WorldWideScience

Sample records for lens process in-situ

  1. In Situ Field Testing of Processes

    International Nuclear Information System (INIS)

    Wang, J.

    2001-01-01

    The purpose of this Analysis/Model Report (AMR) is to update and document the data and subsequent analyses from ambient field-testing activities performed in underground drifts of the Yucca Mountain Site Characterization Project (YMP). This revision updates data and analyses presented in the initial issue of this AMR. This AMR was developed in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' and ''Technical Work Plan for UZ Flow, Transport, and Coupled Processes Process Model Report. These activities were performed to investigate in situ flow and transport processes. The evaluations provide the necessary framework to: (1) refine and confirm the conceptual model of matrix and fracture processes in the unsaturated zone (UZ) and (2) analyze the impact of excavation (including use of construction water and effect of ventilation) on the UZ flow and transport processes. This AMR is intended to support revisions to ''Conceptual and Numerical Models for UZ Flow and Transport'' and ''Unsaturated Zone Flow and Transport Model Process Model Report''. In general, the results discussed in this AMR are from studies conducted using a combination or a subset of the following three approaches: (1) air-injection tests, (2) liquid-release tests, and (3) moisture monitoring using in-drift sensors or in-borehole sensors, to evaluate the impact of excavation, ventilation, and construction-water usage on the surrounding rocks. The liquid-release tests and air-injection tests provide an evaluation of in situ fracture flow and the competing processes of matrix imbibition. Only the findings from testing and data not covered in the ''Seepage Calibration Model and Seepage Testing Data'' are analyzed in detail in the AMR

  2. In Situ Field Testing of Processes

    Energy Technology Data Exchange (ETDEWEB)

    J. Wang

    2001-12-14

    The purpose of this Analysis/Model Report (AMR) is to update and document the data and subsequent analyses from ambient field-testing activities performed in underground drifts of the Yucca Mountain Site Characterization Project (YMP). This revision updates data and analyses presented in the initial issue of this AMR. This AMR was developed in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' and ''Technical Work Plan for UZ Flow, Transport, and Coupled Processes Process Model Report. These activities were performed to investigate in situ flow and transport processes. The evaluations provide the necessary framework to: (1) refine and confirm the conceptual model of matrix and fracture processes in the unsaturated zone (UZ) and (2) analyze the impact of excavation (including use of construction water and effect of ventilation) on the UZ flow and transport processes. This AMR is intended to support revisions to ''Conceptual and Numerical Models for UZ Flow and Transport'' and ''Unsaturated Zone Flow and Transport Model Process Model Report''. In general, the results discussed in this AMR are from studies conducted using a combination or a subset of the following three approaches: (1) air-injection tests, (2) liquid-release tests, and (3) moisture monitoring using in-drift sensors or in-borehole sensors, to evaluate the impact of excavation, ventilation, and construction-water usage on the surrounding rocks. The liquid-release tests and air-injection tests provide an evaluation of in situ fracture flow and the competing processes of matrix imbibition. Only the findings from testing and data not covered in the ''Seepage Calibration Model and Seepage Testing Data'' are analyzed in detail in the AMR.

  3. Support Routines for In Situ Image Processing

    Science.gov (United States)

    Deen, Robert G.; Pariser, Oleg; Yeates, Matthew C.; Lee, Hyun H.; Lorre, Jean

    2013-01-01

    This software consists of a set of application programs that support ground-based image processing for in situ missions. These programs represent a collection of utility routines that perform miscellaneous functions in the context of the ground data system. Each one fulfills some specific need as determined via operational experience. The most unique aspect to these programs is that they are integrated into the large, in situ image processing system via the PIG (Planetary Image Geometry) library. They work directly with space in situ data, understanding the appropriate image meta-data fields and updating them properly. The programs themselves are completely multimission; all mission dependencies are handled by PIG. This suite of programs consists of: (1)marscahv: Generates a linearized, epi-polar aligned image given a stereo pair of images. These images are optimized for 1-D stereo correlations, (2) marscheckcm: Compares the camera model in an image label with one derived via kinematics modeling on the ground, (3) marschkovl: Checks the overlaps between a list of images in order to determine which might be stereo pairs. This is useful for non-traditional stereo images like long-baseline or those from an articulating arm camera, (4) marscoordtrans: Translates mosaic coordinates from one form into another, (5) marsdispcompare: Checks a Left Right stereo disparity image against a Right Left disparity image to ensure they are consistent with each other, (6) marsdispwarp: Takes one image of a stereo pair and warps it through a disparity map to create a synthetic opposite- eye image. For example, a right eye image could be transformed to look like it was taken from the left eye via this program, (7) marsfidfinder: Finds fiducial markers in an image by projecting their approximate location and then using correlation to locate the markers to subpixel accuracy. These fiducial markets are small targets attached to the spacecraft surface. This helps verify, or improve, the

  4. IN SITU FIELD TESTING OF PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    J.S.Y. YANG

    2004-11-08

    The purpose of this scientific analysis report is to update and document the data and subsequent analyses from ambient field-testing activities performed in underground drifts and surface-based boreholes through unsaturated zone (UZ) tuff rock units. In situ testing, monitoring, and associated laboratory studies are conducted to directly assess and evaluate the waste emplacement environment and the natural barriers to radionuclide transport at Yucca Mountain. This scientific analysis report supports and provides data to UZ flow and transport model reports, which in turn contribute to the Total System Performance Assessment (TSPA) of Yucca Mountain, an important document for the license application (LA). The objectives of ambient field-testing activities are described in Section 1.1. This report is the third revision (REV 03), which supercedes REV 02. The scientific analysis of data for inputs to model calibration and validation as documented in REV 02 were developed in accordance with the Technical Work Plan (TWP) ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (BSC 2004 [DIRS 167969]). This revision was developed in accordance with the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.4) for better integrated, consistent, transparent, traceable, and more complete documentation in this scientific analysis report and associated UZ flow and transport model reports. No additional testing or analyses were performed as part of this revision. The list of relevant acceptance criteria is provided by ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654]), Table 3-1. Additional deviations from the TWP regarding the features, events, and processes (FEPs) list are discussed in Section 1.3. Documentation in this report includes descriptions of how, and under what

  5. IN SITU FIELD TESTING OF PROCESSES

    International Nuclear Information System (INIS)

    YANG, J.S.Y.

    2004-01-01

    The purpose of this scientific analysis report is to update and document the data and subsequent analyses from ambient field-testing activities performed in underground drifts and surface-based boreholes through unsaturated zone (UZ) tuff rock units. In situ testing, monitoring, and associated laboratory studies are conducted to directly assess and evaluate the waste emplacement environment and the natural barriers to radionuclide transport at Yucca Mountain. This scientific analysis report supports and provides data to UZ flow and transport model reports, which in turn contribute to the Total System Performance Assessment (TSPA) of Yucca Mountain, an important document for the license application (LA). The objectives of ambient field-testing activities are described in Section 1.1. This report is the third revision (REV 03), which supercedes2. The scientific analysis of data for inputs to model calibration and validation as documented in2 were developed in accordance with the Technical Work Plan (TWP) ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (BSC 2004 [DIRS 167969]). This revision was developed in accordance with the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.4) for better integrated, consistent, transparent, traceable, and more complete documentation in this scientific analysis report and associated UZ flow and transport model reports. No additional testing or analyses were performed as part of this revision. The list of relevant acceptance criteria is provided by ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654]), Table 3-1. Additional deviations from the TWP regarding the features, events, and processes (FEPs) list are discussed in Section 1.3. Documentation in this report includes descriptions of how, and under what conditions, the tests were conducted. The descriptions and analyses

  6. Ion assisted deposition processes: in situ control; Ionengestuetzte Beschichtungsprozesse in situ kontrollieren

    Energy Technology Data Exchange (ETDEWEB)

    Ehlers, H.; Gross, T.; Lappschies, M.; Ristau, D. [Laser Zentrum Hannover e.V. (Germany). Abteilung Laserkomponeneten, Gruppe Prozessentwicklung

    2004-12-01

    Ion assisted deposition processes for optical precision components exhibit a high potential, in particular in the near and mid infrared spectral region. The presented results demonstrate the important criterion of a minimized water adsorption in the thin film structures by measurements of the optical losses in the wavelength range around 3 {mu}m as well as by the determination of the spectral stability of the optics. Furthermore, the employment of an in situ monitor, which allows wide-band transmission measurements directly at the product, provides an extensive database for the process analysis and development. Thus, additional information about the growth behavior, the vacuum-to-air-shift, and about layer inhomogeneities is available. The combination of the in situ monitor with the coating plant control results in an automated process system, which allows a precise determination of the layer thickness and represents a basis for the rapid prototyping of complex layer systems. In contrast to standard monitor strategies, test coatings and calibration factors are not necessary. With the presented combination of the stable ion assisted deposition process and the in situ monitor, the production of demanding NIR/MIR multilayer systems with high reproducibility could be automated. (orig.)

  7. Master of Puppets: Cooperative Multitasking for In Situ Processing

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, Dmitriy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lukic, Zarija [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-01-01

    Modern scientific and engineering simulations track the time evolution of billions of elements. For such large runs, storing most time steps for later analysis is not a viable strategy. It is far more efficient to analyze the simulation data while it is still in memory. Here, we present a novel design for running multiple codes in situ: using coroutines and position-independent executables we enable cooperative multitasking between simulation and analysis, allowing the same executables to post-process simulation output, as well as to process it on the fly, both in situ and in transit. We present Henson, an implementation of our design, and illustrate its versatility by tackling analysis tasks with different computational requirements. This design differs significantly from the existing frameworks and offers an efficient and robust approach to integrating multiple codes on modern supercomputers. The techniques we present can also be integrated into other in situ frameworks.

  8. In-situ biogas upgrading process: modeling and simulations aspects

    DEFF Research Database (Denmark)

    Lovato, Giovanna; Alvarado-Morales, Merlin; Kovalovszki, Adam

    2017-01-01

    Biogas upgrading processes by in-situ hydrogen (H2) injection are still challenging and could benefit from a mathematical model to predict system performance. Therefore, a previous model on anaerobic digestion was updated and expanded to include the effect of H2 injection into the liquid phase of...

  9. Process for the in-situ leaching of uranium

    International Nuclear Information System (INIS)

    Habib, E.T.; Vogt, T.C.

    1982-01-01

    Process for the in-situ leaching of uranium employing an alkaline lixiviant and an alkali metal or alkaline earth metal hypochlorite as an oxidizing agent. The use of the hypochlorite oxidant results in significantly higher uranium recoveries and leaching rates than those attained by the use of conventional oxidants. The invention is particularly suitable for use in subterranean deposits in which the uranium mineral is associated with carbonaceous material which retards access to the uranium by the lixiviant

  10. Monitoring dynamic electrochemical processes with in situ ptychography

    Science.gov (United States)

    Kourousias, George; Bozzini, Benedetto; Jones, Michael W. M.; Van Riessen, Grant A.; Dal Zilio, Simone; Billè, Fulvio; Kiskinova, Maya; Gianoncelli, Alessandra

    2018-03-01

    The present work reports novel soft X-ray Fresnel CDI ptychography results, demonstrating the potential of this method for dynamic in situ studies. Specifically, in situ ptychography experiments explored the electrochemical fabrication of Co-doped Mn-oxide/polypyrrole nanocomposites for sustainable and cost-effective fuel-cell air-electrodes. Oxygen-reduction catalysts based on Mn-oxides exhibit relatively high activity, but poor durability: doping with Co has been shown to improve both reduction rate and stability. In this study, we examine the chemical state distribution of the catalytically crucial Co dopant to elucidate details of the Co dopant incorporation into the Mn/polymer matrix. The measurements were performed using a custom-made three-electrode thin-layer microcell, developed at the TwinMic beamline of Elettra Synchrotron during a series of experiments that were continued at the SXRI beamline of the Australian Synchrotron. Our time-resolved ptychography-based investigation was carried out in situ after two representative growth steps, controlled by electrochemical bias. In addition to the observation of morphological changes, we retrieved the spectroscopic information, provided by multiple ptychographic energy scans across Co L3-edge, shedding light on the doping mechanism and demonstrating a general approach for the molecular-level investigation complex multimaterial electrodeposition processes.

  11. Chattanooga shale: uranium recovery by in situ processing

    International Nuclear Information System (INIS)

    Jackson, D.D.

    1977-01-01

    The increasing demand for uranium as reactor fuel requires the addition of sizable new domestic reserves. One of the largest potential sources of low-grade uranium ore is the Chattanooga shale--a formation in Tennessee and neighboring states that has not been mined conventionally because it is expensive and environmentally disadvantageous to do so. An in situ process, on the other hand, might be used to extract uranium from this formation without the attendant problems of conventional mining. We have suggested developing such a process, in which fracturing, retorting, and pressure leaching might be used to extract the uranium. The potential advantages of such a process are that capital investment would be reduced, handling and disposing of the ore would be avoided, and leaching reagents would be self-generated from air and water. If successful, the cost reductions from these factors could make the uranium produced competitive with that from other sources, and substantially increase domestic reserves. A technical program to evaluate the processing problems has been outlined and a conceptual model of the extraction process has been developed. Preliminary cost estimates have been made, although it is recognized that their validity depends on how successfully the various processing steps are carried out. In view of the preliminary nature of this survey (and our growing need for uranium), we have urged a more detailed study on the feasibility of in situ methods for extracting uranium from the Chattanooga shale

  12. Process for in-situ leaching of uranium

    International Nuclear Information System (INIS)

    Habib, E.T. Jr.

    1979-01-01

    Process for the in-situ leaching of uranium from a subterranean ore deposit employing a lixiviant containing a carbonate leaching agent and an oxidizing agent. The lixiviant is heated to a temperature of at least 110 degrees Fahrenheit prior to injection into the subterranean ore deposit. The use of a heated lixiviant provides for a substantially greater ultimate uranium recovery than that attained through the use of a lixiviant injected at ambient temperature conditions. The process may be carried out in several stages. In the first stage, a relatively low temperature lixiviant is injected. This is followed by a second stage in which the lixiviant is heated to an elevated temperature and then injected into the deposit. The invention is particularly applicable for use in subterranean deposits which contain uranium associated with carbonaceous material

  13. Process for in-situ leaching of uranium

    International Nuclear Information System (INIS)

    Habib, E.T.

    1981-01-01

    A process is described for the in-situ leaching of uranium from a subterranean ore deposit employing a lixiviant containing a carbonate leaching agent and an oxidizing agent. The lixiviant is heated to a temperature of at least 110* F. Prior to injection into the subterranean ore deposit. The use of a heated lixiviant provides for a substantially greater ultimate uranium recovery than that attained through the use of a lixiviant injected at ambient temperature conditions. The process may be carried out in several stages. In the first stage, a relatively low temperature lixiviant is injected. This is followed by a second stage in which the lixiviant is heated to an elevated temperature and then injected into the deposit. The invention is particularly applicable for use in subterranean deposits which contain uranium associated with carbonaceous material

  14. In Situ Identification of Mineral Resources with an X-Ray-Optical "Hands-Lens" Instrument

    Science.gov (United States)

    Marshall, J.; Koppel, L.; Bratton, C.; Metzger, E.; Hecht, M.

    1999-01-01

    so forth. These data can immediately distinguish sedimentary from igneous rocks, for example, and can thus eliminate geochemical or mineral ambiguities arising, say between arkose and granite. It would be important to know if the clay being analyzed was part of a uniform varve deposit laid down in a quiescent lake, or the matrix of a megabreccia diamictite deposited as a catastrophic impact ejecta blanket. The unique design of the instrument, which combines Debye-Scherrer geometry with elements of standard goniometry, negates the need for sample preparation of any kind, and thus negates the need for power-hungry and mechanically-complex sampling systems that would have to chip, crush, sieve, and mount the sample for x-ray analysis. Instead, the instrument is simply rested on the sample surface of interest (like a hand lens); the device can interrogate rough rock surfaces, coarse granular material, or fine rock flour. A breadboard version of the instrument has been deployed from the robotic arm of the Marsokhod rover in field trials at NASA Ames, where large vesicular boulders were x-rayed to demonstrate the functionality of the instrument design, and the ability of such a device to comply with constraints imposed by a roving platform. Currently under development is a flight prototype concept of this instrument that will weigh 0.3 kg, using about 4500 J of energy per sample analysis. It requires about 5 min. for XRD analysis, and about 30 min. for XRF interrogation. Its small mass and rugged design make it ideal for deployment on small rovers of the type currently envisaged for the exploration of Mars (e.g., Sojourner-scale platforms). The design utilizes a monolithic P-N junction photodiode pixel array for XRD, a Si PIN photodiode/avalanche photodiode system for XRF, and an endoscopic imaging camera system unobtrusively embedded between the detectors and the x-ray source (the endoscope with its board-mounted camera can be adapted for IR light in addition to visible

  15. Comparison of optical quality after implantable collamer lens implantation and wavefront-guided laser in situ keratomileusis

    Directory of Open Access Journals (Sweden)

    Hong-Ting Liu

    2018-04-01

    Full Text Available AIM: To compare the optical quality after implantation of implantable collamer lens (ICL and wavefront-guided laser in situ keratomileusis (WG-LASIK. METHODS: The study included 40 eyes of 22 patients with myopia who accepted ICL implantation and 40 eyes of 20 patients with myopia who received WG-LASIK. Before surgery and three months after surgery, the objective scattering index (OSI, the values of modulation transfer function (MTF cutoff frequency, Strehl ratio, and the Optical Quality Analysis System (OQAS values (OVs were accessed. The higher order aberrations (HOAs data including coma, trefoil, spherical, 2nd astigmatism and tetrafoil were also obtained. For patients with pupil size <6 mm, HOAs data were analyzed for 4 mm-pupil diameter. For patients with pupil size ≥6 mm, HOAs data were calculated for 6 mm-pupil diameter. Visual acuity, refraction, pupil size and intraocular pressures were also recorded. RESULTS: In both ICL and WG-LASIK group, significant improvements in visual acuities were found postoperatively, with a significant reduction in spherical equivalent (P< 0.001. After the ICL implantation, the OSI decreased slightly from 2.34±1.92 to 2.24±1.18 with no statistical significance (P=0.62. While in WG-LASIK group, the OSI significantly increased from 0.68±0.43 preoperatively to 0.91±0.53 postoperatively (Wilcoxon signed ranks test, P=0.000. None of the mean MTF cutoff frequency, Strehl ratio, OVs showed statistically significant changes in both ICL and WG-LASIK groups. In the ICL group, there were no statistical differences in the total HOAs for either 4 mm-pupil or 6 mm-pupil. In the WG-LASIK group, the HOA parameters increased significantly at 4 mm-pupil. The total ocular HOAs, coma, spherical and 2nd astigmatism were 0.12±0.06, 0.06±0.03, 0.00±0.03, 0.02±0.01, respectively. After the operation, these values were increased into 0.16±0.07, 0.08±0.05, -0.04±0.04, 0.03±0.01 respectively (Wilcoxon signed ranks test

  16. Process for in-situ leaching of uranium

    International Nuclear Information System (INIS)

    Espenscheid, W.F.; Yan, F.Y.

    1983-01-01

    The present invention relates to the recovery of uranium from subterranean ore deposits, and more particularly to an in-situ leaching operation employing an aqueous solution of sulfuric acid and carbon dioxide as the lixiviant. Uranium is solubilized in the lixiviant as it traverses the subterranean uranium deposit. The lixiviant is subsequently recovered and treated to remove the uranium

  17. Evaluation of integrated biotreatment processes for in situ application

    International Nuclear Information System (INIS)

    Maher, A.; Lamptey, J.C.; Kennel, N.D.

    1994-01-01

    Petroleum hydrocarbon contamination of soils and groundwater associated with Underground Storage Tanks (UST) and aboveground fuel spills has become the focus of many bioremediation efforts. Two case studies in the application of in situ bioremediation to degrade petroleum hydrocarbons are presented. Site A has a history of fuel-handling practices associated with bulk petroleum storage and railroad yard activities. The majority of the hydrocarbon contamination appeared to be the result of past surface spills. Pre-treatment investigation indicated the presence of both volatile and semi- or non-volatile hydrocarbons in the soil. About 3,000 cubic yards of highly contaminated soils was excavated and is being treated in 2, lined, closed loop treatment cells. Groundwater is treated in situ with addition of nutritional cofactors and oxygen introduced through 3 infiltration galleries that are placed 6 feet deep and are each 100 feet in length. Groundwater is also recovered from 3 extraction wells placed 80 to 100 feet from each other, and subsequently treated in a bioreactor. Site B has a history of leaking underground gasoline storage tanks and spills from aboveground diesel fuel associated with county maintenance shed activities. One hundred cubic yards of soil contaminated with diesel components were excavated and treated aboveground in a lined cell. Gasoline contaminated groundwater and soil is being treated in situ by the addition of nutritional cofactors and oxygen through an infiltration gallery 4 feet below surface. The groundwater is recovered from an extraction gallery 92.5 feet down gradient of the infiltration gallery. Nutritional cofactors are introduced on a daily basis with on-site controls. Hydrocarbon reduction, up to 76%, was observed within 3 months of treatment startup in monitoring wells

  18. An evaluation of in-situ bioremediation processes

    International Nuclear Information System (INIS)

    Cole, L.L.; Rashidi, M.

    1996-08-01

    Remediation of petroleum hydrocarbons in groundwater was the primary focus in the initial application of in-situ bioremediation which, from its development in the 1970s, has grown to become one of the most promising technologies for the degradation of a wide variety of organic contaminants. The degradation of contaminants in subsurface soils is the current new focus of the technology. While the need for improvements in the technology does exist, the indisputable fact remains that this technology is by far the least expensive and that it has the capability to provide long term reduced levels of contaminants or long term complete remediation of contaminated sites. The aim of this paper is to disclose pertinent information related to current conditions and current feelings in the area of new research, novel applications, new government regulations, and an overview of new topics on the horizon that relate to the overall technology

  19. An evaluation of in-situ bioremediation processes

    Energy Technology Data Exchange (ETDEWEB)

    Cole, L.L. [Prairie View A and M Univ., TX (United States); Rashidi, M. [Lawrence Livermore National Lab., CA (United States). Environmental Programs Directorate

    1996-08-01

    Remediation of petroleum hydrocarbons in groundwater was the primary focus in the initial application of in-situ bioremediation which, from its development in the 1970s, has grown to become one of the most promising technologies for the degradation of a wide variety of organic contaminants. The degradation of contaminants in subsurface soils is the current new focus of the technology. While the need for improvements in the technology does exist, the indisputable fact remains that this technology is by far the least expensive and that it has the capability to provide long term reduced levels of contaminants or long term complete remediation of contaminated sites. The aim of this paper is to disclose pertinent information related to current conditions and current feelings in the area of new research, novel applications, new government regulations, and an overview of new topics on the horizon that relate to the overall technology.

  20. Optical time-lens signal processing

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Galili, Michael; Mulvad, Hans Christian Hansen

    2014-01-01

    This paper describes the use of optical time lenses for optical signal processing of advanced optical data signals. Examples given include 1.28 Tbaud Nyquist channel serial-to-parallel conversion and spectral magnification of OFDM signals.......This paper describes the use of optical time lenses for optical signal processing of advanced optical data signals. Examples given include 1.28 Tbaud Nyquist channel serial-to-parallel conversion and spectral magnification of OFDM signals....

  1. Evaluation and selection of in-situ leaching mining method using analytic hierarchy process

    International Nuclear Information System (INIS)

    Zhao Heyong; Tan Kaixuan; Liu Huizhen

    2007-01-01

    According to the complicated conditions and main influence factors of in-situ leaching min- ing, a model and processes of analytic hierarchy are established for evaluation and selection of in-situ leaching mining methods based on analytic hierarchy process. Taking a uranium mine in Xinjiang of China for example, the application of this model is presented. The results of analyses and calculation indicate that the acid leaching is the optimum project. (authors)

  2. Evaluating Acoustic Emission Signals as an in situ process monitoring technique for Selective Laser Melting (SLM)

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Karl A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Candy, Jim V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Guss, Gabe [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mathews, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-14

    In situ real-time monitoring of the Selective Laser Melting (SLM) process has significant implications for the AM community. The ability to adjust the SLM process parameters during a build (in real-time) can save time, money and eliminate expensive material waste. Having a feedback loop in the process would allow the system to potentially ‘fix’ problem regions before a next powder layer is added. In this study we have investigated acoustic emission (AE) phenomena generated during the SLM process, and evaluated the results in terms of a single process parameter, of an in situ process monitoring technique.

  3. Surface topography of parallel grinding process for nonaxisymmetric aspheric lens

    International Nuclear Information System (INIS)

    Zhang Ningning; Wang Zhenzhong; Pan Ri; Wang Chunjin; Guo Yinbiao

    2012-01-01

    Workpiece surface profile, texture and roughness can be predicted by modeling the topography of wheel surface and modeling kinematics of grinding process, which compose an important part of precision grinding process theory. Parallel grinding technology is an important method for nonaxisymmetric aspheric lens machining, but there is few report on relevant simulation. In this paper, a simulation method based on parallel grinding for precision machining of aspheric lens is proposed. The method combines modeling the random surface of wheel and modeling the single grain track based on arc wheel contact points. Then, a mathematical algorithm for surface topography is proposed and applied in conditions of different machining parameters. The consistence between the results of simulation and test proves that the algorithm is correct and efficient. (authors)

  4. IN-SITU TEST OF PRESSURE PIPELINE VIBRATION BASED ON DATA ACQUISITION AND SIGNAL PROCESSING

    OpenAIRE

    Hou, Huimin; Xu, Cundong; Liu, Hui; Wang, Rongrong; Jie, Junkun; Ding, Lianying

    2015-01-01

    Pipeline vibration of high frequency and large amplitude is an important factor that impacts the safe operation of pumping station and the efficiency of the pumps. Through conducting the vibration in-situ test of pipeline system in the pumping station, we can objectively analyze the mechanism of pipeline vibration and evaluate the stability of pipeline operation. By using DASP (data acquisition & signal processing) in the in-situ test on the 2# pipeline of the third pumping station in the gen...

  5. MATHEMATICAL SIMULATION OF CONCURRENT TWO-SIDED LENS PROCESSING

    Directory of Open Access Journals (Sweden)

    A. S. Kozeruk

    2015-01-01

    Full Text Available The purpose of the paper is to modernize technology for obtaining high-accuracy lenses with fine centre. Presently their operating surfaces are fixed  to an accessory with the help of adhesive substance that leads to elastic deformation in glass and causes local errors in lens parts.A mathematical model for concurrent two-sided processing of high-accuracy optical parts with spherical surfaces has been developed in the paper. The paper presents analytical expressions that permit to calculate sliding speed at any point on the processed spherical surface depending on type and value of technological equipment settings. Calculation of parameter Q = Pv in a diametric section of the convexo-concave lens has been carried out while using these expressions together with functional dependence of pressure on contact zone еarea of tool and part bedding surfaces.Theoretical and experimental investigations have been carried out with the purpose to study changes in Q parameter according to the processed lens surface for various setting parameters of the technological equipment and their optimum values ensuring preferential stock removal in the central or boundary part zone or uniform distribution of the removal along the whole processed surface have been determined in the paper.The paper proposes a machine tool scheme for concurrent two-sided grinding and polishing of lenses while fixing their side (cylindrical surface. Machine tool kinematics makes it possible flexibly and within wide limits to change its setting parameters  that significantly facilitates the control of form-building process of parts with highly-precise spherical surfaces.Methodology for investigations presupposes the following: mathematical simulation of highly-precise spherical surface form-building process under conditions of forced closing, execution of numerical and experimental studies.  

  6. Wireless sensor technology for in-situ plasma process monitoring

    Science.gov (United States)

    Gahan, David

    2015-09-01

    There is an increasing demand for plasma measurement and control solutions to cope with the growing complexity of integrated circuit manufacture in the semiconductor industry. Standard plasma diagnostic instruments used in research, such as the Langmuir probe, are not suitable for use in the production environment for myriad reasons - contamination of the process being one of the main concerns. Silicon wafer based wireless sensors, which measure temperature during the process, have gained the most traction with tool manufacturers and chip makers - albeit during process development or the PM cycle rather than live production. In this presentation we will discuss two novel wireless technologies that have the potential for use in process tools. The first is an ion detector embedded in a silicon wafer. The sensor measures the average ion flux and the maximum ion energy during the process. This information is stored and is downloaded later for analysis. The second technology consists of a wireless sensor that sits inside the process and communicates data in real time to a detector installed on the rf power line. This platform is similar to RFID technology and can be combined with various sensor types to transmit data to the user during the process.

  7. Mechanical Stability of Stratified Sediments along the upper continental Slope off Vesterålen, northern Norway - Insights from in situ CPTU Tests

    Science.gov (United States)

    Voelker, D.; Stegmann, S.; Kreiter, S.; L'Heureux, J. S.; Vanneste, M. W. B.; Baeten, N. J.; Knudsen, S.; Rise, L.; Longva, O.; Brendryen, J.; Haflidason, H.; Chand, S.; Mörz, T.; Kopf, A.

    2015-12-01

    High-resolution single channel-seismic data (3.5 kHz) reveal small-scale submarine landslide structures and superficial deformation features (e.g. tension cracks) along the gently dipping (3°) upper continental slope west of the Vesterålen Archipelago off northern Norway. Previous laboratory-based geotechnical studies attest that the slope is per sestable and that seismic events in an order of magnitude M5.7 may have triggered the slope sediments to fail. Here we present geotechnical in situ data (sedimentary strength, pore pressure), which were obtained with RV Poseidon in summer 2014 using the static CPTU system GOST. The CPTU system provided high-resolution geotechnical profiles of the uppermost sediments to a maximum penetration depth of ~ 20 m at six sites within the landslide features and beside them in undisturbed slope sediments as reference. The CPTU data reveal the occurrence of mechanically weaker zones (MWZ) by the drop of sedimentary strength. These zones are interbedded by coarser, more competent layers. The occurrence of sensitive fine-grained material may be responsible for the loss of strength in the deeper portion (appx. 12 to 18 m below seafloor). An 1D infinite pseudo-static stability analysis attests that the mechanically weaker zones (MWZ) correlate well with portions, where the Factor of Safety (FoS) ≤ 1 (meta-stable to unstable) indicates permanent deformation or failure in case additional dynamic load is induced by an earthquake. Thus, the mechanically weak layers can be considered as one important pre-condition for landslide activity. In conclusion, the integration of in situ CPTU data with geophysical data improves soil characterization and hence foster a better understanding of the pre-conditioning factors for slope instability at the upper continental slope off Vesterålen. Risk assessment for the present-day slope off Vesterålen is particularly crucial, because the opening of the region for offshore oil and gas exploration is

  8. Process defects and in situ monitoring methods in metal powder bed fusion: a review

    Science.gov (United States)

    Grasso, Marco; Colosimo, Bianca Maria

    2017-04-01

    Despite continuous technological enhancements of metal Additive Manufacturing (AM) systems, the lack of process repeatability and stability still represents a barrier for the industrial breakthrough. The most relevant metal AM applications currently involve industrial sectors (e.g. aerospace and bio-medical) where defects avoidance is fundamental. Because of this, there is the need to develop novel in situ monitoring tools able to keep under control the stability of the process on a layer-by-layer basis, and to detect the onset of defects as soon as possible. On the one hand, AM systems must be equipped with in situ sensing devices able to measure relevant quantities during the process, a.k.a. process signatures. On the other hand, in-process data analytics and statistical monitoring techniques are required to detect and localize the defects in an automated way. This paper reviews the literature and the commercial tools for in situ monitoring of powder bed fusion (PBF) processes. It explores the different categories of defects and their main causes, the most relevant process signatures and the in situ sensing approaches proposed so far. Particular attention is devoted to the development of automated defect detection rules and the study of process control strategies, which represent two critical fields for the development of future smart PBF systems.

  9. Electrosleeve process for in-situ nuclear steam generator repair

    Energy Technology Data Exchange (ETDEWEB)

    Barton, R.A. [Ontario Hydro Technologies, Toronto, ON (Canada); Moran, T.E. [Framatome Technologies Inc., Lynchburg, VA (United States); Renaud, E. [Babcock and Wilcox Industries Ltd., Cambridge, ON (Canada)

    1997-07-01

    Degradation of steam generator (SG) tubing by localized corrosion is a widespread problem in the nuclear industry that can lead to costly forced out-ages, unit de-rating, SG replacement or even the permanent shutdown of a reactor. In response to the onset of SG tubing degradation at Ontario Hydro's Pickering Nuclear Generating Station (PNGS) Unit 5, and the determined unsuitability of conventional repair methods (mechanically expanded or welded sleeves) for Alloy 400, an alternative repair technology was developed. Electrosleeve is a non-intrusive, low-temperature process that involves the electrodeposition of a nanocrystalline nickel microalloy forming a continuously bonded, structural layer over the internal diameter of the degraded region. This technology is designed to provide a long-term pressure boundary repair, fully restoring the structural integrity of the damaged region to its original state. This paper describes the Electrosleeve process for SG tubing repair and the unique properties of the advanced sleeve material. The successful installation of Electrosleeves that have been in service for more than three years in Alloy 400 SG tubing at the Pickering-5 CANDU unit, the more recent extension of the technology to Alloy 600 and its demonstration in a U.S. pressurized water reactor (PWR), is presented. A number of PWR operators have requested plant operating technical specification changes to permit Electrosleeve SG tube repair. Licensing of the Electrosleeve by the U.S. Nuclear Regulatory Commission (NRC) is expected imminently. (author)

  10. Modeling segregated in- situ combustion processes through a vertical displacement model applied to a Colombian field

    International Nuclear Information System (INIS)

    Guerra Aristizabal, Jose Julian; Grosso Vargas, Jorge Luis

    2005-01-01

    Recently it has been proposed the incorporation of horizontal well technologies in thermal EOR processes like the in situ combustion process (ISC). This has taken to the conception of new recovery mechanisms named here as segregated in-situ combustion processes, which are conventional in-situ combustion process with a segregated flow component. Top/Down combustion, Combustion Override Split-production Horizontal-well and Toe-to-Heel Air Injection are three of these processes, which incorporate horizontal producers and gravity drainage phenomena. When applied to thick reservoirs a process of this nature could be reasonably modeled under concepts of conventional in-situ combustion and Crestal Gas injection, especially for heavy oils mobile at reservoir conditions. A process of this nature has been studied through an analytic model conceived for the particular conditions of the Castilla field, a homogeneous thick anticline structure containing high mobility heavy oil, which seems to be an excellent candidate for the application of these technologies

  11. An integrated numerical and physical modeling system for an enhanced in situ bioremediation process

    International Nuclear Information System (INIS)

    Huang, Y.F.; Huang, G.H.; Wang, G.Q.; Lin, Q.G.; Chakma, A.

    2006-01-01

    Groundwater contamination due to releases of petroleum products is a major environmental concern in many urban districts and industrial zones. Over the past years, a few studies were undertaken to address in situ bioremediation processes coupled with contaminant transport in two- or three-dimensional domains. However, they were concentrated on natural attenuation processes for petroleum contaminants or enhanced in situ bioremediation processes in laboratory columns. In this study, an integrated numerical and physical modeling system is developed for simulating an enhanced in situ biodegradation (EISB) process coupled with three-dimensional multiphase multicomponent flow and transport simulation in a multi-dimensional pilot-scale physical model. The designed pilot-scale physical model is effective in tackling natural attenuation and EISB processes for site remediation. The simulation results demonstrate that the developed system is effective in modeling the EISB process, and can thus be used for investigating the effects of various uncertainties. - An integrated modeling system was developed to enhance in situ bioremediation processes

  12. Experimental Investigation and High Resolution Simulation of In-Situ Combustion Processes

    Energy Technology Data Exchange (ETDEWEB)

    Margot Gerritsen; Tony Kovscek

    2008-04-30

    This final technical report describes work performed for the project 'Experimental Investigation and High Resolution Numerical Simulator of In-Situ Combustion Processes', DE-FC26-03NT15405. In summary, this work improved our understanding of in-situ combustion (ISC) process physics and oil recovery. This understanding was translated into improved conceptual models and a suite of software algorithms that extended predictive capabilities. We pursued experimental, theoretical, and numerical tasks during the performance period. The specific project objectives were (i) identification, experimentally, of chemical additives/injectants that improve combustion performance and delineation of the physics of improved performance, (ii) establishment of a benchmark one-dimensional, experimental data set for verification of in-situ combustion dynamics computed by simulators, (iii) develop improved numerical methods that can be used to describe in-situ combustion more accurately, and (iv) to lay the underpinnings of a highly efficient, 3D, in-situ combustion simulator using adaptive mesh refinement techniques and parallelization. We believe that project goals were met and exceeded as discussed.

  13. Compositional Simulation of In-Situ Combustion EOR: A Study of Process Characteristics

    DEFF Research Database (Denmark)

    Jain, Priyanka; Stenby, Erling Halfdan; von Solms, Nicolas

    2010-01-01

    In order to facilitate the study of the influence of reservoir process characteristics in In-Situ combustion modeling and advance the work of Kristensen et al. in this domain; a fully compositional In-situ combustion (ISC) model of Virtual Kinetic Cell (VKC; single-cell model) for laboratory scale...... of the combustion front and thus decrease oil recovery, while increase in oxygen feed assists combustion and contributes towards improved oil recovery. The critical properties of the pseudo components are not determined experimentally, thus extending significance to fluid characterization. The composition plays...

  14. Process, engineering and design aspects of contaminated soil bioremediation. Pt. 1 In situ treatments

    International Nuclear Information System (INIS)

    De Fraja Frangipane, E.; Andreottola, G.; Tatano, F.

    1995-01-01

    The present paper is an up-to-date overview of contaminated soil bioremediation techniques, which are analyzed in detail with regard to main process, engineering and design aspects. General biochemical/kinetic aspects of bioremediation of contaminated soil, and in situ treatments, are discussed in this part one

  15. EPA SITE DEMONSTRATION OF THE TERRA VAC IN SITU VACUUM EXTRACTION PROCESS IN GROVELAND, MASSACHUSETTS

    Science.gov (United States)

    This paper presents an EPA evaluation of the patented Terra Vac, Inc.'s in situ vacuum extraction process that was field-demonstrated on a trichloroethylene (TCE) contaminated soil in Groveland, MA, under the EPA Superfund Innovative Technology Evaluation (SITE) program. he Terra...

  16. IPCS: An integrated process control system for enhanced in-situ bioremediation

    International Nuclear Information System (INIS)

    Huang, Y.F.; Wang, G.Q.; Huang, G.H.; Xiao, H.N.; Chakma, A.

    2008-01-01

    To date, there has been little or no research related to process control of subsurface remediation systems. In this study, a framework to develop an integrated process control system for improving remediation efficiencies and reducing operating costs was proposed based on physical and numerical models, stepwise cluster analysis, non-linear optimization and artificial neural networks. Process control for enhanced in-situ bioremediation was accomplished through incorporating the developed forecasters and optimizers with methods of genetic algorithm and neural networks modeling. Application of the proposed approach to a bioremediation process in a pilot-scale system indicated that it was effective in dynamic optimization and real-time process control of the sophisticated bioremediation systems. - A framework of process control system was developed to improve in-situ bioremediation efficiencies and reducing operating costs

  17. Deformation processes in functional materials studied by in situ neutron diffraction and ultrasonic techniques

    International Nuclear Information System (INIS)

    Sittner, P.; Novak, V.; Landa, M.; Lukas, P.

    2007-01-01

    The unique thermomechanical functions of shape memory alloys (hysteretic stress-strain-temperature responses) not their structural properties (as strength, fatigue, corrosion resistance, etc.) are primarily utilized in engineering applications. In order to better understand and predict the functional behavior, we have recently employed two dedicated non-invasive in situ experimental methods capable to follow the deformation/transformation processes in thermomechanically loaded polycrystalline samples. The in situ neutron diffraction method takes advantage of the ability of thermal neutrons to penetrate bulk samples. As a diffraction technique sensitive to interplanar spacings in crystalline solids, it provides in situ information on the changes in crystal structure, phase composition, phase stress and texture in the transforming samples. The combined in situ ultrasonic and electric resistance method follows variations of the electric resistance as well as speed and attenuation of acoustic waves propagating through the transforming sample. The acoustic waves are mainly sensitive to changes of elastic properties accompanying the deformation/transformation processes. The latter method thus follows the changes in interatomic bonds rather than changes in the interplanar lattice spacings focused in the neutron diffraction method. The methods are thus complementary. They are briefly described and selected experimental results obtained recently on NiTi alloys are presented and discussed

  18. Study on underground-water restoration of acid in-situ leaching process with electrodialytic desalination

    International Nuclear Information System (INIS)

    Huang Chongyuan; Meng Jin; Li Weicai

    2003-01-01

    The study focus undergrounder water restoration of acid in-situ leaching process with electrodialysis desalination in Yining Uranium Mine. It is shown in field test that electrodialysis desalination is an effective method for underground water restoration of acid in-situ leaching process. When TDS of underground-water at the decommissioning scope is 10-12 g/L, and TDS will be less than 1 g/L after the desalination process, the desalination rate is more than 90%, freshwater recovery 60%-70%, power consumption for freshwater recovery 5 kW·h/m 3 , the distance of the desalination flow 12-13 m, current efficiency 80%, and the throughput of the twin membrane 0.22-0.24 m 3 /(m 2 ·d)

  19. Synthesis of gold and silver nanoparticle S-ovalbumin protein conjugates by in situ conjugation process

    Science.gov (United States)

    Joshi, Deepti; Soni, R. K.

    2015-05-01

    Pure gold and silver nanoparticle (NP) generation and their conjugation with protein S-ovalbumin using in situ conjugation process have been reported. The in situ conjugation involves nanosecond pulse laser ablation of pure metal target in the protein S-ovalbumin solution. Transmission electron microscopy (TEM) and UV-Visible absorption results show decrease in mean NP size along with narrow particle size distribution on ablation in S-ovalbumin solution as compared to ablation in water for both Au and Ag NPs. Also, the NP size reduction was found to be dependent on the concentration of S-ovalbumin. For AuNPs, spherical NPs of mean size 4 nm with particle size distribution 2-6 nm were obtained at 300 nM S-ovalbumin concentration. Further, it has been observed that the resultant in situ-conjugated colloid gold and silver NP solutions were quite stable even in the presence of NaCl at physiological salt concentration (0.15 M). On post-laser irradiation (532 nm, 15 mJ) for 20 min, 9 nm red shift in surface plasmon resonance peak (SPR), along with increased broadening towards longer wavelength, was observed in the AuNPs-S-ovalbumin sample. Further increase in the time of irradiation showed shift in AuNPs-S-ovalbumin SPR towards lower wavelength. On laser irradiation (532 nm, 15 mJ) for 20 min, no significant change was observed in the line shape of the plasmon absorption band of the AgNPs-S-ovalbumin conjugate. FTIR spectra revealed that S-ovalbumin peptide backbone and secondary structure remain unchanged on laser irradiation during in situ conjugation process. Thus, integrity of S-ovalbumin does not get affected, and no degradation of S-ovalbumin takes place on laser-induced in situ conjugation. Raman results confirm that both Au and Ag NPs interact with S-ovalbumin via thiol-bearing cysteine residues of the disulfide bond.

  20. In situ characterization of the nitridation of dysprosium during mechanochemical processing

    Energy Technology Data Exchange (ETDEWEB)

    Jaques, Brian J.; Osterberg, Daniel D.; Alanko, Gordon A.; Tamrakar, Sumit; Smith, Cole R.; Hurley, Michael F.; Butt, Darryl P., E-mail: DarrylButt@BoiseState.edu

    2015-01-15

    Highlights: • A nitridation reaction in a high energy planetary ball mill was monitored in situ. • Dysprosium mononitride was synthesized from Dy at low temperatures in short times. • Ideal gas law and in situ temperature and pressure used to assess reaction extent. • It is proposed that reaction rate is proportional to the creation of new surface. - Abstract: Processing of advanced nitride ceramics traditionally requires long durations at high temperatures and, in some cases, in hazardous atmospheres. In this study, dysprosium mononitride (DyN) was rapidly formed from elemental dysprosium in a closed system at ambient temperatures. An experimental procedure was developed to quantify the progress of the nitridation reaction during mechanochemical processing in a high energy planetary ball mill (HEBM) as a function of milling time and intensity using in situ temperature and pressure measurements, SEM, XRD, and particle size analysis. No intermediate phases were formed. It was found that the creation of fresh dysprosium surfaces dictates the rate of the nitridation reaction, which is a function of milling intensity and the number of milling media. These results show clearly that high purity nitrides can be synthesized with short processing times at low temperatures in a closed system requiring a relatively small processing footprint.

  1. On-line in-situ control of the resin transfer molding process

    Science.gov (United States)

    Kranbuehl, D.; Eichinger, D.; Williamson, A.; Levy, D.; Reyzer, M.

    1990-01-01

    Resin transfer molding of three-dimensionally stitched fabrics promises to be a cost effective process for obtaining composite parts of exceptional strength. The technique eliminates many problems involving prepreg preparation, storage and layup. It replaces, on the other hand, the single step cure process with a two-stage impregnation and cure process. Of particular importance therefore is selecting and controlling the viscosity during impregnation and cure. The use of in-situ frequency-dependent electromagnetic sensors and the Loos-Springer model for selecting and controllng the processing properties of the resin transfer molding resin during impregnation and cure are discussed.

  2. Design of Hybrid Steam-In Situ Combustion Bitumen Recovery Processes

    International Nuclear Information System (INIS)

    Yang Xiaomeng; Gates, Ian D.

    2009-01-01

    Given enormous capital costs, operating expenses, flue gas emissions, water treatment and handling costs of thermal in situ bitumen recovery processes, improving the overall efficiency by lowering energy requirements, environmental impact, and costs of these production techniques is a priority. Steam-assisted gravity drainage (SAGD) is the most widely used in situ recovery technique in Athabasca reservoirs. Steam generation is done on surface and consequently, because of heat losses, the energy efficiency of SAGD can never be ideal with respect to the energy delivered to the sandface. An alternative to surface steam generation is in situ combustion (ISC) where heat is generated within the formation through injection of oxygen at a sufficiently high pressure to initiate combustion of bitumen. In this manner, the heat from the combustion reactions can be used directly to mobilize the bitumen. As an alternative, the heat can be used to generate steam within the formation which then is the agent to move heat in the reservoir. In this research, alternative hybrid techniques with simultaneous and sequential steam-oxygen injection processes are examined to maximize the thermal efficiency of the recovery process. These hybrid processes have the advantage that during ISC, steam is generated within the reservoir from injected and formation water and as a product of oxidation. This implies that ex situ steam generation requirements are reduced and if there is in situ storage of combustion gases, that overall gas emissions are reduced. In this research, detailed reservoir simulations are done to examine the dynamics of hybrid processes to enable design of these processes. The results reveal that hybrid processes can lower emitted carbon dioxide-to-oil ratio by about 46%, decrease the consumed natural gas-to-oil ratio by about 73%, reduce the cumulative energy-to-oil ratio by between 40% and 70% compared to conventional SAGD, and drop water consumption per unit oil produced

  3. A new miniature instrument for in situ measuring, processing, recording and display of oceanographic properties

    OpenAIRE

    Gytre, Trygve

    1987-01-01

    The paper describes the design philosophy and functions of a new general purpose oceanographic instrument which is presently being tested as a prototype. The instrument combines established oceanic sensors with modern microprocessor and display technology. The basic idea behind the design is to make a compact and modular "workhorse" instrument that interacts with both humans and computers in a natural way. The instrument is presently able to measure and to in situ process...

  4. In-situ electrical analysis in view of monitoring the processing of thermoplastics

    Science.gov (United States)

    Gonnet, J. M.; Guillet, J.; Ainser, A.; Boiteux, G.; Fulchiron, R.; Seytre, Gerard

    1999-12-01

    In the last recent years, electrical techniques like microdielectrometry have presented an attracting and increasing interest for continuous monitoring, in a nondestructive way, of the advancement of the reaction of thermoset resins under cure. We think that the use of electrical analysis for in situ monitoring of chemical reactions can be extended to get information on thermoplastic and the physical phenomena such sa crystallization or study of residence time distribution in processing machines such as extruders.

  5. Geophysical Characterization of in situ Serpentinization Processes at the Coast Range Ophiolite Microbial Observatory (CROMO)

    Science.gov (United States)

    Ortiz, E.; Tominaga, M.; Cardace, D.; Schrenk, M. O.; Hoehler, T. M.; Kubo, M. D.

    2016-12-01

    Electrical and magnetic remote sensing both on land and at sea have emerged as a powerful approach to characterize in situ serpentinization and carbonation processes in time and space. We conducted 2D Electrical Resistivity Tomography (ERT) surveys to investigate in situ geological and hydrogeological architecture within the rock formation of the Jurassic age tectonic mélange portion of the Coast Range Ophiolite Microbiological Observatory (CROMO) where serpentinization processes are thought to facilitate an active deep biosphere. We acquired ERT imagery during both wet and dry seasons, along 9 survey tracks traversing two previously drilled wells, CSW1.1 and QV1.1, at different lateral and horizontal resolutions, yielding imagery with depth of 6.9 - 41m. Integrating ERT inversion models with wire-line and core data, we successfully documented temporal changes in the in situ hydrological properties at CROMO, i.e. the lateral and vertical water table boundaries (unconfined aquifer), non-permeable zones (confining bed), and possible confined aquifers that are juxtaposed within three dominant lithological units of serpentinite top soil, serpentinite gravel with clay, and serpentinite basement formation. We conducted rock magnetic experiments on core samples from drilled sites, including Magnetic Property Measurement System (MPMS) measurements, to better understand the connection between these hydrogeological properties and in situ serpentinization processes. Based on the observed downhole distribution of magnetite in correlation with ERT results and lithostratigraphy, we proposed that, at CROMO: (i) zones enriched in ferromagnetic minerals, correspond to in situ serpentinite formation with both high and low resistivity, suggesting that resistivity zones represent in situ architecture of consolidated serpentinite confining beds and possible fractured serpentinite aquifers, respectively; and (ii) zones (e.g. 14 - 31m at CSW site) enriched in superparamagnetic size

  6. Seismic monitoring of in situ combustion process in a heavy oil field

    International Nuclear Information System (INIS)

    Zadeh, Hossein Mehdi; Srivastava, Ravi P; Vedanti, Nimisha; Landrø, Martin

    2010-01-01

    Three time-lapse 3D seismic surveys are analysed to monitor the effect of in situ combustion, a thermal-enhanced oil recovery process in the Balol heavy oil reservoir in India. The baseline data were acquired prior to the start of the in situ combustion process in four injection wells, while the two monitor surveys were acquired 1 and 2 years after injection start, respectively. We present the results of baseline and second monitor surveys. Fluid substitution studies based on acoustic well logs predict a seismic amplitude decrease at the top reservoir and an increase at the base reservoir. Both the amplitude dimming at the top reservoir and the brightening at the base reservoir are observed in the field data. The extent of the most pronounced 4D anomaly is estimated from the seismic amplitude and time shift analysis. The interesting result of seismic analysis is that the anomalies are laterally shifted towards the northwest, rather than the expected east, from the injector location suggesting a northwest movement of the in situ combustion front. No clear evidence of air leakage into other sand layers, neither above nor below the reservoir sand, is observed. This does not necessarily mean that all the injected air is following the reservoir sand, especially if the thief sand layers are thin. These layers might be difficult to observe on seismic data

  7. Description and capabilities of the large-scale in situ vitrification process

    Energy Technology Data Exchange (ETDEWEB)

    Buelt, J.L.; Carter, J.G.

    1986-01-01

    An emerging thermal treatment process known as in situ vitrification is being developed to immobilize selected portions of radioactively contaminated soils. The process is a permanent remedial action that destroys solid and liquid organic contaminants and incorporates radionuclides and heavy metals into a glass and crystalline form. The process's flexibility in design and broad capabilities make it potentially adaptable to mixed and chemical wastes, as well. The process consists of an electrical power system for vitrifying contaminated soil, a hood to contain gaseous effluents, an off-gas treatment system, an off-gas cooling system, and a process control station. The process is mounted in three transportable trailers that can be easily moved from site to site. The process is capable of treating contaminated soils at least 13 m deep. The system components are designed to accommodate waste inclusions in the soil such as metals, combustibles, and large voids. Selectively applied to the more troublesome radioactively contaminated soils, in situ vitrification provides a potentially useful and permanent tool for remedial action.

  8. Robotic-Controlled, Autonomous Friction Stir Welding Processes for In-Situ Fabrication, Maintenance, and Repair

    Science.gov (United States)

    Zhou, W.

    NASA s new vision of human and robotic missions to the Moon Mars and beyond will demand large and permanent infrastructures on the Moon and other planets including power plants communication towers human and biomass habitats launch and landing facilities fabrication and repair workshops and research facilities so that material utilization and product development can be carried out and subsisted in-situ The conventional approach of transporting pre-constructed fabricated structures from earth to the Moon planets will no longer be feasible due to limited lifting capacity and extremely high transportation costs associated with long duration space travel To minimize transport of pre-made large structures between earth and the Moon planets minimize crew time for the fabrication and assembly of infrastructures on the Moon planets and to assure crew safety and maintain quality during the operation there is a strong need for robotic capabilities for in-situ fabrication maintenance and repair Clearly development of innovative autonomous in-situ fabrication maintenance and repair technologies is crucial to the success of both NASA s unmanned preparation missions and manned exploration missions In-space material joining is not new to NASA Many lessons were learned from NASA s International Space Welding Experiment which employed the Electron Beam Welding process for space welding experiments Significant safety concerns related to high-energy beams arcing spatter elecromagnetic fields and molten particles were

  9. In situ monitoring of biomolecular processes in living systems using surface-enhanced Raman scattering

    Science.gov (United States)

    Altunbek, Mine; Kelestemur, Seda; Culha, Mustafa

    2015-12-01

    Surface-enhanced Raman scattering (SERS) continues to strive to gather molecular level information from dynamic biological systems. It is our ongoing effort to utilize the technique for understanding of the biomolecular processes in living systems such as eukaryotic and prokaryotic cells. In this study, the technique is investigated to identify cell death mechanisms in 2D and 3D in vitro cell culture models, which is a very important process in tissue engineering and pharmaceutical applications. Second, in situ biofilm formation monitoring is investigated to understand how microorganisms respond to the environmental stimuli, which inferred information can be used to interfere with biofilm formation and fight against their pathogenic activity.

  10. A simple constrained uniaxial tensile apparatus for in situ investigation of film stretching processing.

    Science.gov (United States)

    Meng, Lingpu; Li, Jing; Cui, Kunpeng; Chen, Xiaowei; Lin, Yuanfei; Xu, Jiali; Li, Liangbin

    2013-11-01

    A simple constrained uniaxial tensile apparatus was designed and constructed to obtain stress-strain curve during stretching and subsequent structural evolution of polymeric films. Stretch is carried out through two motor driven clamps in the machine direction and scissor-like clamps in the transverse direction keeping the sample width constant. The force information during film stretching process is recorded by a tension sensor and structural evolution can be obtained by in situ X-ray scattering technique. All parameters related to film stretching manufacturing, such as temperature, draw ratio, and stretching speed can be set independently, making the apparatus an effective method to explore the relationship between processing parameters and structure.

  11. In situ moisture determination of a cytotoxic compound during process optimization.

    Science.gov (United States)

    Hicks, Michael B; Zhou, George X; Lieberman, David R; Antonucci, Vincent; Ge, Zhihong; Shi, Yao-Jun; Cameron, Mark; Lynch, Joseph E

    2003-03-01

    A simple and safe prototype apparatus was designed and adapted for the in situ determination of the moisture content of a cytotoxic compound (9-fluorenylmethyl-protected doxorubicin-peptide conjugate, or Fm-DPC) by near-infrared absorbance spectroscopy during optimization of the chemical isolation procedure. The cytotoxic nature of the compound restricts one's ability to safely sample such drying processes for more traditional means of moisture determination for fear of hazardous solids dusting, hence in situ sampling approaches are of great importance. These concerns also exist for the process development laboratory, where despite the smaller scale of operations, the volume of experiments (hence cytotoxic samples) required to define a chemical process is often more significant. In this application, partial least squares regression was used with Karl Fischer volumetric titration analysis to generate a calibration model. Although pronounced differences in cake density were observed as a function of the buffer selected for the isolation process, the model still achieved a standard error of calibration of 0.63% w/w and a standard error of prediction of 0.99% (w/w). These results demonstrated the versatility of the prototype apparatus/data processing approach to model Fm-DPC drying under extremely variable conditions, as inherently expected during the investigational laboratory development of a chemical process. Copyright 2003 Wiley-Liss Inc. and the American Pharmaeceutical Association

  12. Synthesis of gold and silver nanoparticle S-ovalbumin protein conjugates by in situ conjugation process

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Deepti, E-mail: deeptimishrajoshi@gmail.com; Soni, R. K. [Indian Institute of Technology Delhi, Physics Department (India)

    2015-05-15

    Pure gold and silver nanoparticle (NP) generation and their conjugation with protein S-ovalbumin using in situ conjugation process have been reported. The in situ conjugation involves nanosecond pulse laser ablation of pure metal target in the protein S-ovalbumin solution. Transmission electron microscopy (TEM) and UV–Visible absorption results show decrease in mean NP size along with narrow particle size distribution on ablation in S-ovalbumin solution as compared to ablation in water for both Au and Ag NPs. Also, the NP size reduction was found to be dependent on the concentration of S-ovalbumin. For AuNPs, spherical NPs of mean size 4 nm with particle size distribution 2–6 nm were obtained at 300 nM S-ovalbumin concentration. Further, it has been observed that the resultant in situ-conjugated colloid gold and silver NP solutions were quite stable even in the presence of NaCl at physiological salt concentration (0.15 M). On post-laser irradiation (532 nm, 15 mJ) for 20 min, 9 nm red shift in surface plasmon resonance peak (SPR), along with increased broadening towards longer wavelength, was observed in the AuNPs–S-ovalbumin sample. Further increase in the time of irradiation showed shift in AuNPs–S-ovalbumin SPR towards lower wavelength. On laser irradiation (532 nm, 15 mJ) for 20 min, no significant change was observed in the line shape of the plasmon absorption band of the AgNPs–S-ovalbumin conjugate. FTIR spectra revealed that S-ovalbumin peptide backbone and secondary structure remain unchanged on laser irradiation during in situ conjugation process. Thus, integrity of S-ovalbumin does not get affected, and no degradation of S-ovalbumin takes place on laser-induced in situ conjugation. Raman results confirm that both Au and Ag NPs interact with S-ovalbumin via thiol-bearing cysteine residues of the disulfide bond.

  13. Integrating In-Situ and Ex-Situ Data Management Processes for Biodiversity Conservation

    Directory of Open Access Journals (Sweden)

    Karin R. Schwartz

    2017-10-01

    Full Text Available There is an increasing need for a “one plan approach” for conservation strategies that integrate in-situ and ex-situ management processes. Zoological institutions contribute directly to threatened species conservation through paradigms, such as reintroduction, head-starting, supplementation, or rescue/rehabilitation/release. This in-situ/ex-situ integration necessitates collaboration at all levels of conservation action including planning, implementation, monitoring and assessment to drive adaptive management processes. Each component is dependent on the availability and accuracy of data for evidence to facilitate evaluation and adaptive management processes. The Zoological Information Management System (ZIMS, managed by Species360, is a centralized web-based information system used in zoological institutions worldwide to pool life history, behavior and health data and facilitate animal husbandry, health, and breeding management processes. Currently used for few integrated conservation programs, ZIMS is an innovative tool that offers a new opportunity to link data management processes for animals that spend a part of their lives under human care and part in their natural environment and has great potential for use in managed wild populations.

  14. Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid

    Science.gov (United States)

    Roes, Augustinus Wilhelmus Maria [Houston, TX; Mo, Weijian [Sugar Land, TX; Muylle, Michel Serge Marie [Houston, TX; Mandema, Remco Hugo [Houston, TX; Nair, Vijay [Katy, TX

    2009-09-01

    A method for producing alkylated hydrocarbons is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce at least a second gas stream including hydrocarbons having a carbon number of at least 3. The first gas stream and the second gas stream are introduced into an alkylation unit to produce alkylated hydrocarbons. At least a portion of the olefins in the first gas stream enhance alkylation.

  15. AVARIS - AREVA Valve Repair in-Situ. Innovative technology and processes

    International Nuclear Information System (INIS)

    Schultz, Ch.

    2012-01-01

    Concept of in-situ welding and turning machine is explained. The AVARIS processes are: Disassembly Evaluation Turning Welding Finish turning Penetration test Grinding Reassembly Result - The seats are within the dimensional and hardness tolerances. The repaired valves with AVARIS as in the case of Isar 2 in 2010 did not show any indications after one year in operation Advantages: Development based on an approved and safe technology; Capability for improving and/or modification of the hardfacing material according to specific system conditions; Minimization of dose exposure (ALARA)

  16. Process qualification and testing of LENS deposited AY1E0125 D-bottle brackets.

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, Clinton J.; Smugeresky, John E. (Sandia National Labs, Livermore,CA); Jew, Michael (Sandia National Labs, Livermore,CA); Gill, David Dennis; Scheffel, Simon (Sandia National Labs, Livermore,CA)

    2006-11-01

    The LENS Qualification team had the goal of performing a process qualification for the Laser Engineered Net Shaping{trademark}(LENS{reg_sign}) process. Process Qualification requires that a part be selected for process demonstration. The AY1E0125 D-Bottle Bracket from the W80-3 was selected for this work. The repeatability of the LENS process was baselined to determine process parameters. Six D-Bottle brackets were deposited using LENS, machined to final dimensions, and tested in comparison to conventionally processed brackets. The tests, taken from ES1E0003, included a mass analysis and structural dynamic testing including free-free and assembly-level modal tests, and Haversine shock tests. The LENS brackets performed with very similar characteristics to the conventionally processed brackets. Based on the results of the testing, it was concluded that the performance of the brackets made them eligible for parallel path testing in subsystem level tests. The testing results and process rigor qualified the LENS process as detailed in EER200638525A.

  17. In-situ Non-destructive Studies on Biofouling Processes in Reverse Osmosis Membrane Systems

    KAUST Repository

    Farhat, Nadia

    2016-12-01

    Reverse osmosis (RO) and nanofiltration (NF) membrane systems are high-pressure membrane filtration processes that can produce high quality drinking water. Biofouling, biofilm formation that exceeds a certain threshold, is a major problem in spiral wound RO and NF membrane systems resulting in a decline in membrane performance, produced water quality, and quantity. In practice, detection of biofouling is typically done indirectly through measurements of performance decline. Existing direct biofouling detection methods are mainly destructive, such as membrane autopsies, where biofilm samples can be contaminated, damaged and resulting in biofilm structural changes. The objective of this study was to test whether transparent luminescent planar oxygen sensing optodes, in combination with a simple imaging system, can be used for in-situ, non-destructive biofouling characterization. Aspects of the study were early detection of biofouling, biofilm spatial patterning in spacer filled channels, and the effect of feed cross-flow velocity, and feed flow temperature. Oxygen sensing optode imaging was found suitable for studying biofilm processes and gave detailed spatial and quantitative biofilm development information enabling better understanding of the biofouling development process. The outcome of this study attests the importance of in-situ, non-destructive imaging in acquiring detailed knowledge on biofilm development in membrane systems contributing to the development of effective biofouling control strategies.

  18. Focused beam reflectance measurement as a tool for in situ monitoring of the lactose crystallization process.

    Science.gov (United States)

    Pandalaneni, K; Amamcharla, J K

    2016-07-01

    Lactose accounts for about 75 and 85% of the solids in whey and deproteinized whey, respectively. Production of lactose is usually carried out by a process called crystallization. Several factors including rate of cooling, presence of impurities, and mixing speed influence the crystal size characteristics. To optimize the lactose crystallization process parameters to maximize the lactose yield, it is important to monitor the crystallization process. However, efficient in situ tools to implement at concentrations relevant to the dairy industry are lacking. The objective of the present work was to use a focused beam reflectance measurement (FBRM) system for in situ monitoring of lactose crystallization at supersaturated concentrations (wt/wt) 50, 55, and 60% at 20 and 30°C. The FBRM data were compared with Brix readings collected using a refractometer during isothermal crystallization. Chord length distributions obtained from FBRM in the ranges of lactose crystallization at various concentrations and temperatures was successfully assessed in the study. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. In situ Resource Utilization for Processing of Metal Alloys on Lunar and Mars Bases

    Science.gov (United States)

    Stefanescu, D. M.; Grugel, R. N.; Curreri, P. A.

    1998-01-01

    Current plans for practical missions leading to a sustained human presence on our Moon and Mars rely on utilizing their in situ resources. Initially, resource availability must be assessed followed by the development of economically acceptable and technically feasible extractive processes. In regard to metals processing and fabrication, the lower gravity level on the Moon (0.125 g) and Mars (0.369 g) will dramatically change the presently accepted hierarchy of materials in terms of specific properties, a factor which must be understood and exploited. Furthermore, significant changes are expected in the behavior of liquid metals during processing. In metal casting, for example, mold filling and associated solidification processes have to be reevaluated. Finally, microstructural development and therefore material properties, presently being documented through ongoing research in microgravity science and applications, needs to be understood and scaled to the reduced gravity environments. These and other issues are addressed in this paper.

  20. Advanced Optical Signal Processing using Time Lens based Optical Fourier Transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Lillieholm, Mads

    2016-01-01

    An overview of recent progress on time lens based advanced optical signal processing is presented, with a special focus on all-optical ultrafast 640 Gbit/s all-channel serial-to-parallel conversion, and scalable WDM regeneration....

  1. Discrete magic angle turning system, apparatus, and process for in situ magnetic resonance spectroscopy and imaging

    Science.gov (United States)

    Hu, Jian Zhi [Richland, WA; Sears, Jr., Jesse A.; Hoyt, David W [Richland, WA; Wind, Robert A [Kennewick, WA

    2009-05-19

    Described are a "Discrete Magic Angle Turning" (DMAT) system, devices, and processes that combine advantages of both magic angle turning (MAT) and magic angle hopping (MAH) suitable, e.g., for in situ magnetic resonance spectroscopy and/or imaging. In an exemplary system, device, and process, samples are rotated in a clockwise direction followed by an anticlockwise direction of exactly the same amount. Rotation proceeds through an angle that is typically greater than about 240 degrees but less than or equal to about 360 degrees at constant speed for a time applicable to the evolution dimension. Back and forth rotation can be synchronized and repeated with a special radio frequency (RF) pulse sequence to produce an isotropic-anisotropic shift 2D correlation spectrum. The design permits tubes to be inserted into the sample container without introducing plumbing interferences, further allowing control over such conditions as temperature, pressure, flow conditions, and feed compositions, thus permitting true in-situ investigations to be carried out.

  2. In situ diffraction studies of scale formation under Bayer processing conditions

    International Nuclear Information System (INIS)

    Webster, N.; Madsen, I.; Loan, J.

    2009-01-01

    Full text: The Bayer process is used to extract alumina (A I 203) from bauxite ore. The efficiency of the proc severely compromised by the build-up of insoluble species (scale) on the surfaces of mild process equipment, which impedes the material flow through, and heat transfer to, the pr streams [1]. In precipitation areas operating at 60-8 C gibbsite, AI(OHh, scales predominate the spent liquor heaters which typically operate at 150-250 0 C, sodalite and cancrinite-type s aluminosilicate scales are formed (1). An improved understanding of the scale formation mechanism may lead to the development of a practical and economic method for scale prevention. Characterisation of the structure, composition and crystallographic orientation of phases present early stages of formation is crucial for this understanding, making x-ray and neutron diffraction important analytical techniques. In situ synchrotron x-ray diffraction experiments were performed Australian Synchrotron during AI(OHh deposition on mild steel substrates using a purpose built stainless steel flow cell (3). The high resolution data enabled identification of three polymors AI(OH)3 (gibbsite, bayerite and nordtsrandite) in the deposited material, each displaying ori growth along (001). Additional in situ synchrotron XRD experiments, where AI(OH)3 precipitatiol 'seeded' with various iron oxides and oxyhydroxides, have also been performed and some ' results will be discussed. Similar neutron diffraction experiments on Wombat are planned investigations of seeded aluminosilicate precipitation at 150-250 0 C using an Inconel hydrothermal cell.

  3. Why in situ, real-time characterization of thin film growth processes?

    International Nuclear Information System (INIS)

    Auciello, O.; Krauss, A.R.

    1995-01-01

    Since thin-film growth occurs at the surface, the analytical methods should be highly surface-specific. although subsurface diffusion and chemical processes also affect film properties. Sampling depth and ambient-gas is compatibility are key factors which must be considered when choosing in situ probes of thin-film growth phenomena. In most cases, the sampling depth depends on the mean range of the exit species (ion, photon, or electron) in the sample. The techniques that are discussed in this issue of the MRS Bulletin (1) have been chosen because they may be used for in situ, real-time analysis of film-growth phenomena in vacuum and in the presence of ambient gases resulting either from the deposition process or as a requirement for the production of the desired chemical phase. A second criterion for inclusion is that the instrumentation be sufficiently compact and inexpensive to permit use as a dedicated tool in a thin-film deposition system

  4. In situ Remediation Technologies

    NARCIS (Netherlands)

    Grotenhuis, J.T.C.; Rijnaarts, H.H.M.

    2011-01-01

    A summary of two decades of developments of In Situ remediation is presented in this chapter. The basic principles of In Situ technology application are addressed, such as equilibrium relations between contaminant phases, factors controlling biological and geochemical processes, contaminant

  5. Identification of chemical processes influencing constituent mobility during in-situ uranium leaching

    International Nuclear Information System (INIS)

    Sherwood, D.R.; Hostetler, C.J.; Deutsch, W.J.

    1984-07-01

    In-situ leaching of uranium has become a widely accepted method for production of uranium concentrate from ore zones that are too small, too deep, and/or too low in grade to be mined by conventional techniques. One major environmental concern that exists with in-situ leaching of uranium is the possible adverse effects mining might have on regional ground water quality. The leaching solution (lixiviant), which extracts uranium from the ore zone, might also mobilize other potential contaminants (As, Se, Mo, and SO 4 ) associated with uranium ore. Column experiments were performed to investigate the geochemical interactions between a lixiviant and a uranium ore during in-situ leaching and to identify chemical processes that might influence contaminant mobility. The analytical composition data for selected column effluents were used with the MINTEQ code to develop a computerized geochemical model of the system. MINTEQ was used to calculate saturation indices for solid phases based on the composition of the solution. A potential constraint on uranium leaching efficiency appears to be the solubility control of schoepite. Gypsum and powellite solubilities may limit the mobilities of sulfate and molybdenum, respectively. In contrast, the mobilities of arsenic and selenium were not limited by solubility constraints, but were influenced by other chemical interaction between the solution and sediment, perhaps adsorption. Bulk chemical and mineralogical analyses were performed on both the original and leached ores. Using these analyses together with the column effluent data, mass balance calculations were performed on five constituents based on solution chemical analysis and bulk chemical and γ-spectroscopy analysis for the sediment. 6 references, 10 figures, 10 tables

  6. In situ biosynthesis of bacterial nanocellulose-CaCO3 hybrid bionanocomposite: One-step process

    International Nuclear Information System (INIS)

    Mohammadkazemi, Faranak; Faria, Marisa; Cordeiro, Nereida

    2016-01-01

    In this work, a simple and green route to the synthesis of the bacterial nanocellulose-calcium carbonate (BNC/CaCO 3 ) hybrid bionanocomposites using one-step in situ biosynthesis was studied. The CaCO 3 was incorporated in the bacterial nanocellulose structure during the cellulose biosynthesis by Gluconacetobacter xylinus PTCC 1734 bacteria. Hestrin-Schramm (HS) and Zhou (Z) culture media were used to the hybrid bionanocomposites production and the effect of ethanol addition was investigated. Attenuated total reflection Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, inverse gas chromatography and thermogravimetric analysis were used to characterize the samples. The experimental results demonstrated that the ethanol and culture medium play an important role in the BNC/CaCO 3 hybrid bionanocomposites production, structure and properties. The BNC/CaCO 3 biosynthesized in Z culture medium revealed higher O/C ratio and amphoteric surface character, which justify the highest CaCO 3 content incorporation. The CaCO 3 was incorporated into the cellulosic matrix decreasing the bacterial nanocellulose crystallinity. This work reveals the high potential of in situ biosynthesis of BNC/CaCO 3 hybrid bionanocomposites and opens a new way to the high value-added applications of bacterial nanocellulose. - Graphical Abstract: Display Omitted - Highlights: • BNC/CaCO 3 hybrid bionanocomposites were produced using in situ biosynthesis process. • Ethanol and culture medium play an important role in the production and properties. • Z-BNC/CaCO 3 bionanocomposites revealed higher O/C ratio and amphoteric surface character. • CaCO 3 incorporated into the BNC decreased crystallinity.

  7. In-situ OMVPE process sensing of GaAs and AlGaAs by photoreflectance

    Science.gov (United States)

    Capuder, K.; Norris, P. E.; Shen, H.; Hang, Z.; Pollak, F. H.

    1990-04-01

    The contactless electromodulation method of photoreflectance has been successfully applied as an in-situ sensor of the OMVPE process. The direct band gap, E 0, of GaAs and AIGaAs has been measured, in-situ, under OMVPE growth conditions. To the best of our knowledge, this is the first report of an in-situ photoreflectance measurement of III-V materials properties in an OMVPE system. This is significant in that it illustrates the potential for the application of photoreflectance as an in-situ process monitor, analogous to the use of RHEED measurements in MBE. The GaAs substrate temperature of 650°, as measured by an optical pyrometer, corresponds to the temperature derived using the Varshni equation and published Varshni coefficients to within the error of the published data.

  8. Defining progressive stages in the commitment process leading to embryonic lens formation

    Science.gov (United States)

    Jin, Hong; Fisher, Marilyn; Grainger, Robert M.

    2013-01-01

    Summary The commitment of regions of the embryo to form particular tissues or organs is a central concept in development, but the mechanisms controlling this process remain elusive. The well-studied model of lens induction is ideal for dissecting key phases of the commitment process. We find in Xenopus tropicalis, at the time of specification of the lens, i.e. when presumptive lens ectoderm (PLE) can be isolated, cultured and will differentiate into a lens, that the PLE is not yet irreversibly committed, or determined, to form a lens. When transplanted into the posterior of a host embryo lens development is prevented at this stage, while approximately 3 hr later, using the same assay, determination is complete. Interestingly, we find that specified lens ectoderm, when cultured, acquires the ability to become determined without further tissue interactions. Further, we show that specified PLE has a different gene expression pattern than determined PLE, and that determined PLE can maintain expression of essential regulatory genes (e.g. foxe3, mafB) in an ectopic environment while specified PLE cannot. These observations set the stage for a detailed mechanistic study of the genes and signals controlling tissue commitment. PMID:22566346

  9. Microstructures of Metallic NiCrBSi Coatings Manufactured via Hybrid Plasma Spray and In Situ Laser Remelting Process

    OpenAIRE

    Serres, Nicolas; Hlawka, Françoise; Costil, Sophie; Langlade, Cécile; Machi, Frédérique

    2011-01-01

    International audience; This paper deals with coating alternatives to hard chromium plating. Thermal spraying is already used in industry, but results are not always satisfactory for reasons of porosity and microstructures. In this study, atmospheric plasma spraying (APS) and in situ laser irradiation by diode laser processes were combined to modify the structural characteristics of thick NiCrBSi alloy layers. The microstructure evolution was studied, and results show that in situ laser remel...

  10. Morphology Development in Solution-Processed Functional Organic Blend Films: An In Situ Viewpoint

    KAUST Repository

    Richter, Lee J.

    2017-04-17

    Solution-processed organic films are a facile route to high-speed, low cost, large-area deposition of electrically functional components (transistors, solar cells, emitters, etc.) that can enable a diversity of emerging technologies, from Industry 4.0, to the Internet of things, to point-of-use heath care and elder care. The extreme sensitivity of the functional performance of organic films to structure and the general nonequilibrium nature of solution drying result in extreme processing-performance correlations. In this Review, we highlight insights into the fundamentals of solution-based film deposition afforded by recent state-of-the-art in situ measurements of functional film drying. Emphasis is placed on multimodal studies that combine surface-sensitive X-ray scattering (GIWAXS or GISAXS) with optical characterization to clearly define the evolution of solute structure (aggregation, crystallinity, and morphology) with film thickness.

  11. Properties and electronic structures of titanium aluminides-alumina composites from in-situ SHS process

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Y.F., E-mail: dinahyfsh@hotmail.com [School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530000 (China); Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, Guilin University of Technology, Guilin, Guangxi 541004 (China); Zou, Z.G., E-mail: zouzg@glite.edu.cn [Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, Guilin University of Technology, Guilin, Guangxi 541004 (China); Xiao, Z.G.; Liu, K.; Long, F.; Wu, Y. [Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, Guilin University of Technology, Guilin, Guangxi 541004 (China)

    2011-02-25

    Research highlights: {yields} In-situ SHS processing method plus vacuum hot-pressing process were applied. {yields} Mechanical and electronic properties and microscopic structures were studied. {yields} First principle pseudopotential plane-wave-based DFT calculations were performed. - Abstract: Titanium aluminides-alumina composite was synthesized by in-situ self-propagating high-temperature synthesis (SHS) method, followed by hot-pressing process. To understand the fundamental differences between the composite and A1{sub 2}O{sub 3} ceramic, a comparative study was carried out using first-principles plane-wave pseudopotential method based on density functional theory (DFT). XRD analysis of final products confirmed the formation of TiAl, A1{sub 2}O{sub 3} and a small amount of Ti{sub 3}Al phases in the composites and the reaction mechanisms of the process were proposed. SEM observation revealed that a two-phase ({gamma} + {alpha}{sub 2}) TiAl-Ti{sub 3}Al lamellar structure was formed, and the composites exhibited a homogeneous microstructure. Moreover, density of states (DOS), band structure, charge density difference and Mulliken population analysis showed that metallic, covalent and ionic bonding were produced at the interfaces of the composite. O-Al interface bonds showed more covalent character with respect to pure Al{sub 2}O{sub 3}. Therefore, interface combination of the composite was improved, making the composite tougher (a toughness as high as 7.9 MPa m{sup 1/2}) than monophase Al{sub 2}O{sub 3} ceramic.

  12. Understanding aquatic microbial processes using EEM's and in-situ fluorescence sensors

    Science.gov (United States)

    Fox, Bethany; Attridge, John; Rushworth, Cathy; Cox, Tim; Anesio, Alexandre; Reynolds, Darren

    2015-04-01

    The diverse origin of dissolved organic matter (DOM) in aquatic systems is well documented within the literature. Previous literature indicates that coloured dissolved organic matter (CDOM) is, in part, transformed by aquatic microbial processes, and that dissolved organic material derived from a microbial origin exhibits tryptophan-like fluorescence. However, this phenomenon is not fully understood and very little data is available within the current literature. The overall aim of our work is to reveal the microbial-CDOM interactions that give rise to the observed tryptophan-like fluorescence. The work reported here investigates the microbial processes that occur within freshwater aquatic samples, as defined by the biochemical oxygen demand (BOD) test, as a function of the T1 peak (λex/em 280/330-370 nm). A series of standard water samples were prepared using glucose, glutamic acid, BOD dilution water and a bacterial seed (Cole-Parmer BOD microbe capsules). Samples were spiked with CDOM (derived from an environmental water body) and subjected to time resolved BOD analysis and as excitation-emission fluorescence spectroscopy. All EEM spectral data was interrogated using parallel factor analysis (PARAFAC) in an attempt to determine the presence and dominance (relative intensities) of the CDOM-related and T1-related fluorophores within the samples. In-situ fluorescence sensors (Chelsea Technologies Group Ltd.) were also used to monitor the T1 fluorescence peak (UviLux Tryptophan) and the CDOM fluorescence peak (UviLux CDOM) during experiments. Tryptophan-like fluorescence was observed (albeit transient) in both spiked and un-spiked standard water samples. By furthering our understanding of aquatic organic matter fluorescence, its origin, transformation, fate and interaction with aquatic microbiological processes, we aim to inform the design of a new generation in-situ fluorescence sensor for the monitoring of aquatic ecosystem health.

  13. Magnetic lens apparatus for use in high-resolution scanning electron microscopes and lithographic processes

    Science.gov (United States)

    Crewe, Albert V.

    2000-01-01

    Disclosed are lens apparatus in which a beam of charged particlesis brought to a focus by means of a magnetic field, the lens being situated behind the target position. In illustrative embodiments, a lens apparatus is employed in a scanning electron microscopeas the sole lens for high-resolution focusing of an electron beam, and in particular, an electron beam having an accelerating voltage of from about 10 to about 30,000 V. In one embodiment, the lens apparatus comprises an electrically-conducting coil arranged around the axis of the beam and a magnetic pole piece extending along the axis of the beam at least within the space surrounded by the coil. In other embodiments, the lens apparatus comprises a magnetic dipole or virtual magnetic monopole fabricated from a variety of materials, including permanent magnets, superconducting coils, and magnetizable spheres and needles contained within an energy-conducting coil. Multiple-array lens apparatus are also disclosed for simultaneous and/or consecutive imaging of multiple images on single or multiple specimens. The invention further provides apparatus, methods, and devices useful in focusing charged particle beams for lithographic processes.

  14. Sintering process optimization for multi-layer CGO membranes by in situ techniques

    DEFF Research Database (Denmark)

    Kaiser, Andreas; Prasad, A.S.; Foghmoes, Søren Preben Vagn

    2013-01-01

    changing in a narrow temperature range of less than 100 degrees C. Below 1030 degrees C, a higher densification rate in the dense membrane layer than in the porous support leads to concave shape, whereas the densification rate of the support is dominant above 1030 degrees C, leading to convex shape. A fiat...... bi-layer could be prepared at 1030 degrees C, when shrinkage rates were similar. In situ van der Pauw measurements on tape cast layers during sintering allowed following the conductivity during sintering. A strong increase in conductivity and in activation energy E-a for conduction was observed...... between 900 and 1030 degrees C indicating an activation of the reactive sintering process and phase transformation of cobalt oxide. (C) 2012 Elsevier Ltd. All rights reserved....

  15. In situ observation of magnetic orientation process of feeble magnetic materials under high magnetic fields

    Directory of Open Access Journals (Sweden)

    Noriyuki Hirota et al

    2008-01-01

    Full Text Available An in situ microscopic observation of the magnetic orientation process of feeble magnetic fibers was carried out under high magnetic fields of up to 10 T using a scanning laser microscope. In the experiment, carbon fibers and needle-like titania fibers with a length of 1 to 20 μm were used. The fibers were observed to gradually orient their axes parallel to the direction of the magnetic field. The orientation behavior of the sample fibers was evaluated on the basis of the measured duration required for a certain angular variation. As predicted from the theoretical consideration, it was confirmed that the duration required for a certain angular variation normalized by the viscosity of the fluid is described as a function of the fiber length. The results obtained here appear useful for the consideration of the magnetic orientation of materials suspended in a static fluid.

  16. In Situ Spectroscopic Analysis of the Carbothermal Reduction Process of Iron Oxides during Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Jun Fukushima

    2018-01-01

    Full Text Available The effects of microwave plasma induction and reduction on the promotion of the carbothermal reduction of iron oxides (α-Fe2O3, γ-Fe2O3, and Fe3O4 are investigated using in situ emission spectroscopy measurements during 2.45 GHz microwave processing, and the plasma discharge (such as CN and N2 is measured during microwave E-field irradiation. It is shown that CN gas or excited CN molecules contribute to the iron oxide reduction reactions, as well as to the thermal reduction. On the other hand, no plasma is generated during microwave H-field irradiation, resulting in thermal reduction. Magnetite strongly interacts with the microwave H-field, and the reduction reaction is clearly promoted by microwave H-field irradiation, as well as thermal reduction reaction.

  17. A Micro-Comb Test System for In Situ Investigation of Infiltration and Crystallization Processes

    Directory of Open Access Journals (Sweden)

    Dominik Gruber

    2017-10-01

    Full Text Available The investigation of mineralization and demineralization processes is important for the understanding of many phenomena in daily life. Many crystalline materials are exposed to decay processes, resulting in lesions, cracks, and cavities. Historical artifacts, for example, often composed of calcium carbonate (CaCO3, are damaged by exposure to acid rain or temperature cycles. Another example for lesions in a crystalline material is dental caries, which lead to the loss of dental hard tissue, mainly composed of hydroxyapatite (HAp. The filling of such cavities and lesions, to avoid further mineral loss and enable or support the remineralization, is a major effort in both areas. Nevertheless, the investigation of the filling process of these materials into the cavities is difficult due to the non-transparency and crystallinity of the concerned materials. In order to address this problem, we present a transparent, inexpensive, and reusable test system for the investigation of infiltration and crystallization processes in situ, being able to deliver datasets that could potentially be used for quantitative evaluation of the infiltration process. This was achieved using a UV-lithography-based micro-comb test system (MCTS, combined with self-assembled monolayers (SAMs to mimic the surface tension/wettability of different materials, like marble, sandstone, or human enamel. Moreover, the potential of this test system is illustrated by infiltration of a CaCO3 crystallization solution and a hydroxyapatite precursor (HApP into the MCTS.

  18. Novel in situ resistance measurement for the investigation of CIGS growth in a selenization process

    International Nuclear Information System (INIS)

    Liu Wei; He Qing; Li Fengyan; Li Changjian; Sun Yun; Tian Jianguo; Li Zubin

    2009-01-01

    During the selenization process of CIGS thin films, the relation between the element loss rate and the precursor depositions are analyzed. The growth of the CIGS thin films during the selenization process is investigated by the novel in situ resistance measurement, by which the formation of compound semiconductors can be observed directly and simultaneously. Their structures, phase evolutions and element losses are analyzed by XRD and XRF. Based on the experimental results, it can be concluded that the phase transforms have nothing to do with the deposition sequences of precursors, while the element loss rates are related to the deposition sequences in this process. In addition, element loss mechanisms of CIGS thin films prepared by the selenization process are analyzed by the phase evolutions and chemical combined path in the In, Ga–Se reaction processes. Moreover it is verified that the element losses are depressed by increasing the ramping-up rate finally. The results provide effective methods to fabricate high-quality CIGS thin films with low element losses

  19. Modeling and Analysis of the Reverse Water Gas Shift Process for In-Situ Propellant Production

    Science.gov (United States)

    Whitlow, Jonathan E.

    2000-01-01

    This report focuses on the development of mathematical models and simulation tools developed for the Reverse Water Gas Shift (RWGS) process. This process is a candidate technology for oxygen production on Mars under the In-Situ Propellant Production (ISPP) project. An analysis of the RWGS process was performed using a material balance for the system. The material balance is very complex due to the downstream separations and subsequent recycle inherent with the process. A numerical simulation was developed for the RWGS process to provide a tool for analysis and optimization of experimental hardware, which will be constructed later this year at Kennedy Space Center (KSC). Attempts to solve the material balance for the system, which can be defined by 27 nonlinear equations, initially failed. A convergence scheme was developed which led to successful solution of the material balance, however the simplified equations used for the gas separation membrane were found insufficient. Additional more rigorous models were successfully developed and solved for the membrane separation. Sample results from these models are included in this report, with recommendations for experimental work needed for model validation.

  20. Hydrous pyrolysis/oxidation process for in situ destruction of chlorinated hydrocarbon and fuel hydrocarbon contaminants in water and soil

    Science.gov (United States)

    Knauss, Kevin G.; Copenhaver, Sally C.; Aines, Roger D.

    2000-01-01

    In situ hydrous pyrolysis/oxidation process is useful for in situ degradation of hydrocarbon water and soil contaminants. Fuel hydrocarbons, chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, petroleum distillates and other organic contaminants present in the soil and water are degraded by the process involving hydrous pyrolysis/oxidation into non-toxic products of the degradation. The process uses heat which is distributed through soils and water, optionally combined with oxygen and/or hydrocarbon degradation catalysts, and is particularly useful for remediation of solvent, fuel or other industrially contaminated sites.

  1. In situ treatment of mixed contaminants in groundwater: Review of candidate processes

    International Nuclear Information System (INIS)

    Korte, N.E.; Siegrist, R.L.; Ally, M.

    1994-10-01

    This document describes the screening and preliminary evaluation of candidate treatment for use in treating mixed contaminants volatile organic compounds (VOCs) and radionuclides in groundwater. Treating mixed contaminants presents unusual difficulties. Typically, VOCs are the most abundant contaminants, but the presence of radionuclides results in additional health concerns that must be addressed, usually by a treatment approach different from that used for VOCs. Furthermore, the presence of radionuclides may yield mixed solid wastes if the VOCs are treated by conventional means. These issues were specifically addressed in the evaluation of candidate treatment processes for testing in this program. Moreover, because no research or early development of a particular process would be performed, the technology review also focused on technologies that could be readily adapted and integrated for use with mixed contaminants. The objective is to couple emerging or available processes into treatment modules for use in situ. The three year project, to be completed in September 1996, includes a full-scale field demonstration. The findings reported in this document encompass all activities through the treatment process evaluations

  2. In situ treatment of mixed contaminants in groundwater: Review of candidate processes

    Energy Technology Data Exchange (ETDEWEB)

    Korte, N.E. [ed.] [Oak Ridge National Lab., Grand Junction, CO (United States); Siegrist, R.L. [ed.] [Oak Ridge National Lab., TN (United States); Ally, M. [and others

    1994-10-01

    This document describes the screening and preliminary evaluation of candidate treatment for use in treating mixed contaminants volatile organic compounds (VOCs) and radionuclides in groundwater. Treating mixed contaminants presents unusual difficulties. Typically, VOCs are the most abundant contaminants, but the presence of radionuclides results in additional health concerns that must be addressed, usually by a treatment approach different from that used for VOCs. Furthermore, the presence of radionuclides may yield mixed solid wastes if the VOCs are treated by conventional means. These issues were specifically addressed in the evaluation of candidate treatment processes for testing in this program. Moreover, because no research or early development of a particular process would be performed, the technology review also focused on technologies that could be readily adapted and integrated for use with mixed contaminants. The objective is to couple emerging or available processes into treatment modules for use in situ. The three year project, to be completed in September 1996, includes a full-scale field demonstration. The findings reported in this document encompass all activities through the treatment process evaluations.

  3. In Situ Acoustic Monitoring of Thermal Spray Process Using High-Frequency Impulse Measurements

    Science.gov (United States)

    Tillmann, Wolfgang; Walther, Frank; Luo, Weifeng; Haack, Matthias; Nellesen, Jens; Knyazeva, Marina

    2018-01-01

    In order to guarantee their protective function, thermal spray coatings must be free from cracks, which expose the substrate surface to, e.g., corrosive media. Cracks in thermal spray coatings are usually formed because of tensile residual stresses. Most commonly, the crack occurrence is determined after the thermal spraying process by examination of metallographic cross sections of the coating. Recent efforts focus on in situ monitoring of crack formation by means of acoustic emission analysis. However, the acoustic signals related to crack propagation can be absorbed by the noise of the thermal spraying process. In this work, a high-frequency impulse measurement technique was applied to separate different acoustic sources by visualizing the characteristic signal of crack formation via quasi-real-time Fourier analysis. The investigations were carried out on a twin wire arc spraying process, utilizing FeCrBSi as a coating material. The impact of the process parameters on the acoustic emission spectrum was studied. Acoustic emission analysis enables to obtain global and integral information on the formed cracks. The coating morphology and coating defects were inspected using light microscopy on metallographic cross sections. Additionally, the resulting crack patterns were imaged in 3D by means of x-ray microtomography.

  4. Immunoglobulin heavy-chain fluorescence in situ hybridization-chromogenic in situ hybridization DNA probe split signal in the clonality assessment of lymphoproliferative processes on cytological samples.

    Science.gov (United States)

    Zeppa, Pio; Sosa Fernandez, Laura Virginia; Cozzolino, Immacolata; Ronga, Valentina; Genesio, Rita; Salatiello, Maria; Picardi, Marco; Malapelle, Umberto; Troncone, Giancarlo; Vigliar, Elena

    2012-12-25

    The human immunoglobulin heavy-chain (IGH) locus at chromosome 14q32 is frequently involved in different translocations of non-Hodgkin lymphoma (NHL), and the detection of any breakage involving the IGH locus should identify a B-cell NHL. The split-signal IGH fluorescence in situ hybridization-chromogenic in situ hybridization (FISH-CISH) DNA probe is a mixture of 2 fluorochrome-labeled DNAs: a green one that binds the telomeric segment and a red one that binds the centromeric segment, both on the IGH breakpoint. In the current study, the authors tested the capability of the IGH FISH-CISH DNA probe to detect IGH translocations and diagnose B-cell lymphoproliferative processes on cytological samples. Fifty cytological specimens from cases of lymphoproliferative processes were tested using the split-signal IGH FISH-CISH DNA probe and the results were compared with light-chain assessment by flow cytometry (FC), IGH status was tested by polymerase chain reaction (PCR), and clinicohistological data. The signal score produced comparable results on FISH and CISH analysis and detected 29 positive, 15 negative, and 6 inadequate cases; there were 29 true-positive cases (66%), 9 true-negative cases (20%), 6 false-negative cases (14%), and no false-positive cases (0%). Comparing the sensitivity of the IGH FISH-CISH DNA split probe with FC and PCR, the highest sensitivity was obtained by FC, followed by FISH-CISH and PCR. The split-signal IGH FISH-CISH DNA probe is effective in detecting any translocation involving the IGH locus. This probe can be used on different samples from different B-cell lymphoproliferative processes, although it is not useful for classifying specific entities. Cancer (Cancer Cytopathol) 2012;. © 2012 American Cancer Society. Copyright © 2012 American Cancer Society.

  5. In-situ real-time x-ray scattering for probing the processing-structure-performance relation

    KAUST Repository

    Smilgies, Detlef-M.

    2014-01-01

    © 2014 Materials Research Society. In-situ X-ray scattering methodology is discussed, in order to analyze the microstructure development of soft functional materials during coating, annealing, and drying processes in real-time. The relevance of a fundamental understanding of coating processes for future industrial production is pointed out.

  6. In-situ observation of particles deposition process on a ferromagnetic filter during high-gradient magnetic separation process

    Energy Technology Data Exchange (ETDEWEB)

    Hirota, Noriyuki, E-mail: hirota.noriyuki@nims.go.jp [Fine Particle Engineering Group, National Institute for Materials Science, 3-13 Sakura, Tsukuba (Japan); Ando, Tsutomu; Takano, Tadamitsu [Department of Mechanical Engineering, Nihon University, 1-2-1 Izumicho, Narashino 275-8575 (Japan); Okada, Hidehiko [Fine Particle Engineering Group, National Institute for Materials Science, 3-13 Sakura, Tsukuba (Japan)

    2017-04-01

    Abstracts: In-situ observations of particles deposition process on a ferromagnetic filter in high gradient magnetic separation were carried out under high magnetic fields to obtain information for the optimization of separation condition. The spike-like deposition structure was observed on the upper stream of the magnetic filter, different from the conventional deposition image obtained for paramagnetic particles. The length of the spike structure tends to be long with lower flow velocity and lower applied magnetic field. It was also observed that the chain structure or the bundle of such chaines were formed on the way to the filter under the condition of the low applied magnetic field and low flow rates. Results obtained here indicate that the effect of deposited particles on the spatial distribution of the magnetic field and the hydrodynamics, they are often ignored in the simulation so far, should be considered appropriately. - Highlights: • In-situ observation of particles deposition process on a ferromagnetic filter in HGMS. • The spike-like deposition structure was observed on the upper stream. • Longer spike structure formed under lower magnetic fields and lower flow rates. • Effect of the magnetization of deposited particles should be considered appropriately.

  7. Study of the Radical Chain Mechanism of Hydrocarbon Oxidation for In Situ Combustion Process

    Directory of Open Access Journals (Sweden)

    Alexandra Ushakova

    2017-01-01

    Full Text Available Despite the abundance of in situ combustion models of oil oxidation, many of the effects are still beyond consideration. For example, until now, initial stages of oxidation were not considered from a position of radical chain process. This is a serious difficulty for the simulation of oil recovery process that involves air injection. To investigate the initial stages of oxidation, the paper considers the sequence of chemical reactions, including intermediate short-living compounds and radicals. We have attempted to correlate the main stages of the reaction with areas of heat release observed in the experiments. The system of differential equations based on the equations of oxidation reactions was solved. Time dependence of peroxides formation and start of heat release is analytically derived for the initial stages. We have considered the inhibition of initial oxidation stages by aromatic oil compounds and have studied the induction time in dependence on temperature. Chain ignition criteria for paraffins and crude oil in presence of core samples were obtained. The calculation results are compared with the stages of oxidation that arise by high-pressure differential scanning calorimetry. According to experimental observations we have determined which reactions are important for the process and which can be omitted or combined into one as insignificant.

  8. Magic angle spinning nuclear magnetic resonance apparatus and process for high-resolution in situ investigations

    Science.gov (United States)

    Hu, Jian Zhi; Sears, Jr., Jesse A.; Hoyt, David W.; Mehta, Hardeep S.; Peden, Charles H. F.

    2015-11-24

    A continuous-flow (CF) magic angle sample spinning (CF-MAS) NMR rotor and probe are described for investigating reaction dynamics, stable intermediates/transition states, and mechanisms of catalytic reactions in situ. The rotor includes a sample chamber of a flow-through design with a large sample volume that delivers a flow of reactants through a catalyst bed contained within the sample cell allowing in-situ investigations of reactants and products. Flow through the sample chamber improves diffusion of reactants and products through the catalyst. The large volume of the sample chamber enhances sensitivity permitting in situ .sup.13C CF-MAS studies at natural abundance.

  9. Cyanobacteria to Link Closed Ecological Systems and In-Situ Resources Utilization Processes

    Science.gov (United States)

    Brown, Igor

    Introduction: A major goal for the Vision of Space Exploration is to extend human presence across the solar sys-tem. With current technology, however, all required consumables for these missions (propellant, air, food, water) as well as habitable volume and shielding to support human explorers will need to be brought from Earth. In-situ pro-duction of consumables (In-Situ Resource Utilization-ISRU) will significantly facilitate current plans for human ex-ploration and colonization of the solar system, especially by reducing the logistical overhead such as recurring launch mass. The production of oxygen from lunar materials is generally recognized as the highest priority process for lunar ISRU, for both human metabolic and fuel oxidation needs. The most challenging technology developments for future lunar settlements may lie in the extraction of elements (O, Fe, Mn, Ti, Si, etc) from local rocks and soils for life support, industrial feedstock and the production of propellants. With few exceptions (e.g., Johannson, 1992), nearly all technology development to date has employed an ap-proach based on inorganic chemistry (e.g. Allen et al., 1996). None of these technologies include concepts for inte-grating the ISRU system with a bioregenerative life support system and a food production systems. Bioregenerative life support efforts have recently been added to the Constellation ISRU development program (Sanders et al, 2007). Methods and Concerns: The European Micro-Ecological Life Support System Alternative (MELiSSA) is an ad-vanced concept for organizing a bioregenerative system for long term space flights and extraterrestrial settlements (Hendrickx, De Wever et al., 2005). However the MELiSSA system is a net consumer of ISRU products without a net return to in-situ technologies, e.g.. to extract elements as a result of complete closure of MELiSSA. On the other hand, the physical-chemical processes for ISRU are typically massive (relative to the rate of oxygen

  10. A new application of passive samplers as indicators of in-situ biodegradation processes.

    Science.gov (United States)

    Belles, Angel; Alary, Claire; Criquet, Justine; Billon, Gabriel

    2016-12-01

    In this paper, a method for evaluating the in-situ degradation of nitro polycyclic aromatic hydrocarbons (nitro-PAH) in sediments is presented. The methodology is adapted from the passive sampler technique, which commonly uses the dissipation rate of labeled compounds loaded in passive sampler devices to sense the environmental conditions of exposure. In the present study, polymeric passive samplers (made of polyethylene strips) loaded with a set of labeled polycyclic aromatic hydrocarbons (PAH) and nitro-PAH were immersed in sediments (in field and laboratory conditions) to track the degradation processes. This approach is theoretically based on the fact that a degradation process induces a steeper concentration gradient of the labeled compounds in the surrounding sediment, thereby increasing their compound dissipation rates compared with their dissipation in abiotic conditions. Postulating that the degradation magnitude is the same for the labeled compounds loaded in polyethylene strips and for their native homologs that are potentially present in the sediment, the field degradation of 3 nitro-PAH (2-nitro-fluorene, 1-nitro-pyrene, 6-nitro-chrysene) was semi-quantitatively analyzed using the developed method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Deformation processing of the Nb-10 a/o Si in-situ composite

    International Nuclear Information System (INIS)

    Srinivasan, R.; Thirukkonda, M.; Weiss, I.

    1994-01-01

    Isothermal constant strain rate compressive deformation of the Nb 10 a/o Si in-situ composite was studied in order to establish the conditions under which the alloy deformed uniformly. The microstructure of the alloy was modified by hot extrusion. The different microstructures obtained were: as-cast (AC-I Generation), once-extruded (E1-II Generation), and twice-extruded (E2-III Generation). In the as-cast condition, the alloy undergoes uniform deformation only at very high temperatures (∼1,800 C) or at very slow strain rates (var-epsilon ≤ 10 -4 s -1 ). Through microstructural modification it was possible to change the conditions for uniform deformation to lower temperatures and faster strain rates. The thermomechanical processing of Nb-10 a/o Si alloy resulted in the recrystallization and the morphological alignment of the Nb 3 Si and Nb phases in the extrusion direction. A consequence of these microstructural modifications was an improvement in the mechanical properties of the alloy. Room temperature fracture toughness of the alloy increased from about 11 MPa√ bar m in the AC condition to 21 MPa√ bar m in the E1 condition, and to 26 MPa√ bar m in the E2 condition. Thermomechanical processing also resulted in considerable increases in both the room temperature and the elevated temperature strength of the alloy

  12. In situ studies on controlling an atomically-accurate formation process of gold nanoclusters.

    Science.gov (United States)

    Yang, Lina; Cheng, Hao; Jiang, Yong; Huang, Ting; Bao, Jie; Sun, Zhihu; Jiang, Zheng; Ma, Jingyuan; Sun, Fanfei; Liu, Qinghua; Yao, Tao; Deng, Huijuan; Wang, Shuxin; Zhu, Manzhou; Wei, Shiqiang

    2015-09-14

    Knowledge of the molecular formation mechanism of metal nanoclusters is essential for developing chemistry for accurate control over their synthesis. Herein, the "top-down" synthetic process of monodisperse Au13 nanoclusters via HCl etching of polydisperse Aun clusters (15 ≤ n ≤ 65) is traced by a combination of in situ X-ray/UV-vis absorption spectroscopy and time-dependent mass spectrometry. It is revealed experimentally that the HCl-induced synthesis of Au13 is achieved by accurately controlling the etching process with two distinctive steps, in sharp contrast to the traditional thiol-etching mechanism through release of the Au(i) complex. The first step involves the direct fragmentation of the initial larger Aun clusters into metastable intermediate Au8-Au13 smaller clusters. This is a critical step, which allows for the secondary size-growth step of the intermediates toward the atomically monodisperse Au13 clusters via incorporating the reactive Au(i)-Cl species in the solution. Such a secondary-growth pathway is further confirmed by the successful growth of Au13 through reaction of isolated Au11 clusters with AuClPPh3 in the HCl environment. This work addresses the importance of reaction intermediates in guiding the way towards controllable synthesis of metal nanoclusters.

  13. Experimental optimization of catalytic process in-situ for heavy oil and bitumen upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Shah, A.; Fishwick, R.P.; Leeke, G.A.; Wood, J. [Birmingham Univ., Birmingham (United Kingdom); Rigby, S.P.; Greaves, M. [Bath Univ., Bath (United Kingdom)

    2010-07-01

    Peak crude oil production is expected to occur in the second decade of this century, followed by a phase of permanent decline in conventional crude oil production. However, very large resources of heavy oil and bitumen exist throughout the world, most notably in Canada and Venezuela. The high viscosity and density of these non-conventional crude oils require more energy intensive operations for production and upgrading, and also for transportation. As such, they are more costly to extract. This paper described some of the technological innovations that are being considered to extract heavier oil supplies with reduced environmental impact. The toe-to-heel air injection (THAI) process and its catalytic added-on (CAPRI) process combine in-situ combustion with catalytic upgrading using an annular catalyst packed around a horizontal producer well. Results of an experimental study concerning optimization of catalyst type and operating conditions showed that CAPRI can effect further upgrading of partially upgraded THAI oil, with upgrading levels of viscosity and API gravity dependent upon temperature and flow rate. 20 refs., 8 tabs., 10 figs.

  14. Aquifer restoration at in-situ leach uranium mines: evidence for natural restoration processes

    International Nuclear Information System (INIS)

    Deutsch, W.J.; Serne, R.J.; Bell, N.E.; Martin, W.J.

    1983-04-01

    Pacific Northwest Laboratory conducted experiments with aquifer sediments and leaching solution (lixiviant) from an in-situ leach uranium mine. The data from these laboratory experiments and information on the normal distribution of elements associated with roll-front uranium deposits provide evidence that natural processes can enhance restoration of aquifers affected by leach mining. Our experiments show that the concentration of uranium (U) in solution can decrease at least an order of magnitude (from 50 to less than 5 ppM U) due to reactions between the lixiviant and sediment, and that a uranium solid, possibly amorphous uranium dioxide, (UO 2 ), can limit the concentration of uranium in a solution in contact with reduced sediment. The concentrations of As, Se, and Mo in an oxidizing lixiviant should also decrease as a result of redox and precipitation reactions between the solution and sediment. The lixiviant concentrations of major anions (chloride and sulfate) other than carbonate were not affected by short-term (less than one week) contact with the aquifer sediments. This is also true of the total dissolved solids level of the solution. Consequently, we recommend that these solution parameters be used as indicators of an excursion of leaching solution from the leach field. Our experiments have shown that natural aquifer processes can affect the solution concentration of certain constituents. This effect should be considered when guidelines for aquifer restoration are established

  15. Remediation of PCB-contaminated soils. Risk analysis of biological in situ processes

    Energy Technology Data Exchange (ETDEWEB)

    Rein, Arno

    2006-12-08

    effects on other soil organisms. Potential field release applications of in situ bioremediation using GMOs require performance control in the source zone (to ensure the functionality of the degradation process) and compliance monitoring, addressing contaminants, metabolites and GMOs. Detailed guidelines were compiled for respective tasks. (orig.)

  16. Solution-Processing of Organic Solar Cells: From In Situ Investigation to Scalable Manufacturing

    KAUST Repository

    Abdelsamie, Maged

    2016-12-05

    implementation of organic solar cells with high efficiency and manufacturability. In this dissertation, we investigate the mechanism of the BHJ layer formation during solution processing from common lab-based processes, such as spin-coating, with the aim of understanding the roles of materials, formulations and processing conditions and subsequently using this insight to enable the scalable manufacturing of high efficiency organic solar cells by such methods as wire-bar coating and blade-coating. To do so, we have developed state-of-the-art in situ diagnostics techniques to provide us with insight into the thin film formation process. As a first step, we have developed a modified spin-coater which allows us to perform in situ UV-visible absorption measurements during spin coating and provides key insight into the formation and evolution of polymer aggregates in solution and during the transformation to the solid state. Using this method, we have investigated the formation of organic BHJs made of a blend of poly (3-hexylthiophene) (P3HT) and fullerene, reference materials in the organic solar cell field. We show that process kinetics directly influence the microstructure and morphology of the bulk heterojunction, highlighting the value of in situ measurements. We have investigated the influence of crystallization dynamics of a wide-range of small-molecule donors and their solidification pathways on the processing routes needed for attaining high-performance solar cells. The study revealed the reason behind the need of empirically-adopted processing strategies such as solvent additives or alternatively thermal or solvent vapor annealing for achieving optimal performance. The study has provided a new perspective to materials design linking the need for solvent additives or annealing to the ease of crystallization of small-molecule donors and the presence or absence of transient phases before crystallization. From there, we have extended our investigation to small-molecule (p

  17. Electrochemically Modulated Gas/Liquid Separation Technology for In Situ Resource Utilization Process Streams, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this phase I program MicroCell Technologies, LLC (MCT) proposes to demonstrate the feasibility of an electrochemically modulated phase separator for in situ...

  18. In Situ Mass Spectrometric Monitoring of the Dynamic Electrochemical Process at the Electrode–Electrolyte Interface: a SIMS Approach

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhaoying; Zhang, Yanyan; Liu, Bingwen; Wu, Kui; Thevuthasan, Suntharampillai; Baer, Donald R.; Zhu, Zihua; Yu, Xiao-Ying; Wang, Fuyi

    2017-01-03

    The in situ molecular characterization of reaction intermediates and products at electrode-electrolyte interfaces is central to mechanistic studies of complex electrochemical processes, yet a great challenge. The coupling of electrochemistry (EC) and mass spectrometry (MS) has seen rapid development and found broad applicability in tackling challenges in analytical and bioanalytical chemistry. However, few truly in situ and real-time EC-MS studies have been reported at electrode-electrolyte interfaces. An innovative EC-MS coupling method named in situ liquid secondary ion mass spectrometry (SIMS) was recently developed by combining SIMS with a vacuum compatible microfluidic electrochemical device. Using this novel capability we report the first in situ elucidation of the electro-oxidation mechanism of a biologically significant organic compound, ascorbic acid (AA), at the electrode-electrolyte interface. The short-lived radical intermediate was successfully captured, which had not been detected directly before. Moreover, we demonstrated the power of this new technique in real-time monitoring of the formation and dynamic evolution of electrical double layers at the electrode-electrolyte interface. This work suggests further promising applications of in situ liquid SIMS in studying more complex chemical and biological events at the electrode-electrolyte interface.

  19. Processing and characterization of in-situ aluminum bronze titanium carbide composites

    Science.gov (United States)

    Pillai, Balathandan S.

    The present study was carried out to develop a process for manufacturing in-situ aluminum bronze titanium carbide (TiC) friction drums using the centrifugal casting method and to characterize the material under optimum performance. The in-situ method of manufacturing is based on the reactive gas injection technique (RGI). The gas used in this study is high purity methane (CH 4). It was found that the methane gas injection time into the molten bath of aluminum bronze alloyed with titanium promotes the formation of titanium carbide (TiC) in the bronze matrix. The maximum amount of TiC incorporated in the matrix was 3.1 wt.%. This lead to 11.5 wt.% incorporation of TiC in the inner diameter of centrifugal castings as carbide particles drifted towards this region due to the centrifugal forces and their relatively low density. The hardness and strength of these composites when compared with the as cast condition was improved by heat treatment. However, the alloy ductility was decreased at the expense of the strength. It was found that the wear resistance properties of the composites were superior to those of pure cast and heat treated aluminum bronze currently in use. Optical and Scanning Electron Microscopy indicated that the composite surfaces did not scratch deeply when wearing against a hardened 4340 steel. The wear resistance of the as cast aluminum bronze was inferior to that of heat treated one. Moreover, the heat treated aluminum bronze showed a lack of high abrasion resistance. The frictional coefficient was relatively low for the as cast aluminum bronze as a result of adhesive wear behavior for the load and speed chosen in this present investigation. The corrosion studies showed that these composites do not lead to improved corrosion resistance in marine water environments. Apparently, there is a galvanic corrosion of TiC to bronze. In addition, pitting was observed on the corroded surfaces and increased with the volume fraction of TiC. Model validation was

  20. Identification of bacteria used for microbial enhanced oil recovery process by fluorescence in situ hybridization technique

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, K.; Tanaka, S.; Otsuka, M. [Kansai Research Institute, Kyoto (Japan). Lifescience Lab.; Yonebayashi, H. [Japan National Oil Corp., Chiba (Japan). Tech. Research Center; Enomoto, H. [Tohoku University, Sendai (Japan). Dept. of Geoscience and Tech.

    2000-01-01

    A fluorescence in situ hybridization (FISH) technique using 16S rRNA-targeted oligonucleotide probes was developed for rapid detection of microorganisms for use in the microbial enhancement of oil recovery (MEOR) process. Two microorganisms, Enterobacter cloacae TRC-322 and Bacillus licheniformis TRC-18-2-a, were selected from a collection of Enterobacter sp. and Bacillus sp. which were screened in previous studies as candidate microorganisms for injection, and were used for this experiment. Oligonucleotide probes, design based on specific sequences in the 16S rRNA gene were labeled with either fluorescein isothiocyanate (FITC), or 6-car-boxy-X-rhodamine (ROX), and were allowed to hybridize with fixed cells of the two microorganisms noted above. The fluorescence signal emitted from each microorganism cells could clearly be detected by an epifluorescence microscope. Moreover, E. cloacae TRC-322 and B, licheniformis TRC-18-2-a, suspended in actual reservoir brine, including inorganic salts, oil and aboriginal cells of the reservoir brine, could be detected directly by this hybridization method, without the need for cultivation and isolation. (author)

  1. Constraining processes of landscape change with combined in situ cosmogenic 14C-10Be analysis

    Science.gov (United States)

    Hippe, Kristina

    2017-10-01

    Reconstructing Quaternary landscape evolution today frequently builds upon cosmogenic-nuclide surface exposure dating. However, the study of complex surface exposure chronologies on the 102-104 years' timescale remains challenging with the commonly used long-lived radionuclides (10Be, 26Al, 36Cl). In glacial settings, key points are the inheritance of nuclides accumulated in a rock surface during a previous exposure episode and (partial) shielding of a rock surface after the main deglaciation event, e.g. during phases of glacier readvance. Combining the short-lived in situ cosmogenic 14C isotope with 10Be dating provides a valuable approach to resolve and quantify complex exposure histories and burial episodes within Lateglacial and Holocene timescales. The first studies applying the in situ14C-10Be pair have demonstrated the great benefit from in situ14C analysis for unravelling complex glacier chronologies in various glacial environments worldwide. Moreover, emerging research on in situ14C in sedimentary systems highlights the capacity of combined in situ14C-10Be analysis to quantify sediment transfer times in fluvial catchments or to constrain changes in surface erosion rates. Nevertheless, further methodological advances are needed to obtain truly routine and widely available in situ14C analysis. Future development in analytical techniques has to focus on improving the analytical reproducibility, reducing the background level and determining more accurate muonic production rates. These improvements should allow extending the field of applications for combined in situ14C-10Be analysis in Earth surface sciences and open up a number of promising applications for dating young sedimentary deposits and the quantification of recent changes in surface erosion dynamics.

  2. STANFORD IN-SITU HIGH RATE YBCO PROCESS: TRANSFER TO METAL TAPES AND PROCESS SCALE UP

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm R. Beasley; Robert H.Hammond

    2009-04-14

    Executive Summary The materials science understanding of high rate low cost processes for Coated Conductor will benefit the application to power utilities for low loss energy transportation and power generation as well for DOD applications. The research in this program investigated several materials processing approaches that are new and original, and are not being investigated elsewhere. This work added to the understanding of the material science of high rate PVD growth of HTSC YBCO assisted by a liquid phase. A new process discovered uses amorphous glassy precursors which can be made at high rate under flexible conditions of temperature and oxygen, and later brought to conditions of oxygen partial pressure and temperature for rapid conversion to YBCO superconductor. Good critical current densities were found, but further effort is needed to optimize the vortex pinning using known artificial inclusions. A new discovery of the physics and materials science of vortex pinning in the HTSC system using Sm in place of Y came at growth at unusually low oxygen pressure resulting in clusters of a low or non superconducting phase within the nominal high temperature phase. The driving force for this during growth is new physics, perhaps due to the low oxygen. This has the potential for high current in large magnetic fields at low cost, applicable to motors, generators and transformers. The technical demands of this project were the motivation for the development of instrumentation that could be essential to eventual process scale up. These include atomic absorption based on tunable diode lasers for remote monitoring and control of evaporation sources (developed under DARPA support), and the utility of Fourier Transform Infrared Reflectivity (FTIR) for aid in the synthesis of complex thin film materials (purchased by a DURIP-AFOSR grant).

  3. In situ

    Science.gov (United States)

    Tremsin, Anton S; Makowska, Małgorzata G; Perrodin, Didier; Shalapska, Tetiana; Khodyuk, Ivan V; Trtik, Pavel; Boillat, Pierre; Vogel, Sven C; Losko, Adrian S; Strobl, Markus; Kuhn, L Theil; Bizarri, Gregory A; Bourret-Courchesne, Edith D

    2016-06-01

    Neutrons are known to be unique probes in situations where other types of radiation fail to penetrate samples and their surrounding structures. In this paper it is demonstrated how thermal and cold neutron radiography can provide time-resolved imaging of materials while they are being processed ( e.g. while growing single crystals). The processing equipment, in this case furnaces, and the scintillator materials are opaque to conventional X-ray interrogation techniques. The distribution of the europium activator within a BaBrCl:Eu scintillator (0.1 and 0.5% nominal doping concentrations per mole) is studied in situ during the melting and solidification processes with a temporal resolution of 5-7 s. The strong tendency of the Eu dopant to segregate during the solidification process is observed in repeated cycles, with Eu forming clusters on multiple length scales (only for clusters larger than ∼50 µm, as limited by the resolution of the present experiments). It is also demonstrated that the dopant concentration can be quantified even for very low concentration levels (∼0.1%) in 10 mm thick samples. The interface between the solid and liquid phases can also be imaged, provided there is a sufficient change in concentration of one of the elements with a sufficient neutron attenuation cross section. Tomographic imaging of the BaBrCl:0.1%Eu sample reveals a strong correlation between crystal fractures and Eu-deficient clusters. The results of these experiments demonstrate the unique capabilities of neutron imaging for in situ diagnostics and the optimization of crystal-growth procedures.

  4. A flow cell for in situ synchrotron x-ray diffraction studies of scale formation under Bayer processing conditions

    Science.gov (United States)

    Webster, Nathan A. S.; Madsen, Ian C.; Loan, Melissa J.; Scarlett, Nicola V. Y.; Wallwork, Kia S.

    2009-08-01

    The design, construction, and commissioning of a stainless steel flow cell for in situ synchrotron x-ray diffraction studies of scale formation under Bayer processing conditions is described. The use of the cell is demonstrated by a study of Al(OH)3 scale formation on a mild steel substrate from synthetic Bayer liquor at 70 °C. The cell design allows for interchangeable parts and substrates and would be suitable for the study of scale formation in other industrial processes.

  5. Electrochemical Processes for In-Situ Treatment of Contaminated Soils - Final Report - 09/15/1996 - 01/31/2001

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chin-Pao

    2001-05-31

    This project will study electrochemical processes for the in situ treatment of soils contaminated by mixed wastes, i.e., organic and inorganic. Soil samples collected form selected DOE waste sites will be characterized for specific organic and metal contaminants and hydraulic permeability. The soil samples are then subject to desorption experiments under various physical-chemical conditions such as pH and the presence of surfactants. Batch electro-osmosis experiments will be conducted to study the transport of contaminants in the soil-water systems. Organic contaminants that are released from the soil substrate will be treated by an advanced oxidation process, i.e., electron-Fantan. Finally, laboratory reactor integrating the elector-osmosis and elector-Fantan processes will be used to study the treatment of contaminated soil in situ.

  6. Modeling biogeochemical processes and isotope fractionation of enhanced in situ biodenitrification in a fractured aquifer

    NARCIS (Netherlands)

    Rodríguez-Escales, Paula; Folch, Albert; Vidal-Gavilan, Georgina; van Breukelen, B.M.

    2016-01-01

    Enhanced in situ biodenitrification (EIB) is a feasible technology to clean nitrate-polluted groundwater and reach
    drinking water standards. Aimed at enabling a better monitoring and management of the technology at the field
    scale, we developed a two-dimensional reactive transport model

  7. Fabrication process for a gradient index x-ray lens

    Science.gov (United States)

    Bionta, Richard M.; Makowiecki, Daniel M.; Skulina, Kenneth M.

    1995-01-01

    A process for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments m the soft x-ray region.

  8. Time Lens based Optical Fourier Transformation for All-Optical Signal Processing of Spectrally-Efficient Data

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Lillieholm, Mads

    2017-01-01

    We review recent progress in the use of time lens based optical Fourier transformation for advanced all-optical signal processing. A novel time lens based complete optical Fourier transformation (OFT) technique is introduced. This complete OFT is based on two quadratic phase-modulation stages using...

  9. In Situ Study of Catalytic Processes: Neutron Diffraction of a Methanol Synthesis Catalyst at Industrially Relevant Pressure

    OpenAIRE

    Kandemir, T.; Girgsdies, F.; Hansen, T.; Liss, K.; Kasatkin, I.; Kunkes, E.; Wowsnick, G.; Jacobsen, N.; Schlögl, R.; Behrens, M.

    2013-01-01

    Studying the workplace: An industrial methanol synthesis catalyst operating at high pressure was studied by in situ neutron diffraction. The peculiar microstructure of Cu/ZnO/Al2O3 nanocatalysts was found to be stable under reaction conditions. Stacking fault annealing and brass formation was only observed at temperatures higher than used in the methanol synthesis process, providing support for active role of defects in this catalyst system.

  10. In-Situ Anaerobic Biosurfactant Production Process For Remediation Of DNAPL Contamination In Subsurface Aquifers

    Science.gov (United States)

    Albino, J. D.; Nambi, I. M.

    2009-12-01

    microbial cultures. The microorganisms responsible for biosurfactant production was isolated and identified as Pseudomonas Sp (designated as Pseudomonas Sp ANBIOSURF-1, Gene bank no: FJ930079), Pseudomonas stutzeri (MTCC 10033), Pseudomonas Sp (MTCC 10032) from groundwater, soil and municipal sewage sludge enrichments respectively. This study confirms that biosurfactants can be produced under anaerobic conditions and also in sufficient quantities. The cultures were also able to cometabolically degrade PCE to Ethylene. The isolated microorganisms can be used for remediation of DNAPL contaminated sites by in-situ biosurfactant production.

  11. Direct in situ observations of single Fe atom catalytic processes and anomalous diffusion at graphene edges

    Science.gov (United States)

    Zhao, Jiong; Deng, Qingming; Avdoshenko, Stanislav M.; Fu, Lei; Eckert, Jürgen; Rümmeli, Mark H.

    2014-01-01

    Single-atom catalysts are of great interest because of their high efficiency. In the case of chemically deposited sp2 carbon, the implementation of a single transition metal atom for growth can provide crucial insight into the formation mechanisms of graphene and carbon nanotubes. This knowledge is particularly important if we are to overcome fabrication difficulties in these materials and fully take advantage of their distinct band structures and physical properties. In this work, we present atomically resolved transmission EM in situ investigations of single Fe atoms at graphene edges. Our in situ observations show individual iron atoms diffusing along an edge either removing or adding carbon atoms (viz., catalytic action). The experimental observations of the catalytic behavior of a single Fe atom are in excellent agreement with supporting theoretical studies. In addition, the kinetics of Fe atoms at graphene edges are shown to exhibit anomalous diffusion, which again, is in agreement with our theoretical investigations. PMID:25331874

  12. Thermal Lens Spectroscopy as a 'new' analytical tool for actinide determination in nuclear reprocessing processes

    International Nuclear Information System (INIS)

    Canto, Fabrice; Couston, Laurent; Magnaldo, Alastair; Broquin, Jean-Emmanuel; Signoret, Philippe

    2008-01-01

    Thermal Lens Spectroscopy (TLS) consists of measuring the effects induced by the relaxation of molecules excited by photons. Twenty years ago, the Cea already worked on TLS. Technologic reasons impeded. But, needs in sensitive analytical methods coupled with very low sample volumes (for example, traces of Np in the COEX TM process) and also the reduction of the nuclear wastes encourage us to revisit this method thanks to the improvement of optoelectronic technologies. We can also imagine coupling TLS with micro-fluidic technologies, decreasing significantly the experiments cost. Generally two laser beams are used for TLS: one for the selective excitation by molecular absorption (inducing the thermal lens) and one for probing the thermal lens. They can be coupled with different geometries, collinear or perpendicular, depending on the application and on the laser mode. Also, many possibilities of measurement have been studied to detect the thermal lens signal: interferometry, direct intensities variations, deflection etc... In this paper, one geometrical configuration and two measurements have been theoretically evaluated. For a single photodiode detection (z-scan) the limit of detection is calculated to be near 5*10 -6 mol*L -1 for Np(IV) in dodecane. (authors)

  13. Deformation processes in functional materials studied by in-situ neutron diffraction and ultrasonic techniques

    Czech Academy of Sciences Publication Activity Database

    Šittner, Petr; Novák, Václav; Landa, Michal; Lukáš, Petr

    2007-01-01

    Roč. 462, - (2007), s. 12-22 ISSN 0921-5093 R&D Projects: GA AV ČR IAA1048107; GA ČR GA106/03/1073 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z10480505; CEZ:AV0Z20760514 Keywords : in situ neutron diffraction * ultrasonics * SMA * NiTi * phase transformations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.457, year: 2007

  14. In-situ investigation of the calcination process of mixed oxide xerogels with Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Panitz, J.C. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The controlled calcination of materials derived by sol-gel reactions is important for the evolution of the final structure. Raman spectroscopy is an ideal tool for the identification of surface species under in-situ conditions, as demonstrated in the following for the example of a molybdenum oxide-silica xerogel. Raman spectra of this particular sample were recorded at temperatures as high as 1173 K, and compared with those of a reference material.(author) 3 figs., 4 refs.

  15. A modular reactor design for in situ synchrotron x-ray investigation of atomic layer deposition processes

    Science.gov (United States)

    Klug, Jeffrey A.; Weimer, Matthew S.; Emery, Jonathan D.; Yanguas-Gil, Angel; Seifert, Sönke; Schlepütz, Christian M.; Martinson, Alex B. F.; Elam, Jeffrey W.; Hock, Adam S.; Proslier, Thomas

    2015-11-01

    Synchrotron characterization techniques provide some of the most powerful tools for the study of film structure and chemistry. The brilliance and tunability of the Advanced Photon Source allow access to scattering and spectroscopic techniques unavailable with in-house laboratory setups and provide the opportunity to probe various atomic layer deposition (ALD) processes in situ starting at the very first deposition cycle. Here, we present the design and implementation of a portable ALD instrument which possesses a modular reactor scheme that enables simple experimental switchover between various beamlines and characterization techniques. As first examples, we present in situ results for (1) X-ray surface scattering and reflectivity measurements of epitaxial ZnO ALD on sapphire, (2) grazing-incidence small angle scattering of MnO nucleation on silicon, and (3) grazing-incidence X-ray absorption spectroscopy of nucleation-regime Er2O3 ALD on amorphous ALD alumina and single crystalline sapphire.

  16. Potentiometric in Situ Monitoring of Anions in the Synthesis of Copper and Silver Nanoparticles Using the Polyol Process.

    Science.gov (United States)

    Carey, Jesse L; Whitcomb, David R; Chen, Suyue; Penn, R Lee; Bühlmann, Philippe

    2015-12-22

    Potentiometric sensors, such as polymeric membrane, ion-selective electrodes (ISEs), have been used in the past to monitor a variety of chemical processes. However, the use of these sensors has traditionally been limited to aqueous solutions and moderate temperatures. Here we present an ISE with a high-capacity ion-exchange sensing membrane for measurements of nitrate and nitrite in the organic solvent propylene glycol at 150 °C. It is capable of continuously measuring under these conditions for over 180 h. We demonstrate the usefulness of this sensor by in situ monitoring of anion concentrations during the synthesis of copper and silver nanoparticles in propylene glycol using the polyol method. Ion chromatography and a colorimetric method were used to independently confirm anion concentrations measured in situ. In doing so, it was shown that in this reaction the co-ion nitrate is reduced to nitrite.

  17. In Situ 3D Monitoring of Geometric Signatures in the Powder-Bed-Fusion Additive Manufacturing Process via Vision Sensing Methods.

    Science.gov (United States)

    Li, Zhongwei; Liu, Xingjian; Wen, Shifeng; He, Piyao; Zhong, Kai; Wei, Qingsong; Shi, Yusheng; Liu, Sheng

    2018-04-12

    Lack of monitoring of the in situ process signatures is one of the challenges that has been restricting the improvement of Powder-Bed-Fusion Additive Manufacturing (PBF AM). Among various process signatures.

  18. Effects of aqueous effluents from in situ fossil fuel processing technologies on aquatic systems. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, H.L.; Anderson, A.D.

    1977-12-01

    This is the first annual report issued under a project to evaluate the effects of aqueous effluents from in-situ fossil fuel processing technologies on aquatic biota. Briefly, the goals of the project are to: evaluate the toxicity of process water effluents on aquatic biota; recommend maximum exposure concentrations for process water constituents; and assist DOE in using project data and recommendations to design control technologies and to assess environmental impacts. The project objectives for Year 1 were pursued through the following five tasks: a literature review on process water constituents; toxicity studies on the effect of process waters and six process water constituents on aquatic biota; degradation rate studies on four to six process water constituents; bioaccumulation studies on four to six process water constituents; and recommendations on maximum exposure concentrations for process water constituents based on data from the project and from the literature. Progress toward completion of these goals is presented.

  19. Electrophysiological evidence for temporal dynamics associated with attentional processing in the zoom lens paradigm

    Directory of Open Access Journals (Sweden)

    Qing Zhang

    2018-04-01

    Full Text Available Background Visuospatial processing requires wide distribution or narrow focusing of attention to certain regions in space. This mechanism is described by the zoom lens model and predicts an inverse correlation between the efficiency of processing and the size of the attentional scope. Little is known, however, about the exact timing of the effects of attentional scaling on visual searching and whether or not additional processing phases are involved in this process. Method Electroencephalographic recordings were made while participants performed a visual search task under different attentional scaling conditions. Two concentric circles of different sizes, presented to the participants at the center of a screen modulated the attentional scopes, and search arrays were distributed in the space areas indicated by these concentric circles. To ensure consistent eccentricity of the search arrays across different conditions, we limited our studies to the neural responses evoked by the search arrays distributed in the overlapping region of different attentional scopes. Results Consistent with the prediction of the zoom lens model, our behavioral data showed that reaction times for target discrimination of search arrays decreased and the associated error rates also significantly decreased, with narrowing the attentional scope. Results of the event-related potential analysis showed that the target-elicited amplitude of lateral occipital N1, rather than posterior P1, which reflects the earliest visuospatial attentional processing, was sensitive to changes in the scaling of visuospatial attention, indicating that the modulation of the effect of changes in the spatial scale of attention on visual processing occurred after the delay period of P1. The N1 generator exhibited higher activity as the attentional scope narrowed, reflecting more intensive processing resources within the attentional focus. In contrast to N1, the amplitude of N2pc increased with the

  20. In situ flash x-ray high-speed computed tomography for the quantitative analysis of highly dynamic processes

    Science.gov (United States)

    Moser, Stefan; Nau, Siegfried; Salk, Manfred; Thoma, Klaus

    2014-02-01

    The in situ investigation of dynamic events, ranging from car crash to ballistics, often is key to the understanding of dynamic material behavior. In many cases the important processes and interactions happen on the scale of milli- to microseconds at speeds of 1000 m s-1 or more. Often, 3D information is necessary to fully capture and analyze all relevant effects. High-speed 3D-visualization techniques are thus required for the in situ analysis. 3D-capable optical high-speed methods often are impaired by luminous effects and dust, while flash x-ray based methods usually deliver only 2D data. In this paper, a novel 3D-capable flash x-ray based method, in situ flash x-ray high-speed computed tomography is presented. The method is capable of producing 3D reconstructions of high-speed processes based on an undersampled dataset consisting of only a few (typically 3 to 6) x-ray projections. The major challenges are identified, discussed and the chosen solution outlined. The application is illustrated with an exemplary application of a 1000 m s-1 high-speed impact event on the scale of microseconds. A quantitative analysis of the in situ measurement of the material fragments with a 3D reconstruction with 1 mm voxel size is presented and the results are discussed. The results show that the HSCT method allows gaining valuable visual and quantitative mechanical information for the understanding and interpretation of high-speed events.

  1. Closed-looped in situ nano processing on a culturing cell using an inverted electron beam lithography system

    International Nuclear Information System (INIS)

    Hoshino, Takayuki; Mabuchi, Kunihiko

    2013-01-01

    Highlights: ► An electron beam lithography (EBL) was used as an in situ nano processing for a living cell. ► A synchronized optics was containing an inverted EBL and an optical microscope. ► This system visualized real-time images of the EB-induced nano processing. ► We demonstrated the nano processing for a culturing cell with 200–300 nm resolution. ► Our system would be able to provide high resolution display of virtual environments. -- Abstract: The beam profile of an electron beam (EB) can be focused onto less than a nanometer spot and scanned over a wide field with extremely high speed sweeping. Thus, EB is employed for nano scale lithography in applied physics research studies and in fabrication of semiconductors. We applied a scanning EB as a control system for a living cell membrane which is representative of large scale complex systems containing nanometer size components. First, we designed the opposed co-axial dual optics containing inverted electron beam lithography (I-EBL) system and a fluorescent optical microscope. This system could provide in situ nano processing for a culturing living cell on a 100-nm-thick SiN nanomembrane, which was placed between the I-EBL and the fluorescent optical microscope. Then we demonstrated the EB-induced chemical direct nano processing for a culturing cell with hundreds of nanometer resolution and visualized real-time images of the scanning spot of the EB-induced luminescent emission and chemical processing using a high sensitive camera mounted on the optical microscope. We concluded that our closed-loop in situ nano processing would be able to provide a nanometer resolution display of virtual molecule environments to study functional changes of bio-molecule systems

  2. In-situ solvothermal processing of polycaprolactone/hydroxyapatite nanocomposites with enhanced mechanical and biological performance for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Saeed Moeini

    2017-09-01

    Full Text Available The interest in biodegradable polymer-matrix nanocomposites with bone regeneration potential has been increasing in recent years. In the present work, a solvothermal process is introduced to prepare hydroxyapatite (HA nanorod-reinforced polycaprolactone in-situ. A non-aqueous polymer solution containing calcium and phosphorous precursors is prepared and processed in a closed autoclave at different temperatures in the range of 60–150 °C. Hydroxyapatite nanorods with varying aspect ratios are formed depending on the processing temperature. X-ray diffraction analysis and field-emission scanning electron microscopy indicate that the HA nanorods are semi-crystalline. Energy-dispersive X-ray spectroscopy and Fourier transform infrared spectrometry determine that the ratio of calcium to phosphorous increases as the processing temperature increases. To evaluate the effect of in-situ processing on the mechanical properties of the nanocomposites, highly porous scaffolds (>90% containing HA nanorods are prepared by employing freeze drying and salt leaching techniques. It is shown that the elastic modulus and strength of the nanocomposites prepared by the in-situ method is superior (∼15% to those of the ex-situ samples (blended HA nanorods with the polymer solution. The enhanced bone regeneration potential of the nanocomposites is shown via an in vitro bioactivity assay in a saturated simulated body fluid. An improved cell viability and proliferation is also shown by employing (3-(4,5- dimethylthiazol-2-yl-2, 5-diphenyl tetrazolium bromide (MTT assay in human osteosarcoma cell lines. The prepared scaffolds with in vitro regeneration capacity could be potentially useful for orthopaedic applications and maxillofacial surgery.

  3. Laser processing of in situ TiN/Ti composite coating on titanium.

    Science.gov (United States)

    Sahasrabudhe, Himanshu; Soderlind, Julie; Bandyopadhyay, Amit

    2016-01-01

    Laser remelting of commercially pure titanium (CP-Ti) surface was done in a nitrogen rich inert atmosphere to form in situ TiN/Ti composite coating. Laser surface remelting was performed at two different laser powers of 425 W and 475 W. At each power, samples were fabricated with one or two laser scans. The resultant material was a nitride rich in situ coating that was created on the surface. The cross sections revealed a graded microstructure. There was presence of nitride rich dendrites dispersed in α-Ti matrix at the uppermost region. The structure gradually changed with lesser dendrites and more heat affected α-Ti phase maintaining a smooth interface. With increasing laser power, the dendrites appeared to be larger in size. Samples with two laser scans showed discontinuous dendrites and more α-Ti phase as compared to the samples with one laser scan. The resultant composite of TiN along with Ti2N in α-Ti showed substantially higher hardness and wear resistance than the untreated CP-Ti substrate. Coefficient of friction was also found to reduce due to surface nitridation. Leaching of Ti(4+) ions during wear test in DI water medium was found to reduce due to laser surface nitriding. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. In situ biosynthesis of bacterial nanocellulose-CaCO3 hybrid bionanocomposite: One-step process.

    Science.gov (United States)

    Mohammadkazemi, Faranak; Faria, Marisa; Cordeiro, Nereida

    2016-08-01

    In this work, a simple and green route to the synthesis of the bacterial nanocellulose-calcium carbonate (BNC/CaCO3) hybrid bionanocomposites using one-step in situ biosynthesis was studied. The CaCO3 was incorporated in the bacterial nanocellulose structure during the cellulose biosynthesis by Gluconacetobacter xylinus PTCC 1734 bacteria. Hestrin-Schramm (HS) and Zhou (Z) culture media were used to the hybrid bionanocomposites production and the effect of ethanol addition was investigated. Attenuated total reflection Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, inverse gas chromatography and thermogravimetric analysis were used to characterize the samples. The experimental results demonstrated that the ethanol and culture medium play an important role in the BNC/CaCO3 hybrid bionanocomposites production, structure and properties. The BNC/CaCO3 biosynthesized in Z culture medium revealed higher O/C ratio and amphoteric surface character, which justify the highest CaCO3 content incorporation. The CaCO3 was incorporated into the cellulosic matrix decreasing the bacterial nanocellulose crystallinity. This work reveals the high potential of in situ biosynthesis of BNC/CaCO3 hybrid bionanocomposites and opens a new way to the high value-added applications of bacterial nanocellulose. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Time lens based optical fourier transformation for advanced processing of spectrally-efficient OFDM and N-WDM signals

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Morioka, Toshio

    2016-01-01

    We review recent progress in the use of time lens based optical Fourier transformation for advanced optical signal processing, with focus on all-optical generation, detection and format conversion of spectrally-efficient OFDM and N-WDM signals.......We review recent progress in the use of time lens based optical Fourier transformation for advanced optical signal processing, with focus on all-optical generation, detection and format conversion of spectrally-efficient OFDM and N-WDM signals....

  6. In situ reflectance and virtual interface analysis for compound semiconductor process control

    Energy Technology Data Exchange (ETDEWEB)

    Breiland, W.G.; Hou, H.Q.; Hammons, B.E.; Klem, J.F.

    1998-05-01

    The authors review the use of in-situ normal incidence reflectance, combined with a virtual interface model, to monitor and control the growth of complex compound semiconductor devices. The technique is being used routinely on both commercial and research metal-organic chemical vapor deposition (MOCVD) reactors and in molecular beam epitaxy (MBE) to measure growth rates and high temperature optical constants of compound semiconductor alloys. The virtual interface approach allows one to extract the calibration information in an automated way without having to estimate the thickness or optical constants of the alloy, and without having to model underlying thin film layers. The method has been used in a variety of data analysis applications collectively referred to as ADVISOR (Analysis of Deposition using Virtual Interfaces and Spectroscopic Optical Reflectance). This very simple and robust monitor and ADVISOR method provides one with the equivalent of a real-time reflection high energy electron reflectance (RHEED) tool for both MBE and MOCVD applications.

  7. In situ observations of solidification processes in γ-TiAl alloys by synchrotron radiation

    International Nuclear Information System (INIS)

    Shuleshova, Olga; Holland-Moritz, Dirk; Loeser, Wolfgang; Voss, Andrea; Hartmann, Helena; Hecht, Ulrike; Witusiewicz, Victor T.; Herlach, Dieter M.; Buechner, Bernd

    2010-01-01

    In situ observations of phase transformations involving melts are performed using energy-dispersive diffraction of synchrotron X-rays on electromagnetically levitated γ-TiAl alloys containing Nb. The determined primary solidification modes, confirmed by microstructure analysis, delivered new reliable data about the boundary of the α(Ti) solidification domain, which differs in the various Ti-Al-Nb phase diagram descriptions. These data have been used for a reassessment of the thermodynamic database of the ternary Ti-Al-Nb system. The new description realistically reflects the experimental findings. Liquidus and solidus temperatures determined by the pyrometric method agree fairly well with the calculated values. Direct experimental information on the nature of the reactions along the univariant lines is provided.

  8. Morphological, thermal and dynamic mechanical properties of Cathay poplar/organoclay composites prepared by in situ process

    International Nuclear Information System (INIS)

    Wang, Wang; Zhu, Yuan; Cao, Jinzhen

    2014-01-01

    Highlights: • We produced poplar wood/organoclay composites by an in situ process. • OMMT uniformly dispersed in cell lumen and cell wall of reinforced wood composites. • Thermal properties of composites were improved by using OMMT without intermediate. - Abstract: In order to improve the thermal stability and dynamic mechanical properties of Cathay poplar (Populus cathayana Rehd.) wood, a kind of organoclay, that is, organo-montmorillonite (OMMT), was introduced into its structure via an in situ process by sequentially impregnating poplar wood with sodium-montmorillonite (Na-MMT, in concentrations of 1.0%, 2.0%, and 4.0%) and didecyldimethylammonium chloride (DDAC, in a concentration of 2.0%). Consequently, the wood/organoclay composites were prepared. The X-ray diffraction (XRD), scanning electron microscopy coupled with energy dispersed X-ray analysis (SEM-EDXA) and Fourier transform infrared spectroscopy (FTIR) were used to characterize the morphological and chemical alterations of the composites. Also the effects of clay type and concentrations on the thermal stability and dynamic mechanical properties of the composites were studied. The results showed that didecyldimethylammonium ions were intercalated into the galleries of Na-MMT through cation exchange, partially separating the silicate layers. Thereafter, the inorganic Na-MMT transformed to OMMT during the in situ synthesis process, and the latter was successfully intercalated into the wood cell wall. The thermal degradation was alleviated in the wood/clay composites, among which the wood/OMMT composites exhibited the best thermal stability. According to dynamic mechanical analysis (DMA) results, the wood/OMMT composites showed an enhancement in energy storage and a diminution in energy dissipation compared to other groups. The improvements in the thermal stability and dynamic mechanical properties of the composites became more significant with the increasing clay content

  9. Fatigue processes in commercial LiCoO2 batteries: in situ neutron diffraction and electrochemical study

    OpenAIRE

    Dolotko, O.; Senyshyn, A.; Mühlbauer, M. J.; Nikolowski, K.; Ehrenberg, H.

    2012-01-01

    In situ high-resolution neutron powder diffraction along with electrochemical analysis was used to study fatigue processes in commercial LiCoO2 (18650-type) batteries. The electrochemical and structural behavior of cathode and anode materials in fully charged and discharged states has been studied for cells exhibiting different cycling at 25°C and 50°C. High-resolution neutron powder diffraction leads us to observe simultaneous changes in LiCoO2 cathode and graphitic anode, which are relat...

  10. Enhancement of Biodiesel Production from Marine Alga, Scenedesmus sp. through In Situ Transesterification Process Associated with Acidic Catalyst

    Directory of Open Access Journals (Sweden)

    Ga Vin Kim

    2014-01-01

    Full Text Available The aim of this study was to increase the yield of biodiesel produced by Scenedesmus sp. through in situ transesterification by optimizing various process parameters. Based on the orthogonal matrix analysis for the acidic catalyst, the effects of the factors decreased in the order of reaction temperature (47.5% > solvent quantity (26.7% > reaction time (17.5% > catalyst amount (8.3%. Based on a Taguchi analysis, the effects of the factors decreased in the order of solvent ratio (34.36% > catalyst (28.62% > time (19.72% > temperature (17.32%. The overall biodiesel production appeared to be better using NaOH as an alkaline catalyst rather than using H2SO4 in an acidic process, at 55.07 ± 2.18% (based on lipid weight versus 48.41 ± 0.21%. However, in considering the purified biodiesel, it was found that the acidic catalyst was approximately 2.5 times more efficient than the alkaline catalyst under the following optimal conditions: temperature of 70°C (level 2, reaction time of 10 hrs (level 2, catalyst amount of 5% (level 3, and biomass to solvent ratio of 1 : 15 (level 2, respectively. These results clearly demonstrated that the acidic solvent, which combined oil extraction with in situ transesterification, was an effective catalyst for the production of high-quantity, high-quality biodiesel from a Scenedesmus sp.

  11. Enhancement of Biodiesel Production from Marine Alga, Scenedesmus sp. through In Situ Transesterification Process Associated with Acidic Catalyst

    Science.gov (United States)

    Kim, Ga Vin; Choi, WoonYong; Kang, DoHyung; Lee, ShinYoung; Lee, HyeonYong

    2014-01-01

    The aim of this study was to increase the yield of biodiesel produced by Scenedesmus sp. through in situ transesterification by optimizing various process parameters. Based on the orthogonal matrix analysis for the acidic catalyst, the effects of the factors decreased in the order of reaction temperature (47.5%) > solvent quantity (26.7%) > reaction time (17.5%) > catalyst amount (8.3%). Based on a Taguchi analysis, the effects of the factors decreased in the order of solvent ratio (34.36%) > catalyst (28.62%) > time (19.72%) > temperature (17.32%). The overall biodiesel production appeared to be better using NaOH as an alkaline catalyst rather than using H2SO4 in an acidic process, at 55.07 ± 2.18% (based on lipid weight) versus 48.41 ± 0.21%. However, in considering the purified biodiesel, it was found that the acidic catalyst was approximately 2.5 times more efficient than the alkaline catalyst under the following optimal conditions: temperature of 70°C (level 2), reaction time of 10 hrs (level 2), catalyst amount of 5% (level 3), and biomass to solvent ratio of 1 : 15 (level 2), respectively. These results clearly demonstrated that the acidic solvent, which combined oil extraction with in situ transesterification, was an effective catalyst for the production of high-quantity, high-quality biodiesel from a Scenedesmus sp. PMID:24689039

  12. Hydro-physical processes at the plunge point: an analysis using satellite and in situ data

    Directory of Open Access Journals (Sweden)

    A. T. Assireu

    2011-12-01

    Full Text Available The plunge point is the main mixing point between river and epilimnetic reservoir water. Plunge point monitoring is essential for understanding the behavior of density currents and their implications for reservoir. The use of satellite imagery products from different sensors (Landsat TM band 6 thermal signatures and visible channels for the characterization of the river-reservoir transition zone is presented in this study. It is demonstrated the feasibility of using Landsat TM band imagery to discern the subsurface river plumes and the plunge point. The spatial variability of the plunge point evident in the hydrologic data illustrates the advantages of synoptic satellite measurements over in situ point measurements alone to detect the river-reservoir transition zone. During the dry season, when the river-reservoir water temperature differences vanish and the river circulation is characterized by interflow-overflow, the river water inserts into the upper layers of the reservoir, affecting water quality. The results indicate a good agreement between hydrologic and satellite data and that the joint use of thermal and visible channel data for the operational monitoring of a plunge point is feasible. The deduced information about the density current from this study could potentially be assimilated into numerical models and hence be of significant interest for environmental and climatological research.

  13. Stability investigations of zinc and cobalt precipitates immobilized by in situ bioprecipitation (ISBP) process

    KAUST Repository

    Satyawali, Yamini

    2010-09-01

    In situ bioprecipitation (ISBP), which involves immobilizing the metals as precipitates (mainly sulphides) in the solid phase, is an effective method of metal removal from contaminated groundwater. This study investigated the stability of metal precipitates formed after ISBP in two different solid-liquid matrices (artificial and natural). The artificial matrix consisted of sand, Zn (200mgL-1), artificial groundwater and a carbon source (electron donor). Here the stability of the Zn precipitates was evaluated by manipulation of redox and pH. The natural system matrices included aquifer material and groundwater samples collected from three different metal (Zn and Co) contaminated sites and different carbon sources were provided as electron donors. In the natural matrices, metal precipitates stability was assessed by changing aquifer redox conditions, sequential extraction, and BIOMET® assay. The results indicated that, in the artificial matrix, redox manipulation did not impact the Zn precipitates. However the sequential pH change proved detrimental, releasing 58% of the precipitated Zn back into liquid phase. In natural matrices, the applied carbon source largely affected the stability of metal precipitates. Elemental analysis performed on the precipitates formed in natural matrix showed that the main elements of the precipitates were sulphur with Zn and Co. © 2010 Elsevier B.V.

  14. In situ Raman characterization of minerals and degradation processes in a variety of cultural and geological heritage sites.

    Science.gov (United States)

    Gázquez, F; Rull, F; Sanz-Arranz, A; Medina, J; Calaforra, J M; de Las Heras, C; Lasheras, J A

    2017-02-05

    We test the capabilities of in situ Raman spectroscopy for non-destructive analysis of degradation processes in invaluable masterpieces, as well as for the characterization of minerals and prehistoric rock-art in caves. To this end, we have studied the mechanism of decay suffered by the 15th-century limestone sculptures that decorate the retro-choir of Burgos Cathedral (N Spain). In situ Raman probe detected hydrated sulfate and nitrate minerals on the sculptures, which are responsible for the decay of the original limestone. In addition, in situ Raman analyses were performed on unique speleothems in El Soplao Cave (Cantabria, N Spain) and in the Gruta de las Maravillas (Aracena, SW Spain). Unusual cave minerals were detected in El Soplao Cave, such as hydromagnesite (Mg 5 (CO 3 ) 4 (OH) 2 ·4H 2 O), as well as ferromanganese oxides in the black biogenic speleothems recently discovered in this cavern. In the Gruta de las Maravillas, gypsum (CaSO 4 ·2H 2 O) was identified for the first time, as part of the oldest cave materials, so providing additional evidence of hypogenic mechanisms that occurred in this cave during earlier stages of its formation. Finally, we present preliminary analyses of several cave paintings in the renowned "Polychrome Hall" of Altamira Cave (Cantabria, N. Spain). Hematite (Fe 2 O 3 ) is the most abundant mineral phase, which provides the characteristic ochre-reddish color to the Altamira bison and deer paintings. Thus, portable Raman spectroscopy is demonstrated to be an analytical technique compatible with preserving our cultural and natural heritage, since the analysis does not require physical contact between the Raman head and the analyzed items. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. In situ biosynthesis of bacterial nanocellulose-CaCO{sub 3} hybrid bionanocomposite: One-step process

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadkazemi, Faranak, E-mail: f_mkazemi@sbu.ac.ir [Department of Cellulose and Paper Technology, Faculty of New Technologies Engineering, Shahid Beheshti University, Science and Research Campus, Zirab, Savadkooh, Mazandaran (Iran, Islamic Republic of); Faria, Marisa; Cordeiro, Nereida [Faculty of Exact Science and Engineering, University of Madeira, Funchal (Portugal)

    2016-08-01

    In this work, a simple and green route to the synthesis of the bacterial nanocellulose-calcium carbonate (BNC/CaCO{sub 3}) hybrid bionanocomposites using one-step in situ biosynthesis was studied. The CaCO{sub 3} was incorporated in the bacterial nanocellulose structure during the cellulose biosynthesis by Gluconacetobacter xylinus PTCC 1734 bacteria. Hestrin-Schramm (HS) and Zhou (Z) culture media were used to the hybrid bionanocomposites production and the effect of ethanol addition was investigated. Attenuated total reflection Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, inverse gas chromatography and thermogravimetric analysis were used to characterize the samples. The experimental results demonstrated that the ethanol and culture medium play an important role in the BNC/CaCO{sub 3} hybrid bionanocomposites production, structure and properties. The BNC/CaCO{sub 3} biosynthesized in Z culture medium revealed higher O/C ratio and amphoteric surface character, which justify the highest CaCO{sub 3} content incorporation. The CaCO{sub 3} was incorporated into the cellulosic matrix decreasing the bacterial nanocellulose crystallinity. This work reveals the high potential of in situ biosynthesis of BNC/CaCO{sub 3} hybrid bionanocomposites and opens a new way to the high value-added applications of bacterial nanocellulose. - Graphical Abstract: Display Omitted - Highlights: • BNC/CaCO{sub 3} hybrid bionanocomposites were produced using in situ biosynthesis process. • Ethanol and culture medium play an important role in the production and properties. • Z-BNC/CaCO{sub 3} bionanocomposites revealed higher O/C ratio and amphoteric surface character. • CaCO{sub 3} incorporated into the BNC decreased crystallinity.

  16. Hydrochemical processes in lowland rivers: insights from in situ, high-resolution monitoring

    Directory of Open Access Journals (Sweden)

    A. J. Wade

    2012-11-01

    Full Text Available This paper introduces new insights into the hydrochemical functioning of lowland river systems using field-based spectrophotometric and electrode technologies. The streamwater concentrations of nitrogen species and phosphorus fractions were measured at hourly intervals on a continuous basis at two contrasting sites on tributaries of the River Thames – one draining a rural catchment, the River Enborne, and one draining a more urban system, The Cut. The measurements complement those from an existing network of multi-parameter water quality sondes maintained across the Thames catchment and weekly monitoring based on grab samples. The results of the sub-daily monitoring show that streamwater phosphorus concentrations display highly complex dynamics under storm conditions dependent on the antecedent catchment wetness, and that diurnal phosphorus and nitrogen cycles occur under low flow conditions. The diurnal patterns highlight the dominance of sewage inputs in controlling the streamwater phosphorus and nitrogen concentrations at low flows, even at a distance of 7 km from the nearest sewage treatment works in the rural River Enborne. The time of sample collection is important when judging water quality against ecological thresholds or standards. An exhaustion of the supply of phosphorus from diffuse and multiple septic tank sources during storm events was evident and load estimation was not improved by sub-daily monitoring beyond that achieved by daily sampling because of the eventual reduction in the phosphorus mass entering the stream during events. The results highlight the utility of sub-daily water quality measurements and the discussion considers the practicalities and challenges of in situ, sub-daily monitoring.

  17. Coupling purification and in situ immobilization process of monoclonal antibodies to clenbuterol for immunosensor application.

    Science.gov (United States)

    Cao, Hui; Yuan, Min; Wang, Lili; Yu, Jingsong; Xu, Fei

    2015-05-01

    Clenbuterol (CL), which promotes the growth of muscular tissue and the reduction of body fat in pigs and cattle, has been confirmed to be a potential hazard to human health. In this study, a monoclonal antibody to clenbuterol (CL mAb) from a hybridoma culture supernatant was purified by an aqueous two-phase system (ATPS) at different polyethylene glycol (PEG) concentrations, PEG molecular weights, pH values, and NaCl concentrations. Then the CL mAb was immobilized in situ by directly adding polystyrene microspheres (PSMSs) into a PEG phase containing CL mAb. Using the immobilized antibody, an immunosensor was constructed to detect the CL residues in pork samples. The results showed that using an ATPS composed of 15% (w/w) PEG6000, 15% (w/w) phosphate, and 15% (w/w) NaCl at pH 8.0, the partition coefficient was 7.24, the activity recovery was 87.86%, and the purification fold was 2.88. The PEG-CL mAb-PSMS retained approximately 98% of its initial activity after 30-ml phosphate buffer (PBS) washings. After 30days of storage, the CL mAb-PSMS lost nearly 75% of its activity, whereas the PEG-CL mAb-PSMS retained as much as 95% of its initial activity. Furthermore, the constructed immunosensor obtained recoveries of 90.5 to 102.6% when applied to pork samples spiked with CL. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Antibacterial and hemolysis activity of polypyrrole nanotubes decorated with silver nanoparticles by an in-situ reduction process.

    Science.gov (United States)

    Upadhyay, J; Kumar, A; Gogoi, B; Buragohain, A K

    2015-09-01

    Polypyrrole nanotube-silver nanoparticle nanocomposites (PPy-NTs:Ag-NPs) have been synthesized by in-situ reduction of silver nitrate (AgNO3) to suppress the agglomeration of Ag-NPs. The morphology and chemical structure of the nanocomposites have been studied by HRTEM, SEM, XRD, FTIR and UV-vis spectroscopy. The average diameter of the polypyrrole nanotubes (PPy-NTs) is measured to be 130.59±5.5 nm with their length in the micrometer range, while the silver nanoparticles (Ag-NPs) exhibit spherical shape with an average diameter of 23.12±3.23 nm. In-vitro blood compatibility of the nanocomposites has been carried out via hemolysis assay. Antimicrobial activity of the nanocomposites has been investigated with Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria. The results depict that the hemolysis and antimicrobial activities of the nanocomposites increase with increasing Ag-NP concentration that can be controlled by the AgNO3 precursor concentration in the in-situ process. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Preparation of a Strong Gelatin-Short Linear Glucan Nanocomposite Hydrogel by an in Situ Self-Assembly Process.

    Science.gov (United States)

    Ge, Shengju; Li, Man; Ji, Na; Liu, Jing; Mul, Hongyan; Xiong, Liu; Sun, Qingjie

    2018-01-10

    Gelatin hydrogels exhibit excellent biocompatibility, nonimmunogenicity, and biodegradability, but they have limited applications in the food and medical industries because of their poor mechanical properties. Herein, we first developed an in situ self-assembly process for the preparation of gelatin-short linear glucan (SLG) nanocomposite hydrogels with enhanced mechanical strength. The microstructure, dynamic viscoelasticity, compression behavior, and thermal characteristics of the gelatin-SLG nanocomposite hydrogels were determined using scanning electron microscopy (SEM), dynamic rheological experiments, compression tests, and texture profile analysis tests. The SEM images revealed that nanoparticles were formed by the in situ self-assembly of SLG in the gelatin matrix and that the size of these nanoparticles ranged between 200 and 600 nm. The pores of the nanocomposite hydrogels were smaller than those of the pure gelatin hydrogels. Transmission electron microscopy images and X-ray diffraction further confirmed the presence of SLG nanoparticles with spherical shapes and B-type structures. Compared with pure gelatin hydrogels, the nanocomposite hydrogels exhibited improved mechanical behavior. Notably, the hardness and maximum values of the compressive stress of gelatin-SLG nanocomposites containing 5% SLG increased by about 2-fold and 3-fold, respectively, compared to the corresponding values of pure gelatin hydrogels.

  20. Enhanced Cyclability of Lithium-Oxygen Batteries with Electrodes Protected by Surface Films Induced via In-Situ Electrochemical Process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin; Xu, Wu; Tao, Jinhui; Yan, Pengfei; Zheng, Jianming; Engelhard, Mark H.; Lu, Dongping; Wang, Chongmin; Zhang, Jiguang

    2018-04-16

    Although the rechargeable lithium-oxygen (Li-O2) batteries have extremely high theoretical specific energy, the practical application of these batteries is still limited by the instability of their carbon-based air-electrode, Li metal anode, and electrolytes towards reduced oxygen species. Here we demonstrate a simple one-step in-situ electrochemical pre-charging strategy to generate thin protective films on both carbon nanotubes (CNTs) air-electrode and Li metal anode simultaneously under an inert atmosphere. Li-O2 cells after such pre-treatment demonstrate significantly extended cycle life of 110 and 180 cycles under the capacity-limited protocol of 1000 mAh g-1 and 500 mAh g-1, respectively, which is far more than those without pre-treatment. The thin-films formed from decomposition of electrolyte during in-situ electrochemical pre-charging process in an inert environment can protect both CNTs air-electrode and Li metal anode prior to conventional Li-O2 discharge/charge cycling where reactive reduced oxygen species are formed. This work provides a new approach for protections of carbon-based air-electrode and Li metal anode in practical Li-O2 batteries, and may also be applied to other battery systems.

  1. Geochemical processes in the Febex bentonite after a heating and hydration in situ test in the Grimsel URL

    International Nuclear Information System (INIS)

    Fernandez, A.M.; Rivas, P.; Muurinen, A.; Montarges-Pelletier, E.; Jockwer, N.

    2010-01-01

    Document available in extended abstract form only. Unsaturated compacted bentonite is foreseen by several countries as a backfill and sealing material in high-level radioactive waste repositories. The FEBEX project provides the opportunity to understand and quantify the geochemical processes taking place in the near-field and to evaluate the long-term behaviour of the FEBEX bentonite. FEBEX is a demonstration and research project, which includes a large-scale in situ experiment performed in a gallery excavated in granite at the Grimsel underground laboratory research (URL) in Switzerland. Two main operational phases have been executed: a) the First Operational Phase (1996-2002), which corresponds to the FEBEX-I and FEBEX-II projects, and b) the Second Operational Phase (2002-2007), which was carried out within the frame of the NF-PRO project. In the first Operation Phase, the in situ test consisted of: 1) the heating system formed by two heaters separated horizontally by 1 m, which simulate full-sized canisters and maintain a temperature of 100 deg. C; 2) the bentonite barrier, made of blocks of highly compacted bentonite (w.c.: 14.4%;ρ d : 1.70 g/cm 3 ); 3) the drift excavated in the granite. This rock is saturated and hydrates the clay with a water flow of 7-12 L/ day; and 4) the instrumentation, monitoring and control systems. The in situ test began on February 27 1997. Heater 1 was switched-off in February 2002. The dismantling of section 1 of the in situ test provided the opportunity to analyse the thermo-hydro-geochemical (THG) processes taking place in the bentonite barrier. In the second Operational Phase, after removing the buffer and all the components, a dummy steel cylinder with a length of 1 m was inserted in the void left by Heater 1 in the centre of the buffer. A new concrete plug with a total length of 3 m was constructed by shotcreting. Heater 2 maintained its temperature of 100 deg. C at contact with the bentonite throughout the entire

  2. Fabrication of a 77 GHz Rotman Lens on a High Resistivity Silicon Wafer Using Lift-Off Process

    Directory of Open Access Journals (Sweden)

    Ali Attaran

    2014-01-01

    Full Text Available Fabrication of a high resistivity silicon based microstrip Rotman lens using a lift-off process has been presented. The lens features 3 beam ports, 5 array ports, 16 dummy ports, and beam steering angles of ±10 degrees. The lens was fabricated on a 200 μm thick high resistivity silicon wafer and has a footprint area of 19.7 mm × 15.6 mm. The lens was tested as an integral part of a 77 GHz radar where a tunable X band source along with an 8 times multiplier was used as the RF source and the resulting millimeter wave signal centered at 77 GHz was radiated through a lens-antenna combination. A horn antenna with a downconverter harmonic mixer was used to receive the radiated signal and display the received signal in an Advantest R3271A spectrum analyzer. The superimposed transmit and receive signal in the spectrum analyzer showed the proper radar operation confirming the Rotman lens design.

  3. Instrumentation and process control development for in situ coal gasification. Fourth quarterly report, September--November 1975

    Energy Technology Data Exchange (ETDEWEB)

    Northrop, D.A. (ed.)

    1976-01-01

    The instrumentation effort for Phases 2 and 3 of the Second Hanna In Situ Coal Gasification Experiment was fielded and background data obtained prior to the initiation of Phase 2 on November 25, 1975. A total of over 600 channels of instrumentation in 15 instrumentation wells and two surface arrays was fielded for the instrumentation techniques under evaluation. The feasibility of the passive acoustic technique to locate the source of process-related noises has been demonstrated; its utility is presently hampered by the inexact definition of signal arrivals and the lack of automated signal monitoring and analysis systems. A revised mathematical model for the electrical techniques has been developed which demonstrates the potential for remote monitoring. (auth)

  4. In situ resistance measurements of bronze process Nb-Sn-Cu-Ta multifilamentary composite conductors during reactive diffusion

    International Nuclear Information System (INIS)

    Tan, K S; Hopkins, S C; Glowacki, B A; Majoros, M; Astill, D

    2004-01-01

    The conditions under which the Nb 3 Sn intermetallic layer is formed by solid-state reactive diffusion processes in bronze process multifilamentary conductors greatly influence the performance of the conductors. By convention, isothermal heat treatment is used and often causes non-uniformity of A15 layers formed across the wire. Therefore, characterization and optimization of the conductor during the reactive diffusion processes is crucial in order to improve the overall conductor's performance. In this paper, a different characterization approach and perhaps an optimization technique is presented, namely in situ resistance measurement by an alternating current (AC) method. By treating the components of such multifilamentary wires as a set of parallel resistors, the resistances of the components may be combined using the usual rules for resistors in parallel. The results show that the resistivity of the entire wire changes significantly during the reactive diffusion processes. The development of the Nb 3 Sn layer in bronze process Nb-Sn-Cu-Ta multifilamentary wires at different stages of the reactive diffusion processes has been monitored using measured resistivity changes, and correlated with results from DTA, ACS, SEM and EDS

  5. Consciousness as a process of queries and answers in architectures based on in situ representations

    NARCIS (Netherlands)

    van der Velde, F.; van der Velde, Frank

    2013-01-01

    Functional or access consciousness can be described as an ongoing dynamic process of queries and answers. Whenever we have an awareness of an object or its surroundings, it consists of the dynamic process that answers (implicit) queries like "What is the color or shape of the object?" or "What

  6. Processing and Mechanical Properties of NiAl-Based In-Situ Composites. Ph.D. Thesis Final Report

    Science.gov (United States)

    Johnson, David Ray

    1994-01-01

    In-situ composites based on the NiAl-Cr eutectic system were successfully produced by containerless processing and evaluated. The NiAl-Cr alloys had a fibrous microstructure while the NiAl-(Cr,Mo) alloys containing 1 at. percent or more molybdenum exhibited a lamellar structure. The NiAl-28Cr-6Mo eutectic displays promising high temperature strength while still maintaining a reasonable room temperature fracture toughness when compared to other NiAl-based materials. The Laves phase NiAlTa was used to strengthen NiAl and very promising creep strengths were found for the directionally solidified NiAl-NiAlTa eutectic. The eutectic composition was found to be near NiAl-15.5Ta (at. percent) and well aligned microstructures were produced at this composition. An off-eutectic composition of NiAl-14.5Ta was also processed, consisting of NiAl dendrites surrounded by aligned eutectic regions. The room temperature toughness of these two phase alloys was similar to that of polycrystalline NiAl even with the presence of the brittle Laves phase NiAlTa. Polyphase in-situ composites were generated by directional solidification of ternary eutectics. The systems investigated were the Ni-Al-Ta-X (X=Cr, Mo, or V) alloys. Ternary eutectics were found in each of these systems and both the eutectic composition and temperature were determined. Of these ternary eutectics, the one in the NiAl-Ta-Cr system was found to be the most promising. The fracture toughness of the NiAl-(Cr,Al)NiTa-Cr eutectic was intermediate between those of the NiAl-NiAlTa eutectic and the NiAl-Cr eutectic. The creep strength of this ternary eutectic was similar to or greater than that of the NiAl-Cr eutectic.

  7. Multiobjective Optimization of Injection Molding Process Parameters for the Precision Manufacturing of Plastic Optical Lens

    Directory of Open Access Journals (Sweden)

    Junhui Liu

    2017-01-01

    Full Text Available Injection molding process parameters (IMPP have a significant effect on the optical performance and surface waviness of precision plastic optical lens. This paper presents a set of procedures for the optimization of IMPP, with haze ratio (HR reflecting the optical performance and peak-to-valley 20 (PV20 reflecting the surface waviness as the optimization objectives. First, the orthogonal experiment was carried out with the Taguchi method, and the results were analyzed by ANOVA to screen out the IMPP having a significant effect on the objectives. Then, the 34 full-factor experiment was conducted on the key IMPP, and the experimental results were used as the training and testing samples. The BPNN algorithm and the M-SVR algorithm were applied to establish the mapping relationships between the IMPP and objectives. Finally, the multiple-objective optimization was performed by applying the nondominated sorting genetic algorithm (NSGA-II, with the built M-SVR models as the fitness function of the objectives, to obtain a Pareto-optimal set, which improved the quality of plastic optical lens comprehensively. Through the experimental verification on the optimization results, the mean prediction error (MPE of HR and PV20 is 7.16% and 9.78%, respectively, indicating that the optimization method has high accuracy.

  8. Ultrasonic monitoring of recrystallization: An example of in-situ process control with NDE

    Science.gov (United States)

    Liu, Guizhong

    Technology development in materials science, electrical engineering, NDE, mechanical engineering, and computer science, makes it possible to produce advanced materials of designed microstructure and properties. A control model for materials processing with NDE technology was proposed and a prototype of the high temperature EMAT measurement system was built. The example studied is the ultrasonic monitoring of recrystallization in 5XXX aluminum alloys. There are two distinguished textures in aluminum alloys, i.e., recrystallization texture and rolling texture. These two textures change in opposite directions during the hot rolling process: the rolling process will produce rolling texture, while the annealing process produces recrystallization texture. The control goal of the hot rolling process is to produce predefined texture and microstructure. Texture information is inferred from ultrasonic velocity measurements and the microstructure information is inferred from ultrasonic attenuation measurements. Several models in interdisciplinary fields are proposed and preliminary verification experimental results were presented. A pattern recognition technique was introduced to process OIM raw data, which results in a new algorithm to extract texture information. A new model was proposed to model the texture evolution during annealing. Several pieces of computer software were developed to process experimental data and to implement the models proposed.

  9. Research on the processing technology of medium-caliber aspheric lens in the optoelectronic integrated test system

    Science.gov (United States)

    Liu, Dan; Yu, Xin-ying; Wang, Wei

    2016-10-01

    In the optoelectronic integrated test system, surface profile and finish of the optical element are put forward higher request. Taking an aspherical quartz glass lens with a diameter of 200mm as example, taking Preston hypothesis as the theoretical basis, analyze the influence of surface quality of various process parameters, including the workpiece and the tool axis spindle speed, wheel type, concentration polishing, polishing mold species, dwell time, polishing pressure and other parameters. Using CNC method for the surface profile and surface quality of the lens were investigated. Taking profilometer measurement results as a guide, by testing and simulation analysis, process parameters were improved constantly in the process of manufacturing. Mid and high frequency error were trimmed and improved so that the surface form gradually converged to the required accuracy. The experimental results show that the final accuracy of the surface is less than 2µm and the surface finish is, which fulfils the accuracy requirement of aspherical focusing lens in optical system.

  10. In-Situ Real Time Monitoring and Control of Mold Making and Filling Processes: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed Abdelrahman; Kenneth Currie

    2010-12-22

    This project presents a model for addressing several objectives envisioned by the metal casting industries through the integration of research and educational components. It provides an innovative approach to introduce technologies for real time characterization of sand molds, lost foam patterns and monitoring of the mold filling process. The technology developed will enable better control over the casting process. It is expected to reduce scrap and variance in the casting quality. A strong educational component is integrated into the research plan to utilize increased awareness of the industry professional, the potential benefits of the developed technology, and the potential benefits of cross cutting technologies.

  11. In situ observation of plutonium transfer processes in the marine environment

    International Nuclear Information System (INIS)

    Guary, J.-C.; Fraizier, Andre

    1975-09-01

    A preliminary observation of plutonium transfer processes in the marine environment was carried out and showed that concentration of the radionuclide was lower when marine organisms stood at a higher trophic level. This observation supplemented by an investigation on contamination pathways showed that plutonium was not concentrated along the food chain and its uptake occured preferentially by direct contact of species with seawater, a process chiefly affecting producers and primary consumers. It appeared that the marine sediment was not a significant vector of plutonium transfer in burrowing species [fr

  12. In situ investigation of wet chemical processes for chalcopyrite solar cells by L-edge XAS under ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    Greil, Stefanie M. [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Lauermann, Iver, E-mail: Iver.lauermann@helmholtz-berlin.d [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Ennaoui, Ahmed; Kropp, Timo; Lange, Kathrin M.; Weber, Matthieu [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Aziz, Emad F., E-mail: Emad.Aziz@helmholtz-berlin.d [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin (Germany)

    2010-02-15

    Two instrumental setups for in situ soft X-ray absorption spectroscopy in liquid systems are demonstrated in this work. One for investigating chemical reactions in solutions and a new one for the solid component of a liquid / (as in both / absorber) solid interface. We used these setups for investigating two production processes for chalcopyrite solar cells under ambient conditions, probing the L-edge of Zn and Cu. The first one is a flow cell with a silicon nitride membrane to study the chemical bath deposition process for Cd-free buffer layers. Examining the electronic structure of involved Zn complexes allows to determine the exact reaction mechanism taking place during this process. The second setup is a rotating disk for investigating the bath/absorber interface upon the etching process of superficial binary copper compounds of the absorber as a function of time. The time resolution of the chemical reaction demonstrated in this study ranges from the second to minute time scale.

  13. In situ investigation of wet chemical processes for chalcopyrite solar cells by L-edge XAS under ambient conditions

    International Nuclear Information System (INIS)

    Greil, Stefanie M.; Lauermann, Iver; Ennaoui, Ahmed; Kropp, Timo; Lange, Kathrin M.; Weber, Matthieu; Aziz, Emad F.

    2010-01-01

    Two instrumental setups for in situ soft X-ray absorption spectroscopy in liquid systems are demonstrated in this work. One for investigating chemical reactions in solutions and a new one for the solid component of a liquid / (as in both / absorber) solid interface. We used these setups for investigating two production processes for chalcopyrite solar cells under ambient conditions, probing the L-edge of Zn and Cu. The first one is a flow cell with a silicon nitride membrane to study the chemical bath deposition process for Cd-free buffer layers. Examining the electronic structure of involved Zn complexes allows to determine the exact reaction mechanism taking place during this process. The second setup is a rotating disk for investigating the bath/absorber interface upon the etching process of superficial binary copper compounds of the absorber as a function of time. The time resolution of the chemical reaction demonstrated in this study ranges from the second to minute time scale.

  14. In situ investigation of wet chemical processes for chalcopyrite solar cells by L-edge XAS under ambient conditions

    Science.gov (United States)

    Greil, Stefanie M.; Lauermann, Iver; Ennaoui, Ahmed; Kropp, Timo; Lange, Kathrin M.; Weber, Matthieu; Aziz, Emad F.

    2010-02-01

    Two instrumental setups for in situ soft X-ray absorption spectroscopy in liquid systems are demonstrated in this work. One for investigating chemical reactions in solutions and a new one for the solid component of a liquid / (as in both / absorber) solid interface. We used these setups for investigating two production processes for chalcopyrite solar cells under ambient conditions, probing the L-edge of Zn and Cu. The first one is a flow cell with a silicon nitride membrane to study the chemical bath deposition process for Cd-free buffer layers. Examining the electronic structure of involved Zn complexes allows to determine the exact reaction mechanism taking place during this process. The second setup is a rotating disk for investigating the bath/absorber interface upon the etching process of superficial binary copper compounds of the absorber as a function of time. The time resolution of the chemical reaction demonstrated in this study ranges from the second to minute time scale.

  15. In-situ monitoring of Saccharomyces cerevisiae ITV01 bioethanol process using near-infrared spectroscopy NIRS and chemometrics.

    Science.gov (United States)

    Corro-Herrera, Víctor Abel; Gómez-Rodríguez, Javier; Hayward-Jones, Patricia Margaret; Barradas-Dermitz, Dulce María; Aguilar-Uscanga, María Guadalupe; Gschaedler-Mathis, Anne Christine

    2016-03-01

    The application feasibility of in-situ or in-line monitoring of S. cerevisiae ITV01 alcoholic fermentation process, employing Near-Infrared Spectroscopy (NIRS) and Chemometrics, was investigated. During the process in a bioreactor, in the complex analytical matrix, biomass, glucose, ethanol and glycerol determinations were performed by a transflection fiber optic probe immersed in the culture broth and connected to a Near-Infrared (NIR) process analyzer. The NIR spectra recorded between 800 and 2,200 nm were pretreated using Savitzky-Golay smoothing and second derivative in order to perform a partial least squares regression (PLSR) and generate the calibration models. These calibration models were tested by external validation and then used to predict concentrations in batch alcoholic fermentations. The standard errors of calibration (SEC) for biomass, ethanol, glucose and glycerol were 0.212, 0.287, 0.532, and 0.296 g/L and standard errors of prediction (SEP) were 0.323, 0.369, 0.794, and 0.507 g/L, respectively. Calibration and validation criteria were defined and evaluated in order to generate robust and reliable models for an alcoholic fermentation process matrix. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:510-517, 2016. © 2016 American Institute of Chemical Engineers.

  16. In-Situ Real Time Monitoring and Control of Mold Making and Filling Processes

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-11-01

    This factsheet describes a research effort to develop an innovative approach to introduce technologies for real-time characterization of sand molds, lost foam patterns, and monitoring of the mold filling process. This will reduce scrap, improve product quality, and save energy.

  17. In-situ observations and modeling of spring snowmelt processes in an Altay Mountains river basin

    Science.gov (United States)

    Wu, Xuejiao; Wang, Ninglian; Shen, Yongping; He, Jianqiao; Zhang, Wei

    2014-01-01

    Snowmelt is a principal source for ground-water recharge and stream flows in mountainous regions of northwestern China. Knowledge of the timing, magnitude, and processes of snowmelt under changing climate conditions is required for appropriate water resource management. The Utah energy balance (UEB) model was used to simulate the development and melting of spring (March 2012) snow cover at an observation site in the Kayiertesi River Basin in the Altay Mountains in Xinjiang. The modeled results were validated by field measurements and remotely sensed data. Results show that the simulation of the snowmelt process lasted for 24 days and the modeled snow water equivalent (SWE) closely matched the observed SWE, with a mean relative error of 7.2%. During the snowmelt process, net radiation was the major energy source of the snow layer. The variation of the snowmelt outflow was closely related to the snowmelt amounts and air temperature. The initial results of this modeling process show that our calibrated parameters were reasonable and the UEB model can be used for simulating and forecasting peak snowmelt outflows in this region.

  18. Reaction and Transport Processes Controlling In Situ Chemical Oxidation of DNAPLs

    National Research Council Canada - National Science Library

    Siegrist, Robert L; Crimi, Michelle; Munakata-Marr, Junko; Illangasekare, Tissa; Dugan, Pamela; Heiderscheidt, Jeff; Jackson, Shannon; Petri, Ben; Sahl, Jason; Seitz, Sarah

    2006-01-01

    ..., and/or toxicity of contamination. The objective of this project was to quantify the pore/interfacial scale DNAPL reactions and porous media transport processes that govern the delivery of oxidant to a DNAPL-water interface and degradation of the DNAPL...

  19. In-situ observation and modelling of solidification and fluid flow on GTAW process

    Science.gov (United States)

    Chiocca, A.; Soulié, F.; Deschaux-Beaume, F.; Bordreuil, C.

    2015-06-01

    An experimental setup is presented in order to obtain experimental data during solidification of a static weld pool after arc extinction with a GTAW process. Several devices have been set up to extract three kinds of measurements: (i) solidification front velocity (ii) fluid flow velocity at the vicinity of the front (iii) temperature field in the solid part. A high-speed camera is used to film the interface during welding at microscopic level and an infra-red in order to take the temperature field around the weld pool in the solid part. After processing and calibration of the videos, the experimental results are compared to theoritical results founded on an adapted model from the KGT [1] and from the one of Gandin et al. [2]. All the tests are done thin plate of Cu-30wt.%Ni.

  20. Characterization of boron carbide particulate reinforced in situ copper surface composites synthesized using friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Sathiskumar, R., E-mail: sathiscit2011@gmail.com [Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, 641 014 Tamil Nadu (India); Murugan, N., E-mail: murugan@cit.edu.in [Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, 641 014 Tamil Nadu (India); Dinaharan, I., E-mail: dinaweld2009@gmail.com [Department of Mechanical Engineering, V V College of Engineering, Tisaiyanvilai, 627 657 Tamil Nadu (India); Vijay, S.J., E-mail: vijayjoseph@karunya.edu [Centre for Research in Metallurgy (CRM), School of Mechanical Sciences, Karunya University, Coimbatore, 641 114 Tamil Nadu (India)

    2013-10-15

    Friction stir processing has evolved as a novel solid state technique to fabricate surface composites. The objective of this work is to apply the friction stir processing technique to fabricate boron carbide particulate reinforced copper surface composites and investigate the effect of B{sub 4}C particles and its volume fraction on microstructure and sliding wear behavior of the same. A groove was prepared on 6 mm thick copper plates and packed with B{sub 4}C particles. The dimensions of the groove was varied to result in five different volume fractions of B{sub 4}C particles (0, 6, 12, 18 and 24 vol.%). A single pass friction stir processing was done using a tool rotational speed of 1000 rpm, travel speed of 40 mm/min and an axial force of 10 kN. Metallurgical characterization of the Cu/B{sub 4}C surface composites was carried out using optical microscope and scanning electron microscope. The sliding wear behavior was evaluated using a pin-on-disk apparatus. Results indicated that the B{sub 4}C particles significantly influenced the area, dispersion, grain size, microhardness and sliding wear behavior of the Cu/B{sub 4}C surface composites. When the volume fraction of B{sub 4}C was increased, the wear mode changed from microcutting to abrasive wear and wear debris was found to be finer. Highlights: • Fabrication of Cu/B{sub 4}C surface composite by friction stir processing • Analyzing the effect of B{sub 4}C particles on the properties of Cu/B4C surface composite • Increased volume fraction of B{sub 4}C particles reduced the area of surface composite. • Increased volume fraction of B{sub 4}C particles enhanced the microhardness and wear rate. • B{sub 4}C particles altered the wear mode from microcutting to abrasive.

  1. Enhancement of In Situ Bioremediation of Energetic Compounds by Coupled Abiotic/Biotic Processes

    Science.gov (United States)

    2007-08-01

    few sites have groundwater contamination of all three energetics in xx x x the same location. RDX and HMX are common groundwater contaminants due...contaminant with limited TNT subsurface migration because of aerobic and anaerobic degradation in soils and significantly greater sorption. TNT groundwater ...experiments with live, killed, and bioaugmented microbial communities (Task 3) • Upscale the process by aqueous flow experiments of energetic compounds

  2. In-situ Monitoring of Dynamic Phenomena during Solidification and Phase Transformation Processing

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Amy J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cooley, Jason C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Morris, Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Merrill, Frank E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hollander, Brian J [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mariam, Fesseha G [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Patterson, Brian M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Imhoff, Seth D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lee, Wah Keat [Brookhaven National Lab. (BNL), Upton, NY (United States); Fezzaa, Kamel [Argonne National Lab. (ANL), Argonne, IL (United States); Deriy, Alex [Argonne National Lab. (ANL), Argonne, IL (United States); Tucker, Tim J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Clarke, Kester D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Field, Robert D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Thoma, Dan J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Teter, David F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Beard, Timothy V. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hudson, Richard W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Freibert, Franz J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Korzekwa, Deniece R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Farrow, Adam M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cross, Carl E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mihaila, Bogdan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lookman, Turab [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hunter, Abigail [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Choudhury, Samrat [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karma, Alain [Northeastern Univ., Boston, MA (United States); Ott, Jr., Thomas J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Barker, Martha R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); O' Neill, Finian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hill, Joshua [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Emigh, Megan G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2012-07-30

    The purpose of this project is to: (1) Directly observe phase transformations and microstructure evolution using proton (and synchrotron x-ray) radiography and tomography; (2) Constrain phase-field models for microstructure evolution; (3) Experimentally control microstructure evolution during processing to enable co-design; and (4) Advance toward the MaRIE vision. Understand microstructure evolution and chemical segregation during solidification {yields} solid-state transformations in Pu-Ga.

  3. Analysis of In-Situ Vibration Monitoring for End-Point Detection of CMP Planarization Processes

    International Nuclear Information System (INIS)

    Hetherington, Dale L.; Lauffer, James P.; Shingledecker, David M.; Stein, David J.; Wyckoff, Edward E.

    1999-01-01

    This paper details the analysis of vibration monitoring for end-point control in oxide CMP processes. Two piezoelectric accelerometers were integrated onto the backside of a stainless steel polishing head of an IPEC 472 polisher. One sensor was placed perpendicular to the carrier plate (vertical) and the other parallel to the plate (horizontal). Wafers patterned with metal and coated with oxide material were polished at different speeds and pressures. Our results show that it is possible to sense a change in the vibration signal over time during planarization of oxide material on patterned wafers. The horizontal accelerometer showed more sensitivity to change in vibration amplitude compared to the vertical accelerometer for a given polish condition. At low carrier and platen rotation rates, the change in vibration signal over time at fixed frequencies decreased approximately ampersand frac12; - 1 order of magnitude (over the 2 to 10 psi polish pressure ranges). At high rotation speeds, the vibration signal remained essentially constant indicating that other factors dominated the vibration signaL These results show that while it is possible to sense changes in acceleration during polishing, more robust hardware and signal processing algorithms are required to ensure its use over a wide range of process conditions

  4. In-Situ Segregation of Ground Ice on Mars

    Science.gov (United States)

    Zent, A.; Sizemore, H. G.; Rempel, A. W.

    2011-12-01

    Several lines of evidence indicate the presence of nearly pure, segregated ground ice in the martian high latitudes. In particular, shallow ice containing only 1-2% soil was excavated by Phoenix. One hypothesis for the excess ice is that it developed in situ, via a mechanism analogous to terrestrial ice lenses. Problematically, terrestrial soil-ice segregation is driven by freeze/thaw cycles, which have not occurred recently on Mars. Here we investigate ice lens formation at T table migration due to vapor phase transport might average a few μm/year. Thus, with the possible exception of a single episode at ~ 630 ka bp, vapor phase exchange with the atmosphere would be expected to outstrip and prevent in situ segregated ice lens formation in a salt-free soil. (Earlier in Mars' history however, we find that warmer temperatures frequently lead to macroscopic lens development.) The soils measured by Phoenix of course were not salt-free; in particular the presence of per-chlorate argues that our model must be expanded. The inclusion of even a single salt has multiple complicating effects. For saturated Mg(ClO4)2 solutions, the eutectic temperature is as low as 206 K. The resulting decrease in pore ice at low T leads to higher hydraulic permeability which would enhance growth rates. Liquid phase density increases, which increases the buoyancy forces on soil grains. Conversely, dynamic viscosity also increases, inhibiting lens growth. Both the heat capacity and thermal conductivity of the melt are also affected. At high concentrations, osmotic potentials begin to play a role in determining the movement of melt. Finally, all of these properties evolve continually with temperature, as the composition of the liquid phase changes. Understanding the ways in which these processes might affect in situ segregation of martian ground ice is a challenging and exciting undertaking.

  5. In situ study of the epoxy cure process using a fibre-optic sensor

    Czech Academy of Sciences Publication Activity Database

    Chailleux, E.; Salvia, M.; Jaffrezic-Renault, N.; Matějec, Vlastimil; Kašík, Ivan

    2001-01-01

    Roč. 10, č. 2 (2001), s. 194-202 ISSN 0964-1726. [SPIE Annual International Symposium on Smart Structures and Materials /8./. Newport Beach, 04.03.2001-08.03.2001] R&D Projects: GA ČR GA102/99/0548; GA AV ČR KSK2067107 Projekt 07/01:4074 Institutional research plan: CEZ:AV0Z2067918 Keywords : fibre optic sensors * process monitoring Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.199, year: 2001

  6. How in-situ combustion process works in a fractured system : two-dimensional, core and block scale simulation

    Energy Technology Data Exchange (ETDEWEB)

    Fadaei, H.; Renard, G. [Inst. Francais du Petrole, Lyon (France); Quintard, M.; Debenest, G. [L' Inst. de Mecanique des Fluides de Toulouse, Toulouse (France); Kamp, A.M. [Centre Huile Lourde Ouvert et Experimental CHLOE, Pau (France)

    2008-10-15

    Core and matrix block scale simulations of in situ combustion (ISC) processes in a fractured reservoir were conducted. ISC propagation conditions and oil recovery mechanisms were studied at core scale, while the 2-D behaviour of ISC was also studied at block-scale in order to determine dominant processes for combustion propagation and the characteristics of different steam fronts. The study examined 2-phase combustion in a porous medium containing a solid fuel as well as 2-D conventional dry combustion methods. The aim of the study was to predict ISC extinction and propagation conditions as well as to understand the mechanisms of oil recovery using ISC processes. The simulations were also used to develop up-scaling guidelines for fractured systems. Computations were performed using different oxygen diffusion and matrix permeability values. The effect of each production mechanism was studied separately. The multi-phase simulations showed that ISC in fractured reservoirs is feasible. The study showed that ISC propagation is dependent on the oxygen diffusion coefficient, while matrix permeability plays an important role in oil production. Oil production was governed by gravity drainage and thermal effects. Heat transfer due to the movement of combustion front velocity in the study was minor when compared to heat transfer by conduction and convection. It was concluded that upscaling methods must also consider the different zones distinguished for oil saturation and temperatures. 15 refs., 2 tabs., 15 figs.

  7. In situ diagnostics of the crystal-growth process through neutron imaging

    DEFF Research Database (Denmark)

    Tremsin, Anton S.; Makowska, Malgorzata Grazyna; Perrodin, Didier

    2016-01-01

    Neutrons are known to be unique probes in situations where other types of radiation fail to penetrate samples and their surrounding structures. In this paper it is demonstrated how thermal and cold neutron radiography can provide time-resolved imaging of materials while they are being processed (e...... in concentration of one of the elements with a sufficient neutron attenuation cross section. Tomographic imaging of the BaBrCl:0.1% Eu sample reveals a strong correlation between crystal fractures and Eu-deficient clusters. The results of these experiments demonstrate the unique capabilities of neutron imaging......, as limited by the resolution of the present experiments). It is also demonstrated that the dopant concentration can be quantified even for very low concentration levels (∼ 0.1%) in 10 mm thick samples. The interface between the solid and liquid phases can also be imaged, provided there is a sufficient change...

  8. Numerical analysis of a one-dimensional multicomponent model of the in-situ combustion process

    DEFF Research Database (Denmark)

    Nesterov, Igor; Shapiro, Alexander; Stenby, Erling Halfdan

    2013-01-01

    parameter, the critical ignition saturation, is introduced, in order to describe the easiness of oil ignition. Its dependence on the different parameters of the oil mixture and injection gas is studied. The conclusions on the processes governing the ignition of oil in the presence of water are made......, the model is based on SARA representation of a petroleum mixture (saturates–aromatics–resins–asphaltenes), which may react differently with oxygen and produce other components (for example, light oils and coke). In total, the model contains 14 components, which may undergo 15 chemical reactions. The set...... of reactions in the original model of M.R. Kristensen has been modified in order to account for secondary combustion of the light oil fraction. The results of the model implementation are applied to the four heavy oil systems and qualitatively compared to the results of previous experimental studies. A new...

  9. Composition-thermal expandability relations and oxidation processes in tourmaline studied by in situ Raman spectroscopy

    Science.gov (United States)

    Watenphul, Anke; Malcherek, Thomas; Wilke, Franziska D. H.; Schlüter, Jochen; Mihailova, Boriana

    2017-11-01

    The crystal chemistry of tourmaline, XY3Z6(T6O18)(BO3)3V3W, has a strong influence on the structure and physical properties. Since tourmalines occur in a wide range of geological settings and have large temperature and pressure stability fields, the understanding of the relation between the tourmaline chemistry and thermal expansion allows for better thermodynamic modeling of geological processes. Here, we report dynamic and static thermal expansions as well as mode Grüneisen parameters studied by Raman spectroscopy and single-crystal X-ray diffraction data on several tourmaline species. In addition, oxidation processes in fluor-schorl and Fe2+-bearing elbaite were followed by Raman spectroscopy. Our results emphasize the role of Y-/Z-site occupancy disorder to reduce the local strains and demonstrate that small-size octahedrally coordinated cations perturb the topology of the SiO4 rings, which in turn seems to enhance the anisotropic thermal-expansion response. In addition, it is shown that the temperature-dependent behavior of the VOH modes primarily depends on the occupancy of the Y site, whereas that of the WOH modes depends on the occupancy of the X site. High-temperature Raman experiments in air allowed to follow the oxidation of Fe2+ to Fe3+ in fluor-schorl by analyzing both the framework and OH-stretching phonon modes. It is further demonstrated that under the same conditions, no oxidation of iron is observed for Fe2+-bearing elbaite, which implies that at high oxygen fugacity, iron is only oxidized in tourmaline species with prevalent divalent cations at the Y site.

  10. Ultrahigh surface area carbon from carbonated beverages: Combining self-templating process and in situ activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengfei; Zhang, Zhiyong; Chen, Jihua; Dai, Sheng

    2015-11-01

    Ultrahigh surface area carbons (USACs, e.g., >2000 m2/g) are attracting tremendous attention due to their outstanding performance in energy-related applications. The state-of-art approaches to USACs involve templating or activation methods and all these techniques show certain drawbacks. In this work, a series of USACs with specific surface areas up to 3633 m2/g were prepared in two steps: hydrothermal carbonization (200 °C) of carbonated beverages (CBs) and further thermal treatment in nitrogen (600–1000 °C). The rich inner porosity is formed by a self-templated process during which acids and polyelectrolyte sodium salts in the beverage formulas make some contribution. This strategy covers various CBs such as Coca Cola®, Pepsi Cola®, Dr. Pepper®, and Fanta® and it enables an acceptable product yield (based on sugars), for example: 21 wt% for carbon (2940 m2/g) from Coca Cola®. Being potential electrode materials for supercapacitors, those carbon materials possessed a good specific capacitance (57.2–185.7 F g-1) even at a scan rate of 1000 mV s-1. Thus, a simple and efficient strategy to USACs has been presented.

  11. In-situ Characterization of Molecular Processes in Liquids by Ultrafast X-ray Absorption Spectroscopy

    Science.gov (United States)

    Chergui, Majed

    The need to visualize molecular and electronic structure in the course of a chemical reaction, a phase transformation a biological function has been the dream of scientists for decades. The development of time-resolved X-ray and electron based methods is making this true. X-ray absorption spectroscopy is ideal for the study of structural dynamics in liquids, because it can be implemented in amorphous media and it is chemically selective. Using X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) in laser pump/X-ray probe experiments allows the retrieval of the local geometric structure of the system under study, but also the underlying photoinduced electronic structure changes that drive the structural dynamics. We review the recent development in picosecond and femtosecond X-ray absorption spectroscopy applied to molecular systems in solution: examples on ultrafast photoinduced processes such as intramolecular electron transfer, high-to-low spin change, bond formation and water dynamics are presented.

  12. Processing of Bi-2212 and Nb$_3$Sn studied in situ by high energy synchrotron diffraction and micro-tomography

    CERN Document Server

    Kadar, Julian

    Next generation superconducting wires have been studied to obtain more information on the evolution of phase growth, crystallite size and strain state during wire processing. The high energy scattering beam line ID15 at the European Synchrotron Radiation Facility provides a very high flux of high energy photons for very fast in situ X-ray diffraction and micro-tomography studies of Bi-2212/Ag and Nb$_3$S/Cu wire samples. The typical wire processing conditions could be imitated in the X-ray transparent furnace at ID15 for diffraction and tomography studies. Efficient data analysis is mandatory in order to handle the very fast data acquisition rate. For this purpose an Excel-VBA based program was developed that allows a semi-automated fitting and tracking of peaks with pre-set constraints. With this method, more than one thousand diffraction patterns have been analysed to extract d-spacing, peak intensity and peak width values. X ray absorption micro tomograms were recorded simultaneously with the X-ray diffrac...

  13. Study of the Photodegradation Process of Vitamin E Acetate by Optical Absorption, Fluorescence, and Thermal Lens Spectroscopy

    Science.gov (United States)

    Tiburcio-Moreno, J. A.; Marcelín-Jiménez, G.; Leanos-Castaneda, O. L.; Yanez-Limon, J. M.; Alvarado-Gil, J. J.

    2012-11-01

    The stability of vitamin E acetate exposed to ultraviolet (UV) light was studied using three spectroscopic methods. An ethanol solution of vitamin E acetate was treated with either UVC light (254 nm) or UVA light (366 nm) during a period of 10 min followed by a study of UV-Vis optical absorption, then by fluorescence spectroscopy excitation by UV radiation at either 290 nm or 368 nm and, finally the solution was studied by thermal lens spectroscopy. Immediately, the same solution of vitamin E acetate was subjected to the UV irradiation process until completion of six periods of irradiation and measurements. UVC light treatment induced the appearance of a broad absorption band in the range of 310 nm to 440 nm with maximum absorbance at 368 nm, which progressively grew as the time of the exposure to UVC light increases. In contrast, UVA light treatment did not affect the absorption spectra of vitamin E acetate. Fluorescence spectra of the vitamin E acetate (without UV light treatment) showed no fluorescence when excited with 368 nm while exciting with 290 nm, an intense and broad emission band (300 nm to 440 nm) with a maximum at 340 nm appeared. When vitamin E acetate was treated with UVC light, this emission band progressively decreased as the time of the UVC light irradiation grew. No signal from UV-untreated vitamin E acetate could be detected by the thermal lens method. Interestingly, as the time of the UVC light treatment increased, the thermal lens signal progressively grew. Additional experiments performed to monitor the time evolution of the process during continuous UVC treatment of the vitamin E acetate using thermal lens spectroscopy exhibited a progressive increase of the thermal lens signal reaching a plateau at about 8000 s. This study shows that the vitamin E acetate is stable when it is irradiated with UVA light, while the irradiation with UVC light induces the formation of photodegradation products. Interestingly, this photodegradation process using

  14. New insight in the template decomposition process of large zeolite ZSM-5 crystals: an in situ UV-Vis/fluorescence micro-spectroscopy study

    NARCIS (Netherlands)

    Karwacki, L.; Weckhuysen, B.M.

    2011-01-01

    A combination of in situ UV-Vis and confocal fluorescence micro-spectroscopy was used to study the template decomposition process in large zeolite ZSM-5 crystals. Correlation of polarized light dependent UV-Vis absorption spectra with confocal fluorescence emission spectra in the 400–750 nm region

  15. A Pd-Catalyzed in situ domino process for mild and quantitative production of 2,5-dimethylfuran directly from carbohydrates

    DEFF Research Database (Denmark)

    Li, Hu; Zhao, Wenfeng; Riisager, Anders

    2017-01-01

    and hydrophobic Pd/C as a H-donor and a bifunctional catalyst, respectively. Among the cascade reactions, the hydrosilylation process was confirmed by deuterium-labeling and kinetic studies to be favorable for sugar dehydration and exclusively acts on deoxygenation of in situ formed intermediates including...

  16. Comparison of biodiesel production from sewage sludge obtained from the A²/O and MBR processes by in situ transesterification.

    Science.gov (United States)

    Qi, Juanjuan; Zhu, Fenfen; Wei, Xiang; Zhao, Luyao; Xiong, Yiqun; Wu, Xuemin; Yan, Fawei

    2016-03-01

    The potential of two types of sludge obtained from the anaerobic-anoxic-oxic (A(2)/O) and membrane bioreactor (MBR) processes as lipid feedstock for biodiesel production via in situ transesterification was investigated. Experiments were conducted to determine the optimum conditions for biodiesel yield using three-factor and four-level orthogonal and single-factor tests. Several factors, namely, methanol-to-sludge mass ratio, acid concentration, and temperature, were examined. The optimum yield of biodiesel (16.6% with a fatty acid methyl ester purity of 96.7%) from A(2)/O sludge was obtained at a methanol-to-sludge mass ratio of 10:1, a temperature of 60°C, and a H2SO4 concentration of 5% (v/v). Meanwhile, the optimum yield of biodiesel (4.2% with a fatty acid methyl ester purity of 92.7%) from MBR sludge was obtained at a methanol-to-sludge mass ratio of 8:1, a temperature of 50°C, and a H2SO4 concentration of 5% (v/v). In this research, A(2)/O technology with a primary sedimentation tank is more favorable for obtaining energy from wastewater than MBR technology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. In situ synchrotron x-ray characterization of microstructure formation in solidification processing of Al-based metallic alloys

    International Nuclear Information System (INIS)

    Billia, Bernard; Nguyen-Thi, Henri; Mangelinck-Noel, Nathalie

    2010-01-01

    The microstructure formed during the solidification step has a major influence on the properties of materials processed by major techniques (casting, welding ...). In situ and real-time characterization by synchrotron X-ray imaging is the method of choice to unveil the dynamical formation of the solidification microstructure in metallic alloys, and thus provide precise data for the critical validation of the theoretical predictions that is needed for sound advancement of modeling and numerical simulation. After a description of the experimental procedure used at the European Synchrotron Radiation Facility (ESRF), dynamical phenomena in the formation of the grain structure and dendritic or equiaxed solidification microstructure in Al-based alloys are presented. Beyond fluid flow interaction, earth gravity induces stresses, deformation and fragmentation in the dendritic mush. Settling of dendrite arms and equiaxed grains thus occurs, in particular in the columnar to equiaxed transition. Other types of stresses and strains are caused by the mere formation of the solidification microstructure itself. In white-beam X-ray topography, stresses and strains are manifested by specific contrasts and breaking of the Laue images into several pieces. Finally, quantitative analysis of the grey level in radiographs enables the analysis of solute segregation, which noticeably results in solutal poisoning of growth when equiaxed grains are interacting. (author)

  18. Enzymatic in-situ generation of H2O2 for decolorization of Acid Blue 113 by fenton process

    Directory of Open Access Journals (Sweden)

    Karimi Afzal

    2012-01-01

    Full Text Available Decolorization of Acid Blue 113 in an aqueous medium by bio-Fenton process has been investigated in this research. Enzymatic oxidation of glucose was performed to in-situ generation of H2O2 which was employed to react with Fe2+ for producing hydroxyl radicals. The effect of various parameters include concentrations of 113, glucose, and FeSO4, activity of glucose oxidase (GOx and the effect of pH were assessed. The highest decolorization of AB 113 were achieved at Fe2+ concentration of 0.2 mmol/L, pH =4.0, glucose concentration of 0.018 mol/L, and glucose oxidase activity of 2500 U/L in the constant temperature (23 ±0.1ºC and constant shaking rate (160 r/min, while the concentration of 113 was 40 mg/L. In these conditions, 113 decolorization efficiency after 60 min was obtained about 95%.

  19. In Situ Synthesis of Al-Si-Cu Alloy During Brazing Process and Mechanical Property of Brazing Joint

    Directory of Open Access Journals (Sweden)

    LONG Wei-min

    2016-06-01

    Full Text Available The Al-Si-Cu alloy system is considered to be a promising choice of filler metal for aluminium alloys brazing due to its high strength and low melting point. The greatest obstacle is its lack of plastic forming ability and being difficult to be processed by conventional methods. This disadvantage is ascribed to the considerable amount of brittle CuAl2 intermetallic compound which forms when alloy composition is around the ternary eutectic point. In order to overcome this deficiency, authors of this article proposed to synthesize Al-Si-Cu filler metal by using in situ synthesis method, and the structure and properties of brazing joints were studied. The results show that AlSi alloy is used as the wrap layer, and CuAl alloy is used as the powder core in the composite brazing wire, the two alloys have similar melting points. The machinability of the composite brazing wire is much superior to the traditional Al-Si-Cu filler metal. During the induction brazing of 3A21 alloy, when using AlSi-CuAl composite filler wire, AlSi and CuAl alloys melt almost simultaneously, then after short time holding, Al-Si-Cu braze filler is obtained, the brazing seam has uniform composition and good bonding interface, also, the shearing strength of the brazing joints is higher than the joint brazed by conventional Al-Si-Cu filler metal.

  20. In situ X-ray diffraction study of crystallization process of GeSbTe thin films during heat treatment

    International Nuclear Information System (INIS)

    Kato, Naohiko; Konomi, Ichiro; Seno, Yoshiki; Motohiro, Tomoyoshi

    2005-01-01

    The crystallization processes of the Ge 2 Sb 2 Te 5 thin film used for PD and DVD-RAM were studied in its realistic optical disk film configurations for the first time by X-ray diffraction using an intense X-ray beam of a synchrotron orbital radiation facility (SPring-8) and in situ quick detection with a Position-Sensitive-Proportional-Counter. The dependence of the amorphous-to-fcc phase-change temperature T 1 on the rate of temperature elevation R et gave an activation energy E a : 0.93 eV much less than previously reported 2.2 eV obtained from a model sample 25-45 times thicker than in the real optical disks. The similar measurement on the Ge 4 Sb 1 Te 5 film whose large reflectance change attains the readability by CD-ROM drives gave E a : 1.13 eV with larger T 1 than Ge 2 Sb 2 Te 5 thin films at any R et implying a lower sensitivity in erasing as well as a better data stability of the phase-change disk

  1. Surface Analytics in Support of the Development of Static AutoClean - an In-Situ Cleaning Process for Ion Implanters

    International Nuclear Information System (INIS)

    Stawasz, Michele; Yedave, Sharad; Hiscock, Laura; Sweeney, Joseph; Kaim, Robert

    2008-01-01

    Static AutoClean is a new in-situ cleaning strategy in development at ATMI registered that enables increased process efficiency and safety in the ion implantation process. Like the Dynamic in-situ AutoClean technology previously introduced and released by ATMI, Static AutoClean utilizes XeF 2 chemistry for in-situ cleaning of hazardous contaminants and deposits. Static AutoClean, however, is targeted towards cleaning areas of the beam-line (like electrode insulators or source bushings) where cleaning efforts using Dynamic AutoClean may not be sufficient. An explanation of this cleaning strategy and results showing its effectiveness will be presented in a separate paper at this conference (S. Yedave et al.). This paper presents the surface analytical data and methods used to understand and evaluate the effectiveness of Static AutoClean in removing contaminants from surfaces within the source vacuum chamber. Energy Dispersive Spectroscopy (EDS) was used to track the magnitude and spatial distribution of contaminants present on the surfaces within various regions in the source chamber space of an implanter following ion source operation with a commonly used dopant gas. After in-situ cleaning, these same components and surfaces were re-evaluated by EDS to quantitatively determine the reduction in surface contaminants present within the chamber. Learnings regarding the distribution of implant process contamination within the source chamber as well as Static AutoClean's effectiveness in removing it will be presented.

  2. The Microstructure Evolution of a Fe3Al Alloy during the LENS Process

    Directory of Open Access Journals (Sweden)

    Krzysztof Karczewski

    2018-03-01

    Full Text Available A Fe3Al intermetallic alloy has been successfully prepared by the laser-engineered net shaping (LENS process. The applied process parameters were selected to provide various cooling rates during the solidification of the laser-melted material. The macro- and microstructure and the micro- and macrotexture of Fe3Al samples were investigated. The influence of the cooling rate on grain morphology and texture is discussed. For the applied cooling rate range of 0.64 × 104 K/s–2.6 × 104 K/s, the structure is characterized by the presence of columnar grains for which the growth is directed upwards from the substrate. The intensity of the microtexture varies with the height of the sample and the cooling rate. The intensity of the texture increases with the decrease in the cooling rate. The samples that were obtained with low and medium cooling rates are characterized by the well-developed <100> and <111> macrotextures. The Fe3Al alloy that was produced with a high cooling rate did not show a specific texture, which is reflected in the fairly uniform distribution of the normalized density intensity. Only a very weak texture with a <100> type component was observed.

  3. Quantitative in-situ EPR spectroelectrochemical studies of doping processes in poly(3,4-alkylenedioxythiophene)s

    International Nuclear Information System (INIS)

    Domagala, Wojciech; Pilawa, Barbara; Lapkowski, Mieczyslaw

    2008-01-01

    Quantitative in-situ EPR spectroelectrochemical studies of poly(3,4-ethylenedioxythiophene) (PEDOT) have been carried out with an aim to gain new insights into the doping processes taking place in this polymer. Corroborating the findings made during previous studies of this polymer, absolute measurements conducted in this study provided new detailed information regarding some of the basic parameters characterising the doping process of this conjugated polymer. It was found that concentrations of paramagnetic centres in PEDOT vary from 0.02 spin per mer in the dedoped state up to a maximum of 0.12 spin per mer at 0.15 [e - /mer] doping level, corresponding to 1 spin per ca. 8.5 meric units. Such notable concentration values indicate that polarons represent a numerous charge carrier group in PEDOT, contrary to observations made for other members of polythiophene family. Furthermore polarons do not disappear at high doping levels of PEDOT but rather decrease their numbers gradually down to 0.08 spins per mer at a maximum doping level of 0.55 [e - /mer] attained in this study. Based on information about concentrations of spins and polymer doping charges, concentrations of bipolarons have been evaluated as a function of doping level. Results indicate that bipolaron formation starts at ca. 0.06 [e - /mer] doping level when spin generation efficiency begins to deviate from 1 and interspin interactions emerge as evidenced by doping level dependency of EPR signal linewidth (ΔB pp ). Decomposition of complex EPR spectra of PEDOT in its doped state corroborated the presence of two groups of paramagnetic centres in this polymer. Based upon doping level dependencies of their spectroscopic parameters (concentration, ΔB pp linewidth and g-factor), the identity of these centres has been redefined compared to our previous reports, linking their properties with the type of polymer phase (crystalline or amorphous) they reside in

  4. The Time Lens Concept Applied to Ultra-High-Speed OTDM Signal Processing

    DEFF Research Database (Denmark)

    Clausen, Anders; Palushani, Evarist; Mulvad, Hans Christian Hansen

    2013-01-01

    This survey paper presents some of the applications where the versatile time-lens concept successfully can be applied to ultra-high-speed serial systems by offering expected needed functionalities for future optical communication networks....

  5. In situ

    Science.gov (United States)

    Chamlagain, Bhawani; Sugito, Tessa A; Deptula, Paulina; Edelmann, Minnamari; Kariluoto, Susanna; Varmanen, Pekka; Piironen, Vieno

    2018-01-01

    The in situ production of active vitamin B12 was investigated in aqueous cereal-based matrices with three strains of food-grade Propionibacterium freudenreichii . Matrices prepared from malted barley flour (33% w/v; BM), barley flour (6%; BF), and wheat aleurone (15%; AM) were fermented. The effect of cobalt and the lower ligand 5,6-dimethylbenzimidazole (DMBI) or its natural precursors (riboflavin and nicotinamide) on active B12 production was evaluated. Active B12 production was confirmed by UHPLC-UV-MS analysis. A B12 content of 12-37 μg·kg -1 was produced in BM; this content increased 10-fold with cobalt and reached 940-1,480 μg·kg -1 with both cobalt and DMBI. With riboflavin and nicotinamide, B12 production in cobalt-supplemented BM increased to 712 μg·kg -1 . Approximately, 10 μg·kg -1 was achieved in BF and AM and was increased to 80 μg·kg -1 in BF and 260 μg·kg -1 in AM with cobalt and DMBI. The UHPLC and microbiological assay (MBA) results agreed when both cobalt and DMBI or riboflavin and nicotinamide were supplemented. However, MBA gave ca. 20%-40% higher results in BM and AM supplemented with cobalt, indicating the presence of human inactive analogues, such as pseudovitamin B12. This study demonstrates that cereal products can be naturally fortified with active B12 to a nutritionally relevant level by fermenting with P. freudenreichii .

  6. Fabrication of polycrystalline diamond refractive X-ray lens by femtosecond laser processing

    Energy Technology Data Exchange (ETDEWEB)

    Kononenko, T.V.; Ralchenko, V.G.; Ashkinazi, E.E.; Konov, V.I. [General Physics Institute of Russian Academy of Sciences, Moscow (Russian Federation); National Research Nuclear University ' ' MEPhI' ' , Moscow (Russian Federation); Polikarpov, M.; Ershov, P. [Immanuel Kant Baltic Federal University, Functional Nanomaterials, Kaliningrad (Russian Federation); Kuznetsov, S.; Yunkin, V. [Institute of Microelectronics Technology RAS, Chernogolovka, Moscow region (Russian Federation); Snigireva, I. [European Synchrotron Radiation Facility, Grenoble (France)

    2016-03-15

    X-ray planar compound refractive lenses were fabricated from a polycrystalline diamond plate grown by chemical vapor deposition, by precise through cutting with femtosecond laser pulses. The lens geometry and the surface morphology were investigated with optical and scanning electron microscopy, while the material structure modification was analyzed by Raman spectroscopy. The results of the preliminary lens test at 9.25-keV X-rays are presented. (orig.)

  7. Fabrication of polycrystalline diamond refractive X-ray lens by femtosecond laser processing

    International Nuclear Information System (INIS)

    Kononenko, T.V.; Ralchenko, V.G.; Ashkinazi, E.E.; Konov, V.I.; Polikarpov, M.; Ershov, P.; Kuznetsov, S.; Yunkin, V.; Snigireva, I.

    2016-01-01

    X-ray planar compound refractive lenses were fabricated from a polycrystalline diamond plate grown by chemical vapor deposition, by precise through cutting with femtosecond laser pulses. The lens geometry and the surface morphology were investigated with optical and scanning electron microscopy, while the material structure modification was analyzed by Raman spectroscopy. The results of the preliminary lens test at 9.25-keV X-rays are presented. (orig.)

  8. Complex responsive processes: a new lens for leadership in twenty-first-century health care.

    Science.gov (United States)

    Davidson, Sandra Jean

    2010-01-01

    Health care is currently in the midst of an age change. Leadership styles and organizational structures that were prevalent in the twentieth century no longer apply in twenty-first-century health care. Leaders of health care must embrace and help others to embrace new ways of being and relating in twenty-first-century organizations. This paper introduces a new framework through which leaders can see their organizations differently. Complex responsive processes (CRPs) focus on the interactions between people that take place in the living present as the building block of transformative organizations. This paper also introduces the seven da Vincian principles as a personal tool that twenty-first-century leaders might use to increase their capacity for creativity and to develop their ability to thrive in uncertainty. The power to shape the preferred future of health care lies within our relationships with others that take place locally and in the living present. Viewing organizations through the lens of CRPs and developing practices around the seven da Vincian principles provides directions and a starting point for traditional leaders to move away from rationalist, twentieth-century practices toward transformative leadership practices.

  9. Double-beam optical method and apparatus for measuring thermal diffusivity and other molecular dynamic processes in utilizing the transient thermal lens effect

    International Nuclear Information System (INIS)

    Gupta, A.; Hong, S.; Moacanin, J.

    1981-01-01

    A method and apparatus for measuring thermal diffusivity and molecular relaxation processes in a sample material utilizing two light beams, one being a pulsed laser light beam for forming a thermal lens in the sample material, and the other being a relatively low power probe light beam for measuring changes in the refractive index of the sample material during formation and dissipation of the thermal lens. More specifically, a sample material is irradiated by relatively high power, short pulses from a dye laser. Energy from the pulses is absorbed by the sample material, thereby forming a thermal lens in the area of absorption. The pulse repetition rate is chosen so that the thermal lens is substantially dissipated by the time the next pulse reaches the sample material. A probe light beam, which in a specific embodiment is a relatively low power, continuous wave (Cw) laser beam, irradiates the thermal lens formed in the sample material. The intensity characteristics of the probe light beam subsequent to irradiation of the thermal lens is related to changes in the refractive index of the sample material as the thermal lens is formed and dissipated. A plot of the changes in refractive index as a function of time during formation of the thermal lens as reflected by changes in intensity of the probe beam, provides a curve related to molecular relaxation characteristics of the material, and a plot during dissipation of the thermal lens provides a curve related to the thermal diffusivity of the sample material

  10. Charge Splitting In Situ Recorder (CSIR) for Real-Time Examination of Plasma Charging Effect in FinFET BEOL Processes

    Science.gov (United States)

    Tsai, Yi-Pei; Hsieh, Ting-Huan; Lin, Chrong Jung; King, Ya-Chin

    2017-09-01

    A novel device for monitoring plasma-induced damage in the back-end-of-line (BEOL) process with charge splitting capability is first-time proposed and demonstrated. This novel charge splitting in situ recorder (CSIR) can independently trace the amount and polarity of plasma charging effects during the manufacturing process of advanced fin field-effect transistor (FinFET) circuits. Not only does it reveal the real-time and in situ plasma charging levels on the antennas, but it also separates positive and negative charging effect and provides two independent readings. As CMOS technologies push for finer metal lines in the future, the new charge separation scheme provides a powerful tool for BEOL process optimization and further device reliability improvements.

  11. Charge Splitting In Situ Recorder (CSIR) for Real-Time Examination of Plasma Charging Effect in FinFET BEOL Processes.

    Science.gov (United States)

    Tsai, Yi-Pei; Hsieh, Ting-Huan; Lin, Chrong Jung; King, Ya-Chin

    2017-09-18

    A novel device for monitoring plasma-induced damage in the back-end-of-line (BEOL) process with charge splitting capability is first-time proposed and demonstrated. This novel charge splitting in situ recorder (CSIR) can independently trace the amount and polarity of plasma charging effects during the manufacturing process of advanced fin field-effect transistor (FinFET) circuits. Not only does it reveal the real-time and in situ plasma charging levels on the antennas, but it also separates positive and negative charging effect and provides two independent readings. As CMOS technologies push for finer metal lines in the future, the new charge separation scheme provides a powerful tool for BEOL process optimization and further device reliability improvements.

  12. In situ TEM observation of stress-induced martensitictransformations and twinning processes in CuAlNi single crystals

    Czech Academy of Sciences Publication Activity Database

    Zárubová, Niva; Gemperlová, Juliana; Gemperle, Antonín; Dlabáček, Zdeněk; Šittner, Petr; Novák, Václav

    2010-01-01

    Roč. 58, č. 15 (2010), s. 5109-5119 ISSN 1359-6454 R&D Projects: GA AV ČR(CZ) IAA200100627 Institutional research plan: CEZ:AV0Z10100520 Keywords : CuAlNi shape memory alloy * martensitic transformation * in situ TEM straining Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.781, year: 2010

  13. Environmental survey - tar sands in situ processing research program (Vernal, Uintah County, Utah). [Reverse-forward combustion; steam injection

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Q.

    1980-03-01

    Research will be done on the reverse-forward combustion and steam injection for the in-situ recovery of oil from tar sands. This environmental survey will serve as a guideline for the consideration of environmental consequences of such research. It covers the construction phase, operational phase, description of the environment, potential impacts and mitigations, coordination, and alternatives. (DLC)

  14. Lessons learned from the Febex in situ test: geochemical processes associated to the microbial degradation and gas generation

    International Nuclear Information System (INIS)

    Fernandez, A. M.; Sanchez, D.M.; Melon, A.; Mingarro, M.; Wieczorek, K.

    2012-01-01

    existence of gaps between the bentonite blocks, which favour the development and growth of inactive and dormant cells or spores belonging to the original bentonite. In this work, the observed geochemical and corrosion processes influenced both by organic matter degradation and micro-organisms in the 1:1 scale FEBEX in situ test (Grimsel, Switzerland) are described. This test consists of two heaters, simulating radioactive waste containers, emplaced in a horizontal gallery and surrounded by a highly compacted bentonite barrier. Samples from pore water, gases and bentonite (SHSDI-01: clay in contact with AISI 316L metal; S29 and BSBI-26: clay in contact with carbon steel) have been analysed. The samples were obtained during the test and the dismantling of the heater 1 after six years of experiment. The solid samples were analysed by XRD, SEM, XPS, FTIR, ATD-TG and chemical analysis; the water samples by IC and ICP-OES, and the gases by gas chromatography. Different geochemical processes have been detected as a function of the temperature and water content of the samples. When the water content is high, there are aerobic respiration and fermentation processes, anaerobic respiration with SO 4 2- as electron acceptor, and anaerobic production of methane with CO 2 as electron acceptor. In a first phase, both oxygen consumption and an increase of CH 4 and CO 2 is observed. Afterwards, there is a reduction of sulfates by SRB bacteria, which provokes corrosion processes. As a consequence, a precipitation of sulphurs, iron oxy-hydroxides and carbonates occurs, as well as H 2 generation. There is an increase of the iron content in the smectite and the neo-formation of zeolites. However this alteration is punctual and localized. The redox potential of the bentonite pore water was of -284 mV. When the temperature is high and water content is low, other processes take place

  15. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Thermochemical Research Pathways with In Situ and Ex Situ Upgrading of Fast Pyrolysis Vapors

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Abhijit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sahir, A. H. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Humbird, David [DWH Process Consulting, Denver, CO (United States); Snowden-Swan, Lesley J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meyer, Pimphan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ross, Jeff [Harris Group, Inc., Seattle, WA (United States); Sexton, Danielle [Harris Group, Inc., Seattle, WA (United States); Yap, Raymond [Harris Group, Inc., Seattle, WA (United States); Lukas, John [Harris Group, Inc., Seattle, WA (United States)

    2015-03-01

    This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s efforts to enable the development of technologies for the production of infrastructure-compatible, cost-competitive liquid hydrocarbon fuels from biomass. Specifically, this report details two conceptual designs based on projected product yields and quality improvements via catalyst development and process integration. It is expected that these research improvements will be made within the 2022 timeframe. The two conversion pathways detailed are (1) in situ and (2) ex situ upgrading of vapors produced from the fast pyrolysis of biomass. While the base case conceptual designs and underlying assumptions outline performance metrics for feasibility, it should be noted that these are only two of many other possibilities in this area of research. Other promising process design options emerging from the research will be considered for future techno-economic analysis. Both the in situ and ex situ conceptual designs, using the underlying assumptions, project MFSPs of approximately $3.5/gallon gasoline equivalent (GGE). The performance assumptions for the ex situ process were more aggressive with higher distillate (diesel-range) products. This was based on an assumption that more favorable reaction chemistry (such as coupling) can be made possible in a separate reactor where, unlike in an in situ upgrading reactor, one does not have to deal with catalyst mixing with biomass char and ash, which pose challenges to catalyst performance and maintenance. Natural gas was used for hydrogen production, but only when off gases from the process was not sufficient to meet the needs; natural gas consumption is insignificant in both the in situ and ex situ base cases. Heat produced from the burning of char, coke, and off-gases allows for the production of surplus electricity which is sold to the grid allowing a reduction of approximately 5¢/GGE in the MFSP.

  16. Effect of residual chips on the material removal process of the bulk metallic glass studied by in situ scratch testing inside the scanning electron microscope

    Directory of Open Access Journals (Sweden)

    Hu Huang

    2012-12-01

    Full Text Available Research on material removal mechanism is meaningful for precision and ultra-precision manufacturing. In this paper, a novel scratch device was proposed by integrating the parasitic motion principle linear actuator. The device has a compact structure and it can be installed on the stage of the scanning electron microscope (SEM to carry out in situ scratch testing. Effect of residual chips on the material removal process of the bulk metallic glass (BMG was studied by in situ scratch testing inside the SEM. The whole removal process of the BMG during the scratch was captured in real time. Formation and growth of lamellar chips on the rake face of the Cube-Corner indenter were observed dynamically. Experimental results indicate that when lots of chips are accumulated on the rake face of the indenter and obstruct forward flow of materials, materials will flow laterally and downward to find new location and direction for formation of new chips. Due to similar material removal processes, in situ scratch testing is potential to be a powerful research tool for studying material removal mechanism of single point diamond turning, single grit grinding, mechanical polishing and grating fabrication.

  17. Combining nanocalorimetry and dynamic transmission electron microscopy for in situ characterization of materials processes under rapid heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Grapes, Michael D., E-mail: mgrapes1@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Materials Measurement Science Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); LaGrange, Thomas; Reed, Bryan W.; Campbell, Geoffrey H. [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Friedman, Lawrence H.; LaVan, David A., E-mail: david.lavan@nist.gov [Materials Measurement Science Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Weihs, Timothy P., E-mail: weihs@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2014-08-15

    Nanocalorimetry is a chip-based thermal analysis technique capable of analyzing endothermic and exothermic reactions at very high heating and cooling rates. Here, we couple a nanocalorimeter with an extremely fast in situ microstructural characterization tool to identify the physical origin of rapid enthalpic signals. More specifically, we describe the development of a system to enable in situ nanocalorimetry experiments in the dynamic transmission electron microscope (DTEM), a time-resolved TEM capable of generating images and electron diffraction patterns with exposure times of 30 ns–500 ns. The full experimental system consists of a modified nanocalorimeter sensor, a custom-built in situ nanocalorimetry holder, a data acquisition system, and the DTEM itself, and is capable of thermodynamic and microstructural characterization of reactions over a range of heating rates (10{sup 2} K/s–10{sup 5} K/s) accessible by conventional (DC) nanocalorimetry. To establish its ability to capture synchronized calorimetric and microstructural data during rapid transformations, this work describes measurements on the melting of an aluminum thin film. We were able to identify the phase transformation in both the nanocalorimetry traces and in electron diffraction patterns taken by the DTEM. Potential applications for the newly developed system are described and future system improvements are discussed.

  18. Dynamical observation of lithium insertion/extraction reaction during charge-discharge processes in Li-ion batteries by in situ spatially resolved electron energy-loss spectroscopy.

    Science.gov (United States)

    Shimoyamada, Atsushi; Yamamoto, Kazuo; Yoshida, Ryuji; Kato, Takehisa; Iriyama, Yasutoshi; Hirayama, Tsukasa

    2015-12-01

    All-solid-state Li-ion batteries (LIBs) with solid electrolytes are expected to be the next generation devices to overcome serious issues facing conventional LIBs with liquid electrolytes. However, the large Li-ion transfer resistance at the electrode/solid-electrolyte interfaces causes low power density and prevents practical use. In-situ-formed negative electrodes prepared by decomposing the solid electrolyte Li(1+x+3z)Alx(Ti,Ge)(2-x)Si(3z)P(3-z)O12 (LASGTP) with an excess Li-ion insertion reaction are effective electrodes providing low Li-ion transfer resistance at the interfaces. Prior to our work, however, it had still been unclear how the negative electrodes were formed in the parent solid electrolytes. Here, we succeeded in dynamically visualizing the formation by in situ spatially resolved electron energy-loss spectroscopy in a transmission electron microscope mode (SR-TEM-EELS). The Li-ions were gradually inserted into the solid electrolyte region around 400 nm from the negative current-collector/solid-electrolyte interface in the charge process. Some of the ions were then extracted in the discharge process, and the rest were diffused such that the distribution was almost flat, resulting in the negative electrodes. The redox reaction of Ti(4+)/Ti(3+) in the solid electrolyte was also observed in situ during the Li insertion/extraction processes. The in situ SR-TEM-EELS revealed the mechanism of the electrochemical reaction in solid-state batteries. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Effect of directional solidification rate on the microstructure and properties of deformation-processed Cu–7Cr–0.1Ag in situ composites

    International Nuclear Information System (INIS)

    Liu, Keming; Jiang, Zhengyi; Zhao, Jingwei; Zou, Jin; Chen, Zhibao; Lu, Deping

    2014-01-01

    Highlights: • Effect of directional solidification (DS) rate on a Cu–Cr–Ag in situ composite. • The microstructure and properties of the DS in situ composite were investigated. • The second-phase Cr grains were parallel to drawing direction, and were finer. • The tensile strength was higher and the combination of properties was better. - Abstract: The influence of directional solidification rate on the microstructure, mechanical properties and conductivity of deformation-processed Cu–7Cr–0.1Ag in situ composites produced by thermo-mechanical processing was systematically investigated. The microstructure was analyzed by optical microscopy and scanning electronic microscopy. The mechanical properties and conductivity were evaluated by tensile-testing machine and micro-ohmmeter, respectively. The results indicate that the size, shape and distribution of second-phase Cr grains are significantly different in the Cu–7Cr–0.1Ag alloys with different growth rates. At a growth rate of 200 μm s −1 , the Cr grains transform into fine Cr fiber-like grains parallel to the pulling direction from the Cr dendrites. The tensile strength of the Cu–7Cr–0.1Ag in situ composites from the directional solidification (DS) alloys is significantly higher than that from the as-cast alloy, while the conductivity of the in situ composites from the DS alloys is slightly lower than that from the as-cast alloy. The following combinations of tensile strength, elongation to fracture and conductivity of the Cu–7Cr–0.1Ag in situ composites from the DS alloy with a growth rate of 200 μm s −1 and a cumulative cold deformation strain of 8 after isochronic aging treatment for 1 h can be obtained respectively as: (i) 1067 MPa, 2.9% and 74.9% IACS; or (ii) 1018 MPa, 3.0%, and 76.0% IACS or (iii) 906 MPa, 3.3% and 77.6% IACS

  20. Effect of directional solidification rate on the microstructure and properties of deformation-processed Cu–7Cr–0.1Ag in situ composites

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Keming [Jiangxi Key Laboratory for Advanced Copper and Tungsten Materials, Jiangxi Academy of Sciences, Nanchang 330029 (China); School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Jiang, Zhengyi; Zhao, Jingwei [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Zou, Jin; Chen, Zhibao [Jiangxi Key Laboratory for Advanced Copper and Tungsten Materials, Jiangxi Academy of Sciences, Nanchang 330029 (China); Lu, Deping, E-mail: llludp@163.com [Jiangxi Key Laboratory for Advanced Copper and Tungsten Materials, Jiangxi Academy of Sciences, Nanchang 330029 (China)

    2014-11-05

    Highlights: • Effect of directional solidification (DS) rate on a Cu–Cr–Ag in situ composite. • The microstructure and properties of the DS in situ composite were investigated. • The second-phase Cr grains were parallel to drawing direction, and were finer. • The tensile strength was higher and the combination of properties was better. - Abstract: The influence of directional solidification rate on the microstructure, mechanical properties and conductivity of deformation-processed Cu–7Cr–0.1Ag in situ composites produced by thermo-mechanical processing was systematically investigated. The microstructure was analyzed by optical microscopy and scanning electronic microscopy. The mechanical properties and conductivity were evaluated by tensile-testing machine and micro-ohmmeter, respectively. The results indicate that the size, shape and distribution of second-phase Cr grains are significantly different in the Cu–7Cr–0.1Ag alloys with different growth rates. At a growth rate of 200 μm s{sup −1}, the Cr grains transform into fine Cr fiber-like grains parallel to the pulling direction from the Cr dendrites. The tensile strength of the Cu–7Cr–0.1Ag in situ composites from the directional solidification (DS) alloys is significantly higher than that from the as-cast alloy, while the conductivity of the in situ composites from the DS alloys is slightly lower than that from the as-cast alloy. The following combinations of tensile strength, elongation to fracture and conductivity of the Cu–7Cr–0.1Ag in situ composites from the DS alloy with a growth rate of 200 μm s{sup −1} and a cumulative cold deformation strain of 8 after isochronic aging treatment for 1 h can be obtained respectively as: (i) 1067 MPa, 2.9% and 74.9% IACS; or (ii) 1018 MPa, 3.0%, and 76.0% IACS or (iii) 906 MPa, 3.3% and 77.6% IACS.

  1. In situ investigation of titanium nitride surface dynamics: The role of surface and bulk mass transport processes

    Science.gov (United States)

    Bareno, Javier

    NaCl-structure TiN and related transition-metal (TM) nitrides are widely used as hard wear-resistant coatings on cutting tools, diffusion-barriers in microelectronic devices, corrosion-resistant layers on mechanical components, and abrasion-resistant thin films on optics and architectural glass. Since the elastic and physical properties of TiN are highly anisotropic, controlling the microstructural and surface morphological evolution of polycrystalline TM nitride films is important for all of the above applications. In this thesis, I used in-situ high-temperature low-energy electron microscopy (LEEM) to gain insight into film growth and microstructure development dynamics by studying mass-transport processes occurring during annealing of three dimensional (3D) structures on TiN surfaces. Additionally, in order to extend the current understanding of nanostructure development in binary nitride films to more complex ternary TM-nitride-based nanocomposites, I employed in-situ scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED), as well as ab-initio modeling, to investigate the atomic structure of the SiNx/TiN heterointerfaces which control the properties of SiNx-TiN nanocomposites. The LEEM studies of mass transport on TiN(111) focus on two specific surface morphologies which are observed to be present during growth of TiN single-crystals. (1) I investigated the temperature-dependent coarsening/decay kinetics of three-dimensional TiN island mounds on large (>1000 A) atomically-flat terraces; showing that TiN(111) steps are highly permeable and exhibit strong repulsive temperature-dependent step-step interactions that vary from 0.03 eV-A at 1559 K to 0.76 eV-A at 1651 K. (2) I studied the nucleation and growth of spiral steps originating at surface-terminated screw dislocations; I developed a model of spiral growth relating the emission rate of point defects from the bulk to the temperature-dependent spiral rotation frequency o(T); and I

  2. Revealing Chemical Processes Involved in Electrochemical (De)Lithiation of Al with in Situ Neutron Depth Profiling and X-ray Diffraction.

    Science.gov (United States)

    Liu, Danny X; Co, Anne C

    2016-01-13

    Herein we report a direct measurement of Li transport in real-time during charge and discharge process within an Al matrix using neutron depth profiling (NDP). In situ NDP was used to reveal and quantify parasitic losses during the first 25 mAhr/g of lithiation, followed by the formation of LiAl protrusions from the surface of pristine Al. Evidence of Li entrapment is also reported during delithiation. Subsequent lithiation and delithiation showed electrochemical charge passed to be equivalent to the amount of lithium incorporated into the Al matrix with negligible difference, suggesting that the parasitic losses including the formation of the solid electrolyte layer may be confined to the first lithiation. Parallel in situ XRD measurements also confirm the transformation of β-LiAl from a solid solution of α-LiAl, revealing solid solution-mediated crystallization of β-LiAl.

  3. Microstructure Evolution and Mechanical Properties of Al-TiB2/TiC In Situ Aluminum-Based Composites during Accumulative Roll Bonding (ARB) Process

    Science.gov (United States)

    Nie, Jinfeng; Wang, Fang; Li, Yusheng; Cao, Yang; Liu, Xiangfa; Zhao, Yonghao; Zhu, Yuntian

    2017-01-01

    In this study, a kind of Al-TiB2/TiC in situ composite was successfully prepared using the melt reaction method and the accumulative roll-bonding (ARB) technique. The microstructure evolution of the composites with different deformation treatments was characterized using field emission scanning electron microscopy (FESEM) and a transmission electron microscope (TEM). The mechanical properties of the Al-TiB2/TiC in situ composite were also studied with tensile and microhardness tests. It was found that the distribution of reinforcement particles becomes more homogenous with an increasing ARB cycle. Meanwhile, the mechanical properties showed great improvement during the ARB process. The ultimate tensile strength (UTS) and microhardness of the composites were increased to 173.1 MPa and 63.3 Hv after two ARB cycles, respectively. Furthermore, the strengthening mechanism of the composite was analyzed based on its fracture morphologies. PMID:28772467

  4. Effects of aqueous effluents from in situ fossil fuel processing technologies on aquatic systems. Annual progress report, January 1-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, H.L.

    1980-01-04

    This is the third annual progress report for a continuing EPA-DOE jointly funded project to evaluate the effects of aqueous effluents from in situ fossil-fuel processing technologies on aquatic biota. The project is organized into four project tasks: (1) literature review; (2) process water screening; (3) methods development; and (4) recommendations. Our Bibliography of aquatic ecosystem effects, analytical methods and treatment technologies for organic compounds in advanced fossil-fuel processing effluents was submitted to the EPA for publication. The bibliography contains 1314 citations indexed by chemicals, keywords, taxa and authors. We estimate that the second bibliography volume will contain approximately 1500 citations and be completed in February. We compiled results from several laboratories of inorganic characterizations of 19 process waters: 55 simulated in situ oil-shale retort waters; and Hanna-3, Hanna-4B 01W and Lawrence Livermore Hoe Creek underground coal gasification condenser waters. These process waters were then compared to a published summary of the analyses from 18 simulated in situ oil-shale retort waters. We completed this year 96-h flow-through toxicity bioassays with fathead minnows and rainbow trout and 48-h flow-through bioassays with Daphnia pulicaria exposed to 5 oil-shale process waters, 1 tar-sand process water, 2 underground coal gasification condenser waters, 1 post-gasification backflood condenser water, as well as 2 bioassays with fossil-fuel process water constituents. The LC/sub 50/ toxicity values for these respective species when exposed to these waters are given in detail. (LTN)

  5. Remedial Process Optimization and Green In-Situ Ozone Sparging for Treatment of Groundwater Impacted with Petroleum Hydrocarbons

    Science.gov (United States)

    Leu, J.

    2012-12-01

    A former natural gas processing station is impacted with TPH and BTEX in groundwater. Air sparging and soil vapor extraction (AS/AVE) remediation systems had previously been operated at the site. Currently, a groundwater extraction and treatment system is operated to remove the chemicals of concern (COC) and contain the groundwater plume from migrating offsite. A remedial process optimization (RPO) was conducted to evaluate the effectiveness of historic and current remedial activities and recommend an approach to optimize the remedial activities. The RPO concluded that both the AS/SVE system and the groundwater extraction system have reached the practical limits of COC mass removal and COC concentration reduction. The RPO recommended an in-situ chemical oxidation (ISCO) study to evaluate the best ISCO oxidant and approach. An ISCO bench test was conducted to evaluate COC removal efficiency and secondary impacts to recommend an application dosage. Ozone was selected among four oxidants based on implementability, effectiveness, safety, and media impacts. The bench test concluded that ozone demand was 8 to 12 mg ozone/mg TPH and secondary groundwater by-products of ISCO include hexavalent chromium and bromate. The pH also increased moderately during ozone sparging and the TDS increased by approximately 20% after 48 hours of ozone treatment. Prior to the ISCO pilot study, a capture zone analysis (CZA) was conducted to ensure containment of the injected oxidant within the existing groundwater extraction system. The CZA was conducted through a groundwater flow modeling using MODFLOW. The model indicated that 85%, 90%, and 95% of an injected oxidant could be captured when a well pair is injecting and extracting at 2, 5, and 10 gallons per minute, respectively. An ISCO pilot test using ozone was conducted to evaluate operation parameters for ozone delivery. The ozone sparging system consisted of an ozone generator capable of delivering 6 lbs/day ozone through two ozone

  6. Analysis of surface leaching processes in vitrified high-level nuclear wastes using in-situ raman imaging and atomistic modeling. 1998 annual progress report

    International Nuclear Information System (INIS)

    Clark, D.E.; Simmons, J.H.

    1998-01-01

    'The research objective was to test and develop optical methods for real-time, remote and in-situ testing of corrosion processes on the surface of vitrified nuclear wastes. This report summarizes the research conducted in the first 1.5 years of a 3 year grant. At this point, the authors have identified the conditions for optimal tests and demonstrated that both IR reflection and Raman spectroscopies can be used to determine the dealkalization process in the surface of simple glasses in real time.'

  7. The control of H2S in biogas using iron ores as in situ desulfurizers during anaerobic digestion process.

    Science.gov (United States)

    Zhou, Qiying; Jiang, Xia; Li, Xi; Jiang, Wenju

    2016-09-01

    In this study, five kinds of iron ores, limonite, hematite, manganese ore, magnetite and lava rock, were used as the in situ desulfurizers in the anaerobic digestion reactors to investigate their effects on controlling H2S in biogas. The results show that the addition of the five iron ores could significantly control the content of H2S in biogas, with the best performance for limonite. As limonite dosages increase (10-60 g/L), the contents of H2S in biogas were evidently decreased in the digesters with different initial sulfate concentrations (0-1000 mg/L). After the anaerobic digestion, the removed sulfur was mostly deposited on the surface of limonite. A possible mechanism of H2S control in biogas by limonite was proposed preliminarily, including adsorption, FeS precipitation, and Fe (III) oxidation. The results demonstrated that limonite was a promising in situ desulfurizer for controlling H2S in biogas with low cost and high efficiency.

  8. Effect of nano-C doping on the in-situ processed MgB2 tapes

    Science.gov (United States)

    Zhang, Xianping; Ma, Yanwei; Xu, Aixia; Jiao, Yulei; Xiao, Ling; Awaji, S.; Watanabe, K.; Yang, Huan; Wen, Haihu

    2006-06-01

    The effect of nano-C doping on the microstructure and superconducting properties of Fe-sheathed MgB2 tapes prepared through the in-situ powder-in-tube method was studied. Heat treatment was performed at a low temperature of 650°C for 1 h. Scanning electron microscopy investigation revealed that the smaller grain size of MgB2 in the samples with the C-doping. Further, the a-axis lattice parameter and transition temperature decreased monotonically with increasing doping level, which is due to the C substitution for B. High critical current density JC values in magnetic fields were achieved in the doped samples because of the very fine-grained microstructure of the superconducting phase obtained with C doping.

  9. Construction of Power Receiving Rectenna Using Mars- In-Situ Materials; A Low Energy Materials Processing Approach

    Science.gov (United States)

    Curreri, Peter A.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    It is highly desirable to have a non-nuclear power rich option for the human exploration of Mars. Utilizing a Solar Electric Propulsion, SEP, / Power Beaming architecture for a non-nuclear power option for a human Mars base potentially avoids the weather and dust sensitivities of the surface photovoltaic option. Further from Mars areosynchronous orbit near year round power can be provided. Mission analysis, however, concludes that ultra high (245 GHz) frequencies or laser transmission technologies are required for Mars landed mass competitiveness with the surface photovoltaic option if the receiving rectifying antenna "rectenna" is transported from Earth. It is suggested in this paper that producing rectenna in situ on Mars surface might make a more conventional 5.8 GHz system competitive with surface PV. The premium of a competitive, robust, continuous base power might make the development of a 10 plus MWe class SEP for human Mars mission a more attractive non-nuclear option.

  10. Process performance of the pilot-scale in situ vitrification of a simulated waste disposal site at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Carter, J.G.; Koegler, S.S.; Bates, S.O.

    1988-06-01

    Process feasibility studies have been successfully performed on three developmental scales to determine the potential for applying in situ vitrification to intermediate-level (low-level) waste placed in seepage pits and trenches at Oak Ridge National Laboratory (ORNL). In the laboratory, testing was performed in crucibles containing a mixture of 50% ORNL soil and 50% limestone. In an engineering-scale test at Pacific Northwest Laboratory a /1/12/-scale simulation of an ORNL waste trench was constructed and vitrified, resulting in a waste product containing soil and limestone concentrations of 68 wt % and 32 wt %, respectively. In the pilot-scale test a /3/8/-scale simulation of the same trench was constructed and vitrified at ORNL, resulting in soil and limestone concentrations of 80% and 20%, respectively, in the waste product. Results of the three scales of testing indicate that the ORNL intermediate-level (low-level) waste sites can be successfully processed by in situ vitrification; the waste form will retain significant quantities of the cesium and strontium. Because cesium-137 and strontium-90 are the major components of the radionuclide inventory in the ORNL seepage pits and trenches, final field process decontamination factors (i.e., losses to the off-gas system relative to the waste inventory) of 1.0 E + 4 are desired to minimize activity buildup in the off-gas system. 17 refs., 34 figs., 13 tabs

  11. Abnormal patterning analysis using actual lens and illumination source data

    Science.gov (United States)

    Hong, Jongkyun; Lee, Jeonkyu; Kang, Eunsuk; Yang, Hyunjo; Yim, Donggyu; Guerrero, James; Chung, Rob

    2005-05-01

    As the minimum feature size shrinks down, i.e. low K1 lithography regime, the tool"s lens aberration sensitivity and user defined illumination imperfection might play a major role in patterning error. Thus, the study of impact from lens aberration and illumination on patterning is required for good tool maintenance and yield improvement. For this purpose, we collected many cases of abnormal patterning result from production line and then simulated in terms of actual lens aberration and illumination source data. LITEL products of ISI(In-situ Interferometer) and SMI(Source Metrology Interferometer) were used for characterizing lens and illumination source. Moreover, the ACE(Analysis and Characteristic Engine) of LITEL development product was used as the simulator. In this work, deformation of pattern fidelity, for example, CD asymmetry in word line and metal contact layer, pattern bending in isolation layer and also decreasing process window in bit line layer will be discussed with experimental and simulation data. Finally, we are able to make a guideline for preventing abnormal phenomenon. From this study, we can understand which lens aberration terms and illumination imperfection take an effect of abnormal pattering result.

  12. Numerical Simulation and Optimization of Enhanced Oil Recovery by the In Situ Generated CO2 Huff-n-Puff Process with Compound Surfactant

    Directory of Open Access Journals (Sweden)

    Yong Tang

    2016-01-01

    Full Text Available This paper presents the numerical investigation and optimization of the operating parameters of the in situ generated CO2 Huff-n-Puff method with compound surfactant on the performance of enhanced oil recovery. First, we conducted experiments of in situ generated CO2 and surfactant flooding. Next, we constructed a single-well radial 3D numerical model using a thermal recovery chemical flooding simulator to simulate the process of CO2 Huff-n-Puff. The activation energy and reaction enthalpy were calculated based on the reaction kinetics and thermodynamic models. The interpolation parameters were determined through history matching a series of surfactant core flooding results with the simulation model. The effect of compound surfactant on the Huff-n-Puff CO2 process was demonstrated via a series of sensitivity studies to quantify the effects of a number of operation parameters including the injection volume and mole concentration of the reagent, the injection rate, the well shut-in time, and the oil withdrawal rate. Based on the daily production rate during the period of Huff-n-Puff, a desirable agreement was shown between the field applications and simulated results.

  13. THE PERCEPTUAL COGNITIVE PROCESSES UNDERPINNING SKILLED PERFORMANCE IN VOLLEYBALL: EVIDENCE FROM EYE-MOVEMENTS AND VERBAL REPORTS OF THINKING INVOLVING AN IN SITU REPRESENTATIVE TASK

    Directory of Open Access Journals (Sweden)

    José Afonso

    2012-06-01

    Full Text Available An extensive body of work has focused on the processes underpinning perceptual-cognitive expertise. The majority of researchers have used film-based simulations to capture superior performance. We combined eye movement recording and verbal reports of thinking to explore the processes underpinning skilled performance in a complex, dynamic, and externally paced representative volleyball task involving in situ data collection. Altogether, 27 female volleyball players performed as centre backcourt defenders in simulated sessions while wearing an eye-tracking device. After each sequence, athletes were questioned concerning their perception of the situation. The visual search strategies employed by the highly-skilled players were more exploratory than those used by skilled players, involving more fixations to a greater number of locations. Highly-skilled participants spent more time fixating on functional spaces between two or more display areas, while the skilled participants fixated on the ball trajectory and specific players. Moreover, highly-skilled players generated more condition concepts with higher levels of sophistication than their skilled counterparts. Findings highlight the value of using representative task designs to capture performance in situ

  14. Precipitation Stages and Reaction Kinetics of AlMgSi Alloys during the Artificial Aging Process Monitored by In-Situ Electrical Resistivity Measurement Method

    Directory of Open Access Journals (Sweden)

    Hong He

    2018-01-01

    Full Text Available The precipitation process and reaction kinetics during artificial aging, precipitate microstructure, and mechanical properties after aging of AlMgSi alloys were investigated employing in-situ electrical resistivity measurement, Transmission Electron Microscopy (TEM observation, and tensile test methods. Three aging stages in sequence, namely formation of GP zones, transition from GP zones to β″ phase, transition from β″ to β′ phase, and coarsening of both phases, were clearly distinguished by the variation of the resistivity. It was discussed together with the mechanical properties and precipitate morphology evolution. Fast formation of GP zones and β″ phase leads to an obvious decrease of the resistivity and increase of the mechanical strength. The formation of β″ phase in the second stage, which contributes to the peak aging strength, has much higher reaction kinetics than reactions in the other two stages. All of these stages finished faster with higher reaction kinetics under higher temperatures, due to higher atom diffusion capacity. The results proved that the in-situ electrical resistivity method, as proposed in the current study, is a simple, effective, and convenient technique for real-time monitoring of the precipitation process of AlMgSi alloys. Its further application for industrial production and scientific research is also evaluated.

  15. A new system for sodium flux growth of bulk GaN. Part II: in situ investigation of growth processes

    KAUST Repository

    Von Dollen, Paul

    2016-09-09

    We report recent results of bulk GaN crystal growth using the sodium flux method in a new crucible-free growth system. We observed a (0001) Ga face (+c-plane) growth rate >50 µm/h for growth at a N2 overpressure of ~5 MPa and 860 °C, which is the highest crystal growth rate reported for this technique to date. Omega X-ray rocking curve (ω-XRC) measurements indicated the presence of multiple grains, though full width at half maximum (FWHM) values for individual peaks were <100 arcseconds. Oxygen impurity concentrations as measured by secondary ion mass spectroscopy (SIMS) were >1020 atoms/cm3. By monitoring the nitrogen pressure decay over the course of the crystal growth, we developed an in situ method that correlates gas phase changes with precipitation of GaN from the sodium-gallium melt. Based on this analysis, the growth rate may have actually been as high as 90 µm/h, as it would suggest GaN growth ceased prior to the end of the run. We also observed gas phase behavior identified as likely characteristic of GaN polynucleation.

  16. In-situ polymerized cellulose nanocrystals (CNC)-poly(l-lactide) (PLLA) nanomaterials and applications in nanocomposite processing.

    Science.gov (United States)

    Miao, Chuanwei; Hamad, Wadood Y

    2016-11-20

    CNC-PLLA nanomaterials were synthesized via in-situ ring-opening polymerization of l-lactide in the presence of CNC, resulting in hydrophobic, homogeneous mixture of PLLA-grafted-CNC and free PLLA homopolymer. The free PLLA serves two useful functions: as barrier to further prevent PLLA-g-CNC from forming aggregates, and in creating improved interfacial properties when these nanomaterials are blended with other polymers, hence enhancing their performance. CNC-PLLA nanomaterials can be used for medical or engineering applications as-they-are or by compounding with suitable biopolymers using versatile techniques, such as solution casting, co-extrusion or injection molding, to form hybrid nanocomposites of tunable mechanical properties. When compounded with commercial-grade PLA, the resulting CNC-PLA nanocomposites appear transparent and have tailored (dynamic and static) mechanical and barrier properties, approaching those of poly(ethylene terephthalate), PET. The effect of reaction conditions on the properties of CNC-PLLA nanomaterials have been carefully studied and detailed throughout the paper. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. A new system for sodium flux growth of bulk GaN. Part II: in situ investigation of growth processes

    Science.gov (United States)

    Von Dollen, Paul; Pimputkar, Siddha; Alreesh, Mohammed Abo; Nakamura, Shuji; Speck, James S.

    2016-12-01

    We report recent results of bulk GaN crystal growth using the sodium flux method in a new crucible-free growth system. We observed a (0001) Ga face (+c-plane) growth rate >50 μm/h for growth at a N2 overpressure of 5 MPa and 860 °C, which is the highest crystal growth rate reported for this technique to date. Omega X-ray rocking curve (ω-XRC) measurements indicated the presence of multiple grains, though full width at half maximum (FWHM) values for individual peaks were 1020 atoms/cm3. By monitoring the nitrogen pressure decay over the course of the crystal growth, we developed an in situ method that correlates gas phase changes with precipitation of GaN from the sodium-gallium melt. Based on this analysis, the growth rate may have actually been as high as 90 μm/h, as it would suggest GaN growth ceased prior to the end of the run. We also observed gas phase behavior identified as likely characteristic of GaN polynucleation.

  18. In situ environmental TEM studies of dynamic changes in cerium-based oxides nanoparticles during redox processes.

    Science.gov (United States)

    Crozier, Peter A; Wang, Ruigang; Sharma, Renu

    2008-10-01

    We apply in situ environmental transmission electron microscopy (ETEM) to study the dynamic changes taking place during redox reactions in ceria and ceria-zirconia nanoparticles in a hydrogen atmosphere. For pure ceria, we find that a reversible phase transformation takes place at 730 degrees C in which oxygen vacancies introduced during reduction order to give a cubic superstructure with a periodicity of roughly twice the basic fluorite lattice. We also observe the structural transformations taking place on the surface during reduction in hydrogen. The (110) ceria surface is initially constructed with a series of low-energy (111) nanofacets. Under strong reduction, the surface slowly transforms to a smooth (110) surface which was not observed to change upon re-oxidation. The surface transformation allows the reduced surface to accommodate a high concentration of oxygen vacancies without creating a strong perpendicular dipole moment. In the ceria-zirconia system, we are able to use ETEM to follow the redox activity of individual nanoparticles and correlate this property with structure and composition. We find considerable variation in the redox activity and interpret this in terms of structural differences between the nanoparticles.

  19. Microbial communities associated with uranium in-situ recovery mining process are related to acid mine drainage assemblages.

    Science.gov (United States)

    Coral, Thomas; Descostes, Michaël; De Boissezon, Hélène; Bernier-Latmani, Rizlan; de Alencastro, Luiz Felippe; Rossi, Pierre

    2018-07-01

    A large fraction (47%) of the world's uranium is mined by a technique called "In Situ Recovery" (ISR). This mining technique involves the injection of a leaching fluid (acidic or alkaline) into a uranium-bearing aquifer and the pumping of the resulting solution through cation exchange columns for the recovery of dissolved uranium. The present study reports the in-depth alterations brought to autochthonous microbial communities during acidic ISR activities. Water samples were collected from a uranium roll-front deposit that is part of an ISR mine in operation (Tortkuduk, Kazakhstan). Water samples were obtained at a depth of ca 500 m below ground level from several zones of the Uyuk aquifer following the natural redox zonation inherited from the roll front deposit, including the native mineralized orebody and both upstream and downstream adjacent locations. Samples were collected equally from both the entrance and the exit of the uranium concentration plant. Next-generation sequencing data showed that the redox gradient shaped the community structures, within the anaerobic, reduced, and oligotrophic habitats of the native aquifer zones. Acid injection induced drastic changes in the structures of these communities, with a large decrease in both cell numbers and diversity. Communities present in the acidified (pH values mining areas exhibited similarities to those present in acid mine drainage, with the dominance of Sulfobacillus sp., Leptospirillum sp. and Acidithiobacillus sp., as well as the archaean Ferroplasma sp. Communities located up- and downstream of the mineralized zone under ISR and affected by acidic fluids were blended with additional facultative anaerobic and acidophilic microorganisms. These mixed biomes may be suitable communities for the natural attenuation of ISR mining-affected subsurface through the reduction of metals and sulfate. Assessing the effect of acidification on the microbial community is critical to evaluating the potential for

  20. Investigation of the fabrication processes of AlGaN/AlN/GaN HEMTs with in situ Si{sub 3}N{sub 4} passivation

    Energy Technology Data Exchange (ETDEWEB)

    Tomosh, K. N., E-mail: sky77781@mail.ru; Pavlov, A. Yu.; Pavlov, V. Yu.; Khabibullin, R. A.; Arutyunyan, S. S.; Maltsev, P. P. [Russian Academy of Sciences, Institute of Ultra-High-Frequency Semiconductor Electronics (Russian Federation)

    2016-10-15

    The optimum mode of the in situ plasma-chemical etching of a Si{sub 3}N{sub 4} passivating layer in C{sub 3}F{sub 8}/O{sub 2} medium is chosen for the case of fabricating AlGaN/AlN/GaN HEMTs. It is found that a bias of 40–50 V at a high-frequency electrode provides anisotropic etching of the insulator through a resist mask and introduces no appreciable radiation-induced defects upon overetching of the insulator films in the region of gate-metallization formation. To estimate the effect of in situ Si{sub 3}N{sub 4} growth together with the heterostructure in one process on the AlGaN/AlN/GaN HEMT characteristics, transistors with gates without the insulator and with gates through Si{sub 3}N{sub 4} slits are fabricated. The highest drain current of the AlGaN/AlN/GaN HEMT at 0 V at the gate is shown to be 1.5 times higher in the presence of Si{sub 3}N{sub 4} than without it.

  1. In-Situ Real-Time Focus Detection during Laser Processing Using Double-Hole Masks and Advanced Image Sensor Software.

    Science.gov (United States)

    Cao, Binh Xuan; Hoang, Phuong Le; Ahn, Sanghoon; Kim, Jeng-O; Kang, Heeshin; Noh, Jiwhan

    2017-07-01

    In modern high-intensity ultrafast laser processing, detecting the focal position of the working laser beam, at which the intensity is the highest and the beam diameter is the lowest, and immediately locating the target sample at that point are challenging tasks. A system that allows in-situ real-time focus determination and fabrication using a high-power laser has been in high demand among both engineers and scientists. Conventional techniques require the complicated mathematical theory of wave optics, employing interference as well as diffraction phenomena to detect the focal position; however, these methods are ineffective and expensive for industrial application. Moreover, these techniques could not perform detection and fabrication simultaneously. In this paper, we propose an optical design capable of detecting the focal point and fabricating complex patterns on a planar sample surface simultaneously. In-situ real-time focus detection is performed using a bandpass filter, which only allows for the detection of laser transmission. The technique enables rapid, non-destructive, and precise detection of the focal point. Furthermore, it is sufficiently simple for application in both science and industry for mass production, and it is expected to contribute to the next generation of laser equipment, which can be used to fabricate micro-patterns with high complexity.

  2. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels. Thermochemical Research Pathways with In Situ and Ex Situ Upgrading of Fast Pyrolysis Vapors

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, A.; Sahir, A.; Tan, E.; Humbird, D.; Snowden-Swan, L. J.; Meyer, P.; Ross, J.; Sexton, D.; Yap, R.; Lukas, J.

    2015-03-01

    This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s efforts to enable the development of technologies for the production of infrastructurecompatible, cost-competitive liquid hydrocarbon fuels from biomass. Specifically, this report details two conceptual designs based on projected product yields and quality improvements via catalyst development and process integration. It is expected that these research improvements will be made within the 2022 timeframe. The two conversion pathways detailed are (1) in situ and (2) ex situ upgrading of vapors produced from the fast pyrolysis of biomass. While the base case conceptual designs and underlying assumptions outline performance metrics for feasibility, it should be noted that these are only two of many other possibilities in this area of research. Other promising process design options emerging from the research will be considered for future techno-economic analysis.

  3. An innovative bioelectrochemical-anaerobic digestion-coupled system for in-situ ammonia recovery and biogas enhancement: process performance and microbial ecology

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    Ammonia (NH4+/NH3) inhibition during anaerobic digestion process is one of the most frequent problems existing in biogas plants, resulting in unstable process and reduced biogas production. In this study, we developed a novel hybrid system, consisted of a submersed microbial resource recovery cell...... (SMRC) and a continuous stirred tank reactor (CSTR), to prevent ammonia toxicity during anaerobic digestion by in-situ ammonia recovery and electricity production. In batch experiment, the ammonia concentration in the CSTR decreased from 6 to 0.7 g-N/L with an average recovery rate of 0.18 g...... of ammonia recovery on the microbial community composition in the integrated system. Results clearly indicate the great potential of the SMRC-CSTR-coupled system for efficient and cost-effective ammonia recovery, energy production and treatment of ammonia-rich residues....

  4. Objective lens

    Science.gov (United States)

    Olczak, Eugene G. (Inventor)

    2011-01-01

    An objective lens and a method for using same. The objective lens has a first end, a second end, and a plurality of optical elements. The optical elements are positioned between the first end and the second end and are at least substantially symmetric about a plane centered between the first end and the second end.

  5. Processing map and hot working mechanisms in a P/M TiAl alloy composite with in situ carbide and silicide dispersions

    International Nuclear Information System (INIS)

    Rao, K.P.; Prasad, Y.V.R.K.

    2010-01-01

    Research highlights: Mechanical alloying of Ti and Al with small additions of Si and C was used to synthesize metastable phases, which were incorporated in Ti-Al matrices using powder metallurgy techniques. These metastable phases (or also called as precursors), at higher temperatures, transformed in situ into very fine hard reinforcements that develop coherent interface with the surrounding matrix. Typically, Ti5Si3 and TiC are the end products after the synthesis of composite. In this study, hot working behavior of such composites has been studied using the concepts of processing maps to identify the safe and best processing conditions that should be adopted while forming this composite. Also, kinetic analysis of hot deformation has been performed to identify the dominant deformation mechanism. The results are compared with that of base TiAl matrix. The powder metallurgy route offers the advantage of working the material at much lower temperatures compared to the traditional cast and forge route. - Abstract: A titanium aluminide alloy composite with in situ carbide and silicide dispersions has been synthesized by mixing 90% of matrix with elemental composition of 46Ti-46Al-4Nb-2Cr-2Mn and 10% precursor with composition 55Ti-27Al-12Si-6C prepared by mechanical alloying. The powder mixture was blended for 2 h followed by hot isostatic pressing (HIP) at 1150 deg. C for 4 h under a pressure of 150 MPa. In addition to TiAl alloy matrix, the microstructure of the HIP'ed billet showed a small volume fraction of Nb-rich intermetallic phase along with carbide and silicide dispersions formed in situ during HIP'ing. Cylindrical specimens from the HIP'ed billets were compressed at temperatures and strain rates in the ranges of 800-1050 deg. C and 0.0001-1 s -1 . The flow curves exhibited flow softening leading to a steady-state flow at strain rates lower than 0.01 s -1 while fracture occurred at higher strain rates. The processing map developed on the basis of flow stress at

  6. Enabling next generation composite manufacturing by in-situ structural evaluation and process adjustment, International Symposium on Composites Manufacturing

    OpenAIRE

    Wille, Tobias

    2016-01-01

    Current composite part development and manufacturing processes still requires a disproportional high effort in order to find optimal process parameters and to meet required qualities and tolerances of high performance light weight structures. Within the ECOMISE project new technologies were developed and integrated into the ECOMISE Manufacturing System in order to maximize process efficiency at reduced costs and production time of thermoset composite manufacturing and post-processing. The ...

  7. In Situ Wetland Restoration Demonstration

    Science.gov (United States)

    2016-06-01

    applied to the soil (see Figure 5-3). iv. The benthic community was sampled for abundance, taxa richness, Biotic Index, functional feeding groups ...1 Figure 1-2 Freshwater Tidal Wetland...process (Chadwick, 2008). Figure 1-2 Freshwater Tidal Wetland ESTCP Project ER-200825 In Situ Wetland Restoration Demonstration ER-200825 Final

  8. Modeling in situ vitrification

    International Nuclear Information System (INIS)

    Mecham, D.C.; MacKinnon, R.J.; Murray, P.E.; Johnson, R.W.

    1990-01-01

    In Situ Vitrification (ISV) process is being assessed by the Idaho National Engineering Laboratory (INEL) to determine its applicability to transuranic and mixed wastes buried at INEL'S Subsurface Disposal Area (SDA). This process uses electrical resistance heating to melt waste and contaminated soil in place to produce a durable glasslike material that encapsulates and immobilizes buried wastes. This paper outlines the requirements for the model being developed at the INEL which will provide analytical support for the ISV technology assessment program. The model includes representations of the electric potential field, thermal transport with melting, gas and particulate release, vapor migration, off-gas combustion and process chemistry. The modeling objectives are to help determine the safety of the process by assessing the air and surrounding soil radionuclides and chemical pollution hazards, the nuclear criticality hazard, and the explosion and fire hazards, help determine the suitability of the ISV process for stabilizing the buried wastes involved, and help design laboratory and field tests and interpret results. 3 refs., 2 figs., 1 tab

  9. Depth probing of the hydride formation process in thin Pd films by combined electrochemistry and fiber optics-based in situ UV/vis spectroscopy.

    Science.gov (United States)

    Wickman, Björn; Fredriksson, Mattias; Feng, Ligang; Lindahl, Niklas; Hagberg, Johan; Langhammer, Christoph

    2015-07-15

    We demonstrate a flexible combined electrochemistry and fiber optics-based in situ UV/vis spectroscopy setup to gain insight into the depth evolution of electrochemical hydride and oxide formation in Pd films with thicknesses of 20 and 100 nm. The thicknesses of our model systems are chosen such that the films are thinner or significantly thicker than the optical skin depth of Pd to create two distinctly different situations. Low power white light is irradiated on the sample and analyzed in three different configurations; transmittance through, and, reflectance from the front and the back side of the film. The obtained optical sensitivities correspond to fractions of a monolayer of adsorbed or absorbed hydrogen (H) and oxygen (O) on Pd. Moreover, a combined simultaneous readout obtained from the different optical measurement configurations provides mechanistic insights into the depth-evolution of the studied hydrogenation and oxidation processes.

  10. In situ x-ray observations of the diamond formation process in the C-H sub 2 O-MgO system

    CERN Document Server

    Okada, T; Shimomura, O

    2002-01-01

    The diamond formation process in aqueous fluid catalyst under high-pressure and high-temperature conditions has been observed for the first time. Quench experiments and in situ x-ray diffraction experiments using synchrotron radiation have been performed upon a mixture of brucite (Mg(OH) sub 2) and graphite as the starting material. It was confirmed that brucite decomposed into periclase and H sub 2 O at 3.6 GPa and 1050 deg. C while its complete melting occurred at 6.2 GPa and 1150 deg. C, indicating that the solubility of MgO in H sub 2 O greatly increases with increasing pressure. The conversion of carbon from its graphite to its diamond form in aqueous fluid was observed at 7.7 GPa and 1835 deg. C.

  11. Performance evaluation of a green process for microalgal CO2 sequestration in closed photobioreactor using flue gas generated in-situ.

    Science.gov (United States)

    Yadav, Geetanjali; Karemore, Ankush; Dash, Sukanta Kumar; Sen, Ramkrishna

    2015-09-01

    In the present study, carbon-dioxide capture from in situ generated flue gas was carried out using Chlorella sp. in bubble column photobioreactors to develop a cost effective process for concomitant carbon sequestration and biomass production. Firstly, a comparative analysis of CO2 sequestration with varying concentrations of CO2 in air-CO2 and air-flue gas mixtures was performed. Chlorella sp. was found to be tolerant to 5% CO2 concentration. Subsequently, inhibitory effect of pure flue gas was minimized using various strategies like use of high initial cell density and photobioreactors in series. The final biofixation efficiency was improved by 54% using the adopted strategies. Further, sequestered microalgal biomass was analyzed for various biochemical constituents for their use in food, feed or biofuel applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. In situ small-angle X-ray scattering observations of Pt/NaY catalysts during processing: sintering of Pt

    Energy Technology Data Exchange (ETDEWEB)

    Brumberger, H. [Syracuse Univ., NY (United States). Dept. of Chemistry; Goodisman, J. [Syracuse Univ., NY (United States). Dept. of Chemistry; Ramaya, R. [Syracuse Univ., NY (United States). Dept. of Chemistry; Ciccariello, S. [Padua Univ. (Italy). Dipt. di Fisica

    1996-10-01

    Small-angle X-ray scattering observations on Pt/NaY catalysts, made in situ during calcination and reduction stages of processing, demonstrate the usefulness of this technique in following morphological changes. Observations show that the same platinum species (Pt{sup 0} under the preparation conditions used) is present in the early stages of calcination, carried out at relatively high heating rates, as after reduction, and that the ultimate dispersity of the metal is already reached within 0.5 h of the start of calcination. Increasing aggregation of metal particles occurs at calcination temperatures higher than 573 K, leading to average particle sizes too large to fit the supercages of the zeolite framework. With the assumption that the metal is a Maxwellian distribution of spheres, values of the distribution parameters giving the best fit to the scattering for each catalyst sample are found; from these parameters, average particle radii are calculated. (orig.).

  13. New methods of in situ metrology and process control for EBF3 Additive Manufacturing, a feasibility study Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a methodology for advanced process control and deposition analysis built around using signals generated by beam-component interactions in...

  14. Ceramic Heat Exchangers and Chemical Reactors with Micro-Scale Features for In-Situ Resource Processing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — It is proposed to develop compact and lightweight ceramic heat exchangers and chemical reactors suitable for high temperature processes. These devices will have...

  15. A Stochastic Method to Manage Delay and Missing Values for In-Situ Sensors in an Alternating Activated Sludge Process

    DEFF Research Database (Denmark)

    Stentoft, Peter Alexander; Munk-Nielsen, Thomas; Mikkelsen, Peter Steen

    2017-01-01

    In the alternating activated sludge process with rule-based control, online N-measurements are of great importance for maintaining good control. These measurements can be delayed due to sensor processing time, turbulence at the location in the aeration tank where the sensor is placed, etc....... The measurements may also be temporarily unavailable because of recalibration, communication faults or other errors. Here we present a method that handles such delay and missing observations. The model is based on zero order hold stochastic differential equations which use binary signals for influent flow...... and aeration to determine the state of the alternating process. It also uses measured ammonium and nitrate concentrations, which are shifted to account for delay. The method is developed and tested with data from a WWTP located in Kolding, Denmark. Results indicate that even though the model is simple...

  16. In-situ monitoring of surface post-processing in large aperture fused silica optics with Optical Coherence Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Guss, G M; Bass, I l; Hackel, R P; Mailhiot, C; Demos, S G

    2008-02-08

    Optical Coherence Tomography is explored as a method to image laser-damage sites located on the surface of large aperture fused silica optics during post-processing via CO{sub 2} laser ablation. The signal analysis for image acquisition was adapted to meet the sensitivity requirements for this application. A long-working distance geometry was employed to allow imaging through the opposite surface of the 5-cm thick optic. The experimental results demonstrate the potential of OCT for remote monitoring of transparent material processing applications.

  17. [Data processing and QA/QC of atmosphere CO2 and CH4 concentrations by a method of GC-FID in-situ measurement at Waliguan station].

    Science.gov (United States)

    Zhang, Fang; Zhou, Ling-Xi; Liu, Li-Xin; Fang, Shuang-Xi; Yao, Bo; Xu, Lin; Zhang, Xiao-Chun; Masarie, Kenneth A; Conway, Thomas J; Worthy, Douglas E J; Ernst, Michele

    2010-10-01

    To strengthen scientific management and sharing of greenhouse gas data obtained from atmospheric background stations in China, it is important to ensure the standardization of observations and establish the data treatment and quality control procedure so as to maintain consistency in atmospheric carbon dioxide (CO2) and methane (CH4) measurements from different background stations. An automated gas chromatographic system (Hewlett Packard 5890GC employing flame ionization detection) for in situ measurements of atmospheric CO2 and CH4 has been developed since 1994 at the China Global Atmosphere Watch Baseline Observatory at Mt. Waliguan, in Qinhai. In this study, processing and quality control flow of CO2 and CH4 data acquired by HP ChemStation are discussed in detail, including raw data acquisition, data merge, time series inspection, operator flag, principal investigator flag, and the comparison of the GC measurement with the flask method. Atmosphere CO2 and CH4 mixing ratios were separated as background and non-background data using a robust local regression method, approximately 72% and 44% observed values had been filtered as background data for CO2 and CH4, respectively. Comparison of the CO1 and CH, in situ data to the flask sampling data were in good agreement, the relative deviations are within +/- 0.5% for CO2 and for CH4. The data has been assimilated into global database (Globalview-CO2, Globalview-CH4), submitted to the World Data Centre for Greenhouse Gases (WDCGG), and applied to World Meteorological Organization (WMO) Greenhouse Gas Bulletin and assessment reports of the United Nations Intergovernmental Panel on Climate Change (IPCC).

  18. Thermally conductive, electrically insulating and melt-processable polystyrene/boron nitride nanocomposites prepared by in situ reversible addition fragmentation chain transfer polymerization

    International Nuclear Information System (INIS)

    Huang, Xingyi; Wang, Shen; Zhu, Ming; Yang, Ke; Jiang, Pingkai; Bando, Yoshio; Golberg, Dmitri; Zhi, Chunyi

    2015-01-01

    Thermally conductive and electrically insulating polymer/boron nitride (BN) nanocomposites are highly attractive for various applications in many thermal management fields. However, so far most of the preparation methods for polymer/BN nanocomposites have usually caused difficulties in the material post processing. Here, an in situ grafting approach is designed to fabricate thermally conductive, electrically insulating and post-melt processable polystyrene (PS)/BN nanosphere (BNNS) nanocomposites by initiating styrene (St) on the surface functionalized BNNSs via reversible addition fragmentation chain transfer polymerization. The nanocomposites exhibit significantly enhanced thermal conductivity. For example, at a St/BN feeding ratio of 5:1, an enhancement ratio of 1375% is achieved in comparison with pure PS. Moreover, the dielectric properties of the nanocomposites show a desirable weak dependence on frequency, and the dielectric loss tangent of the nanocomposites remains at a very low level. More importantly, the nanocomposites can be subjected to multiple melt processing to form different shapes. Our method can become a universal approach to prepare thermally conductive, electrically insulating and melt-processable polymer nanocomposites with diverse monomers and nanofillers. (paper)

  19. Process design of in situ esterification-transesterifica tion for biodiesel production from residual oil of spent bleaching earth (SBE)

    Science.gov (United States)

    Suryani, A.; Mubarok, Z.; Suprihatin; Romli, M.; Yunira, E. N.

    2017-05-01

    Indonesia is the largest producer of Crude Palm Oil (CPO) in the world. CPO refining process produces spent bleaching earth (SBE), which still contains 20-30% oil. This residual oil is very potential to be developed as a biodiesel feedstock. The purpose of this research was to develop an in situbiodiesel production process of residual oil of SBE, which covered stirring speed of esterification and transesterification and also transesterification time to produce biodiesel with the best characteristics. The production was conducted in a 100 L reactor. The stirring speeds applied were 650 rpm and 730 rpm, and the transesterification time varied at 60, 90 and 120 minutes. The combination of 730 rpm stirring speed for 90 minutes transesterification resulted in the best biodiesel characteristics with the yield of 85%, the specific energy of 6,738 kJ/kg and the heater efficiency of 48%. The physico-chemical properties of biodiesel was in conformity with the SNI of Biodiesel.

  20. In situ measurement using FBGs of process-induced strains during curing of thick glass/epoxy laminate plate

    DEFF Research Database (Denmark)

    Nielsen, Michael Wenani; Schmidt, Jacob Wittrup; Hattel, Jesper Henri

    2012-01-01

    Bragg grating sensors are used to monitor process-induced strains during vacuum infusion of a thick glass/epoxy laminate. The measured strains are compared with predictions from a cure hardening instantaneous linear elastic (CHILE) thermomechanical numerical model where different mechanical boundary...... predicts the experimental transverse strains well when a tied boundary condition at the tool/part interface is used and the tool thermal expansion is taken into account. However, the CHILE approach is shown to overestimate residual strains after demoulding because of the shortcomings of the model...... conditions are employed. The accuracy of the CHILE model in predicting process-induced internal strains, in what is essentially a viscoelastic boundary value problem, is investigated. A parametric study is furthermore performed to reveal the effect of increasing the laminate thickness. The numerical model...

  1. Understanding Groundwater and Surface Water Exchange Processes Along a Controlled Stream Using Thermal Remote Sensing and In-Situ Measurements

    Science.gov (United States)

    Varli, D.; Yilmaz, K. K.

    2016-12-01

    Effective management of water resources requires understanding and quantification of interaction between groundwater and surface water bodies. Moreover, the exchange processes have recently received increasing attention due to important influences on biogeochemical and ecological status of watersheds. In this study we investigated the exchange processes between surface water and groundwater along Kirmir stream - a controlled stream nearby Kizilcahamam, Ankara, Turkey. At the first stage, potential stream reaches where the exchange processes could occur were pinpointed using geological and geomorphological information. Then, thermal remote sensing was utilized to further narrow down the potential locations in which interaction could occur at a smaller scale. Nested piezometers were installed at identified locations to observe the variations in vertical hydraulic gradient over time. Differential discharge measurements were performed to understand the gains and losses along the stream reach. Streambed temperature measurements were taken at two different depths for a period of time using temperature loggers to calculate the vertical fluid fluxes through the streambed at various locations. Basic water quality field parameters (temperature, electrical conductivity, total dissolved solid amount, dissolved oxygen, pH and oxidation - reduction potential) were measured along the stream reach, from surface water and the piezometers as wells as from the nearby springs and wells. Chloride mass balance was performed to find the contribution of groundwater and chloride concentrations were associated with the geology of the area. This hierarchical, multi-scale methodology provided an efficient and effective way to determine the locations and the direction of groundwater and surface water exchange processes within the study area.

  2. Investigation of the geokinetics horizontal in situ oil shale retorting process. Quarterly report, April, May, June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D.L.

    1980-08-01

    The Retort No. 18 burn was terminated on May 11, 1980. A total of 5547 barrels of shale oil or 46 percent of in-place resource was recovered from the retort. The EPA-DOE/LETC post-burn core sampling program is underway on Retort No. 16. Eleven core holes (of 18 planned) have been completed to date. Preliminary results indicate excellent core recovery has been achieved. Recovery of 702 ft of core was accomplished. The Prevention of Significant Deterioration (PSD) permit application was submitted to the EPA regional office in Denver for review by EPA and Utah air quality officials. The application for an Underground Injection Control (UIC) permit to authorize GKI to inject retort wastewater into the Mesa Verde Formation is being processed by the State of Utah. A hearing before the Board of Oil, Gas and Mining is scheduled in Salt Lake City, Utah, for July 22, 1980. Re-entry drilling on Retort No. 24 is progressing and placement of surface equipment is underway. Retort No. 25 blasthole drilling was completed and blast preparations are ongoing. Retort No. 25 will be blasted on July 18, 1980. The retort will be similar to Retort No. 24, with improvements in blasthole loading and detonation. US Patent No. 4,205,610 was assigned to GKI for a shale oil recovery process. Rocky Mountain Energy Company (RME) is evaluating oil shale holdings in Wyoming for application of the GKI process there.

  3. Second-Order Biomimicry: In Situ Oxidative Self-Processing Converts Copper(I)/Diamine Precursor into a Highly Active Aerobic Oxidation Catalyst.

    Science.gov (United States)

    McCann, Scott D; Lumb, Jean-Philip; Arndtsen, Bruce A; Stahl, Shannon S

    2017-04-26

    A homogeneous Cu-based catalyst system consisting of [Cu(MeCN) 4 ]PF 6 , N , N '-di- tert -butylethylenediamine (DBED), and p -( N , N -dimethylamino)pyridine (DMAP) mediates efficient aerobic oxidation of alcohols. Mechanistic study of this reaction shows that the catalyst undergoes an in situ oxidative self-processing step, resulting in conversion of DBED into a nitroxyl that serves as an efficient cocatalyst for aerobic alcohol oxidation. Insights into this behavior are gained from kinetic studies, which reveal an induction period at the beginning of the reaction that correlates with the oxidative self-processing step, EPR spectroscopic analysis of the catalytic reaction mixture, which shows the buildup of the organic nitroxyl species during steady state turnover, and independent synthesis of oxygenated DBED derivatives, which are shown to serve as effective cocatalysts and eliminate the induction period in the reaction. The overall mechanism bears considerable resemblance to enzymatic reactivity. Most notable is the "oxygenase"-type self-processing step that mirrors generation of catalytic cofactors in enzymes via post-translational modification of amino acid side chains. This higher-order function within a synthetic catalyst system presents new opportunities for the discovery and development of biomimetic catalysts.

  4. Hybrid perovskite solar cells: In situ investigation of solution-processed PbI2 reveals metastable precursors and a pathway to producing porous thin films

    KAUST Repository

    Barrit, Dounya

    2017-04-17

    The successful and widely used two-step process of producing the hybrid organic-inorganic perovskite CH3NH3PbI3, consists of converting a solution deposited PbI2 film by reacting it with CH3NH3I. Here, we investigate the solidification of PbI2 films from a DMF solution by performing in situ grazing incidence wide angle X-ray scattering (GIWAXS) measurements. The measurements reveal an elaborate sol–gel process involving three PbI2⋅DMF solvate complexes—including disordered and ordered ones—prior to PbI2 formation. The ordered solvates appear to be metastable as they transform into the PbI2 phase in air within minutes without annealing. Morphological analysis of air-dried and annealed films reveals that the air-dried PbI2 is substantially more porous when the coating process produces one of the intermediate solvates, making this more suitable for subsequent conversion into the perovskite phase. The observation of metastable solvates on the pathway to PbI2 formation open up new opportunities for influencing the two-step conversion of metal halides into efficient light harvesting or emitting perovskite semiconductors.

  5. A novel metal-to-metal bonding process through in-situ formation of Ag nanoparticles using Ag2O microparticles

    International Nuclear Information System (INIS)

    Hirose, Akio; Tatsumi, Hiroaki; Takeda, Naoya; Akada, Yusuke; Ogura, Tomo; Ide, Eiichi; Morita, Toshiaki

    2009-01-01

    The metal-to-metal bonding has been successfully achieved via the bonding process using Ag metallo-organic nanoparticles at a bonding temperature of around 300-, which can be alternative to the current microsoldering in electronics assembly using high-temperature solders. However, further reduction of bonding temperature and/or bonding pressure is needed. In the present research, a novel bonding process through in-situ formation of Ag nanoparticles instead of the filler material of the Ag metallo-organic nanoparticles has been developed. The Ag nanoparticles can form by the reduction of Ag 2 O particles. In this study, the Ag 2 O particles were mixed with triethylene glycol as a reducing agent to form a paste for bonding. The Au coated cylindrical specimens were bonded using the paste. The Ag nanoparticles formed at around 130 to 160 through the reduction process of Ag2O particles with triethylene glycol. The Ag nanoparticles were immediately sintered each other due to a great surface energy per volume. A transmission electron microscope observation revealed that the sintered Ag metallurgically bonded to the Au substrate at around 160 and a dense Ag layer formed after further heating. The tensile strength of the joint bonded at 250 under a bonding pressure of 5MPa was around 60MPa

  6. Spray process for in situ synthesizing Ti(C,N)-TiB2-Al2O3 composite ceramic coatings

    Science.gov (United States)

    Zhou, Jian; Liu, Hongwei; Sun, Sihao

    2017-12-01

    Using core wires with Ti-B4C-C as core and Al as strip materials, Ti(C,N)-TiB2-Al2O3 composite ceramic coatings were prepared on 45 steel substrates by the reactive arc spray technology. The influence of spray voltage, current, gas pressure and distance on the coatings was discussed. The spray parameters were optimized with porosity of the coatings as evaluation standard. The results showed that the most important factor which influences the quality of the coatings was spray distance. Then spray gas pressure, current and voltage followed in turn. The optimum process was spray current of 120A, voltage of 36, gas pressure of 0.7MPa and distance of 160mm. The porosity of coatings prepared in this spray process was only 2.11%. The coatings were composed of TiB2, TiC0.3N0.7, TiN, Al2O3 and AlN. Good properties and uniform distribution of these ceramic phases made the coatings have excellent comprehensive performances.

  7. Evaluation of the performance degradation at PAFC investigation of dealloying process of electrocatalysts with in-situ XRD

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Noriyuki; Uchida, Hiroyuki; Watanabe, Masahiro [Yamanashi Univ., Kofu (Japan)] [and others

    1996-12-31

    As a complementary research project to the demonstration project of 5MW and 1 MW PAFC plants, the mechanism and rate of deterioration of the cells and stacks have been studied from 1995 FY, with the objective of establishing an estimation method for the service life-time of the cell stacks. This work has been performed in the Basic Research Project, as part of that project on PAFC`s, selecting four subjects (Electrocatalysts degradation, Electrolyte fill-level, Cell material corrosion, Electrolyte loss) as the essential factors relating to the life-time. In this study, the effect of temperature and potential on the dealloying process of electrocatalysts was examined in H{sub 3}PO{sub 4} electrolyte with X-ray diffraction measurement.

  8. In situ synthesis mechanism of Al{sub 2}O{sub 3}-Mo nanocomposite by ball milling process

    Energy Technology Data Exchange (ETDEWEB)

    Heidarpour, A. [Department of Materials Engineering, Nanotechnology and advance material Institute, Isfahan University of Technology (IUT), Isfahan 84156-83111 (Iran, Islamic Republic of)], E-mail: a.heidarpour@gmail.com; Karimzadeh, F.; Enayati, M.H. [Department of Materials Engineering, Nanotechnology and advance material Institute, Isfahan University of Technology (IUT), Isfahan 84156-83111 (Iran, Islamic Republic of)

    2009-05-27

    Al{sub 2}O{sub 3}-Mo nanocomposites were synthesized by ball milling of aluminum and molybdenum oxide powder mixtures. The structural evaluation of powder particles after different milling times was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and measurement of vial temperature. The molybdenum oxide and aluminum reaction appeared to occur through a rapid combustion reaction process. As a result, an alumina matrix nanocomposite containing molybdenum particulate was formed. In final stage of milling, Mo and alumina had a crystallite size of about 28 nm and 60 nm, respectively. After annealing at 800 deg. C for 60 min, Mo crystallite size remained constant. However, {alpha}-alumina crystallite size increased to 120 nm. After annealing a partial transformation of {alpha}-Al{sub 2}O{sub 3} into different polymorphic, {gamma}-Al{sub 2}O{sub 3} with a crystallite size of 50 nm was observed.

  9. Investigation of the Geokinetics horizontal in situ oil shale retorting process. Quarterly report, July, August, September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D.L.

    1980-11-01

    Progress is reported by Geokinetics on the successful blasting of Retort No. 25. Preparations are described for the ignition of Retort No. 24 nearing completion. This will be the largest retort processing facility utilized to date. Meteorological data of the area was obtained for permit applications from the Utah Air Conservation Committee and the US EPA. These must be obtained before ignition of retort No. 24. Drilling for the post-burn core sampling program (Retorts No. 16 and No. 17) was completed during the quarter. Approval to inject effluent water into the Mesa Verde Formation through a deep well was obtained. Construction of a new 1 1/2 acre evaporating pond has begun. The DOE Oil Shale Task Force will aid in the environmental research program; its role is described. A new vibro-rotary hammer was tested. Drilling penetration rates increased by 35%. A patent on horizontal fracturing methods was obtained. (DMC)

  10. Data on the optimized sulphate electrolyte zinc rich coating produced through in-situ variation of process parameters.

    Science.gov (United States)

    Fayomi, Ojo Sunday Isaac

    2018-02-01

    In this study, a comprehensive effect of particle loading and optimised process parameter on the developed zinc electrolyte was presented. The depositions were performed between 10-30 min at a stirring rate of 200 rpm at room temperature of 30 °C. The effect of coating difference on the properties and interfacial surface was acquired, at a voltage interval between 0.6 and 1.0 V for the coating duration. The framework of bath condition as it influences the coating thickness was put into consideration. Hence, the electrodeposition data for coating thickness, and coating per unit area at constant distance between the anode and cathode with depth of immersion were acquired. The weight gained under varying coating parameter were acquired and could be used for designing and given typical direction to multifunctional performance of developed multifacetal coatings in surface engineering application.

  11. The perceptual cognitive processes underpinning skilled performance in volleyball: evidence from eye-movements and verbal reports of thinking involving an in situ representative task.

    Science.gov (United States)

    Afonso, José; Garganta, Jêlio; McRobert, Allistair; Williams, Andrew M; Mesquita, Isabel

    2012-01-01

    An extensive body of work has focused on the processes underpinning perceptual-cognitive expertise. The majority of researchers have used film-based simulations to capture superior performance. We combined eye movement recording and verbal reports of thinking to explore the processes underpinning skilled performance in a complex, dynamic, and externally paced representative volleyball task involving in situ data collection. Altogether, 27 female volleyball players performed as centre backcourt defenders in simulated sessions while wearing an eye-tracking device. After each sequence, athletes were questioned concerning their perception of the situation. The visual search strategies employed by the highly-skilled players were more exploratory than those used by skilled players, involving more fixations to a greater number of locations. Highly-skilled participants spent more time fixating on functional spaces between two or more display areas, while the skilled participants fixated on the ball trajectory and specific players. Moreover, highly-skilled players generated more condition concepts with higher levels of sophistication than their skilled counterparts. Findings highlight the value of using representative task designs to capture performance in situ. Key pointsDecision-making in complex sports relies deeply on perceptual-cognitive expertise. In turn, the effect of expertise is highly dependent on the nature and complexity of the task.Nonetheless, most researchers use simple tasks in their research designs, risking not capturing performance in a meaningful way. We proposed to use a live action setting with a complex task design, representative of real world situations.We combined eye movement registration with collection of immediate retrospective verbal reports. Although the two data sets are not directly comparable, they may be used in a complementary manner, providing a deeper and fuller understanding of the processes underpinning superior performance

  12. Tracking nitrous oxide emission processes at a suburban site with semicontinuous, in situ measurements of isotopic composition

    Science.gov (United States)

    Harris, Eliza; Henne, Stephan; Hüglin, Christoph; Zellweger, Christoph; Tuzson, Béla; Ibraim, Erkan; Emmenegger, Lukas; Mohn, Joachim

    2017-02-01

    The isotopic composition of atmospheric nitrous oxide (N2O) was measured semicontinuously, at ˜35 min frequency in intermittent periods of 1-6 days over one and a half years, using preconcentration coupled to a quantum cascade laser spectrometer at the suburban site of Dübendorf, Switzerland. The achieved measurement repeatability was 0.08‰, 0.11‰, and 0.10‰ for δ18O, site preference, and δ15Nbulk respectively, which is better than or equal to standard flask sampling-based isotope ratio mass spectrometry performance. The observed mean diurnal cycle reflected the buildup of N2O from isotopically light sources on an isotopically heavy tropospheric background. The measurements were used to determine the source isotopic composition, which varied significantly compared to chemical and meteorological parameters monitored at the site. FLEXPART-COSMO transport modeling in combination with modified Emissions Database for Global Atmospheric Research inventory emissions was used to model N2O mole fractions at the site. Additionally, isotopic signatures were estimated for different source categories using literature data and used to simulate N2O isotopic composition over the measurement period. The model was able to capture variability in N2O mole fraction well, but simulations of isotopic composition showed little agreement with observations. In particular, measured source isotopic composition exhibited one magnitude larger variability than simulated, clearly indicating that the range of isotopic source signatures estimated from literature significantly underestimates true variability of source signatures. Source δ18O signature was found to be the most sensitive tracer for urban/industry versus agricultural N2O. δ15Nbulk and site preference may provide more insight into microbial and chemical emission processes than partitioning of anthropogenic source categories.

  13. Monitoring Regional Changes in Alaskan Carbon Fluxes and Underlying Biophysical Processes Using In Situ Observations, Models and Satellite Remote Sensing

    Science.gov (United States)

    Watts, J. D.; Kimball, J. S.; Du, J.; Kim, Y.; Klene, A. E.; Moghaddam, M.; Commane, R.

    2016-12-01

    The effects of climate change within Alaskan boreal and Arctic ecosystems are evident in a lengthening non-frozen season, deepening of the permafrost active layer, and contrasting shifts in regional surface water inundation, soil wetness and patterns of vegetation greening and browning. These biophysical processes play a crucial role in greenhouse gas (CO2, CH4) exchange and the stability of carbon cycling in wetlands and other permafrost landscapes. Here we examine recent (2003-2015) changes and spatiotemporal variability in daily and seasonal carbon fluxes across Alaska, integrating observations from field measurements, eddy covariance flux towers and satellite data driven Terrestrial Carbon Flux (TCF) model simulations at 1-km resolution. The use of integrated multi-channel passive microwave remote sensing from AMSR (Advanced Microwave Scanning Radiometer) sensor records and new lower frequency (L-band) retrievals from the NASA SMAP (Soil Moisture Active Passive) mission provide a comprehensive assessment of dynamic (bi-weekly to daily) changes in vegetation biomass, surface water inundation, soil thermal and moisture conditions, with relative insensitivity to solar illumination and atmosphere constraints. The satellite microwave based environmental records are used in conjunction with MODIS optical-infrared remote sensing and ancillary meteorological data to assess daily net ecosystem carbon exchange, including CH4 emissions from anaerobic soil conditions. The flux tower observations and TCF model simulations indicate that boreal-Arctic CH4 emissions can substantially reduce the net ecosystem carbon sink, while the magnitude of reduction depends on wetland vegetation type, surface water inundation and soil moisture regimes, and the timing of seasonal warming. Considerable year-to-year variability observed in the flux tower observations and satellite records emphasizes the importance of long-term monitoring across the high northern latitudes through an

  14. In situ high-temperature gas sensors: continuous monitoring of the combustion quality of different wood combustion systems and optimization of combustion process

    Directory of Open Access Journals (Sweden)

    H. Kohler

    2018-03-01

    Full Text Available The sensing characteristics and long-term stability of different kinds of CO ∕ HC gas sensors (non-Nernstian mixed potential type during in situ operation in flue gas from different types of low-power combustion systems (wood-log- and wood-chip-fuelled were investigated. The sensors showed representative but individual sensing behaviour with respect to characteristically varying flue gas composition over the combustion process. The long-term sensor signal stability evaluated by repeated exposure to CO ∕ H2 ∕ N2 ∕ synthetic air mixtures showed no sensitivity loss after operation in the flue gas. Particularly for one of the sensors (Heraeus GmbH, this high signal stability was observed in a field test experiment even during continuous operation in the flue gas of the wood-chip firing system over 4 months. Furthermore, it was experimentally shown that the signals of these CO ∕ HC sensing elements yield important additional information about the wood combustion process. This was demonstrated by the adaptation of an advanced combustion airstream control algorithm on a wood-log-fed fireplace and by the development of a combustion quality monitoring system for wood-chip-fed central heaters.

  15. Development of a Sample Processing System (SPS) for the in situ search of organic compounds on Mars : application to the Mars Organic Molecule Analyzer (MOMA) experiment

    Science.gov (United States)

    Buch, A.; Sternberg, R.; Garnier, C.; Fressinet, C.; Szopa, C.; El Bekri, J.; Coll, P.; Rodier, C.; Raulin, F.; Goesmann, F.

    2008-09-01

    The search for past or present life signs is one of the primary goals of the future Mars exploratory missions. With this aim the Mars Organic Molecule Analyzer (MOMA) module of the ExoMars 2013 next coming European space mission is designed to the in situ analysis, in the Martian soil, of organic molecules of exobiological interest such as amino acids, carboxylic acids, nucleobases or polycyclic aromatic hydrocarbons (PAHs). In the frame of the MOMA experiment we have been developing a Sample Processing System (SPS) compatible with gas chromatography (GC) analysis. The main goal of SPS is to allow the extraction and the gas chromatography separation of the refractory organic compounds from a solid matrix at trace level within space compatible operating conditions. The SPS is a mini-reactor, containing the solid sample (~500mg), able to increase (or decrease) the internal temperature from 20 to 500 °C within 13 sec. The extraction step is therefore performed by using thermodesorption, the best yield of extraction being obtained at 300°C for 10 to 20 min. It has to be noticed that the temperature could be increased up to 500°C without a significant lost of efficiency if the heating run time is kept below 3 min. After the thermodesorption the chemical derivatization of the extracted compounds is performed directly on the soil with a mixture of MTBSTFA and DMF [buch et al.]. By decreasing the polarity of the target molecules, this step allows their volatilization at a temperature below 250°C without any chemical degradation. Once derivatized, the targeted volatile molecules are transferred through a heated transfer line in the gas chromatograph coupled with a mass spectrometer for the detection. The SPS is a "one step/one pot" sample preparation system which should allow the MOMA experiment to detect the refractory molecules absorbed in the Martian soil at a detection limit below the ppb level. A. Buch, R. Sternberg, C. Szopa, C. Freissinet, C. Garnier, J. El Bekri

  16. Connectivity and critical current density of in-situ processed MgB{sub 2} superconductors: Effect of excess Mg and non-carbon based additives

    Energy Technology Data Exchange (ETDEWEB)

    Bhadauria, P. P. S.; Gupta, Anurag, E-mail: anurag@nplindia.org; Kishan, Hari [National Physical Laboratory (CSIR), Dr. K. S. Krishnan Road, New Delhi 110012 (India); Narlikar, A. V. [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452017, MP (India)

    2014-05-14

    In a sequel to our previous paper (J. Appl. Phys. 113, 036908 (2013)), where we reported comprehensive analysis of inter-grain connectivity (A{sub F}), pinning, percolation threshold (P{sub c}), and anisotropy (γ) in a series of ex-situ processed MgB{sub 2}, we address the same issues in in-situ processed samples. MgB{sub 2} samples with stoichiometric composition, excess Mg (5 wt. %) and further 3 wt. % addition of various non-carbon based additives like nano-Ag, nano-Ni, and YBCO are synthesised by the in-situ route. Detailed investigations of X-ray diffraction, magnetization (M), and resistivity (ρ) as a function of temperature (T) and field (B) in the range 5–300 K and 0–8 T are carried out in all the samples. The resistive superconducting onset T{sub con} ∼ 38.6 ± 0.3 K and offset (where ρ goes to zero) T{sub c0} ∼ 38.1 ± 0.3 K of the samples stay nearly unchanged. The inter-grain connectivity (A{sub F}) of the samples varies between 11%–20%. All the additives result in a critical current density (J{sub c}) higher than the stoichiometric MgB{sub 2} sample, where the highest values (e.g., J{sub c}(1 T, 5 K) ∼ 1.2 × 10{sup 9} A/m{sup 2}) are observed for the sample with 5 wt. % excess Mg. The major findings based on quantitative analysis of ρ (T, B) and J{sub c} (B, T) data in all the samples are: (1) along with previously studied ex-situ samples, the J{sub c}(A{sub F}) shows a significant increase at A{sub F} ∼ 7%; (2) the irreversibility lines lie lower than the characteristic T{sub c0}(B) lines in the B-T phase diagram; (3) a universal core pinning (δl- and/or δT{sub c}- type) mechanism is revealed in the entire T range 5–30 K; and (4) typical values of P{sub c} ∼ 0.57 ± 0.04 is indicative of weak link networks.

  17. In-situ X-Ray Analysis of Rapid Thermal Processing for Thin-Film Solar Cells: Closing the Gap between Production and Laboratory Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Toney, Michael F. [SLAC National Accelerator Lab., Menlo Park, CA (United States); van Hest, Maikel F. A. M. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-02-21

    For materials synthesis, it is well known that the material final state may not reach equilibrium and depends on the synthetic process. In particular, processes that quickly remove the available energy from the material may leave it in a metastable state and the metastability may actually impart desirable functional properties. By its very nature, Rapid thermal processing (RTP) is ideally suited to produce such metastable materials. However, metastability and the dynamics of reaching a metastable state are poorly understood, since this is best accomplished through in situ monitoring. In this regard, RTP is particularly challenging as the processing time are very short (seconds to minutes). As a result, there is only poor understanding, and hence use, of RTP in industry. This is potentially a cost-increasing limitation, because RTP can decrease cost by decreasing processing time, and as such, increase throughput and decrease the total thermal budget of processing - a significant cost. RTP is already being used for key processing steps in PV technologies. With silicon wafer PV, it is used for establishing electrical contact between the Ag metal grid and the silicon (known as firing). In this process, a silicon wafer with deposited metal/frit in a grid pattern is heated rapidly to temperatures between 750 and 800 ºC. The processing time when the temperature is held above 600ºC is short (<5 seconds). This process has historically been optimized empirically and it is unclear how the thermal processing affects formation of the final contact between the metal and the silicon. In the case of thin-film PV, RTP has been demonstrated in the process of making absorber layers, i.e. CIGS and CZTS. Use of RTP can reduce the processing time from 10s of minutes to seconds, reducing the thermal budget and increasing the throughput significantly. The conversion from precursor material to final PV material is not well understood, and most of the process optimization is done

  18. From metastable to stable modifications-in situ Laue diffraction investigation of diffusion processes during the phase transitions of (GeTe)(n)Sb2Te3 (6 < n < 15) crystals.

    OpenAIRE

    Schneider, Matthias N.; Biquard, Xavier; Stiewe, Christian; Schröder, Thorsten; Urban, Philipp; Oeckler, Oliver

    2012-01-01

    Temperature dependent phase transitions of compounds (GeTe)(n)Sb₂Te₃ (n = 6, 12, 15) have been investigated by in situ microfocus Laue diffraction. Diffusion processes involving cation defect ordering at similar to 300 degrees C lead to different nanostructures which are correlated to changes of the thermoelectric characteristics.

  19. Defectless Monolithic Low-k/Cu Interconnects Produced by Chemically Controlled Chemical Mechanical Polishing Process with In situ End-Point-Detection Technique

    Science.gov (United States)

    Ueki, Makoto; Onodera, Takahiro; Ishikawa, Akira; Hoshino, Susumu; Hayashi, Yoshihiro

    2009-04-01

    Defectless monolithic low-k/Cu interconnects have been obtained for low-power LSIs by a chemically controlled local chemical mechanical polishing (CMP) process to remove a Cu/TaN barrier on hydrophobic SiOCH low-k films. In the first step, Cu-CMP, a unique end-point-detection (EDP) method is implemented to detect a very thin Cu layer (˜100 nm) that remains on the TaN barrier by in situ white-light interferometry, which is implemented in the local CMP apparatus where the wafers undergoing polishing are oriented face-up. In the second step, TaN-CMP, a SiO2 hard-mask (HM) layer on the low-k film is selectively removed to reduce the nonuniformity of the Cu line thickness, and accordingly, those of the resistance and capacitance. Here, a CMP slurry with an oxidizer is used to change the low-k surface from a hydrophobic condition to a hydrophilic condition, improving wettability and reducing the number of scratches and abrasive particles. In the post-CMP cleaning, an alkaline rinse solution with an oxidation-reduction potential (ORP) of less than -0.5 V vs a normal hydrogen electrode (NHE) produces a clean low-k surface resulting in monolithic low-k/Cu interconnects with excellent dielectric properties comparable to those of SiO2/Cu interconnects.

  20. In-situ laser processing and microstructural characteristics of YBa2Cu3O7-δ thin films on Si with TiN buffer layer

    International Nuclear Information System (INIS)

    Tiwari, P.; Zheleva, T.; Narayan, J.

    1993-01-01

    The authors have prepared high-quality superconducting YBa 2 Cu 3 O 7 -δ (YBCO) thin films on Si(100) with TiN as a buffer layer using in-situ multitarget deposition system. Both TiN and YBCO thin films were deposited sequentially by KrF excimer laser ( | = 248 nm ) at substrate temperature of 650 C . Thin films were characterized using X-ray diffraction (XRD), four-point-probe ac resistivity, scanning electron microscopy (S E M), transmission electron microscopy (TEM), and Rutherford backscattering (RBS). The TiN buffer layer was epitaxial and the epitaxial relationship was found to be cube on cube with TiN parallel Si. YBCO thin films on Si with TiN buffer layer showed the transition temperature of 90-92K with T co (zero resistance temperature) of 84K. The authors have found that the quality of the buffer layer is very important in determining the superconducting transition temperature of the thin film. The effects of processing parameters and the correlation of microstructural features with superconducting properties are discussed in detail

  1. The "bringing into cultivation" phase of the plant domestication process and its contributions to in situ conservation of genetic resources in Benin.

    Science.gov (United States)

    Vodouhè, R; Dansi, A

    2012-01-01

    All over the world, plant domestication is continually being carried out by local communities to support their needs for food, fibre, medicine, building materials, etc. Using participatory rapid appraisal approach, 150 households were surveyed in 5 villages selected in five ethnic groups of Benin, to investigate the local communities' motivations for plant domestication and the contributions of this process to in situ conservation of genetic resources. The results indicated differences in plant domestication between agroecological zones and among ethnic groups. People in the humid zones give priority to herbs mainly for their leaves while those in dry area prefer trees mostly for their fruits. Local communities were motivated to undertake plant domestication for foods (80% of respondents), medicinal use (40% of respondents), income generation (20% of respondents) and cultural reasons (5% of respondents). 45% of the species recorded are still at early stage in domestication and only 2% are fully domesticated. Eleven factors related to the households surveyed and to the head of the household interviewed affect farmers' decision making in domesticating plant species. There is gender influence on the domestication: Women are keen in domesticating herbs while men give priority to trees.

  2. The “Bringing into Cultivation” Phase of the Plant Domestication Process and Its Contributions to In Situ Conservation of Genetic Resources in Benin

    Directory of Open Access Journals (Sweden)

    R. Vodouhè

    2012-01-01

    Full Text Available All over the world, plant domestication is continually being carried out by local communities to support their needs for food, fibre, medicine, building materials, etc. Using participatory rapid appraisal approach, 150 households were surveyed in 5 villages selected in five ethnic groups of Benin, to investigate the local communities’ motivations for plant domestication and the contributions of this process to in situ conservation of genetic resources. The results indicated differences in plant domestication between agroecological zones and among ethnic groups. People in the humid zones give priority to herbs mainly for their leaves while those in dry area prefer trees mostly for their fruits. Local communities were motivated to undertake plant domestication for foods (80% of respondents, medicinal use (40% of respondents, income generation (20% of respondents and cultural reasons (5% of respondents. 45% of the species recorded are still at early stage in domestication and only 2% are fully domesticated. Eleven factors related to the households surveyed and to the head of the household interviewed affect farmers’ decision making in domesticating plant species. There is gender influence on the domestication: Women are keen in domesticating herbs while men give priority to trees.

  3. One-step, room temperature, colorimetric melamine sensing using an in-situ formation of silver nanoparticles through modified Tollens process

    Science.gov (United States)

    Wang, Huiying; Chen, Dinglong; Yu, Longquan; Chang, Ming; Ci, Lijie

    2015-02-01

    We have developed a rapid, sensitive, one-step, and selective colorimetric detection method for melamine (MEL) in milk powder based upon an in-situ formation of silver nanoparticles (AgNPs) through modified Tollens process at room temperature. The triazine ring N atoms of MEL molecule were strategically designed to complex the Ag+ through electron donor-acceptor interaction. During the AgNPs formation procedure, the MEL molecule, which has been covalently bonded with the Ag+ ions, was adsorbed to the surface of as-prepared AgNPs, resulting in the aggregation of the adjacent AgNPs with detectable decreases of absorption signal. The concentration of MEL can be determined with the naked eye or a UV-vis spectrometer at which the yellow-to-brown color change associated with aggregate enhancement takes place. This method enables rapid (less than 30 min) and sensitive (limit of detection, LOD, 10 nM) detection, and it was also able to discriminate MEL from sixteen other milk relevant coexisting compounds. This assay does not utilize organic cosolvents, enzymatic reactions, light-sensitive dye molecules, lengthy protocols, or sophisticated instrumentation thereby overcoming some of the limitations of conventional methods.

  4. Lens Model

    DEFF Research Database (Denmark)

    Nash, Ulrik William

    2014-01-01

    Firms consist of people who make decisions to achieve goals. How do these people develop the expectations which underpin the choices they make? The lens model provides one answer to this question. It was developed by cognitive psychologist Egon Brunswik (1952) to illustrate his theory...

  5. Electrokinetic remediation - a new process for in-situ remediation of polluted land used as construction terrain; Elektrokinetische Bodensanierung - Ein neues Verfahren fuer die in-situ Sanierung bebauter Altlaststandorte

    Energy Technology Data Exchange (ETDEWEB)

    Haus, R. [Karlsruhe Univ. (T.H.) (Germany). Lehrstuhl fuer Angewandte Geologie

    1998-12-31

    Electrokinetic Remediation is a coming up technology for the clean up of contaminated sites based on the electrokinetic phenomena in fine grained sediments. The following investigations offer theoretical and experimental consideration about the dependence of electrokinetic remediation techniques on the clay mineralogical composition of various clays. Finally, laboratory tests on the electroosmotic remediation of a chromate contaminated loess loam are presented. Different voltages applied led to important changes in the direction of chromate transport. When using low voltage (1 V) chromate transport was in the direction of water flow, and an increase of chromate in the effluent of the cathode could be measured. In contrast the application of high voltages up to 30 V changed the transport mechanism and high concentrations of chromate chould be detected in the anode reservoir. The results show that the clay mineral composition and the applied electric field controls the electroosmotic permeability, removal efficiency as well as the transport mechanism of the electrokinetic remediation technology in fine grained sediments. (orig.) [Deutsch] Elektrokinetische Verfahren werden in der Geotechnik zur Entwaesserung, Boeschungsstabilisierung und Bodenverbesserung von bindigen Sedimenten eingesetzt. Unter dem sanierungstechnischen Aspekt von kontaminierten Altlaststandorten ermoeglichen elektrokinetische Prozesse erstmals eine gezielte Mobilisierung von Schadstoffen (Schwermetalle, organische Verbindungen) auch in feinkoernigen Gesteinen. Entscheidend ist hierbei die Moeglichkeit eines in situ-Einsatzes unter Vermeidung des Bodenaushubes. Die vorliegenden Untersuchungen vertiefen in theoretischen und versuchstechnischen Betrachtungen die Abhaengigkeit elektrokinetischer Sanierungsverfahren von der tonmineralogischen Zusammensetzung bindiger Gesteine. Oberflaechenladung und Oberflaechenpotential ausgewaehlter Tonminerale werden quantifiziert und den Ergebnissen aus

  6. In situ groundwater bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2009-02-01

    In situ groundwater bioremediation of hydrocarbons has been used for more than 40 years. Most strategies involve biostimulation; however, recently bioaugmentation have been used for dehalorespiration. Aquifer and contaminant profiles are critical to determining the feasibility and strategy for in situ groundwater bioremediation. Hydraulic conductivity and redox conditions, including concentrations of terminal electron acceptors are critical to determine the feasibility and strategy for potential bioremediation applications. Conceptual models followed by characterization and subsequent numerical models are critical for efficient and cost effective bioremediation. Critical research needs in this area include better modeling and integration of remediation strategies with natural attenuation.

  7. Uranium in situ leaching

    International Nuclear Information System (INIS)

    1993-09-01

    Despite the depressed situation that has affected the uranium industry during the past years, the second Technical Committee Meeting on Uranium In Situ Leaching, organized by the International Atomic Energy Agency and held in Vienna from 5 to 8 October 1992, has attracted a relatively large number of participants. A notable development since the first meeting was that the majority of the contributions came from the actual operators of in situ leaching uranium production. At the present meeting, presentations on operations in the USA were balanced by those of the eastern European and Asian countries. Contributions from Bulgaria, China, Czechoslovakia, Germany (from the operation in the former German Democratic Republic), the Russian Federation and Uzbekistan represent new information not commonly available. In situ leach mining is defined in one of the paper presented as a ''mining method where the ore mineral is preferentially leached from the host rock in place, or in situ, by the use of leach solutions, and the mineral value is recovered. Refs, figs and tabs

  8. Sex in situ

    DEFF Research Database (Denmark)

    Krøgholt, Ida

    2017-01-01

    Sex er en del af vores sociale praksis og centralt for det, vi hver især er. Men bortset fra pornoindustrien, har vi ikke mange muligheder for at få adgang til billeder af sex. Teater Nordkrafts forestilling Sex in situ vil gøre seksuelle billeder til noget, der kan deles, udveksles og tales om, og...

  9. In Situ Cometary Cosmochemistry

    Science.gov (United States)

    Wright, I. P.; Andrews, D. J.; Barber, S. J.; Sheridan, S.; Morgan, G. H.; Morse, A. D.

    2013-09-01

    In 2014 the Rosetta space mission arrives at comet 67P. Herein we describe the ambitions of one of the instruments, Ptolemy, included on the lander. Our aim is to make in situ measurements of isotopic compositions of elements such as H, C, N and O.

  10. In-Situ Measurements of Low Enrichment Uranium Holdup Process Gas Piping at K-25 - Paper for Waste Management Symposia 2010 East Tennessee Technology Park Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Rasmussen, B.

    2010-01-01

    This document is the final version of a paper submitted to the Waste Management Symposia, Phoenix, 2010, abstract BJC/OR-3280. The primary document from which this paper was condensed is In-Situ Measurement of Low Enrichment Uranium Holdup in Process Gas Piping at K-25 Using NaI/HMS4 Gamma Detection Systems, BJC/OR-3355. This work explores the sufficiency and limitations of the Holdup Measurement System 4 (HJVIS4) software algorithms applied to measurements of low enriched uranium holdup in gaseous diffusion process gas piping. HMS4 has been used extensively during the decommissioning and demolition project of the K-25 building for U-235 holdup quantification. The HMS4 software is an integral part of one of the primary nondestructive assay (NDA) systems which was successfully tested and qualified for holdup deposit quantification in the process gas piping of the K-25 building. The initial qualification focused on the measurement of highly enriched UO 2 F 2 deposits. The purpose of this work was to determine if that qualification could be extended to include the quantification of holdup in UO 2 F 2 deposits of lower enrichment. Sample field data are presented to provide evidence in support of the theoretical foundation. The HMS4 algorithms were investigated in detail and found to sufficiently compensate for UO 2 F 2 source self-attenuation effects, over the range of expected enrichment (4-40%), in the North and East Wings of the K-25 building. The limitations of the HMS4 algorithms were explored for a described set of conditions with respect to area source measurements of low enriched UO 2 F 2 deposits when used in conjunction with a 1 inch by 1/2 inch sodium iodide (NaI) scintillation detector. The theoretical limitations of HMS4, based on the expected conditions in the process gas system of the K-25 building, are related back to the required data quality objectives (DQO) for the NBA measurement system established for the K-25 demolition project. The combined

  11. In-Situ Measurements of Low Enrichment Uranium Holdup Process Gas Piping at K-25 - Paper for Waste Management Symposia 2010 East Tennessee Technology Park Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen B.

    2010-01-01

    This document is the final version of a paper submitted to the Waste Management Symposia, Phoenix, 2010, abstract BJC/OR-3280. The primary document from which this paper was condensed is In-Situ Measurement of Low Enrichment Uranium Holdup in Process Gas Piping at K-25 Using NaI/HMS4 Gamma Detection Systems, BJC/OR-3355. This work explores the sufficiency and limitations of the Holdup Measurement System 4 (HJVIS4) software algorithms applied to measurements of low enriched uranium holdup in gaseous diffusion process gas piping. HMS4 has been used extensively during the decommissioning and demolition project of the K-25 building for U-235 holdup quantification. The HMS4 software is an integral part of one of the primary nondestructive assay (NDA) systems which was successfully tested and qualified for holdup deposit quantification in the process gas piping of the K-25 building. The initial qualification focused on the measurement of highly enriched UO{sub 2}F{sub 2} deposits. The purpose of this work was to determine if that qualification could be extended to include the quantification of holdup in UO{sub 2}F{sub 2} deposits of lower enrichment. Sample field data are presented to provide evidence in support of the theoretical foundation. The HMS4 algorithms were investigated in detail and found to sufficiently compensate for UO{sub 2}F{sub 2} source self-attenuation effects, over the range of expected enrichment (4-40%), in the North and East Wings of the K-25 building. The limitations of the HMS4 algorithms were explored for a described set of conditions with respect to area source measurements of low enriched UO{sub 2}F{sub 2} deposits when used in conjunction with a 1 inch by 1/2 inch sodium iodide (NaI) scintillation detector. The theoretical limitations of HMS4, based on the expected conditions in the process gas system of the K-25 building, are related back to the required data quality objectives (DQO) for the NBA measurement system established for the K-25

  12. In-Situ Simulation

    DEFF Research Database (Denmark)

    Bjerregaard, Anders Thais; Slot, Susanne; Paltved, Charlotte

    2015-01-01

    offered in situ simulation faculty with a model for integrating reported critical incidents and adverse events with contextual needs analysis and short-term observations. Furthermore the research group is working on detailing the barriers of in situ simulation such as resources for team training despite...... emergencies. It contains 12 questions, which are rated using a five-point scale, and covers four categories; leadership, teamwork and task management, and an overall score on team performance. Results: 16 simulations were conducted with 16 different teams of 10 doctors and 32 nurses. First, this study took...... of handovers. The team performance varied greatly according to how well the team members knew each other professionally as confirmed by video recordings. SAQ, and TEAM observational data are being analyzed by the research group with focus on correlation with teamwork and handovers. In summary, this study...

  13. Rapid and high sensitive structure evaluation of ferroelectric films using micro-Raman spectroscopy: In-situ observation of stress accumulation and release in PbTiO3 films during first cooling process

    International Nuclear Information System (INIS)

    Nishide, M; Nishida, K; Yamamoto, T; Matsuoka, M; Tai, T; Katoda, T; Funakubo, H

    2011-01-01

    Stress changes of the (100)/(001)-oriented PbTiO 3 (PT) films deposited on MgO(100), Pt(100)/MgO(100) and Pt(111)/Ti/SiO 2 /Si(100) substrates under the cooling process after film deposition was investigated by in-situ observation using metal organic chemical vapor deposition (MOCVD)-Raman spectroscopy combined system. The stress changed from compressive to tensile near T c and large compressive stress made high c-domain volume fraction. It was made clear that the stress condition at T c affects the c-domain volume fraction at room temperature (R.T.). These results indicate that in-situ Raman spectroscopy measurement is useful tool for monitoring the stress state under the cooling process.

  14. In Situ Mass Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The In Situ Mass Spectrometer projects focuses on a specific subsystem to leverage advanced research for laser-based in situ mass spectrometer development...

  15. Characteristics and properties of a novel in situ method of synthesizing mesoporous TiO2 nanopowders by a simple coprecipitation process without adding surfactant

    International Nuclear Information System (INIS)

    Yeh, Shang-Wei; Ko, Horng-Huey; Chiang, Hsiu-Mei; Chen, Yen-Ling; Lee, Jian-Hong; Wen, Chiu-Ming; Wang, Moo-Chin

    2014-01-01

    Highlights: • The TiO 2 precursor powder contained anatase and 19.5% NH 4 Cl. • Mesoporous anatase TiO 2 nanopowders were successfully synthesized. • Uncalcined precursor powder contained the phases of type I NH 4 Cl and anatase TiO 2 . • Anatase size increases from 3.3 to 14.3 nm when calcined at 473–773 K for 2 h. • The average pore size between 3.80 and 14.0 nm when calcined between 473 and 773 K. - Abstract: In situ synthesis of mesoporous TiO 2 nanopowders using titanium tetrachloride (TiCl 4 ) and NH 4 OH as initial materials has been successfully fabricated by a coprecipitation process without the addition of surfactant. Characteristics and properties of the mesoporous TiO 2 nanopowders were investigated using differential scanning calorimetry/thermogravimetry (DSC/TG), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) and Barrent–Joyner–Halenda (BJH) analyses, transmission electron microscopy (TEM), selected area electron diffraction (SAED) and high resolution TEM (HRTEM). The results of TG and XRD showed that the NH 4 Cl decomposed between 513 and 673 K. XRD results showed that the anatase TiO 2 only contained a single phase when the calcination temperature of the precursor powder was less than 673 K. Whereas phases of anatase and rutile TiO 2 coexist after calcining at 773 K for 2 h. The crystalline size of the anatase and rutile TiO 2 was 14.3 and 26.6 nm, respectively, when the precursor powder was calcined at 773 K for 2 h. The BET and BJH results showed a significant increase in surface area and pore volumes when the NH 4 Cl was completely decomposed. The maximum values of BET specific surface area and volume were 172.8 m 2 /g and 0.392 cm 3 /g, respectively. The average pore sizes when calcination was at 473 and 773 K for 2 h were 3.8 and 14.0 nm, respectively

  16. Characteristics and properties of a novel in situ method of synthesizing mesoporous TiO{sub 2} nanopowders by a simple coprecipitation process without adding surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Shang-Wei [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80782, Taiwan (China); Department of Life Science, National University of Kaohsiung, 700 Kaohsiung University Road, Kaohsiung 811, Taiwan (China); Ko, Horng-Huey [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80782, Taiwan (China); Chiang, Hsiu-Mei [Department of Cosmeceutics, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan (China); Chen, Yen-Ling, E-mail: yelichen@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80782, Taiwan (China); Lee, Jian-Hong [Clean Energy and Eco-Technology Center, Industrial Technology Research Institute, 8 Gongyan Road, Tainan 734, Taiwan (China); Wen, Chiu-Ming [Department of Life Science, National University of Kaohsiung, 700 Kaohsiung University Road, Kaohsiung 811, Taiwan (China); Wang, Moo-Chin, E-mail: mcwang@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80782, Taiwan (China)

    2014-11-15

    Highlights: • The TiO{sub 2} precursor powder contained anatase and 19.5% NH{sub 4}Cl. • Mesoporous anatase TiO{sub 2} nanopowders were successfully synthesized. • Uncalcined precursor powder contained the phases of type I NH{sub 4}Cl and anatase TiO{sub 2}. • Anatase size increases from 3.3 to 14.3 nm when calcined at 473–773 K for 2 h. • The average pore size between 3.80 and 14.0 nm when calcined between 473 and 773 K. - Abstract: In situ synthesis of mesoporous TiO{sub 2} nanopowders using titanium tetrachloride (TiCl{sub 4}) and NH{sub 4}OH as initial materials has been successfully fabricated by a coprecipitation process without the addition of surfactant. Characteristics and properties of the mesoporous TiO{sub 2} nanopowders were investigated using differential scanning calorimetry/thermogravimetry (DSC/TG), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) and Barrent–Joyner–Halenda (BJH) analyses, transmission electron microscopy (TEM), selected area electron diffraction (SAED) and high resolution TEM (HRTEM). The results of TG and XRD showed that the NH{sub 4}Cl decomposed between 513 and 673 K. XRD results showed that the anatase TiO{sub 2} only contained a single phase when the calcination temperature of the precursor powder was less than 673 K. Whereas phases of anatase and rutile TiO{sub 2} coexist after calcining at 773 K for 2 h. The crystalline size of the anatase and rutile TiO{sub 2} was 14.3 and 26.6 nm, respectively, when the precursor powder was calcined at 773 K for 2 h. The BET and BJH results showed a significant increase in surface area and pore volumes when the NH{sub 4}Cl was completely decomposed. The maximum values of BET specific surface area and volume were 172.8 m{sup 2}/g and 0.392 cm{sup 3}/g, respectively. The average pore sizes when calcination was at 473 and 773 K for 2 h were 3.8 and 14.0 nm, respectively.

  17. In situ observation and measurement of composites subjected to extremely high temperature

    Science.gov (United States)

    Fang, Xufei; Yu, Helong; Zhang, Guobing; Su, Hengqiang; Tang, Hongxiang; Feng, Xue

    2014-03-01

    In this work, we develop an instrument to study the ablation and oxidation process of materials such as C/SiC (carbon fiber reinforced silicon carbide composites) and ultra-high temperature ceramic in extremely high temperature environment. The instrument is integrated with high speed cameras with filtering lens, infrared thermometers and water vapor generator for image capture, temperature measurement, and humid atmosphere, respectively. The ablation process and thermal shock as well as the temperature on both sides of the specimen can be in situ monitored. The results show clearly the dynamic ablation and liquid oxide flowing. In addition, we develop an algorithm for the post-processing of the captured images to obtain the deformation of the specimens, in order to better understand the behavior of the specimen subjected to high temperature.

  18. Preparation and Loading Process of Single Crystalline Samples into a Gas Environmental Cell Holder for In Situ Atomic Resolution Scanning Transmission Electron Microscopic Observation.

    Science.gov (United States)

    Straubinger, Rainer; Beyer, Andreas; Volz, Kerstin

    2016-06-01

    A reproducible way to transfer a single crystalline sample into a gas environmental cell holder for in situ transmission electron microscopic (TEM) analysis is shown in this study. As in situ holders have only single-tilt capability, it is necessary to prepare the sample precisely along a specific zone axis. This can be achieved by a very accurate focused ion beam lift-out preparation. We show a step-by-step procedure to prepare the sample and transfer it into the gas environmental cell. The sample material is a GaP/Ga(NAsP)/GaP multi-quantum well structure on Si. Scanning TEM observations prove that it is possible to achieve atomic resolution at very high temperatures in a nitrogen environment of 100,000 Pa.

  19. A Dynamic study of Mantle processes applying In-situ Methods to Compound Xenoliths: implications for small to intermediate scale heterogeneity

    Science.gov (United States)

    Baziotis, Ioannis; Asimow, Paul; Koroneos, Antonios; Ntaflos, Theodoros; Poli, Giampero

    2013-04-01

    The mantle is the major geochemical reservoir of most rock-forming elements in the Earth. Convection and plate-tectonic driven processes act to generate local and regional heterogeneity within the mantle, which in turn through thermal and chemical interactions modulates ongoing geophysical processes; this feedback shapes the dynamics of the deep interior. Consequently, these processes contribute to the evolution of the earth throughout its geological history. Up to now, the heterogeneity of the mantle has been extensively studied in terms of conventional methods using basalt chemistry, bulk rock and mineral major and trace element analysis of isolated xenolith specimens of varying lithology, and massif exposures. The milestone of the present study, part of an ongoing research project, is the application of in-situ analytical methods such as microprobe, LA-ICP-MS and high resolution SEM in order to provide high quality major and trace element analyses as well as elemental distribution of the coexisting phases in the preserved intra-mantle lithologies, Particularly, in the context of the current study we used selected compound xenoliths from San Carlos (Arizona, USA), Kilbourne Hole (New Mexico, USA), Cima Dome and Dish Hill suites (California, USA), San Quintin (Baja California, Mexico) and Chino Valley (Arizona, USA), from the Howard Wilshire collection archived at the Smithsonian Institution. The selection of these compound xenoliths was based upon freshness and integrity of specimens, maximum distance on both sides of lithologic contacts, and rock types thought most likely to represent subsolidus juxtaposition of different lithologies that later partially melted in contact. The San Carlos samples comprise composite xenoliths with websterite, lherzolite and clinopyroxenite layers or clinopyroxenite veins surrounded by lherzolite or orthopyroxenite-rich rims. The Kilbourne Hole suite comprises spinel-(olivine) clinopyroxenite and orthopyroxenite dikes cutting

  20. In situ vitrification: Application to buried waste

    International Nuclear Information System (INIS)

    Callow, R.A.; Thompson, L.E.

    1991-01-01

    Two in situ vitrification field tests were conducted in June and July 1990 at Idaho National Engineering Laboratory. In situ vitrification is a technology for in-place conversion of contaminated soils into a durable glass and crystalline waste form and is being investigated as a potential remediation technology for buried waste. The overall objective of the two tests was to assess the general suitability of the process to remediate buried waste structures found at Idaho National Engineering Laboratory. In particular, these tests were designed as part of a treatability study to provide essential information on field performance of the process under conditions of significant combustible and metal wastes, and to test a newly developed electrode feed technology. The tests were successfully completed, and the electrode feed technology provided valuable operational control for successfully processing the high metal content waste. The results indicate that in situ vitrification is a feasible technology for application to buried waste. 2 refs., 5 figs., 2 tabs

  1. Scanning tunneling microscopy-based in situ measurement of fast tool servo-assisted diamond turning micro-structures

    International Nuclear Information System (INIS)

    Ju, Bing-Feng; Zhu, Wu-Le; Yang, Shunyao; Yang, Keji

    2014-01-01

    We propose a new in situ measurement system based on scanning tunneling microscopy (STM) to realize spiral scanning of a micro-structure without removing it after fast tool servo (FTS) cutting. To avoid distortion of the machined and measured surface, the center alignment of the FTS tool and the STM tip was first implemented by an STM in situ raster scan of two circular grooves cut by the machine tool. To originally observe the machined surface, the trace of the STM tip is put in accord with that of the FTS by setting the same start and end points of cutting and scanning and the same feed rate, and both are triggered by the subdivided rotary encoder of the spindle of the diamond turning machine. The profile data of the in situ spiral scanning of the machined micro-lens array can be fed back to compensate the depth of the cut to guarantee sub-micron form accuracy after second machining. The efficient spiral scanning, proper matching and accurate evaluation results demonstrate that the proposed STM in situ measurement approach is of great significance to the fabrication process. (paper)

  2. A course in lens design

    CERN Document Server

    Velzel, Chris

    2014-01-01

    A Course in Lens Design is an instruction in the design of image-forming optical systems. It teaches how a satisfactory design can be obtained in a straightforward way. Theory is limited to a minimum, and used to support the practical design work. The book introduces geometrical optics, optical instruments and aberrations. It gives a description of the process of lens design and of the strategies used in this process. Half of its content is devoted to the design of sixteen types of lenses, described in detail from beginning to end. This book is different from most other books on lens design because it stresses the importance of the initial phases of the design process: (paraxial) lay-out and (thin-lens) pre-design. The argument for this change of accent is that in these phases much information can be obtained about the properties of the lens to be designed. This information can be used in later phases of the design. This makes A Course in Lens Design a useful self-study book, and a suitable basis for an intro...

  3. Malignant mesothelioma in situ.

    Science.gov (United States)

    Churg, Andrew; Hwang, Harry; Tan, Larry; Qing, Gefei; Taher, Altaf; Tong, Amy; Bilawich, Ana M; Dacic, Sanja

    2018-05-01

    The existence of malignant mesothelioma in situ (MIS) is often postulated, but there are no accepted morphological criteria for making such a diagnosis. Here we report two cases that appear to be true MIS on the basis of in-situ genomic analysis. In one case the patient had repeated unexplained pleural unilateral effusions. Two thoracoscopies 9 months apart revealed only visually normal pleura. Biopsies from both thoracoscopies showed only a single layer of mildly reactive mesothelial cells. However, these cells had lost BRCA1-associated protein 1 (BAP1) and showed loss of cyclin-dependent kinase inhibitor 2 (CDKN2A) (p16) by fluorescence in-situ hybridisation (FISH). NF2 was not deleted by FISH but 28% of the mesothelial cells showed hyperploidy. Six months after the second biopsy the patient has persisting effusions but no evidence of pleural malignancy on imaging. The second patient presented with ascites and minimal omental thickening on imaging, but no visual evidence of tumour at laparoscopy. Omental biopsy showed a single layer of minimally atypical mesothelial cells with rare tiny foci of superficial invasion of fat. BAP1 immunostain showed loss of nuclear BAP1 in all the surface mesothelial cells and the invasive cells. There was CDKN2A deletion, but no deletion of NF2 by FISH. These cases show that morphologically bland single-layered surface mesothelial proliferations with molecular alterations seen previously only in invasive malignant mesotheliomas exist, and presumably represent malignant MIS. More cases are need to understand the frequency of such changes and the time-course over which invasive tumour develops. © 2018 John Wiley & Sons Ltd.

  4. In situ flash X-ray observation of projectile penetration processes and crater cavity growth in porous gypsum target analogous to low-density asteroids

    Science.gov (United States)

    Yasui, Minami; Arakawa, Masahiko; Hasegawa, Sunao; Fujita, Yukihiro; Kadono, Toshihiko

    2012-11-01

    Recent studies of impact craters formed on low-density asteroids led to the proposal of a new crater formation mechanism dominated by pore collapse and compaction. Thus, it is important to study the crater formation process associated with the projectile penetration on porous cohesive targets. Laboratory impact experiments were conducted for a porous gypsum target with porosity of 50%, and flash X-rays were used to visualize the interior of the target for in situ observation of crater formation and projectile penetration. Spherical projectiles made of three different materials, stainless steel, aluminum, and nylon were impacted at 1.9-2.4 km/s (low-velocity impact) and 5.6-6.4 km/s (high-velocity impact) by using a two-stage light-gas gun. Two imaging plates were used to take two X-ray images at a different delay time from the impact moment for one shot. Two types of crater cavity shape were found on the porous gypsum target, that is, penetration holes or hemispherical cavities, depending on the projectile size and density, and the impact velocity. The drag coefficient of a projectile was determined by measuring the penetration depth changing with time, and we found that it was closely related to the crater cavity shape: it was about 0.9 for a penetration hole, while it was 2.3-3.9 for a hemispherical cavity. This large value for a hemispherical cavity could have been caused by the deformation or the disruption of the projectile. The cratering efficiency, ρtVcr(t)/mp, was found to have a power law relationship to the scaling time for crater growth, πt = vit/rp, where vi is the impact velocity, rp is the projectile radius, and t is the time after the impact, and all data for stainless steel and aluminum projectiles merged completely and could be fitted by a power-law equation of ρtVcr(t)/mp=2.69×10-1πt1.10. Furthermore, the scaled crater volume, πV = Vcr_finalρt/mp, where Vcr_final is the final crater cavity volume, ρt is the target density, and mp is the

  5. In situ breast cancer

    International Nuclear Information System (INIS)

    Pacheco, Luis

    2004-01-01

    In situ breast cancer, particularly the ductal type, is increasing in frequency in the developed countries as well as in Ecuador, most probably. These lesions carry a higher risk of developing a subsequent invasive cancer. Treatment has changed recently due to results of randomized studies, from classical mastectomy to conservative surgery associated to radiotherapy. The Van Nuys Prognostic Index is currently the most usual instrument to guide diagnosis and treatment. Tamoxifen seems to decrease significantly the risk of tumor recurrence after initial treatment. (The author)

  6. Development of an integrated in-situ remediation technology. Topical report for task No. 7 entitled: Development of degradation processes, September 26, 1994--May 25, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Brackin, M.J.; Heitkamp, M.A.; Ho, Sa V. [and others

    1997-04-01

    Contamination in low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to law permeability soils present at many contaminated sites. The Lasagna technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated soil and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. The general concept of the technology is to use electrokinetics to move contaminants from the soils into {open_quotes}treatment zones{close_quotes} where the contaminants can be removed from the water by either adsorption or degradation. The focus of technical task No. 7 was to optimize the conditions required for electro-osmotic movement of contaminants and microbial degradation in the treatment zones. This topical report summarizes the results of aerobic microbial research performed to evaluate the feasibility of incorporating the chemical-degrading organisms into biotreatment zones in laboratory-scale electro-osmosis units and to demonstrate the combination of electrokinetics and aerobic microbial degradation for the removal of contaminants from clay. Also included in this report are the results of investigating microbial movement during electro-osmosis and studies involving the optimization of the microbial support matrix in the biozone. The Stanford study was conducted in order to obtain a better understanding of rates of anaerobic reductive dehalogenation of TCE to ethylene and of factors affecting these rates in order to determine the potential for application of TCE biodegradation as part of the Lasagna technology.

  7. Development of an integrated in-situ remediation technology. Topical report for task No. 7 entitled: Development of degradation processes, September 26, 1994--May 25, 1996

    International Nuclear Information System (INIS)

    Brackin, M.J.; Heitkamp, M.A.; Ho, Sa V.

    1997-01-01

    Contamination in low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to law permeability soils present at many contaminated sites. The Lasagna technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated soil and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. The general concept of the technology is to use electrokinetics to move contaminants from the soils into open-quotes treatment zonesclose quotes where the contaminants can be removed from the water by either adsorption or degradation. The focus of technical task No. 7 was to optimize the conditions required for electro-osmotic movement of contaminants and microbial degradation in the treatment zones. This topical report summarizes the results of aerobic microbial research performed to evaluate the feasibility of incorporating the chemical-degrading organisms into biotreatment zones in laboratory-scale electro-osmosis units and to demonstrate the combination of electrokinetics and aerobic microbial degradation for the removal of contaminants from clay. Also included in this report are the results of investigating microbial movement during electro-osmosis and studies involving the optimization of the microbial support matrix in the biozone. The Stanford study was conducted in order to obtain a better understanding of rates of anaerobic reductive dehalogenation of TCE to ethylene and of factors affecting these rates in order to determine the potential for application of TCE biodegradation as part of the Lasagna technology

  8. Development of an integrated, in-situ remediation technology. Topical report for task No. 6: lab-scale development of microbial degradation process, September 26, 1994--May 25, 1996

    International Nuclear Information System (INIS)

    Odom, J.M.

    1997-01-01

    Contamination in low permeability soils poses a significant technical challenge to in situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in situ treatments such as bioremediation, vapor extraction, and pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. The technology is an integrated in situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated soil, and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. The present Topical Report for Task No. 6 summarizes the results of a study of the potential for stimulating microbial reductive dehalogenation as part of the integrated in situ treatment process at the field experiment test site at DOE's Gaseous Diffusion Plant in Paducah, Kentucky. A series of open-quotes microcosm bottle testsclose quotes were performed on samples of contaminated soil and groundwater taken from the Paducah site and spiked with trichloroethene (TCE). A number of bottles were set up, each spiked with a different carbon source in order to enhance the growth of different microbial subpopulations already present within the indigenous population in the soil. In addition, a series of bottle tests were completed with samples of the granular activated carbon (GAC) treatment zone material retrieved from the test site during the Paducah field experiment. In these tests, the GAC samples were used in place of the soil. Results of the soil-groundwater microcosms yielded a negative indication of the presence of dechlorinating bacteria at the site. However, charcoal (GAC) samples from one location in the test plot exhibited marked dechlorination with conversion of TCE to dichloroethene

  9. Contact lens in keratoconus

    Directory of Open Access Journals (Sweden)

    Varsha M Rathi

    2013-01-01

    Full Text Available Contact lenses are required for the visual improvement in patients with keratoconus. Various contact lens options, such as rigid gas permeable (RGP lenses, soft and soft toric lenses, piggy back contact lenses (PBCL, hybrid lenses and scleral lenses are availble. This article discusses about selection of a lens depending on the type of keratoconus and the fitting philosophies of various contact lenses including the starting trial lens. A Medline search was carried out for articles in the English language with the keywords keratoconus and various contact lenses such as Rose k lens, RGP lens, hybrid lens, scleral lens and PBCL.

  10. Contact lens in keratoconus

    Science.gov (United States)

    Rathi, Varsha M; Mandathara, Preeji S; Dumpati, Srikanth

    2013-01-01

    Contact lenses are required for the visual improvement in patients with keratoconus. Various contact lens options, such as rigid gas permeable (RGP) lenses, soft and soft toric lenses, piggy back contact lenses (PBCL), hybrid lenses and scleral lenses are availble. This article discusses about selection of a lens depending on the type of keratoconus and the fitting philosophies of various contact lenses including the starting trial lens. A Medline search was carried out for articles in the English language with the keywords keratoconus and various contact lenses such as Rose k lens, RGP lens, hybrid lens, scleral lens and PBCL. PMID:23925325

  11. In situ vitrification: A review

    International Nuclear Information System (INIS)

    Cole, L.L.; Fields, D.E.

    1989-11-01

    The in situ vitrification process (ISV) converts contaminated soils and sludges to a glass and crystalline product. The process appears to be ideally suited for on site treatment of both wet and dry wastes. Basically, the system requires four molybdenum electrodes, an electrical power system for vitrifying the soil, a hood to trap gaseous effluents, an off-gas treatment system, an off-gas cooling system, and a process control station. Mounted in three transportable trailers, the ISV process can be moved from site to site. The process has the potential for treating contaminated soils at most 13 m deep. The ISV project has won a number of outstanding achievement awards. The process has also been patented with exclusive worldwide rights being granted to Battelle Memorial Institute for nonradioactive applications. While federal applications still belong to the Department of Energy, Battelle transferred the rights of ISV for non-federal government, chemical hazardous wastes to a separate corporation in 1989 called Geosafe. This report gives a review of the process including current operational behavior and applications

  12. In-situ bioremediation via horizontal wells

    International Nuclear Information System (INIS)

    Hazen, T.C.; Looney, B.B.; Enzien, M.; Franck, M.M.; Fliermans, C.B.; Eddy, C.A.

    1993-01-01

    This project is designed to demonstrate in situ bioremediation of groundwater and sediment contaminated with chlorinated solvents. Indigenous microorganisms were stimulated to degrade TCE, PCE and their daughter products in situ by addition of nutrients to the contaminated zone. In situ biodegradation is a highly attractive technology for remediation because contaminants are destroyed, not simply moved to another location or immobilized, thus decreasing costs, risks, and time, while increasing efficiency and public and regulatory acceptability. Bioremediation has been found to be among the least costly technologies in applications where it will work (Radian 1989). Subsurface soils and water adjacent to an abandoned process sewer line at the SRS have been found to have elevated levels of TCE (Marine and Bledsoe 1984). This area of subsurface and groundwater contamination is the focus of a current integrated demonstration of new remediation technologies utilizing horizontal wells. Bioremediation has the potential to enhance the performance of in situ air stripping as well as offering stand-alone remediation of this and other contaminated sites (Looney et al. 1991). Horizontal wells could also be used to enhance the recovery of groundwater contaminants for bioreactor conversions from deep or inaccessible areas (e.g., under buildings) and to enhance the distribution of nutrient or microbe additions in an in situ bioremediation

  13. In situ measurement system

    Science.gov (United States)

    Lord, D.E.

    1980-11-24

    A multipurpose in situ underground measurement system comprising a plurality of long electrical resistance elements in the form of rigid reinforcing bars, each having an open loop hairpin configuration of shorter length than the other resistance elements. The resistance elements are arranged in pairs in a unitized structure, and grouted in place in the underground volume. Measurement means are provided for obtaining for each pair the electrical resistance of each element and the difference in electrical resistance of the paired elements, which difference values may be used in analytical methods involving resistance as a function of temperature. A scanner means sequentially connects the resistance-measuring apparatus to each individual pair of elements. A source of heating current is also selectively connectable for heating the elements to an initial predetermined temperature prior to electrical resistance measurements when used as an anemometer.

  14. In situ zymography.

    Science.gov (United States)

    George, Sarah J; Johnson, Jason L

    2010-01-01

    In situ zymography is a unique laboratory technique that enables the localisation of matrix-degrading metalloproteinase (MMP) activity in histological sections. Frozen sections are placed on glass slides coated with fluorescently labelled matrix proteins. After incubation MMP activity can be observed as black holes in the fluorescent background due to proteolysis of the matrix protein. Alternatively frozen sections can be incubated with matrix proteins conjugated to quenched fluorescein. Proteolysis of the substrate by MMPs leads to the release of fluorescence. This technique can be combined with immunohistochemistry to enable co-location of proteins such as cell type markers or other proteins of interest. Additionally, this technique can be adapted for use with cell cultures, permitting precise location of MMP activity within cells, time-lapse analysis of MMP activity and analysis of MMP activity in migrating cells.

  15. In-Situ

    Science.gov (United States)

    Sasayama, Kohki; Hayashi, Tetsushi; Kohno, Hideo

    2018-08-01

    Flattening of a carbon nanotube with a switching of the flattening direction results in the formation of a nanotetrahedron/nanoribbon structure. In this study, behavior of individual carbon nanotetra-hedron/nanoribbon structures under a tensile load is observed by means of in-situ scanning electron microscopy using micro-manipulators. Positions of breakage caused by a tensile load are not necessarily at a nanotetrahedron/nanoribbon junction. The results indicate that the nanotetrahedron/nanoribbon junctions are not mechanical weak points under a tensile load, and the nanotetra-hedron/nanoribbon structures are as strong as simple multi-walled carbon nanotubes. In addition, the nanostructures maintain their shape and do not transformed to a tubular form.

  16. Design Games for In-Situ Design

    DEFF Research Database (Denmark)

    Kristiansen, Erik

    2013-01-01

    The mobile culture has spawned a host of context-based products, like location-based and tag-based applications. This presents a new challenge for the designer. There is a need of design methods that acknowledge the context and allows it to influence the design ideas. This article focuses...... on a design problem where an in-situ design practice may further the early design process: the case of designing a pervasive game. Pervasive games are computer games, played using the city as a game board and often using mobile phones with GPS. Some contextual design methods exist, but we propose an approach...... that calls for the designer to conceptualise and perform ideas in-situ, that is on the site, where the game is supposed to be played. The problem was to design a creativity method that incorporated in-situ design work and which generated game concepts for pervasive games. The proposed design method, called...

  17. In situ identification of polyphosphate- and polyhydroxyalkanoate-accumulating traits for microbial populations in a biological phosphorus removal process

    DEFF Research Database (Denmark)

    Liu, W.-T.; Nielsen, Alex Toftgaard; Wu, JH

    2001-01-01

    in situ hybridization (FISH) with rRNA-targeted, group-specific oligonucleotide probes indicated that the microbial community consisted mostly of the alpha- (9.5% of total cells), beta- (41.3%) and gamma- (6.8%) subclasses of the class Proteobacteria, Flexibacter-Cytophaga (4.5%) and the Gram......, electron microscopy with energy-dispersive X-ray analysis was used to validate the staining specificity of 4,6-diamino-2-phenylindole (DAPI) for intracellular polyphosphate and revealed the composition of polyphosphate granules accumulated in predominant bacteria as mostly P, Ca and Na. As a result, DAPI...... and PHA staining procedures could be combined with FISH to identify directly the polyphosphate- and PHA-accumulating traits of different phylogenetic groups. Members of Accumulibacter phosphatis and the novel gamma-proteobacterial group were observed to accumulate both polyphosphate and PHA. In addition...

  18. New large volume hydrothermal reaction cell for studying chemical processes under supercritical hydrothermal conditions using time-resolved in situ neutron diffraction.

    Science.gov (United States)

    Ok, Kang Min; O'Hare, Dermot; Smith, Ronald I; Chowdhury, Mohammed; Fikremariam, Hanna

    2010-12-01

    The design and testing of a new large volume Inconel pressure cell for the in situ study of supercritical hydrothermal syntheses using time-resolved neutron diffraction is introduced for the first time. The commissioning of this new cell is demonstrated by the measurement of the time-of-flight neutron diffraction pattern for TiO(2) (Anatase) in supercritical D(2)O on the POLARIS diffractometer at the United Kingdom's pulsed spallation neutron source, ISIS, Rutherford Appleton Laboratory. The sample can be studied over a wide range of temperatures (25-450 °C) and pressures (1-355 bar). This novel apparatus will now enable us to study the kinetics and mechanisms of chemical syntheses under extreme environments such as supercritical water, and in particular to study the crystallization of a variety of technologically important inorganic materials.

  19. In situ observation of initial rust formation process on carbon steel under Na2SO4 and NaCl solution films with wet/dry cycles using synchrotron radiation X-rays

    International Nuclear Information System (INIS)

    Yamashita, M.; Konishi, H.; Kozakura, T.; Mizuki, J.; Uchida, H.

    2005-01-01

    Atmospheric corrosion of steel proceeds under thin electrolyte film formed by rain and dew condensation followed by wet and dry cycles. It is said that rust layer formed on steel as a result of atmospheric corrosion strongly affects the corrosion behavior of steel. The effect of environmental corrosiveness on the formation process and structure of the rust layer is, however, not clear to date. In this study, in situ observation of the rusting process of a carbon steel covered with a thin film of Na 2 SO 4 or NaCl solution was performed under a wet/dry repeating condition by X-ray diffraction spectroscopy with white X-rays obtained from synchrotron radiation. The present in situ experiments successfully detected initial process of the rust formation. In the early cycles, the rust constituents were not well crystallized yet, but the presence of Fe(OH) 2 and Fe(OH) 3 was confirmed. In the subsequent cycles, two different solutions resulted in difference in preferential phase of the rust constituents. α-FeOOH was preferentially formed in the case of the Na 2 SO 4 solution film, whereas β-FeOOH appeared only under the NaCl solution film

  20. In-situ soil carbon analysis using inelastic neutron scattering

    Science.gov (United States)

    In situ soil carbon analysis using inelastic neutron scattering (INS) is based on the emission of 4.43 MeV gamma rays from carbon nuclei excited by fast neutrons. This in-situ method has excellent potential for easily measuring soil carbon since it does not require soil core sampling and processing ...

  1. In situ Transesterification of Microalgal Oil to Produce Algal Biodiesel

    Science.gov (United States)

    2012-06-01

    This research was to process whole microalgae cells for biodiesel production without first extracting lipids. The ultimate : goal is develop a novel process for algal biodiesel production directly from microalgae cells in a single step, i.e., in situ...

  2. The Multispectral Microscopic Imager: Integrating Microimaging with Spectroscopy for the In-Situ Exploration of the Moon

    Science.gov (United States)

    Nunez, J. I.; Farmer, J. D.; Sellar, R. G.; Allen, Carlton C.

    2010-01-01

    To maximize the scientific return, future robotic and human missions to the Moon will need to have in-situ capabilities to enable the selection of the highest value samples for returning to Earth, or a lunar base for analysis. In order to accomplish this task efficiently, samples will need to be characterized using a suite of robotic instruments that can provide crucial information about elemental composition, mineralogy, volatiles and ices. Such spatially-correlated data sets, which place mineralogy into a microtextural context, are considered crucial for correct petrogenetic interpretations. . Combining microscopic imaging with visible= nearinfrared reflectance spectroscopy, provides a powerful in-situ approach for obtaining mineralogy within a microtextural context. The approach is non-destructive and requires minimal mechanical sample preparation. This approach provides data sets that are comparable to what geologists routinely acquire in the field, using a hand lens and in the lab using thin section petrography, and provide essential information for interpreting the primary formational processes in rocks and soils as well as the effects of secondary (diagenetic) alteration processes. Such observations lay a foundation for inferring geologic histories and provide "ground truth" for similar instruments on orbiting satellites; they support astronaut EVA activities and provide basic information about the physical properties of soils required for assessing associated health risks, and are basic tools in the exploration for in-situ resources to support human exploration of the Moon.

  3. Bioprocess design guided by in situ substrate supply and product removal: process intensification for synthesis of (S)-1-(2-chlorophenyl)ethanol.

    Science.gov (United States)

    Schmölzer, Katharina; Mädje, Katharina; Nidetzky, Bernd; Kratzer, Regina

    2012-03-01

    We report herein on bioprocess development guided by the hydrophobicities of substrate and product. Bioreductions of o-chloroacetophenone are severely limited by instability of the catalyst in the presence of aromatic substrate and (S)-1-(2-chlorophenyl)ethanol. In situ substrate supply and product removal was used to protect the utilized Escherichia coli whole cell catalyst based on Candida tenuis xylose reductase during the reaction. Further engineering at the levels of the catalyst and the reaction media was matched to low substrate concentrations in the aqueous phase. Productivities obtained in aqueous batch reductions were 21-fold improved by addition of 20% (v/v) hexane, NAD(+), expression engineering, cell permeabilization and pH optimization. Reduction of 300 mM substrate was accomplished in 97% yield and use of the co-solvent hexane in subsequent extraction steps led to 88% recovery. Product loss due to high catalyst loading was minimized by using the same extractant in bioreduction and product isolation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. An investigation into the effect of formulation variables and process parameters on characteristics of granules obtained by in situ fluidized hot melt granulation.

    Science.gov (United States)

    Mašić, Ivana; Ilić, Ilija; Dreu, Rok; Ibrić, Svetlana; Parojčić, Jelena; Durić, Zorica

    2012-02-28

    The aim of this study was to investigate the influence of binder content, binder particle size, granulation time and inlet air flow rate on granule size and size distribution, granule shape and flowability, as well as on drug release rate. Hydrophilic (polyethyleneglycol 2000) and hydrophobic meltable binder (glyceryl palmitostearate) were used for in situ fluidized hot melt granulation. Granule size was mainly influenced by binder particle size. Binder content was shown to be important for narrow size distribution and good flow properties. The results obtained indicate that conventional fluid bed granulator may be suitable for production of highly spherical agglomerates, particularly when immersion and layering is dominant agglomeration mechanism. Granule shape was affected by interplay of binder content, binder particle size and granulation time. Solid state analysis confirmed unaltered physical state of the granulate components and the absence of interactions between the active and excipients. Besides the nature and amount of binder, the mechanism of agglomerate formation seems to have an impact on drug dissolution rate. The results of the present study indicate that fluidized hot melt granulation is a promising powder agglomeration technique for spherical granules production. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Controlled synthesis of Bi2S3/ZnS microspheres by an in situ ion-exchange process with enhanced visible light photocatalytic activity.

    Science.gov (United States)

    Wu, Zhudong; Chen, Linlin; Xing, Chaosheng; Jiang, Deli; Xie, Jimin; Chen, Min

    2013-09-28

    A novel Bi2S3/ZnS heterostructure has been synthesized through an in situ cation-exchange method between ZnS and bismuth(III) chloride. The obtained samples were characterized by multiform techniques, such as X-ray diffraction, field emission scanning electron microscopy, high-resolution transmission microscopy, UV-visible diffuse-reflectance spectroscopy, and photoluminescence spectra. The photocatalytic activities of the obtained photocatalysts were measured by the degradation of rhodamine B (RhB) and refractory oxytetracycline (OTC) under visible-light irradiation (λ ≥ 400 nm). The as-prepared Bi2S3/ZnS photocatalysts exhibit wide absorption in the visible-light region and display superior visible-light-driven photocatalytic activities in degradation of RhB and OTC compared with pristine ZnS microspheres and Bi2S3 nanorods. The dramatic enhancement in the visible light photocatalytic performance of the Bi2S3/ZnS composites could be attributed to the effective electron-hole separations at the interfaces of the two semiconductors, which facilitate the transfer of the photoinduced carriers. The present study provides helpful insight into the design of novel and highly efficient sulfate heterostructure photocatalysts.

  6. Diffusion processes in Cu-Al-Ni shape memory alloys studied by mechanical spectroscopy and in situ transmission electron microscopy at high temperatures

    International Nuclear Information System (INIS)

    No, M.L.; Ibarra, A.; Lopez-Echarri, A.; Bocanegra, E.H.; San Juan, J.

    2006-01-01

    We have studied the mobility of defects in the frozen β phase of the Cu-Al-Ni shape memory alloys by mechanical spectroscopy as a function of temperature. In parallel, we have characterized the microstructure and their evolution with over-heating treatments. Thermal treatments have been performed in situ in a transmission electron microscope by using a heating stage. Internal friction and modulus defect measurements have been correlated with the microstructural observations by transmission electron microscopy. We discuss the behavior of the internal friction spectra, corresponding to over-heating in the β-phase, and propose microscopic mechanisms responsible for the evolution when the material is not in thermal equilibrium. In particular, the dislocations became mobile in the temperature range between 750 and 800 K where the L2 1 atomic order changes to the B2 order. A relaxation peak has been observed in the equilibrium β phase domain, which has been examined in detail by isothermal measurements as a function of frequency. The activation enthalpy of the peak has been determined to be 3.05 ± 0.1 eV, and possible microscopic mechanisms responsible for the peak are discussed

  7. In situ composite coating of titania-hydroxyapatite on titanium substrate by micro-arc oxidation coupled with electrophoretic deposition processing

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yu [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Kim, Kyoung-A. [Department of Oral and Maxillofacial Radiology, School of Dentistry and Institute of Oral Bio Science, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Park, Il Song, E-mail: ilsong@chonbuk.ac.kr [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Lee, Sook Jeong [Neural Injury Research Lab, Department of Neurology, Asan life Science Institute, University, of Ulsan, College of Medicine, Seoul 138-736 (Korea, Republic of); Bae, Tae Sung [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Lee, Min Ho, E-mail: mh@jbnu.ac.kr [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2011-09-15

    Highlights: {center_dot} HA/TiO{sub 2} coating were prepared by a MAO and EPD technique. {center_dot} The NaOH electrolyte solution containing HA particles is employed. {center_dot} MAO and EPD treatment enhances the corrosion resistance and bioactivity of titanium. - Abstract: In situ composite coating of hydroxyapatite (HA)/TiO{sub 2} were produced on titanium (Ti) substrate by micro-arc oxidation coupled with electrophoretic deposition (MAO and EPD) technique with different concentrations of HA particles in the 0.2 M NaOH electrolyte solution. The surface morphology and chemical composition of the hybrid coating were effected by HA concentration. The amount of HA particles incorporated into coating layer increased with increasing HA concentration used in the electrolyte solution. The corrosion behavior of the coating layer in simulated body fluids (SBF) was evaluated using a potentiodynamic polarization test. The corrosion resistance of the coated sample was increased compared to the untreated Ti sample. The in vitro bioactivity assessment showed that the MAO and EPD treated Ti substrate possessed higher apatite-forming ability than the untreated Ti. Moreover, the apatite-forming ability had a positive correlation with HA concentration. In addition, the cell behavior was also examined using cell proliferation assay and alkaline phosphatase ability. The coating formed at HA concentration of 5 g/L exhibited the highest cell ability.

  8. Analysis of Surface Leaching Processes in Vitrified High-Level Nuclear Wastes Using In-Situ Raman Imaging and Atomistic Modeling - Final Report

    International Nuclear Information System (INIS)

    Simmons, Joseph H.

    2001-01-01

    The in situ analysis of surface conditions of vitrified nuclear wastes can provide an important check of the burial status of radioactive objects without risk of radiation exposure. Raman spectroscopy was initially chosen as the most promising method for testing the surface conditions of glasses undergoing chemical corrosion, and was used extensively during the first year. However, it was determined that infrared reflection spectroscopy was better suited to this particular need and was used for the remaining two years to investigate the surface corrosion behavior of model silicate glasses for extension to nuclear waste glasses. The developed methodology is consistent with the known theory of optical propagation of dielectric media and uses the Kramers-Kronig formalism. The results show that it is possible to study the corrosion of glass by analyzing the glass surface using reflection fast Fourier infrared measurements and the newly developed ''dispersion analysis method.'' The data show how this analysis can be used to monitor the corrosion behavior of vitrified waste glasses over extended periods of storage

  9. Analysis of Surface Leaching Processes in Vitrified High-Level Nuclear Wastes Using In-Situ Raman Imaging and Atomistic Modeling - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Joseph H.

    2001-04-24

    The in situ analysis of surface conditions of vitrified nuclear wastes can provide an important check of the burial status of radioactive objects without risk of radiation exposure. Raman spectroscopy was initially chosen as the most promising method for testing the surface conditions of glasses undergoing chemical corrosion, and was used extensively during the first year. However, it was determined that infrared reflection spectroscopy was better suited to this particular need and was used for the remaining two years to investigate the surface corrosion behavior of model silicate glasses for extension to nuclear waste glasses. The developed methodology is consistent with the known theory of optical propagation of dielectric media and uses the Kramers-Kronig formalism. The results show that it is possible to study the corrosion of glass by analyzing the glass surface using reflection fast Fourier infrared measurements and the newly developed ''dispersion analysis method.'' The data show how this analysis can be used to monitor the corrosion behavior of vitrified waste glasses over extended periods of storage.

  10. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... lens because they can be purchased over-the-counter or on the Internet," says Thomas Steinemann, MD, ... Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume Contacts May Contain Chemicals Harmful to Eyes ...

  11. In situ observation on the dynamic process of evaporation and crystallization of sodium nitrate droplets on a ZnSe substrate by FTIR-ATR.

    Science.gov (United States)

    Zhang, Qing-Nuan; Zhang, Yun; Cai, Chen; Guo, Yu-Cong; Reid, Jonathan P; Zhang, Yun-Hong

    2014-04-17

    Sodium nitrate is a main component of aging sea salt aerosol, and its phase behavior has been studied repeatedly with wide ranges observed in the efflorescence relative humidity (RH) in particular. Studies of the efflorescence dynamics of NaNO3 droplets deposited on a ZnSe substrate are reported, using an in situ Fourier transform infrared attenuated total reflection (FTIR-ATR) technique. The time-dependence of the infrared spectra of NaNO3 aerosols accompanying step changes in RH have been measured with high signal-to-noise ratio. From the IR difference spectra recorded, changes of the time-dependent absorption peak area of the O-H stretching band (ν-OH, ∼3400 cm(-1)) and the nitrate out-of-plane bending band (ν2-NO3(-), ∼836 cm(-1)) are obtained. From these measurements, changes in the IR signatures can be attributed to crystalline and solution phase nitrate ions, allowing the volume fraction of the solution droplets that have crystallized to be determined. Then, using these clear signatures of the volume fraction of droplets that have yet to crystallize, the homogeneous and heterogeneous nucleation kinetics can be studied from conventional measurements using a steady decline in RH. The nucleation rate measurements confirm that the rate of crystallization in sodium nitrate droplets is considerably less than in ammonium sulfate droplets at any particular degree of solute supersaturation, explaining the wide range of efflorescence RHs observed for sodium nitrate in previous studies. We demonstrate that studying nucleation kinetics using the FTIR-ATR approach has many advantages over brightfield imaging studies on smaller numbers of larger droplets or measurements made on single levitated particles.

  12. In Situ Planetary Geochronology Technology

    Data.gov (United States)

    National Aeronautics and Space Administration — This project's purpose was to determine whether a Pulsed Neutron Generator (PNG) could be used in an instrument that could perform in situ age dating of planetary...

  13. In Situ Activation of Microcapsules

    Science.gov (United States)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)

    2000-01-01

    Disclosed are microcapsules comprising a polymer shell enclosing two or more immiscible liquid phases in which a drug, or a prodrug and a drug activator are partitioned into separate phases. or prevented from diffusing out of the microcapsule by a liquid phase in which the drug is poorly soluble. Also disclosed are methods of using the microcapsules for in situ activation of drugs where upon exposure to an appropriate energy source the internal phases mix and the drug is activated in situ.

  14. In Situ Cleanable Alternative HEPA Filter Media

    International Nuclear Information System (INIS)

    Adamson, D. J.; Terry, M. T.

    2002-01-01

    Energy's Hazardous Facilities'', found that conventional glass fiber HEPA filters are structurally weak and easily damaged by water or fire. The structurally stronger sintered metal and ceramic filters would reduce the potential of a catastrophic HEPA filter failure due to filter media breakthrough in the process ventilation system. An in situ regenerable system may also find application in recovering nuclear materials, such as plutonium, collected on glove box exhaust HEPA filters. This innovative approach of the in situ regenerative filtration system may be a significant improvement upon the shortfalls of conventional disposable HEPA filters

  15. In Situ Remediation Integrated Program: Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces, in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP intends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years. ISR IP is an applied research and development program broadly addressing known DOE environmental restoration needs. Analysis of a sample of 334 representative sites by the Office of Environmental Restoration has shown how many sites are amenable to in situ remediation: containment--243 sites; manipulation--244 sites; bioremediation--154 sites; and physical/chemical methods--236 sites. This needs assessment is focused on near-term restoration problems (FY93--FY99). Many other remediations will be required in the next century. The major focus of the ISR EP is on the long term development of permanent solutions to these problems. Current needs for interim actions to protect human health and the environment are also being addressed.

  16. In Situ Remediation Integrated Program: Technology summary

    International Nuclear Information System (INIS)

    1994-02-01

    The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces, in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP intends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years. ISR IP is an applied research and development program broadly addressing known DOE environmental restoration needs. Analysis of a sample of 334 representative sites by the Office of Environmental Restoration has shown how many sites are amenable to in situ remediation: containment--243 sites; manipulation--244 sites; bioremediation--154 sites; and physical/chemical methods--236 sites. This needs assessment is focused on near-term restoration problems (FY93--FY99). Many other remediations will be required in the next century. The major focus of the ISR EP is on the long term development of permanent solutions to these problems. Current needs for interim actions to protect human health and the environment are also being addressed

  17. Novel in-situ lamella fabrication technique for in-situ TEM.

    Science.gov (United States)

    Canavan, Megan; Daly, Dermot; Rummel, Andreas; McCarthy, Eoin K; McAuley, Cathal; Nicolosi, Valeria

    2018-03-29

    In-situ transmission electron microscopy is rapidly emerging as the premier technique for characterising materials in a dynamic state on the atomic scale. The most important aspect of in-situ studies is specimen preparation. Specimens must be electron transparent and representative of the material in its operational state, amongst others. Here, a novel fabrication technique for the facile preparation of lamellae for in-situ transmission electron microscopy experimentation using focused ion beam milling is developed. This method involves the use of rotating microgrippers during the lift-out procedure, as opposed to the traditional micromanipulator needle and platinum weld. Using rotating grippers, and a unique adhesive substance, lamellae are mounted onto a MEMS device for in-situ TEM annealing experiments. We demonstrate how this technique can be used to avoid platinum deposition as well as minimising damage to the MEMS device during the thinning process. Our technique is both a cost effective and readily implementable alternative to the current generation of preparation methods for in-situ liquid, electrical, mechanical and thermal experimentation within the TEM as well as traditional cross-sectional lamella preparation. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. In Situ TEM Creation of Nanowire Devices

    DEFF Research Database (Denmark)

    Alam, Sardar Bilal

    ), which has proved to be a powerful method for visualizing the physical processes involved in the growth of nanowires by the vapour liquid solid (VLS) mechanism, was used to study VLS SiNW contact formation process. Electrical characteristics and effects of surface modification on electrical behavior...... from movies recorded during contact events. It is demonstrated that the geometry of the final contact formed between the nanowire and the silicon surface could be controlled by varying the contact surface temperature and the electrical current through the bridging SiNW. By adjusting the contact surface...... ends, base and tip and its electrical properties were probed in situ TEM. Such SiNW bridges clamped between two cantilevers in situ TEM was an interesting platform for studying the effect of surface modification on SiNWs electrical properties. The effect of surface oxidation was studied...

  19. NOVEL IN-SITU METAL AND MINERAL EXTRACTION TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Glenn O' Gorman; Hans von Michaelis; Gregory J. Olson

    2004-09-22

    This white paper summarizes the state of art of in-situ leaching of metals and minerals, and describes a new technology concept employing improved fragmentation of ores underground in order to prepare the ore for more efficient in-situ leaching, combined with technology to continuously improve solution flow patterns through the ore during the leaching process. The process parameters and economic benefits of combining the new concept with chemical and biological leaching are described. A summary is provided of the next steps required to demonstrate the technology with the goal of enabling more widespread use of in-situ leaching.

  20. Panoramic lens applications revisited

    Science.gov (United States)

    Thibault, Simon

    2008-04-01

    During the last few years, innovative optical design strategies to generate and control image mapping have been successful in producing high-resolution digital imagers and projectors. This new generation of panoramic lenses includes catadioptric panoramic lenses, panoramic annular lenses, visible/IR fisheye lenses, anamorphic wide-angle attachments, and visible/IR panomorph lenses. Given that a wide-angle lens images a large field of view on a limited number of pixels, a systematic pixel-to-angle mapping will help the efficient use of each pixel in the field of view. In this paper, we present several modern applications of these modern types of hemispheric lenses. Recently, surveillance and security applications have been proposed and published in Security and Defence symposium. However, modern hemispheric lens can be used in many other fields. A panoramic imaging sensor contributes most to the perception of the world. Panoramic lenses are now ready to be deployed in many optical solutions. Covered applications include, but are not limited to medical imaging (endoscope, rigiscope, fiberscope...), remote sensing (pipe inspection, crime scene investigation, archeology...), multimedia (hemispheric projector, panoramic image...). Modern panoramic technologies allow simple and efficient digital image processing and the use of standard image analysis features (motion estimation, segmentation, object tracking, pattern recognition) in the complete 360° hemispheric area.

  1. Precise in situ etch depth control of multilayered III−V semiconductor samples with reflectance anisotropy spectroscopy (RAS equipment

    Directory of Open Access Journals (Sweden)

    Ann-Kathrin Kleinschmidt

    2016-11-01

    Full Text Available Reflectance anisotropy spectroscopy (RAS equipment is applied to monitor dry-etch processes (here specifically reactive ion etching (RIE of monocrystalline multilayered III–V semiconductors in situ. The related accuracy of etch depth control is better than 16 nm. Comparison with results of secondary ion mass spectrometry (SIMS reveals a deviation of only about 4 nm in optimal cases. To illustrate the applicability of the reported method in every day settings for the first time the highly etch depth sensitive lithographic process to form a film lens on the waveguide ridge of a broad area laser (BAL is presented. This example elucidates the benefits of the method in semiconductor device fabrication and also suggests how to fulfill design requirements for the sample in order to make RAS control possible.

  2. In situ vitrification program treatability investigation progress report

    International Nuclear Information System (INIS)

    Arrenholz, D.A.

    1991-02-01

    This document presents a summary of the efforts conducted under the in situ vitrification treatability study during the period from its initiation in FY-88 until FY-90. In situ vitrification is a thermal treatment process that uses electrical power to convert contaminated soils into a chemically inert and stable glass and crystalline product. Contaminants present in the soil are either incorporated into the product or are pyrolyzed during treatment. The treatability study being conducted at the Idaho National Engineering Laboratory by EG ampersand G Idaho is directed at examining the specific applicability of the in situ vitrification process to buried wastes contaminated with transuranic radionuclides and other contaminants found at the Subsurface Disposal Area of the Radioactive Waste Management Complex. This treatability study consists of a variety of tasks, including engineering tests, field tests, vitrified product evaluation, and analytical models of the in situ vitrification process. 6 refs., 4 figs., 3 tabs

  3. In Situ Densification Utilizing a Low-Viscosity Wetting Impregnant that Greating Reduces Processing Time to Produce Uniform Density Carbon-Carbon Composites

    National Research Council Canada - National Science Library

    Hoffman, Wesley

    2002-01-01

    ... (the process of graphitization). Despite these properties, however, the use of carbon-carbon composites has been limited both because of their high cost and their oxidation at elevated temperatures...

  4. In situ microbial filter used for bioremediation

    Science.gov (United States)

    Carman, M. Leslie; Taylor, Robert T.

    2000-01-01

    An improved method for in situ microbial filter bioremediation having increasingly operational longevity of an in situ microbial filter emplaced into an aquifer. A method for generating a microbial filter of sufficient catalytic density and thickness, which has increased replenishment interval, improved bacteria attachment and detachment characteristics and the endogenous stability under in situ conditions. A system for in situ field water remediation.

  5. REFRACTIVE NEUTRON LENS

    OpenAIRE

    Petrov, P. V.; Kolchevsky, N. N.

    2013-01-01

    Compound concave refractive lenses are used for focusing neutron beam. Investigations of spectral and focusing properties of a refractive neutron lens are presented. Resolution of the imaging system on the base of refractive neutron lenses depends on material properties and parameters of neutron source. Model of refractive neutron lens are proposed. Results of calculation diffraction resolution and focal depth of refractive neutron lens are discussed.

  6. Contact lens in keratoconus

    OpenAIRE

    Rathi, Varsha M; Mandathara, Preeji S; Dumpati, Srikanth

    2013-01-01

    Contact lenses are required for the visual improvement in patients with keratoconus. Various contact lens options, such as rigid gas permeable (RGP) lenses, soft and soft toric lenses, piggy back contact lenses (PBCL), hybrid lenses and scleral lenses are availble. This article discusses about selection of a lens depending on the type of keratoconus and the fitting philosophies of various contact lenses including the starting trial lens. A Medline search was carried out for articles in the En...

  7. Triplex in-situ hybridization

    Science.gov (United States)

    Fresco, Jacques R.; Johnson, Marion D.

    2002-01-01

    Disclosed are methods for detecting in situ the presence of a target sequence in a substantially double-stranded nucleic acid segment, which comprises: a) contacting in situ under conditions suitable for hybridization a substantially double-stranded nucleic acid segment with a detectable third strand, said third strand being capable of hybridizing to at least a portion of the target sequence to form a triple-stranded structure, if said target sequence is present; and b) detecting whether hybridization between the third strand and the target sequence has occured.

  8. In situ solid-state NMR and XRD studies of the ADOR process and the unusual structure of zeolite IPC-6

    Czech Academy of Sciences Publication Activity Database

    Morris, S. A.; Bignami, G. P. M.; Tian, Y.; Navarro, M.; Firth, D. S.; Čejka, Jiří; Wheatley, P. S.; Dawson, D. M.; Slawinski, W. A.; Wragg, D. S.; Morris, R. E.; Ashbrook, S. E.

    2017-01-01

    Roč. 9, č. 10 (2017), s. 1012-1018 ISSN 1755-4330 R&D Projects: GA ČR GBP106/12/G015 Institutional support: RVO:61388955 Keywords : NMR * XRD * ADOR process Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 25.870, year: 2016

  9. In situ measurement experiences

    International Nuclear Information System (INIS)

    Fritzsche, A.E.

    1981-01-01

    The Remote Sensing Laboratory, operated by EG and G for the Department of Energy, is prepared to aid in the decontamination process. For many years EG and G has constructed and operated specialized gamma-sensing equipment for the evaluation of radioactive contamination. Many gamma surveys from both aerial and ground vehicles have helped find, identify, and quantify radioactive contamination. Gamma survey data overlaid on EG and G's aerial photographs indicate the location of contamination with a high degree of accuracy. The recent addition of aerial multispectral scanning extends our capability to the determination of environmental effects. EG and G is prepared also to deploy people and equipment quickly for the rapid assessment of nuclear and non-nuclear accidents and spills. Experienced personnel as well as sensing, photographic, and mobile communications gear are available to DOE within hours of a call

  10. In-situ microscopy of front and rear side ablation processes in alkali aluminosilicate glass using ultra short pulsed laser radiation

    OpenAIRE

    Großmann, D.; Reininghaus, M.; Kalupka, C.; Jenne, M.; Kumkar, M.

    2017-01-01

    The visualization of the nonlinear absorption, the subsequent relaxation of excited states and the formation of defects enables the investigation of fundamental laser-material-interaction as well as the identification of process windows for micromachining of transparent materials with ultra short pulsed laser radiation. In this work, time resolved pump probe microscopy is applied to analyze the laser-material-interaction and to reduce damage inside the material during front- and rear side abl...

  11. Decision-making tool for the assessment and selection of construction processes based on environmental criteria: Application to precast and cast-in-situ alternatives

    OpenAIRE

    Casanovas Rubio, Maria del Mar; Ramos Schneider, Gonzalo

    2017-01-01

    This paper presents a quantitative environmental impact assessment tool for the decision making of construction processes including structures, infrastructures and buildings by means of an Environmental Impact Index (EII) to be applied at design and/or construction stages. The research is based on multi-attribute utility theory, interviews with experts representatives of the different stakeholders in construction, and an analysis of fifty-nine European and Spanish environmental legislative ac...

  12. A Novel in situ Trigger Combination Method

    International Nuclear Information System (INIS)

    Buzatu, Adrian; Warburton, Andreas; Krumnack, Nils; Yao, Wei-Ming

    2012-01-01

    Searches for rare physics processes using particle detectors in high-luminosity colliding hadronic beam environments require the use of multi-level trigger systems to reject colossal background rates in real time. In analyses like the search for the Higgs boson, there is a need to maximize the signal acceptance by combining multiple different trigger chains when forming the offline data sample. In such statistically limited searches, datasets are often amassed over periods of several years, during which the trigger characteristics evolve and their performance can vary significantly. Reliable production cross-section measurements and upper limits must take into account a detailed understanding of the effective trigger inefficiency for every selected candidate event. We present as an example the complex situation of three trigger chains, based on missing energy and jet energy, to be combined in the context of the search for the Higgs (H) boson produced in association with a W boson at the Collider Detector at Fermilab (CDF). We briefly review the existing techniques for combining triggers, namely the inclusion, division, and exclusion methods. We introduce and describe a novel fourth in situ method whereby, for each candidate event, only the trigger chain with the highest a priori probability of selecting the event is considered. The in situ combination method has advantages of scalability to large numbers of differing trigger chains and of insensitivity to correlations between triggers. We compare the inclusion and in situ methods for signal event yields in the CDF WH search.

  13. Next-generation in-situ science concepts and technology

    Science.gov (United States)

    Muirhead, Brian; Varsi, Giulio

    1990-01-01

    This paper discusses the concepts of a next-generation in situ science program, named Sample Acquisition, Analysis, and Preservation (SAAP), established by NASA to develop critical technologies for remote identification, acquisition, processing, analysis, and preservation of materials for the in situ science, engineering characterization, and earth return. Special attention is given to the SAAP architecture, system design, remote sensing system, sample acquisition system, and methods for sample analysis. A diagram of the SAAP preliminary system conceptual design is included.

  14. In-Situ Operations and Planning for the Mars Science Laboratory Robotic Arm: The First 200 Sols

    Science.gov (United States)

    Robinson, M.; Collins, C.; Leger, P.; Carsten, J.; Tompkins, V.; Hartman, F.; Yen, J.

    2013-01-01

    The Robotic Arm (RA) has operated for more than 200 Martian solar days (or sols) since the Mars Science Laboratory rover touched down in Gale Crater on August 5, 2012. During the first seven months on Mars the robotic arm has performed multiple contact science sols including the positioning of the Alpha Particle X-Ray Spectrometer (APXS) and/or Mars Hand Lens Imager (MAHLI) with respect to rocks or loose regolith targets. The RA has supported sample acquisition using both the scoop and drill, sample processing with CHIMRA (Collection and Handling for In- Situ Martian Rock Analysis), and delivery of sample portions to the observation tray, and the SAM (Sample Analysis at Mars) and CHEMIN (Chemistry and Mineralogy) science instruments. This paper describes the planning and execution of robotic arm activities during surface operations, and reviews robotic arm performance results from Mars to date.

  15. Change processes in couple therapy: an intensive case analysis of one couple using a common factors lens.

    Science.gov (United States)

    Blow, Adrian J; Morrison, Nancy C; Tamaren, Karen; Wright, Kristin; Schaafsma, Melanie; Nadaud, Alison

    2009-07-01

    The article describes a research study that explored the process of how change occurred for one distressed couple and a specific therapist in a naturalistic setting. Quantitative and qualitative data were collected on the couple at multiple points in the therapy. A research team comprised of five members met regularly to analyze the data and collectively they arrived at a theory of change for the couple posttherapy. Conclusions are made related to how change occurred for the couple with an emphasis on the role of extratherapeutic events, client motivational factors, the therapeutic alliance, hope and expectancy factors, therapist factors, specific techniques and interventions, and other surprise factors that contributed to change.

  16. THE WAY TO THE SELF: THE NOVEL «STEPPENWOLF» THROUGH THE LENS OF JUNGIAN PROCESS OF INDIVIDUATION

    Directory of Open Access Journals (Sweden)

    Tetiana V. Danylova

    2015-05-01

    Full Text Available Purpose. This paper aims to analyze the life journey of Harry Haller, protagonist of H. Hesse’s novel «Steppenwolf», in the context of Jungian process of individuation. Methodology. The author has used C.G. Jung’s theory of archetypes, along with hermeneutical methodology. Theoretical basis and results. «Steppenwolf» is the story of a man who is dogged by controversy: he feels himself to be a human and a wolf at the same time. Harry Haller learns from the «Treatise on the Steppenwolf» that he has more than two natures. Actually, he consists of hundreds and thousands of them. This idea is based on Jung’s concept of the collective unconscious. And the very novel «Steppenwolf» brightly illustrates Jung’s individuation process. Harry Haller’s mission is to overcome opposition between his social cultural «I» and Shadow (Steppenwolf, to recognize and accept his Anima (Hermine, to understand the mystery of the identity of Pablo, who embodies chthonic depths, and Mozart, who represents sublime spirituality, that is, to comprehend his own Self. Scientific novelty. In the novel, the human nature is depicted as the eternal struggle and eternal unity of two polarities. Individuals have to realize this unity on their way to the Self. Recognizing, confronting and assimilating the Ego, Anima/Animus, Shadow into the larger realm of the Self, one achieves a new level of consciousness. However, this is a never-ending process, unattainable ideal. At the end of the novel, Harry Haller failed to cope with this challenge. It seems that he has remained at the same point, where we had met him. However, nothing was impossible − everything was just beginning. Conclusions. The questions raised by Jungian analysis push us beyond our limits to the great alchemical mystery − the wholeness of our own souls. For the salvation of humankind as a whole and every single human in our world full of conflicts and violence, we all need to

  17. Non-Thermal Electromagnetic Radiation Damage to Lens Epithelium

    OpenAIRE

    Bormusov, Elvira; P.Andley, Usha; Sharon, Naomi; Sch?chter, Levi; Lahav, Assaf; Dovrat, Ahuva

    2008-01-01

    High frequency microwave electromagnetic radiation from mobile phones and other modern devices has the potential to damage eye tissues, but its effect on the lens epithelium is unknown at present. The objective of this study was to investigate the non-thermal effects of high frequency microwave electromagnetic radiation (1.1GHz, 2.22 mW) on the eye lens epithelium in situ. Bovine lenses were incubated in organ culture at 35?C for 10-15 days. A novel computer-controlled microwave source was us...

  18. High-temperature tensile cell for in situ real-time investigation of carbon fibre carbonization and graphitization processes

    Energy Technology Data Exchange (ETDEWEB)

    Behr, Michael; Rix, James; Landes, Brian; Barton, Bryan; Billovits, Gerry; Hukkanen, Eric; Patton, Jasson; Wang, Weijun; Keane, Denis; Weigand, Steven (Dow); (NWU)

    2016-10-17

    A new high-temperature fibre tensile cell is described, developed for use at the Advanced Photon Source at Argonne National Laboratory to enable the investigation of the carbonization and graphitization processes during carbon fibre production. This cell is used to heat precursor fibre bundles to temperatures up to ~2300°C in a controlled inert atmosphere, while applying tensile stress to facilitate formation of highly oriented graphitic microstructure; evolution of the microstructure as a function of temperature and time during the carbonization and higher-temperature graphitization processes can then be monitored by collecting real-time wide-angle X-ray diffraction (WAXD) patterns. As an example, the carbonization and graphitization behaviour of an oxidized polyacrylonitrile fibre was studied up to a temperature of ~1750°C. Real-time WAXD revealed the gradual increase in microstructure alignment with the fibre axis with increasing temperature over the temperature range 600–1100°C. Above 1100°C, no further changes in orientation were observed. The overall magnitude of change increased with increasing applied tensile stress during carbonization. As a second example, the high-temperature graphitizability of PAN- and pitch-derived commercial carbon fibres was studied. Here, the magnitude of graphitic microstructure evolution of the pitch-derived fibre far exceeded that of the PAN-derived fibres at temperatures up to ~2300°C, indicating its facile graphitizability.

  19. In situ solid-state NMR and XRD studies of the ADOR process and the unusual structure of zeolite IPC-6

    Science.gov (United States)

    Morris, Samuel A.; Bignami, Giulia P. M.; Tian, Yuyang; Navarro, Marta; Firth, Daniel S.; Čejka, Jiří; Wheatley, Paul S.; Dawson, Daniel M.; Slawinski, Wojciech A.; Wragg, David S.; Morris, Russell E.; Ashbrook, Sharon E.

    2017-10-01

    The assembly-disassembly-organization-reassembly (ADOR) mechanism is a recent method for preparing inorganic framework materials and, in particular, zeolites. This flexible approach has enabled the synthesis of isoreticular families of zeolites with unprecedented continuous control over porosity, and the design and preparation of materials that would have been difficult—or even impossible—to obtain using traditional hydrothermal techniques. Applying the ADOR process to a parent zeolite with the UTL framework topology, for example, has led to six previously unknown zeolites (named IPC-n, where n = 2, 4, 6, 7, 9 and 10). To realize the full potential of the ADOR method, however, a further understanding of the complex mechanism at play is needed. Here, we probe the disassembly, organization and reassembly steps of the ADOR process through a combination of in situ solid-state NMR spectroscopy and powder X-ray diffraction experiments. We further use the insight gained to explain the formation of the unusual structure of zeolite IPC-6.

  20. Synthesis and processing of Al{sub 2}O{sub 3}/Al composites by in situ reaction of aluminum and mullite

    Energy Technology Data Exchange (ETDEWEB)

    Fahrenholtz, W.G. [Univ. of New Mexico, Albuquerque, NM (United States); Ewsuk, K.G.; Loehman, R.E. [Sandia National Labs., Albuquerque, NM (United States); Tomsia, A.P. [Pask Research and Engineering, Berkeley, CA (United States)

    1995-02-01

    Al{sub 2}O{sub 3}/Al composites, were formed by reacting molten aluminum metal with dense mullite ceramic preforms. The composites produced by this reactive metal penetration process (RMP) have a two phase, interpenetrating microstructure in which both the ceramic and the metal are continuous in three dimensions. Scanning electron microscopy (SEM) micrographs of composites produced by RMP show a fine microstructure comprised of interlocked metal and ceramic phases, with a feature size of approximately 2 {mu}m. RMP is a relatively rapid process with metal penetration rates of nearly 5 mm/hour at 1100{degrees}C after a short incubation period. An activation energy of 92 kJ/mole was calculated from reaction rate data. Transmission electron microscopy (TEM) micrographs reveal that aluminum metal penetrates along the mullite grain boundaries before reaction with the mullite grains, indicating that diffusion along grain boundaries may be the rate limiting step for the reaction. Thermodynamic information, results of microstructure analyses, and kinetic data indicate that RMP proceeds in 4 stages: (1) Al melting and the formation of a thermodynamically stable metal/ceramic interface; (2) depletion of oxygen from the grain boundaries intersecting the ceramic/metal interface; (3) Al metal penetration into the ceramic preform along grain boundaries; and (4) Al reaction with and conversion of individual mullite grains.

  1. In Situ TEM Electrical Measurements

    DEFF Research Database (Denmark)

    Canepa, Silvia; Alam, Sardar Bilal; Ngo, Duc-The

    2016-01-01

    influence the sample by external stimuli, e.g. through electrical connections, the TEM becomes a powerful laboratory for performing quantitative real time in situ experiments. Such TEM setups enable the characterization of nanostructures and nanodevices under working conditions, thereby providing a deeper...

  2. In Situ Cardiovascular Tissue Engineering

    NARCIS (Netherlands)

    Talacua, H

    2016-01-01

    In this thesis, the feasibility of in situ TE for vascular and valvular purposes were tested with the use of different materials, and animal models. First, the feasibility of a decellularized biological scaffold (pSIS-ECM) as pulmonary heart valve prosthesis is examined in sheep (Chapter 2). Next,

  3. SERDP ER-1376 Enhancement of In Situ Bioremediation of Energetic Compounds by Coupled Abiotic/Biotic Processes:Final Report for 2004 - 2006

    Energy Technology Data Exchange (ETDEWEB)

    Szecsody, James E.; Comfort, Steve; Fredrickson, Herbert L.; Boparai, Hardiljeet K.; Devary, Brooks J.; Thompson, Karen T.; Phillips, Jerry L.; Crocker, Fiona H.; Girvin, Donald C.; Resch, Charles T.; Shea, Patrick; Fischer, Ashley E.; Durkin, Lisa M.

    2007-08-07

    This project was initiated by SERDP to quantify processes and determine the effectiveness of abiotic/biotic mineralization of energetics (RDX, HMX, TNT) in aquifer sediments by combinations of biostimulation (carbon, trace nutrient additions) and chemical reduction of sediment to create a reducing environment. Initially it was hypothesized that a balance of chemical reduction of sediment and biostimulation would increase the RDX, HMX, and TNT mineralization rate significantly (by a combination of abiotic and biotic processes) so that this abiotic/biotic treatment may be a more efficient for remediation than biotic treatment alone in some cases. Because both abiotic and biotic processes are involved in energetic mineralization in sediments, it was further hypothesized that consideration for both abiotic reduction and microbial growth was need to optimize the sediment system for the most rapid mineralization rate. Results show that there are separate optimal abiotic/biostimulation aquifer sediment treatments for RDX/HMX and for TNT. Optimal sediment treatment for RDX and HMX (which have chemical similarities and similar degradation pathways) is mainly chemical reduction of sediment, which increased the RDX/HMX mineralization rate 100 to150 times (relative to untreated sediment), with additional carbon or trace nutrient addition, which increased the RDX/HMX mineralization rate an additional 3 to 4 times. In contrast, the optimal aquifer sediment treatment for TNT involves mainly biostimulation (glucose addition), which stimulates a TNT/glucose cometabolic degradation pathway (6.8 times more rapid than untreated sediment), degrading TNT to amino-intermediates that irreversibly sorb (i.e., end product is not CO2). The TNT mass migration risk is minimized by these transformation reactions, as the triaminotoluene and 2,4- and 2,6-diaminonitrotoluene products that irreversibly sorb are no longer mobile in the subsurface environment. These transformation rates are increased

  4. Atomic layer deposition of ZrO2 for graphene-based multilayer structures: In situ and ex situ characterization of growth process

    International Nuclear Information System (INIS)

    Tamm, Aile; Kozlova, Jekaterina; Aarik, Lauri; Aidla, Aleks; Kiisler, Alma-Asta; Kasikov, Aarne; Ritslaid, Peeter; Maendar, Hugo; Aarik, Jaan; Lu, Jun; Hultman, Lars; Sammelselg, Vaeino; Kukli, Kaupo

    2014-01-01

    Real time monitoring of atomic layer deposition by quartz crystal microbalance (QCM) was used to follow the growth of ZrO 2 thin films on graphene. The films were grown from ZrCl 4 and H 2 O on graphene prepared by chemical vapor deposition method on 100-nm thick nickel film or on Cu-foil and transferred onto QCM sensor. The deposition was performed at a substrate temperature of 190 C. The growth of the dielectric film on graphene was significantly retarded compared to the process carried out on QCM without graphene. After the deposition of dielectric films, the basic structure of graphene was retained. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. IN-SITU PROBING OF RADIATION-INDUCED PROCESSING OF ORGANICS IN ASTROPHYSICAL ICE ANALOGS-NOVEL LASER DESORPTION LASER IONIZATION TIME-OF-FLIGHT MASS SPECTROSCOPIC STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Gudipati, Murthy S.; Yang Rui, E-mail: gudipati@jpl.nasa.gov, E-mail: ryang73@ustc.edu [University of Maryland (United States)

    2012-09-01

    Understanding the evolution of organic molecules in ice grains in the interstellar medium (ISM) under cosmic rays, stellar radiation, and local electrons and ions is critical to our understanding of the connection between ISM and solar systems. Our study is aimed at reaching this goal of looking directly into radiation-induced processing in these ice grains. We developed a two-color laser-desorption laser-ionization time-of-flight mass spectroscopic method (2C-MALDI-TOF), similar to matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectroscopy. Results presented here with polycyclic aromatic hydrocarbon (PAH) probe molecules embedded in water-ice at 5 K show for the first time that hydrogenation and oxygenation are the primary chemical reactions that occur in astrophysical ice analogs when subjected to Ly{alpha} radiation. We found that hydrogenation can occur over several unsaturated bonds and the product distribution corresponds to their stabilities. Multiple hydrogenation efficiency is found to be higher at higher temperatures (100 K) compared to 5 K-close to the interstellar ice temperatures. Hydroxylation is shown to have similar efficiencies at 5 K or 100 K, indicating that addition of O atoms or OH radicals to pre-ionized PAHs is a barrierless process. These studies-the first glimpses into interstellar ice chemistry through analog studies-show that once accreted onto ice grains PAHs lose their PAH spectroscopic signatures through radiation chemistry, which could be one of the reason for the lack of PAH detection in interstellar ice grains, particularly the outer regions of cold, dense clouds or the upper molecular layers of protoplanetary disks.

  6. IN-SITU PROBING OF RADIATION-INDUCED PROCESSING OF ORGANICS IN ASTROPHYSICAL ICE ANALOGS—NOVEL LASER DESORPTION LASER IONIZATION TIME-OF-FLIGHT MASS SPECTROSCOPIC STUDIES

    International Nuclear Information System (INIS)

    Gudipati, Murthy S.; Yang Rui

    2012-01-01

    Understanding the evolution of organic molecules in ice grains in the interstellar medium (ISM) under cosmic rays, stellar radiation, and local electrons and ions is critical to our understanding of the connection between ISM and solar systems. Our study is aimed at reaching this goal of looking directly into radiation-induced processing in these ice grains. We developed a two-color laser-desorption laser-ionization time-of-flight mass spectroscopic method (2C-MALDI-TOF), similar to matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectroscopy. Results presented here with polycyclic aromatic hydrocarbon (PAH) probe molecules embedded in water-ice at 5 K show for the first time that hydrogenation and oxygenation are the primary chemical reactions that occur in astrophysical ice analogs when subjected to Lyα radiation. We found that hydrogenation can occur over several unsaturated bonds and the product distribution corresponds to their stabilities. Multiple hydrogenation efficiency is found to be higher at higher temperatures (100 K) compared to 5 K—close to the interstellar ice temperatures. Hydroxylation is shown to have similar efficiencies at 5 K or 100 K, indicating that addition of O atoms or OH radicals to pre-ionized PAHs is a barrierless process. These studies—the first glimpses into interstellar ice chemistry through analog studies—show that once accreted onto ice grains PAHs lose their PAH spectroscopic signatures through radiation chemistry, which could be one of the reason for the lack of PAH detection in interstellar ice grains, particularly the outer regions of cold, dense clouds or the upper molecular layers of protoplanetary disks.

  7. Characterization of VPO ammoxidation catalysts by in situ methods

    Energy Technology Data Exchange (ETDEWEB)

    Martin, A.; Luecke, B.; Brueckner, A.; Steinike, U. [Institut fuer Angewandte Chemie Berlin-Adlershof e.V., Berlin (Germany); Brzezinka, K.W. [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany); Meisel, M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Chemie

    1998-12-31

    In-situ methods are well known as powerful tools in studying catalyst formation processes, their solid state properties under working conditions and the interaction with the feed, intermediates and products to reveal reaction mechanisms. This paper gives a short overview on results of intense studies using in-situ techniques to reveal VPO catalyst generation processes, interaction of educts, intermediates and products with VPO catalyst surfaces and mechanistic insights. Catalytic data of the ammoxidation of toluene on different VPOs complete these findings. The precursor-catalyst transformation processes were preferently investigated by in-situ XRD, in-situ Raman and in-situ ESR spectroscopy. The interaction of aromatic molecules and intermediates, resp., and VPO solid surfaces was followed by in-situ ESR and in-situ FTIR spectroscopy. Mechanistic information was mainly obtained using in-situ FTIR spectroscopy and the temporal-analysis-of-products (TAP) technique. Catalytic studies were carried out in a fixed-bed microreactor on pure (NH{sub 4}){sub 2}(VO){sub 3}(P{sub 2}O{sub 7}){sub 2}, generated [(NH{sub 4}){sub 2}(VO{sub 3})(P{sub 2}O{sub 7}){sub 2}+V{sub x}O{sub y}] catalysts, having different V{sub x}O{sub y} proportions by use of VOHPO{sub 4} x 1/2H{sub 2}O (V/P=1) and recently studied (VO){sub 3}(PO{sub 4}){sub 2} x 7 H{sub 2}O (V/P=1.5) precursors; the well-known (VO){sub 2}P{sub 2}O{sub 7} was used for comparison. (orig.)

  8. A novel in situ gas stripping-pervaporation process integrated with acetone-butanol-ethanol fermentation for hyper n-butanol production.

    Science.gov (United States)

    Xue, Chuang; Liu, Fangfang; Xu, Mengmeng; Zhao, Jingbo; Chen, Lijie; Ren, Jiangang; Bai, Fengwu; Yang, Shang-Tian

    2016-01-01

    Butanol is considered as an advanced biofuel, the development of which is restricted by the intensive energy consumption of product recovery. A novel two-stage gas stripping-pervaporation process integrated with acetone-butanol-ethanol (ABE) fermentation was developed for butanol recovery, with gas stripping as the first-stage and pervaporation as the second-stage using the carbon nanotubes (CNTs) filled polydimethylsiloxane (PDMS) mixed matrix membrane (MMM). Compared to batch fermentation without butanol recovery, more ABE (27.5 g/L acetone, 75.5 g/L butanol, 7.0 g/L ethanol vs. 7.9 g/L acetone, 16.2 g/L butanol, 1.4 g/L ethanol) were produced in the fed-batch fermentation, with a higher butanol productivity (0.34 g/L · h vs. 0.30 g/L · h) due to reduced butanol inhibition by butanol recovery. The first-stage gas stripping produced a condensate containing 155.6 g/L butanol (199.9 g/L ABE), which after phase separation formed an organic phase containing 610.8 g/L butanol (656.1 g/L ABE) and an aqueous phase containing 85.6 g/L butanol (129.7 g/L ABE). Fed with the aqueous phase of the condensate from first-stage gas stripping, the second-stage pervaporation using the CNTs-PDMS MMM produced a condensate containing 441.7 g/L butanol (593.2 g/L ABE), which after mixing with the organic phase from gas stripping gave a highly concentrated product containing 521.3 g/L butanol (622.9 g/L ABE). The outstanding performance of CNTs-PDMS MMM can be attributed to the hydrophobic CNTs giving an alternative route for mass transport through the inner tubes or along the smooth surface of CNTs. This gas stripping-pervaporation process with less contaminated risk is thus effective in increasing butanol production and reducing energy consumption. © 2015 Wiley Periodicals, Inc.

  9. In situ photoemission spectroscopy using synchrotron radiation for O2 translational kinetic energy induced oxidation processes of partially-oxidized Si(001) surfaces

    International Nuclear Information System (INIS)

    Teraoka, Yuden; Yoshigoe, Akitaka

    2001-01-01

    The influence of translational kinetic energy of incident O 2 molecules for the passive oxidation process of partially-oxidized Si(001) surfaces has been studied by photoemission spectroscopy. The translational kinetic energy of O 2 molecules was controlled up to 3 eV by a supersonic seed beam technique using a high temperature nozzle. Two translational kinetic energy thresholds (1.0 eV and 2.6 eV) were found out in accordance with the first-principles calculation for the oxidation of clean surfaces. Si-2p photoemission spectra measured in representative translational kinetic energies revealed that the translational kinetic energy dependent oxidation of dimers and the second layer (subsurface) backbonds were caused by the direct dissociative chemisorption of O 2 molecules. Moreover, the difference in chemical bonds for oxygen atoms was found out to be as low and high binding energy components in O-1s photoemission spectra. Especially, the low binding energy component increased with increasing the translational kinetic energy that indicates the translational kinetic energy induced oxidation in backbonds. (author)

  10. In-Situ Resource Utilization for Space Exploration: Resource Processing, Mission-Enabling Technologies, and Lessons for Sustainability on Earth and Beyond

    Science.gov (United States)

    Hepp, A. F.; Palaszewski, B. A.; Landis, G. A.; Jaworske, D. A.; Colozza, A. J.; Kulis, M. J.; Heller, R. S.

    2015-01-01

    As humanity begins to reach out into the solar system, it has become apparent that supporting a human or robotic presence in transit andor on station requires significant expendable resources including consumables (to support people), fuel, and convenient reliable power. Transporting all necessary expendables is inefficient, inconvenient, costly, and, in the final analysis, a complicating factor for mission planners and a significant source of potential failure modes. Over the past twenty-five years, beginning with the Space Exploration Initiative, researchers at the NASA Glenn Research Center (GRC), academic collaborators, and industrial partners have analyzed, researched, and developed successful solutions for the challenges posed by surviving and even thriving in the resource limited environment(s) presented by near-Earth space and non-terrestrial surface operations. In this retrospective paper, we highlight the efforts of the co-authors in resource simulation and utilization, materials processing and consumable(s) production, power systems and analysis, fuel storage and handling, propulsion systems, and mission operations. As we move forward in our quest to explore space using a resource-optimized approach, it is worthwhile to consider lessons learned relative to efficient utilization of the (comparatively) abundant natural resources and improving the sustainability (and environment) for life on Earth. We reconsider Lunar (and briefly Martian) resource utilization for potential colonization, and discuss next steps moving away from Earth.

  11. Final Report DE-SC0006997; PI Sharp; Coupled Biological and Micro-XAS/XRF Analysis of In Situ Uranium Biogeochemical Processes

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, Jonathan O. [Colorado School of Mines, Golden, CO (United States)

    2016-03-30

    Project Overview: The impact of the original seed award was substantially increased by leveraging a postdoctoral fellowship (Marie Curie Postdoctoral Fellowship) and parallel funds from (A) synergistic project supported by NSF and (B) with DOE collaborators (PI’s Ranville and Williams) as well as no-cost extension that greatly increased the impact and publications associated with the project. In aligning with SBR priorities, the project’s focus was extended more broadly to explore coupled biogeochemical analysis of metal (im)mobilization processes beyond uranium with a foundation in integrating microbial ecology with geochemical analyses. This included investigations of arsenic and zinc during sulfate reducing conditions in addition to direct microbial reduction of metals. Complimentary work with NSF funding and collaborative DOE interactions further increased the project scope to investigate metal (im)mobilization coupled to biogeochemical perturbations in forest ecosystems with an emphasis on coupled carbon and metal biogeochemistry. In total, the project was highly impactful and resulted in 9 publications and directly supported salary/tuition for 3 graduate students at various stages of their academic careers as well as my promotion to Associate Professor. In going forward, findings provided inspiration for a two subsequent proposals with collaborators at Lawrence Berkeley Laboratory and others that are currently in review (as of March 2016).

  12. Effect of processing on the in vitro and in vivo protein quality of red and green lentils (Lens culinaris).

    Science.gov (United States)

    Nosworthy, Matthew G; Medina, Gerardo; Franczyk, Adam J; Neufeld, Jason; Appah, Paulyn; Utioh, Alphonsus; Frohlich, Peter; House, James D

    2018-02-01

    In order to determine the effect of extrusion, baking and cooking on the protein quality of red and green lentils, a rodent bioassay was conducted and compared to an in vitro method of protein quality determination. On average, the Protein Digestibility-Corrected Amino Acid Score of red lentils (55.0) was higher than that of green lentils (50.8). Extruded lentil flour had higher scores (63.01 red, 57.09 green) than either cooked (57.40 red, 52.92 green) or baked (53.84 red, 47.14 green) flours. The average Digestible Indispensable Amino Acid Score of red lentils (0.54) was higher than green lentils (0.49). The Protein Efficiency Ratio of the extruded lentil flours (1.30 red, 1.34 green) was higher than that of the baked flour (0.98 red, 1.09 green). A correlation was found between in vivo and in vitro methods of determining protein digestibility (R 2 =0.8934). This work could influence selection of processing method during product development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Concepts and Relations in Neurally Inspired In Situ Concept-Based Computing.

    Science.gov (United States)

    van der Velde, Frank

    2016-01-01

    In situ concept-based computing is based on the notion that conceptual representations in the human brain are "in situ." In this way, they are grounded in perception and action. Examples are neuronal assemblies, whose connection structures develop over time and are distributed over different brain areas. In situ concepts representations cannot be copied or duplicated because that will disrupt their connection structure, and thus the meaning of these concepts. Higher-level cognitive processes, as found in language and reasoning, can be performed with in situ concepts by embedding them in specialized neurally inspired "blackboards." The interactions between the in situ concepts and the blackboards form the basis for in situ concept computing architectures. In these architectures, memory (concepts) and processing are interwoven, in contrast with the separation between memory and processing found in Von Neumann architectures. Because the further development of Von Neumann computing (more, faster, yet power limited) is questionable, in situ concept computing might be an alternative for concept-based computing. In situ concept computing will be illustrated with a recently developed BABI reasoning task. Neurorobotics can play an important role in the development of in situ concept computing because of the development of in situ concept representations derived in scenarios as needed for reasoning tasks. Neurorobotics would also benefit from power limited and in situ concept computing.

  14. Process for the production of a pressure-sensitive carbonless copy sheet using microcapsules formed in situ in a radiation curable binder

    International Nuclear Information System (INIS)

    Lee, Y.S.; Shackle, D.R.

    1978-01-01

    A process is provided for the production of a coating composition containing microcapsules having a hydrophilic core for use in the manufacture of pressure-sensitive carbonless transfer papers comprising the following steps. A hydrophilic emulsion component is prepared by dispersing at least one chromogenic material being soluble in the hydrophilic liquid. A hydrophobic emulsion component is prepared by dispersing an emulsifier in a radiation curable hydrophobic liquid. A first wall-forming material and a second wall-forming material are added to the hydrophobic emulsion component, with mixing. The first and second wall-forming materials are soluble in the hydrophobic emulsion component, and the first wall-forming material is reactive with the second wall-forming material to form a polymeric capsule wall. The resultant polymeric capsule wall is substantially insoluble in the hydrophilic and the hydrophobic emulsion components. The hydrophobic emulsion component is mixed together with the hydrophilic emulsion component to form an emulsion containing droplets of the hydrophilic emulsion component dispersed in the hydrophobic emulsion component. Mixing is maintained for a period of time sufficient to allow the first and second wall-forming materials to react to form a dispersion of microcapsules in the hydrophobic emulsion component. The formed microcapsules have capsule walls substantially impermeable to the hydrophobic and the hydrophilic emulsion components. Pressure-sensitive carbonless transfer paper may be produced by applying the despersion of the microcapsules prepared as above to a substrate,and curing the dispersion by subjecting the dispersion on the substrate to radiation for a period of time sufficient to cure the radiation curable hydrophobic liquid, thereby producing a tack-free, resinous film on the substrate

  15. Laboratory and in situ determination of the migration processes of actinide complexes and colloids in a fissured granitic environment. El Berrocal project (preliminary activities - phase 0)

    International Nuclear Information System (INIS)

    Astudillo, J.; Del Olmo, C.; Commission of the European Communities, Ispra

    1993-01-01

    The experimental site of El Berrocal has been chosen for a study of the migration of natural radionuclides in a fractured granitic environment. The granite is classified as an alkaline feldspar-rich quartz granite with two micas. The fresh granite is affected by hydrothermal alteration processes related to fractures, which has led to a strong sericitization of albite, and the precipitation of secondary chlorites and carbonates. The most important U-bearing and Th-bearing accessory minerals are uraninite, thorite-auerlite, monazite, anatase, apatite and zircon. Approximately 65% of the total of U in the rock is held as uraninite. In the altered granite, most of the U is held as autunite. Hydrogeochemical data show that Co 2 /H 2 CO 3 is the dominant system, followed by the silica-silicate system. Based on their stability analyses, two zones can be defined: (i) waters north of the dyke and from deep zones where calcite is in equilibrium and albite and gibbsite precipitate, and (ii) surface waters, south of the dyke, subsaturated in relation to calcite, producing the alteration of albite and the precipitation of montmorillonite. The size distribution of the colloids varies, depending on the treatment given to the water samples. The particles are mainly composed of K-feldspars and clay minerals (smectite) and occasionally by quartz, mica, calcite and pollen. The El Berrocal groundwaters have a very low amount of organic matter. Column migration tests have been carried out and were performed with intact granitic cores and with crushed granite. Np proved to be an adequate radionuclide for these experiments. Under oxic conditions and in the absence of organic matter, it was completely retained in both types of columns, whereas in the presence of organic matter a more rapid breakthrough was observed. Under anoxic conditions, and with or without organic matter, Np was found to move faster than under oxic conditions. (author). 13 refs., 46 figs., 23 tabs

  16. In-Situ Burning of Crude Oil on Water

    DEFF Research Database (Denmark)

    van Gelderen, Laurens

    in the small scale water basin. Boilovers were also observed during the burning of a heavy crude oil with a substantial light fraction without a water layer, however, which suggests that water is not essential for boilover occurrence. Further studies are required to determine the conditions under which......The fire dynamics and fire chemistry of in-situ burning of crude oil on water was studied in order to improve predictions on the suitability of this oil spill response method. For this purpose, several operational parameters were studied to determine the factors that control the burning efficiency...... of in-situ burning, i.e. the amount of oil (in wt%) removed from the water surface by the burning process. The burning efficiency is the main parameter for expressing the oil removal effectiveness of in-situ burning as response method and is thus relevant for suitability predictions of in-situ burning...

  17. In situ vitrification: application analysis for stabilization of transuranic waste

    Energy Technology Data Exchange (ETDEWEB)

    Oma, K.H.; Farnsworth, R.K.; Rusin, J.M.

    1982-09-01

    The in situ vitrification process builds upon the electric melter technology previously developed for high-level waste immobilization. In situ vitrification converts buried wastes and contaminated soil to an extremely durable glass and crystalline waste form by melting the materials, in place, using joule heating. Once the waste materials have been solidified, the high integrity waste form should not cause future ground subsidence. Environmental transport of the waste due to water or wind erosion, and plant or animal intrusion, is minimized. Environmental studies are currently being conducted to determine whether additional stabilization is required for certain in-ground transuranic waste sites. An applications analysis has been performed to identify several in situ vitrification process limitations which may exist at transuranic waste sites. Based on the process limit analysis, in situ vitrification is well suited for solidification of most in-ground transuranic wastes. The process is best suited for liquid disposal sites. A site-specific performance analysis, based on safety, health, environmental, and economic assessments, will be required to determine for which sites in situ vitrification is an acceptable disposal technique. Process economics of in situ vitrification compare favorably with other in-situ solidification processes and are an order of magnitude less than the costs for exhumation and disposal in a repository. Leachability of the vitrified product compares closely with that of Pyrex glass and is significantly better than granite, marble, or bottle glass. Total release to the environment from a vitrified waste site is estimated to be less than 10/sup -5/ parts per year. 32 figures, 30 tables.

  18. In situ vitrification: application analysis for stabilization of transuranic waste

    International Nuclear Information System (INIS)

    Oma, K.H.; Farnsworth, R.K.; Rusin, J.M.

    1982-09-01

    The in situ vitrification process builds upon the electric melter technology previously developed for high-level waste immobilization. In situ vitrification converts buried wastes and contaminated soil to an extremely durable glass and crystalline waste form by melting the materials, in place, using joule heating. Once the waste materials have been solidified, the high integrity waste form should not cause future ground subsidence. Environmental transport of the waste due to water or wind erosion, and plant or animal intrusion, is minimized. Environmental studies are currently being conducted to determine whether additional stabilization is required for certain in-ground transuranic waste sites. An applications analysis has been performed to identify several in situ vitrification process limitations which may exist at transuranic waste sites. Based on the process limit analysis, in situ vitrification is well suited for solidification of most in-ground transuranic wastes. The process is best suited for liquid disposal sites. A site-specific performance analysis, based on safety, health, environmental, and economic assessments, will be required to determine for which sites in situ vitrification is an acceptable disposal technique. Process economics of in situ vitrification compare favorably with other in-situ solidification processes and are an order of magnitude less than the costs for exhumation and disposal in a repository. Leachability of the vitrified product compares closely with that of Pyrex glass and is significantly better than granite, marble, or bottle glass. Total release to the environment from a vitrified waste site is estimated to be less than 10 -5 parts per year. 32 figures, 30 tables

  19. Regular in situ measurements of HDO/H216O in the northern and southern hemispherical upper troposphere reveal tropospheric transport processes.

    Science.gov (United States)

    Christner, Emanuel; Dyroff, Christoph; Sanati, Shahrokh; Brenninkmeijer, Carl; Zahn, Andreas

    2013-04-01

    Atmospheric water in form of water vapor and clouds is an enormously crucial trace species. It is responsible for ~70 % of the natural greenhouse effect (Schmidt et al., JGR, 2010), carries huge amounts of latent heat, and is the major source of OH in the troposphere. The isotopic composition of water vapor is an elegant tracer for a better understanding and quantification of the extremely complex and variable hydrological cycle in Earth's atmosphere (evaporation, cloud condensation, rainout, re-evaporation, snow), which in turn is a prerequisite to improve climate modeling and predictions. In this context, water-isotopologues (here the isotope ratio HDO/H216O) can be used to study the atmospheric transport of water and in-cloud processes. As H216O and HDO differ in vapor pressure and molecular diffusion, fractionation occurs during condensation and rainout events. For that reason the ratio HDO/H216O preserves information about the transport and condensation history of an air mass. The tunable diode-laser absorption spectrometer ISOWAT was developed for airborne measurements of the water-isotopologue concentrations of H216O and HDO, probing fundamental rovibrational water-absorption lines at around 2.66 μm. Since April 2010 the spectrometer is regularly operated aboard the CARIBIC passenger aircraft (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container - Lufthansa, Airbus 340-600), which measures ~100 trace gases and aerosol components in the UTLS (9-12 km altitude) on four long-distance flights per month. During several flights across the equator (Africa) or close to the equator (Venezuela and Malaysia) an increase of HDO/H216O from the subtropics towards the tropics was measured (by more than 100 permil) at an altitude of ~12 km. This isotopic gradient can partly be attributed to differences in humidity. In addition there is a humidity independent latitudinal gradient (by more than 50 permil), revealing the strong

  20. Using semi-continuous, in-situ measurements of nitrous oxide isotopic composition at a suburban site to track emission processes

    Science.gov (United States)

    Harris, Eliza; Henne, Stephan; Christoph, Hüglin; Christoph, Zellweger; Béla, Tuzson; Erkan, Ibraim; Lukas, Emmenegger; Joachim, Mohn

    2017-04-01

    , δ15Nbulk and particularly SP appear to vary too strongly in response to other factors affecting emission processes to provide a useful distinction between source categories on a regional scale - these isotopocules may however be useful to distinguish emission pathways on a local scale. For comparison, FLEXPART-COSMO transport simulations [4] were combined with emissions from the EDGAR inventory and estimates of source isotopic composition from literature, to simulate N2O isotopic composition at the sampling site. The model was able to capture variability in N2O mole fraction adequately (R2 = 0.34; p <<0.01). However, the measured variability in source isotopic composition was 1-2 orders of magnitude larger than simulated, illustrating that our knowledge of isotopic source signatures - in particular technical N2O sources - is still too limited to successfully model variations in ambient N2O isotopic composition. [1] Mohn et al. (2012) Atmospheric Measurement Techniques, doi:10.5194/amt-5-1601-2012 [2] Harris et al. (2014) Analytical Chemistry, doi: 10.1021/ac403606u. [3] Röckmann et al. (2016) Atmospheric Chemistry and Physics, doi:10.5194/acp-16-10469-2016. [4] Henne et al. (2016) Atmospheric Chemistry and Physics, doi:10.5194/acp-16-3683-2016.

  1. In-Situ Wire Damage Detection System

    Science.gov (United States)

    Williams, Martha K. (Inventor); Roberson, Luke B. (Inventor); Tate, Lanetra C. (Inventor); Smith, Trent M. (Inventor); Gibson, Tracy L. (Inventor); Jolley, Scott T. (Inventor); Medelius, Pedro J. (Inventor)

    2014-01-01

    An in-situ system for detecting damage in an electrically conductive wire. The system includes a substrate at least partially covered by a layer of electrically conductive material forming a continuous or non-continuous electrically conductive layer connected to an electrical signal generator adapted to delivering electrical signals to the electrically conductive layer. Data is received and processed to identify damage to the substrate or electrically conductive layer. The electrically conductive material may include metalized carbon fibers, a thin metal coating, a conductive polymer, carbon nanotubes, metal nanoparticles or a combination thereof.

  2. Breeding of in-situ Petroleum Degrading Bacteria in Hangzhou Bay and evaluating for the In-situ repair effect

    Science.gov (United States)

    Lan, Ru; Lin, Hai; Qiao, Bing; Dong, Yingbo; Zhang, Wei; Chang, Wen

    2018-02-01

    In this paper, the restoration behaviour of the in-situ microorganisms in seawater and sediments to the marine accident oil spill was researched. The experimental study on the breeding of in-situ petroleum-degrading bacteria in the seawater and sediments of Hangzhou Bay and the restoration of oil spill were carried out. Making use of the reinforced microbial flora, combined with physical and chemical methods in field environment, petroleum degrading and restoration experiment were performed, the effect of the breeding of in-situ degrading bacteria was evaluated, and the standard process of in-situ bacteria sampling, laboratory screening, domestication and degradation efficiency testing were formed. This study laid a foundation for further evaluation of the advantages and disadvantages for the petroleum-degrading bacteria of Hangzhou Bay during the process of in-situ restoration. The results showed that in-situ microbes of Hangzhou Bay could reach the growth peak in 5 days with the suitable environmental factors and sufficient nutrient elements, and the degradation efficiency could reach 65.2% (or 74.8% after acclimation). And also the microbes could adapt to the local sea water and environmental conditions, with a certain degree of degradation. The research results could provide parameter support for causal judgment and quantitative assessment of oil spill damage.

  3. Polyolefin nanocomposites in situ polymerization

    International Nuclear Information System (INIS)

    Galland, Griselda Barrera; Fim, Fabiana de C.; Milani, Marceo A.; Silva, Silene P. da; Forest, Tadeu; Radaelli, Gislaine; Basso, Nara R.S.; Quijada, Raul

    2011-01-01

    Polyethylene and polypropylene nanocomposites using grapheme nanosheets and treated chrysotile have been synthesized by in situ polymerization using metallocene catalysts. The fillers have been submitted to acid, thermal and/ou ultrasound treatments before to introduce them into the polymerization reactor. A complete characterization of the fillers has been done. The nanocomposites have been characterized by SEM, TEM, DRX and AFM. The thermal, mechanic -dynamic, mechanical and electrical properties of the nanocomposites are discussed. (author)

  4. Oldest biliary endoprosthesis in situ.

    Science.gov (United States)

    Consolo, Pierluigi; Scalisi, Giuseppe; Crinò, Stefano F; Tortora, Andrea; Giacobbe, Giuseppa; Cintolo, Marcello; Familiari, Luigi; Pallio, Socrate

    2013-07-16

    The advantages of endoscopic retrograde cholangiopancreatography over open surgery have made it the predominant method of treating patients with choledocholithiasis. After sphincterotomy, however, 10%-15% of common bile duct stones cannot be removed with a basket or balloon. The methods for managing "irretrievable stones" include surgery, mechanical lithotripsy, intraductal or extracorporeal shock wave lithotripsy and biliary stenting. The case presented was a referred 82-year-old Caucasian woman with a 7-year-old plastic biliary endoprosthesis in situ. To the best of our knowledge the examined endoprosthesis is the oldest endoprosthesis in situ reported in the literature. Endoscopic biliary endoprosthesis placement remains a simple and safe procedure for patients with stones that are difficult to manage by conventional endoscopic methods and for patients who are unfit for surgery or who are high surgical risks. To date no consensus has been reached regarding how long a biliary prosthesis should remain in situ. Long-term biliary stenting may have a role in selected elderly patients if stones extraction has failed because the procedure may prevent stones impaction and cholangitis.

  5. Oldest biliary endoprosthesis in situ

    Science.gov (United States)

    Consolo, Pierluigi; Scalisi, Giuseppe; Crinò, Stefano F; Tortora, Andrea; Giacobbe, Giuseppa; Cintolo, Marcello; Familiari, Luigi; Pallio, Socrate

    2013-01-01

    The advantages of endoscopic retrograde cholangiopancreatography over open surgery have made it the predominant method of treating patients with choledocholithiasis. After sphincterotomy, however, 10%-15% of common bile duct stones cannot be removed with a basket or balloon. The methods for managing “irretrievable stones” include surgery, mechanical lithotripsy, intraductal or extracorporeal shock wave lithotripsy and biliary stenting. The case presented was a referred 82-year-old Caucasian woman with a 7-year-old plastic biliary endoprosthesis in situ. To the best of our knowledge the examined endoprosthesis is the oldest endoprosthesis in situ reported in the literature. Endoscopic biliary endoprosthesis placement remains a simple and safe procedure for patients with stones that are difficult to manage by conventional endoscopic methods and for patients who are unfit for surgery or who are high surgical risks. To date no consensus has been reached regarding how long a biliary prosthesis should remain in situ. Long-term biliary stenting may have a role in selected elderly patients if stones extraction has failed because the procedure may prevent stones impaction and cholangitis. PMID:23858381

  6. In situ synchrotron X-ray diffraction studies of the effect of microstructure on tensile behavior and retained austenite stability of thermo-mechanically processed transformation induced plasticity steel

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Kun [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Liss, Klaus-Dieter [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234 (Australia); Timokhina, Ilana B. [Institute for Frontier Materials, Deakin University, Geelong, VIC 3217 (Australia); Pereloma, Elena V., E-mail: elenap@uow.edu.au [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia)

    2016-04-26

    Transmission electron microscopy and in situ synchrotron high-energy X-ray diffraction were used to investigate the martensitic transformation and lattice strains under uniaxial tensile loading of Fe-Mn-Si-C-Nb-Mo-Al Transformation Induced Plasticity (TRIP) steel subjected to different thermo-mechanical processing schedules. In contrast with most of the diffraction analysis of TRIP steels reported previously, the diffraction peaks from the martensite phase were separated from the peaks of the ferrite-bainite α-matrix. The volume fraction of retained γ-austenite, as well as the lattice strain, were determined from the diffraction patterns recorded during tensile deformation. Although significant austenite to martensite transformation starts around the macroscopic yield stress, some austenite grains had already experienced martensitic transformation. Hooke’s Law was used to calculate the phase stress of each phase from their lattice strain. The ferrite-bainite α-matrix was observed to yield earlier than austenite and martensite. The discrepancy between integrated phase stresses and experimental macroscopic stress is about 300 MPa. A small increase in carbon concentration in retained austenite at the early stage of deformation was detected, but with further straining a continuous slight decrease in carbon content occurred, indicating that mechanical stability factors, such as grain size, morphology and orientation of the retained austenite, played an important role during the retained austenite to martensite transformation.

  7. Development of an in-situ synthesized multi-component reinforced Al–4.5%Cu–TiC metal matrix composite by FAS technique – Optimization of process parameters

    Directory of Open Access Journals (Sweden)

    Biswajit Das

    2016-03-01

    Full Text Available In the present investigation, an in-situ multi-component reinforced aluminium copper alloy based metal matrix composite was fabricated by the flux assisted synthesis (FAS technique. It was found from the optical microscopy analysis that TiC particles are formed in the composite. Further the present research investigates the feasibility and dry machining characteristics of Al–4.5%Cu/5TiC metal matrix composite in CNC milling machine using uncoated solid carbide end mill cutter. The effect of the machining parameters such as feed, cutting speed, depth of cut on the response parameters such as cutting force and COM is determined by using analysis of variance (ANOVA. From the analysis it was found that cutting speed and depth of cut played a major role in affecting cutting force. Multi output optimization of the process was carried out by the application of the Taguchi method with fuzzy logic, and the confirmatory test has revealed the accuracy of the developed model. For predicting the response parameters, regression equations were developed and verified with a number of test cases and it was observed that the percentage error for both responses is less than ±3%, which indicates there is a close agreement between the predicted and the measured results.

  8. Unintended and in situ amorphisation of pharmaceuticals

    DEFF Research Database (Denmark)

    Priemel, P A; Grohganz, H; Rades, T

    2016-01-01

    by which in situ amorphisation occurs are often not fully understood. In situ amorphisation can be exploited and performed before administration of the drug or possibly even within the gastrointestinal tract, as can be inferred from in situ amorphisation observed during in vitro lipolysis. The use...... of in situ amorphisation can thus confer the advantages of the amorphous form, such as higher apparent solubility and faster dissolution rate, without the disadvantage of its physical instability....

  9. Microprobe sampling--photo ionization-time-of-flight mass spectrometry for in situ chemical analysis of pyrolysis and combustion gases: examination of the thermo-chemical processes within a burning cigarette.

    Science.gov (United States)

    Hertz, Romy; Streibel, Thorsten; Liu, Chuan; McAdam, Kevin; Zimmermann, Ralf

    2012-02-10

    A microprobe sampling device (μ-probe) has been developed for in situ on-line photo ionization mass spectrometric analysis of volatile chemical species formed within objects consisting of organic matter during thermal processing. With this approach the chemical signature occurring during heating, pyrolysis, combustion, roasting and charring of organic material within burning objects such as burning fuel particles (e.g., biomass or coal pieces), lit cigarettes or thermally processed food products (e.g., roasting of coffee beans) can be investigated. Due to its dynamic changes between combustion and pyrolysis phases the cigarette smoking process is particularly interesting and has been chosen as first application. For this investigation the tip of the μ-probe is inserted directly into the tobacco rod and volatile organic compounds from inside the burning cigarette are extracted and real-time analyzed as the glowing front (or coal) approaches and passes the μ-probe sampling position. The combination of micro-sampling with photo ionization time-of-flight mass spectrometry (PI-TOFMS) allows on-line intrapuff-resolved analysis of species formation inside a burning cigarette. Monitoring volatile smoke compounds during cigarette puffing and smoldering cycles in this way provides unparalleled insights into formation mechanisms and their time-dependent change. Using this technique the changes from pyrolysis conditions to combustion conditions inside the coal of a cigarette could be observed directly. A comparative analysis of species formation within a burning Kentucky 2R4F reference cigarette with μ-probe analysis reveals different patterns and behaviors for nicotine, and a range of semi-volatile aromatic and aliphatic species. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. In situ leaching of uranium: Technical, environmental and economic aspects

    International Nuclear Information System (INIS)

    1989-01-01

    Within the framework of its activities in nuclear raw materials the International Atomic Energy Agency has convened a series of meetings to discuss various aspects of uranium ore processing technology, recovery of uranium from non-conventional resources and development of projects for the production of uranium concentrates including economic aspects. As part of this continuing effort to discuss and document important aspects of uranium production the IAEA convened a Technical Committee Meeting on Technical, Economic and Environmental Aspects of In-Situ Leaching. Although the use of this technique is limited by geological and economic constraints, it has a significant potential to produce uranium at competitive prices. This is especially important in the current uranium market which is mainly characterised by large inventories, excess production capability and low prices. This situation is not expected to last indefinitely but it is unlikely to change drastically in the next ten years or so. This Technical Committee Meeting was held in Vienna from 3 to 6 November 1987 with the attendance of 24 participants from 12 countries. Eight papers were presented. Technical sessions covered in-situ mining research, environmental and licensing aspects and restoration of leached orebodies; the technological status of in-situ leaching, the current status and future prospects of in-situ leaching of uranium in Member States, general aspects of planning and implementation of in-situ projects and the economics of in-situ leaching. Refs, figs and tabs

  11. Noise canceling in-situ detection

    Science.gov (United States)

    Walsh, David O.

    2014-08-26

    Technologies applicable to noise canceling in-situ NMR detection and imaging are disclosed. An example noise canceling in-situ NMR detection apparatus may comprise one or more of a static magnetic field generator, an alternating magnetic field generator, an in-situ NMR detection device, an auxiliary noise detection device, and a computer.

  12. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... new application of artificial intelligence shows whether a patient’s eyes point to high blood pressure or risk ...

  13. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... be purchased over-the-counter or on the Internet," says Thomas Steinemann, MD, professor of ophthalmology at ... ask for a prescription. There is no such thing as a "one size fits all" contact lens. ...

  14. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... had not been properly fitted by an eye care professional, the lenses stuck to my eye like ... lenses do not require the same level of care or consideration as a standard contact lens because ...

  15. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... sell contacts without a prescription are breaking the law, and may be fined $11,000 per violation. " ... wear any kind of contact lens. In Butler's case, the lenses caused an infection and left her ...

  16. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... Costume Contact Lenses Can Ruin Vision Eye Makeup Safety In fact, it is illegal to sell colored ...

  17. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... with Colored Contact Lenses Julian: Teenager Blinded In One Eye By Non-Prescription Contact Lens Laura: Vision ... Robyn: Blurry Vision and Daily Eye Drops After One Use Facts About Colored Contacts and Halloween Safety ...

  18. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... Academy Jobs at the Academy Financial Relationships with Industry Medical Disclaimer Privacy Policy Terms of Service For ...

  19. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... in a pair of colored contact lenses, Laura Butler of Parkersburg, W.Va., had "extreme pain in ... to wear any kind of contact lens. In Butler's case, the lenses caused an infection and left ...

  20. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... use of colored contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses ...

  1. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... an impulsive buy from a souvenir shop, but 10 hours after she first put in a pair ... Prescription Contact Lens Laura: Vision Loss After Just 10 Hours Robyn: Blurry Vision and Daily Eye Drops ...

  2. bubble chamber lens

    CERN Multimedia

    Before the days of electronic detectors, visual techniques were used to detect particles, using detectors such as spark chambers and bubble chambers. This plexiglass lens was used to focus the image of tracks so they could be photographed.

  3. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Contact Lens Facts Over-the-Counter Costume Contacts May Contain Chemicals Harmful to Eyes Four Ways Over- ... without a prescription are breaking the law, and may be fined $11,000 per violation. "Many of ...

  4. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... not require the same level of care or consideration as a standard contact lens because they can ... sell contacts without a prescription are breaking the law, and may be fined $11,000 per violation. " ...

  5. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... an ophthalmologist — an eye medical doctor — who will measure each eye and talk to you about proper ...

  6. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... prescription. Follow the contact lens care directions for cleaning, disinfecting, and wearing the lenses. Never share contact ... with Industry Medical Disclaimer Privacy Policy Terms of Service For Advertisers For Media Ophthalmology Job Center © American ...

  7. Modeling of in-situ combustion as thermal recovery method for heavy (medium) oil (poster)

    NARCIS (Netherlands)

    Khoshnevis Gargar, N.; Achterbergh, N.; Rudolph, E.S.J.; Bruining, J.

    2010-01-01

    In-situ combustion (ISC), as a well known process for secondary and tertiary oil recovery, is an important alternative approach to achieve higher production efficiency for light and heavy oil reservoirs. The in-situ combustion process is a complex combination of a number of processes which occur in

  8. Viscous froth lens

    Science.gov (United States)

    Green, T. E.; Bramley, A.; Lue, L.; Grassia, P.

    2006-11-01

    Microscale models of foam structure traditionally incorporate a balance between bubble pressures and surface tension forces associated with curvature of bubble films. In particular, models for flowing foam microrheology have assumed this balance is maintained under the action of some externally imposed motion. Recently, however, a dynamic model for foam structure has been proposed, the viscous froth model, which balances the net effect of bubble pressures and surface tension to viscous dissipation forces: this permits the description of fast-flowing foam. This contribution examines the behavior of the viscous froth model when applied to a paradigm problem with a particularly simple geometry: namely, a two-dimensional bubble “lens.” The lens consists of a channel partly filled by a bubble (known as the “lens bubble”) which contacts one channel wall. An additional film (known as the “spanning film”) connects to this bubble spanning the distance from the opposite channel wall. This simple structure can be set in motion and deformed out of equilibrium by applying a pressure across the spanning film: a rich dynamical behavior results. Solutions for the lens structure steadily propagating along the channel can be computed by the viscous froth model. Perturbation solutions are obtained in the limit of a lens structure with weak applied pressures, while numerical solutions are available for higher pressures. These steadily propagating solutions suggest that small lenses move faster than large ones, while both small and large lens bubbles are quite resistant to deformation, at least for weak applied back pressures. As the applied back pressure grows, the structure with the small lens bubble remains relatively stiff, while that with the large lens bubble becomes much more compliant. However, with even further increases in the applied back pressure, a critical pressure appears to exist for which the steady-state structure loses stability and unsteady

  9. In situ management and domestication of plants in Mesoamerica.

    Science.gov (United States)

    Casas, Alejandro; Otero-Arnaiz, Adriana; Pérez-Negrón, Edgar; Valiente-Banuet, Alfonso

    2007-11-01

    species analysed is causing incipient domestication. This process could be acting on any of the 600-700 plant species documented to be under in situ management in Mesoamerica. In situ domestication of plants could be relevant to understand early processes of domestication and current conditions of in situ conservation of plant genetic resources.

  10. In-situ strain observation in high power laser cladding

    NARCIS (Netherlands)

    Ocelik, V.; Bosgra, J.; de Hosson, J. Th. M.

    2009-01-01

    The modern experimental technique - so called Digital Image Correlation - is applied during high power laser surface treatments for in-situ observation of displacements and strains near the processing area during and a short time after laser processing. An experimental setup has been designed and

  11. Method of making in-situ whisker reinforced glass ceramic

    Science.gov (United States)

    Brown, Jesse J.; Hirschfeld, Deidre A.; Lee, K. H.

    1993-02-16

    A heat processing procedure is used to create reinforcing whiskers of TiO.sub.2 in glass-ceramic materials in the LAS and MAS family. The heat processing procedure has particular application in creating TiO.sub.2 in-situ in a modified .beta.-eucryptite system.

  12. Role of Aquaporin 0 in lens biomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Sindhu Kumari, S.; Gupta, Neha [Physiology and Biophysics, Stony Brook University, Stony Brook, NY (United States); Shiels, Alan [Washington University School of Medicine, St. Louis, MO (United States); FitzGerald, Paul G. [Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA (United States); Menon, Anil G. [University of Cincinnati College of Medicine, Cincinnati, OH (United States); Mathias, Richard T. [Physiology and Biophysics, Stony Brook University, Stony Brook, NY (United States); SUNY Eye Institute, NY (United States); Varadaraj, Kulandaiappan, E-mail: kulandaiappan.varadaraj@stonybrook.edu [Physiology and Biophysics, Stony Brook University, Stony Brook, NY (United States); SUNY Eye Institute, NY (United States)

    2015-07-10

    Maintenance of proper biomechanics of the eye lens is important for its structural integrity and for the process of accommodation to focus near and far objects. Several studies have shown that specialized cytoskeletal systems such as the beaded filament (BF) and spectrin-actin networks contribute to mammalian lens biomechanics; mutations or deletion in these proteins alters lens biomechanics. Aquaporin 0 (AQP0), which constitutes ∼45% of the total membrane proteins of lens fiber cells, has been shown to function as a water channel and a structural cell-to-cell adhesion (CTCA) protein. Our recent ex vivo study on AQP0 knockout (AQP0 KO) mouse lenses showed the CTCA function of AQP0 could be crucial for establishing the refractive index gradient. However, biomechanical studies on the role of AQP0 are lacking. The present investigation used wild type (WT), AQP5 KO (AQP5{sup −/−}), AQP0 KO (heterozygous KO: AQP0{sup +/−}; homozygous KO: AQP0{sup −/−}; all in C57BL/6J) and WT-FVB/N mouse lenses to learn more about the role of fiber cell AQPs in lens biomechanics. Electron microscopic images exhibited decreases in lens fiber cell compaction and increases in extracellular space due to deletion of even one allele of AQP0. Biomechanical assay revealed that loss of one or both alleles of AQP0 caused a significant reduction in the compressive load-bearing capacity of the lenses compared to WT lenses. Conversely, loss of AQP5 did not alter the lens load-bearing ability. Compressive load-bearing at the suture area of AQP0{sup +/−} lenses showed easy separation while WT lens suture remained intact. These data from KO mouse lenses in conjunction with previous studies on lens-specific BF proteins (CP49 and filensin) suggest that AQP0 and BF proteins could act co-operatively in establishing normal lens biomechanics. We hypothesize that AQP0, with its prolific expression at the fiber cell membrane, could provide anchorage for cytoskeletal structures like BFs and

  13. In-situ Planetary Subsurface Imaging System

    Science.gov (United States)

    Song, W.; Weber, R. C.; Dimech, J. L.; Kedar, S.; Neal, C. R.; Siegler, M.

    2017-12-01

    Geophysical and seismic instruments are considered the most effective tools for studying the detailed global structures of planetary interiors. A planet's interior bears the geochemical markers of its evolutionary history, as well as its present state of activity, which has direct implications to habitability. On Earth, subsurface imaging often involves massive data collection from hundreds to thousands of geophysical sensors (seismic, acoustic, etc) followed by transfer by hard links or wirelessly to a central location for post processing and computing, which will not be possible in planetary environments due to imposed mission constraints on mass, power, and bandwidth. Emerging opportunities for geophysical exploration of the solar system from Venus to the icy Ocean Worlds of Jupiter and Saturn dictate that subsurface imaging of the deep interior will require substantial data reduction and processing in-situ. The Real-time In-situ Subsurface Imaging (RISI) technology is a mesh network that senses and processes geophysical signals. Instead of data collection then post processing, the mesh network performs the distributed data processing and computing in-situ, and generates an evolving 3D subsurface image in real-time that can be transmitted under bandwidth and resource constraints. Seismic imaging algorithms (including traveltime tomography, ambient noise imaging, and microseismic imaging) have been successfully developed and validated using both synthetic and real-world terrestrial seismic data sets. The prototype hardware system has been implemented and can be extended as a general field instrumentation platform tailored specifically for a wide variety of planetary uses, including crustal mapping, ice and ocean structure, and geothermal systems. The team is applying the RISI technology to real off-world seismic datasets. For example, the Lunar Seismic Profiling Experiment (LSPE) deployed during the Apollo 17 Moon mission consisted of four geophone instruments

  14. The effectiveness of soft contact lens disinfection systems against Acanthamoeba on the lens surface.

    Science.gov (United States)

    Liedel, K K; Begley, C G

    1996-03-01

    This investigation compared the efficacy of three widely used contact lens disinfection systems against an ocular isolate of Acanthamoeba polyphaga. Twenty-seven worn Ciba NewVues lenses were quartered, heat sterilized and inoculated with Acanthamoeba. Lens quarters were then randomly assigned to three experimental groups, with Group A lenses exposed to cleaner and saline rinse only, Group B to disinfection only, and Group C to both cleaner and disinfection. One quarter of each lens served as a control and the other three quarters were experimental. Quantification of viable Acanthamoeba remaining on the lens was performed after each step of the disinfection process. Group A lenses showed no significant difference between the treatments, or the treatments and the control. Group B lenses demonstrated a significant difference (p = 0.0001) between the treatments and the control. In Group C (cleaning and disinfection), the control lens quarters were significantly different (p = 0.037) from the experimental group, but there was no significant difference between the treatments. All three disinfection regimens were very effective in reducing the number of viable Acanthamoeba on the contact lens surface. In the absence of proper cleaning (Group B), AOSept was the most effective of the three. These results also show the importance of thoroughly rubbing the contact lens surface to decrease the number of Acanthamoeba.

  15. The use of ocular anatomical measurements using a rotating Scheimpflug camera to assist in the Esclera® scleral contact lens fitting process.

    Science.gov (United States)

    Weber, Sarah La Porta; Ambrósio, Renato; Lipener, César; Coral-Ghanem, Cleusa; Hofling-Lima, Ana Luisa

    2016-04-01

    To test for associations between Pentacam(®) derived topography variables and to evaluate the predictive power of those variables in relation to scleral contact lens (SCL) fit. Department of Ophthalmology and Visual Sciences, Federal University of São Paulo, São Paulo-SP, Brazil. Prospective observational non-randomised, non-comparative study. Forty-seven patients (63 eyes) were indicated for the use of Esclera(®) SCL. All patients underwent Scheimpflug imaging before the initial SCL evaluation. The following parameters were measured by Pentacam: corneal elevations, thickness, density, and anterior chamber depth (ACD). Correlations between the SCL parameters and the Pentacam measurements were analysed with Pearson's correlation coefficients. A simple linear regression model was created for each lens parameter using the most-correlated Pentacam variable. In the total group, the results show correlations between the SCL parameters and the corneal astigmatism, ACD and pentacam-measured corneal height (Hm), with p<0.001 each. In addition, an inverse correlation between the lens sagittal depth (LSD) and the anterior radii minimum was shown (p<0.001). In the keratoconus group, the results show correlations between the SCL parameters and ACD and Hm (p<0.001, each). An inverse correlation between the LSD and the total thickness corneal density average was also observed (p=0.003). There was a positive correlation between the LSD and ACD, even as LD and ACD in the keratoconus group. Thus, these results suggest that certain Pentacam measurements can be good predictors of the most appropriate Esclera lens to be fitted in keratoconus patients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Inherently safe in situ uranium recovery.

    Energy Technology Data Exchange (ETDEWEB)

    Krumhansl, James Lee; Beauheim, Richard Louis; Brady, Patrick Vane; Arnold, Bill Walter; Kanney, Joseph F.; McKenna, Sean Andrew

    2009-05-01

    Expansion of uranium mining in the United States is a concern to some environmental groups and sovereign Native American Nations. An approach which may alleviate some problems is to develop inherently safe in situ uranium recovery ('ISR') technologies. Current ISR technology relies on chemical extraction of trace levels of uranium from aquifers that, once mined, can still contain dissolved uranium and other trace metals that are a health concern. Existing ISR operations are few in number; however, high uranium prices are driving the industry to consider expanding operations nation-wide. Environmental concerns and enforcement of the new 30 ppb uranium drinking water standard may make opening new mining operations more difficult and costly. Here we propose a technological fix: the development of inherently safe in situ recovery (ISISR) methods. The four central features of an ISISR approach are: (1) New 'green' leachants that break down predictably in the subsurface, leaving uranium, and associated trace metals, in an immobile form; (2) Post-leachant uranium/metals-immobilizing washes that provide a backup decontamination process; (3) An optimized well-field design that increases uranium recovery efficiency and minimizes excursions of contaminated water; and (4) A combined hydrologic/geochemical protocol for designing low-cost post-extraction long-term monitoring. ISISR would bring larger amounts of uranium to the surface, leave fewer toxic metals in the aquifer, and cost less to monitor safely - thus providing a 'win-win-win' solution to all stakeholders.

  17. Enzyme Engineering for In Situ Immobilization.

    Science.gov (United States)

    Rehm, Fabian B H; Chen, Shuxiong; Rehm, Bernd H A

    2016-10-14

    Enzymes are used as biocatalysts in a vast range of industrial applications. Immobilization of enzymes to solid supports or their self-assembly into insoluble particles enhances their applicability by strongly improving properties such as stability in changing environments, re-usability and applicability in continuous biocatalytic processes. The possibility of co-immobilizing various functionally related enzymes involved in multistep synthesis, conversion or degradation reactions enables the design of multifunctional biocatalyst with enhanced performance compared to their soluble counterparts. This review provides a brief overview of up-to-date in vitro immobilization strategies while focusing on recent advances in enzyme engineering towards in situ self-assembly into insoluble particles. In situ self-assembly approaches include the bioengineering of bacteria to abundantly form enzymatically active inclusion bodies such as enzyme inclusions or enzyme-coated polyhydroxyalkanoate granules. These one-step production strategies for immobilized enzymes avoid prefabrication of the carrier as well as chemical cross-linking or attachment to a support material while the controlled oriented display strongly enhances the fraction of accessible catalytic sites and hence functional enzymes.

  18. In situ SU-8 silver nanocomposites

    Directory of Open Access Journals (Sweden)

    Søren V. Fischer

    2015-07-01

    Full Text Available Nanocomposite materials containing metal nanoparticles are of considerable interest in photonics and optoelectronics applications. However, device fabrication of such materials always encounters the challenge of incorporation of preformed nanoparticles into photoresist materials. As a solution to this problem, an easy new method of fabricating silver nanocomposites by an in situ reduction of precursors within the epoxy-based photoresist SU-8 has been developed. AgNO3 dissolved in acetonitrile and mixed with the epoxy-based photoresist SU-8 forms silver nanoparticles primarily during the pre- and post-exposure soft bake steps at 95 °C. A further high-temperature treatment at 300 °C resulted in the formation of densely homogeneously distributed silver nanoparticles in the photoresist matrix. No particle growth or agglomeration of nanoparticles is observed at this point. The reported new in situ silver nanocomposite materials can be spin coated as homogeneous thin films and structured by using UV lithography. A resolution of 5 µm is achieved in the lithographic process. The UV exposure time is found to be independent of the nanoparticle concentration. The fabricated silver nanocomposites exhibit high plasmonic responses suitable for the development of new optoelectronic and optical sensing devices.

  19. Inherently safe in situ uranium recovery

    International Nuclear Information System (INIS)

    Krumhansl, James Lee; Beauheim, Richard Louis; Brady, Patrick Vane; Arnold, Bill Walter; Kanney, Joseph F.; McKenna, Sean Andrew

    2009-01-01

    Expansion of uranium mining in the United States is a concern to some environmental groups and sovereign Native American Nations. An approach which may alleviate some problems is to develop inherently safe in situ uranium recovery ('ISR') technologies. Current ISR technology relies on chemical extraction of trace levels of uranium from aquifers that, once mined, can still contain dissolved uranium and other trace metals that are a health concern. Existing ISR operations are few in number; however, high uranium prices are driving the industry to consider expanding operations nation-wide. Environmental concerns and enforcement of the new 30 ppb uranium drinking water standard may make opening new mining operations more difficult and costly. Here we propose a technological fix: the development of inherently safe in situ recovery (ISISR) methods. The four central features of an ISISR approach are: (1) New 'green' leachants that break down predictably in the subsurface, leaving uranium, and associated trace metals, in an immobile form; (2) Post-leachant uranium/metals-immobilizing washes that provide a backup decontamination process; (3) An optimized well-field design that increases uranium recovery efficiency and minimizes excursions of contaminated water; and (4) A combined hydrologic/geochemical protocol for designing low-cost post-extraction long-term monitoring. ISISR would bring larger amounts of uranium to the surface, leave fewer toxic metals in the aquifer, and cost less to monitor safely - thus providing a 'win-win-win' solution to all stakeholders.

  20. Flux pinning properties of B-rich and SiC-doped MgB{sub 2} tapes prepared by in situ PIT two-stage heat-treatment process

    Energy Technology Data Exchange (ETDEWEB)

    Miura, O. [Department of Electrical Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397 (Japan)], E-mail: osuke@eei.metro-u.ac.jp; Saeki, A.; Tomioka, H.; Ito, D. [Department of Electrical Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397 (Japan); Harada, N. [Department of Electrical and Electronics Engineering, Yamaguchi University, Ube, Yamaguchi 755-8611 (Japan)

    2007-10-01

    B-rich and SiC-doped MgB{sub 2} tapes were fabricated by a modified in situ PIT method with two-stage heat-treatment, using Mg flakes with little oxide film. Combination of heat-treatment and rolling process brought about a dense MgB{sub 2} core and a strong inter granular connectivity. For all B-rich MgB{sub 2} tapes T{sub c} remained almost 38 K, while T{sub c} decreased for SiC-doped MgB{sub 2} tapes. J{sub c} for B-rich tapes increased systematically in whole magnetic fields with the increase of B composition ratio. The maximum J{sub c} values of 1.8 x 10{sup 5} at 20 K, 0 T and 0.84 x 10{sup 3} A/cm{sup 2} at 3 T were obtained for a specimen with the ratio of Mg:B of 1:2.8. The grain size of B-rich tapes was smaller than that of the stoichiometric one. SiC-doped tapes also achieved J{sub c} enhancement mainly in high-fields. Irreversibility fields increased for both MgB{sub 2} tapes. Analyses based on the single vortex pinning theory revealed two factors contributing to the improvement of J{sub c} for B-rich tapes. One is an increase of the grain boundary density and the other is an enhancement of the elementary pinning force at grain boundaries. On the other hand, for SiC-doped tapes, such factors slightly increased compared to B-rich tapes. It is believed that this difference of flux pinning behavior originates in the different flux pinning mechanism.

  1. Mars in Situ Resource Utilization Technology Evaluation

    Science.gov (United States)

    Muscatello, Anthony C.; Santago-Maldonado, Edgardo

    2012-01-01

    We have examined the technologies required to enable Mars In-Situ Resource Utilization (ISRU) because our understanding of Mars resources has changed significantly in the last five years as a result of recent robotic missions to the red planet. Two major developments, (1) confirmation of the presence of near-surface water in the form of ice in very large amounts at high latitudes by the Phoenix Lander and (2) the likely existence of water at lower latitudes in the form of hydrates or ice in the top one meter of the regolith, have the potential to change ISRU technology selection. A brief technology assessment was performed for the most promising Mars atmospheric gas processing techniques: Reverse Water Gas Shift (RWGS) and Methanation (aka Sabatier), as well as an overview of soil processing technology to extract water from Martian soil.

  2. Four Models of In Situ Simulation

    DEFF Research Database (Denmark)

    Musaeus, Peter; Krogh, Kristian; Paltved, Charlotte

    2014-01-01

    Introduction In situ simulation is characterized by being situated in the clinical environment as opposed to the simulation laboratory. But in situ simulation bears a family resemblance to other types of on the job training. We explore a typology of in situ simulation and suggest that there are f...... to team intervention and philosophies informing what good situated learning research is. This study generates system knowledge that might inform scenario development for in situ simulation.......Introduction In situ simulation is characterized by being situated in the clinical environment as opposed to the simulation laboratory. But in situ simulation bears a family resemblance to other types of on the job training. We explore a typology of in situ simulation and suggest...... that there are four fruitful approaches to in situ simulation: (1) In situ simulation informed by reported critical incidents and adverse events from emergency departments (ED) in which team training is about to be conducted to write scenarios. (2) In situ simulation through ethnographic studies at the ED. (3) Using...

  3. Erosion rates on subalpine paleosurfaces in the western Mediterranean by in-situ 10Be concentrations in granites: implications for surface processes and long-term landscape evolution in Corsica (France)

    NARCIS (Netherlands)

    Kuhlemann, J.; van der Borg, K.; Bons, P.D.; Danišík, M.; Frisch, W.

    2008-01-01

    A study of erosion rates by in-situ 10Be concentrations in granites of Miocene high-elevation paleosurfaces in Corsica indicates maximum erosion rates between 8 and 24 mm/kyear. The regional distribution of measured erosion rates indicates that the local climatic conditions, namely precipitation,

  4. Novel fabrication technique of hybrid structure lens array for 3D images

    Science.gov (United States)

    Lee, Junsik; Kim, Junoh; Kim, Cheoljoong; Shin, Dooseub; Koo, Gyohyun; Won, Yong Hyub

    2016-03-01

    Tunable liquid lens arrays can produce three dimensional images by using electrowetting principle that alters surface tensions by applying voltage. This method has advantages of fast response time and low power consumption. However, it is challenging to fabricate a high fill factor liquid lens array and operate three dimensional images which demand high diopter. This study describes a hybrid structure lens array which has not only a liquid lens array but a solid lens array. A concave-shape lens array is unavoidable when using only the liquid lens array and some voltages are needed to make the lens flat. By placing the solid lens array on the liquid lens array, initial diopter can be positive. To fabricate the hybrid structure lens array, a conventional lithographic process in semiconductor manufacturing is needed. A negative photoresist SU-8 was used as chamber master molds. PDMS and UV adhesive replica molding are done sequentially. Two immiscible liquids, DI water and dodecane, are injected in the fabricated chamber, followed by sealing. The fabricated structure has a 20 by 20 pattern of cylindrical shaped circle array and the aperture size of each lens is 1mm. The thickness of the overall hybrid structure is about 2.8mm. Hybrid structure lens array has many advantages. Solid lens array has almost 100% fill factor and allow high efficiency. Diopter can be increased by more than 200 and negative diopter can be shifted to the positive region. This experiment showed several properties of the hybrid structure and demonstrated its superiority.

  5. In situ bypass og diabetes

    DEFF Research Database (Denmark)

    Jensen, Leif Panduro; Schroeder, T V; Lorentzen, J E

    1993-01-01

    decreased survival rate was found in diabetics (p treatment of critical ischaemia of the lower limb in diabetic patients. The overall results in diabetic patients, whether insulin-dependent or not, were equal to those in non-diabetic......From 1986 through to 1990 a total of 483 in situ bypass procedures were performed in 444 patients. Preoperative risk-factors were equally distributed among diabetic (DM) and non-diabetic (NDM) patients, except for smoking habits (DM:48%, NDM:64%, p = 0.002) and cardiac disease (DM:45%, NDM:29%, p...... = 0.005). Critical limb-ischaemia was more often present in diabetic than non-diabetic patients (DM:57%, NDM:36%, p = 0.0002). Diabetic patients had a significantly lower distal anastomosis than non-diabetic patients (p = 0.00001). There were no differences among diabetic and non-diabetic patients...

  6. In-situ measurement system

    Science.gov (United States)

    Lord, David E.

    1983-01-01

    A multipurpose in situ underground measurement system comprising a plurality of long electrical resistance elements in the form of rigid reinforcing bars, each having an open loop "hairpin" configuration of shorter length than the other resistance elements. The resistance elements are arranged in pairs in a unitized structure, and grouted in place in the underground volume. The electrical resistance of each element and the difference in electrical resistance of the paired elements are obtained, which difference values may be used in analytical methods involving resistance as a function of temperature. A scanner sequentially connects the resistance-measuring apparatus to each individual pair of elements. A source of heating current is also selectively connectable for heating the elements to an initial predetermined temperature prior to electrical resistance measurements when used as an anemometer.

  7. DOE In Situ Remediation Integrated Program

    International Nuclear Information System (INIS)

    Yow, J.L. Jr.

    1993-01-01

    The In Situ Remediation Integrated Program (ISRP) supports and manages a balanced portfolio of applied research and development activities in support of DOE environmental restoration and waste management needs. ISRP technologies are being developed in four areas: containment, chemical and physical treatment, in situ bioremediation, and in situ manipulation (including electrokinetics). the focus of containment is to provide mechanisms to stop contaminant migration through the subsurface. In situ bioremediation and chemical and physical treatment both aim to destroy or eliminate contaminants in groundwater and soils. In situ manipulation (ISM) provides mechanisms to access contaminants or introduce treatment agents into the soil, and includes other technologies necessary to support the implementation of ISR methods. Descriptions of each major program area are provided to set the technical context of the ISM subprogram. Typical ISM needs for major areas of in situ remediation research and development are identified

  8. A catoptric lens

    International Nuclear Information System (INIS)

    Rambauske, W.R.

    1973-01-01

    The invention relates to a catoptric lens for combining energies transmitted by several sources such as lasers; said lens comprising mirrors, the reflective surfaces of which have their focuses spaced from a common axis of symmetry. By means of these reflecting surfaces, which are generated by the nutation of portions of quadratic conics about the axis of symmetry, it is possible to focus the energy emmited by several lasers at the focus of the exit-mirror reflecting surface. This can be applied to thermonuclear fusion [fr

  9. In Situ Magnetic Separation for Extracellular Protein Production

    DEFF Research Database (Denmark)

    Kappler, T.; Cerff, Martin; Ottow, Kim Ekelund

    2009-01-01

    A new approach for in situ product removal from bioreactors is presented in which high-gradient magnetic separation is used. This separation process was used for the adsorptive removal of proteases secreted by Bacillus licheniformis. Small, non-porous bacitracin linked magnetic adsorbents were...... employed directly in the broth during the fermentation, followed by in situ magnetic separation, Proof of the concept was first demonstrated in shake flask culture, then scaled up and applied during a fed batch cultivation ill a 3.7 L bioreactor. It could be demonstrated that growth of B. licheniformis...

  10. In-situ studies with photons, neutrons and electrons scattering

    International Nuclear Information System (INIS)

    Kannengiesser, Thomas; Babu, Sudarsanam Suresh; Komizo, Yu-ichi; Ramirez, Antonio J.

    2010-01-01

    In-situ scattering and diffraction measurements using synchrotron and neutron beam lines have become a viable tool to look at the non-equilibrium processing of advanced materials. This volume presents the subject from the theoretical and experimental standpoint, in order to provide a closer insight into the different synchrotron and neutron diffraction techniques as well as innovative microscopy techniques. It addresses the following items: - phase detection and quantification - In-situ welding experiments - Stress/strain build-up - model development and Simulation - Analysis tools and programming (orig.)

  11. In Situ Transmission Electron Microscopy for Electronics

    OpenAIRE

    Arita, Masashi; Hamada, Kouichi; Takahashi, Yasuo; Sueoka, Kazuhisa; Shibayama, Tamaki

    2015-01-01

    Electronic devices are strongly influenced by their microstructures. In situ transmission electron microscopy (in situ TEM) with capability to measure electrical properties is an effective method to dynamically correlate electric properties with microstructures. We have developed tools and in situ TEM experimental procedures for measuring electronic devices, including TEM sample holders and sample preparation methods. The method was used to study metallic nanowire by electromigration, magn...

  12. In Situ Hybridization Pada Kanker Payudara

    OpenAIRE

    Diah Witari, Ni Putu

    2014-01-01

    Kesulitan yang dijumpai pada penanganan kanker payudara adalah terjadinya kekambuhan atau relaps. Deteksi status HER2 pada pasien merupakan salah satu upaya untuk mendeteksi terjadinya relaps dan juga untuk menentukan jenis terapi yang ada diberikan. Ekspresi protein HER2 dapat dideteksi dengan immunohistochemistry (IHC), sedangkan mutasi gen HER2 dapat dideteksi dengan teknik in situ hybridization baik berupa fluorescence in situ hybridization (FISH) ataupun chromogenic in situ hy...

  13. Training for teamwork through in situ simulations

    Science.gov (United States)

    Sorensen, Asta; Poehlman, Jon; Bollenbacher, John; Riggan, Scott; Davis, Stan; Miller, Kristi; Ivester, Thomas; Kahwati, Leila

    2015-01-01

    In situ simulations allow healthcare teams to practice teamwork and communication as well as clinical management skills in a team's usual work setting with typically available resources and equipment. The purpose of this video is to demonstrate how to plan and conduct in situ simulation training sessions, with particular emphasis on how such training can be used to improve communication and teamwork. The video features an in situ simulation conducted at a labour and delivery unit in response to postpartum hemorrhage. PMID:26294962

  14. In situ deposition of thallium-containing oxides

    International Nuclear Information System (INIS)

    Myers, K.E.

    1996-01-01

    The number and variety of thallium based materials that can be made by in situ methods have grown consistently since the first report of successful thallium cuprate deposition by Face and Nestlerode in 1992. Processes for the deposition of superconductors, normal metals, and insulators have been developed. Most work to date has been done on the Tl-1212 phases, TlBa 2 CaCu 2 O 7 and (Tl,Pb)Sr 2 CaCu 2 O 7 . Recently however, the in situ thallium technique has been extended to other materials. For example, epitaxial thin films of thallium tantalate, an insulator of the pyrochlore structure and a potential buffer layer for thallium cuprate films, have been grown. Multilayers, important in the fabrication of Josephson junctions, have been demonstrated with the thallium lead cuprates. This paper reviews progress in the area of in situ thallium deposition technology which will make more complex thallium cuprate multilayer structures and devices possible

  15. Design, fabrication, and applications of in situ fluid cell TEM.

    Science.gov (United States)

    Li, Dongsheng; Nielsen, Michael H; De Yoreo, James J

    2013-01-01

    In situ fluid cell TEM is a powerful new tool for understanding dynamic processes during liquid phase chemical reactions, including mineral formation. This technique, which operates in the high vacuum of a TEM chamber, provides information on crystal structure, phase, morphology, size, aggregation/segregation, and crystal growth mechanisms in real time. In situ TEM records both crystal structure and morphology at spatial resolutions down to the atomic level with high temporal resolution of up to 10(-6)s per image, giving it distinct advantages over other in situ techniques such as optical microscopy, AFM, or X-ray scattering or diffraction. This chapter addresses the design, fabrication, and assembly of TEM fluid cells and applications of fluid cell TEM to understanding mechanisms of mineralization. © 2013 Elsevier Inc. All rights reserved.

  16. Design and analysis of an adaptive lens that mimics the performance of the crystalline lens in the human eye

    Science.gov (United States)

    Santiago-Alvarado, Agustin; Cruz-Félix, Angel S.; Iturbide-Jiménez, F.; Martínez-López, M.; Ramírez-Como, M.; Armengol-Cruz, V.; Vásquez-Báez, I.

    2014-09-01

    Tunable lenses are optical systems that have attracted much attention due to their potential applications in such areas like ophthalmology, machine vision, microscopy and laser processing. In recent years we have been working in the analysis and performance of a liquid-filled variable focal length lens, this is a lens that can modify its focal length by changing the amount of water within it. Nowadays we extend our study to a particular adaptive lens known as solid elastic lens (SEL) that it is formed by an elastic main body made of Polydimethylsiloxane (PDMS Sylgard 184). In this work, we present the design, simulation and analysis of an adaptive solid elastic lens that in principle imitates the accommodation process of the crystalline lens in the human eye. For this work, we have adopted the parameters of the schematic eye model developed in 1985 by Navarro et al.; this model represents the anatomy of the eye as close as possible to reality by predicting an acceptable and accurate quantity of spherical and chromatic aberrations without any shape fitting. An opto-mechanical analysis of the accommodation process of the adaptive lens is presented, by simulating a certain amount of radial force applied onto the SEL using the finite element method with the commercial software SolidWorks®. We also present ray-trace diagrams of the simulated compression process of the adaptive lens using the commercial software OSLO®.

  17. In situ vitrification of buried waste sites

    International Nuclear Information System (INIS)

    Shade, J.W.; Thompson, L.E.; Kindle, C.H.

    1991-04-01

    In situ vitrification (ISV) is a remedial technology initially developed to treat soils contaminated with a variety of organics, heavy metals, and/or radioactive materials. Recent tests have indicated the feasibility of applying the process to buried wastes including containers, combustibles, and buried metals. In addition, ISV is being considered for application to the emplacement of barriers and to the vitrification of underground tanks. This report provides a review of some of the recent experiences of applying ISV in engineering-scale and pilot-scale tests to wastes containing organics, the Environmental Protection Agency (EPA) Toxic metals buried in sealed containers, and buried ferrous metals, with emphasis on the characteristics of the vitrified product and adjacent soil. 9 refs., 2 figs., 3 tabs

  18. Reverse osmosis membrane allows in situ regeneration

    International Nuclear Information System (INIS)

    Bonhomme, N.; Menjeaud, C.; Poyet, C.

    1989-01-01

    The use of mineral membranes on metallic supports has provided a novel solution to the problem of filtration by the reverse osmosis process. A new reverse osmosis membrane is described which is capable of resisting high operational temperatures (120 0 C), fluctuations in pH(3 to 12) and high pressure (100 bar), as well as significant chlorine concentrations. In addition, the membrane can be regenerated in-situ on the same porous metal support. Numerous membranes can thus be used over the multi-year life of the porous support. Moreover, accidental damage to the membrane is of no great consequence as the membrane itself can be easily replaced. The life of the installation can thus be extended and the overall cost of filtration reduced. The membrane's various applications include water and effluent treatment in the nuclear power industry. (author)

  19. In situ SU-8 silver nanocomposites

    DEFF Research Database (Denmark)

    Fischer, Søren Vang; Uthuppu, Basil; Jakobsen, Mogens Havsteen

    2015-01-01

    Nanocomposite materials containing metal nanoparticles are of considerable interest in photonics and optoelectronics applications. However, device fabrication of such materials always encounters the challenge of incorporation of preformed nanoparticles into photoresist materials. As a solution...... to this problem, an easy new method of fabricating silver nanocomposites by an in situ reduction of precursors within the epoxy-based photoresist SU-8 has been developed. AgNO3 dissolved in acetonitrile and mixed with the epoxy-based photoresist SU-8 forms silver nanoparticles primarily during the pre- and post...... silver nanocomposite materials can be spin coated as homogeneous thin films and structured by using UV lithography. A resolution of 5 mu m is achieved in the lithographic process. The UV exposure time is found to be independent of the nanoparticle concentration. The fabricated silver nanocomposites...

  20. Sample environment for in situ synchrotron corrosion studies of materials in extreme environments.

    Science.gov (United States)

    Elbakhshwan, Mohamed S; Gill, Simerjeet K; Motta, Arthur T; Weidner, Randy; Anderson, Thomas; Ecker, Lynne E

    2016-10-01

    A new in situ sample environment has been designed and developed to study the interfacial interactions of nuclear cladding alloys with high temperature steam. The sample environment is particularly optimized for synchrotron X-ray diffraction studies for in situ structural analysis. The sample environment is highly corrosion resistant and can be readily adapted for steam environments. The in situ sample environment design complies with G2 ASTM standards for studying corrosion in zirconium and its alloys and offers remote temperature and pressure monitoring during the in situ data collection. The use of the in situ sample environment is exemplified by monitoring the oxidation of metallic zirconium during exposure to steam at 350 °C. The in situ sample environment provides a powerful tool for fundamental understanding of corrosion mechanisms by elucidating the substoichiometric oxide phases formed during the early stages of corrosion, which can provide a better understanding of the oxidation process.

  1. Influence of fracture extension on in-situ stress in tight reservoir

    Science.gov (United States)

    Zhang, Yongping; Wei, Xu; Zhang, Ye; Xing, Libo; Xu, Jianjun

    2018-01-01

    Currently, hydraulic fracturing is an important way to develop low permeability reservoirs. The fractures produced during the fracturing process are the main influencing factors of changing in-situ stress. In this paper, the influence of fracture extension on in-situ stress is studied by establishing a mathematical model to describe the relationship between fracture length and in-situ stress. The results show that the growth rate gradually decreases after the fracture reaches a certain length with the increase of fracturing time; the continuous extension of the fracture is the main factor to change the in-situ stress. In order to reduce the impact on the subsequent fracture extension due to the changing of in-situ stress, controlling fracturing time and fracture length without affecting the stimulated reservoir effect is an important way. The results presented in this study can effectively reduce the impact of changing of in-situ stress on subsequent fracturing construction.

  2. Division Multiplexing of 10 Gbit/s Ethernet Signals Synchronized by All-Optical Signal Processing Based on a Time-Lens

    DEFF Research Database (Denmark)

    Areal, Janaina Laguardia

    This Thesis presents 3 years work of an optical circuit that performs both pulse compression and frame synchronization and retiming. Our design aims at directly multiplexing several 10G Ethernet data packets (frames) to a high-speed OTDM link. This scheme is optically trans-parent and does...... pulse compression, as well. The over-all design is: (1) Pulses are converted from NRZ to RZ; (2) pulses are synchronized, retimed and further compressed at the specially de-signed time-lens; and (3) with adequate optical delays, frames from different input interfaces are added, with a simple optical...

  3. Optical Time-Division Multiplexing of 10 Gbit/s Ethernet Signals Synchronized by All-Optical Signal Processing Based on a Time-Lens

    DEFF Research Database (Denmark)

    Areal, Janaina Laguardia

    This Thesis presents 3 years work of an optical circuit that performs both pulse compression and frame synchronization and retiming. Our design aims at directly multiplexing several 10G Ethernet data packets (frames) to a high-speed OTDM link. This scheme is optically transparent and does...... pulse compression, as well. The overall design is: (1) Pulses are converted from NRZ to RZ; (2) pulses are synchronized, retimed and further compressed at the specially designed time-lens; and (3) with adequate optical delays, frames from different input interfaces are added, with a simple optical...

  4. Injectable In Situ Forming Microparticles: A Novel Drug Delivery ...

    African Journals Online (AJOL)

    Pharmaceutical formulation research has recently been focusing on delivery systems which provide long therapeutic effects and reduced side effects, and involving simplified production stages and facilitated application process. In situ forming microparticle (ISM) systems, one of the latest approach in this field, offer a new ...

  5. Applied in situ product recovery in ABE fermentation

    Science.gov (United States)

    Lalander, Carl‐Axel; Lee, Jonathan G. M.; Davies, E. Timothy; Harvey, Adam P.

    2017-01-01

    The production of biobutanol is hindered by the product's toxicity to the bacteria, which limits the productivity of the process. In situ product recovery of butanol can improve the productivity by removing the source of inhibition. This paper reviews in situ product recovery techniques applied to the acetone butanol ethanol fermentation in a stirred tank reactor. Methods of in situ recovery include gas stripping, vacuum fermentation, pervaporation, liquid–liquid extraction, perstraction, and adsorption, all of which have been investigated for the acetone, butanol, and ethanol fermentation. All techniques have shown an improvement in substrate utilization, yield, productivity or both. Different fermentation modes favored different techniques. For batch processing gas stripping and pervaporation were most favorable, but in fed‐batch fermentations gas stripping and adsorption were most promising. During continuous processing perstraction appeared to offer the best improvement. The use of hybrid techniques can increase the final product concentration beyond that of single‐stage techniques. Therefore, the selection of an in situ product recovery technique would require comparable information on the energy demand and economics of the process. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:563–579, 2017 PMID:28188696

  6. Applied in situ product recovery in ABE fermentation.

    Science.gov (United States)

    Outram, Victoria; Lalander, Carl-Axel; Lee, Jonathan G M; Davies, E Timothy; Harvey, Adam P

    2017-05-01

    The production of biobutanol is hindered by the product's toxicity to the bacteria, which limits the productivity of the process. In situ product recovery of butanol can improve the productivity by removing the source of inhibition. This paper reviews in situ product recovery techniques applied to the acetone butanol ethanol fermentation in a stirred tank reactor. Methods of in situ recovery include gas stripping, vacuum fermentation, pervaporation, liquid-liquid extraction, perstraction, and adsorption, all of which have been investigated for the acetone, butanol, and ethanol fermentation. All techniques have shown an improvement in substrate utilization, yield, productivity or both. Different fermentation modes favored different techniques. For batch processing gas stripping and pervaporation were most favorable, but in fed-batch fermentations gas stripping and adsorption were most promising. During continuous processing perstraction appeared to offer the best improvement. The use of hybrid techniques can increase the final product concentration beyond that of single-stage techniques. Therefore, the selection of an in situ product recovery technique would require comparable information on the energy demand and economics of the process. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:563-579, 2017. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.

  7. Characteristics of laser In-situ alloyed titanium aluminides coatings

    CSIR Research Space (South Africa)

    Tlotleng, Monnamme

    2017-01-01

    Full Text Available to study the in-situ alloying of the elemental Ti and Al using laser metal deposition (LMD) process. The effects of laser power on the microstructure evolution, composition and micro-hardness were evaluated on the as-produced TiAl coatings. The results...

  8. Manual of acid in situ leach uranium mining technology

    International Nuclear Information System (INIS)

    2001-08-01

    In situ leaching (ISL) technology recovers uranium using two alternative chemical leaching systems - acid and alkaline. This report brings together information from several technical disciplines that are an essential part of ISL technology. They include uranium geology, geohydrology, chemistry as well as reservoir engineering and process engineering. This report provides an extensive description of acid ISL uranium mining technology

  9. DEMONSTRATION BULLETIN: IN-SITU VACUUM EXRACTION: TERRA VAC, INC.

    Science.gov (United States)

    This in-situ vacuum extraction technology is a process for the removal and venting of volatile organic compounds (VOCs) from the vadose or unsaturated zone of soils. Often, these compounds can be removed from the vadose zone before they have a chance to contaminate groundwater. ...

  10. The SENSEI Generic In Situ Interface

    Energy Technology Data Exchange (ETDEWEB)

    Ayachit, Utkarsh [Kitware, Inc., Clifton Park, NY (United States); Whitlock, Brad [Intelligent Light, Rutherford, NJ (United States); Wolf, Matthew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Loring, Burlen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Geveci, Berk [Kitware, Inc., Clifton Park, NY (United States); Lonie, David [Kitware, Inc., Clifton Park, NY (United States); Bethel, E. Wes [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-04-11

    The SENSEI generic in situ interface is an API that promotes code portability and reusability. From the simulation view, a developer can instrument their code with the SENSEI API and then make make use of any number of in situ infrastructures. From the method view, a developer can write an in situ method using the SENSEI API, then expect it to run in any number of in situ infrastructures, or be invoked directly from a simulation code, with little or no modification. This paper presents the design principles underlying the SENSEI generic interface, along with some simplified coding examples.

  11. In situ x-ray diffraction and in situ x-ray absorption spectroscopy for investigation of intercalation batteries

    International Nuclear Information System (INIS)

    Levy-Clement, C.; Mondoloni, C.; Godart, C.; Cortes, R.

    1991-01-01

    This paper presents applications of in situ X-ray diffraction and absorption techniques to the study of H + /MnO 2 alkaline batteries. The two complementary in situ techniques are described. Investigation of the electrochemical insertion and deinsertion of H + has been made through its influence on the evolution of the crystallographic structure of γ-MnO 2 , while investigation of the transfer of e - has been undertaken through the variation of the oxidation state of the manganese during the discharging and charging process of a battery. New insights in the understanding of the mechanisms of proton insertion and charge transfer into γ-MnO 2 are discussed

  12. Quadrupole magnetic lens

    International Nuclear Information System (INIS)

    Piskunov, V.A.

    1981-01-01

    The following connection of windings of electromagnet is suggested for simplification of the design of qUadrupole magnetic lens intended for use in radiotechnical and electron-optical devices. The mentioned windings are connected with each other by a bridge scheme and the variable resistors are switched in its diagonals in the lens containing four electromagnet with windings connected with two variable resistors the mobile contacts of which are connected with a direct current source. Current redistribution between left windings and right windings takes place at shift of mobile contact of variable resistor, and current redistribution between upper and low coils of electromagnets takes place at shifting mobile contact of the other variable resistor. In this case smooth and independent electron-optical misalignment of lens by two mutually perpendicular directions proceeds. Use of the given design of the lens in the oscillograph permits to use printing assembly for alignment plate and to reduce the number of connections at the expense of decreasing the number of resistors

  13. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... prescription. There is no such thing as a "one size fits all" contact lens. Lenses that are not properly fitted may scratch the eye or cause blood vessels to grow into the cornea. Even if you have perfect vision, you need to get an eye exam and a prescription ...

  14. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Ophthalmologist Patient Stories Español Eye Health / News Halloween Hazard: The Hidden Dangers of Buying Decorative Contact Lenses ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ...

  15. MISSING: BUBBLE CHAMBER LENS

    CERN Multimedia

    2001-01-01

    Would the person who borrowed the large bubble chamber lens from the Microcosm workshops on the ISR please return it. This is a much used piece from our object archives. If anybody has any information about the whereabouts of this object, please contact Emma.Sanders@cern.ch Thank you

  16. The Lens of Chemistry

    Science.gov (United States)

    Thalos, Mariam

    2013-01-01

    Chemistry possesses a distinctive theoretical lens--a distinctive set of theoretical concerns regarding the dynamics and transformations of a perplexing variety of organic and nonorganic substances--to which it must be faithful. Even if it is true that chemical facts bear a special (reductive) relationship to physical facts, nonetheless it will…

  17. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... wear any kind of contact lens. In Butler's case, the lenses caused an infection and left her with a corneal ... A recent article from U.S. News and World Report explains what ophthalmologists are and how they can ...

  18. bubble chamber lens

    CERN Multimedia

    Was used in a PS experiment. Before the days of electronic detectors, visual techniques were used to detect particles, using detectors such as spark chambers and bubble chambers. This plexiglass lens was used to focus the image of tracks so they could be photographed.

  19. Thermal Lens Microscope

    Science.gov (United States)

    Uchiyama, Kenji; Hibara, Akihide; Kimura, Hiroko; Sawada, Tsuguo; Kitamori, Takehiko

    2000-09-01

    We developed a novel laser microscope based on the thermal lens effect induced by a coaxial beam comprised of excitation and probe beams. The signal generation mechanism was confirmed to be an authentic thermal lens effect from the measurement of signal and phase dependences on optical configurations between the sample and the probe beam focus, and therefore, the thermal lens effect theory could be applied. Two-point spatial resolution was determined by the spot size of the excitation beam, not by the thermal diffusion length. Sensitivity was quite high, and the detection ability, evaluated using a submicron microparticle containing dye molecules, was 0.8 zmol/μm2, hence a distribution image of trace chemical species could be obtained quantitatively. In addition, analytes are not restricted to fluorescent species, therefore, the thermal lens microscope is a promising analytical microscope. A two-dimensional image of a histamine molecule distribution, which was produced in mast cells at the femtomole level in a human nasal mucous polyp, was obtained.

  20. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... an Ophthalmologist Patient Stories Español Eye Health / News Halloween Hazard: The Hidden Dangers of Buying Decorative Contact ... After One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter ...

  1. 3D printed helical antenna with lens

    KAUST Repository

    Farooqui, Muhammad Fahad

    2016-12-19

    The gain of an antenna can be enhanced through the integration of a lens, however this technique has traditionally been restricted to planar antennas due to fabrication limitations of standard manufacturing processes. Here, with a unique combination of 3D and 2D inkjet printing of dielectric and metallic inks respectively, we demonstrate a Fresnel lens that has been monolithically integrated to a non-planar antenna (helix) for the first time. Antenna measurements show that the integration of a Fresnel lens enhances the gain of a 2-turn helix by around 4.6 dB giving a peak gain of about 12.9 dBi at 8.8 GHz.

  2. Clinical survey of lens care in contact lens patients.

    Science.gov (United States)

    Ky, W; Scherick, K; Stenson, S

    1998-10-01

    Overall, contact lenses provide a safe and effective modality for vision correction. However, problems do occasionally arise. Up to 80% of contact lens complications can be traced to poor patient compliance with recommended lens care guidelines. We conducted a survey to evaluate the level of patient compliance in specific areas of lens care and maintenance and to assess patient knowledge of basic contact lens information. Patients were asked to complete an anonymous 15 question survey that focused on lens care--specifically the use of contact lens cleaners, methods of disinfection, enzyme treatments, use of rewetting drops, and the frequency of follow-up exams. In addition, the survey included six true/false questions relating to contact lens care and safety. There were a total of 103 participants in the study. Approximately 24% of patients stated they never cleaned their lenses prior to disinfection, and 5% used saline solutions as their primary mode of disinfection. A sizable portion of those surveyed (43% of soft lens wearers and 71% of rigid gas permeable lens wearers) either never used enzyme cleaners or used them less than once a month. Seventy percent of patients either never used rewetting drops or used them less than once a day. Twenty-nine percent of patients consulted their eye care professionals every 2 years and 6% less often than every two years. Six questions assessed patient knowledge of contact lens care safety. Of a possible six out of six correct answers, the mean number of correct responses was 3.74. A sizable proportion of contact lens wearers do not adequately adhere to recommended contact lens care, and many have an inadequate understanding of contact lens care guidelines. Therefore, it is important that practitioners place more emphasis on patient education at the time of initial contact lens fitting and reinforce such instruction during follow-up visits.

  3. Groundwater restoration of in-situ uranium mines

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    In-situ leaching is a relatively new uranium production technology that is expected to account for a growing share of future output. Depending upon the leaching solution used, the process may have considerable impact on the ground water. Since restoration of ground water quality is required in most countries and since this restoration is by far the most costly aspect of reclamation of an in-situ mine, it is necessary to utilize a process that lends itself both to the efficiency of the leaching process and the restoration process. This article examines a number of techniques that may be used in the restoration efforts. These include: (1) groundwater sweep, (2) reverse osmosis, (3) chemical restoration, and (4) electrodialysis. The article also discusses disposal of the excess fluids used in the restoration process

  4. Development of the integrated, in-situ remediation technology. Topical report for tasks No. 8 and No. 10 entitled: Laboratory and pilot scale experiments of Lasagna{trademark} process, September 26, 1994--May 25, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Sa V.; Athmer, C.J.; Sheridan, P.W. [and others

    1997-04-01

    Contamination in low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. This technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated W and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. This topical report summarizes the results of the lab and pilot sized Lasagna{trademark} experiments conducted at Monsanto. Experiments were conducted with kaofinite and an actual Paducah soil in units ranging from bench-scale containing kg-quantity of soil to pilot-scale containing about half a ton of soil having various treatment zone configurations. The obtained data support the feasibility of scaling up this technology with respect to electrokinetic parameters as well as removal of organic contaminants. A mathematical model was developed that was successful in predicting the temperature rises in the soil. The information and experience gained from these experiments along with the modeling effort enabled us to successfully design and operate a larger field experiment at a DOE TCE-contaminated clay site.

  5. A role for smoothened during murine lens and cornea development.

    Directory of Open Access Journals (Sweden)

    Janet J Y Choi

    Full Text Available Various studies suggest that Hedgehog (Hh signalling plays roles in human and zebrafish ocular development. Recent studies (Kerr et al., Invest Ophthalmol Vis Sci. 2012; 53, 3316-30 showed that conditionally activating Hh signals promotes murine lens epithelial cell proliferation and disrupts fibre differentiation. In this study we examined the expression of the Hh pathway and the requirement for the Smoothened gene in murine lens development. Expression of Hh pathway components in developing lens was examined by RT-PCR, immunofluorescence and in situ hybridisation. The requirement of Smo in lens development was determined by conditional loss-of-function mutations, using LeCre and MLR10 Cre transgenic mice. The phenotype of mutant mice was examined by immunofluorescence for various markers of cell cycle, lens and cornea differentiation. Hh pathway components (Ptch1, Smo, Gli2, Gli3 were detected in lens epithelium from E12.5. Gli2 was particularly localised to mitotic nuclei and, at E13.5, Gli3 exhibited a shift from cytosol to nucleus, suggesting distinct roles for these transcription factors. Conditional deletion of Smo, from ∼E12.5 (MLR10 Cre did not affect ocular development, whereas deletion from ∼E9.5 (LeCre resulted in lens and corneal defects from E14.5. Mutant lenses were smaller and showed normal expression of p57Kip2, c-Maf, E-cadherin and Pax6, reduced expression of FoxE3 and Ptch1 and decreased nuclear Hes1. There was normal G1-S phase but decreased G2-M phase transition at E16.5 and epithelial cell death from E14.5-E16.5. Mutant corneas were thicker due to aberrant migration of Nrp2+ cells from the extraocular mesenchyme, resulting in delayed corneal endothelial but normal epithelial differentiation. These results indicate the Hh pathway is required during a discrete period (E9.5-E12.5 in lens development to regulate lens epithelial cell proliferation, survival and FoxE3 expression. Defective corneal development occurs

  6. A role for smoothened during murine lens and cornea development.

    Science.gov (United States)

    Choi, Janet J Y; Ting, Chao-Tung; Trogrlic, Lidia; Milevski, Stefan V; Familari, Mary; Martinez, Gemma; de Iongh, Robb U

    2014-01-01

    Various studies suggest that Hedgehog (Hh) signalling plays roles in human and zebrafish ocular development. Recent studies (Kerr et al., Invest Ophthalmol Vis Sci. 2012; 53, 3316-30) showed that conditionally activating Hh signals promotes murine lens epithelial cell proliferation and disrupts fibre differentiation. In this study we examined the expression of the Hh pathway and the requirement for the Smoothened gene in murine lens development. Expression of Hh pathway components in developing lens was examined by RT-PCR, immunofluorescence and in situ hybridisation. The requirement of Smo in lens development was determined by conditional loss-of-function mutations, using LeCre and MLR10 Cre transgenic mice. The phenotype of mutant mice was examined by immunofluorescence for various markers of cell cycle, lens and cornea differentiation. Hh pathway components (Ptch1, Smo, Gli2, Gli3) were detected in lens epithelium from E12.5. Gli2 was particularly localised to mitotic nuclei and, at E13.5, Gli3 exhibited a shift from cytosol to nucleus, suggesting distinct roles for these transcription factors. Conditional deletion of Smo, from ∼E12.5 (MLR10 Cre) did not affect ocular development, whereas deletion from ∼E9.5 (LeCre) resulted in lens and corneal defects from E14.5. Mutant lenses were smaller and showed normal expression of p57Kip2, c-Maf, E-cadherin and Pax6, reduced expression of FoxE3 and Ptch1 and decreased nuclear Hes1. There was normal G1-S phase but decreased G2-M phase transition at E16.5 and epithelial cell death from E14.5-E16.5. Mutant corneas were thicker due to aberrant migration of Nrp2+ cells from the extraocular mesenchyme, resulting in delayed corneal endothelial but normal epithelial differentiation. These results indicate the Hh pathway is required during a discrete period (E9.5-E12.5) in lens development to regulate lens epithelial cell proliferation, survival and FoxE3 expression. Defective corneal development occurs secondary to defects

  7. Experimental investigation of in situ cleanable HEPA filter

    International Nuclear Information System (INIS)

    Adamson, D.J.

    1999-01-01

    The Westinghouse Savannah River Company located at the Savannah River Site (SRS) in Aiken, South Carolina is currently testing the feasibility of developing an in situ cleanable high efficiency particulate air (HEPA) filter system. Sintered metal filters are being tested for regenerability or cleanability in simulated conditions found in a high level waste (HLW) tank ventilation system. The filters are being challenged using materials found in HLW tanks. HLW simulated salt, HLW simulated sludge and South Carolina road dust. Various cleaning solutions have been used to clean the filters in situ. The tanks are equipped with a ventilation system to maintain the tank contents at negative pressure to prevent the release of radioactive material to the environment. This system is equipped with conventional disposable glass-fiber HEPA filter cartridges. Removal and disposal of these filters is not only costly, but subjects site personnel to radiation exposure and possible contamination. A test apparatus was designed to simulate the ventilation system of a HLW tank with an in situ cleaning system. Test results indicate that the Mott sintered metal HEPA filter is suitable as an in situ cleanable or regenerable HEPA filter. Data indicates that high humidity or water did not effect the filter performance and the sintered metal HEPA filter was easily cleaned numerous times back to new filter performance by an in situ spray system. The test apparatus allows the cleaning of the soiled HEPA filters to be accomplished without removing the filters from process. This innovative system would eliminate personnel radiation exposure associated with removal of contaminated filters and the high costs of filter replacement and disposal. The results of these investigations indicate that an in situ cleanable HEPA filter system for radioactive and commercial use could be developed and manufactured

  8. Technology assessment of in situ uranium mining

    International Nuclear Information System (INIS)

    Cowan, C.E.

    1981-01-01

    The objective of the PNL portion of the Technology Assessment project is to provide a description of the current in situ uranium mining technology; to evaluate, based on available data, the environmental impacts and, in a limited fashion, the health effects; and to explore the impediments to development and deployment of the in situ uranium mining technology

  9. PRINS and in situ PCR protocols

    National Research Council Canada - National Science Library

    Gosden, John R

    1997-01-01

    ... mapping of DNA sequences on chromosomes and location of gene expression followed the invention and refinement of in situ hybridization. Among the most recent technical developments has been the use of oligonucleotide primers to detect and amplify or extend complementary sequences in situ, and it is to this novel field that PRINS and In S...

  10. In situ bioremediation in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Porta, A. [Battelle Europe, Geneva (CH); Young, J.K.; Molton, P.M. [Pacific Northwest Lab., Richland, WA (US)

    1993-06-01

    Site remediation activity in Europe is increasing, even if not at the forced pace of the US. Although there is a better understanding of the benefits of bioremediation than of other approaches, especially about in situ bioremediation of contaminated soils, relatively few projects have been carried out full-scale in Europe or in the US. Some engineering companies and large industrial companies in Europe are investigating bioremediation and biotreatment technologies, in some cases to solve their internal waste problems. Technologies related to the application of microorganisms to the soil, release of nutrients into the soil, and enhancement of microbial decontamination are being tested through various additives such as surfactants, ion exchange resins, limestone, or dolomite. New equipment has been developed for crushing and mixing or injecting and sparging the microorganisms, as have new reactor technologies (e.g., rotating aerator reactors, biometal sludge reactors, and special mobile containers for simultaneous storage, transportation, and biodegradation of contaminated soil). Some work has also been done with immobilized enzymes to support and restore enzymatic activities related to partial or total xenobiotic decontamination. Finally, some major programs funded by public and private institutions confirm that increasing numbers of firms have a working interest in bioremediation.

  11. Qualification of a Null Lens Using Image-Based Phase Retrieval

    Science.gov (United States)

    Bolcar, Matthew R.; Aronstein, David L.; Hill, Peter C.; Smith, J. Scott; Zielinski, Thomas P.

    2012-01-01

    In measuring the figure error of an aspheric optic using a null lens, the wavefront contribution from the null lens must be independently and accurately characterized in order to isolate the optical performance of the aspheric optic alone. Various techniques can be used to characterize such a null lens, including interferometry, profilometry and image-based methods. Only image-based methods, such as phase retrieval, can measure the null-lens wavefront in situ - in single-pass, and at the same conjugates and in the same alignment state in which the null lens will ultimately be used - with no additional optical components. Due to the intended purpose of a Dull lens (e.g., to null a large aspheric wavefront with a near-equal-but-opposite spherical wavefront), characterizing a null-lens wavefront presents several challenges to image-based phase retrieval: Large wavefront slopes and high-dynamic-range data decrease the capture range of phase-retrieval algorithms, increase the requirements on the fidelity of the forward model of the optical system, and make it difficult to extract diagnostic information (e.g., the system F/#) from the image data. In this paper, we present a study of these effects on phase-retrieval algorithms in the context of a null lens used in component development for the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission. Approaches for mitigation are also discussed.

  12. Cost effectiveness of in situ bioremediation at Savannah River

    International Nuclear Information System (INIS)

    Saaty, R.P.; Showalter, W.E.; Booth, S.R.

    1995-01-01

    In situ bioremediation (ISBR) is an innovative new remediation technology for the removal of chlorinated solvents from contaminated soils and groundwater. The principal contaminant at the Savannah River Integrated Demonstration is tricloroethylene (TCE) a volatile organic compound (VOC). A 384-day test run at Savannah River, sponsored by the US Department of Energy (DOE), Office of Technology Development (EM-50), furnished information about the performance and applications of ISBR. In situ bioremediation, as tested, is based on two distinct processes occurring simultaneously; the physical process of in situ air stripping and the biological process of bioremediation. Both processes have the potential to remediate some amount of contamination. A quantity of VOCs, directly measured from the extracted airstream, was removed from the test area by the physical process of air stripping. The biological process is difficult to examine. However, the results of several tests performed at the SRID and independent numerical modeling determined that the biological process remediated an additional 40% above the physical process. Given these data, the cost effectiveness of this new technology can be evaluated

  13. Environmental TEM in the in situ Toolbox

    DEFF Research Database (Denmark)

    Wagner, Jakob Birkedal

    Studies of materials using in situ techniques usually involve a compromise of the in situ conditions in order to fulfil the requirements compatible with the instrumentation for characterization. These requirements include sample geometry, temperature, gas environment etc. Environmental TEM depends...... transfer holders have been used to transfer catalyst samples between reactor set-ups and TEM at room temperature in inert atmosphere [3]. To take the full advantage of the complementary in situ techniques transfer under reactions conditions is essential. Here we introduce the in situ transfer concept...... by use of a dedicated TEM transfer holder that is able to enclose the sample in a gaseous environment at temperatures up to approx. 900°C. The holder is compatible with other in situ technique set-ups. Another route for using complementary techniques without compromising the sample conditions is bringing...

  14. Electrocatalytic oxygen reduction and hydrogen evolution reactions on phthalocyanine modified electrodes: Electrochemical, in situ spectroelectrochemical, and in situ electrocolorimetric monitoring

    International Nuclear Information System (INIS)

    Koca, Atif; Kalkan, Ayfer; Bayir, Zehra Altuntas

    2011-01-01

    Highlights: → Electrochemical and in situ spectroelectrochemical characterizations of the metallophthalocyanines were performed. → The presence of O 2 influences both oxygen reduction reaction and the electrochemical behaviors of the complexes. → Homogeneous catalytic ORR process occurs via an 'inner sphere' chemical catalysis process. → CoPc and CuPc coated on a glassy carbon electrode decrease the overpotential of the working electrode for H + reduction. - Abstract: This study describes electrochemical, in situ spectroelectrochemical, and in situ electrocolorimetric monitoring of the electrocatalytic reduction of molecular oxygen and hydronium ion on the phthalocyanine-modified electrodes. For this purpose, electrochemical and in situ spectroelectrochemical characterizations of the metallophthalocyanines (MPc) bearing tetrakis-[4-((4'-trifluoromethyl)phenoxy)phenoxy] groups were performed. While CoPc gives both metal-based and ring-based redox processes, H 2 Pc, ZnPc and CuPc show only ring-based electron transfer processes. In situ electrocolorimetric method was applied to investigate the color of the electrogenerated anionic and cationic forms of the complexes. The presence of O 2 in the electrolyte system influences both oxygen reduction reaction and the electrochemical and spectral behaviors of the complexes, which indicate electrocatalytic activity of the complexes for the oxygen reduction reaction. Perchloric acid titrations monitored by voltammetry represent possible electrocatalytic activities of the complexes for hydrogen evolution reaction. CoPc and CuPc coated on a glassy carbon electrode decrease the overpotential of the working electrode for H + reduction. The nature of the metal center changes the electrocatalytic activities for hydrogen evolution reaction in aqueous solution. Although CuPc has an inactive metal center, its electrocatalytic activity is recorded more than CoPc for H + reduction in aqueous solution.

  15. Photonic crystal based polarization insensitive flat lens

    Science.gov (United States)

    Turduev, M.; Bor, E.; Kurt, H.

    2017-07-01

    The paper proposes a new design of an inhomogeneous artificially created photonic crystal lens structure consisting of annular dielectric rods to efficiently focus both transverse electric and transverse magnetic polarizations of light into the same focal point. The locations of each individual cell that contains the annular dielectric rods are determined according to a nonlinear distribution function. The inner and outer radii of the annular photonic dielectric rods are optimized with respect to the polarization insensitive frequency response of the transmission spectrum of the lens structure. The physical background of the polarization insensitive focusing mechanism is investigated in both spatial and frequency domains. Moreover, polarization independent wavefront transformation/focusing has been explored in detail by investigating the dispersion relation of the structure. Corresponding phase index distribution of the lens is attained for polarization insensitive normalized frequency range of a/λ  =  0.280 and a/λ  =  0.300, where a denotes the lattice constant of the designed structure and λ denotes the wavelength of the incident light. We show the wave transformation performance and focal point movement dynamics for both polarizations of the lens structure by specially adjusting the length of the structure. The 3D finite-difference time domain numerical analysis is also performed to verifiy that the proposed design is able to focus the wave regardless of polarization into approximately the same focal point (difference between focal distances of both polarizations stays below 0.25λ) with an operating bandwidth of 4.30% between 1476 nm and 1541 nm at telecom wavelengths. The main superiorities of the proposed lens structure are being all dielectric and compact, and having flat front and back surfaces, rendering the proposed lens design more practical in the photonic integration process in various applications such as optical switch

  16. Effect of infrared radiation on the lens

    Directory of Open Access Journals (Sweden)

    Aly Eman

    2011-01-01

    Full Text Available Background: Infrared (IR radiation is becoming more popular in industrial manufacturing processes and in many instruments used for diagnostic and therapeutic application to the human eye. Aim : The present study was designed to investigate the effect of IR radiation on rabbit′s crystalline lens and lens membrane. Materials and Methods: Fifteen New Zealand rabbits were used in the present work. The rabbits were classified into three groups; one of them served as control. The other two groups were exposed to IR radiation for 5 or 10 minutes. Animals from these two irradiated groups were subdivided into two subgroups; one of them was decapitated directly after IR exposure, while the other subgroup was decapitated 1 hour post exposure. IR was delivered from a General Electric Lamp model 250R 50/10, placed 20 cm from the rabbit and aimed at each eye. The activity of Na + -K + ATPase was measured in the lens membrane. Soluble lens proteins were extracted and the following measurements were carried out: estimation of total soluble protein, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE and Fourier transform infrared (FTIR spectroscopy. For comparison between multiple groups, analysis of variance was used with significance level set at P < 0.001. Results: The results indicated a change in the molecular weight of different lens crystalline accompanied with changes in protein backbone structure. These changes increased for the groups exposed to IR for 10 minutes. Moreover, the activity of Na + -K + ATPase significantly decreased for all groups. Conclusions: The protein of eye lens is very sensitive to IR radiation which is hazardous and may lead to cataract.

  17. Restoration of uranium in-situ leaching sites

    International Nuclear Information System (INIS)

    Hill, A.D.; Silberberg, I.H.; Walsh, M.P.; Breland, W.M.; Humenick, M.J.; Schechter, R.S.

    1980-01-01

    Ammonium ions introduced into the formation during in-situ uranium leach mining must be removed by a restoration process. Ion exchange processes to strip sorbed ammonium cation from the clays have been modeled and studied experimentally. It is concluded that ammonium removal can be accomplished best by a high-ionic-strength flush. The migration of uncovered ammonium cation in groundwater also is studied. 19 refs

  18. [Correct contact lens hygiene].

    Science.gov (United States)

    Blümle, S; Kaercher, T; Khaireddin, R

    2013-06-01

    Although contact lenses have long been established in ophthalmology, practical aspects of handling contact lenses is becoming increasingly less important in the clinical training as specialist for ophthalmology. Simultaneously, for many reasons injuries due to wearing contact lenses are increasing. In order to correct this discrepancy, information on contact lenses and practical experience with them must be substantially increased from a medical perspective. This review article deals with the most important aspects for prevention of complications, i.e. contact lens hygiene.

  19. Oxygen transport through soft contact lens and cornea: Lens characterization and metabolic modeling

    Science.gov (United States)

    Chhabra, Mahendra

    The human cornea requires oxygen to sustain metabolic processes critical for its normal functioning. Any restriction to corneal oxygen supply from the external environment (e.g., by wearing a low oxygen-permeability contact lens) can lead to hypoxia, which may cause corneal edema (swelling), limbal hyperemia, neovascularization, and corneal acidosis. The need for adequate oxygen to the cornea is a major driving force for research and development of hypertransmissible soft contact lenses (SCLs). Currently, there is no standard technique for measuring oxygen permeability (Dk) of hypertransmissible silicone-hydrogel SCLs. In this work, an electrochemistry-based polarographic apparatus was designed, built, and operated to measure oxygen permeability in hypertransmissible SCLs. Unlike conventional methods where a range of lens thickness is needed for determining oxygen permeabilities of SCLs, this apparatus requires only a single lens thickness. The single-lens permeameter provides a reliable, efficient, and economic tool for measuring oxygen permeabilities of commercial hypertransmissible SCLs. The single-lens permeameter measures not only the product Dk, but, following modification, it measures separately diffusivity, D, and solubility, k, of oxygen in hypertransmissible SCLs. These properties are critical for designing better lens materials that ensure sufficient oxygen supply to the cornea. Metabolism of oxygen in the cornea is influenced by contact-lens-induced hypoxia, diseases such as diabetes, surgery, and drug treatment, Thus, estimation of the in-vivo corneal oxygen consumption rate is essential for gauging adequate oxygen supply to the cornea. Therefore, we have developed an unsteady-state reactive-diffusion model for the cornea-contact-lens system to determine in-vivo human corneal oxygen-consumption rate. Finally, a metabolic model was developed to determine the relation between contact-lens oxygen transmissibility (Dk/L) and corneal oxygen deficiency. A

  20. Deploying in situ bioremediation at the Hanford Site

    International Nuclear Information System (INIS)

    Truex, M.J.; Johnson, C.D.; Newcomer, D.R.; Doremus, L.A.; Hooker, B.S.; Peyton, B.M.; Skeen, R.S.; Chilakapati, A.

    1994-11-01

    An innovative in-situ bioremediation technology was developed by Pacific Northwest Laboratory (PNL) to destroy nitrate and carbon tetrachloride (CC1 4 ) in the Hanford ground water. The goal of this in-situ treatment process is to stimulate native microorganisms to degrade nitrate and CCl 4 . Nutrient solutions are distributed in the contaminated aquifer to create a biological treatment zone. This technology is being demonstrated at the US Department of Energy's Hanford Site to provide the design, operating, and cost information needed to assess its effectiveness in contaminated ground water. The process design and field operations for demonstration of this technology are influenced by the physical, chemical, and microbiological properties observed at the site. A description of the technology is presented including the well network design, nutrient injection equipment, and means for controlling the hydraulics and microbial reactions of the treatment process

  1. Deploying in situ bioremediation at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Truex, M.J.; Johnson, C.D.; Newcomer, D.R.; Doremus, L.A.; Hooker, B.S.; Peyton, B.M.; Skeen, R.S.; Chilakapati, A.

    1994-11-01

    An innovative in-situ bioremediation technology was developed by Pacific Northwest Laboratory (PNL) to destroy nitrate and carbon tetrachloride (CC1{sub 4}) in the Hanford ground water. The goal of this in-situ treatment process is to stimulate native microorganisms to degrade nitrate and CCl{sub 4}. Nutrient solutions are distributed in the contaminated aquifer to create a biological treatment zone. This technology is being demonstrated at the US Department of Energy`s Hanford Site to provide the design, operating, and cost information needed to assess its effectiveness in contaminated ground water. The process design and field operations for demonstration of this technology are influenced by the physical, chemical, and microbiological properties observed at the site. A description of the technology is presented including the well network design, nutrient injection equipment, and means for controlling the hydraulics and microbial reactions of the treatment process.

  2. Prolonging contact lens wear and making contact lens wear safer.

    Science.gov (United States)

    Foulks, Gary N

    2006-02-01

    To summarize the present status of safety and efficacy of contact lens wear. Literature review. Ovid Medline searches were performed on records from 1966 through 2005 using keywords: keratitis, contact lens complications, extended-wear contact lenses, and silicone-hydrogel contact lenses. Patients desire comfort, clarity of vision, and prolonged contact lens wear when contact lenses are used to correct refractive error. Practitioners desire patient satisfaction but also require maintenance of the integrity of the eye and no complications that jeopardize vision or health of the eye. Improvements in the oxygen permeability of the contact lens materials, design of the contact lens and its surface, and solutions for the maintenance of the lens have reduced but not eliminated the risks of infection, inflammation, and conjunctival papillary reaction associated with contact lens wear. The lessons of past and recent history suggest that patient education and practitioner participation in the management of contact lens wear continue to be critical factors for patient satisfaction and safety in the extended wear of contact lenses. The availability of highly oxygen permeable contact lenses has increased the tolerance and safety of extended contact lens wear, but patient instruction and education in proper use and care of lenses is required and caution is advised.

  3. Simulation of salt behavior using in situ response

    International Nuclear Information System (INIS)

    Li, W.T.

    1986-01-01

    The time-dependent nonlinear structural behavior in a salt formation around the openings can be obtained by either performing computational analysis of measuring in situ responses. However, analysis using laboratory test data may often deviate from the actual in situ conditions and geomechanical instruments can provide information only up to the time when the measurements were taken. A method has been suggested for simulating the salt behavior by utilizing the steady-state portion of in situ response history. Governing equations for computational analysis were normalized to the creep constant, the equations were solved, and the analytical response history was then computed in terms of normalized time. By synchronizing the response history obtained from the analysis to the one measured at the site, the creep constant was determined. Then the structural response of the salt was computed. This paper presents an improved method for simulating the salt behavior. In this method, the governing equations are normalized to the creep function, which represents the transient and the steady-state creep behavior. Both the transient and the steady-state portions of in situ response history are used in determining the creep function. Finally, a nonlinear mapping process relating the normalized and real time domains determines the behavior of the salt

  4. Non-thermal electromagnetic radiation damage to lens epithelium.

    Science.gov (United States)

    Bormusov, Elvira; P Andley, Usha; Sharon, Naomi; Schächter, Levi; Lahav, Assaf; Dovrat, Ahuva

    2008-05-21

    High frequency microwave electromagnetic radiation from mobile phones and other modern devices has the potential to damage eye tissues, but its effect on the lens epithelium is unknown at present. The objective of this study was to investigate the non-thermal effects of high frequency microwave electromagnetic radiation (1.1GHz, 2.22 mW) on the eye lens epithelium in situ. Bovine lenses were incubated in organ culture at 35°C for 10-15 days. A novel computer-controlled microwave source was used to investigate the effects of microwave radiation on the lenses. 58 lenses were used in this study. The lenses were divided into four groups: (1) Control lenses incubated in organ culture for 10 to15 days. (2) Electromagnetic radiation exposure group treated with 1.1 GHz, 2.22 mW microwave radiation for 90 cycles of 50 minutes irradiation followed by 10 minutes pause and cultured up to 10 days. (3) Electromagnetic radiation exposure group treated as group 2 with 192 cycles of radiation and cultured for 15 days. (4) Lenses exposed to 39.5°C for 2 hours 3 times with 24 hours interval after each treatment beginning on the second day of the culture and cultured for 11 days. During the culture period, lens optical quality was followed daily by a computer-operated scanning laser beam. At the end of the culture period, control and treated lenses were analyzed morphologically and by assessment of the lens epithelial ATPase activity. Exposure to 1.1 GHz, 2.22 mW microwaves caused a reversible decrease in lens optical quality accompanied by irreversible morphological and biochemical damage to the lens epithelial cell layer. The effect of the electromagnetic radiation on the lens epithelium was remarkably different from those of conductive heat. The results of this investigation showed that electromagnetic fields from microwave radiation have a negative impact on the eye lens. The lens damage by electromagnetic fields was distinctly different from that caused by conductive heat.

  5. Untersuchungen zur Spanbildung metallischer Werkstoffe anhand von in situ Röntgenbeugungsexperimenten

    OpenAIRE

    Broemmelhoff, Katrin

    2016-01-01

    For the optimization of machining processes with geometrically defined cutting edge afundamental understanding of the chip formation process is necessary. However it islimited due to the hard metrological detectability of the area of action. Modern sourcesfor high energetic synchrotron radiation and new detectors enable in situ diffractionexperiments during the cutting process within a very small gauge volume.In the present study the method of in situ diffraction with high-energy synchrotronX...

  6. IN-SITU TRITIUM BETA DETECTOR

    Energy Technology Data Exchange (ETDEWEB)

    J.W. Berthold; L.A. Jeffers

    1998-04-15

    The objectives of this three-phase project were to design, develop, and demonstrate a monitoring system capable of detecting and quantifying tritium in situ in ground and surface waters, and in water from effluent lines prior to discharge into public waterways. The tritium detection system design is based on measurement of the low energy beta radiation from the radioactive decay of tritium using a special form of scintillating optical fiber directly in contact with the water to be measured. The system consists of the immersible sensor module containing the optical fiber, and an electronics package, connected by an umbilical cable. The system can be permanently installed for routine water monitoring in wells or process or effluent lines, or can be moved from one location to another for survey use. The electronics will read out tritium activity directly in units of pico Curies per liter, with straightforward calibration. In Phase 1 of the project, we characterized the sensitivity of fluor-doped plastic optical fiber to tritium beta radiation. In addition, we characterized the performance of photomultiplier tubes needed for the system. In parallel with this work, we defined the functional requirements, target specifications, and system configuration for an in situ tritium beta detector that would use the fluor-doped fibers as primary sensors of tritium concentration in water. The major conclusions from the characterization work are: A polystyrene optical fiber with fluor dopant concentration of 2% gave best performance. This fiber had the highest dopant concentration of any fibers tested. Stability may be a problem. The fibers exposed to a 22-day soak in 120 F water experienced a 10x reduction in sensitivity. It is not known whether this was due to the build up of a deposit (a potentially reversible effect) or an irreversible process such as leaching of the scintillating dye. Based on the results achieved, it is premature to initiate Phase 2 and commit to a prototype

  7. IN-SITU TRITIUM BETA DETECTOR

    International Nuclear Information System (INIS)

    Berthold, J.W.; Jeffers, L.A.

    1998-01-01

    The objectives of this three-phase project were to design, develop, and demonstrate a monitoring system capable of detecting and quantifying tritium in situ in ground and surface waters, and in water from effluent lines prior to discharge into public waterways. The tritium detection system design is based on measurement of the low energy beta radiation from the radioactive decay of tritium using a special form of scintillating optical fiber directly in contact with the water to be measured. The system consists of the immersible sensor module containing the optical fiber, and an electronics package, connected by an umbilical cable. The system can be permanently installed for routine water monitoring in wells or process or effluent lines, or can be moved from one location to another for survey use. The electronics will read out tritium activity directly in units of pico Curies per liter, with straightforward calibration. In Phase 1 of the project, we characterized the sensitivity of fluor-doped plastic optical fiber to tritium beta radiation. In addition, we characterized the performance of photomultiplier tubes needed for the system. In parallel with this work, we defined the functional requirements, target specifications, and system configuration for an in situ tritium beta detector that would use the fluor-doped fibers as primary sensors of tritium concentration in water. The major conclusions from the characterization work are: A polystyrene optical fiber with fluor dopant concentration of 2% gave best performance. This fiber had the highest dopant concentration of any fibers tested. Stability may be a problem. The fibers exposed to a 22-day soak in 120 F water experienced a 10x reduction in sensitivity. It is not known whether this was due to the build up of a deposit (a potentially reversible effect) or an irreversible process such as leaching of the scintillating dye. Based on the results achieved, it is premature to initiate Phase 2 and commit to a prototype

  8. In Situ Aerosol Detector, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is developing new platform systems that have the potential to benefit Earth science research activities, which include in situ instruments for atmospheric...

  9. Development of an in situ fatigue sensor.

    Science.gov (United States)

    2011-01-01

    A prototype in situ fatigue sensor has been designed, constructed and evaluated experimentally for its ability to monitor the accumulation of fatigue damage in a cyclically loaded steel structure, e.g., highway bridge. The sensor consists of multiple...

  10. Demonstration testing and evaluation of in situ soil heating

    International Nuclear Information System (INIS)

    Sresty, G.C.

    1994-01-01

    A Treatability Study planned for the demonstration of the in situ electromagnetic (EM) heating process to remove organic solvents is described in this Work Plan. The treatability study will be conducted by heating subsurface vadose-zone soils in an organic plume adjacent to the Classified Burial Ground K-1070-D located at K-25 Site, Oak Ridge. The test is scheduled to start during the fourth quarter of FY94 and will be completed during the first quarter of FY95. The EM heating process for soil decontamination is based on volumetric heating technologies developed during the '70s for the recovery of fuels from shale and tar sands by IIT Research Institute (IITRI) under a co-operative program with the US Department of Energy (DOE). Additional modifications of the technology developed during the mid '80s are currently used for the production of heavy oil and waste treatment. Over the last nine years, a number of Government agencies (EPA, Army, AF, and DOE) and industries sponsored further development and testing of the in situ heating and soil decontamination process for the remediation of soils containing hazardous organic contaminants. In this process the soil is heated in situ using electrical energy. The contaminants are removed from the soil due to enhanced vaporization, steam distillation and stripping. IITRI will demonstrate the EM Process for in situ soil decontamination at K-25 Site under the proposed treatability study. Most of the contaminants of concern are volatile organics which can be removed by heating the soil to a temperature range of 85 to 95 C. The efficiency of the treatment will be determined by comparing the concentration of contaminants in soil samples. Samples will be obtained before and after the demonstration for a measurement of the concentration of contaminants of concern

  11. In-situ characterization of heterogeneous catalysts

    CERN Document Server

    Rodriguez, Jose A; Chupas, Peter J

    2013-01-01

    Helps researchers develop new catalysts for sustainable fuel and chemical production Reviewing the latest developments in the field, this book explores the in-situ characterization of heterogeneous catalysts, enabling readers to take full advantage of the sophisticated techniques used to study heterogeneous catalysts and reaction mechanisms. In using these techniques, readers can learn to improve the selectivity and the performance of catalysts and how to prepare catalysts as efficiently as possible, with minimum waste. In-situ Characterization of Heterogeneous Catalysts feat

  12. Engineering feasibility analysis for in-situ stabilization of Canonsburg residues. [UMTRA project

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    The US Department of Energy is considering several methods for carrying out remedial actions in Canonsburg, Pennsylvania, at the site of an inactive uranium-processing mill. The main objective of this study is to determine the feasibility of in-situ stabilization as the remedial action. In-situ stabilization is an alternative to site decontamination and offsite disposal. The problems associated with offsite hauling of large quantities of contaminated material and with the location and development of a new disposal site could be avoided by the implementation of an in-situ stabilization concept. In addition, the in-situ approach would be more cost-effective than offsite disposal. This study will establish that a technically feasible and implementable in-situ stabilization concept can be developed that meets regulatory requirements and is cost effective. This study in no way commits the DOE to implement any specific actions described herein. 11 refs., 30 figs., 24 tabs.

  13. Engineering feasibility analysis for in-situ stabilization of Canonsburg residues

    International Nuclear Information System (INIS)

    1982-01-01

    The US Department of Energy is considering several methods for carrying out remedial actions in Canonsburg, Pennsylvania, at the site of an inactive uranium-processing mill. The main objective of this study is to determine the feasibility of in-situ stabilization as the remedial action. In-situ stabilization is an alternative to site decontamination and offsite disposal. The problems associated with offsite hauling of large quantities of contaminated material and with the location and development of a new disposal site could be avoided by the implementation of an in-situ stabilization concept. In addition, the in-situ approach would be more cost-effective than offsite disposal. This study will establish that a technically feasible and implementable in-situ stabilization concept can be developed that meets regulatory requirements and is cost effective. This study in no way commits the DOE to implement any specific actions described herein. 11 refs., 30 figs., 24 tabs

  14. Imaging by in situ Scanning Tunnelling Microscopy and its Nanotechnological Perspectives

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    2002-01-01

    of the tip and working electrode. In collaboration with Danish Micro Engineering A/S, the instrument was constructed and tested in laboratory environments. The system was successfully developed, as to meet international-market requirements. Within the frame of the work, procedures of tip coating...... and bipotentiostat construction were evaluated. After the fulfilment of the instrument manufacturing process followed application of the system to scientific investigations. The generation of an image by in situ STM is founded on the principle of electron tunneling but the application of the instrument to aqueous...... in the interpretation of the imaging procedure. Other methods of in situ Scanning Probe Microscopy (in situ SPM), such as in situ Scanning Force Microscopy (in situ AFM) are considered for the sake of comparison and they are applied to imaging of non-conducting systems. Major results include demonstration of atomic...

  15. Extraction of in situ cosmogenic 14C from olivine

    Science.gov (United States)

    Pigati, J.S.; Lifton, N.A.; Timothy, Jull A.J.; Quade, Jay

    2010-01-01

    Chemical pretreatment and extraction techniques have been developed previously to extract in situ cosmogenic radiocarbon (in situ 14C) from quartz and carbonate. These minerals can be found in most environments on Earth, but are usually absent from mafic terrains. To fill this gap, we conducted numerous experiments aimed at extracting in situ 14C from olivine ((Fe,Mg)2SiO4). We were able to extract a stable and reproducible in situ 14C component from olivine using stepped heating and a lithium metaborate (LiBO2) flux, following treatment with dilute HNO3 over a variety of experimental conditions. However, measured concentrations for samples from the Tabernacle Hill basalt flow (17.3 ?? 0.3 ka4) in central Utah and the McCarty's basalt flow (3.0 ?? 0.2 ka) in western New Mexico were significantly lower than expected based on exposure of olivine in our samples to cosmic rays at each site. The source of the discrepancy is not clear. We speculate that in situ 14C atoms may not have been released from Mg-rich crystal lattices (the olivine composition at both sites was ~Fo65Fa35). Alternatively, a portion of the 14C atoms released from the olivine grains may have become trapped in synthetic spinel-like minerals that were created in the olivine-flux mixture during the extraction process, or were simply retained in the mixture itself. Regardless, the magnitude of the discrepancy appears to be inversely proportional to the Fe/(Fe+Mg) ratio of the olivine separates. If we apply a simple correction factor based on the chemical composition of the separates, then corrected in situ 14C concentrations are similar to theoretical values at both sites. At this time, we do not know if this agreement is fortuitous or real. Future research should include measurement of in situ 14C concentrations in olivine from known-age basalt flows with different chemical compositions (i.e. more Fe-rich) to determine if this correction is robust for all olivine-bearing rocks. ?? 2010 by the Arizona

  16. EM-54 Technology Development In Situ Remediation Integrated Program

    International Nuclear Information System (INIS)

    1993-08-01

    The Department of Energy (DOE) established the Office of Technology Development (EM-50) as an element of Environmental Restoration and Waste Management (EM) in November 1989. EM manages remediation of all DOE sites as well as wastes from current operations. The goal of the EM program is to minimize risks to human health, safety and the environment, and to bring all DOE sites into compliance with Federal, state, and local regulations by 2019. EM-50 is charged with developing new technologies that are safer, more effective and less expensive than current methods. The In Situ Remediation Integrated Program (the subject of this report) is part of EM-541, the Environmental Restoration Research and Development Division of EM-54. The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: Significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces; in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP tends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years

  17. In situ texture analysis under applied load

    International Nuclear Information System (INIS)

    Brokmeier, H.G.

    2005-01-01

    The in-situ measurement of a crystallographic texture is a special type of a non-destructive measurement, which need special equipments. Due to the high photon flux and the excellent brilliance high energetic synchrotron radiations are a fantastic tool particular in fast experimentation. Moreover, a high penetration power allows the investigation of standard tensile sample of the DIN-norm. A loading device with a power up to 20 kN was installed at the hard wiggler beamline BW5 (HASYLAB-DESY) to perform in-situ strain and in-situ texture analysis. Using 100keV X-rays one gets short wavelength so that a 2D image-plate detector offers a wide range of diffraction pattern within the first 10 degree in 2 theta. Thermal neutron is another radiation with a high penetration power, which is the standard method for global texture analysis of bulk samples. As an example rectangular extruded Mg- Az31 was investigated by an in-situ. tensile experiment. Samples with 0 degree, 45 degree and 90 degree to the extrusion direction were cut. In-situ strain studies show the lattice dependent strains perpendicular and parallel to the loading direction. Moreover, in hexagonal Mg-Az31 a strong influence of the initial texture on the tensile behavior can be explained by the combination of texture simulation with in-situ measurements. (author)

  18. CALIBRATION OF DENSITOMETRY IN RADIO-ISOTOPIC IN SITU HYBRIDIZATION

    Directory of Open Access Journals (Sweden)

    Jan M Ruijter

    2011-05-01

    Full Text Available Densitometry on autoradiographs of sections processed for in situ hybridization provides a direct measure for the in situ quantification of mRNA. Gelatin spots, containing different concentrations of the radioisotope, and processed in parallel with the tissue sections, can be used as a sensitive model to calibrate the densitometric measurements. The shape of the gelatin spots was shown to be circular with a parabolic crosssectional profile. This simple shape allows the subdivision of the spot into a series of concentric rings, which enables an unbiased measurement of the optical density - radioactivity relation. This spot measurement is also applicable to DNA arrays spotted on glass or membranes. A new model, explaining the optical density of autoradiographs, was derived and fitted to the calibration points. The use of this calibration method is crucial for the correct interpretation of autoradiographs

  19. Methods and systems for in-situ electroplating of electrodes

    Science.gov (United States)

    Zappi, Guillermo Daniel; Zarnoch, Kenneth Paul; Huntley, Christian Andrew; Swalla, Dana Ray

    2015-06-02

    The present techniques provide electrochemical devices having enhanced electrodes with surfaces that facilitate operation, such as by formation of a porous nickel layer on an operative surface, particularly of the cathode. The porous metal layer increases the surface area of the electrode, which may result in increasing the efficiency of the electrochemical devices. The formation of the porous metal layer is performed in situ, that is, after the assembly of the electrodes into an electrochemical device. The in situ process offers a number of advantages, including the ability to protect the porous metal layer on the electrode surface from damage during assembly of the electrochemical device. The enhanced electrode and the method for its processing may be used in any number of electrochemical devices, and is particularly well suited for electrodes in an electrolyzer useful for splitting water into hydrogen and oxygen.

  20. In situ bioremediation using horizontal wells. Innovative technology summary report

    International Nuclear Information System (INIS)

    1995-04-01

    In Situ Bioremediation (ISB) is the term used in this report for Gaseous Nutrient Injection for In Situ Bioremediation. This process (ISB) involves injection of air and nutrients (sparging and biostimulation) into the ground water and vacuum extraction to remove Volatile Organic Compounds (VOCs) from the vadose zone concomitant with biodegradation of the VOCs. This process is effective for remediation of soils and ground water contaminated with VOCs both above and below the water table. A full-scale demonstration of ISB was conducted as part of the Savannah River Integrated Demonstration: VOCs in Soils and Ground Water at Nonarid Sites. This demonstration was performed at the Savannah River Site from February 1992 to April 1993

  1. A bio-inspired approach for in situ synthesis of tunable adhesive

    International Nuclear Information System (INIS)

    Sun, Leming; Yi, Sijia; Wang, Yongzhong; Pan, Kang; Zhong, Qixin; Zhang, Mingjun

    2014-01-01

    Inspired by the strong adhesive produced by English ivy, this paper proposes an in situ synthesis approach for fabricating tunable nanoparticle enhanced adhesives. Special attention was given to tunable features of the adhesive produced by the biological process. Parameters that may be used to tune properties of the adhesive will be proposed. To illustrate and validate the proposed approach, an experimental platform was presented for fabricating tunable chitosan adhesive enhanced by Au nanoparticles synthesized in situ. This study contributes to a bio-inspired approach for in situ synthesis of tunable nanocomposite adhesives by mimicking the natural biological processes of ivy adhesive synthesis. (paper)

  2. Groundbreaking technology: in-situ anaerobic bioremediation for treatment of contaminated soil and groundwater

    International Nuclear Information System (INIS)

    Fernandes, K.A.

    2002-01-01

    Anaerobic in-situ bioremediation is a technique often used to cleanse contaminated soil and groundwater. 'Anaerobic in-situ bioremediation' is a phrase with distinct terms all having relevance in the application of this technique. 'Anaerobic' implies the absence of dissolved oxygen, while 'in-situ' simply means that the environmental cleansing occurs with out removing, displacing, or significantly disturbing the specimen or surrounding area. 'Bioremediation' is a term used to describe the biological use of microbes or plants to detoxify the environment. In order to properly implement this complex process, one must have an understanding of microbiology, biochemistry, genetics, metabolic processes, and structure and function of natural microbial communities. (author)

  3. Groundbreaking technology: in-situ anaerobic bioremediation for treatment of contaminated soil and groundwater

    International Nuclear Information System (INIS)

    Fernandes, K.A.

    2002-01-01

    Anaerobic in-situ bioremediation is a technique often used to cleanse contaminated soil and groundwater. 'Anaerobic in-situ bioremediation' is a phrase with distinct terms all having relevance in the application of this technique. Anaerobic implies the absence of dissolved oxygen, while 'in-situ' simply means that the environmental cleansing occurs with out removing, displacing, or significantly disturbing the specimen or surrounding area. 'Bioremediation' is a term used to describe the biological use of microbes or plants to detoxify the environment. In order to properly implement this complex process, one must have an understanding of microbiology, biochemistry, genetics, metabolic processes, and structure and function of natural microbial communities. (author)

  4. Backfilling of deposition tunnels, in situ alternative

    International Nuclear Information System (INIS)

    Keto, P.

    2007-04-01

    The backfilling process described in this report is based on in situ compaction of a mixture of bentonite and ballast (30:70) into the deposition tunnel. This method has been tested in practice in various field tests by SKB, most recently in the Prototype repository test performed at Aespoe HRL. The backfill mixture is prepared above ground and transported to the repository level with a tank truck. The material is compacted into layers with an inclination of 35 deg C and a thickness of approximately 20 cm. The compaction is performed with a vibratory plate attached to a boom of an excavator. In order to keep up with the required canister installation rate determined for the Finnish repository, at least 13 layers need to be compacted daily. This means working in 2-3 shifts on the working days that are available for backfilling operations. The dry densities achieved in field tests for the wall/roof section of the backfill have been insufficient compared with the dry density criteria set for the backfill. In theory, it may be possible to reach dry densities that fulfil the criteria, although with a relatively small safety margin. Another open issue is whether the mixture of bentonite and ballast has sufficient self-healing ability to seal-off erosion channels after the tunnels have been closed and the backfill has reached full saturation. (orig.)

  5. Incomplete copolymer degradation of in situ chemotherapy.

    Science.gov (United States)

    Bourdillon, Pierre; Boissenot, Tanguy; Goldwirt, Lauriane; Nicolas, Julien; Apra, Caroline; Carpentier, Alexandre

    2018-02-17

    In situ carmustine wafers containing 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) are commonly used for the treatment of recurrent glioblastoma to overcome the brain-blood barrier. In theory, this chemotherapy diffuses into the adjacent parenchyma and the excipient degrades in maximum 8 weeks but no clinical data confirms this evolution, because patients are rarely operated again. A 75-year-old patient was operated twice for recurrent glioblastoma, and a carmustine wafer was implanted during the second surgery. Eleven months later, a third surgery was performed, revealing unexpected incomplete degradation of the wafer. 1H-Nuclear Magnetic Resonance was performed to compare this wafer to pure BCNU and to an unused copolymer wafer. In the used wafer, peaks corresponding to hydrophobic units of the excipient were no longer noticeable, whereas peaks of the hydrophilic units and traces of BCNU were still present. These surprising results could be related to the formation of a hydrophobic membrane around the wafer, thus interfering with the expected diffusion and degradation processes. The clinical benefit of carmustine wafers in addition to the standard radio-chemotherapy remains limited, and in vivo behavior of this treatment is not completely elucidated yet. We found that the wafer may remain after several months. Alternative strategies to deal with the blood-brain barrier, such as drug-loaded liposomes or ultrasound-opening, must be explored to offer larger drug diffusion or allow repetitive delivery.

  6. Vendors search for viscosity sensors for in situ tank waste characterization

    International Nuclear Information System (INIS)

    Nguyen, Q.H.

    1994-01-01

    This report documents the search results in identifying manufacturers who can develop viscosity sensors for in situ to waste characterization. Six companies were found that have in-process viscometers

  7. In Situ Manufacturing of Plastics and Composites to Support H&R Exploration, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering and BAE Systems propose to develop processes to manufacture plastics and composites for radiation shielding based on In Situ Resources Utilization...

  8. In-Situ Rolling Element Bearing Temperature and/or Pressure Measurement

    National Research Council Canada - National Science Library

    Nickel, David

    1999-01-01

    ... attitude-control wheels. Thin-film deposition and patterning processes have been formulated for the production of thin-film resistive sensors for in-situ measurement of pressure and temperature transients in lubricated contacts...

  9. IN SITU MEASUREMENT OF BEDROCK EROSION

    Directory of Open Access Journals (Sweden)

    D. H. Rieke-Zapp

    2012-07-01

    Full Text Available While long term erosion rates of bedrock material may be estimated by dating methods, current day erosion rates are – if at all available – based on rough estimates or on point measurements. Precise quantification of short term erosion rates are required to improve our understanding of short term processes, for input in landscape evolution models, as well as for studying the mechanics and efficiency of different erosion processes in varying geomorphological settings. Typical current day erosion rates in the European Alps range from sub-millimetre to several millimetres per year depending on the dominant erosion processes. The level of surveying accuracy required for recurring sub-millimetre to millimetre measurements in the field is demanding. A novel surveying setup for in-situ measurement of bedrock erosion was tested recently in three different locations in Switzerland. Natural bedrock was investigated in the Gornera gorge close to Zermatt. Further on, bedrock samples were installed in exposed locations in the Erlenbach research watershed close to Einsiedeln, and in the Illgraben debris flow channel, located in the Canton Schwyz and Valais, respectively. A twofold measurement approach was chosen for all locations. For the first setup control points providing an absolute reference frame for recurrent measurements were embedded close to the area of interest. Close range photogrammetry was applied to measure surface changes on the bedrock samples. The precision for surface measurements in the field was 0.1 mm (1 σ and thus suitable for the application. The equipment needed for the surveys can easily be carried to the field. At one field site a structured light scanner was used along with the photogrammetric setup. Although the current generation of structured light scanners appeared less suitable for field application, data acquisition was much faster and checking the data for completeness in the field was straight forward. The latest

  10. In Situ Measurement of Bedrock Erosion

    Science.gov (United States)

    Rieke-Zapp, D. H.; Beer, A.; Turowski, J. M.; Campana, L.

    2012-07-01

    While long term erosion rates of bedrock material may be estimated by dating methods, current day erosion rates are - if at all available - based on rough estimates or on point measurements. Precise quantification of short term erosion rates are required to improve our understanding of short term processes, for input in landscape evolution models, as well as for studying the mechanics and efficiency of different erosion processes in varying geomorphological settings. Typical current day erosion rates in the European Alps range from sub-millimetre to several millimetres per year depending on the dominant erosion processes. The level of surveying accuracy required for recurring sub-millimetre to millimetre measurements in the field is demanding. A novel surveying setup for in-situ measurement of bedrock erosion was tested recently in three different locations in Switzerland. Natural bedrock was investigated in the Gornera gorge close to Zermatt. Further on, bedrock samples were installed in exposed locations in the Erlenbach research watershed close to Einsiedeln, and in the Illgraben debris flow channel, located in the Canton Schwyz and Valais, respectively. A twofold measurement approach was chosen for all locations. For the first setup control points providing an absolute reference frame for recurrent measurements were embedded close to the area of interest. Close range photogrammetry was applied to measure surface changes on the bedrock samples. The precision for surface measurements in the field was 0.1 mm (1 σ) and thus suitable for the application. The equipment needed for the surveys can easily be carried to the field. At one field site a structured light scanner was used along with the photogrammetric setup. Although the current generation of structured light scanners appeared less suitable for field application, data acquisition was much faster and checking the data for completeness in the field was straight forward. The latest generation of compact

  11. In situ vitrification program treatability investigation progress report

    International Nuclear Information System (INIS)

    Arrenholz, D.A.

    1990-12-01

    This document presents a summary of the efforts conducted under the in situ vitrification treatability study during the period from its initiation in FY-88 until FY-90. In situ vitrification is a thermal treatment process that uses electrical power to convert contaminated soils into a chemically inert and stable glass and crystalline product. Contaminants present in the soil are either incorporated into the product or are pyrolyzed during treatment. The treatability study being conducted at the Idaho National Engineering Laboratory by EG ampersand G Idaho is directed at examining the specific applicability of the in situ vitrification process to buried wastes contaminated with transuranic radionuclides and other contaminants found at the Subsurface Disposal Area of the Radioactive Waste Management Complex. This treatability study consists of a variety of tasks, including engineering tests, field tests, vitrified product evaluation, and analytical models of the ISV process. The data collected in the course of these efforts will address the nine criteria set forth in the Comprehensive Environmental Response, Compensation, and Liability Act, which will be used to identify and select specific technologies to be used in the remediation of the buried wastes at the Subsurface Disposal Area. 6 refs., 4 figs., 3 tabs

  12. Wellbore manufacturing processes for in situ heat treatment processes

    Science.gov (United States)

    Davidson, Ian Alexander; Geddes, Cameron James; Rudolf, Randall Lynn; Selby, Bruce Allen; MacDonald, Duncan Charles

    2012-12-11

    A method includes making coiled tubing at a coiled tubing manufacturing unit coupled to a coiled tubing transportation system. One or more coiled tubing reels are transported from the coiled tubing manufacturing unit to one or more moveable well drilling systems using the coiled tubing transportation system. The coiled tubing transportation system runs from the tubing manufacturing unit to one or more movable well drilling systems, and then back to the coiled tubing manufacturing unit.

  13. Compliance among soft contact lens wearers.

    OpenAIRE

    Kuzman, Tomislav; Barišić Kutija, Marija; Masnec, Sanja; Jandroković, Sonja; Mrazovac, Danijela; Jurišić, Darija; Škegro, Ivan; Kalauz, Miro; Kordić, Rajko

    2014-01-01

    Contact lens compliance is proven to be crucial for preventing lens wear-related complications because of the interdependence of the steps in lens care regime and their influence on lens system microbial contamination. Awareness of the patients' lens handling compliance as well as correct recognition of non-compliant behaviours is the basis for creating more targeted strategies for patient education. The aim of this study was to investigate compliance among soft contact lens (SCL) wearers in ...

  14. In-situ chemical oxidation of MTBE

    International Nuclear Information System (INIS)

    Kelley, K.L.; Marley, M.C.; Sperry, K.L.

    2002-01-01

    In-situ chemical oxidation (ISCO) can be a cost-effective method for the destruction of source areas of methyl tertiary butyl ether (MTBE). Several ISCO processes have been tested successfully under laboratory conditions and a few have proven successful when field tested for the destruction of MTBE. This paper reviews the state of the art with respect to MTBE oxidation for several common oxidants and Advanced Oxidation Processes (AOPs). Four frequently used oxidants are reviewed in this paper: hydrogen peroxide (H 2 O 2 ), ozone (O 3 ), permanganate (MnO 4 - ), and persulfate (S 2 O 8 2- ). When choosing an oxidant for a specific remediation strategy, trade-offs exist between oxidant strength and stability in the subsurface. Aquifer and water quality parameters such as pH, alkalinity, and soil oxidant demand (SOD) may influence the initiation and effectiveness of the ISCO reaction and may significantly increase the amount of oxidant required to treat the target contaminant. Oxidation end products are an important consideration in the selection of an oxidant, as not all oxidants have proven successful in complete mineralization of MTBE. Tert-butyl formate (TBF) and tert-butyl alcohol (TBA) are the major intermediate products in the oxidative reactions of MTBE and may pose a greater health hazard than MTBE. Other factors, including regulatory restrictions, need to be considered when choosing an oxidant for a specific application. This paper will highlight the chemistry of the oxidant/MTBE reactions, successes or limitations observed under laboratory and field conditions, and practical design advice when employing the oxidant. (author)

  15. Through the Lens of Sigfried Giedion. Exploring Modernism and the Greek Vernacular in Situ

    Directory of Open Access Journals (Sweden)

    Kousidi, Matina

    2017-04-01

    Full Text Available Focusing on Sigfried Giedion's initial visit to Greece, in the scope of CIAM IV, this study explores his approach to the myth of the Mediterranean as a germ of Western modernist architecture. Through a closer look at Giedion's photographic and literary lenses, it mainly considers his appreciation of early manifestations of modernity in the extended area of Athens, namely the Villa Fakidis (1932-1933 and Kalisperi Primary School (1931. Their apposition to the ancient and vernacular Greek architecture generates a dynamic discourse between areas and eras, while serving as a pivotal catalyst for the discussion of contextualization, immutability and identity – areas that are also comprised by the Modern Movement. This article thus discusses Giedion's reflection on a reciprocal relationship between Greece and the Western world, at a time when the former was striving to define its architectural identity.

  16. Through the Lens of Sigfried Giedion. Exploring Modernism and the Greek Vernacular in Situ

    OpenAIRE

    Kousidi, Stamatina

    2016-01-01

    Focusing on Sigfried Giedion's initial visit to Greece, in the scope of CIAM IV, this study explores his approach to the myth of the Mediterranean as a germ of Western modernist architecture. Through a closer look at Giedion's photographic and literary lenses, it mainly considers his appreciation of early manifestations of modernity in the extended area of Athens, namely the Villa Fakidis (1932-1933) and Kalisperi Primary School (1931). Their apposition to the ancient and vernacular Greek arc...

  17. In-situ alloyed LENS additively manufactured TiAl-Nb structure

    CSIR Research Space (South Africa)

    Tlotleng, Monnamme

    2017-11-01

    Full Text Available Titanium aluminides (TiAl) are interesting intermetallic materials to study due to their enhanced high temperature and light weight properties. They are necessary as structural materials, but brittle to form with conventional methods. Hence big...

  18. Treatment of heavy metal contaminated soils by in situ vitrification

    International Nuclear Information System (INIS)

    Hansen, J.E.

    1991-01-01

    Contaminated soil site remediation objectives call for the destruction, removal, and/or immobilization of contaminant species. Destruction is applicable to hazardous compounds (e.g., hazardous organics such as PCBs; hazardous inorganics such as cyanide); however, it is not applicable to hazardous elements such as the heavy metals. Removal and/or immobilization are typical objectives for heavy metal contaminants present in soil. Many technologies have been developed specifically to meet these needs. One such technology is In Situ Vitrification (ISV), an innovative mobile, onsite, in situ solids remediation technology that has been available on a commercial basis for about two years. ISV holds potential for the safe and permanent treatment/remediation of previously disposed or current process solids waste (e.g., soil, sludge, sediment, tailings) contaminated with hazardous chemical and/or radioactive materials. This paper focuses on the application of ISV to heavy metal-contaminated soils

  19. In Situ Instrumentation for Sub-Surface Planetary Geochemistry

    Science.gov (United States)

    Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Parsons, A.; Schweitzer, J.; Starr, R.; Trombka, J.

    2010-01-01

    Novel instrumentation is under development at NASA's Goddard Space Flight Center, building upon earth-based techniques for hostile environments, to infer geochemical processes important to formation and evolution of solid bodies in our Solar System. A prototype instrument, the Pulsed Neutron Generator Gamma Ray and Neutron Detectors (PNG-GRAND), has a 14 MeV pulsed neutron generator coupled with gamma ray and neutron detectors to measure quantitative elemental concentrations and bulk densities of a number of major, minor and trace elements at or below the surfaces with approximately a meter-sized spatial resolution down to depths of about 50 cm without the need to drill. PNG-GRAND's in situ a meter-scale measurements and adaptability to a variety of extreme space environments will complement orbital kilometer-scale and in-situ millimeter scale elemental and mineralogical measurements to provide a more complete picture of the geochemistry of planets, moons, asteroids and comets.

  20. In-situ Study on the Performance of Engineered Barriers

    International Nuclear Information System (INIS)

    Cho, Won Jin; Park, J. H.; Lee, J. O.

    2010-04-01

    An engineering scale experiment, KENTEX was conducted to investigate THM behavior in the buffer, and the computer modelling and simulation technique was developed. In the study on the thermal behavior of near-field rock, various studies for the in situ heater test, which is for the investigation of the thermo-mechanical behavior in rock mass, were carried out. The geophysics exploration and in-situ field tests were carried out to investigate the range of EDZ and its effects on the mechanical properties of rock. The discontinuities in rock mass and dynamic material properties were also measured. The mechanical properties of buffer block are investigated regarding the fabrication, compression, and degradation of the buffer blocks. The experiments are carried out to investigate the resaturation processes. The material properties of low-pH and high-pH cement grouts were evaluated