WorldWideScience

Sample records for lenses coherent optics

  1. Defect inspection of actuator lenses using swept-source optical coherence tomography

    Science.gov (United States)

    Lee, Jaeyul; Shirazi, Muhammad Faizan; Park, Kibeom; Jeon, Mansik; Kim, Jeehyun

    2017-12-01

    Actuator lens industries have gained an enormous interest with the enhancement of various latest communication devices, such as mobile phone and notebooks. The quality of the aforementioned devices can be degraded due to the internal defects of actuator lenses. Therefore, in this study, we implemented swept-source optical coherence tomography (SS-OCT) system to inspect defects of actuator lenses. Owing to the high-resolution of the SS-OCT system, defected foreign substances between the actuator lenses, defective regions of lenses and surface stains were more clearly distinguished through three-dimensional (3D) and two-dimensional (2D) cross-sectional OCT images. Therefore, the implemented SS-OCT system can be considered as a potential application to defect inspection of actuator lens.

  2. High-speed optical signal processing using time lenses

    DEFF Research Database (Denmark)

    Galili, Michael; Hu, Hao; Guan, Pengyu

    2015-01-01

    This paper will discuss time lenses and their broad range of applications. A number of recent demonstrations of complex high-speed optical signal processing using time lenses will be outlined with focus on the operating principle.......This paper will discuss time lenses and their broad range of applications. A number of recent demonstrations of complex high-speed optical signal processing using time lenses will be outlined with focus on the operating principle....

  3. Antifouling leaching technique for optical lenses

    Science.gov (United States)

    Strahle, William J.; Perez, C. L.; Martini, Marinna A.

    1994-01-01

    The effectiveness of optical lenses deployed in water less than 100 m deep is significantly reduced by biofouling caused by the settlement of macrofauna, such as barnacles, hydroids, and tunicates. However, machineable porous plastic rings can be used to dispense antifoulant into the water in front of the lens to retard macrofaunal growth without obstructing the light path. Unlike coatings which can degrade the optical performance, antifouling rings do not interfere with the instrument optics. The authors have designed plastic, reusable cup-like antifouling rings to slip over the optical lenses of a transmissometer. These rings have been used for several deployments on shallow moorings in Massachusetts Bay, MA and have increased the time before fouling degrades optical characteristics

  4. Nanofocusing refractive X-ray lenses

    Energy Technology Data Exchange (ETDEWEB)

    Boye, Pit

    2010-02-05

    This thesis is concerned with the optimization and development of the production of nanofocusing refractive X-ray lenses. These optics made of either silicon or diamond are well-suited for high resolution X-ray microscopy. The goal of this work is the design of a reproducible manufacturing process which allows the production of silicon lenses with high precision, high quality and high piece number. Furthermore a process for the production of diamond lenses is to be developed and established. In this work, the theoretical basics of X-rays and their interaction with matter are described. Especially, aspects of synchrotron radiation are emphasized. Important in X-ray microscopy are the different optics. The details, advantages and disadvantages, in particular those of refractive lenses are given. To achieve small X-ray beams well beyond the 100 nm range a small focal length is required. This is achieved in refractive lenses by moving to a compact lens design where several single lenses are stacked behind each other. The, so-called nanofocusing refractive lenses (NFLs) have a parabolic cylindrical shape with lateral structure sizes in the micrometer range. NFLs are produced by using micro-machining techniques. These micro-fabrication processes and technologies are introduced. The results of the optimization and the final fabrication process for silicon lenses are presented. Subsequently, two experiments that are exemplary for the use of NFLs, are introduced. The rst one employs a high-resolution scanning fluorescence mapping of a geological sample, and the second one is a coherent x-ray diffraction imaging (CXDI) experiment. CXDI is able to reconstruct the illuminated object from recorded coherent diffraction patterns. In a scanning mode, referred to as ptychography, this method is even able to reconstruct the illumination and the object simultaneously. Especially the reconstructed illumination and the possibility of computed propagation of the wave field along the

  5. Nanofocusing refractive X-ray lenses

    International Nuclear Information System (INIS)

    Boye, Pit

    2010-01-01

    This thesis is concerned with the optimization and development of the production of nanofocusing refractive X-ray lenses. These optics made of either silicon or diamond are well-suited for high resolution X-ray microscopy. The goal of this work is the design of a reproducible manufacturing process which allows the production of silicon lenses with high precision, high quality and high piece number. Furthermore a process for the production of diamond lenses is to be developed and established. In this work, the theoretical basics of X-rays and their interaction with matter are described. Especially, aspects of synchrotron radiation are emphasized. Important in X-ray microscopy are the different optics. The details, advantages and disadvantages, in particular those of refractive lenses are given. To achieve small X-ray beams well beyond the 100 nm range a small focal length is required. This is achieved in refractive lenses by moving to a compact lens design where several single lenses are stacked behind each other. The, so-called nanofocusing refractive lenses (NFLs) have a parabolic cylindrical shape with lateral structure sizes in the micrometer range. NFLs are produced by using micro-machining techniques. These micro-fabrication processes and technologies are introduced. The results of the optimization and the final fabrication process for silicon lenses are presented. Subsequently, two experiments that are exemplary for the use of NFLs, are introduced. The rst one employs a high-resolution scanning fluorescence mapping of a geological sample, and the second one is a coherent x-ray diffraction imaging (CXDI) experiment. CXDI is able to reconstruct the illuminated object from recorded coherent diffraction patterns. In a scanning mode, referred to as ptychography, this method is even able to reconstruct the illumination and the object simultaneously. Especially the reconstructed illumination and the possibility of computed propagation of the wave field along the

  6. Optical Coherence and Quantum Optics

    CERN Document Server

    Mandel, Leonard

    1995-01-01

    This book presents a systematic account of optical coherence theory within the framework of classical optics, as applied to such topics as radiation from sources of different states of coherence, foundations of radiometry, effects of source coherence on the spectra of radiated fields, coherence theory of laser modes, and scattering of partially coherent light by random media. The book starts with a full mathematical introduction to the subject area and each chapter concludes with a set of exercises. The authors are renowned scientists and have made substantial contributions to many of the topi

  7. Scleral topography analysed by optical coherence tomography.

    Science.gov (United States)

    Bandlitz, Stefan; Bäumer, Joachim; Conrad, Uwe; Wolffsohn, James

    2017-08-01

    A detailed evaluation of the corneo-scleral-profile (CSP) is of particular relevance in soft and scleral lenses fitting. The aim of this study was to use optical coherence tomography (OCT) to analyse the profile of the limbal sclera and to evaluate the relationship between central corneal radii, corneal eccentricity and scleral radii. Using OCT (Optos OCT/SLO; Dunfermline, Scotland, UK) the limbal scleral radii (SR) of 30 subjects (11M, 19F; mean age 23.8±2.0SD years) were measured in eight meridians 45° apart. Central corneal radii (CR) and corneal eccentricity (CE) were evaluated using the Oculus Keratograph 4 (Oculus, Wetzlar, Germany). Differences between SR in the meridians and the associations between SR and corneal topography were assessed. Median SR measured along 45° (58.0; interquartile range, 46.8-84.8mm) was significantly (ptopography and may provide additional data useful in fitting soft and scleral contact lenses. Copyright © 2017 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  8. Biological elements carry out optical tasks in coherent imaging systems

    Science.gov (United States)

    Ferraro, P.; Bianco, V.; Paturzo, M.; Miccio, L.; Memmolo, P.; Merola, F.; Marchesano, V.

    2016-03-01

    We show how biological elements, like live bacteria species and Red Blood Cells (RBCs) can accomplish optical functionalities in DH systems. Turbid media allow coherent microscopy despite the strong light scattering these provoke, acting on light just as moving diffusers. Furthermore, a turbid medium can have positive effects on a coherent imaging system, providing resolution enhancement and mimicking the action of noise decorrelation devices, thus yielding an image quality significantly higher than the quality achievable through a transparent medium in similar recording conditions. Besides, suspended RBCs are demonstrated to behave as controllable liquid micro-lenses, opening new possibilities in biophotonics for endoscopy imaging purposes, as well as telemedicine for point-of-care diagnostics in developing countries and low-resource settings.

  9. Testing of Piezo-Actuated Glass Micro-Membranes by Optical Low-Coherence Reflectometry.

    Science.gov (United States)

    Merlo, Sabina; Poma, Paolo; Crisà, Eleonora; Faralli, Dino; Soldo, Marco

    2017-02-25

    In this work, we have applied optical low-coherence reflectometry (OLCR), implemented with infra-red light propagating in fiberoptic paths, to perform static and dynamic analyses on piezo-actuated glass micro-membranes. The actuator was fabricated by means of thin-film piezoelectric MEMS technology and was employed for modifying the micro-membrane curvature, in view of its application in micro-optic devices, such as variable focus micro-lenses. We are here showing that OLCR incorporating a near-infrared superluminescent light emitting diode as the read-out source is suitable for measuring various parameters such as the micro-membrane optical path-length, the membrane displacement as a function of the applied voltage (yielding the piezo-actuator hysteresis) as well as the resonance curve of the fundamental vibration mode. The use of an optical source with short coherence-time allows performing interferometric measurements without spurious resonance effects due to multiple parallel interfaces of highly planar slabs, furthermore selecting the plane/layer to be monitored. We demonstrate that the same compact and flexible setup can be successfully employed to perform spot optical measurements for static and dynamic characterization of piezo-MEMS in real time.

  10. Realization of first order optical systems using thin lenses

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Mukunda, N.; Simon, R.

    1983-09-01

    A first order optical system is investigated in full generality within the context of wave optics. We reduce the problem to a study of the ray transfer matrices. The simplest such systems correspond to axially symmetric propagation. Realization of such systems by centrally located lenses separated by finite distances is studied. It is shown that every axially symmetric first order system can be realized using at most three lenses. Among anisotropic systems it is proven that every symplectic ray transfer matrix, and no others, can be realized using lenses and free propagations. Suggestions for further study of the general first order system are outlined. 16 references

  11. Experimental generation of optical coherence lattices

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yahong; Cai, Yangjian, E-mail: serpo@dal.ca, E-mail: yangjiancai@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China); Ponomarenko, Sergey A., E-mail: serpo@dal.ca, E-mail: yangjiancai@suda.edu.cn [Department of Electrical and Computer Engineering, Dalhousie University, Halifax, Nova Scotia B3J 2X4 (Canada)

    2016-08-08

    We report experimental generation and measurement of recently introduced optical coherence lattices. The presented optical coherence lattice realization technique hinges on a superposition of mutually uncorrelated partially coherent Schell-model beams with tailored coherence properties. We show theoretically that information can be encoded into and, in principle, recovered from the lattice degree of coherence. Our results can find applications to image transmission and optical encryption.

  12. Optics Demonstrations Using Cylindrical Lenses

    Science.gov (United States)

    Ivanov, Dragia; Nikolov, Stefan

    2015-01-01

    In this paper we consider the main properties of cylindrical lenses and propose several demonstrational experiments that can be performed with them. Specifically we use simple glasses full of water to demonstrate some basic geometrical optics principles and phenomena. We also present some less standard experiments that can be performed with such…

  13. Optical Coherence Tomography

    DEFF Research Database (Denmark)

    Mogensen, Mette; Themstrup, Lotte; Banzhaf, Christina

    2014-01-01

    Optical coherence tomography (OCT) has developed rapidly since its first realisation in medicine and is currently an emerging technology in the diagnosis of skin disease. OCT is an interferometric technique that detects reflected and backscattered light from tissue and is often described as the o......Optical coherence tomography (OCT) has developed rapidly since its first realisation in medicine and is currently an emerging technology in the diagnosis of skin disease. OCT is an interferometric technique that detects reflected and backscattered light from tissue and is often described...

  14. Improved wavefront correction for coherent image restoration.

    Science.gov (United States)

    Zelenka, Claudius; Koch, Reinhard

    2017-08-07

    Coherent imaging has a wide range of applications in, for example, microscopy, astronomy, and radar imaging. Particularly interesting is the field of microscopy, where the optical quality of the lens is the main limiting factor. In this article, novel algorithms for the restoration of blurred images in a system with known optical aberrations are presented. Physically motivated by the scalar diffraction theory, the new algorithms are based on Haugazeau POCS and FISTA, and are faster and more robust than methods presented earlier. With the new approach the level of restoration quality on real images is very high, thereby blurring and ringing caused by defocus can be effectively removed. In classical microscopy, lenses with very low aberration must be used, which puts a practical limit on their size and numerical aperture. A coherent microscope using the novel restoration method overcomes this limitation. In contrast to incoherent microscopy, severe optical aberrations including defocus can be removed, hence the requirements on the quality of the optics are lower. This can be exploited for an essential price reduction of the optical system. It can be also used to achieve higher resolution than in classical microscopy, using lenses with high numerical aperture and high aberration. All this makes the coherent microscopy superior to the traditional incoherent in suited applications.

  15. Active Learning Environment with Lenses in Geometric Optics

    Science.gov (United States)

    Tural, Güner

    2015-01-01

    Geometric optics is one of the difficult topics for students within physics discipline. Students learn better via student-centered active learning environments than the teacher-centered learning environments. So this study aimed to present a guide for middle school teachers to teach lenses in geometric optics via active learning environment…

  16. Optical performance of random anti-reflection structured surfaces (rARSS) on spherical lenses

    Science.gov (United States)

    Taylor, Courtney D.

    Random anti-reflection structured surfaces (rARSS) have been reported to improve transmittance of optical-grade fused silica planar substrates to values greater than 99%. These textures are fabricated directly on the substrates using reactive-ion/inductively-coupled plasma etching (RIE/ICP) techniques, and often result in transmitted spectra with no measurable interference effects (fringes) for a wide range of wavelengths. The RIE/ICP processes used in the fabrication process to etch the rARSS is anisotropic and thus well suited for planar components. The improvement in spectral transmission has been found to be independent of optical incidence angles for values from 0° to +/-30°. Qualifying and quantifying the rARSS performance on curved substrates, such as convex lenses, is required to optimize the fabrication of the desired AR effect on optical-power elements. In this work, rARSS was fabricated on fused silica plano-convex (PCX) and plano-concave (PCV) lenses using a planar-substrate optimized RIE process to maximize optical transmission in the range from 500 to 1100 nm. An additional set of lenses were etched in a non-optimized ICP process to provide additional comparisons. Results are presented from optical transmission and beam propagation tests (optimized lenses only) of rARSS lenses for both TE and TM incident polarizations at a wavelength of 633 nm and over a 70° full field of view in both singlet and doublet configurations. These results suggest optimization of the fabrication process is not required, mainly due to the wide angle-of-incidence AR tolerance performance of the rARSS lenses. Non-optimized recipe lenses showed low transmission enhancement, and confirmed the need to optimized etch recipes prior to process transfer of PCX/PCV lenses. Beam propagation tests indicated no major beam degradation through the optimized lens elements. Scanning electron microscopy (SEM) images confirmed different structure between optimized and non-optimized samples

  17. Atmospheric free-space coherent optical communications with adaptive optics

    Science.gov (United States)

    Ting, Chueh; Zhang, Chengyu; Yang, Zikai

    2017-02-01

    Free-space coherent optical communications have a potential application to offer last mile bottleneck solution in future local area networks (LAN) because of their information carrier, information security and license-free status. Coherent optical communication systems using orthogonal frequency division multiplexing (OFDM) digital modulation are successfully demonstrated in a long-haul tens Giga bits via optical fiber, but they are not yet available in free space due to atmospheric turbulence-induced channel fading. Adaptive optics is recognized as a promising technology to mitigate the effects of atmospheric turbulence in free-space optics. In this paper, a free-space coherent optical communication system using an OFDM digital modulation scheme and adaptive optics (FSO OFDM AO) is proposed, a Gamma-Gamma distribution statistical channel fading model for the FSO OFDM AO system is examined, and FSO OFDM AO system performance is evaluated in terms of bit error rate (BER) versus various propagation distances.

  18. Optical Coherence Tomography of the Aging Kidney.

    Science.gov (United States)

    Andrews, Peter M; Wang, Hsing-Wen; Guo, Hengchang; Anderson, Erik; Falola, Reuben; Chen, Yu

    2016-12-01

    The aging kidney exhibits a progressive decline in renal function with characteristic histopathologic changes and is a risk factor for renal transplant. However, the degree to which the kidney exhibits this decline depends on several factors that vary from one individual to the next. Optical coherence tomography is an evolving noninvasive imaging technology that has recently been used to evaluate acute tubular necrosis of living-human donor kidneys before their transplant. With the increasing use of kidneys from older individuals, it is important to determine whether optical coherence tomography also can distinguish the histopathology associated with aging. In this investigation, we used Munich-Wistar rats to evaluate the ability of optical coherence tomography to detect histopathologic changes associated with aging. Optical coherence tomography observations were correlated with renal function and conventional light microscopic evaluation of these same kidneys. With the onset of severe proteinuria at 10 to 12 months of age, optical coherence tomography revealed tubular necrosis/atrophy, interstitial fibrosis, tubular dilation, and glomerulosclerosis. With a further deterioration in kidney function at 16 to 18 months of age (as indicated by rising creatinine levels), optical coherence tomography revealed more extensive interstitial fibrosis and tubular atrophy, increased tubular dilation with cyst formation and more sclerotic glomeruli. The foregoing observations suggest that optical coherence tomography can be used to detect the histopathology of progressive nephropathy associated with aging.

  19. Menadione degrades the optical quality and mitochondrial integrity of bovine crystalline lenses.

    Science.gov (United States)

    Olsen, Kenneth W; Bantseev, Vladimir; Choh, Vivan

    2011-01-26

    The crystalline lens is a unique cellular organ that performs metabolic processes while maintaining transparency for optical functionality. Mitochondria play a role in providing cells with aerobic respiration necessary for these metabolic processes. Using menadione, a mitochondria-specific inhibitor of the quinone family, and bovine lenses in vitro, this study was undertaken to determine whether a relationship exists between mitochondrial function and optical function. Bovine lenses were treated with 50 μM, 200 μM, 600 μM, and 1,000 μM menadione and lens optical function, assessed as optical quality, was observed over 9 days. Confocal micrographs of mitochondria in superficial secondary fiber cells were also analyzed in 50 μM, 200 μM, and 600 μM menadione-treated lenses over 48 h. A decrease in lens optical quality was observed in a dose-dependent manner within 24 h for the 200 µM- (p=0.0422), 600 µM- (pmenadione. The data show that menadione has a detrimental effect on mitochondrial integrity and this change is associated with degradation of optical quality, suggesting a possible link between mitochondrial function and optical function.

  20. An All-Fiber-Optic Combined System of Noncontact Photoacoustic Tomography and Optical Coherence Tomography.

    Science.gov (United States)

    Eom, Jonghyun; Shin, Jun Geun; Park, Soongho; Rim, Sunghwan; Lee, Byeong Ha

    2016-05-20

    We propose an all-fiber-based dual-modal imaging system that combines noncontact photoacoustic tomography (PAT) and optical coherence tomography (OCT). The PAT remotely measures photoacoustic (PA) signals with a 1550-nm laser on the surface of a sample by utilizing a fiber interferometer as an ultrasound detector. The fiber-based OCT, employing a swept-source laser centered at 1310 nm, shares the sample arm of the PAT system. The fiber-optic probe for the combined system was homemade with a lensed single-mode fiber (SMF) and a large-core multimode fiber (MMF). The compact and robust common probe is capable of obtaining both the PA and the OCT signals at the same position without any physical contact. Additionally, the MMF of the probe delivers the short pulses of a Nd:YAG laser to efficiently excite the PA signals. We experimentally demonstrate the feasibility of the proposed dual-modal system with a phantom made of a fishing line and a black polyethylene terephthalate fiber in a tissue mimicking solution. The all-fiber-optic system, capable of providing complementary information about absorption and scattering, has a promising potential in minimally invasive and endoscopic imaging.

  1. An All-Fiber-Optic Combined System of Noncontact Photoacoustic Tomography and Optical Coherence Tomography

    Science.gov (United States)

    Eom, Jonghyun; Shin, Jun Geun; Park, Soongho; Rim, Sunghwan; Lee, Byeong Ha

    2016-01-01

    We propose an all-fiber-based dual-modal imaging system that combines noncontact photoacoustic tomography (PAT) and optical coherence tomography (OCT). The PAT remotely measures photoacoustic (PA) signals with a 1550-nm laser on the surface of a sample by utilizing a fiber interferometer as an ultrasound detector. The fiber-based OCT, employing a swept-source laser centered at 1310 nm, shares the sample arm of the PAT system. The fiber-optic probe for the combined system was homemade with a lensed single-mode fiber (SMF) and a large-core multimode fiber (MMF). The compact and robust common probe is capable of obtaining both the PA and the OCT signals at the same position without any physical contact. Additionally, the MMF of the probe delivers the short pulses of a Nd:YAG laser to efficiently excite the PA signals. We experimentally demonstrate the feasibility of the proposed dual-modal system with a phantom made of a fishing line and a black polyethylene terephthalate fiber in a tissue mimicking solution. The all-fiber-optic system, capable of providing complementary information about absorption and scattering, has a promising potential in minimally invasive and endoscopic imaging. PMID:27213392

  2. An All-Fiber-Optic Combined System of Noncontact Photoacoustic Tomography and Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Jonghyun Eom

    2016-05-01

    Full Text Available We propose an all-fiber-based dual-modal imaging system that combines noncontact photoacoustic tomography (PAT and optical coherence tomography (OCT. The PAT remotely measures photoacoustic (PA signals with a 1550-nm laser on the surface of a sample by utilizing a fiber interferometer as an ultrasound detector. The fiber-based OCT, employing a swept-source laser centered at 1310 nm, shares the sample arm of the PAT system. The fiber-optic probe for the combined system was homemade with a lensed single-mode fiber (SMF and a large-core multimode fiber (MMF. The compact and robust common probe is capable of obtaining both the PA and the OCT signals at the same position without any physical contact. Additionally, the MMF of the probe delivers the short pulses of a Nd:YAG laser to efficiently excite the PA signals. We experimentally demonstrate the feasibility of the proposed dual-modal system with a phantom made of a fishing line and a black polyethylene terephthalate fiber in a tissue mimicking solution. The all-fiber-optic system, capable of providing complementary information about absorption and scattering, has a promising potential in minimally invasive and endoscopic imaging.

  3. Digital processing optical transmission and coherent receiving techniques

    CERN Document Server

    Binh, Le Nguyen

    2013-01-01

    With coherent mixing in the optical domain and processing in the digital domain, advanced receiving techniques employing ultra-high speed sampling rates have progressed tremendously over the last few years. These advances have brought coherent reception systems for lightwave-carried information to the next stage, resulting in ultra-high capacity global internetworking. Digital Processing: Optical Transmission and Coherent Receiving Techniques describes modern coherent receiving techniques for optical transmission and aspects of modern digital optical communications in the most basic lines. The

  4. Microscope Integrated Intraoperative Spectral Domain Optical Coherence Tomography for Cataract Surgery: Uses and Applications.

    Science.gov (United States)

    Das, Sudeep; Kummelil, Mathew Kurian; Kharbanda, Varun; Arora, Vishal; Nagappa, Somshekar; Shetty, Rohit; Shetty, Bhujang K

    2016-05-01

    To demonstrate the uses and applications of a microscope integrated intraoperative Optical Coherence Tomography in Micro Incision Cataract Surgery (MICS) and Femtosecond Laser Assisted Cataract Surgery (FLACS). Intraoperative real time imaging using the RESCAN™ 700 (Carl Zeiss Meditec, Oberkochen, Germany) was done for patients undergoing MICS as well as FLACS. The OCT videos were reviewed at each step of the procedure and the findings were noted and analyzed. Microscope Integrated Intraoperative Optical Coherence Tomography was found to be beneficial during all the critical steps of cataract surgery. We were able to qualitatively assess wound morphology in clear corneal incisions, in terms of subclinical Descemet's detachments, tears in the inner or outer wound lips, wound gaping at the end of surgery and in identifying the adequacy of stromal hydration, for both FLACS as well as MICS. It also enabled us to segregate true posterior polar cataracts from suspected cases intraoperatively. Deciding the adequate depth of trenching was made simpler with direct visualization. The final position of the intraocular lens in the capsular bag and the lack of bioadhesivity of hydrophobic acrylic lenses were also observed. Even though Microscope Integrated Intraoperative Optical Coherence Tomography is in its early stages for its application in cataract surgery, this initial assessment does show a very promising role for this technology in the future for cataract surgery both in intraoperative decision making as well as for training purposes.

  5. Characterization of Soft Contact Lens Edge Fitting during Daily Wear Using Ultrahigh-Resolution Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Lele Cui

    2018-01-01

    Full Text Available Purpose. To determine conjunctival overlap over the edge of soft contact lens and to visualize the peripheral postlens tear film (PoLTF underneath soft contact lenses using ultrahigh-resolution optical coherence tomography (UHR-OCT. Methods. Twenty participants (4 males and 16 females, 23.0 ± 3.7 years were fitted with two different types of soft contact lenses randomly. The limbus with lens was imaged with the UHR-OCT at the horizontal meridian every two hours up to 6 hours during lens wear. The conjunctival overlap was ranked as the percentage of the edge covered by the conjunctiva. The frequency of occurrence for visualized peripheral PoLTF was determined. Results. The average conjunctival overlaps at insertion were 49% and 73% for galyfilcon A and balafilcon A lenses and increased significantly to 84% and 90% by 6 hours of lens wear (P<0.001. Lenses with rounded edges had more conjunctival overlap than the lenses with angled edges (P=0.014. There were significant decreases for PoLTF on the conjunctiva (P=0.014 and peripheral cornea (P=0.004 over the study period compared to insertion. The percentage of subjects with PoLTF on the conjunctiva (32.5% and peripheral cornea (36% were greater in subjects wearing balafilcon A lenses (P=0.017. Conclusions. Increased conjunctival overlap over the lens edges and reduced PoLTF underneath the peripheral region of soft contact lenses were shown during lens daily wear. The lens edge configuration may play a role in conjunctival response and peripheral PoLTF.

  6. Dental optical coherence domain reflectometry explorer

    Energy Technology Data Exchange (ETDEWEB)

    Everett, Matthew J. (Livermore, CA); Colston, Jr., Billy W. (Livermore, CA); Sathyam, Ujwal S. (Livermore, CA); Da Silva, Luiz B. (Pleasanton, CA)

    2001-01-01

    A hand-held, fiber optic based dental device with optical coherence domain reflectometry (OCDR) sensing capabilities provides a profile of optical scattering as a function of depth in the tissue at the point where the tip of the dental explorer touches the tissue. This system provides information on the internal structure of the dental tissue, which is then used to detect caries and periodontal disease. A series of profiles of optical scattering or tissue microstructure are generated by moving the explorer across the tooth or other tissue. The profiles are combined to form a cross-sectional, or optical coherence tomography (OCT), image.

  7. Beryllium parabolic refractive x-ray lenses

    International Nuclear Information System (INIS)

    Lengeler, B.; Schroer, C.G.; Kuhlmann, M.; Benner, B.; Guenzler, T.F.; Kurapova, O.; Somogyi, A.; Snigirev, A.; Snigireva, I.

    2004-01-01

    Parabolic refractive x-ray lenses are novel optical components for the hard x-ray range from about 5 keV to about 120 keV. They focus in both directions. They are compact, robust, and easy to align and to operate. They can be used like glass lenses are used for visible light, the main difference being that the numerical aperture N.A. is much smaller than 1 (of order 10-4 to 10-3). Their main applications are in micro- and nanofocusing, in imaging by absorption and phase contrast and in fluorescence mode. In combination with tomography they allow for 3-dimensional imaging of opaque media with submicrometer resolution. Finally, they can be used in speckle spectroscopy by means of coherent x-ray scattering. Beryllium as lens material strongly enhances the transmission and the field of view as compared to aluminium. With increased N.A. the lateral resolution is also considerably improved with Be lenses. References to a number of applications are given

  8. Overlapped optics induced perfect coherent effects

    Science.gov (United States)

    Li, Jian Jie; Zang, Xiao Fei; Mao, Jun Fa; Tang, Min; Zhu, Yi Ming; Zhuang, Song Lin

    2013-12-01

    For traditional coherent effects, two separated identical point sources can be interfered with each other only when the optical path difference is integer number of wavelengths, leading to alternate dark and bright fringes for different optical path difference. For hundreds of years, such a perfect coherent condition seems insurmountable. However, in this paper, based on transformation optics, two separated in-phase identical point sources can induce perfect interference with each other without satisfying the traditional coherent condition. This shifting illusion media is realized by inductor-capacitor transmission line network. Theoretical analysis, numerical simulations and experimental results are performed to confirm such a kind of perfect coherent effect and it is found that the total radiation power of multiple elements system can be greatly enhanced. Our investigation may be applicable to National Ignition Facility (NIF), Inertial Confined Fusion (ICF) of China, LED lighting technology, terahertz communication, and so on.

  9. Optical Coherence Tomography

    DEFF Research Database (Denmark)

    Fercher, A.F.; Andersen, Peter E.

    2017-01-01

    Optical coherence tomography (OCT) is a technique that is used to peer inside a body noninvasively. Tissue structure defined by tissue absorption and scattering coefficients, and the speed of blood flow, are derived from the characteristics of light remitted by the body. Singly backscattered light...... detected by partial coherence interferometry (PCI) is used to synthesize the tomographic image coded in false colors. A prerequisite of this technique is a low time-coherent but high space-coherent light source, for example, a superluminescent diode or a supercontinuum source. Alternatively, the imaging...... technique can be realized by using ultrafast wavelength scanning light sources. For tissue imaging, the light source wavelengths are restricted to the red and near-infrared (NIR) region from about 600 to 1300 nm, the so-called therapeutic window, where absorption (μa ≈ 0.01 mm−1) is small enough. Transverse...

  10. Experimental demonstration of free-space optical vortex transmutation with polygonal lenses.

    Science.gov (United States)

    Gao, Nan; Xie, Changqing

    2012-08-01

    Vortex transmutation was predicted to take place when vortices interact with systems possessing discrete rotational symmetries of finite order [Phys. Rev. Lett.95, 123901 (2005)]. Here we report what is believed to be the first experimental demonstration of vortex transmutation. We show that in free space, by simply inserting polygonal lenses into the optical path, the central vorticity of a coaxially incident optical vortex can be changed following the modular transmutation rule. We generate the wavefront at the exit face of the lenses with computer generated holograms and measure the output vorticity using the interference patterns at the focal plane. The results agree well with theoretical predictions.

  11. Improved optical mass tracer for galaxy clusters calibrated using weak lensing measurements

    Science.gov (United States)

    Reyes, R.; Mandelbaum, R.; Hirata, C.; Bahcall, N.; Seljak, U.

    2008-11-01

    We develop an improved mass tracer for clusters of galaxies from optically observed parameters, and calibrate the mass relation using weak gravitational lensing measurements. We employ a sample of ~13000 optically selected clusters from the Sloan Digital Sky Survey (SDSS) maxBCG catalogue, with photometric redshifts in the range 0.1-0.3. The optical tracers we consider are cluster richness, cluster luminosity, luminosity of the brightest cluster galaxy (BCG) and combinations of these parameters. We measure the weak lensing signal around stacked clusters as a function of the various tracers, and use it to determine the tracer with the least amount of scatter. We further use the weak lensing data to calibrate the mass normalization. We find that the best mass estimator for massive clusters is a combination of cluster richness, N200, and the luminosity of the BCG, LBCG: , where is the observed mean BCG luminosity at a given richness. This improved mass tracer will enable the use of galaxy clusters as a more powerful tool for constraining cosmological parameters.

  12. Precise ion optical description of strip-line pulsed magnetic lenses

    International Nuclear Information System (INIS)

    Varentsov, D.; Spiller, P.; Eickhoff, H.; Hoffmann, D.H.H.

    2002-01-01

    A specific computer code has been developed to investigate ion optical properties of a new generation of pulsed strip-line high current magnets. The code is based on a modern 'Differential Algebra' computational technique and it is able to calculate transfer matrices of pulsed strip-line magnets up to arbitrary order. The realistic three-dimensional distribution of the magnetic field in pulsed lenses as well as all the fringing field effects are taken into account in the simulations. We have demonstrated, that for precise description of such magnets one cannot use the existing ion optical codes where ideal multipole field distributions and fringing fields, typical for conventional iron-dominated magnets are assumed. The transfer matrix elements of pulsed strip-line lenses differ significantly from those of conventional magnets, especially in higher orders

  13. Extracting subsurface fingerprints using optical coherence tomography

    CSIR Research Space (South Africa)

    Akhoury, SS

    2015-02-01

    Full Text Available Subsurface Fingerprints using Optical Coherence Tomography Sharat Saurabh Akhoury, Luke Nicholas Darlow Modelling and Digital Science, Council for Scientific and Industrial Research, Pretoria, South Africa Abstract Physiologists have found... approach to extract the subsurface fingerprint representation using a high-resolution imaging technology known as Optical Coherence Tomography (OCT). ...

  14. Imaging granulomatous lesions with optical coherence tomography

    DEFF Research Database (Denmark)

    Banzhaf, Christina; Jemec, Gregor B E

    2012-01-01

    To investigate and compare the presentation of granulomatous lesions in optical coherence tomography (OCT) images and compare this to previous studies of nonmelanoma skin tumors.......To investigate and compare the presentation of granulomatous lesions in optical coherence tomography (OCT) images and compare this to previous studies of nonmelanoma skin tumors....

  15. Digital Signal Processing for Optical Coherent Communication Systems

    DEFF Research Database (Denmark)

    Zhang, Xu

    spectrum narrowing tolerance 112-Gb/s DP-QPSK optical coherent systems using digital adaptive equalizer. The demonstrated results show that off-line DSP algorithms are able to reduce the bit error rate (BER) penalty induced by signal spectrum narrowing. Third, we also investigate bi...... wavelength division multiplex (U-DWDM) optical coherent systems based on 10-Gbaud QPSK. We report U-DWDM 1.2-Tb/s QPSK coherent system achieving spectral efficiency of 4.0-bit/s/Hz. In the experimental demonstration, digital decision feed back equalizer (DFE) algorithms and a finite impulse response (FIR......In this thesis, digital signal processing (DSP) algorithms are studied to compensate for physical layer impairments in optical fiber coherent communication systems. The physical layer impairments investigated in this thesis include optical fiber chromatic dispersion, polarization demultiplexing...

  16. SU-8 Lenses: Simple Methods of Fabrication and Application in Optical Interconnection Between Fiber/LED and Microstructures

    Science.gov (United States)

    Nguyen, Minh-Hang; Nguyen, Hai-Binh; Nguyen, Tuan-Hung; Vu, Xuan-Manh; Lai, Jain-Ren; Tseng, Fan-Gang; Chen, Te-Chang; Lee, Ming-Chang

    2016-05-01

    This paper presents two facile methods to fabricate off-plane lenses made of SU-8, an epoxy-based negative photoresist from MicroChem, on glass for optical interconnection. The methods allow the fabrication of lenses with flexible spot size and focal length depending on SU-8 well size and SU-8 drop volume and viscosity. In the first method, SU-8 drops were applied directly into patterned SU-8 wells with Teflon-coated micropipettes, and were baked to become (a)-spherical lenses. The lens shape and size were mainly determined by SU-8 viscosity, ratio of drop volume to well volume, and baking temperature and time. In the second method, a glass substrate with SU-8 patterned wells was emerged in diluted SU-8, then drawn up and baked to form lenses. The lens shapes and sizes were mainly determined by SU-8 viscosity and well volume. By the two methods, SU-8 lenses were successfully fabricated with spot sizes varying in range from micrometers to hundred micrometers, and focal lengths varying in range of several millimeters, depending on the lens rim diameters and aspheric sag height. Besides, on-plane SU-8 lenses were fabricated by photolithography to work in conjunction with the off-plane SU-8 lenses. The cascaded lenses produced light spots reduced to several micrometers, and they can be applied as a coupler for light coupling from fiber/Light-emitting diode (LED) to microstructures and nanostructures. The results open up the path for fabricating novel optical microsystems for optical communication and optical sensing applications.

  17. Lenses and effective spatial resolution in macroscopic optical mapping

    International Nuclear Information System (INIS)

    Bien, Harold; Parikh, Puja; Entcheva, Emilia

    2007-01-01

    Optical mapping of excitation dynamically tracks electrical waves travelling through cardiac or brain tissue by the use of fluorescent dyes. There are several characteristics that set optical mapping apart from other imaging modalities: dynamically changing signals requiring short exposure times, dim fluorescence demanding sensitive sensors and wide fields of view (low magnification) resulting in poor optical performance. These conditions necessitate the use of optics with good light gathering ability, i.e. lenses having high numerical aperture. Previous optical mapping studies often used sensor resolution to estimate the minimum spatial feature resolvable, assuming perfect optics and infinite contrast. We examine here the influence of finite contrast and real optics on the effective spatial resolution in optical mapping under broad-field illumination for both lateral (in-plane) resolution and axial (depth) resolution of collected fluorescence signals

  18. Parabolic refractive X-ray lenses: a breakthrough in X-ray optics

    CERN Document Server

    Lengeler, B; Benner, B; Guenzler, T F; Kuhlmann, M; Tümmler, J; Simionovici, A S; Drakopoulos, M; Snigirev, A; Snigireva, I

    2001-01-01

    Refractive X-ray lenses, considered for a long time as unfeasible, have been realized with a rotational parabolic profile at our institute: The main features of the new lenses are: they focus in two directions and are free of spherical aberration. By varying the number of individual lenses in the stack the focal length can be chosen in a typical range from 0.5 to 2 m for photon energies between about 6 and 60 keV. The aperture of the lens is about 1 mm matching the angular divergence of undulator beams at 3d generation synchrotron radiation sources. They cope without problems with the heat load from the white beam of an undulator. Finally, they are easy to align and to operate. Refractive X-ray lenses can be used with hard X-rays in the same way as glass lenses can be used for visible light, if it is take into account that the numerical aperture is small (of the order 10 sup - sup 4). Being high-quality optical elements, the refractive X-ray lenses can be used for generating a focal spot in the mu m range wit...

  19. Low-cost, high-precision micro-lensed optical fiber providing deep-micrometer to deep-nanometer-level light focusing.

    Science.gov (United States)

    Wen, Sy-Bor; Sundaram, Vijay M; McBride, Daniel; Yang, Yu

    2016-04-15

    A new type of micro-lensed optical fiber through stacking appropriate high-refractive microspheres at designed locations with respect to the cleaved end of an optical fiber is numerically and experimentally demonstrated. This new type of micro-lensed optical fiber can be precisely constructed with low cost and high speed. Deep micrometer-scale and submicrometer-scale far-field light spots can be achieved when the optical fibers are multimode and single mode, respectively. By placing an appropriate teardrop dielectric nanoscale scatterer at the far-field spot of this new type of micro-lensed optical fiber, a deep-nanometer near-field spot can also be generated with high intensity and minimum joule heating, which is valuable in high-speed, high-resolution, and high-power nanoscale detection compared with traditional near-field optical fibers containing a significant portion of metallic material.

  20. Semiautomated analysis of optical coherence tomography crystalline lens images under simulated accommodation.

    Science.gov (United States)

    Kim, Eon; Ehrmann, Klaus; Uhlhorn, Stephen; Borja, David; Arrieta-Quintero, Esdras; Parel, Jean-Marie

    2011-05-01

    Presbyopia is an age related, gradual loss of accommodation, mainly due to changes in the crystalline lens. As part of research efforts to understand and cure this condition, ex vivo, cross-sectional optical coherence tomography images of crystalline lenses were obtained by using the Ex-Vivo Accommodation Simulator (EVAS II) instrument and analyzed to extract their physical and optical properties. Various filters and edge detection methods were applied to isolate the edge contour. An ellipse is fitted to the lens outline to obtain central reference point for transforming the pixel data into the analysis coordinate system. This allows for the fitting of a high order equation to obtain a mathematical description of the edge contour, which obeys constraints of continuity as well as zero to infinite surface slopes from apex to equator. Geometrical parameters of the lens were determined for the lens images captured at different accommodative states. Various curve fitting functions were developed to mathematically describe the anterior and posterior surfaces of the lens. Their differences were evaluated and their suitability for extracting optical performance of the lens was assessed. The robustness of these algorithms was tested by analyzing the same images repeated times.

  1. Autofluorescence and spectral-domain optical coherence tomography of optic disk melanocytoma.

    Science.gov (United States)

    Guerra, Ricardo Luz Leitão; Marback, Eduardo Ferrari; Silva, Igor Sandes Pessoa da; Maia Junior, Otacílio de Oliveira; Marback, Roberto Lorens

    2014-01-01

    The authors report fundus autofluorescence (FAF) and spectral-domain optical coherence tomography (OCT) findings of two consecutive patients who presented with optic disk melanocytoma (ODM). A retrospective study was performed by reviewing medical records and ophthalmic imaging examinations. Optical coherence tomography findings were sloped and brightly reflective anterior tumor surface, adjacent retinal desorganization and abrupt posterior optical shadowing. Vitreous seeds were found in one patient. Fundus autofluorescence revealed outstanding hypoautofluorescence at the tumor area and isoautofluorescence at the remaining retina. Optical coherence tomography findings of the reported cases are consistent with those reported in the reviewed literature. Fundus autofluorescence has been used in the assessment of choroidal melanocytic tumors, but not yet in melanocytomas. We assume that this is the first report of these findings and believe that when its pattern has become clearly defined, fundus autofluorescence will be a useful tool to avoid misdiagnosis in suspicious cases and for follow-up.

  2. Autofluorescence and spectral-domain optical coherence tomography of optic disk melanocytoma

    Directory of Open Access Journals (Sweden)

    Ricardo Luz Leitão Guerra

    2014-12-01

    Full Text Available The authors report fundus autofluorescence (FAF and spectral-domain optical coherence tomography (OCT findings of two consecutive patients who presented with optic disk melanocytoma (ODM. A retrospective study was performed by reviewing medical records and ophthalmic imaging examinations. Optical coherence tomography findings were sloped and brightly reflective anterior tumor surface, adjacent retinal desorganization and abrupt posterior optical shadowing. Vitreous seeds were found in one patient. Fundus autofluorescence revealed outstanding hypoautofluorescence at the tumor area and isoautofluorescence at the remaining retina. Optical coherence tomography findings of the reported cases are consistent with those reported in the reviewed literature. Fundus autofluorescence has been used in the assessment of choroidal melanocytic tumors, but not yet in melanocytomas. We assume that this is the first report of these findings and believe that when its pattern has become clearly defined, fundus autofluorescence will be a useful tool to avoid misdiagnosis in suspicious cases and for follow-up.

  3. Additive manufacturing of tunable lenses

    Science.gov (United States)

    Schlichting, Katja; Novak, Tobias; Heinrich, Andreas

    2017-02-01

    Individual additive manufacturing of optical systems based on 3D Printing offers varied possibilities in design and usage. In addition to the additive manufacturing procedure, the usage of tunable lenses allows further advantages for intelligent optical systems. Our goal is to bring the advantages of additive manufacturing together with the huge potential of tunable lenses. We produced tunable lenses as a bundle without any further processing steps, like polishing. The lenses were designed and directly printed with a 3D Printer as a package. The design contains the membrane as an optical part as well as the mechanical parts of the lens, like the attachments for the sleeves which contain the oil. The dynamic optical lenses were filled with an oil. The focal length of the lenses changes due to a change of the radius of curvature. This change is caused by changing the pressure in the inside of the lens. In addition to that, we designed lenses with special structures to obtain different areas with an individual optical power. We want to discuss the huge potential of this technology for several applications. Further, an appropriate controlling system is needed. Wéll show the possibilities to control and regulate the optical power of the lenses. The lenses could be used for illumination tasks, and in the future, for individual measurement tasks. The main advantage is the individuality and the possibility to create an individual design which completely fulfills the requirements for any specific application.

  4. Intracoronary optical coherence tomography

    DEFF Research Database (Denmark)

    Tenekecioglu, Erhan; Albuquerque, Felipe N; Sotomi, Yohei

    2017-01-01

    By providing valuable information about the coronary artery wall and lumen, intravascular imaging may aid in optimizing interventional procedure results and thereby could improve clinical outcomes following percutaneous coronary intervention (PCI). Intravascular optical coherence tomography (OCT...

  5. Intra-operative application of optical coherence tomography with an operating microscope.

    Science.gov (United States)

    Just, T; Lankenau, E; Hüttmann, G; Pau, H W

    2009-09-01

    To introduce the use of optical coherence tomography with an operating microscope for intra-operative evaluation of the human larynx. A specially equipped operating microscope with integrated spectral domain optical coherence tomography apparatus was used during microlaryngoscopy. Technical improvements in optical coherence tomography equipment (e.g. pilot beam, variable focal distance, improved image quality and integration into an operating microscope) have enabled greater sensitivity and imaging speed and a non-contact approach. Spectral domain optical coherence tomography now enables a better correlation between optical coherence tomography images and histological findings. With this new technology, the precision of biopsy can be improved during microlaryngoscopy. Use of this new optical coherence tomography technology, integrated into an operating microscope, enables the surgeon to define the biopsy site location and resection plane precisely, while the optical zoom of the operating microscope can be used over the complete range.

  6. Optical effects of exposing intact human lenses to ultraviolet radiation and visible light

    DEFF Research Database (Denmark)

    Kessel, Line; Eskildsen, Lars; Lundeman, Jesper Holm

    2011-01-01

    region of incoming visible light. The aim of the present study was to examine the optical effects on human lenses of short wavelength visible light and ultraviolet radiation. METHODS: Naturally aged human donor lenses were irradiated with UVA (355 nm), violet (400 and 405 nm) and green (532 nm) lasers......: Irradiation with high intensity lasers caused scattering lesions in the human lenses. These effects were more likely to be seen when using pulsed lasers because of the high pulse intensity. Prolonged irradiation with UVA led to photodarkening whereas no detrimental effects were observed after irradiation...

  7. Optical effects of exposing intact human lenses to ultraviolet radiation and visible light

    DEFF Research Database (Denmark)

    Kessel, Line; Eskildsen, Lars Baunsgaard; Lundeman, Jesper Holm

    2011-01-01

    wavelength region of incoming visible light. The aim of the present study was to examine the optical effects on human lenses of short wavelength visible light and ultraviolet radiation. METHODS: Naturally aged human donor lenses were irradiated with UVA (355 nm), violet (400 and 405 nm) and green (532 nm....... RESULTS: Irradiation with high intensity lasers caused scattering lesions in the human lenses. These effects were more likely to be seen when using pulsed lasers because of the high pulse intensity. Prolonged irradiation with UVA led to photodarkening whereas no detrimental effects were observed after...

  8. Cross-Grade Comparison of Students' Conceptual Understanding with Lenses in Geometric Optics

    Science.gov (United States)

    Tural, G.

    2015-01-01

    Students commonly find the field of physics difficult. Therefore, they generally have learning problems. One of the subjects with which they have difficulties is optics within a physics discipline. This study aims to determine students' conceptual understanding levels at different education levels relating to lenses in geometric optics. A…

  9. Partially coherent X-ray wavefront propagation simulations including grazing-incidence focusing optics.

    Science.gov (United States)

    Canestrari, Niccolo; Chubar, Oleg; Reininger, Ruben

    2014-09-01

    X-ray beamlines in modern synchrotron radiation sources make extensive use of grazing-incidence reflective optics, in particular Kirkpatrick-Baez elliptical mirror systems. These systems can focus the incoming X-rays down to nanometer-scale spot sizes while maintaining relatively large acceptance apertures and high flux in the focused radiation spots. In low-emittance storage rings and in free-electron lasers such systems are used with partially or even nearly fully coherent X-ray beams and often target diffraction-limited resolution. Therefore, their accurate simulation and modeling has to be performed within the framework of wave optics. Here the implementation and benchmarking of a wave-optics method for the simulation of grazing-incidence mirrors based on the local stationary-phase approximation or, in other words, the local propagation of the radiation electric field along geometrical rays, is described. The proposed method is CPU-efficient and fully compatible with the numerical methods of Fourier optics. It has been implemented in the Synchrotron Radiation Workshop (SRW) computer code and extensively tested against the geometrical ray-tracing code SHADOW. The test simulations have been performed for cases without and with diffraction at mirror apertures, including cases where the grazing-incidence mirrors can be hardly approximated by ideal lenses. Good agreement between the SRW and SHADOW simulation results is observed in the cases without diffraction. The differences between the simulation results obtained by the two codes in diffraction-dominated cases for illumination with fully or partially coherent radiation are analyzed and interpreted. The application of the new method for the simulation of wavefront propagation through a high-resolution X-ray microspectroscopy beamline at the National Synchrotron Light Source II (Brookhaven National Laboratory, USA) is demonstrated.

  10. Optics for coherent X-ray applications

    Energy Technology Data Exchange (ETDEWEB)

    Yabashi, Makina, E-mail: yabashi@spring8.or.jp [RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo 679-5148 (Japan); Tono, Kensuke [Japan Synchrotron Radiation Research Institute (JASRI), Kouto 1-1-1, Sayo, Hyogo 679-5198 (Japan); Mimura, Hidekazu [The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656 (Japan); Matsuyama, Satoshi; Yamauchi, Kazuto [Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Tanaka, Takashi; Tanaka, Hitoshi; Tamasaku, Kenji [RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo 679-5148 (Japan); Ohashi, Haruhiko; Goto, Shunji [Japan Synchrotron Radiation Research Institute (JASRI), Kouto 1-1-1, Sayo, Hyogo 679-5198 (Japan); Ishikawa, Tetsuya [RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo 679-5148 (Japan)

    2014-08-27

    Developments of optics for coherent X-ray applications and their role in diffraction-limited storage rings are described. Developments of X-ray optics for full utilization of diffraction-limited storage rings (DLSRs) are presented. The expected performance of DLSRs is introduced using the design parameters of SPring-8 II. To develop optical elements applicable to manipulation of coherent X-rays, advanced technologies on precise processing and metrology were invented. With propagation-based coherent X-rays at the 1 km beamline of SPring-8, a beryllium window fabricated with the physical-vapour-deposition method was found to have ideal speckle-free properties. The elastic emission machining method was utilized for developing reflective mirrors without distortion of the wavefronts. The method was further applied to production of diffraction-limited focusing mirrors generating the smallest spot size in the sub-10 nm regime. To enable production of ultra-intense nanobeams at DLSRs, a low-vibration cooling system for a high-heat-load monochromator and advanced diagnostic systems to characterize X-ray beam properties precisely were developed. Finally, new experimental schemes for combinative nano-analysis and spectroscopy realised with novel X-ray optics are discussed.

  11. Doppler optical coherence microscopy and tomography applied to inner ear mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Page, Scott; Freeman, Dennis M. [Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States); Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States); Ghaffari, Roozbeh [Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States)

    2015-12-31

    While it is clear that cochlear traveling waves underlie the extraordinary sensitivity, frequency selectivity, and dynamic range of mammalian hearing, the underlying micromechanical mechanisms remain unresolved. Recent advances in low coherence measurement techniques show promise over traditional laser Doppler vibrometry and video microscopy, which are limited by low reflectivities of cochlear structures and restricted optical access. Doppler optical coherence tomography (DOCT) and Doppler optical coherence microscopy (DOCM) both utilize a broadband source to limit constructive interference of scattered light to a small axial depth called a coherence gate. The coherence gate can be swept axially to image and measure sub-nanometer motions of cochlear structures throughout the cochlear partition. The coherence gate of DOCT is generally narrower than the confocal gate of the focusing optics, enabling increased axial resolution (typically 15 μm) within optical sections of the cochlear partition. DOCM, frequently implemented in the time domain, centers the coherence gate on the focal plane, achieving enhanced lateral and axial resolution when the confocal gate is narrower than the coherence gate. We compare these two complementary systems and demonstrate their utility in studying cellular and micromechanical mechanisms involved in mammalian hearing.

  12. Antireflective glass nanoholes on optical lenses.

    Science.gov (United States)

    Lee, Youngseop; Bae, Sang-In; Eom, Jaehyeon; Suh, Ho-Cheol; Jeong, Ki-Hun

    2018-05-28

    Antireflective structures, inspired from moth eyes, are still reserved for practical use due to their large-area nanofabrication and mechanical stability. Here we report an antireflective optical lens with large-area glass nanoholes. The nanoholes increase light transmission due to the antireflective effect, depending on geometric parameters such as fill factor and height. The glass nanoholes of low effective refractive index are achieved by using solid-state dewetting of ultrathin silver film, reactive ion etching, and wet etching. An ultrathin silver film is transformed into nanoholes for an etch mask in reactive ion etching after thermal annealing at a low temperature. Unlike conventional nanopillars, nanoholes exhibit high light transmittance with enhancement of ~4% over the full visible range as well as high mechanical hardness. Also, an antireflective glass lens is achieved by directly employing nanoholes on the lens surface. Glass nanoholes of highly enhanced optical and mechanical performance can be directly utilized for commercial glass lenses in various imaging and lighting applications.

  13. Coherence-Multiplexed Optical RF Feeder Networks

    NARCIS (Netherlands)

    Meijerink, Arjan; Taniman, R.O.; van Etten, Wim

    2007-01-01

    An optical RF feeding system for wireless access is proposed, in which the radio access points are distinguished by means of coherence multiplexing (CM). CM is a rather unknown and potentially inexpensive optical code division multiple access technique, which is particularly suitable for relatively

  14. Optical coherence tomography in conjunction with bronchoscopy

    International Nuclear Information System (INIS)

    Rodrigues, Ascedio Jose; Takimura, Celso Kiyochi; Lemos Neto, Pedro Alves; Figueiredo, Viviane Rossi

    2012-01-01

    To evaluate the feasibility of and the potential for using optical coherence tomography in conjunction with conventional bronchoscopy in the evaluation of the airways. Methods: This was a pilot study based on an ex vivo experimental model involving three animals: one adult New Zealand rabbit and two Landrace pigs. An optical coherence tomography imaging catheter was inserted through the working channel of a flexible bronchoscope in order to reach the distal trachea of the animals. Images of the walls of the trachea were systematically taken along its entire length, from the distal to the proximal portion. Results: The imaging catheter was easily adapted to the working channel of the bronchoscope. High-resolution images of cross sections of the trachea were taken in real time, precisely delineating microstructures, such as the epithelium, submucosa, and cartilage, as well as the adventitia of the anterior and lateral tracheal walls. The corresponding layers of the epithelium, mucosa, and cartilage were clearly differentiated. The mucosa, submucosa, and trachealis muscle were clearly identified in the posterior wall. Conclusions: It is feasible to use an optical coherence tomography imaging catheter in combination with a flexible bronchoscope. Optical coherence tomography produces high resolution images that reveal the microanatomy of the trachea, including structures that are typically seen only on images produced by conventional histology. (author)

  15. Optical coherence tomography in conjunction with bronchoscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Ascedio Jose; Takimura, Celso Kiyochi; Lemos Neto, Pedro Alves; Figueiredo, Viviane Rossi, E-mail: ascedio@gmail.com [Servico de Endoscopia Respiratoria, Hospital das Clinicas, Universidade de Sao Paulo (FM/USP), SP (Brazil)

    2012-07-01

    To evaluate the feasibility of and the potential for using optical coherence tomography in conjunction with conventional bronchoscopy in the evaluation of the airways. Methods: This was a pilot study based on an ex vivo experimental model involving three animals: one adult New Zealand rabbit and two Landrace pigs. An optical coherence tomography imaging catheter was inserted through the working channel of a flexible bronchoscope in order to reach the distal trachea of the animals. Images of the walls of the trachea were systematically taken along its entire length, from the distal to the proximal portion. Results: The imaging catheter was easily adapted to the working channel of the bronchoscope. High-resolution images of cross sections of the trachea were taken in real time, precisely delineating microstructures, such as the epithelium, submucosa, and cartilage, as well as the adventitia of the anterior and lateral tracheal walls. The corresponding layers of the epithelium, mucosa, and cartilage were clearly differentiated. The mucosa, submucosa, and trachealis muscle were clearly identified in the posterior wall. Conclusions: It is feasible to use an optical coherence tomography imaging catheter in combination with a flexible bronchoscope. Optical coherence tomography produces high resolution images that reveal the microanatomy of the trachea, including structures that are typically seen only on images produced by conventional histology. (author)

  16. Characterization of germanium linear kinoform lenses at Diamond Light Source.

    Science.gov (United States)

    Alianelli, L; Sawhney, K J S; Tiwari, M K; Dolbnya, I P; Stevens, R; Jenkins, D W K; Loader, I M; Wilson, M C; Malik, A

    2009-05-01

    The unprecedented brilliance achieved by third-generation synchrotron sources and the availability of improved optics have opened up new opportunities for the study of materials at the micrometre and nanometre scale. Focusing the synchrotron radiation to smaller and smaller beams is having a huge impact on a wide research area at synchrotrons. The key to the exploitation of the improved sources is the development of novel optics that deliver narrow beams without loss of brilliance and coherence. Several types of synchrotron focusing optics are successfully fabricated using advanced miniaturization techniques. Kinoform refractive lenses are being developed for hard X-ray beamlines, and the first test results at Diamond are discussed in this paper.

  17. Controllable liquid colour-changing lenses with microfluidic channels for vision protection, camouflage and optical filtering based on soft lithography fabrication.

    Science.gov (United States)

    Zhang, Min; Li, Songjing

    2016-01-01

    In this work, liquid colour-changing lenses for vision protection, camouflage and optical filtering are developed by circulating colour liquids through microfluidic channels on the lenses manually. Soft lithography technology is applied to fabricate the silicone liquid colour-changing layers with microfluidic channels on the lenses instead of mechanical machining. To increase the hardness and abrasion resistance of the silicone colour-changing layers on the lenses, proper fabrication parameters such as 6:1 (mass ration) mixing proportion and 100 °C curing temperature for 2 h are approved for better soft lithography process of the lenses. Meanwhile, a new surface treatment for the irreversible bonding of silicone colour-changing layer with optical resin (CR39) substrate lens by using 5 % (volume ratio) 3-Aminopropyltriethoxysilane solution is proposed. Vision protection, camouflage and optical filtering functions of the lenses are investigated with different designs of the channels and multi-layer structures. Each application can not only well achieve their functional demands, but also shows the advantages of functional flexibility, rapid prototyping and good controllability compared with traditional ways. Besides optometry, some other designs and applications of the lenses are proposed for potential utility in the future.

  18. High-definition optical coherence tomography

    DEFF Research Database (Denmark)

    Boone, Marc; Norrenberg, Sarah; Jemec, Gregor

    2013-01-01

    to those described for reflectance confocal microscopy but with the advantages not only to visualize individual cells up to a depth of 570 μm but also in both slice and en face mode. An adapted algorithmic method for pattern analysis of common inflammatory skin diseases could be proposed. This new......High-definition optical coherence tomography (HD-OCT) is a non-invasive technique for morphological investigation of tissue with cellular resolution filling the imaging gap between reflectance confocal microscopy and conventional optical coherence tomography. The aim of this study is first...... dermatitis. Additional studies to test the sensitivity and specificity of the proposed algorithm for pattern analysis are essential. The other categories of Ackerman's pattern recognition need to be evaluated. This study provides a set of morphological features generated by HD-OCT imaging very similar...

  19. Wigner distribution, partial coherence, and phase-space optics

    NARCIS (Netherlands)

    Bastiaans, M.J.

    2009-01-01

    The Wigner distribution is presented as a perfect means to treat partially coherent optical signals and their propagation through first-order optical systems from a radiometric and phase-space optical perspective

  20. Characterisation of optically cleared paper by optical coherence tomography

    International Nuclear Information System (INIS)

    Fabritius, T; Alarousu, E; Prykaeri, T; Hast, J; Myllylae, Risto

    2006-01-01

    Due to the highly light scattering nature of paper, the imaging depth of optical methods such as optical coherence tomography (OCT) is limited. In this work, we study the effect of refractive index matching on improving the imaging depth of OCT in paper. To this end, four different refractive index matching liquids (ethanol, 1-pentanol, glycerol and benzyl alcohol) with a refraction index between 1.359 and 1.538 were used in experiments. Low coherent light transmission was studied in commercial copy paper sheets, and the results indicate that benzyl alcohol offers the best improvement in imaging depth, while also being sufficiently stable for the intended purpose. Constructed cross-sectional images demonstrate visually that the imaging depth of OCT is considerably improved by optical clearing. Both surfaces of paper sheets can be detected along with information about the sheet's inner structure. (laser applications and other topics in quantum electronics)

  1. Effect of gamma radiation on the optical properties of intraocular lenses

    International Nuclear Information System (INIS)

    Naguib, N.I.

    2006-01-01

    The effect of gamma rays in the range of doses up to 150 gray on optical and thermal properties of the intraocular lenses (IOL) made of polymethyl methacrylate (PMMA) was studied. Thermogravimetric analysis (TGA) and differential scanning colorimetry (DSC) have been performed to study the effect of gamma irradiation on the IOL. The results indicate that irradiation up to 150 Gy did not affect greatly the optical and thermal properties of the investigated IOL

  2. Audio frequency in vivo optical coherence elastography

    Science.gov (United States)

    Adie, Steven G.; Kennedy, Brendan F.; Armstrong, Julian J.; Alexandrov, Sergey A.; Sampson, David D.

    2009-05-01

    We present a new approach to optical coherence elastography (OCE), which probes the local elastic properties of tissue by using optical coherence tomography to measure the effect of an applied stimulus in the audio frequency range. We describe the approach, based on analysis of the Bessel frequency spectrum of the interferometric signal detected from scatterers undergoing periodic motion in response to an applied stimulus. We present quantitative results of sub-micron excitation at 820 Hz in a layered phantom and the first such measurements in human skin in vivo.

  3. Audio frequency in vivo optical coherence elastography

    International Nuclear Information System (INIS)

    Adie, Steven G; Kennedy, Brendan F; Armstrong, Julian J; Alexandrov, Sergey A; Sampson, David D

    2009-01-01

    We present a new approach to optical coherence elastography (OCE), which probes the local elastic properties of tissue by using optical coherence tomography to measure the effect of an applied stimulus in the audio frequency range. We describe the approach, based on analysis of the Bessel frequency spectrum of the interferometric signal detected from scatterers undergoing periodic motion in response to an applied stimulus. We present quantitative results of sub-micron excitation at 820 Hz in a layered phantom and the first such measurements in human skin in vivo.

  4. Optical Coherence Tomography Technology and Quality Improvement Methods for Optical Coherence Tomography Images of Skin: A Short Review

    Science.gov (United States)

    Adabi, Saba; Turani, Zahra; Fatemizadeh, Emad; Clayton, Anne; Nasiriavanaki, Mohammadreza

    2017-01-01

    Optical coherence tomography (OCT) delivers 3-dimensional images of tissue microstructures. Although OCT imaging offers a promising high-resolution method, OCT images experience some artifacts that lead to misapprehension of tissue structures. Speckle, intensity decay, and blurring are 3 major artifacts in OCT images. Speckle is due to the low coherent light source used in the configuration of OCT. Intensity decay is a deterioration of light with respect to depth, and blurring is the consequence of deficiencies of optical components. In this short review, we summarize some of the image enhancement algorithms for OCT images which address the abovementioned artifacts. PMID:28638245

  5. Optical Coherence Tomography Technology and Quality Improvement Methods for Optical Coherence Tomography Images of Skin: A Short Review

    Directory of Open Access Journals (Sweden)

    Saba Adabi

    2017-06-01

    Full Text Available Optical coherence tomography (OCT delivers 3-dimensional images of tissue microstructures. Although OCT imaging offers a promising high-resolution method, OCT images experience some artifacts that lead to misapprehension of tissue structures. Speckle, intensity decay, and blurring are 3 major artifacts in OCT images. Speckle is due to the low coherent light source used in the configuration of OCT. Intensity decay is a deterioration of light with respect to depth, and blurring is the consequence of deficiencies of optical components. In this short review, we summarize some of the image enhancement algorithms for OCT images which address the abovementioned artifacts.

  6. Inability to perform posterior segment monitoring by scanning laser ophthalmoscopy or optical coherence tomography with some occlusive intraocular lenses in clinical use.

    Science.gov (United States)

    Yusuf, Imran H; Peirson, Stuart N; Patel, Chetan K

    2012-03-01

    To evaluate whether occlusive intraocular lenses (IOLs) produced by several manufacturers for clinical use equivalently transmit near-infrared (IR) light for scanning laser ophthalmoscopy (SLO) or optical coherence tomography (OCT) imaging. Nuffield Laboratory of Ophthalmology, Oxford University, United Kingdom. Evaluation of diagnostic test or technology. The study evaluated 6 black IOLs of 2 designs: 3 poly(methyl methacrylate) (PMMA) and 3 iris-claw anterior chamber IOLs. Each IOL was placed between a broad-spectrum white light source and a spectroradiometer to generate transmission spectra. Transmission in the near-IR range was examined using an 850 nm light-emitting diode. Scanning laser ophthalmoscopy or OCT imaging using Spectralis spectral-domain SLO or OCT was attempted through occlusive IOLs in a model eye. Artisan iris-claw and MS 612 PMMA occlusive IOLs totally occluded all wavelengths of light, including in the near IR range in which SLO and OCT imaging systems operate. It was not possible to capture SLO or OCT images through the iris-claw and PMMA occlusive IOLs in a model eye. Results suggest the property of near-IR transmission that permits SLO or OCT imaging through occlusive IOLs is restricted to the Morcher range of occlusive IOLs. Patients with non-near IR transmitting IOLs will not be able to receive detailed posterior segment monitoring with SLO or OCT. This finding may have a significant impact on preoperative occlusive IOL selection and the management of current patients with occlusive IOLs. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  7. Machine learning concepts in coherent optical communication systems

    DEFF Research Database (Denmark)

    Zibar, Darko; Schäffer, Christian G.

    2014-01-01

    Powerful statistical signal processing methods, used by the machine learning community, are addressed and linked to current problems in coherent optical communication. Bayesian filtering methods are presented and applied for nonlinear dynamic state tracking. © 2014 OSA.......Powerful statistical signal processing methods, used by the machine learning community, are addressed and linked to current problems in coherent optical communication. Bayesian filtering methods are presented and applied for nonlinear dynamic state tracking. © 2014 OSA....

  8. The fascinating early history of optics! Archaeological optics 2009: our knowledge of the early history of lenses, mirrors, and artificial eyes!

    Science.gov (United States)

    Enoch, Jay M.

    2009-08-01

    The early history of optics and vision science (older term: physiological optics) is indeed fascinating. The earliest known true lenses have been found in "eyes" of Egyptian statues which contain superb, complex, and well-polished eye-lens units. The oldest ones known are dated circa 2575 BCE = BC, Dynasty IV, Old Kingdom. These eye-lens units induce a fascinating and powerful visual illusion, but they are just too good to have been the first lenses, or even the first lenses of this design! So saying, no earlier dateable lenses have been found in Egypt or elsewhere. Recently, at the Boston Museum of Fine Arts, the writer noted a previously undetected lens in this series (a first in the Western Hemisphere). Oddly, dateable simpler magnifying lenses and burning glasses seem to have appeared later in time (?)! Manufactured mirrors are quite a bit older, dating from circa 6000 BCE in atal Hyk, located in south-central modern-day Turkey. Using these ancient mirrors, the image quality obtained is remarkable! Recently discovered ancient artificial eyes, located, in situ, in exhumed corpses, have been dated circa 3000 BCE (one discovered in Iran) 5000 BCE (one found in Spain). On the 3000 BCE artificial eye, there are drawn light rays (the writer believes these to be the oldest known depiction of light rays!) spreading out from (or passing into) the iris/ pupil border! Added interesting aspects associated with the early development of light-rays are considered. Thus, early optics can be readily traced back to the Neolithic era (the new stone age), and in some cases before that time period. We have deep roots indeed!

  9. Optical technologies for extreme-ultraviolet and soft X-ray coherent sources

    International Nuclear Information System (INIS)

    Canova, Federico; Poletto, Luca

    2015-01-01

    The book reviews the most recent achievements in optical technologies for XUV and X-ray coherent sources. Particular attention is given to free-electron-laser facilities, but also to other sources available at present, such as synchrotrons, high-order laser harmonics and X-ray lasers. The optical technologies relevant to each type of source are discussed. In addition, the main technologies used for photon handling and conditioning, namely multilayer mirrors, adaptive optics, crystals and gratings are explained. Experiments using coherent light received during the last decades a lot of attention for the X-ray regime. Strong efforts were taken for the realization of almost fully coherent sources, e.g. the free-electron lasers, both as independent sources in the femtosecond and attosecond regimes and as seeding sources for free-electron-lasers and X-ray gas lasers. In parallel to the development of sources, optical technologies for photon handling and conditioning of such coherent and intense X-ray beams advanced. New problems were faced for the realization of optical components of beamlines demanding to manage coherent X-ray photons, e.g. the preservation of coherence and time structure of ultra short pulses.

  10. In-line optical fiber metallic mirror reflector for monolithic common path optical coherence tomography probes.

    Science.gov (United States)

    Singh, Kanwarpal; Reddy, Rohith; Sharma, Gargi; Verma, Yogesh; Gardecki, Joseph A; Tearney, Guillermo

    2018-03-01

    Endoscopic optical coherence tomography probes suffer from various artifacts due to dispersion imbalance and polarization mismatch between reference and sample arm light. Such artifacts can be minimized using a common path approach. In this work, we demonstrate a miniaturized common path probe for optical coherence tomography using an inline fiber mirror. A common path optical fiber probe suitable for performing high-resolution endoscopic optical coherence tomography imaging was developed. To achieve common path functionality, an inline fiber mirror was fabricated using a thin gold layer. A commercially available swept source engine was used to test the designed probe in a cadaver human coronary artery ex vivo. We achieved a sensitivity of 104 dB for this probe using a swept source optical coherence tomography system. To test the probe, images of a cadaver human coronary artery were obtained, demonstrating the quality that is comparable to those obtained by OCT systems with separate reference arms. Additionally, we demonstrate recovery of ranging depth by use of a Michelson interferometer in the detection path. We developed a miniaturized monolithic inline fiber mirror-based common path probe for optical coherence tomography. Owing to its simplicity, our design will be helpful in endoscopic applications that require high-resolution probes in a compact form factor while reducing system complexity. Lasers Surg. Med. 50:230-235, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Optical generation and control of quantum coherence in semiconductor nanostructures

    CERN Document Server

    Slavcheva, Gabriela

    2010-01-01

    The unprecedented control of coherence that can be exercised in quantum optics of atoms and molecules has stimulated increasing efforts in extending it to solid-state systems. One motivation to exploit the coherent phenomena comes from the emergence of the quantum information paradigm, however many more potential device applications ranging from novel lasers to spintronics are all bound up with issues in coherence. The book focuses on recent advances in the optical control of coherence in excitonic and polaritonic systems as model systems for the complex semiconductor dynamics towards the goal

  12. Probing myocardium biomechanics using quantitative optical coherence elastography

    Science.gov (United States)

    Wang, Shang; Lopez, Andrew L.; Morikawa, Yuka; Tao, Ge; Li, Jiasong; Larina, Irina V.; Martin, James F.; Larin, Kirill V.

    2015-03-01

    We present a quantitative optical coherence elastographic method for noncontact assessment of the myocardium elasticity. The method is based on shear wave imaging optical coherence tomography (SWI-OCT), where a focused air-puff system is used to induce localized tissue deformation through a low-pressure short-duration air stream and a phase-sensitive OCT system is utilized to monitor the propagation of the induced tissue displacement with nanoscale sensitivity. The 1-D scanning of M-mode OCT imaging and the application of optical phase retrieval and mapping techniques enable the reconstruction and visualization of 2-D depth-resolved shear wave propagation in tissue with ultra-high frame rate. The feasibility of this method in quantitative elasticity measurement is demonstrated on tissue-mimicking phantoms with the estimated Young's modulus compared with uniaxial compression tests. We also performed pilot experiments on ex vivo mouse cardiac muscle tissues with normal and genetically altered cardiomyocytes. Our results indicate this noncontact quantitative optical coherence elastographic method can be a useful tool for the cardiac muscle research and studies.

  13. INTRASURGICAL MICROSCOPE-INTEGRATED SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY-ASSISTED MEMBRANE PEELING.

    Science.gov (United States)

    Falkner-Radler, Christiane I; Glittenberg, Carl; Gabriel, Max; Binder, Susanne

    2015-10-01

    To evaluate microscope-integrated intrasurgical spectral domain optical coherence tomography during macular surgery in a prospective monocenter study. Before pars plana vitrectomy and before, during, and after membrane peeling, 512 × 128 macular cube scans were performed using a Carl Zeiss Meditec Cirrus high-definition OCT system adapted to the optical pathway of a Zeiss OPMI VISU 200 surgical microscope and compared with retinal staining. The study included 51 patients with epiretinal membranes, with 8 of those having additional lamellar macular holes, 11 patients with vitreomacular traction, and 8 patients with full-thickness macular holes. Intraoperative spectral domain optical coherence tomography allowed performing membrane peeling without using retinal dyes in 40% of cases (28 of 70 patients). No residual membranes were found in 94.3% of patients (66 of 70 patients) in intrasurgical spectral domain optical coherence tomography and subsequent (re)staining. In patients with vitreomacular traction, intrasurgical spectral domain optical coherence tomography scans facilitated decisions on the need for an intraocular tamponade after membrane peeling. Intraoperative spectral domain optical coherence tomography was comparable with retinal dyes in confirming success after membrane peeling. However, the visualization of flat membranes was better after staining.

  14. Optical coherence tomography of basal cell carcinoma

    DEFF Research Database (Denmark)

    Yücel, D.; Themstrup, L.; Manfredi, Maddalena

    2016-01-01

    Background: Basal cell carcinoma (BCC) is the most prevalent malignancy in Caucasians. Optical coherence tomography (OCT) is a non-invasive optical imaging technology using the principle of interferometry. OCT has shown a great potential in diagnosing, monitoring, and follow-up of BCC. So far most...

  15. The Development, Commercialization, and Impact of Optical Coherence Tomography.

    Science.gov (United States)

    Fujimoto, James; Swanson, Eric

    2016-07-01

    This review was written for the special issue of IOVS to describe the history of optical coherence tomography (OCT) and its evolution from a nonscientific, historic perspective. Optical coherence tomography has become a standard of care in ophthalmology, providing real-time information on structure and function - diagnosing disease, evaluating progression, and assessing response to therapy, as well as helping to understand disease pathogenesis and create new therapies. Optical coherence tomography also has applications in multiple clinical specialties, fundamental research, and manufacturing. We review the early history of OCT describing how research and development evolves and the important role of multidisciplinary collaboration and expertise. Optical coherence tomography had its origin in femtosecond optics, but used optical communications technologies and required advanced engineering for early OCT prototypes, clinical feasibility studies, entrepreneurship, and corporate development in order to achieve clinical acceptance and clinical impact. Critical advances were made by early career researchers, clinician scientists, engineering experts, and business leaders, which enabled OCT to have a worldwide impact on health care. We introduce the concept of an "ecosystem" consisting of research, government funding, collaboration and competition, clinical studies, innovation, entrepreneurship and industry, and impact - all of which must work synergistically. The process that we recount is long and challenging, but it is our hope that it might inspire early career professionals in science, engineering, and medicine, and that the clinical and research community will find this review of interest.

  16. The Development, Commercialization, and Impact of Optical Coherence Tomography

    Science.gov (United States)

    Fujimoto, James; Swanson, Eric

    2016-01-01

    This review was written for the special issue of IOVS to describe the history of optical coherence tomography (OCT) and its evolution from a nonscientific, historic perspective. Optical coherence tomography has become a standard of care in ophthalmology, providing real-time information on structure and function – diagnosing disease, evaluating progression, and assessing response to therapy, as well as helping to understand disease pathogenesis and create new therapies. Optical coherence tomography also has applications in multiple clinical specialties, fundamental research, and manufacturing. We review the early history of OCT describing how research and development evolves and the important role of multidisciplinary collaboration and expertise. Optical coherence tomography had its origin in femtosecond optics, but used optical communications technologies and required advanced engineering for early OCT prototypes, clinical feasibility studies, entrepreneurship, and corporate development in order to achieve clinical acceptance and clinical impact. Critical advances were made by early career researchers, clinician scientists, engineering experts, and business leaders, which enabled OCT to have a worldwide impact on health care. We introduce the concept of an “ecosystem” consisting of research, government funding, collaboration and competition, clinical studies, innovation, entrepreneurship and industry, and impact – all of which must work synergistically. The process that we recount is long and challenging, but it is our hope that it might inspire early career professionals in science, engineering, and medicine, and that the clinical and research community will find this review of interest. PMID:27409459

  17. Ultra-high accuracy optical testing: creating diffraction-limited short-wavelength optical systems

    International Nuclear Information System (INIS)

    Goldberg, Kenneth A.; Naulleau, Patrick P.; Rekawa, Senajith B.; Denham, Paul E.; Liddle, J. Alexander; Gullikson, Eric M.; Jackson, KeithH.; Anderson, Erik H.; Taylor, John S.; Sommargren, Gary E.; Chapman, Henry N.; Phillion, Donald W.; Johnson, Michael; Barty, Anton; Soufli, Regina; Spiller, Eberhard A.; Walton, Christopher C.; Bajt, Sasa

    2005-01-01

    Since 1993, research in the fabrication of extreme ultraviolet (EUV) optical imaging systems, conducted at Lawrence Berkeley National Laboratory (LBNL) and Lawrence Livermore National Laboratory (LLNL), has produced the highest resolution optical systems ever made. We have pioneered the development of ultra-high-accuracy optical testing and alignment methods, working at extreme ultraviolet wavelengths, and pushing wavefront-measuring interferometry into the 2-20-nm wavelength range (60-600 eV). These coherent measurement techniques, including lateral shearing interferometry and phase-shifting point-diffraction interferometry (PS/PDI) have achieved RMS wavefront measurement accuracies of 0.5-1-(angstrom) and better for primary aberration terms, enabling the creation of diffraction-limited EUV optics. The measurement accuracy is established using careful null-testing procedures, and has been verified repeatedly through high-resolution imaging. We believe these methods are broadly applicable to the advancement of short-wavelength optical systems including space telescopes, microscope objectives, projection lenses, synchrotron beamline optics, diffractive and holographic optics, and more. Measurements have been performed on a tunable undulator beamline at LBNL's Advanced Light Source (ALS), optimized for high coherent flux; although many of these techniques should be adaptable to alternative ultraviolet, EUV, and soft x-ray light sources. To date, we have measured nine prototype all-reflective EUV optical systems with NA values between 0.08 and 0.30 (f/6.25 to f/1.67). These projection-imaging lenses were created for the semiconductor industry's advanced research in EUV photolithography, a technology slated for introduction in 2009-13. This paper reviews the methods used and our program's accomplishments to date

  18. Characterization of dynamic physiology of the bladder by optical coherence tomography

    Science.gov (United States)

    Yuan, Zhijia; Keng, Kerri; Pan, Rubin; Ren, Hugang; Du, Congwu; Kim, Jason; Pan, Yingtian

    2012-03-01

    Because of its high spatial resolution and noninvasive imaging capabilities, optical coherence tomography has been used to characterize the morphological details of various biological tissues including urinary bladder and to diagnose their alternations (e.g., cancers). In addition to static morphology, the dynamic features of tissue morphology can provide important information that can be used to diagnose the physiological and functional characteristics of biological tissues. Here, we present the imaging studies based on optical coherence tomography to characterize motion related physiology and functions of rat bladder detrusor muscles and compared the results with traditional biomechanical measurements. Our results suggest that optical coherence tomography is capable of providing quantitative evaluation of contractile functions of intact bladder (without removing bladder epithelium and connective tissue), which is potentially of more clinical relevance for future clinical diagnosis - if incorporated with cystoscopic optical coherence tomography.

  19. A Rapid and Convenient Procedure to Evaluate Optical Performance of Intraocular Lenses

    Directory of Open Access Journals (Sweden)

    Frank Schaeffel

    2014-09-01

    Full Text Available A new portable lens scanner was developed and tested for measuring focal lengths and relative contrast transfer of mono- and multifocal intraocular lenses (IOLs. A photograph of a natural scene was imaged in white light through an IOL in a water-filled cuvette, with their +21D base power largely neutralized by a −20D trial lens, using a USB monochrome video camera that could be focused via a laptop-controlled stepping motor from −8.5 to + 8.0D. The output of 10000 ON-OFF antagonistic “receptive fields” measuring the video image with adjustable diameter was continuously recorded by custom written software to quantify focus and relative contrast. Six monofocal and four multifocal IOLs, as well as two radial refractive gradient (RRG lenses were measured. After calibration with trial lenses the optical powers and relative contrast transfer of mono- and multifocal IOLs were readily measured. Refractive power profiles measured in RRG lenses closely matched data obtained from the manufacturer. The lens scanner uses a rapidly operating procedure, is portable and can be used to verify positions of the focal planes of mono- and multifocal IOLs in less than 3 s.

  20. Optical coherence tomography angiography in age-related macular degeneration: The game changer.

    Science.gov (United States)

    Lupidi, Marco; Cerquaglia, Alessio; Chhablani, Jay; Fiore, Tito; Singh, Sumit Randhir; Cardillo Piccolino, Felice; Corbucci, Roberta; Coscas, Florence; Coscas, Gabriel; Cagini, Carlo

    2018-04-01

    Optical coherence tomography angiography is one of the biggest advances in ophthalmic imaging. It enables a depth-resolved assessment of the retinal and choroidal blood flow, far exceeding the levels of detail commonly obtained with dye angiographies. One of the first applications of optical coherence tomography angiography was in detecting the presence of choroidal neovascularization in age-related macular degeneration and establishing its position in relation to the retinal pigmented epithelium and Bruch's membrane, and thereby classifying the CNV as type 1, type 2, type 3, or mixed lesions. Optical coherence tomography angiograms, due to the longer wavelength used by optical coherence tomography, showed a more distinct choroidal neovascularization vascular pattern than fluorescein angiography, since there is less suffering from light scattering or is less obscured by overlying subretinal hemorrhages or exudation. Qualitative and quantitative assessments of optical coherence tomography angiography findings in exudative and nonexudative age-related macular degeneration have been largely investigated within the past 3 years both in clinical and experimental settings. This review constitutes an up-to-date of all the potential applications of optical coherence tomography angiography in age-related macular degeneration in order to better understand how to translate its theoretical usefulness into the current clinical practice.

  1. Long working distance optical coherence tomography for pediatric imaging (Conference Presentation)

    Science.gov (United States)

    Qian, Ruobing; Carrasco-Zevallos, Oscar; Vajzovic, Lejla; Gramatikov, Boris I.; Guyton, David L.; Toth, Cynthia A.; Izatt, Joseph A.

    2016-03-01

    Conventional optical coherence tomography (OCT) systems have working distances of about 25 mm, and require cooperative subjects to immobilize and fixate on a target. Handheld OCT probes have also been demonstrated for successful imaging of pre-term infants and neonates up to ~1 year old. However, no technology yet exists for OCT in young children due to their lack of attention and inherent fear of large objects close to their face. In this work, we demonstrate a prototype retinal swept-source OCT system with a long working distance (from the last optical element to the subject's eye) to facilitate pediatric imaging. To reduce the footprint and weight of the system compared to the conventional 4f scheme, a novel 2f scanning configuration was implemented to achieve a working distance of 348mm with a +/- 8° scanning angle prior to cornea. Employing two custom-designed lenses, the system design resolution was nearly diffraction limited throughout a -8D to +5D refractive corrections. A fixation target displayed on a LCD monitor and an iris camera were used to facilitate alignment and imaging. Our prototype was tested in consented adult subjects and has the potential to facilitate imaging of young children. With this apparatus, young children could potentially sit comfortably in caretaker's lap while viewing entertainment on the fixation screen designed to direct their gaze into the imaging apparatus.

  2. Fourier phase in Fourier-domain optical coherence tomography

    Science.gov (United States)

    Uttam, Shikhar; Liu, Yang

    2015-01-01

    Phase of an electromagnetic wave propagating through a sample-of-interest is well understood in the context of quantitative phase imaging in transmission-mode microscopy. In the past decade, Fourier-domain optical coherence tomography has been used to extend quantitative phase imaging to the reflection-mode. Unlike transmission-mode electromagnetic phase, however, the origin and characteristics of reflection-mode Fourier phase are poorly understood, especially in samples with a slowly varying refractive index. In this paper, the general theory of Fourier phase from first principles is presented, and it is shown that Fourier phase is a joint estimate of subresolution offset and mean spatial frequency of the coherence-gated sample refractive index. It is also shown that both spectral-domain phase microscopy and depth-resolved spatial-domain low-coherence quantitative phase microscopy are special cases of this general theory. Analytical expressions are provided for both, and simulations are presented to explain and support the theoretical results. These results are further used to show how Fourier phase allows the estimation of an axial mean spatial frequency profile of the sample, along with depth-resolved characterization of localized optical density change and sample heterogeneity. Finally, a Fourier phase-based explanation of Doppler optical coherence tomography is also provided. PMID:26831383

  3. Fourier phase in Fourier-domain optical coherence tomography.

    Science.gov (United States)

    Uttam, Shikhar; Liu, Yang

    2015-12-01

    Phase of an electromagnetic wave propagating through a sample-of-interest is well understood in the context of quantitative phase imaging in transmission-mode microscopy. In the past decade, Fourier-domain optical coherence tomography has been used to extend quantitative phase imaging to the reflection-mode. Unlike transmission-mode electromagnetic phase, however, the origin and characteristics of reflection-mode Fourier phase are poorly understood, especially in samples with a slowly varying refractive index. In this paper, the general theory of Fourier phase from first principles is presented, and it is shown that Fourier phase is a joint estimate of subresolution offset and mean spatial frequency of the coherence-gated sample refractive index. It is also shown that both spectral-domain phase microscopy and depth-resolved spatial-domain low-coherence quantitative phase microscopy are special cases of this general theory. Analytical expressions are provided for both, and simulations are presented to explain and support the theoretical results. These results are further used to show how Fourier phase allows the estimation of an axial mean spatial frequency profile of the sample, along with depth-resolved characterization of localized optical density change and sample heterogeneity. Finally, a Fourier phase-based explanation of Doppler optical coherence tomography is also provided.

  4. [Evaluation of diabetic microangiopathy using optical coherence tomography angiography].

    Science.gov (United States)

    Czakó, Cecília; Sándor, Gábor László; Ecsedy, Mónika; Szepessy, Zsuzsanna; Borbándy, Ágnes; Resch, Miklós; Papp, András; Récsán, Zsuzsa; Horváth, Hajnalka; Nagy, Zoltán Zsolt; Kovács, Illés

    2018-02-01

    Optical coherence tomography angiography is a non-invasive imaging technique that is able to visualize the different retinal vascular layers using motion contrast to detect blood flow without intravenous dye injection. This method might help to assess microangiopathy in diabetic retinopathy during screening and follow-up. To quantify retinal microvasculature alterations in both eyes of diabetic patients in relation to systemic risk factors using optical coherence tomography angiography. Both eyes of 36 diabetic patients and 45 individuals without diabetes were examined. Duration of diabetes, insulin therapy, blood pressure, HbA 1c , dyslipidemia, axial length and the presence of diabetic retinopathy were recorded. Retinal vessel density was measured by optical coherence tomography angiography. The effect of risk factors on vessel density and between-eye asymmetry was assessed using multivariable regression analysis. Vessel density was significantly lower and between-eye difference was significantly higher in diabetic patients compared to controls (pdiabetes duration (pdiabetic retinopathy compared to control subjects (pdiabetes compared to healthy subjects. By using optical coherence tomography angiography, the detection of these microvascular alterations is possible before clinically detectable diabetic retinopathy and might serve as a useful tool in both screening and timing of treatment. Orv Hetil. 2018; 159(8): 320-326.

  5. Optical biopsy of lymph node morphology using optical coherence tomography.

    Science.gov (United States)

    Luo, Wei; Nguyen, Freddy T; Zysk, Adam M; Ralston, Tyler S; Brockenbrough, John; Marks, Daniel L; Oldenburg, Amy L; Boppart, Stephen A

    2005-10-01

    Optical diagnostic imaging techniques are increasingly being used in the clinical environment, allowing for improved screening and diagnosis while minimizing the number of invasive procedures. Diffuse optical tomography, for example, is capable of whole-breast imaging and is being developed as an alternative to traditional X-ray mammography. While this may eventually be a very effective screening method, other optical techniques are better suited for imaging on the cellular and molecular scale. Optical Coherence Tomography (OCT), for instance, is capable of high-resolution cross-sectional imaging of tissue morphology. In a manner analogous to ultrasound imaging except using optics, pulses of near-infrared light are sent into the tissue while coherence-gated reflections are measured interferometrically to form a cross-sectional image of tissue. In this paper we apply OCT techniques for the high-resolution three-dimensional visualization of lymph node morphology. We present the first reported OCT images showing detailed morphological structure and corresponding histological features of lymph nodes from a carcinogen-induced rat mammary tumor model, as well as from a human lymph node containing late stage metastatic disease. The results illustrate the potential for OCT to visualize detailed lymph node structures on the scale of micrometastases and the potential for the detection of metastatic nodal disease intraoperatively.

  6. COHERENT DETECTION FOR SPECTRAL AMPLITUDE-CODED OPTICAL LABEL SWITCHING SYSTEMS

    DEFF Research Database (Denmark)

    Osadchiy, Alexey Vladimirovich; Tafur Monroy, Idelfonso

    2010-01-01

    Coherent detection for spectrally encoded optical labels is proposed and experimentally demonstrated for three label tones spectrally spaced at 1 GHz. The proposed method utilizes a frequency swept local oscillator in a coherent receiver supported by digital signal processing for improved...... flexibility and upgradeability while reducing label detection subsystem complexity as compared with the conventional optical autocorrelation based approaches....

  7. IQ imbalance tolerable parallel-channel DMT transmission for coherent optical OFDMA access network

    Science.gov (United States)

    Jung, Sang-Min; Mun, Kyoung-Hak; Jung, Sun-Young; Han, Sang-Kook

    2016-12-01

    Phase diversity of coherent optical communication provides spectrally efficient higher-order modulation for optical communications. However, in-phase/quadrature (IQ) imbalance in coherent optical communication degrades transmission performance by introducing unwanted signal distortions. In a coherent optical orthogonal frequency division multiple access (OFDMA) passive optical network (PON), IQ imbalance-induced signal distortions degrade transmission performance by interferences of mirror subcarriers, inter-symbol interference (ISI), and inter-channel interference (ICI). We propose parallel-channel discrete multitone (DMT) transmission to mitigate transceiver IQ imbalance-induced signal distortions in coherent orthogonal frequency division multiplexing (OFDM) transmissions. We experimentally demonstrate the effectiveness of parallel-channel DMT transmission compared with that of OFDM transmission in the presence of IQ imbalance.

  8. The use of contact lenses in low vision rehabilitation: optical and therapeutic applications.

    Science.gov (United States)

    Vincent, Stephen J

    2017-09-01

    Ocular pathology that manifests at an early age has the potential to alter the vision-dependent emmetropisation mechanism, which co-ordinates ocular growth throughout childhood. The disruption of this feedback mechanism in children with congenital or early-onset visual impairment often results in the development of significant ametropia, including high levels of spherical refractive error, astigmatism and anisometropia. This review examines the use of contact lenses as a refractive correction, low vision aid and therapeutic intervention in the rehabilitation of patients with bilateral, irreversible visual loss due to congenital ocular disease. The advantages and disadvantages of the use of contact lenses for increased magnification (telescopes and microscopes) or field expansion (reverse telescopes) are discussed, along with the benefits and practical considerations for the correction of pathological high myopia. The historical and present use of therapeutic tinted contact lenses to reduce photosensitivity and nystagmus in achromatopsia, albinism and aniridia are also presented, including clinical considerations for the contact lens practitioner. In addition to the known optical benefits in comparison to spectacles for high levels of ametropia (an improved field of view for myopes and fewer inherent oblique aberrations), contact lenses may be of significant psycho-social benefit for patients with low vision, due to enhanced cosmesis and reduced conspicuity and potential related effects of improved self-esteem and peer acceptance. The contact lens correction of patients with congenital vision impairment can be challenging for both practitioner and patient but should be considered as a potential optical or therapeutic solution in modern low vision rehabilitation. © 2017 Optometry Australia.

  9. Optical coherence tomography and optical coherence domain reflectometry for deep brain stimulation probe guidance

    Science.gov (United States)

    Jeon, Sung W.; Shure, Mark A.; Baker, Kenneth B.; Chahlavi, Ali; Hatoum, Nagi; Turbay, Massud; Rollins, Andrew M.; Rezai, Ali R.; Huang, David

    2005-04-01

    Deep Brain Stimulation (DBS) is FDA-approved for the treatment of Parkinson's disease and essential tremor. Currently, placement of DBS leads is guided through a combination of anatomical targeting and intraoperative microelectrode recordings. The physiological mapping process requires several hours, and each pass of the microelectrode into the brain increases the risk of hemorrhage. Optical Coherence Domain Reflectometry (OCDR) in combination with current methodologies could reduce surgical time and increase accuracy and safety by providing data on structures some distance ahead of the probe. For this preliminary study, we scanned a rat brain in vitro using polarization-insensitive Optical Coherence Tomography (OCT). For accurate measurement of intensity and attenuation, polarization effects arising from tissue birefringence are removed by polarization diversity detection. A fresh rat brain was sectioned along the coronal plane and immersed in a 5 mm cuvette with saline solution. OCT images from a 1294 nm light source showed depth profiles up to 2 mm. Light intensity and attenuation rate distinguished various tissue structures such as hippocampus, cortex, external capsule, internal capsule, and optic tract. Attenuation coefficient is determined by linear fitting of the single scattering regime in averaged A-scans where Beer"s law is applicable. Histology showed very good correlation with OCT images. From the preliminary study using OCT, we conclude that OCDR is a promising approach for guiding DBS probe placement.

  10. Handbook of coherent domain optical methods biomedical diagnostics, environmental and material science

    CERN Document Server

    2004-01-01

    For the first time in one set of books, coherent-domain optical methods are discussed in the framework of various applications, which are characterized by a strong light scattering. A few chapters describe basic research containing the updated results on coherent and polarized light non-destructive interactions with a scattering medium, in particular, diffraction, interference, and speckle formation at multiple scattering. These chapters allow for understanding coherent-domain diagnostic techniques presented in later chapters. A large portion of Volume I is dedicated to analysis of various aspects of optical coherence tomography (OCT) - a very new and growing field of coherent optics. Two chapters on laser scanning confocal microscopy give insight to recent extraordinary results on in vivo imaging and compare the possibilities and achievements of confocol, excitation multiphoton, and OCT microscopy. This two volume reference contains descriptions of holography, interferometry and optical heterodyning techniqu...

  11. Optical Coherence Tomography Angiography of Retinal Cavernous Hemangioma.

    Science.gov (United States)

    Pierro, Luisa; Marchese, Alessandro; Gagliardi, Marco; Bandello, Francesco

    2017-08-01

    Retinal cavernous hemangioma is a rare, benign, retinal tumor characterized by angiomatous proliferation of vessels within the inner retina or the optic disc.1 Here we report a case of retinal cavernous hemangioma on the margin of the optic disc in the right eye of a 61-year-old asymptomatic female. The lesion was studied with multimodal imaging which included structural optical coherence tomography, fluorescein angiography, blue fundus auto-fluorescence, optical coherence tomography angiography (OCTA) (DRI OCT Triton; Topcon, Tokyo, Japan) and visual field examination. Blood circulation inside retinal cavernous hemangioma lesion is typically low-stagnant.2 However, OCTA demonstrated blood flow inside the lesion, illustrating its vascular circulation.3 Visual field was within the normal limits, except from a slight enlargement of the blind spot. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:684-685.]. Copyright 2017, SLACK Incorporated.

  12. Optical laser systems at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Minitti, Michael P.; Robinson, Joseph S.; Coffee, Ryan N.; Edstrom, Steve; Gilevich, Sasha; Glownia, James M.; Granados, Eduardo; Hering, Philippe; Hoffmann, Matthias C.; Miahnahri, Alan; Milathianaki, Despina; Polzin, Wayne; Ratner, Daniel; Tavella, Franz; Vetter, Sharon; Welch, Marc; White, William E.; Fry, Alan R., E-mail: alanfry@slac.stanford.edu [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-22

    This manuscript serves as a reference to describe the optical laser sources and capabilities at the Linac Coherent Light Source. Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS.

  13. Optical Coherence Tomography Technology and Quality Improvement Methods for Optical Coherence Tomography Images of Skin: A Short Review

    OpenAIRE

    Adabi, Saba; Turani, Zahra; Fatemizadeh, Emad; Clayton, Anne; Nasiriavanaki, Mohammadreza

    2017-01-01

    Optical coherence tomography (OCT) delivers 3-dimensional images of tissue microstructures. Although OCT imaging offers a promising high-resolution method, OCT images experience some artifacts that lead to misapprehension of tissue structures. Speckle, intensity decay, and blurring are 3 major artifacts in OCT images. Speckle is due to the low coherent light source used in the configuration of OCT. Intensity decay is a deterioration of light with respect to depth, and blurring is the conseque...

  14. All-optically integrated photoacoustic and optical coherence tomography: A review

    Directory of Open Access Journals (Sweden)

    Wei Qiao

    2017-07-01

    Full Text Available All-optically integrated photoacoustic (PA and optical coherence tomography (OCT dual-mode imaging technology that could offer comprehensive pathological information for accurate diagnosis in clinic has gradually become a promising imaging technology in the aspect of biomedical imaging during the recent years. This review refers to the technology aspects of all-optical PA detection and system evolution of optically integrated PA and OCT, including Michelson interferometer dual-mode imaging system, Fabry–Perot (FP interferometer dual-mode imaging system and Mach–Zehnder interferometer dual-mode imaging system. It is believed that the optically integrated PA and OCT has great potential applications in biomedical imaging.

  15. Acute Solar Retinopathy Imaged With Adaptive Optics, Optical Coherence Tomography Angiography, and En Face Optical Coherence Tomography.

    Science.gov (United States)

    Wu, Chris Y; Jansen, Michael E; Andrade, Jorge; Chui, Toco Y P; Do, Anna T; Rosen, Richard B; Deobhakta, Avnish

    2018-01-01

    Solar retinopathy is a rare form of retinal injury that occurs after direct sungazing. To enhance understanding of the structural changes that occur in solar retinopathy by obtaining high-resolution in vivo en face images. Case report of a young adult woman who presented to the New York Eye and Ear Infirmary with symptoms of acute solar retinopathy after viewing the solar eclipse on August 21, 2017. Results of comprehensive ophthalmic examination and images obtained by fundus photography, microperimetry, spectral-domain optical coherence tomography (OCT), adaptive optics scanning light ophthalmoscopy, OCT angiography, and en face OCT. The patient was examined after viewing the solar eclipse. Visual acuity was 20/20 OD and 20/25 OS. The patient was left-eye dominant. Spectral-domain OCT images were consistent with mild and severe acute solar retinopathy in the right and left eye, respectively. Microperimetry was normal in the right eye but showed paracentral decreased retinal sensitivity in the left eye with a central absolute scotoma. Adaptive optics images of the right eye showed a small region of nonwaveguiding photoreceptors, while images of the left eye showed a large area of abnormal and nonwaveguiding photoreceptors. Optical coherence tomography angiography images were normal in both eyes. En face OCT images of the right eye showed a small circular hyperreflective area, with central hyporeflectivity in the outer retina of the right eye. The left eye showed a hyperreflective lesion that intensified in area from inner to middle retina and became mostly hyporeflective in the outer retina. The shape of the lesion on adaptive optics and en face OCT images of the left eye corresponded to the shape of the scotoma drawn by the patient on Amsler grid. Acute solar retinopathy can present with foveal cone photoreceptor mosaic disturbances on adaptive optics scanning light ophthalmoscopy imaging. Corresponding reflectivity changes can be seen on en face OCT, especially

  16. Optical coherence tomography findings of quinine poisoning

    Directory of Open Access Journals (Sweden)

    John Christoforidis

    2011-01-01

    Full Text Available John Christoforidis, Robert Ricketts, Theodore Loizos, Susie ChangThe Ohio State University College of Medicine, Columbus, OH, USAPurpose: To report a case of acute quinine poisoning, document acute and chronic macular changes with optical coherence tomography imaging and fluorescein angiography (FA, and to review the literature on ocular toxicity of quinine.Methods: A 32-year-old white female presented to our Emergency Department after ingesting over 7.5 g of quinine. She underwent a complete ophthalmologic examination, fluorescein angiography, Stratus time-domain optical coherence tomography (OCT, and electroretinography at 72 hours and 15 months postingestion. Stratus time-domain and Cirrus spectral-domain OCT, fundus autofluorescence, and FA were obtained at 28 months postingestion.Results: Fluorescein angiography at 72 hours postingestion revealed normal filling times and vasculature. OCT showed marked thickening of the inner retina bilaterally. At 15 and 28 months follow-up, fundus photography and fluorescein angiography demonstrated optic nerve pallor, severely attenuated retinal vessels while OCT showed inner retinal atrophy. Fundus autofluorescence did not reveal any retinal pigmentary abnormalities.Conclusions: Quinine toxicity as seen by OCT reveals increased thickness with inner retinal hyperreflectivity acutely with development of significant retinal atrophy in the long-term. Fundus autofluorescence reveals an intact retinal pigment epithelial layer at 28 months. These findings suggest that quinine poisoning may produce a direct toxic effect on the inner retina in the acute phase resulting in long-term retinal atrophy.Keywords: retinal, optical coherence tomography, quinine toxicity 

  17. Ultra-high accuracy optical testing: creating diffraction-limitedshort-wavelength optical systems

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Kenneth A.; Naulleau, Patrick P.; Rekawa, Senajith B.; Denham, Paul E.; Liddle, J. Alexander; Gullikson, Eric M.; Jackson, KeithH.; Anderson, Erik H.; Taylor, John S.; Sommargren, Gary E.; Chapman,Henry N.; Phillion, Donald W.; Johnson, Michael; Barty, Anton; Soufli,Regina; Spiller, Eberhard A.; Walton, Christopher C.; Bajt, Sasa

    2005-08-03

    Since 1993, research in the fabrication of extreme ultraviolet (EUV) optical imaging systems, conducted at Lawrence Berkeley National Laboratory (LBNL) and Lawrence Livermore National Laboratory (LLNL), has produced the highest resolution optical systems ever made. We have pioneered the development of ultra-high-accuracy optical testing and alignment methods, working at extreme ultraviolet wavelengths, and pushing wavefront-measuring interferometry into the 2-20-nm wavelength range (60-600 eV). These coherent measurement techniques, including lateral shearing interferometry and phase-shifting point-diffraction interferometry (PS/PDI) have achieved RMS wavefront measurement accuracies of 0.5-1-{angstrom} and better for primary aberration terms, enabling the creation of diffraction-limited EUV optics. The measurement accuracy is established using careful null-testing procedures, and has been verified repeatedly through high-resolution imaging. We believe these methods are broadly applicable to the advancement of short-wavelength optical systems including space telescopes, microscope objectives, projection lenses, synchrotron beamline optics, diffractive and holographic optics, and more. Measurements have been performed on a tunable undulator beamline at LBNL's Advanced Light Source (ALS), optimized for high coherent flux; although many of these techniques should be adaptable to alternative ultraviolet, EUV, and soft x-ray light sources. To date, we have measured nine prototype all-reflective EUV optical systems with NA values between 0.08 and 0.30 (f/6.25 to f/1.67). These projection-imaging lenses were created for the semiconductor industry's advanced research in EUV photolithography, a technology slated for introduction in 2009-13. This paper reviews the methods used and our program's accomplishments to date.

  18. Optical pulse shaping approaches to coherent control

    International Nuclear Information System (INIS)

    Goswami, Debabrata

    2003-01-01

    The last part of the twentieth century has experienced a huge resurge of activity in the field of coherent light-matter interaction, more so in attempting to exert control over such interactions. Birth of coherent control was originally spurred by the theoretical understanding of the quantum interferences that lead to energy randomization and experimental developments in ultrafast laser spectroscopy. The theoretical predictions on control of reaction channels or energy randomization processes are still more dramatic than the experimental demonstrations, though this gap between the two is consistently reducing over the recent years with realistic theoretical models and technological developments. Experimental demonstrations of arbitrary optical pulse shaping have made some of the previously impracticable theoretical predictions possible to implement. Starting with the simple laser modulation schemes to provide proof-of-the-principle demonstrations, feedback loop pulse shaping systems have been developed that can actively manipulate some atomic and molecular processes. This tremendous experimental boost of optical pulse shaping developments has prospects and implications into many more new directions, such as quantum computing and terabit/sec data communications. This review captures certain aspects and impacts of optical pulse shaping into the fast developing areas of coherent control and other related fields. Currently available reviews focus on one or the other detailed aspects of coherent control, and the reader will be referred to such details as and when necessary for issues that are dealt in brief here. We will focus on the current issues including control of intramolecular dynamics and make connections to the future concepts, such as, quantum computation, biomedical applications, etc

  19. Spectral domain optical coherence tomography findings in tamoxifen retinopathy--a case report.

    Science.gov (United States)

    Nair, Sandhya Narayanan; Anantharaman, Giridhar; Gopalakrishnan, Mahesh; Vyas, Jyothiprakash

    2013-01-01

    To report spectral domain optical coherence tomography findings in a case of typical tamoxifen retinopathy. In this observational case report, a patient with tamoxifen retinopathy was imaged with spectral domain optical coherence tomography and fundus auto fluorescence. Spectral domain optical coherence tomography showed numerous hyperreflective spots within the retina, mainly in the inner retinal layers in both the eyes. The external limiting membrane, the Inner Segment-Outer Segment junction, and the photoreceptors were not discernable at the fovea in the right eye. In the left eye, there was foveal atrophy with total loss of photoreceptors. The autofluorescent images showed macular hypofluorescence with foveal hyperfluorescence. Spectral domain optical coherence tomography demonstrated abnormalities in the outer retinal layers in tamoxifen retinopathy. There were also characteristic alterations in the autofluorescence pattern at the macula in tamoxifen retinopathy.

  20. Optical coherent tomography in diagnoses of peripheral retinal degenarations

    Directory of Open Access Journals (Sweden)

    O. G. Pozdeyeva

    2013-01-01

    Full Text Available Purpose: Studying the capabilities of optical coherence tomography (RTVue-100, OPTOVUE, USA in evaluation of peripheral retinal degenerations, vitreoretinal adhesions, adjacent vitreous body as well as measurement of morphometric data.Methods: The study included 189 patients (239 eyes with peripheral retinal degeneration. 77 men and 112 women aged 18 to 84 underwent an ophthalmologic examination since November 2012 until October 2013. The peripheral retina was visualized with the help of optical coherence tomography («RTVue-100,» USA. The fundography was carried out using a Nikon NF505‑AF (Japan fundus camera. All patients were examined with a Goldmann lens.Results: Optical coherence tomography was used to evaluate different kinds of peripheral retinal degenerations, such as lattice and snail track degeneration, isolated retinal tears, cystoid retinal degeneration, pathological hyperpigmentation, retinoschisis and cobblestone degeneration. The following morphometric data were studied: dimensions of the lesion (average length, retinal thickness along the edge of the lesion, retinal thickness at the base of the lesion and the vitreoretinal interface.Conclusion: Optical coherence tomography is a promising in vivo visualization method which is useful in evaluation of peripheral retinal degenerations, vitreoretinal adhesions and tractions. It also provides a comprehensive protocolling system and monitoring. It will enable ophthalmologists to better define laser and surgical treatment indications and evaluate therapy effectiveness.

  1. Optical coherent tomography in diagnoses of peripheral retinal degenarations

    Directory of Open Access Journals (Sweden)

    O. G. Pozdeyeva

    2014-07-01

    Full Text Available Purpose: Studying the capabilities of optical coherence tomography (RTVue-100, OPTOVUE, USA in evaluation of peripheral retinal degenerations, vitreoretinal adhesions, adjacent vitreous body as well as measurement of morphometric data.Methods: The study included 189 patients (239 eyes with peripheral retinal degeneration. 77 men and 112 women aged 18 to 84 underwent an ophthalmologic examination since November 2012 until October 2013. The peripheral retina was visualized with the help of optical coherence tomography («RTVue-100,» USA. The fundography was carried out using a Nikon NF505‑AF (Japan fundus camera. All patients were examined with a Goldmann lens.Results: Optical coherence tomography was used to evaluate different kinds of peripheral retinal degenerations, such as lattice and snail track degeneration, isolated retinal tears, cystoid retinal degeneration, pathological hyperpigmentation, retinoschisis and cobblestone degeneration. The following morphometric data were studied: dimensions of the lesion (average length, retinal thickness along the edge of the lesion, retinal thickness at the base of the lesion and the vitreoretinal interface.Conclusion: Optical coherence tomography is a promising in vivo visualization method which is useful in evaluation of peripheral retinal degenerations, vitreoretinal adhesions and tractions. It also provides a comprehensive protocolling system and monitoring. It will enable ophthalmologists to better define laser and surgical treatment indications and evaluate therapy effectiveness.

  2. Simultaneous measurement of group refractive index and thickness of optical samples using optical coherence tomography

    International Nuclear Information System (INIS)

    Cheng, Hsu-Chih; Liu, Yi-Cheng

    2010-01-01

    Optical coherence tomography (OCT), based on a Michelson interferometer and utilizing low coherence light as the optical source, is a novel technique for the noninvasive imaging of optical scattering media. A simple OCT scheme based on a 3x3 fiber coupler is presented for the simultaneous measurement of the refractive index and thickness of optical samples. The proposed system enables the refractive index and thickness to be determined without any prior knowledge of the sample parameters and is characterized by a simple and compact configuration, a straightforward measurement procedure, and a low cost. The feasibility of the proposed approach is demonstrated experimentally using BK7 and B270 optical glass samples.

  3. The limits of the electron optical parameters of asymmetric double pipecol magnetic objective lenses

    International Nuclear Information System (INIS)

    Al-khashab, A. M.; Abas, K. A.

    1997-01-01

    The asymmetrical magnetic electron lens is of great importance for the electron microscopes intended for high resolution. Such lenses are determined not only by its geometric structure and shape parameters but also by the gap width to bore diameter (S/D) of its pole pieces. a systematic investigation has been carried out for asymmetric objective lenses having different bore diameters. The results indicate that the op per h ore diameter of pole piece lens has considerable effects on the electron optical properties. The Comparison between the two sets of the family of asymmetric lenses provides good performance, and suggests that the ratio of the lens gap width to the bore diameters of its pole pieces (S/ D 1 /D 2 =3) are favourable. (authors). 9 refs., 9 figs

  4. Applications of electron lenses: scraping of high-power beams, beam-beam compensation, and nonlinear optics

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, Giulio

    2014-09-11

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complement the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles. At Fermilab, we are planning to install an electron lens in the Integrable Optics Test Accelerator (IOTA, a 40-m ring for 150-MeV electrons) as one of the proof-of-principle implementations of nonlinear integrable optics to achieve large tune spreads and more stable beams without loss of dynamic aperture.

  5. Coherent phonon optics in a chip with an electrically controlled active device.

    Science.gov (United States)

    Poyser, Caroline L; Akimov, Andrey V; Campion, Richard P; Kent, Anthony J

    2015-02-05

    Phonon optics concerns operations with high-frequency acoustic waves in solid media in a similar way to how traditional optics operates with the light beams (i.e. photons). Phonon optics experiments with coherent terahertz and sub-terahertz phonons promise a revolution in various technical applications related to high-frequency acoustics, imaging, and heat transport. Previously, phonon optics used passive methods for manipulations with propagating phonon beams that did not enable their external control. Here we fabricate a phononic chip, which includes a generator of coherent monochromatic phonons with frequency 378 GHz, a sensitive coherent phonon detector, and an active layer: a doped semiconductor superlattice, with electrical contacts, inserted into the phonon propagation path. In the experiments, we demonstrate the modulation of the coherent phonon flux by an external electrical bias applied to the active layer. Phonon optics using external control broadens the spectrum of prospective applications of phononics on the nanometer scale.

  6. Phase-coherent all-optical frequency division by three

    NARCIS (Netherlands)

    Lee, Dong-Hoon; Klein, M.E.; Meyn, Jan-Peter; Wallenstein, Richard; Gross, P.; Boller, Klaus J.

    2003-01-01

    The properties of all-optical phase-coherent frequency division by 3, based on a self-phase-locked continuous-wave (cw) optical parametric oscillator (OPO), are investigated theoretically and experimentally. The frequency to be divided is provided by a diode laser master-oscillator power-amplifier

  7. Optical coherence tomography of dental structures

    Science.gov (United States)

    Baumgartner, Angela; Hitzenberger, Christoph K.; Dichtl, Sabine; Sattmann, Harald; Moritz, Andreas; Sperr, Wolfgang; Fercher, Adolf F.

    1998-04-01

    In the past ten years Partial Coherence Interferometry (PCI) and Optical Coherence Tomography (OCT) have been successfully developed for high precision biometry and tomography of biological tissues. OCT employs the partial coherence properties of a superluminescent diode and the Doppler principle yielding resolution and precision figures of the order of a few microns. Presently, the main application fields of this technique are biometry and imaging of ocular structures in vivo, as well as its clinical use in dermatology and endoscopic applications. This well established length measuring and imaging technique has now been applied to dentistry. First in vitro OCT images of the cemento (dentine) enamel junction of extracted sound and decayed human teeth have been recorded. These images distinguish dentine and enamel structures that are important for assessing enamel thickness and diagnosing caries. Individual optical A-Scans show that the penetration depth into enamel is considerably larger than into dentine. First polarization sensitive OCT recordings show localized changes of the polarization state of the light backscattered by dental material. Two-dimensional maps of the magnitude of the interference intensity and of the total phase difference between two orthogonal polarization states as a function of depth can reveal important structural information.

  8. Optical Coherence Tomography for Material Characterization

    NARCIS (Netherlands)

    Liu, P.

    2014-01-01

    Optical coherence tomography (OCT) is a non-invasive, contactless and high resolution imaging method, which allows the reconstruction of two or three dimensional depth-resolved images in turbid media. In the past 20 years, OCT has been extensively developed in the field of biomedical diagnostics,

  9. Coherent hard x-ray focusing optics and applications

    Energy Technology Data Exchange (ETDEWEB)

    Yun, W.B.; Viccaro, P.J.; Chrzas, J.; Lai, B.

    1991-01-01

    Coherent hard x-ray beams with a flux exceeding 10{sup 9} photons/second with a bandwidth of 0.1% will be provided by the undulator at the third generation synchrotron radiation sources such as APS, ESRF, and Spring-8. The availability of such high flux coherent x-ray beams offers excellent opportunities for extending the coherence-based techniques developed in the visible and soft x-ray part of the electromagnetic spectrum to the hard x-rays. These x-ray techniques (e.g., diffraction limited microfocusing, holography, interferometry, phase contrast imaging and signal enhancement), may offer substantial advantages over non-coherence-based x-ray techniques currently used. For example, the signal enhancement technique may be used to enhance an anomalous x-ray or magnetic x-ray scattering signal by several orders of magnitude. Coherent x-rays can be focused to a very small (diffraction-limited) spot size, thus allowing high spatial resolution microprobes to be constructed. The paper will discuss the feasibility of the extension of some coherence-based techniques to the hard x-ray range and the significant progress that has been made in the development of diffraction-limited focusing optics. Specific experimental results for a transmission Fresnel phase zone plate that can focus 8.2 keV x-rays to a spot size of about 2 microns will be briefly discussed. The comparison of measured focusing efficiency of the zone plate with that calculated will be made. Some specific applications of zone plates as coherent x-ray optics will be discussed. 17 refs., 4 figs.

  10. Towards spectral-domain optical coherence tomography on a silicon chip

    NARCIS (Netherlands)

    Akça, B.I.; Worhoff, Kerstin; Nguyen, V.D.; Kalkman, J.; van Leeuwen, Ton; de Ridder, R.M.; Pollnau, Markus

    Optical coherence tomography (OCT) is a widely used optical imaging technology, particularly in the medical field, since it can provide non-invasive, sub-micrometer resolution diagnostic images of tissue. Current OCT systems contain optical fibers and free-space optical components which make these

  11. Submicron Resolution Spectral-Domain Optical Coherence Tomography

    KAUST Repository

    Alarousu, Erkki; Jabbour, Ghassan

    2013-01-01

    Apparatuses and systems for submicron resolution spectral-domain optical coherence tomography (OCT) are disclosed. The system may use white light sources having wavelengths within 400-1000 nanometers, and achieve resolution below 1 .mu

  12. Dynamic Optical Coherence Tomography in Dermatology

    DEFF Research Database (Denmark)

    Ulrich, Martina; Themstrup, Lotte; De Carvalho, Nathalie

    2016-01-01

    Optical coherence tomography (OCT) represents a non-invasive imaging technology, which may be applied to the diagnosis of non-melanoma skin cancer and which has recently been shown to improve the diagnostic accuracy of basal cell carcinoma. Technical developments of OCT continue to expand the app...

  13. [In Vitro Evaluation of the Optical Quality of Segmental Refractive Multifocal Intraocular Lenses].

    Science.gov (United States)

    Yildirim, Timur Mert; Auffarth, Gerd Uwe; Tandogan, Tamer; Liebing, Stephanie; Labuz, Grzegorz; Choi, Chul Young; Khoramnia, Ramin

    2017-11-08

    In customised patient care, it is important to know the optical quality of different intraocular lenses (IOL). In this study, the optical quality of three segmental intraocular lenses were compared. The LENTIS Comfort LS-313 MF15, LENTIS Mplus X LS-313 MF30 and LENTIS High Add IOL LS-313 MF80 (Oculentis, Berlin, Germany) with a far power of + 21 D were analysed at the optical bench OptiSpheric IOL PRO (Trioptics GmbH, Wedel, Germany). The lenses have almost the same optical design but differ in the power of the near segment. The MF15 has a + 1.5 D addition to improve vision in intermediate distances, the MF30 has a near addition of + 3 D and the MF80 has a near addition of + 8 D. The modulation transfer function area (MTFa) and the Strehl ratio were examined for apertures of 3 mm (photopic) and 4.5 mm (mesopic). The MTFa values for the far focus are 33.34/30.80/51.53 (MF15/MF30/MF80) with an aperture of 3 mm and 25.38/22.52/43.15 for 4.5 mm. The MTFa values for the intermediate focus are 29.85/16.21/6.25 for a 3 mm aperture and 23.92/8.05/3.08 for 4.5 mm. The MTFa values for the near focus are 9.75/21.49/33.12 for an aperture of 3 mm and 4.95/22.70/31.68 for 4.5 mm. The Strehl ratio of the far focus is 0.34/0.30/0.52 for an aperture of 3 mm and 0.24/0.22/0.43 for 4.5 mm. For the intermediate focus, the Strehl ratio is 0.30/0.17/0.07 for an aperture of 3 mm and 0.24/0.08/0.03 for 4.5 mm. The Strehl ratio of the near focus is 0.10/0.22/0.33 for an aperture of 3 mm and 0.05/0.23/0.32 for 4.5 mm. We confirmed that the addition influences the optical quality of segmental bifocal intraocular lenses. For the far focus, the results of the MF15 and MF30 are similar. In intermediate distances, the MF15 achieves the best results. For near distances, the MF30 achieves better optical values than the MF15. The lens MF80, which has been designed for patients with maculopathies, achieves good results for far and near distances. Georg

  14. High-speed asynchronous optical sampling for high-sensitivity detection of coherent phonons

    International Nuclear Information System (INIS)

    Dekorsy, T; Taubert, R; Hudert, F; Schrenk, G; Bartels, A; Cerna, R; Kotaidis, V; Plech, A; Koehler, K; Schmitz, J; Wagner, J

    2007-01-01

    A new optical pump-probe technique is implemented for the investigation of coherent acoustic phonon dynamics in the GHz to THz frequency range which is based on two asynchronously linked femtosecond lasers. Asynchronous optical sampling (ASOPS) provides the performance of on all-optical oscilloscope and allows us to record optically induced lattice dynamics over nanosecond times with femtosecond resolution at scan rates of 10 kHz without any moving part in the set-up. Within 1 minute of data acquisition time signal-to-noise ratios better than 10 7 are achieved. We present examples of the high-sensitivity detection of coherent phonons in superlattices and of the coherent acoustic vibration of metallic nanoparticles

  15. Optical coherence tomography: Technique and applications

    DEFF Research Database (Denmark)

    Thomsen, Jakob Borup; Sander, Birgit; Mogensen, Mette

    2009-01-01

    Optical coherence tomography (OCT) is a noninvasive optical imaging modality providing real-time video rate images in two and three dimensions of biological tissues with micrometer resolution. OCT fills the gap between ultrasound and confocal microscopy, since it has a higher resolution than...... of retinal diseases. The potential of OCT in many other applications is currently being explored, such as in developmental biology, skin cancer diagnostics, vulnerable plaque detection in cardiology, esophageal diagnostics and a number of other applications within oncology....

  16. A first demonstration of audio-frequency optical coherence elastography of tissue

    Science.gov (United States)

    Adie, Steven G.; Alexandrov, Sergey A.; Armstrong, Julian J.; Kennedy, Brendan F.; Sampson, David D.

    2008-12-01

    Optical elastography is aimed at using the visco-elastic properties of soft tissue as a contrast mechanism, and could be particularly suitable for high-resolution differentiation of tumour from surrounding normal tissue. We present a new approach to measure the effect of an applied stimulus in the kilohertz frequency range that is based on optical coherence tomography. We describe the approach and present the first in vivo optical coherence elastography measurements in human skin at audio excitation frequencies.

  17. [Dome-shaped macula: appearance on ultrasound and optical coherence tomography].

    Science.gov (United States)

    Chéour, M; Ben Aleya, N; Brour, J; Falfoul, Y; Agrebi, S; Skhiri, M; Kraïem, A

    2013-10-01

    The purpose of our work is to demonstrate the role of optical coherence tomography and ocular ultrasound in the diagnosis of the dome-shaped macula in high myopia. We report the case of a patient with high myopia who presented with a decrease in visual acuity and metamorphopsia in the left eye. She underwent visual acuity measurement, biomicroscopic examination and measurement of axial length. B-mode ultrasound and optical coherence tomography showed a projection of the macula in the convexity of the myopic staphyloma confirming the diagnosis of dome-shaped macula. Dome-shaped macula is a recently discovered entity, which may be responsible for a decrease in visual acuity in patients with high myopic posterior staphyloma. Ultrasound and optical coherence tomography are very helpful in making the diagnosis. Copyright © 2013. Published by Elsevier Masson SAS.

  18. Fiber optic coherent laser radar 3d vision system

    International Nuclear Information System (INIS)

    Sebastian, R.L.; Clark, R.B.; Simonson, D.L.

    1994-01-01

    Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic of coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system

  19. Three-dimensional optical coherence micro-elastography of skeletal muscle tissue

    OpenAIRE

    Chin, Lixin; Kennedy, Brendan F.; Kennedy, Kelsey M.; Wijesinghe, Philip; Pinniger, Gavin J.; Terrill, Jessica R.; McLaughlin, Robert A.; Sampson, David D.

    2014-01-01

    In many muscle pathologies, impairment of skeletal muscle function is closely linked to changes in the mechanical properties of the muscle constituents. Optical coherence micro-elastography (OCME) uses optical coherence tomography (OCT) imaging of tissue under a quasi-static, compressive mechanical load to map variations in tissue mechanical properties on the micro-scale. We present the first study of OCME on skeletal muscle tissue. We show that this technique can resolve features of muscle t...

  20. Optical Coherent Receiver Enables THz Wireless Bridge

    DEFF Research Database (Denmark)

    Yu, Xianbin; Liu, Kexin; Zhang, Hangkai

    2016-01-01

    We experimentally demonstrated a 45 Gbit/s 400 GHz photonic wireless communication system enabled by an optical coherent receiver, which has a high potential in fast recovery of high data rate connections, for example, in disaster....

  1. Rest-Frame Optical Spectra of Three Strongly Lensed Galaxies at z ~ 2

    Science.gov (United States)

    Hainline, Kevin N.; Shapley, Alice E.; Kornei, Katherine A.; Pettini, Max; Buckley-Geer, Elizabeth; Allam, Sahar S.; Tucker, Douglas L.

    2009-08-01

    We present Keck II NIRSPEC rest-frame optical spectra for three recently discovered lensed galaxies: the Cosmic Horseshoe (z = 2.38), the Clone (z = 2.00), and SDSS J090122.37+181432.3 (z = 2.26). The boost in signal-to-noise ratio (S/N) from gravitational lensing provides an unusually detailed view of the physical conditions in these objects. A full complement of high S/N rest-frame optical emission lines is measured, spanning from rest frame 3600 to 6800 Å, including robust detections of fainter lines such as Hγ, [S II]λ6717,6732, and in one instance [Ne III]λ3869. SDSS J090122.37+181432.3 shows evidence for active galactic nucleus activity, and therefore we focus our analysis on star-forming regions in the Cosmic Horseshoe and the Clone. For these two objects, we estimate a wide range of physical properties. Current lensing models for the Cosmic Horseshoe and the Clone allow us to correct the measured Hα luminosity and calculated star formation rate. Metallicities have been estimated with a variety of indicators, which span a range of values of 12+ log(O/H) = 8.3-8.8, between ~0.4 and ~1.5 of the solar oxygen abundance. Dynamical masses were computed from the Hα velocity dispersions and measured half-light radii of the reconstructed sources. A comparison of the Balmer lines enabled measurement of dust reddening coefficients. Variations in the line ratios between the different lensed images are also observed, indicating that the spectra are probing different regions of the lensed galaxies. In all respects, the lensed objects appear fairly typical of ultraviolet-selected star-forming galaxies at z ~ 2. The Clone occupies a position on the emission-line diagnostic diagram of [O III]/Hβ versus [N II]/Hα that is offset from the locations of z ~ 0 galaxies. Our new NIRSPEC measurements may provide quantitative insights into why high-redshift objects display such properties. From the [S II] line ratio, high electron densities (~1000 cm-3) are inferred compared

  2. Thermo-elastic optical coherence tomography.

    Science.gov (United States)

    Wang, Tianshi; Pfeiffer, Tom; Wu, Min; Wieser, Wolfgang; Amenta, Gaetano; Draxinger, Wolfgang; van der Steen, Antonius F W; Huber, Robert; Soest, Gijs van

    2017-09-01

    The absorption of nanosecond laser pulses induces rapid thermo-elastic deformation in tissue. A sub-micrometer scale displacement occurs within a few microseconds after the pulse arrival. In this Letter, we investigate the laser-induced thermo-elastic deformation using a 1.5 MHz phase-sensitive optical coherence tomography (OCT) system. A displacement image can be reconstructed, which enables a new modality of phase-sensitive OCT, called thermo-elastic OCT. An analysis of the results shows that the optical absorption is a dominating factor for the displacement. Thermo-elastic OCT is capable of visualizing inclusions that do not appear on the structural OCT image, providing additional tissue type information.

  3. Comparison of optic area measurement using fundus photography and optical coherence tomography between optic nerve head drusen and control subjects.

    Science.gov (United States)

    Flores-Rodríguez, Patricia; Gili, Pablo; Martín-Ríos, María Dolores; Grifol-Clar, Eulalia

    2013-03-01

    To compare optic disc area measurement between optic nerve head drusen (ONHD) and control subjects using fundus photography, time-domain optical coherence tomography (TD-OCT) and spectral-domain optical coherence tomography (SD-OCT). We also made a comparison between each of the three techniques. We performed our study on 66 eyes (66 patients) with ONHD and 70 healthy control subjects (70 controls) with colour ocular fundus photography at 20º (Zeiss FF 450 IR plus), TD-OCT (Stratus OCT) with the Fast Optic Disc protocol and SD-OCT (Cirrus OCT) with the Optic Disc Cube 200 × 200 protocol for measurement of the optic disc area. The measurements were made by two observers and in each measurement a correction of the image magnification factor was performed. Measurement comparison using the Student's t-test/Mann-Whitney U test, the intraclass correlation coefficient, Pearson/Spearman rank correlation coefficient and the Bland-Altman plot was performed in the statistical analysis. Mean and standard deviation (SD) of the optic disc area in ONHD and in controls was 2.38 (0.54) mm(2) and 2.54 (0.42) mm(2), respectively with fundus photography; 2.01 (0.56) mm(2) and 1.66 (0.37) mm(2), respectively with TD-OCT, and 2.03 (0.49) mm(2) and 1.75 (0.38) mm(2), respectively with SD-OCT. In ONHD and controls, repeatability of optic disc area measurement was excellent with fundus photography and optical coherence tomography (TD-OCT and SD-OCT), but with a low degree of agreement between both techniques. Optic disc area measurement is smaller in ONHD compared to healthy subjects with fundus photography, unlike time-domain and spectral-domain optical coherence tomography in which the reverse is true. Both techniques offer good repeatability, but a low degree of correlation and agreement, which means that optic disc area measurement is not interchangeable or comparable between techniques. Ophthalmic & Physiological Optics © 2013 The College of Optometrists.

  4. Fundus autofluorescence and optical coherence tomography findings in thiamine responsive megaloblastic anemia.

    Science.gov (United States)

    Ach, Thomas; Kardorff, Rüdiger; Rohrschneider, Klaus

    2015-01-01

    To report ophthalmologic fundus autofluorescence and spectral domain optical coherence tomography findings in a patient with thiamine responsive megaloblastic anemia (TRMA). A 13-year-old girl with genetically proven TRMA was ophthalmologically (visual acuity, funduscopy, perimetry, electroretinogram) followed up over >5 years. Fundus imaging also included autofluorescence and spectral domain optical coherence tomography. During a 5-year follow-up, visual acuity and visual field decreased, despite a special TRMA diet. Funduscopy revealed bull's eye appearance, whereas fundus autofluorescence showed central and peripheral hyperfluorescence and perifoveal hypofluorescence. Spectral domain optical coherence tomography revealed affected inner segment ellipsoid band and irregularities in the retinal pigment epithelium and choroidea. Autofluorescence and spectral domain optical coherence tomography findings in a patient with TRMA show retinitis pigmentosa-like retina, retinal pigment epithelium, and choroid alterations. These findings might progress even under special TRMA diet, indispensable to life. Ophthalmologist should consider TRMA in patients with deafness and ophthalmologic disorders.

  5. Robust intravascular optical coherence elastography by line correlations

    International Nuclear Information System (INIS)

    Soest, Gijs van; Mastik, Frits; Jong, Nico de; Steen, Anton F W van der

    2007-01-01

    We present a new method for intravascular optical coherence elastography, which is robust against motion artefacts. It employs the correlation between adjacent lines, instead of subsequent frames. Pressure to deform the tissue is applied synchronously with the line scan rate of the optical coherence tomography (OCT) instrument. The viability of the method is demonstrated with a simulation study. We find that the root mean square (rms) error of the displacement estimate is 0.55 μm, and the rms error of the strain is 0.6%. It is shown that high-strain spots in the vessel wall, such as observed at the sites of vulnerable atherosclerotic lesions, can be detected with the technique

  6. Physical-layer network coding in coherent optical OFDM systems.

    Science.gov (United States)

    Guan, Xun; Chan, Chun-Kit

    2015-04-20

    We present the first experimental demonstration and characterization of the application of optical physical-layer network coding in coherent optical OFDM systems. It combines two optical OFDM frames to share the same link so as to enhance system throughput, while individual OFDM frames can be recovered with digital signal processing at the destined node.

  7. Unconditional quantum cloning of coherent states with linear optics

    International Nuclear Information System (INIS)

    Leuchs, G.; Andersen, U.L.; Josse, V.

    2005-01-01

    Intense light pulses with non-classical properties are used to implement protocols for quantum communication. Most of the elements in the tool box needed to assemble the experimental set-ups for these protocols are readily described by Bogoliubov transformations corresponding to Gaussian transformations that map Gaussian states onto Gaussian states. One particularly interesting application is quantum cloning of a coherent state. A scheme for optimal Gaussian cloning of optical coherent states is proposed and experimentally demonstrated. Its optical realization is based entirely on simple linear optical elements and homodyne detection. The optimality of the presented scheme is only limited by detection inefficiencies. Experimentally we achieved a cloning fidelity of about 65%, which almost touches the optimal value of 2/3. (author)

  8. Optics Elements for Modeling Electrostatic Lenses and Accelerator Components: III. Electrostatic Deflectors

    International Nuclear Information System (INIS)

    Brown, T.A.; Gillespie, G.H.

    1999-01-01

    Ion-beam optics models for simulating electrostatic prisms (deflectors) of different geometries have been developed for the computer code TRACE 3-D. TRACE 3-D is an envelope (matrix) code, which includes a linear space charge model, that was originally developed to model bunched beams in magnetic transport systems and radiofrequency (RF) accelerators. Several new optical models for a number of electrostatic lenses and accelerator columns have been developed recently that allow the code to be used for modeling beamlines and accelerators with electrostatic components. The new models include a number of options for: (1) Einzel lenses, (2) accelerator columns, (3) electrostatic prisms, and (4) electrostatic quadrupoles. A prescription for setting up the initial beam appropriate to modeling 2-D (continuous) beams has also been developed. The models for electrostatic prisms are described in this paper. The electrostatic prism model options allow the modeling of cylindrical, spherical, and toroidal electrostatic deflectors. The application of these models in the development of ion-beam transport systems is illustrated through the modeling of a spherical electrostatic analyzer as a component of the new low energy beamline at CAMS

  9. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode.

    Science.gov (United States)

    Verhagen, E; Deléglise, S; Weis, S; Schliesser, A; Kippenberg, T J

    2012-02-01

    Optical laser fields have been widely used to achieve quantum control over the motional and internal degrees of freedom of atoms and ions, molecules and atomic gases. A route to controlling the quantum states of macroscopic mechanical oscillators in a similar fashion is to exploit the parametric coupling between optical and mechanical degrees of freedom through radiation pressure in suitably engineered optical cavities. If the optomechanical coupling is 'quantum coherent'--that is, if the coherent coupling rate exceeds both the optical and the mechanical decoherence rate--quantum states are transferred from the optical field to the mechanical oscillator and vice versa. This transfer allows control of the mechanical oscillator state using the wide range of available quantum optical techniques. So far, however, quantum-coherent coupling of micromechanical oscillators has only been achieved using microwave fields at millikelvin temperatures. Optical experiments have not attained this regime owing to the large mechanical decoherence rates and the difficulty of overcoming optical dissipation. Here we achieve quantum-coherent coupling between optical photons and a micromechanical oscillator. Simultaneously, coupling to the cold photon bath cools the mechanical oscillator to an average occupancy of 1.7 ± 0.1 motional quanta. Excitation with weak classical light pulses reveals the exchange of energy between the optical light field and the micromechanical oscillator in the time domain at the level of less than one quantum on average. This optomechanical system establishes an efficient quantum interface between mechanical oscillators and optical photons, which can provide decoherence-free transport of quantum states through optical fibres. Our results offer a route towards the use of mechanical oscillators as quantum transducers or in microwave-to-optical quantum links.

  10. Phase retrieval from coherent soft X-ray optics

    International Nuclear Information System (INIS)

    Peele, A.G.; Mancuso, A.P.; Tran, C.Q.; Paterson, D.; McNulty, I.; Hayes, J.P.; Nugent, K.A.

    2005-01-01

    We have recently probed the coherence of soft X-ray flux from a third generation synchrotron source [D. Paterson, B.E. Allman, P.J. McMahon, J. Lin, N. Moldovan, K.A. Nugent, I. McNulty, C.T. Chantler, C.C. Retsch, T.H.K. Irving, D.C. Mancini, Opt. Commun. 195 (2001) 79; C.Q. Tran, A.G. Peele, D. Paterson, A. Roberts, I. McNulty, K.A. Nugent, Opt. Lett. 30 (2005) 204.]. The 1-2 keV radiation exhibits transverse coherence lengths of 60 μm, which means that coherent optical effects may be observed in reasonably sized objects. We present experimental results demonstrating the creation of a phase singularity in a synchrotron beam by passing the beam through a phase mask at similarly low X-ray energies. This complements our earlier work at higher energies and demonstrates that we can now produce phase singularities across a range of energies where we have tested certain intensity-based phase recovery methods. These methods fail when the field contains phase singularities. We describe the X-ray optical vortex and outline its use as a pathological test object for phase retrieval methods. We also present recent progress towards overcoming the problem of phase retrieval in singular optics

  11. IMAGING WITH MULTIMODAL ADAPTIVE-OPTICS OPTICAL COHERENCE TOMOGRAPHY IN MULTIPLE EVANESCENT WHITE DOT SYNDROME: THE STRUCTURE AND FUNCTIONAL RELATIONSHIP.

    Science.gov (United States)

    Labriola, Leanne T; Legarreta, Andrew D; Legarreta, John E; Nadler, Zach; Gallagher, Denise; Hammer, Daniel X; Ferguson, R Daniel; Iftimia, Nicusor; Wollstein, Gadi; Schuman, Joel S

    2016-01-01

    To elucidate the location of pathological changes in multiple evanescent white dot syndrome (MEWDS) with the use of multimodal adaptive optics (AO) imaging. A 5-year observational case study of a 24-year-old female with recurrent MEWDS. Full examination included history, Snellen chart visual acuity, pupil assessment, intraocular pressures, slit lamp evaluation, dilated fundoscopic exam, imaging with Fourier-domain optical coherence tomography (FD-OCT), blue-light fundus autofluorescence (FAF), fundus photography, fluorescein angiography, and adaptive-optics optical coherence tomography. Three distinct acute episodes of MEWDS occurred during the period of follow-up. Fourier-domain optical coherence tomography and adaptive-optics imaging showed disturbance in the photoreceptor outer segments (PR OS) in the posterior pole with each flare. The degree of disturbance at the photoreceptor level corresponded to size and extent of the visual field changes. All findings were transient with delineation of the photoreceptor recovery from the outer edges of the lesion inward. Hyperautofluorescence was seen during acute flares. Increase in choroidal thickness did occur with each active flare but resolved. Although changes in the choroid and RPE can be observed in MEWDS, Fourier-domain optical coherence tomography, and multimodal adaptive optics imaging localized the visually significant changes seen in this disease at the level of the photoreceptors. These transient retinal changes specifically occur at the level of the inner segment ellipsoid and OS/RPE line. En face optical coherence tomography imaging provides a detailed, yet noninvasive method for following the convalescence of MEWDS and provides insight into the structural and functional relationship of this transient inflammatory retinal disease.

  12. Contribution to coherent atom optics - Design of multiple wave devices

    International Nuclear Information System (INIS)

    Impens, F.

    2008-03-01

    The theoretical work presented in this manuscript addresses two complementary issues in coherent atom optics. The first part addresses the perspectives offered by coherent atomic sources through the design of two experiment involving the levitation of a cold atomic sample in a periodic series of light pulses, and for which coherent atomic clouds are particularly well-suited. These systems appear as multiple wave atom interferometers. A striking feature of these experiments is that a unique system performs both the sample trapping and interrogation. To obtain a transverse confinement, a novel atomic lens is proposed, relying on the interaction between an atomic wave with a spherical light wave. The sensitivity of the sample trapping towards the gravitational acceleration and towards the pulse frequencies is exploited to perform the desired measurement. These devices constitute atomic wave resonators in momentum space, which is a novel concept in atom optics. A second part develops new theoretical tools - most of which inspired from optics - well-suited to describe the propagation of coherent atomic sources. A phase-space approach of the propagation, relying on the evolution of moments, is developed and applied to study the low-energy dynamics of Bose-Einstein condensates. The ABCD method of propagation for atomic waves is extended beyond the linear regime to account perturbatively for mean-field atomic interactions in the atom-optical aberration-less approximation. A treatment of the atom laser extraction enabling one to describe aberrations in the atomic beam, developed in collaboration with the Atom Optics group at the Institute of Optics, is exposed. Last, a quality factor suitable for the characterization of diluted matter waves in a general propagation regime has been proposed. (author)

  13. Fundus autofluorescence and optical coherence tomography of congenital grouped albinotic spots.

    Science.gov (United States)

    Kim, David Y; Hwang, John C; Moore, Anthony T; Bird, Alan C; Tsang, Stephen H

    2010-09-01

    The purpose of this study was to describe the findings of fundus autofluores-cence (FAF) and optical coherence tomography in a series of patients with congenital grouped albinotic spots. Three eyes of three patients with congenital grouped albinotic spots were evaluated with FAF and optical coherence tomography imaging to evaluate the nature of the albinotic spots. In all three eyes with congenital grouped albinotic spots, FAF imaging showed autofluorescent spots corresponding to the albinotic spots seen on stereo biomicroscopy. One eye also had additional spots detected on FAF imaging that were not visible on stereo biomicroscopy or color fundus photographs. Fundus autofluorescence imaging of the spots showed decreased general autofluorescence and decreased peripheral autofluorescence surrounding central areas of retained or increased autofluorescence. Optical coherence tomography showed a disruption in signal from the hyperreflective layer corresponding to the inner and outer segment junction and increased signal backscattering from the choroid in the area of the spots. Fluorescein angiography showed early and stable hyperfluorescence of the spots without leakage. In this case series, FAF showed decreased autofluorescence of the spots consistent with focal retinal pigment epithelium atrophy or abnormal material blocking normal autofluorescence and areas of increased autofluorescence suggesting retinal pigment epithelium dysfunction. The findings of optical coherence tomography and fluorescein angiography suggest photoreceptor and retinal pigment epithelium layer abnormalities. Fundus autofluorescence and optical coherence tomography are useful noninvasive diagnostic adjuncts that can aid in the diagnosis of congenital grouped albinotic spots, help determine extent of disease, and contribute to our understanding of its pathophysiology.

  14. Morpho-functional evaluation of torpedo maculopathy with optical coherence tomography angiography and microperimetry

    Directory of Open Access Journals (Sweden)

    Gabriela Grimaldi

    2018-06-01

    Full Text Available Purpose: To report the case of a 13-year-old girl with torpedo maculopathy, evaluated with multimodal morpho-functional retinal imaging, including fundus photography, infra-red and blue fundus autofluorescence, swept-source optical coherence tomography (OCT, en face OCT, OCT angiography and microperimetry (MP. Observations: On fundus examination, a torpedo-like hypopigmented lesion was observed temporal to the fovea in the left eye. OCT showed disruption of outer retinal layers and the presence of a subretinal cleft. On OCTA, a diffuse attenuation of signal from choriocapillaris was observed along the lesion. Functional analysis with MP revealed a reduction of retinal sensitivity over the lesion. Conclusions: and importance: On OCTA, torpedo maculopathy is characterized by vascular alterations of the choriocapillaris along the lesion. Keywords: Optical coherence tomography angiography, Torpedo maculopathy, Microperimetry, Swept-source optical coherence tomography, En face optical coherence tomography

  15. Optical coherence tomography findings and retinal changes after vitrectomy for optic disc pit maculopathy

    Directory of Open Access Journals (Sweden)

    Gaurav Sanghi

    2014-01-01

    Full Text Available Purpose : To study the optical coherence tomography (OCT patterns in optic disc pit maculopathy and retinal changes after vitreous surgery. Materials and Methods : Retrospective review of consecutive cases with optic disc pit maculopathy seen at two tertiary eye institutes from January 2005 to June 2009. Results : Twenty-four eyes of 23 patients are included. The presenting visual acuity ranged from 20/400 to 20/20 (median:20/80. The median age at presentation was 24 years (range, 6-57 years. Optical coherence tomography demonstrated a combination of retinoschisis and outer layer detachment (OLD in 19 (79.17% eyes, OLD only in 3 (12.5% eyes and retinoschisis only in 2 (8.33% eyes. An obvious communication (outer layer hole between the schisis and OLD was seen in 14 (73.68% of the 19 eyes with both features. Of the 21 eyes with retinoschisis, schisis was present in multiple layers in 15 (71.43% and single layer in 6 (28.57% eyes. Eleven eyes underwent pars plana vitrectomy including creation of posterior vitreous detachment (PVD, fluid-air exchange, low intensity laser photocoagulation at the temporal edge of the optic disc pit and non-expansile perfluoropropane gas (14% injection. Five (45.45% of 11 eyes undergoing vitrectomy had complete resolution and 4 (36.36% eyes had partial resolution of maculopathy. Visual acuity improved in 8 (72.72% of 11 eyes. Conclusion : Optical coherence tomography demonstrates multiple layer schisis and outer layer detachment as main features of optic disc pit maculopathy. Vitrectomy with PVD induction, laser photocoagulation and gas tamponade results in anatomical and visual improvement in most cases with optic disc pit maculopathy.

  16. From Spheric to Aspheric Solid Polymer Lenses: A Review

    Directory of Open Access Journals (Sweden)

    Kuo-Yung Hung

    2011-01-01

    Full Text Available This paper presents a new approach in the use of MEMS technology to fabricate micro-optofluidic polymer solid lenses in order to achieve the desired profile, focal length, numerical aperture, and spot size. The resulting polymer solid lenses can be applied in optical data storage systems, imaging systems, and automated optical inspection systems. In order to meet the various needs of different applications, polymer solid lenses may have a spherical or aspherical shape. The method of fabricating polymer solid lenses is different from methods used to fabricate tunable lenses with variable focal length or needing an external control system to change the lens geometry. The current trend in polymer solid lenses is toward the fabrication of microlenses with a high numerical aperture, small clear aperture (<2 mm, and high transmittance. In this paper we focus on the use of thermal energy and electrostatic force in shaping the lens profile, including both spherical and aspherical lenses. In addition, the paper discusses how to fabricate a lens with a high numerical aperture of 0.6 using MEMS and also compares the optical characteristics of polymer lens materials, including SU-8, Norland Optical Adhesive (NOA, and cyclic olefin copolymer (COC. Finally, new concepts and applications related to micro-optofluidic lenses and polymer materials are also discussed.

  17. Dental diagnostics using optical coherence techniques

    Energy Technology Data Exchange (ETDEWEB)

    Nathel, H. [Lawrence Livermore National Lab., CA (United States); Colston, B. [Univ. of California, San Francisco, CA (United States); Armitage, G. [Univ. of California, Davis, CA (United States)] [and others

    1994-11-15

    Optical radiation can be used for diagnostic purposes in oral medicine. However, due to the turbid, amorphous, and inhomogeneous nature of dental tissue conventional techniques used to transilluminate materials are not well suited to dental tissues. Optical coherence techniques either in the time- of frequency-domain offer the capabilities of discriminating scattered from unscattered light, thus allowing for imaging through turbid tissue. Currently, using optical time-domain reflectometry we are able to discriminate specular from diffuse reflections occurring at tissue boundaries. We have determined the specular reflectivity of enamel and dentin to be approximately 6.6 x 10{sup -5} and 1.3 x 10{sup -6}, respectively. Implications to periodontal imaging will be discussed.

  18. Gabor lenses

    International Nuclear Information System (INIS)

    Mobley, R.M.; Gamml, G.; Maschke, A.W.

    1979-01-01

    Stable operation of Gabor lenses has been reported by at least three experimental groups. At Brookhaven, several lens designs have been tried since February, 1978 with very good results. The lens concept is simple, operation is less complicated than anticipated, and the focussing strengths attainable make them very attractive alternatives to magnetic focussing for heavy ion beams at low energies. Results obtained with five different configurations are presented. The lenses work well, concern is now with fine details of their beam-optical performance

  19. Diffraction coherence in optics

    CERN Document Server

    Françon, M; Green, L L

    2013-01-01

    Diffraction: Coherence in Optics presents a detailed account of the course on Fraunhofer diffraction phenomena, studied at the Faculty of Science in Paris. The publication first elaborates on Huygens' principle and diffraction phenomena for a monochromatic point source and diffraction by an aperture of simple form. Discussions focus on diffraction at infinity and at a finite distance, simplified expressions for the field, calculation of the path difference, diffraction by a rectangular aperture, narrow slit, and circular aperture, and distribution of luminous flux in the airy spot. The book th

  20. Imaging actinic keratosis by high-definition optical coherence tomography. Histomorphologic correlation

    DEFF Research Database (Denmark)

    Boone, Marc A L M; Norrenberg, Sarah; Jemec, Gregor B E

    2013-01-01

    With the continued development of non-invasive therapies for actinic keratosis such as PDT and immune therapies, the non-invasive diagnosis and monitoring become increasingly relevant. High-definition optical coherence tomography is a high-resolution imaging tool, with micrometre resolution in both...... transversal and axial directions, enable to visualize individual cells up to a depth of around 570 μm filling the imaging gap between conventional optical coherence tomography and reflectance confocal microscopy. We sought to determine the feasibility of detecting and grading of actinic keratosis...... by this technique using criteria defined for reflectance confocal microscopy compared to histology. In this pilot study, skin lesions of 17 patients with a histologically proven actinic keratosis were imaged by high-definition optical coherence tomography just before excision and images analysed qualitatively...

  1. Evaluation of coherence interference in optical wireless communication through multiscattering channels.

    Science.gov (United States)

    Kedar, Debbie; Arnon, Shlomi

    2006-05-10

    Optical wireless communication has been the subject of much research in recent years because of the increasing interest in laser satellite-ground links and urban optical wireless communication. The major sources of performance degradation have been identified as the spatial, angular, and temporal spread of the propagating beam when the propagation channel is multiscattering, resulting in reduced power reception and intersignal interference, as well as turbulence-induced scintillations and noise due to receiver circuitry and background illumination. However, coherence effects due to multipath interference caused by a scattering propagation channel do not appear to have been treated in detail in the scientific literature. We attempt a theoretical analysis of coherence interference in optical wireless communication through scattering channels and try to quantify the resultant performance degradation for different media. We conclude that coherence interference is discernible in optical wireless communication through scattering channels and is highly dependent on the microscopic nature of the propagation medium.

  2. Posterior lattice degeneration characterized by spectral domain optical coherence tomography.

    Science.gov (United States)

    Manjunath, Varsha; Taha, Mohammed; Fujimoto, James G; Duker, Jay S

    2011-03-01

    The purpose of this study was to use high-resolution spectral domain optical coherence tomography in the characterization of retinal and vitreal morphological changes overlying posterior lattice degeneration. A cross-sectional retrospective analysis was performed on 13 eyes of 13 nonconsecutive subjects with posterior lattice degeneration seen at the New England Eye Center, Tufts Medical Center between October 2009 and January 2010. Spectral domain optical coherence tomography images taken through the region of lattice degeneration were qualitatively analyzed. Four characteristic changes of the retina and vitreous were seen in the 13 eyes with lattice degeneration: 1) anterior/posterior U-shaped vitreous traction; 2) retinal breaks; 3) focal retinal thinning; and 4) vitreous membrane formation. The morphologic appearance of vitreous traction and retinal breaks were found to be consistent with previous histologic reports. It is possible to image posterior lattice degeneration in many eyes using spectral domain optical coherence tomography and to visualize the spectrum of retinal and vitreous changes throughout the area of lattice degeneration.

  3. Spectral-domain optical coherence tomography on a silicon chip

    NARCIS (Netherlands)

    Akça, B.I.

    2012-01-01

    Optical coherence tomography (OCT) is a non-invasive optical technique for high-resolution cross-sectional imaging of specimens, with many applications in clinical medicine and industry (e.g. materials testing, quality assurance, and process control). Current state-of-the-art OCT systems operate in

  4. Computational hydrodynamics and optical performance of inductively-coupled plasma adaptive lenses

    Energy Technology Data Exchange (ETDEWEB)

    Mortazavi, M.; Urzay, J., E-mail: jurzay@stanford.edu; Mani, A. [Center for Turbulence Research, Stanford University, Stanford, California 94305-3024 (United States)

    2015-06-15

    This study addresses the optical performance of a plasma adaptive lens for aero-optical applications by using both axisymmetric and three-dimensional numerical simulations. Plasma adaptive lenses are based on the effects of free electrons on the phase velocity of incident light, which, in theory, can be used as a phase-conjugation mechanism. A closed cylindrical chamber filled with Argon plasma is used as a model lens into which a beam of light is launched. The plasma is sustained by applying a radio-frequency electric current through a coil that envelops the chamber. Four different operating conditions, ranging from low to high powers and induction frequencies, are employed in the simulations. The numerical simulations reveal complex hydrodynamic phenomena related to buoyant and electromagnetic laminar transport, which generate, respectively, large recirculating cells and wall-normal compression stresses in the form of local stagnation-point flows. In the axisymmetric simulations, the plasma motion is coupled with near-wall axial striations in the electron-density field, some of which propagate in the form of low-frequency traveling disturbances adjacent to vortical quadrupoles that are reminiscent of Taylor-Görtler flow structures in centrifugally unstable flows. Although the refractive-index fields obtained from axisymmetric simulations lead to smooth beam wavefronts, they are found to be unstable to azimuthal disturbances in three of the four three-dimensional cases considered. The azimuthal striations are optically detrimental, since they produce high-order angular aberrations that account for most of the beam wavefront error. A fourth case is computed at high input power and high induction frequency, which displays the best optical properties among all the three-dimensional simulations considered. In particular, the increase in induction frequency prevents local thermalization and leads to an axisymmetric distribution of electrons even after introduction of

  5. Investigation of optical currents in coherent and partially coherent vector fields

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Gorsky, M. P.; Maksimyak, P. P.

    2011-01-01

    We present the computer simulation results of the spatial distri-bution of the Poynting vector and illustrate motion of micro and nanopar-ticles in spatially inhomogeneously polarized fields. The influence of phase relations and the degree of mutual coherence of superimposing waves...... by polarization characteristics of an optical field alone, using nanoscale me-tallic particles has been shown experimentally....

  6. Optical coherence tomography as a diagnostic tool

    CSIR Research Space (South Africa)

    Singh, A

    2011-07-01

    Full Text Available Optical Coherence Tomography (OCT) has been used in biomedical applications as a method to non-invasively detect changes occurring in tissue such as the detection of skin cancer. The effect of skin tone on detection of skin cancer has however...

  7. Widely Linear Equalization for IQ Imbalance and Skew Compensation in Optical Coherent Receivers

    DEFF Research Database (Denmark)

    Porto da Silva, Edson; Zibar, Darko

    2016-01-01

    In this paper, an alternative approach to design linear equalization algorithms for optical coherent receivers is introduced. Using widely linear complex analysis, a general analytical model it is shown, where In-phase/quadrature (IQ) imbalances and IQ skew at the coherent receiver front-end are ......In this paper, an alternative approach to design linear equalization algorithms for optical coherent receivers is introduced. Using widely linear complex analysis, a general analytical model it is shown, where In-phase/quadrature (IQ) imbalances and IQ skew at the coherent receiver front...

  8. Determination of Electron Optical Properties for Aperture Zoom Lenses Using an Artificial Neural Network Method.

    Science.gov (United States)

    Isik, Nimet

    2016-04-01

    Multi-element electrostatic aperture lens systems are widely used to control electron or charged particle beams in many scientific instruments. By means of applied voltages, these lens systems can be operated for different purposes. In this context, numerous methods have been performed to calculate focal properties of these lenses. In this study, an artificial neural network (ANN) classification method is utilized to determine the focused/unfocused charged particle beam in the image point as a function of lens voltages for multi-element electrostatic aperture lenses. A data set for training and testing of ANN is taken from the SIMION 8.1 simulation program, which is a well known and proven accuracy program in charged particle optics. Mean squared error results of this study indicate that the ANN classification method provides notable performance characteristics for electrostatic aperture zoom lenses.

  9. Optical-to-virial velocity ratios of local disc galaxies from combined kinematics and galaxy-galaxy lensing

    Science.gov (United States)

    Reyes, R.; Mandelbaum, R.; Gunn, J. E.; Nakajima, R.; Seljak, U.; Hirata, C. M.

    2012-10-01

    In this paper, we measure the optical-to-virial velocity ratios Vopt/V200c of disc galaxies in the Sloan Digital Sky Survey (SDSS) at a mean redshift of = 0.07 and with stellar masses 109 < M* < 1011 M⊙. Vopt/V200c, the ratio of the circular velocity measured at the optical radius of the disc (˜10 kpc) to that at the virial radius of the dark matter halo (˜150 kpc), is a powerful observational constraint on disc galaxy formation. It links galaxies to their dark matter haloes dynamically and constrains the total mass profile of disc galaxies over an order of magnitude in length scale. For this measurement, we combine Vopt derived from the Tully-Fisher relation (TFR) from Reyes et al. with V200c derived from halo masses measured with galaxy-galaxy lensing. In anticipation of this combination, we use similarly selected galaxy samples for both the TFR and lensing analysis. For three M* bins with lensing-weighted mean stellar masses of 0.6, 2.7 and 6.5 × 1010 M⊙, we find halo-to-stellar mass ratios M200c/M* = 41, 23 and 26, with 1σ statistical uncertainties of around 0.1 dex, and Vopt/V200c = 1.27 ± 0.08, 1.39 ± 0.06 and 1.27 ± 0.08 (1σ), respectively. Our results suggest that the dark matter and baryonic contributions to the mass within the optical radius are comparable, if the dark matter halo profile has not been significantly modified by baryons. The results obtained in this work will serve as inputs to and constraints on disc galaxy formation models, which will be explored in future work. Finally, we note that this paper presents a new and improved galaxy shape catalogue for weak lensing that covers the full SDSS Data Release 7 footprint.

  10. Dispersion free full range spectral intensity optical coherence tomography

    DEFF Research Database (Denmark)

    Jensen, Mikkel; Israelsen, Niels Møller; Maria, Michael

    2017-01-01

    Optical coherence tomography (OCT) is a non-invasive imaging technique with many applications and widespread use in ophthalmology [1]. The axial resolution in OCT is inversely proportional to the bandwidth of the optical source used, but the improved axial resolution comes at the price of more...

  11. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope.

    Science.gov (United States)

    Feist, Armin; Echternkamp, Katharina E; Schauss, Jakob; Yalunin, Sergey V; Schäfer, Sascha; Ropers, Claus

    2015-05-14

    Coherent manipulation of quantum systems with light is expected to be a cornerstone of future information and communication technology, including quantum computation and cryptography. The transfer of an optical phase onto a quantum wavefunction is a defining aspect of coherent interactions and forms the basis of quantum state preparation, synchronization and metrology. Light-phase-modulated electron states near atoms and molecules are essential for the techniques of attosecond science, including the generation of extreme-ultraviolet pulses and orbital tomography. In contrast, the quantum-coherent phase-modulation of energetic free-electron beams has not been demonstrated, although it promises direct access to ultrafast imaging and spectroscopy with tailored electron pulses on the attosecond scale. Here we demonstrate the coherent quantum state manipulation of free-electron populations in an electron microscope beam. We employ the interaction of ultrashort electron pulses with optical near-fields to induce Rabi oscillations in the populations of electron momentum states, observed as a function of the optical driving field. Excellent agreement with the scaling of an equal-Rabi multilevel quantum ladder is obtained, representing the observation of a light-driven 'quantum walk' coherently reshaping electron density in momentum space. We note that, after the interaction, the optically generated superposition of momentum states evolves into a train of attosecond electron pulses. Our results reveal the potential of quantum control for the precision structuring of electron densities, with possible applications ranging from ultrafast electron spectroscopy and microscopy to accelerator science and free-electron lasers.

  12. Optimized phase gradient measurements and phase-amplitude interplay in optical coherence elastography

    Science.gov (United States)

    Zaitsev, Vladimir Y.; Matveyev, Alexander L.; Matveev, Lev A.; Gelikonov, Grigory V.; Sovetsky, Aleksandr A.; Vitkin, Alex

    2016-11-01

    In compressional optical coherence elastography, phase-variation gradients are used for estimating quasistatic strains created in tissue. Using reference and deformed optical coherence tomography (OCT) scans, one typically compares phases from pixels with the same coordinates in both scans. Usually, this limits the allowable strains to fairly small values advantages of the proposed optimized phase-variation methodology.

  13. High-speed optical coherence tomography by circular interferometric ranging

    Science.gov (United States)

    Siddiqui, Meena; Nam, Ahhyun S.; Tozburun, Serhat; Lippok, Norman; Blatter, Cedric; Vakoc, Benjamin J.

    2018-02-01

    Existing three-dimensional optical imaging methods excel in controlled environments, but are difficult to deploy over large, irregular and dynamic fields. This means that they can be ill-suited for use in areas such as material inspection and medicine. To better address these applications, we developed methods in optical coherence tomography to efficiently interrogate sparse scattering fields, that is, those in which most locations (voxels) do not generate meaningful signal. Frequency comb sources are used to superimpose reflected signals from equispaced locations through optical subsampling. This results in circular ranging, and reduces the number of measurements required to interrogate large volumetric fields. As a result, signal acquisition barriers that have limited speed and field in optical coherence tomography are avoided. With a new ultrafast, time-stretched frequency comb laser design operating with 7.6 MHz to 18.9 MHz repetition rates, we achieved imaging of multi-cm3 fields at up to 7.5 volumes per second.

  14. Controllable parabolic lensed liquid-core optical fiber by using electrostatic force.

    Science.gov (United States)

    Tang, Chun Yin; Zhang, Xuming; Chai, Yang; Hui, Long; Tao, Lili; Tsang, Yuen H

    2014-08-25

    For typical optical fiber system, an external lens accessory set is required to adjust the optical path of output light, which however is limited by the fixed parameter of the lens accessory setup. Considering spherical aberration in the imaging process and its small focusable spot size, a complicated lens combination is required to compensate the aberration. This paper has demonstrated a unique method to fabricate liquid-core lensed fibers by filling water and NOA61 respectively into hollow Teflon AF fibers and silicate fiber, the radius of curvature of the liquid lens can be controlled by adjusting the applied voltage on the core liquid and even parabolic shape lens can be produced with enough applied voltage. The experiment has successfully demonstrated a variation of focal length from 0.628 mm to 0.111 mm responding to the change of applied voltage from 0V to 3.2KV (L = 2mm) for the Teflon AF fiber, as well as a variation of focal length from 0.274 mm to 0.08 mm responding to the change of applied voltage from 0V to 3KV (L = 2mm) for the silicate fiber. Further simulation shows that the focused spot size can be reduced to 2 µm by adjusting the refractive index and fiber geometry. Solid state parabolic lensed fiber can be produced after NOA61 is solidified by the UV curing.

  15. Electron optics

    CERN Document Server

    Grivet, Pierre; Bertein, F; Castaing, R; Gauzit, M; Septier, Albert L

    1972-01-01

    Electron Optics, Second English Edition, Part I: Optics is a 10-chapter book that begins by elucidating the fundamental features and basic techniques of electron optics, as well as the distribution of potential and field in electrostatic lenses. This book then explains the field distribution in magnetic lenses; the optical properties of electrostatic and magnetic lenses; and the similarities and differences between glass optics and electron optics. Subsequent chapters focus on lens defects; some electrostatic lenses and triode guns; and magnetic lens models. The strong focusing lenses and pris

  16. Fiber optic-based optical coherence tomography (OCT) for dental applications

    Science.gov (United States)

    Everett, Matthew J.; Colston, Bill W., Jr.; Da Silva, Luiz B.; Otis, Linda L.

    1998-09-01

    We have developed a hand-held fiber optic based optical coherence tomography (OCT) system for scanning of the oral cavity. We have produced, using this scanning device, in vivo cross-sectional images of hard and soft dental tissues in human volunteers. Clinically relevant anatomical structures, including the gingival margin, periodontal sulcus, and dento- enamel junction, were visible in all the images. The cemento- enamel junction and the alveolar bone were identified in approximately two thirds of the images. These images represent, or our knowledge, the first in vivo OCT images of human dental tissue.

  17. Fiber optic based optical coherence tomography (OCT) for dental applications

    Energy Technology Data Exchange (ETDEWEB)

    Everett, M. J., LLNL

    1998-06-02

    We have developed a hand-held fiber optic based optical coherence tomography (OCT) system for scanning of the oral cavity We have produced, using this scanning device, in viva cross-sectional images of hard and soft dental tissues in human volunteers Clinically relevant anatomical structures, including the gingival margin, periodontal sulcus, and dento-enamel junction, were visible in all the images The dento-enamel junction and the alveolar bone were identifiable in approximately two thirds of the images These images represent, to our knowledge, the first in viva OCT images of human dental tissue.

  18. Fiber-optic polarization diversity detection for rotary probe optical coherence tomography.

    Science.gov (United States)

    Lee, Anthony M D; Pahlevaninezhad, Hamid; Yang, Victor X D; Lam, Stephen; MacAulay, Calum; Lane, Pierre

    2014-06-15

    We report a polarization diversity detection scheme for optical coherence tomography with a new, custom, miniaturized fiber coupler with single mode (SM) fiber inputs and polarization maintaining (PM) fiber outputs. The SM fiber inputs obviate matching the optical lengths of the X and Y OCT polarization channels prior to interference and the PM fiber outputs ensure defined X and Y axes after interference. Advantages for this scheme include easier alignment, lower cost, and easier miniaturization compared to designs with free-space bulk optical components. We demonstrate the utility of the detection system to mitigate the effects of rapidly changing polarization states when imaging with rotating fiber optic probes in Intralipid suspension and during in vivo imaging of human airways.

  19. 3D printed plano-freeform optics for non-coherent discontinuous beam shaping

    Science.gov (United States)

    Assefa, Bisrat G.; Saastamoinen, Toni; Biskop, Joris; Kuittinen, Markku; Turunen, Jari; Saarinen, Jyrki

    2018-06-01

    The design, fabrication, and characterization of freeform optics for LED-based complex target irradiance distribution are challenging. Here, we investigate a 3D printing technology called Printoptical® technology in order to relax or push forward both the fabrication limits and LED-based applications of thick freeform lenses with small slope features. The freeform designs are carried out with an assumption of small-sized LED source using an existing point-source-based Tailoring method, which is available in the semi-commercial software. The numerical methods of the designs are characterized by ray-tracing software. The irradiance patterns of the 3D printed freeform lenses are promising considering the average shape conformity deviation of around ± 40 µm and center area surface roughness around ± 12 nm, which is to our knowledge by far the best result reported for 3D printed freeform lenses with a thickness greater than 1 mm. Applications of freeform lenses with discontinuous target irradiance distribution patterns are expected in eco-friendly energy efficient lighting such as in zebra-cross lighting.

  20. 3D printed plano-freeform optics for non-coherent discontinuous beam shaping

    Science.gov (United States)

    Assefa, Bisrat G.; Saastamoinen, Toni; Biskop, Joris; Kuittinen, Markku; Turunen, Jari; Saarinen, Jyrki

    2018-03-01

    The design, fabrication, and characterization of freeform optics for LED-based complex target irradiance distribution are challenging. Here, we investigate a 3D printing technology called Printoptical® technology in order to relax or push forward both the fabrication limits and LED-based applications of thick freeform lenses with small slope features. The freeform designs are carried out with an assumption of small-sized LED source using an existing point-source-based Tailoring method, which is available in the semi-commercial software. The numerical methods of the designs are characterized by ray-tracing software. The irradiance patterns of the 3D printed freeform lenses are promising considering the average shape conformity deviation of around ± 40 µm and center area surface roughness around ± 12 nm, which is to our knowledge by far the best result reported for 3D printed freeform lenses with a thickness greater than 1 mm. Applications of freeform lenses with discontinuous target irradiance distribution patterns are expected in eco-friendly energy efficient lighting such as in zebra-cross lighting.

  1. XIX International Youth School on Coherent Optics and Optical Spectroscopy

    International Nuclear Information System (INIS)

    2016-01-01

    The XIX International Youth School on Coherent Optics and Optical Spectroscopy (COOS2015) was held in Kazan, Russia, from October 5 to October 7 at the Nikolai Lobachevsky Scientific Library of Kazan Federal University. The School follows the global tendency toward comprehensive studies of matter properties and its interaction with electromagnetic fields. Since 1997 more than 100 famous scientists from USA, Germany, Ukraine, Belarussia and Russia had plenary lecture presentations. This is the right place, where over 1000 young scientists had an opportunity to participate in hot discussions regarding the latest scientific news. Many young people have submitted interesting reports on photonics, quantum electronics, laser physics, quantum optics, traditional optical and laser spectroscopy, non-linear optics, material science and nanotechnology. Here we are publishing the full-size papers prepared from the most interesting lectures and reports selected by the Program Committee of the School. (paper)

  2. Classifying murine glomerulonephritis using optical coherence tomography and optical coherence elastography.

    Science.gov (United States)

    Liu, Chih-Hao; Du, Yong; Singh, Manmohan; Wu, Chen; Han, Zhaolong; Li, Jiasong; Chang, Anthony; Mohan, Chandra; Larin, Kirill V

    2016-08-01

    Acute glomerulonephritis caused by antiglomerular basement membrane marked by high mortality. The primary reason for this is delayed diagnosis via blood examination, urine analysis, tissue biopsy, or ultrasound and X-ray computed tomography imaging. Blood, urine, and tissue-based diagnoses can be time consuming, while ultrasound and CT imaging have relatively low spatial resolution, with reduced sensitivity. Optical coherence tomography is a noninvasive and high-resolution imaging technique that provides superior spatial resolution (micrometer scale) as compared to ultrasound and CT. Changes in tissue properties can be detected based on the optical metrics analyzed from the OCT signals, such as optical attenuation and speckle variance. Furthermore, OCT does not rely on ionizing radiation as with CT imaging. In addition to structural changes, the elasticity of the kidney can significantly change due to nephritis. In this work, OCT has been utilized to quantify the difference in tissue properties between healthy and nephritic murine kidneys. Although OCT imaging could identify the diseased tissue, its classification accuracy is clinically inadequate. By combining optical metrics with elasticity, the classification accuracy improves from 76% to 95%. These results show that OCT combined with OCE can be a powerful tool for identifying and classifying nephritis. Therefore, the OCT/OCE method could potentially be used as a minimally invasive tool for longitudinal studies during the progression and therapy of glomerulonephritis as well as complement and, perhaps, substitute highly invasive tissue biopsies. Elastic-wave propagation in mouse healthy and nephritic kidneys. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Optical coherence tomography a clinical and technical update

    CERN Document Server

    Cunha-Vaz, José

    2012-01-01

    Optical Coherence Tomography represents the ultimate noninvasive  ocular imaging technique although being in the field for over two-decades. This book encompasses both medical and technical developments and recent achievements. Here, the authors cover the field of application from the anterior to the posterior ocular segments (Part I) and present a comprehensive review on the development of OCT. Important developments towards  clinical applications are covered in Part II, ranging from the adaptive optics to the integration on a slit-lamp, and passing through new structural  and functional information extraction from OCT data. The book is intended to be informative, coherent and comprehensive for both the medical and technical communities and aims at easing the communication between the two fields and bridging the gap between the two scientific communities.

  4. Principles of optical fibre communication techniques: Noncoherent and coherent

    International Nuclear Information System (INIS)

    Jain, V.K.

    1990-01-01

    In this paper a brief historical description of optical fibre communication system (OFCS) has been presented and the main characteristics of the basic components used in it are summarized. Introduction of noncoherent and coherent (homodyne and heterodyne) system is given. In coherent OFCS, source linewidth requirement, phase and polarization - diversity and combined phase and polarization - diversity receivers are described. (author). 16 refs, 8 figs, 1 tab

  5. Imaging of basal cell carcinoma by high-definition optical coherence tomography

    DEFF Research Database (Denmark)

    Boone, M A L M; Norrenberg, S; Jemec, G B E

    2012-01-01

    With the continued development of noninvasive therapies for basal cell carcinoma (BCC) such as photodynamic therapy and immune therapies, noninvasive diagnosis and monitoring become increasingly relevant. High-definition optical coherence tomography (HD-OCT) is a high-resolution imaging tool, wit......, with micrometre resolution in both transversal and axial directions, enabling visualization of individual cells up to a depth of around 570 μm, and filling the imaging gap between conventional optical coherence tomography (OCT) and reflectance confocal microscopy (RCM)....

  6. Squeezed light in an optical parametric oscillator network with coherent feedback quantum control.

    Science.gov (United States)

    Crisafulli, Orion; Tezak, Nikolas; Soh, Daniel B S; Armen, Michael A; Mabuchi, Hideo

    2013-07-29

    We present squeezing and anti-squeezing spectra of the output from a degenerate optical parametric oscillator (OPO) network arranged in different coherent quantum feedback configurations. One OPO serves as a quantum plant, the other as a quantum controller. The addition of coherent feedback enables shaping of the output squeezing spectrum of the plant, and is found to be capable of pushing the frequency of maximum squeezing away from the optical driving frequency and broadening the spectrum over a wider frequency band. The experimental results are in excellent agreement with the developed theory, and illustrate the use of coherent quantum feedback to engineer the quantum-optical properties of the plant OPO output.

  7. Graphical user interfaces for teaching and design of GRIN lenses in optical interconnections

    International Nuclear Information System (INIS)

    Gómez-Varela, A I; Bao-Varela, C

    2015-01-01

    The use of graphical user interfaces (GUIs) enables the implementation of practical teaching methodologies to make the comprehension of a given subject easier. GUIs have become common tools in science and engineering education, where very often, the practical implementation of experiences in a laboratory involves much equipment and many people; they are an efficient and inexpensive solution to the lack of resources. The aim of this work is to provide primarily physics and engineering students with a series of GUIs to teach some configurations in optical communications using gradient-index (GRIN) lenses. The reported GUIs are intended to perform a complementary role in education as part of a ‘virtual lab’ to supplement theoretical and practical sessions and to reinforce the knowledge acquired by the students. In this regard, a series of GUIs to teach and research the implementation of GRIN lenses in optical communications applications (including a GRIN light deflector and a beam-size controller, a GRIN fibre lens for fibre-coupling purposes, planar interconnectors, and an anamorphic self-focusing lens to correct astigmatism in laser diodes) was designed using the environment GUIDE developed by MATLAB. Numerical examples using available commercial GRIN lens parameter values are presented. (paper)

  8. Electron beams, lenses, and optics. Volume 1

    International Nuclear Information System (INIS)

    El-Kareh, A.B.; El-Kareh, J.C.J.

    1970-01-01

    This book treats the ideal case where all lenses are assumed to be free from errors. It presents a thorough mathematical analysis of the electrostatic immersion lens, both symmetrical and asymetrical, and covers the einzel lens and the symmetrical magnetic lens in detail. The authors have obtained data on these lenses by means of a digital computer and present them in tabular form

  9. Miniature endoscopic optical coherence tomography for calculus detection.

    Science.gov (United States)

    Kao, Meng-Chun; Lin, Chun-Li; Kung, Che-Yen; Huang, Yi-Fung; Kuo, Wen-Chuan

    2015-08-20

    The effective treatment of periodontitis involves the detection and removal of subgingival dental calculus. However, subgingival calculus is more difficult to detect than supragingival calculus because it is firmly attached to root surfaces within periodontal pockets. To achieve a smooth root surface, clinicians often remove excessive amounts of root structure because of decreased visibility. In addition, enamel pearl, a rare type of ectopic enamel formation on the root surface, can easily be confused with dental calculus in the subgingival environment. In this study, we developed a fiber-probe swept-source optical coherence tomography (SSOCT) technique and combined it with the quantitative measurement of an optical parameter [standard deviation (SD) of the optical coherence tomography (OCT) intensity] to differentiate subgingival calculus from sound enamel, including enamel pearl. Two-dimensional circumferential images were constructed by rotating the miniprobe (0.9 mm diameter) while acquiring image lines, and the adjacent lines in each rotation were stacked to generate a three-dimensional volume. In OCT images, compared to sound enamel and enamel pearls, dental calculus showed significant differences (Pdental calculus.

  10. Optical coherence tomographic view of persistent primary fetal vasculature

    International Nuclear Information System (INIS)

    Shenoy, R.; Al-Kharousi, Nadia S.; Bialasiewicz, Alexander A.

    2006-01-01

    Purpose was to report on the posterior segment changes in a patient with bilateral persistent primary fetal vasculature as detected by optical coherence tomography. An 18-year-old lady with poor vision, left esotropia and bilateral posterior polar cataract was found to have dysplasia of the macula in the both eyes. Fundus fluorescein angiography, optical coherence tomography, ''A'' scan biometry and genetic work up was performed as a part of investigation. There was increase in thickness of the macular area in both the eyes (450-500mm). The left eye showed a ''sail like'' fold extending over macula, from nasal to temporal side. The tissue had the same sensitivity and thickness as inner the retinal layers (180-200). There was no detectable nerve fibre layer in the macula of either eye. Fundus fluorescein angiography was normal in the right eye, and showed hyperfluorescence at the inferior pole of the disk in the left eye corresponding to the Bergmeister papilla. There was no staining of the membrane with the dye. Evaluation of the posterior segment is important in predicting the visual outcome in patients with any from of PFV. Optical coherence tomography is an adjuvant to direct visualization and aids in further delineating posterior segment changes seen in this condition. (author)

  11. MMIC tuned front-end for a coherent optical receiver

    DEFF Research Database (Denmark)

    Petersen, Anders Kongstad; Jagd, A. M.; Ebskamp, F.

    1993-01-01

    A low-noise transformer tuned optical front-end for a coherent optical receiver is described. The front-end is based on a GaInAs/InP p-i-n photodiode and a full custom designed GaAs monolithic microwave integrated circuit (MMIC). The measured equivalent input noise current density is between 5-16 p...

  12. XX International Youth Scientific School “Coherent Optics and Optical Spectroscopy”

    International Nuclear Information System (INIS)

    2017-01-01

    The XX International Youth School on Coherent Optics and Optical Spectroscopy (COOS2016) was held in Kazan, Russia, from October 18 to October 20 on the Nikolai Lobachevsky Scientific Library of Kazan Federal University. The School follows the global tendency to comprehensive studies of matter properties and its interaction with electromagnetic fields. Since 1997 more than 100 famous scientists from USA, Germany, Ukraine, Belarus and Russia had plenary lectures presentations. This is the right place, where over 1000 young scientists had an opportunity to participate in hot discussions of the latest scientific news. Many young people have submitted interesting reports on photonics, quantum electronics, laser physics, quantum optics, traditional optical and laser spectroscopy, non-linear optics, material science and nanotechnology. Here we are publishing the full-size papers prepared from the most interesting lectures and reports selected by the Program Committee of the School. Plenary sessions were offered by the following invited speakers: Ildar Gabitov, University of Arizona, USA. • Error statistics in coherent communication lines Andrei Naumov, Institute for Spectroscopy RAS, Troitsk, Moscow, Russia. • Revisiting the question of the experimental realization of a nonclassical light source on the basis of single organic molecules of dyes Gerd Hermann, University of Giessien, Germany. • Applications of Coherent Spectroscopy Askhat Basharov, National Research Center ‘Kurchatov Institute’, Moscow, Russia. • Low-frequency emission in resonant processes • Evolution of a two-level quantum particle in the noise classical e.-m. field within and beyond the resonant approximation Anastas Bukharaev, Kazan E. K. Zavoisky Physical-Technical Institute, Kazan, Russia. • Straintronics Maxim Gladush, Institute for Spectroscopy RAS, Troitsk, Moscow, Russia. • Fluorescent properties of single quantum emitters and their ensembles in dielectric media Sergey Sazonov

  13. Contribution of soft lenses of various powers to the optics of a piggy-back system on regular corneas.

    Science.gov (United States)

    Michaud, Langis; Brazeau, Daniel; Corbeil, Marie-Eve; Forcier, Pierre; Bernard, Pierre-Jean

    2013-12-01

    This study aims to report on the measured in vivo contribution of soft lenses of various powers to the optics of a piggyback system (PBS). This prospective, non-dispensing clinical study was conducted on regular wearers of contact lenses who showed regular corneal profiles. Subjects were masked to the products used. The study involved the use of a spherical soft lens of three different powers in a PBS, used as a carrier for a rigid gas permeable lens. Baseline data were collected and soft lenses were then fitted on both eyes of each subject. Both lenses were assessed for position and movement. Over-refraction was obtained. Soft lens power contribution to the optics (SLPC) of a PBS system was estimated by computing initial ametropia, lacrymal lens, rigid lens powers and over-refraction. A set of data on one eye was kept, for each subject, for statistical analysis. Thirty subjects (12 males, 18 females), aged 24.4 (±4.5) years, were enrolled. The use of plus powered soft lenses enhanced initial RGP lens centration. Once optimal fit was achieved, all lenses showed normal movement. SLPC represented 21.3% of the initial soft lens power when using a -6.00 carrier, and 20.6% for a +6.00. A +0.50 did not contribute to any power induced in the system. These results are generally in accordance with theoretical model developed in the past. On average, except for the low-powered carrier, the use of a spherical soft lens provided 20.9% of its marked power. To achieve better results, the use of a plus-powered carrier is recommended. Copyright © 2013 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  14. Multiple Scattering Model for Optical Coherence Tomography with Rytov Approximation

    KAUST Repository

    Li, Muxingzi

    2017-04-24

    Optical Coherence Tomography (OCT) is a coherence-gated, micrometer-resolution imaging technique that focuses a broadband near-infrared laser beam to penetrate into optical scattering media, e.g. biological tissues. The OCT resolution is split into two parts, with the axial resolution defined by half the coherence length, and the depth-dependent lateral resolution determined by the beam geometry, which is well described by a Gaussian beam model. The depth dependence of lateral resolution directly results in the defocusing effect outside the confocal region and restricts current OCT probes to small numerical aperture (NA) at the expense of lateral resolution near the focus. Another limitation on OCT development is the presence of a mixture of speckles due to multiple scatterers within the coherence length, and other random noise. Motivated by the above two challenges, a multiple scattering model based on Rytov approximation and Gaussian beam optics is proposed for the OCT setup. Some previous papers have adopted the first Born approximation with the assumption of small perturbation of the incident field in inhomogeneous media. The Rytov method of the same order with smooth phase perturbation assumption benefits from a wider spatial range of validity. A deconvolution method for solving the inverse problem associated with the first Rytov approximation is developed, significantly reducing the defocusing effect through depth and therefore extending the feasible range of NA.

  15. Statistics of gravitational lenses. III. Astrophysical consequences of quasar lensing

    International Nuclear Information System (INIS)

    Ostriker, J.P.; Vietri, M.

    1986-01-01

    The method of Schmidt and Green (1983) for calculating the luminosity function of quasars is combined with gravitational-lensing theory to compute expected properties of lensed systems. Multiple quasar images produced by galaxies are of order 0.001 of the observed quasars, with the numbers over the whole sky calculated to be (0.86, 120, 1600) to limiting B magnitudes of (16, 19, 22). The amount of false evolution is small except for an interesting subset of apparently bright, large-redshift objects for which minilensing by starlike objects may be important. Some of the BL Lac objects may be in this category, with the galaxy identified as the parent object really a foreground object within which stars have lensed a background optically violent variable quasar. 24 references

  16. Benign familial fleck retina: multimodal imaging including optical coherence tomography angiography.

    Science.gov (United States)

    Garcia, Jose Mauricio Botto de Barros; Isaac, David Leonardo Cruvinel; Sardeiro, Tainara; Aquino, Érika; Avila, Marcos

    2017-01-01

    This report presents multimodal imaging of a 27-year-old woman diagnosed with benign familial fleck retina (OMIM 228980), an uncommon disorder. Fundus photographs revealed retinal flecks that affected her post-equatorial retina but spared the macular area. Fundus autofluorescence and infrared imaging demonstrated a symmetrical pattern of yellow-white fleck lesions that affected both eyes. Her full-field electroretinogram and electrooculogram were normal. An optical coherence tomography B-scan was performed for both eyes, revealing increased thickness of the retinal pigmented epithelium leading to multiple small pigmented epithelium detachments. The outer retina remained intact in both eyes. Spectral-domain optical coherence tomography angiography with split-spectrum amplitude decorrelation algorithm and 3 × 3 mm structural en face optical coherence tomography did not show macular lesions. Benign familial fleck retina belongs to a heterogenous group of so-called flecked retina syndromes, and should be considered in patients with yellowish-white retinal lesions without involvement of the macula.

  17. Benign familial fleck retina: multimodal imaging including optical coherence tomography angiography

    Directory of Open Access Journals (Sweden)

    Jose Mauricio Botto de Barros Garcia

    Full Text Available ABSTRACT This report presents multimodal imaging of a 27-year-old woman diagnosed with benign familial fleck retina (OMIM 228980, an uncommon disorder. Fundus photographs revealed retinal flecks that affected her post-equatorial retina but spared the macular area. Fundus autofluorescence and infrared imaging demonstrated a symmetrical pattern of yellow-white fleck lesions that affected both eyes. Her full-field electroretinogram and electrooculogram were normal. An optical coherence tomography B-scan was performed for both eyes, revealing increased thickness of the retinal pigmented epithelium leading to multiple small pigmented epithelium detachments. The outer retina remained intact in both eyes. Spectral-domain optical coherence tomography angiography with split-spectrum amplitude decorrelation algorithm and 3 × 3 mm structural en face optical coherence tomography did not show macular lesions. Benign familial fleck retina belongs to a heterogenous group of so-called flecked retina syndromes, and should be considered in patients with yellowish-white retinal lesions without involvement of the macula.

  18. Optical and visual performance of aspheric soft contact lenses.

    Science.gov (United States)

    Efron, Suzanne; Efron, Nathan; Morgan, Philip B

    2008-03-01

    This study was conducted to investigate whether aspheric design soft contact lenses reduce ocular aberrations and result in better visual acuity and subjective appreciation of clinical performance compared with spherical soft contact lenses. A unilateral, double-masked, randomized and controlled study was undertaken in which ocular aberrations and high and low contrast logMAR visual acuity were measured on myopic subjects who wore aspheric design (Biomedics 55 Evolution, CooperVision) and spherical design (Biomedics 55, CooperVision) soft contact lenses. Ten subjects who had about -2.00 D myopia wore -2.00 D lenses and 10 subjects who had about -5.00 D myopia wore -5.00 D lenses. Measurements were made under photopic and mesopic lighting conditions. Subjects were invited to grade comfort, vision in photopic and mesopic conditions, and overall impression with the two lens types on 100 unit visual analogue scales. There was no significant difference in high contrast or low contrast visual acuity between the two lens designs of either power under photopic or mesopic conditions. Both lens designs displayed lower levels of spherical aberration compared with the "no lens" condition under photopic and mesopic light levels (p designs. There were no statistically significant differences in subjective appreciation of clinical performance between lens designs or lens powers. At least with respect to the brand of lenses tested, the fitting of aspheric design soft contact lenses does not result in superior visual acuity, aberration control, or subjective appreciation compared with equivalent spherical design soft contact lenses.

  19. High-resolution retinal imaging using adaptive optics and Fourier-domain optical coherence tomography

    Science.gov (United States)

    Olivier, Scot S.; Werner, John S.; Zawadzki, Robert J.; Laut, Sophie P.; Jones, Steven M.

    2010-09-07

    This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.

  20. Retinal pigment epithelium findings in patients with albinism using wide-field polarization-sensitive optical coherence tomography.

    Science.gov (United States)

    Schütze, Christopher; Ritter, Markus; Blum, Robert; Zotter, Stefan; Baumann, Bernhard; Pircher, Michael; Hitzenberger, Christoph K; Schmidt-Erfurth, Ursula

    2014-11-01

    To investigate pigmentation characteristics of the retinal pigment epithelium (RPE) in patients with albinism using wide-field polarization-sensitive optical coherence tomography compared with intensity-based spectral domain optical coherence tomography and fundus autofluorescence imaging. Five patients (10 eyes) with previously genetically diagnosed albinism and 5 healthy control subjects (10 eyes) were imaged by a wide-field polarization-sensitive optical coherence tomography system (scan angle: 40 × 40° on the retina), sensitive to melanin contained in the RPE, based on the polarization state of backscattered light. Conventional intensity-based spectral domain optical coherence tomography and fundus autofluorescence examinations were performed. Retinal pigment epithelium-pigmentation was analyzed qualitatively and quantitatively based on depolarization assessed by polarization-sensitive optical coherence tomography. This study revealed strong evidence of polarization-sensitive optical coherence tomography to specifically image melanin in the RPE. Depolarization of light backscattered by the RPE in patients with albinism was reduced compared with normal subjects. Heterogeneous RPE-specific depolarization characteristics were observed in patients with albinism. Reduction of depolarization observed in the light backscattered by the RPE in patients with albinism corresponds to expected decrease of RPE pigmentation. The degree of depigmentation of the RPE is possibly associated with visual acuity. Findings suggest that different albinism genotypes result in heterogeneous levels of RPE pigmentation. Polarization-sensitive optical coherence tomography showed a heterogeneous appearance of RPE pigmentation in patients with albinism depending on different genotypes.

  1. method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands

    NARCIS (Netherlands)

    Boer, JF De; Tearney, G. J.; Bouma, BE

    2008-01-01

    Apparatus and method for increasing the sensitivity in the detection of optical coherence tomography and loW coher ence interferometry (“LCI”) signals by detecting a parallel set of spectral bands, each band being a unique combination of optical frequencies. The LCI broad bandwidth source is split

  2. Optical coherence tomography technology and applications

    CERN Document Server

    Fujimoto, James

    2015-01-01

    Optical coherence tomography (OCT) is the optical analog of ultrasound imaging and is a powerful imaging technique that enables non-invasive, in vivo, high resolution, cross-sectional imaging in biological tissue.  Between 30 to 40 Million OCT imaging procedures are performed per year in ophthalmology.  The overall market is estimated at more than 0.5 Billion USD.  A new generation OCT technology was developed, dramatically increasing resolution and speed, achieving in vivo optical biopsy, i.e. the visualization of tissue architectural morphology in situ and in real time.  Functional extensions of OCT technology enable non-invasive, depth resolved functional assessment and imaging of tissue.  The book introduces OCT technology and applications not only from an optical and technological viewpoint, but also from the biomedical and clinical perspective. This second edition is widely extended and covers significantly more topics then the first edition of this book. The chapters are written leading intern...

  3. Optical coherence tomography of the rat cochlea

    NARCIS (Netherlands)

    Wong, B. J. F.; de Boer, JF; Park, B.H.; Chen, ZP; Nelson, JS

    2000-01-01

    Optical coherence tomography (OCT) was used to image the internal structure of a rat cochlea (ex vivo). Immediately following sacrifice, the temporal bone of a Sprague-Dawley rat was harvested. Axial OCT cross sectional images lover regions of interest, 1x1 mm-2x8 mm) were obtained with a spatial

  4. Coherence properties and quantum state transportation in an optical conveyor belt.

    Science.gov (United States)

    Kuhr, S; Alt, W; Schrader, D; Dotsenko, I; Miroshnychenko, Y; Rosenfeld, W; Khudaverdyan, M; Gomer, V; Rauschenbeutel, A; Meschede, D

    2003-11-21

    We have prepared and detected quantum coherences of trapped cesium atoms with long dephasing times. Controlled transport by an "optical conveyor belt" over macroscopic distances preserves the atomic coherence with slight reduction of coherence time. The limiting dephasing effects are experimentally identified, and we present an analytical model of the reversible and irreversible dephasing mechanisms. Our experimental methods are applicable at the single-atom level. Coherent quantum bit operations along with quantum state transport open the route towards a "quantum shift register" of individual neutral atoms.

  5. Solid immersion lenses for enhancing the optical resolution of thermal and electroluminescence mapping of GaN-on-SiC transistors

    International Nuclear Information System (INIS)

    Pomeroy, J. W.; Kuball, M.

    2015-01-01

    Solid immersion lenses (SILs) are shown to greatly enhance optical spatial resolution when measuring AlGaN/GaN High Electron Mobility Transistors (HEMTs), taking advantage of the high refractive index of the SiC substrates commonly used for these devices. Solid immersion lenses can be applied to techniques such as electroluminescence emission microscopy and Raman thermography, aiding the development device physics models. Focused ion beam milling is used to fabricate solid immersion lenses in SiC substrates with a numerical aperture of 1.3. A lateral spatial resolution of 300 nm is demonstrated at an emission wavelength of 700 nm, and an axial spatial resolution of 1.7 ± 0.3 μm at a laser wavelength of 532 nm is demonstrated; this is an improvement of 2.5× and 5×, respectively, when compared with a conventional 0.5 numerical aperture objective lens without a SIL. These results highlight the benefit of applying the solid immersion lenses technique to the optical characterization of GaN HEMTs. Further improvements may be gained through aberration compensation and increasing the SIL numerical aperture

  6. Simple and versatile long range swept source for optical coherence tomography applications

    International Nuclear Information System (INIS)

    Bräuer, Bastian; Lippok, Norman; Murdoch, Stuart G; Vanholsbeeck, Frédérique

    2015-01-01

    We present a versatile long coherence length swept-source laser design for optical coherence tomography applications. This design consists of a polygonal spinning mirror and an optical gain chip in a modified Littman–Metcalf cavity. A narrowband intra-cavity filter is implemented through multiple passes off a diffraction grating set at grazing incidence. The key advantage of this design is that it can be readily adapted to any wavelength regions for which broadband gain chips are available. We demonstrate this by implementing sources at 1650 nm, 1550 nm, 1310 nm and 1050 nm. In particular, we present a 1310 nm swept source laser with 24 mm coherence length, 95 nm optical bandwidth, 2 kHz maximum sweep frequency and 7.5 mW average output power. These parameters make it a suitable source for the imaging of biological samples. (paper)

  7. Functional optical coherence tomography: principles and progress

    International Nuclear Information System (INIS)

    Kim, Jina; Levinson, Howard; Brown, William; Maher, Jason R.; Wax, Adam

    2015-01-01

    In the past decade, several functional extensions of optical coherence tomography (OCT) have emerged, and this review highlights key advances in instrumentation, theoretical analysis, signal processing and clinical application of these extensions. We review five principal extensions: Doppler OCT (DOCT), polarization-sensitive OCT (PS-OCT), optical coherence elastography (OCE), spectroscopic OCT (SOCT), and molecular imaging OCT. The former three have been further developed with studies in both ex vivo and in vivo human tissues. This review emphasizes the newer techniques of SOCT and molecular imaging OCT, which show excellent potential for clinical application but have yet to be well reviewed in the literature. SOCT elucidates tissue characteristics, such as oxygenation and carcinogenesis, by detecting wavelength-dependent absorption and scattering of light in tissues. While SOCT measures endogenous biochemical distributions, molecular imaging OCT detects exogenous molecular contrast agents. These newer advances in functional OCT broaden the potential clinical application of OCT by providing novel ways to understand tissue activity that cannot be accomplished by other current imaging methodologies. (topical review)

  8. Common-path low-coherence interferometry fiber-optic sensor guided microincision

    Science.gov (United States)

    Zhang, Kang; Kang, Jin U.

    2011-09-01

    We propose and demonstrate a common-path low-coherence interferometry (CP-LCI) fiber-optic sensor guided precise microincision. The method tracks the target surface and compensates the tool-to-surface relative motion with better than +/-5 μm resolution using a precision micromotor connected to the tool tip. A single-fiber distance probe integrated microdissector was used to perform an accurate 100 μm incision into the surface of an Intralipid phantom. The CP-LCI guided incision quality in terms of depth was evaluated afterwards using three-dimensional Fourier-domain optical coherence tomography imaging, which showed significant improvement of incision accuracy compared to free-hand-only operations.

  9. Coherent optical communication detection device based on modified balanced optical phase-locked loop

    Science.gov (United States)

    Zhang, Bo; Sun, Jianfeng; Xu, Mengmeng; Li, Guangyuan; Zhang, Guo; Lao, Chenzhe; He, Hongyu; Lu, Zhiyong

    2017-08-01

    In the field of satellite communication, space laser communication technology is famous for its high communication rate, good confidentiality, small size, low power consumption and so on. The design of coherent optical communication detection device based on modified balanced optical phase-locked loop (OPLL) is presented in the paper. It combined by local oscillator beam, modulator, voltage controlled oscillator, signal beam, optical filter, 180 degree hybrid, balanced detector, loop filter and signal receiver. Local oscillator beam and voltage controlled oscillator trace the phase variation of signal beam simultaneously. That taking the advantage of voltage controlled oscillator which responses sensitively and tunable local oscillator laser source with large tuning range can trace the phase variation of signal beam rapidly and achieve phase locking. The demand of the phase deviation is very low, and the system is easy to adjust. When the transmitter transmits the binary phase shift keying (BPSK) signal, the receiver can demodulate the baseband signal quickly, which has important significance for the free space coherent laser communication.

  10. Online monitoring of printed electronics by Spectral-Domain Optical Coherence Tomography

    KAUST Repository

    Alarousu, Erkki; Alsaggaf, Ahmed; Jabbour, Ghassan E.

    2013-01-01

    Spectral-Domain Optical Coherence Tomography (SD-OCT) is an optical method capable of 3D imaging of object's internal structure with micron-scale resolution. Modern SD-OCT tools offer the speed capable of online monitoring of printed devices

  11. Research progress of free space coherent optical communication

    Science.gov (United States)

    Tan, Zhenkun; Ke, Xizheng

    2018-02-01

    This paper mainly introduces the research progress of free space coherent optical communication in Xi'an University of Technology. In recent years, the research on the outer modulation technology of the laser, free-space-to-fiber coupling technique, the design of transmitting and receiving optical antenna, adaptive optical technology with or without wave-front sensor, automatic polarization control technology, frequency stabilization technology, heterodyne detection technology and high speed signal processing technology. Based on the above related research, the digital signal modulation, transmission, detection and data recovery are realized by the heterodyne detection technology in the free space optical communication system, and finally the function of smooth viewing high-definition video is realized.

  12. Quantitative assessment of hyaline cartilage elasticity during optical clearing using optical coherence elastography

    Science.gov (United States)

    Liu, Chih-Hao; Singh, Manmohan; Li, Jiasong; Han, Zhaolong; Wu, Chen; Wang, Shang; Idugboe, Rita; Raghunathan, Raksha; Zakharov, Valery P.; Sobol, Emil N.; Tuchin, Valery V.; Twa, Michael; Larin, Kirill V.

    2015-03-01

    We report the first study on using optical coherence elastography (OCE) to quantitatively monitor the elasticity change of the hyaline cartilage during the optical clearing administrated by glucose solution. The measurement of the elasticity is verified using uniaxial compression test, demonstrating the feasibility of using OCE to quantify the Young's modulus of the cartilage tissue. As the results, we found that the stiffness of the hyaline cartilage increases during the optical clearing of the tissue. This study might be potentially useful for the early detection of osteoarthritis disease.

  13. Weakly oval electron lense

    International Nuclear Information System (INIS)

    Daumenov, T.D.; Alizarovskaya, I.M.; Khizirova, M.A.

    2001-01-01

    The method of the weakly oval electrical field getting generated by the axially-symmetrical field is shown. Such system may be designed with help of the cylindric form coaxial electrodes with the built-in quadrupole duplet. The singularity of the indicated weakly oval lense consists of that it provides the conducting both mechanical and electronic adjustment. Such lense can be useful for elimination of the near-axis astigmatism in the electron-optical system

  14. Analysis of parallel optical sampling rate and ADC requirements in digital coherent receivers

    DEFF Research Database (Denmark)

    Lorences Riesgo, Abel; Galili, Michael; Peucheret, Christophe

    2012-01-01

    We comprehensively assess analog-to-digital converter requirements in coherent digital receiver schemes with parallel optical sampling. We determine the electronic requirements in accordance with the properties of the free running local oscillator.......We comprehensively assess analog-to-digital converter requirements in coherent digital receiver schemes with parallel optical sampling. We determine the electronic requirements in accordance with the properties of the free running local oscillator....

  15. Engineering of Nanoscale Contrast Agents for Optical Coherence Tomography.

    Science.gov (United States)

    Gordon, Andrew Y; Jayagopal, Ashwath

    2014-01-30

    Optical coherence tomography has emerged as valuable imaging modalityin ophthalmology and other fields by enabling high-resolution three-dimensional imaging of tissue. In this paper, we review recent progress in the field of contrast-enhanced optical coherence tomography (OCT). We discuss exogenous and endogenous sources of OCT contrast, focusing on their use with standard OCT systems as well as emerging OCT-based imaging modalities. We include advances in the processing of OCT data that generate improved tissue contrast, including spectroscopic OCT (SOCT), as well as work utilizing secondary light sources and/or detection mechanisms to create and detect enhanced contrast, including photothermal OCT (PTOCT) and photoacoustic OCT (PAOCT). Finally, we conclude with a discussion of the translational potential of these developments as well as barriers to their clinical use.

  16. Perfect-crystal x-ray optics to treat x-ray coherence

    International Nuclear Information System (INIS)

    Yamazaki, Hiroshi; Ishikawa, Tetsuya

    2007-01-01

    X-ray diffraction of perfect crystals, which serve as x-ray monochromator and collimator, modifies coherence properties of x-ray beams. From the time-dependent Takagi-Taupin equations that x-ray wavefields obey in crystals, the reflected wavefield is formulated as an integral transform of a general incident wavefield with temporal and spatial inhomogeneity. A reformulation of rocking-curve profiles from the field solution of the Takagi-Taupin equations allows experimental evaluation of the mutual coherence function of x-ray beam. The rigorous relationship of the coherence functions between before and after reflection clarifies how the coherence is transferred by a crystal. These results will be beneficial to developers of beamline optics for the next generation synchrotron sources. (author)

  17. Gravitational lenses and cosmological evolution

    International Nuclear Information System (INIS)

    Peacock, J.A.

    1982-01-01

    The effect of gravitational lensing on the apparent cosmological evolution of extragalactic radio sources is investigated. Models for a lens population consisting of galaxies and clusters of galaxies are constructed and used to calculate the distribution of amplification factors caused by lensing. Although many objects at high redshifts are predicted to have flux densities altered by 10 to 20 per cent relative to a homogeneous universe, flux conservation implies that de-amplification is as common as amplification. The effects on cosmological evolution as inferred from source counts and redshift data are thus relatively small; the slope of the counts is not large enough for intrinsically rare lensing events of high amplitude to corrupt observed samples. Lensing effects may be of greater importance for optically selected quasars, where lenses of mass as low as approximately 10 -4 solar mass can cause large amplifications. (author)

  18. Optical coherence tomography angiography changes in radial peripapillary capillaries in Leber hereditary optic neuropathy

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Matsuzaki

    2018-03-01

    Conclusions and importance: Optical coherence tomography angiography showed LHON from the presymptomatic stage. The results indicate that temporal RPC defects and RFT thinning start to spread once the pseudoedema begins to resolve.

  19. Spectral-domain optical coherence tomography of roth spots.

    Science.gov (United States)

    Giovinazzo, Jerome; Mrejen, Sarah; Freund, K Bailey

    2013-01-01

    To describe the retinal findings of subacute bacterial endocarditis, their evolution after treatment, and analysis with spectral-domain optical coherence tomography. Retrospective chart review. A 21-year-old man presented with the sudden onset of a central scotoma in his left eye because of a sub-internal limiting membrane hemorrhage overlying the left fovea. When examined 2 weeks later, Roth spots were noted in his right eye. The patient was immediately referred to his internist and diagnosed with subacute bacterial endocarditis with cultures positive for Streptococcus viridans. He subsequently underwent aortic valve replacement surgery after 4 weeks of intravenous antibiotic therapy. When examined 4 weeks after valve replacement surgery, there was regression of the Roth spots. The present case demonstrates the importance of a funduscopic examination in the early diagnosis and management of subacute bacterial endocarditis. The analysis of Roth spots with spectral-domain optical coherence tomography suggested that they were septic emboli.

  20. Parametric imaging of viscoelasticity using optical coherence elastography

    Science.gov (United States)

    Wijesinghe, Philip; McLaughlin, Robert A.; Sampson, David D.; Kennedy, Brendan F.

    2015-03-01

    We demonstrate imaging of soft tissue viscoelasticity using optical coherence elastography. Viscoelastic creep deformation is induced in tissue using step-like compressive loading and the resulting time-varying deformation is measured using phase-sensitive optical coherence tomography. From a series of co-located B-scans, we estimate the local strain rate as a function of time, and parameterize it using a four-parameter Kelvin-Voigt model of viscoelastic creep. The estimated viscoelastic strain and time constant are used to visualize viscoelastic creep in 2D, dual-parameter viscoelastograms. We demonstrate our technique on six silicone tissue-simulating phantoms spanning a range of viscoelastic parameters. As an example in soft tissue, we report viscoelastic contrast between muscle and connective tissue in fresh, ex vivo rat gastrocnemius muscle and mouse abdominal transection. Imaging viscoelastic creep deformation has the potential to provide complementary contrast to existing imaging modalities, and may provide greater insight into disease pathology.

  1. Coherent feedback control of multipartite quantum entanglement for optical fields

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Zhihui; Jia, Xiaojun; Xie, Changde; Peng, Kunchi [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006 (China)

    2011-12-15

    Coherent feedback control (CFC) of multipartite optical entangled states produced by a nondegenerate optical parametric amplifier is theoretically studied. The features of the quantum correlations of amplitude and phase quadratures among more than two entangled optical modes can be controlled by tuning the transmissivity of the optical beam splitter in the CFC loop. The physical conditions to enhance continuous variable multipartite entanglement of optical fields utilizing the CFC loop are obtained. The numeric calculations based on feasible physical parameters of realistic systems provide direct references for the design of experimental devices.

  2. Comparison between liquid and solid tunable focus lenses

    International Nuclear Information System (INIS)

    Santiago-Alvarado, A; Cruz-Martinez, V M; Vazquez-Montiel, S; Munoz-Lopez, J; Diaz-Gonzalez, G; Campos-Garcia, M

    2011-01-01

    Nowadays more reports in the use of tunable lenses are reported, it is due to the benefits they offer in optical systems design. A tunable lens is an optical system that can focus on a range of positions by changing dynamically one of its geometric parameters. There are several types of tunable lenses, the most known types are the liquid, the solid elastic, with variable refractive index, and lenses that use a dielectric medium. This paper presents the analysis and opto-mechanical design of two tunable lenses, a liquid lens and another Solid Elastic Lens (SEL). Both lenses are made in mounting aluminium and polydimethylsiloxane (PDMS) as refractor medium, the liquid lens use two elastic membranes containing a liquid medium between them while the SEL only use PDMS material as body of the lens (medium refractor). We describe the opto-mechanical performance of both types of lens highlighting the main features of each. Finally, results of a opto-functional comparison between these prototypes are showed.

  3. Microbial adherence to cosmetic contact lenses.

    Science.gov (United States)

    Chan, Ka Yin; Cho, Pauline; Boost, Maureen

    2014-08-01

    To investigate whether cosmetic contact lenses (CCL) with surface pigments affect microbial adherence. Fifteen brands of CCL were purchased from optical, non-optical retail outlets, and via the Internet. A standardized rub-off test was performed on each CCL (five lenses per brand) to confirm the location of the pigments. The rub-off test comprised gentle rubbing on the surfaces of each CCL with wetted cotton buds for a maximum of 20 rubs per surface. A new set of CCL (five lenses per brand) were incubated in Pseudomonas aeruginosa overnight. Viable counts of adhered bacteria were determined by the number of colony-forming units (CFU) on agar media on each lens. The adherence of P. aeruginosa as well as Staphylococcus aureus and Serratia marcescens to three brands of CCL (A-C) (five lenses per brand) were also compared to their adherences on their clear counterparts. Only two of the 15 brands of CCL tested (brands B and C) had pigments that did not detach with the rub-off test. The remaining 13 brands of CCL all failed the rub-off test and these lenses showed higher P. aeruginosa adherence (8.7 × 10(5)-1.9 × 10(6) CFU/lens). Brands B and C lenses showed at least six times less bacterial adhesion than the other 13 brands. Compared to their clear counterparts, bacterial adherence to brands B and C lenses did not differ significantly, whereas brand A lenses showed significantly higher adherence. Surface pigments on CCL resulted in significantly higher bacterial adherence. Copyright © 2013 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  4. KINOFORM LENSES - TOWARD NANOMETER RESOLUTION.

    Energy Technology Data Exchange (ETDEWEB)

    STEIN, A.; EVANS-LUTTERODT, K.; TAYLOR, A.

    2004-10-23

    While hard x-rays have wavelengths in the nanometer and sub-nanometer range, the ability to focus them is limited by the quality of sources and optics, and not by the wavelength. A few options, including reflective (mirrors), diffractive (zone plates) and refractive (CRL's) are available, each with their own limitations. Here we present our work with kinoform lenses which are refractive lenses with all material causing redundant 2{pi} phase shifts removed to reduce the absorption problems inherently limiting the resolution of refractive lenses. By stacking kinoform lenses together, the effective numerical aperture, and thus the focusing resolution, can be increased. The present status of kinoform lens fabrication and testing at Brookhaven is presented as well as future plans toward achieving nanometer resolution.

  5. Quantum Spin Lenses in Atomic Arrays

    Directory of Open Access Journals (Sweden)

    A. W. Glaetzle

    2017-09-01

    Full Text Available We propose and discuss quantum spin lenses, where quantum states of delocalized spin excitations in an atomic medium are focused in space in a coherent quantum process down to (essentially single atoms. These can be employed to create controlled interactions in a quantum light-matter interface, where photonic qubits stored in an atomic ensemble are mapped to a quantum register represented by single atoms. We propose Hamiltonians for quantum spin lenses as inhomogeneous spin models on lattices, which can be realized with Rydberg atoms in 1D, 2D, and 3D, and with strings of trapped ions. We discuss both linear and nonlinear quantum spin lenses: in a nonlinear lens, repulsive spin-spin interactions lead to focusing dynamics conditional to the number of spin excitations. This allows the mapping of quantum superpositions of delocalized spin excitations to superpositions of spatial spin patterns, which can be addressed by light fields and manipulated. Finally, we propose multifocal quantum spin lenses as a way to generate and distribute entanglement between distant atoms in an atomic lattice array.

  6. Optical performance of multifocal soft contact lenses via a single-pass method.

    Science.gov (United States)

    Bakaraju, Ravi C; Ehrmann, Klaus; Falk, Darrin; Ho, Arthur; Papas, Eric

    2012-08-01

    A physical model eye capable of carrying soft contact lenses (CLs) was used as a platform to evaluate optical performance of several commercial multifocals (MFCLs) with high- and low-add powers and a single-vision control. Optical performance was evaluated at three pupil sizes, six target vergences, and five CL-correcting positions using a spatially filtered monochromatic (632.8 nm) light source. The various target vergences were achieved by using negative trial lenses. A photosensor in the retinal plane recorded the image point-spread that enabled the computation of visual Strehl ratios. The centration of CLs was monitored by an additional integrated en face camera. Hydration of the correcting lens was maintained using a humidity chamber and repeated instillations of rewetting saline drops. All the MFCLs reduced performance for distance but considerably improved performance along the range of distance to near target vergences, relative to the single-vision CL. Performance was dependent on add power, design, pupil, and centration of the correcting CLs. Proclear (D) design produced good performance for intermediate vision, whereas Proclear (N) design performed well at near vision (p 4 mm in diameter. Acuvue Oasys bifocal produced performance comparable with single-vision CL for most vergences. Direct measurement of single-pass images at the retinal plane of a physical model eye used in conjunction with various MFCLs is demonstrated. This method may have utility in evaluating the relative effectiveness of commercial and prototype designs.

  7. Precision glass molding: Toward an optimal fabrication of optical lenses

    Science.gov (United States)

    Zhang, Liangchi; Liu, Weidong

    2017-03-01

    It is costly and time consuming to use machining processes, such as grinding, polishing and lapping, to produce optical glass lenses with complex features. Precision glass molding (PGM) has thus been developed to realize an efficient manufacture of such optical components in a single step. However, PGM faces various technical challenges. For example, a PGM process must be carried out within the super-cooled region of optical glass above its glass transition temperature, in which the material has an unstable non-equilibrium structure. Within a narrow window of allowable temperature variation, the glass viscosity can change from 105 to 1012 Pas due to the kinetic fragility of the super-cooled liquid. This makes a PGM process sensitive to its molding temperature. In addition, because of the structural relaxation in this temperature window, the atomic structure that governs the material properties is strongly dependent on time and thermal history. Such complexity often leads to residual stresses and shape distortion in a lens molded, causing unexpected changes in density and refractive index. This review will discuss some of the central issues in PGM processes and provide a method based on a manufacturing chain consideration from mold material selection, property and deformation characterization of optical glass to process optimization. The realization of such optimization is a necessary step for the Industry 4.0 of PGM.

  8. CAPILLARY NETWORK ANOMALIES IN BRANCH RETINAL VEIN OCCLUSION ON OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY.

    Science.gov (United States)

    Rispoli, Marco; Savastano, Maria Cristina; Lumbroso, Bruno

    2015-11-01

    To analyze the foveal microvasculature features in eyes with branch retinal vein occlusion (BRVO) using optical coherence tomography angiography based on split spectrum amplitude decorrelation angiography technology. A total of 10 BRVO eyes (mean age 64.2 ± 8.02 range between 52 years and 76 years) were evaluated by optical coherence tomography angiography (XR-Avanti; Optovue). The macular angiography scan protocol covered a 3 mm × 3 mm area. The focus of angiography analysis were two retinal layers: superficial vascular network and deep vascular network. The following vascular morphological congestion parameters were assessed in the vein occlusion area in both the superficial and deep networks: foveal avascular zone enlargement, capillary non-perfusion occurrence, microvascular abnormalities appearance, and vascular congestion signs. Image analyses were performed by 2 masked observers and interobserver agreement of image analyses was 0.90 (κ = 0.225, P network of BRVO, a decrease in capillary density with foveal avascular zone enlargement, capillary non-perfusion occurrence, and microvascular abnormalities appearance was observed (P network showed the main vascular congestion at the boundary between healthy and nonperfused retina. Optical coherence tomography angiography in BRVO allows to detect foveal avascular zone enlargement, capillary nonperfusion, microvascular abnormalities, and vascular congestion signs both in the superficial and deep capillary network in all eyes. Optical coherence tomography angiography technology is a potential clinical tool for BRVO diagnosis and follow-up, providing stratigraphic vascular details that have not been previously observed by standard fluorescein angiography. The normal retinal vascular nets and areas of nonperfusion and congestion can be identified at various retinal levels. Optical coherence tomography angiography provides noninvasive images of the retinal capillaries and vascular networks.

  9. Optical coherence tomography in the diagnosis of actinic keratosis

    DEFF Research Database (Denmark)

    Friis, K B E; Themstrup, L; Jemec, G B E

    2017-01-01

    BACKGROUND: Optical coherence tomography (OCT) is a real-time non-invasive imaging tool, introduced in dermatology in the late 1990s. OCT uses near-infrared light impulses to produce images which can be displayed in cross-sectional and en-face mode. The technique has been used to image skin...... of layers consistent with absence of normal layered architecture in the skin. Thickened epidermis was found in 14/16 studies and white (hyperreflective) streaks and dots were described in 11/16 studies. In High-definition optical coherence tomography (HD-OCT) images disarranged epidermis (cross......-sectional images) along with an atypical honeycomb pattern (en-face images) was found in 5/5 studies and well-demarcated dermo-epithelial junction (DEJ) (cross-sectional images) was described in 3/5 studies. CONCLUSION: Several morphological characteristics of AKs were identified using Conventional OCT and HD...

  10. Fast Industrial Inspection of Optical Thin Film Using Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Muhammad Faizan Shirazi

    2016-09-01

    Full Text Available An application of spectral domain optical coherence tomography (SD-OCT was demonstrated for a fast industrial inspection of an optical thin film panel. An optical thin film sample similar to a liquid crystal display (LCD panel was examined. Two identical SD-OCT systems were utilized for parallel scanning of a complete sample in half time. Dual OCT inspection heads were utilized for transverse (fast scanning, while a stable linear motorized translational stage was used for lateral (slow scanning. The cross-sectional and volumetric images of an optical thin film sample were acquired to detect the defects in glass and other layers that are difficult to observe using visual inspection methods. The rapid inspection enabled by this setup led to the early detection of product defects on the manufacturing line, resulting in a significant improvement in the quality assurance of industrial products.

  11. An intelligent despeckling method for swept source optical coherence tomography images of skin

    Science.gov (United States)

    Adabi, Saba; Mohebbikarkhoran, Hamed; Mehregan, Darius; Conforto, Silvia; Nasiriavanaki, Mohammadreza

    2017-03-01

    Optical Coherence Optical coherence tomography is a powerful high-resolution imaging method with a broad biomedical application. Nonetheless, OCT images suffer from a multiplicative artefacts so-called speckle, a result of coherent imaging of system. Digital filters become ubiquitous means for speckle reduction. Addressing the fact that there still a room for despeckling in OCT, we proposed an intelligent speckle reduction framework based on OCT tissue morphological, textural and optical features that through a trained network selects the winner filter in which adaptively suppress the speckle noise while preserve structural information of OCT signal. These parameters are calculated for different steps of the procedure to be used in designed Artificial Neural Network decider that select the best denoising technique for each segment of the image. Results of training shows the dominant filter is BM3D from the last category.

  12. DESIGN OF THE MULTIORDER INTRAOCULAR LENSES

    Directory of Open Access Journals (Sweden)

    V. G. Kolobrodov

    2015-01-01

    Full Text Available Intraocular lenses (IOLs are used to replace the natural crystalline lens of the eye. Just few basic designs of IOLs are used clinically. Multiorder diffractive lenses (MODL which operate simultaneously in several diffractive orders were proposed to decrease the chromatic aberration. Properties analysis of MODL showed a possibility to use them to develop new designs of IOLs. The purpose of this paper was to develop a new method of designing of multiorder intraocular lenses with decreased chromatic aberration. The theoretical research of the lens properties was carried out. The diffraction efficiency dependence with the change of wavelength was studied. A computer simulation of MODL in a schematic model of the human eye was carried out. It is found the capability of the multiorder diffractive lenses to focus polychromatic light into a segment on the optical axis with high diffraction efficiency. At each point of the segment is present each component of the spectral range, which will build a color image in combination. The paper describes the new design method of intraocular lenses with reduced chromaticism and with endless adaptation. An optical system of an eye with an intraocular lens that provides sharp vision of objects located at a distance of 700 mm to infinity is modeled.

  13. Influence of corneal power on circumpapillary retinal nerve fiber layer and optic nerve head measurements by spectral-domain optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Kazunori Hirasawa

    2017-09-01

    Full Text Available AIM: To evaluate the influence of corneal power on circumpapillary retinal nerve fiber layer (cpRNFL and optic nerve head (ONH measurements by spectral-domain optical coherence tomography (SD-OCT. METHODS: Twenty-five eyes of 25 healthy participants (mean age 23.6±3.6y were imaged by SD-OCT using horizontal raster scans. Disposable soft contact lenses of different powers (from −11 to +5 diopters including 0 diopter were worn to induce 2-diopter changes in corneal power. Differences in the cpRNFL and ONH measurements per diopter of change in corneal power were analyzed. RESULTS: As corneal power increased by 1 diopter, total and quadrant cpRNFL thicknesses, except for the nasal sector, decreased by −0.19 to −0.32 μm (P<0.01. Furthermore, the disc, cup, and rim areas decreased by −0.017, −0.007, and −0.015 mm2, respectively (P<0.001; the cup and rim volumes decreased by −0.0013 and −0.006 mm3, respectively (P<0.01; and the vertical and horizontal disc diameters decreased by −0.006 and −0.007 mm, respectively (P<0.001. CONCLUSION: For more precise OCT imaging, the ocular magnification should be corrected by considering both the axial length and corneal power. However, the effect of corneal power changes on cpRNFL thickness and ONH topography are small when compare with those of the axial length.

  14. Submicron Resolution Spectral-Domain Optical Coherence Tomography

    KAUST Repository

    Alarousu, Erkki

    2013-11-14

    Apparatuses and systems for submicron resolution spectral-domain optical coherence tomography (OCT) are disclosed. The system may use white light sources having wavelengths within 400-1000 nanometers, and achieve resolution below 1 .mu.m. The apparatus is aggregated into a unitary piece, and a user can connect the apparatus to a user provided controller and/or light source. The light source may be a supercontinuum source.

  15. Advances in optical coherence tomography in dermatology-a review

    Science.gov (United States)

    Olsen, Jonas; Holmes, Jon; Jemec, Gregor B. E.

    2018-04-01

    Optical coherence tomography (OCT) was introduced as an imaging system, but like ultrasonography, other measures, such as blood perfusion and polarization of light, have enabled the technology to approach clinical utility. This review aims at providing an overview of the advances in clinical research based on the improving technical aspects. OCT provides cross-sectional and en face images down to skin depths of 0.4 to 2.00 mm with optical resolution of 3 to 15 μm. Dynamic optical coherence tomography (D-OCT) enables the visualization of cutaneous microvasculature via detection of rapid changes in the interferometric signal of blood flow. Nonmelanoma skin cancer (NMSC) is the most comprehensively investigated topic, resulting in improved descriptions of morphological features and diagnostic criteria. A refined scoring system for diagnosing NMSC, taking findings from conventional and D-OCT into account, is warranted. OCT diagnosis of melanoma is hampered by the resolution and the optical properties of melanin. D-OCT may be of value in diseases characterized with dynamic changes in the vasculature of the skin and the addition of functional measures is strongly encouraged. In conclusion, OCT in dermatology is still an emerging technology that has great potential for improving further in the future.

  16. Optical coherence tomography and subclinical optical neuritis in longitudinally extensive transverse myelitis

    Directory of Open Access Journals (Sweden)

    Prakash Kumar Sinha

    2017-01-01

    Full Text Available Objective: The aim is to compare the retinal nerve fiber layer (RNFL thickness of longitudinally extensive transverse myelitis (LETM eyes without previous optic neuritis with that of healthy control subjects. Methods: Over 20 LETM eyes and 20 normal control eyes were included in the study and subjected to optical coherence tomography to evaluate and compare the RNFL thickness. Result: Significant RNFL thinning was observed at 8 o'clock position in LETM eyes as compared to the control eyes (P = 0.038. No significant differences were seen in other RNFL measurements. Conclusion: Even in the absence of previous optic neuritis LETM can lead to subclinical axonal damage leading to focal RNFL thinning.

  17. Modeling light–tissue interaction in optical coherence tomography systems

    DEFF Research Database (Denmark)

    Andersen, Peter E.; Jørgensen, Thomas Martini; Thrane, Lars

    2015-01-01

    Optical coherence tomography (OCT) performs high-resolution, cross-sectional tomographic imaging of the internal tissue microstructure by measuring backscattered or backreflected light. The scope of this chapter is to present analytical and numerical models that are able to describe light-tissue ...

  18. Coherent optical DFT-spread OFDM transmission using orthogonal band multiplexing.

    Science.gov (United States)

    Yang, Qi; He, Zhixue; Yang, Zhu; Yu, Shaohua; Yi, Xingwen; Shieh, William

    2012-01-30

    Coherent optical OFDM (CO-OFDM) combined with orthogonal band multiplexing provides a scalable and flexible solution for achieving ultra high-speed rate. Among many CO-OFDM implementations, digital Fourier transform spread (DFT-S) CO-OFDM is proposed to mitigate fiber nonlinearity in long-haul transmission. In this paper, we first illustrate the principle of DFT-S OFDM. We then experimentally evaluate the performance of coherent optical DFT-S OFDM in a band-multiplexed transmission system. Compared with conventional clipping methods, DFT-S OFDM can reduce the OFDM peak-to-average power ratio (PAPR) value without suffering from the interference of the neighboring bands. With the benefit of much reduced PAPR, we successfully demonstrate 1.45 Tb/s DFT-S OFDM over 480 km SSMF transmission.

  19. Spectral-domain optical coherence tomography staging and autofluorescence imaging in achromatopsia.

    Science.gov (United States)

    Greenberg, Jonathan P; Sherman, Jerome; Zweifel, Sandrine A; Chen, Royce W S; Duncker, Tobias; Kohl, Susanne; Baumann, Britta; Wissinger, Bernd; Yannuzzi, Lawrence A; Tsang, Stephen H

    2014-04-01

    IMPORTANCE Evidence is mounting that achromatopsia is a progressive retinal degeneration, and treatments for this condition are on the horizon. OBJECTIVES To categorize achromatopsia into clinically identifiable stages using spectral-domain optical coherence tomography and to describe fundus autofluorescence imaging in this condition. DESIGN, SETTING, AND PARTICIPANTS A prospective observational study was performed between 2010 and 2012 at the Edward S. Harkness Eye Institute, New York-Presbyterian Hospital. Participants included 17 patients (aged 10-62 years) with full-field electroretinography-confirmed achromatopsia. MAIN OUTCOMES AND MEASURES Spectral-domain optical coherence tomography features and staging system, fundus autofluorescence and near-infrared reflectance features and their correlation to optical coherence tomography, and genetic mutations served as the outcomes and measures. RESULTS Achromatopsia was categorized into 5 stages on spectral-domain optical coherence tomography: stage 1 (2 patients [12%]), intact outer retina; stage 2 (2 patients [12%]), inner segment ellipsoid line disruption; stage 3 (5 patients [29%]), presence of an optically empty space; stage 4 (5 patients [29%]), optically empty space with partial retinal pigment epithelium disruption; and stage 5 (3 patients [18%]), complete retinal pigment epithelium disruption and/or loss of the outer nuclear layer. Stage 1 patients showed isolated hyperreflectivity of the external limiting membrane in the fovea, and the external limiting membrane was hyperreflective above each optically empty space. On near infrared reflectance imaging, the fovea was normal, hyporeflective, or showed both hyporeflective and hyperreflective features. All patients demonstrated autofluorescence abnormalities in the fovea and/or parafovea: 9 participants (53%) had reduced or absent autofluorescence surrounded by increased autofluorescence, 4 individuals (24%) showed only reduced or absent autofluorescence, 3

  20. Applications of expectation maximization algorithm for coherent optical communication

    DEFF Research Database (Denmark)

    Carvalho, L.; Oliveira, J.; Zibar, Darko

    2014-01-01

    In this invited paper, we present powerful statistical signal processing methods, used by machine learning community, and link them to current problems in optical communication. In particular, we will look into iterative maximum likelihood parameter estimation based on expectation maximization...... algorithm and its application in coherent optical communication systems for linear and nonlinear impairment mitigation. Furthermore, the estimated parameters are used to build the probabilistic model of the system for the synthetic impairment generation....

  1. Investigation of optical coherence tomography as an imaging modality in tissue engineering

    International Nuclear Information System (INIS)

    Yang Ying; Dubois, Arnaud; Qin Xiangpei; Li Jian; Haj, Alicia El; Wang, Ruikang K

    2006-01-01

    Monitoring cell profiles in 3D porous scaffolds presents a major challenge in tissue engineering. In this study, we investigate optical coherence tomography (OCT) as an imaging modality to monitor non-invasively both structures and cells in engineered tissue constructs. We employ time-domain OCT to visualize macro-structural morphology, and whole-field optical coherence microscopy to delineate the morphology of cells and constructs in a developing in vitro engineered bone tissue. The results show great potential for the use of OCT in non-invasive monitoring of cellular activities in 3D developing engineered tissues

  2. Extended depth of focus adaptive optics spectral domain optical coherence tomography

    Science.gov (United States)

    Sasaki, Kazuhiro; Kurokawa, Kazuhiro; Makita, Shuichi; Yasuno, Yoshiaki

    2012-01-01

    We present an adaptive optics spectral domain optical coherence tomography (AO-SDOCT) with a long focal range by active phase modulation of the pupil. A long focal range is achieved by introducing AO-controlled third-order spherical aberration (SA). The property of SA and its effects on focal range are investigated in detail using the Huygens-Fresnel principle, beam profile measurement and OCT imaging of a phantom. The results indicate that the focal range is extended by applying SA, and the direction of extension can be controlled by the sign of applied SA. Finally, we demonstrated in vivo human retinal imaging by altering the applied SA. PMID:23082278

  3. Tuned Optical Front-End MMIC Amplifiers for a Coherent Optical Receiver

    DEFF Research Database (Denmark)

    Petersen, Anders Kongstad; Jagd, A M

    1992-01-01

    Two low noise tuned optical front-end GaAs MESFET MMIC amplifiers for a coherent optical CPFSK (Continuous Phase Frequency Shift Keying) receiver are presented. The receiver operates at 2.5 Gbit/s at an IF of approx. 9 GHz. The front-ends are based on full-custom designed MMICs and a commercially...... available GaInAs/InP pin photo diode. The procedure for measuring the transimpedance and the equivalent input noise current density is outlined in this paper and demonstrated using one of the MMICs. The MMICs were fabricated using the Plessey F20 process by GEC-Marconi through the ESPRIT programme EUROCHIP...

  4. Three-Dimensional Optical Coherence Tomography (3D OCT), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Applied Science Innovations, Inc. proposes a new tool of 3D optical coherence tomography (OCT) for cellular level imaging at video frame rates and dramatically...

  5. Agreement of angle closure assessments between gonioscopy, anterior segment optical coherence tomography and spectral domain optical coherence tomography

    OpenAIRE

    Tay, Elton Lik Tong; Yong, Vernon Khet Yau; Lim, Boon Ang; Sia, Stelson; Wong, Elizabeth Poh Ying; Yip, Leonard Wei Leon

    2015-01-01

    AIM: To determine angle closure agreements between gonioscopy and anterior segment optical coherence tomography (AS-OCT), as well as gonioscopy and spectral domain OCT (SD-OCT). A secondary objective was to quantify inter-observer agreements of AS-OCT and SD-OCT assessments. METHODS: Seventeen consecutive subjects (33 eyes) were recruited from the study hospital’s Glaucoma clinic. Gonioscopy was performed by a glaucomatologist masked to OCT results. OCT images were read independently by 2 ...

  6. The Mathematical Theory of Multifocal Lenses

    Institute of Scientific and Technical Information of China (English)

    Jacob RUBINSTEIN

    2017-01-01

    This paper presents the fundamental optical concepts of designing multifocal ophthalmic lenses and the mathematical methods associated with them.In particular,it is shown that the design methodology is heavily based on differential geometric ideas such as Willmore surfaces.A key role is played by Hamilton's eikonal functions.It is shown that these functions capture all the information on the local blur and distortion created by the lenses.Along the way,formulas for computing the eikonal functions are derived.Finally,the author lists a few intriguing mathematical problems and novel concepts in optics as future projects.

  7. Heartbeat OCT: In vivo intravascular megahertz-optical coherence tomography

    NARCIS (Netherlands)

    T. Wang (Tianshi); A.F.H. Pfeiffer (Andreas); E.S. Regar (Eveline); W. Wieser (Wolfgang); H.M.M. van Beusekom (Heleen); C.T. Lancée (Charles); T. Springeling (Tirza); I. Krabbendam (Ilona); A.F.W. van der Steen (Ton); R. Huber (Roman); G. van Soest (Gijs)

    2015-01-01

    textabstractCardiac motion artifacts, non-uniform rotational distortion and undersampling affect the image quality and the diagnostic impact of intravascular optical coherence tomography (IV-OCT). In this study we demonstrate how these limitations of IV-OCT can be addressed by using an imaging

  8. Defocusing effects of lensless ghost imaging and ghost diffraction with partially coherent sources

    Science.gov (United States)

    Zhou, Shuang-Xi; Sheng, Wei; Bi, Yu-Bo; Luo, Chun-Ling

    2018-04-01

    The defocusing effect is inevitable and degrades the image quality in the conventional optical imaging process significantly due to the close confinement of the imaging lens. Based on classical optical coherent theory and linear algebra, we develop a unified formula to describe the defocusing effects of both lensless ghost imaging (LGI) and lensless ghost diffraction (LGD) systems with a partially coherent source. Numerical examples are given to illustrate the influence of defocusing length on the quality of LGI and LGD. We find that the defocusing effects of the test and reference paths in the LGI or LGD systems are entirely different, while the LGD system is more robust against defocusing than the LGI system. Specifically, we find that the imaging process for LGD systems can be viewed as pinhole imaging, which may find applications in ultra-short-wave band imaging without imaging lenses, e.g. x-ray diffraction and γ-ray imaging.

  9. Application of optical coherence tomography angiography for diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Qing Liu

    2016-04-01

    Full Text Available Optical coherence tomography angiography(OCTAis a new emerging technology of the optical coherence tomography(OCTin recent years. It's a noninvasive and fast retinal vascular imaging technology with high resolution, and has been gradually applied to make diagnosis, gives treatment and follow-up for various types of retinal vascular diseases, such as diabetic retinopathy, choroid neovascularization, etc. OCTA has the unique advantages of layered observing the structure and shape of the chorioretinal vascular at different levels, and quantifying the blood flow index of designated scope and the flow area of lesions. However, OCTA requires high solid vision and good cooperation of patients, even has the limitations to observe the retinal scope and retinal vascular barrier function. With overcoming these limitations, it's helpful for us to improve the understanding of retinal vascular diseases, consummate the diagnosis and treatment and observation of retinal vascular diseases.

  10. Optical Biopsy Using Tissue Spectroscopy and Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Norman S Nishioka

    2003-01-01

    Full Text Available ‘Optical biopsy’ or ‘optical diagnostics’ is a technique whereby light energy is used to obtain information about the structure and function of tissues without disrupting them. In fluorescence spectroscopy, light energy (usually provided by a laser is used to excite tissues and the resulting fluorescence provides information about the target tissue. Its major gastrointestinal application has been in the evaluation of colonic polyps, in which it can reliably distinguish malignant from benign lesions. Optical coherence tomography (OCT has been used in the investigation of Barrett’s epithelium (and dysplasia, although a variety of other applications are feasible. For example, OCT could assist in the identification and staging of mucosal and submucosal neoplasms, the grading of inflammation in the stomach and intestine, the diagnosis of biliary tumours and the assessment of villous architecture. OCT differs from endoscopic ultrasound, a complementary modality, in that it has a much higher resolution but lesser depth of penetration. The images correlate with the histopathological appearance of tissues, and the addition of Doppler methods may enable it to evaluate the vascularity of tumours and the amount of blood flow in varices. Refinements in these new optical techniques will likely make them valuable in clinical practice, although their specific roles have yet to be determined.

  11. Donor disc attachment assessment with intraoperative spectral optical coherence tomography during descemet stripping automated endothelial keratoplasty

    Directory of Open Access Journals (Sweden)

    Edward Wylegala

    2013-01-01

    Full Text Available Optical coherence tomography has already been proven to be useful for pre- and post-surgical anterior eye segment assessment, especially in lamellar keratoplasty procedures. There is no evidence for intraoperative usefulness of optical coherence tomography (OCT. We present a case report of the intraoperative donor disc attachment assessment with spectral-domain optical coherence tomography in case of Descemet stripping automated endothelial keratoplasty (DSAEK surgery combined with corneal incisions. The effectiveness of the performed corneal stab incisions was visualized directly by OCT scan analysis. OCT assisted DSAEK allows the assessment of the accuracy of the Descemet stripping and donor disc attachment.

  12. Low-cost coherent receiver for long-reach optical access network using single-ended detection.

    Science.gov (United States)

    Zhang, Xuebing; Li, Zhaohui; Li, Jianping; Yu, Changyuan; Lau, Alan Pak Tao; Lu, Chao

    2014-09-15

    A low-cost coherent receiver using two 2×3 optical hybrids and single-ended detection is proposed for long-reach optical access network. This structure can detect the two polarization components of polarization division multiplexing (PDM) signals. Polarization de-multiplexing and signal-to-signal beat interference (SSBI) cancellation are realized by using only three photodiodes. Simulation results for 40 Gb/s PDM-OFDM transmissions indicate that the low-cost coherent receiver has 3.2 dB optical signal-to-noise ratio difference compared with the theoretical value.

  13. Power profiles of single vision and multifocal soft contact lenses.

    Science.gov (United States)

    Wagner, Sandra; Conrad, Fabian; Bakaraju, Ravi C; Fedtke, Cathleen; Ehrmann, Klaus; Holden, Brien A

    2015-02-01

    The purpose of this study was to investigate the optical zone power profile of the most commonly prescribed soft contact lenses to assess their potential impact on peripheral refractive error and hence myopia progression. The optical power profiles of six single vision and ten multifocal contact lenses of five manufacturers in the powers -1.00 D, -3.00 D, and -6.00 D were measured using the SHSOphthalmic (Optocraft GmbH, Erlangen, Germany). Instrument repeatability was also investigated. Instrument repeatability was dependent on the distance from the optical centre, manifesting unreliable data for the central 1mm of the optic zone. Single vision contact lens measurements of -6.00 D lenses revealed omafilcon A having the most negative spherical aberration, lotrafilcon A having the least. Somofilcon A had the highest minus power and lotrafilcon A the biggest deviation in positive direction, relative to their respective labelled powers. Negative spherical aberration occurred for almost all of the multifocal contact lenses, including the centre-distance designs etafilcon A bifocal and omafilcon A multifocal. Lotrafilcon B and balafilcon A seem to rely predominantly on the spherical aberration component to provide multifocality. Power profiles of single vision soft contact lenses varied greatly, many having a negative spherical aberration profile that would exacerbate myopia. Some lens types and powers are affected by large intra-batch variability or power offsets of more than 0.25 dioptres. Evaluation of power profiles of multifocal lenses was derived that provides helpful information for prescribing lenses for presbyopes and progressing myopes. Copyright © 2014 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  14. LDRD final report on theory and exploration of quantum-dot optical nonlinearities and coherences

    International Nuclear Information System (INIS)

    Chow, Weng Wah

    2008-01-01

    A microscopic theory for investigating quantum-dot optical properties was developed. The theory incorporated advances on various aspects of quantum-dot physics developed at Sandia and elsewhere. Important components are a non-Markovian treatment of polarization dephasing due to carrier-carrier scattering (developed at Sandia) and a nonperturbative treatment within a polaron picture of the scattering of carriers by longitudinal-optical phonons (developed at Bremen University). A computer code was also developed that provides a detailed accounting of electronic structure influences and a consistent treatment of many-body effects, the latter via the incorporation of results from the microscopic theory. This code was used to explore quantum coherence physics in a quantum-dot system. The investigation furthers the understanding of the underlying differences between atomic quantum coherence and semiconductor quantum coherence, and helps improve the potential of using quantum coherences in quantum computing, coherent control and high-resolution spectroscopy

  15. In vivo sweat film layer thickness measured with Fourier-domain optical coherence tomography

    CSIR Research Space (South Africa)

    Jonathan, E

    2008-01-01

    Full Text Available s Centre form the f th s pr t fi d id Keywords: Fourier-domain optical coherence tomography; Human sweat secretion; Sweat gland; Sweat duct; Hyperhidrosis growing list of triggers include cancer, glucose control disorder, mental stress, social..., that is, the gland, duct and pore(s). However, due to a slow imaging time, COCT is largely restricted to morphometry of human tissue and thickness measurement of biologic and biologic samples [12,13]. ARTICLE IN PRESS Fourier-domain optical coherence...

  16. Optical coherence tomography of the newborn airway.

    Science.gov (United States)

    Ridgway, James M; Su, Jianping; Wright, Ryan; Guo, Shuguang; Kim, David C; Barretto, Roberto; Ahuja, Gurpreet; Sepehr, Ali; Perez, Jorge; Sills, Jack H; Chen, Zhongping; Wong, Brian J F

    2008-05-01

    Acquired subglottic stenosis in a newborn is often associated with prolonged endotracheal intubation. This condition is generally diagnosed during operative endoscopy after airway injury has occurred. Unfortunately, endoscopy is unable to characterize the submucosal changes observed in such airway injuries. Other modalities, such as magnetic resonance imaging, computed tomography, and ultrasound, do not possess the necessary level of resolution to differentiate scar, neocartilage, and edema. Optical coherence tomography (OCT) is an imaging modality that produces high-resolution, cross-sectional images of living tissue (8 to 20 microm). We examined the ability of this noninvasive technique to characterize the newborn airway in a prospective clinical trial. Twelve newborn patients who required ventilatory support underwent OCT airway imaging. Comparative analysis of intubated and non-intubated states was performed. Imaging of the supraglottis, glottis, subglottis, and trachea was performed in 12 patients, revealing unique tissue characteristics as related to turbidity, signal backscattering, and architecture. Multiple structures were identified, including the vocal folds, cricoid cartilage, tracheal rings, ducts, glands, and vessels. Optical coherence tomography clearly identifies in vivo tissue layers and regional architecture while offering detailed information concerning tissue microstructures. The diagnostic potential of this technology makes OCT a promising modality in the study and surveillance of the neonatal airway.

  17. Detection and Diagnosis of Oral Neoplasia with an Optical Coherence Microscope

    National Research Council Canada - National Science Library

    Clark, Anne

    2003-01-01

    .... The technique combines the sub-cellular resolution of high numerical aperture (NA) confocal microscopy with the increased sensitivity and penetration depth of optical coherence tomography (OCT...

  18. Contribution of optical coherence tomography imaging in management of iatrogenic coronary dissection

    Energy Technology Data Exchange (ETDEWEB)

    Barber-Chamoux, Nicolas, E-mail: nbarber-chamoux@chu-clermontferrand.fr [Department of Cardiology, Gabriel Montpied University Hospital, Clermont-Ferrand (France); Souteyrand, Géraud; Combaret, Nicolas [Department of Cardiology, Gabriel Montpied University Hospital, Clermont-Ferrand (France); ISIT, CaVITI, CNRS (UMR-6284), Auvergne University, Clermont-Ferrand (France); Ouedraogo, Edgar; Lusson, Jean René [Department of Cardiology, Gabriel Montpied University Hospital, Clermont-Ferrand (France); Motreff, Pascal [Department of Cardiology, Gabriel Montpied University Hospital, Clermont-Ferrand (France); ISIT, CaVITI, CNRS (UMR-6284), Auvergne University, Clermont-Ferrand (France)

    2016-03-15

    Iatrogenic coronary dissection is a rare but potentially serious complication of coronary angiography and angioplasty. Treatment with angioplasty guided only by angiography is often difficult. Optical coherence tomography imaging seems to be an interesting technique to lead the management of iatrogenic coronary dissection. Diagnosis can be made by optical coherence tomography; it can also eliminate differential diagnosis. Furthermore, this technique can guide safely the endovascular treatment. - Highlights: • Iatrogenic coronary dissection remains a challenging problem in angiography. • Endocoronary imaging is helpful for the diagnosis of iatrogenic coronary dissection. • OCT is a safe option to manage the endovascular treatment of coronary dissection.

  19. Diffusion tensor optical coherence tomography

    Science.gov (United States)

    Marks, Daniel L.; Blackmon, Richard L.; Oldenburg, Amy L.

    2018-01-01

    In situ measurements of diffusive particle transport provide insight into tissue architecture, drug delivery, and cellular function. Analogous to diffusion-tensor magnetic resonance imaging (DT-MRI), where the anisotropic diffusion of water molecules is mapped on the millimeter scale to elucidate the fibrous structure of tissue, here we propose diffusion-tensor optical coherence tomography (DT-OCT) for measuring directional diffusivity and flow of optically scattering particles within tissue. Because DT-OCT is sensitive to the sub-resolution motion of Brownian particles as they are constrained by tissue macromolecules, it has the potential to quantify nanoporous anisotropic tissue structure at micrometer resolution as relevant to extracellular matrices, neurons, and capillaries. Here we derive the principles of DT-OCT, relating the detected optical signal from a minimum of six probe beams with the six unique diffusion tensor and three flow vector components. The optimal geometry of the probe beams is determined given a finite numerical aperture, and a high-speed hardware implementation is proposed. Finally, Monte Carlo simulations are employed to assess the ability of the proposed DT-OCT system to quantify anisotropic diffusion of nanoparticles in a collagen matrix, an extracellular constituent that is known to become highly aligned during tumor development.

  20. Early detection of tooth wear by en-face optical coherence tomography

    Science.gov (United States)

    Mărcăuteanu, Corina; Negrutiu, Meda; Sinescu, Cosmin; Demjan, Eniko; Hughes, Mike; Bradu, Adrian; Dobre, George; Podoleanu, Adrian G.

    2009-02-01

    Excessive dental wear (pathological attrition and/or abfractions) is a frequent complication in bruxing patients. The parafunction causes heavy occlusal loads. The aim of this study is the early detection and monitoring of occlusal overload in bruxing patients. En-face optical coherence tomography was used for investigating and imaging of several extracted tooth, with a normal morphology, derived from patients with active bruxism and from subjects without parafunction. We found a characteristic pattern of enamel cracks in patients with first degree bruxism and with a normal tooth morphology. We conclude that the en-face optical coherence tomography is a promising non-invasive alternative technique for the early detection of occlusal overload, before it becomes clinically evident as tooth wear.

  1. Magnetic electron lenses

    CERN Document Server

    1982-01-01

    No single volume has been entirely devoted to the properties of magnetic lenses, so far as I am aware, although of course all the numerous textbooks on electron optics devote space to them. The absence of such a volume, bringing together in­ formation about the theory and practical design of these lenses, is surprising, for their introduction some fifty years ago has created an entirely new family of commercial instruments, ranging from the now traditional transmission electron microscope, through the reflection and transmission scanning microscopes, to co­ lumns for micromachining and microlithography, not to mention the host of experi­ mental devices not available commercially. It therefore seemed useful to prepare an account of the various aspects of mag­ netic lens studies. These divide naturally into the five chapters of this book: the theoretical background, in which the optical behaviour is described and formu­ lae given for the various aberration coefficients; numerical methods for calculat­ ing...

  2. Optical coherence tomography in gastroenterology: a review and future outlook

    Science.gov (United States)

    Tsai, Tsung-Han; Leggett, Cadman L.; Trindade, Arvind J.; Sethi, Amrita; Swager, Anne-Fré; Joshi, Virendra; Bergman, Jacques J.; Mashimo, Hiroshi; Nishioka, Norman S.; Namati, Eman

    2017-12-01

    Optical coherence tomography (OCT) is an imaging technique optically analogous to ultrasound that can generate depth-resolved images with micrometer-scale resolution. Advances in fiber optics and miniaturized actuation technologies allow OCT imaging of the human body and further expand OCT utilization in applications including but not limited to cardiology and gastroenterology. This review article provides an overview of current OCT development and its clinical utility in the gastrointestinal tract, including disease detection/differentiation and endoscopic therapy guidance, as well as a discussion of its future applications.

  3. Resonant acoustic radiation force optical coherence elastography

    OpenAIRE

    Qi, Wenjuan; Li, Rui; Ma, Teng; Li, Jiawen; Kirk Shung, K.; Zhou, Qifa; Chen, Zhongping

    2013-01-01

    We report on a resonant acoustic radiation force optical coherence elastography (ARF-OCE) technique that uses mechanical resonant frequency to characterize and identify tissues of different types. The linear dependency of the resonant frequency on the square root of Young's modulus was validated on silicone phantoms. Both the frequency response spectrum and the 3D imaging results from the agar phantoms with hard inclusions confirmed the feasibility of deploying the resonant frequency as a mec...

  4. Coherence enhanced quantum metrology in a nonequilibrium optical molecule

    Science.gov (United States)

    Wang, Zhihai; Wu, Wei; Cui, Guodong; Wang, Jin

    2018-03-01

    We explore the quantum metrology in an optical molecular system coupled to two environments with different temperatures, using a quantum master equation beyond secular approximation. We discover that the steady-state coherence originating from and sustained by the nonequilibrium condition can enhance quantum metrology. We also study the quantitative measures of the nonequilibrium condition in terms of the curl flux, heat current and entropy production at the steady state. They are found to grow with temperature difference. However, an apparent paradox arises considering the contrary behaviors of the steady-state coherence and the nonequilibrium measures in relation to the inter-cavity coupling strength. This paradox is resolved by decomposing the heat current into a population part and a coherence part. Only the latter, the coherence part of the heat current, is tightly connected to the steady-state coherence and behaves similarly with respect to the inter-cavity coupling strength. Interestingly, the coherence part of the heat current flows from the low-temperature reservoir to the high-temperature reservoir, opposite to the direction of the population heat current. Our work offers a viable way to enhance quantum metrology for open quantum systems through steady-state coherence sustained by the nonequilibrium condition, which can be controlled and manipulated to maximize its utility. The potential applications go beyond quantum metrology and extend to areas such as device designing, quantum computation and quantum technology in general.

  5. The fundus photo has met its match: optical coherence tomography and adaptive optics ophthalmoscopy are here to stay.

    Science.gov (United States)

    Morgan, Jessica I W

    2016-05-01

    Over the past 25 years, optical coherence tomography (OCT) and adaptive optics (AO) ophthalmoscopy have revolutionised our ability to non-invasively observe the living retina. The purpose of this review is to highlight the techniques and human clinical applications of recent advances in OCT and adaptive optics scanning laser/light ophthalmoscopy (AOSLO) ophthalmic imaging. Optical coherence tomography retinal and optic nerve head (ONH) imaging technology allows high resolution in the axial direction resulting in cross-sectional visualisation of retinal and ONH lamination. Complementary AO ophthalmoscopy gives high resolution in the transverse direction resulting in en face visualisation of retinal cell mosaics. Innovative detection schemes applied to OCT and AOSLO technologies (such as spectral domain OCT, OCT angiography, confocal and non-confocal AOSLO, fluorescence, and AO-OCT) have enabled high contrast between retinal and ONH structures in three dimensions and have allowed in vivo retinal imaging to approach that of histological quality. In addition, both OCT and AOSLO have shown the capability to detect retinal reflectance changes in response to visual stimuli, paving the way for future studies to investigate objective biomarkers of visual function at the cellular level. Increasingly, these imaging techniques are being applied to clinical studies of the normal and diseased visual system. Optical coherence tomography and AOSLO technologies are capable of elucidating the structure and function of the retina and ONH noninvasively with unprecedented resolution and contrast. The techniques have proven their worth in both basic science and clinical applications and each will continue to be utilised in future studies for many years to come. © 2016 The Authors Ophthalmic & Physiological Optics © 2016 The College of Optometrists.

  6. Generating single-photon catalyzed coherent states with quantum-optical catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xue-xiang, E-mail: xuxuexiang@jxnu.edu.cn [Center for Quantum Science and Technology, Jiangxi Normal University, Nanchang 330022 (China); Yuan, Hong-chun [College of Electrical and Optoelectronic Engineering, Changzhou Institute of Technology, Changzhou 213002 (China)

    2016-07-15

    We theoretically generate single-photon catalyzed coherent states (SPCCSs) by means of quantum-optical catalysis based on the beam splitter (BS) or the parametric amplifier (PA). These states are obtained in one of the BS (or PA) output channels if a coherent state and a single-photon Fock state are present in two input ports and a single photon is registered in the other output port. The success probabilities of the detection (also the normalization factors) are discussed, which is different for BS and PA catalysis. In addition, we prove that the generated states catalyzed by BS and PA devices are actually the same quantum states after analyzing photon number distribution of the SPCCSs. The quantum properties of the SPCCSs, such as sub-Poissonian distribution, anti-bunching effect, quadrature squeezing effect, and the negativity of the Wigner function are investigated in detail. The results show that the SPCCSs are non-Gaussian states with an abundance of nonclassicality. - Highlights: • We generate single-photon catalyzed coherent states with quantum-optical catalysis. • We prove the equivalent effects of the lossless beam splitter and the non-degenerate parametric amplifier. • Some nonclassical properties of the generated states are investigated in detail.

  7. Precision spectral manipulation: A demonstration using a coherent optical memory

    Energy Technology Data Exchange (ETDEWEB)

    Sparkes, B. M.; Cairns, C.; Hosseini, M.; Higginbottom, D.; Campbell, G. T.; Lam, P. K.; Buchler, B. C. [Centre for Quantum Computation and Communication Technology, The Australian National University, Canberra (Australia)

    2014-12-04

    The ability to coherently spectrally manipulate quantum information has the potential to improve qubit rates across quantum channels and find applications in optical quantum computing. Here we present experiments that use a multi-element solenoid combined with the three-level gradient echo memory scheme to perform precision spectral manipulation of optical pulses. If applied in a quantum information network, these operations would enable frequency-based multiplexing of qubits.

  8. Advanced X-ray Optics Metrology for Nanofocusing and Coherence Preservation

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Kenneth A.; Yashchuk, Valeriy

    2007-12-01

    What is the point of developing new high-brightness light sources if beamline optics won't be available to realize the goals of nano-focusing and coherence preservation? That was one of the central questions raised during a workshop at the 2007 Advanced Light Source Users Meeting. Titled, 'Advanced X-Ray Optics Metrology for Nano-focusing and Coherence Preservation', the workshop was organized by Kenneth Goldberg and Valeriy Yashchuk (both of Lawrence Berkeley National Laboratory, LBNL), and it brought together industry representatives and researchers from Japan, Europe, and the US to discuss the state of the art and to outline the optics requirements of new light sources. Many of the presentations are viewable on the workshop website http://goldberg.lbl.gov/MetrologyWorkshop07/. Many speakers shared the same view of one of the most significant challenges facing the development of new high-brightness third and fourth generation x-ray, soft x-ray, and EUV light sources: these sources place extremely high demands on the surface quality of beamline optics. In many cases, the 1-2-nm surface error specs that define the outer bounds of 'diffraction-limited' quality are beyond the reach of leading facilities and optics vendors. To focus light to 50-nm focal spots, or smaller, from reflective optics and to preserve the high coherent flux that new sources make possible, the optical surface quality and alignment tolerances must be measured in nano-meters and nano-radians. Without a significant, well-supported research effort, including the development of new metrology techniques for use both on and off the beamline, these goals will likely not be met. The scant attention this issue has garnered is evident in the stretched budgets and limited manpower currently dedicated to metrology. With many of the world's leading groups represented at the workshop, it became clear that Japan and Europe are several steps ahead of the US in this critical area

  9. Advanced integrated spectrometer designs for miniaturized optical coherence tomography systems

    NARCIS (Netherlands)

    Akça, B.I.; Povazay, B.; Chang, Lantian; Alex, A.; Worhoff, Kerstin; de Ridder, R.M.; Drexler, W.; Pollnau, Markus

    Optical coherence tomography (OCT) has enabled clinical applications that revolutionized in vivo medical diagnostics. Nevertheless, its current limitations owing to cost, size, complexity, and the need for accurate alignment must be overcome by radically novel approaches. Exploiting integrated

  10. Optical and nanomechanical study of anti-scratch layers on polycarbonate lenses

    Science.gov (United States)

    Charitidis, C.; Laskarakis, A.; Kassavetis, S.; Gravalidis, C.; Logothetidis, S.

    2004-07-01

    In recent years, as the optical-electronic industry developed, polymeric materials were gradually increasing in importance. Polycarbonate (PC) is a good candidate for eyewear applications due to its low weight and transparency. In the case of PC lenses, the deposition of anti-scratch (AS) coatings on the polymer surface is essential for the improvement of the mechanical behavior of the lens. In this work, we present a detailed investigation of the optical and nanomechanical properties of a PC based optical lens and coated by an AS coating as a protective overcoat. The study of the effect of the AS coating on the optical response of the PC lens has been performed by the use of Spectroscopic Ellipsometry (SE) in the IR spectral region, where the characteristic features corresponding to the different bonding configuration of the PC lens and the AS coating were studied. Also, the nanomechanical study of the PC lens, before and after the deposition of the AS coating, performed by nanoindentation measurements revealed the significant enhancement of the mechanical response of the AS/PC lens. More specifically, the AS/PC lens is characterized by enhanced values of hardness and elastic modulus. Finally, the use of AS coating has found to lead to a better scratch resistance and to the reduction of the coefficient of friction (μ) of the PC lens.

  11. Dimensional stability of lathe cut C.A.B. lenses.

    Science.gov (United States)

    Pearson, R M

    1978-08-01

    Measurements of the back central optical radius in the course of 336 hours of hydration of lathe cut corneal lenses disclosed changes in curvature which were more rapid and of greater magnitude than those previously reported for poly (methyl methacrylate) lenses.

  12. Experimental demonstration of spatially coherent beam combining using optical parametric amplification.

    Science.gov (United States)

    Kurita, Takashi; Sueda, Keiichi; Tsubakimoto, Koji; Miyanaga, Noriaki

    2010-07-05

    We experimentally demonstrated coherent beam combining using optical parametric amplification with a nonlinear crystal pumped by random-phased multiple-beam array of the second harmonic of a Nd:YAG laser at 10-Hz repetition rate. In the proof-of-principle experiment, the phase jump between two pump beams was precisely controlled by a motorized actuator. For the demonstration of multiple-beam combining a random phase plate was used to create random-phased beamlets as a pump pulse. Far-field patterns of the pump, the signal, and the idler indicated that the spatially coherent signal beams were obtained on both cases. This approach allows scaling of the intensity of optical parametric chirped pulse amplification up to the exa-watt level while maintaining diffraction-limited beam quality.

  13. Coherently aligned nanoparticles within a biogenic single crystal: A biological prestressing strategy

    Science.gov (United States)

    Polishchuk, Iryna; Bracha, Avigail Aronhime; Bloch, Leonid; Levy, Davide; Kozachkevich, Stas; Etinger-Geller, Yael; Kauffmann, Yaron; Burghammer, Manfred; Giacobbe, Carlotta; Villanova, Julie; Hendler, Gordon; Sun, Chang-Yu; Giuffre, Anthony J.; Marcus, Matthew A.; Kundanati, Lakshminath; Zaslansky, Paul; Pugno, Nicola M.; Gilbert, Pupa U. P. A.; Katsman, Alex; Pokroy, Boaz

    2017-12-01

    In contrast to synthetic materials, materials produced by organisms are formed in ambient conditions and with a limited selection of elements. Nevertheless, living organisms reveal elegant strategies for achieving specific functions, ranging from skeletal support to mastication, from sensors and defensive tools to optical function. Using state-of-the-art characterization techniques, we present a biostrategy for strengthening and toughening the otherwise brittle calcite optical lenses found in the brittlestar Ophiocoma wendtii. This intriguing process uses coherent nanoprecipitates to induce compressive stresses on the host matrix, functionally resembling the Guinier-Preston zones known in classical metallurgy. We believe that these calcitic nanoparticles, being rich in magnesium, segregate during or just after transformation from amorphous to crystalline phase, similarly to segregation behavior from a supersaturated quenched alloy.

  14. Optical coherence tomography in otolaryngology: original results and review of the literature

    Science.gov (United States)

    Bibas, Athanasios G.; Podoleanu, Adrian Gh.; Cucu, Radu G.; Dobre, George M.; Odell, Edward; Boxer, Aaron B.; O'Connors, Alec F.; Gleeson, Michael J.

    2004-07-01

    Optical coherence tomography is a diagnostic imaging technique allowing two dimensional tomographic imaging of tissue architecture. This is a review article on the use of optical coherence tomography in Otolaryngology including original images from human laryngeal tissue and temporal bones (cochlea) in our laboratory. Tissue specimens from normal larynges were imaged with an 850 nm OCT system. Our results showed good correlation between OCT image s and the corresponding haematoxylin-eosin stained histology sections in the normal larynx. Human temporal bones were also imaged using an 1300 nm OCT system. Limited morphological details were obtained due to the high scattering properties of the bony labyrinth.

  15. Optical coherent control in semiconductors: Fringe contrast and inhomogeneous broadening

    DEFF Research Database (Denmark)

    Østergaard, John Erland; Vadim, Lyssenko; Hvam, Jørn Märcher

    2001-01-01

    in the interplay between the homogeneous and inhomogeneous broadenings are measured. Based on these experiments, a coherent control model describing the optical fringe contrast using different detection schemes, such as photoluminescence or four-wave mixing, is established. Significant spectral modulation...

  16. Multiple Scattering Model for Optical Coherence Tomography with Rytov Approximation

    KAUST Repository

    Li, Muxingzi

    2017-01-01

    of speckles due to multiple scatterers within the coherence length, and other random noise. Motivated by the above two challenges, a multiple scattering model based on Rytov approximation and Gaussian beam optics is proposed for the OCT setup. Some previous

  17. Dynamic light scattering optical coherence tomography.

    Science.gov (United States)

    Lee, Jonghwan; Wu, Weicheng; Jiang, James Y; Zhu, Bo; Boas, David A

    2012-09-24

    We introduce an integration of dynamic light scattering (DLS) and optical coherence tomography (OCT) for high-resolution 3D imaging of heterogeneous diffusion and flow. DLS analyzes fluctuations in light scattered by particles to measure diffusion or flow of the particles, and OCT uses coherence gating to collect light only scattered from a small volume for high-resolution structural imaging. Therefore, the integration of DLS and OCT enables high-resolution 3D imaging of diffusion and flow. We derived a theory under the assumption that static and moving particles are mixed within the OCT resolution volume and the moving particles can exhibit either diffusive or translational motion. Based on this theory, we developed a fitting algorithm to estimate dynamic parameters including the axial and transverse velocities and the diffusion coefficient. We validated DLS-OCT measurements of diffusion and flow through numerical simulations and phantom experiments. As an example application, we performed DLS-OCT imaging of the living animal brain, resulting in 3D maps of the absolute and axial velocities, the diffusion coefficient, and the coefficient of determination.

  18. On coherent optical evaluation of autoradiographs

    International Nuclear Information System (INIS)

    Birkholz, W.; Freyer, K.

    1978-01-01

    The autoradiography imaging process can be described through the imaging equation s(y 1 ,y 2 ) = ∫ a(x 1 ,y 2 )h(y 1 ,y 2 ,x 1 ,x 2 )dx 1 dx 2 where s(y 1 ,y 2 ) in the density distribution of the autoradiograph, a(x 1 ,x 2 ) is the activity distribution over a plane sample and h(y 1 ,y 2 ,x 1 ,x 2 ) transfer fuction of the system. Light transfer through a lens system may be characterized in an analogous way. By application of the Fourier transformation to the imaging equation, the autoradiographic imaging process becomes a filter process with the function H (= Fourier transformer of h). If autoradiographs are imaged through a lens system by means of coherent light the Fourier transform of the autoradiograph is formed in the Fourier plane. Through suitable arrangement of filters in the Fourier plane, systematic imaging errors can be corrected or the autoradiographic imaging be changed. The possibilities of coherent-optical filtration in the evaluation of autoradiographs are considered. (author)

  19. Spectral domain optical coherence tomography morphology in optic disc pit associated maculopathy

    Directory of Open Access Journals (Sweden)

    Janusz Michalewski

    2014-01-01

    Full Text Available Purpose: Our purpose was to study the clinical manifestation and course of optic pit maculopathy using Spectral Domain Optical Coherence Tomography (SD- OCT images. Materials and Methods: We used SD-OCT to examine 20 eyes of 19 patients with a macular detachment in combination with an optic. Results: We observed five different fovea appearances in regard to fluid localization. In five eyes, we recorded changes in the fluid distribution with SD-OCT. In 17/20 eyes, we noted a communication between the perineural and subretinal and/or intraretinal space at the margin of the optic disc. Conclusion: 3-dimensional SD-OCT (3D-SDOCT scans revealed a three-fold connection, between subretinal and intraretinal space, perineural space, and the vitreous cavity. Therefore, we suppose that intraretinal or subretinal fluid in optic pit maculopathy may have both a vitreous and cerebrospinal origin. A membrane, covering the optic nerve was noted in 14 cases. Even if it seems intact in some B-scans, it is not complete in others several micrometers apart. Additionally, we observed fluid accumulation below the margin of the optic disc and hyperreflective porous tissue in the optic disc excavation. Those findings do not influence the course of maculopathy.

  20. Consumer electronic optics: how small can a lens be: the case of panomorph lenses

    Science.gov (United States)

    Thibault, Simon; Parent, Jocelyn; Zhang, Hu; Du, Xiaojun; Roulet, Patrice

    2014-09-01

    In 2014, miniature camera modules are applied to a variety of applications such as webcam, mobile phone, automotive, endoscope, tablets, portable computers and many other products. Mobile phone cameras are probably one of the most challenging parts due to the need for smaller and smaller total track length (TTL) and optimized embedded image processing algorithms. As the technology is developing, higher resolution and higher image quality, new capabilities are required to fulfil the market needs. Consequently, the lens system becomes more complex and requires more optical elements and/or new optical elements. What is the limit? How small an injection molded lens can be? We will discuss those questions by comparing two wide angle lenses for consumer electronic market. The first lens is a 6.56 mm (TTL) panoramic (180° FOV) lens built in 2012. The second is a more recent (2014) panoramic lens (180° FOV) with a TTL of 3.80 mm for mobile phone camera. Both optics are panomorph lenses used with megapixel sensors. Between 2012 and 2014, the development in design and plastic injection molding allowed a reduction of the TTL by more than 40%. This TTL reduction has been achieved by pushing the lens design to the extreme (edge/central air and material thicknesses as well as lens shape). This was also possible due to a better control of the injection molding process and material (low birefringence, haze and thermal stability). These aspects will be presented and discussed. During the next few years, we don't know if new material will come or new process but we will still need innovative people and industries to push again the limits.

  1. Corneal thickness and elevation measurements using swept-source optical coherence tomography and slit scanning topography in normal and keratoconic eyes.

    Science.gov (United States)

    Jhanji, Vishal; Yang, Bingzhi; Yu, Marco; Ye, Cong; Leung, Christopher K S

    2013-11-01

    To compare corneal thickness and corneal elevation using swept source optical coherence tomography and slit scanning topography. Prospective study. 41 normal and 46 keratoconus subjects. All eyes were imaged using swept source optical coherence tomography and slit scanning tomography during the same visit. Mean corneal thickness and best-fit sphere measurements were compared between the instruments. Agreement of measurements between swept source optical coherence tomography and scanning slit topography was analyzed. Intra-rater reproducibility coefficient and intraclass correlation coefficient were evaluated. In normal eyes, central corneal thickness measured by swept source optical coherence tomography was thinner compared with slit scanning topography (p topography. In keratoconus eyes, central corneal thickness was thinner on swept source optical coherence tomography than slit scanning topography (p = 0.081) and ultrasound pachymetry (p = 0.001). There were significant differences between thinnest corneal thickness, and, anterior and posterior best-fit sphere measurements between both instruments (p topography. With better reproducibility coefficients and intraclass correlation coefficients, swept source optical coherence tomography may provide a reliable alternative for measurement of corneal parameters. © 2013 The Authors. Clinical and Experimental Ophthalmology © 2013 Royal Australian and New Zealand College of Ophthalmologists.

  2. Quantum theory of optical coherence selected papers and lectures

    CERN Document Server

    Glauber, Roy J

    2007-01-01

    A summary of the pioneering work of Glauber in the field of optical coherence phenomena and photon statistics, this book describes the fundamental ideas of modern quantum optics and photonics in a tutorial style. It is thus not only intended as a reference for researchers in the field, but also to give graduate students an insight into the basic theories of the field. Written by the Nobel Laureate himself, the concepts described in this book have formed the basis for three further Nobel Prizes in Physics within the last decade

  3. Three-dimensional multifunctional optical coherence tomography for skin imaging

    Science.gov (United States)

    Li, En; Makita, Shuichi; Hong, Young-Joo; Kasaragod, Deepa; Sasaoka, Tomoko; Yamanari, Masahiro; Sugiyama, Satoshi; Yasuno, Yoshiaki

    2016-02-01

    Optical coherence tomography (OCT) visualizes cross-sectional microstructures of biological tissues. Recent developments of multifunctional OCT (MF-OCT) provides multiple optical contrasts which can reveal currently unknown tissue properties. In this contribution we demonstrate multifunctional OCT specially designed for dermatological investigation. And by utilizing it to measure four different body parts of in vivo human skin, three-dimensional scattering OCT, OCT angiography, polarization uniformity tomography, and local birefringence tomography images were obtained by a single scan. They respectively contrast the structure and morphology, vasculature, melanin content and collagen traits of the tissue.

  4. The collagen structure of equine articular cartilage, characterized using polarization-sensitive optical coherence tomography

    International Nuclear Information System (INIS)

    Ugryumova, Nadya; Attenburrow, Don P; Winlove, C Peter; Matcher, Stephen J

    2005-01-01

    Optical coherence tomography and polarization-sensitive optical coherence tomography images of equine articular cartilage are presented. Measurements were made on intact joint surfaces. Significant (e.g. x 2) variations in the intrinsic birefringence were found over spatial scales of a few millimetres, even on samples taken from young (18 month) animals that appeared visually homogeneous. A comparison of data obtained on a control tissue (equine flexor tendon) further suggests that significant variations in the orientation of the collagen fibres relative to the plane of the joint surface exist. Images of visually damaged cartilage tissue show characteristic features both in terms of the distribution of optical scatterers and of the birefringent components

  5. The collagen structure of equine articular cartilage, characterized using polarization-sensitive optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ugryumova, Nadya; Attenburrow, Don P; Winlove, C Peter; Matcher, Stephen J [Biomedical Physics Group, School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom)

    2005-08-07

    Optical coherence tomography and polarization-sensitive optical coherence tomography images of equine articular cartilage are presented. Measurements were made on intact joint surfaces. Significant (e.g. x 2) variations in the intrinsic birefringence were found over spatial scales of a few millimetres, even on samples taken from young (18 month) animals that appeared visually homogeneous. A comparison of data obtained on a control tissue (equine flexor tendon) further suggests that significant variations in the orientation of the collagen fibres relative to the plane of the joint surface exist. Images of visually damaged cartilage tissue show characteristic features both in terms of the distribution of optical scatterers and of the birefringent components.

  6. FABRICATION OF TISSUE-SIMULATIVE PHANTOMS AND CAPILLARIES AND THEIR INVESTIGATION BY OPTICAL COHERENCE TOMOGRAPHY TECHNIQUES

    Directory of Open Access Journals (Sweden)

    A. V. Bykov

    2013-03-01

    Full Text Available Methods of tissue-simulative phantoms and capillaries fabrication from PVC-plastisol and silicone for application as test-objects in optical coherence tomography (OCT and skin and capillary emulation are considered. Comparison characteristics of these materials and recommendations for their application are given. Examples of phantoms visualization by optical coherence tomography method are given. Possibility of information using from B-scans for refractive index evaluation is shown.

  7. Extreme depth-of-field intraocular lenses

    Science.gov (United States)

    Baker, Kenneth M.

    1996-05-01

    A new technology brings the full aperture single vision pseudophakic eye's effective hyperfocal distance within the half-meter range. A modulated index IOL containing a subsurface zeroth order coherent microlenticular mosaic defined by an index gradient adds a normalizing function to the vergences or parallactic angles of incoming light rays subtended from field object points and redirects them, in the case of near-field images, to that of far-field images. Along with a scalar reduction of the IOL's linear focal range, this results in an extreme depth of field with a narrow depth of focus and avoids the focal split-up, halo, and inherent reduction in contrast of multifocal IOLs. A high microlenticular spatial frequency, which, while still retaining an anisotropic medium, results in a nearly total zeroth order propagation throughout the visible spectrum. The curved lens surfaces still provide most of the refractive power of the IOL, and the unique holographic fabrication technology is especially suitable not only for IOLs but also for contact lenses, artificial corneas, and miniature lens elements for cameras and other optical devices.

  8. Fundamental characteristics of a synthesized light source for optical coherence tomography.

    Science.gov (United States)

    Sato, Manabu; Wakaki, Ichiro; Watanabe, Yuuki; Tanno, Naohiro

    2005-05-01

    We describe the fundamental characteristics of a synthesized light source (SLS) consisting of two low-coherence light sources to enhance the spatial resolution for optical coherence tomography (OCT). The axial resolution of OCT is given by half the coherence length of the light source. We fabricated a SLS with a coherence length of 2.3 microm and a side-lobe intensity of 45% with an intensity ratio of LED1:LED2 = 1:0.5 by combining two light sources, LED1, with a central wavelength of 691 nm and a spectral bandwidth of 99 nm, and LED2, with a central wavelength of 882 nm and a spectral bandwidth of 76 nm. The coherence length of 2.3 microm was 56% of the shorter coherence length in the two LEDs, which indicates that the axial resolution is 1.2 microm. The lateral resolution was measured at less than 4.4 microm by use of the phase-shift method and with a test pattern as a sample. The measured rough surfaces of a coin are illustrated and discussed.

  9. Measurement of Sub-Picosecond Electron Bunches via Electro-Optic Sampling of Coherent Transition Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Timothy John [Northern Illinois U.

    2012-01-01

    Future collider applications as well as present high-gradient laser plasma wakefield accelerators and free-electron lasers operating with picosecond bunch durations place a higher demand on the time resolution of bunch distribution diagnostics. This demand has led to significant advancements in the field of electro-optic sampling over the past ten years. These methods allow the probing of diagnostic light such as coherent transition radiation or the bunch wakefields with sub-picosecond time resolution. We present results on the single-shot electro-optic spectral decoding of coherent transition radiation from bunches generated at the Fermilab A0 photoinjector laboratory. A longitudinal double-pulse modulation of the electron beam is also realized by transverse beam masking followed by a transverse-to-longitudinal phase-space exchange beamline. Live profile tuning is demonstrated by upstream beam focusing in conjunction with downstream monitoring of single-shot electro-optic spectral decoding of the coherent transition radiation.

  10. High-speed optical coherence tomography signal processing on GPU

    International Nuclear Information System (INIS)

    Li Xiqi; Shi Guohua; Zhang Yudong

    2011-01-01

    The signal processing speed of spectral domain optical coherence tomography (SD-OCT) has become a bottleneck in many medical applications. Recently, a time-domain interpolation method was proposed. This method not only gets a better signal-to noise ratio (SNR) but also gets a faster signal processing time for the SD-OCT than the widely used zero-padding interpolation method. Furthermore, the re-sampled data is obtained by convoluting the acquired data and the coefficients in time domain. Thus, a lot of interpolations can be performed concurrently. So, this interpolation method is suitable for parallel computing. An ultra-high optical coherence tomography signal processing can be realized by using graphics processing unit (GPU) with computer unified device architecture (CUDA). This paper will introduce the signal processing steps of SD-OCT on GPU. An experiment is performed to acquire a frame SD-OCT data (400A-linesx2048 pixel per A-line) and real-time processed the data on GPU. The results show that it can be finished in 6.208 milliseconds, which is 37 times faster than that on Central Processing Unit (CPU).

  11. Optical coherence tomography: technology and applications (biological and medical physics, biomedical engineering)

    CERN Document Server

    2013-01-01

    Optical coherence tomography (OCT) is the optical analog of ultrasound imaging and is emerging as a powerful imaging technique that enables non-invasive, in vivo, high resolution, cross-sectional imaging in biological tissue. This book introduces OCT technology and applications not only from an optical and technological viewpoint, but also from biomedical and clinical perspectives. The chapters are written by leading research groups, in a style comprehensible to a broad audience.

  12. Phase-conjugate optical coherence tomography

    International Nuclear Information System (INIS)

    Erkmen, Baris I.; Shapiro, Jeffrey H.

    2006-01-01

    Quantum optical coherence tomography (Q-OCT) offers a factor-of-2 improvement in axial resolution and the advantage of even-order dispersion cancellation when it is compared to conventional OCT (C-OCT). These features have been ascribed to the nonclassical nature of the biphoton state employed in the former, as opposed to the classical state used in the latter. Phase-conjugate OCT (PC-OCT) shows that nonclassical light is not necessary to reap Q-OCT's advantages. PC-OCT uses classical-state signal and reference beams, which have a phase-sensitive cross correlation, together with phase conjugation to achieve the axial resolution and even-order dispersion cancellation of Q-OCT with a signal-to-noise ratio that can be comparable to that of C-OCT

  13. Focusing properties of x-ray polymer refractive lenses from SU-8 resist layer

    Science.gov (United States)

    Snigirev, Anatoly A.; Snigireva, Irina; Drakopoulos, Michael; Nazmov, Vladimir; Reznikova, Elena; Kuznetsov, Sergey; Grigoriev, Maxim; Mohr, Jurgen; Saile, Volker

    2003-12-01

    Compound refractive lenses printed in Al and Be are becoming the key X-ray focusing and imaging components of beamline optical layouts at the 3rd generation synchrotron radiation sources. Recently proposed planar optical elements based on Si, diamond etc. may substantially broaden the spectrum of the refractive optics applicability. Planar optics has focal distances ranging from millimeters to tens of meters offering nano- and micro-focusing lenses, as well as beam condensers and collimators. Here we promote deep X-ray lithography and LIGA-type techniques to create high aspect-ratio lens structures for different optical geometries. Planar X-ray refractive lenses were manufactured in 1 mm thick SU-8 negative resist layer by means of deep synchrotron radiation lithography. The focusing properties of lenses were studied at ID18F and BM5 beamlines at the ESRF using monochromatic radiation in the energy range of 10 - 25 keV. By optimizing lens layout, mask making and resist processing, lenses of good quality were fabricated. The resolution of about 270 nm (FWHM) with gain in the order of 300 was measured at 14 keV. In-line holography of B-fiber was realized in imaging and projection mode with a magnification of 3 and 20, respectively. Submicron features of the fiber were clearly resolved. A radiation stability test proved that the fabricated lenses don't change focusing characteristics after dose of absorbed X-ray radiation of about 2 MJ/cm3. The unique radiation stability along with the high effficiency of SU8 lenses opens wide range of their synchrotron radiation applications such as microfocusing elements, condensers and collimators.

  14. Nanoparticles displacement analysis using optical coherence tomography

    Science.gov (United States)

    StrÄ kowski, Marcin R.; Kraszewski, Maciej; StrÄ kowska, Paulina

    2016-03-01

    Optical coherence tomography (OCT) is a versatile optical method for cross-sectional and 3D imaging of biological and non-biological objects. Here we are going to present the application of polarization sensitive spectroscopic OCT system (PS-SOCT) for quantitative measurements of materials containing nanoparticles. The PS-SOCT combines the polarization sensitive analysis with time-frequency analysis. In this contribution the benefits of using the combination of timefrequency and polarization sensitive analysis are being expressed. The usefulness of PS-SOCT for nanoparticles evaluation is going to be tested on nanocomposite materials with TiO2 nanoparticles. The OCT measurements results have been compared with SEM examination of the PMMA matrix with nanoparticles. The experiment has proven that by the use of polarization sensitive and spectroscopic OCT the nanoparticles dispersion and size can be evaluated.

  15. Clinical experiences with optical coherence tomography in epithelial (pre)malignancies

    NARCIS (Netherlands)

    Wessels, R.

    2015-01-01

    This thesis describes the potential of optical coherence tomography (OCT) to differentiate between normal tissue and (pre)malignant tissue in epithelial cancers. It can be divided in research performed in the genital area and the field of melanoma. Chapter 2 describes the principles of the

  16. Optical bistability induced by quantum coherence in a negative index atomic medium

    International Nuclear Information System (INIS)

    Zhang Hong-Jun; Sun Hui; Li Jin-Ping; Yin Bao-Yin; Guo Hong-Ju

    2013-01-01

    Bistability behaviors in an optical ring cavity filled with a dense V-type four-level atomic medium are theoretically investigated. It is found that the optical bistability can appear in the negative refraction frequency band, while both the bistability and multi-stability can occur in the positive refraction frequency bands. Therefore, optical bistability can be realized from conventional material to negative index material due to quantum coherence in our scheme. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  17. Clinical manifestations of optic pit maculopathy as demonstrated by spectral domain optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Tzu JH

    2013-01-01

    Full Text Available Jonathan H Tzu, Harry W Flynn Jr, Audina M Berrocal, William E Smiddy, Timothy G Murray, Yale L FisherDepartment of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USAPurpose: The purpose of this retrospective study was to evaluate the characteristic features, including spectral-domain optical coherence tomography (SD-OCT, clinical course, and outcome of treatment if given for patients with optic disc pit maculopathy.Methods: We investigated a consecutive series of patients with a diagnosis of optic pit maculopathy treated between 2001 and 2012 at the Bascom Palmer Eye Institute. Patients were divided into two main groups, ie, patients who were observed without surgery and patients who received surgical intervention. The main outcome measures were presenting and final visual acuity, and changes in SD-OCT imaging were recorded. Other data including age, gender, eye, age of onset, length of follow-up, location of optic pit, and location of fluid by OCT were also recorded.Results: On OCT, 67% (12/18 of the eyes showed schisis-like cavities, 22% (4/18 had only subretinal fluid, and 17% (3/18 had only a schisis-like cavity without subretinal fluid. In the patients managed by observation, visual acuity was ≥20/200 in 6/8 eyes initially and 6/8 eyes at last follow-up. Ten of 18 patients received either focal laser, surgery or both. Six of 10 eyes undergoing surgery had initial visual acuity ≥ 20/200, and 8 of 10 eyes undergoing surgery had a visual acuity of ≥20/200 at last follow-up.Conclusion: In this study, many eyes were observed and remained stable during follow-up. In eyes with reduced vision, surgical intervention produced variable outcomes, and persistent intraretinal/subretinal fluid was a common occurrence.Keywords: optic pit maculopathy, spectral-domain optical coherence tomography

  18. In vivo endoscopic multi-beam optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Standish, Beau A; Mariampillai, Adrian; Munce, Nigel R; Leung, Michael K K; Vitkin, I Alex [Deptartment of Medical Biophysics, University of Toronto, Toronto (Canada); Lee, Kenneth K C; Yang, Victor X D [Ontario Cancer Institute/University Health Network, Toronto (Canada)], E-mail: standish@ee.ryerson.ca

    2010-02-07

    A multichannel optical coherence tomography (multi-beam OCT) system and an in vivo endoscopic imaging probe were developed using a swept-source OCT system. The distal optics were micro-machined to produce a high numerical aperture, multi-focus fibre optic array. This combination resulted in a transverse design resolution of <10 {mu}m full width half maximum (FWHM) throughout the entire imaging range, while also increasing the signal intensity within the focus of the individual channels. The system was used in a pre-clinical rabbit study to acquire in vivo structural images of the colon and ex vivo images of the oesophagus and trachea. A good correlation between the structural multi-beam OCT images and H and E histology was achieved, demonstrating the feasibility of this high-resolution system and its potential for in vivo human endoscopic imaging.

  19. In vivo endoscopic multi-beam optical coherence tomography

    International Nuclear Information System (INIS)

    Standish, Beau A; Mariampillai, Adrian; Munce, Nigel R; Leung, Michael K K; Vitkin, I Alex; Lee, Kenneth K C; Yang, Victor X D

    2010-01-01

    A multichannel optical coherence tomography (multi-beam OCT) system and an in vivo endoscopic imaging probe were developed using a swept-source OCT system. The distal optics were micro-machined to produce a high numerical aperture, multi-focus fibre optic array. This combination resulted in a transverse design resolution of <10 μm full width half maximum (FWHM) throughout the entire imaging range, while also increasing the signal intensity within the focus of the individual channels. The system was used in a pre-clinical rabbit study to acquire in vivo structural images of the colon and ex vivo images of the oesophagus and trachea. A good correlation between the structural multi-beam OCT images and H and E histology was achieved, demonstrating the feasibility of this high-resolution system and its potential for in vivo human endoscopic imaging.

  20. Power Profiles of Commercial Multifocal Soft Contact Lenses.

    Science.gov (United States)

    Kim, Eon; Bakaraju, Ravi C; Ehrmann, Klaus

    2017-02-01

    To evaluate the optical power profiles of commercially available soft multifocal contact lenses and compare their optical designs. The power profiles of 38 types of multifocal contact lenses-three lenses each-were measured in powers +6D, +3D, +1D, -1D, -3D, and -6D using NIMO TR1504 (Lambda-X, Belgium). All lenses were measured in phosphate buffered saline across 8 mm optic zone diameter. Refractive index of each lens material was measured using CLR 12-70 (Index Instruments, UK), which was used for converting measured power in the medium to in-air radial power profiles. Three basic types of power profiles were identified: center-near, center-distance, and concentric-zone ring-type designs. For most of the lens types, the relative plus with respect to prescription power was lower than the corresponding spectacle add. For some lens types, the measured power profiles were shifted by up to 1D across the power range relative to their labeled power. Most of the lenses were designed with noticeable amounts of spherical aberration. The sign and magnitude of spherical aberration can either be power dependent or consistent across the power range. Power profiles can vary widely between the different lens types; however, certain similarities were also observed between some of the center-near designs. For the more recently released lens types, there seems to be a trend emerging to reduce the relative plus with respect to prescription power, include negative spherical aberration, and keep the power profiles consistent across the power range.

  1. Continuous-variable quantum cloning of coherent states with phase-conjugate input modes using linear optics

    International Nuclear Information System (INIS)

    Chen, Haixia; Zhang, Jing

    2007-01-01

    We propose a scheme for continuous-variable quantum cloning of coherent states with phase-conjugate input modes using linear optics. The quantum cloning machine yields M identical optimal clones from N replicas of a coherent state and N replicas of its phase conjugate. This scheme can be straightforwardly implemented with the setups accessible at present since its optical implementation only employs simple linear optical elements and homodyne detection. Compared with the original scheme for continuous-variable quantum cloning with phase-conjugate input modes proposed by Cerf and Iblisdir [Phys. Rev. Lett. 87, 247903 (2001)], which utilized a nondegenerate optical parametric amplifier, our scheme loses the output of phase-conjugate clones and is regarded as irreversible quantum cloning

  2. Dynamical model of coherent circularly polarized optical pulse interactions with two-level quantum systems

    International Nuclear Information System (INIS)

    Slavcheva, G.; Hess, O.

    2005-01-01

    We propose and develop a method for theoretical description of circularly (elliptically) polarized optical pulse resonant coherent interactions with two-level atoms. The method is based on the time-evolution equations of a two-level quantum system in the presence of a time-dependent dipole perturbation for electric dipole transitions between states with total angular-momentum projection difference (ΔJ z =±1) excited by a circularly polarized electromagnetic field [Feynman et al., J. Appl. Phys. 28, 49 (1957)]. The adopted real-vector representation approach allows for coupling with the vectorial Maxwell's equations for the optical wave propagation and thus the resulting Maxwell pseudospin equations can be numerically solved in the time domain without any approximations. The model permits a more exact study of the ultrafast coherent pulse propagation effects taking into account the vector nature of the electromagnetic field and hence the polarization state of the optical excitation. We demonstrate self-induced transparency effects and formation of polarized solitons. The model represents a qualitative extension of the well-known optical Maxwell-Bloch equations valid for linearly polarized light and a tool for studying coherent quantum control mechanisms

  3. Capacity of optical communications over a lossy bosonic channel with a receiver employing the most general coherent electro-optic feedback control

    Science.gov (United States)

    Chung, Hye Won; Guha, Saikat; Zheng, Lizhong

    2017-07-01

    We study the problem of designing optical receivers to discriminate between multiple coherent states using coherent processing receivers—i.e., one that uses arbitrary coherent feedback control and quantum-noise-limited direct detection—which was shown by Dolinar to achieve the minimum error probability in discriminating any two coherent states. We first derive and reinterpret Dolinar's binary-hypothesis minimum-probability-of-error receiver as the one that optimizes the information efficiency at each time instant, based on recursive Bayesian updates within the receiver. Using this viewpoint, we propose a natural generalization of Dolinar's receiver design to discriminate M coherent states, each of which could now be a codeword, i.e., a sequence of N coherent states, each drawn from a modulation alphabet. We analyze the channel capacity of the pure-loss optical channel with a general coherent-processing receiver in the low-photon number regime and compare it with the capacity achievable with direct detection and the Holevo limit (achieving the latter would require a quantum joint-detection receiver). We show compelling evidence that despite the optimal performance of Dolinar's receiver for the binary coherent-state hypothesis test (either in error probability or mutual information), the asymptotic communication rate achievable by such a coherent-processing receiver is only as good as direct detection. This suggests that in the infinitely long codeword limit, all potential benefits of coherent processing at the receiver can be obtained by designing a good code and direct detection, with no feedback within the receiver.

  4. Separating intrinsic alignment and galaxy-galaxy lensing

    International Nuclear Information System (INIS)

    Blazek, Jonathan; Seljak, Uroš; Mandelbaum, Rachel; Nakajima, Reiko

    2012-01-01

    The coherent physical alignment of galaxies is an important systematic for gravitational lensing studies as well as a probe of the physical mechanisms involved in galaxy formation and evolution. We develop a formalism for treating this intrinsic alignment (IA) in the context of galaxy-galaxy lensing and present an improved method for measuring IA contamination, which can arise when sources physically associated with the lens are placed behind the lens due to photometric redshift scatter. We apply the technique to recent Sloan Digital Sky Survey (SDSS) measurements of Luminous Red Galaxy lenses and typical ( ∼ L * ) source galaxies with photometric redshifts selected from the SDSS imaging data. Compared to previous measurements, this method has the advantage of being fully self-consistent in its treatment of the IA and lensing signals, solving for the two simultaneously. We find an IA signal consistent with zero, placing tight constraints on both the magnitude of the IA effect and its potential contamination to the lensing signal. While these constraints depend on source selection and redshift quality, the method can be applied to any measurement that uses photometric redshifts. We obtain a model-independent upper-limit of roughly 10% IA contamination for projected separations of r p ≈ 0.1–10 h −1 Mpc. With more stringent photo-z cuts and reasonable assumptions about the physics of intrinsic alignments, this upper limit is reduced to 1–2%. These limits are well below the statistical error of the current lensing measurements. Our results suggest that IA will not present intractable challenges to the next generation of galaxy-galaxy lensing experiments, and the methods presented here should continue to aid in our understanding of alignment processes and in the removal of IA from the lensing signal

  5. Generation of optical coherent state superpositions for quantum information processing

    DEFF Research Database (Denmark)

    Tipsmark, Anders

    2012-01-01

    I dette projektarbejde med titlen “Generation of optical coherent state superpositions for quantum information processing” har målet været at generere optiske kat-tilstande. Dette er en kvantemekanisk superpositions tilstand af to koherente tilstande med stor amplitude. Sådan en tilstand er...

  6. EDITORIAL: Focus on Gravitational Lensing

    Science.gov (United States)

    Jain, Bhuvnesh

    2007-11-01

    or quasars which are strongly magnified and sheared. In the last decade, double and quadruply imaged systems due to galactic lenses have been studied with optical and radio observations. An interesting result obtained from the flux ratio 'anomalies' of quadruply imaged systems is the statistical detection of dark sub-clumps in galaxy halos. More broadly, while we have learned a lot about the mass distribution in lens galaxies and improved time delay constraints on the Hubble constant, the limitations of cosmological studies with strong lensing due to uncertainties in lens mass models have also come to be appreciated. That said, progress will no doubt continue with qualitative advances in observations such as astrometric counterparts to the flux anomalies, clever ideas such as the use of spectroscopic signatures to assemble the SLACS lens sample, and combining optical imaging, spectroscopy and radio data to continue the quest for a set of golden lenses to measure the Hubble constant. Galaxy clusters are a fascinating arena for studying the distribution of dark and baryonic matter. Weak and strong lensing information can be combined with dynamical information from the spectroscopic measurements of member galaxies and x-ray/Sunyaev Zeldovich measurements of the hot ionized gas. Hubble Space Telescope observations have yielded spectacular images of clusters, such as Abell 1689, which has over a hundred multiply imaged arcs. Mass measurements have progressed to the level of 10 percent accuracy for several clusters. Unfortunately, it is unclear if one can do much better for individual clusters given inherent limitations such as unknown projection effects. The statistical study of clusters is likely to remain a promising way to study dark matter, gravity theories, and cosmology. Techniques to combine weak and strong lensing information to obtain the mass distribution of clusters have also advanced, and work continues on parameter-free techniques that are agnostic to the

  7. Fresnel's Lighthouse Lenses

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    2007-01-01

    One of the rewards of walking up the scores of steps winding around the inside of the shaft of a lighthouse is turning inward and examining the glass optical system. This arrangement of prisms, lenses, and reflectors is used to project the light from a relatively small source in a beam that can be seen far at sea.

  8. Coherent transport of matter waves in disordered optical potentials

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Robert

    2007-07-01

    The development of modern techniques for the cooling and the manipulation of atoms in recent years, and the possibility to create Bose-Einstein condensates and degenerate Fermi gases and to load them into regular optical lattices or disordered optical potentials, has evoked new interest for the disorder-induced localization of ultra-cold atoms. This work studies the transport properties of matter waves in disordered optical potentials, which are also known as speckle potentials. The effect of correlated disorder on localization is first studied numerically in the framework of the Anderson model. The relevant transport parameters in the configuration average over many different realizations of the speckle potential are then determined analytically, using self-consistent diagrammatic perturbation techniques. This allows to make predictions for a possible experimental observation of coherent transport phenomena for cold atoms in speckle potentials. Of particular importance are the spatial correlations of the speckle fluctuations, which are responsible for the anisotropic character of the single scattering processes in the effective medium. Coherent multiple scattering leads to quantum interference effects, which entail a renormalization of the diffusion constant as compared to the classical description. This so-called weak localization of matter waves is studied as the underlying mechanism for the disorder-driven transition to the Anderson-localization regime, explicitly taking into account the correlations of the speckle fluctuations. (orig.)

  9. Coherent transport of matter waves in disordered optical potentials

    International Nuclear Information System (INIS)

    Kuhn, Robert

    2007-01-01

    The development of modern techniques for the cooling and the manipulation of atoms in recent years, and the possibility to create Bose-Einstein condensates and degenerate Fermi gases and to load them into regular optical lattices or disordered optical potentials, has evoked new interest for the disorder-induced localization of ultra-cold atoms. This work studies the transport properties of matter waves in disordered optical potentials, which are also known as speckle potentials. The effect of correlated disorder on localization is first studied numerically in the framework of the Anderson model. The relevant transport parameters in the configuration average over many different realizations of the speckle potential are then determined analytically, using self-consistent diagrammatic perturbation techniques. This allows to make predictions for a possible experimental observation of coherent transport phenomena for cold atoms in speckle potentials. Of particular importance are the spatial correlations of the speckle fluctuations, which are responsible for the anisotropic character of the single scattering processes in the effective medium. Coherent multiple scattering leads to quantum interference effects, which entail a renormalization of the diffusion constant as compared to the classical description. This so-called weak localization of matter waves is studied as the underlying mechanism for the disorder-driven transition to the Anderson-localization regime, explicitly taking into account the correlations of the speckle fluctuations. (orig.)

  10. Towards deterministic optical quantum computation with coherently driven atomic ensembles

    International Nuclear Information System (INIS)

    Petrosyan, David

    2005-01-01

    Scalable and efficient quantum computation with photonic qubits requires (i) deterministic sources of single photons, (ii) giant nonlinearities capable of entangling pairs of photons, and (iii) reliable single-photon detectors. In addition, an optical quantum computer would need a robust reversible photon storage device. Here we discuss several related techniques, based on the coherent manipulation of atomic ensembles in the regime of electromagnetically induced transparency, that are capable of implementing all of the above prerequisites for deterministic optical quantum computation with single photons

  11. Optical design and performance of F-Theta lenses for high-power and high-precision applications

    Science.gov (United States)

    Yurevich, V. I.; Grimm, V. A.; Afonyushkin, A. A.; Yudin, K. V.; Gorny, S. G.

    2015-09-01

    F-Theta lenses are widely used in remote laser processing. Nowadays, a large variety of scanning systems utilizing these devices are commercially available. In this paper, we demonstrate that all practical issues lose their triviality in designing high-performance F-Theta scanning systems. Laser power scaling requires attention to thermally-induced phenomena and ghost reflections. This requirement considerably complicates optimization of the optical configuration of the system and primary aberration correction, even during preliminary design. Obtaining high positioning accuracy requires taking into consideration all probable reasons for processing field distortion. We briefly describe the key engineering relationships and invariants as well as the typical design of a scanner lens and the main field-flattening techniques. Specific emphasis is directed to consideration of the fundamental nonlinearity of two-mirror scanners. To the best of our knowledge, this issue has not been yet studied. We also demonstrate the benefits of our F-Theta lens optimization technique, which uses a plurality of entrance pupils. The problems of eliminating focused ghost reflections and the effects of thermally-induced processes in high-power F-Theta lenses are considered. A set of multi-path 3D processing and laser cutting experiments were conducted and are presented herein to demonstrate the impact of laser beam degradation on the process performance. A selection of our non-standard optical designs is presented.

  12. Numerical modeling of optical coherent transient processes with complex configurations-III: Noisy laser source

    International Nuclear Information System (INIS)

    Chang Tiejun; Tian Mingzhen

    2007-01-01

    A previously developed numerical model based on Maxwell-Bloch equations was modified to simulate optical coherent transient and spectral hole burning processes with noisy laser sources. Random walk phase noise was simulated using laser-phase sequences generated numerically according to the normal distribution of the phase shift. The noise model was tested by comparing the simulated spectral hole burning effect with the analytical solution. The noise effects on a few typical optical coherence transient processes were investigated using this numerical tool. Flicker and random walk frequency noises were considered in accumulation process

  13. Histologic correlation of in vivo optical coherence tomography images of the human retina

    NARCIS (Netherlands)

    Chen, T.; Cense, B.; Miller, J.S.; Rubin, P. A. D.; Deschler, D. G.; Gragoudas, E. S.; de Boer, J.F.

    2006-01-01

    Purpose: To correlate in vivo human retina optical coherence tomography (OCT)3 images with histology. Design: Case series. Methods: Linear OCT3 scans through the macula and optic nerve were obtained in three eyes of three patients who then underwent exenteration surgery for orbital cancers. OCT3

  14. Handbook of Coherent-Domain Optical Methods Biomedical Diagnostics, Environmental Monitoring, and Materials Science

    CERN Document Server

    2013-01-01

    This Handbook provides comprehensive coverage of laser and coherent-domain methods as applied to biomedicine, environmental monitoring, and materials science. Worldwide leaders in these fields describe the fundamentals of light interaction with random media and present an overview of basic research. The latest results on coherent and polarization properties of light scattered by random media, including tissues and blood, speckles formation in multiple scattering media, and other non-destructive interactions of coherent light with rough surfaces and tissues, allow the reader to understand the principles and applications of coherent diagnostic techniques. The expanded second edition has been thoroughly updated with particular emphasis on novel coherent-domain techniques and their applications in medicine and environmental science. Volume 1 describes state-of-the-art methods of coherent and polarization optical imaging, tomography and spectroscopy; diffusion wave spectroscopy; elastic, quasi-elastic and inelasti...

  15. Gabor fusion master slave optical coherence tomography

    DEFF Research Database (Denmark)

    Cernat, Ramona; Bradu, Adrian; Israelsen, Niels Møller

    2017-01-01

    This paper describes the application of the Gabor filtering protocol to a Master/Slave (MS) swept source optical coherence tomography (SS)-OCT system at 1300 nm. The MS-OCT system delivers information from selected depths, a property that allows operation similar to that of a time domain OCT system......, where dynamic focusing is possible. The Gabor filtering processing following collection of multiple data from different focus positions is different from that utilized by a conventional swept source OCT system using a Fast Fourier transform (FFT) to produce an A-scan. Instead of selecting the bright...

  16. Visible-light optical coherence tomography: a review

    Science.gov (United States)

    Shu, Xiao; Beckmann, Lisa; Zhang, Hao F.

    2017-12-01

    Visible-light optical coherence tomography (vis-OCT) is an emerging imaging modality, providing new capabilities in both anatomical and functional imaging of biological tissue. It relies on visible light illumination, whereas most commercial and investigational OCTs use near-infrared light. As a result, vis-OCT requires different considerations in engineering design and implementation but brings unique potential benefits to both fundamental research and clinical care of several diseases. Here, we intend to provide a summary of the development of vis-OCT and its demonstrated applications. We also provide perspectives on future technology improvement and applications.

  17. Experimental characterization of X-ray transverse coherence in the presence of beam transport optics

    DEFF Research Database (Denmark)

    Chubar, O.; Fluerasu, A.; Chu, Y.S.

    2013-01-01

    A simple Boron fiber based interference scheme [1] and other similar schemes are currently routinely used for X-ray coherence estimation at 3rd generation synchrotron radiation sources. If such a scheme is applied after a perfect monochromator and without any focusing / transport optics...... in the optical path, the interpretation of the measured interference pattern is relatively straightforward and can be done in terms of the basic parameters of the source [2]. However, if the interference scheme is used after some focusing optics, e.g. close to the X-ray beam waist, the visibility of fringes can...... be significantly affected by the new shape of the focused beam phase-space. At the same time, optical element imperfections still have a negative impact on the transverse coherence. In such situations, which are frequently encountered in experiments at beamlines, the quantitative interpretation of a measured...

  18. Optical coherence tomography in dermatology

    Science.gov (United States)

    Sattler, Elke; Kästle, Raphaela; Welzel, Julia

    2013-06-01

    Optical coherence tomography (OCT) is a noninvasive diagnostic method that offers a view into the superficial layers of the skin in vivo in real-time. An infrared broadband light source allows the investigation of skin architecture and changes up to a depth of 1 to 2 mm with a resolution between 15 and 3 μm, depending on the system used. Thus OCT enables evaluation of skin lesions, especially nonmelanoma skin cancers and inflammatory diseases, quantification of skin changes, visualization of parasitic infestations, and examination of other indications such as the investigation of nails. OCT provides a quick and useful diagnostic imaging technique for a number of clinical questions and is a valuable addition or complement to other noninvasive imaging tools such as dermoscopy, high-frequency ultrasound, and confocal laser scan microscopy.

  19. On the performance of joint iterative detection and decoding in coherent optical channels with laser frequency fluctuations

    Science.gov (United States)

    Castrillón, Mario A.; Morero, Damián A.; Agazzi, Oscar E.; Hueda, Mario R.

    2015-08-01

    The joint iterative detection and decoding (JIDD) technique has been proposed by Barbieri et al. (2007) with the objective of compensating the time-varying phase noise and constant frequency offset experienced in satellite communication systems. The application of JIDD to optical coherent receivers in the presence of laser frequency fluctuations has not been reported in prior literature. Laser frequency fluctuations are caused by mechanical vibrations, power supply noise, and other mechanisms. They significantly degrade the performance of the carrier phase estimator in high-speed intradyne coherent optical receivers. This work investigates the performance of the JIDD algorithm in multi-gigabit optical coherent receivers. We present simulation results of bit error rate (BER) for non-differential polarization division multiplexing (PDM)-16QAM modulation in a 200 Gb/s coherent optical system that includes an LDPC code with 20% overhead and net coding gain of 11.3 dB at BER = 10-15. Our study shows that JIDD with a pilot rate ⩽ 5 % compensates for both laser phase noise and laser frequency fluctuation. Furthermore, since JIDD is used with non-differential modulation formats, we find that gains in excess of 1 dB can be achieved over existing solutions based on an explicit carrier phase estimator with differential modulation. The impact of the fiber nonlinearities in dense wavelength division multiplexing (DWDM) systems is also investigated. Our results demonstrate that JIDD is an excellent candidate for application in next generation high-speed optical coherent receivers.

  20. Imaging of macrophage dynamics with optical coherence tomography in anterior ischemic optic neuropathy.

    Science.gov (United States)

    Kokona, Despina; Häner, Nathanael U; Ebneter, Andreas; Zinkernagel, Martin S

    2017-01-01

    Anterior ischemic optic neuropathy (AION) is a relatively common cause of visual loss and results from hypoperfusion of the small arteries of the anterior portion of the optic nerve. AION is the leading cause of sudden optic nerve related vision loss with approximately 10 cases per 100'000 in the population over 50 years. To date there is no established treatment for AION and therefore a better understanding of the events occurring at the level of the optic nerve head (ONH) would be important to design future therapeutic strategies. The optical properties of the eye allow imaging of the optic nerve in vivo, which is a part of the CNS, during ischemia. Experimentally laser induced optic neuropathy (eLiON) displays similar anatomical features as anterior ischemic optic neuropathy in humans. After laser induced optic neuropathy we show that hyperreflective dots in optical coherence tomography correspond to mononuclear cells in histology. Using fluorescence-activated flow cytometry (FACS) we found these cells to peak one week after eLiON. These observations were translated to OCT findings in patients with AION, where similar dynamics of hyperreflective dots at the ONH were identified. Our data suggests that activated macrophages can be identified as hyperreflective dots in OCT. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Near-infrared optical coherence tomography for the inspection of fiber composites

    NARCIS (Netherlands)

    Liu, P.; Yao, L.; Groves, R.M.

    2015-01-01

    Optical coherence tomography (OCT) is a non-invasive imaging method, which allows the econstruction of three dimensional depth-resolved images with microscale resolution. Originally developed for biomedical diagnostics, nowadays it also shows a high potential for applications in the field of

  2. Measurement of biofilm growth and local hydrodynamics using optical coherence tomography

    NARCIS (Netherlands)

    Weiss, Nicolas; El Tayeb El Obied, Khalid; Kalkman, Jeroen; Lammertink, Rob G.H.; van Leeuwen, Ton G.

    2016-01-01

    We report on localized and simultaneous measurement of biofilm growth and local hydrodynamics in a microfluidic channel using optical coherence tomography. We measure independently with high spatio-temporal resolution the longitudinal flow velocity component parallel to the imaging beam and the

  3. Novelty detection-based internal fingerprint segmentation in optical coherence tomography images

    CSIR Research Space (South Africa)

    Khutlang, R

    2014-12-01

    Full Text Available present an automatic segmentation of the papillary layer method, in 3-D swept source optical coherence tomography (SS-OCT) images. The papillary contour represents the internal fingerprint, which does not suffer external skin problems. The slices composing...

  4. Novelty detection-based internal fingerprint segmentation in optical coherence tomography images

    CSIR Research Space (South Africa)

    Khutlang, Rethabile

    2017-08-01

    Full Text Available present an automatic segmentation of the papillary layer method, from images acquired using contact-less 3-D swept source optical coherence tomography (OCT). The papillary contour represents the internal fingerprint, which does not suffer from the external...

  5. Evolution of optic nerve and retina alterations in a child with indirect traumatic neuropathy as assessed by optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Julia Dutra Rossetto

    Full Text Available ABSTRACT Herein, we describe the case of a 4-year-old child with indirect traumatic optic neuropathy and serial changes of the optic nerve head and retinal nerve fiber layer (RNFL documented using optical coherence tomography (OCT. Visual acuity improved despite progressive RNFL thinning and optic disc pallor. We concluded that OCT may be useful for monitoring axonal loss but may not predict the final visual outcome.

  6. Optical Coherence Tomography-Guided Decisions in Retinoblastoma Management.

    Science.gov (United States)

    Soliman, Sameh E; VandenHoven, Cynthia; MacKeen, Leslie D; Héon, Elise; Gallie, Brenda L

    2017-06-01

    Assess the role of handheld optical coherence tomography (OCT) in guiding management decisions during diagnosis, treatment, and follow-up of eyes affected by retinoblastoma. Retrospective, noncomparative, single-institution case series. All children newly diagnosed with retinoblastoma from January 2011 to December 2015 who had an OCT session during their active treatment at The Hospital for Sick Children (SickKids) in Toronto, Canada. The OCT sessions for fellow eyes of unilateral retinoblastoma without any suspicious lesion and those performed more than 6 months after the last treatment were excluded. Data collected included age at presentation, sex, family history, RB1 mutation status, 8th edition TNMH cancer staging and International Intraocular Retinoblastoma Classification (IIRC), and number of OCT sessions per eye. Details of each session were scored for indication-related details (informative or not) and assessed for guidance (directive or not), diagnosis (staging changed, new tumors found or excluded), treatment (modified, stopped, or modality shifted), or follow-up modified. Frequency of OCT-guided management decisions, stratified by indication and type of guidance (confirmatory vs. influential). Sixty-three eyes of 44 children had 339 OCT sessions over the course of clinical management (median number of OCT scans per eye, 5; range, 1-15). The age at presentation and presence of a heritable RB1 mutation significantly correlated with an increased number of OCT sessions. Indications included evaluation of post-treatment scar (55%) or fovea (16%), and posterior pole scanning for new tumors (11%). Of all sessions, 92% (312/339) were informative; 19 of 27 noninformative sessions had large, elevated lesions; of these, 14 of 19 were T2a or T2b (IIRC group C or D) eyes. In 94% (293/312) of the informative sessions, OCT directed treatment decisions (58%), diagnosis (16%), and follow-up (26%). Optical coherence tomography influenced and changed management from pre

  7. Optical Design in Phase-Space for the I13L X-Ray Imaging and Coherence Beamline at Diamond using XPHASY

    International Nuclear Information System (INIS)

    Wagner, Ulrich H.; Rau, Christoph

    2010-01-01

    I13L is a 250 m long beamline for imaging and coherent diffraction currently under construction at the Diamond Light Source. For modeling the beamline optics the phase-space based ray-tracing code XPHASY was developed, as general ray-tracing codes for x-rays do not easily allow studying the propagation of coherence along the beamline. In contrast to computational intensive wave-front propagation codes, which fully describe the propagation of a photon-beam along a beamline but obscure the impact of individual optical components onto the beamline performance, this code allows to quickly calculate the photon-beam propagation along the beamline and estimate the impact of individual components.In this paper we will discuss the optical design of the I13L coherence branch from the perspective of phase-space by using XPHASY. We will demonstrate how the phase-space representation of a photon-beam allows estimating the coherence length at any given position along the beamline. The impact of optical components on the coherence length and the effect of vibrations on the beamline performance will be discussed. The paper will demonstrate how the phase-space representation of photon-beams allows a more detailed insight into the optical performance of a coherence beamline than ray-tracing in real space.

  8. Imaging of dental material by polarization-sensitive optical coherence tomography

    Science.gov (United States)

    Dichtl, Sabine; Baumgartner, Angela; Hitzenberger, Christoph K.; Moritz, Andreas; Wernisch, Johann; Robl, Barbara; Sattmann, Harald; Leitgeb, Rainer; Sperr, Wolfgang; Fercher, Adolf F.

    1999-05-01

    Partial coherence interferometry (PCI) and optical coherence tomography (OCT) are noninvasive and noncontact techniques for high precision biometry and for obtaining cross- sectional images of biologic structures. OCT was initially introduced to depict the transparent tissue of the eye. It is based on interferometry employing the partial coherence properties of a light source with high spatial coherence ut short coherence length to image structures with a resolution of the order of a few microns. Recently this technique has been modified for cross section al imaging of dental and periodontal tissues. In vitro and in vivo OCT images have been recorded, which distinguish enamel, cemento and dentin structures and provide detailed structural information on clinical abnormalities. In contrast to convention OCT, where the magnitude of backscattered light as a function of depth is imaged, polarization sensitive OCT uses backscattered light to image the magnitude of the birefringence in the sample as a function of depth. First polarization sensitive OCT recordings show, that changes in the mineralization status of enamel or dentin caused by caries or non-caries lesions can result in changes of the polarization state of the light backscattered by dental material. Therefore polarization sensitive OCT might provide a new diagnostic imaging modality in clinical and research dentistry.

  9. At-wavelength metrology of x-ray optics at Diamond Light Source

    Science.gov (United States)

    Wang, Hongchang; Berujon, Sebastien; Sutter, John; Alcock, Simon G.; Sawhney, Kawal

    2014-09-01

    Modern, third-generation synchrotron radiation sources provide coherent and extremely bright beams of X-ray radiation. The successful exploitation of such beams depends to a significant extent on imperfections and misalignment of the optics employed on the beamlines. This issue becomes even more critical with the increasing use of active optics, and the desire to achieve diffraction-limited and coherence-preserving X-ray beams. In recent years, significant progress has been made to improve optic testing and optimization techniques, especially those using X-rays for so-called atwavelength metrology. These in-situ and at-wavelength metrology methods can be used not only to optimize the performance of X-ray optics, but also to correct and minimize the collective distortions of upstream beamline optics, including monochromators, and transmission windows. An overview of at-wavelength metrology techniques implemented at Diamond Light Source is presented, including grating interferometry and X-ray near-field speckle based techniques. Representative examples of the application of these techniques are also given, including in-situ and atwavelength calibration and optimization of: active, piezo bimorph mirrors; Kirkpatrick-Baez (KB) mirrors; and refractive optics such as compound refractive lenses.

  10. Spectral shaping for non-Gaussian source spectra in optical coherence tomography

    NARCIS (Netherlands)

    Tripathi, R; Nassif, N. A.; Nelson, JS; Park, B.H.; de Boer, JF

    2002-01-01

    We present a digital spectral shaping technique to reduce the sidelobes (ringing) of the axial point-spread function in optical coherence tomography for non-Gaussian-shaped source spectra. The spectra of two superluminescent diodes were combined to generate a spectrum with significant modulation.

  11. Optical coherence tomography of the preterm eye: from retinopathy of prematurity to brain development

    Science.gov (United States)

    Rothman, Adam L; Mangalesh, Shwetha; Chen, Xi; Toth, Cynthia A

    2016-01-01

    Preterm infants with retinopathy of prematurity are at increased risk of poor neurodevelopmental outcomes. Because the neurosensory retina is an extension of the central nervous system, anatomic abnormalities in the anterior visual pathway often relate to system and central nervous system health. We describe optical coherence tomography as a powerful imaging modality that has recently been adapted to the infant population and provides noninvasive, high-resolution, cross-sectional imaging of the infant eye at the bedside. Optical coherence tomography has increased understanding of normal eye development and has identified several potential biomarkers of brain abnormalities and poorer neurodevelopment. PMID:28539807

  12. Correlation characteristics of optical coherence tomography images of turbid media with statistically inhomogeneous optical parameters

    International Nuclear Information System (INIS)

    Dolin, Lev S.; Sergeeva, Ekaterina A.; Turchin, Ilya V.

    2012-01-01

    Noisy structure of optical coherence tomography (OCT) images of turbid medium contains information about spatial variations of its optical parameters. We propose analytical model of statistical characteristics of OCT signal fluctuations from turbid medium with spatially inhomogeneous coefficients of absorption and backscattering. Analytically predicted correlation characteristics of OCT signal from spatially inhomogeneous medium are in good agreement with the results of correlation analysis of OCT images of different biological tissues. The proposed model can be efficiently applied for quantitative evaluation of statistical properties of absorption and backscattering fluctuations basing on correlation characteristics of OCT images.

  13. Optical coherence tomography as an accurate inspection and quality evaluation technique in paper industry

    Science.gov (United States)

    Prykäri, Tuukka; Czajkowski, Jakub; Alarousu, Erkki; Myllylä, Risto

    2010-05-01

    Optical coherence tomography (OCT), a technique for the noninvasive imaging of turbid media, based on low-coherence interferometry, was originally developed for the imaging of biological tissues. Since the development of the technique, most of its applications have been related to the area of biomedicine. However, from early stages, the vertical resolution of the technique has already been improved to a submicron scale. This enables new possibilities and applications. This article presents the possible applications of OCT in paper industry, where submicron or at least a resolution close to one micron is required. This requirement comes from the layered structure of paper products, where layer thickness may vary from single microns to tens of micrometers. This is especially similar to the case with high-quality paper products, where several different coating layers are used to obtain a smooth surface structure and a high gloss. In this study, we demonstrate that optical coherence tomography can be used to measure and evaluate the quality of the coating layer of a premium glossy photopaper. In addition, we show that for some paper products, it is possible to measure across the entire thickness range of a paper sheet. Furthermore, we suggest that in addition to topography and tomography images of objects, it is possible to obtain information similar to gloss by tracking the magnitude of individual interference signals in optical coherence tomography.

  14. SILDENAFIL CITRATE INDUCED RETINAL TOXICITY-ELECTRORETINOGRAM, OPTICAL COHERENCE TOMOGRAPHY, AND ADAPTIVE OPTICS FINDINGS.

    Science.gov (United States)

    Yanoga, Fatoumata; Gentile, Ronald C; Chui, Toco Y P; Freund, K Bailey; Fell, Millie; Dolz-Marco, Rosa; Rosen, Richard B

    2018-02-27

    To report a case of persistent retinal toxicity associated with a high dose of sildenafil citrate intake. Single retrospective case report. A 31-year-old white man with no medical history presented with complaints of bilateral multicolored photopsias and erythropsia (red-tinted vision), shortly after taking sildenafil citrate-purchased through the internet. Patient was found to have cone photoreceptor damage, demonstrated using electroretinogram, optical coherence tomography, and adaptive optics imaging. The patient's symptoms and the photoreceptor structural changes persisted for several months. Sildenafil citrate is a widely used erectile dysfunction medication that is typically associated with transient visual symptoms in normal dosage. At high dosage, sildenafil citrate can lead to persistent retinal toxicity in certain individuals.

  15. Highly Efficient Coherent Optical Memory Based on Electromagnetically Induced Transparency

    Science.gov (United States)

    Hsiao, Ya-Fen; Tsai, Pin-Ju; Chen, Hung-Shiue; Lin, Sheng-Xiang; Hung, Chih-Chiao; Lee, Chih-Hsi; Chen, Yi-Hsin; Chen, Yong-Fan; Yu, Ite A.; Chen, Ying-Cheng

    2018-05-01

    Quantum memory is an important component in the long-distance quantum communication based on the quantum repeater protocol. To outperform the direct transmission of photons with quantum repeaters, it is crucial to develop quantum memories with high fidelity, high efficiency and a long storage time. Here, we achieve a storage efficiency of 92.0 (1.5)% for a coherent optical memory based on the electromagnetically induced transparency scheme in optically dense cold atomic media. We also obtain a useful time-bandwidth product of 1200, considering only storage where the retrieval efficiency remains above 50%. Both are the best record to date in all kinds of schemes for the realization of optical memory. Our work significantly advances the pursuit of a high-performance optical memory and should have important applications in quantum information science.

  16. Multi-optical-axis measurement of freeform progressive addition lenses using a Hartmann-Shack wavefront sensor

    Science.gov (United States)

    Xiang, Huazhong; Guo, Hang; Fu, Dongxiang; Zheng, Gang; Zhuang, Songlin; Chen, JiaBi; Wang, Cheng; Wu, Jie

    2018-05-01

    To precisely measure the whole-surface characterization of freeform progressive addition lenses (PALs), considering the multi-optical-axis conditions is becoming particularly important. Spherical power and astigmatism (cylinder) measurements for freeform PALs, using a Hartmann-Shack wavefront sensor (HSWFS) are proposed herein. Conversion formulas for the optical performance results were provided as HSWFS Zernike polynomial expansions. For each selected zone, the studied PALs were placed and tilted to simulate the multi-optical-axis conditions. The results of two tested PALs were analyzed using MATLAB programs and represented as contour plots of the spherical equivalent and cylinder of the whole-surface. The proposed experimental setup can provide a high accuracy as well as a possibility of choosing 12 lines and positions of 193 measurement zones on the entire surface. This approach to PAL analysis is potentially an efficient and useful method to objectively evaluate the optical performances, in which the full lens surface is defined and expressed as the contour plots of power in different regions (i.e., the distance region, progressive region, and near region) of the lens for regions of interest.

  17. Rotation of the cosmic microwave background polarization from weak gravitational lensing.

    Science.gov (United States)

    Dai, Liang

    2014-01-31

    When a cosmic microwave background (CMB) photon travels from the surface of last scatter through spacetime metric perturbations, the polarization vector may rotate about its direction of propagation. This gravitational rotation is distinct from, and occurs in addition to, the lensing deflection of the photon trajectory. This rotation can be sourced by linear vector or tensor metric perturbations and is fully coherent with the curl deflection field. Therefore, lensing corrections to the CMB polarization power spectra as well as the temperature-polarization cross correlations due to nonscalar perturbations are modified. The rotation does not affect lensing by linear scalar perturbations, but needs to be included when calculations go to higher orders. We present complete results for weak lensing of the full-sky CMB power spectra by general linear metric perturbations, taking into account both deflection of the photon trajectory and rotation of the polarization. For the case of lensing by gravitational waves, we show that the B modes induced by the rotation largely cancel those induced by the curl component of deflection.

  18. Coherent optical transients observed in rubidium atomic line filtered Doppler velocimetry experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fajardo, Mario E., E-mail: mario.fajardo@eglin.af.mil; Molek, Christopher D.; Vesely, Annamaria L. [Air Force Research Laboratory, Munitions Directorate, Ordnance Division, Energetic Materials Branch, AFRL/RWME, 2306 Perimeter Road, Eglin AFB, Florida 32542-5910 (United States)

    2015-10-14

    We report the first successful results from our novel Rubidium Atomic Line Filtered (RALF) Doppler velocimetry apparatus, along with unanticipated oscillatory signals due to coherent optical transients generated within pure Rb vapor cells. RALF is a high-velocity and high-acceleration extension of the well-known Doppler Global Velocimetry (DGV) technique for constructing multi-dimensional flow velocity vector maps in aerodynamics experiments [H. Komine, U.S. Patent No. 4,919,536 (24 April 1990)]. RALF exploits the frequency dependence of pressure-broadened Rb atom optical absorptions in a heated Rb/N{sub 2} gas cell to encode the Doppler shift of reflected near-resonant (λ{sub 0} ≈ 780.24 nm) laser light onto the intensity transmitted by the cell. The present RALF apparatus combines fiber optic and free-space components and was built to determine suitable operating conditions and performance parameters for the Rb/N{sub 2} gas cells. It yields single-spot velocities of thin laser-driven-flyer test surfaces and incorporates a simultaneous Photonic Doppler Velocimetry (PDV) channel [Strand et al., Rev. Sci. Instrum. 77, 083108 (2006)] for validation of the RALF results, which we demonstrate here over the v = 0 to 1 km/s range. Both RALF and DGV presume the vapor cells to be simple Beer's Law optical absorbers, so we were quite surprised to observe oscillatory signals in experiments employing low pressure pure Rb vapor cells. We interpret these oscillations as interference between the Doppler shifted reflected light and the Free Induction Decay (FID) coherent optical transient produced within the pure Rb cells at the original laser frequency; this is confirmed by direct comparison of the PDV and FID signals. We attribute the different behaviors of the Rb/N{sub 2} vs. Rb gas cells to efficient dephasing of the atomic/optical coherences by Rb-N{sub 2} collisions. The minimum necessary N{sub 2} buffer gas density ≈0.3 amagat translates into a

  19. Dynamic focus optical coherence tomography: feasibility for improved basal cell carcinoma investigation

    Science.gov (United States)

    Nasiri-Avanaki, M. R.; Aber, Ahmed; Hojjatoleslami, S. A.; Sira, Mano; Schofield, John B.; Jones, Carole; Podoleanu, A. Gh.

    2012-03-01

    Basal cell carcinoma (BCC) is the most common form of skin cancer. To improve the diagnostic accuracy, additional non-invasive methods of making a preliminary diagnosis have been sought. We have implemented an En-Face optical coherence tomography (OCT) for this study in which the dynamic focus was integrated into it. With the dynamic focus scheme, the coherence gate moves synchronously with the peak of confocal gate determined by the confocal interface optics. The transversal resolution is then conserved throughout the depth range and an enhanced signal is returned from all depths. The Basal Cell Carcinoma specimens were obtained from the eyelid a patient. The specimens under went analysis by DF-OCT imaging. We searched for remarkable features that were visualized by OCT and compared these findings with features presented in the histology slices.

  20. Optical Coherence Tomography for the Assessment of Coronary Atherosclerosis and Vessel Response after Stent Implantation

    NARCIS (Netherlands)

    N. Gonzalo (Nieves)

    2010-01-01

    textabstractOptical Coherence Tomography (OCT) is a light-based imaging modality that can provide in vivo high-resolution images of the coronary artery with a level of resolution (axial 10-20 µm) ten times higher than intravascular ultrasound. The technique, uses low-coherent near infrarred light

  1. Extended depth of focus contact lenses vs. two commercial multifocals: Part 1. Optical performance evaluation via computed through-focus retinal image quality metrics.

    Science.gov (United States)

    Bakaraju, Ravi C; Ehrmann, Klaus; Ho, Arthur

    To compare the computed optical performance of prototype lenses designed using deliberate manipulation of higher-order spherical aberrations to extend depth-of-focus (EDOF) with two commercial multifocals. Emmetropic, presbyopic, schematic eyes were coupled with prototype EDOF and commercial multifocal lenses (Acuvue Oasys for presbyopia, AOP, Johnson & Johnson & Air Optix Aqua multifocal, AOMF, Alcon). For each test configuration, the through-focus retinal image quality (TFRIQ) values were computed over 21 vergences, ranging from -0.50 to 2.00D, in 0.125D steps. Analysis was performed considering eyes with three different inherent aberration profiles: five different pupils and five different lens decentration levels. Except the LOW design, the AOP lenses offered 'bifocal' like TFRIQ performance. Lens performance was relatively independent to pupil and aberrations but not centration. Contrastingly, AOMF demonstrated distance centric performance, most dominant in LOW followed by MED and HIGH designs. AOMF lenses were the most sensitive to pupil, aberrations and centration. The prototypes demonstrated a 'lift-off' in the TFRIQ performance, particularly at intermediate and near, without trading performance at distance. When compared with AOP and AOMF, EDOF lenses demonstrated reduced sensitivity to pupil, aberrations and centration. With the through focus retinal image quality as the gauge of optical performance, we demonstrated that the prototype EDOF designs were less susceptible to variations in pupil, inherent ocular aberrations and decentration, compared to the commercial designs. To ascertain whether these incremental improvements translate to a clinically palpable outcome requires investigation through human trials. Copyright © 2017 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  2. Optical coherence tomography: Monte Carlo simulation and improvement by optical amplification

    DEFF Research Database (Denmark)

    Tycho, Andreas

    2002-01-01

    An advanced novel Monte Carlo simulation model of the detection process of an optical coherence tomography (OCT) system is presented. For the first time it is shown analytically that the applicability of the incoherent Monte Carlo approach to model the heterodyne detection process of an OCT system...... is firmly justified. This is obtained by calculating the heterodyne mixing of the reference and sample beams in a plane conjugate to the discontinuity in the sample probed by the system. Using this approach, a novel expression for the OCT signal is derived, which only depends uopon the intensity...... flexibility of Monte Carlo simulations, this new model is demonstrated to be excellent as a numerical phantom, i.e., as a substitute for otherwise difficult experiments. Finally, a new model of the signal-to-noise ratio (SNR) of an OCT system with optical amplification of the light reflected from the sample...

  3. Fundus autofluorescence and optical coherence tomographic findings in acute zonal occult outer retinopathy.

    Science.gov (United States)

    Fujiwara, Takamitsu; Imamura, Yutaka; Giovinazzo, Vincent J; Spaide, Richard F

    2010-09-01

    The purpose of this study was to investigate the fundus autofluorescence and optical coherence tomography findings in eyes with acute zonal occult outer retinopathy (AZOOR). A retrospective observational case series of the fundus autofluorescence and spectral domain optical coherence tomography in a series of patients with AZOOR. There were 19 eyes of 11 patients (10 women), who had a mean age of 49.1 +/- 13.9 years. Fundus autofluorescence abnormalities were seen in 17 of the 19 eyes, were more common in the peripapillary area, and were smaller in extent than the optical coherence tomography abnormalities. Nine eyes showed progression of hypoautofluorescence area during the mean follow-up of 69.7 months. The mean thickness of the photoreceptor layer at fovea was 177 microm in eyes with AZOOR, which was significantly thinner than controls (193 microm, P = 0.049). Abnormal retinal laminations were found in 12 eyes and were located over areas of loss of the photoreceptors. The subfoveal choroidal thickness was 243 microm, which is normal. Fundus autofluorescence abnormalities in AZOOR showed distinct patterns of retinal pigment epithelial involvement, which may be progressive. Thinning of photoreceptor cell layer with loss of the outer segments and abnormal inner retinal lamination in the context of a normal choroid are commonly found in AZOOR.

  4. Optical coherence tomography: a potential tool to predict premature rupture of fetal membranes.

    Science.gov (United States)

    Micili, Serap C; Valter, Markus; Oflaz, Hakan; Ozogul, Candan; Linder, Peter; Föckler, Nicole; Artmann, Gerhard M; Digel, Ilya; Artmann, Aysegul T

    2013-04-01

    A fundamental question addressed in this study was the feasibility of preterm birth prediction based on a noncontact investigation of fetal membranes in situ. Although the phenomena of preterm birth and the premature rupture of the fetal membrane are well known, currently, there are no diagnostic tools for their prediction. The aim of this study was to assess whether optical coherence tomography could be used for clinical investigations of high-risk pregnancies. The thickness of fetal membranes was measured in parallel by optical coherence tomography and histological techniques for the following types of birth: normal births, preterm births without premature ruptures and births at full term with premature rupture of membrane. Our study revealed that the membrane thickness correlates with the birth type. Normal births membranes were statistically significantly thicker than those belonging to the other two groups. Thus, in spite of almost equal duration of gestation of the normal births and the births at full term with premature rupture, the corresponding membrane thicknesses differed. This difference is possibly related to previously reported water accumulation in the membranes. The optical coherence tomography results were encouraging, suggesting that this technology could be used in future to predict and distinguish between different kinds of births.

  5. Replica casting technique for micro Fresnel lenses characterization

    DEFF Research Database (Denmark)

    Gasparin, Stefania; Tosello, Guido; Hansen, Hans Nørgaard

    2012-01-01

    The available measuring techniques are not always suitable for the characterization of optical surfaces such as Fresnel lenses or polished specimens. A way to overcome these challenges is to reproduce the optical components surface using a polymer casting method and to measure the replicated...

  6. Full-field parallel interferometry coherence probe microscope for high-speed optical metrology.

    Science.gov (United States)

    Safrani, A; Abdulhalim, I

    2015-06-01

    Parallel detection of several achromatic phase-shifted images is used to obtain a high-speed, high-resolution, full-field, optical coherence probe tomography system based on polarization interferometry. The high enface imaging speed, short coherence gate, and high lateral resolution provided by the system are exploited to determine microbump height uniformity in an integrated semiconductor chip at 50 frames per second. The technique is demonstrated using the Linnik microscope, although it can be implemented on any polarization-based interference microscopy system.

  7. Optic disc size and other parameters from optical coherence tomography in Vietnamese-Americans.

    Science.gov (United States)

    Peng, Pai-Huei; Fu, Sheena; Nguyen, Ngoc; Porco, Travis; Lin, Shan C

    2011-08-01

    To investigate the optic disc parameters by optical coherence tomography (OCT) in Vietnamese with various types of glaucoma. Medical charts of Vietnamese and White patients within a single practice were reviewed. Disc and rim areas by OCT were compared among nonglaucoma controls, different types of glaucoma, and glaucoma suspect. The association of these parameters with demographic and ocular features was evaluated. Data from 1416 Vietnamese and 57 White patients were included. A larger mean disc area was observed in eyes with primary angle-closure glaucoma than in eyes with primary angle-closure and primary angle-closure suspect (both PVietnamese patients with glaucoma and glaucoma suspicion had larger discs than diagnosis-matched Whites (P=0.043 and 0.021, respectively). Vietnamese patients with glaucoma seem to have larger optic discs than White patients. Central corneal thickness had no association with disc area in this study population.

  8. NONINVASIVE DIAGNOSIS OF BLADDER CANCER BY CROSS-POLARIZATION OPTICAL COHERENCE TOMOGRAPHY: A BLIND STATISTICAL STUDY

    Directory of Open Access Journals (Sweden)

    O. S. Streltsova

    2014-07-01

    Full Text Available Whether cross-polarization (CP optical coherence tomography (OCT could be used to detect early bladder cancer was ascertained; it was compared with traditional OCT within the framework of blind (closed clinical statistical studies. One hundred and sixteen patients with local nonexophytic (flat pathological processes of the bladder were examined; 360 CP OCT images were obtained and analyzed. The study used an OCT 1300-U CP optical coherence tomographer. CP OCT showed a high (94% sensitivity and a high (84% specificity in the identification of suspected nonexophytic areas in the urinary bladder.

  9. High resolution coherence domain depth-resolved nailfold capillaroscopy based on correlation mapping optical coherence tomography

    Science.gov (United States)

    Subhash, Hrebesh M.; O'Gorman, Sean; Neuhaus, Kai; Leahy, Martin

    2014-03-01

    In this paper we demonstrate a novel application of correlation mapping optical coherence tomography (cm-OCT) for volumetric nailfold capillaroscopy (NFC). NFC is a widely used non-invasive diagnostic method to analyze capillary morphology and microvascular abnormalities of nailfold area for a range of disease conditions. However, the conventional NFC is incapable of providing volumetric imaging, when volumetric quantitative microangiopathic parameters such as plexus morphology, capillary density, and morphologic anomalies of the end row loops most critical. cm-OCT is a recently developed well established coherence domain magnitude based angiographic modality, which takes advantage of the time-varying speckle effect, which is normally dominant in the vicinity of vascular regions compared to static tissue region. It utilizes the correlation coefficient as a direct measurement of decorrelation between two adjacent B-frames to enhance the visibility of depth-resolved microcirculation.

  10. X-ray lenses with large aperture

    International Nuclear Information System (INIS)

    Simon, Markus

    2010-01-01

    Up to now, most X-ray imaging setups are based on absorption contrast imaging. There is a demand for focused X-rays in many X-ray analysis applications, either to increase the resolution of an imaging system, or, to reduce the time effort of an experiment through higher photon flux. For photon energies higher than 15 keV refractive X-ray optics are more efficient in comparison to non-refractive X-ray optics. The aim of this work was to develop X-ray lenses with large apertures and high transparency. By increasing the number of refracting surfaces while removing unnecessary lens material such lenses have been developed. Utilizing this approach the overall beam deflection angle is large with respect to the lens material it propagates through and so the transparency of the lens is increased. Within this work, X-ray lenses consisting of several thousands of prisms with an edge length in the range of micrometers have been developed and fabricated by deep X-ray lithography. Deep X-ray lithography enables high precision microstrucures with smooth sidewalls and large aspect ratios. The aperture of high-transparency X-ray lenses made this way is greater than 1 mm. They are suitable for photon energies in the range of 8 keV to 24 keV and offer a focal width of smaller than 10 μm at a transparency of around 40%. Furthermore, rolled X-ray lenses have been developed, that are made out of a microstructured polyimide film, which is cut according to the requirements regarding focal length and photon energy. The microstructured film is fabricated by molding, using an anisotropically etched silicon wafer as molding tool. Its mean roughness is in the range of nanometers. The film features prismatic structures, its surface topology is similar to an asparagus field. The measured diameter of the point focus was 18 μm to 31 μm, the calculated opticla efficiency was 37%. Future work will concentrate on increasing the aspect ratio of Prism Lenses and on increasing the rolling accuracy

  11. Measuring optical properties of a blood vessel model using optical coherence tomography

    Science.gov (United States)

    Levitz, David; Hinds, Monica T.; Tran, Noi; Vartanian, Keri; Hanson, Stephen R.; Jacques, Steven L.

    2006-02-01

    In this paper we develop the concept of a tissue-engineered optical phantom that uses engineered tissue as a phantom for calibration and optimization of biomedical optics instrumentation. With this method, the effects of biological processes on measured signals can be studied in a well controlled manner. To demonstrate this concept, we attempted to investigate how the cellular remodeling of a collagen matrix affected the optical properties extracted from optical coherence tomography (OCT) images of the samples. Tissue-engineered optical phantoms of the vascular system were created by seeding smooth muscle cells in a collagen matrix. Four different optical properties were evaluated by fitting the OCT signal to 2 different models: the sample reflectivity ρ and attenuation parameter μ were extracted from the single scattering model, and the scattering coefficient μ s and root-mean-square scattering angle θ rms were extracted from the extended Huygens-Fresnel model. We found that while contraction of the smooth muscle cells was clearly evident macroscopically, on the microscopic scale very few cells were actually embedded in the collagen. Consequently, no significant difference between the cellular and acellular samples in either set of measured optical properties was observed. We believe that further optimization of our tissue-engineering methods is needed in order to make the histology and biochemistry of the cellular samples sufficiently different from the acellular samples on the microscopic level. Once these methods are optimized, we can better verify whether the optical properties of the cellular and acellular collagen samples differ.

  12. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation

    DEFF Research Database (Denmark)

    Falk, Erling

    2012-01-01

    The purpose of this document is to make the output of the International Working Group for Intravascular Optical Coherence Tomography (IWG-IVOCT) Standardization and Validation available to medical and scientific communities, through a peer-reviewed publication, in the interest of improving...

  13. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies : A report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation

    NARCIS (Netherlands)

    G.J. Tearney (Guillermo); E.S. Regar (Eveline); T. Akasaka (Takashi); S. Adriaenssens (Stef); P. Barlis (Peter); H.G. Bezerra (Hiram); B.E. Bouma (Brett); N. Bruining (Nico); J.-M. Cho (Jin-Man); S. Chowdhary (Saqib); M.A. Costa (Marco); R. de Silva (Ranil); J. Dijkstra (Jouke); C. di Mario (Carlo); D. Dudeck (Darius); E. Falk (Erling); M.D. Feldman (Marc); P.J. Fitzgerald (Peter); H.M. Garcia-Garcia (Hector); N. Gonzalo (Nieves); J.F. Granada (Juan); G. Guagliumi (Giulio); N.R. Holm (Niels); Y. Honda (Yasuhiro); F. Ikeno (Fumiaki); Y. Kawasaki; W. Kochman (Waclav); L. Koltowski (Lukasz); T. Kubo (Takashi); T. Kume (Teruyoshi); H. Kyono (Hiroyuki); C.C.S. Lam (Cheung Chi Simon); G. Lamouche (Guy); D.P. Lee (David); M.B. Leon (Martin); A. Maehara (Akiko); O. Manfrini (Olivia); G.S. Mintz (Gary); K. Mizuno (Kyiouchi); M-A.M. Morel (Marie-Angèle); S. Nadkarni (Seemantini); H. Okura (Hiroyuki); H. Otake (Hiromasa); A. Pietrasik (Arkadiusz); F. Prati (Francesco); L. Rber (Lorenz); M. Radu (Maria); N. Rieber (Nikolaus); M. Riga (Maria); S.M. Rollins; M. Rosenberg (Mireille); V. Sirbu (Vasile); P.W.J.C. Serruys (Patrick); K. Shimada; T. Shinke (Toshiro); J. Shite (Junya); E. Siegel (Eliot); S. Sonada (Shinjo); U. Suter (Ueli); S. Takarada (Shigeho); A. Tanaka (Atsushi); M. Terashima (Mitsuyasu); T. Troels (Thim); M. Uemura (Mayu); G.J. Ughi (Giovanni); H.M.M. van Beusekom (Heleen); A.F.W. van der Steen (Ton); G.A. van Es (Gerrit Anne); G. van Soest (Gijs); R. Virmani (Renu); S. Waxman (Sergio); N.J. Weissman (Neil); G. Weisz (Giora)

    2012-01-01

    textabstractObjectives: The purpose of this document is to make the output of the International Working Group for Intravascular Optical Coherence Tomography (IWG-IVOCT) Standardization and Validation available to medical and scientific communities, through a peer-reviewed publication, in the

  14. Parabolic crossed planar polymeric x-ray lenses

    Science.gov (United States)

    Nazmov, V.; Reznikova, E.; Mohr, J.; Saile, V.; Vincze, L.; Vekemans, B.; Bohic, S.; Somogyi, A.

    2011-01-01

    The principles of design and manufacturing of the polymer planar x-ray lenses focusing in one and two directions, as well as the peculiarities of optical behaviors and the results of the lens test are reported in this paper. The methods of electron and deep x-ray lithography used in lens manufacturing allow the manufacture of ten or more x-ray lenses on one substrate; the lenses show focal lengths down to several centimeters for photon energies between 5 and 40 keV. The measured focus size was 105 nm for a linear lens with an intensity gain of about 407, and 300 × 770 nm for a crossed lens with an intensity gain of 6470.

  15. Speckle-modulating optical coherence tomography in living mice and humans

    Science.gov (United States)

    Liba, Orly; Lew, Matthew D.; Sorelle, Elliott D.; Dutta, Rebecca; Sen, Debasish; Moshfeghi, Darius M.; Chu, Steven; de La Zerda, Adam

    2017-06-01

    Optical coherence tomography (OCT) is a powerful biomedical imaging technology that relies on the coherent detection of backscattered light to image tissue morphology in vivo. As a consequence, OCT is susceptible to coherent noise (speckle noise), which imposes significant limitations on its diagnostic capabilities. Here we show speckle-modulating OCT (SM-OCT), a method based purely on light manipulation that virtually eliminates speckle noise originating from a sample. SM-OCT accomplishes this by creating and averaging an unlimited number of scans with uncorrelated speckle patterns without compromising spatial resolution. Using SM-OCT, we reveal small structures in the tissues of living animals, such as the inner stromal structure of a live mouse cornea, the fine structures inside the mouse pinna, and sweat ducts and Meissner's corpuscle in the human fingertip skin--features that are otherwise obscured by speckle noise when using conventional OCT or OCT with current state of the art speckle reduction methods.

  16. Zoom system without moving element by using two liquid crystal lenses with spherical electrode

    Science.gov (United States)

    Yang, Ren-Kai; Lin, Chia-Ping; Su, Guo-Dung J.

    2017-08-01

    A traditional zoom system is composed of several elements moving relatively toward other components to achieve zooming. Unlike tradition system, an electrically control zoom system with liquid crystal (LC) lenses is demonstrated in this paper. To achieve zooming, we apply two LC lenses whose optical power is controlled by voltage to replace two moving lenses in traditional zoom system. The mechanism of zoom system is to use two LC lenses to form a simple zoom system. We found that with such spherical electrodes, we could operate LC lens at voltage range from 31V to 53 V for 3X tunability in optical power. For each LC lens, we use concave spherical electrode which provide lower operating voltage and great tunability in optical power, respectively. For such operating voltage and compact size, this zoom system with zoom ratio approximate 3:1 could be applied to mobile phone, camera and other applications.

  17. Theoretical and Experimental Study of Optical Coherence Tomography (OCT) Signals Using an Analytical Transport Model

    International Nuclear Information System (INIS)

    Vazquez Villa, A.; Delgado Atencio, J. A.; Vazquez y Montiel, S.; Cunill Rodriguez, M.; Martinez Rodriguez, A. E.; Ramos, J. Castro; Villanueva, A.

    2010-01-01

    Optical coherence tomography (OCT) is a non-invasive low coherent interferometric technique that provides cross-sectional images of turbid media. OCT is based on the classical Michelson interferometer where the mirror of the reference arm is oscillating and the signal arm contains a biological sample. In this work, we analyzed theoretically the heterodyne optical signal adopting the so called extended Huygens-Fresnel principle (EHFP). We use simulated OCT images with known optical properties to test an algorithm developed by ourselves to recover the scattering coefficient and we recovered the scattering coefficient with a relative error less than 5% for noisy signals. In addition, we applied this algorithm to OCT images from phantoms of known optical properties; in this case curves were indistinguishable. A revision of the validity of the analytical model applied to our system should be done.

  18. Automation Enhancement of Multilayer Laue Lenses

    Energy Technology Data Exchange (ETDEWEB)

    Lauer K. R.; Conley R.

    2010-12-01

    X-ray optics fabrication at Brookhaven National Laboratory has been facilitated by a new, state of the art magnetron sputtering physical deposition system. With its nine magnetron sputtering cathodes and substrate carrier that moves on a linear rail via a UHV brushless linear servo motor, the system is capable of accurately depositing the many thousands of layers necessary for multilayer Laue lenses. I have engineered a versatile and automated control program from scratch for the base system and many subsystems. Its main features include a custom scripting language, a fully customizable graphical user interface, wireless and remote control, and a terminal-based interface. This control system has already been successfully used in the creation of many types of x-ray optics, including several thousand layer multilayer Laue lenses.Before reaching the point at which a deposition can be run, stencil-like masks for the sputtering cathodes must be created to ensure the proper distribution of sputtered atoms. Quality of multilayer Laue lenses can also be difficult to measure, given the size of the thin film layers. I employ my knowledge of software and algorithms to further ease these previously painstaking processes with custom programs. Additionally, I will give an overview of an x-ray optic simulator package I helped develop during the summer of 2010. In the interest of keeping my software free and open, I have worked mostly with the multiplatform Python and the PyQt application framework, utilizing C and C++ where necessary.

  19. Stationary nonimaging lenses for solar concentration.

    Science.gov (United States)

    Kotsidas, Panagiotis; Chatzi, Eleni; Modi, Vijay

    2010-09-20

    A novel approach for the design of refractive lenses is presented, where the lens is mounted on a stationary aperture and the Sun is tracked by a moving solar cell. The purpose of this work is to design a quasi-stationary concentrator by replacing the two-axis tracking of the Sun with internal motion of the miniaturized solar cell inside the module. Families of lenses are designed with a variation of the simultaneous multiple surface technique in which the sawtooth genetic algorithm is implemented to optimize the geometric variables of the optic in order to produce high fluxes for a range of incidence angles. Finally, we show examples of the technique for lenses with 60° and 30° acceptance half-angles, with low to medium attainable concentrations.

  20. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment

    Science.gov (United States)

    Udalski, A.; Szymański, M. K.; Szymański, G.

    2015-03-01

    We present both the technical overview and main science drivers of the fourth phase of the Optical Gravitational Lensing Experiment (hereafter OGLE-IV). OGLE-IV is currently one of the largest sky variability surveys worldwide, targeting the densest stellar regions of the sky. The survey covers over 3000 square degrees in the sky and monitors regularly over a billion sources. The main targets include the inner Galactic Bulge and the Magellanic System. Their photometry spans the range of 12System and the Galactic disk. OGLE-IV provides the astronomical community with a number of real time services. The Early Warning System (EWS) contains information on two thousand gravitational microlensing events being discovered in real time annually, the OGLE Transient Detection System (OTDS) delivers over 200 supernovae a year. We also provide the real time photometry of unpredictable variables such as optical counterparts to the X-ray sources and R Coronae Borealis stars. Hundreds of thousands new variable stars have already been discovered and classified by the OGLE survey. The number of new detections will be at least doubled during the current OGLE-IV phase. The survey was designed and optimized primarily to conduct the second generation microlensing survey for exoplanets. It has already contributed significantly to the increase of the discovery rate of microlensing exoplanets and free-floating planets.

  1. Design and fabrication of Si-HDPE hybrid Fresnel lenses for infrared imaging systems.

    Science.gov (United States)

    Manaf, Ahmad Rosli Abdul; Sugiyama, Tsunetoshi; Yan, Jiwang

    2017-01-23

    In this work, novel hybrid Fresnel lenses for infrared (IR) optical applications were designed and fabricated. The Fresnel structures were replicated from an ultraprecision diamond-turned aluminum mold to an extremely thin layer (tens of microns) of high-density polyethylene polymer, which was directly bonded onto a flat single-crystal silicon wafer by press molding without using adhesives. Night mode imaging results showed that the fabricated lenses were able to visualize objects in dark fields with acceptable image quality. The capability of the lenses for thermography imaging was also demonstrated. This research provides a cost-effective method for fabricating ultrathin IR optical components.

  2. Plasma surface modification of rigid contact lenses decreases bacterial adhesion.

    Science.gov (United States)

    Wang, Yingming; Qian, Xuefeng; Zhang, Xiaofeng; Xia, Wei; Zhong, Lei; Sun, Zhengtai; Xia, Jing

    2013-11-01

    Contact lens safety is an important topic in clinical studies. Corneal infections usually occur because of the use of bacteria-carrying contact lenses. The current study investigated the impact of plasma surface modification on bacterial adherence to rigid contact lenses made of fluorosilicone acrylate materials. Boston XO and XO2 contact lenses were modified using plasma technology (XO-P and XO2-P groups). Untreated lenses were used as controls. Plasma-treated and control lenses were incubated in solutions containing Staphylococcus aureus or Pseudomonas aeruginosa. MTT colorimetry, colony-forming unit counting method, and scanning electron microscopy were used to measure bacterial adhesion. MTT colorimetry measurements showed that the optical density (OD) values of XO-P and XO2-P were significantly lower than those of XO and XO2, respectively, after incubation with S. aureus (P lenses and to the XO2-P versus XO2 lenses incubated with S. aureus (P lenses incubated with P. aeruginosa (P lenses. Plasma surface modification can significantly decrease bacterial adhesion to fluorosilicone acrylate contact lenses. This study provides important evidence of a unique benefit of plasma technology in contact lens surface modification.

  3. Quantifying Optical Microangiography Images Obtained from a Spectral Domain Optical Coherence Tomography System

    Directory of Open Access Journals (Sweden)

    Roberto Reif

    2012-01-01

    Full Text Available The blood vessel morphology is known to correlate with several diseases, such as cancer, and is important for describing several tissue physiological processes, like angiogenesis. Therefore, a quantitative method for characterizing the angiography obtained from medical images would have several clinical applications. Optical microangiography (OMAG is a method for obtaining three-dimensional images of blood vessels within a volume of tissue. In this study we propose to quantify OMAG images obtained with a spectral domain optical coherence tomography system. A technique for determining three measureable parameters (the fractal dimension, the vessel length fraction, and the vessel area density is proposed and validated. Finally, the repeatability for acquiring OMAG images is determined, and a new method for analyzing small areas from these images is proposed.

  4. Dental calculus image based on optical coherence tomography

    Science.gov (United States)

    Hsieh, Yao-Sheng; Ho, Yi-Ching; Lee, Shyh-Yuan; Chuang, Ching-Cheng; Wang, Chun-Yang; Sun, Chia-Wei

    2011-03-01

    In this study, the dental calculus was characterized and imaged by means of swept-source optical coherence tomography (SSOCT). The refractive indices of enamel, dentin, cementum and calculus were measured as 1.625+/-0.024, 1.534+/-0.029, 1.570+/-0.021 and 1.896+/-0.085, respectively. The dental calculus lead strong scattering property and thus the region can be identified under enamel with SSOCT imaging. An extracted human tooth with calculus was covered by gingiva tissue as in vitro sample for SSOCT imaging.

  5. Detection of bladder tumors using optical coherence tomography

    Science.gov (United States)

    Pan, Yingtian; Xie, Tuqiang; Wang, Zhenguo

    2004-07-01

    This paper summarizes the engineering development of our lab for endoscopic optical coherence tomography toward the ultimate goal to image bladder micro architecture and to diagnose bladder cancers. To test the utility and potential limitations of OCT setups for bladder tumor diagnosis, we used a rat bladder cancer model to track the morphological changes following tumor growth. Image results are presented, suggesting that OCT is able to differentiate cancerous lesions from inflammatory lesions based on OCT characterizations of epithelial thickness and backscattering changes of bladder tissue.

  6. Method of optical coherence tomography with parallel depth-resolved signal reception and fibre-optic phase modulators

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, A N; Turchin, I V [Institute of Applied Physics, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation)

    2013-12-31

    The method of optical coherence tomography with the scheme of parallel reception of the interference signal (P-OCT) is developed on the basis of spatial paralleling of the reference wave by means of a phase diffraction grating producing the appropriate time delay in the Mach–Zehnder interferometer. The absence of mechanical variation of the optical path difference in the interferometer essentially reduces the time required for 2D imaging of the object internal structure, as compared to the classical OCT that uses the time-domain method of the image construction, the sensitivity and the dynamic range being comparable in both approaches. For the resulting field of the interfering object and reference waves an analytical expression is derived that allows the calculation of the autocorrelation function in the plane of photodetectors. For the first time a method of linear phase modulation by 2π is proposed for P-OCT systems, which allows the use of compact high-frequency (a few hundred kHz) piezoelectric cell-based modulators. For the demonstration of the P-OCT method an experimental setup was created, using which the images of the inner structure of biological objects at the depth up to 1 mm with the axial spatial resolution of 12 μm were obtained. (optical coherence tomography)

  7. Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits

    Science.gov (United States)

    Balram, Krishna C.; Davanço, Marcelo I.; Song, Jin Dong; Srinivasan, Kartik

    2016-01-01

    Optomechanical cavities have been studied for applications ranging from sensing to quantum information science. Here, we develop a platform for nanoscale cavity optomechanical circuits in which optomechanical cavities supporting co-localized 1550 nm photons and 2.4 GHz phonons are combined with photonic and phononic waveguides. Working in GaAs facilitates manipulation of the localized mechanical mode either with a radio frequency (RF) field through the piezo-electric effect, which produces acoustic waves that are routed and coupled to the optomechanical cavity by phononic crystal waveguides, or optically through the strong photoelastic effect. Along with mechanical state preparation and sensitive readout, we use this to demonstrate an acoustic wave interference effect, similar to atomic coherent population trapping, in which RF-driven coherent mechanical motion is cancelled by optically-driven motion. Manipulating cavity optomechanical systems with equal facility through both photonic and phononic channels enables new architectures for signal transduction between the optical, electrical, and mechanical domains. PMID:27446234

  8. Liquid sorption investigation of porous media by optical coherence tomography

    International Nuclear Information System (INIS)

    Fabritius, Tapio; Myllylae, Risto

    2006-01-01

    This paper introduces an alternative optical method to measuring liquid penetration into porous highly scattering media. Using pure glycerol, the method was tested by measuring glycerol sorption into cellulose fibre tissue with a grammage of 115 g m -2 . During the wetting process, dynamical changes in the scattering properties of the fibre tissue were detected by optical coherence tomography. Measurements were made from a single point on the front and back surface of a sample. Although the effect of penetration on the optical properties of a porous structure can be seen independent of measurement direction, the border between the dry and wetted area is detectable only in front surface measurements. In addition, the paper experimentally investigates the temporally and spatially dependent swelling behaviour of paper

  9. Optical coherence tomography visualizes neurons in human entorhinal cortex

    Science.gov (United States)

    Magnain, Caroline; Augustinack, Jean C.; Konukoglu, Ender; Frosch, Matthew P.; Sakadžić, Sava; Varjabedian, Ani; Garcia, Nathalie; Wedeen, Van J.; Boas, David A.; Fischl, Bruce

    2015-01-01

    Abstract. The cytoarchitecture of the human brain is of great interest in diverse fields: neuroanatomy, neurology, neuroscience, and neuropathology. Traditional histology is a method that has been historically used to assess cell and fiber content in the ex vivo human brain. However, this technique suffers from significant distortions. We used a previously demonstrated optical coherence microscopy technique to image individual neurons in several square millimeters of en-face tissue blocks from layer II of the human entorhinal cortex, over 50  μm in depth. The same slices were then sectioned and stained for Nissl substance. We registered the optical coherence tomography (OCT) images with the corresponding Nissl stained slices using a nonlinear transformation. The neurons were then segmented in both images and we quantified the overlap. We show that OCT images contain information about neurons that is comparable to what can be obtained from Nissl staining, and thus can be used to assess the cytoarchitecture of the ex vivo human brain with minimal distortion. With the future integration of a vibratome into the OCT imaging rig, this technique can be scaled up to obtain undistorted volumetric data of centimeter cube tissue blocks in the near term, and entire human hemispheres in the future. PMID:25741528

  10. Characterization of nanophotonic soft contact lenses based on poly (2-hydroxyethyl methacrylate and fullerene

    Directory of Open Access Journals (Sweden)

    Debeljković Aleksandra D.

    2013-01-01

    Full Text Available This work presents comparative research of characteristics of a basic and new nanophotonic material, the latter of which was obtained by incorporation fullerene, C60, in the base material for soft contact lenses. The basic (SL38 and nanophotonic materials (SL38-A for soft contact lenses were obtained by radical polymerization of 2-hydroxyethyl methacrylate and 2-hydroxyethyl methacrylate and fullerene, which were derived by the technology in the production lab of the company Soleko (Milan, Italy. The materials were used for production of soft contact lenses in the company Optix (Belgrade, Serbia for the purposes of this research. Fullerene was used due to its apsorption transmission characteristics in ultraviolet, visible and near infrared spectrum. For the purposes of material characterization for potential application as soft contact lenses, network parameters were calculated and SEM analysis of the materials was performed while the optical properties of the soft contact lenses were measured by a Rotlex device. The values of the diffusion exponent, n, close to 0.5 indicated Fick's kinetics corresponding to diffusion. The investigated hydrogels could be classified as nonporous hydrogels. With Rotlex device, values of optical power and map of defects were showed. The obtained values of optical power and map of defects showed that the optical power of synthesized nanophotonic soft contact lens is identical to the nominal value while this was not the case for the basic lens. Also, the quality of the nanophotonic soft contact lens is better than the basic soft contact lens. Hence, it is possible to synthesize new nanophotonic soft contact lenses of desired optical characteristics, implying possibilities for their application in this field.

  11. In vivo assessment of optical properties of basal cell carcinoma and differentiation of BCC subtypes by high-definition optical coherence tomography

    DEFF Research Database (Denmark)

    Boone, Marc; Suppa, Mariano; Miyamoto, Makiko

    2016-01-01

    High-definition optical coherence tomography (HD-OCT) features of basal cell carcinoma (BCC) have recently been defined. We assessed in vivo optical properties (IV-OP) of BCC, by HD-OCT. Moreover their critical values for BCC subtype differentiation were determined. The technique of semi-log plot...

  12. Strong lensing of gravitational waves as seen by LISA.

    Science.gov (United States)

    Sereno, M; Sesana, A; Bleuler, A; Jetzer, Ph; Volonteri, M; Begelman, M C

    2010-12-17

    We discuss strong gravitational lensing of gravitational waves from the merging of massive black hole binaries in the context of the LISA mission. Detection of multiple events would provide invaluable information on competing theories of gravity, evolution and formation of structures and, possibly, constraints on H0 and other cosmological parameters. Most of the optical depth for lensing is provided by intervening massive galactic halos, for which wave optics effects are negligible. Probabilities to observe multiple events are sizable for a broad range of formation histories. For the most optimistic models, up to ≲ 4 multiple events with a signal to noise ratio ≳ 8 are expected in a 5-year mission. Chances are significant even for conservative models with either light (≲ 60%) or heavy (≲ 40%) seeds. Because of lensing amplification, some intrinsically too faint signals are brought over threshold (≲ 2 per year).

  13. Controllable optical bistability and multistability in asymmetric double quantum wells via spontaneously generated coherence

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuan; Deng, Li [Department of Applied Physics, East China Jiaotong University, Nanchang, 330013 (China); Chen, Aixi, E-mail: aixichen@ecjtu.jx.cn [Department of Applied Physics, East China Jiaotong University, Nanchang, 330013 (China); Institute for Quantum Computing, University of Waterloo, Ontario N2L 3G1 (Canada)

    2015-02-15

    We investigate the nonlinear optical phenomena of the optical bistability and multistability via spontaneously generated coherence in an asymmetric double quantum well structure coupled by a weak probe field and a controlling field. It is shown that the threshold and hysteresis cycle of the optical bistability can be conveniently controlled only by adjusting the intensity of the SGC or the controlling field. Moreover, switching between optical bistability and multistability can be achieved. These studies may have practical significance for the preparation of optical bistable switching device.

  14. Controllable optical bistability and multistability in asymmetric double quantum wells via spontaneously generated coherence

    International Nuclear Information System (INIS)

    Chen, Yuan; Deng, Li; Chen, Aixi

    2015-01-01

    We investigate the nonlinear optical phenomena of the optical bistability and multistability via spontaneously generated coherence in an asymmetric double quantum well structure coupled by a weak probe field and a controlling field. It is shown that the threshold and hysteresis cycle of the optical bistability can be conveniently controlled only by adjusting the intensity of the SGC or the controlling field. Moreover, switching between optical bistability and multistability can be achieved. These studies may have practical significance for the preparation of optical bistable switching device

  15. Intense coherent longitudinal optical phonons in CuI thin films under exciton-excitation conditions

    International Nuclear Information System (INIS)

    Kojima, O.; Mizoguchi, K.; Nakayama, M..

    2005-01-01

    We have investigated the dynamical properties of the coherent longitudinal optical (LO) phonon in CuI thin films grown on a NaCl substrate by vacuum deposition. The intense coherent LO phonon in the CuI thin film is observed under the exciton-excitation conditions. Moreover, the pump-energy dependence of the amplitude of the coherent LO phonon shows peaks at the heavy-hole and light-hole exciton energies. The enhancement of the coherent LO phonon under the exciton-resonance condition is much larger than that in an ordinary semiconductor quantum well system such as a GaAs/AlAs one. These facts demonstrate that the intense coherent LO phonon is generated under the exciton-excitation condition in a material with a strong exciton-phonon interaction such as CuI

  16. Observations of gravitational lenses

    International Nuclear Information System (INIS)

    Fort, B.

    1990-01-01

    During the last tow years a burst of results has come from radio and optical surveys of ''galaxy lenses'' (where the main deflector is a galaxy). These are reviewed. On the other hand, in September 1985 we pointed out a very strange blue ring-like structure on a Charge-Coupled Device image of the cluster of galaxies Abell 370. This turned out to be Einstein arcs discovery. Following this discovery, new observational results have shown that many rich clusters of galaxies can produce numerous arclets: tangentially distorted images of an extremely faint galaxy population probably located at redshift larger than 1. This new class of gravitational lenses proves to be an important observational topic and this will be discussed in the second part of the paper. (author)

  17. Optical coherence tomography--a new imaging method in ophthalmology.

    Science.gov (United States)

    Svorenova, I; Strmen, P; Olah, Z

    2010-01-01

    An improvement of examination methods in ophthalmology, technical digitalisation and knowledge of validity of examinations in various diseases contributes to early diagnostics, thereby leading to an opportunity for early treatment of eye disorders. Standard introduction of the so-called optical coherence tomography into the ophthamological clinical practice facilitated new options for a detailed analysis of pathological processes in the particular layers of the retina (Fig. 2, Ref. 5). Full Text (Free, PDF) www.bmj.sk.

  18. Optical coherent tomography in diagnoses of peripheral retinal degenarations

    OpenAIRE

    O. G. Pozdeyeva; T. B. Shaimov; A. Yu. Galin; R. B. Shaimov; T. A. Shaimova; A. V. Zolotova; A. V. Fomin

    2014-01-01

    Purpose: Studying the capabilities of optical coherence tomography (RTVue-100, OPTOVUE, USA) in evaluation of peripheral retinal degenerations, vitreoretinal adhesions, adjacent vitreous body as well as measurement of morphometric data.Methods: The study included 189 patients (239 eyes) with peripheral retinal degeneration. 77 men and 112 women aged 18 to 84 underwent an ophthalmologic examination since November 2012 until October 2013. The peripheral retina was visualized with the help of op...

  19. All fiber optics circular-state swept source polarization-sensitive optical coherence tomography.

    Science.gov (United States)

    Lin, Hermann; Kao, Meng-Chun; Lai, Chih-Ming; Huang, Jyun-Cin; Kuo, Wen-Chuan

    2014-02-01

    A swept source (SS)-based circular-state (CS) polarization-sensitive optical coherence tomography (PS-OCT) constructed entirely with polarization-maintaining fiber optics components is proposed with the experimental verification. By means of the proposed calibration scheme, bulk quarter-wave plates can be replaced by fiber optics polarization controllers to, therefore, realize an all-fiber optics CS SSPS-OCT. We also present a numerical dispersion compensation method, which can not only enhance the axial resolution, but also improve the signal-to-noise ratio of the images. We demonstrate that this compact and portable CS SSPS-OCT system with an accuracy comparable to bulk optics systems requires less stringent lens alignment and can possibly serve as a technology to realize PS-OCT instrument for clinical applications (e.g., endoscopy). The largest deviations in the phase retardation (PR) and fast-axis (FA) angle due to sample probe in the linear scanning and a rotation angle smaller than 65 deg were of the same order as those in stationary probe setups. The influence of fiber bending on the measured PR and FA is also investigated. The largest deviations of the PR were 3.5 deg and the measured FA change by ~12 to 21 deg. Finally, in vivo imaging of the human fingertip and nail was successfully demonstrated with a linear scanning probe.

  20. Alterations of the outer retina in non-arteritic anterior ischaemic optic neuropathy detected using spectral-domain optical coherence tomography.

    Science.gov (United States)

    Ackermann, Philipp; Brachert, Maike; Albrecht, Philipp; Ringelstein, Marius; Finis, David; Geerling, Gerd; Aktas, Orhan; Guthoff, Rainer

    2017-07-01

    A characteristic disease pattern may be reflected by retinal layer thickness changes in non-arteritic anterior ischaemic optic neuropathy measured using spectraldomain optical coherence tomography. Retinal layer segmentation is enabled by advanced software. In this study, retinal layer thicknesses in acute and chronic non-arteritic anterior ischaemic optic neuropathy were compared. A single-centre cross-sectional analysis was used. A total of 27 patients (20 age-matched healthy eyes) were included: 14 with acute (optic neuropathy. Macular volume and 12° peripapillary ring optical coherence tomography scans were used. The peripapillary thicknesses of the following layers were determined by manual segmentation: retinal nerve fibres, ganglion cells + inner plexiform layer, inner nuclear layer + outer plexiform layer, outer nuclear layer + inner segments of the photoreceptors and outer segments of the photoreceptors to Bruch's membrane. Macular retinal layer thicknesses were automatically determined in volume cubes centred on the fovea. Peripapillary retinal swelling in acute nonarteritic anterior ischaemic optic neuropathy was attributable to retinal nerve fibre layer, ganglion cell layer/inner plexiform layer and outer nuclear layer/segments of the photoreceptors thickening. In chronic cases, peripapillary retinal nerve fibre layer, macular ganglion cell layer and inner plexiform layer thinning were observed. In acute non-arteritic anterior ischaemic optic neuropathy, the inner and outer peripapillary retinal layers are affected by thickness changes. In chronic cases, atrophy of the ganglion cells and their axons and dendrites is evident by inner retinal layer thinning. © 2017 Royal Australian and New Zealand College of Ophthalmologists.

  1. Noise-immune complex correlation for optical coherence angiography based on standard and Jones matrix optical coherence tomography.

    Science.gov (United States)

    Makita, Shuichi; Kurokawa, Kazuhiro; Hong, Young-Joo; Miura, Masahiro; Yasuno, Yoshiaki

    2016-04-01

    This paper describes a complex correlation mapping algorithm for optical coherence angiography (cmOCA). The proposed algorithm avoids the signal-to-noise ratio dependence and exhibits low noise in vasculature imaging. The complex correlation coefficient of the signals, rather than that of the measured data are estimated, and two-step averaging is introduced. Algorithms of motion artifact removal based on non perfusing tissue detection using correlation are developed. The algorithms are implemented with Jones-matrix OCT. Simultaneous imaging of pigmented tissue and vasculature is also achieved using degree of polarization uniformity imaging with cmOCA. An application of cmOCA to in vivo posterior human eyes is presented to demonstrate that high-contrast images of patients' eyes can be obtained.

  2. Noise-immune complex correlation for optical coherence angiography based on standard and Jones matrix optical coherence tomography

    Science.gov (United States)

    Makita, Shuichi; Kurokawa, Kazuhiro; Hong, Young-Joo; Miura, Masahiro; Yasuno, Yoshiaki

    2016-01-01

    This paper describes a complex correlation mapping algorithm for optical coherence angiography (cmOCA). The proposed algorithm avoids the signal-to-noise ratio dependence and exhibits low noise in vasculature imaging. The complex correlation coefficient of the signals, rather than that of the measured data are estimated, and two-step averaging is introduced. Algorithms of motion artifact removal based on non perfusing tissue detection using correlation are developed. The algorithms are implemented with Jones-matrix OCT. Simultaneous imaging of pigmented tissue and vasculature is also achieved using degree of polarization uniformity imaging with cmOCA. An application of cmOCA to in vivo posterior human eyes is presented to demonstrate that high-contrast images of patients’ eyes can be obtained. PMID:27446673

  3. Infrared imaging and spectral-domain optical coherence tomography findings correlate with microperimetry in acute macular neuroretinopathy: a case report

    Directory of Open Access Journals (Sweden)

    Grover Sandeep

    2011-10-01

    Full Text Available Abstract Introduction Spectral-domain optical coherence tomography findings in a patient with acute macular neuroretinopathy, and correlation with functional defects on microperimetry, are presented. Case presentation A 25-year old Caucasian woman presented with bitemporal field defects following an upper respiratory tract infection. Her visual acuity was 20/20 in both eyes and a dilated fundus examination revealed bilateral hyperpigmentary changes in the papillomacular bundle. Our patient underwent further evaluation with spectral-domain optical coherence tomography, infrared and fundus autofluorescence imaging. Functional changes were assessed by microperimetry. Infrared imaging showed the classic wedge-shaped defects and spectral-domain optical coherence tomography exhibited changes at the inner segment-outer segment junction, with a thickened outer plexiform layer overlying these areas. Fluorescein and indocyanine green angiography did not demonstrate any perfusion defects or any other abnormality. Microperimetry demonstrated focal elevation in threshold correlating with the wedge-shaped defects in both eyes. Conclusion Spectral-domain optical coherence tomography findings provide new evidence of the involvement of the outer plexiform layer of the retina in acute macular neuroretinopathy.

  4. CAPILLARY NETWORK ALTERATIONS IN X-LINKED RETINOSCHISIS IMAGED ON OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY.

    Science.gov (United States)

    Romano, Francesco; Arrigo, Alessandro; Chʼng, Soon Wai; Battaglia Parodi, Maurizio; Manitto, Maria Pia; Martina, Elisabetta; Bandello, Francesco; Stanga, Paulo E

    2018-06-05

    To assess foveal and parafoveal vasculature at the superficial capillary plexus, deep capillary plexus, and choriocapillaris of patients with X-linked retinoschisis by means of optical coherence tomography angiography. Six patients with X-linked retinoschisis (12 eyes) and seven healthy controls (14 eyes) were recruited and underwent complete ophthalmologic examination, including best-corrected visual acuity, dilated fundoscopy, and 3 × 3-mm optical coherence tomography angiography macular scans (DRI OCT Triton; Topcon Corp). After segmentation and quality review, optical coherence tomography angiography slabs were imported into ImageJ 1.50 (NIH; Bethesda) and digitally binarized. Quantification of vessel density was performed after foveal avascular zone area measurement and exclusion. Patients were additionally divided into "responders" and "nonresponders" to dorzolamide therapy. Foveal avascular zone area resulted markedly enlarged at the deep capillary plexus (P < 0.001), particularly in nonresponders. Moreover, patients disclosed a significant deep capillary plexus rarefaction, when compared with controls (P: 0.04); however, a subanalysis revealed that this damage was limited to the fovea (P: 0.006). Finally, the enlargement of foveal avascular zone area positively correlated with a decline in best-corrected visual acuity (P: 0.01). Prominent foveal vascular impairment is detectable in the deep capillary plexus of patients with X-linked retinoschisis. Our results correlate with functional outcomes, suggesting a possible vascular role in X-linked retinoschisis clinical manifestations.

  5. Fiber optic coherent laser radar 3D vision system

    International Nuclear Information System (INIS)

    Clark, R.B.; Gallman, P.G.; Slotwinski, A.R.; Wagner, K.; Weaver, S.; Xu, Jieping

    1996-01-01

    This CLVS will provide a substantial advance in high speed computer vision performance to support robotic Environmental Management (EM) operations. This 3D system employs a compact fiber optic based scanner and operator at a 128 x 128 pixel frame at one frame per second with a range resolution of 1 mm over its 1.5 meter working range. Using acousto-optic deflectors, the scanner is completely randomly addressable. This can provide live 3D monitoring for situations where it is necessary to update once per second. This can be used for decontamination and decommissioning operations in which robotic systems are altering the scene such as in waste removal, surface scarafacing, or equipment disassembly and removal. The fiber- optic coherent laser radar based system is immune to variations in lighting, color, or surface shading, which have plagued the reliability of existing 3D vision systems, while providing substantially superior range resolution

  6. CHARACTERISTICS OF EPIRETINAL MEMBRANE REMNANT EDGE BY OPTICAL COHERENCE TOMOGRAPHY AFTER PARS PLANA VITRECTOMY.

    Science.gov (United States)

    Gaber, Raouf; You, Qi Sheng; Muftuoglu, Ilkay Kilic; Alam, Mostafa; Tsai, Frank F; Mendoza, Nadia; Freeman, William R

    2017-11-01

    To evaluate the incidence, characteristics, and the progression of epiretinal membrane (ERM) remnant edge seen by optical coherence tomography after ERM peeling. A retrospective chart review was conducted for 86 eyes of 85 consecutive patients who were diagnosed with ERM and underwent pars plana vitrectomy for epiretinal membrane peeling between 2013 and 2014. Data collected and analyzed included age, gender, preoperative and postoperative visual acuity, use of indocyanine green dye to stain internal limiting membrane, tamponade used after vitrectomy, ERM edge boundaries, presence of cystoid macular edema, and central foveal thickness. An ERM remnant edge was detected in 33/86 study eyes (38.4%) at the first postoperative optical coherence tomography scan. Compared with those without an ERM remnant, patients with an ERM remnant after surgery were significantly older at baseline and had a higher incidence of ERM recurrence at their last visit. They were not significantly different in terms of gender, preoperative and postoperative visual acuity, reduction of central foveal thickness from baseline, proportion of eyes with preoperative ERM elevation on optical coherence tomography, presence of macular edema before surgery, intraoperative use of indocyanine green staining for ILM peeling, or tamponade used. Based on the edge morphology, we classified the ERM remnant into three types: Type 1 was flat and blended with the retina (14/33 eyes, 42.4%), Type 2 was flat but stepped (17/33 eyes, 51.5%), and Type 3 was elevated (2/33 eyes, 6.0%). A significantly higher risk of ERM recurrence was seen in Type 2 and Type 3 ERM remnants (75% and 100%, respectively) than Type 1 ERM remnants (10%). An ERM remnant edge was detected by optical coherence tomography after ERM peeling in 38.4% of eyes. The presence of a postoperative ERM edge was associated with a higher risk of ERM recurrence, particularly in Type 2 and Type 3 ERM remnants.

  7. Optical coherence tomography for glucose monitoring in blood

    Science.gov (United States)

    Ullah, Hafeez; Hussain, Fayyaz; Ikram, Masroor

    2015-08-01

    In this review, we have discussed the potential application of the emerging imaging modality, i.e., optical coherence tomography (OCT) for glucose monitoring in biological tissues. OCT provides monitoring of glucose diffusion in different fibrous tissues like in sclera by determining the permeability rate with acceptable accuracy both in type 1 and in type 2 diabetes. The maximum precision of glucose measurement in Intralipid suspensions, for example, with the OCT technique yields the accuracy up to 4.4 mM for 10 % Intralipid and 2.2 mM for 3 % Intralipid.

  8. Wavefront measurement of plastic lenses for mobile-phone applications

    Science.gov (United States)

    Huang, Li-Ting; Cheng, Yuan-Chieh; Wang, Chung-Yen; Wang, Pei-Jen

    2016-08-01

    In camera lenses for mobile-phone applications, all lens elements have been designed with aspheric surfaces because of the requirements in minimal total track length of the lenses. Due to the diffraction-limited optics design with precision assembly procedures, element inspection and lens performance measurement have become cumbersome in the production of mobile-phone cameras. Recently, wavefront measurements based on Shack-Hartmann sensors have been successfully implemented on injection-molded plastic lens with aspheric surfaces. However, the applications of wavefront measurement on small-sized plastic lenses have yet to be studied both theoretically and experimentally. In this paper, both an in-house-built and a commercial wavefront measurement system configured on two optics structures have been investigated with measurement of wavefront aberrations on two lens elements from a mobile-phone camera. First, the wet-cell method has been employed for verifications of aberrations due to residual birefringence in an injection-molded lens. Then, two lens elements of a mobile-phone camera with large positive and negative power have been measured with aberrations expressed in Zernike polynomial to illustrate the effectiveness in wavefront measurement for troubleshooting defects in optical performance.

  9. Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Pier Alberto Testoni

    2007-01-01

    Full Text Available Optical coherence tomography (OCT is an optical imaging modality that performs high-resolution, cross-sectional, subsurface tomographic imaging of the microstructure of tissues. The physical principle of OCT is similar to that of B-mode ultrasound imaging, except that it uses infrared light waves rather than acoustic waves. The in vivo resolution is 10–25 times better (about 10 µm than with high-frequency ultrasound imaging, but the depth of penetration is limited to 1–3 mm, depending on tissue structure, depth of focus of the probe used, and pressure applied to the tissue surface. In the last decade, OCT technology has evolved from an experimental laboratory tool to a new diagnostic imaging modality with a wide spectrum of clinical applications in medical practice, including the gastrointestinal tract and pancreatico-biliary ductal system. OCT imaging from the gastrointestinal tract can be done in humans by using narrow-diameter, catheter-based probes that can be inserted through the accessory channel of either a conventional front-view endoscope, for investigating the epithelial structure of the gastrointestinal tract, or a side-view endoscope, inside a standard transparent ERCP (endoscopic retrograde cholangiopancreatography catheter, for investigating the pancreatico-biliary ductal system. The esophagus and esophagogastric junction have been the most widely investigated organs so far; more recently, duodenum, colon, and the pancreatico-biliary ductal system have also been extensively investigated. OCT imaging of the gastrointestinal wall structure is characterized by a multiple-layer architecture that permits an accurate evaluation of the mucosa, lamina propria, muscularis mucosae, and part of the submucosa. The technique may therefore be used to identify preneoplastic conditions of the gastrointestinal tract, such as Barrett's epithelium and dysplasia, and evaluate the depth of penetration of early-stage neoplastic lesions. OCT imaging

  10. Longitudinal three-dimensional visualisation of autoimmune diabetes by functional optical coherence imaging

    DEFF Research Database (Denmark)

    Berclaz, Corinne; Schmidt-Christensen, Anja; Szlag, Daniel

    2016-01-01

    AIMS/HYPOTHESIS: It is generally accepted that structural and functional quantitative imaging of individual islets would be beneficial to elucidate the pathogenesis of type 1 diabetes. We here introduce functional optical coherence imaging (FOCI) for fast, label-free monitoring of beta cell destr...

  11. Assessment of a liquid lens enabled in vivo optical coherence microscope.

    Science.gov (United States)

    Murali, Supraja; Meemon, Panomsak; Lee, Kye-Sung; Kuhn, William P; Thompson, Kevin P; Rolland, Jannick P

    2010-06-01

    The optical aberrations induced by imaging through skin can be predicted using formulas for Seidel aberrations of a plane-parallel plate. Knowledge of these aberrations helps to guide the choice of numerical aperture (NA) of the optics we can use in an implementation of Gabor domain optical coherence microscopy (GD-OCM), where the focus is the only aberration adjustment made through depth. On this basis, a custom-designed, liquid-lens enabled dynamic focusing optical coherence microscope operating at 0.2 NA is analyzed and validated experimentally. As part of the analysis, we show that the full width at half-maximum metric, as a characteristic descriptor for the point spread function, while commonly used, is not a useful metric for quantifying resolution in non-diffraction-limited systems. Modulation transfer function (MTF) measurements quantify that the liquid lens performance is as predicted by design, even when accounting for the effect of gravity. MTF measurements in a skinlike scattering medium also quantify the performance of the microscope in its potential applications. To guide the fusion of images across the various focus positions of the microscope, as required in GD-OCM, we present depth of focus measurements that can be used to determine the effective number of focusing zones required for a given goal resolution. Subcellular resolution in an onion sample, and high-definition in vivo imaging in human skin are demonstrated with the custom-designed and built microscope.

  12. Quantitative contrast-enhanced optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Winetraub, Yonatan; SoRelle, Elliott D. [Molecular Imaging Program at Stanford, Stanford University, 299 Campus Drive, Stanford, California 94305 (United States); Bio-X Program, Stanford University, 299 Campus Drive, Stanford, California 94305 (United States); Biophysics Program, Stanford University, 299 Campus Drive, Stanford, California 94305 (United States); Department of Structural Biology, Stanford University, 299 Campus Drive, Stanford, California 94305 (United States); Liba, Orly [Molecular Imaging Program at Stanford, Stanford University, 299 Campus Drive, Stanford, California 94305 (United States); Bio-X Program, Stanford University, 299 Campus Drive, Stanford, California 94305 (United States); Department of Structural Biology, Stanford University, 299 Campus Drive, Stanford, California 94305 (United States); Department of Electrical Engineering, Stanford University, 299 Campus Drive, Stanford, California 94305 (United States); Zerda, Adam de la [Molecular Imaging Program at Stanford, Stanford University, 299 Campus Drive, Stanford, California 94305 (United States); Bio-X Program, Stanford University, 299 Campus Drive, Stanford, California 94305 (United States); Biophysics Program, Stanford University, 299 Campus Drive, Stanford, California 94305 (United States); Department of Structural Biology, Stanford University, 299 Campus Drive, Stanford, California 94305 (United States); Department of Electrical Engineering, Stanford University, 299 Campus Drive, Stanford, California 94305 (United States)

    2016-01-11

    We have developed a model to accurately quantify the signals produced by exogenous scattering agents used for contrast-enhanced Optical Coherence Tomography (OCT). This model predicts distinct concentration-dependent signal trends that arise from the underlying physics of OCT detection. Accordingly, we show that real scattering particles can be described as simplified ideal scatterers with modified scattering intensity and concentration. The relation between OCT signal and particle concentration is approximately linear at concentrations lower than 0.8 particle per imaging voxel. However, at higher concentrations, interference effects cause signal to increase with a square root dependence on the number of particles within a voxel. Finally, high particle concentrations cause enough light attenuation to saturate the detected signal. Predictions were validated by comparison with measured OCT signals from gold nanorods (GNRs) prepared in water at concentrations ranging over five orders of magnitude (50 fM to 5 nM). In addition, we validated that our model accurately predicts the signal responses of GNRs in highly heterogeneous scattering environments including whole blood and living animals. By enabling particle quantification, this work provides a valuable tool for current and future contrast-enhanced in vivo OCT studies. More generally, the model described herein may inform the interpretation of detected signals in modalities that rely on coherence-based detection or are susceptible to interference effects.

  13. A gravitationally lensed quasar discovered in OGLE

    Science.gov (United States)

    Kostrzewa-Rutkowska, Zuzanna; Kozłowski, Szymon; Lemon, Cameron; Anguita, T.; Greiner, J.; Auger, M. W.; Wyrzykowski, Ł.; Apostolovski, Y.; Bolmer, J.; Udalski, A.; Szymański, M. K.; Soszyński, I.; Poleski, R.; Pietrukowicz, P.; Skowron, J.; Mróz, P.; Ulaczyk, K.; Pawlak, M.

    2018-05-01

    We report the discovery of a new gravitationally lensed quasar (double) from the Optical Gravitational Lensing Experiment (OGLE) identified inside the ˜670deg2 area encompassing the Magellanic Clouds. The source was selected as one of ˜60 `red W1 - W2' mid-infrared objects from WISE and having a significant amount of variability in OGLE for both two (or more) nearby sources. This is the first detection of a gravitational lens, where the discovery is made `the other way around', meaning we first measured the time delay between the two lensed quasar images of -132 Technology Telescope spectra. The spectral energy distribution (SED) fitting with the fixed source redshift provided the estimate of the lensing galaxy redshift of z ≈ 0.9 ± 0.2 (90 per cent CL), while its type is more likely to be elliptical (the SED-inferred and lens-model stellar mass is more likely present in ellipticals) than spiral (preferred redshift by the lens model).

  14. Noninvasive measurement of glucose concentration on human fingertip by optical coherence tomography

    Science.gov (United States)

    Chen, Tseng-Lin; Lo, Yu-Lung; Liao, Chia-Chi; Phan, Quoc-Hung

    2018-04-01

    A method is proposed for determining the glucose concentration on the human fingertip by extracting two optical parameters, namely the optical rotation angle and the depolarization index, using a Mueller optical coherence tomography technique and a genetic algorithm. The feasibility of the proposed method is demonstrated by measuring the optical rotation angle and depolarization index of aqueous glucose solutions with low and high scattering, respectively. It is shown that for both solutions, the optical rotation angle and depolarization index vary approximately linearly with the glucose concentration. As a result, the ability of the proposed method to obtain the glucose concentration by means of just two optical parameters is confirmed. The practical applicability of the proposed technique is demonstrated by measuring the optical rotation angle and depolarization index on the human fingertip of healthy volunteers under various glucose conditions.

  15. Experimental study of coherence vortices: Local properties of phase singularities in a spatial coherence function

    DEFF Research Database (Denmark)

    Wang, W.; Duan, Z.H.; Hanson, Steen Grüner

    2006-01-01

    By controlling the irradiance of an extended quasimonochromatic, spatially incoherent source, an optical field is generated that exhibits spatial coherence with phase singularities, called coherence vortices. A simple optical geometry for direct visualization of coherence vortices is proposed, an...

  16. Transient spectral domain optical coherence tomography findings in classic MEWDS: a case report.

    Science.gov (United States)

    Lavigne, Luciana Castro; Isaac, David Leonardo Cruvinel; Duarte Júnior, José Osório; Avila, Marcos Pereira de

    2014-01-01

    The purpose of this study was to describe a patient with multiple evanescent white dot syndrome (MEWDS) who presented with classic retinal findings and transient changes in outer retinal anatomy. A 20-year-old man presented with mild blurred vision in the left eye, reporting flu-like symptoms 1 week before the visual symptoms started. Fundus examination of the left eye revealed foveal granularity and multiple scattered spots deep to the retina in the posterior pole. Fluorescein angiography and indocyanine green angiography showed typical MEWDS findings. Spectral Domain Optical Coherence Tomography has shown transient changes in outer retinal anatomy with disappearance of inner segment-outer segment junction and mild attenuation of external limiting membrane. Six months later, Spectral Domain Optical Coherence Tomography has shown complete resolution with recovery of normal outer retinal aspect.

  17. The Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Ken R. [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Department of Applied Physics, Stanford University, 348 Via Pueblo, Stanford, CA 94305 (United States); Bucher, Maximilian; Bozek, John D.; Carron, Sebastian; Castagna, Jean-Charles [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Coffee, Ryan [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Pulse Institute, Stanford University and SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Curiel, G. Ivan; Holmes, Michael; Krzywinski, Jacek; Messerschmidt, Marc; Minitti, Michael; Mitra, Ankush; Moeller, Stefan; Noonan, Peter; Osipov, Timur; Schorb, Sebastian; Swiggers, Michele; Wallace, Alexander; Yin, Jing [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Bostedt, Christoph, E-mail: bostedt@slac.stanford.edu [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Pulse Institute, Stanford University and SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-17

    A description of the Atomic, Molecular and Optical Sciences (AMO) instrument at the Linac Coherent Light Source is presented. Recent scientific highlights illustrate the imaging, time-resolved spectroscopy and high-power density capabilities of the AMO instrument. The Atomic, Molecular and Optical Science (AMO) instrument at the Linac Coherent Light Source (LCLS) provides a tight soft X-ray focus into one of three experimental endstations. The flexible instrument design is optimized for studying a wide variety of phenomena requiring peak intensity. There is a suite of spectrometers and two photon area detectors available. An optional mirror-based split-and-delay unit can be used for X-ray pump–probe experiments. Recent scientific highlights illustrate the imaging, time-resolved spectroscopy and high-power density capabilities of the AMO instrument.

  18. Production of coherent XUV and soft x-rays using a transverse optical klystron

    International Nuclear Information System (INIS)

    Freeman, R.R.; Kincaid, B.J.

    1984-01-01

    An optical klystron is a device in which a relativistic electron beam produces coherent electromagnetic radiation by interacting with an external laser beam in an undulator magnetic field. Such a device represents the relativistic generalization of the microwave klystron. The device is called transverse optical klystron (TOK), because the energy exchange between the electrons and the light in this case is due to the transverse electric field of the laser. The generation of coherent light by the TOK can be considered as a three step process, including energy modulation, compaction or bunching, and radiation. In the present paper, a description is provided of the general physical principles underlying the operation of each of the three sections of the TOK, taking into account the modulator, the compactor, and the radiator. 14 references

  19. Enhancement of the resolution of full-field optical coherence tomography by using a colour image sensor

    Energy Technology Data Exchange (ETDEWEB)

    Kalyanov, A L; Lychagov, V V; Smirnov, I V; Ryabukho, V P [N.G. Chernyshevsky Saratov State University, Saratov (Russian Federation)

    2013-08-31

    The influence of white balance in a colour image detector on the resolution of a full-field optical coherence tomograph (FFOCT) is studied. The change in the interference pulse width depending on the white balance tuning is estimated in the cases of a thermal radiation source (incandescent lamp) and a white light emitting diode. It is shown that by tuning white balance of the detector in a certain range, the FFOCT resolution can be increased by 20 % as compared to the resolution, attained with the use of a monochrome detector. (optical coherence tomography)

  20. Enhancement of the resolution of full-field optical coherence tomography by using a colour image sensor

    International Nuclear Information System (INIS)

    Kalyanov, A L; Lychagov, V V; Smirnov, I V; Ryabukho, V P

    2013-01-01

    The influence of white balance in a colour image detector on the resolution of a full-field optical coherence tomograph (FFOCT) is studied. The change in the interference pulse width depending on the white balance tuning is estimated in the cases of a thermal radiation source (incandescent lamp) and a white light emitting diode. It is shown that by tuning white balance of the detector in a certain range, the FFOCT resolution can be increased by 20 % as compared to the resolution, attained with the use of a monochrome detector. (optical coherence tomography)

  1. Coherent optical effect on time-resolved vibrational SFG spectrum of adsorbates

    Science.gov (United States)

    Ueba, H.; Sawabu, T.; Mii, T.

    2002-04-01

    We present a theory to study the influence of the coherent mixing between pump-infrared and probe-visible pulse on a time-resolved sum-frequency generation (TR-SFG) spectrum for vibrations at surfaces. The general formula of the time-dependent and its Fourier transform of the SFG polarization and its Fourier transform allows us to calculate the time-resolved vibrational SFG spectrum and the transient characteristics of the SFG intensity as a function of the delay time td between the pump-infrared and probe-visible pulse. It is found the coherent optical effect manifests itself in the broadening and narrowing of the SFG spectrum with the intrinsic width of T2 at negative and positive td, respectively, being in qualitative agreement with recent experimental results. The influence of the coherent mixing on the transient behavior of the SFG intensity is also discussed in conjunction to the T2 determination.

  2. Polarimetry noise in fiber-based optical coherence tomography instrumentation

    Science.gov (United States)

    Zhang, Ellen Ziyi; Vakoc, Benjamin J.

    2011-01-01

    High noise levels in fiber-based polarization-sensitive optical coherence tomography (PS-OCT) have broadly limited its clinical utility. In this study we investigate contribution of polarization mode dispersion (PMD) to the polarimetry noise. We develop numerical models of the PS-OCT system including PMD and validate these models with empirical data. Using these models, we provide a framework for predicting noise levels, for processing signals to reduce noise, and for designing an optimized system. PMID:21935044

  3. Partial coherence and imperfect optics at a synchrotron radiation source modeled by wavefront propagation

    Science.gov (United States)

    Laundy, David; Alcock, Simon G.; Alianelli, Lucia; Sutter, John P.; Sawhney, Kawal J. S.; Chubar, Oleg

    2014-09-01

    A full wave propagation of X-rays from source to sample at a storage ring beamline requires simulation of the electron beam source and optical elements in the beamline. The finite emittance source causes the appearance of partial coherence in the wave field. Consequently, the wavefront cannot be treated exactly with fully coherent wave propagation or fully incoherent ray tracing. We have used the wavefront code Synchrotron Radiation Workshop (SRW) to perform partially coherent wavefront propagation using a parallel computing cluster at the Diamond Light Source. Measured mirror profiles have been used to correct the wavefront for surface errors.

  4. Electrically tunable coherent optical absorption in graphene with ion gel.

    Science.gov (United States)

    Thareja, Vrinda; Kang, Ju-Hyung; Yuan, Hongtao; Milaninia, Kaveh M; Hwang, Harold Y; Cui, Yi; Kik, Pieter G; Brongersma, Mark L

    2015-03-11

    We demonstrate electrical control over coherent optical absorption in a graphene-based Salisbury screen consisting of a single layer of graphene placed in close proximity to a gold back reflector. The screen was designed to enhance light absorption at a target wavelength of 3.2 μm by using a 600 nm-thick, nonabsorbing silica spacer layer. An ionic gel layer placed on top of the screen was used to electrically gate the charge density in the graphene layer. Spectroscopic reflectance measurements were performed in situ as a function of gate bias. The changes in the reflectance spectra were analyzed using a Fresnel based transfer matrix model in which graphene was treated as an infinitesimally thin sheet with a conductivity given by the Kubo formula. The analysis reveals that a careful choice of the ionic gel layer thickness can lead to optical absorption enhancements of up to 5.5 times for the Salisbury screen compared to a suspended sheet of graphene. In addition to these absorption enhancements, we demonstrate very large electrically induced changes in the optical absorption of graphene of ∼3.3% per volt, the highest attained so far in a device that features an atomically thick active layer. This is attributable in part to the more effective gating achieved with the ion gel over the conventional dielectric back gates and partially by achieving a desirable coherent absorption effect linked to the presence of the thin ion gel that boosts the absorption by 40%.

  5. Clinical utility of anterior segment swept-source optical coherence tomography in glaucoma

    Directory of Open Access Journals (Sweden)

    Dewang Angmo

    2016-01-01

    Full Text Available Optical coherence tomography (OCT, a noninvasive imaging modality that uses low-coherence light to obtain a high-resolution cross-section of biological structures, has evolved dramatically over the years. The Swept-source OCT (SS-OCT makes use of a single detector with a rapidly tunable laser as a light source. The Casia SS-1000 OCT is a Fourier-domain, SS-OCT designed specifically for imaging the anterior segment. This system achieves high resolution imaging of 10΅m (Axial and 30΅m (Transverse and high speed scanning of 30,000 A-scans per second. With a substantial improvement in scan speed, the anterior chamber angles can be imaged 360 degrees in 128 cross sections (each with 512 A-scans in about 2.4 seconds. We summarize the clinical applications of anterior segment SS-OCT in Glaucoma. Literature search: We searched PubMed and included Medline using the phrases anterior segment optical coherence tomography in ophthalmology, swept-source OCT, use of AS-OCT in glaucoma, use of swept-source AS-OCT in glaucoma, quantitative assessment of angle, filtering bleb in AS-OCT, comparison of AS-OCT with gonioscopy and comparison of AS-OCT with UBM. Search was made for articles dating 1990 to August 2015.

  6. Atomic and molecular spectroscopy with optical-frequency-comb-referenced IR coherent sources

    International Nuclear Information System (INIS)

    Cancio, P.; Bartalini, S.; De Rosa, M.; Giusfredi, G.; Mazzotti, D.; Maddaloni, P.; Vitiello, M. S.; De Natale, P.

    2013-01-01

    We provide a review of progress in the development of metrological-grade measurements in atomic and molecular systems through the extension, in the mid-infrared and far-infrared range, of optical frequency combs (OFCs) and the introduction of new techniques and highly coherent sources. (authors)

  7. All-optical signal processing of OTDM and OFDM signals based on time-domain optical fourier transformation

    DEFF Research Database (Denmark)

    Galili, Michael; Guan, Pengyu; Lillieholm, Mads

    2017-01-01

    In the talk, we will review recent work on optical signal processing based on time lenses. Various applications of optical Fourier transformation for optical communications will be discussed.......In the talk, we will review recent work on optical signal processing based on time lenses. Various applications of optical Fourier transformation for optical communications will be discussed....

  8. High speed all optical shear wave imaging optical coherence elastography (Conference Presentation)

    Science.gov (United States)

    Song, Shaozhen; Hsieh, Bao-Yu; Wei, Wei; Shen, Tueng; O'Donnell, Matthew; Wang, Ruikang K.

    2016-03-01

    Optical Coherence Elastography (OCE) is a non-invasive testing modality that maps the mechanical property of soft tissues with high sensitivity and spatial resolution using phase-sensitive optical coherence tomography (PhS-OCT). Shear wave OCE (SW-OCE) is a leading technique that relies on the speed of propagating shear waves to provide a quantitative elastography. Previous shear wave imaging OCT techniques are based on repeated M-B scans, which have several drawbacks such as long acquisition time and repeated wave stimulations. Recent developments of Fourier domain mode-locked high-speed swept-source OCT system has enabled enough speed to perform KHz B-scan rate OCT imaging. Here we propose ultra-high speed, single shot shear wave imaging to capture single-shot transient shear wave propagation to perform SW-OCE. The frame rate of shear wave imaging is 16 kHz, at A-line rate of ~1.62 MHz, which allows the detection of high-frequency shear wave of up to 8 kHz. The shear wave is generated photothermal-acoustically, by ultra-violet pulsed laser, which requires no contact to OCE subjects, while launching high frequency shear waves that carries rich localized elasticity information. The image acquisition and processing can be performed at video-rate, which enables real-time 3D elastography. SW-OCE measurements are demonstrated on tissue-mimicking phantoms and porcine ocular tissue. This approach opens up the feasibility to perform real-time 3D SW-OCE in clinical applications, to obtain high-resolution localized quantitative measurement of tissue biomechanical property.

  9. Adaptive silicone-membrane lenses: planar vs. shaped membrane

    CSIR Research Space (South Africa)

    Schneider, F

    2009-08-01

    Full Text Available Engineering, Georges-Koehler-Allee 102, Freiburg 79110, Germany florian.schneider@imtek.uni-freiburg.de ABSTRACT We compare the performance and optical quality of two types of adaptive fluidic silicone-membrane lenses. The membranes feature either a...-membrane lenses: planar vs. shaped membrane Florian Schneider1,2, Philipp Waibel2 and Ulrike Wallrabe2 1 CSIR, Materials Science and Manufacturing, PO Box 395, Pretoria 0001, South Africa 2 University of Freiburg – IMTEK, Department of Microsystems...

  10. Optical coherence tomography findings in methanol toxicity.

    Science.gov (United States)

    Klein, Kendra A; Warren, Alexis K; Baumal, Caroline R; Hedges, Thomas R

    2017-01-01

    Methanol toxicity poses a significant public health problem in developing countries, and in Southeast Asia, where the most common source of poisoning is via adulterated liquor in local drinks. Methanol toxicity can have devastating visual consequences and retinal specialists should be aware of the features of this toxic optic neuropathy. The authors report a case of severe systemic methanol toxicity and relatively mild optic neuropathy demonstrating unique retinal changes on optical coherence tomography (OCT). A previously healthy student developed ataxia, difficulty breathing and loss of consciousness hours after drinking homemade alcohol while traveling in Indonesia. She was found to have a serum pH of 6.79 and elevated methanol levels. She was treated with intravenous ethanol, methylprednisolone and sodium bicarbonate. When she awoke she had bilateral central scotomas. At presentation, she had central depression on visual field testing. OCT of the retinal nerve fiber layer (RNFL) was normal but ganglion cell layer analysis (GCL) showed highly selective loss of the nasal fibers in both eyes. Further, OCT of the macula demonstrated inner nuclear layer (INL) microcysts in the corresponding area of selective GCL loss in both eyes. The selective involvement of the papillomacular bundle fibers is common in toxic optic neuropathies and represents damage to the small caliber axons rich in mitochondria. Despite severe systemic toxicity, the relative sparing of the optic nerve in this case enabled characterization of the evolution of methanol toxicity with segmental GCL involvement and preservation of the RNFL, corresponding to the papillomacular bundle. This is the first reported case of INL microcysts in methanol optic neuropathy and supports that they are a non-specific finding, and may represent preferential damage to the papillomacular bundle.

  11. Electron beams, lenses, and optics. Volume 2

    International Nuclear Information System (INIS)

    El-Kareh, A.B.; El-Kareh, J.C.J.

    1970-01-01

    This volume presents a systematic coverage of aberrations. It analyzes the geometrical aberrations and treats the spherical and chromatic aberrations in great detail. The coefficients of spherical and chromatic aberration have been computed for a series of electrostatic and magnetic lenses and are listed in table form. The book also covers space charge and its effect on highly focused electron beams

  12. Simultaneous topography and tomography of latent fingerprints using full-field swept-source optical coherence tomography

    Science.gov (United States)

    Dubey, Satish Kumar; Singh Mehta, Dalip; Anand, Arun; Shakher, Chandra

    2008-01-01

    We demonstrate simultaneous topography and tomography of latent fingerprints using full-field swept-source optical coherence tomography (OCT). The swept-source OCT system comprises a superluminescent diode (SLD) as broad-band light source, an acousto-optic tunable filter (AOTF) as frequency tuning device, and a compact, nearly common-path interferometer. Both the amplitude and the phase map of the interference fringe signal are reconstructed. Optical sectioning of the latent fingerprint sample is obtained by selective Fourier filtering and the topography is retrieved from the phase map. Interferometry, selective filtering, low coherence and hence better resolution are some of the advantages of the proposed system over the conventional fingerprint detection techniques. The present technique is non-invasive in nature and does not require any physical or chemical processing. Therefore, the quality of the sample does not alter and hence the same fingerprint can be used for other types of forensic test. Exploitation of low-coherence interferometry for fingerprint detection itself provides an edge over other existing techniques as fingerprints can even be lifted from low-reflecting surfaces. The proposed system is very economical and compact.

  13. Extraction of optical scattering parameters and attenuation compensation in optical coherence tomography images of multi-layered tissue structures

    DEFF Research Database (Denmark)

    Thrane, Lars; Frosz, Michael Henoch; Tycho, Andreas

    2004-01-01

    A recently developed analytical optical coherence tomography (OCT) model [Thrane et al., J. Opt. Soc. Am. A 17, 484 (2000)] allows the extraction of optical scattering parameters from OCT images, thereby permitting attenuation compensation in those images. By expanding this theoretical model, we...... have developed a new method for extracting optical scattering parameters from multilayered tissue structures in vivo. To verify this, we used a Monte Carlo (MC) OCT model as a numerical phantom to simulate the OCT signal for het-erogeneous multilayered tissue. Excellent agreement between the extracted......, and the results hold promise for expanding the functional imaging capabilities of OCT....

  14. The effect of jitter on the performance of space coherent optical communication system with Costas loop

    Science.gov (United States)

    Li, Xin; Hong, Yifeng; Wang, Jinfang; Liu, Yang; Sun, Xun; Li, Mi

    2018-01-01

    Numerous communication techniques and optical devices successfully applied in space optical communication system indicates a good portability of it. With this good portability, typical coherent demodulation technique of Costas loop can be easily adopted in space optical communication system. As one of the components of pointing error, the effect of jitter plays an important role in the communication quality of such system. Here, we obtain the probability density functions (PDF) of different jitter degrees and explain their essential effect on the bit error rate (BER) space optical communication system. Also, under the effect of jitter, we research the bit error rate of space coherent optical communication system using Costas loop with different system parameters of transmission power, divergence angle, receiving diameter, avalanche photodiode (APD) gain, and phase deviation caused by Costas loop. Through a numerical simulation of this kind of communication system, we demonstrate the relationship between the BER and these system parameters, and some corresponding methods of system optimization are presented to enhance the communication quality.

  15. Development of ultraviolet- and visible-light one-shot spectral domain optical coherence tomography and in situ measurements of human skin

    Science.gov (United States)

    Hirayama, Heijiro; Nakamura, Sohichiro

    2015-07-01

    We have developed ultraviolet (UV)- and visible-light one-shot spectral domain (SD) optical coherence tomography (OCT) that enables in situ imaging of human skin with an arbitrary wavelength in the UV-visible-light region (370-800 nm). We alleviated the computational burden for each color OCT image by physically dispersing the irradiating light with a color filter. The system consists of SD-OCT with multicylindrical lenses; thus, mechanical scanning of the mirror or stage is unnecessary to obtain an OCT image. Therefore, only a few dozens of milliseconds are necessary to obtain single-image data. We acquired OCT images of one subject's skin in vivo and of a skin excision ex vivo for red (R, 650±20 nm), green (G, 550±20 nm), blue (B, 450±20 nm), and UV (397±5 nm) light. In the visible-light spectrum, R light penetrated the skin and was reflected at a lower depth than G or B light. On the skin excision, we demonstrated that UV light reached the dermal layer. We anticipated that basic knowledge about the spectral properties of human skin in the depth direction could be acquired with this system.

  16. Class B0631+519: Last of the Class Lenses

    Energy Technology Data Exchange (ETDEWEB)

    York, Tom; Jackson, N.; Browne, I.W.A.; Koopmans, L.V.E.; McKean, J.P.; Norbury, M.A.; Biggs, A.D.; Blandford, R.D.; de Bruyn, A.G.; Fassnacht, C.D.; Myers, S.T.; Pearson, T.J.; Phillips, P.M.; Readhead, A.C.S.; Rusin, D.; Wilkinson, P.N.; /Jodrell Bank /Kapteyn Astron. Inst., Groningen /UC, Davis /JIVE, Dwingeloo /KIPAC, Menlo Park /NFRA,

    2005-05-31

    We report the discovery of the new gravitational lens system CLASS B0631+519. Imaging with the VLA, MERLIN and the VLBA reveals a doubly-imaged flat-spectrum radio core, a doubly-imaged steep-spectrum radio lobe and possible quadruply-imaged emission from a second lobe. The maximum separation between the lensed images is 1.16 arcsec. High resolution mapping with the VLBA at 5 GHz resolves the most magnified image of the radio core into a number of sub-components spread across approximately 20 mas. No emission from the lensing galaxy or an odd image is detected down to 0.31 mJy (5{sigma}) at 8.4 GHz. Optical and near-infrared imaging with the ACS and NICMOS cameras on the HST show that there are two galaxies along the line of sight to the lensed source, as previously discovered by optical spectroscopy. We find that the foreground galaxy at z=0.0896 is a small irregular, and that the other, at z=0.6196 is a massive elliptical which appears to contribute the majority of the lensing effect. The host galaxy of the lensed source is detected in the HST near-infrared imaging as a set of arcs, which form a nearly complete Einstein ring. Mass modeling using non-parametric techniques can reproduce the near-infrared observations and indicates that the small irregular galaxy has a (localized) effect on the flux density distribution in the Einstein ring at the 5-10% level.

  17. Optical coherence tomography used for internal biometrics

    Science.gov (United States)

    Chang, Shoude; Sherif, Sherif; Mao, Youxin; Flueraru, Costel

    2007-06-01

    Traditional biometric technologies used for security and person identification essentially deal with fingerprints, hand geometry and face images. However, because all these technologies use external features of human body, they can be easily fooled and tampered with by distorting, modifying or counterfeiting these features. Nowadays, internal biometrics which detects the internal ID features of an object is becoming increasingly important. Being capable of exploring under-skin structure, optical coherence tomography (OCT) system can be used as a powerful tool for internal biometrics. We have applied fiber-optic and full-field OCT systems to detect the multiple-layer 2D images and 3D profile of the fingerprints, which eventually result in a higher discrimination than the traditional 2D recognition methods. More importantly, the OCT based fingerprint recognition has the ability to easily distinguish artificial fingerprint dummies by analyzing the extracted layered surfaces. Experiments show that our OCT systems successfully detected the dummy, which was made of plasticene and was used to bypass the commercially available fingerprint scanning system with a false accept rate (FAR) of 100%.

  18. Optical coherence tomography angiography in acute arteritic and non-arteritic anterior ischemic optic neuropathy.

    Science.gov (United States)

    Balducci, Nicole; Morara, Mariachiara; Veronese, Chiara; Barboni, Piero; Casadei, Nicoletta Lelli; Savini, Giacomo; Parisi, Vincenzo; Sadun, Alfredo A; Ciardella, Antonio

    2017-11-01

    The purpose of our study was to describe the feature of acute non-arteritic or arteritic anterior ischemic optic neuropathy (NA-AION and A-AION) using optical coherence tomography angiography (OCT-A) and to compare it with fluorescein angiography (FA) and indocyanine green angiography (ICGA). In this retrospective, observational case-control study four NA-AION patients and one A-AION patient were examined by FA, ICGA and OCT-A within 2 weeks from disease presentation. The characteristics of the images were analyzed. Optic nerve head (ONH) and radial peripapillary capillaries (RPC) vessel densities (VDs) were compared between NA-AION and controls. In two of four NA-AION cases and in the A-AION patient, OCT-A clearly identified the boundary of the ischemic area at the level of the optic nerve head, which was comparable to optic disc filling defects detected by FA. In the other two NA-AION cases, a generalized leakage from the disc was visible with FA, yet OCT-A still demonstrated sectorial peripapillary capillary network reduction. Both ONH and RPC VDs were reduced in NA-AION patients, when compared to controls. OCT-A was able to identify microvascular defects and VD reduction in cases of acute optic disc edema due to NA-AION and A-AION. OCT-A provides additional information in ischemic conditions of the optic nerve head.

  19. Optical coherence tomography imaging of the basal ganglia: feasibility and brief review

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, W. O. Contreras; Ângelos, J. S. [Divisão de Neurocirurgia Funcional, Departamento de Neurologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Martinez, R. C. R. [Laboratório de Neuromodulação e Dor Experimental, Hospital Sírio-Libanes, São Paulo, SP (Brazil); Takimura, C. K. [Instituto do Coração, Universidade de São Paulo, São Paulo, SP (Brazil); Teixeira, M. J. [Divisão de Neurocirurgia Funcional, Departamento de Neurologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Lemos, P. A. Neto [Instituto do Coração, Universidade de São Paulo, São Paulo, SP (Brazil); Fonoff, E. T., E-mail: fonoffet@usp.br [Divisão de Neurocirurgia Funcional, Departamento de Neurologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil)

    2015-09-29

    Optical coherence tomography (OCT) is a promising medical imaging technique that uses light to capture real-time cross-sectional images from biological tissues in micrometer resolution. Commercially available optical coherence tomography systems are employed in diverse applications, including art conservation and diagnostic medicine, notably in cardiology and ophthalmology. Application of this technology in the brain may enable distinction between white matter and gray matter, and obtainment of detailed images from within the encephalon. We present, herein, the in vivo implementation of OCT imaging in the rat brain striatum. For this, two male 60-day-old rats (Rattus norvegicus, Albinus variation, Wistar) were stereotactically implanted with guide cannulas into the striatum to guide a 2.7-French diameter high-definition OCT imaging catheter (Dragonfly™, St. Jude Medical, USA). Obtained images were compared with corresponding histologically stained sections to collect imaging samples. A brief analysis of OCT technology and its current applications is also reported, as well as intra-cerebral OCT feasibility on brain mapping during neurosurgical procedures.

  20. In-vivo dynamic characterization of microneedle skin penetration using optical coherence tomography

    Science.gov (United States)

    Enfield, Joey; O'Connell, Marie-Louise; Lawlor, Kate; Jonathan, Enock; O'Mahony, Conor; Leahy, Martin

    2010-07-01

    The use of microneedles as a method of circumventing the barrier properties of the stratum corneum is receiving much attention. Although skin disruption technologies and subsequent transdermal diffusion rates are being extensively studied, no accurate data on depth and closure kinetics of microneedle-induced skin pores are available, primarily due to the cumbersome techniques currently required for skin analysis. We report on the first use of optical coherence tomography technology to image microneedle penetration in real time and in vivo. We show that optical coherence tomography (OCT) can be used to painlessly measure stratum corneum and epidermis thickness, as well as microneedle penetration depth after microneedle insertion. Since OCT is a real-time, in-vivo, nondestructive technique, we also analyze skin healing characteristics and present quantitative data on micropore closure rate. Two locations (the volar forearm and dorsal aspect of the fingertip) have been assessed as suitable candidates for microneedle administration. The results illustrate the applicability of OCT analysis as a tool for microneedle-related skin characterization.

  1. Optical coherence tomography patterns as predictors of visual outcome in dengue-related maculopathy.

    Science.gov (United States)

    Teoh, Stephen C; Chee, Caroline K; Laude, Augustinus; Goh, Kong Y; Barkham, Timothy; Ang, Brenda S

    2010-03-01

    The purpose of this study was to characterize the presentations, long-term outcomes, and visual prognostic factors in dengue-related maculopathy of 41 patients with dengue fever and impaired vision from dengue-related maculopathy in a retrospective noninterventional and observational series. The medical records of patients with dengue-related maculopathy diagnosed over 18 months between July 2004 and December 2005 at The Eye Institute, Tan Tock Seng Hospital and Communicable Disease Center, Singapore, were reviewed and followed up for 24 months. Visual acuity and symptoms (presence of scotoma on automated visual fields and Amsler grid) were correlated with optical coherence tomography evaluation. Mean age was 28.7 years and there were more men (53.7%). The most common visual complaints were blurring of vision (51.2%) and central scotoma (34.1%). Most patients recovered best-corrected visual acuity >20/40. Optical coherence tomography showed 3 patterns of maculopathy: 1) diffuse retinal thickening; 2) cystoid macular edema; and 3) foveolitis. The visual outcome was independent of the extent of edema, but scotomata persisted longest in patients with foveolitis and shortest with those with diffuse retinal thickening. Dengue-associated ocular inflammation is an emerging ophthalmic condition and often involves the posterior segment. Prognosis is variable. Patients usually regain good vision but may retain persistent scotomata even at 2 years despite clinical resolution of the disease. Optical coherence tomography patterns in dengue maculopathy are useful for characterization, monitoring, and prognostication of the visual defect.

  2. Optical coherence tomography for diagnosing periodontal disease

    Science.gov (United States)

    Colston, Bill W., Jr.; Everett, Matthew J.; Da Silva, Luiz B.; Otis, Linda L.; Nathel, Howard

    1997-05-01

    We have, in this preliminary study, investigated the use of optical coherence tomography for diagnosis of periodontal disease. We took in vitro OCT images of the dental and periodontal tissues from a young pig and compared them to histological sections. These images distinguish tooth and soft tissue relationships that are important in diagnosing and assessing periodontal disease. We have imaged the attachment of gingiva to the tooth surface and located the cemento-enamel junction. This junction is an important reference point for defining attachment level in the diagnosis of periodontal disease. the boundary between enamel and dentin is also visible for most of the length of the anatomical crown, allowing quantitation of enamel thickness and character.

  3. Assessment of Optical Coherence Tomography Imaging in the Diagnosis of Non-Melanoma Skin Cancer and Benign Lesions Versus Normal Skin:

    DEFF Research Database (Denmark)

    Mogensen, Mette; Jørgensen, Thomas Martini; Nürnberg, Birgit Meincke

    2009-01-01

    BACKGROUND Optical coherence tomography (OCT) is an optical imaging technique that may be useful in diagnosis of non-melanoma skin cancer (NMSC). OBJECTIVES To describe OCT features in NMSC such as actinic keratosis (AK) and basal cell carcinoma (BCC) and in benign lesions and to assess the diagn......BACKGROUND Optical coherence tomography (OCT) is an optical imaging technique that may be useful in diagnosis of non-melanoma skin cancer (NMSC). OBJECTIVES To describe OCT features in NMSC such as actinic keratosis (AK) and basal cell carcinoma (BCC) and in benign lesions and to assess...

  4. Currently available methodologies for the processing of intravascular ultrasound and optical coherence tomography images.

    Science.gov (United States)

    Athanasiou, Lambros; Sakellarios, Antonis I; Bourantas, Christos V; Tsirka, Georgia; Siogkas, Panagiotis; Exarchos, Themis P; Naka, Katerina K; Michalis, Lampros K; Fotiadis, Dimitrios I

    2014-07-01

    Optical coherence tomography and intravascular ultrasound are the most widely used methodologies in clinical practice as they provide high resolution cross-sectional images that allow comprehensive visualization of the lumen and plaque morphology. Several methods have been developed in recent years to process the output of these imaging modalities, which allow fast, reliable and reproducible detection of the luminal borders and characterization of plaque composition. These methods have proven useful in the study of the atherosclerotic process as they have facilitated analysis of a vast amount of data. This review presents currently available intravascular ultrasound and optical coherence tomography processing methodologies for segmenting and characterizing the plaque area, highlighting their advantages and disadvantages, and discusses the future trends in intravascular imaging.

  5. Optical coherence elastography assesses tissue modifications in laser reshaping of cornea and cartilages

    Science.gov (United States)

    Zaitsev, V. Y.; Matveyev, A. L.; Matveev, L. A.; Gelikonov, G. V.; Omelchenko, A. I.; Shabanov, D. V.; Sovetsky, A. A.; Baum, O. I.; Vitkin, A.; Sobol, E. N.

    2018-02-01

    Non-surgical thermo-mechanical reshaping of avascular collagenous tissues (cartilages and cornea) using moderate heating by IR-laser irradiation is an emerging technology that can find important applications in visioncorrection problems and preparation of cartilaginous implants in otolaryngology. To estimate both transient interframe strains and cumulative resultant strains produced by the laser irradiation of the tissue we use and improved version of strain mapping developed in our previous work related to compressional phase-sensitive optical coherence tomography. To reveal microstructural changes in the tissue regions where irradiation-produced strains do not disappear after temperature equilibration, we apply compressional optical coherence elastography in order to visualize the resultant variations in the tissue stiffness. The so-found regions of the stiffness reduction are attributed to formation of microscopic pores, existence of which agree with independent data obtained using methods of high-resolution microscopy.

  6. Optical coherence tomography-enhanced microlaryngoscopy: preliminary report of a noncontact optical coherence tomography system integrated with a surgical microscope.

    Science.gov (United States)

    Vokes, David E; Jackson, Ryan; Guo, Shuguang; Perez, Jorge A; Su, Jianping; Ridgway, James M; Armstrong, William B; Chen, Zhongping; Wong, Brian J F

    2008-07-01

    Optical coherence tomography (OCT) is a new imaging modality that uses near-infrared light to produce cross-sectional images of tissue with a resolution approaching that of light microscopy. We have previously reported use of OCT imaging of the vocal folds (VFs) during direct laryngoscopy with a probe held in contact or near-contact with the VFs. This aim of this study was to develop and evaluate a novel OCT system integrated with a surgical microscope to allow hands-free OCT imaging of the VFs, which could be performed simultaneously with microscopic visualization. We performed a prospective evaluation of a new method of acquiring OCT images of the VFs. An OCT system was successfully integrated with a surgical microscope to permit noncontact OCT imaging of the VFs of 10 patients. With this novel device we were able to identify VF epithelium and lamina propria; however, the resolution was reduced compared to that achieved with the standard contact or near-contact OCT. Optical coherence tomography is able to produce high-resolution images of vocal fold mucosa to a maximum depth of 1.6 mm. It may be used in the diagnosis of VF lesions, particularly early squamous cell carcinoma, in which OCT can show disruption of the basement membrane. Mounting the OCT device directly onto the operating microscope allows hands-free noncontact OCT imaging and simultaneous conventional microscopic visualization of the VFs. However, the lateral resolution of the OCT microscope system is 50 microm, in contrast to the conventional handheld probe system (10 microm). Although such images at this resolution are still useful clinically, improved resolution would enhance the system's performance, potentially enabling real-time OCT-guided microsurgery of the larynx.

  7. Multi-aperture digital coherent combining for free-space optical communication receivers.

    Science.gov (United States)

    Geisler, David J; Yarnall, Timothy M; Stevens, Mark L; Schieler, Curt M; Robinson, Bryan S; Hamilton, Scott A

    2016-06-13

    Space-to-ground optical communication systems can benefit from reducing the size, weight, and power profiles of space terminals. One way of reducing the required power-aperture product on a space platform is to implement effective, but costly, single-aperture ground terminals with large collection areas. In contrast, we present a ground terminal receiver architecture in which many small less-expensive apertures are efficiently combined to create a large effective aperture while maintaining excellent receiver sensitivity. This is accomplished via coherent detection behind each aperture followed by digitization. The digitized signals are then combined in a digital signal processing chain. Experimental results demonstrate lossless coherent combining of four lasercom signals, at power levels below 0.1 photons/bit/aperture.

  8. Extended release of hyaluronic acid from hydrogel contact lenses for dry eye syndrome.

    Science.gov (United States)

    Maulvi, Furqan A; Soni, Tejal G; Shah, Dinesh O

    2015-01-01

    Current dry eye treatment includes delivering comfort enhancing agents to the eye via eye drops, but low residence time of eye drops leads to low bioavailability. Frequent administration leads to incompliance in patients, so there is a great need for medical device such as contact lenses to treat dry eye. Studies in the past have demonstrated the efficacy of hyaluronic acid (HA) in the treatment of dry eyes using eye drops. In this paper, we present two methods to load HA in hydrogel contact lenses, soaking method and direct entrapment. The contact lenses were characterized by studying their optical and physical properties to determine their suitability as extended wear contact lenses. HA-laden hydrogel contact lenses prepared by soaking method showed release up to 48 h with acceptable physical and optical properties. Hydrogel contact lenses prepared by direct entrapment method showed significant sustained release in comparison to soaking method. HA entrapped in hydrogels resulted in reduction in % transmittance, sodium ion permeability and surface contact angle, while increase in % swelling. The impact on each of these properties was proportional to HA loading. The batch with 200-μg HA loading showed all acceptable values (parameters) for contact lens use. Results of cytotoxicity study indicated the safety of hydrogel contact lenses. In vivo pharmacokinetics studies in rabbit tear fluid showed dramatic increase in HA mean residence time and area under the curve with lenses in comparison to eye drop treatment. The study demonstrates the promising potential of delivering HA through contact lenses for the treatment of dry eye syndrome.

  9. Mechanisms of Very Late Drug-Eluting Stent Thrombosis Assessed by Optical Coherence Tomography

    DEFF Research Database (Denmark)

    Taniwaki, Masanori; Radu, Maria D; Zaugg, Serge

    2016-01-01

    BACKGROUND: The pathomechanisms underlying very late stent thrombosis (VLST) after implantation of drug-eluting stents (DES) are incompletely understood. Using optical coherence tomography, we investigated potential causes of this adverse event. METHODS AND RESULTS: Between August 2010 and Decemb...

  10. Evidence of lensing of the cosmic microwave background by dark matter halos.

    Science.gov (United States)

    Madhavacheril, Mathew; Sehgal, Neelima; Allison, Rupert; Battaglia, Nick; Bond, J Richard; Calabrese, Erminia; Caligiuri, Jerod; Coughlin, Kevin; Crichton, Devin; Datta, Rahul; Devlin, Mark J; Dunkley, Joanna; Dünner, Rolando; Fogarty, Kevin; Grace, Emily; Hajian, Amir; Hasselfield, Matthew; Hill, J Colin; Hilton, Matt; Hincks, Adam D; Hlozek, Renée; Hughes, John P; Kosowsky, Arthur; Louis, Thibaut; Lungu, Marius; McMahon, Jeff; Moodley, Kavilan; Munson, Charles; Naess, Sigurd; Nati, Federico; Newburgh, Laura; Niemack, Michael D; Page, Lyman A; Partridge, Bruce; Schmitt, Benjamin; Sherwin, Blake D; Sievers, Jon; Spergel, David N; Staggs, Suzanne T; Thornton, Robert; Van Engelen, Alexander; Ward, Jonathan T; Wollack, Edward J

    2015-04-17

    We present evidence of the gravitational lensing of the cosmic microwave background by 10(13) solar mass dark matter halos. Lensing convergence maps from the Atacama Cosmology Telescope Polarimeter (ACTPol) are stacked at the positions of around 12 000 optically selected CMASS galaxies from the SDSS-III/BOSS survey. The mean lensing signal is consistent with simulated dark matter halo profiles and is favored over a null signal at 3.2σ significance. This result demonstrates the potential of microwave background lensing to probe the dark matter distribution in galaxy group and galaxy cluster halos.

  11. A Measurement of CMB Cluster Lensing with SPT and DES Year 1 Data

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, E.J.; et al.

    2017-08-03

    Clusters of galaxies gravitationally lens the cosmic microwave background (CMB) radiation, resulting in a distinct imprint in the CMB on arcminute scales. Measurement of this effect offers a promising way to constrain the masses of galaxy clusters, particularly those at high redshift. We use CMB maps from the South Pole Telescope Sunyaev-Zel'dovich (SZ) survey to measure the CMB lensing signal around galaxy clusters identified in optical imaging from first year observations of the Dark Energy Survey. We detect lensing of the CMB by the galaxy clusters at 6.5$\\sigma$ significance. Using the measured lensing signal, we constrain the amplitude of the relation between cluster mass and optical richness to roughly $20\\%$ precision, finding good agreement with recent constraints obtained with galaxy lensing. The error budget is dominated by statistical noise but includes significant contributions from systematic biases due to the thermal SZ effect and cluster miscentering.

  12. Dark Energy Survey Year 1 Results: Methodology and Projections for Joint Analysis of Galaxy Clustering, Galaxy Lensing, and CMB Lensing Two-point Functions

    Energy Technology Data Exchange (ETDEWEB)

    Giannantonio, T.; et al.

    2018-02-14

    Optical imaging surveys measure both the galaxy density and the gravitational lensing-induced shear fields across the sky. Recently, the Dark Energy Survey (DES) collaboration used a joint fit to two-point correlations between these observables to place tight constraints on cosmology (DES Collaboration et al. 2017). In this work, we develop the methodology to extend the DES Collaboration et al. (2017) analysis to include cross-correlations of the optical survey observables with gravitational lensing of the cosmic microwave background (CMB) as measured by the South Pole Telescope (SPT) and Planck. Using simulated analyses, we show how the resulting set of five two-point functions increases the robustness of the cosmological constraints to systematic errors in galaxy lensing shear calibration. Additionally, we show that contamination of the SPT+Planck CMB lensing map by the thermal Sunyaev-Zel'dovich effect is a potentially large source of systematic error for two-point function analyses, but show that it can be reduced to acceptable levels in our analysis by masking clusters of galaxies and imposing angular scale cuts on the two-point functions. The methodology developed here will be applied to the analysis of data from the DES, the SPT, and Planck in a companion work.

  13. Adaptive lenses using transparent dielectric elastomer actuators

    Science.gov (United States)

    Shian, Samuel; Diebold, Roger; Clarke, David

    2013-03-01

    Variable focal lenses, used in a vast number of applications such as endoscope, digital camera, binoculars, information storage, communication, and machine vision, are traditionally constructed as a lens system consisting of solid lenses and actuating mechanisms. However, such lens system is complex, bulky, inefficient, and costly. Each of these shortcomings can be addressed using an adaptive lens that performs as a lens system. In this presentation, we will show how we push the boundary of adaptive lens technology through the use of a transparent electroactive polymer actuator that is integral to the optics. Detail of our concepts and lens construction will be described as well as electromechanical and optical performances. Preliminary data indicate that our adaptive lens prototype is capable of varying its focus by more than 100%, which is higher than that of human eyes. Furthermore, we will show how our approach can be used to achieve certain controls over the lens characteristics such as adaptive aberration and optical axis, which are difficult or impossible to achieve in other adaptive lens configurations.

  14. Numerical Simulation of Partially-Coherent Broadband Optical Imaging Using the FDTD Method

    Science.gov (United States)

    Çapoğlu, İlker R.; White, Craig A.; Rogers, Jeremy D.; Subramanian, Hariharan; Taflove, Allen; Backman, Vadim

    2012-01-01

    Rigorous numerical modeling of optical systems has attracted interest in diverse research areas ranging from biophotonics to photolithography. We report the full-vector electromagnetic numerical simulation of a broadband optical imaging system with partially-coherent and unpolarized illumination. The scattering of light from the sample is calculated using the finite-difference time-domain (FDTD) numerical method. Geometrical optics principles are applied to the scattered light to obtain the intensity distribution at the image plane. Multilayered object spaces are also supported by our algorithm. For the first time, numerical FDTD calculations are directly compared to and shown to agree well with broadband experimental microscopy results. PMID:21540939

  15. Polarization sensitive optical coherence tomography in dentistry

    International Nuclear Information System (INIS)

    Dichtl, S.

    1998-01-01

    Optical coherence tomography (OCT) is a noninvasive and noncontact technique for obtaining cross-sectional images of biologic structure, which was initially introduced to depict the transparent tissue of the eye. It employs the partial coherence properties of a light source to image structures with high resolution (< 20 (m). Recently, this technique has also been applied in turbid media. This tomographic imaging is analogous to conventional ultrasound B mode imaging, except that OCT measures the intensity of backreflected infrared light rather than acoustical waves. First applications, of OCT in dentistry for diagnosing periodontal disease have been reported by Colston et al. presenting in vitro OCT images of the dental and periodontal tissues of porcine premolar teeth. In this work, the feasibility of polarisation sensitive OCT for dental material is suggested. In contrast with conventional OCT, where the magnitude of backscattered light as a function of depth is imaged, backscattered light is used to image the magnitude of the birefringence in the sample as a function of depth. Partial loss of birefringence is known to be an early indication of incipient caries or tissue thermal damage. Applying this technique for caries diagnosis or guidance regarding optimal dosimetry for thermally mediated laser therapeutic procedures, polarisation sensitive OCT would represent a promising new technology for dentistry. (author)

  16. INFORMATIVITY OF SPECTRAL OPTICAL COHERENT TOMOGRAPHY IN AGGRESSIVE POSTERIOR RETINOPATHY OF PREMATURITY

    Directory of Open Access Journals (Sweden)

    A. V. Tereshchenko

    2017-01-01

    Full Text Available The purpose: to evaluate the informativity of optical coherence tomography in patients with aggressive posterior retinopathy of prematurity. Patients and methods. spectral optical coherence tomography using portable device iVue-100 with a removable camera (Optovue, USA was held in 32 children (64 eyes with aggressive posterior retinopathy of prematurity with a gestational period 26–31 week. Results. Children with aggressive posterior retinopathy of prematurity at the stage of early clinical manifestations, in addition to the indication that the immaturity of the retina, according to the spectral optical coherence tomography revealed only a few areas of epiretinal proliferation, which are not visualized with a digital retinoscopy and binocular indirect ophthalmoscopy. When the process is more pronounced in children with retinopathy of prematurity aggressive rear stage manifestation already determined multiple zones epiretinal proliferation as a "mushroom" and "flake" conglomerates with rear zone hyaloid membrane had an uneven seal. Coarser structural disorders of the retina and the vitreoretinal interface have been identified in patients with advancedstage aggressive posterior retinopathy of prematurity. We determined the shaft extraretinal proliferation as a "comb", as well as portions of epiretinal proliferation on the border of vascularized and avascular retina, which tended to merge, and the formation of massive hyperreflection complexes, lifted back hyaloid membrane, which was not only uneven sealed, but in some places is stratified. Conclusion. Despite the complexity of the procedure and the complexity of its implementation, the data obtained are particularly valuable and informative because they allow to complement the clinical picture and objectify it. It helps to choose the optimal tactics and improvement of a differentiated approach to the treatment of aggressive posterior retinopathy of prematurity.

  17. Neuromyelitis optica and multiple sclerosis: Seeing differences through optical coherence tomography

    Science.gov (United States)

    Bennett, JL; de Seze, J; Lana-Peixoto, M; Palace, J; Waldman, A; Schippling, S; Tenembaum, S; Banwell, B; Greenberg, B; Levy, M; Fujihara, K; Chan, KH; Kim, HJ; Asgari, N; Sato, DK; Saiz, A; Wuerfel, J; Zimmermann, H; Green, A; Villoslada, P

    2015-01-01

    Neuromyelitis optica (NMO) is an inflammatory autoimmune disease of the central nervous system that preferentially targets the optic nerves and spinal cord. The clinical presentation may suggest multiple sclerosis (MS), but a highly specific serum autoantibody against the astrocytic water channel aquaporin-4 present in up to 80% of NMO patients enables distinction from MS. Optic neuritis may occur in either condition resulting in neuro-anatomical retinal changes. Optical coherence tomography (OCT) has become a useful tool for analyzing retinal damage both in MS and NMO. Numerous studies showed that optic neuritis in NMO typically results in more severe retinal nerve fiber layer (RNFL) and ganglion cell layer thinning and more frequent development of microcystic macular edema than in MS. Furthermore, while patients’ RNFL thinning also occurs in the absence of optic neuritis in MS, subclinical damage seems to be rare in NMO. Thus, OCT might be useful in differentiating NMO from MS and serve as an outcome parameter in clinical studies. PMID:25662342

  18. Neurofibromatosis: an update of ophthalmic characteristics and applications of optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Abdolrahimzadeh B

    2016-05-01

    Full Text Available Barmak Abdolrahimzadeh,1 Domenica Carmen Piraino,2 Giorgio Albanese,2 Filippo Cruciani,2 Siavash Rahimi3 1Polimed Beltramelli Medical Center, Rome, Italy; 2Section of Ophthalmology, Department of Sense Organs, University of Rome “Sapienza”, Rome, Italy; 3Pathology Centre, Queen Alexandra Hospital, Portsmouth, UK Abstract: Neurofibromatosis (NF is a multisystem disorder and tumor predisposition syndrome caused by genetic mutation on chromosome 17-17q11.2 in NF type 1 (NF1, and on chromosome 22-22q12.2 in NF type 2. The disorder is characterized by considerable heterogeneity of clinical expression. NF1 is the form with the most characteristic ocular manifestations. Lisch nodules of the iris are among the well-known diagnostic criteria for the disease. Glaucoma and associated globe enlargement have been described in a significant proportion of patients with NF1 and orbital–facial involvement. Optic nerve glioma may cause strabismus and proptosis, and palpebral neurofibroma may reach considerable size and occasionally show malignant transformation. Near infrared reflectance has greatly contributed to enhancing our knowledge on choroidal alterations in NF1. Indeed, some authors have proposed to include these among the diagnostic criteria. Optical coherence tomography has given new insight on retinal alterations and is a noninvasive tool in the management of optic nerve gliomas in children. Ocular manifestations in NF type 2 can range from early-onset cataracts in up to 80% of cases to optic nerve hamartomas and combined pigment epithelial and retinal hamartomas. Keywords: neurofibromatosis, ophthalmic, optical coherence tomography, infrared reflectance, choroideal nodules, Lisch nodules

  19. Identification and tunable optical coherent control of transition-metal spins in silicon carbide

    NARCIS (Netherlands)

    Bosma, Tom; Lof, Gerrit J. J.; Gilardoni, Carmem M.; Zwier, Olger V.; Hendriks, Freddie; Ellison, Alexandre; Magnusson, Björn; Gällström, Andreas; Ivanov, Ivan G.; Son, N. T.; Havenith, Remco W. A.; Wal, Caspar H. van der

    2018-01-01

    Color centers in wide-bandgap semiconductors are attractive systems for quantum technologies since they can combine long-coherent electronic spin and bright optical properties. Several suitable centers have been identified, most famously the nitrogen-vacancy defect in diamond. However, integration

  20. Adaptive restoration of a partially coherent blurred image using an all-optical feedback interferometer with a liquid-crystal device.

    Science.gov (United States)

    Shirai, Tomohiro; Barnes, Thomas H

    2002-02-01

    A liquid-crystal adaptive optics system using all-optical feedback interferometry is applied to partially coherent imaging through a phase disturbance. A theoretical analysis based on the propagation of the cross-spectral density shows that the blurred image due to the phase disturbance can be restored, in principle, irrespective of the state of coherence of the light illuminating the object. Experimental verification of the theory has been performed for two cases when the object to be imaged is illuminated by spatially coherent light originating from a He-Ne laser and by spatially incoherent white light from a halogen lamp. We observed in both cases that images blurred by the phase disturbance were successfully restored, in agreement with the theory, immediately after the adaptive optics system was activated. The origin of the deviation of the experimental results from the theory, together with the effect of the feedback misalignment inherent in our optical arrangement, is also discussed.

  1. The Optic Disc Drusen Studies Consortium Recommendations for Diagnosis of Optic Disc Drusen Using Optical Coherence Tomography

    DEFF Research Database (Denmark)

    Malmqvist, Lasse; Bursztyn, Lulu; Costello, Fiona

    2018-01-01

    imaging optical coherence tomography (EDI-OCT) has improved the visualization of more deeply buried ODD. There is, however, no consensus regarding the diagnosis of ODD using OCT. The purpose of this study was to develop a consensus recommendation for diagnosing ODD using OCT. METHODS: The members...... of the Optic Disc Drusen Studies (ODDS) Consortium are either fellowship trained neuro-ophthalmologists with an interest in ODD, or researchers with an interest in ODD. Four standardization steps were performed by the consortium members with a focus on both image acquisition and diagnosis of ODD. RESULTS......: Based on prior knowledge and experiences from the standardization steps, the ODDS Consortium reached a consensus regarding OCT acquisition and diagnosis of ODD. The recommendations from the ODDS Consortium include scanning protocol, data selection, data analysis, and nomenclature. CONCLUSIONS: The ODDS...

  2. Visible light optical coherence microscopy imaging of the mouse cortex with femtoliter volume resolution

    Science.gov (United States)

    Merkle, Conrad W.; Chong, Shau Poh; Kho, Aaron M.; Zhu, Jun; Kholiqov, Oybek; Dubra, Alfredo; Srinivasan, Vivek J.

    2018-02-01

    Most flying-spot Optical Coherence Tomography (OCT) and Optical Coherence Microscopy (OCM) systems use a symmetric confocal geometry, where the detection path retraces the illumination path starting from and ending with the spatial mode of a single mode optical fiber. Here, we describe a visible light OCM instrument that breaks this symmetry to improve transverse resolution without sacrificing collection efficiency in scattering tissue. This was achieved by overfilling a 0.3 numerical aperture (NA) water immersion objective on the illumination path, while maintaining a conventional Gaussian mode detection path (1/e2 intensity diameter 0.82 Airy disks), enabling 1.1 μm full-width at half-maximum (FWHM) transverse resolution. At the same time, a 0.9 μm FWHM axial resolution in tissue, achieved by a broadband visible light source, enabled femtoliter volume resolution. We characterized this instrument according to paraxial coherent microscopy theory, and then used it to image the meningeal layers, intravascular red blood cell-free layer, and myelinated axons in the mouse neocortex in vivo through the thinned skull. Finally, by introducing a 0.8 NA water immersion objective, we improved the lateral resolution to 0.44 μm FWHM, which provided a volumetric resolution of 0.2 fL, revealing cell bodies in cortical layer I of the mouse brain with OCM for the first time.

  3. Coherent Pound-Drever-Hall technique for high resolution fiber optic strain sensor at very low light power

    Science.gov (United States)

    Wu, Mengxin; Liu, Qingwen; Chen, Jiageng; He, Zuyuan

    2017-04-01

    Pound-Drever-Hall (PDH) technique has been widely adopted for ultrahigh resolution fiber-optic sensors, but its performance degenerates seriously as the light power drops. To solve this problem, we developed a coherent PDH technique for weak optical signal detection, with which the signal-to-noise ratio (SNR) of demodulated PDH signal is dramatically improved. In the demonstrational experiments, a high resolution fiber-optic sensor using the proposed technique is realized, and n"-order strain resolution at a low light power down to -43 dBm is achieved, which is about 15 dB lower compared with classical PDH technique. The proposed coherent PDH technique has great potentials in longer distance and larger scale sensor networks.

  4. Reduction in ionic permeability of a silicone hydrogel contact lenses after one month of daily wear

    International Nuclear Information System (INIS)

    Ferreira da Silva, Ana Rita; González-Méijome, José M; Compañ, Vicente

    2015-01-01

    Purpose. To compare the ionic permeability using the ionoflux method of new and worn samples of a silicone hydrogel contact lens material. Methods. An ionoflux experimental setup was established to measure the ionic permeability (NaCl) of soft contact lenses. Samples of a silicone hydrogel lens (Comfilcon A, Coopervision, Pleasanton, CA) with optical powers of −1.00, −1.50 and −4.75 diopters (D) were used in this study. Three samples of each power were measured after being worn for one month on a daily wear basis. Lenses were cleaned and disinfected every night using multipurpose disinfecting solutions. Three samples of new lenses from the same batch and the same optical power were also measured to evaluate the effect of lens wear on the ionic permeability of the lens material. Before measurement, the lenses were equilibrated with a 1 M NaCl solution during one week before of each measurement. Results. Lens power had minimal effect on the ionic permeability of a modern silicone hydrogel contact lens with the −1.00 lens having a 15% lower permeability compared to the other two lenses. After one month of lens wear the apparent ionic permeability for lenses with −1.50 D decreased by 15%. In the case of −1.00 and −4.75 D lenses there was a decrease of 26%. Conclusions. The ionic permeability of silicone hydrogel lenses of different optical powers was not significantly different. Worn lenses present a significant reduction of the ionic permeability after a month of wear. The potential effect this reduction on lens movement and discomfort associated to lens wear should be further evaluated. (paper)

  5. Precision Spectral Manipulation: A Demonstration Using a Coherent Optical Memory

    Directory of Open Access Journals (Sweden)

    B. M. Sparkes

    2012-06-01

    Full Text Available The ability to coherently spectrally manipulate quantum information has the potential to improve qubit rates across quantum channels and find applications in optical quantum computing. In this paper, we present experiments that use a multielement solenoid combined with the three-level gradient echo memory scheme to perform precision spectral manipulation of optical pulses. These operations include separate bandwidth and frequency manipulation with precision down to tens of kHz, spectral filtering of up to three separate frequency components, as well as time-delayed interference between pulses with both the same, and different, frequencies. If applied in a quantum information network, these operations would enable frequency-based multiplexing of qubits.

  6. Three-dimensional imaging of artificial fingerprint by optical coherence tomography

    Science.gov (United States)

    Larin, Kirill V.; Cheng, Yezeng

    2008-03-01

    Fingerprint recognition is one of the popular used methods of biometrics. However, due to the surface topography limitation, fingerprint recognition scanners are easily been spoofed, e.g. using artificial fingerprint dummies. Thus, biometric fingerprint identification devices need to be more accurate and secure to deal with different fraudulent methods including dummy fingerprints. Previously, we demonstrated that Optical Coherence Tomography (OCT) images revealed the presence of the artificial fingerprints (made from different household materials, such as cement and liquid silicone rubber) at all times, while the artificial fingerprints easily spoofed the commercial fingerprint reader. Also we demonstrated that an analysis of the autocorrelation of the OCT images could be used in automatic recognition systems. Here, we exploited the three-dimensional (3D) imaging of the artificial fingerprint by OCT to generate vivid 3D image for both the artificial fingerprint layer and the real fingerprint layer beneath. With the reconstructed 3D image, it could not only point out whether there exists an artificial material, which is intended to spoof the scanner, above the real finger, but also could provide the hacker's fingerprint. The results of these studies suggested that Optical Coherence Tomography could be a powerful real-time noninvasive method for accurate identification of artificial fingerprints real fingerprints as well.

  7. The application of optical coherence tomography angiography in retinal diseases.

    Science.gov (United States)

    Sambhav, Kumar; Grover, Sandeep; Chalam, Kakarla V

    Optical coherence tomography angiography (OCTA) is a new, noninvasive imaging technique that generates real-time volumetric data on chorioretinal vasculature and its flow pattern. With the advent of high-speed optical coherence tomography, established enface chorioretinal segmentation, and efficient algorithms, OCTA generates images that resemble an angiogram. The principle of OCTA involves determining the change in backscattering between consecutive B-scans and then attributing the differences to the flow of erythrocytes through retinal blood vessels. OCTA has shown promise in the evaluation of common ophthalmologic diseases such as diabetic retinopathy, age-related macular degeneration, and retinal vascular occlusions. It quantifies vascular compromise reflecting the severity of diabetic retinopathy. OCTA detects the presence of choroidal neovascularization in exudative age-related macular degeneration and maps loss of choriocapillaris in nonexudative age-related macular degeneration. We describe principles of OCTA and findings in common and some uncommon retinal pathologies. Finally, we summarize its potential future applications. Its current limitations include a relatively small field of view, inability to show leakage, and a tendency for image artifacts. Further larger studies will define OCTAs utility in clinical settings and establish if the technology may offer its utility in decreasing morbidity through early detection and guide therapeutic interventions in retinal diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Retinal nerve fiber layer thickness map determined from optical coherence tomography images

    NARCIS (Netherlands)

    Mujat, M.; Chan, R. C.; Cense, B.; Park, B.H.; Joo, C.; Akkin, T.; Chen, TC; de Boer, JF

    2005-01-01

    We introduce a method to determine the retinal nerve fiber layer (RNFL) thickness in OCT images based on anisotropic noise suppression and deformable splines. Spectral-Domain Optical Coherence Tomography (SDOCT) data was acquired at 29 kHz A-line rate with a depth resolution of 2.6 mum and a depth

  9. Coherence of light. 2. ed.

    International Nuclear Information System (INIS)

    Perina, J.

    1985-01-01

    This book puts the theory of coherence of light on a rigorous mathematical footing. It deals with the classical and quantum theories and with their inter-relationships, including many results from the author's own research. Particular attention is paid to the detection of optical fields, using the correlation functions, photocount statistics and coherent state. Radiometry with light fields of arbitrary states of coherence is discussed and the coherent state methods are demonstrated by photon statistics of radiation in random and nonlinear media, using the Heisenberg-Langevin and Fokker-Planck approaches to the interaction of radiation with matter. Many experimental and theoretical results are compared. A full list of references to theoretical and experimental literature is provided. The book is intended for researchers and postgraduate students in the fields of quantum optics, quantum electronics, statistical optics, nonlinear optics, optical communication and optoelectronics. (Auth.)

  10. Assessment of laser-induced acceleration effects in optical clearing of in vivo human skin by optical coherence tomography

    International Nuclear Information System (INIS)

    Zhan, Zhigang; Wei, Huajiang; Jin, Ying

    2015-01-01

    Laser irradiation is considered to be a promising innovative technology which has been developed in an attempt to increase transdermal drug delivery. In this study, a near-infrared CW diode laser (785 nm) was applied to increase permeability of glycerol solutions in human skin in vivo and improve the optical clearing efficacy. Results show that for both 15%v/v and 30%v/v glycerol, the permeability coefficient increased significantly if the detected area of the skin tissue was treated with laser irradiation before optical clearing agents (OCAs) were applied. This study based on optical coherence tomography imaging technique and optical clearing effect finds laser irradiation a new approach for enhancing the penetration of OCAs and accelerating the rate of transdermal drug delivery. (paper)

  11. Assessment of laser-induced acceleration effects in optical clearing of in vivo human skin by optical coherence tomography

    Science.gov (United States)

    Zhan, Zhigang; Wei, Huajiang; Jin, Ying

    2015-02-01

    Laser irradiation is considered to be a promising innovative technology which has been developed in an attempt to increase transdermal drug delivery. In this study, a near-infrared CW diode laser (785 nm) was applied to increase permeability of glycerol solutions in human skin in vivo and improve the optical clearing efficacy. Results show that for both 15%v/v and 30%v/v glycerol, the permeability coefficient increased significantly if the detected area of the skin tissue was treated with laser irradiation before optical clearing agents (OCAs) were applied. This study based on optical coherence tomography imaging technique and optical clearing effect finds laser irradiation a new approach for enhancing the penetration of OCAs and accelerating the rate of transdermal drug delivery.

  12. Using spectral-domain optical coherence tomography to detect optic neuropathy in patients with craniosynostosis.

    Science.gov (United States)

    Dagi, Linda R; Tiedemann, Laura M; Heidary, Gena; Robson, Caroline D; Hall, Amber M; Zurakowski, David

    2014-12-01

    Detecting and monitoring optic neuropathy in patients with craniosynostosis is a clinical challenge due to limited cooperation, and subjective measures of visual function. The purpose of this study was to appraise the correlation of peripapillary retinal nerve fiber layer (RNFL) thickness measured by spectral-domain ocular coherence tomography (SD-OCT) with indication of optic neuropathy based on fundus examination. The medical records of all patients with craniosynostosis presenting for ophthalmic evaluation during 2013 were retrospectively reviewed. The following data were abstracted from the record: diagnosis, historical evidence of elevated intracranial pressure, current ophthalmic evaluation and visual field results, and current peripapillary RNFL thickness. A total of 54 patients were included (mean age, 10.6 years [range, 2.4-33.8 years]). Thirteen (24%) had evidence of optic neuropathy based on current fundus examination. Of these, 10 (77%) demonstrated either peripapillary RNFL elevation and papilledema or depression with optic atrophy. Sensitivity for detecting optic atrophy was 88%; for papilledema, 60%; and for either form of optic neuropathy, 77%. Specificity was 94%, 90%, and 83%, respectively. Kappa agreement was substantial for optic atrophy (κ = 0.73) and moderate for papilledema (κ = 0.39) and for either form of optic neuropathy (κ = 0.54). Logistic regression indicated that peripapillary RNFL thickness was predictive of optic neuropathy (P optic neuropathy than visual field testing (likelihood ratio = 10.02; P = 0.002). Sensitivity and specificity of logMAR visual acuity in detecting optic neuropathy were 15% and 95%, respectively. Peripapillary RNFL thickness measured by SD-OCT provides adjunctive evidence for identifying optic neuropathy in patients with craniosynostosis and appears more sensitive at detecting optic atrophy than papilledema. Copyright © 2014 American Association for Pediatric Ophthalmology and Strabismus. Published by

  13. Diamond x-ray optics: Transparent, resilient, high-resolution, and wavefront preserving

    International Nuclear Information System (INIS)

    Shvyd’ko, Yuri; Blank, Vladimir; Terentyev, Sergey

    2017-01-01

    Diamond features a unique combination of outstanding physical properties perfect for numerous x-ray optics applications, where traditional materials such as silicon fail to perform. In the last two decades, impressive progress has been achieved in synthesizing diamond with high crystalline perfection, in manufacturing efficient, resilient, high-resolution, wavefront-preserving diamond optical components, and in implementing them in cutting-edge x-ray instruments. Diamond optics are essential for tailoring x-rays to the most challenging needs of x-ray research. Furthermore, they are becoming vital for the generation of fully coherent hard x-rays by seeded x-ray free-electron lasers. In this article, we review progress in manufacturing flawless diamond crystal components and their applications in diverse x-ray optical devices, such as x-ray monochromators, beam splitters, high-reflectance backscattering mirrors, lenses, phase plates, diffraction gratings, bent-crystal spectrographs, and windows.

  14. Radio over fiber link with adaptive order n‐QAM optical phase modulated OFDM and digital coherent detection

    DEFF Research Database (Denmark)

    Arlunno, Valeria; Borkowski, Robert; Guerrero Gonzalez, Neil

    2011-01-01

    Successful digital coherent demodulation of asynchronous optical phase‐modulated adaptive order QAM (4, 16, and 64) orthogonal frequency division multiplexing signals is achieved by a single reconfigurable digital receiver after 78 km of optical deployed fiber transmission....

  15. Advanced Technologies for Ultrahigh Resolution and Functional Optical Coherence Tomography

    Science.gov (United States)

    2008-04-15

    Gorczynska, "Frequency domain optical coherence tomography techniques in eye imaging," Acta Physica Polonica A , vol. 102, pp. 739-46, 2002/12/ 2002. [57] S...other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a ...SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: a . REPORT b. ABSTRACT c. THIS PAGE 17. LIMITATION OF ABSTRACT

  16. Offline fusion of co-registered intravascular ultrasound and frequency domain optical coherence tomography images for the analysis of human atherosclerotic plaques

    DEFF Research Database (Denmark)

    Räber, Lorenz; Heo, Jung Ho; Radu, Maria D

    2012-01-01

    To demonstrate the feasibility and potential usefulness of an offline fusion of matched optical coherence tomography (OCT) and intravascular ultrasound (IVUS)/virtual histology (IVUS-VH) images.......To demonstrate the feasibility and potential usefulness of an offline fusion of matched optical coherence tomography (OCT) and intravascular ultrasound (IVUS)/virtual histology (IVUS-VH) images....

  17. Performance analysis of a hybrid fingerprint extracted from optical coherence tomography fingertip scans

    CSIR Research Space (South Africa)

    Darlow, Luke N

    2016-06-01

    Full Text Available The Hybrid fingerprint is a local-quality-specific blend of the surface and internal fingerprints, extracted from optical coherence tomography scans. Owing to its origin, and the manner in which it is obtained, the Hybrid fingerprint is a high...

  18. Frequency-swept Light Sources for Optical Coherence Tomography in the 1060nm range

    DEFF Research Database (Denmark)

    Marschall, Sebastian

    Optical coherence tomography (OCT) is a non-invasive imaging technique for visualizing the internal structure of scattering materials, such as biological tissues. It generates two- or three-dimensional images of the sample with cellular (micrometer) resolution. OCT has become an important instrum...

  19. Source Plane Reconstruction of the Bright Lensed Galaxy RCSGA 032727-132609

    Science.gov (United States)

    Sharon, Keren; Gladders, Michael D.; Rigby, Jane R.; Wuyts, Eva; Koester, Benjamin P.; Bayliss, Matthew B.; Barrientos, L. Felipe

    2011-01-01

    We present new HST/WFC3 imaging data of RCS2 032727-132609, a bright lensed galaxy at z=1.7 that is magnified and stretched by the lensing cluster RCS2 032727-132623. Using this new high-resolution imaging, we modify our previous lens model (which was based on ground-based data) to fully understand the lensing geometry, and use it to reconstruct the lensed galaxy in the source plane. This giant arc represents a unique opportunity to peer into 100-pc scale structures in a high redshift galaxy. This new source reconstruction will be crucial for a future analysis of the spatially-resolved rest-UV and rest-optical spectra of the brightest parts of the arc.

  20. Dense arrays of millimeter-sized glass lenses fabricated at wafer-level.

    Science.gov (United States)

    Albero, Jorge; Perrin, Stéphane; Bargiel, Sylwester; Passilly, Nicolas; Baranski, Maciej; Gauthier-Manuel, Ludovic; Bernard, Florent; Lullin, Justine; Froehly, Luc; Krauter, Johann; Osten, Wolfgang; Gorecki, Christophe

    2015-05-04

    This paper presents the study of a fabrication technique of lenses arrays based on the reflow of glass inside cylindrical silicon cavities. Lenses whose sizes are out of the microfabrication standards are considered. In particular, the case of high fill factor arrays is discussed in detail since the proximity between lenses generates undesired effects. These effects, not experienced when lenses are sufficiently separated so that they can be considered as single items, are corrected by properly designing the silicon cavities. Complete topographic as well as optical characterizations are reported. The compatibility of materials with Micro-Opto-Electromechanical Systems (MOEMS) integration processes makes this technology attractive for the miniaturization of inspection systems, especially those devoted to imaging.

  1. NONINVASIVE DIAGNOSIS OF URINARY BLADDER CANCER BY CROSS-POLARIZATION OPTICAL COHERENCE TOMOGRAPHY: CLINICAL RESULTS

    Directory of Open Access Journals (Sweden)

    O. S. Streltsova

    2014-07-01

    Full Text Available The investigation examined the feasibility of cross-polarization optical cohe-rence tomography (CP OCT to detect early urinary bladder cancer (UBC. Studies were performed in 376 patients; 5290 images were obtained using an OCT 133-U optical coherence tomograph. To acquire and compare intrared-light scattering images in baseline and orthogonal polarizations is the basis of CP OCT; their analysis makes it possible to judge from the state of the epithelium/connective tissue system and to obtain information on changes in tissue depolarizing components, collagen in particular. The authors elaborated criteria as determinants of the nature of CP OCT changes in direct and orthogonal polarizations in health, inflammatory changes, and UBC at its early stage - urothelial dysplasia and carcinoma in situ in flat suspected areas.

  2. Numerical modeling of optical coherent transient processes with complex configurations - I. Angled beam geometry

    International Nuclear Information System (INIS)

    Chang Tiejun; Tian Mingzhen; Randall Babbitt, Wm.

    2004-01-01

    We present a theoretical model for optical coherent transient (OCT) processes based on Maxwell-Bloch equations for angled beam geometry. This geometry is critical in various OCT applications where the desired coherence outputs need to be spatially separated from the rest of the field. The model takes into account both the local interactions between inhomogeneously broadened two-level atoms and the laser fields, and the field propagation in optically thick media. Under the small-angle condition, the spatial dimensions transversing to the main propagation direction were treated with spatial Fourier transform to make the numerical computations for the practical settings confined within a reasonable time frame. The simulations for analog correlators and continuous processing based on stimulated photon echo have been performed using the simulator developed using the theory

  3. Probabilities for gravitational lensing by point masses in a locally inhomogeneous universe

    International Nuclear Information System (INIS)

    Isaacson, J.A.; Canizares, C.R.

    1989-01-01

    Probability functions for gravitational lensing by point masses that incorporate Poisson statistics and flux conservation are formulated in the Dyer-Roeder construction. Optical depths to lensing for distant sources are calculated using both the method of Press and Gunn (1973) which counts lenses in an otherwise empty cone, and the method of Ehlers and Schneider (1986) which projects lensing cross sections onto the source sphere. These are then used as parameters of the probability density for lensing in the case of a critical (q0 = 1/2) Friedmann universe. A comparison of the probability functions indicates that the effects of angle-averaging can be well approximated by adjusting the average magnification along a random line of sight so as to conserve flux. 17 references

  4. Strain Wave Acquisition by a Fiber Optic Coherent Sensor for Impact Monitoring.

    Science.gov (United States)

    Sbarufatti, Claudio; Beligni, Alessio; Gilioli, Andrea; Ferrario, Maddalena; Mattarei, Marco; Martinelli, Mario; Giglio, Marco

    2017-07-13

    A novel fiber optic sensing technology for high frequency dynamics detection is proposed in this paper, specifically tailored for structural health monitoring applications based on strain wave analysis, for both passive impact identification and active Lamb wave monitoring. The sensing solution relies on a fiber optic-based interferometric architecture associated to an innovative coherent detection scheme, which retrieves in a completely passive way the high-frequency phase information of the received optical signal. The sensing fiber can be arranged into different layouts, depending on the requirement of the specific application, in order to enhance the sensor sensitivity while still ensuring a limited gauge length if punctual measures are required. For active Lamb wave monitoring, this results in a sensing fiber arranged in multiple loops glued on an aluminum thin panel in order to increase the phase signal only in correspondence to the sensing points of interest. Instead, for passive impact identification, the required sensitivity is guaranteed by simply exploiting a longer gauge length glued to the structure. The fiber optic coherent (FOC) sensor is exploited to detect the strain waves emitted by a piezoelectric transducer placed on the aluminum panel or generated by an impulse hammer, respectively. The FOC sensor measurements have been compared with both a numerical model based on Finite Elements and traditional piezoelectric sensors, confirming a good agreement between experimental and simulated results for both active and passive impact monitoring scenarios.

  5. Origami with negative refractive index to generate super-lenses

    International Nuclear Information System (INIS)

    Guenneau, Fanny; Chakrabarti, Sangeeta; Guenneau, Sebastien; Ramakrishna, S Anantha

    2014-01-01

    Negative refractive index materials (NRIM) enable unique effects including superlenses with a high degree of sub-wavelength image resolution, a capability that stems from the ability of NRIM to support a host of surface plasmon states. Using a generalized lens theorem and the powerful tools of transformational optics, a variety of focusing configurations involving complementary positive and negative refractive index media can be generated. A paradigm of such complementary media are checkerboards that consist of alternating cells of positive and negative refractive index, and are associated with very singular electromagnetics. We present here a variety of multi-scale checkerboard lenses that we call origami lenses and investigate their electromagnetic properties both theoretically and computationally. Some of these meta-structures in the plane display thin bridges of complementary media, and this highly enhances their plasmonic response. We demonstrate the design of three-dimensional checkerboard meta-structures of complementary media using transformational optics to map the checkerboard onto three-dimensional corner lenses, the only restriction being that the corresponding unfolded structures in the plane are constrained by the four color-map theorem. (paper)

  6. A simple technique of intraocular lenses explantation for single-piece foldable lenses

    Directory of Open Access Journals (Sweden)

    Arup Bhaumik

    2017-01-01

    Full Text Available Foldable intraocular lenses (IOLs are most commonly used in modern-day cataract surgery. Explantation of these IOLs is not frequently encountered, but sometimes extreme situations may demand the same. Commonly explantation is achieved by bisecting the IOL inside the anterior chamber with a cutter and delivering the pieces out one by one. This may require corneal wound extension with associated damage and endothelial loss leading to visual deterioration. We devised a simple, innovative IOL explantation technique utilizing a modified Alcon A cartridge and snare. This can successfully refold the IOL to be explanted inside the eye and deliver it out through the same wound. The device has limitations with very thick optic lenses, multipiece, and silicon IOLs. In conclusion, we describe a simple, innovative, and reproducible technique to explant almost any single piece IOL without compromising the original surgery and yielding very satisfactory outcomes.

  7. In vitro power profiles of daily disposable contact lenses.

    Science.gov (United States)

    Belda-Salmerón, Lurdes; Madrid-Costa, David; Ferrer-Blasco, Teresa; García-Lázaro, Santiago; Montés-Micó, Robert

    2013-10-01

    To evaluate and compare the distribution of refractive power within the optic zone of different soft contact lenses and to investigate the effect of lens decentration on the power profiles. The Nimo TR1504 instrument was used to measure the optical power across different aperture diameters (from 1.5mm to 5.5mm in steps of 0.5mm) of four daily disposable contact lenses: DAILIES TOTAL1, Proclear 1-Day, SofLens daily disposable and 1-DAY ACUVUE MOIST. Measurements were performed using a wet cell. Power data were evaluated when contact lenses were in its centered position and after inducing different amounts of lens decentration (from 0.2mm to 1.0mm in steps of 0.2mm). All contact lenses showed an increase - more negative - in lens power with distance from the lens center. The amount of change varied depending on the lens. It was about 10% of lens power for DAILIES TOTAL1 (-0.29diopters (D)), SofLens daily disposable (-0.36D), and Proclear 1-Day (-0.32D) whereas 1-DAY ACUVUE MOIST showed a percentage variation of 3.3% (-0.10D). After inducing a lens decentration up to 1mm, the power curves were shifted in the negative direction. However, the change obtained in lens power compared with well-centered position was always lower than a quarter of diopter both for all the lenses and aperture diameters. Our results showed a variation of the refractive power from the lens center, becoming more negative toward the periphery, with a negligible effect of the decentration for all disposable contact lenses studied. Copyright © 2013 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  8. Direct Laser Writing of Nanophotonic Structures on Contact Lenses.

    Science.gov (United States)

    AlQattan, Bader; Yetisen, Ali K; Butt, Haider

    2018-04-24

    Contact lenses are ubiquitous biomedical devices used for vision correction and cosmetic purposes. Their application as quantitative analytical devices is highly promising for point-of-care diagnostics. However, it is a challenge to integrate nanoscale features into commercial contact lenses for application in low-cost biosensors. A neodymium-doped yttrium aluminum garnet (Nd:YAG) laser (1064 nm, 3 ns pulse, 240 mJ) in holographic interference patterning mode was utilized to produce optical nanostructures over the surface of a hydrogel contact lens. One-dimensional (925 nm) and two-dimensional (925 nm × 925 nm) nanostructures were produced on contact lenses and analyzed by spectroscopy and angle-resolve measurements. The holographic properties of these nanostructures were tested in ambient moisture, fully hydrated, and artificial tear conditions. The measurements showed a rapid tuning of optical diffraction from these nanostructures from 41 to 48°. The nanostructures were patterned near the edges of the contact lens to avoid any interference and obstruction to the human vision. The formation of 2D nanostructures on lenses increased the diffraction efficiency by more than 10%. The versatility of the holographic laser ablation method was demonstrated by producing four different 2D nanopattern geometries on contact lenses. Hydrophobicity of the contact lens was characterized by contact angle measurements, which increased from 59.0° at pristine condition to 62.5° at post-nanofabrication. The holographic nanostructures on the contact lens were used to sense the concentration of Na + ions. Artificial tear solution was used to simulate the conditions in dry eye syndrome, and nanostructures on the contact lenses were used to detect the electrolyte concentration changes (±47 mmol L -1 ). Nanopatterns on a contact lens may be used to sense other ocular diseases in early stages at point-of-care settings.

  9. Endoscopic optical coherence tomography for imaging the tympanic membrane

    Science.gov (United States)

    Burkhardt, Anke; Walther, Julia; Cimalla, Peter; Bornitz, Matthias; Koch, Edmund

    2011-06-01

    Optical coherence tomography (OCT) is an imaging modality that enables micrometer-scale contactless subsurface imaging of biological tissue. Endoscopy, as another imaging method, has the potential of imaging tubular organs and cavities and therefore has opened up several application areas not accessible before. The combination of OCT and endoscopy uses the advantages of both methods and consequently allows additional imaging of structures beneath surfaces inside cavities. Currently, visual investigations on the surface of the human tympanic membrane are possible but only with expert eyes. up to now, visual imaging of the outer ear up to the tympanic membrane can be carried out by an otoscope, an operating microscope or an endoscope. In contrast to these devices, endoscopy has the advantage of imaging the whole tympanic membrane with one view. The intention of this research is the development of an endoscopic optical coherence tomography (EOCT) device for imaging the tympanic membrane depth-resolved and structures behind it. Detection of fluids in the middle ear, which function as an indicator for otitis media, could help to avoid the application of antibiotics. It is possible to detect a congeries of fluids with the otoscope but the ambition is to the early detection by OCT. The developed scanner head allows imaging in working distances in the range from zero up to 5 mm with a field of view of 2 mm. In the next step, the scanner head should be improved to increase the working distance and the field of view.

  10. Cystoid macular edema diagnosed with optical coherent tomography in patients operated on from cataract

    International Nuclear Information System (INIS)

    Diaz Arencibia, Omar; Rodriguez Rodriguez, Beatriz; Eguias Martinez, Frank; Alemany Rubio, Ernesto; Guerra, Roberto Alejandro

    2009-01-01

    Refers frequency of cystoid macular edema diagnosed with optical coherence tomography in patients operated on from senile cataract at 'Ramon Pando Ferrer' Cuban Institute of Ophthalmology in the period from December 2006 to February 2007

  11. The weak lensing analysis of the CFHTLS and NGVS RedGOLD galaxy clusters

    Science.gov (United States)

    Parroni, C.; Mei, S.; Erben, T.; Van Waerbeke, L.; Raichoor, A.; Ford, J.; Licitra, R.; Meneghetti, M.; Hildebrandt, H.; Miller, L.; Côté, P.; Covone, G.; Cuillandre, J.-C.; Duc, P.-A.; Ferrarese, L.; Gwyn, S. D. J.; Puzia, T. H.

    2017-12-01

    An accurate estimation of galaxy cluster masses is essential for their use in cosmological and astrophysical studies. We studied the accuracy of the optical richness obtained by our RedGOLD cluster detection algorithm tep{licitra2016a, licitra2016b} as a mass proxy, using weak lensing and X-ray mass measurements. We measured stacked weak lensing cluster masses for a sample of 1323 galaxy clusters in the Canada-France-Hawaii Telescope Legacy Survey W1 and the Next Generation Virgo Cluster Survey at 0.2z<0.5, in the optical richness range 10-70. We tested different weak lensing mass models that account for miscentering, non-weak shear, the two-halo term, the contribution of the Brightest Cluster Galaxy, and the intrinsic scatter in the mass-richness relation. We calculated the coefficients of the mass-richness relation, and of the scaling relations between the lensing mass and X-ray mass proxies.

  12. Polymer Compund Refractive Lenses for Hard X-ray Nanofocusing

    OpenAIRE

    Krywka, Christina; Last, Arndt; Marschall, Felix; Markus, Otto; Georgi, Sebastian; Mueller, Martin; Mohr, Jürgen

    2016-01-01

    Compound refractive lenses fabricated out of SU-8 negative photoresist have been used to generate a nanofocused, i.e. sub-μm sized X-ray focal spot at an X-ray nanodiffraction setup. X-ray microscopy and X-ray diffraction techniques have conceptually different demands on nanofocusing optical elements and so with the application of X-ray nanodiffraction in mind, this paper presents the results of an initial characterization of polymer lenses used as primary focusin...

  13. Diffractive optics for industrial and commercial applications

    Energy Technology Data Exchange (ETDEWEB)

    Turunen, J. [Joensuu Univ. (Finland); Wyrowski, F. [eds.] [Jena Univ. (Germany)

    1997-12-31

    The following topics were dealt with: diffractive optics, diffraction gratings, optical system design with diffractive optics, continuous-relief diffractive lenses and microlens arrays, diffractive bifocal intraocular lenses, diffractive laser resonators, diffractive optics for semiconductor lasers, diffractive elements for optical image processing, photorefractive crystals in optical measurement systems, subwavelenth-structured elements, security applications, diffractive optics for solar cells, holographic microlithography. 999 refs.

  14. Age-related compaction of lens fibers affects the structure and optical properties of rabbit lenses

    Directory of Open Access Journals (Sweden)

    Al-Ghoul Walid M

    2007-12-01

    Full Text Available Abstract Background The goal of this investigation was to correlate particular age-related structural changes (compaction to the amount of scatter in rabbit lenses and to determine if significant fiber compaction occurred in the nuclear and inner cortical regions. Methods New Zealand White rabbits at 16–20 months old (adult; n = 10 and at 3.5–4 years old (aged; n = 10 were utilized for this study. Immediately after euthanising, scatter was assessed in fresh lenses by low power helium-neon laser scan analysis. Scatter data was analyzed both for whole lenses and regionally, to facilitate correlation with morphometric data. After functional analysis, lenses were fixed and processed for scanning electron microcopy (SEM; right eyes and light microscopy (LM; left eyes. Morphometric analysis of SEM images was utilized to evaluate compaction of nuclear fibers. Similarly, measurements from LM images were used to assess compaction of inner cortical fibers. Results Scatter was significantly greater in aged lenses as compared to adult lenses in all regions analyzed, however the difference in the mean was slightly more pronounced in the inner cortical region. The anterior and posterior elliptical angles at 1 mm (inner fetal nucleus were significantly decreased in aged vs. adult lenses (anterior, p = 0.040; posterior, p = 0.036. However, the average elliptical angles at 2.5 mm (outer fetal nucleus were not significantly different in adult and aged lenses since all lenses examined had comparable angles to inner fetal fibers of aged lenses, i.e. they were all compacted. In cortical fibers, measures of average cross-sectional fiber area were significantly different at diameters of both 6 and 7 mm as a function of age (p = 0.011 and p = 0.005, respectively. Accordingly, the estimated fiber volume was significantly decreased in aged as compared to adult lenses at both 6 mm diameter (p = 0.016 and 7 mm diameter (p = 0.010. Conclusion Morphometric data indicates

  15. In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography.

    Science.gov (United States)

    Wong, Kevin S K; Jian, Yifan; Cua, Michelle; Bonora, Stefano; Zawadzki, Robert J; Sarunic, Marinko V

    2015-02-01

    Wavefront sensorless adaptive optics optical coherence tomography (WSAO-OCT) is a novel imaging technique for in vivo high-resolution depth-resolved imaging that mitigates some of the challenges encountered with the use of sensor-based adaptive optics designs. This technique replaces the Hartmann Shack wavefront sensor used to measure aberrations with a depth-resolved image-driven optimization algorithm, with the metric based on the OCT volumes acquired in real-time. The custom-built ultrahigh-speed GPU processing platform and fast modal optimization algorithm presented in this paper was essential in enabling real-time, in vivo imaging of human retinas with wavefront sensorless AO correction. WSAO-OCT is especially advantageous for developing a clinical high-resolution retinal imaging system as it enables the use of a compact, low-cost and robust lens-based adaptive optics design. In this report, we describe our WSAO-OCT system for imaging the human photoreceptor mosaic in vivo. We validated our system performance by imaging the retina at several eccentricities, and demonstrated the improvement in photoreceptor visibility with WSAO compensation.

  16. Electro-optically actuated liquid-lens zoom

    Science.gov (United States)

    Pütsch, O.; Loosen, P.

    2012-06-01

    Progressive miniaturization and mass market orientation denote a challenge to the design of dynamic optical systems such as zoom-lenses. Two working principles can be identified: mechanical actuation and application of active optical components. Mechanical actuation changes the focal length of a zoom-lens system by varying the axial positions of optical elements. These systems are limited in speed and often require complex coupled movements. However, well established optical design approaches can be applied. In contrast, active optical components change their optical properties by varying their physical structure by means of applying external electric signals. An example are liquidlenses which vary their curvatures to change the refractive power. Zoom-lenses benefit from active optical components in two ways: first, no moveable structures are required and second, fast response characteristics can be realized. The precommercial development of zoom-lenses demands simplified and cost-effective system designs. However the number of efficient optical designs for electro-optically actuated zoom-lenses is limited. In this paper, the systematic development of an electro-optically actuated zoom-lens will be discussed. The application of aberration polynomials enables a better comprehension of the primary monochromatic aberrations at the lens elements during a change in magnification. This enables an enhanced synthesis of the system behavior and leads to a simplified zoom-lens design with no moving elements. The change of focal length is achieved only by varying curvatures of targeted integrated electro-optically actuated lenses.

  17. Inflammatory Papillitis in Uveitis: Response to Treatment and Use of Optic Nerve Optical Coherence Tomography for Monitoring.

    Science.gov (United States)

    Cho, Heeyoon; Pillai, Parvathy; Nicholson, Laura; Sobrin, Lucia

    2016-01-01

    To describe the clinical course of uveitis-associated inflammatory papillitis and evaluate the utility and reproducibility of optic nerve spectral domain optical coherence tomography (SD-OCT). Data on 22 eyes of 14 patients with uveitis-related papillitis and optic nerve imaging were reviewed. SD-OCT measure reproducibility was determined and parameters were compared in active vs. inactive uveitis. Papillitis resolution lagged behind uveitis resolution in three patients. For SD-OCT measures, the intraclass correlation coefficients were 99.1-100% and 86.9-100% for intraobserver and interobserver reproducibility, respectively. All SD-OCT optic nerve measures except inferior and nasal peripapillary retinal thicknesses were significantly higher in active vs. inactive uveitis after correction for multiple hypotheses testing. Mean optic nerve central thickness decreased from 545.1 to 362.9 µm (p = 0.01). Resolution of inflammatory papillitis can lag behind resolution of uveitis. SD-OCT assessment of papillitis is reproducible and correlates with presence vs. resolution of uveitis.

  18. Mechanical design of thin-film diamond crystal mounting apparatus for coherence preservation hard x-ray optics

    International Nuclear Information System (INIS)

    Shu, Deming; Shvyd’ko, Yuri V.; Stoupin, Stanislav; Kim, Kwang-Je

    2016-01-01

    A new thin-film diamond crystal mounting apparatus has been designed at the Advanced Photon Source (APS) for coherence preservation hard x-ray optics with optimized thermal contact and minimized crystal strain. This novel mechanical design can be applied to new development in the field of: x-ray optics cavities for hard x-ray free-electron laser oscillators (XFELOs), self-seeding monochromators for hard x-ray free-electron laser (XFEL) with high average thermal loading, high heat load diamond crystal monochromators and beam-sharing/beam-split-and-delay devices for XFEL facilities and future upgraded high-brightness coherent x-ray source in the MBA lattice configuration at the APS.

  19. Mechanical design of thin-film diamond crystal mounting apparatus for coherence preservation hard x-ray optics

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Deming, E-mail: shu@aps.anl.gov; Shvyd’ko, Yuri V.; Stoupin, Stanislav; Kim, Kwang-Je [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, U.S.A (United States)

    2016-07-27

    A new thin-film diamond crystal mounting apparatus has been designed at the Advanced Photon Source (APS) for coherence preservation hard x-ray optics with optimized thermal contact and minimized crystal strain. This novel mechanical design can be applied to new development in the field of: x-ray optics cavities for hard x-ray free-electron laser oscillators (XFELOs), self-seeding monochromators for hard x-ray free-electron laser (XFEL) with high average thermal loading, high heat load diamond crystal monochromators and beam-sharing/beam-split-and-delay devices for XFEL facilities and future upgraded high-brightness coherent x-ray source in the MBA lattice configuration at the APS.

  20. Quantitative comparison of analysis methods for spectroscopic optical coherence tomography: reply to comment

    NARCIS (Netherlands)

    Bosschaart, Nienke; van Leeuwen, Ton; Aalders, Maurice C.G.; Faber, Dirk

    2014-01-01

    We reply to the comment by Kraszewski et al on “Quantitative comparison of analysis methods for spectroscopic optical coherence tomography.” We present additional simulations evaluating the proposed window function. We conclude that our simulations show good qualitative agreement with the results of

  1. Spectral domain optical coherence tomography characteristics in diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Laxmi Gella

    2014-01-01

    Full Text Available Purpose: To report the appearance of diabetic retinopathy lesions using spectral domain optical coherence tomography (SD-OCT. Materials and Methods: A total of 287 eyes of 199 subjects were included. All the subjects underwent complete ophthalmic examination including SD-OCT. Results: The appearance of various lesions of diabetic retinopathy and the retinal layers involved were reported. In subjects with macular edema the prevalence of incomplete PVD was 55.6%. Conclusion: SD-OCT brings new insights into the morphological changes of the retina in diabetic retinopathy.

  2. Laser-ablated silicon nanoparticles: optical properties and perspectives in optical coherence tomography

    International Nuclear Information System (INIS)

    Kirillin, M Yu; Sergeeva, E A; Agrba, P D; Krainov, A D; Ezhov, A A; Shuleiko, D V; Kashkarov, P K; Zabotnov, S V

    2015-01-01

    Due to their biocompatibility silicon nanoparticles have high potential in biomedical applications, especially in optical diagnostics. In this paper we analyze properties of the silicon nanoparticles formed via laser ablation in water and study the possibility of their application as contrasting agents in optical coherence tomography (OCT). The nanoparticles suspension was produced by picosecond laser irradiation of monocrystalline silicon wafers in water. According to transmission electron microcopy analysis the silicon nanoparticles in the obtained suspension vary in size from 2 to 200 nm while concentration of the particles is estimated as 10 13 cm −3 . The optical properties of the suspension in the range from 400 to 1000 nm were studied by spectrophotometry measurements revealing a scattering coefficient of about 0.1 mm −1 and a scattering anisotropy factor in the range of 0.2–0.4. In OCT study a system with a central wavelength of 910 nm was employed. Potential of the silicon nanoparticles as a contrasting agent for OCT is studied in experiments with agarose gel phantoms. Topical application of the nanoparticles suspension allowed the obtaining of the contrast of structural features of phantom up to 14 dB in the OCT image. (paper)

  3. ULTRAHIGH SPEED SWEPT SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY OF RETINAL AND CHORIOCAPILLARIS ALTERATIONS IN DIABETIC PATIENTS WITH AND WITHOUT RETINOPATHY.

    Science.gov (United States)

    Choi, WooJhon; Waheed, Nadia K; Moult, Eric M; Adhi, Mehreen; Lee, ByungKun; De Carlo, Talisa; Jayaraman, Vijaysekhar; Baumal, Caroline R; Duker, Jay S; Fujimoto, James G

    2017-01-01

    To investigate the utility of ultrahigh speed, swept source optical coherence tomography angiography in visualizing retinal microvascular and choriocapillaris (CC) changes in diabetic patients. The study was prospective and cross-sectional. A 1,050 nm wavelength, 400 kHz A-scan rate swept source optical coherence tomography prototype was used to perform volumetric optical coherence tomography angiography of the retinal and CC vasculatures in diabetic patients and normal subjects. Sixty-three eyes from 32 normal subjects, 9 eyes from 7 patients with proliferative diabetic retinopathy, 29 eyes from 16 patients with nonproliferative diabetic retinopathy, and 51 eyes from 28 diabetic patients without retinopathy were imaged. Retinal and CC microvascular abnormalities were observed in all stages of diabetic retinopathy. In nonproliferative diabetic retinopathy and proliferative diabetic retinopathy, optical coherence tomography angiography visualized a variety of vascular abnormalities, including clustered capillaries, dilated capillary segments, tortuous capillaries, regions of capillary dropout, reduced capillary density, abnormal capillary loops, and foveal avascular zone enlargement. In proliferative diabetic retinopathy, retinal neovascularization above the inner limiting membrane was visualized. Regions of CC flow impairment in patients with proliferative diabetic retinopathy and nonproliferative diabetic retinopathy were also observed. In 18 of the 51 of eyes from diabetic patients without retinopathy, retinal mircrovascular abnormalities were observed and CC flow impairment was found in 24 of the 51 diabetic eyes without retinopathy. The ability of optical coherence tomography angiography to visualize retinal and CC microvascular abnormalities suggests it may be a useful tool for understanding pathogenesis, evaluating treatment response, and earlier detection of vascular abnormalities in patients with diabetes.

  4. Optical Coherence Tomography Study of Experimental Anterior Ischemic Optic Neuropathy and Histologic Confirmation

    Science.gov (United States)

    Ho, Joyce K.; Stanford, Madison P.; Shariati, Mohammad A.; Dalal, Roopa; Liao, Yaping Joyce

    2013-01-01

    Purpose. The optic nerve is part of the central nervous system, and interruption of this pathway due to ischemia typically results in optic atrophy and loss of retinal ganglion cells. In this study, we assessed in vivo retinal changes following murine anterior ischemic optic neuropathy (AION) by using spectral-domain optical coherence tomography (SD-OCT) and compared these anatomic measurements to that of histology. Methods. We induced ischemia at the optic disc via laser-activated photochemical thrombosis, performed serial SD-OCT and manual segmentation of the retinal layers to measure the ganglion cell complex (GCC) and total retinal thickness, and correlated these measurements with that of histology. Results. There was impaired perfusion and leakage at the optic disc on fluorescein angiography immediately after AION and severe swelling and distortion of the peripapillary retina on day-1. We used SD-OCT to quantify the changes in retinal thickness following experimental AION, which revealed significant thickening of the GCC on day-1 after ischemia followed by gradual thinning that plateaued by week-3. Thickness of the peripapillary sensory retina was also increased on day-1 and thinned chronically. This pattern of acute retinal swelling and chronic thinning on SD-OCT correlated well with changes seen in histology and corresponded to loss of retinal ganglion layer cells after ischemia. Conclusions. This was a serial SD-OCT quantification of acute and chronic changes following experimental AION, which revealed changes in the GCC similar to that of human AION, but over a time frame of weeks rather than months. PMID:23887804

  5. Dynamic gonioscopy using optical coherence tomography.

    Science.gov (United States)

    Matonti, Frederic; Chazalon, Elodie; Trichet, Elodie; Khaled, El Samak; Denis, Danièle; Hoffart, Louis

    2012-01-01

    To describe the use of anterior segment optical coherence tomography (AS-OCT) in studying the dynamic changes of the anterior chamber angle by corneal indentation. In a prospective observational study, the anterior segments of 21 eyes were imaged using AS-OCT. After the initial scan, a second scan was executed on the same areas with a central corneal indentation. An evaluation of the reopening of the angle and its measurement were performed. With AS-OCT, the indirect signs were accurate enough to guide the diagnosis in all plateau iris confirmed by ultrabiomicroscopy. The angle widths were significantly increased after indentation. This method would appear to offer a convenient and rapid method of assessing the configuration of the anterior chamber; it may help during the routine clinical assessment and treatment of patients with narrow or closed angles, particularly when gonioscopy is difficult to interpret. Copyright 2012, SLACK Incorporated.

  6. Probing molecular chirality by coherent optical absorption spectra

    Energy Technology Data Exchange (ETDEWEB)

    Jia, W. Z. [Quantum Optoelectronics Laboratory, School of Physics and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Wei, L. F. [Quantum Optoelectronics Laboratory, School of Physics and Technology, Southwest Jiaotong University, Chengdu 610031 (China); State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2011-11-15

    We propose an approach to sensitively probe the chirality of molecules by measuring their coherent optical-absorption spectra. It is shown that quantum dynamics of the cyclic three-level chiral molecules driven by appropriately designed external fields is total-phase dependent. This will result in chirality-dependent absorption spectra for the probe field. As a consequence, the charality-dependent information in the spectra (such as the locations and relative heights of the characteristic absorption peaks) can be utilized to identify molecular chirality and determinate enantiomer excess (i.e., the percentages of different enantiomers). The feasibility of the proposal with chiral molecules confined in hollow-core photonic crystal fiber is also discussed.

  7. Autofluorescence and high-definition optical coherence tomography of retinal artery occlusions

    OpenAIRE

    Mathew, Raeba; Papavasileiou, Evangelia; Sivaprasad, Sobha

    2010-01-01

    Raeba Mathew, Evangelia Papavasileiou, Sobha SivaprasadLaser and Retinal Research Unit, Department of Ophthalmology, King’s College Hospital, Denmark Hill, London, UKBackground: The purpose of this study is to illustrate the fundus autofluorescence and high-definition optical coherence tomography (HD-OCT) features of acute and long-standing retinal artery occlusions.Design: Retrospective case series.Participants: Patients with acute and chronic retinal and cilioretinal artery occlus...

  8. Optical Coherence Tomography Angiography Features of Iris Racemose Hemangioma in 4 Cases.

    Science.gov (United States)

    Chien, Jason L; Sioufi, Kareem; Ferenczy, Sandor; Say, Emil Anthony T; Shields, Carol L

    2017-10-01

    Optical coherence tomography angiography (OCTA) allows visualization of iris racemose hemangioma course and its relation to the normal iris microvasculature. To describe OCTA features of iris racemose hemangioma. Descriptive, noncomparative case series at a tertiary referral center (Ocular Oncology Service of Wills Eye Hospital). Patients diagnosed with unilateral iris racemose hemangioma were included in the study. Features of iris racemose hemangioma on OCTA. Four eyes of 4 patients with unilateral iris racemose hemangioma were included in the study. Mean patient age was 50 years, all patients were white, and Snellen visual acuity was 20/20 in each case. All eyes had sectoral iris racemose hemangioma without associated iris or ciliary body solid tumor on clinical examination and ultrasound biomicroscopy. By anterior segment OCT, the racemose hemangioma was partially visualized in all cases. By OCTA, the hemangioma was clearly visualized as a uniform large-caliber vascular tortuous loop with intense flow characteristics superimposed over small-caliber radial iris vessels against a background of low-signal iris stroma. The vascular course on OCTA resembled a light bulb filament (filament sign), arising from the peripheral iris (base of light bulb) and forming a tortuous loop on reaching its peak (midfilament) near the pupil (n = 3) or midzonal iris (n = 1), before returning to the peripheral iris (base of light bulb). Intravenous fluorescein angiography performed in 1 eye depicted the iris hemangioma; however, small-caliber radial iris vessels were more distinct on OCTA than intravenous fluorescein angiography. Optical coherence tomography angiography is a noninvasive vascular imaging modality that clearly depicts the looping course of iris racemose hemangioma. Optical coherence tomography angiography depicted fine details of radial iris vessels, not distinct on intravenous fluorescein angiography.

  9. Anterior Segment Optical Coherence Tomography for Tear Meniscus Evaluation and its Correlation with other Tear Variables in Healthy Individuals

    Science.gov (United States)

    Dhasmana, Renu; Nagpal, Ramesh Chander

    2016-01-01

    Introduction Dry eye is one of the most common ocular diseases in this cyber era. Despite availability of multiple tests, no single test is accurate for the diagnosis of dry eye. Anterior segment optical coherence tomography is the recent tool which can be added in the armentarium of dry eye tests. Aim To evaluate tear meniscus with anterior segment optical coherence tomography and its correlation with other tear variables in normal healthy individuals. Materials and Methods In this prospective cross-sectional observational study, right eye of 203 consecutive patients were studied. All the patients were divided into three groups Group 1, 2 and 3 according to their age ≤20 years, 21-40 years and >40 years respectively. All patients underwent routine ophthalmologic examinations along with slit-lamp bio-microscopy for tear meniscus height measurement, tear film break up time, Schirmer’s I test (with anaesthesia) and optical coherence tomography imaging of inferior tear meniscus height. After focusing of the instrument with a Cross Line (CL) centered on lower tear meniscus at 6’0 clock of cornea, a 6 mm long scan was obtained. The tear meniscus height (μm) and tear meniscus area (mm2) were measured manually with help of callipers by joining upper corneo-meniscus junction to the lower lid-meniscus junction and tear meniscus height and area within the plotted line respectively and calculated by using the integrated analysis available in the custom software. Results There was significant decrease in the all tear variables with the increase in the age. According to age groups in group 1, the mean Schirmer’s (24.0±4.9)mm, tear film break up time (11.1±1.9) sec, tear meniscus height on slit lamp (600.2±167.3)mm were higher but decreased in group 2 (21.5±5.4,10.8±1.4, 597.5±186.3) and group 3 (19.8 ± 5.1, 10.2 ± 1.6, 485.6 ± 157.7) respectively. Schirmer’s test values and tear film break up time were similar in both sexes (p=0.1 and p= 0.9). Tear meniscus

  10. Teleophthalmology with optical coherence tomography imaging in community optometry. Evaluation of a quality improvement for macular patients

    Directory of Open Access Journals (Sweden)

    Kelly SP

    2011-12-01

    Full Text Available Simon P Kelly1, Ian Wallwork2, David Haider1, Kashif Qureshi11Ophthalmology Department, Royal Bolton Hospital National Health Service Foundation Trust, Bolton, 2Wallwork Opticians, Salford, UKPurpose: To describe a quality improvement for referral of National Health Service patients with macular disorders from a community optometry setting in an urban area.Methods: Service evaluation of teleophthalmology consultation based on spectral domain optical coherence tomography images acquired by the community optometrist and transmitted to hospital eye services.Results: Fifty patients with suspected macular conditions were managed via telemedicine consultation over 1 year. Responses were provided by hospital eye service-based ophthalmologists to the community optometrist or patient within the next day in 48 cases (96% and in 34 (68% patients on the same day. In the consensus opinion of the optometrist and ophthalmologist, 33 (66% patients required further “face-to-face” medical examination and were triaged on clinical urgency. Seventeen cases (34% were managed in the community and are a potential cost improvement. Specialty trainees were supervised in telemedicine consultations.Conclusion: Innovation and quality improvement were demonstrated in both optometry to ophthalmology referrals and in primary optometric care by use of telemedicine with spectral domain optical coherence tomography images. E-referral of spectral domain optical coherence tomography images assists triage of macular patients and swifter care of urgent cases. Teleophthalmology is also, in the authors’ opinion, a tool to improve interdisciplinary professional working with community optometrists. Implications for progress are discussed.Keywords: telemedicine, teleophthalmology, innovation, community referral, optical coherence tomography, service evaluation

  11. Online monitoring of printed electronics by Spectral-Domain Optical Coherence Tomography

    KAUST Repository

    Alarousu, Erkki

    2013-03-28

    Spectral-Domain Optical Coherence Tomography (SD-OCT) is an optical method capable of 3D imaging of object\\'s internal structure with micron-scale resolution. Modern SD-OCT tools offer the speed capable of online monitoring of printed devices. This paper demonstrates the use of SD-OCT in a simulated roll-to-roll (R2R) process through monitoring some structural properties of moving screen printed interdigitated electrodes. It is shown that structural properties can be resolved for speeds up to ca. 1m/min, which is the first step towards application of this method in real manufacturing processes, including roll-to-roll (R2R) printing.

  12. Three-dimensional ophthalmic optical coherence tomography with a refraction correction algorithm

    Science.gov (United States)

    Zawadzki, Robert J.; Leisser, Christoph; Leitgeb, Rainer; Pircher, Michael; Fercher, Adolf F.

    2003-10-01

    We built an optical coherence tomography (OCT) system with a rapid scanning optical delay (RSOD) line, which allows probing full axial eye length. The system produces Three-dimensional (3D) data sets that are used to generate 3D tomograms of the model eye. The raw tomographic data were processed by an algorithm, which is based on Snell"s law to correct the interface positions. The Zernike polynomials representation of the interfaces allows quantitative wave aberration measurements. 3D images of our results are presented to illustrate the capabilities of the system and the algorithm performance. The system allows us to measure intra-ocular distances.

  13. MEMS-based non-rotatory circumferential scanning optical probe for endoscopic optical coherence tomography

    Science.gov (United States)

    Xu, Yingshun; Singh, Janak; Siang, Teo Hui; Ramakrishna, Kotlanka; Premchandran, C. S.; Sheng, Chen Wei; Kuan, Chuah Tong; Chen, Nanguang; Olivo, Malini C.; Sheppard, Colin J. R.

    2007-07-01

    In this paper, we present a non-rotatory circumferential scanning optical probe integrated with a MEMS scanner for in vivo endoscopic optical coherence tomography (OCT). OCT is an emerging optical imaging technique that allows high resolution cross-sectional imaging of tissue microstructure. To extend its usage to endoscopic applications, a miniaturized optical probe based on Microelectromechanical Systems (MEMS) fabrication techniques is currently desired. A 3D electrothermally actuated micromirror realized using micromachining single crystal silicon (SCS) process highlights its very large angular deflection, about 45 degree, with low driving voltage for safety consideration. The micromirror is integrated with a GRIN lens into a waterproof package which is compatible with requirements for minimally invasive endoscopic procedures. To implement circumferential scanning substantially for diagnosis on certain pathological conditions, such as Barret's esophagus, the micromirror is mounted on 90 degree to optical axis of GRIN lens. 4 Bimorph actuators that are connected to the mirror on one end via supporting beams and springs are selected in this micromirror design. When actuators of the micromirror are driven by 4 channels of sinusoidal waveforms with 90 degree phase differences, beam focused by a GRIN is redirected out of the endoscope by 45 degree tilting mirror plate and achieve circumferential scanning pattern. This novel driving method making full use of very large angular deflection capability of our micromirror is totally different from previously developed or developing micromotor-like rotatory MEMS device for circumferential scanning.

  14. In situ gold nanoparticles formation: contrast agent for dental optical coherence tomography

    Science.gov (United States)

    Braz, Ana K. S.; Araujo, Renato E. de; Ohulchanskyy, Tymish Y.; Shukla, Shoba; Bergey, Earl J.; Gomes, Anderson S. L.; Prasad, Paras N.

    2012-06-01

    In this work we demonstrate the potential use of gold nanoparticles as contrast agents for the optical coherence tomography (OCT) imaging technique in dentistry. Here, a new in situ photothermal reduction procedure was developed, producing spherical gold nanoparticles inside dentinal layers and tubules. Gold ions were dispersed in the primer of commercially available dental bonding systems. After the application and permeation in dentin by the modified adhesive systems, the dental bonding materials were photopolymerized concurrently with the formation of gold nanoparticles. The gold nanoparticles were visualized by scanning electron microscopy (SEM). The SEM images show the presence of gold nanospheres in the hybrid layer and dentinal tubules. The diameter of the gold nanoparticles was determined to be in the range of 40 to 120 nm. Optical coherence tomography images were obtained in two- and three-dimensions. The distribution of nanoparticles was analyzed and the extended depth of nanosphere production was determined. The results show that the OCT technique, using in situ formed gold nanoparticles as contrast enhancers, can be used to visualize dentin structures in a non-invasive and non-destructive way.

  15. Design of coherent receiver optical front end for unamplified applications.

    Science.gov (United States)

    Zhang, Bo; Malouin, Christian; Schmidt, Theodore J

    2012-01-30

    Advanced modulation schemes together with coherent detection and digital signal processing has enabled the next generation high-bandwidth optical communication systems. One of the key advantages of coherent detection is its superior receiver sensitivity compared to direct detection receivers due to the gain provided by the local oscillator (LO). In unamplified applications, such as metro and edge networks, the ultimate receiver sensitivity is dictated by the amount of shot noise, thermal noise, and the residual beating of the local oscillator with relative intensity noise (LO-RIN). We show that the best sensitivity is achieved when the thermal noise is balanced with the residual LO-RIN beat noise, which results in an optimum LO power. The impact of thermal noise from the transimpedance amplifier (TIA), the RIN from the LO, and the common mode rejection ratio (CMRR) from a balanced photodiode are individually analyzed via analytical models and compared to numerical simulations. The analytical model results match well with those of the numerical simulations, providing a simplified method to quantify the impact of receiver design tradeoffs. For a practical 100 Gb/s integrated coherent receiver with 7% FEC overhead, we show that an optimum receiver sensitivity of -33 dBm can be achieved at GFEC cliff of 8.55E-5 if the LO power is optimized at 11 dBm. We also discuss a potential method to monitor the imperfections of a balanced and integrated coherent receiver.

  16. BER Analysis of Coherent Free-Space Optical Communication Systems with a Focal-Plane-Based Wavefront Sensor

    Science.gov (United States)

    Cao, Jingtai; Zhao, Xiaohui; Liu, Wei; Gu, Haijun

    2018-03-01

    A wavefront sensor is one of most important units for an adaptive optics system. Based on our previous works, in this paper, we discuss the bit-error-rate (BER) performance of coherent free space optical communication systems with a focal-plane-based wavefront sensor. Firstly, the theory of a focal-plane-based wavefront sensor is given. Then the relationship between the BER and the mixing efficiency with a homodyne receiver is discussed on the basis of binary-phase-shift-keying (BPSK) modulation. Finally, the numerical simulation results are shown that the BER will be decreased obviously after aberrations correction with the focal-plane-based wavefront sensor. In addition, the BER will decrease along with increasing number of photons received within a single bit. These analysis results will provide a reference for the design of the coherent Free space optical communication (FSOC) system.

  17. Coherent control of photoabsorption processes and calculation of nonlinear optical processes. Final technical report

    International Nuclear Information System (INIS)

    Lambropoulos, P.

    1998-01-01

    The work on the grant for the entire period of its duration concentrated on two different but related areas, namely coherent control of photoabsorption processes and the calculation of non linear optical processes with short wavelength radiation. On the first topic, the work dealt with the problem of controlling the population transfer from one to another bound state of a system in a route that passes through a continuum. This question is most important in the context of transferring populations between vibrational states of a molecule through a sequence of two pulses taking the system via the dissociation continuum. On the second topic, their work was motivated by the availability of XUV and soft X-ray coherent radiation sources obtained through high order harmonic generation. In addition, a few other techniques based on schemes of photo-pumped X-ray lasers promise to provide in the near-future similarly coherent sources. It is thus important to have an assessment of the possibility of extending non-linear optical processes to this range of wavelengths. This means assessing the relevant magnitude of the susceptibilities for third harmonic generation, stimulated Raman scattering, two-photon absorption, etc

  18. Laser diode technology for coherent communications

    Science.gov (United States)

    Channin, D. J.; Palfrey, S. L.; Toda, M.

    1989-01-01

    The effect of diode laser characteristics on the overall performance capabilities of coherent communication systems is discussed. In particular, attention is given to optical performance issues for diode lasers in coherent systems, measurements of key performance parameters, and optical requirements for coherent single-channel and multichannel communication systems. The discussion also covers limitations imposed by diode laser optical performance on multichannel system capabilities and implications for future developments.

  19. Optical Coherence Tomography for the Assessment of Coronary Atherosclerosis and Vessel Response after Stent Implantation

    OpenAIRE

    Gonzalo, Nieves

    2010-01-01

    textabstractOptical Coherence Tomography (OCT) is a light-based imaging modality that can provide in vivo high-resolution images of the coronary artery with a level of resolution (axial 10-20 µm) ten times higher than intravascular ultrasound. The technique, uses low-coherent near infrarred light to create high-resolution cross sectional images of the vessel. The technology refinement achieved in the last years has made this imaging modality less procedurally demanding opening its possibiliti...

  20. Volume determination of fresh and dried bloodstains by means of optical coherence tomography

    NARCIS (Netherlands)

    Laan, Nick; Bremmer, Rolf H.; Aalders, Maurice C. G.; de Bruin, Karla G.

    2014-01-01

    The volume of bloodstains found on crime scenes may help forensic investigators reconstruct the location and kinematics of bloodletting events, as stain size, volume, and impact velocity are related. Optical coherence tomography was used as a method to determine the volume and volume ratio of dried

  1. Wavefront holoscopy: application of digital in-line holography for the inspection of engraved marks in progressive addition lenses.

    Science.gov (United States)

    Perucho, Beatriz; Micó, Vicente

    2014-01-01

    Progressive addition lenses (PALs) are engraved with permanent marks at standardized locations in order to guarantee correct centering and alignment throughout the manufacturing and mounting processes. Out of the production line, engraved marks provide useful information about the PAL as well as act as locator marks to re-ink again the removable marks. Even though those marks should be visible by simple visual inspection with the naked eye, engraving marks are often faint and weak, obscured by scratches, and partially occluded and difficult to recognize on tinted or antireflection-coated lenses. Here, we present an extremely simple optical device (named as wavefront holoscope) for visualization and characterization of permanent marks in PAL based on digital in-line holography. Essentially, a point source of coherent light illuminates the engraved mark placed just before a CCD camera that records a classical Gabor in-line hologram. The recorded hologram is then digitally processed to provide a set of high-contrast images of the engraved marks. Experimental results are presented showing the applicability of the proposed method as a new ophthalmic instrument for visualization and characterization of engraved marks in PALs.

  2. Inclusive bit error rate analysis for coherent optical code-division multiple-access system

    Science.gov (United States)

    Katz, Gilad; Sadot, Dan

    2002-06-01

    Inclusive noise and bit error rate (BER) analysis for optical code-division multiplexing (OCDM) using coherence techniques is presented. The analysis contains crosstalk calculation of the mutual field variance for different number of users. It is shown that the crosstalk noise depends deeply on the receiver integration time, the laser coherence time, and the number of users. In addition, analytical results of the power fluctuation at the received channel due to the data modulation at the rejected channels are presented. The analysis also includes amplified spontaneous emission (ASE)-related noise effects of in-line amplifiers in a long-distance communication link.

  3. Snapshot polarization-sensitive plug-in optical module for a Fourier-domain optical coherence tomography system

    Science.gov (United States)

    Marques, Manuel J.; Rivet, Sylvain; Bradu, Adrian; Podoleanu, Adrian

    2018-02-01

    In this communication, we present a proof-of-concept polarization-sensitive Optical Coherence Tomography (PS-OCT) which can be used to characterize the retardance and the axis orientation of a linear birefringent sample. This module configuration is an improvement from our previous work1, 2 since it encodes the two polarization channels on the optical path difference, effectively carrying out the polarization measurements simultaneously (snapshot measurement), whilst retaining all the advantages (namely the insensitivity to environmental parameters when using SM fibers) of these two previous configurations. Further progress consists in employing Master Slave OCT technology,3 which is used to automatically compensate for the dispersion mismatch introduced by the elements in the module. This is essential given the encoding of the polarization states on two different optical path lengths, each of them having dissimilar dispersive properties. By utilizing this method instead of the commonly used re-linearization and numerical dispersion compensation methods an improvement in terms of the calculation time required can be achieved.

  4. Fundamental physics from future weak-lensing calibrated Sunyaev-Zel'dovich galaxy cluster counts

    Science.gov (United States)

    Madhavacheril, Mathew S.; Battaglia, Nicholas; Miyatake, Hironao

    2017-11-01

    Future high-resolution measurements of the cosmic microwave background (CMB) will produce catalogs of tens of thousands of galaxy clusters through the thermal Sunyaev-Zel'dovich (tSZ) effect. We forecast how well different configurations of a CMB Stage-4 experiment can constrain cosmological parameters, in particular, the amplitude of structure as a function of redshift σ8(z ) , the sum of neutrino masses Σ mν, and the dark energy equation of state w (z ). A key element of this effort is calibrating the tSZ scaling relation by measuring the lensing signal around clusters. We examine how the mass calibration from future optical surveys like the Large Synoptic Survey Telescope (LSST) compares with a purely internal calibration using lensing of the CMB itself. We find that, due to its high-redshift leverage, internal calibration gives constraints on cosmological parameters comparable to the optical calibration, and can be used as a cross-check of systematics in the optical measurement. We also show that in contrast to the constraints using the CMB lensing power spectrum, lensing-calibrated tSZ cluster counts can detect a minimal Σ mν at the 3 - 5 σ level even when the dark energy equation of state is freed up.

  5. VISUALIZATION FROM INTRAOPERATIVE SWEPT-SOURCE MICROSCOPE-INTEGRATED OPTICAL COHERENCE TOMOGRAPHY IN VITRECTOMY FOR COMPLICATIONS OF PROLIFERATIVE DIABETIC RETINOPATHY.

    Science.gov (United States)

    Gabr, Hesham; Chen, Xi; Zevallos-Carrasco, Oscar M; Viehland, Christian; Dandrige, Alexandria; Sarin, Neeru; Mahmoud, Tamer H; Vajzovic, Lejla; Izatt, Joseph A; Toth, Cynthia A

    2018-01-10

    To evaluate the use of live volumetric (4D) intraoperative swept-source microscope-integrated optical coherence tomography in vitrectomy for proliferative diabetic retinopathy complications. In this prospective study, we analyzed a subgroup of patients with proliferative diabetic retinopathy complications who required vitrectomy and who were imaged by the research swept-source microscope-integrated optical coherence tomography system. In near real time, images were displayed in stereo heads-up display facilitating intraoperative surgeon feedback. Postoperative review included scoring image quality, identifying different diabetic retinopathy-associated pathologies and reviewing the intraoperatively documented surgeon feedback. Twenty eyes were included. Indications for vitrectomy were tractional retinal detachment (16 eyes), combined tractional-rhegmatogenous retinal detachment (2 eyes), and vitreous hemorrhage (2 eyes). Useful, good-quality 2D (B-scans) and 4D images were obtained in 16/20 eyes (80%). In these eyes, multiple diabetic retinopathy complications could be imaged. Swept-source microscope-integrated optical coherence tomography provided surgical guidance, e.g., in identifying dissection planes under fibrovascular membranes, and in determining residual membranes and traction that would benefit from additional peeling. In 4/20 eyes (20%), acceptable images were captured, but they were not useful due to high tractional retinal detachment elevation which was challenging for imaging. Swept-source microscope-integrated optical coherence tomography can provide important guidance during surgery for proliferative diabetic retinopathy complications through intraoperative identification of different complications and facilitation of intraoperative decision making.

  6. Damage invariant and high security acquisition of the internal fingerprint using optical coherence tomography

    CSIR Research Space (South Africa)

    Darlow, Luke N

    2016-11-01

    Full Text Available representation they offer. Using an emerging fingerprint acquisition technology – optical coherence tomography – to access an internal fingerprint under the skin surface, this paper serves to address two limitations of conventional scanners: fingertip skin damage...

  7. Some aspects of powerful lasers and aspheric lenses design

    International Nuclear Information System (INIS)

    Metz, Jean de

    1976-01-01

    Gigawatt power glass lasers are described. Geometrical, interferometric, coherence and focusing aspects of the beam are measured. Design of disc amplifier is shown with high gain glass. Aspheric lenses are designed and tested for focussing these beams. Experiments of multi-breakdown in gas are done. We get fusion in plasma made by second harmonic frequency of our 1.06 μ beam. Effect of self-focussing on laser beam quality is studied. (author) [fr

  8. SPITZER IMAGING OF STRONGLY LENSED HERSCHEL-SELECTED DUSTY STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Brian; Cooray, Asantha; Calanog, J. A.; Nayyeri, H.; Timmons, N.; Casey, C. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Baes, M. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Chapman, S. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, B3H 4R2 (Canada); Dannerbauer, H. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu-CNRS-Université Paris Diderot, CE-Saclay, pt courrier 131, F-91191 Gif-sur-Yvette (France); Da Cunha, E. [Center for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn VIC 3122 (Australia); De Zotti, G. [INAF-Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, I-35122 Padova (Italy); Dunne, L.; Michałowski, M. J.; Oteo, I. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom); Farrah, D. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Fu, Hai [Department of Physics and Astronomy, University of Iowa, Van Allen Hall, Iowa City, IA 52242 (United States); Gonzalez-Nuevo, J. [Departamento de Fisica, Universidad de Oviedo C/ Calvo Sotelo, s/n, E-33007 Oviedo (Spain); Magdis, G. [Department of Astrophysics, Denys Wilkinson Building, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Riechers, D. A. [Department of Astronomy, Cornell University, 220 Space Sciences Building, Ithaca, NY 14853 (United States); Scott, D. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); and others

    2015-11-20

    We present the rest-frame optical spectral energy distribution (SED) and stellar masses of six Herschel-selected gravitationally lensed dusty, star-forming galaxies (DSFGs) at 1 < z < 3. These galaxies were first identified with Herschel/SPIRE imaging data from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) and the Herschel Multi-tiered Extragalactic Survey (HerMES). The targets were observed with Spitzer/IRAC at 3.6 and 4.5 μm. Due to the spatial resolution of the IRAC observations at the level of 2″, the lensing features of a background DSFG in the near-infrared are blended with the flux from the foreground lensing galaxy in the IRAC imaging data. We make use of higher resolution Hubble/WFC3 or Keck/NIRC2 Adaptive Optics imaging data to fit light profiles of the foreground lensing galaxy (or galaxies) as a way to model the foreground components, in order to successfully disentangle the foreground lens and background source flux densities in the IRAC images. The flux density measurements at 3.6 and 4.5 μm, once combined with Hubble/WFC3 and Keck/NIRC2 data, provide important constraints on the rest-frame optical SED of the Herschel-selected lensed DSFGs. We model the combined UV- to millimeter-wavelength SEDs to establish the stellar mass, dust mass, star formation rate, visual extinction, and other parameters for each of these Herschel-selected DSFGs. These systems have inferred stellar masses in the range 8 × 10{sup 10}–4 × 10{sup 11} M{sub ⊙} and star formation rates of around 100 M{sub ⊙} yr{sup −1}. This puts these lensed submillimeter systems well above the SFR-M* relation observed for normal star-forming galaxies at similar redshifts. The high values of SFR inferred for these systems are consistent with a major merger-driven scenario for star formation.

  9. Digital adaptive optics for achieving space-invariant lateral resolution in optical coherence tomography

    International Nuclear Information System (INIS)

    Kumar, A.

    2015-01-01

    Optical coherence tomography (OCT) is a non-invasive optical interferometric imaging technique that provides reflectivity profiles of the sample structures with high axial resolution. The high axial resolution is due to the use of low coherence (broad-band) light source. However, the lateral resolution in OCT depends on the numerical aperture (NA) of the focusing/imaging optics and it is affected by defocus and other higher order optical aberrations induced by the imperfect optics, or by the sample itself.Hardware based adaptive optics (AO) has been successfully combined with OCT to achieve high lateral resolution in combination with high axial resolution provided by OCT. AO, which conventionally uses Shack-Hartmann wavefront sensor (SH WFS) and deformable mirror for wavefront sensing and correction respectively, can compensate for optical aberration and can enable diffraction-limited resolution in OCT. Visualization of cone photoreceptors in 3-D has been successfully demonstrated using AO-OCT. However, OCT being an interferometric imaging technique can provide access to phase information.This phase information can be exploited by digital adaptive optics (DAO) techniques to correct optical aberration in the post-processing step to obtain diffraction-limited space invariant lateral resolution throughout the image volume. Thus, the need for hardware based AO can be eliminated, which in turn can reduce the system complexity and economical cost. In the first paper of this thesis, a novel DAO method based on sub-aperture correlation is presented which is the digital equivalent of SH WFS. The advantage of this method is that it is non-iterative in nature and it does not require a priori knowledge of any system parameters such wavelength, focal length, NA or detector pixel size. For experimental proof, a FF SS OCT system was used and the sample consisted of resolution test target and a plastic plate that introduced random optical aberration. Experimental results show that

  10. Broadband Fourier domain mode-locked laser for optical coherence tomography at 1060 nm

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Klein, Thomas; Wieser, Wolfgang

    2012-01-01

    Optical coherence tomography (OCT) in the 1060nm range is interesting for in vivo imaging of the human posterior eye segment (retina, choroid, sclera) due to low absorption in water and deep penetration into the tissue. Rapidly tunable light sources, such as Fourier domain mode-locked (FDML) lasers...

  11. Celebrating the Year of Light….. from medicine to security with Optical Coherence Tomography

    CSIR Research Space (South Africa)

    Singh, A

    2015-10-01

    Full Text Available medicine to security with Optical Coherence Tomography Ann Singh1, Ameeth Sharma1, Ted Roberts1, Rethabile Khutlang2, Rocky Ramokolo1, Nico Marome1, Leandra Webb2, Natasha Botha2,Aletta Karsten3, Hencharl Strauss1 1 CSIR, National Laser Centre, P.O Box...

  12. Efficient trigger signal generation from wasted backward amplified stimulated emission at optical amplifiers for optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Kim Seung Taek

    2015-01-01

    Full Text Available This paper propose an optical structure to generate trigger signals for optical coherence tomography (OCT using backward light which is usually disposed. The backward light is called backward amplified stimulated emission generated from semiconductor optical amplifier (SOA when using swept wavelength tunable laser (SWTL. A circulator is applied to block undesirable lights in the SWTL instead of an isolator in common SWTL. The circulator also diverts backward amplified spontaneous lights, which finally bring out trigger signals for a high speed digitizer. The spectra of the forward lights at SOA and the waveform of the backward lights were measured to check the procedure of the trigger formation in the experiment. The results showed that the trigger signals from the proposed SWTL with the circulator was quite usable in OCT.

  13. Intracoronary Optical Coherence Tomography: A Comprehensive Review: Clinical and Research Applications

    OpenAIRE

    Bezerra, Hiram G.; Costa, Marco A.; Guagliumi, Giulio; Rollins, Andrew M.; Simon, Daniel I.

    2009-01-01

    Cardiovascular optical coherence tomography (OCT) is a catheter-based invasive imaging system. Using light rather than ultrasound, OCT produces high-resolution in vivo images of coronary arteries and deployed stents. This comprehensive review will assist practicing interventional cardiologists in understanding the technical aspects of OCT based upon the physics of light and will also highlight the emerging research and clinical applications of OCT. Semi-automated imaging analyses of OCT syste...

  14. Subgingival calculus imaging based on swept-source optical coherence tomography

    Science.gov (United States)

    Hsieh, Yao-Sheng; Ho, Yi-Ching; Lee, Shyh-Yuan; Lu, Chih-Wei; Jiang, Cho-Pei; Chuang, Ching-Cheng; Wang, Chun-Yang; Sun, Chia-Wei

    2011-07-01

    We characterized and imaged dental calculus using swept-source optical coherence tomography (SS-OCT). The refractive indices of enamel, dentin, cementum, and calculus were measured as 1.625 +/- 0.024, 1.534 +/- 0.029, 1.570 +/- 0.021, and 2.097 +/- 0.094, respectively. Dental calculus leads strong scattering properties, and thus, the region can be identified from enamel with SS-OCT imaging. An extracted human tooth with calculus is covered with gingiva tissue as an in vitro sample for tomographic imaging.

  15. Fiber-Based Polarization Diversity Detection for Polarization-Sensitive Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Hamid Pahlevaninezhad

    2014-09-01

    Full Text Available We present a new fiber-based polarization diversity detection (PDD scheme for polarization sensitive optical coherence tomography (PSOCT. This implementation uses a new custom miniaturized polarization-maintaining fiber coupler with single mode (SM fiber inputs and polarization maintaining (PM fiber outputs. The SM fiber inputs obviate matching the optical lengths of the two orthogonal OCT polarization channels prior to interference while the PM fiber outputs ensure defined orthogonal axes after interference. Advantages of this detection scheme over those with bulk optics PDD include lower cost, easier miniaturization, and more relaxed alignment and handling issues. We incorporate this PDD scheme into a galvanometer-scanned OCT system to demonstrate system calibration and PSOCT imaging of an achromatic quarter-wave plate, fingernail in vivo, and chicken breast, salmon, cow leg, and basa fish muscle samples ex vivo.

  16. Optics elements for modeling electrostatic lenses and accelerator components: III. Electrostatic deflectors

    International Nuclear Information System (INIS)

    Brown, T.A.; Gillespie, G.H.

    2000-01-01

    Ion-beam optics models for simulating electrostatic prisms (deflectors) of different geometries have been developed for the envelope (matrix) computer code TRACE 3-D as a part of the development of a suite of electrostatic beamline element models which includes lenses, acceleration columns, quadrupoles and prisms. The models for electrostatic prisms are described in this paper. The electrostatic prism model options allow the first-order modeling of cylindrical, spherical and toroidal electrostatic deflectors. The application of these models in the development of ion-beam transport systems is illustrated through the modeling of a spherical electrostatic analyzer as a component of the new low-energy beamline at the Center for Accelerator Mass Spectrometry. Although initial tests following installation of the new beamline showed that the new spherical electrostatic analyzer was not behaving as predicted by these first-order models, operational conditions were found under which the analyzer now works properly as a double-focusing spherical electrostatic prism

  17. Potential applications of optical coherence tomography angiography in glaucoma.

    Science.gov (United States)

    Dastiridou, Anna; Chopra, Vikas

    2018-05-01

    Optical coherence tomography angiography (OCTA) is a novel, noninvasive imaging modality that allows assessment of the retinal and choroidal vasculature. The scope of this review is to summarize recent studies using OCTA in glaucoma and highlight potential applications of this new technology in the field of glaucoma. OCTA studies have shown that retinal vascular changes may not develop solely as a result of advanced glaucoma damage. OCTA-derived measurements have provided evidence for lower retinal vascular densities at the optic nerve head, peripapillary and macula in preperimetric-glaucoma and early-glaucoma, as well as, in more advanced glaucoma, in comparison to with normal eyes. OCTA is a novel imaging modality that has already started to expand our knowledge base regarding the role of ocular blood flow in glaucoma. Future studies will better elucidate the role of OCTA-derived measurements in clinical practice, research, and clinical trials in glaucoma.

  18. Imaging of oral pathological tissue using optical coherence tomography

    Science.gov (United States)

    Canjau, Silvana; Todea, Carmen; Sinescu, Cosmin; Duma, Virgil-Florin; Topala, Florin I.; Podoleanu, Adrian G.

    2014-01-01

    Oral squamous cell carcinoma (OSCC) constitutes 90% of oral cancer. Early detection is a cornerstone to improve survival. Interaction of light with tissues may highlight changes in tissue structure and metabolism. We propose optical coherence tomography (OCT), as a non-invasive diagnosis method, being a new high-resolution optical technique that permits tri-dimensional (3-D), real-time imaging of near surface abnormalities in complex tissues. In this study half of the excisional biopsy was directed to the pathologist and the other half was assigned for OCT investigation. Histopathology validated the results. Areas of OSCC of the buccal mucosa were identified in the OCT images. The elements obserced included extensive epithelial down-growth, the disruption of the basement membrane, with areas of erosion, an epithelial layer that was highly variable in thickness and invasion into the sub-epithelial layers. Therefore, OCT appears to be a highly promising imaging modality.

  19. Imaging choroidal neovascular membrane using en face swept-source optical coherence tomography angiography

    Directory of Open Access Journals (Sweden)

    Moussa M

    2017-10-01

    Full Text Available Magdy Moussa,1,2 Mahmoud Leila,3 Hagar Khalid1,2 1Ophthalmology Department, Faculty of Medicine, Tanta University, Tanta, Egypt; 2MEDIC Eye Center, Tanta, Egypt; 3Retina Department, Research Institute of Ophthalmology, Giza, Egypt Purpose: The aim of this study was to assess the efficacy of swept-source optical coherence tomography angiography (SS-OCTA in delineating the morphology of choroidal neovascular membrane (CNV. Patients and methods: This was a retrospective observational case series reviewing clinical data and fundus fluorescein angiography (FFA, swept-source optical coherence tomography (SS-OCT, and SS-OCTA images of patients with CNV and comparing the findings. The swept-source technology enables deeper penetration and superior axial resolution. The incorporated blood flow detection algorithm, optical coherence tomography angiography ratio analysis (OCTARA, enables visualization of CNV in vivo without the need for dye injection. Results: The study included 136 eyes of 105 patients. Active lesions on SS-OCTA images showed increased capillary density, extensive arborization, vascular anastomosis and looping, and peri-lesional hollow. Inactive lesions showed decreased capillary density, presence of large linear vessels, and presence of feeder vessels supplying the CNV. We detected positive correlation between SS-OCTA, FFA, and SS-OCT images in 97% of eyes. In the remaining 3%, SS-OCTA confirmed the absence of CNV, whereas FFA and SS-OCT either were inconclusive in the diagnosis of CNV or yielded false-positive results. Conclusion: SS-OCT and SS-OCTA represent a reproducible risk-free analog for FFA in imaging CNV. SS-OCTA is particularly versatile in cases where FFA and SS-OCT are inconclusive. Keywords: swept-source OCT, OCT angiography, imaging of CNV, OCTARA algorithm

  20. Observation of Biological Tissues Using Common Path Optical Coherence Tomography with Gold Coated Conical Tip Lens Fiber

    International Nuclear Information System (INIS)

    Taguchi, K; Sugiyama, J; Totsuka, M; Imanaka, S

    2012-01-01

    In this paper, we proposed a high lateral resolution common-path Fourier domain optical coherence tomography(OCT) system with the use of a chemically etched single mode fiber. In our experiments, single mode optical fiber for 1310nm was used for preparing the tapered tips. Our system used a conical microlens that was chemically etched by selective chemical etching technique using an etching solution of buffered hydrofluoric acid (BHF). From experimental results, we verified that our proposed optical coherence tomography system could operate as a common-path Fourier domain OCT system and conical tip lens fiber was very useful for a high lateral resolution common-path Fourier domain OCT system. Furthermore, we could observe a surface of paramecium bursaria and symbiotic chlorella in the paramecium bursaria using gold coated conical-tip fiber in the water.