r = - (G(q 2 ))/(q 2 ) with G(q 2 ) ∝ q -2aG with a G = 0.5, if the fixed point scenario is valid. I interpret the a G = 0 solution should contain a vertex correction. The infrared exponent of our lattice Landau gauge gluon propagator of the RBC/UKQCD is a D = - 0.5 and that of MILC is about - 0.7. A possible interpretation of the origin of the fluctuation is given. (author)

  7. Y-formalism and b ghost in the non-minimal pure spinor formalism of superstrings

    International Nuclear Information System (INIS)

    Oda, Ichiro; Tonin, Mario

    2007-01-01

    We present the Y-formalism for the non-minimal pure spinor quantization of superstrings. In the framework of this formalism we compute, at the quantum level, the explicit form of the compound operators involved in the construction of the b ghost, their normal-ordering contributions and the relevant relations among them. We use these results to construct the quantum-mechanical b ghost in the non-minimal pure spinor formalism. Moreover we show that this non-minimal b ghost is cohomologically equivalent to the non-covariant b ghost

  8. Analysis of ghost image in high power laser system using computer

    International Nuclear Information System (INIS)

    Zhang Qingquan; Liu Jinsong; Wang Kejia; Zhu Qihua; Zhao Runchang; Wang Fang

    2011-01-01

    Using a self-made software named CatchGhost the ghost points' position and energy in a coaxial optic systems were calculated accurately in a short time without omission. The software can carry out massive calculation in a short time, and pick out the harmful ghosts in system automatically. Because all the elements which are related to beams' energy,including the pinhole' effect, reflectivity,gain and loss,are counted, data of ghost points given by the software are exact and useful. (authors)

  9. Physicochemical characterization of artificial nanoerythrosomes derived from erythrocyte ghost membranes.

    Science.gov (United States)

    Deák, Róbert; Mihály, Judith; Szigyártó, Imola Cs; Wacha, András; Lelkes, Gábor; Bóta, Attila

    2015-11-01

    Colloidal stabile nanoerythrosomes with 200 nm average diameter were formed from hemoglobin-free erythrocyte ghost membrane via sonication and membrane extrusion. The incorporation of extra lipid (1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC), added to the sonicated ghosts, caused significant changes in the thermotropic character of the original membranes. As a result of the increased DPPC ratio the chain melting of the hydrated DPPC system and the characteristic small angle X-ray scattering (SAXS) of the lipid bilayers appeared. Significant morphological changes were followed by transmission electron microscopy combined with freeze fracture method (FF-TEM). After the ultrasonic treatment the large entities of erythrocyte ghosts transformed into nearly spherical nanoerythrosomes with diameters between 100 and 300 nm and at the same time a great number of 10-30 nm large membrane proteins or protein clusters were dispersed in the aqueous medium. The infrared spectroscopy (FT-IR) pointed out, that the sonication did not cause changes in the secondary structures of the membrane proteins under our preparation conditions. About fivefold of extra lipid--compared to the lipid content of the original membrane--caused homogeneous dispersion of nanoerythrosomes however the shape of the vesicles was not uniform. After the addition of about tenfold of DPPC, monoform and monodisperse nanoerythrosomes became typical. The outer surfaces of these roughly spherical objects were frequently polygonal, consisting of a net of pentagons and hexagons. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Annual air pollution caused by the Hungry Ghost Festival.

    Science.gov (United States)

    Khezri, B; Chan, Y Y; Tiong, L Y D; Webster, R D

    2015-09-01

    Burning of joss paper and incense is still a very common traditional custom in countries with a majority Chinese population. The Hungry Ghost Festival which is celebrated in the 7 month of the Chinese calendar is one of the events where joss paper and incense are burned as offerings. This study investigates the impact of the Ghost Month Festival (open burning event) on air quality by analysis of the chemical composition of particulate matter (PM) and rainwater samples collected during this event, compared with data collected throughout the year, as well as bottom ash samples from burning the original joss paper and incense. The results showed that the change in the chemical composition of the rainwater and PM2.5 (PM ≤ 2.5 μm) atmospheric samples could be correlated directly with burning events during this festival, with many elements increasing between 18% and 60% during August and September compared to the yearly mean concentrations. The order of percentage increase in elemental composition (in rain water and PM2.5) during the Hungry Ghost Festival is as follows: Zn > Ca > K > Mg > Fe > Al > Na ∼ Mn ∼ Ti ∼ V > Cu > As > Ni > Co > Cd > Cr > Pb. The chemical composition of the original source materials (joss paper and incense for combustion) and their associated bottom ash were analysed to explain the impact of burning on air quality.

  11. Ghost condensation and a consistent IR modification of gravity

    International Nuclear Information System (INIS)

    Arkani Hamed, N.; Cheng, H.S.; Luty, M.A.; Mukohyama, S.

    2004-01-01

    We propose a theoretically consistent modification of gravity in the infrared, which is compatible with all current experimental observations. This is an analog of Higgs mechanism in general relativity, and can be thought of as arising from ghost condensation-a background where a scalar field φhas a constant velocity, = M 2 . The ghost condensate is a new kind of fluid that can fill the universe, which has the same equation of state, ρ = -p, as a cosmological constant, and can hence drive de Sitter expansion of the universe. However, unlike a cosmological constant, it is a physical fluid with a physical scalar excitation, which can be described by a systematic effective field theory at low energies. The excitation has an unusual low-energy dispersion relation ω 2 ∼ k 4 /M 2 . If coupled to matter directly, it gives rise to small Lorentz-violating effects and a new long-range 1/r 2 spin dependent force. In the ghost condensate, the energy that gravitates is not the same as the particle physics energy, leading to the possibility of both sources that can gravitate and antigravitate. The Newtonian potential is modified with an oscillatory behavior starting at the distance scale M Pl /M 2 and the time scale M Pl 2 /M 3 . This theory opens up a number of new avenues for attacking cosmological problems, including inflation, dark matter and dark energy. (author)

  12. Tsunami and ghost stories in Thailand: exploring the psychology of ghosts and religious rituals within the context of Thai Buddhism.

    Science.gov (United States)

    Sorajjakool, Siroj

    2007-01-01

    The post-tsunami ghost phenomena in Thailand may be understood, in Jungian terms, as an expression of the autonomous complex of the collective psyche resulting from traumatic loss. Religious rituals, as in the context of Thai Buddhism, provide an alternative method of dealing with grief, and hence they affirm the place of religious practices in the overall psychological well-being of people from various cultural backgrounds.

  13. Diffraction coherence in optics

    CERN Document Server

    Françon, M; Green, L L

    2013-01-01

    Diffraction: Coherence in Optics presents a detailed account of the course on Fraunhofer diffraction phenomena, studied at the Faculty of Science in Paris. The publication first elaborates on Huygens' principle and diffraction phenomena for a monochromatic point source and diffraction by an aperture of simple form. Discussions focus on diffraction at infinity and at a finite distance, simplified expressions for the field, calculation of the path difference, diffraction by a rectangular aperture, narrow slit, and circular aperture, and distribution of luminous flux in the airy spot. The book th

  14. 50 CFR 697.21 - Gear identification and marking, escape vent, maximum trap size, and ghost panel requirements.

    Science.gov (United States)

    2010-10-01

    ... vent, maximum trap size, and ghost panel requirements. 697.21 Section 697.21 Wildlife and Fisheries... identification and marking, escape vent, maximum trap size, and ghost panel requirements. (a) Gear identification... Administrator finds to be consistent with paragraph (c) of this section. (d) Ghost panel. (1) Lobster traps not...

  15. 76 FR 76812 - Requested Administrative Waiver of the Coastwise Trade Laws: Vessel BARBARY GHOST; Invitation for...

    Science.gov (United States)

    2011-12-08

    ... DEPARTMENT OF TRANSPORTATION Maritime Administration [Docket No. MARAD 2011 0148] Requested Administrative Waiver of the Coastwise Trade Laws: Vessel BARBARY GHOST; Invitation for Public Comments AGENCY... BARBARY GHOST is: Intended Commercial Use Of Vessel: ``Sightseeing tours in the San Francisco Bay for a...

  16. Hydraulic activities by ghost shrimp Neotrypaea californiensis induce oxic-anoxic oscillations in sediments

    Science.gov (United States)

    We applied porewater pressure sensing, time-lapse photography and planar optode imaging of oxygen to investigate hydraulic behaviors of the Thalassinidean ghost shrimp Neotrypaea californiensis and the associated dynamics of oxygen in and around their burrows. Ghost shrimp were h...

  17. The Ghost in the Touchscreen: Social Scaffolds Promote Learning by Toddlers

    Science.gov (United States)

    Zimmermann, Laura; Moser, Alecia; Lee, Herietta; Gerhardstein, Peter; Barr, Rachel

    2017-01-01

    This study examined the effect of a "ghost" demonstration on toddlers' imitation. In the "ghost" condition, virtual pieces moved to make a fish or boat puzzle. Fifty-two 2.5- and 3-year-olds were tested on a touchscreen (no transfer) or with 3D pieces (transfer); children tested with 3D pieces scored above a no demonstration…

  18. Harry Potter and the Ghost Teacher: Resurrecting the Lost Art of Lecturing

    Science.gov (United States)

    McDaniel, Kathryn N.

    2010-01-01

    A significant image of classroom lectures is the one presented in J. K. Rowling's "Harry Potter" series. At Harry's Hogwarts School of Witchcraft and Wizardry, the most torturous class is easily History of Magic, which is, incidentally, the only class in the school taught by a ghost. Being taught by a ghost could be quite exciting: not so in…

  19. Hunting The Ghost Gun: An Analysis Of The U.S. Army Infantry Rifle

    Science.gov (United States)

    2016-03-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA JOINT APPLIED PROJECT HUNTING THE GHOST GUN : AN ANALYSIS OF THE U.S. ARMY......LEFT BLANK iii Approved for public release; distribution is unlimited HUNTING THE GHOST GUN : AN ANALYSIS OF THE U.S. ARMY INFANTRY

  20. Simplified pure spinor b ghost in a curved heterotic superstring background

    Energy Technology Data Exchange (ETDEWEB)

    Berkovits, Nathan [ICTP South American Institute for Fundamental Research,Instituto de Física Teórica, UNESP - Universidade Estadual Paulista,Rua Dr. Bento T. Ferraz 271, 01140-070, São Paulo, SP (Brazil); Chandia, Osvaldo [Departamento de Ciencias, Facultad de Artes Liberales,Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez,Diagonal Las Torres 2640, Peñalolén, Santiago (Chile)

    2014-06-03

    Using the RNS-like fermionic vector variables introduced in arXiv:1305.0693, the pure spinor b ghost in a curved heterotic superstring background is easily constructed. This construction simplifies and completes the b ghost construction in a curved background of arXiv:1311.7012.

  1. 128 Gothicism/Ghost Stories in Nigerian Literature: Facts or Fiction ...

    African Journals Online (AJOL)

    Ike Odimegwu

    In The Castle of Otranto, a gigantic hand in armour, a ghost ling figure, a vast helmet ... literature, the “literary ghost stories are stories written by creative artists who .... nurses, lovers, civil servants, the palm wine tapers, widows, job applicants ...

  2. Phase behavior in diffraction

    International Nuclear Information System (INIS)

    Checon, A.

    1983-01-01

    Theoretical formulation of a straight edge diffraction shows a phase difference of π/2 between the incoming and diffracted waves. Experiments using two straight edges do not confirm the π/2 difference but suggest that the incoming wave is in phase with the wave diffracted into the shadowed region of the edge and out of phase by a factor of π with the wave diffracted into the illuminated region. (Author) [pt

  3. Image quality enhancement in low-light-level ghost imaging using modified compressive sensing method

    Science.gov (United States)

    Shi, Xiaohui; Huang, Xianwei; Nan, Suqin; Li, Hengxing; Bai, Yanfeng; Fu, Xiquan

    2018-04-01

    Detector noise has a significantly negative impact on ghost imaging at low light levels, especially for existing recovery algorithm. Based on the characteristics of the additive detector noise, a method named modified compressive sensing ghost imaging is proposed to reduce the background imposed by the randomly distributed detector noise at signal path. Experimental results show that, with an appropriate choice of threshold value, modified compressive sensing ghost imaging algorithm can dramatically enhance the contrast-to-noise ratio of the object reconstruction significantly compared with traditional ghost imaging and compressive sensing ghost imaging methods. The relationship between the contrast-to-noise ratio of the reconstruction image and the intensity ratio (namely, the average signal intensity to average noise intensity ratio) for the three reconstruction algorithms are also discussed. This noise suppression imaging technique will have great applications in remote-sensing and security areas.

  4. Lag and ghosting in a clinical flat-panel selenium digital mammography system

    International Nuclear Information System (INIS)

    Bloomquist, Aili K.; Yaffe, Martin J.; Mawdsley, Gordon E.; Hunter, David M.; Beideck, Daniel J.

    2006-01-01

    We present measurements of lag and ghosting in a FDA-approved digital mammography system that uses a dielectric/selenium based detector structure. Lag is the carryover of signal from a previous image, whereas ghosting is the reduction of sensitivity caused by previous exposure history of the detector. Data from six selenium units were acquired. For the type of selenium detector tested, and under typical clinical usage conditions, the lag was as high as 0.15% of source signal and the ghosting could be as high as 15%. The amount of lag and ghosting varied from unit to unit. Results were compared with data acquired on a phosphor-based full-field digital mammography system. Modifications in the technology of the selenium detectors appear to have resulted in a marked decrease in both lag and ghosting effects in more recent systems

  5. Evidence of marine debris usage by the ghost crab Ocypode quadrata (Fabricius, 1787).

    Science.gov (United States)

    Costa, Leonardo Lopes; Rangel, Danilo Freitas; Zalmon, Ilana Rosental

    2018-03-01

    Sandy beaches are sites of marine debris stranding, but the interaction of beach biota with waste is poorly studied. The objective of this study was to investigate whether the ghost crab Ocypode quadrata selects marine debris by types using a non-destructive method on sandy beaches of Southeastern Brazil. We found marine debris in 7% of 1696 surveyed burrows, and the ghost crabs selectivity was mainly by soft plastic (30%), straw (11%), rope (6%) and foam (4%). Burrows with marine debris showed higher occupation rate (~68%) compared to burrows without debris (~28%), indicating that these materials may increase the capacity of ghost crabs to memorize their burrows placement (homing). The percentage of marine debris was not always related to their amount in the drift line, but ghost crabs used more debris near urbanized areas. Future studies should test whether ghost crabs are using marine debris for feeding, homing or other mechanisms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Ghost sector of vacuum string field theory and the projection equation

    International Nuclear Information System (INIS)

    Potting, Robertus; Raeymaekers, Joris

    2002-01-01

    We study the ghost sector of vacuum string field theory where the BRST operator Q is given by the midpoint insertion proposed by Gaiotto, Rastelli, Sen and Zwiebach. We introduce a convenient basis of half-string modes in terms of which Q takes a particularly simple form. We show that there exists a field redefinition which reduces the ghost sector field equation to a pure projection equation for string fields satisfying the constraint that the ghost number is equally divided over the left- and right halves of the string. When this constraint is imposed, vacuum string field theory can be reformulated as a U(∞) cubic matrix model. Ghost sector solutions can be constructed from projection operators on half-string Hilbert space just as in the matter sector. We construct the ghost sector equivalent of various well-known matter sector projectors such as the sliver, butterfly and nothing states. (author)

  7. Kaehler-Dirac ghosts for self-dual fields

    International Nuclear Information System (INIS)

    Labastida, J.M.F.; Pernici, M.

    1988-01-01

    We present the generalization to spacetime dimension D=4n+2 of the Lorentz covariant quadratic lagrangian for pairs of (anti)self-dual fields previously obtained by the authors in D=2. In the process of BRST quantizing this lagrangian a first-order quadratic lagrangian for ghost (anti)self-dual fields is found which, after gauge fixing, can be written in terms of bispinors and it turns out to be a Kaehler-Dirac lagrangian. The coupling to gravity is straightforward and the gravitational anomaly due to (anti)self-dual fields is obtained directly from an action principle. (orig.)

  8. Robust reflective ghost imaging against different partially polarized thermal light

    Science.gov (United States)

    Li, Hong-Guo; Wang, Yan; Zhang, Rui-Xue; Zhang, De-Jian; Liu, Hong-Chao; Li, Zong-Guo; Xiong, Jun

    2018-03-01

    We theoretically study the influence of degree of polarization (DOP) of thermal light on the contrast-to-noise ratio (CNR) of the reflective ghost imaging (RGI), which is a novel and indirect imaging modality. An expression for the CNR of RGI with partially polarized thermal light is carefully derived, which suggests a weak dependence of CNR on the DOP, especially when the ratio of the object size to the speckle size of thermal light has a large value. Different from conventional imaging approaches, our work reveals that RGI is much more robust against the DOP of the light source, which thereby has advantages in practical applications, such as remote sensing.

  9. Recovery of compacted soils in Mojave Desert ghost towns.

    Science.gov (United States)

    Webb, R.H.; Steiger, J.W.; Wilshire, H.G.

    1986-01-01

    Residual compaction of soils was measured at seven sites in five Mojave Desert ghost towns. Soils in these Death Valley National Monument townsites were compacted by vehicles, animals, and human trampling, and the townsites had been completely abandoned and the buildings removed for 64 to 75 yr. Recovery times extrapolated using a linear recovery model ranged from 80 to 140 yr and averaged 100 yr. The recovery times were related to elevation, suggesting freeze-thaw loosening as an important factor in ameliorating soil compaction in the Mojave Desert. -from Authors

  10. Information Security Scheme Based on Computational Temporal Ghost Imaging.

    Science.gov (United States)

    Jiang, Shan; Wang, Yurong; Long, Tao; Meng, Xiangfeng; Yang, Xiulun; Shu, Rong; Sun, Baoqing

    2017-08-09

    An information security scheme based on computational temporal ghost imaging is proposed. A sequence of independent 2D random binary patterns are used as encryption key to multiply with the 1D data stream. The cipher text is obtained by summing the weighted encryption key. The decryption process can be realized by correlation measurement between the encrypted information and the encryption key. Due to the instinct high-level randomness of the key, the security of this method is greatly guaranteed. The feasibility of this method and robustness against both occlusion and additional noise attacks are discussed with simulation, respectively.

  11. Influence map baserad Ms. Pac-Man och Ghost Kontroller

    OpenAIRE

    Svensson, Johan

    2012-01-01

    This thesis will cover the use oftheinfluence map technique applied to the retro game Ms. Pac-Man. A game thatis easy to learn but hard to master. The Ms. Pac-Man controller is implemented with five main parameters that alters the behaviour of the controller while the Ghost controller have three parameters. The experimental results of the controllers is explored to using the alterations of the parameters to find its peak of performance. The conclusion from using the influence map for this gam...

  12. Ghost properties of algebraically extended theories of gravitation

    International Nuclear Information System (INIS)

    Kelly, P.F.; Mann, R.B.

    1986-01-01

    Recently a technique for extending general relativity called algebraic extension was shown to yield only five classes of gravitational theories (general relativity plus four extensions). The particle spectra of these theories are analysed and it is shown that only one of these extensions is ghost free. Two inequivalent theories are shown to result from this extension at the linearised level. One of these is the linearised version of Moffat's theory of gravitation; the other is a new theory which possesses an additional gauge invariance which has been associated with a closed string. (author)

  13. Ghosts of the City: A Spectrology of Cinematic Spaces

    Directory of Open Access Journals (Sweden)

    Petra Löffler

    2015-09-01

    Full Text Available This paper investigates how, in early cinema, in-between spaces were created that were receptive to scenes of haunting. Adopting Derrida’s notions of a hauntology and a spectrology it argues for a genuine productivity of cinematic space that is able to build ghostly environments without incorporating an actual specter. This productivity is described as ‘making appear’ and ‘making act’. Furthermore, the paper explains how, in the era of silent cinema, cinematic techniques were used to create scenes of haunting.

  14. Ghosts of the City: A Spectrology of Cinematic Spaces

    OpenAIRE

    Petra Löffler

    2015-01-01

    This paper investigates how, in early cinema, in-between spaces were created that were receptive to scenes of haunting. Adopting Derrida’s notions of a hauntology and a spectrology it argues for a genuine productivity of cinematic space that is able to build ghostly environments without incorporating an actual specter. This productivity is described as ‘making appear’ and ‘making act’. Furthermore, the paper explains how, in the era of silent cinema, cinematic techniques were used to create s...

  15. An algebraic approach to laying a ghost to rest

    International Nuclear Information System (INIS)

    Nucci, M C; Leach, P G L

    2010-01-01

    In the recent literature there has been a resurgence of interest in the fourth-order field-theoretic model of Pais-Uhlenbeck (1950 Phys. Rev. 79 145-65) which has not had a good reception over the past half a century due to the existence of ghosts in the properties of the quantum mechanical solution. Bender and Mannheim (2008 J. Phys. A: Math. Theor. 41 304018) were successful in persuading the corresponding quantum operator to 'give up the ghost'. Their success had the advantage of making the model of Pais-Uhlenbeck acceptable to the physics community and in the process added further credit to the cause of advancement of the use of PT symmetry. We present a case for the acceptance of the Pais-Uhlenbeck model in the context of Dirac's theory by providing an Hamiltonian that is not quantum mechanically haunted. The essential point is the manner in which a fourth-order equation is rendered into a system of second-order equations. We show by means of the method of reduction of order (Nucci M C 1996 J. Math. Phys. 37 1772-5) that it is possible to construct a Hamiltonian that gives rise to a satisfactory quantal description without having to abandon Dirac.

  16. Luisa's Ghosts: Haunted Legality and Collective Expressions of Pain.

    Science.gov (United States)

    Krauss, Amy

    2018-04-25

    Feminist health care providers have debated the efficacy of the decriminalization of abortion in Mexico City. Luisa, a counselor in a private clinic, suggested that while the law has expanded the visibility of, and access to safe abortion, it has also called forth "other ghosts." In this article, I take Luisa's critical perspective as a starting point for examining ongoing criminalization and moral stigma as forms of haunting that arise in the wake of the Mexico City abortion policy. Drawing on ethnographic research, I explore how Luisa's ghosts materialize in the embodied- affective relations between patients in new legal clinics. Women who attend public clinics negotiate moral stigma along with religious and familial pressures in the ways they suffer, as well as normalize abortion as a painful experience. Rather than approach pain as purely a sign of victimization, I suggest that its expression constitutes an effervescent collectivity between women in the clinic, making explicit, while at the same time dissipating, an intractable moral-affective knot that might otherwise be ignored.

  17. Chandra Finds Ghosts Of Eruption In Galaxy Cluster

    Science.gov (United States)

    2002-01-01

    "Ghostly" relics of an ancient eruption that tore through a cluster of galaxies were recently uncovered by NASA's Chandra X-ray Observatory. The discovery implies that galaxy clusters are the sites of enormously energetic and recurring explosions, and may provide an explanation why galaxy clusters behave like giant cosmic magnets. "Chandra's image revealed vast regions in the galaxy cluster Abell 2597 that contain almost no X-ray or radio emission. We call them ghost cavities," said Brian McNamara of Ohio University in Athens today during a press conference at the American Astronomical Society meeting in Washington. "They appear to be remnants of an old explosion where the radio emission has faded away over millions of years." The ghost cavities were likely created by extremely powerful explosions, due to material falling toward a black hole millions of times more massive than the Sun. As the matter swirled around the black hole, located in a galaxy near the center of the cluster, it generated enormous electromagnetic fields that expelled material from the vicinity of the black hole at high speeds. This explosive activity in Abell 2597 created jets of highly energetic particles that cleared out voids in the hot gas. Because they are lighter than the surrounding material, the cavities will eventually push their way to the edge of the cluster, just as air bubbles in water make their way to the surface. Researchers also found evidence that this explosion was not a one-time event. "We detected a small, bright radio source near the center of the cluster that indicates a new explosion has occurred recently," said team member Michael Wise of the Massachusetts Institute of Technology in Cambridge, "so the cycle of eruption is apparently continuing." Though dim, the ghost cavities are not completely empty. They contain a mixture of very hot gas, high-energy particles and magnetic fields -- otherwise the cavities would have collapsed under the pressure of the surrounding hot

  18. An Improved Ghost-cell Immersed Boundary Method for Compressible Inviscid Flow Simulations

    KAUST Repository

    Chi, Cheng

    2015-05-01

    This study presents an improved ghost-cell immersed boundary approach to represent a solid body in compressible flow simulations. In contrast to the commonly used approaches, in the present work ghost cells are mirrored through the boundary described using a level-set method to farther image points, incorporating a higher-order extra/interpolation scheme for the ghost cell values. In addition, a shock sensor is in- troduced to deal with image points near the discontinuities in the flow field. Adaptive mesh refinement (AMR) is used to improve the representation of the geometry efficiently. The improved ghost-cell method is validated against five test cases: (a) double Mach reflections on a ramp, (b) supersonic flows in a wind tunnel with a forward- facing step, (c) supersonic flows over a circular cylinder, (d) smooth Prandtl-Meyer expansion flows, and (e) steady shock-induced combustion over a wedge. It is demonstrated that the improved ghost-cell method can reach the accuracy of second order in L1 norm and higher than first order in L∞ norm. Direct comparisons against the cut-cell method demonstrate that the improved ghost-cell method is almost equally accurate with better efficiency for boundary representation in high-fidelity compressible flow simulations. Implementation of the improved ghost-cell method in reacting Euler flows further validates its general applicability for compressible flow simulations.

  19. Ghost reflections of Gaussian beams in anamorphic optical systems with an application to Michelson interferometer.

    Science.gov (United States)

    Abd El-Maksoud, Rania H

    2016-02-20

    In this paper, a methodology is developed to model and analyze the effect of undesired (ghost) reflections of Gaussian beams that are produced by anamorphic optical systems. The superposition of these beams with the nominal beam modulates the nominal power distribution at the recording plane. This modulation may cause contrast reduction, veiling parts of the nominal image, and/or the formation of spurious interference fringes. The developed methodology is based on synthesizing the beam optical paths into nominal and ghost optical beam paths. Similar to the nominal beam, we present the concept that each ghost beam is characterized by a beam size, wavefront radius of curvature, and Gouy phase in the paraxial regime. The nominal and ghost beams are sequentially traced through the system and formulas for estimating the electric field magnitude and phase of each ghost beam at the recording plane are presented. The effective electric field is the addition of the individual nominal and ghost electric fields. Formulas for estimating Gouy phase, the shape of the interference fringes, and the central interference order are introduced. As an application, the theory of the formation of the interference fringes by Michelson interferometer is presented. This theory takes into consideration the ghost reflections that are formed by the beam splitter. To illustrate the theory and to show its wide applicability, simulation examples that include a Mangin mirror, a Michelson interferometer, and a black box optical system are provided.

  20. Gravitational lensing and ghost images in the regular Bardeen no-horizon spacetimes

    International Nuclear Information System (INIS)

    Schee, Jan; Stuchlík, Zdeněk

    2015-01-01

    We study deflection of light rays and gravitational lensing in the regular Bardeen no-horizon spacetimes. Flatness of these spacetimes in the central region implies existence of interesting optical effects related to photons crossing the gravitational field of the no-horizon spacetimes with low impact parameters. These effects occur due to existence of a critical impact parameter giving maximal deflection of light rays in the Bardeen no-horizon spacetimes. We give the critical impact parameter in dependence on the specific charge of the spacetimes, and discuss 'ghost' direct and indirect images of Keplerian discs, generated by photons with low impact parameters. The ghost direct images can occur only for large inclination angles of distant observers, while ghost indirect images can occur also for small inclination angles. We determine the range of the frequency shift of photons generating the ghost images and determine distribution of the frequency shift across these images. We compare them to those of the standard direct images of the Keplerian discs. The difference of the ranges of the frequency shift on the ghost and direct images could serve as a quantitative measure of the Bardeen no-horizon spacetimes. The regions of the Keplerian discs giving the ghost images are determined in dependence on the specific charge of the no-horizon spacetimes. For comparison we construct direct and indirect (ordinary and ghost) images of Keplerian discs around Reissner-Nördström naked singularities demonstrating a clear qualitative difference to the ghost direct images in the regular Bardeen no-horizon spacetimes. The optical effects related to the low impact parameter photons thus give clear signature of the regular Bardeen no-horizon spacetimes, as no similar phenomena could occur in the black hole or naked singularity spacetimes. Similar direct ghost images have to occur in any regular no-horizon spacetimes having nearly flat central region

  1. Effects of the quark field on the ghost propagator of lattice Landau gauge QCD

    International Nuclear Information System (INIS)

    Furui, Sadataka; Nakajima, Hideo

    2006-01-01

    Infrared features of the ghost propagator of color-diagonal and color antisymmetric ghost propagator of quenched SU(2) and quenched SU(3) are compared with those of unquenched Kogut-Susskind fermion SU(3) lattice Landau gauge. We compare (i) the fluctuation of the ghost propagator (ii) the ghost condensate parameter v of the local composite operator (LCO) approach, and (iii) the Binder cumulant of color antisymmetric ghost propagator between quenched and unquenched configurations. The color-diagonal SU(3) ghost dressing function of unquenched configurations has weaker singularity than the quenched configurations. In both cases fluctuations become large in q c configuration samples is ∼0.002-0.04 GeV 2 while that of the SU(2) parallel tempering samples is consistent with 0. The Binder cumulant defined as U(q)=1-(1/3)( 4 >/( 2 >) 2 ), where φ-vector(q) is the color antisymmetric ghost propagator measured by the sample average of gauge fixed configurations via parallel tempering method, becomes ∼4/9 in all the momentum region. The Binder cumulant of the color antisymmetric ghost propagator of quenched SU(2) can be explained by the 3D Gaussian distribution, but that of the unquenched MILC c deviates slightly from that of the eight-dimensional Gaussian distribution. The stronger singularity and large fluctuation in the quenched configuration could be the cause of the deviation of the Kugo-Ojima confinement parameter c from 1, and the presence of ordering in the ghost propagator of unquenched configurations makes it closer to 1

  2. Diffraction at TOTEM

    OpenAIRE

    Giani, S; Niewiadomski, H; Antchev, G; Aspell, P; Avati, V; Bagliesi, M G; Berardi, V; Berretti, M; Besta, M; Bozzo, M; Brücken, E; Buzzo, A; Cafagna, F; Calicchio, M; Catanesi, M G

    2010-01-01

    The primary objective of the TOTEM experiment at the LHC is the measurement of the total proton-proton cross section with the luminosity-independent method and the study of elastic proton-proton cross-section over a wide |t|-range. In addition TOTEM also performs a comprehensive study of diffraction, spanning from cross-section measurements of individual diffractive processes to the analysis of their event topologies. Hard diffraction will be studied in collaboration with CMS taking advantage...

  3. Diffraction at TOTEM

    OpenAIRE

    Antchev, G.; Aspell, P.; Avati, V.; Bagliesi, M.G.; Berardi, V.; Berretti, M.; Bottigli, U.; Bozzo, M.; Brucken, E.; Buzzo, A.; Cafagna, F.; Calicchio, M.; Catanesi, M.G.; Catastini, P.L.; Cecchi, R.

    2008-01-01

    The TOTEM experiment at the LHC measures the total proton-proton cross section with the luminosity-independent method and the elastic proton-proton cross-section over a wide |t|-range. It also performs a comprehensive study of diffraction, spanning from cross-section measurements of individual diffractive processes to the analysis of their event topologies. Hard diffraction will be studied in collaboration with CMS taking advantage of the large common rapidity coverage for charged and neutral...

  4. The BRST quantization and the no-ghost theorem for AdS3

    International Nuclear Information System (INIS)

    Asano, Masako; Natsuume, Makoto

    2003-01-01

    In our previous papers, we prove the no-ghost theorem without light-cone directions. We point out that our results are valid for more general backgrounds. In particular, we prove the no-ghost theorem for AdS 3 in the context of the BRST quantization (with the standard restriction on the spin). We compare our BRST proof with the OCQ proof and establish the BRST-OCQ equivalence for AdS 3 . The key in both approaches lies in the certain structure of the matter Hilbert space as a product of two Verma modules. We also present the no-ghost theorem in the most general form. (author)

  5. Ghost free massive gravity in the Stückelberg language

    International Nuclear Information System (INIS)

    Rham, Claudia de; Gabadadze, Gregory; Tolley, Andrew J.

    2012-01-01

    Massive gravity in 4 dimensions has been shown to be free of the Boulware-Deser (BD) ghost in the ADM language for a specific choice of mass terms. We show here how this is consistent with the Stückelberg language beyond the decoupling limit, and how the constraint required to remove the BD ghost arises in this framework non-perturbatively, without the use of field redefinitions. We emphasize a subtlety in obtaining this constraint, that has been overlooked in previous literature. In both the ADM and Stückelberg formalisms the vanishing of the determinant of a Hessian guarantees the absence of the BD ghost.

  6. Vacuum correlation functions for ghost superfields and multiloop amplitudes in the theory of closed superstrings

    International Nuclear Information System (INIS)

    Danilov, G.S.

    1995-01-01

    A new formalism for ghosts on complex (1 bar 1) supermanifolds of genus n > 1 is discussed in superstring theory. In this formalism, vacuum correlation functions for ghost superfields differ substantially from correlation functions discussed earlier. In particular, the new correlation functions do not have unphysical poles. Among other things, these correlation functions take into account contributions to partition functions from the phase space of modular forms and from zero modes of ghosts. The above correlation functions, obtained for all even spinor structures, can be used to evaluate partition functions from equations that are nothing but Ward identities. 21 refs

  7. Ghosts in the self-accelerating DGP branch with Gauss–Bonnet effect

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yen-Wei; Izumi, Keisuke; Bouhmadi-López, Mariam; Chen, Pisin

    2015-06-01

    The Dvali–Gabadadze–Porrati brane-world model provides a possible approach to address the late-time cosmic acceleration. However, it has subsequently been pointed out that a ghost instability will arise on the self-accelerating branch. Here, we carefully investigate whether this ghost problem could be possibly cured by introducing the Gauss–Bonnet term in the five-dimensional bulk action, a natural generalization to the Dvali–Gabadadze–Porrati model. Our analysis is carried out for a background where a de Sitter brane is embedded in an anti–de Sitter bulk. Our result shows that the ghost excitations cannot be avoided even in this modified model.

  8. Observables of QCD diffraction

    Science.gov (United States)

    Mieskolainen, Mikael; Orava, Risto

    2017-03-01

    A new combinatorial vector space measurement model is introduced for soft QCD diffraction. The model independent mathematical construction resolves experimental complications; the theoretical framework of the approach includes the Good-Walker view of diffraction, Regge phenomenology together with AGK cutting rules and random fluctuations.

  9. Edge detection based on computational ghost imaging with structured illuminations

    Science.gov (United States)

    Yuan, Sheng; Xiang, Dong; Liu, Xuemei; Zhou, Xin; Bing, Pibin

    2018-03-01

    Edge detection is one of the most important tools to recognize the features of an object. In this paper, we propose an optical edge detection method based on computational ghost imaging (CGI) with structured illuminations which are generated by an interference system. The structured intensity patterns are designed to make the edge of an object be directly imaged from detected data in CGI. This edge detection method can extract the boundaries for both binary and grayscale objects in any direction at one time. We also numerically test the influence of distance deviations in the interference system on edge extraction, i.e., the tolerance of the optical edge detection system to distance deviation. Hopefully, it may provide a guideline for scholars to build an experimental system.

  10. Ghosting Politics: Speechwriters, Speechmakers and the (Recrafting of Identity

    Directory of Open Access Journals (Sweden)

    Michael Richardson

    2017-11-01

    Full Text Available Despite public awareness of their role, speechwriters occupy an anxiously liminal position within the political process. As the ongoing dispute between former Australian prime minister Paul Keating and Don Watson over the Redfern Speech suggests, the authorship and ownership of speeches can be a fraught proposition, no matter the professional codes. Crafting and re-crafting identity places speechwriter and speechmaker in a relation of intense intimacy, one in which neither party may be comfortable and from which both may well emerge changed. Having written speeches for Jack Layton, former leader of the New Democratic Party of Canada, I know just how complex, uncertain and productive that relation can be. This article conceives of identity as transindividual, formed in the intensity and flux of encounter, and weaves together the personal and the critical to examine politics’ speechwriting ghost.

  11. Ghost forest creation and the conversion of uplands to wetlands

    Science.gov (United States)

    Kirwan, M. L.; Schieder, N. W.; Reay, W.

    2017-12-01

    Global sea level rise rates began accelerating sharply in the late 19th century, with an approximate tripling in sea level rise rates in many regions of the world. Some portions of the coastal landscape, such as marshes and barrier islands, survive relative sea level rise by natural eco-geomorphic processes that allow them to build elevation vertically and migrate landward. In contrast, adjacent uplands typically occupied by forests and agricultural fields have limited ability to resist the impacts of sea level rise. This portion of the coastal landscape consists of mostly salt intolerant plants, receives little mineral sediment deposition, and rarely builds elevation through the accumulation of soil organic matter. Thus, ghost forests- dead trees surrounded by marshland- are a prominent feature of many low-relief coastal landscapes, and represent a striking visual indicator of upland to wetland conversion. Here, we report preliminary results of several efforts designed to quantify rates and drivers of upland to wetland conversion in the mid-Atlantic region of the United States. Drone based canopy monitoring and ground-based seedling experiments suggest that ghost forests are created by episodic, storm-driven adult tree mortality paired with continuous seedling mortality. Preliminary comparisons between sediment cores and historical photographs from 5 sites in Maryland, Virginia, and North Carolina suggest that modern coastal forest retreat is 2-10 times faster than late-Holocene retreat rates, and that rates have accelerated in most decades since the 1930's. Finally, historical T-Sheet maps suggest that approximately 100,000 acres (400 km2) of uplands have converted to wetlands in the Chesapeake region, and that about 1/3 of all present-day marsh was created by upland drowning since the late 19th Century. Together, these observations indicate rapid coastal transgression, where low-relief, terrestrial portions of the coastal landscape are perhaps more sensitive to

  12. Enhancing Tomo-PIV reconstruction quality by reducing ghost particles

    International Nuclear Information System (INIS)

    De Silva, C M; Baidya, R; Marusic, I

    2013-01-01

    A technique to enhance the reconstruction quality and consequently the accuracy of the velocity vector field obtained in Tomo-PIV experiments is presented here. The methodology involves detecting and eliminating spurious outliers in the reconstructed intensity field (ghost particles). A simulacrum matching-based reconstruction enhancement (SMRE) technique is proposed, which utilizes the characteristic shape and size of actual particles to remove ghost particles in the reconstructed intensity field. An assessment of SMRE is performed by a quantitative comparison of Tomo-PIV simulation results and DNS data, together with a comparison to Tomo-PIV experimental data measured in a turbulent channel flow at a matched Reynolds number (Re τ = 937) to the DNS study. For the simulation data, a comparative study is performed on the reconstruction quality based on an ideal reconstruction determined from known particle positions. The results suggest that a significant improvement in the reconstruction quality and flow statistics is achievable at typical seeding densities used in Tomo-PIV experiments. This improvement is further amplified at higher seeding densities, enabling the use of up to twice the typical seeding densities currently used in Tomo-PIV experiments. A reduction of spurious vectors present in the velocity field is also observed based on a median outlier detection criterion. The application of SMRE to Tomo-PIV experimental data shows an improvement in flow statistics, comparable to the improvement seen in simulations. Finally, due to the non-iterative nature of SMRE, the increase in processing time is marginal since only a single pass of the reconstruction algorithm is required. (paper)

  13. Elimination of ghost images in the response of PHASAR-demultiplexers

    NARCIS (Netherlands)

    Dam, van C.; Staring, A.A.M.; Jansen, E.J.; Binsma, J.J.M.; Dongen, van T.; Smit, M.K.; Verbeek, B.H.

    1997-01-01

    In this paper the occurrence of first-order modes in the performance of phased-array demultiplexers is investigated. It is found that they cause "ghost" images, which can be circumvented by optimising waveguide junctions

  14. "Haunting experiences: Ghosts in contemporary folklore," by Diane E. Goldstein et al.

    Directory of Open Access Journals (Sweden)

    Linda Levitt

    2010-03-01

    Full Text Available Diane E. Goldstein, Sylvia Ann Grider, and Jeannie Banks Thomas. Haunting experiences: Ghosts in contemporary folklore. Logan: Utah State University Press, 2007, paperback, $24.95 (272p ISBN 978-0-87421-636-3.

  15. Debris Likelihood, based on GhostNet, NASA Aqua MODIS, and GOES Imager, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Debris Likelihood Index (Estimated) is calculated from GhostNet, NASA Aqua MODIS Chl a and NOAA GOES Imager SST data. THIS IS AN EXPERIMENTAL PRODUCT: intended...

  16. Analysis of Generalized Ghost Dark Energy in LQC and Galileon Gravity

    International Nuclear Information System (INIS)

    Biswas, Mahasweta; Debnath, Ujjal

    2016-01-01

    A so-called ghost dark energy was recently proposed to explain the present acceleration of the universe. The energy density of ghost dark energy, which originates from Veneziano ghost of Quantum Chromodynamics (QCD), in a time dependent background, can be written in the form, ρ_D = (αH + βH"2) where H is the Hubble parameter. We investigate the generalized ghost dark energy (GGDE) model in the setup of loop quantum Cosmology (LQC) and Galileon Cosmology. We study the cosmological implications of the models. We also obtain the equation of state and the deceleration parameters and differential equations governing the evolution of this dark energy model for LQC and Galileon Cosmology. (paper)

  17. A review of ghost gear entanglement amongst marine mammals, reptiles and elasmobranchs.

    Science.gov (United States)

    Stelfox, Martin; Hudgins, Jillian; Sweet, Michael

    2016-10-15

    This review focuses on the effect that ghost gear entanglement has on marine megafauna, namely mammals, reptiles and elasmobranchs. A total of 76 publications and other sources of grey literature were assessed, and these highlighted that over 5400 individuals from 40 different species were recorded as entangled in, or associated with, ghost gear. Interestingly, there appeared to be a deficit of research in the Indian, Southern, and Arctic Oceans; and so, we recommend that future studies focus efforts on these areas. Furthermore, studies assessing the effects of ghost gear on elasmobranchs, manatees, and dugongs should also be prioritised, as these groups were underrepresented in the current literature. The development of regional databases, capable of recording entanglement incidences following a minimum global set of criteria, would be a logical next step in order to analyse the effect that ghost gear has on megafauna populations worldwide. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  18. Metastatic ghost cell odontogenic carcinoma: description of a case and search for actionable targets

    Directory of Open Access Journals (Sweden)

    Maximilien J. Rappaport

    2015-09-01

    Full Text Available Ghost cell odontogenic carcinoma (GCOC is an exceedingly rare malignant tumor on the spectrum of already uncommon odontogenic or dentinogenic tumors. We describe here the case of metastatic GCOC in a patient with a history of recurrent dentinogenic ghost cell tumor of the mandible, now presenting with bilateral pleural effusions. We will discuss typical histopathologic and histochemical features of GCOC, along with results of genomic testing and their role in directing therapy.

  19. Spontaneous breaking of Lorentz symmetry by ghost condensation in perturbative quantum gravity

    Science.gov (United States)

    Faizal, Mir

    2011-10-01

    In this paper, we will study the spontaneous breakdown of the Lorentz symmetry by ghost condensation in perturbative quantum gravity. Our analysis will be done in the Curci-Ferrari gauge. We will also analyse the modification of the BRST and anti-BRST transformations by the formation of this ghost condensate. It will be shown that even though the modified BRST and anti-BRST transformations are not nilpotent, their nilpotency is restored on-shell.

  20. The hunters of humanity: creatures of horror in M. R. James's ghost stories

    OpenAIRE

    Oryshchuk, Nataliya

    2017-01-01

    In his ghost stories, M.R. James disclosed the most irrational and fearful aspects of archaic demonology still haunting the modern world. He turns humans into prey species, hunted and haunted by repulsive insect- and spider-like demons. This paper offers a closer look at the creatures of horror and the recurrent theme of the hunt in James's ghost stories, viewing them in the context of Victorian evolutionary theories as well as traditional medieval beliefs. James's protagonists, unimaginative...

  1. Systematics, phylogeny, and taphonomy of ghost shrimps (Decapoda): a perspective from the fossil record

    Science.gov (United States)

    Klompmaker, Adiël A.

    2016-01-01

    Ghost shrimps of Callianassidae and Ctenochelidae are soft-bodied, usually heterochelous decapods representing major bioturbators of muddy and sandy (sub)marine substrates. Ghost shrimps have a robust fossil record spanning from the Early Cretaceous (~ 133 Ma) to the Holocene and their remains are present in most assemblages of Cenozoic decapod crustaceans. Their taxonomic interpretation is in flux, mainly because the generic assignment is hindered by their insufficient preservation and disagreement in the biological classification. Furthermore, numerous taxa are incorrectly classified within the catch-all taxon Callianassa. To show the historical patterns in describing fossil ghost shrimps and to evaluate taphonomic aspects influencing the attribution of ghost shrimp remains to higher level taxa, a database of all fossil species treated at some time as belonging to the group has been compiled: 250 / 274 species are considered valid ghost shrimp taxa herein. More than half of these taxa (160 species, 58.4%) are known only from distal cheliped elements, i.e., dactylus and / or propodus, due to the more calcified cuticle locally. Rarely, ghost shrimps are preserved in situ in burrows or in direct association with them, and several previously unpublished occurrences are reported herein. For generic assignment, fossil material should be compared to living species because many of them have modern relatives. Heterochely, intraspecific variation, ontogenetic changes and sexual dimorphism are all factors that have to be taken into account when working with fossil ghost shrimps. Distal elements are usually more variable than proximal ones. Preliminary results suggest that the ghost shrimp clade emerged not before the Hauterivian (~ 133 Ma). The divergence of Ctenochelidae and Paracalliacinae is estimated to occur within the interval of Hauterivian to Albian (133–100 Ma). Callichirinae and Eucalliacinae likely diverged later during the Late Cretaceous (100–66 Ma

  2. Borehole radar diffraction tomography

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seong Jun; Kim, Jung Ho; Yi, Myeong Jong; Chung, Seung Hwan; Lee, Hee Il [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    Tomography is widely used as imaging method for determining subsurface structure. Among the reconstruction algorithms for tomographic imaging, travel time tomography is almost applied to imaging subsurface. But isolated small body comparable with the wavelength could not be well recognized by travel time tomography. Other tomographic method are need to improve the imaging process. In the study of this year, diffraction tomography was investigated. The theory for diffraction tomography is based on the 1st-order Born approximation. Multisource holography, which is similar to Kirchihoff migration, is compared with diffraction tomography. To improve 1st-order Born diffraction tomography, two kinds of filter designed from multisource holography and 2-D green function, respectively, applied on the reconstructed image. The algorithm was tested for the numerical modeling data of which algorithm consists of the analytic computation of radar signal in transmitter and receiver regions and 2-D FDM scheme for the propagation of electromagnetic waves in media. The air-filled cavity model to show a typical diffraction pattern was applied to diffraction tomography imaging, and the result shows accurate location and area of cavity. But the calculated object function is not well matched the real object function, because the air-filled cavity model is not satisfied week scattered inhomogeneity for 1st born approximation, and the error term is included in estimating source wavelet from received signals. In spite of the object function error, the diffraction tomography assist for interpretation of subsurface as if conducted with travel time tomography. And the fracture model was tested, 1st born diffraction tomographic image is poor because of limited view angle coverage and violation of week scatter assumption, but the filtered image resolve the fracture somewhat better. The tested diffraction tomography image confirms effectiveness of filter for enhancing resolution. (author). 14

  3. Diffraction. Powder, amorphous, liquid

    International Nuclear Information System (INIS)

    Sosnowska, I.M.

    1999-01-01

    Neutron powder diffraction is a unique tool to observe all possible diffraction effects appearing in crystal. High-resolution neutron diffractometers have to be used in this study. Analysis of the magnetic structure of polycrystalline materials requires the use of high-resolution neutron diffraction in the range of large interplanar distances. As distinguished from the double axis diffractometers (DAS), which show high resolution only at small interplanar distances, TOF (time-of-flight) diffractometry offers the best resolution at large interplanar distances. (K.A.)

  4. Non-diffractive waves

    CERN Document Server

    Hernandez-Figueroa, Hugo E; Recami, Erasmo

    2013-01-01

    This continuation and extension of the successful book ""Localized Waves"" by the same editors brings together leading researchers in non-diffractive waves to cover the most important results in their field and as such is the first to present the current state.The well-balanced presentation of theory and experiments guides readers through the background of different types of non-diffractive waves, their generation, propagation, and possible applications. The authors include a historical account of the development of the field, and cover different types of non-diffractive waves, including Airy

  5. Comparative studies on osmosis based encapsulation of sodium diclofenac in porcine and outdated human erythrocyte ghosts.

    Science.gov (United States)

    Bukara, Katarina; Drvenica, Ivana; Ilić, Vesna; Stančić, Ana; Mišić, Danijela; Vasić, Borislav; Gajić, Radoš; Vučetić, Dušan; Kiekens, Filip; Bugarski, Branko

    2016-12-20

    The objective of our study was to develop controlled drug delivery system based on erythrocyte ghosts for amphiphilic compound sodium diclofenac considering the differences between erythrocytes derived from two readily available materials - porcine slaughterhouse and outdated transfusion human blood. Starting erythrocytes, empty erythrocyte ghosts and diclofenac loaded ghosts were compared in terms of the encapsulation efficiency, drug releasing profiles, size distribution, surface charge, conductivity, surface roughness and morphology. The encapsulation of sodium diclofenac was performed by an osmosis based process - gradual hemolysis. During this process sodium diclofenac exerted mild and delayed antihemolytic effect and increased potassium efflux in porcine but not in outdated human erythrocytes. FTIR spectra revealed lack of any membrane lipid disorder and chemical reaction with sodium diclofenac in encapsulated ghosts. Outdated human erythrocyte ghosts with detected nanoscale damages and reduced ability to shrink had encapsulation efficiency of only 8%. On the other hand, porcine erythrocyte ghosts had encapsulation efficiency of 37% and relatively slow drug release rate. More preserved structure and functional properties of porcine erythrocytes related to their superior encapsulation and release performances, define them as more appropriate for the usage in sodium diclofenac encapsulation process. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Ghost imaging and its visibility with partially coherent elliptical Gaussian Schell-model beams

    International Nuclear Information System (INIS)

    Luo, Meilan; Zhu, Weiting; Zhao, Daomu

    2015-01-01

    The performances of the ghost image and the visibility with partially coherent elliptical Gaussian Schell-model beams have been studied. In that case we have derived the condition under which the goal ghost image is achievable. Furthermore, the visibility is assessed in terms of the parameters related to the source to find that the visibility reduces with the increase of the beam size, while it is a monotonic increasing function of the transverse coherence length. More specifically, it is found that the inequalities of the source sizes in x and y directions, as well as the transverse coherence lengths, play an important role in the ghost image and the visibility. - Highlights: • We studied the ghost image and visibility with partially coherent EGSM beams. • We derived the condition under which the goal ghost image is achievable. • The visibility is assessed in terms of the parameters related to the source. • The source sizes and coherence lengths play role in the ghost image and visibility.

  7. An improved ghost-cell immersed boundary method for compressible flow simulations

    KAUST Repository

    Chi, Cheng

    2016-05-20

    This study presents an improved ghost-cell immersed boundary approach to represent a solid body in compressible flow simulations. In contrast to the commonly used approaches, in the present work ghost cells are mirrored through the boundary described using a level-set method to farther image points, incorporating a higher-order extra/interpolation scheme for the ghost cell values. A sensor is introduced to deal with image points near the discontinuities in the flow field. Adaptive mesh refinement (AMR) is used to improve the representation of the geometry efficiently in the Cartesian grid system. The improved ghost-cell method is validated against four test cases: (a) double Mach reflections on a ramp, (b) smooth Prandtl-Meyer expansion flows, (c) supersonic flows in a wind tunnel with a forward-facing step, and (d) supersonic flows over a circular cylinder. It is demonstrated that the improved ghost-cell method can reach the accuracy of second order in L1 norm and higher than first order in L∞ norm. Direct comparisons against the cut-cell method demonstrate that the improved ghost-cell method is almost equally accurate with better efficiency for boundary representation in high-fidelity compressible flow simulations. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Delayed transitions in non-linear replicator networks: About ghosts and hypercycles

    International Nuclear Information System (INIS)

    Sardanyes, Josep; Sole, Ricard V.

    2007-01-01

    In this paper we analyze delayed transition phenomena associated to extinction thresholds in a mean field model for hypercycles composed of three and four units, respectively. Hence, we extend a previous analysis carried out with the two-membered hypercycle [see Sardanyes J, Sole RV. Ghosts in the origins of life? Int J Bifurcation Chaos 2006;16(9), in press]. The models we analyze show that, after the tangent bifurcation, these hypercycles also leave a ghost in phase space. These ghosts, which actually conserve the dynamical properties of the coalesced coexistence fixed point, delay the flows before hypercycle extinction. In contrast with the two-component hypercycle, both ghosts show a plateau in the delay as φ → 0, thus displacing the power-law dependence to higher values of φ, in which the scaling law is now given by τ ∼ φ β , with β = -1/3 (where τ is the delay and φ = ε - ε c , the parametric distance above the extinction bifurcation point). These results suggest that the presence of the ghost is a general property of hypercycles. Such ghosts actually cause a memory effect which might increase hypercycle survival chances in fluctuating environments

  9. Geometrical theory of ghost and Higgs fields and SU(2/1)

    International Nuclear Information System (INIS)

    Ne'eman, Y.; Thierry-Mieg, J.

    1979-10-01

    That a Principal Fiber Bundle provides a precise geometrical representation of Yang-Mills gauge theories has been known since 1963 and used since 1975. This work presents an entirely new domain of applications. The Feynman-DeWitt-Fadeev-Popov ghost-fields required in the renormalization procedure are identified with geometrical objects in the Principal Bundle. This procedure directly yields the BRS equations guaranteeing unitarity and Slavnov-Taylor invariance of the quantum effective Lagrangian. Except for one ghost field and its variation, this entire symmetry thus corresponds to classical notions, in that it is geometrical, and completely independent of the gauge-fixing procedure, which determines the quantized Lagrangian. These results may be used to fix the signs associated with the various ghost loops of quantum supergravity. The result is based upon the identification of a geometrical Z(2) x Z(2) double-gradation of the generalized fields in supergravity: [physical/ghost] fields and [integer/half integer] spins. Then the case of a supergroup as an internal symmetry gauge is considered. Ghosts geometrically associated to odd generators may be identified with the Goldstone-Nambu Higgs-Kibble scalar fields of conventional models with spontaneous symmetry breakdown. As an example, the chiral SU(3)/sub L/ x SU(3)/sub R/ flavor symmetry is realized by gauging the supergroup Q(3).Lastly, the main results concerning asthenodynamics (Weak-EM Unification) as given by the ghost-gauge SU(2/1) supergroup are recalled. 1 table

  10. High energy diffraction

    International Nuclear Information System (INIS)

    Berger, C.

    1995-11-01

    Recent experiments on total hadronic cross sections are reviewed together with results on photo- and electroproduction of vector mesons. New data on diffractive deep inelastic scattering shed light on the nature of the pomeron. (orig.)

  11. Diffraction at TOTEM

    CERN Document Server

    Antchev, G.; Avati, V.; Bagliesi, M.G.; Berardi, V.; Berretti, M.; Bottigli, U.; Bozzo, M.; Brucken, E.; Buzzo, A.; Cafagna, F.; Calicchio, M.; Catanesi, M.G.; Catastini, P.L.; Cecchi, R.; Ciocci, M.A.; Deile, M.; Dimovasili, E.; Eggert, K.; Eremin, V.; Ferro, F.; Garcia, F.; Giani, S.; Greco, V.; Heino, J.; Hilden, T.; Kaspar, J.; Kopal, J.; Kundrat, V.; Kurvinen, K.; Lami, S.; Latino, G.; Lauhakangas, R.; Lippmaa, E.; Lokajicek, M.; Lo Vetere, M.; Lucas Rodriguez, F.; Macri, M.; Magazzu, G.; Meucci, M.; Minutoli, S.; Niewiadomski, H.; Noschis, E.; Notarnicola, G.; Oliveri, E.; Oljemark, F.; Orava, R.; Oriunno, M.; Osterberg, K.; Palazzi, P.; Pedreschi, E.; Petajajarvi, J.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Rella, G.; Robutti, E.; Ropelewski, L.; Ruggiero, G.; Rummel, A.; Saarikko, H.; Sanguinetti, G.; Santroni, A.; Scribano, A.; Sette, G.; Snoeys, W.; Spinella, F.; Squillacioti, P.; Ster, A.; Taylor, C.; Trummal, A.; Turini, N.; Whitmore, J.; Wu, J.

    2009-01-01

    The TOTEM experiment at the LHC measures the total proton-proton cross section with the luminosity-independent method and the elastic proton-proton cross-section over a wide |t|-range. It also performs a comprehensive study of diffraction, spanning from cross-section measurements of individual diffractive processes to the analysis of their event topologies. Hard diffraction will be studied in collaboration with CMS taking advantage of the large common rapidity coverage for charged and neutral particle detection and the large variety of trigger possibilities even at large luminosities. TOTEM will take data under all LHC beam conditions including standard high luminosity runs to maximize its physics reach. This contribution describes the main features of the TOTEM physics programme including measurements to be made in the early LHC runs. In addition, a novel scheme to extend the diffractive proton acceptance for high luminosity runs by installing proton detectors at IP3 is described.

  12. Diffraction at TOTEM

    CERN Document Server

    Giani, S; Antchev, G; Aspell, P; Avati, V; Bagliesi, M G; Berardi, V; Berretti, M; Besta, M; Bozzo, M; Brücken, E; Buzzo, A; Cafagna, F; Calicchio, M; Catanesi, M G; Cecchi, R; Ciocci, M A; Dadel, P; Deile, M; Dimovasili, E; Eggert, K; Eremin, V; Ferro, F; Fiergolski, A; García, F; Greco, V; Grzanka, L; Heino, J; Hildén, T; Kaspar, J; Kopal, J; Kundrát, V; Kurvinen, K; Lami, S; Latino, G; Lauhakangas, R; Leszko, R; Lippmaa, E; Lokajícek, M; Lo Vetere, M; Lucas Rodriguez, F; Macrí, M; Magazzù, G; Meucci, M; Minutoli, S; Notarnicola, G; Oliveri, E; Oljemark, F; Orava, R; Oriunno, M; Österberg, K; Pedreschi, E; Petäjäjärvi, J; Prochazka, J; Quinto, M; Radermacher, E; Radicioni, E; Ravotti, F; Rella, G; Robutti, E; Ropelewski, L; Rostkowski, M; Ruggiero, G; Rummel, A; Saarikko, H; Sanguinetti, G; Santroni, A; Scribano, A; Sette, G; Snoeys, W; Spinella, F; Ster, A; Taylor, C; Trummal, A; Turini, N; Whitmore, J; Wu, J; Zalewski, M

    2010-01-01

    The primary objective of the TOTEM experiment at the LHC is the measurement of the total proton-proton cross section with the luminosity-independent method and the study of elastic proton-proton cross-section over a wide |t|-range. In addition TOTEM also performs a comprehensive study of diffraction, spanning from cross-section measurements of individual diffractive processes to the analysis of their event topologies. Hard diffraction will be studied in collaboration with CMS taking advantage of the large common rapidity coverage for charged and neutral particle detection and the large variety of trigger possibilities even at large luminosities. TOTEM will take data under all LHC beam conditions including standard high luminosity runs to maximise its physics reach. This contribution describes the main features of the TOTEM diffractive physics programme including measurements to be made in the early LHC runs.

  13. Duality in diffraction dissociations

    International Nuclear Information System (INIS)

    Santoro, Alberto.

    1977-01-01

    Diffractive dissociations (aN→a*πN) are naturally explained and a model that accounts for the three-variable correlation (mass-transfer-Jackson angle correlation) is presented. This model takes into account the three possible exchanges: t (pion), u(a*) and s(a) channel exchanger. The physical consequences of the model are: a strong mass-slope correlation due to the zeros of the amplitude, a factorization of diffractive dissociations (factorization of the Pomeron), the possibility of extending this model to double diffractive dissociation and diffraction by nuclei. This model was applied to the NN→NπN reaction. Using the usual parameters of the Deck model, a comparison is made with experiments for all available distributions. the strong slope of the peak at 1400 MeV is naturally explained [fr

  14. DIFFRACTION SYNCHRONIZATION OF LASERS,

    Science.gov (United States)

    semiconductor lasers while suppressing parasitic generation in the plane of the mirror. The diffraction coupling coefficient of open resonators is calculated, and the stability conditions of the synchronized system is determined.

  15. X-ray diffraction 2 - diffraction principles

    International Nuclear Information System (INIS)

    O'Connor, B.

    1999-01-01

    Full text: The computation of powder diffraction intensities is based on the principle that the powder pattern comprises the summation of the intensity contributions from each of the crystallites (or single crystals) in the material. Therefore, it is of value for powder diffractionists to appreciate the form of the expression for calculating single crystal diffraction pattern intensities. This knowledge is especially important for Rietveld analysis practitioners in terms of the (i) mathematics of the method and (ii) retrieving single crystal structure data from the literature. We consider the integrated intensity from a small single crystal being rotated at velocity ω through the Bragg angle θ for reflection (hkl).... I(hkl) = [l o /ω]. [e 4 /m 2 c 4 ]. [λ 3 δV F(hkl) 2 /υ 2 ].[(1+cos 2 2θ)/2sin2θ] where e, m and c are the usual fundamental constants; λ is the x-ray wavelength, δV is the crystallite volume; F(hkl) is the structure factor; υ is the unit cell volume; and (1+cos 2 θ)/2sin2θ] is the Lorentz-polarisation factor for an unpolarised incident beam. The expression does not include a contribution for extinction. The influence of factors λ, δV, F(hkl) and υ on the intensities should be appreciated by powder diffractionists, especially the structure factor, F(hkl), which is responsible for the fingerprint nature of diffraction patterns, such as the rise and fall of intensity from peak to peak. The structure factor expression represents the summation of the scattered waves from each of the j scattering centres (i e atoms) in the unit cell: F(hkl) Σ f j exp[2πi (h.x j +k.y i +l. z i )] T j . Symbol f is the scattering factor (representing the atom-type scattering efficiency); (x, y, z) are the fractional position coordinates of atom j within the unit cell; and T is the thermal vibration factor for the atom given by: T j = 8π 2 2 > sin 2 θ/λ 2 with 2 > being the mean-square vibration amplitude of the atom (assumed to be isotropic). The

  16. The ghost of Afrikaner identity in Ancestral voices, Leap year and The long silence of Mario Salviati (Etienne van Heerden

    Directory of Open Access Journals (Sweden)

    Mariëtte van Graan

    2017-04-01

    Full Text Available Ghost characters are a characteristic of the novels of Etienne van Heerden, but little research has been done concerning the nature and function of these ghost characters. In this article I discuss Van Heerden’s use of ghost characters diachronically with reference to the novels Ancestral voices (1986, Leap year (1993 and The long silence of Mario Salviati (2000. In order to clarify the nature of these ghosts, I use the so-called science of the paranormal as a framework. The ghosts in the three novels will be classified accordingly, and then discussed within the context of the novels in which they appear. In this way, I shall show how the ghost characters in these novels can be read as a constantly changing embodiment of Afrikaner identity (a central theme in Van Heerden’s oeuvre. Van Heerden’s Afrikaner changes with the times: in Ancestral voices the ghost characters form a collective that represents a fragmented image of the stereotypical, archaic male Afrikaner identity; in Leap year a liminal character is written in a liminal time to embody a liminal Afrikaner identity; and in The long silence of Mario Salviati Van Heerden moves away from the exclusive Afrikaner identity to a broader South African identity by using ghost characters from very different backgrounds and origins. In conclusion I shall compare these identities and the historical contexts of these novels in order to show the function of Van Heerden’s ghost characters as constant rewritings of South African identities.

  17. The Ghosts of Justice and the Law of Historical Memory

    Directory of Open Access Journals (Sweden)

    Mónica López Lerma

    2011-04-01

    representational practices (words, images, expressions that seek to do justice to the victims, with unequal success. The novel’s recurring expressions (i.e., shadows, the repressed, eternal return, ghosts, and blindness stress the importance of coming to terms with the “ghosts of the past.” The law focuses instead on other words and images (i.e., foundation, reconciliation, concord, and closure that allude to the idea of historical progress, it will be argued, without proper acknowledgment of the injustices of the past. In doing so, the law becomes a commemorative site for the Spanish Transition, but not for the recovery of the victims’ memory. The law’s re-appropriation of the “spirit of the Transition” reveals Spain’s deep fear of confronting the ghosts of the past, a fear that can be perceived still today.

  18. Effects of ghost shrimp on zinc and cadmium in sediments from Tampa Bay, FL

    Science.gov (United States)

    Klerks, P.L.; Felder, D.L.; Strasser, K.; Swarzenski, P.W.

    2007-01-01

    This study investigated the effects that ghost shrimp have on the distribution of metals in sediment. We measured levels of HNO3-extractable zinc and cadmium in surface sediment, in ghost shrimp burrow walls and in sediment ejected by the ghost shrimp from their burrows, at five sandy intertidal sites in Tampa Bay. Ghost shrimp densities and their rate of sediment ejection were also quantified, as were sediment organic content and silt + clay content. Densities of ghost shrimp (Sergio trilobata and Lepidophthalmus louisianensis) averaged 33/m2 at our sites, and they ejected sediment at an average rate of 28 g/burrow/day. Levels of both Zn and Cd were significantly higher in burrow walls than in surface sediments. Sediment ejected by the shrimp from their burrows had elevated levels of Zn (relative to surface sediments) at one of the sites. Sediment organic content and silt + clay content were higher in burrow-wall sediments than in ejected sediment, which in turn tended to have values above those of surface sediments. Differences in levels of HNO3-extractable Zn and Cd among sediment types may be a consequence of these sediments differing in other physiochemical characteristics, though the differences in metal levels remained statistically significant for some sites after correcting for differences in organic content and silt + clay content. We conclude that the presence of ghost shrimp burrows contributes to spatial heterogeneity of sedimentary metal levels, while the ghost shrimp bioturbation results in a significant flux of metals to the sediment surface and is expected to decrease heterogeneity of metal levels in sedimentary depth profiles.

  19. GHOSTS I: A new faint very isolated dwarf galaxy at D = 12 ± 2 Mpc

    International Nuclear Information System (INIS)

    Monachesi, Antonela; Bell, Eric F.; Radburn-Smith, David J.; Dalcanton, Julianne J.; De Jong, Roelof S.; Streich, David; Vlajić, Marija; Bailin, Jeremy; Holwerda, Benne W.; Alyson Ford, H.; Zucker, Daniel B.

    2014-01-01

    We report the discovery of a new faint dwarf galaxy, GHOSTS I, using HST/ACS data from one of our GHOSTS (Galaxy Halos, Outer disks, Substructure, Thick disk, and Star clusters) fields. Its detected individual stars populate an approximately 1 mag range of its luminosity function (LF). Using synthetic color-magnitude diagrams (CMDs) to compare with the galaxy's CMD, we find that the colors and magnitudes of GHOSTS I's individual stars are most consistent with being young helium-burning and asymptotic giant branch stars at a distance of ∼12 ± 2 Mpc. Morphologically, GHOSTS I appears to be actively forming stars, so we tentatively classify it as a dwarf irregular (dIrr) galaxy, although future Hubble Space Telescope (HST) observations deep enough to resolve a larger magnitude range in its LF are required to make a more secure classification. GHOSTS I's absolute magnitude is M V ∼−9.85 −0.33 +0.40 , making it one of the least luminous dIrr galaxies known, and its metallicity is lower than [Fe/H] = –1.5 dex. The half-light radius of GHOSTS I is 226 ± 38 pc and its ellipticity is 0.47 ± 0.07, similar to Milky Way and M31 dwarf satellites at comparable luminosity. There are no luminous massive galaxies or galaxy clusters within ∼4 Mpc from GHOSTS I that could be considered as its host, making it a very isolated dwarf galaxy in the local universe.

  20. Identification of ghost artifact using texture analysis in pediatric spinal cord diffusion tensor images.

    Science.gov (United States)

    Alizadeh, Mahdi; Conklin, Chris J; Middleton, Devon M; Shah, Pallav; Saksena, Sona; Krisa, Laura; Finsterbusch, Jürgen; Faro, Scott H; Mulcahey, M J; Mohamed, Feroze B

    2018-04-01

    Ghost artifacts are a major contributor to degradation of spinal cord diffusion tensor images. A multi-stage post-processing pipeline was designed, implemented and validated to automatically remove ghost artifacts arising from reduced field of view diffusion tensor imaging (DTI) of the pediatric spinal cord. A total of 12 pediatric subjects including 7 healthy subjects (mean age=11.34years) with no evidence of spinal cord injury or pathology and 5 patients (mean age=10.96years) with cervical spinal cord injury were studied. Ghost/true cords, labeled as region of interests (ROIs), in non-diffusion weighted b0 images were segmented automatically using mathematical morphological processing. Initially, 21 texture features were extracted from each segmented ROI including 5 first-order features based on the histogram of the image (mean, variance, skewness, kurtosis and entropy) and 16s-order feature vector elements, incorporating four statistical measures (contrast, correlation, homogeneity and energy) calculated from co-occurrence matrices in directions of 0°, 45°, 90° and 135°. Next, ten features with a high value of mutual information (MI) relative to the pre-defined target class and within the features were selected as final features which were input to a trained classifier (adaptive neuro-fuzzy interface system) to separate the true cord from the ghost cord. The implemented pipeline was successfully able to separate the ghost artifacts from true cord structures. The results obtained from the classifier showed a sensitivity of 91%, specificity of 79%, and accuracy of 84% in separating the true cord from ghost artifacts. The results show that the proposed method is promising for the automatic detection of ghost cords present in DTI images of the spinal cord. This step is crucial towards development of accurate, automatic DTI spinal cord post processing pipelines. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Micro-electro-fluidic grids for nematodes: a lens-less, image-sensor-less approach for on-chip tracking of nematode locomotion.

    Science.gov (United States)

    Liu, Peng; Martin, Richard J; Dong, Liang

    2013-02-21

    This paper reports on the development of a lens-less and image-sensor-less micro-electro-fluidic (MEF) approach for real-time monitoring of the locomotion of microscopic nematodes. The technology showed promise for overcoming the constraint of the limited field of view of conventional optical microscopy, with relatively low cost, good spatial resolution, and high portability. The core of the device was microelectrode grids formed by orthogonally arranging two identical arrays of microelectrode lines. The two microelectrode arrays were spaced by a microfluidic chamber containing a liquid medium of interest. As a nematode (e.g., Caenorhabditis elegans) moved inside the chamber, the invasion of part of its body into some intersection regions between the microelectrodes caused changes in the electrical resistance of these intersection regions. The worm's presence at, or absence from, a detection unit was determined by a comparison between the measured resistance variation of this unit and a pre-defined threshold resistance variation. An electronic readout circuit was designed to address all the detection units and read out their individual electrical resistances. By this means, it was possible to obtain the electrical resistance profile of the whole MEF grid, and thus, the physical pattern of the swimming nematode. We studied the influence of a worm's body on the resistance of an addressed unit. We also investigated how the full-frame scanning and readout rates of the electronic circuit and the dimensions of a detection unit posed an impact on the spatial resolution of the reconstructed images of the nematode. Other important issues, such as the manufacturing-induced initial non-uniformity of the grids and the electrotaxic behaviour of nematodes, were also studied. A drug resistance screening experiment was conducted by using the grids with a good resolution of 30 × 30 μm(2). The phenotypic differences in the locomotion behaviours (e.g., moving speed and oscillation

  2. Diffraction. Single crystal, magnetic

    International Nuclear Information System (INIS)

    Heger, G.

    1999-01-01

    The analysis of crystal structure and magnetic ordering is usually based on diffraction phenomena caused by the interaction of matter with X-rays, neutrons, or electrons. Complementary information is achieved due to the different character of X-rays, neutrons and electrons, and hence their different interactions with matter and further practical aspects. X-ray diffraction using conventional laboratory equipment and/or synchrotron installations is the most important method for structure analyses. The purpose of this paper is to discuss special cases, for which, in addition to this indispensable part, neutrons are required to solve structural problems. Even though the huge intensity of modern synchrotron sources allows in principle the study of magnetic X-ray scattering the investigation of magnetic structures is still one of the most important applications of neutron diffraction. (K.A.)

  3. Giant wormholes in ghost-free bigravity theory

    Energy Technology Data Exchange (ETDEWEB)

    Sushkov, Sergey V.; Volkov, Mikhail S., E-mail: sergey_sushkov@mail.ru, E-mail: volkov@lmpt.univ-tours.fr [Department of General Relativity and Gravitation, Institute of Physics, Kazan Federal University, Kremlevskaya street 18, 420008 Kazan (Russian Federation)

    2015-06-01

    We study Lorentzian wormholes in the ghost-free bigravity theory described by two metrics, g and f. Wormholes can exist if only the null energy condition is violated, which happens naturally in the bigravity theory since the graviton energy-momentum tensors do not apriori fulfill any energy conditions. As a result, the field equations admit solutions describing wormholes whose throat size is typically of the order of the inverse graviton mass. Hence, they are as large as the universe, so that in principle we might all live in a giant wormhole. The wormholes can be of two different types that we call W1 and W2. The W1 wormholes interpolate between the AdS spaces and have Killing horizons shielding the throat. The Fierz-Pauli graviton mass for these solutions becomes imaginary in the AdS zone, hence the gravitons behave as tachyons, but since the Breitenlohner-Freedman bound is fulfilled, there should be no tachyon instability. For the W2 wormholes the g-geometry is globally regular and in the far field zone it becomes the AdS up to subleading terms, its throat can be traversed by timelike geodesics, while the f-geometry has a completely different structure and is not geodesically complete. There is no evidence of tachyons for these solutions, although a detailed stability analysis remains an open issue. It is possible that the solutions may admit a holographic interpretation.

  4. Giant wormholes in ghost-free bigravity theory

    Energy Technology Data Exchange (ETDEWEB)

    Sushkov, Sergey V. [Department of General Relativity and Gravitation, Institute of Physics,Kazan Federal University, Kremlevskaya street 18, 420008 Kazan (Russian Federation); Volkov, Mikhail S. [Department of General Relativity and Gravitation, Institute of Physics,Kazan Federal University, Kremlevskaya street 18, 420008 Kazan (Russian Federation); Laboratoire de Mathématiques et Physique Théorique CNRS-UMR 7350, Université de Tours, Parc de Grandmont, 37200 Tours (France)

    2015-06-09

    We study Lorentzian wormholes in the ghost-free bigravity theory described by two metrics, g and f. Wormholes can exist if only the null energy condition is violated, which happens naturally in the bigravity theory since the graviton energy-momentum tensors do not apriori fulfill any energy conditions. As a result, the field equations admit solutions describing wormholes whose throat size is typically of the order of the inverse graviton mass. Hence, they are as large as the universe, so that in principle we might all live in a giant wormhole. The wormholes can be of two different types that we call W1 and W2. The W1 wormholes interpolate between the AdS spaces and have Killing horizons shielding the throat. The Fierz-Pauli graviton mass for these solutions becomes imaginary in the AdS zone, hence the gravitons behave as tachyons, but since the Breitenlohner-Freedman bound is fulfilled, there should be no tachyon instability. For the W2 wormholes the g-geometry is globally regular and in the far field zone it becomes the AdS up to subleading terms, its throat can be traversed by timelike geodesics, while the f-geometry has a completely different structure and is not geodesically complete. There is no evidence of tachyons for these solutions, although a detailed stability analysis remains an open issue. It is possible that the solutions may admit a holographic interpretation.

  5. Sponge-Like: A New Protocol for Preparing Bacterial Ghosts

    Directory of Open Access Journals (Sweden)

    Amro A. Amara

    2013-01-01

    Full Text Available Bacterial Ghosts (BGs received an increasing interest in the recent years for their promising medicinal and pharmaceutical applications. In this study, for the first time we introduce a new protocol for BGs production. E. coli BL21 (DE3 pLysS (Promega was used as a model to establish a general protocol for BGs preparation. The protocol is based on using active chemical compounds in concentrations less than the Minimum Inhibition Concentration (MIC. Those chemical compounds are SDS, NaOH, and H2O2. Plackett-Burman experimental design was used to map the best conditions for BGs production. Normal and electronic microscopes were used to evaluate the BGs quality (BGQ. Spectrophotometer was used to evaluate the amount of the released protein and DNA. Agarose gel electrophoresis was used to determine the existence of any residue of DNA after each BGs preparation. Viable cells, which existed after running this protocol, were subjected to lysis by inducing the lysozyme gene carried on pLysS plasmid. This protocol is able to produce BGs that can be used in different biotechnological applications.

  6. Characterization of Chemically-Induced Bacterial Ghosts (BGs Using Sodium Hydroxide-Induced Vibrio parahaemolyticus Ghosts (VPGs

    Directory of Open Access Journals (Sweden)

    Hyun Jung Park

    2016-11-01

    Full Text Available Acellular bacterial ghosts (BGs are empty non-living bacterial cell envelopes, commonly generated by controlled expression of the cloned lysis gene E of bacteriophage PhiX174. In this study, Vibrio parahaemolyticus ghosts (VPGs were generated by chemically-induced lysis and the method is based on minimum inhibitory concentration (MIC of sodium hydroxide (NaOH, acetic acid, boric acid, citric acid, maleic acid, hydrochloric acid, and sulfuric acid. The MIC values of the respective chemicals were 3.125, 6.25, <50.0, 25.0, 6.25, 1.56, and 0.781 mg/mL. Except for boric acid, the lysis efficiency reached more than 99.99% at 5 min after treatment of all chemicals. Among those chemicals, NaOH-induced VPGs appeared completely DNA-free, which was confirmed by quantitative real-time PCR. Besides, lipopolysaccharides (LPS extracted from the NaOH-induced VPGs showed no distinctive band on SDS-PAGE gel after silver staining. On the other hand, LPS extracted from wild-type bacterial cells, as well as the organic acids-induced VPGs showed triple major bands and LPS extracted from the inorganic acids-induced VPGs showed double bands. It suggests that some surface structures in LPS of the NaOH-induced VPGs may be lost, weakened, or modified by the MIC of NaOH. Nevertheless, Limulus amoebocyte lysate assay revealed that there is no significant difference in endotoxic activity between the NaOH-induced VPGs and wild-type bacterial cells. Macrophages exposed to the NaOH-induced VPGs at 0.5 × 106 CFU/mL showed cell viability of 97.9%, however, the MIC of NaOH did not reduce the cytotoxic effect of wild-type bacterial cells. Like Escherichia coli LPS, the NaOH-induced VPGs are an excellent activator of pro-inflammatory cytokines (IL-1β and iNOS, anti-inflammatory cytokine (IL-10, and dual activities (IL-6 in the stimulated macrophage cells. On the other hand, the induction of TNF-α mRNA was remarkable in the macrophages exposed with wild-type cells. Scanning

  7. Diffraction in nuclear scattering

    International Nuclear Information System (INIS)

    Wojciechowski, H.

    1986-01-01

    The elastic scattering amplitudes for charged and neutral particles have been decomposed into diffractive and refractive parts by splitting the nuclear elastic scattering matrix elements into components responsible for these effects. It has been shown that the pure geometrical diffractive effect which carries no information about the nuclear interaction is always predominant at forward angle of elastic angular distributions. This fact suggests that for strongly absorbed particles only elastic cross section at backward angles, i.e. the refractive cross section, can give us basic information about the central nuclear potential. 12 refs., 4 figs., 1 tab. (author)

  8. Dynamics from diffraction

    International Nuclear Information System (INIS)

    Goodwin, Andrew L.; Tucker, Matthew G.; Cope, Elizabeth R.; Dove, Martin T.; Keen, David A.

    2006-01-01

    We explore the possibility that detailed dynamical information might be extracted from powder diffraction data. Our focus is a recently reported technique that employs statistical analysis of atomistic configurations to calculate dynamical properties from neutron total scattering data. We show that it is possible to access the phonon dispersion of low-frequency modes using such an approach, without constraining the results in terms of some pre-defined dynamical model. The high-frequency regions of the phonon spectrum are found to be less well preserved in the diffraction data

  9. Single-particle coherent diffractive imaging with a soft x-ray free electron laser: towards soot aerosol morphology

    Science.gov (United States)

    Bogan, Michael J.; Starodub, Dmitri; Hampton, Christina Y.; Sierra, Raymond G.

    2010-10-01

    The first of its kind, the Free electron LASer facility in Hamburg, FLASH, produces soft x-ray pulses with unprecedented properties (10 fs, 6.8-47 nm, 1012 photons per pulse, 20 µm diameter). One of the seminal FLASH experiments is single-pulse coherent x-ray diffractive imaging (CXDI). CXDI utilizes the ultrafast and ultrabright pulses to overcome resolution limitations in x-ray microscopy imposed by x-ray-induced damage to the sample by 'diffracting before destroying' the sample on sub-picosecond timescales. For many lensless imaging algorithms used for CXDI it is convenient when the data satisfy an oversampling constraint that requires the sample to be an isolated object, i.e. an individual 'free-standing' portion of disordered matter delivered to the centre of the x-ray focus. By definition, this type of matter is an aerosol. This paper will describe the role of aerosol science methodologies used for the validation of the 'diffract before destroy' hypothesis and the execution of the first single-particle CXDI experiments being developed for biological imaging. FLASH CXDI now enables the highest resolution imaging of single micron-sized or smaller airborne particulate matter to date while preserving the native substrate-free state of the aerosol. Electron microscopy offers higher resolution for single-particle analysis but the aerosol must be captured on a substrate, potentially modifying the particle morphology. Thus, FLASH is poised to contribute significant advancements in our knowledge of aerosol morphology and dynamics. As an example, we simulate CXDI of combustion particle (soot) morphology and introduce the concept of extracting radius of gyration of fractal aggregates from single-pulse x-ray diffraction data. Future upgrades to FLASH will enable higher spatially and temporally resolved single-particle aerosol dynamics studies, filling a critical technological need in aerosol science and nanotechnology. Many of the methodologies described for FLASH will

  10. Oversampling smoothness: an effective algorithm for phase retrieval of noisy diffraction intensities.

    Science.gov (United States)

    Rodriguez, Jose A; Xu, Rui; Chen, Chien-Chun; Zou, Yunfei; Miao, Jianwei

    2013-04-01

    Coherent diffraction imaging (CDI) is high-resolution lensless microscopy that has been applied to image a wide range of specimens using synchrotron radiation, X-ray free-electron lasers, high harmonic generation, soft X-ray lasers and electrons. Despite recent rapid advances, it remains a challenge to reconstruct fine features in weakly scattering objects such as biological specimens from noisy data. Here an effective iterative algorithm, termed oversampling smoothness (OSS), for phase retrieval of noisy diffraction intensities is presented. OSS exploits the correlation information among the pixels or voxels in the region outside of a support in real space. By properly applying spatial frequency filters to the pixels or voxels outside the support at different stages of the iterative process ( i.e. a smoothness constraint), OSS finds a balance between the hybrid input-output (HIO) and error reduction (ER) algorithms to search for a global minimum in solution space, while reducing the oscillations in the reconstruction. Both numerical simulations with Poisson noise and experimental data from a biological cell indicate that OSS consistently outperforms the HIO, ER-HIO and noise robust (NR)-HIO algorithms at all noise levels in terms of accuracy and consistency of the reconstructions. It is expected that OSS will find application in the rapidly growing CDI field, as well as other disciplines where phase retrieval from noisy Fourier magnitudes is needed. The MATLAB (The MathWorks Inc., Natick, MA, USA) source code of the OSS algorithm is freely available from http://www.physics.ucla.edu/research/imaging.

  11. Ghosts in high dimensional non-linear dynamical systems: The example of the hypercycle

    International Nuclear Information System (INIS)

    Sardanyes, Josep

    2009-01-01

    Ghost-induced delayed transitions are analyzed in high dimensional non-linear dynamical systems by means of the hypercycle model. The hypercycle is a network of catalytically-coupled self-replicating RNA-like macromolecules, and has been suggested to be involved in the transition from non-living to living matter in the context of earlier prebiotic evolution. It is demonstrated that, in the vicinity of the saddle-node bifurcation for symmetric hypercycles, the persistence time before extinction, T ε , tends to infinity as n→∞ (being n the number of units of the hypercycle), thus suggesting that the increase in the number of hypercycle units involves a longer resilient time before extinction because of the ghost. Furthermore, by means of numerical analysis the dynamics of three large hypercycle networks is also studied, focusing in their extinction dynamics associated to the ghosts. Such networks allow to explore the properties of the ghosts living in high dimensional phase space with n = 5, n = 10 and n = 15 dimensions. These hypercyclic networks, in agreement with other works, are shown to exhibit self-maintained oscillations governed by stable limit cycles. The bifurcation scenarios for these hypercycles are analyzed, as well as the effect of the phase space dimensionality in the delayed transition phenomena and in the scaling properties of the ghosts near bifurcation threshold

  12. Ghost cells in pilomatrixoma, craniopharyngioma, and calcifying cystic odontogenic tumor: histological, immunohistochemical, and ultrastructural study.

    Science.gov (United States)

    Rumayor, Alicia; Carlos, Román; Kirsch, Hernán Molina; de Andrade, Bruno A Benevenuto; Romañach, Mario J; de Almeida, Oslei Paes

    2015-04-01

    Pilomatrixoma, craniopharyngioma, and calcifying cystic odontogenic tumor are the main entities presenting ghost cells as an important histological feature, in spite their quite different clinical presentation; it seems that they share a common pathway in the formation of these cells. The aim of this study is to examine and compare the characteristics of ghost and other cells that form these lesions. Forty-three cases including 21 pilomatrixomas, 14 craniopharyngiomas, and eight calcifying cystic odontogenic tumors were evaluated by immunohistochemistry for cytokeratins, CD138, β-catenin, D2-40, Glut-1, FAS, CD10 and also by scanning electron microscopy. The CKs, CD138, β-catenin, Glut-1, FAS, and CD10 were more often expressed by transitional cells of craniopharyngioma and calcifying cystic odontogenic tumor, compared with pilomatrixoma. Basaloid cells of pilomatrixoma showed strong positivity for CD138 and CD10. Differences on expression pattern were identified in transitional and basal cells, as ghost cells were negative for most antibodies used, except by low expression for cytokeratins. By scanning electron microscopy, the morphology of ghost cells were similar in their fibrillar cytoplasm, but their pattern varied from sheets in pilomatrixoma to small clusters in craniopharyngioma and calcifying cystic odontogenic tumor. Mechanisms involved in formation of ghost cells are unknown, but probably they follow different pathways as protein expression in the basal/transitional cells was not uniform in the three tumors studied. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Ghost Spectroscopy with Classical Thermal Light Emitted by a Superluminescent Diode

    Science.gov (United States)

    Janassek, Patrick; Blumenstein, Sébastien; Elsäßer, Wolfgang

    2018-02-01

    We propose and realize the first classical ghost-imaging (GI) experiment in the frequency or wavelength domain, thus performing ghost spectroscopy using thermal light exhibiting photon bunching. The required wavelength correlations are provided by light emitted by spectrally broadband near-infrared amplified spontaneous emission of a semiconductor-based superluminescent diode. They are characterized by wavelength-resolved intensity cross-correlation measurements utilizing two-photon-absorption interferometry. Finally, a real-world spectroscopic application of this ghost spectroscopy with a classical light scheme is demonstrated in which an absorption band of trichloromethane (chloroform) at 1214 nm is reconstructed with a spectral resolution of 10 nm as a proof-of-principle experiment. This ghost-spectroscopy work fills the gap of a hitherto missing analogy between the spatial and the spectral domain in classical GI modalities, with the expectation of contributing towards a broader dissemination of correlated photon ghost modalities, hence paving the way towards more applications which exploit the favorable advantages.

  14. Correlation of the ghost and the quark in the lattice Landau gauge QCD

    International Nuclear Information System (INIS)

    Furui, Sadataka; Nakajima, Hideo

    2007-01-01

    Effects of the quark field on the ghost propagator of the lattice Landau gauge are investigated by using the unquenched SU(3) configurations produced by the MILC collaboration and compared with quenched gauge configurations of SU(2) first copy of the over relaxation gauge fixing, the parallel tempering (PT) gauge fixing and quenched SU(3) 56 4 configurations. We measure the color symmetric and the color antisymmetric ghost propagator and the Binder cumulant of the l 1 norm and the l 2 norm of color antisymmetric ghost propagators and investigate deviation from those of Gaussian distributions. In the first copy samples of quenched SU(2) we observe a large fluctuation in the Binder cumulant at the lowest momentum point. This fluctuation is reduced in the P T gauge fixed samples. The color anti-symmetric ghost propagator of quenched SU(3) configurations depends on the lattice size and is small as compared to the symmetric one in the large lattice of 56 4 . The Binder cumulant of the quenched SU(2) and the N f = 2 + 1 unquenched SU(3) are almost consistent with 3-d and 8-d Gaussian distribution, respectively. A comparison of the SU(3) unquenched configurations and quenched configurations indicates that the dynamical quarks have the effect of making color antisymmetric ghost propagator closer to the Gaussian distribution and the Kugo-Ojima color confinement parameter c closer to 1. (author)

  15. Diffraction at collider energies

    International Nuclear Information System (INIS)

    Frankfurt, L.L.

    1992-01-01

    Lessons with ''soft'' hadron physics to explain (a) feasibility to observe and to investigate color transparency, color opacity effects at colliders; (b) significant probability and specific features of hard diffractive processes; (c) feasibility to investigate components of parton wave functions of hadrons with minimal number of constituents. This new physics would be more important with increase of collision energy

  16. Diffraction through partial identity

    International Nuclear Information System (INIS)

    Blum, W.

    1981-06-01

    A model of diffraction dissociation is proposed in which the quantum-mechanical interference between the incoming and the outgoing wave determines the cross-section. This interference occurs due to the finite life-time of the excited state. (orig.)

  17. Diffractive optics for industrial and commercial applications

    Energy Technology Data Exchange (ETDEWEB)

    Turunen, J. [Joensuu Univ. (Finland); Wyrowski, F. [eds.] [Jena Univ. (Germany)

    1997-12-31

    The following topics were dealt with: diffractive optics, diffraction gratings, optical system design with diffractive optics, continuous-relief diffractive lenses and microlens arrays, diffractive bifocal intraocular lenses, diffractive laser resonators, diffractive optics for semiconductor lasers, diffractive elements for optical image processing, photorefractive crystals in optical measurement systems, subwavelenth-structured elements, security applications, diffractive optics for solar cells, holographic microlithography. 999 refs.

  18. How Do We Think about Death?--A Cultural Glance of Superstitious Ideas from Chinese and Western Ghost Festivals

    Science.gov (United States)

    Zhang, Wenli

    2009-01-01

    Superstitious ideas are always in people's life in spite of scientific and technological advancement. Hungry Ghost Festival in China, Halloween in some western countries and Day of the Dead in Mexico are three religious festivals which are observed every year. They reveal people's idea about ghosts and spirits after death. They also include…

  19. Schwinger-Dyson operator of Yang-Mills matrix models with ghosts and derivations of the graded shuffle algebra

    NARCIS (Netherlands)

    Krishnaswami, G.S.

    2008-01-01

    We consider large-N multi-matrix models whose action closely mimics that of Yang-Mills theory, including gauge-fixing and ghost terms. We show that the factorized Schwinger-Dyson loop equations, expressed in terms of the generating series of gluon and ghost correlations G( ), are quadratic equations

  20. Pedagogies of Hauntology in History Education: Learning to Live with the Ghosts of Disappeared Victims of War and Dictatorship

    Science.gov (United States)

    Zembylas, Michalinos

    2013-01-01

    Michalinos Zembylas examines how history education can be reconceived in terms of Jacques Derrida's notion of "hauntology," that is, as an ongoing conversation with the "ghost"--in the case of this essay, the ghosts of disappeared victims of war and dictatorship. Here, Zembylas uses hauntology as both metaphor and pedagogical methodology for…

  1. A Novel Probability Model for Suppressing Multipath Ghosts in GPR and TWI Imaging: A Numerical Study

    Directory of Open Access Journals (Sweden)

    Tan Yun-hua

    2015-10-01

    Full Text Available A novel concept for suppressing the problem of multipath ghosts in Ground Penetrating Radar (GPR and Through-Wall Imaging (TWI is presented. Ghosts (i.e., false targets mainly arise from the use of the Born or single-scattering approximations that lead to linearized imaging algorithms; however, these approximations neglect the effect of multiple scattering (or multipath between the electromagnetic wavefield and the object under investigation. In contrast to existing methods of suppressing multipath ghosts, the proposed method models for the first time the reflectivity of the probed objects as a probability function up to a normalized factor and introduces the concept of random subaperture by randomly picking up measurement locations from the entire aperture. Thus, the final radar image is a joint probability distribution that corresponds to radar images derived from multiple random subapertures. Finally, numerical experiments are used to demonstrate the performance of the proposed methodology in GPR and TWI imaging.

  2. Quantization of gauge theories with open algebra in the representation with the third ghost

    International Nuclear Information System (INIS)

    Batalin, I.A.; Kallosh, R.E.

    1983-01-01

    We suggest a modified representation of the general BRS construction, which gives in a closed form the quantization of gauge theories with open algebra. Instead of gauging the Lagrange multiplier in this representation, we have the third ghost πsup(α) which appears in the quantization procedure on equal footing with the Faddeev-Popov ghosts anti Csup(α), Csup(α). This new representation is especially convenient in the non-singular gauges of the form 1/2#betta#sub(α#betta#chi)sup(#betta#)sub(chi)sup(α), where both sub(chi)sup(α) and #betta#sub(α#betta#) may arbitrarily depend on quantum fields. In the closed algebra case, we recover the result of Nielsen, whereas for the theories with open algebra we find new ghost couplings of the form anti Csup(n)Csup(n)πsup(m), n = 1, ...; m = 0, 1, ..., n. (orig.)

  3. Hydrogen atom in a magnetic field: Ghost orbits, catastrophes, and uniform semiclassical approximations

    International Nuclear Information System (INIS)

    Main, J.; Wunner, G.

    1997-01-01

    Applying closed-orbit theory to the recurrence spectra of the hydrogen atom in a magnetic field, one can interpret most, but not all, structures semiclassically in terms of closed classical orbits. In particular, conventional closed-orbit theory fails near bifurcations of orbits where semiclassical amplitudes exhibit unphysical divergences. Here we analyze the role of ghost orbits living in complex phase space. The ghosts can explain resonance structures in the spectra of the hydrogen atom in a magnetic field at positions where no real orbits exist. For three different types of catastrophes, viz. fold, cusp, and butterfly catastrophes, we construct uniform semiclassical approximations and demonstrate that these solutions are completely determined by classical parameters of the real orbits and complex ghosts. copyright 1997 The American Physical Society

  4. A ghost-cell immersed boundary method for flow in complex geometry

    International Nuclear Information System (INIS)

    Tseng, Y.-H.; Ferziger, Joel H.

    2003-01-01

    An efficient ghost-cell immersed boundary method (GCIBM) for simulating turbulent flows in complex geometries is presented. A boundary condition is enforced through a ghost cell method. The reconstruction procedure allows systematic development of numerical schemes for treating the immersed boundary while preserving the overall second-order accuracy of the base solver. Both Dirichlet and Neumann boundary conditions can be treated. The current ghost cell treatment is both suitable for staggered and non-staggered Cartesian grids. The accuracy of the current method is validated using flow past a circular cylinder and large eddy simulation of turbulent flow over a wavy surface. Numerical results are compared with experimental data and boundary-fitted grid results. The method is further extended to an existing ocean model (MITGCM) to simulate geophysical flow over a three-dimensional bump. The method is easily implemented as evidenced by our use of several existing codes

  5. Adaptive compressive ghost imaging based on wavelet trees and sparse representation.

    Science.gov (United States)

    Yu, Wen-Kai; Li, Ming-Fei; Yao, Xu-Ri; Liu, Xue-Feng; Wu, Ling-An; Zhai, Guang-Jie

    2014-03-24

    Compressed sensing is a theory which can reconstruct an image almost perfectly with only a few measurements by finding its sparsest representation. However, the computation time consumed for large images may be a few hours or more. In this work, we both theoretically and experimentally demonstrate a method that combines the advantages of both adaptive computational ghost imaging and compressed sensing, which we call adaptive compressive ghost imaging, whereby both the reconstruction time and measurements required for any image size can be significantly reduced. The technique can be used to improve the performance of all computational ghost imaging protocols, especially when measuring ultra-weak or noisy signals, and can be extended to imaging applications at any wavelength.

  6. Are the dressed gluon and ghost propagators in the Landau gauge presently determined in the confinement regime of QCD?

    International Nuclear Information System (INIS)

    Pennington, M. R.; Wilson, D. J.

    2011-01-01

    The gluon and ghost propagators in Landau gauge QCD are investigated using the Schwinger-Dyson equation approach. Working in Euclidean spacetime, we solve for these propagators using a selection of vertex inputs, initially for the ghost equation alone and then for both propagators simultaneously. The results are shown to be highly sensitive to the choices of vertices. We favor the infrared finite ghost solution from studying the ghost equation alone where we argue for a specific unique solution. In order to solve this simultaneously with the gluon using a dressed-one-loop truncation, we find that a nontrivial full ghost-gluon vertex is required in the vanishing gluon momentum limit. The self-consistent solutions we obtain correspond to having a masslike term in the gluon propagator dressing, in agreement with similar studies supporting the long-held proposal of Cornwall.

  7. A simple approach for EPID dosimetric calibration to overcome the effect of image-lag and ghosting

    International Nuclear Information System (INIS)

    Alshanqity, Mukhtar; Duane, Simon; Nisbet, Andrew

    2012-01-01

    EPID dosimetry has known drawbacks. The main issue is that a measurable residual signal is observed after the end of irradiation for prolonged periods of time, thus making measurement difficult. We present a detailed analysis of EPID response and suggest a simple, yet accurate approach for calibration that avoids the complexity of incorporating ghosting and image-lag using the maximum integrated signal instead of the total integrated signal. This approach is linear with dose and independent of dose rate. - Highlights: ► Image-lag and ghosting effects dosimetric accuracy. ► Image-lag and ghosting result in the reduction of total integrated signal for low doses. ► Residual signal is the most significant result for the image-lag and ghosting effects. ► Image-lag and ghosting can result in under-dosing of up to 2.5%.

  8. Examining Perceived Distance and Personal Authenticity as Mediators of the Effects of Ghost-Tweeting on Parasocial Interaction.

    Science.gov (United States)

    Cohen, Elizabeth L; Tyler, William J

    2016-05-01

    A number of high-profile public figures hire ghost-tweeters to post to their social media accounts on their behalf, but no research has examined how this social media practice can affect followers' feelings of connection to the public figures. College students (n = 132) participated in an online experiment to examine the effect of ghost-tweeting practices on parasocial interaction (PSI) with social media figures. Tweet authorship (use of a ghost-tweeter or not) was manipulated. Ghost-tweeting resulted in reduced PSI. Perceptions of distance, but not personal authenticity mediated this effect. However, authenticity and distance did serially mediate the relationship between ghost-tweeting and PSI. These findings shed light on the process of PSI with celebrities and other media figures on social network sites.

  9. Formation of ghost images due to metal objects on the surface of the patient's face: A pictorial essay.

    Science.gov (United States)

    Ramos, Bárbara Couto; da Silva Izar, Bruna Raquel; Pereira, Jéssica Lourdes Costa; Souza, Priscilla Sena; Valerio, Claudia Scigliano; Tuji, Fabrício Mesquita; Manzi, Flávio Ricardo

    2016-03-01

    Panoramic radiographs are a relatively simple technique that is commonly used in all dental specialties. In panoramic radiographs, in addition to the formation of real images of metal objects, ghost images may also form, and these ghost images can hinder an accurate diagnosis and interfere with the accuracy of radiology reports. Dentists must understand the formation of these images in order to avoid making incorrect radiographic diagnoses. Therefore, the present study sought to present a study of the formation of panoramic radiograph ghost images caused by metal objects in the head and neck region of a dry skull, as well as to report a clinical case n order to warn dentists about ghost images and to raise awareness thereof. An understanding of the principles of the formation of ghost images in panoramic radiographs helps prevent incorrect diagnoses.

  10. Burning behavior in a poor-ventilation compartment fire - ghosting fire

    International Nuclear Information System (INIS)

    Sugawa, Osami; Kawagoe, Kunio; Oka, Yasushi

    1991-01-01

    We investigated compartment fire behavior under poor-ventilation conditions using a methyl alcohol pool fire as the source with a diameter of 30 cm set in a tight box of 2 m (W)x3 m(L)x0.6 m(H). The temperatures in the box and the fuel, gas concentrations of CO, CO 2 , and O 2 , and the fuel consumption rate were measured simultaneously. The burning fuel surface level was kept constant during the test by means of an automatic fuel supply system. It was found that the flame begun to detach from the fuel surface as the oxygen concentration decreased to about 16%, and the color changed to pale blue. The flame detached completely from the fuel and a 'ghosting flame' was observed just under the ceiling which showed a thin pale blue flame and looked line an aurora. The oxygen concentration measured in the ghosting period under the ceiling was 9-10 vol%, and CO 2 was 4.5 vol% so that the oxygen of such concentration acted as in inert gas. CO 2 gas concentration looked almost a single-layer with gradient in the upper half part in ghosting period. Temperatures in the same layer decreased after ghosting occurred with gradient. For poor-ventilated fires, air exchange rate as 1.6-2.4 times/hr was estimated in the test; the burning rate decreased finally to about 1/6 of the fuel controlled fire. It has been tacitly assumed that the flame (reaction zone) and pyrolyzing material area (fuel) exit in almost the same zone, but ghosting fire is not necessarily the case. Therefore, extinguishment of ghosting fire which may occur in an enclosure with fuel and energy rich but poor-ventilation such as a power plant will be extremely difficult. (orig.)

  11. Contribution to diffraction theory

    International Nuclear Information System (INIS)

    Chako, N.

    1966-11-01

    In a first part, we have given a general and detailed treatment of the modern theory of diffraction. The rigorous theory is formulated as a boundary value problem of the wave equation or Maxwell equations. However, up to the present time, such a program of treating diffraction by optical systems, even for simple optical instruments, has not been realized due to the complicated character of the boundary conditions. The recent developments show clearly the nature of the approximation of the classical theories originally due to Fresnel and Young, later formulated in a rigorous manner by Kirchhoff and Rubinowicz, respectively and, at the same time the insufficiency of these theories in explaining a number of diffraction phenomena. Furthermore, we have made a study of the limitations of the approximate theories and the recent attempts to improve these. The second part is devoted to a general mathematical treatment of the theory of diffraction of optical systems including aberrations. After a general and specific analysis of geometrical and wave aberrations along classical and modern (Nijboer) lines, we have been able to evaluate the diffraction integrals representing the image field at any point in image space explicitly, when the aberrations are small. Our formulas are the generalisations of all anterior results obtained by previous investigators. Moreover, we have discussed the Zernike-Nijboer theory of aberration and generalised it not only for rotational systems, but also for non-symmetric systems as well, including the case of non circular apertures. The extension to non-circular apertures is done by introducing orthogonal functions or polynomials over such aperture shapes. So far the results are valid for small aberrations, that is to say, where the deformation of the real wave front emerging from the optical system is less than a wave length of light or of the electromagnetic wave from the ideal wave front. If the aberrations are large, then one must employ the

  12. X-ray diffraction

    International Nuclear Information System (INIS)

    Einstein, J.R.; Wei, C.H.

    1982-01-01

    We have been interested in structural elucidation by x-ray diffraction of compounds of biological interest. Understanding exactly how atoms are arranged in three-dimensional arrays as molecules can help explain the relationship between structure and functions. The species investigated may vary in size and shape; our recent studies included such diverse substances as antischistosomal drugs, a complex of cadmium with nucleic acid base, nitrate salts of adenine, and proteins

  13. Holography and coherent diffraction with low-energy electrons: A route towards structural biology at the single molecule level.

    Science.gov (United States)

    Latychevskaia, Tatiana; Longchamp, Jean-Nicolas; Escher, Conrad; Fink, Hans-Werner

    2015-12-01

    The current state of the art in structural biology is led by NMR, X-ray crystallography and TEM investigations. These powerful tools however all rely on averaging over a large ensemble of molecules. Here, we present an alternative concept aiming at structural analysis at the single molecule level. We show that by combining electron holography and coherent diffraction imaging estimations concerning the phase of the scattered wave become needless as the phase information is extracted from the data directly and unambiguously. Performed with low-energy electrons the resolution of this lens-less microscope is just limited by the De Broglie wavelength of the electron wave and the numerical aperture, given by detector geometry. In imaging freestanding graphene, a resolution of 2Å has been achieved revealing the 660.000 unit cells of the graphene sheet from a single data set. Once applied to individual biomolecules the method shall ultimately allow for non-destructive imaging and imports the potential to distinguish between different conformations of proteins with atomic resolution. Copyright © 2015. Published by Elsevier B.V.

  14. Influence of some DNA-alkylating drugs on thermal stability, acid and osmotic resistance of the membrane of whole human erythrocytes and their ghosts.

    Science.gov (United States)

    Ivanov, I T; Gadjeva, V

    2000-09-01

    Human erythrocytes and their resealed ghosts were alkylated under identical conditions using three groups of alkylating antitumor agents: mustards, triazenes and chloroethyl nitrosoureas. Osmotic fragility, acid resistance and thermal stability of membranes were changed only in alkylated ghosts in proportion to the concentration of the alkylating agent. All the alkylating agents decreased acid resistance in ghosts. The clinically used drugs sarcolysine, dacarbazine and lomustine all decreased osmotic fragility and thermal stability of ghost membranes depending on their lipophilicity. DM-COOH did not decrease osmotic fragility and thermal stability of ghost membranes, while NEM increased thermal stability of membranes. The preliminary but not subsequent treatment of ghosts with DM-COOH fully abolished the alkylation-induced thermal labilization of ghost membrane proteins while NEM had a partial effect only. The present study gives direct evidence that alkylating agents, having a high therapeutic activity against malignant growth, bind covalently to proteins of cellular membranes.

  15. Diffraction by disordered polycrystalline fibers

    International Nuclear Information System (INIS)

    Stroud, W.J.; Millane, R.P.

    1995-01-01

    X-ray diffraction patterns from some polycrystalline fibers show that the constituent microcrystallites are disordered. The relationship between the crystal structure and the diffracted intensities is then quite complicated and depends on the precise kind and degree of disorder present. The effects of disorder on diffracted intensities must be included in structure determinations using diffraction data from such specimens. Theory and algorithms are developed here that allow the full diffraction pattern to be calculated for a disordered polycrystalline fiber made up of helical molecules. The model accommodates various kinds of disorder and includes the effects of finite crystallite size and cylindrical averaging of the diffracted intensities from a fiber. Simulations using these methods show how different kinds, or components, of disorder produce particular diffraction effects. General properties of disordered arrays of helical molecules and their effects on diffraction patterns are described. Implications for structure determination are discussed. (orig.)

  16. Verification ghosts. The changing political environment of the IAEA

    International Nuclear Information System (INIS)

    Redden, K.J.

    2003-01-01

    Six years ago, Dr. Hans Blix wrote in the IAEA Bulletin of a 'general optimism about further arms control and verification.' At the time, world events warranted such a prognosis; the IAEA was riding a wave of momentum after its instrumental role in the roll-back of the South African nuclear weapons program and bringing Ukraine, Belarus, and Kazakhstan into the Nuclear Non Proliferation Treaty (NPT) as non-nuclear-weapon States. The NPT's indefinite extension was only two years old, and the most pressing challenges, while recognizable, were somewhat stagnant. Today, some tidings elicit similar optimism. The IAEA's increasing efforts to combat terrorism and the decision by Member States to depart from nearly 20 years of zero real growth budgetary policy are remarkable testaments to the Agency's adaptability and credibility in the face of new threats. And with the worldwide frenzy over terrorism and redoubled phobia of weapons of mass destruction (WMD), the Agency garners public attention now as never before. Emblematic of this recent upsurge in political attention, US President George W. Bush's annual State of the Union address in 2003 mentioned supporting the IAEA as a specific priority of his administration, the first mention of the Agency in that speech since President Eisenhower in 1961 lauded its creation under 'Atoms for Peace'. Such visibility portends a future with prospects for overcoming bureaucratic inertia and effecting significant changes to the Agency's benefit. But with that visibility has come an uncertainty about the IAEA's role in world affairs. Despite being able to resolve most benign problems more easily, the Agency must operate in an environment haunted by the non-proliferation analogue of Charles Dickens' triumvirate specters: the ghosts of verification challenges past, present and future -namely, the cessation of UN-mandated inspections in Iraq, the difficulties ensuring compliance in North Korea and Iran, and the need to maintain the IAEA

  17. Tsunami on Sanriku Coast in 1586: Orphan or Ghost Tsunami ?

    Science.gov (United States)

    Satake, K.

    2017-12-01

    , estimated that the legend existed around 1750. From the above research, the tsunami legend in Tokura is unlikely from the Peruvian earthquake. Hence the 1586 tsunami was not an orphan tsunami, but rather a ghost or fake tsunami. The legend simply mentioned about tsunami, but the tsunami heights were speculated as 1-2 m (Soloviev and Go) or 2 - 2.5 m (NOAA tsunami DB).

  18. X-ray diffraction

    International Nuclear Information System (INIS)

    Vries, J.L. de.

    1976-01-01

    The seventh edition of Philips' Review of literature on X-ray diffraction begins with a list of conference proceedings on the subject, organised by the Philips' organisation at regular intervals in various European countries. This is followed by a list of bulletins. The bibliography is divided according to the equipment (cameras, diffractometers, monochromators) and its applications. The applications are subdivided into sections for high/low temperature and pressure, effects due to the equipment, small angle scattering and a part for stress, texture and phase analyses of metals and quantitative analysis of minerals

  19. Developments in diffraction databases

    International Nuclear Information System (INIS)

    Jenkins, R.

    1999-01-01

    Full text: There are a number of databases available to the diffraction community. Two of the more important of these are the Powder Diffraction File (PDF) maintained by the International Centre for Diffraction Data (ICDD), and the Inorganic Crystal Structure Database (ICSD) maintained by Fachsinformationzentrum (FIZ, Karlsruhe). In application, the PDF has been used as an indispensable tool in phase identification and identification of unknowns. The ICSD database has extensive and explicit reference to the structures of compounds: atomic coordinates, space group and even thermal vibration parameters. A similar database, but for organic compounds, is maintained by the Cambridge Crystallographic Data Centre. These databases are often used as independent sources of information. However, little thought has been given on how to exploit the combined properties of structural database tools. A recently completed agreement between ICDD and FIZ, plus ICDD and Cambridge, provides a first step in complementary use of the PDF and the ICSD databases. The focus of this paper (as indicated below) is to examine ways of exploiting the combined properties of both databases. In 1996, there were approximately 76,000 entries in the PDF and approximately 43,000 entries in the ICSD database. The ICSD database has now been used to calculate entries in the PDF. Thus, to derive d-spacing and peak intensity data requires the synthesis of full diffraction patterns, i.e., we use the structural data in the ICSD database and then add instrumental resolution information. The combined data from PDF and ICSD can be effectively used in many ways. For example, we can calculate PDF data for an ideally random crystal distribution and also in the absence of preferred orientation. Again, we can use systematic studies of intermediate members in solid solutions series to help produce reliable quantitative phase analyses. In some cases, we can study how solid solution properties vary with composition and

  20. Diffractive DIS: Where are we?

    International Nuclear Information System (INIS)

    Nikolaev, N.N.

    2001-01-01

    A brief review of the modern QCD theory of diffractive DIS is given. The recent progress has been remarkably rapid, all the principal predictions from the color dipole approach to diffraction - the (Q 2 + m V 2 ) scaling, the pattern of SCHNC, shrinkage of the diffraction cone in hard diffractive DIS, the strong impact of longitudinal gluons in inclusive J/Ψ production at Tevatron - have been confirmed experimentally

  1. Fourier-transform ghost imaging with pure far-field correlated thermal light

    International Nuclear Information System (INIS)

    Liu Honglin; Shen Xia; Han Shensheng; Zhu Daming

    2007-01-01

    Pure far-field correlated thermal light beams are created with phase grating, and Fourier-transform ghost imaging depending only on the far-field correlation is demonstrated experimentally. Theoretical analysis and the results of experimental investigation of this pure far-field correlated thermal light are presented. Applications which may be exploited with this imaging scheme are discussed

  2. Massive, massless and ghost modes of gravitational waves from higher-order gravity

    DEFF Research Database (Denmark)

    Bogdanos, Charalampos; Capozziello, Salvatore; De Laurentis, Mariafelicia

    We linearize the field equations for higher order theories that contain scalar invariants other than the Ricci scalar. We find that besides a massless spin-2 field (the standard graviton), the theory contains also spin-0 and spin-2 massive modes with the latter being, in general, ghost modes. Then...

  3. Ghosts, Meaning, and Faith: After-Death Communications in Bereavement Narratives

    Science.gov (United States)

    Kwilecki, Susan

    2011-01-01

    After-death communications (ADCs) are reported encounters with a deceased loved one, a contemporary type of ghost experience heralded as therapeutic in coping with bereavement. Pertinent literature generally illustrates the healing power of ADCs with brief, self-contained episodes. The functions of ADCs over the course of grief need exploration.…

  4. Perturbative Yang-Mills theory without Faddeev-Popov ghost fields

    Science.gov (United States)

    Huffel, Helmuth; Markovic, Danijel

    2018-05-01

    A modified Faddeev-Popov path integral density for the quantization of Yang-Mills theory in the Feynman gauge is discussed, where contributions of the Faddeev-Popov ghost fields are replaced by multi-point gauge field interactions. An explicit calculation to O (g2) shows the equivalence of the usual Faddeev-Popov scheme and its modified version.

  5. Strong population genetic structure and larval dispersal capability of the burrowing ghost shrimp (Neotrypaea californiensis)

    Science.gov (United States)

    The burrowing ghost shrimp, Neotrypaea californiensis, is a vital member of the estuarine benthic community. Dense populations of shrimp are found in the major estuaries of Washington and Oregon. Our study determines the genetic structure of shrimp populations in order to gain ...

  6. Observational artifacts of Nuclear Spectroscopic Telescope Array: Ghost rays and stray light

    DEFF Research Database (Denmark)

    Madsen, Kristin K.; Christensen, Finn Erland; Craig, William W.

    2017-01-01

    photons that do not undergo the focused double reflections in the optics, and we term these ghost rays. We present detailed analysis and characterization of these two components and discuss how they impact observations. Finally, we discuss how they could have been prevented and should be in future...

  7. Ghosts of No Child Left Behind. Counterpoints: Studies in the Postmodern Theory of Education. Volume 361

    Science.gov (United States)

    Carris, Joanne M.

    2011-01-01

    "Ghosts of No Child Left Behind" politically situates curriculum within a historically and critically informed context, to understand the structural forces that have contributed to the creation of a population of adolescents who read below a third grade level. The book then proposes a reconceptualization of literacy curriculum within a…

  8. "Walking with a Ghost": Arts-Based Research, Music Videos, and the Re-Performing Body

    Science.gov (United States)

    Taylor, Pamela G.; Wilder, Shannon O.; Helms, Kathryn R.

    2007-01-01

    In folk-rock duo Tegan and Sara's 2004 music video "Walking with a Ghost," two women face one another, mirrored images in black and white. One is dressed in black--grunge shirt, pants and boots, while the other stands barefoot in a simple white dress. The black-clad figure removes three red paper hearts from her twin's chest, leaving crimson…

  9. Phase-Sensitive Coherence and the Classical-Quantum Boundary in Ghost Imaging

    Science.gov (United States)

    Erkmen, Baris I.; Hardy, Nicholas D.; Venkatraman, Dheera; Wong, Franco N. C.; Shapiro, Jeffrey H.

    2011-01-01

    The theory of partial coherence has a long and storied history in classical statistical optics. the vast majority of this work addresses fields that are statistically stationary in time, hence their complex envelopes only have phase-insensitive correlations. The quantum optics of squeezed-state generation, however, depends on nonlinear interactions producing baseband field operators with phase-insensitive and phase-sensitive correlations. Utilizing quantum light to enhance imaging has been a topic of considerable current interest, much of it involving biphotons, i.e., streams of entangled-photon pairs. Biphotons have been employed for quantum versions of optical coherence tomography, ghost imaging, holography, and lithography. However, their seemingly quantum features have been mimicked with classical-sate light, questioning wherein lies the classical-quantum boundary. We have shown, for the case of Gaussian-state light, that this boundary is intimately connected to the theory of phase-sensitive partial coherence. Here we present that theory, contrasting it with the familiar case of phase-insensitive partial coherence, and use it to elucidate the classical-quantum boundary of ghost imaging. We show, both theoretically and experimentally, that classical phase-sensitive light produces ghost imaging most closely mimicking those obtained in biphotons, and we derived the spatial resolution, image contrast, and signal-to-noise ratio of a standoff-sensing ghost imager, taking into account target-induced speckle.

  10. Telling Ghost Stories with the Voice of an Ogre: Deleuze, Identity, and Disruptive Pedagogies

    Science.gov (United States)

    Beighton, Christian

    2017-01-01

    French philosopher Gilles Deleuze (1925-95) was something of a cult figure among his university students in the 1970s and 1980s, "telling ghost stories with the voice of an ogre" (Jaeglé, 2005:10). More recently, academic interest in the educational possibilities of his work has grown considerably in Anglophone countries. Perhaps texts…

  11. Wormhole solutions with a complex ghost scalar field and their instability

    Science.gov (United States)

    Dzhunushaliev, Vladimir; Folomeev, Vladimir; Kleihaus, Burkhard; Kunz, Jutta

    2018-01-01

    We study compact configurations with a nontrivial wormholelike spacetime topology supported by a complex ghost scalar field with a quartic self-interaction. For this case, we obtain regular asymptotically flat equilibrium solutions possessing reflection symmetry. We then show their instability with respect to linear radial perturbations.

  12. Ghost Hunting as a Means to Illustrate Scientific Methodology and Enhance Critical Thinking

    Science.gov (United States)

    Rockwell, Steven C.

    2012-01-01

    The increasing popularity of television shows featuring paranormal investigations has led to a renewed enthusiasm in ghost hunting activities, and belief in the paranormal in general. These shows typically feature a group of investigators who, while claiming to utilize proper scientifically correct methodologies, violate many core scientific…

  13. Spherical collapse of small masses in the ghost-free gravity

    International Nuclear Information System (INIS)

    Frolov, Valeri P.; Zelnikov, Andrei; Netto, Tibério de Paula

    2015-01-01

    We discuss some properties of recently proposed models of a ghost-free gravity. For this purpose we study solutions of linearized gravitational equations in the framework of such a theory. We mainly focus on the version of the ghost-free theory with the exponential modification exp (◻/μ 2 )◻ −1 of the free propagator. The following three problems are discussed: (i) gravitational field of a point mass; (ii) Penrose limit of a point source boosted to the speed of light; and (iii) spherical gravitational collapse of null fluid. For the first problem we demonstrate that it can be solved by using the method of heat kernels and obtain a solution in a spacetime with arbitrary number of dimensions. For the second problem we also find the corresponding gyraton-type solutions of the ghost-free gravitational equations for any number of dimensions. For the third problem we obtain solutions for the gravitational field for the collapse of both “thin" and “thick" spherical null shells. We demonstrate how the ghost-free modification of the gravitational equations regularize the solutions of the linearized Einstein equations and smooth out their singularities.

  14. William Wordsworth’s Danish Ghost and the Ballad that Never Was

    DEFF Research Database (Denmark)

    Jensen-Rix, Robert William

    2017-01-01

    been discussed. It is argued that the singing and harp-playing ghost is a trope for the poetic vigour that had dissipated under the demands for classical styles of poetry. More than any other piece in Lyrical Ballads, “A Fragment” points to the ancient Germanic origin of the new models for poetic...

  15. Spherical collapse of small masses in the ghost-free gravity

    Energy Technology Data Exchange (ETDEWEB)

    Frolov, Valeri P.; Zelnikov, Andrei [Theoretical Physics Institute, Department of Physics, University of Alberta,Edmonton, AB, T6G 2E1 (Canada); Netto, Tibério de Paula [Theoretical Physics Institute, Department of Physics, University of Alberta,Edmonton, AB, T6G 2E1 (Canada); Departamento de Fisica - ICE, Universidade Federal de Juiz de Fora,Campus da UFJF, CEP: 36036-900, Juiz de Fora, MG (Brazil)

    2015-06-17

    We discuss some properties of recently proposed models of a ghost-free gravity. For this purpose we study solutions of linearized gravitational equations in the framework of such a theory. We mainly focus on the version of the ghost-free theory with the exponential modification exp (◻/μ{sup 2})◻{sup −1} of the free propagator. The following three problems are discussed: (i) gravitational field of a point mass; (ii) Penrose limit of a point source boosted to the speed of light; and (iii) spherical gravitational collapse of null fluid. For the first problem we demonstrate that it can be solved by using the method of heat kernels and obtain a solution in a spacetime with arbitrary number of dimensions. For the second problem we also find the corresponding gyraton-type solutions of the ghost-free gravitational equations for any number of dimensions. For the third problem we obtain solutions for the gravitational field for the collapse of both “thin' and “thick' spherical null shells. We demonstrate how the ghost-free modification of the gravitational equations regularize the solutions of the linearized Einstein equations and smooth out their singularities.

  16. A spectre is haunting the cosmos: quantum stability of massive gravity with ghosts

    International Nuclear Information System (INIS)

    Könnig, Frank; Nersisyan, Henrik; Akrami, Yashar; Amendola, Luca; Zumalacárregui, Miguel

    2016-01-01

    Many theories of modified gravity with higher order derivatives are usually ignored because of serious problems that appear due to an additional ghost degree of freedom. Most dangerously, it causes an immediate decay of the vacuum. However, breaking Lorentz invariance can cure such abominable behavior. By analyzing a model that describes a massive graviton together with a remaining Boulware-Deser ghost mode we show that even ghostly theories of modified gravity can yield models that are viable at both classical and quantum levels and, therefore, they should not generally be ruled out. Furthermore, we identify the most dangerous quantum scattering process that has the main impact on the decay time and find differences to simple theories that only describe an ordinary scalar field and a ghost. Additionally, constraints on the parameters of the theory including some upper bounds on the Lorentz-breaking cutoff scale are presented. In particular, for a simple theory of massive gravity we find that a breaking of Lorentz invariance is allowed to happen even at scales above the Planck mass. Finally, we discuss the relevance to other theories of modified gravity.

  17. Ghost instabilities of cosmological models with vector fields nonminimally coupled to the curvature

    International Nuclear Information System (INIS)

    Himmetoglu, Burak; Peloso, Marco; Contaldi, Carlo R.

    2009-01-01

    We prove that many cosmological models characterized by vectors nonminimally coupled to the curvature (such as the Turner-Widrow mechanism for the production of magnetic fields during inflation, and models of vector inflation or vector curvaton) contain ghosts. The ghosts are associated with the longitudinal vector polarization present in these models and are found from studying the sign of the eigenvalues of the kinetic matrix for the physical perturbations. Ghosts introduce two main problems: (1) they make the theories ill defined at the quantum level in the high energy/subhorizon regime (and create serious problems for finding a well-behaved UV completion), and (2) they create an instability already at the linearized level. This happens because the eigenvalue corresponding to the ghost crosses zero during the cosmological evolution. At this point the linearized equations for the perturbations become singular (we show that this happens for all the models mentioned above). We explicitly solve the equations in the simplest cases of a vector without a vacuum expectation value in a Friedmann-Robertson-Walker geometry, and of a vector with a vacuum expectation value plus a cosmological constant, and we show that indeed the solutions of the linearized equations diverge when these equations become singular.

  18. The process of ghost-rock karstification and its role in the formation of cave systems

    Czech Academy of Sciences Publication Activity Database

    Dubois, C.; Quinif, Y.; Baele, J.-M.; Barriquand, L.; Bini, A.; Bruxelles, L.; Dandurand, G.; Havron, C.; Kaufmann, O.; Lans, B.; Maire, R.; Martin, J.; Rodet, J.; Rowberry, Matthew David; Tognini, P.; Vergari, A.

    2014-01-01

    Roč. 131, APR (2014), s. 116-148 ISSN 0012-8252 Institutional support: RVO:67985891 Keywords : chemical weathering * ghost-rock * karstification * limestone dissolution * speleogenesis Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 7.885, year: 2014 http://www.sciencedirect.com/science/article/pii/S0012825214000154

  19. Ghost-tree: creating hybrid-gene phylogenetic trees for diversity analyses.

    Science.gov (United States)

    Fouquier, Jennifer; Rideout, Jai Ram; Bolyen, Evan; Chase, John; Shiffer, Arron; McDonald, Daniel; Knight, Rob; Caporaso, J Gregory; Kelley, Scott T

    2016-02-24

    Fungi play critical roles in many ecosystems, cause serious diseases in plants and animals, and pose significant threats to human health and structural integrity problems in built environments. While most fungal diversity remains unknown, the development of PCR primers for the internal transcribed spacer (ITS) combined with next-generation sequencing has substantially improved our ability to profile fungal microbial diversity. Although the high sequence variability in the ITS region facilitates more accurate species identification, it also makes multiple sequence alignment and phylogenetic analysis unreliable across evolutionarily distant fungi because the sequences are hard to align accurately. To address this issue, we created ghost-tree, a bioinformatics tool that integrates sequence data from two genetic markers into a single phylogenetic tree that can be used for diversity analyses. Our approach starts with a "foundation" phylogeny based on one genetic marker whose sequences can be aligned across organisms spanning divergent taxonomic groups (e.g., fungal families). Then, "extension" phylogenies are built for more closely related organisms (e.g., fungal species or strains) using a second more rapidly evolving genetic marker. These smaller phylogenies are then grafted onto the foundation tree by mapping taxonomic names such that each corresponding foundation-tree tip would branch into its new "extension tree" child. We applied ghost-tree to graft fungal extension phylogenies derived from ITS sequences onto a foundation phylogeny derived from fungal 18S sequences. Our analysis of simulated and real fungal ITS data sets found that phylogenetic distances between fungal communities computed using ghost-tree phylogenies explained significantly more variance than non-phylogenetic distances. The phylogenetic metrics also improved our ability to distinguish small differences (effect sizes) between microbial communities, though results were similar to non

  20. Biological amine transport in chromaffin ghosts. Coupling to the transmembrane proton and potential gradients.

    Science.gov (United States)

    Johnson, R G; Pfister, D; Carty, S E; Scarpa, A

    1979-11-10

    The effect of the transmembrane proton gradient (delta pH) and potential gradient (delta psi) upon the rate and extent of amine accumulation was investigated in chromaffin ghosts. The chromaffin ghosts were formed by hypo-osmotic lysis of isolated bovine chromaffin granules and extensive dialysis in order to remove intragranular binding components and dissipate the endogenous electrochemical gradients. Upon ATP addition to suspensions of chromaffin ghosts, a transmembrane proton gradient alone, a transmembrane gradient alone, or both, could be established, depending upon the compositions of the media in which the ghosts were formed and resuspended. When chloride was present in the medium, addition of ATP resulted in the generation of a transmembrane proton gradient, acidic inside of 1 pH unit (measured by [14C]methylamine distribution), and no transmembrane potential (measured by [14C]-thiocyanate distribution). When ATP was added to chromaffin ghosts suspended in a medium in which chloride was substituted by isethionate, a transmembrane potential, inside positive, of 45 mV and no transmembrane proton gradient, was measured. In each medium, the addition of agents known to affect proton or potential gradients, respectively, exerted a predictable mechanism of action. Accumulation of [14C]epinephrine or [14C]5-hydroxytryptamine was over 1 order of magnitude greater in the presence of the transmembrane proton gradient or the transmembrane potential than in the absence of any gradient and, moreover, was related to the magnitude of the proton or potential gradient in a dose-dependent manner. When ghosts were added to a medium containing chloride and isethionate, both a delta pH and delta psi could be generated upon addition of ATP. In this preparation, the maximal rate of amine accumulation was observed. The results indicate that amine accumulation into chromaffin ghosts can occur in the presence of either a transmembrane proton gradient, or a transmembrane potential

  1. On the determination of stress profiles in expanded austenite by grazing incidence X-ray diffraction and successive layer removal

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas L.; Winther, Grethe

    2015-01-01

    Surface layers of expanded austenite resulting from nitriding typically exhibit large gradients in residual stress and composition. Evaluation of residual-stress profiles is explored by means of grazing incidence X-ray diffraction (GI-XRD), probing shallow depths, combined with successive layer...... removal. Several factors complicating the stress determination are analysed and discussed: (1) ghost stresses arising from a small variation in the shallow information depths probed with GI-XRD, (2) selection of the grain interaction model used to calculate the X-ray elastic constants for conversion...

  2. On the determination of stress profiles in expanded austenite by grazing incidence X-ray diffraction and successive layer removal

    International Nuclear Information System (INIS)

    Fernandes, Frederico A.P.; Christiansen, Thomas L.; Winther, Grethe; Somers, Marcel A.J.

    2015-01-01

    Surface layers of expanded austenite resulting from nitriding typically exhibit large gradients in residual stress and composition. Evaluation of residual-stress profiles is explored by means of grazing incidence X-ray diffraction (GI-XRD), probing shallow depths, combined with successive layer removal. Several factors complicating the stress determination are analysed and discussed: (1) ghost stresses arising from a small variation in the shallow information depths probed with GI-XRD, (2) selection of the grain interaction model used to calculate the X-ray elastic constants for conversion of lattice strains into residual stress and (3) the composition dependence of these elastic constants

  3. New proposal for non-linear ghost-free massive F(R) gravity: Cosmic acceleration and Hamiltonian analysis

    International Nuclear Information System (INIS)

    Klusoň, Josef; Nojiri, Shin'ichi; Odintsov, Sergei D.

    2013-01-01

    We propose new version of massive F(R) gravity which is natural generalization of convenient massive ghost-free gravity. Its Hamiltonian formulation in scalar-tensor frame is developed. We show that such F(R) theory is ghost-free. The cosmological evolution of such theory is investigated. Despite the strong Bianchi identity constraint the possibility of cosmic acceleration (especially, in the presence of cold dark matter) is established. Ghost-free massive F(R,T) gravity is also proposed

  4. Two-loop ghost-antighost condensation for SU(2) Yang-Mills theories in the maximal abelian gauge

    International Nuclear Information System (INIS)

    Fazio, A.R.

    2004-01-01

    In the framework of the formalism of Cornwall et.al. for composite operators I study the ghost-antighost condensation in SU(2) Yang-Mills theories quantized in the Maximal Abelian Gauge and derive analytically a condensating effective potential at two ghost loops. I find that in this approximation the one-loop pairing ghost-antighost is not destroyed and no mass is generated if the ansatz for the propagator suggested by the tree level Hubbard-Stratonovich transformations is used

  5. Towards numerical simulations of supersonic liquid jets using ghost fluid method

    International Nuclear Information System (INIS)

    Majidi, Sahand; Afshari, Asghar

    2015-01-01

    Highlights: • A ghost fluid method based solver is developed for numerical simulation of compressible multiphase flows. • The performance of the numerical tool is validated via several benchmark problems. • Emergence of supersonic liquid jets in quiescent gaseous environment is simulated using ghost fluid method for the first time. • Bow-shock formation ahead of the liquid jet is clearly observed in the obtained numerical results. • Radiation of mach waves from the phase-interface witnessed experimentally is evidently captured in our numerical simulations. - Abstract: A computational tool based on the ghost fluid method (GFM) is developed to study supersonic liquid jets involving strong shocks and contact discontinuities with high density ratios. The solver utilizes constrained reinitialization method and is capable of switching between the exact and approximate Riemann solvers to increase the robustness. The numerical methodology is validated through several benchmark test problems; these include one-dimensional multiphase shock tube problem, shock–bubble interaction, air cavity collapse in water, and underwater-explosion. A comparison between our results and numerical and experimental observations indicate that the developed solver performs well investigating these problems. The code is then used to simulate the emergence of a supersonic liquid jet into a quiescent gaseous medium, which is the very first time to be studied by a ghost fluid method. The results of simulations are in good agreement with the experimental investigations. Also some of the famous flow characteristics, like the propagation of pressure-waves from the liquid jet interface and dependence of the Mach cone structure on the inlet Mach number, are reproduced numerically. The numerical simulations conducted here suggest that the ghost fluid method is an affordable and reliable scheme to study complicated interfacial evolutions in complex multiphase systems such as supersonic liquid

  6. Diffraction and Unitarity

    Science.gov (United States)

    Dremin, I. M.

    I begin with a tribute to V.N. Gribov and then come to a particular problem which would be of interest for him. His first paper on reggeology was devoted to elastic scatterings of hadrons. Here, using the unitarity relation in combination with experimental data about the elastic scattering in the diffraction cone, I show how the shape and the darkness of the interaction region of colliding protons change with the increase of their energies. In particular, the collisions become fully absorptive at small impact parameters at LHC energies that results in some special features of inelastic processes as well. The possible evolution with increasing energy of the shape from the dark core at the LHC to the fully transparent one at higher energies is discussed. It implies that the terminology of the black disk would be replaced by the black torus.

  7. Boundary diffraction wave integrals for diffraction modeling of external occulters

    OpenAIRE

    Cady, E.

    2012-01-01

    An occulter is a large diffracting screen which may be flown in conjunction with a telescope to image extrasolar planets. The edge is shaped to minimize the diffracted light in a region beyond the occulter, and a telescope may be placed in this dark shadow to view an extrasolar system with the starlight removed. Errors in position, orientation, and shape of the occulter will diffract additional light into this region, and a challenge of modeling an occulter system is to accurately and quickly...

  8. Formation of ghost images due to metal objects on the surface of the patient's face: A pictorial essay

    OpenAIRE

    Ramos, B?rbara Couto; da Silva Izar, Bruna Raquel; Pereira, J?ssica Lourdes Costa; Souza, Priscilla Sena; Valerio, Claudia Scigliano; Tuji, Fabr?cio Mesquita; Manzi, Fl?vio Ricardo

    2016-01-01

    Panoramic radiographs are a relatively simple technique that is commonly used in all dental specialties. In panoramic radiographs, in addition to the formation of real images of metal objects, ghost images may also form, and these ghost images can hinder an accurate diagnosis and interfere with the accuracy of radiology reports. Dentists must understand the formation of these images in order to avoid making incorrect radiographic diagnoses. Therefore, the present study sought to present a stu...

  9. Honorary and ghost authorship in high impact biomedical journals: a cross sectional survey.

    Science.gov (United States)

    Wislar, Joseph S; Flanagin, Annette; Fontanarosa, Phil B; Deangelis, Catherine D

    2011-10-25

    To assess the prevalence of honorary and ghost authors in six leading general medical journals in 2008 and compare this with the prevalence reported by authors of articles published in 1996. Cross sectional survey using a web based questionnaire. International survey of journal authors. Sample of corresponding authors of 896 research articles, review articles, and editorial/opinion articles published in six general medical journals with high impact factors in 2008: Annals of Internal Medicine, JAMA, Lancet, Nature Medicine, New England Journal of Medicine, and PLoS Medicine. Self reported compliance with International Committee of Medical Journal Editors (ICMJE) criteria for authorship for all authors on the selected articles. A total of 630/896 (70.3%) corresponding authors responded to the survey. The prevalence of articles with honorary authorship or ghost authorship, or both, was 21.0% (95% CI 18.0% to 24.3%), a decrease from 29.2% reported in 1996 (P = 0.004). Based on 545 responses on honorary authorship, 96 articles (17.6% (95% CI 14.6% to 21.0%)) had honorary authors (range by journal 12.2% to 29.3%), a non-significant change from 1996 (19.3%; P = 0.439). Based on 622 responses on ghost authorship, 49 articles (7.9% (6.0% to 10.3%)) had ghost authors (range by journal 2.1% to 11.0%), a significant decline from 1996 (11.5%; P = 0.023). The prevalence of honorary authorship was 25.0% in original research reports, 15.0% in reviews, and 11.2% in editorials, whereas the prevalence of ghost authorship was 11.9% in research articles, 6.0% in reviews, and 5.3% in editorials. Evidence of honorary and ghost authorship in 21% of articles published in major medical journals in 2008 suggests that increased efforts by scientific journals, individual authors, and academic institutions are essential to promote responsibility, accountability, and transparency in authorship, and to maintain integrity in scientific publication.

  10. Diffraction radiation from relativistic particles

    CERN Document Server

    Potylitsyn, Alexander Petrovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich

    2010-01-01

    This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results.

  11. Diffraction radiation from relativistic particles

    International Nuclear Information System (INIS)

    Potylitsyn, Alexander Petrovich; Ryazanov, Mikhail Ivanovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich

    2010-01-01

    This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results. (orig.)

  12. Ghost marker detection and elimination in marker-based optical tracking systems for real-time tracking in stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Yan, Guanghua; Li, Jonathan; Huang, Yin; Mittauer, Kathryn; Lu, Bo; Liu, Chihray

    2014-01-01

    Purpose: To propose a simple model to explain the origin of ghost markers in marker-based optical tracking systems (OTS) and to develop retrospective strategies to detect and eliminate ghost markers. Methods: In marker-based OTS, ghost markers are virtual markers created due to the cross-talk between the two camera sensors, which can lead to system execution failure or inaccuracy in patient tracking. As a result, the users have to limit the number of markers and avoid certain marker configurations to reduce the chances of ghost markers. In this work, the authors propose retrospective strategies to detect and eliminate ghost markers. The two camera sensors were treated as mathematical points in space. The authors identified the coplanar within limit (CWL) condition as the necessary condition for ghost marker occurrence. A simple ghost marker detection method was proposed based on the model. Ghost marker elimination was achieved through pattern matching: a ghost marker-free reference set was matched with the optical marker set observed by the OTS; unmatched optical markers were eliminated as either ghost markers or misplaced markers. The pattern matching problem was formulated as a constraint satisfaction problem (using pairwise distances as constraints) and solved with an iterative backtracking algorithm. Wildcard markers were introduced to address missing or misplaced markers. An experiment was designed to measure the sensor positions and the limit for the CWL condition. The ghost marker detection and elimination algorithms were verified with samples collected from a five-marker jig and a nine-marker anthropomorphic phantom, rotated with the treatment couch from −60° to +60°. The accuracy of the pattern matching algorithm was further validated with marker patterns from 40 patients who underwent stereotactic body radiotherapy (SBRT). For this purpose, a synthetic optical marker pattern was created for each patient by introducing ghost markers, marker position

  13. Ghost marker detection and elimination in marker-based optical tracking systems for real-time tracking in stereotactic body radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Guanghua, E-mail: yan@ufl.edu; Li, Jonathan; Huang, Yin; Mittauer, Kathryn; Lu, Bo; Liu, Chihray [Department of Radiation Oncology, University of Florida, Gainesville, Florida 32610 (United States)

    2014-10-15

    Purpose: To propose a simple model to explain the origin of ghost markers in marker-based optical tracking systems (OTS) and to develop retrospective strategies to detect and eliminate ghost markers. Methods: In marker-based OTS, ghost markers are virtual markers created due to the cross-talk between the two camera sensors, which can lead to system execution failure or inaccuracy in patient tracking. As a result, the users have to limit the number of markers and avoid certain marker configurations to reduce the chances of ghost markers. In this work, the authors propose retrospective strategies to detect and eliminate ghost markers. The two camera sensors were treated as mathematical points in space. The authors identified the coplanar within limit (CWL) condition as the necessary condition for ghost marker occurrence. A simple ghost marker detection method was proposed based on the model. Ghost marker elimination was achieved through pattern matching: a ghost marker-free reference set was matched with the optical marker set observed by the OTS; unmatched optical markers were eliminated as either ghost markers or misplaced markers. The pattern matching problem was formulated as a constraint satisfaction problem (using pairwise distances as constraints) and solved with an iterative backtracking algorithm. Wildcard markers were introduced to address missing or misplaced markers. An experiment was designed to measure the sensor positions and the limit for the CWL condition. The ghost marker detection and elimination algorithms were verified with samples collected from a five-marker jig and a nine-marker anthropomorphic phantom, rotated with the treatment couch from −60° to +60°. The accuracy of the pattern matching algorithm was further validated with marker patterns from 40 patients who underwent stereotactic body radiotherapy (SBRT). For this purpose, a synthetic optical marker pattern was created for each patient by introducing ghost markers, marker position

  14. CMS results on hard diffraction

    CERN Document Server

    INSPIRE-00107098

    2013-01-01

    In these proceedings we present CMS results on hard diffraction. Diffractive dijet production in pp collisions at $\\sqrt{s}$=7 TeV is discussed. The cross section for dijet production is presented as a function of $\\tilde{\\xi}$, representing the fractional momentum loss of the scattered proton in single-diffractive events. The observation of W and Z boson production in events with a large pseudo-rapidity gap is also presented.

  15. Causal aspects of diffraction

    International Nuclear Information System (INIS)

    Crawford, G.N.

    1981-01-01

    The analysis is directed at a causal description of photon diffraction, which is explained in terms of a wave exerting real forces and providing actual guidance to each quantum of energy. An undulatory PSI wave is associated with each photon, and this wave is assumed to imply more than an informative probability function, so that it actually carries real energy, in much the same way as does an electro-magnetic wave. Whether or not it may be in some way related to the electromagnetic wave is left as a matter of on-going concern. A novel application of the concept of a minimum energy configuration is utilized; that is, a system of energy quanta seeks out relative positions and orientations of least mutual energy, much as an electron seeks its Bohr radius as a position of least mutual energy. Thus the concept implies more a guiding interaction of the PSI waves than an interfering cancellation of these waves. Similar concepts have been suggested by L. de Broglie and D. Bohm

  16. Study of optical Laue diffraction

    International Nuclear Information System (INIS)

    Chakravarthy, Giridhar; Allam, Srinivasa Rao; Satyanarayana, S. V. M.; Sharan, Alok

    2014-01-01

    We present the study of the optical diffraction pattern of one and two-dimensional gratings with defects, designed using desktop pc and printed on OHP sheet using laser printer. Gratings so prepared, using novel low cost technique provides good visual aid in teaching. Diffraction pattern of the monochromatic light (632.8nm) from the grating so designed is similar to that of x-ray diffraction pattern of crystal lattice with point defects in one and two-dimensions. Here both optical and x-ray diffractions are Fraunhofer. The information about the crystalline lattice structure and the defect size can be known

  17. Gluon radiation in diffractive electroproduction

    International Nuclear Information System (INIS)

    Buchmueller, W.; McDermott, M.F.; Hebecker, A.

    1996-07-01

    Order α s -correlations to the diffractive structure functions F L D and F 2 D at large Q 2 and small x are evaluated in the semiclassical approach, where the initial proton is treated as a classical colour field. The diffractive final state contains a fast gluon in addition to a quark-antiquark pair. Two of these partons may have large transverse momentum. Our calculations lead to an intuitive picture of deep-inelastic diffractive processes which is very similar to Bjorken's aligned-jet model. Both diffractive structure functions contain leading twist contributions from high-p perpendicular to jets. (orig.)

  18. Study of optical Laue diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Chakravarthy, Giridhar, E-mail: cgiridhar84@gmail.com, E-mail: aloksharan@email.com; Allam, Srinivasa Rao, E-mail: cgiridhar84@gmail.com, E-mail: aloksharan@email.com; Satyanarayana, S. V. M., E-mail: cgiridhar84@gmail.com, E-mail: aloksharan@email.com; Sharan, Alok, E-mail: cgiridhar84@gmail.com, E-mail: aloksharan@email.com [Department of Physics, Pondicherry University, Puducherry-605014 (India)

    2014-10-15

    We present the study of the optical diffraction pattern of one and two-dimensional gratings with defects, designed using desktop pc and printed on OHP sheet using laser printer. Gratings so prepared, using novel low cost technique provides good visual aid in teaching. Diffraction pattern of the monochromatic light (632.8nm) from the grating so designed is similar to that of x-ray diffraction pattern of crystal lattice with point defects in one and two-dimensions. Here both optical and x-ray diffractions are Fraunhofer. The information about the crystalline lattice structure and the defect size can be known.

  19. Diffractive optics and nanophotonics resolution below the diffraction limit

    CERN Document Server

    Minin, Igor

    2016-01-01

    In this book the authors present several examples of techniques used to overcome the Abby diffraction limit using flat and 3D diffractive optical elements, photonic crystal lenses, photonic jets, and surface plasmon diffractive optics. The structures discussed can be used in the microwave and THz range and also as scaled models for optical frequencies. Such nano-optical microlenses can be integrated, for example, into existing semiconductor heterostructure platforms for next-generation optoelectronic applications. Chapter 1 considers flat diffractive lenses and innovative 3D radiating structures including a conical millimeter-wave Fresnel zone plate (FZP) lens proposed for subwavelength focusing. In chapter 2 the subwavelength focusing properties of diffractive photonic crystal lenses are considered and it is shown that at least three different types of photonic crystal lens are possible.  With the aim of achieving subwavelength focusing, in chapter 3 an alternative mechanism to produce photonic jets at Tera...

  20. Comparison of ghosting effects for three commercial a-Si EPIDs

    International Nuclear Information System (INIS)

    McDermott, L. N.; Nijsten, S. M. J. J. G.; Sonke, J.-J.; Partridge, M.; Herk, M. van; Mijnheer, B. J.

    2006-01-01

    Many studies have reported dosimetric characteristics of amorphous silicon electronic portal imaging devices (EPIDs). Some studies ascribed a non-linear signal to gain ghosting and image lag. Other reports, however, state the effect is negligible. This study compares the signal-to-monitor unit (MU) ratio for three different brands of EPID systems. The signal was measured for a wide range of monitor units (5-1000), dose-rates, and beam energies. All EPIDs exhibited a relative under-response for beams of few MUs; giving 4 to 10% lower signal-to-MU ratios relative to that of 1000 MUs. This under-response is consistent with ghosting effects due to charge trapping

  1. On operators of the ghost number and conjugation in the BRST quantization formalism

    International Nuclear Information System (INIS)

    Azizov, T.Ya.; Khoruzhij, S.S.

    1989-01-01

    Detailed and rigorous study is made of operators of the ghost number Q c and ghost conjugation U c which are operators in Krein spaces arising in the BRST quantization formalism for constrained dynamical systems. A number of conditions are obtained which guarantee that Q c is well-defined and J-symmetric. It is shown that properties of Q c are related to the following geometrical problem: to find conditions under which a pair of lineals in the Krein space can be made neutral by the appropriate choice of J-metrics. The complete solution of this problem is given. Whole series of examples is constructed which demonstrate the connections between properties of Q c and geometry of its spectral subspaces

  2. Is the key of the ghost imaging mystery given by the electromagnetic crossing symmetric photon reactions?

    International Nuclear Information System (INIS)

    Rusu, L; Rusu, A

    2013-01-01

    In the ghost imaging system, the object and image are separately illuminated by a pair of correlated beams and the image is obtained through coincidence detection of the two beams. When the correlated beams are obtained by a spontaneous parametric down-conversion phenomenon, the image formation is attributed to either quantum entanglement or wave vector correlation. The physicist D B Ion has published a different point of view: the ghost imaging can be explained by electromagnetic crossing symmetric photon reactions. We report on an experimental setup to verify that a change of the object reflection coefficient modifies the idler single count rate. The obtained results are a confirmation proof and suggest the existence of a stimulated spontaneous parametric down-conversion effect. A possible application is mentioned. (paper)

  3. An Embedded Ghost-Fluid Method for Compressible Flow in Complex Geometry

    KAUST Repository

    Almarouf, Mohamad Abdulilah Alhusain Alali; Samtaney, Ravi

    2016-01-01

    We present an embedded ghost-fluid method for numerical solutions of the compressible Navier Stokes (CNS) equations in arbitrary complex domains. The PDE multidimensional extrapolation approach of Aslam [1] is used to reconstruct the solution in the ghost-fluid regions and impose boundary conditions at the fluid-solid interface. The CNS equations are numerically solved by the second order multidimensional upwind method of Colella [2] and Saltzman [3]. Block-structured adaptive mesh refinement implemented under the Chombo framework is utilized to reduce the computational cost while keeping high-resolution mesh around the embedded boundary and regions of high gradient solutions. Numerical examples with different Reynolds numbers for low and high Mach number flow will be presented. We compare our simulation results with other reported experimental and computational results. The significance and advantages of our implementation, which revolve around balancing between the solution accuracy and implementation difficulties, are briefly discussed as well. © 2016 Trans Tech Publications.

  4. Dark matter as a ghost free conformal extension of Einstein theory

    International Nuclear Information System (INIS)

    Barvinsky, A.O.

    2014-01-01

    We discuss ghost free models of the recently suggested mimetic dark matter theory. This theory is shown to be a conformal extension of Einstein general relativity. Dark matter originates from gauging out its local Weyl invariance as an extra degree of freedom which describes a potential flow of the pressureless perfect fluid. For a positive energy density of this fluid the theory is free of ghost instabilities, which gives strong preference to stable configurations with a positive scalar curvature and trace of the matter stress tensor. Instabilities caused by caustics of the geodesic flow, inherent in this model, serve as a motivation for an alternative conformal extension of Einstein theory, based on the generalized Proca vector field. A potential part of this field modifies the inflationary stage in cosmology, whereas its rotational part at the post inflationary epoch might simulate rotating flows of dark matter

  5. An Embedded Ghost-Fluid Method for Compressible Flow in Complex Geometry

    KAUST Repository

    Almarouf, Mohamad Abdulilah Alhusain Alali

    2016-06-03

    We present an embedded ghost-fluid method for numerical solutions of the compressible Navier Stokes (CNS) equations in arbitrary complex domains. The PDE multidimensional extrapolation approach of Aslam [1] is used to reconstruct the solution in the ghost-fluid regions and impose boundary conditions at the fluid-solid interface. The CNS equations are numerically solved by the second order multidimensional upwind method of Colella [2] and Saltzman [3]. Block-structured adaptive mesh refinement implemented under the Chombo framework is utilized to reduce the computational cost while keeping high-resolution mesh around the embedded boundary and regions of high gradient solutions. Numerical examples with different Reynolds numbers for low and high Mach number flow will be presented. We compare our simulation results with other reported experimental and computational results. The significance and advantages of our implementation, which revolve around balancing between the solution accuracy and implementation difficulties, are briefly discussed as well. © 2016 Trans Tech Publications.

  6. A unifying framework for ghost-free Lorentz-invariant Lagrangian field theories

    Science.gov (United States)

    Li, Wenliang

    2018-04-01

    We propose a framework for Lorentz-invariant Lagrangian field theories where Ostrogradsky's scalar ghosts could be absent. A key ingredient is the generalized Kronecker delta. The general Lagrangians are reformulated in the language of differential forms. The absence of higher order equations of motion for the scalar modes stems from the basic fact that every exact form is closed. The well-established Lagrangian theories for spin-0, spin-1, p-form, spin-2 fields have natural formulations in this framework. We also propose novel building blocks for Lagrangian field theories. Some of them are novel nonlinear derivative terms for spin-2 fields. It is nontrivial that Ostrogradsky's scalar ghosts are absent in these fully nonlinear theories.

  7. Gravity and magnetic investigations of the Ghost Dance and Solitario Canyon faults, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ponce, D.A.; Langenheim, V.E.

    1995-01-01

    Ground magnetic and gravity data collected along traverses across the Ghost Dance and Solitario Canyon faults on the eastern and western flanks, respectively, of Yucca Mountain in southwest Nevada are interpreted. These data were collected as part of an effort to evaluate faulting in the vicinity of a potential nuclear waste repository at Yucca Mountain. Gravity and magnetic data and models along traverses across the Ghost Dance and Solitario Canyon faults show prominent anomalies associated with known faults and reveal a number of possible concealed faults beneath the eastern flank of Yucca Mountain. The central part of the eastern flank of Yucca Mountain is characterized by several small amplitude anomalies that probably reflect small scale faulting

  8. Optical image encryption scheme with multiple light paths based on compressive ghost imaging

    Science.gov (United States)

    Zhu, Jinan; Yang, Xiulun; Meng, Xiangfeng; Wang, Yurong; Yin, Yongkai; Sun, Xiaowen; Dong, Guoyan

    2018-02-01

    An optical image encryption method with multiple light paths is proposed based on compressive ghost imaging. In the encryption process, M random phase-only masks (POMs) are generated by means of logistic map algorithm, and these masks are then uploaded to the spatial light modulator (SLM). The collimated laser light is divided into several beams by beam splitters as it passes through the SLM, and the light beams illuminate the secret images, which are converted into sparse images by discrete wavelet transform beforehand. Thus, the secret images are simultaneously encrypted into intensity vectors by ghost imaging. The distances between the SLM and secret images vary and can be used as the main keys with original POM and the logistic map algorithm coefficient in the decryption process. In the proposed method, the storage space can be significantly decreased and the security of the system can be improved. The feasibility, security and robustness of the method are further analysed through computer simulations.

  9. Effects of Low Anisotropy on Generalized Ghost Dark Energy in Galileon Gravity

    Science.gov (United States)

    Hossienkhani, H.; Fayaz, V.; Jafari, A.; Yousefi, H.

    2018-04-01

    The definition of the Galileon gravity form is extended to the Brans-Dicke theory. Given, the framework of the Galileon theory, the generalized ghost dark energy model in an anisotropic universe is investigated. We study the cosmological implications of this model. In particular, we obtain the equation of state and the deceleration parameters and a differential equation governing the evolution of this dark energy in Bianchi type I model. We also probe observational constraints by using the latest observational data on the generalized ghost dark energy models as the unification of dark matter and dark energy. In order to do so, we focus on observational determinations of the Hubble expansion rate (namely, the expansion history) H(z). As a result, we show the influence of the anisotropy (although low) on the evolution of the universe in the statefinder diagrams for Galileon gravity.

  10. Ghost-Free Massive $f(R)$ Theories Modelled as Effective Einstein Spaces and Cosmic Acceleration

    CERN Document Server

    Vacaru, Sergiu I

    2014-01-01

    We study how massive ghost-free gravity $f(R)$-modified theories, MGFTs, can be encoded into generic off-diagonal Einstein spaces. Using "auxiliary" connections completely defined by the metric fields and adapted to nonholonomic frames with associated to nonlinear connection structure, we decouple and integrate in certain general forms the field equations in MGFT. Imposing additional nonholonomic constraints, we can generate Levi--Civita, LC, configurations and mimic MGFT effects via off-diagonal interactions of effective Einstein and/or Einstein-Cartan gravity with nonholonomically induced torsion. The cosmological evolution of ghost-free off--diagonal Einstein spaces is investigated. Certain compatibility of MGFT cosmology to small off-diagonal deformations of $\\Lambda $CDM models is established. %

  11. Electron diffraction from carbon nanotubes

    International Nuclear Information System (INIS)

    Qin, L-C

    2006-01-01

    The properties of a carbon nanotube are dependent on its atomic structure. The atomic structure of a carbon nanotube can be defined by specifying its chiral indices (u, v), that specify its perimeter vector (chiral vector), with which the diameter and helicity are also determined. The fine electron beam available in a modern transmission electron microscope (TEM) offers a unique probe to reveal the atomic structure of individual nanotubes. This review covers two aspects related to the use of the electron probe in the TEM for the study of carbon nanotubes: (a) to understand the electron diffraction phenomena for inter-pretation of the electron diffraction patterns of carbon nanotubes and (b) to obtain the chiral indices (u, v), of the carbon nanotubes from the electron diffraction patterns. For a nanotube of a given structure, the electron scattering amplitude from the carbon nanotube is first described analytically in closed form using the helical diffraction theory. From a known structure as given by the chiral indices (u, v), its electron diffraction pattern can be calculated and understood. The reverse problem, i.e. assignment of the chiral indices from an electron diffraction pattern of a carbon nanotube, is approached from the relationship between the electron scattering intensity distribution and the chiral indices (u, v). We show that electron diffraction patterns can provide an accurate and unambiguous assignment of the chiral indices of carbon nanotubes. The chiral indices (u, v) can be read indiscriminately with a high accuracy from the intensity distribution on the principal layer lines in an electron diffraction pattern. The symmetry properties of electron diffraction from carbon nanotubes and the electron diffraction from deformed carbon nanotubes are also discussed in detail. It is shown that 2mm symmetry is always preserved for single-walled carbon nanotubes, but it can break down for multiwalled carbon nanotubes under some special circumstances

  12. Human threats to sandy beaches: A meta-analysis of ghost crabs illustrates global anthropogenic impacts.

    Science.gov (United States)

    Schlacher, Thomas A.; Lucrezi, Serena; Connolly, Rod M.; Peterson, Charles H.; Gilby, Ben L.; Maslo, Brooke; Olds, Andrew D.; Walker, Simon J.; Leon, Javier X.; Huijbers, Chantal M.; Weston, Michael A.; Turra, Alexander; Hyndes, Glenn A.; Holt, Rebecca A.; Schoeman, David S.

    2016-02-01

    Beach and coastal dune systems are increasingly subjected to a broad range of anthropogenic pressures that on many shorelines require significant conservation and mitigation interventions. But these interventions require reliable data on the severity and frequency of adverse ecological impacts. Such evidence is often obtained by measuring the response of 'indicator species'. Ghost crabs are the largest invertebrates inhabiting tropical and subtropical sandy shores and are frequently used to assess human impacts on ocean beaches. Here we present the first global meta-analysis of these impacts, and analyse the design properties and metrics of studies using ghost-crabs in their assessment. This was complemented by a gap analysis to identify thematic areas of anthropogenic pressures on sandy beach ecosystems that are under-represented in the published literature. Our meta-analysis demonstrates a broad geographic reach, encompassing studies on shores of the Pacific, Indian, and Atlantic Oceans, as well as the South China Sea. It also reveals what are, arguably, two major limitations: i) the near-universal use of proxies (i.e. burrow counts to estimate abundance) at the cost of directly measuring biological traits and bio-markers in the organism itself; and ii) descriptive or correlative study designs that rarely extend beyond a simple 'compare and contrast approach', and hence fail to identify the mechanistic cause(s) of observed contrasts. Evidence for a historically narrow range of assessed pressures (i.e., chiefly urbanisation, vehicles, beach nourishment, and recreation) is juxtaposed with rich opportunities for the broader integration of ghost crabs as a model taxon in studies of disturbance and impact assessments on ocean beaches. Tangible advances will most likely occur where ghost crabs provide foci for experiments that test specific hypotheses associated with effects of chemical, light and acoustic pollution, as well as the consequences of climate change (e

  13. Ghost microscope imaging system from the perspective of coherent-mode representation

    Science.gov (United States)

    Shen, Qian; Bai, Yanfeng; Shi, Xiaohui; Nan, Suqin; Qu, Lijie; Li, Hengxing; Fu, Xiquan

    2018-03-01

    The coherent-mode representation theory of partially coherent fields is firstly used to analyze a two-arm ghost microscope imaging system. It is shown that imaging quality of the generated images depend crucially on the distribution of the decomposition coefficients of the object imaged when the light source is fixed. This theory is also suitable for demonstrating the effects from the distance the object is moved away from the original plane on imaging quality. Our results are verified theoretically and experimentally.

  14. Two-color ghost interference with photon pairs generated in hot atoms

    Directory of Open Access Journals (Sweden)

    Dong-Sheng Ding

    2012-09-01

    Full Text Available We report on an experimental observation of a two-photon ghost interference experiment. A distinguishing feature of our experiment is that the photons are generated via a non-degenerated spontaneous four-wave mixing process in a hot atomic ensemble; therefore the photon has narrow bandwidth. Besides, there is a large difference in frequency between two photons in a pair. Our works may be important to achieve more secure, large transmission capacity long-distance quantum communication.

  15. Gluon-ghost condensate of mass dimension 2 in the Curci-Ferrari gauge

    International Nuclear Information System (INIS)

    Dudal, D.; Verschelde, H.; Lemes, V.E.R.; Sarandy, M.S.; Sorella, S.P.; Picariello, M.

    2003-01-01

    The effective potential for an on-shell BRST invariant gluon-ghost condensate of mass dimension 2 in the Curci-Ferrari gauge in SU(N) Yang-Mills is analysed by combining the local composite operator technique with the algebraic renormalization. We pay attention to the gauge parameter independence of the vacuum energy obtained in the considered framework and discuss the Landau gauge as an interesting special case

  16. Objective lens simultaneously optimized for pupil ghosting, wavefront delivery and pupil imaging

    Science.gov (United States)

    Olczak, Eugene G (Inventor)

    2011-01-01

    An objective lens includes multiple optical elements disposed between a first end and a second end, each optical element oriented along an optical axis. Each optical surface of the multiple optical elements provides an angle of incidence to a marginal ray that is above a minimum threshold angle. This threshold angle minimizes pupil ghosts that may enter an interferometer. The objective lens also optimizes wavefront delivery and pupil imaging onto an optical surface under test.

  17. Tolerance analysis on diffraction efficiency and polychromatic integral diffraction efficiency for harmonic diffractive optics

    Science.gov (United States)

    Shan, Mao

    2016-10-01

    In this dissertation, the mathematical model of effect of manufacturing errors including microstructure relative height error and relative width error on diffraction efficiency for the harmonic diffractive optical elements (HDEs) is set up. According to the expression of the phase delay and diffraction efficiency of the HDEs, the expression of diffraction efficiency of refraction and diffractive optical element with the microstructure height and periodic width errors in fabrication process is presented in this paper. Furthermore, the effect of manufacturing errors on diffraction efficiency for the harmonic diffractive optical elements is studied, and diffraction efficiency change is analyzed as the relative microstructure height-error in the same and in the opposite sign as well as relative width-error in the same and in the opposite sign. Example including infrared wavelength with materials GE has been discussed in this paper. Two kinds of manufacturing errors applied in 3.7 4.3um middle infrared and 8.7-11.5um far infrared optical system which results in diffraction efficiency and PIDE of HDEs are studied. The analysis results can be used for manufacturing error control in micro-structure height and periodic width. Results can be used for HDEs processing.

  18. Computer Simulation of Diffraction Patterns.

    Science.gov (United States)

    Dodd, N. A.

    1983-01-01

    Describes an Apple computer program (listing available from author) which simulates Fraunhofer and Fresnel diffraction using vector addition techniques (vector chaining) and allows user to experiment with different shaped multiple apertures. Graphics output include vector resultants, phase difference, diffraction patterns, and the Cornu spiral…

  19. A ghost fluid method for sharp interface simulations of compressible multiphase flows

    International Nuclear Information System (INIS)

    Majidi, Sahand; Afshari, Asghar

    2016-01-01

    A ghost fluid based computational tool is developed to study a wide range of compressible multiphase flows involving strong shocks and contact discontinuities while accounting for surface tension, viscous stresses and gravitational forces. The solver utilizes constrained reinitialization method to predict the interface configuration at each time step. Surface tension effect is handled via an exact interface Riemann problem solver. Interfacial viscous stresses are approximated by considering continuous velocity and viscous stress across the interface. To assess the performance of the solver several benchmark problems are considered: One-dimensional gas-water shock tube problem, shock-bubble interaction, air cavity collapse in water, underwater explosion, Rayleigh-Taylor Instability, and ellipsoidal drop oscillations. Results obtained from the numerical simulations indicate that the numerical methodology performs reasonably well in predicting flow features and exhibit a very good agreement with prior experimental and numerical observations. To further examine the accuracy of the developed ghost fluid solver, the obtained results are compared to those by a conventional diffuse interface solver. The comparison shows the capability of our ghost fluid method in reproducing the experimentally observed flow characteristics while revealing more details regarding topological changes of the interface.

  20. A ghost fluid method for sharp interface simulations of compressible multiphase flows

    Energy Technology Data Exchange (ETDEWEB)

    Majidi, Sahand; Afshari, Asghar [University of Tehran, Teheran (Iran, Islamic Republic of)

    2016-04-15

    A ghost fluid based computational tool is developed to study a wide range of compressible multiphase flows involving strong shocks and contact discontinuities while accounting for surface tension, viscous stresses and gravitational forces. The solver utilizes constrained reinitialization method to predict the interface configuration at each time step. Surface tension effect is handled via an exact interface Riemann problem solver. Interfacial viscous stresses are approximated by considering continuous velocity and viscous stress across the interface. To assess the performance of the solver several benchmark problems are considered: One-dimensional gas-water shock tube problem, shock-bubble interaction, air cavity collapse in water, underwater explosion, Rayleigh-Taylor Instability, and ellipsoidal drop oscillations. Results obtained from the numerical simulations indicate that the numerical methodology performs reasonably well in predicting flow features and exhibit a very good agreement with prior experimental and numerical observations. To further examine the accuracy of the developed ghost fluid solver, the obtained results are compared to those by a conventional diffuse interface solver. The comparison shows the capability of our ghost fluid method in reproducing the experimentally observed flow characteristics while revealing more details regarding topological changes of the interface.

  1. A specter of coexistence: Is centrifugal community organization haunted by the ghost of competition?

    Science.gov (United States)

    Wasserberg, Gideon; Kotler, B.P.; Morris, D.W.; Abramsky, Z.

    2006-01-01

    In a centrifugally organized community species prefer the same habitat (called "core") but differ in their secondary habitat preferences. The first model of centrifugal community organization (CCO) predicted that optimally foraging, symmetrically competing species would share use of the core habitat at all density combinations. But one might also assume that the competition in the core habitat is asymmetrical, that is, that one of the species (the dominant) has a behavioral advantage therein. In this study, we asked how should habitat use evolve in a centrifugally organized community if its species compete asymmetrically in the core habitat? To address this question we developed an "isoleg model". The model predicts that in a centrifugally organized community, asymmetric competition promotes the use of the core habitat exclusively by the dominant species at most points in the state space. The separation of the core habitat use by the species ("the ghost of competition past") may be either complete or partial ("partial ghost"), and behavior at the stable competitive equilibrium between the species could determine whether coexistence should occur at the "complete-" or the "partial ghost" regions. This version of CCO should be a common feature of competitive systems.

  2. Ghost image in enhanced self-heterodyne synthetic aperture imaging ladar

    Science.gov (United States)

    Zhang, Guo; Sun, Jianfeng; Zhou, Yu; Lu, Zhiyong; Li, Guangyuan; Xu, Mengmeng; Zhang, Bo; Lao, Chenzhe; He, Hongyu

    2018-03-01

    The enhanced self-heterodyne synthetic aperture imaging ladar (SAIL) self-heterodynes two polarization-orthogonal echo signals to eliminate the phase disturbance caused by atmospheric turbulence and mechanical trembling, uses heterodyne receiver instead of self-heterodyne receiver to improve signal-to-noise ratio. The principle and structure of the enhanced self-heterodyne SAIL are presented. The imaging process of enhanced self-heterodyne SAIL for distributed target is also analyzed. In enhanced self-heterodyne SAIL, the phases of two orthogonal-polarization beams are modulated by four cylindrical lenses in transmitter to improve resolutions in orthogonal direction and travel direction, which will generate ghost image. The generation process of ghost image in enhanced self-heterodyne SAIL is mathematically detailed, and a method of eliminating ghost image is also presented, which is significant for far-distance imaging. A number of experiments of enhanced self-heterodyne SAIL for distributed target are presented, these experimental results verify the theoretical analysis of enhanced self-heterodyne SAIL. The enhanced self-heterodyne SAIL has the capability to eliminate the influence from the atmospheric turbulence and mechanical trembling, has high advantage in detecting weak signals, and has promising application for far-distance ladar imaging.

  3. Error threshold ghosts in a simple hypercycle with error prone self-replication

    International Nuclear Information System (INIS)

    Sardanyes, Josep

    2008-01-01

    A delayed transition because of mutation processes is shown to happen in a simple hypercycle composed by two indistinguishable molecular species with error prone self-replication. The appearance of a ghost near the hypercycle error threshold causes a delay in the extinction and thus in the loss of information of the mutually catalytic replicators, in a kind of information memory. The extinction time, τ, scales near bifurcation threshold according to the universal square-root scaling law i.e. τ ∼ (Q hc - Q) -1/2 , typical of dynamical systems close to a saddle-node bifurcation. Here, Q hc represents the bifurcation point named hypercycle error threshold, involved in the change among the asymptotic stability phase and the so-called Random Replication State (RRS) of the hypercycle; and the parameter Q is the replication quality factor. The ghost involves a longer transient towards extinction once the saddle-node bifurcation has occurred, being extremely long near the bifurcation threshold. The role of this dynamical effect is expected to be relevant in fluctuating environments. Such a phenomenon should also be found in larger hypercycles when considering the hypercycle species in competition with their error tail. The implications of the ghost in the survival and evolution of error prone self-replicating molecules with hypercyclic organization are discussed

  4. Hunting for CDF multi-muon ''ghost'' events at collider and fixed-target experiments

    International Nuclear Information System (INIS)

    Bornhauser, Nicki; Drees, Manuel

    2011-01-01

    In 2008 the CDF collaboration discovered a large excess of events containing two or more muons, at least one of which seemed to have been produced outside the beam pipe. We investigate whether similar ''ghost'' events could (and should) have been seen in already completed experiments. The CDF di-muon data can be reproduced by a simple model where a relatively light X particle undergoes 4-body decay. This model predicts a large number of ghost events in Fermilab fixed-target experiments E772, E789 and E866, applying the cuts optimized for analyses of Drell-Yan events. A correct description of events with more than two muons requires a more complicated model, where two X particles are produced from a very broad resonance Y. This model can be tested in fixed-target experiments only if the cut on the angles, or rapidities, of the muons can be relaxed. Either way, the UA1 experiment at the CERN p anti p collider should have observed O(100) ghost events. (orig.)

  5. [3H]Ouabain binding and Na+, K+-ATPase in resealed human red cell ghosts

    International Nuclear Information System (INIS)

    Shoemaker, D.G.; Lauf, P.K.

    1983-01-01

    The interaction of the cardiac glycoside [ 3 H]ouabain with the Na+, K+ pump of resealed human erythrocyte ghosts was investigated. Binding of [ 3 H]ouabain to high intracellular Na+ ghosts was studied in high extracellular Na+ media, a condition determined to produce maximal ouabain binding rates. Simultaneous examination of both the number of ouabain molecules bound per ghost and the corresponding inhibition of the Na+, K+-ATPase revealed that one molecule of [ 3 H]ouabain inhibited one Na+, K+-ATPase complex. Intracellular magnesium or magnesium plus inorganic phosphate produced the lowest ouabain binding rate. Support of ouabain binding by adenosine diphosphate (ADP) was negligible, provided synthesis of adenosine triphosphate (ATP) through the residual adenylate kinase activity was prevented by the adenylate kinase inhibitor Ap5A. Uridine 5'-triphosphate (UTP) alone did not support ouabain binding after inhibition of the endogenous nucleoside diphosphokinase by trypan blue and depletion of residual ATP by the incorporation of hexokinase and glucose. ATP acting solely at the high-affinity binding site of the Na+, K+ pump (Km approximately 1 microM) promoted maximal [ 3 H]ouabain binding rates. Failure of 5'-adenylyl-beta-gamma-imidophosphate (AMP-PNP) to stimulate significantly the rate of ouabain binding suggests that phosphorylation of the pump was required to expose the ouabain receptor

  6. Gravity and magnetic data across the Ghost Dance Fault in WT-2 Wash, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Oliver, H.W.; Sikora, R.F.

    1994-01-01

    Detailed gravity and ground magnetic data were obtained in September 1993 along a 4,650 ft-long profile across the Ghost Dance Fault system in WT-2 Wash. Gravity stations were established every 150 feet along the profile. Total-field magnetic measurements made initially every 50 ft along the profile, then remade every 20 ft through the fault zone. These new data are part of a geologic and geophysical study of the Ghost Dance Fault (GDF) which includes detailed geologic mapping, seismic reflection, and some drilling including geologic and geophysical logging. The Ghost Dance Fault is the only through-going fault that has been identified within the potential repository for high-level radioactive waste at Yucca Mountain, Nevada. Preliminary gravity results show a distinct decrease of 0.1 to 0.2 mGal over a 600-ft-wide zone to the east of and including the mapped fault. The gravity decrease probably marks a zone of brecciation. Another fault-offset located about 2,000 ft to the east of the GDF was detected by seismic reflection data and is also marked by a distinct gravity low. The ground magnetic data show a 200-ft-wide magnetic low of about 400 nT centered about 100 ft east of the Ghost Dance Fault. The magnetic low probably marks a zone of brecciation within the normally polarized Topopah Spring Tuff, the top of which is about 170 ft below the surface, and which is known from drilling to extend to a depth of about 1,700 ft. Three-component magnetometer logging in drill hole WT-2 located about 2,700 ft east of the Ghost Dance Fault shows that the Topopah Spring Tuff is strongly polarized magnetically in this area, so that fault brecciation of a vertical zone within the Tuff could provide an average negative magnetic contrast of the 4 Am -1 needed to produce the 400 nT low observed at the surface

  7. Grazing incidence diffraction : A review

    Energy Technology Data Exchange (ETDEWEB)

    Gilles, B [LTPCM, ENSEEG. St. Martin d` Heres. (France)

    1996-09-01

    Different Grazing Incidence Diffraction (GID) methods for the analysis of thin films and multilayer structures are reviewed in three sections: the reflectivity is developed in the first one, which includes the non-specular diffuse scattering. The second one is devoted to the extremely asymmetric Bragg diffraction and the third one to the in-plane Bragg diffraction. Analytical formulations of the scattered intensities are developed for each geometry, in the framework of the kinetical analysis as well as the dynamical theory. Experimental examples are given to illustrate the quantitative possibility of the GID techniques.

  8. Diffraction dissociation at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Jenkovszky, Laszlo [Bogolyubov Institute for Theoretical Physics (BITP), Ukrainian National Academy of Sciences 14-b, Metrolohichna str., Kiev, 03680, Ukraine and Wigner Research Centre for Physics, Hungarian Academy of Sciences 1525 Budapest, POB 49 (Hungary); Orava, Risto [Institute of Physics, Division of Elementary Particle Physics, P.O. Box 64 (Gustaf Haellstroeminkatu 2a), FI-00014 University of Helsinki, Finland and CERN, CH-1211 Geneva 23 (Switzerland); Salii, Andrii [Bogolyubov Institute for Theoretical Physics (BITP), Ukrainian National Academy of Sciences 14-b, Metrolohichna str., Kiev, 03680 (Ukraine)

    2013-04-15

    We report on recent calculations of low missing mass single (SD) and double (DD) diffractive dissociation at LHC energies. The calculations are based on a dual-Regge model, dominated by a single Pomeron exchange. The diffractively excited states lie on the nucleon trajectory N*, appended by the isolated Roper resonance. Detailed predictions for the squared momentum transfer and missing mass dependence of the differential and integrated single-and double diffraction dissociation in the kinematical range of present and future LHC measurements are given.

  9. Diffraction dissociation at the LHC

    International Nuclear Information System (INIS)

    Jenkovszky, László; Orava, Risto; Salii, Andrii

    2013-01-01

    We report on recent calculations of low missing mass single (SD) and double (DD) diffractive dissociation at LHC energies. The calculations are based on a dual-Regge model, dominated by a single Pomeron exchange. The diffractively excited states lie on the nucleon trajectory N*, appended by the isolated Roper resonance. Detailed predictions for the squared momentum transfer and missing mass dependence of the differential and integrated single-and double diffraction dissociation in the kinematical range of present and future LHC measurements are given.

  10. The diffractive achromat full spectrum computational imaging with diffractive optics

    KAUST Repository

    Peng, Yifan

    2016-07-11

    Diffractive optical elements (DOEs) have recently drawn great attention in computational imaging because they can drastically reduce the size and weight of imaging devices compared to their refractive counterparts. However, the inherent strong dispersion is a tremendous obstacle that limits the use of DOEs in full spectrum imaging, causing unacceptable loss of color fidelity in the images. In particular, metamerism introduces a data dependency in the image blur, which has been neglected in computational imaging methods so far. We introduce both a diffractive achromat based on computational optimization, as well as a corresponding algorithm for correction of residual aberrations. Using this approach, we demonstrate high fidelity color diffractive-only imaging over the full visible spectrum. In the optical design, the height profile of a diffractive lens is optimized to balance the focusing contributions of different wavelengths for a specific focal length. The spectral point spread functions (PSFs) become nearly identical to each other, creating approximately spectrally invariant blur kernels. This property guarantees good color preservation in the captured image and facilitates the correction of residual aberrations in our fast two-step deconvolution without additional color priors. We demonstrate our design of diffractive achromat on a 0.5mm ultrathin substrate by photolithography techniques. Experimental results show that our achromatic diffractive lens produces high color fidelity and better image quality in the full visible spectrum. © 2016 ACM.

  11. Single-particle coherent diffractive imaging with a soft x-ray free electron laser: towards soot aerosol morphology

    International Nuclear Information System (INIS)

    Bogan, Michael J; Starodub, Dmitri; Hampton, Christina Y; Sierra, Raymond G

    2010-01-01

    The first of its kind, the Free electron LASer facility in Hamburg, FLASH, produces soft x-ray pulses with unprecedented properties (10 fs, 6.8-47 nm, 10 12 photons per pulse, 20 μm diameter). One of the seminal FLASH experiments is single-pulse coherent x-ray diffractive imaging (CXDI). CXDI utilizes the ultrafast and ultrabright pulses to overcome resolution limitations in x-ray microscopy imposed by x-ray-induced damage to the sample by 'diffracting before destroying' the sample on sub-picosecond timescales. For many lensless imaging algorithms used for CXDI it is convenient when the data satisfy an oversampling constraint that requires the sample to be an isolated object, i.e. an individual 'free-standing' portion of disordered matter delivered to the centre of the x-ray focus. By definition, this type of matter is an aerosol. This paper will describe the role of aerosol science methodologies used for the validation of the 'diffract before destroy' hypothesis and the execution of the first single-particle CXDI experiments being developed for biological imaging. FLASH CXDI now enables the highest resolution imaging of single micron-sized or smaller airborne particulate matter to date while preserving the native substrate-free state of the aerosol. Electron microscopy offers higher resolution for single-particle analysis but the aerosol must be captured on a substrate, potentially modifying the particle morphology. Thus, FLASH is poised to contribute significant advancements in our knowledge of aerosol morphology and dynamics. As an example, we simulate CXDI of combustion particle (soot) morphology and introduce the concept of extracting radius of gyration of fractal aggregates from single-pulse x-ray diffraction data. Future upgrades to FLASH will enable higher spatially and temporally resolved single-particle aerosol dynamics studies, filling a critical technological need in aerosol science and nanotechnology. Many of the methodologies described for FLASH will

  12. Living in the “Ghost City”: Media Discourses and the Negotiation of Home in Ordos, Inner Mongolia, China

    Directory of Open Access Journals (Sweden)

    Duo Yin

    2017-11-01

    Full Text Available Ordos is notoriously represented in media discourses as one of China’s principal “ghost cities”, with skyscrapers, apartment estates and grandiose squares largely unoccupied. The “ghost city” emerges from massive (overinvestment in the urban built environment. Aware that economic and financial sustainability are in question, we nonetheless choose to investigate this issue from the perspective of social sustainability, utilizing a theoretical framework informed by geographies of home. Relatively little analysis has thus far been applied to local residents’ everyday practice and agency in making place and home in allegedly “unhomely” ghost cities. This article first examines media discourses and representations of the “ghostly” aspect of the new town in Ordos. It then investigates the ways in which local residents practice and perform their place identity and sense of home in an alleged “ghost city”. Our empirical research in Kangbashi New Town demonstrates that the discourse of ghost cities is valid in so far as we take into account the local residents’ engagement in a process of home-making from below. This sense of place is created by connecting new and old homes, and constructing an emotionally delineated place identity. We argue that the issue of social sustainability in Ordos is multifaceted, and more nuanced than it has hitherto been represented in media reports.

  13. Neutron diffraction studies of glasses

    International Nuclear Information System (INIS)

    Wright, A.C.

    1987-01-01

    A survey is given of the application of neutron diffraction to structural studies of oxide and halide glasses. As with crystalline materials, neutron and X-ray diffraction are the major structural probes for glasses and other amorphous solids, particularly in respect of intermediate range order. The glasses discussed mostly have structures which are dominated by a network in which the bonding is predominantly covalent. The examples discussed demonstrate the power of the neutron diffraction technique in the investigation of the structures of inorganic glasses. The best modern diffraction experiments are capable of providing accurate data with high real space resolution, which if used correctly, are an extremely fine filter for the various structural models proposed in the literature. 42 refs

  14. Diffraction at a Straight Edge

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 5. Diffraction at a Straight Edge: A Gem from Sommerfeld's Work in Classical Physics. Rajaram Nityananda. General Article Volume 20 Issue 5 May 2015 pp 389-400 ...

  15. Neutron Powder Diffraction in Sweden

    International Nuclear Information System (INIS)

    Tellgren, R.

    1986-01-01

    Neutron powder diffraction in Sweden has developed around the research reactor R2 in Studsvik. The article describes this facility and presents a historical review of research results obtained. It also gives some ideas of plans for future development

  16. Tomography with energy dispersive diffraction

    Science.gov (United States)

    Stock, S. R.; Okasinski, J. S.; Woods, R.; Baldwin, J.; Madden, T.; Quaranta, O.; Rumaiz, A.; Kuczewski, T.; Mead, J.; Krings, T.; Siddons, P.; Miceli, A.; Almer, J. D.

    2017-09-01

    X-ray diffraction can be used as the signal for tomographic reconstruction and provides a cross-sectional map of the crystallographic phases and related quantities. Diffraction tomography has been developed over the last decade using monochromatic x-radiation and an area detector. This paper reports tomographic reconstruction with polychromatic radiation and an energy sensitive detector array. The energy dispersive diffraction (EDD) geometry, the instrumentation and the reconstruction process are described and related to the expected resolution. Results of EDD tomography are presented for two samples containing hydroxyapatite (hAp). The first is a 3D-printed sample with an elliptical crosssection and contains synthetic hAp. The second is a human second metacarpal bone from the Roman-era cemetery at Ancaster, UK and contains bio-hAp which may have been altered by diagenesis. Reconstructions with different diffraction peaks are compared. Prospects for future EDD tomography are also discussed.

  17. Diffraction at a Straight Edge

    Indian Academy of Sciences (India)

    IAS Admin

    teaching and understanding physics. ... and mathematical footing, using electromagnetic theory and the proper ... this article, we will use the word diffraction to cover all experiments ..... PES Institute of Technology. Campus ... communication!)

  18. Experimental studies of diffractive phenomena

    International Nuclear Information System (INIS)

    Cool, R.L.

    1984-01-01

    The coherent inelastic scattering process, usually called inclusive diffraction dissociation, is discussed. Topics include: t and M/sub x/ dependence, factorization, finite mass sum rule and charged particle multiplicities. 6 references, 14 figures

  19. Diffractive production and hadron structure

    International Nuclear Information System (INIS)

    Nussinov, S.; Szwed, J.

    1979-01-01

    Analysis of diffractive production on nuclei implied cross sections of the diffractively produced system on nucleons which are smaller than the corresponding projectile nucleon cross sections. A natural explanation for this feature is provided in the Good-Walker coherent production formalism. A specific realization of the Good-Walker formalism stated in terms of quarks and connecting electric flux tubes and some ensuing consequences are also discussed briefly. (Auth.)

  20. CONFERENCE: Elastic and diffractive scattering

    Energy Technology Data Exchange (ETDEWEB)

    White, Alan

    1989-09-15

    Elastic scattering, when particles appear to 'bounce' off each other, and the related phenomena of diffractive scattering are currently less fashionable than the study of hard scattering processes. However this could change rapidly if unexpected results from the UA4 experiment at the CERN Collider are confirmed and their implications tested. These questions were highlighted at the third 'Blois Workshop' on Elastic and Diffractive Scattering, held early in May on the Evanston campus of Northwestern University, near Chicago.

  1. Theoretical review of diffractive phenomena

    International Nuclear Information System (INIS)

    Golec-Biernat, K.

    2005-01-01

    We review QCD based descriptions of diffractive deep inelastic scattering emphasising the role of models with parton saturation. These models provide natural explanation of such experimentally observed facts as the constant ratio of σ diff /σ tot as a function of the Bjorken variable x, and Regge factorization of diffractive parton distributions. The Ingelman-Schlein model and the soft color interaction model are also presented

  2. The Diffraction Response Interpolation Method

    DEFF Research Database (Denmark)

    Jespersen, Søren Kragh; Wilhjelm, Jens Erik; Pedersen, Peder C.

    1998-01-01

    Computer modeling of the output voltage in a pulse-echo system is computationally very demanding, particularly whenconsidering reflector surfaces of arbitrary geometry. A new, efficient computational tool, the diffraction response interpolationmethod (DRIM), for modeling of reflectors in a fluid...... medium, is presented. The DRIM is based on the velocity potential impulseresponse method, adapted to pulse-echo applications by the use of acoustical reciprocity. Specifically, the DRIM operates bydividing the reflector surface into planar elements, finding the diffraction response at the corners...

  3. Formation of ghost images due to meta objects on the surface of the patient's face: A pictorial essay

    International Nuclear Information System (INIS)

    Ramons, BarbaraCouto; Da Silva Izar, Bruna Raquel; Pereira, Jessica Lourdes Costa; Souza Priscilla Serna; Valerio, Cludia Scigliano; Manzi, Flavio Ricardo; Tuji, Fabricio Mesquita

    2016-01-01

    Panoramic radiographs are a relatively simple technique that is commonly used in all dental specialties. In panoramic radiographs, in addition to the formation of real images of metal objects, ghost images may also form, and these ghost images can hinder an accurate diagnosis and interfere with the accuracy of radiology reports. Dentists must understand the formation of these images in order to avoid making incorrect radiographic diagnoses. Therefore, the present study sought to present a study of the formation of panoramic radiograph ghost images caused by metal objects in the head and neck region of a dry skull, as well as to report a clinical case n order to warn dentists about ghost images and to raise awareness thereof. An understanding of the principles of the formation of ghost images in panoramic radiographs helps prevent incorrect diagnoses

  4. Formation of ghost images due to meta objects on the surface of the patient's face: A pictorial essay

    Energy Technology Data Exchange (ETDEWEB)

    Ramons, BarbaraCouto; Da Silva Izar, Bruna Raquel; Pereira, Jessica Lourdes Costa; Souza Priscilla Serna; Valerio, Cludia Scigliano; Manzi, Flavio Ricardo [Dept. of Oral Radiology, School of Dentistry, Pontifical Catholic University of Minas Gerais, Belo Horizonte (Brazil); Tuji, Fabricio Mesquita [Federal University of Pará, Belém do Pará (Brazil)

    2016-03-15

    Panoramic radiographs are a relatively simple technique that is commonly used in all dental specialties. In panoramic radiographs, in addition to the formation of real images of metal objects, ghost images may also form, and these ghost images can hinder an accurate diagnosis and interfere with the accuracy of radiology reports. Dentists must understand the formation of these images in order to avoid making incorrect radiographic diagnoses. Therefore, the present study sought to present a study of the formation of panoramic radiograph ghost images caused by metal objects in the head and neck region of a dry skull, as well as to report a clinical case n order to warn dentists about ghost images and to raise awareness thereof. An understanding of the principles of the formation of ghost images in panoramic radiographs helps prevent incorrect diagnoses.

  5. Comparative study of receiver-side ghost wavefield attenuation on different marine acquisition configurations

    Science.gov (United States)

    Zhang, Hao; Liu, Qiancheng; Li, Hongyuan; Zhang, Yi

    2018-04-01

    In marine seismic exploration, the ghost energies (down-going waves), which arise from the reflection at the surface, are often treated as unwanted signals for data processing. The ghost wave fields interfere with the desired primary signals, leads to frequency notches and attenuation of low frequencies, which in turn downgrade the resolution of the recorded seismic data. There are two main categories of methods to solve the ghost or the so-called notch problem: the non-conventional acquisition configuration-based technique and a deghosting algorithm-based solution. The variable-depth streamer (VDS) acquisition solution is one of the most representative methods in the first category, which has become a popular solution for marine seismic acquisition to obtain broad data bandwidth. However, this approach is not as economic as the conventional constant depth streamer (CDS) acquisition, due to the precise control of the towing streamer. In addition, there are large quantities of conventionally-towed legacy data stored in the data library. Applying receiver deghosting to the CDS data thus becomes a more economical method. In theory, both types of data after deghosting should have the same bandwidth and S/N ratio, but in reality they are different. In this paper, we conduct a comparative study and evaluation to apply receiver deghosting to a set of real 2D marine data including both types of acquisition (CDS and VDS) corresponding to the same geology. The deghosting algorithm we employed is a self-sustained, inversion-based approach operated in the τ-p domain. This evaluation can help us to understand two questions: whether the VDS acquisition has more broadband characteristics compared to conventional CDS acquisition after deghosting, and whether we can achieve the identical or similar data quality (e.g., S/N ratio) through the proper deghosting algorithm for both types of data. The comparative results are illustrated and discussed.

  6. A robust mass spectrometry method for rapid profiling of erythrocyte ghost membrane proteomes.

    Science.gov (United States)

    Fye, Haddy K S; Mrosso, Paul; Bruce, Lesley; Thézénas, Marie-Laëtitia; Davis, Simon; Fischer, Roman; Rwegasira, Gration L; Makani, Julie; Kessler, Benedikt M

    2018-01-01

    Red blood cell (RBC) physiology is directly linked to many human disorders associated with low tissue oxygen levels or anemia including chronic obstructive pulmonary disease, congenital heart disease, sleep apnea and sickle cell anemia. Parasites such as Plasmodium spp. and phylum Apicomplexa directly target RBCs, and surface molecules within the RBC membrane are critical for pathogen interactions. Proteomics of RBC membrane 'ghost' fractions has therefore been of considerable interest, but protocols described to date are either suboptimal or too extensive to be applicable to a larger set of clinical cohorts. Here, we describe an optimised erythrocyte isolation protocol from blood, tested for various storage conditions and explored using different fractionation conditions for isolating ghost RBC membranes. Liquid chromatography mass spectrometry (LC-MS) analysis on a Q-Exactive Orbitrap instrument was used to profile proteins isolated from the comparative conditions. Data analysis was run on the MASCOT and MaxQuant platforms to assess their scope and diversity. The results obtained demonstrate a robust method for membrane enrichment enabling consistent MS based characterisation of > 900 RBC membrane proteins in single LC-MS/MS analyses. Non-detergent based membrane solubilisation methods using the tissue and supernatant fractions of isolated ghost membranes are shown to offer effective haemoglobin removal as well as diverse recovery including erythrocyte membrane proteins of high and low abundance. The methods described in this manuscript propose a medium to high throughput framework for membrane proteome profiling by LC-MS of potential applicability to larger clinical cohorts in a variety of disease contexts.

  7. Study on the algorithm of computational ghost imaging based on discrete fourier transform measurement matrix

    Science.gov (United States)

    Zhang, Leihong; Liang, Dong; Li, Bei; Kang, Yi; Pan, Zilan; Zhang, Dawei; Gao, Xiumin; Ma, Xiuhua

    2016-07-01

    On the basis of analyzing the cosine light field with determined analytic expression and the pseudo-inverse method, the object is illuminated by a presetting light field with a determined discrete Fourier transform measurement matrix, and the object image is reconstructed by the pseudo-inverse method. The analytic expression of the algorithm of computational ghost imaging based on discrete Fourier transform measurement matrix is deduced theoretically, and compared with the algorithm of compressive computational ghost imaging based on random measurement matrix. The reconstruction process and the reconstruction error are analyzed. On this basis, the simulation is done to verify the theoretical analysis. When the sampling measurement number is similar to the number of object pixel, the rank of discrete Fourier transform matrix is the same as the one of the random measurement matrix, the PSNR of the reconstruction image of FGI algorithm and PGI algorithm are similar, the reconstruction error of the traditional CGI algorithm is lower than that of reconstruction image based on FGI algorithm and PGI algorithm. As the decreasing of the number of sampling measurement, the PSNR of reconstruction image based on FGI algorithm decreases slowly, and the PSNR of reconstruction image based on PGI algorithm and CGI algorithm decreases sharply. The reconstruction time of FGI algorithm is lower than that of other algorithms and is not affected by the number of sampling measurement. The FGI algorithm can effectively filter out the random white noise through a low-pass filter and realize the reconstruction denoising which has a higher denoising capability than that of the CGI algorithm. The FGI algorithm can improve the reconstruction accuracy and the reconstruction speed of computational ghost imaging.

  8. Prevalence of articles with honorary and ghost authors in three pharmacy journals.

    Science.gov (United States)

    Dotson, Bryan; Slaughter, Richard L

    2011-09-15

    The prevalence of honorary and ghost authors in articles published in 2009 in three peer-reviewed pharmacy journals was studied. A 20-question survey was e-mailed to corresponding authors of articles with two or more authors published in 2009 in the American Journal of Health-System Pharmacy, Annals of Pharmacotherapy, and Pharmacotherapy. The survey solicited the following information: demographic characteristics of the corresponding author, information about the published article, information to determine whether any of the authors did not meet the International Committee of Medical Journal Editors criteria for authorship, and information to determine if an individual contributed substantially to the research or writing of the article but was not listed as an author. Of the 491 corresponding authors to whom the survey was sent, 457 had a working e-mail address; 114 surveys were completed (24.9% response rate). Usable responses were provided by 112 authors. The prevalence of articles with honorary and ghost authors was 14.3% and 0.9%, respectively. Honorary authorship was more common in original research than review articles. Articles with honorary authors had longer bylines than articles without honorary authors (mean number of authors, 4.9 versus 3.7; p = 0.002). The proportion of articles with an honorary author was 1.9% for articles with fewer than 4 authors, 25% for articles with 4 or 5 authors, and 29.4% for articles with more than 5 authors (p = 0.001). A survey sent to the corresponding authors of articles published in 2009 in three peer-reviewed pharmacy journals revealed that a substantial percentage of articles demonstrated evidence of honorary or ghost authorship.

  9. Dentinoameloblastoma with ghost cells: A rare case report with emphasis on its biological behavior

    Directory of Open Access Journals (Sweden)

    Kiran Kumar

    2013-01-01

    Full Text Available Ameloblastomas are regarded as a homogeneous group of neoplasms with locally invasive character. They generally do not show induction of dental hard tissue formation except in few cases. Biological behavior and histogenesis of these tumors is still unexplored as there is lack of relevant studies and long follow-up of these patients. So, we aimed to report this rare case of dentinoameloblastoma with unique presence of ghost cells in middle-aged female involving maxilla with emphasis on its biological behavior. We conclude that although histogenesis of this tumor is not clear but biological potential is similar to conventional ameloblastoma requiring wider excision.

  10. Ghost Dancing the Grand Canyon. Southern Paiute Rock Art, Ceremony, and Cultural Landscapes.

    Science.gov (United States)

    Stoffle; Loendorf; Austin; Halmo; Bulletts

    2000-02-01

    Combining rock art studies with ethnohistory, contemporary ethnographic analysis, and the interpretations of people who share the cultural traditions being studied, this paper documents a rock art site in Kanab Creek Canyon that appears to have been the location of a Ghost Dance ceremony performed by Southern Paiute and perhaps Hualapai people in the late 1800s. Using the site as a point of departure, it focuses on the way in which synergistic associations among place, artifact, resources, events, and historic and contemporary Indian people contribute to the construction of a contextual cultural landscape.

  11. Gravity's ghost and big dog scientific discovery and social analysis in the twenty-first century

    CERN Document Server

    Collins, Harry

    2013-01-01

    Gravity's Ghost and Big Dog brings to life science's efforts to detect cosmic gravitational waves. These ripples in space-time are predicted by general relativity, and their discovery will not only demonstrate the truth of Einstein's theories but also transform astronomy. Although no gravitational wave has ever been directly detected, the previous five years have been an especially exciting period in the field. Here sociologist Harry Collins offers readers an unprecedented view of gravitational wave research and explains what it means for an analyst to do work of this kind.

  12. Irish nationalism and the uncanny: a reading of “The ghost of Roger Casement”

    OpenAIRE

    Bolfarine, Mariana; Universidade de São Paulo

    2015-01-01

    Of the several fictional works about the Irish revolutionary Roger David Casement, none has reached the notoriety of William Butler Yeats’s poem “The ghost of Roger Casement” (1936). Roger Casement is known for acting as British Consul in Africa and in Brazil, having reported atrocities committed against the natives in these regions by imperial rubber companies. The aftermath of having witnessed the effects of such atrocities eventually turned Casement against the British Empire for which he ...

  13. Neutron diffraction and oxide research

    International Nuclear Information System (INIS)

    Hunter, B.; Howard, C.J.; Kennedy, B.J.

    1999-01-01

    Oxide compounds form a large class of interesting materials that have a diverse range of mechanical and electronic properties. This diversity and its commercial implications has had a significant impact on physics research. This is particularly evident in the fields of superconductivity magnetoresistivity and ferroelectricity, where discoveries in the last 15 years have given rise to significant shifts in research activities. Historically, oxides have been studied for many years, but it is only recently that significant effort has been diverted to the study of oxide materials for their application to mechanical and electronic devices. An important property of such materials is the atomic structure, for the determination of which diffraction techniques are ideally suited. Recent examples of structure determinations using neutron diffraction in oxide based systems are high temperature superconductors, where oxygen defects are a key factor. Here, neutron diffraction played a major role in determining the effect of oxygen on the superconducting properties. Similarly, neutron diffraction has enjoyed much success in the determination of the structures of the manganate based colossal magnetoresistive (CMR) materials. In both these cases the structure plays a pivotal role in determining theoretical models of the electronic properties. The neutron scattering group at ANSTO has investigated several oxide systems using neutron powder diffraction. Two such systems are presented in this paper; the zirconia-based materials that are used as engineering materials, and the perovskite-based oxides that include the well known cuprate superconductors and the manganate CMR materials

  14. High-energy particle diffraction

    International Nuclear Information System (INIS)

    Barone, V.; Predazzi, E.

    2002-01-01

    This monograph gives a comprehensive and up-to-date overview of soft and hard diffraction processes in strong interaction physics. The first part covers the general formalism (the optical analogy, the eikonal picture, high-energy kinematics, S-matrix theory) and soft hadron-hadron scattering (including the Regge theory) in a complete and mature presentation. It can be used as a textbook in particle physics classes. The remainder of the book is devoted to the 'new diffraction': the pomeron in QCD, low-x physics, diffractive deep inelastic scattering and related processes, jet production etc. It presents recent results and experimental findings and their phenomenological interpretations. This part addresses graduate students as well as researchers. (orig.)

  15. Diffraction of high energy electrons

    International Nuclear Information System (INIS)

    Bourret, A.

    1981-10-01

    The diffraction of electrons by a crystal is examined to study its structure. As the electron-substance interaction is strong, it must be treated in a dynamic manner. Using the N waves theory and physical optics the base equations giving the wave at the outlet are deduced for a perfect crystal and their equivalence is shown. The more complex case of an imperfect crystal is then envisaged in these two approaches. In both cases, only the diffraction of high energy electrons ( > 50 KeV) are considered since in the diffraction of slow electrons back scattering cannot be ignored. Taking into account an increasingly greater number of beams, through fast calculations computer techniques, enables images to be simulated in very varied conditions. The general use of the Fast Fourier Transform has given a clear cut practical advantage to the multi-layer method [fr

  16. Hard diffraction and rapidity gaps

    International Nuclear Information System (INIS)

    Brandt, A.

    1995-09-01

    The field of hard diffraction, which studies events with a rapidity gap and a hard scattering, has expanded dramatically recently. A review of new results from CDF, D OE, H1 and ZEUS will be given. These results include diffractive jet production, deep-inelastic scattering in large rapidity gap events, rapidity gaps between high transverse energy jets, and a search for diffractive W-boson production. The combination of these results gives new insight into the exchanged object, believed to be the pomeron. The results axe consistent with factorization and with a hard pomeron that contains both quarks and gluons. There is also evidence for the exchange of a strongly interacting color singlet in high momentum transfer (36 2 ) events

  17. Light diffraction through a feather

    Directory of Open Access Journals (Sweden)

    Pérez García, Hugo;

    2012-01-01

    Full Text Available We have used a feather to study light diffraction, in a qualitative as well as in a quantitative manner. Experimental measurement of the separation between the bright spots obtained with a laser pointer allowed the determination of the space between feather's barbs and barbules. The results we have obtained agree satisfactorily with those corresponding to a typical feather. Due to the kind of materials, the related concepts and the experimental results, this activity becomes an excellent didactic resource suitable for studying diffraction, both in introductory undergraduate as well as in secondary school physics courses.

  18. CONFERENCE: Elastic and diffractive scattering

    International Nuclear Information System (INIS)

    White, Alan

    1989-01-01

    Elastic scattering, when particles appear to 'bounce' off each other, and the related phenomena of diffractive scattering are currently less fashionable than the study of hard scattering processes. However this could change rapidly if unexpected results from the UA4 experiment at the CERN Collider are confirmed and their implications tested. These questions were highlighted at the third 'Blois Workshop' on Elastic and Diffractive Scattering, held early in May on the Evanston campus of Northwestern University, near Chicago

  19. Dynamical theory of neutron diffraction

    International Nuclear Information System (INIS)

    Sears, V.F.

    1978-01-01

    We present a review of the dynamical theory of neutron diffraction by macroscopic bodies which provides the theoretical basis for the study of neutron optics. We consider both the theory of dispersion, in which it is shown that the coherent wave in the medium satisfies a macroscopic one-body Schroedinger equation, and the theory of reflection, refraction, and diffraction in which the above equation is solved for a number of special cases of interest. The theory is illustrated with the help of experimental results obtained over the past 10 years by a number of new techniques such as neutron gravity refractometry. Pendelloesung interference, and neutron interferometry. (author)

  20. Diffractive dissociation and new quarks

    International Nuclear Information System (INIS)

    White, A.R.

    1983-04-01

    We argue that the chiral limit of QCD can be identified with the strong (diffractive dissociation) coupling limit of reggeon field theory. Critical Pomeron scaling at high energy must then be directly related to an infra-red fixed-point of massless QCD and so requires a large number of flavors. This gives a direct argument that the emergence of diffraction-peak scaling, KNO scaling etc. at anti p-p colliders are evidence of a substantial quark structure still to be discovered

  1. Forming positive-negative images using conditioned partial measurements from reference arm in ghost imaging.

    Science.gov (United States)

    Wen, Jianming

    2012-09-01

    A recent thermal ghost imaging experiment implemented in Wu's group [Chin. Phys. Lett. 279, 074216 (2012)] showed that both positive and negative images can be constructed by applying a novel algorithm. This algorithm allows us to form the images with the use of partial measurements from the reference arm (even which never passes through the object), conditioned on the object arm. In this paper, we present a simple theory that explains the experimental observation and provides an in-depth understanding of conventional ghost imaging. In particular, we theoretically show that the visibility of formed images through such an algorithm is not bounded by the standard value 1/3. In fact, it can ideally grow up to unity (with reduced imaging quality). Thus, the algorithm described here not only offers an alternative way to decode spatial correlation of thermal light, but also mimics a "bandpass filter" to remove the constant background such that the visibility or imaging contrast is improved. We further show that conditioned on one still object present in the test arm, it is possible to construct the object's image by sampling the available reference data.

  2. Increased phorbol 12,13-dibutyrate (PDBu) receptor function associated with sickle red cell membrane ghosts

    International Nuclear Information System (INIS)

    Ramachandran, M.; Nair, C.N.; Abraham, E.C.

    1987-01-01

    The biological receptor for tumor-promoting phorbol esters has been identified as the Ca 2+ /phospholipid dependent enzyme, protein kinase C. In the red cell, this enzyme is mainly cytosolic but becomes translocated to the membrane if the cellular Ca 2+ is allowed to rise. Since cellular Ca 2+ in sickle red cells is high, it was reasoned that this enzyme may become more membrane-bound. In fact, the authors noticed a four-fold increase in the binding of 3 H-PDBu by membrane ghosts isolated from sickle red cells compared to normal red cells (pmoles PDBu bound/mg protein; normal = 0.3 vs sickle cell = 1.4). Attempts to assay the enzyme directly as phospholipid-activated 32 P incorporation into the acid-precipitable membrane proteins also indicated a two-fold increase in the radiolabelling of sickle cell membrane ghosts. Autophosphorylation of membrane proteins and analysis of the phosphorylation profile by SDS-PAGE and autoradiography revealed phosphorylation predominantly of bands 3, 4.1 and 4.9 which are known protein kinase C substrates for the red cell enzyme. The increased membrane-associated protein kinase C in sickle red cells may have a bearing on the altered membrane properties reported in this condition

  3. At the Table with Hungry Ghosts: Intimate Borderwork in Mexico City

    Directory of Open Access Journals (Sweden)

    Jean Duruz

    2011-09-01

    Full Text Available This article focuses on the project of sustaining cultural diversity within global cities’ intimate spaces. Specifically, it sketches the culinary histories of an Anglo-Australian woman (who, in 1968, settled permanently in Mexico and her male partner (who grew up in Mexico; his mother Mexican, his father Cantonese. Drawing on the tools of ‘borderwork’ (Hodge and O’Carroll, the argument positions culturally diverse landscapes of ‘Sydney’, ‘China’ and ‘Mexico City’ as distinct yet overlapping geographies. Meanwhile, analysis of curious moments in the couple’s intersecting histories contributes much fluidity to this cartography. In the process, a company of hungry ghosts appears at the dinner table – ghosts of diversity, diaspora and cosmopolitanism; nostalgia and memory; gender and ethnicity; home and belonging. The article concludes that even when borderwork is conducted amiably behind closed doors, it relies on contradictions for cultural sustenance. At the same time, its tensions resonate with possibilities for creative practice.

  4. The ghost of pandemics past: revisiting two centuries of influenza in Sweden.

    Science.gov (United States)

    Holmberg, Martin

    2017-09-01

    Previous influenza pandemics are usually invoked in pandemic preparedness planning without a thorough analysis of the events surrounding them, what has been called the 'configuration' of epidemics. Historic pandemics are instead used to contrast them to the novelty of the coming imagined plague or as fear of a ghost-like repetition of the past. This view of pandemics is guided by a biomedical framework that is ahistorical and reductionist. The meaning of 'pandemic' influenza is in fact highly ambiguous in its partitioning of pandemic and seasonal influenza. The past 200 years of influenza epidemics in Sweden are examined with a special focus on key social structures-households, schools, transportations and the military. These are shown to have influenced the progression of influenza pandemics. Prevailing beliefs around influenza pandemics have also profoundly influenced intervention strategies. Measuring long-term trends in pandemic severity is problematic because pandemics are non-linear events where the conditions surrounding them constantly change. However, in a linearised view, the Spanish flu can be seen to represent a historical turning point and the H1N1 2009 pandemic not as an outlier, but following a 100-year trend of decreasing severity. Integrating seasonal and pandemic influenza, and adopting an ecosocial stance can deepen our understanding and bring the ghost-like pandemic past to life. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  5. Fed-Batch Production of Bacterial Ghosts Using Dielectric Spectroscopy for Dynamic Process Control

    Directory of Open Access Journals (Sweden)

    Andrea Meitz

    2016-03-01

    Full Text Available The Bacterial Ghost (BG platform technology evolved from a microbiological expression system incorporating the ϕX174 lysis gene E. E-lysis generates empty but structurally intact cell envelopes (BGs from Gram-negative bacteria which have been suggested as candidate vaccines, immunotherapeutic agents or drug delivery vehicles. E-lysis is a highly dynamic and complex biological process that puts exceptional demands towards process understanding and control. The development of a both economic and robust fed-batch production process for BGs required a toolset capable of dealing with rapidly changing concentrations of viable biomass during the E-lysis phase. This challenge was addressed using a transfer function combining dielectric spectroscopy and soft-sensor based biomass estimation for monitoring the rapid decline of viable biomass during the E-lysis phase. The transfer function was implemented to a feed-controller, which followed the permittivity signal closely and was capable of maintaining a constant specific substrate uptake rate during lysis phase. With the described toolset, we were able to increase the yield of BG production processes by a factor of 8–10 when compared to currently used batch procedures reaching lysis efficiencies >98%. This provides elevated potentials for commercial application of the Bacterial Ghost platform technology.

  6. High performance optical encryption based on computational ghost imaging with QR code and compressive sensing technique

    Science.gov (United States)

    Zhao, Shengmei; Wang, Le; Liang, Wenqiang; Cheng, Weiwen; Gong, Longyan

    2015-10-01

    In this paper, we propose a high performance optical encryption (OE) scheme based on computational ghost imaging (GI) with QR code and compressive sensing (CS) technique, named QR-CGI-OE scheme. N random phase screens, generated by Alice, is a secret key and be shared with its authorized user, Bob. The information is first encoded by Alice with QR code, and the QR-coded image is then encrypted with the aid of computational ghost imaging optical system. Here, measurement results from the GI optical system's bucket detector are the encrypted information and be transmitted to Bob. With the key, Bob decrypts the encrypted information to obtain the QR-coded image with GI and CS techniques, and further recovers the information by QR decoding. The experimental and numerical simulated results show that the authorized users can recover completely the original image, whereas the eavesdroppers can not acquire any information about the image even the eavesdropping ratio (ER) is up to 60% at the given measurement times. For the proposed scheme, the number of bits sent from Alice to Bob are reduced considerably and the robustness is enhanced significantly. Meantime, the measurement times in GI system is reduced and the quality of the reconstructed QR-coded image is improved.

  7. CMS results on soft diffraction

    CERN Document Server

    INSPIRE-00086121

    2013-01-01

    We present measurements of soft single- and double-diffractive cross sections, as well as of forward rapidity gap cross sections at 7 TeV at the LHC, and compare the results to other measurements and to theoretical predictions implemented in various Monte Carlo simulations.

  8. LEED (Low Energy Electron Diffraction)

    International Nuclear Information System (INIS)

    Aberdam, M.

    1973-01-01

    The various types of systems studied by LEED, and for which the geometry of diffraction patterns is exploited, are reviewed, intensity profiles being another source of information. Two representative approaches of the scattering phenomenon are examined; the band structure theory and the T matrix approach [fr

  9. A QCD analysis of ZEUS diffractive data

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2009-11-15

    ZEUS inclusive diffractive cross-section measurements have been used in a DGLAP next-to-leading-order QCD analysis to extract the diffractive parton distribution functions. Data on diffractive dijet production in deep inelastic scattering have also been included to constrain the gluon density. Predictions based on the extracted parton densities are compared to diffractive charm and dijet photoproduction data. (orig.)

  10. A QCD analysis of ZEUS diffractive data

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2009-11-01

    ZEUS inclusive diffractive cross-section measurements have been used in a DGLAP next-to-leading-order QCD analysis to extract the diffractive parton distribution functions. Data on diffractive dijet production in deep inelastic scattering have also been included to constrain the gluon density. Predictions based on the extracted parton densities are compared to diffractive charm and dijet photoproduction data. (orig.)

  11. Electro-optic diffraction grating tuned laser

    International Nuclear Information System (INIS)

    Hughes, R.S.

    1975-01-01

    An electro-optic diffraction grating tuned laser comprising a laser medium, output mirror, retro-reflective grating and an electro-optic diffraction grating beam deflector positioned between the laser medium and the reflective diffraction grating is described. An optional angle multiplier may be used between the electro-optic diffraction grating and the reflective grating. (auth)

  12. The Contribution of the Holy Ghost Congregation to the Educational Development of Nigeria: Historical and Contemporary Reflections

    Science.gov (United States)

    Amadi, Anthony

    2016-01-01

    This article is a historical narrative about the contribution the Holy Ghost Congregation made in the educational development of Nigeria. It is narrative because it highlights the events and the work of the early Spiritan missionaries that brought education and its benefits to Nigerians. It is pedagogic because it describes the methods these Holy…

  13. Radiation-induced structural changes in membrane proteins of human erythrocytes and ghosts and the relation to cellular morphology

    Energy Technology Data Exchange (ETDEWEB)

    Schuurhuis, G.J.; Hommes, J.; Vos, J.; Molenaar, I.; Konings, A.W.T. (Rijksuniversiteit Groningen (Netherlands))

    1984-02-01

    Isolated human erythrocytes and ghosts were irradiated with X-rays under different experimental conditions and the effect examined with regard to the structure of membrane proteins and morphology of whole cells and ghosts. From sodium dodecyl sulphate/polyacrylamide gel electrophoresis it is concluded that spectrin (band 1 and 2) is the most radiosensitive of the membrane proteins examined. X-irradiation of cells and ghosts induced covalent cross-linking of a small fraction of membrane proteins. In the protein aggregates thus formed spectrin was found to be the major component. Molecular disulphide (-SS-) bridges seemed to account for part of the cross-links observed. Some nondisulphide cross-links were found, especially when ghosts were irradiated. Significant amounts of spectrin aggregates were formed during post-irradiation incubation at 37/sup 0/C but not at 4/sup 0/C. In the intact cell a transformation in shape from discocyte to echinocyte accompanied the process of post-irradiation spectrin aggregation. The characteristics of both processes, such as their reversibility with adenosine, point to a metabolic involvement. It is shown that there is no causal relationship between the two phenomena observed. Possible causes of the post-irradiation effects and the parallelism with similar processes in non-irradiated metabolically depleted cells are discussed.

  14. Radiation-induced structural changes in membrane proteins of human erythrocytes and ghosts and the relation to cellular morphology

    International Nuclear Information System (INIS)

    Schuurhuis, G.J.; Hommes, J.; Vos, J.; Molenaar, I.; Konings, A.W.T.

    1984-01-01

    Isolated human erythrocytes and ghosts were irradiated with X-rays under different experimental conditions and the effect examined with regard to the structure of membrane proteins and morphology of whole cells and ghosts. From sodium dodecyl sulphate/polyacrylamide gel electrophoresis it is concluded that spectrin (band 1 and 2) is the most radiosensitive of the membrane proteins examined. X-irradiation of cells and ghosts induced covalent cross-linking of a small fraction of membrane proteins. In the protein aggregates thus formed spectrin was found to be the major component. Molecular disulphide (-SS-) bridges seemed to account for part of the cross-links observed. Some nondisulphide cross-links were found, especially when ghosts were irradiated. Significant amounts of spectrin aggregates were formed during post-irradiation incubation at 37 0 C but not at 4 0 C. In the intact cell a transformation in shape from discocyte to echinocyte accompanied the process of post-irradiation spectrin aggregation. The characteristics of both processes, such as their reversibility with adenosine, point to a metabolic involvement. It is shown that there is no causal relationship between the two phenomena observed. Possible causes of the post-irradiation effects and the parallelism with similar processes in non-irradiated metabolically depleted cells are discussed. (author)

  15. PLOTGEOMX: a program for display of a neutron target assembly by means of a GHOST plotting system

    International Nuclear Information System (INIS)

    Clarke, J.H.

    1978-02-01

    The program PLOTGEOM has been modified to work on the A.E.R.E., Harwell IBM 370-167 computer using the GHOST graphics package. The control data routine has been altered to permit free format input and the program has been compiled and stored using the extended-H FORTRAN optimising compiler. (author)

  16. Ontogenetic changes in biochemical composition during larval and early postlarval development of Lepidophthalmus louisianensis, a ghost shrimp with abbreviated development

    Science.gov (United States)

    Larvae of the ghost shrimp, Lepidophthalmus louisianensis, were mass-reared under laboratory conditions (28|C; 20o/ooS) from hatching to the decapodid (D) stage. Iatroscan lipid class analysis revealed that polar lipids (Zoea I: 77.4|1.7%; Zoea II: 77.5|2.1%; Decapodid: 80.0|1.7%...

  17. Mrs. Shipley’s Ghost: The Right to Travel and Terrorist Watchlists (by Jeffrey Kahn, University of Michigan Press, 2013

    Directory of Open Access Journals (Sweden)

    Susan Ginsburg

    2014-04-01

    Full Text Available Since 9/11, migration-related security measures, including a growing reliance on watch-lists, have limited the right to travel. Jeffrey Kahn’s book, Mrs. Shipley’s Ghost: The Right to Travel and Terrorist Watchlists, examines the legal and policy questions raised by prohibitions on travel by US citizens. 

  18. Diffraction efficiency calculations of polarization diffraction gratings with surface relief

    Science.gov (United States)

    Nazarova, D.; Sharlandjiev, P.; Berberova, N.; Blagoeva, B.; Stoykova, E.; Nedelchev, L.

    2018-03-01

    In this paper, we evaluate the optical response of a stack of two diffraction gratings of equal one-dimensional periodicity. The first one is a surface-relief grating structure; the second, a volume polarization grating. This model is based on our experimental results from polarization holographic recordings in azopolymer films. We used films of commercially available azopolymer (poly[1-[4-(3-carboxy-4-hydroxyphenylazo) benzenesulfonamido]-1,2-ethanediyl, sodium salt]), shortly denoted as PAZO. During the recording process, a polarization grating in the volume of the material and a relief grating on the film surface are formed simultaneously. In order to evaluate numerically the optical response of this “hybrid” diffraction structure, we used the rigorous coupled-wave approach (RCWA). It yields stable numerical solutions of Maxwell’s vector equations using the algebraic eigenvalue method.

  19. Enhanced anti-proliferative efficacy of epothilone B loaded with Escherichia coli Nissle 1917 bacterial ghosts on the HeLa cells by mitochondrial pathway of apoptosis.

    Science.gov (United States)

    Zhu, Wenxing; Hao, Lujiang; Liu, Xinli; Orlando, Borrás-Hidalgo; Zhang, Yuyu

    2018-03-20

    Epothilones constitute a new class of microtubule-stabilizing anti-cancer agents with promising preclinical and clinical activity. However, its systemic application still causes some toxic side effects. To reduce these undesired effects, advanced drug delivery systems based on cell targeting carriers are needed currently. In this study, the high quality bacterial ghosts of the probiotic Escherichia coli Nissle 1917 (EcN) were prepared in a large scale and retained fully intact surface structures for specific attachment to mammalian cells. The EcN ghosts could be efficiently loaded with the low hydrophilic drug Epothilone B (Epo B) and the maximal load efficiency was approximately 2.5% (w/w). Cytotoxicity assays revealed that Epo B-ghosts exhibited enhanced anti-proliferative properties on the HeLa cells. The Epo B associated with EcN ghosts was more cytotoxic at least 10 times than the free Epo B at the same concentrations. Apoptosis assays showed that both Epo B-ghosts and free Epo B induced time course-dependent apoptosis and necrosis in HeLa cells, respectively. While the former induced more apoptosis and necrosis than the latter. Furthermore, the cytochrome C release and the activation of caspase-3 were more remarkable after treatment with the Epo B-ghosts compared to the free Epo B, which implied that Epo B-ghosts might more effectively induce the apoptosis mediated by mitochondrial pathway in HeLa cells. Therefore, the higher anti-proliferative effects of the Epo B-ghosts on the HeLa cells were mediated by mitochondrial pathway of apoptosis. The EcN ghosts may provide a useful drug delivery carrier for drug candidates in cancer therapy.

  20. Digital diffractive optics: Have diffractive optics entered mainstream industry yet?

    Science.gov (United States)

    Kress, Bernard; Hejmadi, Vic

    2010-05-01

    When a new technology is integrated into industry commodity products and consumer electronic devices, and sold worldwide in retail stores, it is usually understood that this technology has then entered the realm of mainstream technology and therefore mainstream industry. Such a leap however does not come cheap, as it has a double edge sword effect: first it becomes democratized and thus massively developed by numerous companies for various applications, but also it becomes a commodity, and thus gets under tremendous pressure to cut down its production and integration costs while not sacrificing to performance. We will show, based on numerous examples extracted from recent industry history, that the field of Diffractive Optics is about to undergo such a major transformation. Such a move has many impacts on all facets of digital diffractive optics technology, from the optical design houses to the micro-optics foundries (for both mastering and volume replication), to the final product integrators or contract manufacturers. The main causes of such a transformation are, as they have been for many other technologies in industry, successive technological bubbles which have carried and lifted up diffractive optics technology within the last decades. These various technological bubbles have been triggered either by real industry needs or by virtual investment hype. Both of these causes will be discussed in the paper. The adjective ""digital"" in "digital diffractive optics" does not refer only, as it is done in digital electronics, to the digital functionality of the element (digital signal processing), but rather to the digital way they are designed (by a digital computer) and fabricated (as wafer level optics using digital masking techniques). However, we can still trace a very strong similarity between the emergence of micro-electronics from analog electronics half a century ago, and the emergence of digital optics from conventional optics today.

  1. Neutron diffraction on pulsed sources

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Balagurov, A.M.

    2016-01-01

    The possibilities currently offered and major scientific problems solved by time-of-flight neutron diffraction are reviewed. The reasons for the rapid development of the method over the last two decades has been mainly the emergence of third generation pulsed sources with a MW time-averaged power and advances in neutron-optical devices and detector systems. The paper discusses some historical aspects of time-of-flight neutron diffraction and examines the contribution to this method by F.L.Shapiro whose 100th birth anniversary was celebrated in 2015. The state of the art with respect to neutron sources for studies on output beams is reviewed in a special section. [ru

  2. Industrial applications of neutron diffraction

    International Nuclear Information System (INIS)

    Felcher, G.P.

    1989-01-01

    Neutron diffraction (or, to be more general, neutron scattering) is a most versatile and universal tool, which has been widely employed to probe the structure, the dynamics and the magnetism of condensed matter. Traditionally used for fundamental research in solid state physics, this technique more recently has been applied to problems of immediate industrial interest, as illustrated in examples covering the main fields of endeavour. 14 refs., 14 figs

  3. Neutron diffraction and Vitamin E

    Energy Technology Data Exchange (ETDEWEB)

    Harroun, T A; Marquardt, D; Katsaras, J; Atkinson, J, E-mail: tharroun@brocku.ca

    2010-11-01

    It is generally accepted that neutron diffraction from model membrane systems is an effective biophysical technique for determining membrane structure. Here we describe an example of how deuterium labelling can elucidate the location of specific membrane soluble molecules, including a brief discussion of the technique itself. We show that deuterium labelled {alpha}-tocopherol sits upright in the bilayer, as might be expected, but at very different locations within the bilayer, depending on the degree of lipid chain unsaturation.

  4. Diffraction dissociation and elastic scattering

    International Nuclear Information System (INIS)

    Verebryusov, V.S.; Ponomarev, L.A.; Smorodinskaya, N.Ya.

    1987-01-01

    In the framework of Regge scheme with supercritical pomeron a model is suggested for the NN-scattering amplitude which takes into account the contribution introduced to the intermediate state by diffraction dissociation (DD) processes. The DD amplitude is written in terms of the Deck model which has been previously applied to describing the main DD features. The calculated NN cross sections are compared with those obtained experimentally. Theoretical predictions for higher energy are presented

  5. Submicron X-ray diffraction

    International Nuclear Information System (INIS)

    MacDowell, Alastair; Celestre, Richard; Tamura, Nobumichi; Spolenak, Ralph; Valek, Bryan; Brown, Walter; Bravman, John; Padmore, Howard; Batterman, Boris; Patel, Jamshed

    2000-01-01

    At the Advanced Light Source in Berkeley the authors have instrumented a beam line that is devoted exclusively to x-ray micro diffraction problems. By micro diffraction they mean those classes of problems in Physics and Materials Science that require x-ray beam sizes in the sub-micron range. The instrument is for instance, capable of probing a sub-micron size volume inside micron sized aluminum metal grains buried under a silicon dioxide insulating layer. The resulting Laue pattern is collected on a large area CCD detector and automatically indexed to yield the grain orientation and deviatoric (distortional) strain tensor of this sub-micron volume. A four-crystal monochromator is then inserted into the beam, which allows monochromatic light to illuminate the same part of the sample. Measurement of diffracted photon energy allows for the determination of d spacings. The combination of white and monochromatic beam measurements allow for the determination of the total strain/stress tensor (6 components) inside each sub-micron sized illuminated volume of the sample

  6. Diffraction Techniques in Structural Biology

    Science.gov (United States)

    Egli, Martin

    2016-01-01

    A detailed understanding of chemical and biological function and the mechanisms underlying the molecular activities ultimately requires atomic-resolution structural data. Diffraction-based techniques such as single-crystal X-ray crystallography, electron microscopy, and neutron diffraction are well established and they have paved the road to the stunning successes of modern-day structural biology. The major advances achieved in the last 20 years in all aspects of structural research, including sample preparation, crystallization, the construction of synchrotron and spallation sources, phasing approaches, and high-speed computing and visualization, now provide specialists and nonspecialists alike with a steady flow of molecular images of unprecedented detail. The present unit combines a general overview of diffraction methods with a detailed description of the process of a single-crystal X-ray structure determination experiment, from chemical synthesis or expression to phasing and refinement, analysis, and quality control. For novices it may serve as a stepping-stone to more in-depth treatises of the individual topics. Readers relying on structural information for interpreting functional data may find it a useful consumer guide. PMID:27248784

  7. Neutron diffraction and lattice defects

    International Nuclear Information System (INIS)

    Hamaguchi, Yoshikazu

    1974-01-01

    Study on lattice defects by neutron diffraction technique is described. Wave length of neutron wave is longer than that of X-ray, and absorption cross-section is small. Number of defects observed by ESR is up to several defects, and the number studied with electron microscopes is more than 100. Information obtained by neutron diffraction concerns the number of defects between these two ranges. For practical analysis, several probable models are selected from the data of ESR or electron microscopes, and most probable one is determined by calculation. Then, defect concentration is obtained from scattering cross section. It is possible to measure elastic scattering exclusively by neutron diffraction. Minimum detectable concentration estimated is about 0.5% and 10 20 - 10 21 defects per unit volume. A chopper and a time of flight system are used as a measuring system. Cold neutrons are obtained from the neutron sources inserted into reactors. Examples of measurements by using similar equipments to PTNS-I system of Japan Atomic Energy Research Institute are presented. Interstitial concentration in the graphite irradiated by fast neutrons is shown. Defects in irradiated MgO were also investigated by measuring scattering cross section. Study of defects in Ge was made by measuring total cross section, and model analysis was performed in comparison with various models. (Kato, T.)

  8. Ghost Music

    DEFF Research Database (Denmark)

    2012-01-01

    Geolocative AR concert for Arts Festival of North Norway (Festspillene i Nord-Norge), Harstad, Norge. In cooperation with The Norwegian Academy of Music, Oslo.......Geolocative AR concert for Arts Festival of North Norway (Festspillene i Nord-Norge), Harstad, Norge. In cooperation with The Norwegian Academy of Music, Oslo....

  9. Pepper's Ghost

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    2011-01-01

    Without applications of physics such as counter-weighted sets and backdrops, inclined planes, stage lighting instruments, and other mechanisms for "deus ex machina," dramatic productions would revert to the words only--fine for Shakespeare and Becket, but not good for audiences who are accustomed to experiencing plays with the eye as well as the…

  10. Optical identity authentication technique based on compressive ghost imaging with QR code

    Science.gov (United States)

    Wenjie, Zhan; Leihong, Zhang; Xi, Zeng; Yi, Kang

    2018-04-01

    With the rapid development of computer technology, information security has attracted more and more attention. It is not only related to the information and property security of individuals and enterprises, but also to the security and social stability of a country. Identity authentication is the first line of defense in information security. In authentication systems, response time and security are the most important factors. An optical authentication technology based on compressive ghost imaging with QR codes is proposed in this paper. The scheme can be authenticated with a small number of samples. Therefore, the response time of the algorithm is short. At the same time, the algorithm can resist certain noise attacks, so it offers good security.

  11. Functional display of ice nucleation protein InaZ on the surface of bacterial ghosts.

    Science.gov (United States)

    Kassmannhuber, Johannes; Rauscher, Mascha; Schöner, Lea; Witte, Angela; Lubitz, Werner

    2017-09-03

    In a concept study the ability to induce heterogeneous ice formation by Bacterial Ghosts (BGs) from Escherichia coli carrying ice nucleation protein InaZ from Pseudomonas syringae in their outer membrane was investigated by a droplet-freezing assay of ultra-pure water. As determined by the median freezing temperature and cumulative ice nucleation spectra it could be demonstrated that both the living recombinant E. coli and their corresponding BGs functionally display InaZ on their surface. Under the production conditions chosen both samples belong to type II ice-nucleation particles inducing ice formation at a temperature range of between -5.6 °C and -6.7 °C, respectively. One advantage for the application of such BGs over their living recombinant mother bacteria is that they are non-living native cell envelopes retaining the biophysical properties of ice nucleation and do no longer represent genetically modified organisms (GMOs).

  12. X-ray ‘ghost images’ could cut radiation doses

    Science.gov (United States)

    Chen, Sophia

    2018-03-01

    On its own, a single-pixel camera captures pictures that are pretty dull: squares that are completely black, completely white, or some shade of gray in between. All it does, after all, is detect brightness. Yet by connecting a single-pixel camera to a patterned light source, a team of physicists in China has made detailed x-ray images using a statistical technique called ghost imaging, first pioneered 20 years ago in infrared and visible light. Researchers in the field say future versions of this system could take clear x-ray photographs with cheap cameras—no need for lenses and multipixel detectors—and less cancer-causing radiation than conventional techniques.

  13. Gravitational field of static p -branes in linearized ghost-free gravity

    Science.gov (United States)

    Boos, Jens; Frolov, Valeri P.; Zelnikov, Andrei

    2018-04-01

    We study the gravitational field of static p -branes in D -dimensional Minkowski space in the framework of linearized ghost-free (GF) gravity. The concrete models of GF gravity we consider are parametrized by the nonlocal form factors exp (-□/μ2) and exp (□2/μ4) , where μ-1 is the scale of nonlocality. We show that the singular behavior of the gravitational field of p -branes in general relativity is cured by short-range modifications introduced by the nonlocalities, and we derive exact expressions of the regularized gravitational fields, whose geometry can be written as a warped metric. For large distances compared to the scale of nonlocality, μ r →∞ , our solutions approach those found in linearized general relativity.

  14. A benign property of the ghost mode in massive theory of gravitation

    Science.gov (United States)

    Chugreev, Yu. V.

    2018-01-01

    It was shown in the frameworks of massive gravitational theories having in linear approximation mass term {m^2}( {φ ^{α β }}{φ_{α β }} - 1/2{φ ^2}} ) in the lagrangian, that created some time ago spherically-symmetric static sources should possess inside their light cone not only Yukawa potential, but also nonstationary component. It leads to the long ( 1/ m) period of gravitational evaporation of such sources with the mass loss Ṁ m 2 M 2 The magnitude of the flux is c 4/ v 4 times ( c—speed of light, v—velocity of the source particles) bigger then negative gravitational radiation flux corresponding to the ghost scalar mode in the spectrum of such gravitational field, with stabilizing the source.

  15. The anomalous dimension of the gluon-ghost mass operator in Yang-Mills theory

    International Nuclear Information System (INIS)

    Dudal, D.; Verschelde, H.; Lemes, V.E.R.; Sarandy, M.S.; Sobreiro, R.; Sorella, S.P.; Picariello, M.; Gracey, J.A.

    2003-01-01

    The local composite gluon-ghost operator (((1)/(2))A aμ A μ a +αc-bar a c a ) is analysed in the framework of the algebraic renormalization in SU(N) Yang-Mills theories in the Landau, Curci-Ferrari and maximal abelian gauges. We show, to all orders of perturbation theory, that this operator is multiplicatively renormalizable. Furthermore, its anomalous dimension is not an independent parameter of the theory, being given by a general expression valid in all these gauges. We also verify the relations we obtain for the operator anomalous dimensions by explicit 3-loop calculations in the MS-bar scheme for the Curci-Ferrari gauge

  16. Modalities of representation and perception in Michael Ondaatje’s Anil’s Ghost

    Directory of Open Access Journals (Sweden)

    Sigrid Renaux

    2017-01-01

    Full Text Available http://dx.doi.org/10.5007/2175-8026.2017v70n1p113 This study analyses the way in which the interdependence of the representation and perception of reality is exemplified and questioned in Michael Ondaatje’s Anil’s Ghost (2000. As we enter this work of resistance literature by way of an omniscient narrator, we enter not just the geographical spaces and cultural history of Sri Lanka, but find ourselves taking part in the daily struggle of the people to survive, to identify and do justice to the many dead in this conflict between ethnic groups and the government. This fragmentation of the narrative structure – casting doubt on the conflicting relationships established between the characters’ present and the past, between western and eastern values in relation to the concept of truth, the search for lost identity and love – highlights still further the interchangeability of representation and perception of reality.

  17. Ghost Images in Helioseismic Holography? Toy Models in a Uniform Medium

    Science.gov (United States)

    Yang, Dan

    2018-02-01

    Helioseismic holography is a powerful technique used to probe the solar interior based on estimations of the 3D wavefield. The Porter-Bojarski holography, which is a well-established method used in acoustics to recover sources and scatterers in 3D, is also an estimation of the wavefield, and hence it has the potential of being applied to helioseismology. Here we present a proof-of-concept study, where we compare helioseismic holography and Porter-Bojarski holography under the assumption that the waves propagate in a homogeneous medium. We consider the problem of locating a point source of wave excitation inside a sphere. Under these assumptions, we find that the two imaging methods have the same capability of locating the source, with the exception that helioseismic holography suffers from "ghost images" ( i.e. artificial peaks away from the source location). We conclude that Porter-Bojarski holography may improve the method currently used in helioseismology.

  18. Incorporating Quantitative Reasoning in Common Core Courses: Mathematics for The Ghost Map

    Directory of Open Access Journals (Sweden)

    John R. Jungck

    2012-01-01

    Full Text Available How can mathematics be integrated into multi-section interdisciplinary courses to enhance thematic understandings and shared common readings? As an example, four forms of quantitative reasoning are used to understand and critique one such common reading: Steven Berlin Johnson’s "The Ghost Map: The Story of London's Most Terrifying Epidemic - and How it Changed Science, Cities and the Modern World" (Riverhead Books, 2006. Geometry, statistics, modeling, and networks are featured in this essay as the means of depicting, understanding, elaborating, and critiquing the public health issues raised in Johnson’s book. Specific pedagogical examples and resources are included to illustrate applications and opportunities for generalization beyond this specific example. Quantitative reasoning provides a robust, yet often neglected, lens for doing literary and historical analyses in interdisciplinary education.

  19. Unusual square roots in the ghost-free theory of massive gravity

    Science.gov (United States)

    Golovnev, Alexey; Smirnov, Fedor

    2017-06-01

    A crucial building block of the ghost free massive gravity is the square root function of a matrix. This is a problematic entity from the viewpoint of existence and uniqueness properties. We accurately describe the freedom of choosing a square root of a (non-degenerate) matrix. It has discrete and (in special cases) continuous parts. When continuous freedom is present, the usual perturbation theory in terms of matrices can be critically ill defined for some choices of the square root. We consider the new formulation of massive and bimetric gravity which deals directly with eigenvalues (in disguise of elementary symmetric polynomials) instead of matrices. It allows for a meaningful discussion of perturbation theory in such cases, even though certain non-analytic features arise.

  20. An accurate conservative level set/ghost fluid method for simulating turbulent atomization

    International Nuclear Information System (INIS)

    Desjardins, Olivier; Moureau, Vincent; Pitsch, Heinz

    2008-01-01

    This paper presents a novel methodology for simulating incompressible two-phase flows by combining an improved version of the conservative level set technique introduced in [E. Olsson, G. Kreiss, A conservative level set method for two phase flow, J. Comput. Phys. 210 (2005) 225-246] with a ghost fluid approach. By employing a hyperbolic tangent level set function that is transported and re-initialized using fully conservative numerical schemes, mass conservation issues that are known to affect level set methods are greatly reduced. In order to improve the accuracy of the conservative level set method, high order numerical schemes are used. The overall robustness of the numerical approach is increased by computing the interface normals from a signed distance function reconstructed from the hyperbolic tangent level set by a fast marching method. The convergence of the curvature calculation is ensured by using a least squares reconstruction. The ghost fluid technique provides a way of handling the interfacial forces and large density jumps associated with two-phase flows with good accuracy, while avoiding artificial spreading of the interface. Since the proposed approach relies on partial differential equations, its implementation is straightforward in all coordinate systems, and it benefits from high parallel efficiency. The robustness and efficiency of the approach is further improved by using implicit schemes for the interface transport and re-initialization equations, as well as for the momentum solver. The performance of the method is assessed through both classical level set transport tests and simple two-phase flow examples including topology changes. It is then applied to simulate turbulent atomization of a liquid Diesel jet at Re=3000. The conservation errors associated with the accurate conservative level set technique are shown to remain small even for this complex case

  1. New Ghost-node method for linking different models with varied grid refinement

    International Nuclear Information System (INIS)

    Mehl, Steffen W.; Hill, Mary Catherine; James, Scott Carlton; Leake, Stanley A.; Zyvoloski, George A.; Dickinson, Jesse E.; Eddebbarh, Al A.

    2006-01-01

    A flexible, robust method for linking grids of locally refined models constructed with different numerical methods is needed to address a variety of hydrologic problems. This work outlines and tests a new ghost-node model-linking method for a refined 'child' model that is contained within a larger and coarser 'parent' model that is based on the iterative method of Mehl and Hill (2002, 2004). The method is applicable to steady-state solutions for ground-water flow. Tests are presented for a homogeneous two-dimensional system that has either matching grids (parent cells border an integer number of child cells; Figure 2a) or non-matching grids (parent cells border a non-integer number of child cells; Figure 2b). The coupled grids are simulated using the finite-difference and finite-element models MODFLOW and FEHM, respectively. The simulations require no alteration of the MODFLOW or FEHM models and are executed using a batch file on Windows operating systems. Results indicate that when the grids are matched spatially so that nodes and child cell boundaries are aligned, the new coupling technique has error nearly equal to that when coupling two MODFLOW models (Mehl and Hill, 2002). When the grids are non-matching, model accuracy is slightly increased over matching-grid cases. Overall, results indicate that the ghost-node technique is a viable means to accurately couple distinct models because the overall error is less than if only the regional model was used to simulate flow in the child model's domain

  2. Antioxidant effect of 4-nerolidylcatechol and α-tocopherol in erythrocyte ghost membranes and phospholipid bilayers

    Science.gov (United States)

    Fernandes, K.S.; Silva, A.H.M.; Mendanha, S.A.; Rezende, K.R.; Alonso, A.

    2013-01-01

    4-Nerolidylcatechol (4-NC) is found in Pothomorphe umbellata root extracts and is reported to have a topical protective effect against UVB radiation-induced skin damage, toxicity in melanoma cell lines, and antimalarial activity. We report a comparative study of the antioxidant activity of 4-NC and α-tocopherol against lipid peroxidation initiated by two free radical-generating systems: 2,2′-azobis(2-aminopropane) hydrochloride (AAPH) and FeSO4/H2O2, in red blood cell ghost membranes and in egg phosphatidylcholine (PC) vesicles. Lipid peroxidation was monitored by membrane fluidity changes assessed by electron paramagnetic resonance spectroscopy of a spin-labeled lipid and by the formation of thiobarbituric acid-reactive substances. When lipoperoxidation was initiated by the hydroxyl radical in erythrocyte ghost membranes, both 4-NC and α-tocopherol acted in a very efficient manner. However, lower activities were observed when lipoperoxidation was initiated by the peroxyl radical; and, in this case, the protective effect of α-tocopherol was lower than that of 4-NC. In egg PC vesicles, malondialdehyde formation indicated that 4-NC was effective against lipoperoxidation initiated by both AAPH and FeSO4/H2O2, whereas α-tocopherol was less efficient in protecting against lipoperoxidation by AAPH, and behaved as a pro-oxidant for FeSO4/H2O2. The DPPH (2,2-diphenyl-1-picrylhydrazyl) free-radical assay indicated that two free radicals were scavenged per 4-NC molecule, and one free radical was scavenged per α-tocopherol molecule. These data provide new insights into the antioxidant capacity of 4-NC, which may have therapeutic applications for formulations designed to protect the skin from sunlight irradiation. PMID:24068194

  3. New ghost-node method for linking different models with varied grid refinement

    Science.gov (United States)

    James, S.C.; Dickinson, J.E.; Mehl, S.W.; Hill, M.C.; Leake, S.A.; Zyvoloski, G.A.; Eddebbarh, A.-A.

    2006-01-01

    A flexible, robust method for linking grids of locally refined ground-water flow models constructed with different numerical methods is needed to address a variety of hydrologic problems. This work outlines and tests a new ghost-node model-linking method for a refined "child" model that is contained within a larger and coarser "parent" model that is based on the iterative method of Steffen W. Mehl and Mary C. Hill (2002, Advances in Water Res., 25, p. 497-511; 2004, Advances in Water Res., 27, p. 899-912). The method is applicable to steady-state solutions for ground-water flow. Tests are presented for a homogeneous two-dimensional system that has matching grids (parent cells border an integer number of child cells) or nonmatching grids. The coupled grids are simulated by using the finite-difference and finite-element models MODFLOW and FEHM, respectively. The simulations require no alteration of the MODFLOW or FEHM models and are executed using a batch file on Windows operating systems. Results indicate that when the grids are matched spatially so that nodes and child-cell boundaries are aligned, the new coupling technique has error nearly equal to that when coupling two MODFLOW models. When the grids are nonmatching, model accuracy is slightly increased compared to that for matching-grid cases. Overall, results indicate that the ghost-node technique is a viable means to couple distinct models because the overall head and flow errors relative to the analytical solution are less than if only the regional coarse-grid model was used to simulate flow in the child model's domain.

  4. Scalable Failure Masking for Stencil Computations using Ghost Region Expansion and Cell to Rank Remapping

    International Nuclear Information System (INIS)

    Gamell, Marc; Kolla, Hemanth; Mayo, Jackson; Heroux, Michael A.

    2017-01-01

    In order to achieve exascale systems, application resilience needs to be addressed. Some programming models, such as task-DAG (directed acyclic graphs) architectures, currently embed resilience features whereas traditional SPMD (single program, multiple data) and message-passing models do not. Since a large part of the community's code base follows the latter models, it is still required to take advantage of application characteristics to minimize the overheads of fault tolerance. To that end, this paper explores how recovering from hard process/node failures in a local manner is a natural approach for certain applications to obtain resilience at lower costs in faulty environments. In particular, this paper targets enabling online, semitransparent local recovery for stencil computations on current leadership-class systems as well as presents programming support and scalable runtime mechanisms. Also described and demonstrated in this paper is the effect of failure masking, which allows the effective reduction of impact on total time to solution due to multiple failures. Furthermore, we discuss, implement, and evaluate ghost region expansion and cell-to-rank remapping to increase the probability of failure masking. To conclude, this paper shows the integration of all aforementioned mechanisms with the S3D combustion simulation through an experimental demonstration (using the Titan system) of the ability to tolerate high failure rates (i.e., node failures every five seconds) with low overhead while sustaining performance at large scales. In addition, this demonstration also displays the failure masking probability increase resulting from the combination of both ghost region expansion and cell-to-rank remapping.

  5. Gluon and ghost propagator studies in lattice QCD at finite temperature

    International Nuclear Information System (INIS)

    Aouane, Rafik

    2013-01-01

    Gluon and ghost propagators in quantum chromodynamics (QCD) computed in the infrared momentum region play an important role to understand quark and gluon confinement. They are the subject of intensive research thanks to non-perturbative methods based on Dyson-Schwinger (DS) and functional renormalization group (FRG) equations. Moreover, their temperature behavior might also help to explore the chiral and deconfinement phase transition or crossover within QCD at non-zero temperature. Our prime tool is the lattice discretized QCD (LQCD) providing a unique ab-initio non-perturbative approach to deal with the computation of various observables of the hadronic world. We investigate the temperature dependence of Landau gauge gluon and ghost propagators in pure gluodynamics and in full QCD. Regarding the gluon propagator, we compute its longitudinal D L as well its transversal D T components. The aim is to provide a data set in terms of fitting formulae which can be used as input for DS (or FRG) equations. We deal with full (N f =2) LQCD with the twisted mass fermion discretization. We employ gauge field configurations provided by the tmfT collaboration for temperatures in the crossover region and for three fixed pion mass values in the range [300,500] MeV. Finally, within SU(3) pure gauge theory (at T=0) we compute the Landau gauge gluon propagator according to different gauge fixing criteria. Our goal is to understand the influence of gauge copies with minimal (non-trivial) eigenvalues of the Faddeev-Popov operator.

  6. Gluon and ghost propagator studies in lattice QCD at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Aouane, Rafik

    2013-04-29

    Gluon and ghost propagators in quantum chromodynamics (QCD) computed in the infrared momentum region play an important role to understand quark and gluon confinement. They are the subject of intensive research thanks to non-perturbative methods based on Dyson-Schwinger (DS) and functional renormalization group (FRG) equations. Moreover, their temperature behavior might also help to explore the chiral and deconfinement phase transition or crossover within QCD at non-zero temperature. Our prime tool is the lattice discretized QCD (LQCD) providing a unique ab-initio non-perturbative approach to deal with the computation of various observables of the hadronic world. We investigate the temperature dependence of Landau gauge gluon and ghost propagators in pure gluodynamics and in full QCD. Regarding the gluon propagator, we compute its longitudinal D{sub L} as well its transversal D{sub T} components. The aim is to provide a data set in terms of fitting formulae which can be used as input for DS (or FRG) equations. We deal with full (N{sub f}=2) LQCD with the twisted mass fermion discretization. We employ gauge field configurations provided by the tmfT collaboration for temperatures in the crossover region and for three fixed pion mass values in the range [300,500] MeV. Finally, within SU(3) pure gauge theory (at T=0) we compute the Landau gauge gluon propagator according to different gauge fixing criteria. Our goal is to understand the influence of gauge copies with minimal (non-trivial) eigenvalues of the Faddeev-Popov operator.

  7. Antioxidant effect of 4-nerolidylcatechol and α-tocopherol in erythrocyte ghost membranes and phospholipid bilayers

    International Nuclear Information System (INIS)

    Fernandes, K.S.; Silva, A.H.M.; Mendanha, S.A.; Rezende, K.R.; Alonso, A.

    2013-01-01

    4-Nerolidylcatechol (4-NC) is found in Pothomorphe umbellata root extracts and is reported to have a topical protective effect against UVB radiation-induced skin damage, toxicity in melanoma cell lines, and antimalarial activity. We report a comparative study of the antioxidant activity of 4-NC and α-tocopherol against lipid peroxidation initiated by two free radical-generating systems: 2,2′-azobis(2-aminopropane) hydrochloride (AAPH) and FeSO 4 /H 2 O 2 , in red blood cell ghost membranes and in egg phosphatidylcholine (PC) vesicles. Lipid peroxidation was monitored by membrane fluidity changes assessed by electron paramagnetic resonance spectroscopy of a spin-labeled lipid and by the formation of thiobarbituric acid-reactive substances. When lipoperoxidation was initiated by the hydroxyl radical in erythrocyte ghost membranes, both 4-NC and α-tocopherol acted in a very efficient manner. However, lower activities were observed when lipoperoxidation was initiated by the peroxyl radical; and, in this case, the protective effect of α-tocopherol was lower than that of 4-NC. In egg PC vesicles, malondialdehyde formation indicated that 4-NC was effective against lipoperoxidation initiated by both AAPH and FeSO 4 /H 2 O 2 , whereas α-tocopherol was less efficient in protecting against lipoperoxidation by AAPH, and behaved as a pro-oxidant for FeSO 4 /H 2 O 2 . The DPPH (2,2-diphenyl-1-picrylhydrazyl) free-radical assay indicated that two free radicals were scavenged per 4-NC molecule, and one free radical was scavenged per α-tocopherol molecule. These data provide new insights into the antioxidant capacity of 4-NC, which may have therapeutic applications for formulations designed to protect the skin from sunlight irradiation

  8. Antioxidant effect of 4-nerolidylcatechol and α-tocopherol in erythrocyte ghost membranes and phospholipid bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, K. S.; Silva, A. H.M.; Mendanha, S. A. [Instituto de Física, Universidade Federal de Goiás, Goiânia, GO (Brazil); Rezende, K. R. [Laboratório de Biofarmácia e Farmacocinética de Substâncias Bioativas, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO (Brazil); Alonso, A. [Instituto de Física, Universidade Federal de Goiás, Goiânia, GO (Brazil)

    2013-09-06

    4-Nerolidylcatechol (4-NC) is found in Pothomorphe umbellata root extracts and is reported to have a topical protective effect against UVB radiation-induced skin damage, toxicity in melanoma cell lines, and antimalarial activity. We report a comparative study of the antioxidant activity of 4-NC and α-tocopherol against lipid peroxidation initiated by two free radical-generating systems: 2,2′-azobis(2-aminopropane) hydrochloride (AAPH) and FeSO{sub 4}/H{sub 2}O{sub 2}, in red blood cell ghost membranes and in egg phosphatidylcholine (PC) vesicles. Lipid peroxidation was monitored by membrane fluidity changes assessed by electron paramagnetic resonance spectroscopy of a spin-labeled lipid and by the formation of thiobarbituric acid-reactive substances. When lipoperoxidation was initiated by the hydroxyl radical in erythrocyte ghost membranes, both 4-NC and α-tocopherol acted in a very efficient manner. However, lower activities were observed when lipoperoxidation was initiated by the peroxyl radical; and, in this case, the protective effect of α-tocopherol was lower than that of 4-NC. In egg PC vesicles, malondialdehyde formation indicated that 4-NC was effective against lipoperoxidation initiated by both AAPH and FeSO{sub 4}/H{sub 2}O{sub 2}, whereas α-tocopherol was less efficient in protecting against lipoperoxidation by AAPH, and behaved as a pro-oxidant for FeSO{sub 4}/H{sub 2}O{sub 2}. The DPPH (2,2-diphenyl-1-picrylhydrazyl) free-radical assay indicated that two free radicals were scavenged per 4-NC molecule, and one free radical was scavenged per α-tocopherol molecule. These data provide new insights into the antioxidant capacity of 4-NC, which may have therapeutic applications for formulations designed to protect the skin from sunlight irradiation.

  9. Ghosting effect in Siemens electronic portal imaging devices (EPIDs) for step and shoot IMRT dosimetry

    International Nuclear Information System (INIS)

    Deshpande, S.; Vial, P.; Goozee, G.; Holloway, L.

    2010-01-01

    Full text: To assess the ghosting effect of a Siemens EPID (Optivue 1000: while acquiring IMRT fluence with step and shoot delivery. Six sets of segmented fields with 1,2,3,5, J( and 20 monitor units (MU) per segment were designed. Each set consisted of ten segments of equal MU and field size (J 0 x 10 cm 2 ) Standard single fields (non-segmented) of the same total MU as the segmented fields were also created (10-200 MU). EPID images for these fields were acquired with multi-frame acquisition mode. The integrated EPID response was determined as the mean central 20 x 21 pixel readout multiplied by the number of frames. The same fields wen measured with an ionization chamber at a depth of dose maximum in, solid water phantom. The total signal measured from the segmented fields was compared to the corresponding non-segmented fields. The ratio of EPID response between segmented and non-segmented delivery indicates an under-response for segmented fields by 5, 4, 2.5 and 2% for 1,2,3, and 5 MU per segment exposures respectively compared to ionisation chamber response (se Fig. I). The ratio was within 2% for 5 MU per segment and above. Th error bar in Fig. I indicate the intra-segment response variation. The Siemens EPID exhibited significant ghosting effect and variation in response for small M U segments. EPID dosimetry ( IMRT fields with less than 5 MU per segment requires corrections t maintain dose calibration accuracy to within 2%. (author)

  10. The x-ray time of flight method for investigation of ghosting in amorphous selenium-based flat panel medical x-ray imagers

    International Nuclear Information System (INIS)

    Rau, A.W.; Bakueva, L.; Rowlands, J.A.

    2005-01-01

    Amorphous selenium (a-Se) based real-time flat-panel imagers (FPIs) are finding their way into the digital radiology department because they offer the practical advantages of digital x-ray imaging combined with an image quality that equals or outperforms that of conventional systems. The temporal imaging characteristics of FPIs can be affected by ghosting (i.e., radiation-induced changes of sensitivity) when the dose to the detector is high (e.g., portal imaging and mammography) or the images are acquired at a high frame rate (e.g., fluoroscopy). In this paper, the x-ray time-of-flight (TOF) method is introduced as a tool for the investigation of ghosting in a-Se photoconductor layers. The method consists of irradiating layers of a-Se with short x-ray pulses. From the current generated in the a-Se layer, ghosting is quantified and the ghosting parameters (charge carrier generation rate and carrier lifetimes and mobilities) are assessed. The x-ray TOF method is novel in that (1) x-ray sensitivity (S) and ghosting parameters can be measured simultaneously (2) the transport of both holes and electrons can be isolated, and (3) the method is applicable to the practical a-Se layer structure with blocking contacts used in FPIs. The x-ray TOF method was applied to an analysis of ghosting in a-Se photoconductor layers under portal imaging conditions, i.e., 1 mm thick a-Se layers, biased at 5 V/μm, were irradiated using a 6 MV LINAC x-ray beam to a total dose (ghosting dose) of 30 Gy. The initial sensitivity (S 0 ) of the a-Se layers was 63±2 nC cm -2 cGy -1 . It was found that S decreases to 30% of S 0 after a ghosting dose of 5 Gy and to 21% after 30 Gy at which point no further change in S occurs. At an x-ray intensity of 22 Gy/s (instantaneous dose rate during a LINAC x-ray pulse), the charge carrier generation rate was 1.25±0.1x10 22 ehp m -3 s -1 and, to a first approximation, independent of the ghosting dose. However, both hole and electron transport showed a

  11. Diffractive dijet and W production in CDF

    International Nuclear Information System (INIS)

    Goulianos, K.

    1998-01-01

    Results on diffractive dijet and W-boson production from CDF are reviewed and compared with predictions based on factorization of the diffractive structure function of the proton measured in deep inelastic scattering at HERA

  12. A theoretical overview on single hard diffraction

    International Nuclear Information System (INIS)

    Wuesthoff, M.

    1996-01-01

    The concept of the Pomeron structure function and its application in Single Hard Diffraction at hadron colliders and in diffractive Deep Inelastic Scattering is critically reviewed. Some alternative approaches are briefly surveyed with a focus on QCD inspired models

  13. Coherent Diffractive Imaging at LCLS

    Science.gov (United States)

    Schulz, Joachim

    2010-03-01

    Soft x-ray FEL light sources produce ultrafast x-ray pulses with outstanding high peak brilliance. This might enable the structure determination of proteins that cannot be crystallized. The deposited energy would destroy the molecules completely, but owing to the short pulses the destruction will ideally only happen after the termination of the pulse. In order to address the many challenges that we face in attempting molecular diffraction, we have carried out experiments in coherent diffraction from protein nanocrystals at the Linac Coherent Light Source (LCLS) at SLAC. The periodicity of these objects gives us much higher scattering signals than uncrystallized proteins would. The crystals are filtered to sizes less than 2 micron, and delivered to the pulsed X-ray beam in a liquid jet. The effects of pulse duration and fluence on the high-resolution structure of the crystals have been studied. Diffraction patterns are recorded at a repetition rate of 30 Hz with pnCCD detectors. This allows us to take 108,000 images per hour. With 2-mega-pixel-detectors this gives a data-rate of more than 400 GB per hour. The automated sorting and evaluation of hundreds of thousands images is another challenge of this kind of experiments. Preliminary results will be presented on our first LCLS experiments. This work was carried out as part of a collaboration, for which Henry Chapman is the spokesperson. The collaboration consists of CFEL DESY, Arizona State University, SLAC, Uppsala University, LLNL, The University of Melbourne, LBNL, the Max Planck Institute for Medical Research, and the Max Planck Advanced Study Group (ASG) at the CFEL. The experiments were carried out using the CAMP apparatus, which was designed and built by the Max Planck ASG at CFEL. The LCLS is operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences.

  14. Like night and day: Reversals of thermal gradients across ghost crab burrows and their implications for thermal ecology

    Science.gov (United States)

    Watson, Gregory S.; Gregory, Emily A.; Johnstone, Charmaine; Berlino, Manuel; Green, David W.; Peterson, Nicola R.; Schoeman, David S.; Watson, Jolanta A.

    2018-04-01

    Ghost crabs, Ocypode cordimanus, inhabit relatively hostile environments subject to thermal fluctuations, including both diurnal and seasonal cycles. For many ectotherms, including ghost crabs, a major challenge is to remain cool during hot daytime temperatures. This can be achieved by adopting a fossorial lifestyle, taking advantage of thermal refuge afforded by burrows of sufficient depth. Another consideration, often overlooked, is the potential advantage associated with ready access to a thermal energy source (a "charging station") when surface temperatures are cooler. Being able to rapidly elevate body temperature during cool periods would enhance the crab's ability to maintain rate processes and carry out essential activities. We have measured ghost crab burrow temperature profiles at two times of the day with contrasting sun exposure (06:00 and 14:00), demonstrating how effective burrow depth (up to a maximum of 40 cm) provides thermal regulation below the surface of the sand (e.g., at dawn (06:00) and early afternoon (14:00) at a depth of 5 cm, temperatures (±SD) of 16.32 ± 0.96 °C and 25.04 ± 1.47 °C were recorded, respectively. Corresponding temperatures at a depth of 30 cm were 19.17 ± 0.59 °C and 19.78 ± 1.60 °C, respectively). This demonstrates that while temperature conditions at the surface vary dramatically from night to day, ghost crab burrows can maintain relatively constant temperatures at the burrow base throughout the diurnal cycle, at least during winter. As a consequence, the burrow heat signatures undergo a corresponding thermal gradient reversal between night and day, as revealed by infra-red photography. Complementing these field observations, we also determined heating and cooling times/constants for O. cordimanus in the laboratory (τ = 17.54 and 16.59 JK-1, respectively), and analysed chemical composition of their carapace (external (with β Chitin evident) and internal (predominance of α Chitin)), which is the primary thermal

  15. An experiment in diffractive physics

    International Nuclear Information System (INIS)

    Santoro, Alberto

    2001-01-01

    The purpose of this talk is to show one of the next future experiment in diffractive Physics which will be installed at the DO experiment at Tevatron/Fermilab for run II, and the importance for Quantum Chromodynamics (QCD) as the theory of the strong interactions. The apparatus that we have developed is the Forward Proton Detector (FPD) to be introduced on the beam line of the Tevatron at both sides of the DO detector. The FPD is composed by a set of Roman Pots as we will see in the text below

  16. Magnetic structures: neutron diffraction studies

    International Nuclear Information System (INIS)

    Bouree-Vigneron, F.

    1990-01-01

    Neutron diffraction is often an unequivocal method for determining magnetic structures. Here we present some typical examples, stressing the sequence through experiments, data analysis, interpretation and modelisation. Two series of compounds are chosen: Tb Ni 2 Ge 2 and RBe 13 (R = Gd, Tb, Dy, Ho, Er). Depending on the nature of the elements, the magnetic structures produced can be commensurate, incommensurate or even show a transition between two such phases as a function of temperature. A model, taking magnetic exchange and anisotropy into account, will be presented in the case of commensurate-incommensurate magnetic transitions in RBe 13

  17. Hard scattering and a diffractive trigger

    International Nuclear Information System (INIS)

    Berger, E.L.; Collins, J.C.; Soper, D.E.; Sterman, G.

    1986-02-01

    Conclusions concerning the properties of hard scattering in diffractively produced systems are summarized. One motivation for studying diffractive hard scattering is to investigate the interface between Regge theory and perturbative QCD. Another is to see whether diffractive triggering can result in an improvement in the signal-to-background ratio of measurements of production of very heavy quarks. 5 refs

  18. Diffractive optical elements for space communication terminals

    OpenAIRE

    Herzig, Hans-Peter; Ehbets, Peter; Teijido, Juan M.; Weible, Kenneth J.; Heimbeck, Hans-Joerg

    2007-01-01

    The potential of diffractive optical elements for advanced laser communication terminals has been investigated. Applications include beam shaping of high- power laser diode arrays, optical filter elements for position detection and hybrid (refractive/diffractive) elements. In addition, we present a design example of a miniaturized terminal including diffractive optics.

  19. Undergraduate Experiment with Fractal Diffraction Gratings

    Science.gov (United States)

    Monsoriu, Juan A.; Furlan, Walter D.; Pons, Amparo; Barreiro, Juan C.; Gimenez, Marcos H.

    2011-01-01

    We present a simple diffraction experiment with fractal gratings based on the triadic Cantor set. Diffraction by fractals is proposed as a motivating strategy for students of optics in the potential applications of optical processing. Fraunhofer diffraction patterns are obtained using standard equipment present in most undergraduate physics…

  20. Dynamical diffraction in periodic multilayers

    CERN Document Server

    Sears, V F

    1997-01-01

    Exact reflectivity curves are calculated numerically for various periodic multilayers using the optical matrix method in order to test the dynamical theory of diffraction. The theory is generally valid for values of the bilayer thickness d up to about 100 A. For somewhat larger values of d, where the theory begins to break down, the initial discrepancy is in the phase of the oscillations in the wings of the peaks. For very large values of d, where the first-order Bragg peak approaches the edge of the mirror reflection, two general types of multilayers can be distinguished. In the first (typified in the present work by Ni/Ti), there is a large (30% or more) reduction in the actual value of the critical wave vector for total reflection while, in the second (typified here by Fe/Ge), there is very little reduction (3 % or so). The origin of these two very different types of behavior is explained. It is also shown that, within the dynamical theory of diffraction, the change in the position of the center of the Dar...

  1. The analysis of powder diffraction data

    International Nuclear Information System (INIS)

    David, W.I.F.; Harrison, W.T.A.

    1986-01-01

    The paper reviews neutron powder diffraction data analysis, with emphasis on the structural aspects of powder diffraction and the future possibilities afforded by the latest generation of very high resolution neutron and x-ray powder diffractometers. Traditional x-ray powder diffraction techniques are outlined. Structural studies by powder diffraction are discussed with respect to the Rietveld method, and a case study in the Rietveld refinement method and developments of the Rietveld method are described. Finally studies using high resolution powder diffraction at the Spallation Neutron Source, ISIS at the Rutherford Appleton Laboratory are summarized. (U.K.)

  2. Multiple-image encryption via lifting wavelet transform and XOR operation based on compressive ghost imaging scheme

    Science.gov (United States)

    Li, Xianye; Meng, Xiangfeng; Yang, Xiulun; Wang, Yurong; Yin, Yongkai; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi

    2018-03-01

    A multiple-image encryption method via lifting wavelet transform (LWT) and XOR operation is proposed, which is based on a row scanning compressive ghost imaging scheme. In the encryption process, the scrambling operation is implemented for the sparse images transformed by LWT, then the XOR operation is performed on the scrambled images, and the resulting XOR images are compressed in the row scanning compressive ghost imaging, through which the ciphertext images can be detected by bucket detector arrays. During decryption, the participant who possesses his/her correct key-group, can successfully reconstruct the corresponding plaintext image by measurement key regeneration, compression algorithm reconstruction, XOR operation, sparse images recovery, and inverse LWT (iLWT). Theoretical analysis and numerical simulations validate the feasibility of the proposed method.

  3. Optical image transformation and encryption by phase-retrieval-based double random-phase encoding and compressive ghost imaging

    Science.gov (United States)

    Yuan, Sheng; Yang, Yangrui; Liu, Xuemei; Zhou, Xin; Wei, Zhenzhuo

    2018-01-01

    An optical image transformation and encryption scheme is proposed based on double random-phase encoding (DRPE) and compressive ghost imaging (CGI) techniques. In this scheme, a secret image is first transformed into a binary image with the phase-retrieval-based DRPE technique, and then encoded by a series of random amplitude patterns according to the ghost imaging (GI) principle. Compressive sensing, corrosion and expansion operations are implemented to retrieve the secret image in the decryption process. This encryption scheme takes the advantage of complementary capabilities offered by the phase-retrieval-based DRPE and GI-based encryption techniques. That is the phase-retrieval-based DRPE is used to overcome the blurring defect of the decrypted image in the GI-based encryption, and the CGI not only reduces the data amount of the ciphertext, but also enhances the security of DRPE. Computer simulation results are presented to verify the performance of the proposed encryption scheme.

  4. Wall-Current-Monitor based Ghost and Satellite Bunch Detection in the CERN PS and the LHC Accelerators

    CERN Document Server

    Steinhagen, R J; Belleman, J; Bohl, T; Damerau, H

    2012-01-01

    While most LHC detectors and instrumentation systems are optimised for a nominal bunch spacing of 25 ns, the LHC RF cavities themselves operate at the 10th harmonic of the maximum bunch frequency. Due to the beam production scheme and transfers in the injector chain, part of the nominally ‘empty’ RF buckets may contain particles, referred to as ghost or satellite bunches. These populations must be accurately quantified for high-precision experiments, luminosity calibration and control of parasitic particle encounters at the four LHC interaction points. This contribution summarises the wall-current-monitor based ghost and satellite bunch measurements in CERN’s PS and LHC accelerators. Instrumentation set-up, post-processing and achieved performance are discussed.

  5. The Ghost-Angel. On the spiritualitation of the angel and divinization of men in the islamic medieval mystic.

    Directory of Open Access Journals (Sweden)

    Rodrigo Kalmy Bolton

    2014-02-01

    Full Text Available This essay is the first part of an arqueology on governmentality in islam. Identifying the quran´s assimilation of angel Gabriel and the Holy Ghost I think that islamic medieval mystic develop an spiritualization of the angel where pneumatology and angelology seems to be the same, because the angel is not a simple server of God but a manager of man´s soul. In this way the Ghost-Angel would be consider as a dispositiv of soul´s salvation (the divinization of men and the condition of a government of itself. That´s why it challenge the formalization proposes by the islamic law (fiqh.

  6. Evaluation of high frequency ghost cavitation emissions for two different seismic air-gun arrays using numerical modelling

    Science.gov (United States)

    Khodabandeloo, Babak; Landrø, Martin

    2017-04-01

    Sound is deployed by marine mammals for variety of vital purposes such as finding food, communication, echolocation, etc. On the other hand human activities generate underwater noise. One major type of acoustic source is marine seismic acquisition which is carried out to image layers beneath the seabed exploiting reflected acoustic and elastic waves. Air-gun arrays are the most common and efficient marine seismic sources. Field measurements using broad band hydrophones have revealed that acoustic energies emitted by air-gun arrays contains frequencies from a few Hz up to tens of kHz. Frequencies below 200 Hz benefit seismic imaging and the rest is normally considered as wasted energy. On the other hand, the high frequency range (above 200 Hz) overlaps with hearing curves of many marine mammals and especially toothed whales and may have an impact on their behavior. A phenomenon called ghost cavitation is recently recognized to be responsible for a major part of these high frequencies (> 5 kHz). Acoustic pressure waves of individual air guns reflected from sea surface can cause the hydrostatic pressure to drop towards zero close to the source array. In these regions there is a high probability for water vapor cavity growth and subsequent collapse. We have simulated ghost cavitation cloud using numerical modelling and the results are validated by comparing with field measurements. The model is used to compare the amount of high frequency noise due to ghost cavitation for two different air gun arrays. Both of the arrays have three subarrays but the array distance for the one with 2730 in3 air volume is 6 meters and for the slightly bigger array (3250 in3 in air volume) the subarrays are separated by 8 meters. Simulation results indicate that the second array, despite larger subarray distance, generates stronger ghost cavitation signal.

  7. Determination of electric field threshold for electrofusion of erythrocyte ghosts. Comparison of pulse-first and contact-first protocols.

    OpenAIRE

    Wu, Y; Montes, J G; Sjodin, R A

    1992-01-01

    Rabbit erythrocyte ghosts were fused by means of electric pulses to determine the electrofusion thresholds for these membranes. Two protocols were used to investigate fusion events: contact-first, and pulse-first. Electrical capacitance discharge (CD) pulses were used to induce fusion. Plots of fusion yield vs peak field strength yielded curves that intersected the field strength axis at positive values (pseudothresholds) which depended on the protocol and decay half time of the pulses. It wa...

  8. Methods for reducing ghost rays on the Wolter-I focusing figures of the FOXSI rocket payload

    Science.gov (United States)

    Buitrago-Casas, Juan Camilo; Glesener, Lindsay; Christe, Steven; Ramsey, Brian; Elsner, Ronald; Courtade, Sasha; Vievering, Juliana; Subramania, Athiray; Krucker, Sam; Bale, Stuart

    2017-08-01

    In high energy solar astrophysics, imaging hard X-rays by direct focusing offers higher dynamic range and greater sensitivity compared to past techniques that used indirect imaging. The Focusing Optics X-ray Solar Imager (FOXSI) is a sounding rocket payload which uses seven sets of nested Wolter-I figured mirrors that, together with seven high-sensitive semiconductor detectors, observes the Sun in hard X-rays by direct focusing. The FOXSI rocket has successfully flown twice and is funded to fly a third time in summer 2018.The Wolter-I geometry consists of two consecutive mirrors, one paraboloid, and one hyperboloid, that reflect photons at grazing angles. Correctly focused X-rays reflect twice, once per mirror segment. For extended sources, like the Sun, off-axis photons at certain incident angles can reflect on only one mirror and still reach the focal plane, generating a pattern of single-bounce photons, or ‘ghost rays’ that can limit the sensitivity of the observation of focused X-rays. Understanding and cutting down the ghost rays on the FOXSI optics will maximize the instrument’s sensitivity of the solar faintest sources for future flights. We present an analysis of the FOXSI ghost rays based on ray-tracing simulations, as well as the effectiveness of different physical strategies to reduce them.

  9. Axial channeling in electron diffraction

    International Nuclear Information System (INIS)

    Ichimiya, A.; Lehmpfuhl, G.

    1978-01-01

    Kossel patterns from Silicon and Niobium were obtained with a convergent electron beam. An intensity maximum in the direction of the zone axes [001] and [111] of Nb was interpreted as axial channeling. The intensity distribution in Kossel patterns was calculated by means of the Bloch wave picture of the dynamical theory of electron diffraction. Particularly zone axis patterns were calculated for different substance-energy combinations and they were compared with experimental observations. The intensity distribution in the calculated Kossel patterns was very sensitive to the model of absorption and it was found that a treatment of the absorption close to the model of Humphreys and Hirsch [Phil. Mag. 18, 115 (1968)] gave the best agreement with the experimental observations. Furthermore it is shown which Bloch waves are important for the intensity distribution in the Kossel patterns, how they are absorbed and how they change with energy. (orig.) [de

  10. Diffractive X-Ray Telescopes

    International Nuclear Information System (INIS)

    Skinner, G.K.; Skinner, G.K

    2010-01-01

    Diffractive X-ray telescopes using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution several orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro arc seconds or even better, that would allow, for example, imaging of the distorted spacetime in the immediate vicinity of the supermassive black holes in the center of active galaxies What then is precluding their immediate adoption Extremely long focal lengths, very limited bandwidth, and difficulty stabilizing the image are the main problems. The history and status of the development of such lenses is reviewed here and the prospects for managing the challenges that they present are discussed atmospheric absorption

  11. Encapsulation process for diffraction gratings.

    Science.gov (United States)

    Ratzsch, Stephan; Kley, Ernst-Bernhard; Tünnermann, Andreas; Szeghalmi, Adriana

    2015-07-13

    Encapsulation of grating structures facilitates an improvement of the optical functionality and/or adds mechanical stability to the fragile structure. Here, we introduce novel encapsulation process of nanoscale patterns based on atomic layer deposition and micro structuring. The overall size of the encapsulated structured surface area is only restricted by the size of the available microstructuring and coating devices; thus, overcoming inherent limitations of existing bonding processes concerning cleanliness, roughness, and curvature of the components. Finally, the process is demonstrated for a transmission grating. The encapsulated grating has 97.5% transmission efficiency in the -1st diffraction order for TM-polarized light, and is being limited by the experimental grating parameters as confirmed by rigorous coupled wave analysis.

  12. Characterization of nanowires by coherent X-ray diffractive imaging and ptychography

    International Nuclear Information System (INIS)

    Dzhigaev, Dmitry

    2017-03-01

    Imaging techniques are of paramount importance for our understanding of the universe. From galaxies and stars explored by huge telescopes down to micro and nanostructures studied by microscopes, imaging systems provide invaluable scientific information. When an object under investigation has a size of about 100 nanometers, X-rays become a perfect probe for non-destructive imaging. The manufacturing process of image forming lenses for X-rays becomes much more complicated comparing to optical ones. Therefore, ''lensless'' techniques which rely on the coherent properties of radiation were developed. With third generation of synchrotron sources highly coherent and intense X-ray beams became widely accessible. They are used in new imaging methods such as coherent X-ray diffractive imaging (CXDI) and X-ray ptychography. Modern nanotechnology opens a wide spectrum of possible applications in different branches of physics, chemistry, biology and engineering. At the nanoscale, matter has different physical and chemical properties compared to the macroscale bulk material. The continuing trend of miniaturization of functional components in semiconductor industry brings new challenges both in growth and characterization methods. This Thesis is focused on application of coherent diffractive imaging methods to reveal the structure of single semiconductor nanowires (NWs). They have been attracting significant attention for a couple of decades due to their efficient strain relaxation properties. And since the strain plays a significant role in NW performance the projects carried out in this work are oriented on Bragg CXDI approaches. Three distinct projects were carried out during my research activity at DESY research center of the Helmholtz Association. Experimental work was performed at P06 and P10 beamlines at PETRA III synchrotron. The first part of this Thesis extends the application of the three-dimensional (3D) Bragg CXDI to strain field mapping in a single InP NW with a

  13. Characterization of nanowires by coherent X-ray diffractive imaging and ptychography

    Energy Technology Data Exchange (ETDEWEB)

    Dzhigaev, Dmitry

    2017-03-15

    Imaging techniques are of paramount importance for our understanding of the universe. From galaxies and stars explored by huge telescopes down to micro and nanostructures studied by microscopes, imaging systems provide invaluable scientific information. When an object under investigation has a size of about 100 nanometers, X-rays become a perfect probe for non-destructive imaging. The manufacturing process of image forming lenses for X-rays becomes much more complicated comparing to optical ones. Therefore, ''lensless'' techniques which rely on the coherent properties of radiation were developed. With third generation of synchrotron sources highly coherent and intense X-ray beams became widely accessible. They are used in new imaging methods such as coherent X-ray diffractive imaging (CXDI) and X-ray ptychography. Modern nanotechnology opens a wide spectrum of possible applications in different branches of physics, chemistry, biology and engineering. At the nanoscale, matter has different physical and chemical properties compared to the macroscale bulk material. The continuing trend of miniaturization of functional components in semiconductor industry brings new challenges both in growth and characterization methods. This Thesis is focused on application of coherent diffractive imaging methods to reveal the structure of single semiconductor nanowires (NWs). They have been attracting significant attention for a couple of decades due to their efficient strain relaxation properties. And since the strain plays a significant role in NW performance the projects carried out in this work are oriented on Bragg CXDI approaches. Three distinct projects were carried out during my research activity at DESY research center of the Helmholtz Association. Experimental work was performed at P06 and P10 beamlines at PETRA III synchrotron. The first part of this Thesis extends the application of the three-dimensional (3D) Bragg CXDI to strain field mapping in a

  14. Bragg's Law diffraction simulations for electron backscatter diffraction analysis

    International Nuclear Information System (INIS)

    Kacher, Josh; Landon, Colin; Adams, Brent L.; Fullwood, David

    2009-01-01

    In 2006, Angus Wilkinson introduced a cross-correlation-based electron backscatter diffraction (EBSD) texture analysis system capable of measuring lattice rotations and elastic strains to high resolution. A variation of the cross-correlation method is introduced using Bragg's Law-based simulated EBSD patterns as strain free reference patterns that facilitates the use of the cross-correlation method with polycrystalline materials. The lattice state is found by comparing simulated patterns to collected patterns at a number of regions on the pattern using the cross-correlation function and calculating the deformation from the measured shifts of each region. A new pattern can be simulated at the deformed state, and the process can be iterated a number of times to converge on the absolute lattice state. By analyzing an iteratively rotated single crystal silicon sample and recovering the rotation, this method is shown to have an angular resolution of ∼0.04 o and an elastic strain resolution of ∼7e-4. As an example of applications, elastic strain and curvature measurements are used to estimate the dislocation density in a single grain of a compressed polycrystalline Mg-based AZ91 alloy.

  15. Diffraction efficiency enhancement of femtosecond laser-engraved diffraction gratings due to CO2 laser polishing

    International Nuclear Information System (INIS)

    Choi, Hun-Kook; Jung, Deok; Sohn, Ik-Bu; Noh, Young-Chul; Lee, Yong-Tak; Kim, Jin-Tae; Ahsan, Shamim

    2014-01-01

    This research demonstrates laser-assisted fabrication of high-efficiency diffraction gratings in fused-silica glass samples. Initially, femtosecond laser pulses are used to engrave diffraction gratings on the glass surfaces. Then, these micro-patterned glass samples undergo CO 2 laser polishing process. unpolished diffraction gratings encoded in the glass samples show an overall diffraction efficiency of 18.1%. diffraction gratings imprinted on the glass samples and then polished four times by using a CO 2 laser beam attain a diffraction efficiency of 32.7%. We also investigate the diffraction patterns of the diffraction gratings encoded on fused-silica glass surfaces. The proposed CO 2 laser polishing technique shows great potential in patterning high-efficiency diffraction gratings on the surfaces of various transparent materials.

  16. Inelastic nucleon diffraction at high energy

    International Nuclear Information System (INIS)

    Goggi, G.

    1975-01-01

    Experiments carried out at ISR and at FNAL which have yielded a substantial amount of data on double diffraction processes, which were unambiguously indentified and measured and which provide new tools to study the dynamical properties shared by different classes of diffractive reactions are identified. In this review interest is focused on the experimental aspects of inclusive and exclusive results both on single and double diffraction and on the problems arising from their comparison. Problems covered include; inclusive and semi-inclusive diffraction, multiparticle inclusive studies, single-particle inclusive studies, resonance region, high mass region, exclusive single diffractive reactions, mass spectra, cross sections, t-dependence, decay angular properties, and double diffraction. (U.K.)

  17. Diffraction of polarized light on periodic structures

    International Nuclear Information System (INIS)

    Bukanina, V; Divakov, D; Tyutyunnik, A; Hohlov, A

    2012-01-01

    Periodic structures as photonic crystals are widely used in modern laser devices, communication technologies and for creating various beam splitters and filters. Diffraction gratings are applied for creating 3D television sets, DVD and Blu-ray drives and reflective structures (Berkley mirror). It is important to simulate diffraction on such structures to design optical systems with predetermined properties based on photonic crystals and diffraction gratings. Methods of simulating diffraction on periodic structures uses theory of Floquet-Bloch and rigorous coupled-wave analysis (RCWA). Current work is dedicated to analysis of photonic band gaps and simulating diffraction on one-dimensional binary diffraction grating using RCWA. The Maxwell's equations for isotropic media and constitutive relations based on the cgs system were used as a model.

  18. Theory of edge diffraction in electromagnetics

    CERN Document Server

    Ufimtsev, Pyotr

    2009-01-01

    This book is an essential resource for researchers involved in designing antennas and RCS calculations. It is also useful for students studying high frequency diffraction techniques. It contains basic original ideas of the Physical Theory of Diffraction (PTD), examples of its practical application, and its validation by the mathematical theory of diffraction. The derived analytic expressions are convenient for numerical calculations and clearly illustrate the physical structure of the scattered field.

  19. Nonlinear diffraction from a virtual beam

    DEFF Research Database (Denmark)

    Saltiel, Solomon M.; Neshev, Dragomir N.; Krolikowski, Wieslaw

    2010-01-01

    We observe experimentally a novel type of nonlinear diffraction in the process of two-wave mixing on a nonlinear quadratic grating.We demonstrate that when the nonlinear grating is illuminated simultaneously by two noncollinear beams, a second-harmonic diffraction pattern is generated by a virtual...... beam propagating along the bisector of the two pump beams. The observed iffraction phenomena is a purely nonlinear effect that has no analogue in linear diffraction...

  20. Diffraction limit of refractive compound lens

    International Nuclear Information System (INIS)

    Kolchevsky, N.N.; Petrov, P.V.

    2015-01-01

    A compound X-ray and neutron lenses is an array of lenses with a common axis. The resolution limited by aberration and by diffraction. Diffraction limit comes from theory based on absorption aperture of the compound refractive lenses. Beam passing through transparent lenses form Airy pattern. Results of calculation of diffraction resolution limit for non-transparent X-ray and neutron lenses are discussed. (authors)