WorldWideScience

Sample records for lens optical system

  1. Optical integration of Pancharatnam-Berry phase lens and dynamical phase lens

    International Nuclear Information System (INIS)

    Ke, Yougang; Liu, Yachao; Zhou, Junxiao; Liu, Yuanyuan; Luo, Hailu; Wen, Shuangchun

    2016-01-01

    In the optical system, most elements such as lens, prism, and optical fiber are made of silica glass. Therefore, integrating Pancharatnam-Berry phase elements into silica glass has potential applications in the optical system. In this paper, we take a lens, for example, which integrates a Pancharatnam-Berry phase lens into a conventional plano-convex lens. The spin states and positions of focal points can be modulated by controlling the polarization states of the incident beam. The proposed lens has a high transmission efficiency, and thereby acts as a simple and powerful tool to manipulate spin photons. Furthermore, the method can be conveniently extended to the optical fiber and laser cavity, and may provide a route to the design of the spin-photonic devices.

  2. Electro-optically actuated liquid-lens zoom

    Science.gov (United States)

    Pütsch, O.; Loosen, P.

    2012-06-01

    Progressive miniaturization and mass market orientation denote a challenge to the design of dynamic optical systems such as zoom-lenses. Two working principles can be identified: mechanical actuation and application of active optical components. Mechanical actuation changes the focal length of a zoom-lens system by varying the axial positions of optical elements. These systems are limited in speed and often require complex coupled movements. However, well established optical design approaches can be applied. In contrast, active optical components change their optical properties by varying their physical structure by means of applying external electric signals. An example are liquidlenses which vary their curvatures to change the refractive power. Zoom-lenses benefit from active optical components in two ways: first, no moveable structures are required and second, fast response characteristics can be realized. The precommercial development of zoom-lenses demands simplified and cost-effective system designs. However the number of efficient optical designs for electro-optically actuated zoom-lenses is limited. In this paper, the systematic development of an electro-optically actuated zoom-lens will be discussed. The application of aberration polynomials enables a better comprehension of the primary monochromatic aberrations at the lens elements during a change in magnification. This enables an enhanced synthesis of the system behavior and leads to a simplified zoom-lens design with no moving elements. The change of focal length is achieved only by varying curvatures of targeted integrated electro-optically actuated lenses.

  3. Reducing aberration effect of Fourier transform lens by modifying Fourier spectrum of diffractive optical element in beam shaping optical system.

    Science.gov (United States)

    Zhang, Fang; Zhu, Jing; Song, Qiang; Yue, Weirui; Liu, Jingdan; Wang, Jian; Situ, Guohai; Huang, Huijie

    2015-10-20

    In general, Fourier transform lenses are considered as ideal in the design algorithms of diffractive optical elements (DOEs). However, the inherent aberrations of a real Fourier transform lens disturb the far field pattern. The difference between the generated pattern and the expected design will impact the system performance. Therefore, a method for modifying the Fourier spectrum of DOEs without introducing other optical elements to reduce the aberration effect of the Fourier transform lens is proposed. By applying this method, beam shaping performance is improved markedly for the optical system with a real Fourier transform lens. The experiments carried out with a commercial Fourier transform lens give evidence for this method. The method is capable of reducing the system complexity as well as improving its performance.

  4. Liquid lens: advances in adaptive optics

    Science.gov (United States)

    Casey, Shawn Patrick

    2010-12-01

    'Liquid lens' technologies promise significant advancements in machine vision and optical communications systems. Adaptations for machine vision, human vision correction, and optical communications are used to exemplify the versatile nature of this technology. Utilization of liquid lens elements allows the cost effective implementation of optical velocity measurement. The project consists of a custom image processor, camera, and interface. The images are passed into customized pattern recognition and optical character recognition algorithms. A single camera would be used for both speed detection and object recognition.

  5. Photoflash unit having optical system including aspheric lens to enhance light output

    International Nuclear Information System (INIS)

    English, G.J.

    1984-01-01

    A photoflash unit employing an optical system or apparatus with improved center beam candle power seconds and zonal lumen seconds from the flash lamp therein, said unit also employing a minimized utilization ratio of lamp-to-package cross-sectional area. Each individual lamp capsule comprises a reflective element, a refractive element (lens), and at least one photoflash lamp (light source). The lens provides for lamp shred magnification so as to fill the cell (capsule) width to thus provide maximum transfer of light to the subject on axis. One embodiment has the light source fused (glued) to the reflector and lens while a second embodiment has an air interface between the source and the optical elements. In both embodiments, the lens is aspheric and substantially covers both the reflector and source

  6. A high excitation magnetic quadrupole lens quadruplet incorporating a single octupole lens for a low spherical aberration probe forming lens system

    Science.gov (United States)

    Dou, Yanxin; Jamieson, David N.; Liu, Jianli; Li, Liyi

    2018-03-01

    This paper describes the design of a new probe forming lens system consisting of a high excitation magnetic quadrupole lens quadruplet that incorporates a single magnetic octupole lens. This system achieves both a high demagnification and a low spherical aberration compared to conventional high excitation systems and is intended for deployment for the Harbin 300 MeV proton microprobe for applications in space science and ion beam therapy. This relative simplicity of the ion optical design to include a single octupole lens minimizes the risks associated with the constructional and operational precision usually needed for the probe forming lens system and this system could also be deployed in microprobe systems that operate with less magnetically rigid ions. The design of the new system is validated with reference to two independent ion optical computer codes.

  7. An all-silicone zoom lens in an optical imaging system

    International Nuclear Information System (INIS)

    Zhao Cun-Hua

    2013-01-01

    An all-silicone zoom lens is fabricated. A tunable metal ringer is fettered around the side edge of the lens. A nylon rope linking a motor is tied, encircling the notch in the metal ringer. While the motor is operating, the rope can shrink or release to change the focal length of the lens. A calculation method is developed to obtain the focal length and the zoom ratio. The testing is carried out in succession. The testing values are compared with the calculated ones, and they tally with each other well. Finally, the imaging performance of the all-silicone lens is demonstrated. The all-silicone lens has potential uses in cellphone cameras, notebook cameras, micro monitor lenses, etc. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  8. Evaluation of Geometrical Modulation Transfer Function in Optical Lens System

    Directory of Open Access Journals (Sweden)

    Cheng-Mu Tsai

    2015-01-01

    Full Text Available This paper presents ray tracing algorithms to evaluate the geometrical modulation transfer function (GMTF of optical lens system. There are two kinds of ray tracings methods that can be applied to help simulate the point spread function (PSF in the image plane, for example, paraxial optics and real ray tracings. The paraxial optics ray tracing is used to calculate the first-order properties such as the effective focal length (EFL and the entrance pupil position through less cost of computation. However, the PSF could have a large tolerance by only using paraxial optics ray tracing for simulation. Some formulas for real ray tracing are applied in the sagittal and tangential line spread function (LSF. The algorithms are developed to demonstrate the simulation of LSF. Finally, the GMTF is evaluated after the fast Fourier transform (FFT of the LSF.

  9. Near-field optical recording based on solid immersion lens system

    Science.gov (United States)

    Hong, Tao; Wang, Jia; Wu, Yan; Li, Dacheng

    2002-09-01

    Near-field optical recording based on solid immersion lens (SIL) system has attracted great attention in the field of high-density data storage in recent years. The diffraction limited spot size in optical recording and lithography can be decreased by utilizing the SIL. The SIL near-field optical storage has advantages of high density, mass storage capacity and compatibility with many technologies well developed. We have set up a SIL near-field static recording system. The recording medium is placed on a 3-D scanning stage with the scanning range of 70×70×70μm and positioning accuracy of sub-nanometer, which will ensure the rigorous separation control in SIL system and the precision motion of the recording medium. The SIL is mounted on an inverted microscope. The focusing between long working distance objective and SIL can be monitored and observed by the CCD camera and eyes. Readout signal can be collected by a detector. Some experiments have been performed based on the SIL near-field recording system. The attempt of the near-field recording on photochromic medium has been made and the resolution improvement of the SIL has been presented. The influence factors in SIL near-field recording system are also discussed in the paper.

  10. Multipoint photonic doppler velocimetry using optical lens elements

    Science.gov (United States)

    Frogget, Brent Copely; Romero, Vincent Todd

    2014-04-29

    A probe including a fisheye lens is disclosed to measure the velocity distribution of a moving surface along many lines of sight. Laser light, directed to the surface and then reflected back from the surface, is Doppler shifted by the moving surface, collected into fisheye lens, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to an index-matching lens and eventually to a fisheye lens. The fiber array flat polished and coupled to the index-matching lens using index-matching gel. Numerous fibers in a fiber array project numerous rays through the fisheye lens which in turn project many measurement points at numerous different locations to establish surface coverage over a hemispherical shape with very little crosstalk.

  11. Effects of Coupling Lens on Optical Refrigeration of Semiconductors

    International Nuclear Information System (INIS)

    Kai, Ding; Yi-Ping, Zeng

    2008-01-01

    Optical refrigeration of semiconductors is encountering efficiency difficulties caused by nonradiative recombination and luminescence trapping. A commonly used approach for enhancing luminescence efficiency of a semiconductor device is coupling a lens with the device. We quantitatively study the effects of a coupling lens on optical refrigeration based on rate equations and photon recycling, and calculated cooling efficiencies of different coupling mechanisms and of different lens materials. A GaAs/GaInP heterostructure coupled with a homo-epitaxial GaInP hemispherical lens is recommended. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  12. Precision lens assembly with alignment turning system

    Science.gov (United States)

    Ho, Cheng-Fang; Huang, Chien-Yao; Lin, Yi-Hao; Kuo, Hui-Jean; Kuo, Ching-Hsiang; Hsu, Wei-Yao; Chen, Fong-Zhi

    2017-10-01

    The poker chip assembly with high precision lens barrels is widely applied to ultra-high performance optical system. ITRC applies the poker chip assembly technology to the high numerical aperture objective lenses and lithography projection lenses because of its high efficiency assembly process. In order to achieve high precision lens cell for poker chip assembly, an alignment turning system (ATS) is developed. The ATS includes measurement, alignment and turning modules. The measurement module is equipped with a non-contact displacement sensor (NCDS) and an autocollimator (ACM). The NCDS and ACM are used to measure centration errors of the top and the bottom surface of a lens respectively; then the amount of adjustment of displacement and tilt with respect to the rotational axis of the turning machine for the alignment module can be determined. After measurement, alignment and turning processes on the ATS, the centration error of a lens cell with 200 mm in diameter can be controlled within 10 arcsec. Furthermore, a poker chip assembly lens cell with three sub-cells is demonstrated, each sub-cells are measured and accomplished with alignment and turning processes. The lens assembly test for five times by each three technicians; the average transmission centration error of assembly lens is 12.45 arcsec. The results show that ATS can achieve high assembly efficiency for precision optical systems.

  13. Optical architecture of HoloLens mixed reality headset

    Science.gov (United States)

    Kress, Bernard C.; Cummings, William J.

    2017-06-01

    HoloLens by Microsoft Corp. is the world's first untethered Mixed Reality (MR) Head Mounted Display (HMD) system, released to developers in March 2016 as a Development Kit. We review in this paper the various display requirements and subsequent optical hardware choices we made for HoloLens. Its main achievements go along performance and comfort for the user: it is the first fully untethered MR headset, with the highest angular resolution and the industry's largest eyebox. It has the first inside-out global sensor fusion system including precise head tracking and 3D mapping all controlled by a fully custom on-board GPU. Based on such achievements, HoloLens came out as the most advanced MR system today. Additional features may be implemented in next generations MR headsets, leading to the ultimate experience for the user, and securing the upcoming fabulous AR/MR market predicted by most analysts.

  14. Semiautomated analysis of optical coherence tomography crystalline lens images under simulated accommodation.

    Science.gov (United States)

    Kim, Eon; Ehrmann, Klaus; Uhlhorn, Stephen; Borja, David; Arrieta-Quintero, Esdras; Parel, Jean-Marie

    2011-05-01

    Presbyopia is an age related, gradual loss of accommodation, mainly due to changes in the crystalline lens. As part of research efforts to understand and cure this condition, ex vivo, cross-sectional optical coherence tomography images of crystalline lenses were obtained by using the Ex-Vivo Accommodation Simulator (EVAS II) instrument and analyzed to extract their physical and optical properties. Various filters and edge detection methods were applied to isolate the edge contour. An ellipse is fitted to the lens outline to obtain central reference point for transforming the pixel data into the analysis coordinate system. This allows for the fitting of a high order equation to obtain a mathematical description of the edge contour, which obeys constraints of continuity as well as zero to infinite surface slopes from apex to equator. Geometrical parameters of the lens were determined for the lens images captured at different accommodative states. Various curve fitting functions were developed to mathematically describe the anterior and posterior surfaces of the lens. Their differences were evaluated and their suitability for extracting optical performance of the lens was assessed. The robustness of these algorithms was tested by analyzing the same images repeated times.

  15. The development of alignment turning system for precision len cells

    Science.gov (United States)

    Huang, Chien-Yao; Ho, Cheng-Fang; Wang, Jung-Hsing; Chung, Chien-Kai; Chen, Jun-Cheng; Chang, Keng-Shou; Kuo, Ching-Hsiang; Hsu, Wei-Yao; Chen, Fong-Zhi

    2017-08-01

    In general, the drop-in and cell-mounted assembly are used for standard and high performance optical system respectively. The optical performance is limited by the residual centration error and position accuracy of the conventional assembly. Recently, the poker chip assembly with high precision lens barrels that can overcome the limitation of conventional assembly is widely applied to ultra-high performance optical system. ITRC also develops the poker chip assembly solution for high numerical aperture objective lenses and lithography projection lenses. In order to achieve high precision lens cell for poker chip assembly, an alignment turning system (ATS) is developed. The ATS includes measurement, alignment and turning modules. The measurement module including a non-contact displacement sensor and an autocollimator can measure centration errors of the top and the bottom surface of a lens respectively. The alignment module comprising tilt and translation stages can align the optical axis of the lens to the rotating axis of the vertical lathe. The key specifications of the ATS are maximum lens diameter, 400mm, and radial and axial runout of the rotary table < 2 μm. The cutting performances of the ATS are surface roughness Ra < 1 μm, flatness < 2 μm, and parallelism < 5 μm. After measurement, alignment and turning processes on our ATS, the centration error of a lens cell with 200mm in diameter can be controlled in 10 arcsec. This paper also presents the thermal expansion of the hydrostatic rotating table. A poker chip assembly lens cell with three sub-cells is accomplished with average transmission centration error in 12.45 arcsec by fresh technicians. The results show that ATS can achieve high assembly efficiency for precision optical systems.

  16. Digitally switchable multi-focal lens using freeform optics.

    Science.gov (United States)

    Wang, Xuan; Qin, Yi; Hua, Hong; Lee, Yun-Han; Wu, Shin-Tson

    2018-04-16

    Optical technologies offering electrically tunable optical power have found a broad range of applications, from head-mounted displays for virtual and augmented reality applications to microscopy. In this paper, we present a novel design and prototype of a digitally switchable multi-focal lens (MFL) that offers the capability of rapidly switching the optical power of the system among multiple foci. It consists of a freeform singlet and a customized programmable optical shutter array (POSA). Time-multiplexed multiple foci can be obtained by electrically controlling the POSA to switch the light path through different segments of the freeform singlet rapidly. While this method can be applied to a broad range of imaging and display systems, we experimentally demonstrate a proof-of-concept prototype for a multi-foci imaging system.

  17. Optical design of transmitter lens for asymmetric distributed free space optical networks

    Science.gov (United States)

    Wojtanowski, Jacek; Traczyk, Maciej

    2018-05-01

    We present a method of transmitter lens design dedicated for light distribution shaping on a curved and asymmetric target. In this context, target is understood as a surface determined by hypothetical optical detectors locations. In the proposed method, ribbon-like surfaces of arbitrary shape are considered. The designed lens has the task to transform collimated and generally non-uniform input beam into desired irradiance distribution on such irregular targets. Desired irradiance is associated with space-dependant efficiency of power flow between the source and receivers distributed on the target surface. This unconventional nonimaging task is different from most illumination or beam shaping objectives, where constant or prescribed irradiance has to be produced on a flat target screen. The discussed optical challenge comes from the applications where single transmitter cooperates with multitude of receivers located in various positions in space and oriented in various directions. The proposed approach is not limited to optical networks, but can be applied in a variety of other applications where nonconventional irradiance distribution has to be engineered. The described method of lens design is based on geometrical optics, radiometry and ray mapping philosophy. Rays are processed as a vector field, each of them carrying a certain amount of power. Having the target surface shape and orientation of receivers distribution, the rays-surface crossings map is calculated. It corresponds to the output rays vector field, which is referred to the calculated input rays spatial distribution on the designed optical surface. The application of Snell's law in a vector form allows one to obtain surface local normal vector and calculate lens profile. In the paper, we also present the case study dealing with exemplary optical network. The designed freeform lens is implemented in commercially available optical design software and irradiance three-dimensional spatial distribution is

  18. A study of optical design and optimization applied to lens module of laser beam shaping of advanced modern optical device

    Science.gov (United States)

    Tsai, Cheng-Mu; Fang, Yi-Chin; Chen, Zhen Hsiang

    2011-10-01

    This study used the aspheric lens to realize the laser flat-top optimization, and applied the genetic algorithm (GA) to find the optimal results. Using the characteristics of aspheric lens to obtain the optimized high quality Nd: YAG 355 waveband laser flat-top optical system, this study employed the Light tools LDS (least damped square) and the GA of artificial intelligence optimization method to determine the optimal aspheric coefficient and obtain the optimal solution. This study applied the aspheric lens with GA for the flattening of laser beams using two aspheric lenses in the aspheric surface optical system to complete 80% spot narrowing under standard deviation of 0.6142.

  19. Ray tracing package through a lens system and a spectrometer

    International Nuclear Information System (INIS)

    Zurro, B.; King, P.W.; Lazarus, E.A.

    1980-03-01

    To study the light collection optics of the ISX-B two-dimensional (2-D) Thomson scattering system, we have implemented in the Oak Ridge National Laboratory (ORNL) Fusion Energy Division (FED) PDP-10 two computer programs, LENS and SPECT, that trace rays through a lens system and a spectrometer, respectively. The lens package follows the path of any kind of ray (meridional or skew) through a centered optical system formed by an arbitrary number of spherical surfaces. The spectrometer package performs geometrical ray tracing through a Czerney-Turner spectrometer and can be easily modified for studying any other configuration. Contained herein is a description of the procedures followed and a listing of the computer programs

  20. Advanced Optical Signal Processing using Time Lens based Optical Fourier Transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Lillieholm, Mads

    2016-01-01

    An overview of recent progress on time lens based advanced optical signal processing is presented, with a special focus on all-optical ultrafast 640 Gbit/s all-channel serial-to-parallel conversion, and scalable WDM regeneration....

  1. Capillary Optics as an x-ray Condensing Lens An Alignment

    CERN Document Server

    Cappuccio, G

    2000-01-01

    The procedure of capillary lens alignment is described in detail. The theoretical basis of capillary optics is given in the framework of a comparative analysis of monocapillary and polycapillary optics. The results of x-ray $9 distribution scanning behind the capillary lens for various angle planes, together with the tting results, are presented. A qualitative explanation is given for the discrepancy between the expected and observed divergences of x-ray $9 beams transmitted by the capillary lens.

  2. Lateral refraction and reflection of light polarized lenses principle. Coplanar lens systems

    International Nuclear Information System (INIS)

    Miranda, L.

    2012-01-01

    Studying the behavior of the linearly polarized light to impact a lens and in the lens itself, resulted in the discovery of a physical principle of optics, not mentioned or used so far. This phenomenon is very useful in practice. Perhaps the manifestation of the phenomenon occurs in the plane perpendicular to the road or optical axis, is due the reason that was not seen before, but it has always been there when polarized light passes through a lens. Known and mastered the principle has been manipulated for better research results, using for the first time a planar lens system, which according to the placement of the lens allows for accurate lags between the light beams ar the exits the system. (Author)

  3. Daylighting System Based on Novel Design of Linear Fresnel lens

    Directory of Open Access Journals (Sweden)

    Thanh Tuan Pham

    2017-10-01

    Full Text Available In this paper, we present a design and optical simulation of a daylighting system using a novel design of linear Fresnel lens, which is constructed based on the conservation of optical path length and edge ray theorem. The linear Fresnel lens can achieve a high uniformity by using a new idea of design in which each groove of the lens distributes sunlight uniformly over the receiver so that the whole lens also uniformly distributes sunlight over the receiver. In this daylighting system, the novel design of linear Fresnel lens significantly improves the uniformity of collector and distributor. Therefore, it can help to improve the performance of the daylighting system. The structure of the linear Fresnel lenses is designed by using Matlab. Then, the structure of lenses is appreciated by ray tracing in LightToolsTM to find out the optimum lens shape. In addition, the simulation is performed by using LightToolsTM to estimate the efficiency of the daylighting system. The results show that the designed collector can achieve the efficiency of ~80% with the tolerance of ~0.60 and the concentration ratio of 340 times, while the designed distributor can reach a high uniformity of >90%.

  4. Objective-lens-free Fiber-based Position Detection with Nanometer Resolution in a Fiber Optical Trapping System.

    Science.gov (United States)

    Ti, Chaoyang; Ho-Thanh, Minh-Tri; Wen, Qi; Liu, Yuxiang

    2017-10-13

    Position detection with high accuracy is crucial for force calibration of optical trapping systems. Most existing position detection methods require high-numerical-aperture objective lenses, which are bulky, expensive, and difficult to miniaturize. Here, we report an affordable objective-lens-free, fiber-based position detection scheme with 2 nm spatial resolution and 150 MHz bandwidth. This fiber based detection mechanism enables simultaneous trapping and force measurements in a compact fiber optical tweezers system. In addition, we achieved more reliable signal acquisition with less distortion compared with objective based position detection methods, thanks to the light guiding in optical fibers and small distance between the fiber tips and trapped particle. As a demonstration of the fiber based detection, we used the fiber optical tweezers to apply a force on a cell membrane and simultaneously measure the cellular response.

  5. Analysis of a Thin Optical Lens Model

    Science.gov (United States)

    Ivchenko, Vladimir V.

    2011-01-01

    In this article a thin optical lens model is considered. It is shown that the limits of its applicability are determined not only by the ratio between the thickness of the lens and the modules of the radii of curvature, but above all its geometric type. We have derived the analytical criteria for the applicability of the model for different types…

  6. Quantitative Analysis of Lens Nuclear Density Using Optical Coherence Tomography (OCT with a Liquid Optics Interface: Correlation between OCT Images and LOCS III Grading

    Directory of Open Access Journals (Sweden)

    You Na Kim

    2016-01-01

    Full Text Available Purpose. To quantify whole lens and nuclear lens densities using anterior-segment optical coherence tomography (OCT with a liquid optics interface and evaluate their correlation with Lens Opacities Classification System III (LOCS III lens grading and corrected distance visual acuity (BCVA. Methods. OCT images of the whole lens and lens nucleus of eyes with age-related nuclear cataract were analyzed using ImageJ software. The lens grade and nuclear density were represented in pixel intensity units (PIU and correlations between PIU, BCVA, and LOCS III were assessed. Results. Forty-seven eyes were analyzed. The mean whole lens and lens nuclear densities were 26.99 ± 5.23 and 19.43 ± 6.15 PIU, respectively. A positive linear correlation was observed between lens opacities (R2 = 0.187, p<0.01 and nuclear density (R2 = 0.316, p<0.01 obtained from OCT images and LOCS III. Preoperative BCVA and LOCS III were also positively correlated (R2 = 0.454, p<0.01. Conclusions. Whole lens and lens nuclear densities obtained from OCT correlated with LOCS III. Nuclear density showed a higher positive correlation with LOCS III than whole lens density. OCT with a liquid optics interface is a potential quantitative method for lens grading and can aid in monitoring and managing age-related cataracts.

  7. A PDMS-based cylindrical hybrid lens for enhanced fluorescence detection in microfluidic systems.

    Science.gov (United States)

    Lin, Bor-Shyh; Yang, Yu-Ching; Ho, Chong-Yi; Yang, Han-Yu; Wang, Hsiang-Yu

    2014-02-13

    Microfluidic systems based on fluorescence detection have been developed and applied for many biological and chemical applications. Because of the tiny amount of sample in the system; the induced fluorescence can be weak. Therefore, most microfluidic systems deploy multiple optical components or sophisticated equipment to enhance the efficiency of fluorescence detection. However, these strategies encounter common issues of complex manufacturing processes and high costs. In this study; a miniature, cylindrical and hybrid lens made of polydimethylsiloxane (PDMS) to improve the fluorescence detection in microfluidic systems is proposed. The hybrid lens integrates a laser focusing lens and a fluorescence collecting lens to achieve dual functions and simplify optical setup. Moreover, PDMS has advantages of low-cost and straightforward fabrication compared with conventional optical components. The performance of the proposed lens is first examined with two fluorescent dyes and the results show that the lens provides satisfactory enhancement for fluorescence detection of Rhodamine 6G and Nile Red. The overall increments in collected fluorescence signal and detection sensitivity are more than 220% of those without lens, and the detection limits of Rhodamine 6G and Nile red are lowered to 0.01 μg/mL and 0.05 μg/mL, respectively. The hybrid lens is further applied to the detection of Nile red-labeled Chlorella vulgaris cells and it increases both signal intensity and detection sensitivity by more than 520%. The proposed hybrid lens also dramatically reduces the variation in detected signal caused by the deviation in incident angle of excitation light.

  8. The Multi-Element Electronstatic Lens Systems for Controlling and Focusing Charged Particle

    International Nuclear Information System (INIS)

    Sise, O.

    2004-01-01

    Particle optics are very close anolog of photon optics and most of the principles of an barged particle beam can be understood by thinking of the particles as rays of light. There are similar behaviours between particle and photon optics in controlling beams of light and charged particles, such as lenses and mirrors. Extensive information about the properties of charged particle optics, from which appropriate systems can be designed for any specific problem. In this way electrostatic lens systems are used to control beams of c/iarged particle with various energy and directions in several fields, for example electron microscopy, cathode ray tubes, ion accelerators and electron impact studies. In an electrostatic lens system quantative information is required over a wide energy range and a zoom-type of optics is needed. If the magnification is to remain constant over a wide range of energies, quite complicated electrostatic lens systems are required, .containing three, four, five, or even more lens elements. We firstly calculated the optical properties of three and four element cylinder electrostatic lenses with the help of the SIMION and LENSYS programs and developed the method for the calculation of the focal properties of five and more element lenses with afocal mode. In this method we used the combination of three and four element lenses to derive focal properties of multi-element lenses and presented this data over a wide range of energy

  9. Time Lens based Optical Fourier Transformation for All-Optical Signal Processing of Spectrally-Efficient Data

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Lillieholm, Mads

    2017-01-01

    We review recent progress in the use of time lens based optical Fourier transformation for advanced all-optical signal processing. A novel time lens based complete optical Fourier transformation (OFT) technique is introduced. This complete OFT is based on two quadratic phase-modulation stages using...... four-wave mixing (FWM), separated by a dispersive medium, which enables time-to-frequency and frequency-to-time conversions simultaneously, thus performing an exchange between the temporal and spectral profiles of the input signal. Using the proposed complete OFT, several advanced all-optical signal......, such as orthogonal frequency division multiplexing (OFDM), Nyquist wavelength-division multiplexing (Nyquist-WDM) and Nyquist optical time division multiplexing (Nyquist-OTDM) signals....

  10. Chromatic correction for a VIS-SWIR zoom lens using optical glasses

    Science.gov (United States)

    Zhao, Yang; Williams, Daniel J. L.; McCarthy, Peter; Visconti, Anthony J.; Bentley, Julie L.; Moore, Duncan T.

    2015-09-01

    With the advancement in sensors, hyperspectral imaging in short wave infrared (SWIR 0.9 μm to 1.7 μm) now has wide applications, including night vision, haze-penetrating imaging, etc. Most conventional optical glasses can be material candidates for designing in the SWIR as they transmit up to 2.2 μm. However, since SWIR is in the middle of the glasses' major absorption wavebands in UV and IR, the flint glasses in SWIR are less dispersive than in the visible spectrum. As a result, the glass map in the SWIR is highly compressed, with crowns and flints all clustering together. Thus correcting for chromatic aberration is more challenging in the SWIR, since the Abbé number ratio of the same glass combination is reduced. Conventionally, fluorides, such as CaF2 and BaF2, are widely used in designing SWIR system due to their unique dispersion properties, even though they are notorious for poor manufacturability or even high toxicity. For lens elements in a zoom system, the ray bundle samples different sections of the each lens aperture as the lens zooms. This creates extra uncertainty in correcting chromatic aberrations. This paper focuses on using only commercially available optical glasses to color-correct a 3X dual-band zoom lens system in the VIS-SWIR. The design tools and techniques are detailed in terms of material selections to minimize the chromatic aberrations in such a large spectrum band and all zoom positions. Examples are discussed for designs with different aperture stop locations, which considerably affect the material choices.

  11. Intraocular camera for retinal prostheses: Refractive and diffractive lens systems

    Science.gov (United States)

    Hauer, Michelle Christine

    The focus of this thesis is on the design and analysis of refractive, diffractive, and hybrid refractive/diffractive lens systems for a miniaturized camera that can be surgically implanted in the crystalline lens sac and is designed to work in conjunction with current and future generation retinal prostheses. The development of such an intraocular camera (IOC) would eliminate the need for an external head-mounted or eyeglass-mounted camera. Placing the camera inside the eye would allow subjects to use their natural eye movements for foveation (attention) instead of more cumbersome head tracking, would notably aid in personal navigation and mobility, and would also be significantly more psychologically appealing from the standpoint of personal appearances. The capability for accommodation with no moving parts or feedback control is incorporated by employing camera designs that exhibit nearly infinite depth of field. Such an ultracompact optical imaging system requires a unique combination of refractive and diffractive optical elements and relaxed system constraints derived from human psychophysics. This configuration necessitates an extremely compact, short focal-length lens system with an f-number close to unity. Initially, these constraints appear highly aggressive from an optical design perspective. However, after careful analysis of the unique imaging requirements of a camera intended to work in conjunction with the relatively low pixellation levels of a retinal microstimulator array, it becomes clear that such a design is not only feasible, but could possibly be implemented with a single lens system.

  12. The gravitational lens effect and its optical equivalents

    International Nuclear Information System (INIS)

    Freitas, L.R. de.

    1987-01-01

    This work presents the evolution of the use of the so called gravitational lens effect from a simple observational teste of the General Relativity theory to an instrument to measure cosmological parameters. A detailed analysis of how a gravitational ''lens'' deflects light without forming images is shown for the case of the deflector with spherical symmetry. In addition, the exact optical equivalent of a cylindrical gravitational lens, which forms true images, is proposed. Finally the problem of the formation of multiple images and the related astronomical observations is discussed. (author) [pt

  13. Aberration design of zoom lens systems using thick lens modules.

    Science.gov (United States)

    Zhang, Jinkai; Chen, Xiaobo; Xi, Juntong; Wu, Zhuoqi

    2014-12-20

    A systematic approach for the aberration design of a zoom lens system using a thick lens module is presented. Each component is treated as a thick lens module at the beginning of the design. A thick lens module refers to a thick lens component with a real lens structure, like lens materials, lens curvatures, lens thicknesses, and lens interval distances. All nine third-order aberrations of a thick lens component are considered during the design. The relationship of component aberrations in different zoom positions can be approximated from the aberration shift. After minimizing the aberrations of the zoom lens system, the nine third-order aberrations of every lens component can be determined. Then the thick lens structure of every lens component can be determined after optimization according to their first-order properties and third-order aberration targets. After a third optimization for minimum practical third-order aberrations of a zoom lens system, the aberration design using the thick lens module is complete, which provides a practical zoom lens system with thick lens structures. A double-sided telecentric zoom lens system is designed using the thick lens module in this paper, which shows that this method is practical for zoom lens design.

  14. The Zoom Lens: A Case Study in Geometrical Optics.

    Science.gov (United States)

    Cheville, Alan; Scepanovic, Misa

    2002-01-01

    Introduces a case study on a motion picture company considering the purchase of a newly developed zoom lens in which students act as the engineers designing the zoom lens based on the criteria of company's specifications. Focuses on geometrical optics. Includes teaching notes and classroom management strategies. (YDS)

  15. Camera, handlens, and microscope optical system for imaging and coupled optical spectroscopy

    Science.gov (United States)

    Mungas, Greg S. (Inventor); Boynton, John (Inventor); Sepulveda, Cesar A. (Inventor); Nunes de Sepulveda, legal representative, Alicia (Inventor); Gursel, Yekta (Inventor)

    2012-01-01

    An optical system comprising two lens cells, each lens cell comprising multiple lens elements, to provide imaging over a very wide image distance and within a wide range of magnification by changing the distance between the two lens cells. An embodiment also provides scannable laser spectroscopic measurements within the field-of-view of the instrument.

  16. Ultrathin Alvarez lens system actuated by artificial muscles.

    Science.gov (United States)

    Petsch, S; Grewe, A; Köbele, L; Sinzinger, S; Zappe, H

    2016-04-01

    A key feature of Alvarez lenses is that they may be tuned in focal length using lateral rather than axial translation, thus reducing the overall length of a focus-tunable optical system. Nevertheless the bulk of classical microsystems actuators limits further miniaturization. We present here a new, ultrathin focus-tunable Alvarez lens fabricated using molding techniques and actuated using liquid crystal elastomer (LCE) artificial muscle actuators. The large deformation generated by the LCE actuators permits the integration of the actuators in-plane with the mechanical and optical system and thus reduces the device thickness to only 1.6 mm. Movement of the Alvarez lens pair of 178 μm results in a focal length change of 3.3 mm, based on an initial focal length of 28.4 mm. This design is of considerable interest for realization of ultraflat focus-tunable and zoom systems.

  17. Refractive neutron lens

    International Nuclear Information System (INIS)

    Petrov, P.V.; Kolchevsky, N.N.

    2013-01-01

    Model of the refractive neutron lens is proposed. System of N lenses acts as one thin lens with a complex refraction index n*. The maximum number N max of individual lenses for 'thick' neutron lens is calculated. Refractive neutron lens properties (resolution, focal depth) as function of resolution factor F 0 =ρbc/μ and depth of field factor dF 0 =λF 0 =λρbc/μ are calculated. It is shown that micro resolution of the refractive neutron optics is far from the wavelength in size and its open possibilities for progress in refractive neutron optics. (authors)

  18. Consumer electronic optics: how small can a lens be: the case of panomorph lenses

    Science.gov (United States)

    Thibault, Simon; Parent, Jocelyn; Zhang, Hu; Du, Xiaojun; Roulet, Patrice

    2014-09-01

    In 2014, miniature camera modules are applied to a variety of applications such as webcam, mobile phone, automotive, endoscope, tablets, portable computers and many other products. Mobile phone cameras are probably one of the most challenging parts due to the need for smaller and smaller total track length (TTL) and optimized embedded image processing algorithms. As the technology is developing, higher resolution and higher image quality, new capabilities are required to fulfil the market needs. Consequently, the lens system becomes more complex and requires more optical elements and/or new optical elements. What is the limit? How small an injection molded lens can be? We will discuss those questions by comparing two wide angle lenses for consumer electronic market. The first lens is a 6.56 mm (TTL) panoramic (180° FOV) lens built in 2012. The second is a more recent (2014) panoramic lens (180° FOV) with a TTL of 3.80 mm for mobile phone camera. Both optics are panomorph lenses used with megapixel sensors. Between 2012 and 2014, the development in design and plastic injection molding allowed a reduction of the TTL by more than 40%. This TTL reduction has been achieved by pushing the lens design to the extreme (edge/central air and material thicknesses as well as lens shape). This was also possible due to a better control of the injection molding process and material (low birefringence, haze and thermal stability). These aspects will be presented and discussed. During the next few years, we don't know if new material will come or new process but we will still need innovative people and industries to push again the limits.

  19. Liquid lens with double tunable surfaces for large power tunability and improved optical performance

    International Nuclear Information System (INIS)

    Li, Lei; Wang, Qiong-Hua; Jiang, Wei

    2011-01-01

    In this paper we propose a liquid lens with two tunable interfaces formed by two kinds of immiscible liquids. The proposed liquid lens uses liquid pressure to change the shape of the interfaces. It can provide a large tunable range of optical power and improved optical performance. By applying suitable liquids the gravity effect can also be negligible. To prove the principles, a liquid lens with 7 mm aperture was fabricated. The optical performance indicates that the proposed liquid lens can provide a large tunable range of both positive and negative powers even using liquids with small differences in refractive indices. The resolution is better than 50 lp mm −1 under white light environment. The spherical aberration and coma are also largely reduced. The proposed liquid lens can also provide the optical designer with the freedom to choose the combination of liquids to reduce or even correct aberrations

  20. Engineering constraints and computer-aided optimization of electrostatic lens systems

    International Nuclear Information System (INIS)

    Steen, H.W.G. van der; Barth, J.E.; Adriaanse, J.P.

    1990-01-01

    An optimization tool for the design of electrostatic lens systems with axial symmetry is presented. This tool is based on the second-order electrode method combined with a multivariable numerical optimization procedure. The second-order electrode method makes a cubic spline approximation to the axial potential for a given electrode shape. With the help of this approximation, a numerical optimization can be done. To demonstrate this optimization tool, a lens system for Auger analyses is optimized. It is shown that variations in the practical constraints imposed on the design, like maximum electrode potential or maximum lens diameter, have strong effects on the obtainable lens quality. It is concluded that a numerical optimization does not take over the lens designer's job, but allows him to thoroughly examine the optical consequences of engineering choices by finding the optimum design for each set of constraints. (orig.)

  1. Manufacturing PDMS micro lens array using spin coating under a multiphase system

    International Nuclear Information System (INIS)

    Sun, Rongrong; Yang, Hanry; Rock, D Mitchell; Danaei, Roozbeh; Panat, Rahul; Kessler, Michael R; Li, Lei

    2017-01-01

    The development of micro lens arrays has garnered much interest due to increased demand of miniaturized systems. Traditional methods for manufacturing micro lens arrays have several shortcomings. For example, they require expensive facilities and long lead time, and traditional lens materials (i.e. glass) are typically heavy, costly and difficult to manufacture. In this paper, we explore a method for manufacturing a polydimethylsiloxane (PDMS) micro lens array using a simple spin coating technique. The micro lens array, formed under an interfacial tension dominated system, and the influence of material properties and process parameters on the fabricated lens shape are examined. The lenses fabricated using this method show comparable optical properties—including surface finish and image quality—with a reduced cost and manufacturing lead time. (paper)

  2. Optical camera system for radiation field

    International Nuclear Information System (INIS)

    Maki, Koichi; Senoo, Makoto; Takahashi, Fuminobu; Shibata, Keiichiro; Honda, Takuro.

    1995-01-01

    An infrared-ray camera comprises a transmitting filter used exclusively for infrared-rays at a specific wavelength, such as far infrared-rays and a lens used exclusively for infrared rays. An infrared ray emitter-incorporated photoelectric image converter comprising an infrared ray emitting device, a focusing lens and a semiconductor image pick-up plate is disposed at a place of low gamma-ray dose rate. Infrared rays emitted from an objective member are passed through the lens system of the camera, and real images are formed by way of the filter. They are transferred by image fibers, introduced to the photoelectric image converter and focused on the image pick-up plate by the image-forming lens. Further, they are converted into electric signals and introduced to a display and monitored. With such a constitution, an optical material used exclusively for infrared rays, for example, ZnSe can be used for the lens system and the optical transmission system. Accordingly, it can be used in a radiation field of high gamma ray dose rate around the periphery of the reactor container. (I.N.)

  3. Overlapped illusion optics: a perfect lens brings a brighter feature

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yadong; Gao Lei; Chen Huanyang [School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006 (China); Du Shengwang, E-mail: kenyon@ust.hk [Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2011-02-15

    In this paper, we show that a perfect lens can be employed to make multiple objects appear like only one object in the far field, leading to a new concept in illusion optics. Numerical simulations have been performed to verify the functionalities for both passive and active objects. The conceptual device can be utilized to enhance the illumination brightness for both incoherent and coherent systems.

  4. Overlapped illusion optics: a perfect lens brings a brighter feature

    International Nuclear Information System (INIS)

    Xu Yadong; Gao Lei; Chen Huanyang; Du Shengwang

    2011-01-01

    In this paper, we show that a perfect lens can be employed to make multiple objects appear like only one object in the far field, leading to a new concept in illusion optics. Numerical simulations have been performed to verify the functionalities for both passive and active objects. The conceptual device can be utilized to enhance the illumination brightness for both incoherent and coherent systems.

  5. Novel Scanning Lens Instrument for Evaluating Fresnel Lens Performance: Equipment Development and Initial Results (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, R.; Miller, D. C.; Kurtz, S. R.; Anton, I.; Sala, G.

    2013-07-01

    A system dedicated to the optical transmittance characterization of Fresnel lenses has been developed at NREL, in collaboration with the UPM. The system quantifies the optical efficiency of the lens by generating a performance map. The shape of the focused spot may also be analyzed to understand change in the lens performance. The primary instrument components (lasers and CCD detector) have been characterized to confirm their capability for performing optical transmittance measurements. Measurements performed on SoG and PMMA lenses subject to a variety of indoor conditions (e.g., UV and damp heat) identified differences in the optical efficiency of the evaluated lenses, demonstrating the ability of the Scanning Lens Instrument (SLI) to distinguish between the aged lenses.

  6. Mechanically assisted liquid lens zoom system for mobile phone cameras

    Science.gov (United States)

    Wippermann, F. C.; Schreiber, P.; Bräuer, A.; Berge, B.

    2006-08-01

    Camera systems with small form factor are an integral part of today's mobile phones which recently feature auto focus functionality. Ready to market solutions without moving parts have been developed by using the electrowetting technology. Besides virtually no deterioration, easy control electronics and simple and therefore cost-effective fabrication, this type of liquid lenses enables extremely fast settling times compared to mechanical approaches. As a next evolutionary step mobile phone cameras will be equipped with zoom functionality. We present first order considerations for the optical design of a miniaturized zoom system based on liquid-lenses and compare it to its mechanical counterpart. We propose a design of a zoom lens with a zoom factor of 2.5 considering state-of-the-art commercially available liquid lens products. The lens possesses auto focus capability and is based on liquid lenses and one additional mechanical actuator. The combination of liquid lenses and a single mechanical actuator enables extremely short settling times of about 20ms for the auto focus and a simplified mechanical system design leading to lower production cost and longer life time. The camera system has a mechanical outline of 24mm in length and 8mm in diameter. The lens with f/# 3.5 provides market relevant optical performance and is designed for an image circle of 6.25mm (1/2.8" format sensor).

  7. Algorithm design of liquid lens inspection system

    Science.gov (United States)

    Hsieh, Lu-Lin; Wang, Chun-Chieh

    2008-08-01

    In mobile lens domain, the glass lens is often to be applied in high-resolution requirement situation; but the glass zoom lens needs to be collocated with movable machinery and voice-coil motor, which usually arises some space limits in minimum design. In high level molding component technology development, the appearance of liquid lens has become the focus of mobile phone and digital camera companies. The liquid lens sets with solid optical lens and driving circuit has replaced the original components. As a result, the volume requirement is decreased to merely 50% of the original design. Besides, with the high focus adjusting speed, low energy requirement, high durability, and low-cost manufacturing process, the liquid lens shows advantages in the competitive market. In the past, authors only need to inspect the scrape defect made by external force for the glass lens. As to the liquid lens, authors need to inspect the state of four different structural layers due to the different design and structure. In this paper, authors apply machine vision and digital image processing technology to administer inspections in the particular layer according to the needs of users. According to our experiment results, the algorithm proposed can automatically delete non-focus background, extract the region of interest, find out and analyze the defects efficiently in the particular layer. In the future, authors will combine the algorithm of the system with automatic-focus technology to implement the inside inspection based on the product inspective demands.

  8. Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens.

    Science.gov (United States)

    Rosales, Patricia; Marcos, Susana

    2009-05-01

    To implement geometrical and optical distortion correction methods for anterior segment Scheimpflug images obtained with a commercially available system (Pentacam, Oculus Optikgeräte GmbH). Ray tracing algorithms were implemented to obtain corrected ocular surface geometry from the original images captured by the Pentacam's CCD camera. As details of the optical layout were not fully provided by the manufacturer, an iterative procedure (based on imaging of calibrated spheres) was developed to estimate the camera lens specifications. The correction procedure was tested on Scheimpflug images of a physical water cell model eye (with polymethylmethacrylate cornea and a commercial IOL of known dimensions) and of a normal human eye previously measured with a corrected optical and geometrical distortion Scheimpflug camera (Topcon SL-45 [Topcon Medical Systems Inc] from the Vrije University, Amsterdam, Holland). Uncorrected Scheimpflug images show flatter surfaces and thinner lenses than in reality. The application of geometrical and optical distortion correction algorithms improves the accuracy of the estimated anterior lens radii of curvature by 30% to 40% and of the estimated posterior lens by 50% to 100%. The average error in the retrieved radii was 0.37 and 0.46 mm for the anterior and posterior lens radii of curvature, respectively, and 0.048 mm for lens thickness. The Pentacam Scheimpflug system can be used to obtain quantitative information on the geometry of the crystalline lens, provided that geometrical and optical distortion correction algorithms are applied, within the accuracy of state-of-the art phakometry and biometry. The techniques could improve with exact knowledge of the technical specifications of the instrument, improved edge detection algorithms, consideration of aspheric and non-rotationally symmetrical surfaces, and introduction of a crystalline gradient index.

  9. Three-Dimensional Cataract Crystalline Lens Imaging With Swept-Source Optical Coherence Tomography.

    Science.gov (United States)

    de Castro, Alberto; Benito, Antonio; Manzanera, Silvestre; Mompeán, Juan; Cañizares, Belén; Martínez, David; Marín, Jose María; Grulkowski, Ireneusz; Artal, Pablo

    2018-02-01

    To image, describe, and characterize different features visible in the crystalline lens of older adults with and without cataract when imaged three-dimensionally with a swept-source optical coherence tomography (SS-OCT) system. We used a new SS-OCT laboratory prototype designed to enhance the visualization of the crystalline lens and imaged the entire anterior segment of both eyes in two groups of participants: patients scheduled to undergo cataract surgery, n = 17, age range 36 to 91 years old, and volunteers without visual complains, n = 14, age range 20 to 81 years old. Pre-cataract surgery patients were also clinically graded according to the Lens Opacification Classification System III. The three-dimensional location and shape of the visible opacities were compared with the clinical grading. Hypo- and hyperreflective features were visible in the lens of all pre-cataract surgery patients and in some of the older adults in the volunteer group. When the clinical examination revealed cortical or subcapsular cataracts, hyperreflective features were visible either in the cortex parallel to the surfaces of the lens or in the posterior pole. Other type of opacities that appeared as hyporeflective localized features were identified in the cortex of the lens. The OCT signal in the nucleus of the crystalline lens correlated with the nuclear cataract clinical grade. A dedicated OCT is a useful tool to study in vivo the subtle opacities in the cataractous crystalline lens, revealing its position and size three-dimensionally. The use of these images allows obtaining more detailed information on the age-related changes leading to cataract.

  10. New optical architecture for holographic data storage system compatible with Blu-ray Disc™ system

    Science.gov (United States)

    Shimada, Ken-ichi; Ide, Tatsuro; Shimano, Takeshi; Anderson, Ken; Curtis, Kevin

    2014-02-01

    A new optical architecture for holographic data storage system which is compatible with a Blu-ray Disc™ (BD) system is proposed. In the architecture, both signal and reference beams pass through a single objective lens with numerical aperture (NA) 0.85 for realizing angularly multiplexed recording. The geometry of the architecture brings a high affinity with an optical architecture in the BD system because the objective lens can be placed parallel to a holographic medium. Through the comparison of experimental results with theory, the validity of the optical architecture was verified and demonstrated that the conventional objective lens motion technique in the BD system is available for angularly multiplexed recording. The test-bed composed of a blue laser system and an objective lens of the NA 0.85 was designed. The feasibility of its compatibility with BD is examined through the designed test-bed.

  11. Examination of a duo-collection optics design for the Korea superconducting tokamak advanced research (KSTAR) Thomson scattering system

    International Nuclear Information System (INIS)

    Oh, Seungtae; Lee, Jong Ha

    2011-01-01

    The comparison of collective optic designs is described for the Thomson scattering system of the Korea superconducting tokamak advanced research (KSTAR) device. The optical systems collecting the light emission induced through the interaction between the plasma electrons and a laser beam are the key components for the Thomson scattering system. In the first conceptual design of the collection optics for the KSTAR Thomson scattering system, a duo-lens system covering individually the core and the edge regions of the KSTAR plasma with two optical lens modules was proposed. In optical designs, the number of optical modules is a great concern in the case of limited system space. Here, the duo-lens system is evaluated through a comparison with a uni-lens system covering the whole region of the plasma with a single optical module. The duo-lens system turned out to have 2.0 times and 4.73 times higher light collections of the plasma core and edge compared with the uni-lens system

  12. Characterization of the Effects of Hyperbaric Oxygen on the Biochemical and Optical Properties of the Bovine Lens.

    Science.gov (United States)

    Lim, Julie C; Vaghefi, Ehsan; Li, Bo; Nye-Wood, Mitchell G; Donaldson, Paul J

    2016-04-01

    To assess the morphologic, biochemical, and optical properties of bovine lenses treated with hyperbaric oxygen. Lenses were exposed to hyperbaric nitrogen (HBN) or hyperbaric oxygen (HBO) for 5 or 15 hours, lens transparency was assessed using bright field microscopy and lens morphology was visualized using confocal microscopy. Lenses were dissected into the outer cortex, inner cortex, and core, and glutathione (GSH) and malondialdehyde (MDA) measured. Gel electrophoresis and Western blotting were used to detect high molecular weight aggregates (HMW) and glutathione mixed protein disulfides (PSSG). T2-weighted MRI was used to measure lens geometry and map the water/protein ratio to allow gradient refractive index (GRIN) profiles to be calculated. Optical modeling software calculated the change in lens optical power, and an anatomically correct model of the light pathway of the bovine eye was used to determine the effects of HBN and HBO on focal length and overall image quality. Lenses were transparent and lens morphology similar between HBN- and HBO-treated lenses. At 5- and 15-hour HBO exposure, GSH and GSSG were depleted and MDA increased in the core. Glutathione mixed protein disulfides were detected in the outer and inner cortex only with no appearance of HMW. Optical changes were detectable only with 15-hour HBO treatment with a decrease in the refractive index of the core, slightly reduced lens thickness, and an increase in optimal focal length, consistent with a hyperopic shift. This system may serve as a model to study changes that occur with advanced aging rather than nuclear cataract formation per se.

  13. The use of contact lens telescopic systems in low vision rehabilitation.

    Science.gov (United States)

    Vincent, Stephen J

    2017-06-01

    Refracting telescopes are afocal compound optical systems consisting of two lenses that produce an apparent magnification of the retinal image. They are routinely used in visual rehabilitation in the form of monocular or binocular hand held low vision aids, and head or spectacle-mounted devices to improve distance visual acuity, and with slight modifications, to enhance acuity for near and intermediate tasks. Since the advent of ground glass haptic lenses in the 1930's, contact lenses have been employed as a useful refracting element of telescopic systems; primarily as a mobile ocular lens (the eyepiece), that moves with the eye. Telescopes which incorporate a contact lens eyepiece significantly improve the weight, comesis, and field of view compared to traditional spectacle-mounted telescopes, in addition to potential related psycho-social benefits. This review summarises the underlying optics and use of contact lenses to provide telescopic magnification from the era of Descartes, to Dallos, and the present day. The limitations and clinical challenges associated with such devices are discussed, along with the potential future use of reflecting telescopes incorporated within scleral lenses and tactile contact lens systems in low vision rehabilitation. Copyright © 2017 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  14. Remote nano-optical beam focusing lens by illusion optics

    Science.gov (United States)

    Margousi, David; Shoorian, Hamed Reza

    2014-08-01

    In this paper, as a new application of illusion optics, a nano-optical plasmonic focusing lens structure is proposed to manipulate the light remotely by employing illusion optics theory. Plasmonic nano-optic lenses that enable super-focusing beyond the diffraction limit have been proposed as an alternative to the conventional dielectric-based refractive lenses. In the presence of an illusion device, the electromagnetic plane-waves can penetrate into a metal layer and a clear focus appears. When the illusion device is removed, waves are blocked to transmit through the metal wall. In comparison with conventional methods, our proposed method avoids any physical changes or damages in the original structure. The proposed structure can be realized by isotropic layered materials, using effective medium theory. The special feature of the proposed structure and the device concepts introduced in this work gives it an opportunity to be used as a flexible element in ultrahigh nano-scale integrated circuits for miniaturization and tuning purposes.

  15. Particle swarm optimization applied to automatic lens design

    Science.gov (United States)

    Qin, Hua

    2011-06-01

    This paper describes a novel application of Particle Swarm Optimization (PSO) technique to lens design. A mathematical model is constructed, and merit functions in an optical system are employed as fitness functions, which combined radiuses of curvature, thicknesses among lens surfaces and refractive indices regarding an optical system. By using this function, the aberration correction is carried out. A design example using PSO is given. Results show that PSO as optical design tools is practical and powerful, and this method is no longer dependent on the lens initial structure and can arbitrarily create search ranges of structural parameters of a lens system, which is an important step towards automatic design with artificial intelligence.

  16. Lens thickness assessment: anterior segment optical coherence tomography versus A-scan ultrasonography

    Directory of Open Access Journals (Sweden)

    Nikoo Hamzeh

    2015-12-01

    Full Text Available AIM: To assess lens thickness measurements with anterior segment-optical coherence tomography (AS-OCT in comparison with A-scan ultrasonography (A-scan US. METHODS: There were 218 adult subjects (218 eyes aged 59.2±9.2y enrolled in this prospective cross-sectional study. Forty-three eyes had open angles and 175 eyes had narrow angles. Routine ophthalmic exam was performed and nuclear opacity was graded using the Lens Opacities Classification System III (LOCS III. Lens thickness was measured by AS-OCT (Visante OCT, Carl Zeiss Meditec, Dublin, CA, USA. The highest quality image was selected for each eye and lens thickness was calculated using ImageJ software. Lens thickness was also measured by A-scan US. RESULTS: Interclass correlations showed a value of 99.7% for intra-visit measurements and 95.3% for inter-visit measurements. The mean lens thickness measured by AS-OCT was not significantly different from that of A-scan US (4.861±0.404 vs 4.866±0.351 mm, P=0.74. Lens thickness values obtained from the two instruments were highly correlated overall (Pearson correlation coefficient=0.81, P<0.001, and in all LOCS III specific subgroups except in grade 5 of nuclear opacity. Bland-Altman analysis revealed a 95% limit of agreement from -0.45 to 0.46 mm. Lens thickness difference between the two instruments became smaller as the lens thickness increased and AS-OCT yielded smaller values than A-scan US in thicker lens (β=-0.29, P<0.001 CONCLUSION: AS-OCT-derived lens thickness measurement is valid and comparable to the results obtained by A-scan US. It can be used as a reliable noncontact method for measuring lens thickness in adults with or without significant cataract.

  17. Optical system design, analysis, and production for advanced technology systems; Proceedings of the Meeting, Innsbruck, Austria, Apr. 15-17, 1986

    Science.gov (United States)

    Fischer, Robert E. (Editor); Rogers, Philip J. (Editor)

    1986-01-01

    The present conference considers topics in the fields of optical systems design software, the design and analysis of optical systems, illustrative cases of advanced optical system design, the integration of optical designs into greater systems, and optical fabrication and testing techniques. Attention is given to an extended range diffraction-based merit function for lens design optimization, an assessment of technologies for stray light control and evaluation, the automated characterization of IR systems' spatial resolution, a spectrum of design techniques based on aberration theory, a three-field IR telescope, a large aperture zoom lens for 16-mm motion picture cameras, and the use of concave holographic gratings as monochomators. Also discussed are the use of aspherics in optical systems, glass choice procedures for periscope design, the fabrication and testing of unconventional optics, low mass mirrors for large optics, and the diamond grinding of optical surfaces on aspheric lens molds.

  18. Assessment of wave propagation on surfaces of crystalline lens with phase sensitive optical coherence tomography

    International Nuclear Information System (INIS)

    Manapuram, R K; Larin, K V; Baranov, S A; Manne, V G R; Mashiatulla, M; Sudheendran, N; Aglyamov, S; Emelianov, S

    2011-01-01

    We propose a real-time technique based on phase-sensitive swept source optical coherence tomography (PhS-SSOCT) modality for noninvasive quantification of very small optical path length changes produced on the surface of a mouse crystalline lens. Propagation of submicron mechanical waves on the surface of the lens was induced by periodic mechanical stimulation. Obtained results demonstrate that the described method is capable of detecting minute damped vibrations with amplitudes as small as 30 nanometers on the lens surface and hence, PhS-SSOCT could be potentially used to assess biomechanical properties of a crystalline lens with high accuracy and sensitivity

  19. Optical fabrication of large area photonic microstructures by spliced lens

    Science.gov (United States)

    Jin, Wentao; Song, Meng; Zhang, Xuehua; Yin, Li; Li, Hong; Li, Lin

    2018-05-01

    We experimentally demonstrate a convenient approach to fabricate large area photorefractive photonic microstructures by a spliced lens device. Large area two-dimensional photonic microstructures are optically induced inside an iron-doped lithium niobate crystal. The experimental setups of our method are relatively compact and stable without complex alignment devices. It can be operated in almost any optical laboratories. We analyze the induced triangular lattice microstructures by plane wave guiding, far-field diffraction pattern imaging and Brillouin-zone spectroscopy. By designing the spliced lens appropriately, the method can be easily extended to fabricate other complex large area photonic microstructures, such as quasicrystal microstructures. Induced photonic microstructures can be fixed or erased and re-recorded in the photorefractive crystal.

  20. An all-silicone zoom lens in an optical imaging system

    Science.gov (United States)

    Zhao, Cun-Hua

    2013-09-01

    An all-silicone zoom lens is fabricated. A tunable metal ringer is fettered around the side edge of the lens. A nylon rope linking a motor is tied, encircling the notch in the metal ringer. While the motor is operating, the rope can shrink or release to change the focal length of the lens. A calculation method is developed to obtain the focal length and the zoom ratio. The testing is carried out in succession. The testing values are compared with the calculated ones, and they tally with each other well. Finally, the imaging performance of the all-silicone lens is demonstrated. The all-silicone lens has potential uses in cellphone cameras, notebook cameras, micro monitor lenses, etc.

  1. An analytical method for predicting the geometrical and optical properties of the human lens under accommodation.

    Science.gov (United States)

    Sheil, Conor J; Bahrami, Mehdi; Goncharov, Alexander V

    2014-05-01

    We present an analytical method to describe the accommodative changes in the human crystalline lens. The method is based on the geometry-invariant lens model, in which the gradient-index (GRIN) iso-indicial contours are coupled to the external shape. This feature ensures that any given number of iso-indicial contours does not change with accommodation, which preserves the optical integrity of the GRIN structure. The coupling also enables us to define the GRIN structure if the radii and asphericities of the external lens surfaces are known. As an example, the accommodative changes in lenticular radii and central thickness were taken from the literature, while the asphericities of the external surfaces were derived analytically by adhering to the basic physical conditions of constant lens volume and its axial position. The resulting changes in lens geometry are consistent with experimental data, and the optical properties are in line with expected values for optical power and spherical aberration. The aim of the paper is to provide an anatomically and optically accurate lens model that is valid for 3 mm pupils and can be used as a new tool for better understanding of accommodation.

  2. ADVANTAGES OF DIFFRACTIVE OPTICAL ELEMENTS APPLICATION IN SIMPLE OPTICAL IMAGING SYSTEMS

    Directory of Open Access Journals (Sweden)

    N. D. Zoric

    2015-01-01

    Full Text Available The paper deals with the influence of diffractive optical elements on the optical aberrations. The correction of optical aberrations was investigated in the simple optical systems with one and two lenses (singlet and doublet. The advantages of diffractive optical elements are their ability to generate arbitrary complex wave fronts from a piece of optical material that is essentially flat. The optical systems consisting of the standard surfaces were designed and optimized by using the same starting points. Further, the diffractive and aspheric surfaces were introduced into the developed systems. The resulting hybrid systems were optimized. To compare the complicity of the development of narrow field systems and wide field optical systems, the optimization has been done separately for these two types of the instruments. The optical systems were designed by using special Optical Design Software. Тhe characteristics of designed diffractive surfaces were controlled in Software DIFSYS 2.30. Due to the application of diffractive optical elements the longitudinal chromatic aberration was 5 times reduced for the narrow field systems. The absolute value of Seidel coefficient related to the spherical aberration was reduced in the range of 0.03. Considering that diffractive optical elements have the known disadvantages, like possible parasitic diffraction orders and probable decrease of the transmission, we also developed and analyzed the optical systems with combined aspheric and diffractive surfaces. A combination of the aspheric and diffractive surfaces in the optical disk system of the disk reading lens, gave cutting down of the longitudinal color aberrations almost 15 times on-axis, comparing to the lens consisting of the aspherical and standard surfaces. All of the designed diffractive optical elements possess the parameters within the fabrication limits.

  3. Optical fiber plasmonic lens for near-field focusing fabricated through focused ion beam

    Science.gov (United States)

    Sloyan, Karen; Melkonyan, Henrik; Moreira, Paulo; Dahlem, Marcus S.

    2017-02-01

    We report on numerical simulations and fabrication of an optical fiber plasmonic lens for near-field focusing applications. The plasmonic lens consists of an Archimedean spiral structure etched through a 100 nm-thick Au layer on the tip of a single-mode SM600 optical fiber operating at a wavelength of 632:8 nm. Three-dimensional finite-difference time-domain computations show that the relative electric field intensity of the focused spot increases 2:1 times when the number of turns increases from 2 to 12. Furthermore, a reduction of the intensity is observed when the initial inner radius is increased. The optimized plasmonic lens focuses light into a spot with a full-width at half-maximum of 182 nm, beyond the diffraction limit. The lens was fabricated by focused ion beam milling, with a 200nm slit width.

  4. Assessment of a liquid lens enabled in vivo optical coherence microscope.

    Science.gov (United States)

    Murali, Supraja; Meemon, Panomsak; Lee, Kye-Sung; Kuhn, William P; Thompson, Kevin P; Rolland, Jannick P

    2010-06-01

    The optical aberrations induced by imaging through skin can be predicted using formulas for Seidel aberrations of a plane-parallel plate. Knowledge of these aberrations helps to guide the choice of numerical aperture (NA) of the optics we can use in an implementation of Gabor domain optical coherence microscopy (GD-OCM), where the focus is the only aberration adjustment made through depth. On this basis, a custom-designed, liquid-lens enabled dynamic focusing optical coherence microscope operating at 0.2 NA is analyzed and validated experimentally. As part of the analysis, we show that the full width at half-maximum metric, as a characteristic descriptor for the point spread function, while commonly used, is not a useful metric for quantifying resolution in non-diffraction-limited systems. Modulation transfer function (MTF) measurements quantify that the liquid lens performance is as predicted by design, even when accounting for the effect of gravity. MTF measurements in a skinlike scattering medium also quantify the performance of the microscope in its potential applications. To guide the fusion of images across the various focus positions of the microscope, as required in GD-OCM, we present depth of focus measurements that can be used to determine the effective number of focusing zones required for a given goal resolution. Subcellular resolution in an onion sample, and high-definition in vivo imaging in human skin are demonstrated with the custom-designed and built microscope.

  5. A course in lens design

    CERN Document Server

    Velzel, Chris

    2014-01-01

    A Course in Lens Design is an instruction in the design of image-forming optical systems. It teaches how a satisfactory design can be obtained in a straightforward way. Theory is limited to a minimum, and used to support the practical design work. The book introduces geometrical optics, optical instruments and aberrations. It gives a description of the process of lens design and of the strategies used in this process. Half of its content is devoted to the design of sixteen types of lenses, described in detail from beginning to end. This book is different from most other books on lens design because it stresses the importance of the initial phases of the design process: (paraxial) lay-out and (thin-lens) pre-design. The argument for this change of accent is that in these phases much information can be obtained about the properties of the lens to be designed. This information can be used in later phases of the design. This makes A Course in Lens Design a useful self-study book, and a suitable basis for an intro...

  6. Time lens based optical fourier transformation for advanced processing of spectrally-efficient OFDM and N-WDM signals

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Morioka, Toshio

    2016-01-01

    We review recent progress in the use of time lens based optical Fourier transformation for advanced optical signal processing, with focus on all-optical generation, detection and format conversion of spectrally-efficient OFDM and N-WDM signals.......We review recent progress in the use of time lens based optical Fourier transformation for advanced optical signal processing, with focus on all-optical generation, detection and format conversion of spectrally-efficient OFDM and N-WDM signals....

  7. Fully automated laser ray tracing system to measure changes in the crystalline lens GRIN profile.

    Science.gov (United States)

    Qiu, Chen; Maceo Heilman, Bianca; Kaipio, Jari; Donaldson, Paul; Vaghefi, Ehsan

    2017-11-01

    Measuring the lens gradient refractive index (GRIN) accurately and reliably has proven an extremely challenging technical problem. A fully automated laser ray tracing (LRT) system was built to address this issue. The LRT system captures images of multiple laser projections before and after traversing through an ex vivo lens. These LRT images, combined with accurate measurements of the lens geometry, are used to calculate the lens GRIN profile. Mathematically, this is an ill-conditioned problem; hence, it is essential to apply biologically relevant constraints to produce a feasible solution. The lens GRIN measurements were compared with previously published data. Our GRIN retrieval algorithm produces fast and accurate measurements of the lens GRIN profile. Experiments to study the optics of physiologically perturbed lenses are the future direction of this research.

  8. Design of a Test Bench for Intraocular Lens Optical Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Alba-Bueno, Francisco; Vega, Fidel; Millan, Maria S, E-mail: francisco.alba-bueno@upc.edu, E-mail: fvega@oo.upc.edu, E-mail: millan@oo.upc.edu [Departamento de Optica y Optometria, Universidad Politecnica de Cataluna, C/ Violinista Vellsola 37, 08222 Terrassa (Spain)

    2011-01-01

    The crystalline lens is the responsible for focusing at different distances (accommodation) in the human eye. This organ grows throughout life increasing in size and rigidity. Moreover, due this growth it loses transparency through life, and becomes gradually opacified causing what is known as cataracts. Cataract is the most common cause of visual loss in the world. At present, this visual loss is recoverable by surgery in which the opacified lens is destroyed (phacoemulsification) and replaced by the implantation of an intraocular lens (IOL). If the IOL implanted is mono-focal the patient loses its natural capacity of accommodation, and as a consequence they would depend on an external optic correction to focus at different distances. In order to avoid this dependency, multifocal IOLs designs have been developed. The multi-focality can be achieved by using either, a refractive surface with different radii of curvature (refractive IOLs) or incorporating a diffractive surface (diffractive IOLs). To analyze the optical quality of IOLs it is necessary to test them in an optical bench that agrees with the ISO119679-2 1999 standard (Ophthalmic implants. Intraocular lenses. Part 2. Optical Properties and Test Methods). In addition to analyze the IOLs according to the ISO standard, we have designed an optical bench that allows us to simulate the conditions of a real human eye. To do that, we will use artificial corneas with different amounts of optical aberrations and several illumination sources with different spectral distributions. Moreover, the design of the test bench includes the possibility of testing the IOLs under off-axis conditions as well as in the presence of decentration and/or tilt. Finally, the optical imaging quality of the IOLs is assessed by using common metrics like the Modulation Transfer Function (MTF), the Point Spread Function (PSF) and/or the Strehl ratio (SR), or via registration of the IOL's wavefront with a Hartmann-Shack sensor and its

  9. Electro-optical characteristics of a liquid crystal lens with polymer network

    International Nuclear Information System (INIS)

    Bielyikh, S.P.; Subota, S.L.; Reshetnyak, V.Y.; Galstian, T.

    2010-01-01

    We study a tunable-focus lens in which the key element is a gradient-polymer-stabilized liquid crystal (G-PSLC) structure. In this paper, we further develop the theoretical model, that describes the dependence of the G-PSLC lens' focal length on the applied voltage and presents a theoretical study of lens aberrations. According to Fermat's principle, we minimize the optical path of a test light beam and calculate the angles of a ray exiting from the cell. Using these results, the lateral and longitudinal aberrations are estimated. The obtained results can be used to optimize the G-PSLC lenses.

  10. Time-lens based optical packet pulse compression and retiming

    DEFF Research Database (Denmark)

    Laguardia Areal, Janaina; Hu, Hao; Palushani, Evarist

    2010-01-01

    recovery, resulting in a potentially very efficient solution. The scheme uses a time-lens, implemented through a sinusoidally driven optical phase modulation, combined with a linear dispersion element. As time-lenses are also used for pulse compression, we design the circuit also to perform pulse...

  11. Thermo-optical properties of Nd{sup 3+} doped phosphate glass determined by thermal lens and lifetime measurements

    Energy Technology Data Exchange (ETDEWEB)

    Martins, V.M. [Instituto de Física, Universidade Federal de Uberlândia, CEP38408-902 Uberlandia, Minas Gerais (Brazil); CIMAP – Centre de recherche sur les Ions, les Matériaux et la Photonique UMR 6252 CEA-CNRS-ENSICAEN-Université de Caen, 14050 Caen Cedex 4 (France); Messias, D.N., E-mail: dnmessias@infis.ufu.br [Instituto de Física, Universidade Federal de Uberlândia, CEP38408-902 Uberlandia, Minas Gerais (Brazil); Doualan, J.L.; Braud, A.; Camy, P. [CIMAP – Centre de recherche sur les Ions, les Matériaux et la Photonique UMR 6252 CEA-CNRS-ENSICAEN-Université de Caen, 14050 Caen Cedex 4 (France); Dantas, N.O. [Instituto de Física, Universidade Federal de Uberlândia, CEP38408-902 Uberlandia, Minas Gerais (Brazil); CIMAP – Centre de recherche sur les Ions, les Matériaux et la Photonique UMR 6252 CEA-CNRS-ENSICAEN-Université de Caen, 14050 Caen Cedex 4 (France); Instituto de Física de São Carlos, Universidade de São Paulo, USP, CEP 13560-970 São Carlos, SP (Brazil); Catunda, T. [Instituto de Física de São Carlos, Universidade de São Paulo, USP, CEP 13560-970 São Carlos, SP (Brazil); Pilla, V.; Andrade, A.A. [Instituto de Física, Universidade Federal de Uberlândia, CEP38408-902 Uberlandia, Minas Gerais (Brazil); and others

    2015-06-15

    In this paper the Normalized Lifetime Thermal Lens technique was applied to a set of Nd-doped phosphate samples in order to obtain its thermal and optical properties. Moreover, radiative emission properties were obtained by the Judd–Ofelt theory. The luminescence quantum efficiency obtained by both methods agreed very well, indicating that this thermal lens approach can be used in more complex systems where no radiative property is available. - Highlights: • Normalized Lifetime Thermal Lens was used to investigate Nd-doped samples. • Experimental setup and data analysis are simpler than in conventional techniques. • Luminescence quantum yield agrees with that obtained through standard techniques. • This approach, to obtain the quantum yield, can be extended to more complex systems.

  12. Optical implementation of multifocal programmable lens with single and multiple axes

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Lenny A; Millan, Maria S; Perez-Cabre, Elisabet, E-mail: lenny.alexandra.romero@upc.edu [Optics and Optometry Dep. Technical University of Catalonia Violinista Vellsola 37, 08222 Terrassa (Spain)

    2011-01-01

    In this work we analyse the generation of a diffractive optical element (DOE) consisting of a multifocal Fresnel lens by means of an LCoS (liquid cristal on silicon) spatial light modulator (SLM). The multifocal lens is composed of a set of lenses of different focal length that share a common optical axis (coaxial combination) or have different axes in parallel (multi-axis combination). For both configurations, we present several ways to combine the phase distributions for three lenses with different focal lengths (f1, f2, f3), into a single-phase distribution addressed to the SLM. Numerical simulations were carried out along with the experimental analysis to corroborate the results.

  13. Highly sensitive straightness measurement system using a ball-lens

    International Nuclear Information System (INIS)

    Lee, Minho; Yang, Hyun-Ik; Cho, Nahm-Gyoo

    2016-01-01

    In this paper, a new and simple optical technique to accurately measure the straightness errors of a linear stage is proposed. To improve the performance, including the measurement sensitivity and resolution of the measurement system, and to simultaneously measure two-dimensional straightness errors (2D straightness errors), an optical system was designed using a laser, a retro-reflector, a ball-lens, and a two-dimensional position sensitive detector (2D PSD). The characteristics of the measurement system were analytically and experimentally investigated. A prototype measurement system was manufactured based on the investigated results, and the performances of this system have been tested. The measuring performance of the system was easily improved by about 12 times using the proposed technique and it can be further improved. It is shown that the proposed technique can easily and effectively improve the performance of a conventional straightness measurement system based on the geometric optical method using a PSD. (paper)

  14. Optical zoom lens module using MEMS deformable mirrors for portable device

    Science.gov (United States)

    Lu, Jia-Shiun; Su, Guo-Dung J.

    2012-10-01

    The thickness of the smart phones in today's market is usually below than 10 mm, and with the shrinking of the phone volume, the difficulty of its production of the camera lens has been increasing. Therefore, how to give the imaging device more functionality in the smaller space is one of the interesting research topics for today's mobile phone companies. In this paper, we proposed a thin optical zoom system which is combined of micro-electromechanical components and reflective optical architecture. By the adopting of the MEMS deformable mirrors, we can change their radius of curvature to reach the optical zoom in and zoom out. And because we used the all-reflective architecture, so this system has eliminated the considerable chromatic aberrations in the absence of lenses. In our system, the thickness of the zoom system is about 11 mm. The smallest EFL (effective focal length) is 4.61 mm at a diagonal field angle of 52° and f/# of 5.24. The longest EFL of the module is 9.22 mm at a diagonal field angle of 27.4 with f/# of 5.03.°

  15. Fresnel Lens Solar Concentrator Design Based on Geometric Optics and Blackbody Radiation Equations

    Science.gov (United States)

    Watson, Michael D.; Jayroe, Robert, Jr.

    1999-01-01

    Fresnel lenses have been used for years as solar concentrators in a variety of applications. Several variables effect the final design of these lenses including: lens diameter, image spot distance from the lens, and bandwidth focused in the image spot. Defining the image spot as the geometrical optics circle of least confusion and applying blackbody radiation equations the spot energy distribution can be determined. These equations are used to design a fresnel lens to produce maximum flux for a given spot size, lens diameter, and image distance. This approach results in significant increases in solar efficiency over traditional single wavelength designs.

  16. Qualification of a Null Lens Using Image-Based Phase Retrieval

    Science.gov (United States)

    Bolcar, Matthew R.; Aronstein, David L.; Hill, Peter C.; Smith, J. Scott; Zielinski, Thomas P.

    2012-01-01

    In measuring the figure error of an aspheric optic using a null lens, the wavefront contribution from the null lens must be independently and accurately characterized in order to isolate the optical performance of the aspheric optic alone. Various techniques can be used to characterize such a null lens, including interferometry, profilometry and image-based methods. Only image-based methods, such as phase retrieval, can measure the null-lens wavefront in situ - in single-pass, and at the same conjugates and in the same alignment state in which the null lens will ultimately be used - with no additional optical components. Due to the intended purpose of a Dull lens (e.g., to null a large aspheric wavefront with a near-equal-but-opposite spherical wavefront), characterizing a null-lens wavefront presents several challenges to image-based phase retrieval: Large wavefront slopes and high-dynamic-range data decrease the capture range of phase-retrieval algorithms, increase the requirements on the fidelity of the forward model of the optical system, and make it difficult to extract diagnostic information (e.g., the system F/#) from the image data. In this paper, we present a study of these effects on phase-retrieval algorithms in the context of a null lens used in component development for the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission. Approaches for mitigation are also discussed.

  17. The role of low light intensity: A step towards understanding the connection between light, optic/lens and photovoltaic behavior for Sb2S3 thin-film solar cells

    Science.gov (United States)

    Lojpur, Vesna; Mitrić, Miodrag; Validžić, Ivana Lj

    2018-05-01

    We report here an optic/lens system that we used so far, for cooling the surface of solar cells, the reduction of light intensity and the change of light distribution that reaches the surface of the solar cell. The objective was to improve photovoltaic characteristics under very low light illumination, as well as to understand the connection between light, optic/lens and photovoltaic behavior for Sb2S3 thin-film solar cells. It was found that for all so far designed thin-film solar cells made and based on the synthesized Sb2S3, optics/lens system causes an increase in open circuit voltage (VOC) and short circuit current (ISC) and thus the efficiencies of made solar devices. Values of energy gaps for the thin-films made devices were in the range from 1.4 to 2 eV. Improvements of the photovoltaic response of the designed devices are found to be better at the lower light intensity (5% sun), than at higher intensities of light. For the same intensity of light used optic/lens improves the efficiency of the devices, by changing the light distribution. Other processes that are related to the optics/lens system, leading to an increase in ISC and VOC and consequently to an increase in efficiencies of the designed devices, are investigated.

  18. Orbiting objective lens telescope system and method

    International Nuclear Information System (INIS)

    Crooks, J.W. Jr.

    1984-01-01

    A large objective lens is placed in a highly eccentric orbit about the earth. The orbit and orientation of the lens are carefully chosen so that it focuses light or other radiation from a preselected astronomical object into an image which slowly moves across the surface of the earth. A row of optical sensing units is located on the surface of the earth so that the image focused by the orbiting objective lens will travel substantially perpendicularly across the row during an observation. Output data generated from the sensing units may be multiplexed and fed to a real time processor which produces display signals. Each of the sensing units provides one scan line of the image being observed. The display signals are fed to a suitable display device which produces a picture of the preselected astronomical object. The objective lens may comprise a large flexible Fresnel zone plate or a flexible convex lens carried by a bicycle wheel-type supporting structure. The lens and supporting structure may be unfolded from compact cargo configurations and rotated after being placed into orbit

  19. Optical design of an athermalised dual field of view step zoom optical system in MWIR

    Science.gov (United States)

    Kucukcelebi, Doruk

    2017-08-01

    In this paper, the optical design of an athermalised dual field of view step zoom optical system in MWIR (3.7μm - 4.8μm) is described. The dual field of view infrared optical system is designed based on the principle of passive athermalization method not only to achieve athermal optical system but also to keep the high image quality within the working temperature between -40°C and +60°C. The infrared optical system used in this study had a 320 pixel x 256 pixel resolution, 20μm pixel pitch size cooled MWIR focal plane array detector. In this study, the step zoom mechanism, which has the axial motion due to consisting of a lens group, is considered to simplify mechanical structure. The optical design was based on moving a single lens along the optical axis for changing the optical system's field of view not only to reduce the number of moving parts but also to athermalize for the optical system. The optical design began with an optimization process using paraxial optics when first-order optics parameters are determined. During the optimization process, in order to reduce aberrations, such as coma, astigmatism, spherical and chromatic aberrations, aspherical surfaces were used. As a result, athermalised dual field of view step zoom optical design is proposed and the performance of the design using proposed method was verified by providing the focus shifts, spot diagrams and MTF analyzes' plots.

  20. Optical system design, analysis, and production; Proceedings of the Meeting, Geneva, Switzerland, April 19-22, 1983

    Science.gov (United States)

    Rogers, P. J.; Fischer, R. E.

    1983-01-01

    Topics considered include: optical system requirements, analysis, and system engineering; optical system design using microcomputers and minicomputers; optical design theory and computer programs; optical design methods and computer programs; optical design methods and philosophy; unconventional optical design; diffractive and gradient index optical system design; optical production and system integration; and optical systems engineering. Particular attention is given to: stray light control as an integral part of optical design; current and future directions of lens design software; thin-film technology in the design and production of optical systems; aspherical lenses in optical scanning systems; the application of volume phase holograms to avionic displays; the effect of lens defects on thermal imager performance; and a wide angle zoom for the Space Shuttle.

  1. Optical design of a LED searchlight system

    Science.gov (United States)

    Gong, Chen; Xu, Haiping; Liang, Jinhua; Liu, Yunfei; Yuan, Zengquan

    2018-01-01

    A 1200m visible searchlight system is designed based on photometry and application of geometric optics. To generate intensity distribution of this relatively powerful light beam we propose to use a high power LED and several refractive optical elements, which are composed of two plane-convex lenses and a conventional Fresnel lens. Two plane-convex lenses enable refraction of the side rays from the LED to the front direction which incident on the Fresnel lens. Fresnel lens, in its turn, concentrate the light flux and provide a nearly collimated beam to meet the requirement of forming a well-illuminated area across the road in the far field. Simulation data shows that this searchlight allow generating an appropriate illumination distribution for the long range requirements. A proof-of-concept prototype producing acceptable illuminance is developed.

  2. Next-generation fabrication technologies for optical pickup devices in high-density optical disk storage systems

    Science.gov (United States)

    Hosoe, Shigeru

    1999-05-01

    This paper shows a direction of friction technologies to make aspherical plastic objective lens with higher optical performance for high density optical disk storage systems. Specifically, a low birefringence and low water absorption (less than 0.1%) optical resin, low tool abrasion mold material, high circularity diamond tool which nose circularity is less than 30 nm, and 1 nm axis resolution precision lathe which tool position is stabilized against drift by environmental change are referred. Cut optical surface of a mold sample was constantly attained in less than 5 nmRtm surface roughness. Using these new technologies, aspherical plastic objective lens (NA0.6) for DVD which wave aberration is less than 35 m (lambda) rms was realized.

  3. A wide-angle gradient index optical model of the crystalline lens and eye of the octopus.

    Science.gov (United States)

    Jagger, W S; Sands, P J

    1999-08-01

    Cephalopods and fish have had no common ancestor since the Cambrian, and their eyes are a classic example of convergent evolution. The octopus has no cornea, and immerson renders the trout cornea optically ineffective. As a result, the nearly spherical lens is responsible for all refraction in these eyes. In spite of the fact that the octopus lens consists of two joined parts, while the trout lens consists of one part, we show here that their optical properties are very similar. An index gradient bends rays within these lenses, adding power and correcting spherical aberration. High spherical symmetry in both lenses strongly reduces other monochromatic aberrations and yields a wide field of vision, advantageous in attack and evasion. The octopus Mattheissen's ratio, 2.83, an inverse measure of light-gathering power, lies above the trout value of 2.38 but within the range of values reported for fish. Strong uncorrected longitudinal chromatic aberration is nearly identical in both animals as a result of similar lens protein optical properties, and will limit resolution. We discuss how animal lifestyle requirements and lens material properties influence the design of these eyes.

  4. Micro sized implantable ball lens-based fiber optic probe design

    Science.gov (United States)

    Cha, Jaepyeong; Kang, Jin U.

    2014-02-01

    A micro sized implantable ball lens-based fiber optic probe design is described for continuous monitoring of brain activity in freely behaving mice. A prototype uses a 500-micron ball lens and a highly flexible 350-micron-diameter fiber bundle, which are enclosed by a 21G stainless steel sheath. Several types and thickness of brain tissue, consisting of fluorescent probes such as GFP, GCaMP3 calcium indicator, are used to evaluate the performance of the imaging probe. Measured working distance is approximately 400-μm, but is long enough to detect neural activities from cortical and cerebellar tissues of mice brain.

  5. Lens Systems Incorporating A Zero Power Corrector Principle Of The Design And Its Application In Large Aperture, Moderate Field Of View Optical Systems

    Science.gov (United States)

    Klee, H. W.; McDowell, M. W.

    1986-02-01

    A new lens design concept, based on the use of a zero (or near zero) power corrector, will be described. The logical development of the design, based on the work of Schmidt', Houghton' and others will be discussed and examples will be given of moderate field of view lenses with apertures ranging from f/0.35 to f/2. It will also be shown that the lens configuration is relatively insensitive to the aperture stop location and that for less demanding applications only very basic optical glass types need be used.

  6. Space imaging measurement system based on fixed lens and moving detector

    Science.gov (United States)

    Akiyama, Akira; Doshida, Minoru; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2006-08-01

    We have developed the Space Imaging Measurement System based on the fixed lens and fast moving detector to the control of the autonomous ground vehicle. The space measurement is the most important task in the development of the autonomous ground vehicle. In this study we move the detector back and forth along the optical axis at the fast rate to measure the three-dimensional image data. This system is just appropriate to the autonomous ground vehicle because this system does not send out any optical energy to measure the distance and keep the safety. And we use the digital camera of the visible ray range. Therefore it gives us the cost reduction of the three-dimensional image data acquisition with respect to the imaging laser system. We can combine many pieces of the narrow space imaging measurement data to construct the wide range three-dimensional data. This gives us the improvement of the image recognition with respect to the object space. To develop the fast movement of the detector, we build the counter mass balance in the mechanical crank system of the Space Imaging Measurement System. And then we set up the duct to prevent the optical noise due to the ray not coming through lens. The object distance is derived from the focus distance which related to the best focused image data. The best focused image data is selected from the image of the maximum standard deviation in the standard deviations of series images.

  7. Collimating lens for light-emitting-diode light source based on non-imaging optics.

    Science.gov (United States)

    Wang, Guangzhen; Wang, Lili; Li, Fuli; Zhang, Gongjian

    2012-04-10

    A collimating lens for a light-emitting-diode (LED) light source is an essential device widely used in lighting engineering. Lens surfaces are calculated by geometrical optics and nonimaging optics. This design progress does not rely on any software optimization and any complex iterative process. This method can be used for any type of light source not only Lambertian. The theoretical model is based on point source. But the practical LED source has a certain size. So in the simulation, an LED chip whose size is 1 mm*1 mm is used to verify the feasibility of the model. The mean results show that the lenses have a very compact structure and good collimating performance. Efficiency is defined as the ratio of the flux in the illuminated plane to the flux from LED source without considering the lens material transmission. Just investigating the loss in the designed lens surfaces, the two types of lenses have high efficiencies of more than 90% and 99%, respectively. Most lighting area (possessing 80% flux) radii are no more than 5 m when the illuminated plane is 200 m away from the light source.

  8. Flat Optical Fiber Daylighting System with Lateral Displacement Sun-Tracking Mechanism for Indoor Lighting

    Directory of Open Access Journals (Sweden)

    Ngoc Hai Vu

    2017-10-01

    Full Text Available An essential impact which can improve the indoor environment and save on power consumption for artificial lighting is utilization of daylight. Optical fiber daylighting technology offers a way to use direct daylight for remote spaces in a building. However, the existing paradigm based on the precise orientation of sunlight concentrator toward the Sun is very costly and difficult to install on the roof of buildings. Here, we explore an alternative approach using mirror-coated lens array and planar waveguide to develop a flat optical fiber daylighting system (optical fiber daylighting panel with lateral displacement Sun-tracking mechanism. Sunlight collected and reflected by each mirror-coated lens in a rectangular lens array is coupled into a planar waveguide using cone prisms placed at each lens focus. This geometry yields a thin, flat profile for Sunlight concentrator. Our proposed concentrating panel can be achieved with 35 mm thickness while the concentrator’s width and length are 500 mm × 500 mm. The commercial optical simulation tool (LightToolsTM was used to develop the simulation models and analyze the system performance. Simulation results based on the designed system demonstrated an optical efficiency of 51.4% at a concentration ratio of 125. The system can support utilizing a lateral displacement Sun-tracking system, which allows for replacing bulky and robust conventional rotational Sun-tracking systems. This study shows a feasibility of a compact and inexpensive optical fiber daylighting system to be installed on the roof of buildings.

  9. Investigation of uniformity field generated from freeform lens with UV LED exposure system

    Science.gov (United States)

    Ciou, F. Y.; Chen, Y. C.; Pan, C. T.; Lin, P. H.; Lin, P. H.; Hsu, F. T.

    2015-03-01

    In the exposure process, the intensity and uniformity of light in the exposure area directly influenced the precision of products. UV-LED (Ultraviolet Light-Emitting Diode) exposure system was established to reduce the radiation leakage and increase the energy efficiency for energy saving. It is a trend that conventional mercury lamp could be replaced with UV-LED exposure system. This study was based on the law of conservation of energy and law of refraction of optical field distributing on the target plane. With these, a freeform lens with uniform light field of main exposure area could be designed. The light outside the exposure area could be concentrated into the area to improve the intensity of light. The refraction index and UV transmittance of Polydimethylsiloxane (PDMS) is 1.43 at 385 nm wavelength and 85-90%, respectively. The PDMS was used to fabricate the optics lens for UV-LEDs. The average illumination and the uniformity could be obtained by increasing the number of UV-LEDs and the spacing of different arrangement modes. After exposure process with PDMS lens, about 5% inaccuracy was obtained. Comparing to 10% inaccuracy of general exposure system, it shows that it is available to replace conventional exposure lamp with using UV-LEDs.

  10. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Ninth Edition Optics: Ninth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommen

  11. Glass molding of 3mm diameter aspheric plano-convex lens

    Science.gov (United States)

    Sung, Hayeong; Hue, Myung sang; Lee, Giljae; Ryu, Geunman; Kim, Dongguk; Yang, Suncheol

    2017-10-01

    The many industries and research fields have demands for small scale optical systems. To satisfy the demands, many studies are conducted and the miniaturization technologies have been developed. The optical lens is directly related to the optical systems and a key component for the miniaturization. So the aspheric surface which can replace multispherical lenses is applied to the optical lens. And fabrication methods to reduce the diameter of the lens have been developed. The glass molding pressing (GMP) process is an attractive method to fabricate aspheric lens among the lens manufacturing processes. Because the GMP process has advantages of productivity, repeatability and so on. In this study, a 3 mm diameter aspheric plano-convex lens was fabricated using the GMP process. The GMP process was divided into heating, pressing, annealing and cooling. And the process was conducted using a commercial glass molding machine. Mold tools consist of an upper and a lower mold insert, an inner and an outer guide. The aspheric and the flat surfaces of the mold inserts were coated with ta-C to prevent the sticking of the glass to the mold. The surfaces of molded lens were measured by white interferometry and surface profilometer. The height and the diameter were measured using optical microscopy. As results, the aspheric surface of the lens was 5.1187 nm in Ra and 0.242 um in Pt. And the flat surface was 2.6697 nm in Ra and 0.13 um in Pt. The height and the diameter were 1.935 mm and 3.002 mm respectively.

  12. Improved illumination system of laparoscopes using an aspherical lens array.

    Science.gov (United States)

    Wu, Rengmao; Qin, Yi; Hua, Hong

    2016-06-01

    The current fiber-based illumination systems of laparoscopes are unable to uniformly illuminate a large enough area in abdomen due to the limited numerical aperture (NA) of the fiber bundle. Most energy is concentrated in a small region at the center of the illumination area. This limitation becomes problematic in laparoscopes which require capturing a wide field of view. In this paper, we propose an aspherical lens array which is used to direct the outgoing rays from the fiber bundle of laparoscope to produce a more uniformly illuminated, substantially larger field coverage than standalone fiber source. An intensity feedback method is developed to design the aspherical lens unit for extended non-Lambertian sources, which is the key to the design of this lens array. By this method, the lens unit is obtained after only one iteration, and the lens array is constructed by Boolean operation. Then, the ray-tracing technique is used to verify the design. Further, the lens array is fabricated and experimental tests are performed. The results clearly show that the well-illuminated area is increased to about 0.107m(2) from 0.02m(2) (about 5x larger than a standard fiber illumination source). More details of the internal organs can be clearly observed under this improved illumination condition, which also reflects the significant improvement in the optical performance of the laparoscope.

  13. Objective lens

    Science.gov (United States)

    Olczak, Eugene G. (Inventor)

    2011-01-01

    An objective lens and a method for using same. The objective lens has a first end, a second end, and a plurality of optical elements. The optical elements are positioned between the first end and the second end and are at least substantially symmetric about a plane centered between the first end and the second end.

  14. [System design of open-path natural gas leakage detection based on Fresnel lens].

    Science.gov (United States)

    Xia, Hui; Liu, Wen-Qing; Zhang, Yu-Jun; Kan, Rui-Feng; Cui, Yi-Ben; Wang, Min; He, Ying; Cui, Xiao-Juan; Ruan, Jun; Geng, Hui

    2009-03-01

    Based on the technology of tunable diode laser absorption spectroscopy (TDLAS) in conjunction with second harmonic wave detection, a long open-path TDLAS system using a 1.65 microm InGaAsP distributed feedback laser was developed, which is used for detecting pipeline leakage. In this system, a high cost performance Fresnel lens is used as the receiving optical system, which receives the laser-beam reflected by a solid corner cube reflector, and focuses the receiving laser-beam to the InGaAs detector. At the same time, the influences of the concentration to the fluctuation of light intensity were taken into account in the process of measurement, and were eliminated by the method of normalized light intensity. As a result, the measurement error caused by the fluctuation of light intensity was made less than 1%. The experiment of natural gas leakage detection was simulated, and the detection sensitivity is 0.1 x 10(-6) (ratio by volume) with a total path of 320 m. According to the receiving light efficiency of the optical system and the detectable minimum light intensity of the detector, the detectable maximal optical path of the system was counted to be 2 000 m. The results of experiment show that it is a feasible design to use the Fresnel lens as the receiving optical system and can satisfy the demand of the leakage detection of natural gas.

  15. Observation of Biological Tissues Using Common Path Optical Coherence Tomography with Gold Coated Conical Tip Lens Fiber

    International Nuclear Information System (INIS)

    Taguchi, K; Sugiyama, J; Totsuka, M; Imanaka, S

    2012-01-01

    In this paper, we proposed a high lateral resolution common-path Fourier domain optical coherence tomography(OCT) system with the use of a chemically etched single mode fiber. In our experiments, single mode optical fiber for 1310nm was used for preparing the tapered tips. Our system used a conical microlens that was chemically etched by selective chemical etching technique using an etching solution of buffered hydrofluoric acid (BHF). From experimental results, we verified that our proposed optical coherence tomography system could operate as a common-path Fourier domain OCT system and conical tip lens fiber was very useful for a high lateral resolution common-path Fourier domain OCT system. Furthermore, we could observe a surface of paramecium bursaria and symbiotic chlorella in the paramecium bursaria using gold coated conical-tip fiber in the water.

  16. Research on the processing technology of medium-caliber aspheric lens in the optoelectronic integrated test system

    Science.gov (United States)

    Liu, Dan; Yu, Xin-ying; Wang, Wei

    2016-10-01

    In the optoelectronic integrated test system, surface profile and finish of the optical element are put forward higher request. Taking an aspherical quartz glass lens with a diameter of 200mm as example, taking Preston hypothesis as the theoretical basis, analyze the influence of surface quality of various process parameters, including the workpiece and the tool axis spindle speed, wheel type, concentration polishing, polishing mold species, dwell time, polishing pressure and other parameters. Using CNC method for the surface profile and surface quality of the lens were investigated. Taking profilometer measurement results as a guide, by testing and simulation analysis, process parameters were improved constantly in the process of manufacturing. Mid and high frequency error were trimmed and improved so that the surface form gradually converged to the required accuracy. The experimental results show that the final accuracy of the surface is less than 2µm and the surface finish is, which fulfils the accuracy requirement of aspherical focusing lens in optical system.

  17. Peripheral Defocus of the Monkey Crystalline Lens With Accommodation in a Lens Stretcher

    Science.gov (United States)

    Maceo Heilman, Bianca; Manns, Fabrice; Ruggeri, Marco; Ho, Arthur; Gonzalez, Alex; Rowaan, Cor; Bernal, Andres; Arrieta, Esdras; Parel, Jean-Marie

    2018-01-01

    Purpose To characterize the peripheral defocus of the monkey crystalline lens and its changes with accommodation. Methods Experiments were performed on 15 lenses from 11 cynomolgus monkey eyes (age: 3.8–12.4 years, postmortem time: 33.5 ± 15.3 hours). The tissue was mounted in a motorized lens stretcher to allow for measurements of the lens in the accommodated (unstretched) and unaccommodated (stretched) states. A custom-built combined laser ray tracing and optical coherence tomography system was used to measure the paraxial on-axis and off-axis lens power for delivery angles ranging from −20° to +20° (in air). For each delivery angle, peripheral defocus was quantified as the difference between paraxial off-axis and on-axis power. The peripheral defocus of the lens was compared in the unstretched and stretched states. Results On average, the paraxial on-axis lens power was 52.0 ± 3.4 D in the unstretched state and 32.5 ± 5.1 D in the stretched state. In both states, the lens power increased with increasing delivery angle. From 0° to +20°, the relative peripheral lens power increased by 10.7 ± 1.4 D in the unstretched state and 7.5 ± 1.6 D in the stretched state. The change in field curvature with accommodation was statistically significant (P lens has greater curvature or relative peripheral power. Conclusions The cynomolgus monkey lens has significant accommodation-dependent curvature of field, which suggests that the lens asserts a significant contribution to the peripheral optical performance of the eye that also varies with the state of accommodation.

  18. Athermal design and analysis of glass-plastic hybrid lens

    Science.gov (United States)

    Yang, Jian; Cen, Zhaofeng; Li, Xiaotong

    2018-01-01

    With the rapid development of security market, the glass-plastic hybrid lens has gradually become a choice for the special requirements like high imaging quality in a wide temperature range and low cost. The reduction of spherical aberration is achieved by using aspherical surface instead of increasing the number of lenses. Obviously, plastic aspherical lens plays a great role in the cost reduction. However, the hybrid lens has a priority issue, which is the large thermal coefficient of expansion of plastic, causing focus shift and seriously affecting the imaging quality, so the hybrid lens is highly sensitive to the change of temperature. To ensure the system operates normally in a wide temperature range, it is necessary to eliminate the influence of temperature on the hybrid lens system. A practical design method named the Athermal Material Map is summarized and verified by an athermal design example according to the design index. It includes the distribution of optical power and selection of glass or plastic. The design result shows that the optical system has excellent imaging quality at a wide temperature range from -20 ° to 70 °. The method of athermal design in this paper has generality which could apply to optical system with plastic aspherical surface.

  19. Preliminary Investigation of an Active PLZT Lens

    Science.gov (United States)

    Lightsey, W. D.; Peters, B. R.; Reardon, P. J.; Wong, J. K.

    2001-01-01

    The design, analysis and preliminary testing of a prototype Adjustable Focus Optical Correction Lens (AFOCL) is described. The AFOCL is an active optical component composed of solid state lead lanthanum-modified zirconate titanate (PLZT) ferroelectric ceramic with patterned indium tin oxide (ITO) transparent surface electrodes that modulate the refractive index of the PLZT to function as an electro-optic lens. The AFOCL was developed to perform optical re-alignment and wavefront correction to enhance the performance of Ultra-Lightweight Structures and Space Observatories (ULSSO). The AFOCL has potential application as an active optical component within a larger optical system. As such, information from a wavefront sensor would be processed to provide input to the AFOCL to drive the sensed wavefront to the desired shape and location. While offering variable and rapid focussing capability (controlled wavefront manipulation) similar to liquid crystal based spatial light modulators (SLM), the AFOCL offers some potential advantages because it is a solid-state, stationary, low-mass, rugged, and thin optical element that can produce wavefront quality comparable to the solid refractive lens it replaces. The AFOCL acts as a positive or negative lens by producing a parabolic phase-shift in the PLZT material through the application of a controlled voltage potential across the ITO electrodes. To demonstrate the technology, a 4 mm diameter lens was fabricated to produce 5-waves of optical power operating at 2.051 micrometer wavelength. Optical metrology was performed on the device to measure focal length, optical quality, and efficiency for a variety of test configurations. The data was analyzed and compared to theoretical data available from computer-based models of the AFOCL.

  20. Axial movement of the dual-optic accommodating intraocular lens for the correction of the presbyopia: Optical performance and clinical outcomes

    Directory of Open Access Journals (Sweden)

    Javier Tomás-Juan

    2015-04-01

    Full Text Available Presbyopia occurs in the aging eye due to changes in the ciliary muscle, zonular fibers, crystalline lens, and an increased lens sclerosis. As a consequence, the capacity of accommodation decreases, which hampers to focus near objects. With the aim of restoring near vision, different devices that produce multiple focuses have been developed and introduced. However, these devices are still unable to restore accommodation. In order to achieve that goal, dual-optic accommodating Intraocular Lenses have been designed, whose anterior optic displaces axially to increase ocular power, and focus near objects. Although dual-optic accommodating IOLs are relatively new, their outcomes are promising, as they provide large amplitudes of accommodation and a greater IOL displacement than single-optic accommodating IOLs. The outcomes show comfortable near vision, higher patients’ satisfaction rates, and minimal postoperative complications like Posterior Capsular Opacification and Anterior Capsular Opacification, due to their design and material.

  1. Optical transmission and laser ablation of pathologically changed eye lens capsule

    Energy Technology Data Exchange (ETDEWEB)

    Gamidov, A A; Bolshunov, A V [Research Institute of Eye Diseases, Russian Academy of Medical Sciences, Moscow (Russian Federation); Yuzhakov, A V; Shcherbakov, E M; Baum, O I; Sobol, E N [Institute on Laser and Information Technologies, Russian Academy of Sciences, Shatura, Moscow Region (Russian Federation)

    2015-02-28

    Optical transmission and ablation mechanisms in the secondary cataract films under the impact of 1.06-mm laser radiation are studied. The comparison of incident and transmitted (paraxial) radiation power at different values of the power density is carried out for two types of the eye lens capsule tissue (hard and soft) possessing different optical and mechanical properties. It is found that the effective attenuation coefficient for soft films is almost five times as large as that for the hard ones. The obtained measurement data on the transparency variation in the process of laser action allow the temperature evaluation and the determination of dominant mechanism of laser ablation, as well as the development of recommendations, providing the prevention or reduction of possible side effects. The obtained results can be used to optimise the regimes of laser impact in the process of the opacified lens capsule removal.

  2. Multiplane optical microscope

    Science.gov (United States)

    Li, Tongcang; Ota, Sadao; Kim, Jeongmin; Wang, Yuan; Zhang, Xiang

    2017-11-21

    This disclosure provides systems, methods, and apparatus related to optical microscopy. In one aspect, an apparatus includes a sample holder, a first objective lens, a plurality of optical components, a second objective lens, and a mirror. The apparatus may directly image a cross-section of a sample oblique to or parallel to the optical axis of the first objective lens, without scanning.

  3. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Eighth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommended for engineering st

  4. Beam steering performance of compressed Luneburg lens based on transformation optics

    Science.gov (United States)

    Gao, Ju; Wang, Cong; Zhang, Kuang; Hao, Yang; Wu, Qun

    2018-06-01

    In this paper, two types of compressed Luneburg lenses based on transformation optics are investigated and simulated using two different sources, namely, waveguides and dipoles, which represent plane and spherical wave sources, respectively. We determined that the largest beam steering angle and the related feed point are intrinsic characteristics of a certain type of compressed Luneburg lens, and that the optimized distance between the feed and lens, gain enhancement, and side-lobe suppression are related to the type of source. Based on our results, we anticipate that these lenses will prove useful in various future antenna applications.

  5. Improvement of optical imaging resolution by a negative refraction photonic crystal with a solid immersion lens

    International Nuclear Information System (INIS)

    Tseng, M.-C.; Chen, L.-W.; Liu, C.-Y.

    2008-01-01

    Photonic crystals (PCs) have many potential applications because of their ability to control light-wave propagation. We have investigated the solid immersion lens (SIL) technology in imaging system based on negative refraction PCs and analyzed the influence of refractive index and geometric parameters of SIL on imaging resolution. In the finite element method calculation, the resolution of our optical system has improved greatly. The high performance of imaging resolution was achieved with shorter radius and larger refractive index of SIL. Furthermore, the effects of the three kinds of SILs at the same radius were analyzed. Such a mechanism of negative refraction PCs and SILs should open up a new application for designing components in optical imaging systems

  6. Adaptive optics plug-and-play setup for high-resolution microscopes with multi-actuator adaptive lens

    Science.gov (United States)

    Quintavalla, M.; Pozzi, P.; Verhaegen, Michelle; Bijlsma, Hielke; Verstraete, Hans; Bonora, S.

    2018-02-01

    Adaptive Optics (AO) has revealed as a very promising technique for high-resolution microscopy, where the presence of optical aberrations can easily compromise the image quality. Typical AO systems however, are almost impossible to implement on commercial microscopes. We propose a simple approach by using a Multi-actuator Adaptive Lens (MAL) that can be inserted right after the objective and works in conjunction with an image optimization software allowing for a wavefront sensorless correction. We presented the results obtained on several commercial microscopes among which a confocal microscope, a fluorescence microscope, a light sheet microscope and a multiphoton microscope.

  7. LASL lens design procedure: simple, fast, precise, versatile

    International Nuclear Information System (INIS)

    Brixner, B.

    1978-11-01

    The Los Alamos Scientific Laboratory general-purpose lens design procedure optimizes specific lens prescriptions to obtain the smallest possible image spots and therefore near-spherical wave fronts of light converging on all images in the field of view. Optical image errors are analyzed in much the same way that they are measured on the optical bench. This lens design method is made possible by using the full capabilities of large electronic computers. First, the performance of the whole lens is sampled with many precisely traced skew rays. Next, lens performance is analyzed with spot diagrams generated by the many rays. Third, lens performance is optimized with a least squares system aimed at reducing all image errors to zero. This statistical approach to lens design uses skew rays and precisely measured ray deviations from ideal image points to achieve greater accuracy than was possible with the classical procedure, which is based on approximate expressions derived from simplified ray traces developed for pencil-and-paper calculations

  8. Axial movement of the dual-optic accommodating intraocular lens for the correction of the presbyopia: optical performance and clinical outcomes.

    Science.gov (United States)

    Tomás-Juan, Javier; Murueta-Goyena Larrañaga, Ane

    2015-01-01

    Presbyopia occurs in the aging eye due to changes in the ciliary muscle, zonular fibers, crystalline lens, and an increased lens sclerosis. As a consequence, the capacity of accommodation decreases, which hampers to focus near objects. With the aim of restoring near vision, different devices that produce multiple focuses have been developed and introduced. However, these devices are still unable to restore accommodation. In order to achieve that goal, dual-optic accommodating Intraocular Lenses have been designed, whose anterior optic displaces axially to increase ocular power, and focus near objects. Although dual-optic accommodating IOLs are relatively new, their outcomes are promising, as they provide large amplitudes of accommodation and a greater IOL displacement than single-optic accommodating IOLs. The outcomes show comfortable near vision, higher patients' satisfaction rates, and minimal postoperative complications like Posterior Capsular Opacification and Anterior Capsular Opacification, due to their design and material. Copyright © 2014. Published by Elsevier Espana.

  9. Lens decenter and tilt measurement by interferogram

    Science.gov (United States)

    Hung, Min-Wei; Wu, Wen-Hong; Huang, Kuo-Cheng

    2009-11-01

    For the recent years, the vigorous development of the electro-optic industry, particularly the digital camera and the cellular phone camera, has placed a larger and larger demand for the optical devices. Among the optical lens, the aspherical optical lens plays the key component because the aspherical lens may provide better imaging quality then the spherical lens does. For the manufacturing reason, the aspherical lens is prone to a decenter or tilt issue with respect to the optical axes of its two surfaces. To measure decenter and tile error specifically would help to obviate the deficient lens, but most of the present measuring method can't provide this function. This paper proposed a new method to specifically measure the decenter and tile of lens by observing the interferogram of each surface. And the corresponding measuring instrument, which contains interferometer and motion stages, was introduced as well.

  10. Tailoring optical complex field with spiral blade plasmonic vortex lens

    Science.gov (United States)

    Rui, Guanghao; Zhan, Qiwen; Cui, Yiping

    2015-01-01

    Optical complex fields have attracted increasing interests because of the novel effects and phenomena arising from the spatially inhomogeneous state of polarizations and optical singularities of the light beam. In this work, we propose a spiral blade plasmonic vortex lens (SBPVL) that offers unique opportunities to manipulate these novel fields. The strong interaction between the SBPVL and the optical complex fields enable the synthesis of highly tunable plasmonic vortex. Through theoretical derivations and numerical simulations we demonstrated that the characteristics of the plasmonic vortex are determined by the angular momentum (AM) of the light, and the geometrical topological charge of the SBPVL, which is govern by the nonlinear superposition of the pitch and the number of blade element. In addition, it is also shown that by adjusting the geometric parameters, SBPVL can be utilized to focus and manipulate optical complex field with fractional AM. This miniature plasmonic device may find potential applications in optical trapping, optical data storage and many other related fields. PMID:26335894

  11. Catadioptric aberration correction in cathode lens microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tromp, R.M. [IBM T.J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598 (United States); Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Niels Bohrweg 2, 2333 CA Leiden (Netherlands)

    2015-04-15

    In this paper I briefly review the use of electrostatic electron mirrors to correct the aberrations of the cathode lens objective lens in low energy electron microscope (LEEM) and photo electron emission microscope (PEEM) instruments. These catadioptric systems, combining electrostatic lens elements with a reflecting mirror, offer a compact solution, allowing simultaneous and independent correction of both spherical and chromatic aberrations. A comparison with catadioptric systems in light optics informs our understanding of the working principles behind aberration correction with electron mirrors, and may point the way to further improvements in the latter. With additional developments in detector technology, 1 nm spatial resolution in LEEM appears to be within reach. - Highlights: • The use of electron mirrors for aberration correction in LEEM/PEEM is reviewed. • A comparison is made with similar systems in light optics. • Conditions for 1 nm spatial resolution are discussed.

  12. A lazy way to design infrared lens

    Science.gov (United States)

    Qiu, RongSheng; Wu, JianDong; Chen, LongJiang; Yu, Kun; Pang, HaoJun; Hu, BaiZhen

    2017-08-01

    We designed a compact middle-wave infrared (MWIR) lens with a large focal length ratio (about 1.5:1), used in the 3.7 to 4.8 μm range. The lens is consisted of a compact front group and a re-imaging group. Thanks to the compact front group configuration, it is possible to install a filter wheel mechanism in such a tight space. The total track length of the lens is about 50mm, which includes a 2mm thick protective window and a cold shield of 12mm. The full field of view of the lens is about 3.6°, and F number is less than 1.6, the image circle is about 4.6mm in diameter. The design performance of the lens reaches diffraction limitation, and doesn't change a lot during a temperature range of -40°C +60°C. This essay proposed a stepwise design method of infrared optical system guided by the qualitative approach. The method fully utilize the powerful global optimization ability, with a little effort to write code snippet in optical design software, frees optical engineer from tedious calculation of the original structure.

  13. Characteristics of the thick, compound refractive lens

    International Nuclear Information System (INIS)

    Pantell, Richard H.; Feinstein, Joseph; Beguiristain, H. Raul; Piestrup, Melvin A.; Gary, Charles K.; Cremer, Jay T.

    2003-01-01

    A compound refractive lens (CRL), consisting of a series of N closely spaced lens elements each of which contributes a small fraction of the total focusing, can be used to focus x rays or neutrons. The thickness of a CRL can be comparable to its focal length, whereupon a thick-lens analysis must be performed. In contrast with the conventional optical lens, where the ray inside the lens follows a straight line, the ray inside the CRL is continually changing direction because of the multiple refracting surfaces. Thus the matrix representation for the thick CRL is quite different from that for the thick optical lens. Principal planes can be defined such that the thick-lens matrix can be converted to that of a thin lens. For a thick lens the focal length is greater than for a thin lens with the same lens curvature, but this lengthening effect is less for the CRL than for the conventional optical lens

  14. Note: Folded optical system for narrow forward looking probe

    International Nuclear Information System (INIS)

    Hou, Hsuan-Chao; Hah, Dooyoung; Kim, Jeonghwan; Feldman, M.

    2014-01-01

    An optical system is described in which a laser beam makes three passes through a single graded index lens, forming a focus along the optic axis. It has important applications in endoscopic probes, where the forward looking characteristic permits the avoidance of obstacles and the narrow structure makes it minimally invasive

  15. Probing the negative permittivity perfect lens at optical frequencies using near-field optics and single molecule detection

    NARCIS (Netherlands)

    Moerland, R.J.; van Hulst, N.F.; Gersen, H.; Kuipers, L.

    2005-01-01

    Recently, the existence of a perfect lens has been predicted, made of an artificial material that has a negative electric permittivity and a negative magnetic permeability. For optical frequencies a poormans version is predicted to exist in the sub-wavelength limit. Then, only the permittivity has

  16. Hydrostatic pressure and temperature effects on nonlinear optical rectification in a lens shape InAs/GaAs quantum dot

    International Nuclear Information System (INIS)

    Bouzaïene, L.; Ben Mahrsia, R.; Baira, M.; Sfaxi, L.; Maaref, H.

    2013-01-01

    We have performed theoretical calculation of the nonlinear optical rectification in a lens shape InAs/GaAs quantum dot (0D). The combined effects of hydrostatic pressure and temperature on the nonlinear optical rectification in lens-shaped InAs QDs are studied under the compact density matrix formalism and the effective mass approximation. From our calculation, it is found that the subband energies and optical rectification susceptibility are quite sensitive to the applied hydrostatic pressure and temperature. The results show that the resonant peak of the optical rectification can be red-shifted or blue-shifted and their intensity also varied by external probes such as hydrostatic pressure and temperature. In addition, the oscillator strength is strongly affected by these parameters. - Highlights: ► Theoretical calculation of the nonlinear optical rectification in a lens shape InAs/GaAs quantum dot was performed. ► Optical rectification susceptibility is quite sensitive to the applied hydrostatic pressure and temperature. ► The oscillator strength is strongly affected by the applied hydrostatic pressure and temperature.

  17. Fourier transform digital holographic adaptive optics imaging system

    Science.gov (United States)

    Liu, Changgeng; Yu, Xiao; Kim, Myung K.

    2013-01-01

    A Fourier transform digital holographic adaptive optics imaging system and its basic principles are proposed. The CCD is put at the exact Fourier transform plane of the pupil of the eye lens. The spherical curvature introduced by the optics except the eye lens itself is eliminated. The CCD is also at image plane of the target. The point-spread function of the system is directly recorded, making it easier to determine the correct guide-star hologram. Also, the light signal will be stronger at the CCD, especially for phase-aberration sensing. Numerical propagation is avoided. The sensor aperture has nothing to do with the resolution and the possibility of using low coherence or incoherent illumination is opened. The system becomes more efficient and flexible. Although it is intended for ophthalmic use, it also shows potential application in microscopy. The robustness and feasibility of this compact system are demonstrated by simulations and experiments using scattering objects. PMID:23262541

  18. Automated Fresnel lens tester system

    Energy Technology Data Exchange (ETDEWEB)

    Phipps, G.S.

    1981-07-01

    An automated data collection system controlled by a desktop computer has been developed for testing Fresnel concentrators (lenses) intended for solar energy applications. The system maps the two-dimensional irradiance pattern (image) formed in a plane parallel to the lens, whereas the lens and detector assembly track the sun. A point detector silicon diode (0.5-mm-dia active area) measures the irradiance at each point of an operator-defined rectilinear grid of data positions. Comparison with a second detector measuring solar insolation levels results in solar concentration ratios over the image plane. Summation of image plane energies allows calculation of lens efficiencies for various solar cell sizes. Various graphical plots of concentration ratio data help to visualize energy distribution patterns.

  19. Handbook of optical design

    CERN Document Server

    Malacara-Hernández, Daniel

    2013-01-01

    Handbook of Optical Design, Third Edition covers the fundamental principles of geometric optics and their application to lens design in one volume. It incorporates classic aspects of lens design along with important modern methods, tools, and instruments, including contemporary astronomical telescopes, Gaussian beams, and computer lens design. Written by respected researchers, the book has been extensively classroom-tested and developed in their lens design courses. This well-illustrated handbook clearly and concisely explains the intricacies of optical system design and evaluation. It also di

  20. Nonlinear optical rectification in a vertically coupled lens-shaped InAs/GaAs quantum dots with wetting layers under hydrostatic pressure and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ben Mahrsia, R.; Choubani, M., E-mail: mohsenchoubani3@yahoo.fr; Bouzaiene, L.; Maaref, H.

    2016-06-25

    In this paper we explore the structure parameters, hydrostatic pressure and temperature effects on Nonlinear optical rectification (NOR) in an asymmetric vertically coupled lens-shaped InAs/GaAs quantum dots. During epitaxial growth, lens-shaped quantum dots (QDs) are formed on the wetting layer (WL). Many theoretical works have neglected WL and its effect on nonlinear optical properties of QD-based systems for sake of simplicity. However, in this work the WL has been shown to be so influential in the intersubband energy and nonlinear optical rectification magnitude. Also, a detailed and comprehensive study of the nonlinear optical rectification is theoretical investigated within the framework of the compact density-matrix approach and finite difference method (FDM). It's found that nonlinear optical rectification coefficient is strongly affected not only by the WL, but also by the pressure, temperature and the coupled width between the QDs. Obtained results revealed that a red or a blue shift cane be observed. This behavior in the NOR gives a new degree of freedom in regions of interest for device applications. - Highlights: • Vertically coupled lens-shaped InAs/GaAs quantum dots is investigated. • Photon energy shifts towards the red with increasing pressure. • Photon energy shifts towards the blue with increasing temperature. • Intersubband energy decreases with increasing the wetting layer width. • Nonlinear optical rectification magnitude is controlled and adjusted.

  1. Contact lens surface by electron beam

    International Nuclear Information System (INIS)

    Shin, Jung Hyuck; Lee, Suk Ju; Hwang, Kwang Ha; Jeon Jin

    2011-01-01

    Contact lens materials needs good biocompatibility, high refractive index, high optical transparency, high water content etc. Surface treat method by using plasma and radiation can modify the physical and/or chemical properties of the contact lens surface. Radiation technology such as electron beam irradiation can apply to polymerization reaction and enhance the functionality of the polymer.The purpose of this study is to modify of contact lens surface by using Eb irradiation technology. Electron beam was irradiated to the contact lens surface which was synthesized thermal polymerization method and commercial contact lens to modify physical and chemical properties. Ft-IR, XP, UV-vis spectrophotometer, water content, oxygen trans-metastability were used to characterize the surface state, physicochemical, and optical property of the contact lens treated with Eb. The water content and oxygen transmissibility of the contact lens treated with Eb were increased due to increase in the hydrophilic group such as O-C=O and OH group on the contact lens surface which could be produced by possible reaction between carbon and oxygen during the Eb irradiation. All of the lenses showed the high optical transmittance above 90%. In this case of B/Es, TES, Ti contact lens, the optical transmittance decreased about 5% with increasing Eb dose in the wavelength of UV-B region. The contact lens modified by Eb irradiation could improve the physical properties of the contact lens such as water content and oxygen transmissibility

  2. Bifocal liquid lens zoom objective for mobile phone applications

    Science.gov (United States)

    Wippermann, F. C.; Schreiber, P.; Bräuer, A.; Craen, P.

    2007-02-01

    Miniaturized camera systems are an integral part of today's mobile phones which recently possess auto focus functionality. Commercially available solutions without moving parts have been developed using the electrowetting technology. Here, the contact angle of a drop of a conductive or polar liquid placed on an insulating substrate can be influenced by an electric field. Besides the compensation of the axial image shift due to different object distances, mobile phones with zoom functionality are desired as a next evolutionary step. In classical mechanically compensated zoom lenses two independently driven actuators combined with precision guides are needed leading to a delicate, space consuming and expansive opto-mechanical setup. Liquid lens technology based on the electrowetting effect gives the opportunity to built adaptive lenses without moving parts thus simplifying the mechanical setup. However, with the recent commercially available liquid lens products a completely motionless and continuously adaptive zoom system with market relevant optical performance is not feasible. This is due to the limited change in optical power the liquid lenses can provide and the dispersion of the used materials. As an intermediate step towards a continuously adjustable and motionless zoom lens we propose a bifocal system sufficient for toggling between two effective focal lengths without any moving parts. The system has its mechanical counterpart in a bifocal zoom lens where only one lens group has to be moved. In a liquid lens bifocal zoom two groups of adaptable liquid lenses are required for adjusting the effective focal length and keeping the image location constant. In order to overcome the difficulties in achromatizing the lens we propose a sequential image acquisition algorithm. Here, the full color image is obtained from a sequence of monochrome images (red, green, blue) leading to a simplified optical setup.

  3. An adjustable electron achromat for cathode lens microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tromp, R.M., E-mail: rtromp@us.ibm.com [IBM T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States); Leiden Institute of Physics, Kamerlingh Onnes Laboratory, Niels Bohrweg 2, 2333 CA Leiden (Netherlands)

    2015-12-15

    Chromatic aberration correction in light optics began with the invention of a two-color-corrected achromatic crown/flint lens doublet by Chester Moore Hall in 1730. Such color correction is necessary because any single glass shows dispersion (i.e. its index of refraction changes with wavelength), which can be counteracted by combining different glasses with different dispersions. In cathode lens microscopes (such as Photo Electron Emission Microscopy – PEEM) we encounter a similar situation, where the chromatic aberration coefficient of the cathode lens shows strong dispersion, i.e. depends (non-linearly) on the energy with which the electrons leave the sample. Here I show how a cathode lens in combination with an electron mirror can be configured as an adjustable electron achromat. The lens/mirror combination can be corrected at two electron energies by balancing the settings of the electron mirror against the settings of the cathode lens. The achromat can be adjusted to deliver optimum performance, depending on the requirements of a specific experiment. Going beyond the achromat, an apochromat would improve resolution and transmission by a very significant margin. I discuss the requirements and outlook for such a system, which for now remains a wish waiting for fulfilment. - Highlights: • The properties of cathode objective lens plus electron mirror are discussed. • In analogy with light-optical achromats, cathode lens plus mirror can be configured as an electron achromat. • Unlike light optics, the electron achromat can be adjusted to best fulfill experimental requirements.

  4. Development of a Fresnel lens for cold neutrons based on neutron refractive optics

    International Nuclear Information System (INIS)

    Oku, T.; Morita, S.; Moriyasu, S.; Yamagata, Y.; Ohmori, H.; Takizawa, Y.; Shimizu, H.M.; Hirota, T.; Kiyanagi, Y.; Ino, T.; Furusaka, M.; Suzuki, J.

    2001-01-01

    We have developed compound refractive lenses (CRLs) for cold neutrons, which are made of vitreous silica and have an effective potential of (90.1-2.7x10 -4 i) neV. In the case of compound refractive optics, neutron absorption by the material deteriorates lens performance. Thus, to prevent an increase in neutron absorption with increasing beam size, we have developed Fresnel lenses using the electrolytic in-process dressing grinding technique. The lens characteristics were carefully investigated with experimental and numerical simulation studies. The lenses functioned as a neutron focusing lens, and the focal length of 14 m was obtained with a 44-element series of the Fresnel lenses for 10 A neutrons. Moreover, good neutron transmission of 0.65 for 15 A neutrons was obtained due to the shape effect. According to comprehensive analysis of the obtained results, it is possible to realize a CRL for practical use by choosing a suitable lens shape and material

  5. Development of a Fresnel lens for cold neutrons based on neutron refractive optics

    CERN Document Server

    Oku, T; Moriyasu, S; Yamagata, Y; Ohmori, H; Takizawa, Y; Shimizu, H M; Hirota, T; Kiyanagi, Y; Ino, T; Furusaka, M; Suzuki, J

    2001-01-01

    We have developed compound refractive lenses (CRLs) for cold neutrons, which are made of vitreous silica and have an effective potential of (90.1-2.7x10 sup - sup 4 i) neV. In the case of compound refractive optics, neutron absorption by the material deteriorates lens performance. Thus, to prevent an increase in neutron absorption with increasing beam size, we have developed Fresnel lenses using the electrolytic in-process dressing grinding technique. The lens characteristics were carefully investigated with experimental and numerical simulation studies. The lenses functioned as a neutron focusing lens, and the focal length of 14 m was obtained with a 44-element series of the Fresnel lenses for 10 A neutrons. Moreover, good neutron transmission of 0.65 for 15 A neutrons was obtained due to the shape effect. According to comprehensive analysis of the obtained results, it is possible to realize a CRL for practical use by choosing a suitable lens shape and material.

  6. Large depth of focus dynamic micro integral imaging for optical see-through augmented reality display using a focus-tunable lens.

    Science.gov (United States)

    Shen, Xin; Javidi, Bahram

    2018-03-01

    We have developed a three-dimensional (3D) dynamic integral-imaging (InIm)-system-based optical see-through augmented reality display with enhanced depth range of a 3D augmented image. A focus-tunable lens is adopted in the 3D display unit to relay the elemental images with various positions to the micro lens array. Based on resolution priority integral imaging, multiple lenslet image planes are generated to enhance the depth range of the 3D image. The depth range is further increased by utilizing both the real and virtual 3D imaging fields. The 3D reconstructed image and the real-world scene are overlaid using an optical see-through display for augmented reality. The proposed system can significantly enhance the depth range of a 3D reconstructed image with high image quality in the micro InIm unit. This approach provides enhanced functionality for augmented information and adjusts the vergence-accommodation conflict of a traditional augmented reality display.

  7. Studies on α-Al2O3: C based optically stimulated luminescence badge for eye lens monitoring applications

    International Nuclear Information System (INIS)

    Kumar, Munish; Kulkarni, M.S.; Ratna, P.; Gaikwad, N.; Tripathi, S.M.; Sharma, S.D.; Babu, D.A.R.; Bhatnagar, Amit; Muthe, K.P.; Sharma, D.N.

    2014-01-01

    The prototype two element eye-lens dosimeter badge based on indigenously developed α-Al 2 O 3 : C optically stimulated luminescence dosimeter was investigated comprehensively for its suitability for eye-lens monitoring applications. The badge is calibrated to measure the eye-lens dose in terms of H p (3). The minimum measurable dose using the eye-lens dosimeter badge is observed to be ∼ 35 μSv. This prototype eye-lens dosimeter badge was found to be suitable for measuring doses from X-rays, beta and gamma radiations to the eye-lens. The satisfactory performance of the prototype two element eye-lens dosimeter badge along with its attractive features such as multiple readout, less processing time, very good beta response uniquely position it for monitoring the eye-lens dose are presented. (author)

  8. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens.

    Science.gov (United States)

    Bonora, Stefano; Jian, Yifan; Zhang, Pengfei; Zam, Azhar; Pugh, Edward N; Zawadzki, Robert J; Sarunic, Marinko V

    2015-08-24

    Adaptive optics is rapidly transforming microscopy and high-resolution ophthalmic imaging. The adaptive elements commonly used to control optical wavefronts are liquid crystal spatial light modulators and deformable mirrors. We introduce a novel Multi-actuator Adaptive Lens that can correct aberrations to high order, and which has the potential to increase the spread of adaptive optics to many new applications by simplifying its integration with existing systems. Our method combines an adaptive lens with an imaged-based optimization control that allows the correction of images to the diffraction limit, and provides a reduction of hardware complexity with respect to existing state-of-the-art adaptive optics systems. The Multi-actuator Adaptive Lens design that we present can correct wavefront aberrations up to the 4th order of the Zernike polynomial characterization. The performance of the Multi-actuator Adaptive Lens is demonstrated in a wide field microscope, using a Shack-Hartmann wavefront sensor for closed loop control. The Multi-actuator Adaptive Lens and image-based wavefront-sensorless control were also integrated into the objective of a Fourier Domain Optical Coherence Tomography system for in vivo imaging of mouse retinal structures. The experimental results demonstrate that the insertion of the Multi-actuator Objective Lens can generate arbitrary wavefronts to correct aberrations down to the diffraction limit, and can be easily integrated into optical systems to improve the quality of aberrated images.

  9. Wide-field schematic eye models with gradient-index lens.

    Science.gov (United States)

    Goncharov, Alexander V; Dainty, Chris

    2007-08-01

    We propose a wide-field schematic eye model, which provides a more realistic description of the optical system of the eye in relation to its anatomical structure. The wide-field model incorporates a gradient-index (GRIN) lens, which enables it to fulfill properties of two well-known schematic eye models, namely, Navarro's model for off-axis aberrations and Thibos's chromatic on-axis model (the Indiana eye). These two models are based on extensive experimental data, which makes the derived wide-field eye model also consistent with that data. A mathematical method to construct a GRIN lens with its iso-indicial contours following the optical surfaces of given asphericity is presented. The efficiency of the method is demonstrated with three variants related to different age groups. The role of the GRIN structure in relation to the lens paradox is analyzed. The wide-field model with a GRIN lens can be used as a starting design for the eye inverse problem, i.e., reconstructing the optical structure of the eye from off-axis wavefront measurements. Anatomically more accurate age-dependent optical models of the eye could ultimately help an optical designer to improve wide-field retinal imaging.

  10. The partial coherence modulation transfer function in testing lithography lens

    Science.gov (United States)

    Huang, Jiun-Woei

    2018-03-01

    Due to the lithography demanding high performance in projection of semiconductor mask to wafer, the lens has to be almost free in spherical and coma aberration, thus, in situ optical testing for diagnosis of lens performance has to be established to verify the performance and to provide the suggesting for further improvement of the lens, before the lens has been build and integrated with light source. The measurement of modulation transfer function of critical dimension (CD) is main performance parameter to evaluate the line width of semiconductor platform fabricating ability for the smallest line width of producing tiny integrated circuits. Although the modulation transfer function (MTF) has been popularly used to evaluation the optical system, but in lithography, the contrast of each line-pair is in one dimension or two dimensions, analytically, while the lens stand along in the test bench integrated with the light source coherent or near coherent for the small dimension near the optical diffraction limit, the MTF is not only contributed by the lens, also by illumination of platform. In the study, the partial coherence modulation transfer function (PCMTF) for testing a lithography lens is suggested by measuring MTF in the high spatial frequency of in situ lithography lens, blended with the illumination of partial and in coherent light source. PCMTF can be one of measurement to evaluate the imperfect lens of lithography lens for further improvement in lens performance.

  11. Near-diffraction-limited and low-haze electro-optical tunable liquid crystal lens with floating electrodes.

    Science.gov (United States)

    Li, Liwei; Bryant, Doug; Van Heugten, Tony; Bos, Philip J

    2013-04-08

    A near-diffraction-limited, low-haze and tunable liquid crystal (LC) lens is presented. Building on an understanding of the key factors that have limited the performance of lenses based on liquid crystals, we show a simple design whose optical quality is similar to a high quality glass lens. It uses 'floating' electrodes to provide a smooth, controllable applied potential profile across the aperture to manage the phase profile.

  12. Computer optimization of retarding lens systems for ESCA spectrometers

    International Nuclear Information System (INIS)

    Wannberg, B.; Skoellermo, A.

    1977-01-01

    The performance of four-element electrostatic lenses as retarding systems between source and analyzer in ESCA spectrometers is calculated. The potential distribution in the lens is defined by an axial potential of the type phi(z)=V 0 +Σ(Vsub(i)-Vsub(i-1))/2 - tanh (ω/asub(i)(z-zsub(i))). For a given general shape of the lens and a given retardation ratio, the potentials of the two middle electrodes are fitted to give a paraxial image with a prescribed magnification at the exit slit of the lens system. The equipotential surfaces forming the electrodes are found by calculating the potential in an off-axis point, using the series expansion. All third-order geometrical and first-order chromatic aberrations of the lenses are calculated and used together with the second-order aberrations of the analyzer to calculate optimum dimensions of the lens elements and of the emittance-defining slits. A computer program, of which one part calculates the lens properties and one the properties of the entire system lens-analyzer, is described. Two lens systems are presented in some detail. The first one is intended for use with a hemispherical electrostatic analyzer. The angular acceptance is here defined by an aperture stop inside the lens. In this system, the image position and magnification can be kept constant for retardation ratios at least between 1:2 and 60:1, with moderate potentials on the middle electrodes. The second lens system is designed for a magnetic spectrometer of the π√2-type. Here, the central trajectory in the lens is slightly curved by the magnetic field, and the angular acceptance is defined by a baffle after the lens. This system is optimized for a constant retardation ratio of 5:1. (Auth.)

  13. The Time Lens Concept Applied to Ultra-High-Speed OTDM Signal Processing

    DEFF Research Database (Denmark)

    Clausen, Anders; Palushani, Evarist; Mulvad, Hans Christian Hansen

    2013-01-01

    This survey paper presents some of the applications where the versatile time-lens concept successfully can be applied to ultra-high-speed serial systems by offering expected needed functionalities for future optical communication networks.......This survey paper presents some of the applications where the versatile time-lens concept successfully can be applied to ultra-high-speed serial systems by offering expected needed functionalities for future optical communication networks....

  14. Modified optical fiber daylighting system with sunlight transportation in free space.

    Science.gov (United States)

    Vu, Ngoc-Hai; Pham, Thanh-Tuan; Shin, Seoyong

    2016-12-26

    We present the design, optical simulation, and experiment of a modified optical fiber daylighting system (M-OFDS) for indoor lighting. The M-OFDS is comprised of three sub-systems: concentration, collimation, and distribution. The concentration part is formed by coupling a Fresnel lens with a large-core plastic optical fiber. The sunlight collected by the concentration sub-system is propagated in a plastic optical fiber and then collimated by the collimator, which is a combination of a parabolic mirror and a convex lens. The collimated beam of sunlight travels in free space and is guided to the interior by directing flat mirrors, where it is diffused uniformly by a distributor. All parameters of the system are calculated theoretically. Based on the designed system, our simulation results demonstrated a maximum optical efficiency of 71%. The simulation results also showed that sunlight could be delivered to the illumination destination at distance of 30 m. A prototype of the M-OFDS was fabricated, and preliminary experiments were performed outdoors. The simulation results and experimental results confirmed that the M-OFDS was designed effectively. A large-scale system constructed by several M-OFDSs is also proposed. The results showed that the presented optical fiber daylighting system is a strong candidate for an inexpensive and highly efficient application of solar energy in buildings.

  15. High Dk piggyback contact lens system for contact lens-intolerant keratoconus patients.

    Science.gov (United States)

    Sengor, Tomris; Kurna, Sevda Aydin; Aki, Suat; Ozkurt, Yelda

    2011-01-01

    The aim of the study was to examine the clinical success of high Dk (oxygen permeability) piggyback contact lens (PBCL) systems for the correction of contact lens intolerant keratoconus patients. Sixteen patients (29 eyes) who were not able to wear gas-permeable rigid lenses were included in this study. Hyper Dk silicone hydrogel (oxygen transmissibility or Dk/t = 150 units) and fluorosilicone methacrylate copolymer (Dk/t = 100 units) lenses were chosen as the PBCL systems. The clinical examinations included visual acuity and corneal observation by biomicroscopy, keratometer reading, and fluorescein staining before and after fitting the PBCL system. INDICATIONS FOR USING PBCL SYSTEM WERE: lens stabilization and comfort, improving comfort, and adding protection to the cone. Visual acuities increased significantly in all of the patients compared with spectacles (P = 0). Improvement in visual acuity compared with rigid lenses alone was recorded in 89.7% of eyes and no alteration of the visual acuity was observed in 10.3% of the eyes. Wearing time of PBCL systems for most of the patients was limited time (mean 6 months, range 3-12 months); thereafter they tolerated rigid lenses alone except for 2 patients. The PBCL system is a safe and effective method to provide centering and corneal protection against mechanical trauma by the rigid lenses for keratoconus patients and may increase contact lens tolerance.

  16. Measurement of Crystalline Lens Volume During Accommodation in a Lens Stretcher.

    Science.gov (United States)

    Marussich, Lauren; Manns, Fabrice; Nankivil, Derek; Maceo Heilman, Bianca; Yao, Yue; Arrieta-Quintero, Esdras; Ho, Arthur; Augusteyn, Robert; Parel, Jean-Marie

    2015-07-01

    To determine if the lens volume changes during accommodation. The study used data acquired on 36 cynomolgus monkey lenses that were stretched in a stepwise fashion to simulate disaccommodation. At each step, stretching force and dioptric power were measured and a cross-sectional image of the lens was acquired using an optical coherence tomography system. Images were corrected for refractive distortions and lens volume was calculated assuming rotational symmetry. The average change in lens volume was calculated and the relation between volume change and power change, and between volume change and stretching force, were quantified. Linear regressions of volume-power and volume-force plots were calculated. The mean (± SD) volume in the unstretched (accommodated) state was 97 ± 8 mm3. On average, there was a small but statistically significant (P = 0.002) increase in measured lens volume with stretching. The mean change in lens volume was +0.8 ± 1.3 mm3. The mean volume-power and volume-load slopes were -0.018 ± 0.058 mm3/D and +0.16 ± 0.40 mm3/g. Lens volume remains effectively constant during accommodation, with changes that are less than 1% on average. This result supports a hypothesis that the change in lens shape with accommodation is accompanied by a redistribution of tissue within the capsular bag without significant compression of the lens contents or fluid exchange through the capsule.

  17. Restoring in-phase emissions from non-planar radiating elements using a transformation optics based lens

    International Nuclear Information System (INIS)

    Yi, Jianjia; Burokur, Shah Nawaz; Lustrac, André de; Piau, Gérard-Pascal

    2015-01-01

    The broadband directive in-phase emission from an array of sources conformed cylindrically is numerically and experimentally reported. Such manipulation is achieved through the use of a lens designed by transformation optics concept. The all-dielectric lens prototype is realized through three-dimensional (3D) polyjet printing and presents a graded refractive index. A microstrip antenna array fabricated using standard lithography techniques and conformed on a cylindrical surface is used as TE-polarized wave launcher for the lens. To experimentally demonstrate the broadband focusing properties and in-phase directive emissions, both the far-field radiation patterns and the near-field distributions have been measured. Experimental measurements agreeing qualitatively with numerical simulations validate the proposed lens and open the way to inexpensive all-dielectric microwave lenses for beam forming and collimation

  18. Restoring in-phase emissions from non-planar radiating elements using a transformation optics based lens

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Jianjia [IEF, CNRS, UMR 8622, Université Paris-Sud, 91405 Orsay Cedex (France); Burokur, Shah Nawaz, E-mail: shah-nawaz.burokur@u-psud.fr; Lustrac, André de [IEF, CNRS, UMR 8622, Université Paris-Sud, 91405 Orsay Cedex (France); Université Paris-Ouest, 92410 Ville d' Avray (France); Piau, Gérard-Pascal [AIRBUS Group Innovations, 92150 Suresnes (France)

    2015-07-13

    The broadband directive in-phase emission from an array of sources conformed cylindrically is numerically and experimentally reported. Such manipulation is achieved through the use of a lens designed by transformation optics concept. The all-dielectric lens prototype is realized through three-dimensional (3D) polyjet printing and presents a graded refractive index. A microstrip antenna array fabricated using standard lithography techniques and conformed on a cylindrical surface is used as TE-polarized wave launcher for the lens. To experimentally demonstrate the broadband focusing properties and in-phase directive emissions, both the far-field radiation patterns and the near-field distributions have been measured. Experimental measurements agreeing qualitatively with numerical simulations validate the proposed lens and open the way to inexpensive all-dielectric microwave lenses for beam forming and collimation.

  19. Perfect imaging of three object points with only two analytic lens surfaces in two dimensions

    Science.gov (United States)

    Duerr, Fabian; Benítez, Pablo; Miñano, Juan Carlos; Meuret, Youri; Thienpont, Hugo

    2012-06-01

    In this work, a new two-dimensional analytic optics design method is presented that enables the coupling of three ray sets with two lens profiles. This method is particularly promising for optical systems designed for wide field of view and with clearly separated optical surfaces. However, this coupling can only be achieved if different ray sets will use different portions of the second lens profile. Based on a very basic example of a single thick lens, the Simultaneous Multiple Surfaces design method in two dimensions (SMS2D) will help to provide a better understanding of the practical implications on the design process by an increased lens thickness and a wider field of view. Fermat's principle is used to deduce a set of functional differential equations fully describing the entire optical system. The transformation of these functional differential equations into an algebraic linear system of equations allows the successive calculation of the Taylor series coefficients up to an arbitrary order. The evaluation of the solution space reveals the wide range of possible lens configurations covered by this analytic design method. Ray tracing analysis for calculated 20th order Taylor polynomials demonstrate excellent performance and the versatility of this new analytical optics design concept.

  20. All-optical microscope autofocus based on an electrically tunable lens and a totally internally reflected IR laser.

    Science.gov (United States)

    Bathe-Peters, M; Annibale, P; Lohse, M J

    2018-02-05

    Microscopic imaging at high spatial-temporal resolution over long time scales (minutes to hours) requires rapid and precise stabilization of the microscope focus. Conventional and commercial autofocus systems are largely based on piezoelectric stages or mechanical objective actuators. Objective to sample distance is either measured by image analysis approaches or by hardware modules measuring the intensity of reflected infrared light. We propose here a truly all-optical microscope autofocus taking advantage of an electrically tunable lens and a totally internally reflected infrared probe beam. We implement a feedback-loop based on the lateral position of a totally internally reflected infrared laser on a quadrant photodetector, as an indicator of the relative defocus. We show here how to treat the combined contributions due to mechanical defocus and deformation of the tunable lens. As a result, the sample can be kept in focus without any mechanical movement, at rates up to hundreds of Hertz. The device requires only reflective optics and can be implemented at a fraction of the cost required for a comparable piezo-based actuator.

  1. Changes in monkey crystalline lens spherical aberration during simulated accommodation in a lens stretcher.

    Science.gov (United States)

    Maceo Heilman, Bianca; Manns, Fabrice; de Castro, Alberto; Durkee, Heather; Arrieta, Esdras; Marcos, Susana; Parel, Jean-Marie

    2015-02-10

    The purpose of this study was to quantify accommodation-induced changes in the spherical aberration of cynomolgus monkey lenses. Twenty-four lenses from 20 cynomolgus monkeys (Macaca fascicularis; 4.4-16.0 years of age; postmortem time 13.5 ± 13.0 hours) were mounted in a lens stretcher. Lens spherical aberration was measured in the unstretched (accommodated) and stretched (relaxed) states with a laser ray tracing system that delivered 51 equally spaced parallel rays along 1 meridian of the lens over the central 6-mm optical zone. A camera mounted below the lens was used to measure the ray height at multiple positions along the optical axis. For each entrance ray, the change in ray height with axial position was fitted with a third-order polynomial. The effective paraxial focal length and Zernike spherical aberration coefficients corresponding to a 6-mm pupil diameter were extracted from the fitted values. The unstretched lens power decreased with age from 59.3 ± 4.0 diopters (D) for young lenses to 45.7 ± 3.1 D for older lenses. The unstretched lens shifted toward less negative spherical aberration with age, from -6.3 ± 0.7 μm for young lenses to -5.0 ± 0.5 μm for older lenses. The power and spherical aberration of lenses in the stretched state were independent of age, with values of 33.5 ± 3.4 D and -2.6 ± 0.5 μm, respectively. Spherical aberration is negative in cynomolgus monkey lenses and becomes more negative with accommodation. These results are in good agreement with the predicted values using computational ray tracing in a lens model with a reconstructed gradient refractive index. The spherical aberration of the unstretched lens becomes less negative with age. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  2. Freeform lens design for LED collimating illumination.

    Science.gov (United States)

    Chen, Jin-Jia; Wang, Te-Yuan; Huang, Kuang-Lung; Liu, Te-Shu; Tsai, Ming-Da; Lin, Chin-Tang

    2012-05-07

    We present a simple freeform lens design method for an application to LED collimating illumination. The method is derived from a basic geometric-optics analysis and construction approach. By using this method, a highly collimating lens with LED chip size of 1.0 mm × 1.0 mm and optical simulation efficiency of 86.5% under a view angle of ± 5 deg is constructed. To verify the practical performance of the lens, a prototype of the collimator lens is also made, and an optical efficiency of 90.3% with a beam angle of 4.75 deg is measured.

  3. Optical turbulence in a spinning pipe gas lens

    CSIR Research Space (South Africa)

    Mafusire, C

    2009-07-01

    Full Text Available in the Spinning Pipe Gas Lens by optical means • Axial Propagation • Boundary Layer Phase Structure Function and Slope Correlation • Slope Correlation ( ) ( ) ( )[ ]2rrxrD φφφ −+= ( ) ( ) ( )rsrxsrCs += Inner Scale Outer Scale • Phase Structure Function... -----------------------Mean 4 3 2 1 DΦ(r2) or SC(r2) DΦ(r1) or SC(r1) Phase Structure Function ( ) oon Lrl,LC.logrlogrDlog ≤≤⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ ⎟⎠ ⎞⎜⎝ ⎛+= 2 22912 3 5 λ π φ Homogeneity Isotropy Boundary LayerAxisPropagation Path 1. Axial propagation fulfils...

  4. The Role of Aquaporins in Ocular Lens Homeostasis

    Science.gov (United States)

    Schey, Kevin L.; Petrova, Rosica S.; Gletten, Romell B.; Donaldson, Paul J.

    2017-01-01

    Aquaporins (AQPs), by playing essential roles in the maintenance of ocular lens homeostasis, contribute to the establishment and maintenance of the overall optical properties of the lens over many decades of life. Three aquaporins, AQP0, AQP1 and AQP5, each with distinctly different functional properties, are abundantly and differentially expressed in the different regions of the ocular lens. Furthermore, the diversity of AQP functionality is increased in the absence of protein turnover by age-related modifications to lens AQPs that are proposed to alter AQP function in the different regions of the lens. These regional differences in AQP functionality are proposed to contribute to the generation and directionality of the lens internal microcirculation; a system of circulating ionic and fluid fluxes that delivers nutrients to and removes wastes from the lens faster than could be achieved by passive diffusion alone. In this review, we present how regional differences in lens AQP isoforms potentially contribute to this microcirculation system by highlighting current areas of investigation and emphasizing areas where future work is required. PMID:29231874

  5. Refractive power and biometric properties of the nonhuman primate isolated crystalline lens.

    Science.gov (United States)

    Borja, David; Manns, Fabrice; Ho, Arthur; Ziebarth, Noel M; Acosta, Ana Carolina; Arrieta-Quintera, Esdras; Augusteyn, Robert C; Parel, Jean-Marie

    2010-04-01

    Purpose. To characterize the age dependence of shape, refractive power, and refractive index of isolated lenses from nonhuman primates. Methods. Measurements were performed on ex vivo lenses from cynomolgus monkeys (cyno: n = 120; age, 2.7-14.3 years), rhesus monkeys (n = 61; age, 0.7-13.3 years), and hamadryas baboons (baboon: n = 16; age, 1.7-27.3 years). Lens thickness, diameter, and surface curvatures were measured with an optical comparator. Lens refractive power was measured with a custom optical system based on the Scheiner principle. The refractive contributions of the gradient, the surfaces, and the equivalent refractive index were calculated with optical ray-tracing software. The age dependence of the optical and biometric parameters was assessed. Results. Over the measured age range isolated lens thickness decreased (baboon: -0.04, cyno: -0.05, and rhesus: -0.06 mm/y) and equatorial diameter increased (logarithmically for the baboon and rhesus, and linearly for cyno: 0.07 mm/y). The isolated lens surfaces flattened and the corresponding refractive power from the surfaces decreased with age (-0.33, -0.48, and -0.68 D/y). The isolated lens equivalent refractive index decreased (only significant for the baboon, -0.001 D/y), and as a result the total isolated lens refractive power decreased with age (baboon: -1.26, cyno: -0.97, and rhesus: -1.76 D/y). Conclusions. The age-dependent trends in the optical and biometric properties, growth, and aging, of nonhuman primate lenses are similar to those of the pre-presbyopic human lens. As the lens ages, the decrease in refractive contributions from the gradient refractive index causes a rapid age-dependent decrease in maximally accommodated lens refractive power.

  6. Athermal design for mid-wave infrared lens with long EFFL

    Science.gov (United States)

    Bai, Yu; Xing, Tingwen

    2016-10-01

    When the environment temperature has changed, then each parameter in infrared lens has also changed, thus the image quality became bad, so athermal technology is one of key technology in designing infrared lens. The temperature influence of each parameter in infrared lens is analyzed in the paper. In the paper, an athermal mid-wave infrared optical system with long focal length by Code-v optical design software was presented. The parameters of the athermal infrared system are 4.0 f/number, 704mm effective focal length (EFL) , 1° field of view and 3.7-4.8 μm spectrum region 100% cold shield efficiency. When the spatial frequency is 16lp/mm, the Modulation Transfer Function (MTF) of all the field of view was above 0.5 from the working temperature range -40° to 60°. From the image quality and thermal analysis result, we knew that the lens had good athermal performance.

  7. The NSLS-II Multilayer Laue Lens Deposition System

    International Nuclear Information System (INIS)

    Conley, R.; Bouet, N.; Biancarosa, J.; Shen, Q.; Boas, L.; Feraca, J.; Rosenbaum, L.

    2009-01-01

    The NSLS-II(1) program has a requirement for an unprecedented level of x-ray nanofocusing and has selected the wedged multilayer Laue lens(2,3) (MLL) as the optic of choice to meet this goal. In order to fabricate the MLL a deposition system is required that is capable of depositing depth-graded and laterally-graded multilayers with precise thickness control over many thousands of layers, with total film growth in one run up to 100 m thick or greater. This machine design expounds on the positive features of a rotary deposition system(4) constructed previously for MLLs and will contain multiple stationary, horizontally-oriented magnetron sources where a transport will move a substrate back and forth in a linear fashion over shaped apertures at well-defined velocities to affect a multilayer coating.

  8. Three-dimensional (3-D) video systems: bi-channel or single-channel optics?

    Science.gov (United States)

    van Bergen, P; Kunert, W; Buess, G F

    1999-11-01

    This paper presents the results of a comparison between two different three-dimensional (3-D) video systems, one with single-channel optics, the other with bi-channel optics. The latter integrates two lens systems, each transferring one half of the stereoscopic image; the former uses only one lens system, similar to a two-dimensional (2-D) endoscope, which transfers the complete stereoscopic picture. In our training centre for minimally invasive surgery, surgeons were involved in basic and advanced laparoscopic courses using both a 2-D system and the two 3-D video systems. They completed analog scale questionnaires in order to record a subjective impression of the relative convenience of operating in 2-D and 3-D vision, and to identify perceived deficiencies in the 3-D system. As an objective test, different experimental tasks were developed, in order to measure performance times and to count pre-defined errors made while using the two 3-D video systems and the 2-D system. Using the bi-channel optical system, the surgeon has a heightened spatial perception, and can work faster and more safely than with a single-channel system. However, single-channel optics allow the use of an angulated endoscope, and the free rotation of the optics relative to the camera, which is necessary for some operative applications.

  9. Optical transfection using an endoscope-like system.

    Science.gov (United States)

    Ma, Nan; Gunn-Moore, Frank; Dholakia, Kishan

    2011-02-01

    Optical transfection is a powerful method for targeted delivery of therapeutic agents to biological cells. A tightly focused pulsed laser beam may transiently change the permeability of a cell membrane to facilitate the delivery of foreign genetic material into cells. We report the first realization of an endoscope-like integrated system for optical transfection. An imaging fiber (coherent optical fiber bundle) with ∼ 6000 cores (pixels) embedded in a fiber cladding of ∼ 300 μm in diameter, produces an image circle (area) of ∼ 270 μm diam. This imaging fiber, with an ordered axicon lens array chemically etched at its exit face, is used for the delivery of a femtosecond laser to the cell membrane for optical transfection along with subcellular resolution imaging. A microcapillary-based microfluidic system for localized drug delivery was also combined in this miniature, flexible system. Using this novel system, a plasmid transfection efficiency up to ∼ 72% was obtained for CHO-K1 cells. This endoscope-like system opens a range of exciting applications, in particular, in the targeted in vivo optical microsurgery area.

  10. Effects of x-irradiation on lens reducing systems

    International Nuclear Information System (INIS)

    Giblin, F.J.; Chakrapani, B.; Reddy, V.N.

    1978-01-01

    Studies have been made of the effects of x ray on various lens reducing systems including the levels of NADPH and glutathione (GSH), the activity of the hexose monophosphate shunt (HMS), and the activities of certain enzymes including glutathion reductase, glutathione peroxidase, and glucose-6-phosphate dehydrogenase (G-6-PD). It was found that during several weeks following x irradiation but prior to cataract formation there was very little change in the number of reduced -SH groups per unit weight of lens protein but that, with the appearance of cataract, there was a sudden loss of protein -SH groups. In contrast, the concentration of GSH in the x-rayed lens decreased throughout the experimental period. Similarly, the concentration of NADPH in the x-rayed lens was found to decrease significantly relative to controls one week prior to cataract formation and the ratio of NADPH to NADP + in the lens shifted at this time period from a value greater than 1.0 in the control lens to less than 1.0 in the x-rayed lens. A corresponding decrease occurred in the activity of the HMS in x-rayed lenses as measured by culture in the presence of 1- 14 C-labelled glucose. G-6-PD was partially inactivated in the x-rayed lens. Of the eight enzymes studied, G-6-PD appeared to be the most sensitive to x-irradiation. The data indicate that x-irradiation results in a steady decrease in the effectiveness of lens reducing systems and that, when these systems reach a critically low point, sudden oxidation of protein -SH groups and formation of high molecular weight protein aggregates may be initiated

  11. Quadrupole magnetic lens

    International Nuclear Information System (INIS)

    Piskunov, V.A.

    1981-01-01

    The following connection of windings of electromagnet is suggested for simplification of the design of qUadrupole magnetic lens intended for use in radiotechnical and electron-optical devices. The mentioned windings are connected with each other by a bridge scheme and the variable resistors are switched in its diagonals in the lens containing four electromagnet with windings connected with two variable resistors the mobile contacts of which are connected with a direct current source. Current redistribution between left windings and right windings takes place at shift of mobile contact of variable resistor, and current redistribution between upper and low coils of electromagnets takes place at shifting mobile contact of the other variable resistor. In this case smooth and independent electron-optical misalignment of lens by two mutually perpendicular directions proceeds. Use of the given design of the lens in the oscillograph permits to use printing assembly for alignment plate and to reduce the number of connections at the expense of decreasing the number of resistors

  12. Placement of a crystalline lens and intraocular lens: Retinal image quality.

    Science.gov (United States)

    Siedlecki, Damian; Nowak, Jerzy; Zajac, Marek

    2006-01-01

    The influence of changes of both crystalline lens and intraocular lens (IOL) misalignment on the retinal image quality was investigated. The optical model of the eye used in investigations was the Liou-Brennan model, which is commonly considered as one of the most anatomically accurate. The original crystalline lens from this model was replaced with an IOL, made of rigid polymethylmethacrylate, in a way that recommend obligatory procedures. The modifications that were made both for crystalline lens and IOL were the longitudinal, the transversal, and the angular displacement.

  13. Properties of the cathode lens combined with a focusing magnetic/immersion-magnetic lens

    International Nuclear Information System (INIS)

    Konvalina, I.; Muellerova, I.

    2011-01-01

    The cathode lens is an electron optical element in an emission electron microscope accelerating electrons from the sample, which serves as a source for a beam of electrons. Special application consists in using the cathode lens first for retardation of an illuminating electron beam and then for acceleration of reflected as well as secondary electrons, made in the directly imaging low energy electron microscope or in its scanning version discussed here. In order to form a real image, the cathode lens has to be combined with a focusing magnetic lens or a focusing immersion-magnetic lens, as used for objective lenses of some commercial scanning electron microscopes. These two alternatives are compared with regards to their optical properties, in particular with respect to predicted aberration coefficients and the spot size, as well as the optimum angular aperture of the primary beam. The important role of the final aperture size on the image resolution is also presented.

  14. Optical design and fabrication of palm/fingerprint uniform illumination system with a high-power near-infrared light-emitting diode.

    Science.gov (United States)

    Jing, Lei; Wang, Yao; Zhao, Huifu; Ke, Hongliang; Wang, Xiaoxun; Gao, Qun

    2017-06-10

    In order to meet the requirements of uniform illumination for optical palm/fingerprint instruments and overcome the shortcomings of the poor uniform illumination on the working plane of the optical palm/fingerprint prism, a novel secondary optical lens with a free-form surface, compact structure, and high uniformity is presented in this paper. The design of the secondary optical lens is based on emission properties of the near-infrared light-emitting diode (LED) and basic principles of non-imaging optics, especially considering the impact of the thickness of the prism in the design. Through the numerical solution of Snell's law in geometric optics, we obtain the profile of the free-form surface of the lens. Using the optical software TracePro, we trace and simulate the illumination system. The results show that the uniformity is 89.8% on the working plane of the prism, and the test results show that the actual uniformity reaches 85.7% in the experiment, which provides an effective way for realizing a highly uniform illumination system with high-power near-infrared LED.

  15. Camera System MTF: combining optic with detector

    Science.gov (United States)

    Andersen, Torben B.; Granger, Zachary A.

    2017-08-01

    MTF is one of the most common metrics used to quantify the resolving power of an optical component. Extensive literature is dedicated to describing methods to calculate the Modulation Transfer Function (MTF) for stand-alone optical components such as a camera lens or telescope, and some literature addresses approaches to determine an MTF for combination of an optic with a detector. The formulations pertaining to a combined electro-optical system MTF are mostly based on theory, and assumptions that detector MTF is described only by the pixel pitch which does not account for wavelength dependencies. When working with real hardware, detectors are often characterized by testing MTF at discrete wavelengths. This paper presents a method to simplify the calculation of a polychromatic system MTF when it is permissible to consider the detector MTF to be independent of wavelength.

  16. Optical fiber inspection system

    Science.gov (United States)

    Moore, Francis W.

    1987-01-01

    A remote optical inspection system including an inspection head. The inspection head has a passageway through which pellets or other objects are passed. A window is provided along the passageway through which light is beamed against the objects being inspected. A plurality of lens assemblies are arranged about the window so that reflected light can be gathered and transferred to a plurality of coherent optical fiber light guides. The light guides transfer the light images to a television or other image transducer which converts the optical images into a representative electronic signal. The electronic signal can then be displayed on a signal viewer such as a television monitor for inspection by a person. A staging means can be used to support the objects for viewing through the window. Routing means can be used to direct inspected objects into appropriate exit passages for accepted or rejected objects. The inspected objects are advantageously fed in a singular manner to the staging means and routing means. The inspection system is advantageously used in an enclosure when toxic or hazardous materials are being inspected.

  17. A super-oscillatory lens optical microscope for subwavelength imaging.

    Science.gov (United States)

    Rogers, Edward T F; Lindberg, Jari; Roy, Tapashree; Savo, Salvatore; Chad, John E; Dennis, Mark R; Zheludev, Nikolay I

    2012-03-25

    The past decade has seen an intensive effort to achieve optical imaging resolution beyond the diffraction limit. Apart from the Pendry-Veselago negative index superlens, implementation of which in optics faces challenges of losses and as yet unattainable fabrication finesse, other super-resolution approaches necessitate the lens either to be in the near proximity of the object or manufactured on it, or work only for a narrow class of samples, such as intensely luminescent or sparse objects. Here we report a new super-resolution microscope for optical imaging that beats the diffraction limit of conventional instruments and the recently demonstrated near-field optical superlens and hyperlens. This non-invasive subwavelength imaging paradigm uses a binary amplitude mask for direct focusing of laser light into a subwavelength spot in the post-evanescent field by precisely tailoring the interference of a large number of beams diffracted from a nanostructured mask. The new technology, which--in principle--has no physical limits on resolution, could be universally used for imaging at any wavelength and does not depend on the luminescence of the object, which can be tens of micrometres away from the mask. It has been implemented as a straightforward modification of a conventional microscope showing resolution better than λ/6.

  18. Method of determining effects of heat-induced irregular refractive index on an optical system.

    Science.gov (United States)

    Song, Xifa; Li, Lin; Huang, Yifan

    2015-09-01

    The effects of an irregular refractive index on optical performance are examined. A method was developed to express a lens's irregular refractive index distribution. An optical system and its mountings were modeled by a thermomechanical finite element (FE) program in the predicted operating temperature range, -45°C-50°C. FE outputs were elaborated using a MATLAB optimization routine; a nonlinear least squares algorithm was adopted to determine which gradient equation best fit each lens's refractive index distribution. The obtained gradient data were imported into Zemax for sequential ray-tracing analysis. The root mean square spot diameter, modulation transfer function, and diffraction ensquared energy were computed for an optical system under an irregular refractive index and under thermoelastic deformation. These properties are greatly reduced by the irregular refractive index effect, which is one-third to five-sevenths the size of the thermoelastic deformation effect. Thus, thermal analyses of optical systems should consider not only thermoelastic deformation but also refractive index irregularities caused by inhomogeneous temperature.

  19. Generation of flat wideband chaos with suppressed time delay signature by using optical time lens.

    Science.gov (United States)

    Jiang, Ning; Wang, Chao; Xue, Chenpeng; Li, Guilan; Lin, Shuqing; Qiu, Kun

    2017-06-26

    We propose a flat wideband chaos generation scheme that shows excellent time delay signature suppression effect, by injecting the chaotic output of general external cavity semiconductor laser into an optical time lens module composed of a phase modulator and two dispersive units. The numerical results demonstrate that by properly setting the parameters of the driving signal of phase modulator and the accumulated dispersion of dispersive units, the relaxation oscillation in chaos can be eliminated, wideband chaos generation with an efficient bandwidth up to several tens of GHz can be achieved, and the RF spectrum of generated chaotic signal is nearly as flat as uniform distribution. Moreover, the periodicity of chaos induced by the external cavity modes can be simultaneously destructed by the optical time lens module, based on this the time delay signature can be completely suppressed.

  20. OPTICAL ILLUSION DESIGN BASED ON FOUR CONVEX LENSES SYSTEM AND CLOAKING AREA CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    I. T. Sugiarto

    2018-01-01

    Full Text Available A set up of optical illusion based on 4f system and characterization of cloaking area have been carried out. The cloaking area is an area where the object is placed on the area as if it disappears from view; the set-up of cloaking area is located at the top of the third lens. The distance between the lens and the cloaking, which is generated from 4f system, depends on the size of the focal point and the size of the lens used. The larger the focal point of the lens used the wider the distance between the lenses and the larger the size of the diameter of the lens, the cloaking range will be increasingly wide, and vice versa. From the experimental results that we obtained that the cloaking area for set up using FL (focusing lens 100, 50, 50 and 100 mm with a diameter of 3.6 cm lens is ± 2 cm, whereas for the set up using lens FL 150, 100, 100 and 150 mm with lens diameter 2.54 cm is ± 1 cm.

  1. Combined optic system based on polycapillary X-ray optics and single-bounce monocapillary optics for focusing X-rays from a conventional laboratory X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xuepeng; Liu, Zhiguo [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi, E-mail: stx@bnu.edu.cn [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Yi, Longtao; Sun, Weiyuan; Li, Fangzuo; Jiang, Bowen [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Ma, Yongzhong [Center for Disease Control and Prevention of Beijing, Beijing 100013 (China); Ding, Xunliang [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2015-12-01

    Two combined optic systems based on polycapillary X-ray optics and single-bounce monocapillary optics (SBMO) were designed for focusing the X-rays from a conventional laboratory X-ray source. One was based on a polycapillary focusing X-ray lens (PFXRL) and a single-bounce ellipsoidal capillary (SBEC), in which the output focal spot with the size of tens of micrometers of the PFXRL was used as the “virtual” X-ray source for the SBEC. The other system was based on a polycapillary parallel X-ray lens (PPXRL) and a single-bounce parabolic capillary (SBPC), in which the PPXRL transformed the divergent X-ray beam from an X-ray source into a quasi-parallel X-ray beam with the divergence of sever milliradians as the incident illumination of the SBPC. The experiment results showed that the combined optic systems based on PFXRL and SBEC with a Mo rotating anode X-ray generator with the focal spot with a diameter of 300 μm could obtain a focal spot with the total gain of 14,300 and focal spot size of 37.4 μm, and the combined optic systems based on PPXRL and SBPC with the same X-ray source mentioned above could acquire a focal spot with the total gain of 580 and focal spot size of 58.3 μm, respectively. The two combined optic systems have potential applications in micro X-ray diffraction, micro X-ray fluorescence, micro X-ray absorption near edge structure, full field X-ray microscopes and so on.

  2. Linear and nonlinear optical properties of a hydrogenic donor in lens-shaped quantum dots

    International Nuclear Information System (INIS)

    Vahdani, M.R.K.; Rezaei, G.

    2009-01-01

    Optical transitions in a Lens-Shaped Quantum Dot (LSD) are investigated in the presence of a hydrogenic impurity. The electronic wave functions are obtained analytically and the energy eigenvalues are calculated numerically. The density matrix formulation with the intersubband relaxation are used to evaluate the (linear and third order nonlinear) absorption coefficient (AC) and the change in the refractive indices (RI) analytically. The effect of the size of the LSD and optical intensity on the AC and RI are investigated. It is found that AC and RI are strongly affected by the optical intensity and the size of the LSD.

  3. Linear and nonlinear optical properties of a hydrogenic donor in lens-shaped quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Vahdani, M.R.K. [Department of Physics, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Rezaei, G., E-mail: grezaei@mail.yu.ac.i [Department of Physics, College of Sciences, Yasouj University, Yasouj 75914 (Iran, Islamic Republic of)

    2009-08-17

    Optical transitions in a Lens-Shaped Quantum Dot (LSD) are investigated in the presence of a hydrogenic impurity. The electronic wave functions are obtained analytically and the energy eigenvalues are calculated numerically. The density matrix formulation with the intersubband relaxation are used to evaluate the (linear and third order nonlinear) absorption coefficient (AC) and the change in the refractive indices (RI) analytically. The effect of the size of the LSD and optical intensity on the AC and RI are investigated. It is found that AC and RI are strongly affected by the optical intensity and the size of the LSD.

  4. Characterization of lens based photoacoustic imaging system

    Directory of Open Access Journals (Sweden)

    Kalloor Joseph Francis

    2017-12-01

    Full Text Available Some of the challenges in translating photoacoustic (PA imaging to clinical applications includes limited view of the target tissue, low signal to noise ratio and the high cost of developing real-time systems. Acoustic lens based PA imaging systems, also known as PA cameras are a potential alternative to conventional imaging systems in these scenarios. The 3D focusing action of lens enables real-time C-scan imaging with a 2D transducer array. In this paper, we model the underlying physics in a PA camera in the mathematical framework of an imaging system and derive a closed form expression for the point spread function (PSF. Experimental verification follows including the details on how to design and fabricate the lens inexpensively. The system PSF is evaluated over a 3D volume that can be imaged by this PA camera. Its utility is demonstrated by imaging phantom and an ex vivo human prostate tissue sample.

  5. Characterization of lens based photoacoustic imaging system.

    Science.gov (United States)

    Francis, Kalloor Joseph; Chinni, Bhargava; Channappayya, Sumohana S; Pachamuthu, Rajalakshmi; Dogra, Vikram S; Rao, Navalgund

    2017-12-01

    Some of the challenges in translating photoacoustic (PA) imaging to clinical applications includes limited view of the target tissue, low signal to noise ratio and the high cost of developing real-time systems. Acoustic lens based PA imaging systems, also known as PA cameras are a potential alternative to conventional imaging systems in these scenarios. The 3D focusing action of lens enables real-time C-scan imaging with a 2D transducer array. In this paper, we model the underlying physics in a PA camera in the mathematical framework of an imaging system and derive a closed form expression for the point spread function (PSF). Experimental verification follows including the details on how to design and fabricate the lens inexpensively. The system PSF is evaluated over a 3D volume that can be imaged by this PA camera. Its utility is demonstrated by imaging phantom and an ex vivo human prostate tissue sample.

  6. Recent Developments In High Speed Lens Design At The NPRL

    Science.gov (United States)

    Mcdowell, M. W.; Klee, H. W.

    1987-09-01

    Although the lens provides the link between the high speed camera and the outside world, there has over the years been little evidence of co-operation between the optical design and high speed photography communities. It is still only too common for a manufacturer to develop a camera of improved performance and resolution and then to combine this with a standard camera lens. These lenses were often designed for a completely different recording medium and, more often than not, their use results in avoidable degradation of the overall system performance. There is a tendency to assume that a specialized lens would be too expensive and that pushing the aperture automatically implies more complex optical systems. In the present paper some recent South African developments in the design of large aperture lenses are described. The application of a new design principle, based on the work earlier this century of Bernhard Schmidt, shows that ultra-fast lenses need not be overly complex and a basic four-element lens configuration can be adapted to a wide variety of applications.

  7. Wide-range tunable magnetic lens for tabletop electron microscope

    International Nuclear Information System (INIS)

    Chang, Wei-Yu; Chen, Fu-Rong

    2016-01-01

    A tabletop scanning electron microscope (SEM) utilizes permanent magnets as condenser lenses to minimize its size, but this sacrifices the tunability of condenser lenses such that a tabletop system can only be operated with a fixed accelerating voltage. In contrast, the traditional condenser lens utilizes an electromagnetic coil to adjust the optical properties, but the size of the electromagnetic lens is inevitably larger. Here, we propose a tunable condenser lens for a tabletop SEM that uses a combination of permanent magnets and electromagnetic coils. The overall dimensions of the newly designed lens are the same as the original permanent magnet lens, but the new lens allows the tabletop SEM to be operated at different accelerating voltages between 1 kV and 15 kV. - Highlights: • A compact condenser lens combines both permanent magnet and coils. • A tunable lens is designed to keep the same focal point for voltage 1 to 15 kV. • A miniature tunable lens which can directly fit into tabletop SEM.

  8. Wide-range tunable magnetic lens for tabletop electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Wei-Yu; Chen, Fu-Rong, E-mail: fchen1@me.com

    2016-12-15

    A tabletop scanning electron microscope (SEM) utilizes permanent magnets as condenser lenses to minimize its size, but this sacrifices the tunability of condenser lenses such that a tabletop system can only be operated with a fixed accelerating voltage. In contrast, the traditional condenser lens utilizes an electromagnetic coil to adjust the optical properties, but the size of the electromagnetic lens is inevitably larger. Here, we propose a tunable condenser lens for a tabletop SEM that uses a combination of permanent magnets and electromagnetic coils. The overall dimensions of the newly designed lens are the same as the original permanent magnet lens, but the new lens allows the tabletop SEM to be operated at different accelerating voltages between 1 kV and 15 kV. - Highlights: • A compact condenser lens combines both permanent magnet and coils. • A tunable lens is designed to keep the same focal point for voltage 1 to 15 kV. • A miniature tunable lens which can directly fit into tabletop SEM.

  9. Two-step technique for posterior optic buttonholing of intraocular lens.

    Science.gov (United States)

    Agarwal, Tushar; Jhanji, Vishal; Singh, Digvijay; Khokhar, Sudarshan

    2014-04-01

    This study aims to describe a two-step surgical technique for placement of a posterior chamber intraocular lens (IOL) in cases with crystalline lens subluxation resulting from non-progressive zonular dialysis. The first stage entails a phacoemulsification with creation of a 4-mm posterior capsular opening using an automated vitrector. The second stage performed 6 weeks later includes an anterior vitrectomy and injection of a foldable three-piece IOL in the sulcus. The haptics of IOL are positioned in the sulcus while the optic is pushed behind the posterior capsular opening therefore "buttonholing" the IOL. Seven eyes of seven patients with posttraumatic zonular dialysis were operated using this technique. Follow-up of all cases revealed a well-centered IOL with good postoperative visual acuity (20/20 to 20/80). Our two-stage surgical technique precludes the insertion of capsular tension ring in cases with non-progressive zonular dialysis. The technique is recommended in the presence of less than or equal to 6 clock hours of zonular dialysis with preexisting posterior capsular tear or herniation of vitreous in the anterior chamber.

  10. The optical design of ultra-short throw system for panel emitted theater video system

    Science.gov (United States)

    Huang, Jiun-Woei

    2015-07-01

    In the past decade, the display format from (HD High Definition) through Full HD(1920X1080) to UHD(4kX2k), mainly guides display industry to two directions: one is liquid crystal display(LCD) from 10 inch to 100 inch and more, and the other is projector. Although LCD has been popularly used in market; however, the investment for production such kind displays cost more money expenditure, and less consideration of environmental pollution and protection[1]. The Projection system may be considered, due to more viewing access, flexible in location, energy saving and environmental protection issues. The topic is to design and fabricate a short throw factor liquid crystal on silicon (LCoS) projection system for cinema. It provides a projection lens system, including a tele-centric lens fitted for emitted LCoS to collimate light to enlarge the field angle. Then, the optical path is guided by a symmetric lens. Light of LCoS may pass through the lens, hit on and reflect through an aspherical mirror, to form a less distortion image on blank wall or screen for home cinema. The throw ratio is less than 0.33.

  11. Beveled fiber-optic probe couples a ball lens for improving depth-resolved fluorescence measurements of layered tissue: Monte Carlo simulations

    International Nuclear Information System (INIS)

    Jaillon, Franck; Zheng Wei; Huang Zhiwei

    2008-01-01

    In this study, we evaluate the feasibility of designing a beveled fiber-optic probe coupled with a ball lens for improving depth-resolved fluorescence measurements of epithelial tissue using Monte Carlo (MC) simulations. The results show that by using the probe configuration with a beveled tip collection fiber and a flat tip excitation fiber associated with a ball lens, discrimination of fluorescence signals generated in different tissue depths is achievable. In comparison with a flat-tip collection fiber, the use of a large bevel angled collection fiber enables a better differentiation between the shallow and deep tissue layers by changing the excitation-collection fiber separations. This work suggests that the beveled fiber-optic probe coupled with a ball lens has the potential to facilitate depth-resolved fluorescence measurements of epithelial tissues

  12. Luneburg lens in silicon photonics.

    Science.gov (United States)

    Di Falco, Andrea; Kehr, Susanne C; Leonhardt, Ulf

    2011-03-14

    The Luneburg lens is an aberration-free lens that focuses light from all directions equally well. We fabricated and tested a Luneburg lens in silicon photonics. Such fully-integrated lenses may become the building blocks of compact Fourier optics on chips. Furthermore, our fabrication technique is sufficiently versatile for making perfect imaging devices on silicon platforms.

  13. Effects of x-irradiation on lens reducing systems. [Rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Giblin, F.J.; Chakrapani, B.; Reddy, V.N.

    1978-01-01

    Studies have been made of the effects of x ray on various lens reducing systems including the levels of NADPH and glutathione (GSH), the activity of the hexose monophosphate shunt (HMS), and the activities of certain enzymes including glutathion reductase, glutathione peroxidase, and glucose-6-phosphate dehydrogenase (G-6-PD). It was found that during several weeks following x irradiation but prior to cataract formation there was very little change in the number of reduced -SH groups per unit weight of lens protein but that, with the appearance of cataract, there was a sudden loss of protein -SH groups. In contrast, the concentration of GSH in the x-rayed lens decreased throughout the experimental period. Similarly, the concentration of NADPH in the x-rayed lens was found to decrease significantly relative to controls one week prior to cataract formation and the ratio of NADPH to NADP/sup +/ in the lens shifted at this time period from a value greater than 1.0 in the control lens to less than 1.0 in the x-rayed lens. A corresponding decrease occurred in the activity of the HMS in x-rayed lenses as measured by culture in the presence of 1-/sup 14/C-labelled glucose. G-6-PD was partially inactivated in the x-rayed lens. Of the eight enzymes studied, G-6-PD appeared to be the most sensitive to x-irradiation. The data indicate that x-irradiation results in a steady decrease in the effectiveness of lens reducing systems and that, when these systems reach a critically low point, sudden oxidation of protein -SH groups and formation of high molecular weight protein aggregates may be initiated.

  14. Design of optical element combining Fresnel lens with microlens array for uniform light-emitting diode lighting.

    Science.gov (United States)

    Wang, Guangzhen; Wang, Lili; Li, Fuli; Kong, Depeng

    2012-09-01

    One kind of optical element combining Fresnel lens with microlens array is designed simply for LED lighting based on geometrical optics and nonimaging optics. This design method imposes no restriction on the source intensity pattern. The designed element has compact construction and can produce multiple shapes of illumination distribution. Taking square lighting as an example, tolerance analysis is carried out to determine tolerance limits for applying the element in the assembly process. This element can produce on-axis lighting and off-axis lighting.

  15. Opto-mechanical design and gravity-deformation analysis on optical telescope in laser communication system

    Science.gov (United States)

    Fu, Sen; Du, Jindan; Song, Yiwei; Gao, Tianyu; Zhang, Daqing; Wang, Yongzhi

    2017-11-01

    In space laser communication, optical antennas are one of the main components and the precision of optical antennas is very high. In this paper, it is based on the R-C telescope and it is carried out that the design and simulation of optical lens and supporting truss, according to the parameters of the systems. And a finite element method (FEM) was used to analyze the deformation of the optical lens. Finally, the Zernike polynomial was introduced to fit the primary mirror with a diameter of 250mm. The objective of this study is to determine whether the wave-front aberration of the primary mirror can meet the imaging quality. The results show that the deterioration of the imaging quality caused by the gravity deformation of primary and secondary mirrors. At the same time, the optical deviation of optical antenna increase with the diameter of the pupil.

  16. System Design, Implementation, and Evaluation of the Optical Broadband Correlator

    Science.gov (United States)

    1994-09-20

    shear-mode TeO2 , Model No. N45075-6-20, manufactured by Newport Electro- Optic Systems with a length of 75 pjs, acoustic direction 1110], optical...optical aperture (or useful length) TOA of our cells are shown in Table 3. The Bragg cells are shear-mode TeO2 , Model No. N45075-6-20, manufactured by...focusing or integrating (Fourier transform) lens is a laser diode glass doublet Model 06LAI013/076, from Melles Griot. Its focal length is 145 nun at 830

  17. Thermal lens and all optical switching of new organometallic compound doped polyacrylamide gel

    Science.gov (United States)

    Badran, Hussain Ali

    In this work thermal lens spectrometry (TLS) is applied to investigate the thermo-optical properties of new organometallic compound containing azomethine group, Dichloro bis [2-(2-hydroxybenzylideneamino)-5-methylphenyl] telluride platinum(II), doped polyacrylamide gel using transistor-transistor logic (TTL) modulated cw 532 nm laser beam as an excitation beam modulated at 10 Hz frequency and probe beam wavelength 635 nm at 14 mW. The technique is applied to determine the thermal diffusivities, ds/dT and the linear thermal expansion coefficient of the sample. All-optical switching effects with low background and high stability are demonstrated.

  18. Primary anterior chamber intraocular lens for the treatment of severe crystalline lens subluxation.

    Science.gov (United States)

    Hoffman, Richard S; Fine, I Howard; Packer, Mark

    2009-10-01

    Subluxated cataractous and clear lenses are commonly treated by limbal or pars plana lensectomy followed by primary or secondary intraocular lens (IOL) implantation. Adjunctive capsular prosthetic devices have facilitated lens removal and IOL centration in these challenging cases but have also added complexity and potential complications to the procedure. Although crystalline lens extraction may be required to clear the visual axis in mild to moderate lens subluxations, we propose insertion of a primary anterior chamber IOL without lens extraction in severe subluxations when the eye is optically aphakic or can be made functionally aphakic following neodymium:YAG laser zonulysis. Two cases demonstrating this approach are presented.

  19. Lens of controllable optical field with thin film metallic glasses for UV-LEDs.

    Science.gov (United States)

    Pan, C T; Chen, Y C; Lin, Po-Hung; Hsieh, C C; Hsu, F T; Lin, Po-Hsun; Chang, C M; Hsu, J H; Huang, J C

    2014-06-16

    In the exposure process of photolithography, a free-form lens is designed and fabricated for UV-LED (Ultraviolet Light-Emitting Diode). Thin film metallic glasses (TFMG) are adopted as UV reflection layers to enhance the irradiance and uniformity. The Polydimethylsiloxane (PDMS) with high transmittance is used as the lens material. The 3-D fast printing is attempted to make the mold of the lens. The results show that the average irradiance can be enhanced by 6.5~6.7%, and high uniformity of 85~86% can be obtained. Exposure on commercial thick photoresist using this UV-LED system shows 3~5% dimensional deviation, lower than the 6~8% deviation for commercial mercury lamp system. This current system shows promising potential to replace the conventional mercury exposure systems.

  20. Achromatic triplet and athermalized lens assembly for both midwave and longwave infrared spectra

    Science.gov (United States)

    Kuo, Chih-Wei

    2014-02-01

    Analytic solutions for finding the achromatic triplet in the midwave and longwave infrared spectra simultaneously are explored. The relationship between the combination of promising refractive materials and the system's optical power is also formulated. The principles for stabilizing the effective focal length of an air-spaced lens group with respect to temperature are explored, and the thermal properties of the optical component and mechanical elements mutually counterbalanced. An optical design based on these achromatic and athermal theories is demonstrated, and the image quality of the lens assembly seems to approach the diffractive limitation.

  1. Optical design of high power excimer laser system

    International Nuclear Information System (INIS)

    Zhang Yongsheng; Zhao Jun; Ma Lianying; Yi Aiping; Liu Jingru

    2011-01-01

    Image relay and angular multiplexing,which should be considered together in the design of high power excimer laser system, is reviewed. It's important to select proper illumination setup and laser beam shaping techniques. Given the complex and special angular multiplexing scheme in high power excimer laser systems, some detailed conceptual layout schemes are given in the paper. After a brief description of lens array and reflective telescope objective, which combine the incoming beams to a common focus, a new schematic layout which uses the final targeting optics and one optical delay line array, to realize multiplexing and de-multiplexing simultaneously is first proposed in the paper. (authors)

  2. A framework of cloud supported collaborative design in glass lens moulds based on aspheric measurement

    Science.gov (United States)

    Zhu, Yongjian; Wang, Yu; Na, Jingxin; Zhi, Yanan; Fan, Yufeng

    2013-09-01

    Aspheric mould design includes the top-down design and reversal design. In this paper, a new framework of reversal design is proposed combining with cloud supported collaborative design (CSCD) based on aspheric measurement. The framework is a kind of collaborative platform, which is composed of eight modules, including the computerized aspheric precision measurement module (CAPM), computer-aided optical design of aspheric lens system (CAOD), computer-aided design of lens mould (CADLM), FEM(finite element method) simulation of lens molding module (FEMLM), computer-aided manufacture of lens and moulds (CAMLM), measurement data analysis module (MDAM), optical product lifecycle management module (OPLM) and cloud computing network module (CCNM). In this framework, the remote clients send an improved requirement or fabrication demand about optical lens system through CCNM, which transfers this signal to OPLM. In OPLM, one main server is in charge of the task distribution and collaborative work of other six modules. The first measurement data of aspheric lens are produced by clients or our proposed platform CAPM, then are sent to CAOD for optimization and the electronic drawings of lens moulds are generated in CADLM module. According the design drawings, the FEMLM could give the lens-molding simulation parameters through FEM software. The simulation data are used for the second design of moulds in CADLM module. In this case, the moulds could be fabricated in CAMLM by ultra-precision machine, and the aspheric lens could be also produced by lens-molding machine in CAMLM. At last, the final shape of aspheric lens could be measured in CAPM and the data analysis could be conducted in MDAM module. Through the proposed framework, all the work described above could be performed coordinately. And the optimum design data of lens mould could be realized and saved, then shared by all the work team.

  3. Variable-focus liquid lens for portable applications

    NARCIS (Netherlands)

    Kuiper, S.; Hendriks, B.H.W.; Huijbregts, L.J.; Hirschberg, A.; Renders, C.A.; As, van M.A.J.; Mouroulis, P.Z.; Smith, W.J.; Johnson, R.B.

    2004-01-01

    The meniscus between two immiscible liquids can be used as an optical lens. A change in curvature of this meniscus by electrowetting leads to a change in focal distance. We demonstrate that two liquids in a tube form a self-centered tunable lens of high optical quality. Several properties were

  4. A DETAILED GRAVITATIONAL LENS MODEL BASED ON SUBMILLIMETER ARRAY AND KECK ADAPTIVE OPTICS IMAGING OF A HERSCHEL-ATLAS SUBMILLIMETER GALAXY AT z = 4.243 {sup ,} {sup ,}

    Energy Technology Data Exchange (ETDEWEB)

    Bussmann, R. S.; Gurwell, M. A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Fu Hai; Cooray, A. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Smith, D. J. B.; Bonfield, D.; Dunne, L. [Centre for Astrophysics, Science and Technology Research Institute, University of Hertfordshire, Hatfield, Herts AL10 9AB (United Kingdom); Dye, S.; Eales, S. [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Auld, R. [Cardiff University, School of Physics and Astronomy, Queens Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Baes, M.; Fritz, J. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Baker, A. J. [Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019 (United States); Cava, A. [Departamento de Astrofisica, Facultad de CC. Fisicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Clements, D. L.; Dariush, A. [Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Coppin, K. [Department of Physics, McGill University, Ernest Rutherford Building, 3600 Rue University, Montreal, Quebec, H3A 2T8 (Canada); Dannerbauer, H. [Universitaet Wien, Institut fuer Astronomie, Tuerkenschanzstrasse 17, 1180 Wien, Oesterreich (Austria); De Zotti, G. [Universita di Padova, Dipto di Astronomia, Vicolo dell' Osservatorio 2, IT 35122, Padova (Italy); Hopwood, R., E-mail: rbussmann@cfa.harvard.edu [Department of Physics and Astronomy, Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom); and others

    2012-09-10

    We present high-spatial resolution imaging obtained with the Submillimeter Array (SMA) at 880 {mu}m and the Keck adaptive optics (AO) system at the K{sub S}-band of a gravitationally lensed submillimeter galaxy (SMG) at z = 4.243 discovered in the Herschel Astrophysical Terahertz Large Area Survey. The SMA data (angular resolution Almost-Equal-To 0.''6) resolve the dust emission into multiple lensed images, while the Keck AO K{sub S}-band data (angular resolution Almost-Equal-To 0.''1) resolve the lens into a pair of galaxies separated by 0.''3. We present an optical spectrum of the foreground lens obtained with the Gemini-South telescope that provides a lens redshift of z{sub lens} = 0.595 {+-} 0.005. We develop and apply a new lens modeling technique in the visibility plane that shows that the SMG is magnified by a factor of {mu} = 4.1 {+-} 0.2 and has an intrinsic infrared (IR) luminosity of L{sub IR} = (2.1 {+-} 0.2) Multiplication-Sign 10{sup 13} L{sub Sun }. We measure a half-light radius of the background source of r{sub s} = 4.4 {+-} 0.5 kpc which implies an IR luminosity surface density of {Sigma}{sub IR} (3.4 {+-} 0.9) Multiplication-Sign 10{sup 11} L{sub Sun} kpc{sup -2}, a value that is typical of z > 2 SMGs but significantly lower than IR luminous galaxies at z {approx} 0. The two lens galaxies are compact (r{sub lens} Almost-Equal-To 0.9 kpc) early-types with Einstein radii of {theta}{sub E1} 0.57 {+-} 0.01 and {theta}{sub E2} = 0.40 {+-} 0.01 that imply masses of M{sub lens1} = (7.4 {+-} 0.5) Multiplication-Sign 10{sup 10} M{sub Sun} and M{sub lens2} = (3.7 {+-} 0.3) Multiplication-Sign 10{sup 10} M{sub Sun }. The two lensing galaxies are likely about to undergo a dissipationless merger, and the mass and size of the resultant system should be similar to other early-type galaxies at z {approx} 0.6. This work highlights the importance of high spatial resolution imaging in developing models of strongly lensed galaxies

  5. Measurement accuracy of a stressed contact lens during its relaxation period

    Science.gov (United States)

    Compertore, David C.; Ignatovich, Filipp V.

    2018-02-01

    We examine the dioptric power and transmitted wavefront of a contact lens as it releases its handling stresses. Handling stresses are introduced as part of the contact lens loading process and are common across all contact lens measurement procedures and systems. The latest advances in vision correction require tighter quality control during the manufacturing of the contact lenses. The optical power of contact lenses is one of the critical characteristics for users. Power measurements are conducted in the hydrated state, where the lens is resting inside a solution-filled glass cuvette. In a typical approach, the contact lens must be subject to long settling times prior to any measurements. Alternatively, multiple measurements must be averaged. Apart from potential operator dependency of such approach, it is extremely time-consuming, and therefore it precludes higher rates of testing. Comprehensive knowledge about the settling process can be obtained by monitoring multiple parameters of the lens simultaneously. We have developed a system that combines co-aligned a Shack-Hartmann transmitted wavefront sensor and a time-domain low coherence interferometer to measure several optical and physical parameters (power, cylinder power, aberrations, center thickness, sagittal depth, and diameter) simultaneously. We monitor these parameters during the stress relaxation period and show correlations that can be used by manufacturers to devise methods for improved quality control procedures.

  6. Optical design of soft multifocal contact lens with uniform optical power in center-distance zone with optimized NURBS.

    Science.gov (United States)

    Vu, Lien T; Chen, Chao-Chang A; Yu, Chia-Wei

    2018-02-05

    This study aims to develop a new optical design method of soft multifocal contact lens (CLs) to obtain uniform optical power in large center-distance zone with optimized Non-Uniform Rational B-spline (NURBS). For the anterior surface profiles of CLs, the NURBS design curves are optimized to match given optical power distributions. Then, the NURBS in the center-distance zones are fitted in the corresponding spherical/aspheric curves for both data points and their centers of curvature to achieve the uniform power. Four cases of soft CLs have been manufactured by casting in shell molds by injection molding and then measured to verify the design specifications. Results of power profiles of these CLs are concord with the given clinical requirements of uniform powers in larger center-distance zone. The developed optical design method has been verified for multifocal CLs design and can be further applied for production of soft multifocal CLs.

  7. Modulation transfer function of a fish-eye lens based on the sixth-order wave aberration theory.

    Science.gov (United States)

    Jia, Han; Lu, Lijun; Cao, Yiqing

    2018-01-10

    A calculation program of the modulation transfer function (MTF) of a fish-eye lens is developed with the autocorrelation method, in which the sixth-order wave aberration theory of ultra-wide-angle optical systems is used to simulate the wave aberration distribution at the exit pupil of the optical systems. The autocorrelation integral is processed with the Gauss-Legendre integral, and the magnification chromatic aberration is discussed to calculate polychromatic MTF. The MTF calculation results of a given example are then compared with those previously obtained based on the fourth-order wave aberration theory of plane-symmetrical optical systems and with those from the Zemax program. The study shows that MTF based on the sixth-order wave aberration theory has satisfactory calculation accuracy even for a fish-eye lens with a large acceptance aperture. And the impacts of different types of aberrations on the MTF of a fish-eye lens are analyzed. Finally, we apply the self-adaptive and normalized real-coded genetic algorithm and the MTF developed in the paper to optimize the Nikon F/2.8 fish-eye lens; consequently, the optimized system shows better MTF performances than those of the original design.

  8. Flat dielectric metasurface lens array for three dimensional integral imaging

    Science.gov (United States)

    Zhang, Jianlei; Wang, Xiaorui; Yang, Yi; Yuan, Ying; Wu, Xiongxiong

    2018-05-01

    In conventional integral imaging, the singlet refractive lens array limits the imaging performance due to its prominent aberrations. Different from the refractive lens array relying on phase modulation via phase change accumulated along the optical paths, metasurfaces composed of nano-scatters can produce phase abrupt over the scale of wavelength. In this letter, we propose a novel lens array consisting of two neighboring flat dielectric metasurfaces for integral imaging system. The aspherical phase profiles of the metasurfaces are optimized to improve imaging performance. The simulation results show that our designed 5 × 5 metasurface-based lens array exhibits high image quality at designed wavelength 865 nm.

  9. Lens subluxation grading system: predictive value for ectopia lentis surgical outcomes

    OpenAIRE

    Mauro Waiswol; Niro Kasahara

    2009-01-01

    Objective: To present a classification system to grade ectopia lentis and to assess its usefulness as a predictor for surgical outcomes. Methods: Fifty-one eyes of 28 patients with either simple (19 patients) or Marfan syndrome-associated ectopia lentis (nine patients) with variable degrees of subluxation were operated on. Lens subluxation intensity was graded according to the lens subluxation grading system (LSGS) from grade 1 (lens on the whole pupillary area) up to grade 4 (lens absent fro...

  10. Modulation transfer function estimation of optical lens system by adaptive neuro-fuzzy methodology

    Science.gov (United States)

    Petković, Dalibor; Shamshirband, Shahaboddin; Pavlović, Nenad T.; Anuar, Nor Badrul; Kiah, Miss Laiha Mat

    2014-07-01

    The quantitative assessment of image quality is an important consideration in any type of imaging system. The modulation transfer function (MTF) is a graphical description of the sharpness and contrast of an imaging system or of its individual components. The MTF is also known and spatial frequency response. The MTF curve has different meanings according to the corresponding frequency. The MTF of an optical system specifies the contrast transmitted by the system as a function of image size, and is determined by the inherent optical properties of the system. In this study, the adaptive neuro-fuzzy (ANFIS) estimator is designed and adapted to estimate MTF value of the actual optical system. Neural network in ANFIS adjusts parameters of membership function in the fuzzy logic of the fuzzy inference system. The back propagation learning algorithm is used for training this network. This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.

  11. Post-lens tear turbidity and visual quality after scleral lens wear.

    Science.gov (United States)

    Carracedo, Gonzalo; Serramito-Blanco, Maria; Martin-Gil, Alba; Wang, Zicheng; Rodriguez-Pomar, Candela; Pintor, Jesús

    2017-11-01

    The aim was to evaluate the turbidity and thickness of the post-lens tear layer and its effect on visual quality in patients with keratoconus after the beginning of lens wear and before lens removal at the end of eight hours. Twenty-six patients with keratoconus (aged 36.95 ± 8.95 years) participated voluntarily in the study. The sample was divided into two groups: patients with intrastromal corneal ring (ICRS group) and patients without ICRS (KC group). Distance visual acuity (VA), contrast sensitivity, pachymetry, post-lens tear layer height and post-lens tear layer turbidity (percentage area occupied and number of particles per mm 2 ) were evaluated with optical coherence tomography before and after wearing a scleral lens. A significant increase of turbidity was found in all groups assessed (p turbidity parameters with distance VA but no correlation between turbidity and post-lens tear layer thickness at the beginning was found (p > 0.05). A strong correlation in all groups between the post-lens tear layer at the beginning and differences of tear layer thickness between two measures was also found (p turbidity. © 2017 Optometry Australia.

  12. The Effect of the Crystalline Lens on Central Vault After Implantable Collamer Lens Implantation.

    Science.gov (United States)

    Qi, Meng-Ying; Chen, Qian; Zeng, Qing-Yan

    2017-08-01

    To identify associations between crystalline lens-related factors and central vault after Implantable Collamer Lens (ICL) (Staar Surgical, Monrovia, CA) implantation. This retrospective clinical study included 320 eyes from 186 patients who underwent ICL implantation surgery. At 1 year after surgery, the central vault was measured using anterior segment optical coherence tomography. Preoperative anterior chamber depth, lens thickness, lens position (lens position = anterior chamber depth + 1/2 lens thickness), and vault were analyzed to investigate the effects of lens-related factors on postoperative vault. The mean vault was 513 ± 215 µm at 1 year after surgery. Vault was positively correlated with preoperative anterior chamber depth (r = 0.495, P lens position (r = 0.371, P lens thickness (r = -0.262, P lens position than eyes in the other two vault groups (which had vaults ≥ 250 µm) (P lens position less than 5.1 mm had greatly reduced vaults (P lens could have an important influence on postoperative vault. Eyes with a shallower anterior chamber and a forward lens position will have lower vaults. [J Refract Surg. 2017;33(8):519-523.]. Copyright 2017, SLACK Incorporated.

  13. The design of a liquid lithium lens for a muon collider

    International Nuclear Information System (INIS)

    Balbekov, V.; Geer, S.; Hassanein, A.; Holtkamp, N.; Lebrun, P.; Neuffer, D.; Norem, J.; Palmer, R.; Reed, C.; Silvestrov, G.; Spentzouris, P.; Tollestrup, A.; Vsevolozhskaya, T. A.

    1999-01-01

    The last stage of ionization cooling for the muon collider requires a multistage liquid lithium lens. This system uses a large (approximately0.5 MA) pulsed current through liquid lithium to focus the beam while energy loss in the lithium removes momentum which is replaced by linacs. The beam optics are designed to maximize the 6 dimensional transmission from one lens to the next while minimizing emittance growth. The mechanical design of the lithium vessel is constrained by a pressure pulse due to the sudden ohmic heating, and the stress on the Be window. The authors describe beam optics, the liquid lithium pressure vessel, pumping, power supplies, as well as the overall optimization of the system

  14. Nodal aberration theory for wild-filed asymmetric optical systems

    Science.gov (United States)

    Chen, Yang; Cheng, Xuemin; Hao, Qun

    2016-10-01

    Nodal Aberration Theory (NAT) was used to calculate the zero field position in Full Field Display (FFD) for the given aberration term. Aiming at wide-filed non-rotational symmetric decentered optical systems, we have presented the nodal geography behavior of the family of third-order and fifth-order aberrations. Meanwhile, we have calculated the wavefront aberration expressions when one optical element in the system is tilted, which was not at the entrance pupil. By using a three-piece-cellphone lens example in optical design software CodeV, the nodal geography is testified under several situations; and the wavefront aberrations are calculated when the optical element is tilted. The properties of the nodal aberrations are analyzed by using Fringe Zernike coefficients, which are directly related with the wavefront aberration terms and usually obtained by real ray trace and wavefront surface fitting.

  15. DotLens smartphone microscopy for biological and biomedical applications (Conference Presentation)

    Science.gov (United States)

    Sung, Yu-Lung; Zhao, Fusheng; Shih, Wei-Chuan

    2017-02-01

    Recent advances in inkjet-printed optics have created a new class of lens fabrication technique. Lenses with a tunable geometry, magnification, and focal length can be fabricated by dispensing controlled amounts of liquid polymer onto a heated surface. This fabrication technique is highly cost-effective, and can achieve optically smooth surface finish. Dubbed DotLens, a single of which weighs less than 50 mg and occupies a volume less than 50 μL. DotLens can be attached onto any smartphone camera akin to a contact lens, and enable smartphones to obtain image resolution as fine as 1 µm. The surface curvature modifies the optical path of light to the image sensor, and enables the camera to focus as close as 2 mm. This enables microscopic imaging on a smartphone without any additional attachments, and has shown great potential in mobile point-of-care diagnostic systems, particularly for histology of tissue sections and cytology of blood cells. DotLens Smartphone Microscopy represents an innovative approach fundamentally different from other smartphone microscopes. In this paper, we describe the application and performance of DotLens smartphone microscopy in biological and biomedical research. In particular, we show recent results from images collected from pathology tissue slides with cancer features. In addition, we show performance in cytological analysis of blood smear. This tool has empowered Citizen Science investigators to collect microscopic images from various interesting objects.

  16. Fused Silica Final Optics for Inertial Fusion Energy: Radiation Studies and System-Level Analysis

    International Nuclear Information System (INIS)

    Latkowski, Jeffery F.; Kubota, Alison; Caturla, Maria J.; Dixit, Sham N.; Speth, Joel A.; Payne, Stephen A.

    2003-01-01

    The survivability of the final optic, which must sit in the line of sight of high-energy neutrons and gamma rays, is a key issue for any laser-driven inertial fusion energy (IFE) concept. Previous work has concentrated on the use of reflective optics. Here, we introduce and analyze the use of a transmissive final optic for the IFE application. Our experimental work has been conducted at a range of doses and dose rates, including those comparable to the conditions at the IFE final optic. The experimental work, in conjunction with detailed analysis, suggests that a thin, fused silica Fresnel lens may be an attractive option when used at a wavelength of 351 nm. Our measurements and molecular dynamics simulations provide convincing evidence that the radiation damage, which leads to optical absorption, not only saturates but that a 'radiation annealing' effect is observed. A system-level description is provided, including Fresnel lens and phase plate designs

  17. Design of LED projector based on gradient-index lens

    Science.gov (United States)

    Qian, Liyong; Zhu, Xiangbing; Cui, Haitian; Wang, Yuanhang

    2018-01-01

    In this study, a new type of projector light path is designed to eliminate the deficits of existing projection systems, such as complex structure and low collection efficiency. Using a three-color LED array as the lighting source, by means of the special optical properties of a gradient-index lens, the complex structure of the traditional projector is simplified. Traditional components, such as the color wheel, relay lens, and mirror, become unnecessary. In this way, traditional problems, such as low utilization of light energy and loss of light energy, are solved. With the help of Zemax software, the projection lens is optimized. The optimized projection lens, LED, gradient-index lens, and digital micromirror device are imported into Tracepro. The ray tracing results show that both the utilization of light energy and the uniformity are improved significantly.

  18. Lens Ray Diagrams with a Spreadsheet

    Science.gov (United States)

    González, Manuel I.

    2018-01-01

    Physicists create spreadsheets customarily to carry out numerical calculations and to display their results in a meaningful, nice-looking way. Spreadsheets can also be used to display a vivid geometrical model of a physical system. This statement is illustrated with an example taken from geometrical optics: images formed by a thin lens. A careful…

  19. Characterization of Soft Contact Lens Edge Fitting during Daily Wear Using Ultrahigh-Resolution Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Lele Cui

    2018-01-01

    Full Text Available Purpose. To determine conjunctival overlap over the edge of soft contact lens and to visualize the peripheral postlens tear film (PoLTF underneath soft contact lenses using ultrahigh-resolution optical coherence tomography (UHR-OCT. Methods. Twenty participants (4 males and 16 females, 23.0 ± 3.7 years were fitted with two different types of soft contact lenses randomly. The limbus with lens was imaged with the UHR-OCT at the horizontal meridian every two hours up to 6 hours during lens wear. The conjunctival overlap was ranked as the percentage of the edge covered by the conjunctiva. The frequency of occurrence for visualized peripheral PoLTF was determined. Results. The average conjunctival overlaps at insertion were 49% and 73% for galyfilcon A and balafilcon A lenses and increased significantly to 84% and 90% by 6 hours of lens wear (P<0.001. Lenses with rounded edges had more conjunctival overlap than the lenses with angled edges (P=0.014. There were significant decreases for PoLTF on the conjunctiva (P=0.014 and peripheral cornea (P=0.004 over the study period compared to insertion. The percentage of subjects with PoLTF on the conjunctiva (32.5% and peripheral cornea (36% were greater in subjects wearing balafilcon A lenses (P=0.017. Conclusions. Increased conjunctival overlap over the lens edges and reduced PoLTF underneath the peripheral region of soft contact lenses were shown during lens daily wear. The lens edge configuration may play a role in conjunctival response and peripheral PoLTF.

  20. Optical Time-Division Multiplexing of 10 Gbit/s Ethernet Signals Synchronized by All-Optical Signal Processing Based on a Time-Lens

    DEFF Research Database (Denmark)

    Areal, Janaina Laguardia

    This Thesis presents 3 years work of an optical circuit that performs both pulse compression and frame synchronization and retiming. Our design aims at directly multiplexing several 10G Ethernet data packets (frames) to a high-speed OTDM link. This scheme is optically transparent and does not req...... coupler, completing the OTDM signal generation. We demonstrate the effectiveness of the design by laboratory experiments and simulations with VPI and MatLab....... not require clock recovery, resulting in a potentially very efficient solution. The scheme uses a time-lens, implemented through a sinusoidally driven optical phase modulation, combined with a linear dispersion element. As time-lenses are also used for pulse compression, we design the circuit also to perform...

  1. Optimization of electrostatic lens systems for low-energy scanning microcolumn applications

    International Nuclear Information System (INIS)

    Oh, Tae-Sik; Kim, Dae-Wook; Ahn, Seungjoon; Kim, Young Chul; Kim, Ho-Seob; Ahn, Seong Joon

    2008-01-01

    The optimization of a low-energy scanning microcolumn is proposed by adopting a modified Einzel lens sandwiched between an aligner and a deflector. The modified Einzel lens is composed of four electrodes, and the two center electrodes are specially designed quadrupole lenses having keyhole type rather than circular apertures. The outer electrodes of the Einzel lens having circular apertures are grounded, and the quadrupole lens is operated by applying the quadrupole voltages. The effects of the separated deflector system and the static quadrupole lens were investigated by analyzing the scanning electron beam spot at the target, and the results show that the proposed system can improve the performance of the scanning microcolumn

  2. Design method of freeform light distribution lens for LED automotive headlamp based on DMD

    Science.gov (United States)

    Ma, Jianshe; Huang, Jianwei; Su, Ping; Cui, Yao

    2018-01-01

    We propose a new method to design freeform light distribution lens for light-emitting diode (LED) automotive headlamp based on digital micro mirror device (DMD). With the Parallel optical path architecture, the exit pupil of the illuminating system is set in infinity. Thus the principal incident rays of micro lens in DMD is parallel. DMD is made of high speed digital optical reflection array, the function of distribution lens is to distribute the emergent parallel rays from DMD and get a lighting pattern that fully comply with the national regulation GB 25991-2010.We use DLP 4500 to design the light distribution lens, mesh the target plane regulated by the national regulation GB 25991-2010 and correlate the mesh grids with the active mirror array of DLP4500. With the mapping relations and the refraction law, we can build the mathematics model and get the parameters of freeform light distribution lens. Then we import its parameter into the three-dimensional (3D) software CATIA to construct its 3D model. The ray tracing results using Tracepro demonstrate that the Illumination value of target plane is easily adjustable and fully comply with the requirement of the national regulation GB 25991-2010 by adjusting the exit brightness value of DMD. The theoretical optical efficiencies of the light distribution lens designed using this method could be up to 92% without any other auxiliary lens.

  3. Measuring the spatial resolution of an optical system in an undergraduate optics laboratory

    Science.gov (United States)

    Leung, Calvin; Donnelly, T. D.

    2017-06-01

    Two methods of quantifying the spatial resolution of a camera are described, performed, and compared, with the objective of designing an imaging-system experiment for students in an undergraduate optics laboratory. With the goal of characterizing the resolution of a typical digital single-lens reflex (DSLR) camera, we motivate, introduce, and show agreement between traditional test-target contrast measurements and the technique of using Fourier analysis to obtain the modulation transfer function (MTF). The advantages and drawbacks of each method are compared. Finally, we explore the rich optical physics at work in the camera system by calculating the MTF as a function of wavelength and f-number. For example, we find that the Canon 40D demonstrates better spatial resolution at short wavelengths, in accordance with scalar diffraction theory, but is not diffraction-limited, being significantly affected by spherical aberration. The experiment and data analysis routines described here can be built and written in an undergraduate optics lab setting.

  4. Matrix light and pixel light: optical system architecture and requirements to the light source

    Science.gov (United States)

    Spinger, Benno; Timinger, Andreas L.

    2015-09-01

    Modern Automotive headlamps enable improved functionality for more driving comfort and safety. Matrix or Pixel light headlamps are not restricted to either pure low beam functionality or pure high beam. Light in direction of oncoming traffic is selectively switched of, potential hazard can be marked via an isolated beam and the illumination on the road can even follow a bend. The optical architectures that enable these advanced functionalities are diverse. Electromechanical shutters and lens units moved by electric motors were the first ways to realize these systems. Switching multiple LED light sources is a more elegant and mechanically robust solution. While many basic functionalities can already be realized with a limited number of LEDs, an increasing number of pixels will lead to more driving comfort and better visibility. The required optical system needs not only to generate a desired beam distribution with a high angular dynamic, but also needs to guarantee minimal stray light and cross talk between the different pixels. The direct projection of the LED array via a lens is a simple but not very efficient optical system. We discuss different optical elements for pre-collimating the light with minimal cross talk and improved contrast between neighboring pixels. Depending on the selected optical system, we derive the basic light source requirements: luminance, surface area, contrast, flux and color homogeneity.

  5. Computerized method and system for designing an aerodynamic focusing lens stack

    Science.gov (United States)

    Gard, Eric [San Francisco, CA; Riot, Vincent [Oakland, CA; Coffee, Keith [Diablo Grande, CA; Woods, Bruce [Livermore, CA; Tobias, Herbert [Kensington, CA; Birch, Jim [Albany, CA; Weisgraber, Todd [Brentwood, CA

    2011-11-22

    A computerized method and system for designing an aerodynamic focusing lens stack, using input from a designer related to, for example, particle size range to be considered, characteristics of the gas to be flowed through the system, the upstream temperature and pressure at the top of a first focusing lens, the flow rate through the aerodynamic focusing lens stack equivalent at atmosphere pressure; and a Stokes number range. Based on the design parameters, the method and system determines the total number of focusing lenses and their respective orifice diameters required to focus the particle size range to be considered, by first calculating for the orifice diameter of the first focusing lens in the Stokes formula, and then using that value to determine, in iterative fashion, intermediate flow values which are themselves used to determine the orifice diameters of each succeeding focusing lens in the stack design, with the results being output to a designer. In addition, the Reynolds numbers associated with each focusing lens as well as exit nozzle size may also be determined to enhance the stack design.

  6. A micro-optical system for endoscopy based on mechanical compensation paradigm using miniature piezo-actuation.

    Science.gov (United States)

    Cerveri, Pietro; Zazzarini, Cynthia Corinna; Patete, Paolo; Baroni, Guido

    2014-06-01

    The goal of the study was to investigate the feasibility of a novel miniaturized optical system for endoscopy. Fostering the mechanical compensation paradigm, the modeled optical system, composed by 14 lenses, separated in 4 different sets, had a total length of 15.55mm, an effective focal length ranging from 1.5 to 4.5mm with a zoom factor of about 2.8×, and an angular field of view up to 56°. Predicted maximum lens travel was less than 3.5mm. The consistency of the image plane height across the magnification range testified the zoom capability. The maximum predicted achromatic astigmatism, transverse spherical aberration, longitudinal spherical aberration and relative distortion were less than or equal to 25μm, 15μm, 35μm and 12%, respectively. Tests on tolerances showed that the manufacturing and opto-mechanics mounting are critical as little deviations from design dramatically decrease the optical performances. However, recent micro-fabrication technology can guarantee tolerances close to nominal design. A closed-loop actuation unit, devoted to move the zoom and the focus lens sets, was implemented adopting miniaturized squiggle piezo-motors and magnetic position encoders based on Hall effect. Performance results, using a prototypical test board, showed a positioning accuracy of less than 5μm along a lens travel path of 4.0mm, which was in agreement with the lens set motion features predicted by the analysis. In conclusion, this study demonstrated the feasibility of the optical design and the viability of the actuation approach while tolerances must be carefully taken into account. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  7. Influence of changes in an eye's optical system on refraction

    Science.gov (United States)

    Bartkowska, Janina

    1998-10-01

    The optical system of eye is composed of cornea, lens, anterior chamber, and vitreous body. In the standard schematic eye there are 6 refracting surfaces. The changes of the curvature radii, of the distances between them, of the refractive indices influence the ametropia, refractive power of the eye and retinal image size. The influence of these changes can be appreciated by ray tracing or by an analytical method. There are presented simplified formulae for the differentials of ametropia and refractive power of the eye with respect to the surfaces curvatures, refracting power of cornea and lens, refractive indices. The relations are valid too for bigger changes if ametropia is measured in the cornea vertex. The formulae for the differentials with respect to distances, lens translation, eye axis length are valid if ametropia is measured in the object focus of the eye.

  8. Contribution of soft lenses of various powers to the optics of a piggy-back system on regular corneas.

    Science.gov (United States)

    Michaud, Langis; Brazeau, Daniel; Corbeil, Marie-Eve; Forcier, Pierre; Bernard, Pierre-Jean

    2013-12-01

    This study aims to report on the measured in vivo contribution of soft lenses of various powers to the optics of a piggyback system (PBS). This prospective, non-dispensing clinical study was conducted on regular wearers of contact lenses who showed regular corneal profiles. Subjects were masked to the products used. The study involved the use of a spherical soft lens of three different powers in a PBS, used as a carrier for a rigid gas permeable lens. Baseline data were collected and soft lenses were then fitted on both eyes of each subject. Both lenses were assessed for position and movement. Over-refraction was obtained. Soft lens power contribution to the optics (SLPC) of a PBS system was estimated by computing initial ametropia, lacrymal lens, rigid lens powers and over-refraction. A set of data on one eye was kept, for each subject, for statistical analysis. Thirty subjects (12 males, 18 females), aged 24.4 (±4.5) years, were enrolled. The use of plus powered soft lenses enhanced initial RGP lens centration. Once optimal fit was achieved, all lenses showed normal movement. SLPC represented 21.3% of the initial soft lens power when using a -6.00 carrier, and 20.6% for a +6.00. A +0.50 did not contribute to any power induced in the system. These results are generally in accordance with theoretical model developed in the past. On average, except for the low-powered carrier, the use of a spherical soft lens provided 20.9% of its marked power. To achieve better results, the use of a plus-powered carrier is recommended. Copyright © 2013 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  9. Optical vortex scanning inside the Gaussian beam

    International Nuclear Information System (INIS)

    Masajada, J; Leniec, M; Augustyniak, I

    2011-01-01

    We discussed a new scanning method for optical vortex-based scanning microscopy. The optical vortex is introduced into the incident Gaussian beam by a vortex lens. Then the beam with the optical vortex is focused by an objective and illuminates the sample. By changing the position of the vortex lens we can shift the optical vortex position at the sample plane. By adjusting system parameters we can get 30 times smaller shift at the sample plane compared to the vortex lens shift. Moreover, if the range of vortex shifts is smaller than 3% of the beam radius in the sample plane the amplitude and phase distribution around the phase dislocation remains practically unchanged. Thus we can scan the sample topography precisely with an optical vortex

  10. A topological lens for a measure-preserving system

    OpenAIRE

    Glasner, Eli; Lemanczyk, Mariusz; Weiss, Benjamin

    2009-01-01

    We introduce a functor which associates to every measure preserving system (X,B,\\mu,T) a topological system (C_2(\\mu),\\tilde{T}) defined on the space of 2-fold couplings of \\mu, called the topological lens of T. We show that often the topological lens "magnifies" the basic measure dynamical properties of T in terms of the corresponding topological properties of \\tilde{T}. Some of our main results are as follows: (i) T is weakly mixing iff \\tilde{T} is topologically transitive (iff it is topol...

  11. Optical design of an in vivo laparoscopic lighting system

    Science.gov (United States)

    Liu, Xiaolong; Abdolmalaki, Reza Yazdanpanah; Mancini, Gregory J.; Tan, Jindong

    2017-12-01

    This paper proposes an in vivo laparoscopic lighting system design to address the illumination issues, namely poor lighting uniformity and low optical efficiency, existing in the state-of-the-art in vivo laparoscopic cameras. The transformable design of the laparoscopic lighting system is capable of carrying purposefully designed freeform optical lenses for achieving lighting performance with high illuminance uniformity and high optical efficiency in a desired target region. To design freeform optical lenses for extended light sources such as LEDs with Lambertian light intensity distributions, we present an effective and complete freeform optical design method. The procedures include (1) ray map computation by numerically solving a standard Monge-Ampere equation; (2) initial freeform optical surface construction by using Snell's law and a lens volume restriction; (3) correction of surface normal vectors due to accumulated errors from the initially constructed surfaces; and (4) feedback modification of the solution to deal with degraded illuminance uniformity caused by the extended sizes of the LEDs. We employed an optical design software package to evaluate the performance of our laparoscopic lighting system design. The simulation results show that our design achieves greater than 95% illuminance uniformity and greater than 89% optical efficiency (considering Fresnel losses) for illuminating the target surgical region.

  12. HE 1113-0641: THE SMALLEST-SEPARATION QUADRUPLE LENS IDENTIFIED BY A GROUND-BASED OPTICAL TELESCOPE

    International Nuclear Information System (INIS)

    Blackburne, Jeffrey A.; Schechter, Paul L.; Wisotzki, Lutz

    2008-01-01

    The Hamburg/ESO quasar HE 1113-0641 is found to be a quadruple gravitational lens, based on observations with the twin 6.5 m Magellan telescopes at the Las Campanas Observatory, and subsequently with the Hubble Space Telescope. The z S = 1.235 quasar appears in a cross configuration, with i' band magnitudes ranging from 18.0 to 18.8. With a maximum image separation of 0''.67, this is the smallest-separation quadruple ever identified using a ground-based optical telescope. Point-spread function (PSF) subtraction reveals a faint lensing galaxy. A simple lens model succeeds in predicting the observed positions of the components, but fails to match their observed flux ratios by up to a magnitude. We estimate the redshift of the lensing galaxy to be z L ∼ 0.7. Time delay estimates are on the order of a day, suggesting that the flux ratio anomalies are not due to variability of the quasar, but may result from substructure or microlensing in the lens galaxy.

  13. Lens-mount stability trade-off: a survey exemplified for DUV wafer inspection objectives

    Science.gov (United States)

    Bouazzam, Achmed; Erbe, Torsten; Fahr, Stephan; Werschnik, Jan

    2015-09-01

    The position stability of optical elements is an essential part of the tolerance budget of an optical system because its compensation would require an alignment step after the lens has left the factory. In order to achieve a given built performance the stability error contribution needs to be known and accounted for. Given a high-end lens touching the edge of technology not knowing, under- or overestimating this contribution becomes a serious cost and risk factor. If overestimated the remaining parts of the budget need to be tighter. If underestimated the total project might fail. For many mounting principles the stability benchmark is based on previous systems or information gathered by elaborated testing of complete optical systems. This renders the development of a new system into a risky endeavour, because these experiences are not sufficiently precise and tend to be not transferable when scaling of the optical elements is intended. This contribution discusses the influences of different optical mounting concepts on the position stability using the example of high numerical aperture (HNA) inspection lenses working in the deep ultraviolet (DUV) spectrum. A method to investigate the positional stability is presented for selected mounting examples typical for inspection lenses.

  14. Cryogenic optical systems for the rapid infrared imager/spectrometer (RIMAS)

    Science.gov (United States)

    Capone, John I.; Content, David A.; Kutyrev, Alexander S.; Robinson, Frederick D.; Lotkin, Gennadiy N.; Toy, Vicki L.; Veilleux, Sylvain; Moseley, Samuel H.; Gehrels, Neil A.; Vogel, Stuart N.

    2014-07-01

    The Rapid Infrared Imager/Spectrometer (RIMAS) is designed to perform follow-up observations of transient astronomical sources at near infrared (NIR) wavelengths (0.9 - 2.4 microns). In particular, RIMAS will be used to perform photometric and spectroscopic observations of gamma-ray burst (GRB) afterglows to compliment the Swift satellite's science goals. Upon completion, RIMAS will be installed on Lowell Observatory's 4.3 meter Discovery Channel Telescope (DCT) located in Happy Jack, Arizona. The instrument's optical design includes a collimator lens assembly, a dichroic to divide the wavelength coverage into two optical arms (0.9 - 1.4 microns and 1.4 - 2.4 microns respectively), and a camera lens assembly for each optical arm. Because the wavelength coverage extends out to 2.4 microns, all optical elements are cooled to ~70 K. Filters and transmission gratings are located on wheels prior to each camera allowing the instrument to be quickly configured for photometry or spectroscopy. An athermal optomechanical design is being implemented to prevent lenses from loosing their room temperature alignment as the system is cooled. The thermal expansion of materials used in this design have been measured in the lab. Additionally, RIMAS has a guide camera consisting of four lenses to aid observers in passing light from target sources through spectroscopic slits. Efforts to align these optics are ongoing.

  15. The lens and cataracts.

    Science.gov (United States)

    Matthews, Andrew G

    2004-08-01

    It is conservatively estimated that some form of lens opacity is present in 5% to 7% of horses with otherwise clinically normal eyes.These opacities can range from small epicapsular remnants of the fetal vasculature to dense and extensive cataract. A cataract is defined technically as any opacity or alteration in the optical homogeneity of the lens involving one or more of the following: anterior epithelium, capsule, cortex, or nucleus. In the horse, cataracts rarely involve the entire lens structure (ie, complete cataracts) and are more usually localized to one anatomic landmark or sector of the lens. Complete cataracts are invariably associated with overt and significant visual disability. Focal or incomplete cataracts alone seldom cause any apparent visual dysfunction in affected horses,however.

  16. In vivo crystalline lens measurements with novel swept-source optical coherent tomography: an investigation on variability of measurement

    Science.gov (United States)

    Shoji, Takuhei; Kato, Naoko; Ishikawa, Sho; Ibuki, Hisashi; Yamada, Norihiro; Kimura, Itaru; Shinoda, Kei

    2017-01-01

    Objective To evaluate the reproducibility of in vivo crystalline lens measurements obtained by novel commercially available swept-source (SS) optical coherence tomography (OCT) specifically designed for anterior segment imaging. Methods and analysis One eye from each of 30 healthy subjects was randomly selected using the CASIA2 (Tomey, Nagoya, Japan) in two separate visits within a week. Each eye was imaged twice. After image scanning, the anterior and posterior lens curvatures and lens thickness were calculated automatically by the CASIA2 built-in program at 0 dioptre (D) (static), −1 D, −3 D and −5 D accommodative stress. The intraobserver and intervisit reproducibility coefficient (RC) and intraclass correlation coefficient (ICC) were calculated. Results The intraobserver and intervisit RCs ranged from 0.824 to 1.254 mm and 0.789 to 0.911 mm for anterior lens curvature, from 0.276 to 0.299 mm and 0.221 to 0.270 mm for posterior lens curvature and from 0.065 to 0.094 mm and 0.054 to 0.132 mm for lens thickness, respectively. The intraobserver and intervisit ICCs ranged from 0.831 to 0.865 and 0.828 to 0.914 for anterior lens curvature, from 0.832 to 0.898 and 0.840 to 0.933 for posterior lens curvature and from 0.980 to 0.992 and 0.942 to 0.995 for lens thickness. High ICC values were observed for each measurement regardless of accommodative stress. RCs in younger subjects tended to be larger than those in older subjects. Conclusions This novel anterior segment SS-OCT instrument produced reliable in vivo crystalline lens measurement with good repeatability and reproducibility regardless of accommodation stress. PMID:29354706

  17. Retina-like sensor based on a lens array with a large field of view.

    Science.gov (United States)

    Fan, Fan; Hao, Qun; Cheng, Xuemin

    2015-12-20

    This paper puts forward a retina-like sensor based on a lens array, which can be used in conventional optical systems. This sensor achieves log-polar mapping by dividing the imaging optical system's image plane using a lens array. In this paper the mathematical model has been set up with the relative structural parameters. Also, the simulation experiments and parameter analysis have been discussed to verify the reliability of this system. From the experiment results, it can be seen that this sensor realized the log-polar mapping with the transformed image output. Each lens corresponded to a circular region in the image plane with no crossover between different fields of view of adjacent lenses. When the number of rings changed, the relative error did not significantly change, and this error could be reduced to 1% when the number of lenses in each ring was increased. The work widely enlarged the application of this kind of sensor, which will lay a theoretical foundation for retina-like sensors.

  18. Enhanced depth-of-field of an integral imaging microscope using a bifocal holographic optical element-micro lens array.

    Science.gov (United States)

    Kwon, Ki-Chul; Lim, Young-Tae; Shin, Chang-Won; Erdenebat, Munkh-Uchral; Hwang, Jae-Moon; Kim, Nam

    2017-08-15

    We propose and implement an integral imaging microscope with extended depth-of-field (DoF) using a bifocal holographic micro lens array (MLA). The properties of the two MLAs are switched via peristrophic multiplexing, where different properties of the MLA are recorded onto the single holographic optical element (HOE). The recorded MLA properties are perpendicular to each other: after the first mode is recorded, the HOE is rotated by 90° clockwise, and the second mode is recorded. The experimental results confirm that the DoF of the integral imaging microscopy system is extended successfully by using the bifocal MLA.

  19. The optical design of 3D ICs for smartphone and optro-electronics sensing module

    Science.gov (United States)

    Huang, Jiun-Woei

    2018-03-01

    Smartphone require limit space for image system, current lens, used in smartphones are refractive type, the effective focal length is limited the thickness of phone physical size. Other, such as optro-electronics sensing chips, proximity optical sensors, and UV indexer chips are integrated into smart phone with limit space. Due to the requirement of multiple lens in smartphone, proximity optical sensors, UV indexer and other optro-electronics sensing chips in a limited space of CPU board in future smart phone, optro-electronics 3D IC's integrated with optical lens or components may be a key technology for 3 C products. A design for reflective lens is fitted to CMOS, proximity optical sensors, UV indexer and other optro-electronics sensing chips based on 3-D IC. The reflective lens can be threes times of effective focal lens, and be able to resolve small object. The system will be assembled and integrated in one 3-D IC more easily.

  20. Design and analysis of a curved cylindrical Fresnel lens that produces high irradiance uniformity on the solar cell.

    Science.gov (United States)

    González, Juan C

    2009-04-10

    A new type of convex Fresnel lens for linear photovoltaic concentration systems is presented. The lens designed with this method reaches 100% of geometrical optical efficiency, and the ratio (Aperture area)/(Receptor area) is up to 75% of the theoretical limit. The main goal of the design is high uniformity of the radiation on the cell surface for each input angle inside the acceptance. The ratio between the maximum and the minimum irradiance on points of the solar cell is less than 2. The lens has been designed with the simultaneous multiple surfaces (SMS) method of nonimaging optics, and ray tracing techniques have been used to characterize its performance for linear symmetry systems.

  1. Accurate geometrical optics model for single-lens stereovision system using a prism.

    Science.gov (United States)

    Cui, Xiaoyu; Lim, Kah Bin; Guo, Qiyong; Wang, DaoLei

    2012-09-01

    In this paper, we proposed a new method for analyzing the image formation of a prism. The prism was considered as a single optical system composed of some planes. By analyzing each plane individually and then combining them together, we derived a transformation matrix which can express the relationship between an object point and its image by the refraction of a prism. We also explained how to use this matrix for epipolar geometry and three-dimensional point reconstruction. Our method is based on optical geometry and could be used in a multiocular prism. Experimentation results are presented to prove the accuracy of our method is better than former researchers' and is comparable with that of the multicamera stereovision system.

  2. [Representation and mathematical analysis of human crystalline lens].

    Science.gov (United States)

    Tălu, Stefan; Giovanzana, Stefano; Tălu, Mihai

    2011-01-01

    The surface of human crystalline lens can be described and analyzed using mathematical models based on parametric representations, used in biomechanical studies and 3D solid modeling of the lens. The mathematical models used in lens biomechanics allow the study and the behavior of crystalline lens on variables and complex dynamic loads. Also, the lens biomechanics has the potential to improve the results in the development of intraocular lenses and cataract surgery. The paper presents the most representative mathematical models currently used for the modeling of human crystalline lens, both optically and biomechanically.

  3. Development and Optical Testing of the Camera, Hand Lens, and Microscope Probe with Scannable Laser Spectroscopy (CHAMP-SLS)

    Science.gov (United States)

    Mungas, Greg S.; Gursel, Yekta; Sepulveda, Cesar A.; Anderson, Mark; La Baw, Clayton; Johnson, Kenneth R.; Deans, Matthew; Beegle, Luther; Boynton, John

    2008-01-01

    Conducting high resolution field microscopy with coupled laser spectroscopy that can be used to selectively analyze the surface chemistry of individual pixels in a scene is an enabling capability for next generation robotic and manned spaceflight missions, civil, and military applications. In the laboratory, we use a range of imaging and surface preparation tools that provide us with in-focus images, context imaging for identifying features that we want to investigate at high magnification, and surface-optical coupling that allows us to apply optical spectroscopic analysis techniques for analyzing surface chemistry particularly at high magnifications. The camera, hand lens, and microscope probe with scannable laser spectroscopy (CHAMP-SLS) is an imaging/spectroscopy instrument capable of imaging continuously from infinity down to high resolution microscopy (resolution of approx. 1 micron/pixel in a final camera format), the closer CHAMP-SLS is placed to a feature, the higher the resultant magnification. At hand lens to microscopic magnifications, the imaged scene can be selectively interrogated with point spectroscopic techniques such as Raman spectroscopy, microscopic Laser Induced Breakdown Spectroscopy (micro-LIBS), laser ablation mass-spectrometry, Fluorescence spectroscopy, and/or Reflectance spectroscopy. This paper summarizes the optical design, development, and testing of the CHAMP-SLS optics.

  4. Experience with the lathe cut Bausch & Lomb Soflens: Part II--Power and optics study.

    Science.gov (United States)

    Weissman, B A; Levinson, A

    1978-04-01

    Ten familiar spin cast and ten lathe cut Bausch & Lomb SOFLENS contact lenses were measured as to their power on a lensometer and on an eye. Both quality of the optics and quantitative measurements were considered. Lens flexure and the presence of a fluid lens between the posterior surface of the contact lens and the anterior cornea is indicated for both lenses to explain differences between power of the lens in air and on the eye. The spin cast lens design appears to create a quantitatively larger fluid lens, and one which will add positive optical power to the lens/eye system. Either from this and/or additional factors, the lathe cut lens appears to give improved optical performance both in air and on the eye.

  5. Disinfection capacity of PuriLens contact lens cleaning unit against Acanthamoeba.

    Science.gov (United States)

    Hwang, Thomas S; Hyon, Joon Young; Song, Jae Kyung; Reviglio, Victor E; Spahr, Harry T; O'Brien, Terrence P

    2004-01-01

    The PuriLens contact lens system is indicated for cleaning and disinfection of soft (hydrophilic) contact lenses by means of subsonic agitation to remove lens deposits and microorganisms, and ultraviolet irradiation of the storage solution for disinfection. The capacity of the PuriLens system to disinfect storage solutions contaminated with known concentrations of Staphylococcus aureus, Pseudomonas aeruginosa, and Acanthamoeba species was evaluated. An in vitro assessment of the antibacterial and antiparasitic efficacy of the PuriLens system was performed. Separated batches of the storage solution for the cleansing system were contaminated with stock strains of S. aureus and P. aeruginosa. A comparison of the microbiologic content was made between the solution before and after the cycle. The PuriLens system effectively eradicated S. aureus and P. aeruginosa organisms after a 15-minute cycle. However, viable cysts of acanthamoeba were recovered in the solution after the 15-minute cycle. The PuriLens system is highly efficient in protecting against contamination with common bacterial ocular pathogens. Acanthamoeba cysts, however, can survive in the solution or contact lens bath undergoing integrated subsonic debridement and indirect ultraviolet light disinfection. Use of chemical disinfecting solutions that contain agents such as chlorhexidine or other cationic antiseptics may be advisable in conjunction with use of the PuriLens device, especially in high-risk settings.

  6. Light Optics for Optical Stochastic Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Andorf, Matthew [NICADD, DeKalb; Lebedev, Valeri [Fermilab; Piot, Philippe [NICADD, DeKalb; Ruan, Jinhao [Fermilab

    2016-06-01

    In Optical Stochastic Cooling (OSC) radiation generated by a particle in a "pickup" undulator is amplified and transported to a downstream "kicker" undulator where it interacts with the same particle which radiated it. Fermilab plans to carry out both passive (no optical amplifier) and active (optical amplifier) tests of OSC at the Integrable Optics Test Accelerator (IOTA) currently in construction*. The performace of the optical system is analyzed with simulations in Synchrotron Radiation Workshop (SRW) accounting for the specific temporal and spectral properties of undulator radiation and being augmented to include dispersion of lens material.

  7. Optical aberrations in a spinning pipe gas lens

    CSIR Research Space (South Africa)

    Mafusire, C

    2008-06-01

    Full Text Available If a heated pipe is rotated about its axis, a density gradient is formed which results in the pipe acting as a graded index lens. In this study the authors revisit the concept of a spinning pipe gas lens and for the first time analyse both the wave...

  8. Intraocular Lens Calcification; a Clinicopathologic Report

    Directory of Open Access Journals (Sweden)

    Mozhgan Rezaei-Kanavi

    2009-04-01

    Full Text Available

    PURPOSE: To describe the clinical and pathological features of a case of hydrogel intraocular lens (IOL calcification. CASE REPORT: A 48-year-old man underwent explantation of a single-piece hydrophilic acrylic intraocular lens in his left eye because of decreased visual acuity and milky white opalescence of the IOL. The opacified lens was exchanged uneventfully with a hydrophobic acrylic IOL. Gross examination of the explanted IOL disclosed opacification of the optic and haptics. Full-thickness sections of the lens optic were stained with hematoxylin and eosin (H&E, von Kossa and Gram Tworts'. Microscopic examination of the sections revealed fine and diffuse basophilic granular deposits of variable size within the lens optic parallel to the lens curvature but separated from the surface by a moderately clear zone. The deposits were of high calcium content as evident by dark brown staining with von Kossa. Gram Tworts' staining disclosed no microorganisms. CONCLUSION: This report further contributes to the existing literature on hydrogel IOL calcification.

  9. Optical design of an in vivo laparoscopic lighting system.

    Science.gov (United States)

    Liu, Xiaolong; Abdolmalaki, Reza Yazdanpanah; Mancini, Gregory J; Tan, Jindong

    2017-12-01

    This paper proposes an in vivo laparoscopic lighting system design to address the illumination issues, namely poor lighting uniformity and low optical efficiency, existing in the state-of-the-art in vivo laparoscopic cameras. The transformable design of the laparoscopic lighting system is capable of carrying purposefully designed freeform optical lenses for achieving lighting performance with high illuminance uniformity and high optical efficiency in a desired target region. To design freeform optical lenses for extended light sources such as LEDs with Lambertian light intensity distributions, we present an effective and complete freeform optical design method. The procedures include (1) ray map computation by numerically solving a standard Monge-Ampere equation; (2) initial freeform optical surface construction by using Snell's law and a lens volume restriction; (3) correction of surface normal vectors due to accumulated errors from the initially constructed surfaces; and (4) feedback modification of the solution to deal with degraded illuminance uniformity caused by the extended sizes of the LEDs. We employed an optical design software package to evaluate the performance of our laparoscopic lighting system design. The simulation results show that our design achieves greater than 95% illuminance uniformity and greater than 89% optical efficiency (considering Fresnel losses) for illuminating the target surgical region. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  10. Multiocular image sensor with on-chip beam-splitter and inner meta-micro-lens for single-main-lens stereo camera.

    Science.gov (United States)

    Koyama, Shinzo; Onozawa, Kazutoshi; Tanaka, Keisuke; Saito, Shigeru; Kourkouss, Sahim Mohamed; Kato, Yoshihisa

    2016-08-08

    We developed multiocular 1/3-inch 2.75-μm-pixel-size 2.1M- pixel image sensors by co-design of both on-chip beam-splitter and 100-nm-width 800-nm-depth patterned inner meta-micro-lens for single-main-lens stereo camera systems. A camera with the multiocular image sensor can capture horizontally one-dimensional light filed by both the on-chip beam-splitter horizontally dividing ray according to incident angle, and the inner meta-micro-lens collecting the divided ray into pixel with small optical loss. Cross-talks between adjacent light field images of a fabricated binocular image sensor and of a quad-ocular image sensor are as low as 6% and 7% respectively. With the selection of two images from one-dimensional light filed images, a selective baseline for stereo vision is realized to view close objects with single-main-lens. In addition, by adding multiple light field images with different ratios, baseline distance can be tuned within an aperture of a main lens. We suggest the electrically selective or tunable baseline stereo vision to reduce 3D fatigue of viewers.

  11. Metasurface axicon lens design at visible wavelengths

    Science.gov (United States)

    Alyammahi, Saleimah; Zhan, Qiwen

    2017-08-01

    The emerging field of metasurfaces is promising to realize novel optical devices with miniaturized flat format and added functionalities. Metasurfaces have been demonstrated to exhibit full control of amplitude, phase and polarization of electromagnetic waves. Using the metasurface, the wavefront of light can be manipulated permitting new functionalities such as focusing and steering of the beams and imaging. One optical component which can be designed using metasurfaces is the axicon. Axicons are conical lenses used to convert Gaussian beams into nondiffraction Bessel beams. These unique devices are utilized in different applications ranging from optical trapping and manipulation, medical imaging, and surgery. In this work, we study axicon lens design comprising of planar metasurfaces which generate non-diffracting Bessel beams at visible wavelengths. Dielectric metasurfaces have been used to achieve high efficiency and low optical loss. We measured the spot size of the resulted beams at different planes to demonstrate the non-diffraction properties of the resulted beams. We also investigated how the spot size is influenced by the axicon aperture. Furthermore, we examined the achromatic properties of the designed axicon. Comparing with the conventional lens, the metasurface axicon lens design enables the creation of flat optical device with wide range of depth of focus along its optical axis.

  12. Evolutionary algorithm for optimization of nonimaging Fresnel lens geometry.

    Science.gov (United States)

    Yamada, N; Nishikawa, T

    2010-06-21

    In this study, an evolutionary algorithm (EA), which consists of genetic and immune algorithms, is introduced to design the optical geometry of a nonimaging Fresnel lens; this lens generates the uniform flux concentration required for a photovoltaic cell. Herein, a design procedure that incorporates a ray-tracing technique in the EA is described, and the validity of the design is demonstrated. The results show that the EA automatically generated a unique geometry of the Fresnel lens; the use of this geometry resulted in better uniform flux concentration with high optical efficiency.

  13. Single-lens 3D digital image correlation system based on a bilateral telecentric lens and a bi-prism: validation and application.

    Science.gov (United States)

    Wu, Lifu; Zhu, Jianguo; Xie, Huimin

    2015-09-10

    By using the principle of stereovision, 3D digital image correlation (3D-DIC) can determine the 3D morphology and deformation of a target and has been widely used in experimental mechanics as a noncontact 3D measurement technique. To eliminate the limitations of the conventional 3D-DIC system, this study proposes a calibration-free single-lens 3D-DIC system based on a bilateral telecentric lens and a bi-prism. The performance of the proposed system is verified by tests of rigid-body translation along the out-of-plane direction. As a comparison, the same rigid-body translations are measured using a single-entocentric-lens 3D-DIC system. The results show that the measurement accuracy of the proposed system is higher than that of the entocentric-lens-based one. As an application, the proposed system is used to measure the thermal linear expansion of a ceramic plate at elevated temperatures. The reasonable measurement results verify its applicability in deformation measurements, even in high-temperature environments.

  14. Characterization of a fiber-taper charge-coupled device system for plastic scintillation dosimetry and comparison with the traditional lens system

    International Nuclear Information System (INIS)

    Gagnon, Louis-Philippe; Beddar, Sam; Beaulieu, Luc

    2015-01-01

    Purpose: To compare the signal-to-noise ratio (SNR), dose sensitivity and stability, and reproducibility of a lens-less charge-coupled device (CCD) photon-counting system with those of a traditional CCD + lens photon-counting system for plastic scintillation detectors (PSDs). Methods: The PSD used in this study was made from a 1-mm diameter, 2-mm long BCF60 scintillating fiber (emission peak at 530 nm) coupled to a 2.6-m Eska GH-4001 clear plastic fiber. This PSD was coupled to either a fiber-taper-based photon-counting system (FTS) or a lens-based photon-counting system (LS). In the FTS, the fiber-taper was attached to a 2048 × 2048 pixel, uncooled Alta 4020 polychromatic CCD camera. The LS consisted of a 1600 × 1200 pixel Alta 2020 polychromatic CCD camera (cooled to −18 °C) with a 50-mm lens with f/# = 1. Dose measurements were made under the same conditions for each system (isocentric setup; depth of 1.5 cm in solid water using a 10 × 10 cm 2 field size and 6-MV photon beam). The performance of each system was determined and compared, using the chromatic Čerenkov removal method to account for the stem effects produced in the clear plastic fiber. Results: The FTS increased the light collected by a factor of 4 compared with the LS, for the same dose measurements. This gain was possible because the FTS was not limited by the optical aberration that comes with a lens system. Despite a 45 °C operating temperature difference between the systems, the SNR was 1.8–1.9 times higher in the FTS than in the LS, for blue and green channels respectively. Low-dose measurements of 1.0 and 0.5 cGy were obtained with an accuracy of 3.4% and 5.6%, respectively, in the FTS, compared with 5.8% and 15.9% in the LS. The FTS provided excellent dose measurement stability as a function of integration time, with at most a 1% difference at 5 cGy. Under the same conditions, the LS system produced a measurement difference between 2 and 3%. Conclusion: Our results showed that

  15. Objective lens simultaneously optimized for pupil ghosting, wavefront delivery and pupil imaging

    Science.gov (United States)

    Olczak, Eugene G (Inventor)

    2011-01-01

    An objective lens includes multiple optical elements disposed between a first end and a second end, each optical element oriented along an optical axis. Each optical surface of the multiple optical elements provides an angle of incidence to a marginal ray that is above a minimum threshold angle. This threshold angle minimizes pupil ghosts that may enter an interferometer. The objective lens also optimizes wavefront delivery and pupil imaging onto an optical surface under test.

  16. Candidate gravitational microlensing events for future direct lens imaging

    International Nuclear Information System (INIS)

    Henderson, C. B.; Gould, A.; Gaudi, B. S.; Park, H.; Han, C.; Sumi, T.; Koshimoto, N.; Udalski, A.; Tsapras, Y.; Bozza, V.; Abe, F.; Fukunaga, D.; Itow, Y.; Masuda, K.; Bennett, D. P.; Bond, I. A.; Ling, C. H.; Botzler, C. S.; Freeman, M.; Fukui, A.

    2014-01-01

    The mass of the lenses giving rise to Galactic microlensing events can be constrained by measuring the relative lens-source proper motion and lens flux. The flux of the lens can be separated from that of the source, companions to the source, and unrelated nearby stars with high-resolution images taken when the lens and source are spatially resolved. For typical ground-based adaptive optics (AO) or space-based observations, this requires either inordinately long time baselines or high relative proper motions. We provide a list of microlensing events toward the Galactic bulge with high relative lens-source proper motion that are therefore good candidates for constraining the lens mass with future high-resolution imaging. We investigate all events from 2004 to 2013 that display detectable finite-source effects, a feature that allows us to measure the proper motion. In total, we present 20 events with μ ≳ 8 mas yr –1 . Of these, 14 were culled from previous analyses while 6 are new, including OGLE-2004-BLG-368, MOA-2005-BLG-36, OGLE-2012-BLG-0211, OGLE-2012-BLG-0456, MOA-2012-BLG-532, and MOA-2013-BLG-029. In ≲12 yr from the time of each event the lens and source of each event will be sufficiently separated for ground-based telescopes with AO systems or space telescopes to resolve each component and further characterize the lens system. Furthermore, for the most recent events, comparison of the lens flux estimates from images taken immediately to those estimated from images taken when the lens and source are resolved can be used to empirically check the robustness of the single-epoch method currently being used to estimate lens masses for many events.

  17. Candidate gravitational microlensing events for future direct lens imaging

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, C. B.; Gould, A.; Gaudi, B. S. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Park, H.; Han, C. [Department of Physics, Institute for Astrophysics, Chungbuk National University, Cheongju 371-763 (Korea, Republic of); Sumi, T.; Koshimoto, N. [Department of Earth and Space Science, Osaka University, Osaka 560-0043 (Japan); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Tsapras, Y. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Bozza, V. [Department of Physics, University of Salerno, I-84084 Fisciano (Italy); Abe, F.; Fukunaga, D.; Itow, Y.; Masuda, K. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Bennett, D. P. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556-5670 (United States); Bond, I. A.; Ling, C. H. [Institute of Information and Mathematical Sciences, Massey University, Private Bag 102-904, North Shore Mail Centre, Auckland 0745 (New Zealand); Botzler, C. S.; Freeman, M. [Department of Physics, University of Auckland, Private Bag 92-019, Auckland 1001 (New Zealand); Fukui, A. [School of Chemical and Physical Sciences, Victoria University, Wellington 6140 (New Zealand); Collaboration: MOA Collaboration; OGLE Collaboration; μFUN Collaboration; RoboNet Collaboration; and others

    2014-10-10

    The mass of the lenses giving rise to Galactic microlensing events can be constrained by measuring the relative lens-source proper motion and lens flux. The flux of the lens can be separated from that of the source, companions to the source, and unrelated nearby stars with high-resolution images taken when the lens and source are spatially resolved. For typical ground-based adaptive optics (AO) or space-based observations, this requires either inordinately long time baselines or high relative proper motions. We provide a list of microlensing events toward the Galactic bulge with high relative lens-source proper motion that are therefore good candidates for constraining the lens mass with future high-resolution imaging. We investigate all events from 2004 to 2013 that display detectable finite-source effects, a feature that allows us to measure the proper motion. In total, we present 20 events with μ ≳ 8 mas yr{sup –1}. Of these, 14 were culled from previous analyses while 6 are new, including OGLE-2004-BLG-368, MOA-2005-BLG-36, OGLE-2012-BLG-0211, OGLE-2012-BLG-0456, MOA-2012-BLG-532, and MOA-2013-BLG-029. In ≲12 yr from the time of each event the lens and source of each event will be sufficiently separated for ground-based telescopes with AO systems or space telescopes to resolve each component and further characterize the lens system. Furthermore, for the most recent events, comparison of the lens flux estimates from images taken immediately to those estimated from images taken when the lens and source are resolved can be used to empirically check the robustness of the single-epoch method currently being used to estimate lens masses for many events.

  18. Comparison of two optical biometers in intraocular lens power calculation

    Directory of Open Access Journals (Sweden)

    Sheng Hui

    2014-01-01

    Full Text Available Aims: To compare the consistency and accuracy in ocular biometric measurements and intraocular lens (IOL power calculations using the new optical low-coherence reflectometry and partial coherence interferometry. Subjects and Methods: The clinical data of 122 eyes of 72 cataract patients were analyzed retrospectively. All patients were measured with a new optical low-coherence reflectometry system, using the LENSTAR LS 900 (Haag Streit AG/ALLEGRO BioGraph biometer (Wavelight., AG, and partial coherence interferometry (IOLMaster V.5.4 [Carl Zeiss., Meditec, AG] before phacoemulsification and IOL implantation. Repeated measurements, as recommended by the manufacturers, were performed by the same examiner with both devices. Using the parameters of axial length (AL, corneal refractive power (K1 and K2, and anterior chamber depth (ACD, power calculations for AcrySof SA60AT IOL were compared between the two devices using five formulas. The target was emmetropia. Statistical analysis was performed using Statistical Package for the Social Sciences software (SPSS 13.0 with t-test as well as linear regression. A P value < 0.05 was considered to be statistically significant. Results: The mean age of 72 cataract patients was 64.6 years ± 13.4 [standard deviation]. Of the biometry parameters, K1, K2 and [K1 + K2]/2 values were significantly different between the two devices (mean difference, K1: −0.05 ± 0.21 D; K2: −0.12 ± 0.20 D; [K1 + K2]/2: −0.08 ± 0.14 D. P <0.05. There was no statistically significant difference in AL and ACD between the two devices. The correlations of AL, K1, K2, and ACD between the two devices were high. The mean differences in IOL power calculations using the five formulas were not statistically significant between the two devices. Conclusions: New optical low-coherence reflectometry provides measurements that correlate well to those of partial coherence interferometry, thus it is a precise device that can be used for the

  19. Laser Tweezer Controlled Solid Immersion Lens for High Resolution Imaging in Microfluidic and Biological Samples

    National Research Council Canada - National Science Library

    Birkbeck, Aaron L; Zlatanovic, Sanja; Ozkan, Mihrimah; Esener, Sadik C

    2005-01-01

    ...). Up to now, solid immersion lens imaging systems have relied upon cantilever-mounted SILs that are difficult to integrate into microfluidic systems and require an extra alignment step with external optics...

  20. Effects of photobleaching on selected advanced glycation end products in the human lens

    DEFF Research Database (Denmark)

    Holm, Thomas; Raghavan, Cibin T; Nahomi, Rooban

    2015-01-01

    at examining the optical and biochemical effects of the proposed treatment.MethodsHuman donor lenses were photobleaced using a 445 nm cw laser. Lens optical quality was assessed before and after photobleaching by light transmission and scattering. The concentration of the advanced glycation end products (AGEs...... of the photobleaching treatment on lens optical parameters but we could not associate the optical findings to a change in the concentration of the AGEs we measured. This finding suggests that other AGEs were responsible for the observed photobleaching of the human lens after laser treatment. The biochemical nature...

  1. Design and evaluation of a freeform lens by using a method of luminous intensity mapping and a differential equation

    Science.gov (United States)

    Essameldin, Mahmoud; Fleischmann, Friedrich; Henning, Thomas; Lang, Walter

    2017-02-01

    Freeform optical systems are playing an important role in the field of illumination engineering for redistributing the light intensity, because of its capability of achieving accurate and efficient results. The authors have presented the basic idea of the freeform lens design method at the 117th annual meeting of the German Society of Applied Optics (DGAOProceedings). Now, we demonstrate the feasibility of the design method by designing and evaluating a freeform lens. The concepts of luminous intensity mapping, energy conservation and differential equation are combined in designing a lens for non-imaging applications. The required procedures to design a lens including the simulations are explained in detail. The optical performance is investigated by using a numerical simulation of optical ray tracing. For evaluation, the results are compared with another recently published design method, showing the accurate performance of the proposed method using a reduced number of mapping angles. As a part of the tolerance analyses of the fabrication processes, the influence of the light source misalignments (translation and orientation) on the beam-shaping performance is presented. Finally, the importance of considering the extended light source while designing a freeform lens using the proposed method is discussed.

  2. Optical tweezers and surface plasmon resonance combination system based on the high numerical aperture lens

    Science.gov (United States)

    Shan, Xuchen; Zhang, Bei; Lan, Guoqiang; Wang, Yiqiao; Liu, Shugang

    2015-11-01

    Biology and medicine sample measurement takes an important role in the microscopic optical technology. Optical tweezer has the advantage of accurate capture and non-pollution of the sample. The SPR(surface plasmon resonance) sensor has so many advantages include high sensitivity, fast measurement, less consumption of sample and label-free detection of biological sample that the SPR sensing technique has been used for surface topography, analysis of biochemical and immune, drug screening and environmental monitoring. If they combine, they will play an important role in the biological, chemical and other subjects. The system we propose use the multi-axis cage system, by using the methods of reflection and transmiss ion to improve the space utilization. The SPR system and optical tweezer were builtup and combined in one system. The cage of multi-axis system gives full play to its accuracy, simplicity and flexibility. The size of the system is 20 * 15 * 40 cm3 and thus the sample can be replaced to switch between the optical tweezers system and the SPR system in the small space. It means that we get the refractive index of the sample and control the particle in the same system. In order to control the revolving stage, get the picture and achieve the data stored automatically, we write a LabVIEW procedure. Then according to the data from the back focal plane calculate the refractive index of the sample. By changing the slide we can trap the particle as optical tweezer, which makes us measurement and trap the sample at the same time.

  3. Thermal lens study of thermo-optical properties and concentration quenching of Er3+-doped lead pyrophosphate based glasses

    Energy Technology Data Exchange (ETDEWEB)

    Santos, C. C. [Universidade Federal do Ceara, Ceara, Brazil; Rocha, U. [Grupo de Fotônica e Fluidos Complexos, Instituto de Física, Brazil; Guedes, Ilde [Universidade Federal do Ceara, Ceara, Brazil; Vermelho, M. V. D. [Instituto de Fisica, Universidade Federal de Alagoas, Brazil; Boatner, Lynn A [ORNL; Jacinto, C. [Instituto de Fisica, Universidade Federal de Alagoas, Brazil

    2012-01-01

    In this work, we have used the thermal lens technique combined with conventional spectroscopy to characterize the thermo-optical properties of Er3+-doped lead pyrophosphate-based glasses. More precisely, we have investigated and quantified experimentally the fluorescence quantum efficiencies of the Er3+ levels, and we describe the role of concentration quenching effects. The fluorescence quantum efficiency of the 4I13/2 level is very high when compared to other phosphate glasses, while that of the green-coupled levels is very small. Other important photonic materials parameters, such as the thermal diffusivity and temperature coefficient of the optical path length change, were obtained and compared with those of other glass systems. The cumulative results obtained here for the Er-doped lead pyrophosphate glass show that this material is a good candidate for photonic applications with a characteristic Er3+ infrared emission around 1550 nm.

  4. Lens-free imaging of magnetic particles in DNA assays.

    Science.gov (United States)

    Colle, Frederik; Vercruysse, Dries; Peeters, Sara; Liu, Chengxun; Stakenborg, Tim; Lagae, Liesbet; Del-Favero, Jurgen

    2013-11-07

    We present a novel opto-magnetic system for the fast and sensitive detection of nucleic acids. The system is based on a lens-free imaging approach resulting in a compact and cheap optical readout of surface hybridized DNA fragments. In our system magnetic particles are attracted towards the detection surface thereby completing the labeling step in less than 1 min. An optimized surface functionalization combined with magnetic manipulation was used to remove all nonspecifically bound magnetic particles from the detection surface. A lens-free image of the specifically bound magnetic particles on the detection surface was recorded by a CMOS imager. This recorded interference pattern was reconstructed in software, to represent the particle image at the focal distance, using little computational power. As a result we were able to detect DNA concentrations down to 10 pM with single particle sensitivity. The possibility of integrated sample preparation by manipulation of magnetic particles, combined with the cheap and highly compact lens-free detection makes our system an ideal candidate for point-of-care diagnostic applications.

  5. Transverse-structure electrostatic charged particle beam lens

    Science.gov (United States)

    Moran, M.J.

    1998-10-13

    Electrostatic particle-beam lenses using a concentric co-planar array of independently biased rings can be advantageous for some applications. Traditional electrostatic lenses often consist of axial series of biased rings, apertures, or tubes. The science of lens design has devoted much attention to finding axial arrangements that compensate for the substantial optical aberrations of the individual elements. Thus, as with multi-element lenses for light, a multi-element charged-particle lens can have optical behavior that is far superior to that of the individual elements. Transverse multiple-concentric-ring lenses achieve high performance, while also having advantages in terms of compactness and optical versatility. 7 figs.

  6. Gradient-Index Optics

    Science.gov (United States)

    2010-03-31

    nonimaging design capabilities to incorporate 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 12-04-2011 13. SUPPLEMENTARY NOTES The views, opinions...Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Imaging Optics, Nonimaging Optics, Gradient Index Optics, Camera, Concentrator...imaging and nonimaging design capabilities to incorporate manufacturable GRIN lenses can provide imaging lens systems that are compact and

  7. Effects of a myosin light chain kinase inhibitor on the optics and accommodation of the avian crystalline lens.

    Science.gov (United States)

    Luck, Sara; Choh, Vivian

    2011-01-01

    While many studies investigate the cytoskeletal properties of the lens with respect to cataract development, examinations of how these molecular structures interact are few. Myosin light chain kinase (MLCK), actin, and myosin are present on the crystalline lenses of chickens. The purpose of this experiment was to determine whether contractile proteins found on the lens play a role in the optical functions of the lens at rest, and during accommodation. Eyes of 6-day old white Leghorn chicks (Gallus gallus domesticus) were enucleated, with the ciliary nerve intact. One eye was treated with the MLCK inhibitor 1-(5-iodonaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine hydrochloride (ML-7) and the other eye with vehicle only. Three concentrations of ML-7 were used: 1 µM, 10 µM, and 100 µM. The back vertex focal lengths (BVFLs) were measured before, during, and after accommodation using an optical laser scanning monitor (Scantox™). To further confirm ML-7 activity, western blotting was performed to detect whether MLCK was inhibited. Western blots confirmed that MLCK was inhibited at all three ML-7 concentrations. Ten µM ML-7 treatments led to longer BVFLs at rest (p=0.0338), while 100 µM treatments led to opposite changes, resulting in shorter BVFLs (p=0.0220). While 1 µM treatments did not lead to significant optical changes (p=0.4416), BVFLs were similar in pattern to those of the 10 µM group. ML-7 had no effects on accommodative amplitudes (p=0.7848). Inhibition of MLCK by ML-7 led to differential changes in BVFLs that presumably affected lenticular integrity. No apparent effect on accommodative amplitudes was observed.

  8. Electro-optic control of photographic imaging quality through ‘Smart Glass’ windows in optics demonstrations

    Science.gov (United States)

    Ozolinsh, Maris; Paulins, Paulis

    2017-09-01

    An experimental setup allowing the modeling of conditions in optical devices and in the eye at various degrees of scattering such as cataract pathology in human eyes is presented. The scattering in cells of polymer-dispersed liquid crystals (PDLCs) and ‘Smart Glass’ windows is used in the modeling experiments. Both applications are used as optical obstacles placed in different positions of the optical information flow pathway either directly on the stimuli demonstration computer screen or mounted directly after the image-formation lens of a digital camera. The degree of scattering is changed continuously by applying an AC voltage of up to 30-80 V to the PDLC cell. The setup uses a camera with 14 bit depth and a 24 mm focal length lens. Light-emitting diodes and diode-pumped solid-state lasers emitting radiation of different wavelengths are used as portable small-divergence light sources in the experiments. Image formation, optical system point spread function, modulation transfer functions, and system resolution limits are determined for such sample optical systems in student optics and optometry experimental exercises.

  9. Electro-optic control of photographic imaging quality through ‘Smart Glass’ windows in optics demonstrations

    International Nuclear Information System (INIS)

    Ozolinsh, Maris; Paulins, Paulis

    2017-01-01

    An experimental setup allowing the modeling of conditions in optical devices and in the eye at various degrees of scattering such as cataract pathology in human eyes is presented. The scattering in cells of polymer-dispersed liquid crystals (PDLCs) and ‘Smart Glass’ windows is used in the modeling experiments. Both applications are used as optical obstacles placed in different positions of the optical information flow pathway either directly on the stimuli demonstration computer screen or mounted directly after the image-formation lens of a digital camera. The degree of scattering is changed continuously by applying an AC voltage of up to 30–80 V to the PDLC cell. The setup uses a camera with 14 bit depth and a 24 mm focal length lens. Light-emitting diodes and diode-pumped solid-state lasers emitting radiation of different wavelengths are used as portable small-divergence light sources in the experiments. Image formation, optical system point spread function, modulation transfer functions, and system resolution limits are determined for such sample optical systems in student optics and optometry experimental exercises. (paper)

  10. Advanced optical signal processing of broadband parallel data signals

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Hu, Hao; Kjøller, Niels-Kristian

    2016-01-01

    Optical signal processing may aid in reducing the number of active components in communication systems with many parallel channels, by e.g. using telescopic time lens arrangements to perform format conversion and allow for WDM regeneration.......Optical signal processing may aid in reducing the number of active components in communication systems with many parallel channels, by e.g. using telescopic time lens arrangements to perform format conversion and allow for WDM regeneration....

  11. Design of an Acceleration / Deceleration Lens System for Ion Beam Focusing Emerging from Penning Ion Source

    International Nuclear Information System (INIS)

    El-Khabeary, H.

    2007-01-01

    In this study, design of the deceleration lens system has been done by using SIMION 3D version 7.0 computer program. A parallel beam of singly charged argon ions of diameter 2. mm with energy of 5 KeV emerging from Penning ion source was started at a distance of 140 mm before entering the Einzel lens system (three cylinder electrodes ). In order to design this deceleration lens system, two and three cylinder lenses with different parameters are studied. Ion beam emittance as a function of the gap width of the deceleration lens system has been studied for singly charged argon ion trajectories. Influence of the deceleration voltage applied on the deceleration electrode with different voltages of the four electrodes on the ion beam emittance has been investigated with gap widths of 3, 7, 9, 11 and 15 nun. The deceleration lens system was also used as an acceleration lens system by changing and optimising the voltage on each electrode of the deceleration lens system and of the intermediate electrode of the Einzel lens

  12. Effect of birefringence of lens material on polarization status and optical imaging characteristics

    Science.gov (United States)

    Kim, Wan-Chin; Park, No-Cheol

    2018-04-01

    In most cases of molding with glass or optical polymers, it is expected that there will be birefringence caused by the internal mechanical stresses remaining in the molding material. The distribution of the residual stress can be annealed by slow cooling, but this approach is disadvantageous with respect to the shape accuracy and manufacturing time. In this study, we propose an analytical model to calculate the diffracted field near the focal plane by considering two primary parameters, the orientation angle of the fast axis and the path difference. In order to verify the reliability of the analytical model, we compared the measured beam spot of the F-theta lens of the laser scanning unit (LSU) with the analytical result. In addition, we analyzed the calculated result from the perspective of the polarization status in the exit pupil. The proposed analysis method can be applied to enhance the image quality for cases in which birefringence occurs in a lens material by suitably modeling the amplitude and phase of the incident light flux.

  13. Optical system design with wide field of view and high resolution based on monocentric multi-scale construction

    Science.gov (United States)

    Wang, Fang; Wang, Hu; Xiao, Nan; Shen, Yang; Xue, Yaoke

    2018-03-01

    With the development of related technology gradually mature in the field of optoelectronic information, it is a great demand to design an optical system with high resolution and wide field of view(FOV). However, as it is illustrated in conventional Applied Optics, there is a contradiction between these two characteristics. Namely, the FOV and imaging resolution are limited by each other. Here, based on the study of typical wide-FOV optical system design, we propose the monocentric multi-scale system design method to solve this problem. Consisting of a concentric spherical lens and a series of micro-lens array, this system has effective improvement on its imaging quality. As an example, we designed a typical imaging system, which has a focal length of 35mm and a instantaneous field angle of 14.7", as well as the FOV set to be 120°. By analyzing the imaging quality, we demonstrate that in different FOV, all the values of MTF at 200lp/mm are higher than 0.4 when the sampling frequency of the Nyquist is 200lp/mm, which shows a good accordance with our design.

  14. Anterior segment and retinal OCT imaging with simplified sample arm using focus tunable lens technology (Conference Presentation)

    Science.gov (United States)

    Grulkowski, Ireneusz; Karnowski, Karol; Ruminski, Daniel; Wojtkowski, Maciej

    2016-03-01

    Availability of the long-depth-range OCT systems enables comprehensive structural imaging of the eye and extraction of biometric parameters characterizing the entire eye. Several approaches have been developed to perform OCT imaging with extended depth ranges. In particular, current SS-OCT technology seems to be suited to visualize both anterior and posterior eye in a single measurement. The aim of this study is to demonstrate integrated anterior segment and retinal SS-OCT imaging using a single instrument, in which the sample arm is equipped with the electrically tunable lens (ETL). ETL is composed of the optical liquid confined in the space by an elastic polymer membrane. The shape of the membrane, electrically controlled by a specific ring, defines the radius of curvature of the lens surface, thus it regulates the power of the lens. ETL can be also equipped with additional offset lens to adjust the tuning range of the optical power. We characterize the operation of the tunable lens using wavefront sensing. We develop the optimized optical set-up with two adaptive operational states of the ETL in order to focus the light either on the retina or on the anterior segment of the eye. We test the performance of the set-up by utilizing whole eye phantom as the object. Finally, we perform human eye in vivo imaging using the SS-OCT instrument with versatile imaging functionality that accounts for the optics of the eye and enables dynamic control of the optical beam focus.

  15. The Optical Design of the Human Eye: a Critical Review

    Directory of Open Access Journals (Sweden)

    Rafael Navarro

    2009-01-01

    Full Text Available Cornea, lens and eye models are analyzed and compared to experimental findings to assess properties and eventually unveil optical design principles involved in the structure and function of the optical system of the eye. Models and data often show good match but also some paradoxes. The optical design seems to correspond to a wide angle lens. Compared to conventional optical systems, the eye presents a poor optical quality on axis, but a relatively good quality off-axis, thus yielding higher homogeneity for a wide visual field. This seems the result of an intriguing combination of the symmetry design principle with a total lack of rotational symmetry, decentrations and misalignments of the optical surfaces.

  16. New lens system using toroidal magnetic field for intense ion beam

    International Nuclear Information System (INIS)

    Mohri, Akihiro; Ikuta, Kazunari; Fujita, Junji.

    1976-11-01

    The use of toroidal magnetic field as a lens system is proposed for producing intense ion beam. The characteristics of the lens system are obtained both analytically and numerically. Some examples of ray-trajectories are presented for different focal lengths. The system is applicable to neutral beam injection heating and micro-pellet implosion for nuclear fusion, and to the other fields such as ion beam X-ray lasers. (auth.)

  17. Development of Optical Fiber-Based Daylighting System and Its Comparison

    Directory of Open Access Journals (Sweden)

    Irfan Ullah

    2015-07-01

    Full Text Available Fiber-optic daylighting systems have been shown to be a promising and effective way to transmit sunlight in the interior space whilst reducing electric lighting energy consumption. To increase efficiency in terms of providing uniform illumination in the interior, the current need is to illuminate optical fiber-bundle with uniform light flux. To this end, we propose a method for achieving collimated light, which illuminates the fiber-bundle uniformly. Light is collected through a parabolic concentrator and focused toward a collimating lens, which distributes the light over each optical fiber. An optics diffusing structure is utilized at the end side of the fiber bundle to spread light in the interior. The results clearly reveal that the efficiency in terms of uniform illumination, which also reduces the heat problem for optical fibers, is improved. Furthermore, a comparison study is conducted between current and previous approaches. As a result, the proposed daylighting system turns out convenient in terms of energy saving and reduction in greenhouse gas emissions.

  18. Lens subluxation grading system: predictive value for ectopia lentis surgical outcomes

    Directory of Open Access Journals (Sweden)

    Mauro Waiswol

    2009-03-01

    Full Text Available Objective: To present a classification system to grade ectopia lentis and to assess its usefulness as a predictor for surgical outcomes. Methods: Fifty-one eyes of 28 patients with either simple (19 patients or Marfan syndrome-associated ectopia lentis (nine patients with variable degrees of subluxation were operated on. Lens subluxation intensity was graded according to the lens subluxation grading system (LSGS from grade 1 (lens on the whole pupillary area up to grade 4 (lens absent from the pupillary area. Thirty eyes underwent cataract extraction (“dry” aspiration with endocapsular ring and in-the-bag intraocular lens (IOL implantation. Twenty-one eyes underwent cataract extraction (“dry” aspiration with scleral fixation of the IOL. The predictive value of the LSGS was assessed by analyzing the post-operative outcomes, including visual acuity (VA, endothelial cell loss, and complications for each grade on the grading system. Rresults: Patients were classified into grade 1 (19.6%, grade 2 (51% and grade 3 (29.4%. Post-operative VA was lower for eyes with larger degrees of subluxation. The higher the subluxation grade, the higher the endothelial cell loss, as well as, the frequency of vitreous loss and surgical time. Higher subluxation grades prevented optimal surgical outcomes with endocapsular ring and in-the-bag IOL implantation. Cconclusions: The LSGS provides an estimate of the surgical success of ectopia lentis. Adequate standardization of lens subluxation is crucial for understanding studies dealing with the surgical correction of this disorder.

  19. Miniaturized optical sensors based on lens arrays

    DEFF Research Database (Denmark)

    Hanson, Steen Grüner; Jakobsen, M.L.; Larsen, H.E.

    2005-01-01

    A suite of optical sensors based on the use of lenticular arrays for probing mechanical deflections will be displayed. The optical systems are well suited for miniaturization, and utilize speckles as the information-carriers. This implementation allows for acquiring directional information...

  20. Optical system for object detection and delineation in space

    Science.gov (United States)

    Handelman, Amir; Shwartz, Shoam; Donitza, Liad; Chaplanov, Loran

    2018-01-01

    Object recognition and delineation is an important task in many environments, such as in crime scenes and operating rooms. Marking evidence or surgical tools and attracting the attention of the surrounding staff to the marked objects can affect people's lives. We present an optical system comprising a camera, computer, and small laser projector that can detect and delineate objects in the environment. To prove the optical system's concept, we show that it can operate in a hypothetical crime scene in which a pistol is present and automatically recognize and segment it by various computer-vision algorithms. Based on such segmentation, the laser projector illuminates the actual boundaries of the pistol and thus allows the persons in the scene to comfortably locate and measure the pistol without holding any intermediator device, such as an augmented reality handheld device, glasses, or screens. Using additional optical devices, such as diffraction grating and a cylinder lens, the pistol size can be estimated. The exact location of the pistol in space remains static, even after its removal. Our optical system can be fixed or dynamically moved, making it suitable for various applications that require marking of objects in space.

  1. Analysis of the Effects of Thermal Environment on Optical Systems for Navigation Guidance and Control in Supersonic Aircraft Based on Empirical Equations.

    Science.gov (United States)

    Cheng, Xuemin; Yang, Yikang; Hao, Qun

    2016-10-17

    The thermal environment is an important factor in the design of optical systems. This study investigated the thermal analysis technology of optical systems for navigation guidance and control in supersonic aircraft by developing empirical equations for the front temperature gradient and rear thermal diffusion distance, and for basic factors such as flying parameters and the structure of the optical system. Finite element analysis (FEA) was used to study the relationship between flying and front dome parameters and the system temperature field. Systematic deduction was then conducted based on the effects of the temperature field on the physical geometry and ray tracing performance of the front dome and rear optical lenses, by deriving the relational expressions between the system temperature field and the spot size and positioning precision of the rear optical lens. The optical systems used for navigation guidance and control in supersonic aircraft when the flight speed is in the range of 1-5 Ma were analysed using the derived equations. Using this new method it was possible to control the precision within 10% when considering the light spot received by the four-quadrant detector, and computation time was reduced compared with the traditional method of separately analysing the temperature field of the front dome and rear optical lens using FEA. Thus, the method can effectively increase the efficiency of parameter analysis and computation in an airborne optical system, facilitating the systematic, effective and integrated thermal analysis of airborne optical systems for navigation guidance and control.

  2. Electrostatic afocal-zoom lens design using computer optimization technique

    Energy Technology Data Exchange (ETDEWEB)

    Sise, Omer, E-mail: omersise@gmail.com

    2014-12-15

    Highlights: • We describe the detailed design of a five-element electrostatic afocal-zoom lens. • The simplex optimization is used to optimize lens voltages. • The method can be applied to multi-element electrostatic lenses. - Abstract: Electron optics is the key to the successful operation of electron collision experiments where well designed electrostatic lenses are needed to drive electron beam before and after the collision. In this work, the imaging properties and aberration analysis of an electrostatic afocal-zoom lens design were investigated using a computer optimization technique. We have found a whole new range of voltage combinations that has gone unnoticed until now. A full range of voltage ratios and spherical and chromatic aberration coefficients were systematically analyzed with a range of magnifications between 0.3 and 3.2. The grid-shadow evaluation was also employed to show the effect of spherical aberration. The technique is found to be useful for searching the optimal configuration in a multi-element lens system.

  3. Application of fluidic lens technology to an adaptive holographic optical element see-through autophoropter

    Science.gov (United States)

    Chancy, Carl H.

    A device for performing an objective eye exam has been developed to automatically determine ophthalmic prescriptions. The closed loop fluidic auto-phoropter has been designed, modeled, fabricated and tested for the automatic measurement and correction of a patient's prescriptions. The adaptive phoropter is designed through the combination of a spherical-powered fluidic lens and two cylindrical fluidic lenses that are orientated 45o relative to each other. In addition, the system incorporates Shack-Hartmann wavefront sensing technology to identify the eye's wavefront error and corresponding prescription. Using the wavefront error information, the fluidic auto-phoropter nulls the eye's lower order wavefront error by applying the appropriate volumes to the fluidic lenses. The combination of the Shack-Hartmann wavefront sensor the fluidic auto-phoropter allows for the identification and control of spherical refractive error, as well as cylinder error and axis; thus, creating a truly automated refractometer and corrective system. The fluidic auto-phoropter is capable of correcting defocus error ranging from -20D to 20D and astigmatism from -10D to 10D. The transmissive see-through design allows for the observation of natural scenes through the system at varying object planes with no additional imaging optics in the patient's line of sight. In this research, two generations of the fluidic auto-phoropter are designed and tested; the first generation uses traditional glass optics for the measurement channel. The second generation of the fluidic auto-phoropter takes advantage of the progress in the development of holographic optical elements (HOEs) to replace all the traditional glass optics. The addition of the HOEs has enabled the development of a more compact, inexpensive and easily reproducible system without compromising its performance. Additionally, the fluidic lenses were tested during a National Aeronautics Space Administration (NASA) parabolic flight campaign, to

  4. Terahertz lens made out of natural stone.

    Science.gov (United States)

    Han, Daehoon; Lee, Kanghee; Lim, Jongseok; Hong, Sei Sun; Kim, Young Kie; Ahn, Jaewook

    2013-12-20

    Terahertz (THz) time-domain spectroscopy probes the optical properties of naturally occurring solid aggregates of minerals, or stones, in the THz frequency range. Refractive index and extinction coefficient measurement reveals that most natural stones, including mudstone, sandstone, granite, tuff, gneiss, diorite, slate, marble, and dolomite, are fairly transparent for THz frequency waves. Dolomite in particular exhibits a nearly uniform refractive index of 2.7 over the broad frequency range from 0.1 to 1 THz. The high index of refraction allows flexibility in lens designing with a shorter accessible focal length or a thinner lens with a given focal length. Good agreement between the experiment and calculation for the THz beam profile confirms that dolomite has high homogeneity as a lens material, suggesting the possibility of using natural stones for THz optical elements.

  5. Invited review article: the electrostatic plasma lens.

    Science.gov (United States)

    Goncharov, Alexey

    2013-02-01

    The fundamental principles, experimental results, and potential applications of the electrostatic plasma lens for focusing and manipulating high-current, energetic, heavy ion beams are reviewed. First described almost 50 years ago, this optical beam device provides space charge neutralization of the ion beam within the lens volume, and thus provides an effective and unique tool for focusing high current beams where a high degree of neutralization is essential to prevent beam blow-up. Short and long lenses have been explored, and a lens in which the magnetic field is provided by rare-earth permanent magnets has been demonstrated. Applications include the use of this kind of optical tool for laboratory ion beam manipulation, high dose ion implantation, heavy ion accelerator injection, in heavy ion fusion, and other high technology.

  6. GLOBAL OPTIMIZATION METHODS FOR GRAVITATIONAL LENS SYSTEMS WITH REGULARIZED SOURCES

    International Nuclear Information System (INIS)

    Rogers, Adam; Fiege, Jason D.

    2012-01-01

    Several approaches exist to model gravitational lens systems. In this study, we apply global optimization methods to find the optimal set of lens parameters using a genetic algorithm. We treat the full optimization procedure as a two-step process: an analytical description of the source plane intensity distribution is used to find an initial approximation to the optimal lens parameters; the second stage of the optimization uses a pixelated source plane with the semilinear method to determine an optimal source. Regularization is handled by means of an iterative method and the generalized cross validation (GCV) and unbiased predictive risk estimator (UPRE) functions that are commonly used in standard image deconvolution problems. This approach simultaneously estimates the optimal regularization parameter and the number of degrees of freedom in the source. Using the GCV and UPRE functions, we are able to justify an estimation of the number of source degrees of freedom found in previous work. We test our approach by applying our code to a subset of the lens systems included in the SLACS survey.

  7. Correction of 157-nm lens based on phase ring aberration extraction method

    Science.gov (United States)

    Meute, Jeff; Rich, Georgia K.; Conley, Will; Smith, Bruce W.; Zavyalova, Lena V.; Cashmore, Julian S.; Ashworth, Dominic; Webb, James E.; Rich, Lisa

    2004-05-01

    Early manufacture and use of 157nm high NA lenses has presented significant challenges including: intrinsic birefringence correction, control of optical surface contamination, and the use of relatively unproven materials, coatings, and metrology. Many of these issues were addressed during the manufacture and use of International SEMATECH"s 0.85NA lens. Most significantly, we were the first to employ 157nm phase measurement interferometry (PMI) and birefringence modeling software for lens optimization. These efforts yielded significant wavefront improvement and produced one of the best wavefront-corrected 157nm lenses to date. After applying the best practices to the manufacture of the lens, we still had to overcome the difficulties of integrating the lens into the tool platform at International SEMATECH instead of at the supplier facility. After lens integration, alignment, and field optimization were complete, conventional lithography and phase ring aberration extraction techniques were used to characterize system performance. These techniques suggested a wavefront error of approximately 0.05 waves RMS--much larger than the 0.03 waves RMS predicted by 157nm PMI. In-situ wavefront correction was planned for in the early stages of this project to mitigate risks introduced by the use of development materials and techniques and field integration of the lens. In this publication, we document the development and use of a phase ring aberration extraction method for characterizing imaging performance and a technique for correcting aberrations with the addition of an optical compensation plate. Imaging results before and after the lens correction are presented and differences between actual and predicted results are discussed.

  8. A lens-coupled scintillation counter in cryogenic environment

    International Nuclear Information System (INIS)

    Stoykov, A; Scheuermann, R; Amato, A; Bartkowiak, M; Konter, J A; Rodriguez, J; Sedlak, K

    2011-01-01

    In this work we present an elegant solution for a scintillation counter to be integrated into a cryogenic system. Its distinguishing feature is the absence of a continuous light guide coupling the scintillation and the photodetector parts, operating at cryogenic and room temperatures respectively. The prototype detector consists of a plastic scintillator with glued-in wavelength-shifting fiber located inside a cryostat, a Geiger-mode Avalanche Photodiode (G-APD) outside the cryostat, and a lens system guiding the scintillation light re-emitted by the fiber to the G-APD through optical windows in the cryostat shields. With a 0.8 mm diameter multiclad fiber and a 1 mm active area G-APD the coupling efficiency of the 'lens light guide' is about 50%. A reliable performance of the detector down to 3 K is demonstrated.

  9. Lens stem cells may reside outside the lens capsule: an hypothesis

    Directory of Open Access Journals (Sweden)

    Meyer Rita A

    2007-06-01

    Full Text Available Abstract In this paper, we consider the ocular lens in the context of contemporary developments in biological ideas. We attempt to reconcile lens biology with stem cell concepts and a dearth of lens tumors. Historically, the lens has been viewed as a closed system, in which cells at the periphery of the lens epithelium differentiate into fiber cells. Theoretical considerations led us to question whether the intracapsular lens is indeed self-contained. Since stem cells generate tumors and the lens does not naturally develop tumors, we reasoned that lens stem cells may not be present within the capsule. We hypothesize that lens stem cells reside outside the lens capsule, in the nearby ciliary body. Our ideas challenge the existing lens biology paradigm. We begin our discussion with lens background information, in order to describe our lens stem cell hypothesis in the context of published data. Then we present the ciliary body as a possible source for lens stem cells, and conclude by comparing the ocular lens with the corneal epithelium.

  10. TESS Lens-Bezel Assembly Modal Testing

    Science.gov (United States)

    Dilworth, Brandon J.; Karlicek, Alexandra

    2017-01-01

    The Transiting Exoplanet Survey Satellite (TESS) program, led by the Kavli Institute for Astrophysics and Space Research at the Massachusetts Institute of Technology (MIT) will be the first-ever spaceborne all-sky transit survey. MIT Lincoln Laboratory is responsible for the cameras, including the lens assemblies, detector assemblies, lens hoods, and camera mounts. TESS is scheduled to be launched in August of 2017 with the primary goal to detect small planets with bright host starts in the solar neighborhood, so that detailed characterizations of the planets and their atmospheres can be performed. The TESS payload consists of four identical cameras and a data handling unit. Each camera consists of a lens assembly with seven optical elements and a detector assembly with four charge-coupled devices (CCDs) including their associated electronics. The optical prescription requires that several of the lenses are in close proximity to a neighboring element. A finite element model (FEM) was developed to estimate the relative deflections between each lens-bezel assembly under launch loads to predict that there are adequate clearances preventing the lenses from making contact. Modal tests using non-contact response measurements were conducted to experimentally estimate the modal parameters of the lens-bezel assembly, and used to validate the initial FEM assumptions. Key Words Non-contact measurements, modal analysis, model validation

  11. The Multiaperture Optical (mao) System Based on the Apposition Principle.

    Science.gov (United States)

    Lin, Shih-Chao

    Automation freed mankind from repeated boring labor and/or labor requiring an instantaneous response. When applied as robotics it could even free mankind from dangerous labor such as handling radioactive material. For a robot or an automated system a vision device has proven to be an important element. Almost all artificial vision systems are similar in design to the human eye with its single large lens system. In contrast, the compound eye of an insect is much smaller than the human eye. Therefore, it is proposed to imitate the insect eye in order to develop a small viewing device useful in robotic design. The basic element of the multiaperture optical system described here is a non-imaging light horn. The optical studies on the non-imaging light horn (a simulated insect eye eyelet) have been done and show that this device may produce images when several horns are used together in an array. The study also shows that with several non -imaging devices the position of an object point light source can be determined very easily. One possible realization of multiaperture optical system design based on the apposition principle is proposed and discussed. The multiaperture optical system proposed is a small, low cost device with digital image processing.

  12. Electron optics

    CERN Document Server

    Grivet, Pierre; Bertein, F; Castaing, R; Gauzit, M; Septier, Albert L

    1972-01-01

    Electron Optics, Second English Edition, Part I: Optics is a 10-chapter book that begins by elucidating the fundamental features and basic techniques of electron optics, as well as the distribution of potential and field in electrostatic lenses. This book then explains the field distribution in magnetic lenses; the optical properties of electrostatic and magnetic lenses; and the similarities and differences between glass optics and electron optics. Subsequent chapters focus on lens defects; some electrostatic lenses and triode guns; and magnetic lens models. The strong focusing lenses and pris

  13. Optical design of ultrashort throw liquid crystal on silicon projection system

    Science.gov (United States)

    Huang, Jiun-Woei

    2017-05-01

    An ultrashort throw liquid crystal on silicon (LCoS) projector for home cinema, virtual reality, and automobile heads-up display has been designed and fabricated. To achieve the best performance and highest-quality image, this study aimed to design wide-angle projection optics and optimize the illumination for LCoS. Based on the telecentric lens projection system and optimized Koehler illumination, the optical parameters were calculated. The projector's optical system consisted of a conic aspheric mirror and image optics using either symmetric double Gauss or a large-angle eyepiece to achieve a full projection angle larger than 155 deg. By applying Koehler illumination, image resolution was enhanced and the modulation transfer function of the image in high spatial frequency was increased to form a high-quality illuminated image. The partial coherence analysis verified that the design was capable of 2.5 lps/mm within a 2 m×1.5 m projected image. The throw ratio was less than 0.25 in HD format.

  14. A Simple Model of the Accommodating Lens of the Human Eye

    Science.gov (United States)

    Oommen, Vinay; Kanthakumar, Praghalathan

    2014-01-01

    The human eye is often discussed as optically equivalent to a photographic camera. The iris is compared with the shutter, the pupil to the aperture, and the retina to the film, and both have lens systems to focus rays of light. Although many similarities exist, a major difference between the two systems is the mechanism involved in focusing an…

  15. Automated Micro-Object Detection for Mobile Diagnostics Using Lens-Free Imaging Technology

    Directory of Open Access Journals (Sweden)

    Mohendra Roy

    2016-05-01

    Full Text Available Lens-free imaging technology has been extensively used recently for microparticle and biological cell analysis because of its high throughput, low cost, and simple and compact arrangement. However, this technology still lacks a dedicated and automated detection system. In this paper, we describe a custom-developed automated micro-object detection method for a lens-free imaging system. In our previous work (Roy et al., we developed a lens-free imaging system using low-cost components. This system was used to generate and capture the diffraction patterns of micro-objects and a global threshold was used to locate the diffraction patterns. In this work we used the same setup to develop an improved automated detection and analysis algorithm based on adaptive threshold and clustering of signals. For this purpose images from the lens-free system were then used to understand the features and characteristics of the diffraction patterns of several types of samples. On the basis of this information, we custom-developed an automated algorithm for the lens-free imaging system. Next, all the lens-free images were processed using this custom-developed automated algorithm. The performance of this approach was evaluated by comparing the counting results with standard optical microscope results. We evaluated the counting results for polystyrene microbeads, red blood cells, and HepG2, HeLa, and MCF7 cells. The comparison shows good agreement between the systems, with a correlation coefficient of 0.91 and linearity slope of 0.877. We also evaluated the automated size profiles of the microparticle samples. This Wi-Fi-enabled lens-free imaging system, along with the dedicated software, possesses great potential for telemedicine applications in resource-limited settings.

  16. Optics in the United kingdom.

    Science.gov (United States)

    Ditchburn, R W

    1969-10-01

    Optics is interpreted to include x-ray optics, electronic optics, and short wave radiooptics as well as the more conventional visible, uv, and ir optics. Recent work in Britain on x-ray optics (applied to molecular biology), on scanning electron microscopy, and in radioastronomy (discovery of pulsars) is mentioned. In the optics of the visible and ir there is an increasing interest in over-all systems design. .The formation of large industrial units capable of carrying through major design program, requiring advanced mechanical and electronic design associated with new lens systems, is welcomed.

  17. Airborne Systems Course Textbook. Electro-Optical Systems Test and Evaluation,

    Science.gov (United States)

    1981-06-01

    by twice the angle between the reflecting faces. The porro - prism shown in Figure 2.2.3.1(c) is used to deflect the beam by 1800. Beam Retro-Reflection...Reflection of Electromagnetic Radiation at the Interface Between Two Media 2.13 2.2 Optics 2.15 2.2.1 The Lens 2.15 2.2.2 The Mirror 2.25 2.2.3 The Prism 2.30...2.5.2 The Optical Resonator 2.77 2.5.3 Laser Implementation 2.79 2.5.4 Laser Radiation Characteristics 2.81 2.6 Electro-Optical Sensors 2.83 2.6.1

  18. Analysis of the Effects of Thermal Environment on Optical Systems for Navigation Guidance and Control in Supersonic Aircraft Based on Empirical Equations

    Directory of Open Access Journals (Sweden)

    Xuemin Cheng

    2016-10-01

    Full Text Available The thermal environment is an important factor in the design of optical systems. This study investigated the thermal analysis technology of optical systems for navigation guidance and control in supersonic aircraft by developing empirical equations for the front temperature gradient and rear thermal diffusion distance, and for basic factors such as flying parameters and the structure of the optical system. Finite element analysis (FEA was used to study the relationship between flying and front dome parameters and the system temperature field. Systematic deduction was then conducted based on the effects of the temperature field on the physical geometry and ray tracing performance of the front dome and rear optical lenses, by deriving the relational expressions between the system temperature field and the spot size and positioning precision of the rear optical lens. The optical systems used for navigation guidance and control in supersonic aircraft when the flight speed is in the range of 1–5 Ma were analysed using the derived equations. Using this new method it was possible to control the precision within 10% when considering the light spot received by the four-quadrant detector, and computation time was reduced compared with the traditional method of separately analysing the temperature field of the front dome and rear optical lens using FEA. Thus, the method can effectively increase the efficiency of parameter analysis and computation in an airborne optical system, facilitating the systematic, effective and integrated thermal analysis of airborne optical systems for navigation guidance and control.

  19. Sharing of secondary electrons by in-lens and out-lens detector in low-voltage scanning electron microscope equipped with immersion lens.

    Science.gov (United States)

    Kumagai, Kazuhiro; Sekiguchi, Takashi

    2009-03-01

    To understand secondary electron (SE) image formation with in-lens and out-lens detector in low-voltage scanning electron microscopy (LV-SEM), we have evaluated SE signals of an in-lens and an out-lens detector in LV-SEM. From the energy distribution spectra of SEs with various boosting voltages of the immersion lens system, we revealed that the electrostatic field of the immersion lens mainly collects electrons with energy lower than 40eV, acting as a low-pass filter. This effect is also observed as a contrast change in LV-SEM images taken by in-lens and out-lens detectors.

  20. A design of optical modulation system with pixel-level modulation accuracy

    Science.gov (United States)

    Zheng, Shiwei; Qu, Xinghua; Feng, Wei; Liang, Baoqiu

    2018-01-01

    Vision measurement has been widely used in the field of dimensional measurement and surface metrology. However, traditional methods of vision measurement have many limits such as low dynamic range and poor reconfigurability. The optical modulation system before image formation has the advantage of high dynamic range, high accuracy and more flexibility, and the modulation accuracy is the key parameter which determines the accuracy and effectiveness of optical modulation system. In this paper, an optical modulation system with pixel level accuracy is designed and built based on multi-points reflective imaging theory and digital micromirror device (DMD). The system consisted of digital micromirror device, CCD camera and lens. Firstly we achieved accurate pixel-to-pixel correspondence between the DMD mirrors and the CCD pixels by moire fringe and an image processing of sampling and interpolation. Then we built three coordinate systems and calculated the mathematic relationship between the coordinate of digital micro-mirror and CCD pixels using a checkerboard pattern. A verification experiment proves that the correspondence error is less than 0.5 pixel. The results show that the modulation accuracy of system meets the requirements of modulation. Furthermore, the high reflecting edge of a metal circular piece can be detected using the system, which proves the effectiveness of the optical modulation system.

  1. Adjustable internal structure for reconstructing gradient index profile of crystalline lens.

    Science.gov (United States)

    Bahrami, Mehdi; Goncharov, Alexander V; Pierscionek, Barbara K

    2014-03-01

    Employing advanced technologies in studying the crystalline lens of the eye has improved our understanding of the refractive index gradient of the lens. Reconstructing and studying such a complex structure requires models with adaptable internal geometry that can be altered to simulate geometrical and optical changes of the lens with aging. In this Letter, we introduce an optically well-defined, geometrical structure for modeling the gradient refractive index profile of the crystalline lens with the advantage of an adjustable internal structure that is not available with existing models. The refractive index profile assigned to this rotationally symmetric geometry is calculated numerically, yet it is shown that this does not limit the model. The study provides a basis for developing lens models with sophisticated external and internal structures without the need for analytical solutions to calculate refractive index profiles.

  2. Spatial filter lens design for the main laser of the National Ignition Facility

    International Nuclear Information System (INIS)

    Korniski, R.J.

    1998-01-01

    The National Ignition Facility (NIF), being designed and constructed at Lawrence Livermore National Laboratory (LLNL), comprises 192 laser beams The lasing medium is neodymium in phosphate glass with a fundamental frequency (1ω) of 1 053microm Sum frequency generation in a pair of conversion crystals (KDP/KD*P) will produce 1 8 megajoules of the third harmonic light (3ω or λ=351microm) at the target The purpose of this paper is to provide the lens design community with the current lens design details of the large optics in the Main Laser This paper describes the lens design configuration and design considerations of the Main Laser The Main Laser is 123 meters long and includes two spatial filters one 13 5 meters and one 60 meters These spatial filters perform crucial beam filtering and relaying functions We shall describe the significant lens design aspects of these spatial filter lenses which allow them to successfully deliver the appropriate beam characteristic onto the target For an overview of NIF please see ''Optical system design of the National Ignition Facility,'' by R Edward English. et al also found in this volume

  3. Self-interference digital holography with a geometric-phase hologram lens.

    Science.gov (United States)

    Choi, KiHong; Yim, Junkyu; Yoo, Seunghwi; Min, Sung-Wook

    2017-10-01

    Self-interference digital holography (SIDH) is actively studied because the hologram acquisition under the incoherent illumination condition is available. The key component in this system is wavefront modulating optics, which modulates an incoming object wave into two different wavefront curvatures. In this Letter, the geometric-phase hologram lens is introduced in the SIDH system to perform as a polarization-sensitive wavefront modulator and a single-path beam splitter. This special optics has several features, such as high transparency, a modulation efficiency up to 99%, a thinness of a few millimeters, and a flat structure. The demonstration system is devised, and the numerical reconstruction results from an acquired complex hologram are presented.

  4. Optimum design of nonimaging Fresnel lens; Hiketsuzo fureneru renzu no saiteki sekkei

    Energy Technology Data Exchange (ETDEWEB)

    Leutz, R.; Komai, K.; Akisawa, A.; Kashiwagi, T. [Tokyo University of Agriculture and Technology, Tokyo (Japan); Suzuki, A. [Unesco, Paris (France). Associations in Japan

    1999-11-25

    An optimum convex shaped nonimaging Fresnel lens is designed following the edge ray principle. The lens is evaluated by tracing rays and calculating a projective optical concentration ratio. This Fresnel lens can used as concentrator in photovoltaic and solar thermal applications. (author)

  5. ECTOPIC LENS EXTRACTION IN CHILDREN

    Directory of Open Access Journals (Sweden)

    Vladimir Pfeifer

    2002-12-01

    Full Text Available Background. Ectopia lentis continues to be a therapeutic challenge for ophthalmologists. It can occur as an isolated condition, after ocular trauma, in association with other ocular disorders, as part of a systemic mesodermal disease or a complication of general metabolic disorders. Minimal subluxation of the lens may cause no visual symptoms, but in more advanced cases serious optical disturbances arise. The most important is amblyopia. Surgical treatment options include iris manipulation, lens discission, aspiration, intracapsular or extracapsular extraction, and pars plana lensectomy. The choice of surgical technique remains controversial, in part because of the historically poor visual results and high rate of perioperative complications, including vitreous loss and retinal detachment.Methods. We describe a surgical technique based on the use of the Cionni endocapsular tension ring, dry irrigation aspiration of lens material, centration of the capsular bag and foldable intraocular lens implantation into the bag. With mentioned surgical technique 8 patients were operated; 4 boys and 4 girls, together 11 eyes.Results. The final BCVA after follow up period improved in 9 eyes and it remained the same as before operation in one eye. Statistical comparison of preoperative and postoperative visual acuities showed significant improvement. On the other hand there was no correlation between preoperative and postoperative visual acuity.Conclusions. This surgical procedure is an alternative approach in solving this challenging cases of ectopia lentis with good postoperative visual rehabilitation.

  6. CLASS B2108+213 : a new wide-separation gravitational lens system

    NARCIS (Netherlands)

    McKean, JP; Browne, IWA; Jackson, NJ; Koopmans, LVE; Norbury, MA; Treu, T; York, TD; Biggs, AD; Blandford, RD; de Bruyn, AG; Fassnacht, CD; Mao, S; Myers, ST; Pearson, TJ; Phillips, PM; Readhead, ACS; Rusin, D; Wilkinson, PN

    2005-01-01

    We present observations of CLASS B2108 + 213, the widest separation gravitational lens system discovered by the Cosmic Lens All-Sky Survey. Radio imaging using the VLA at 8.46 GHz and MERLIN at 5 GHz shows two compact components separated by 4.56 arcsec with a faint third component in between which

  7. Class B0739+366 : A new two-image gravitational lens system

    NARCIS (Netherlands)

    Marlow, DR; Rusin, D; Norbury, M; Jackson, N; Browne, IWA; Wilkinson, PN; Fassnacht, CD; Myers, ST; Koopmans, LVE; Blandford, RD; Pearson, TJ; Readhead, ACS; de Bruyn, AG

    We present the discovery of CLASS B0739 + 366, a new gravitational lens system from the Cosmic Lens All-Sky Survey. Radio imaging of the source with the Very Large Array shows two compact components separated by with a flux density ratio of similar to6:1. High-resolution follow-up observations using

  8. Design of a nonimaging Fresnel lens for solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Leutz, R.; Akisawa, Atushi; Kashiwagi, Takao [Tokyo University of Agriculture and Technology (Japan). Dept. of Mechanical Systems Engineering; Suzuki, Akio [UNESCO, Paris (France)

    1999-04-01

    An optimum convex shaped nonimaging Fresnel lens is designed following the edge ray principle. The lens is evaluated by tracing rays and calculating a projective optical concentration ratio. This Fresnel lens is intended for use in evacuated tube type solar concentrators, generating mid-temperature heat to drive sorption cycles, or provide industrial process heat. It can also be used along with a secondary concentrator in photovoltaic applications. (author)

  9. Optical engineering at Los Alamos: a history

    International Nuclear Information System (INIS)

    Brixner, B.

    1983-01-01

    Optical engineering at Los Alamos, which began in 1943, has continued because scientific researchers usually want more resolving power than commercially available optical instruments provide. In addition, in-house engineering is often advantageous - when the technology for designing and making improved instrumentation is available locally - because of our remote location and the frequent need for accurate data. As a consequence, a number of improved research cameras and lens systems have been developed locally - especially for explosion and implosion photography, but even for oscilloscope photography. The development of high-speed cameras led to the ultimate in practical high-speed rotating mirrors and to the invention of a rapid, precise, and effective lens design procedure that has produced more than a hundred lens system that gives improved imaging in special conditions of use. Representative examples of this work are described

  10. CNN-coupled Humanoid Panoramic Annular Lens (PAL)-Optical System for Military Applications (Feasibility Study)

    National Research Council Canada - National Science Library

    Greguss, Pal

    2002-01-01

    ...) and the CNN chip for a few military applications. A polar beam splitter will be placed immediately after the relay lens to obtain two image planes, one will be used by the existing 64X64 CNN-UM focal plane array processor chip...

  11. Design of compact freeform lens for application specific Light-Emitting Diode packaging.

    Science.gov (United States)

    Wang, Kai; Chen, Fei; Liu, Zongyuan; Luo, Xiaobing; Liu, Sheng

    2010-01-18

    Application specific LED packaging (ASLP) is an emerging technology for high performance LED lighting. We introduced a practical design method of compact freeform lens for extended sources used in ASLP. A new ASLP for road lighting was successfully obtained by integrating a polycarbonate compact freeform lens of small form factor with traditional LED packaging. Optical performance of the ASLP was investigated by both numerical simulation based on Monte Carlo ray tracing method and experiments. Results demonstrated that, comparing with traditional LED module integrated with secondary optics, the ASLP had advantages of much smaller size in volume (approximately 1/8), higher system lumen efficiency (approximately 8.1%), lower cost and more convenience for customers to design and assembly, enabling possible much wider applications of LED for general road lighting. Tolerance analyses were also conducted. Installation errors of horizontal and vertical deviations had more effects on the shape and uniformity of radiation pattern compared with rotational deviation. The tolerances of horizontal, vertical and rotational deviations of this lens were 0.11 mm, 0.14 mm and 2.4 degrees respectively, which were acceptable in engineering.

  12. Low-cost mobile phone microscopy with a reversed mobile phone camera lens.

    Directory of Open Access Journals (Sweden)

    Neil A Switz

    Full Text Available The increasing capabilities and ubiquity of mobile phones and their associated digital cameras offer the possibility of extending low-cost, portable diagnostic microscopy to underserved and low-resource areas. However, mobile phone microscopes created by adding magnifying optics to the phone's camera module have been unable to make use of the full image sensor due to the specialized design of the embedded camera lens, exacerbating the tradeoff between resolution and field of view inherent to optical systems. This tradeoff is acutely felt for diagnostic applications, where the speed and cost of image-based diagnosis is related to the area of the sample that can be viewed at sufficient resolution. Here we present a simple and low-cost approach to mobile phone microscopy that uses a reversed mobile phone camera lens added to an intact mobile phone to enable high quality imaging over a significantly larger field of view than standard microscopy. We demonstrate use of the reversed lens mobile phone microscope to identify red and white blood cells in blood smears and soil-transmitted helminth eggs in stool samples.

  13. Low-cost mobile phone microscopy with a reversed mobile phone camera lens.

    Science.gov (United States)

    Switz, Neil A; D'Ambrosio, Michael V; Fletcher, Daniel A

    2014-01-01

    The increasing capabilities and ubiquity of mobile phones and their associated digital cameras offer the possibility of extending low-cost, portable diagnostic microscopy to underserved and low-resource areas. However, mobile phone microscopes created by adding magnifying optics to the phone's camera module have been unable to make use of the full image sensor due to the specialized design of the embedded camera lens, exacerbating the tradeoff between resolution and field of view inherent to optical systems. This tradeoff is acutely felt for diagnostic applications, where the speed and cost of image-based diagnosis is related to the area of the sample that can be viewed at sufficient resolution. Here we present a simple and low-cost approach to mobile phone microscopy that uses a reversed mobile phone camera lens added to an intact mobile phone to enable high quality imaging over a significantly larger field of view than standard microscopy. We demonstrate use of the reversed lens mobile phone microscope to identify red and white blood cells in blood smears and soil-transmitted helminth eggs in stool samples.

  14. Bioinspired adaptive gradient refractive index distribution lens

    Science.gov (United States)

    Yin, Kezhen; Lai, Chuan-Yar; Wang, Jia; Ji, Shanzuo; Aldridge, James; Feng, Jingxing; Olah, Andrew; Baer, Eric; Ponting, Michael

    2018-02-01

    Inspired by the soft, deformable human eye lens, a synthetic polymer gradient refractive index distribution (GRIN) lens with an adaptive geometry and focal power has been demonstrated via multilayer coextrusion and thermoforming of nanolayered elastomeric polymer films. A set of 30 polymer nanolayered films comprised of two thermoplastic polyurethanes having a refractive index difference of 0.05 were coextruded via forced-assembly technique. The set of 30 nanolayered polymer films exhibited transmission near 90% with each film varying in refractive index by 0.0017. An adaptive GRIN lens was fabricated from a laminated stack of the variable refractive index films with a 0.05 spherical GRIN. This lens was subsequently deformed by mechanical ring compression of the lens. Variation in the optical properties of the deformable GRIN lens was determined, including 20% variation in focal length and reduced spherical aberration. These properties were measured and compared to simulated results by placido-cone topography and ANSYS methods. The demonstration of a solid-state, dynamic focal length, GRIN lens with improved aberration correction was discussed relative to the potential future use in implantable devices.

  15. LC-lens array with light field algorithm for 3D biomedical applications

    Science.gov (United States)

    Huang, Yi-Pai; Hsieh, Po-Yuan; Hassanfiroozi, Amir; Martinez, Manuel; Javidi, Bahram; Chu, Chao-Yu; Hsuan, Yun; Chu, Wen-Chun

    2016-03-01

    In this paper, liquid crystal lens (LC-lens) array was utilized in 3D bio-medical applications including 3D endoscope and light field microscope. Comparing with conventional plastic lens array, which was usually placed in 3D endoscope or light field microscope system to record image disparity, our LC-lens array has higher flexibility of electrically changing its focal length. By using LC-lens array, the working distance and image quality of 3D endoscope and microscope could be enhanced. Furthermore, the 2D/3D switching ability could be achieved if we turn off/on the electrical power on LClens array. In 3D endoscope case, a hexagonal micro LC-lens array with 350um diameter was placed at the front end of a 1mm diameter endoscope. With applying electric field on LC-lens array, the 3D specimen would be recorded as from seven micro-cameras with different disparity. We could calculate 3D construction of specimen with those micro images. In the other hand, if we turn off the electric field on LC-lens array, the conventional high resolution 2D endoscope image would be recorded. In light field microscope case, the LC-lens array was placed in front of the CMOS sensor. The main purpose of LC-lens array is to extend the refocusing distance of light field microscope, which is usually very narrow in focused light field microscope system, by montaging many light field images sequentially focusing on different depth. With adjusting focal length of LC-lens array from 2.4mm to 2.9mm, the refocusing distance was extended from 1mm to 11.3mm. Moreover, we could use a LC wedge to electrically shift the optics axis and increase the resolution of light field.

  16. Iris reconstruction combined with iris-claw intraocular lens implantation for the management of iris-lens injured patients.

    Science.gov (United States)

    Hu, Shufang; Wang, Mingling; Xiao, Tianlin; Zhao, Zhenquan

    2016-03-01

    To study the efficiency and safety of iris reconstruction combined with iris-claw intraocular lens (IOL) implantation in the patients with iris-lens injuries. Retrospective, noncomparable consecutive case series study. Eleven patients (11 eyes) following iris-lens injuries underwent iris reconstructions combined with iris-claw IOL implantations. Clinical data, such as cause and time of injury, visual acuity (VA), iris and lens injuries, surgical intervention, follow-up period, corneal endothelial cell count, and optical coherence tomography, were collected. Uncorrected VA (UCVA) in all injured eyes before combined surgery was equal to or iris returned to its natural round shape or smaller pupil, and the iris-claw IOLs in the 11 eyes were well-positioned on the anterior surface of reconstructed iris. No complications occurred in those patients. Iris reconstruction combined with iris-claw IOL implantation is a safe and efficient procedure for an eye with iris-lens injury in the absence of capsular support.

  17. Transient anterior subcapsular vacuolar change of the crystalline lens in patients after posterior chamber phakic intraocular lens implantation.

    Science.gov (United States)

    Chung, Jin Kwon; Shin, Jin Hee; Lee, Sung Jin

    2013-10-25

    We present two cases of transient vacuolar changes in the anterior subcapsular space of the crystalline lens in patients after posterior chamber phakic intraocular lens implantation. Implantable collamer lenses (ICL) were implanted in healthy myopic patients. Vacuolar changes developed just after the irrigating procedure through the narrow space between the ICL and the crystalline lens. Slit-lamp examinations and spectral domain optical coherence tomography showed bleb-like lesions in the anterior subcapsular space of one eye in each case, though the lesions gradually improved without visual deterioration. Consequently, the lesions turned into a few anterior subcapsular small faint opacities. Direct irrigation of the narrow space confined by the ICL and the crystalline lens is at risk for the development of vacuolar changes in the crystalline lens. The observed spontaneous reversal indicates that surgeons should not rush to surgical intervention but rather opt for close follow over several weeks.

  18. Optical polymers for laser medical applications

    Science.gov (United States)

    Sultanova, Nina G.; Kasarova, Stefka N.; Nikolov, Ivan D.

    2016-01-01

    In medicine, optical polymers are used not only in ophthalmology but in many laser surgical, diagnostic and therapeutic systems. The application in lens design is determined by their refractive and dispersive properties in the considered spectral region. We have used different measuring techniques to obtain precise refractometric data in the visible and near-infrared spectral regions. Dispersive, thermal and other important optical characteristics of polymers have been studied. Design of a plastic achromatic objective, used in a surgical stereo-microscope at 1064 nm laser wavelength, is accomplished. Geometrical and wavefront aberrations are calculated. Another example of application of polymers is the designed all-mirror apochromatic micro-lens, intended for superluminescent diode fiber coupling in medical systems.

  19. Evolution and the Calcite Eye Lens

    OpenAIRE

    Williams, Vernon L.

    2013-01-01

    Calcite is a uniaxial, birefringent crystal, which in its optically transparent form, has been used for animal eye lenses, the trilobite being one such animal. Because of the calcite birefringence there is a difficulty in using calcite as a lens. When the propagation direction of incoming light is not exactly on the c-axis, the mages blur. In this paper, calcite blurring is evaluated, and the non-blurring by a crystallin eye lens is compared to a calcite one.

  20. Active liquid-crystal deflector and lens with Fresnel structure

    Science.gov (United States)

    Shibuya, Giichi; Yamano, Shohei; Yoshida, Hiroyuki; Ozaki, Masanori

    2017-02-01

    A new type of tunable Fresnel deflector and lens composed of liquid crystal was developed. Combined structure of multiple interdigitated electrodes and the high-resistivity (HR) layer implements the saw-tooth distribution of electrical potential with only the planar surfaces of the transparent substrates. According to the numerical calculation and design, experimental devices were manufactured with the liquid crystal (LC) material sealed into the sandwiched flat glass plates of 0.7 mm thickness with rubbed alignment layers set to an anti-parallel configuration. Fabricated beam deflector with no moving parts shows the maximum tilt angle of +/-1.3 deg which can apply for optical image stabilizer (OIS) of micro camera. We also discussed and verified their lens characteristics to be extended more advanced applications. Transparent interdigitated electrodes were concentrically aligned on the lens aperture with the insulator gaps under their boundary area. The diameter of the lens aperture was 30 mm and the total number of Fresnel zone was 100. Phase retardation of the beam wavefront irradiated from the LC lens device can be evaluated by polarizing microscope images with a monochromatic filter. Radial positions of each observed fringe are plotted and fitted with 2nd degree polynomial approximation. The number of appeared fringes is over 600 in whole lens aperture area and the correlation coefficients of all approximations are over 0.993 that seems enough ideal optical wavefront. The obtained maximum lens powers from the approximations are about +/-4 m-1 which was satisfied both convex and concave lens characteristics; and their practical use for the tunable lens grade eyeglasses became more prospective.

  1. Coupled optic-thermodynamic analysis of a novel wireless power transfer system using concentrated sunlight for space applications

    International Nuclear Information System (INIS)

    Zhong, Ming-Liang; Li, Yun-Ze; Mao, Yu-Feng; Liang, Yi-Hao; Liu, Jia

    2017-01-01

    Highlights: • A novel space wireless power transfer system is proposed. • Concentrated sunlight is used as the medium to avoid multiple conversions. • Fresnel lens and optical fiber bundle make the system compact and space-qualified. • Coupled optic-thermodynamic model is developed to analyze link efficiencies. • End-to-end efficiency achieved is as twice as that of microwave or laser system. - Abstract: The energy generation and supply for in-orbit spacecraft have become an urgent problem concerning efficient and economical utilization of spacecraft formation flying. To fill the gap between the requirement of inter-spacecraft energy transfer and the development of wireless power transfer, this paper presents a novel wireless power transfer system whose transmission medium is concentrated sunlight. The system concentrates sunlight using a Fresnel lens, and changes the direction of concentrated sunlight beam with optical fibers. The light energy is converted to thermal form by a heat collector, and then it is utilized to generate electricity by a Stirling engine integrated with linear alternator. Equipments employed on fractionated spacecraft shall be supported by this electric energy. A coupled optic-thermodynamic model was developed to analyze system link efficiencies. This system offers characteristics such as high flexibility, relatively low cost for launch and maintenance, and most importantly, high end-to-end efficiency. Simulation results show that the geometric concentration ratio and the temperature ratio of expansion and compression spaces are two key parameters of this system. Output power of 234.3 W was achieved on the distance of 100 m, and the end-to-end efficiency of the system was above 20%.

  2. Ion beam transport and focus for LMF using an achromatic solenoidal lens system

    International Nuclear Information System (INIS)

    Olson, C.L.

    1990-01-01

    The light ion LMF (Laboratory Microfusion Facility) requires an ion beam transport length for bunching and standoff to be about four meters from the diode to the target. The baseline LMF transport scheme uses an achromatic two lens system consisting of the diode (a self-field lens) and a solenoidal lens. Charge and current neutralization are provided by a background gas. A detailed analysis of this system is presented here. The effects of additional magnetic fields are examined, including those produced by non-zero net currents, applied B effects near the diode, and diamagnetic effects in the solenoidal lens. Instabilities are analyzed including the filamentation instability, the two-stream instability (beam ions, plasma electrons), the plasma two-stream instability (plasma electrons, plasma ions), and the ion acoustic instability. Scattering in the foil and gas are shown to be negligible. Gas breakdown processes are analyzed in detail, including ion impact ionization, electron avalanching, and ohmic heating. Special diode requirements are examined, including voltage accuracy, energy spread, and aiming tolerances. The neutral gas and gas pressure are chosen to satisfy several constraints, one being that the net current must be small, and another being that the filamentation instability should be avoided. With the present choice of 1 Torr He, it is concluded that the complete achromatic lens system appears to be viable, simple, and efficient transport and focusing system for LMF

  3. Compliance among soft contact lens wearers.

    Science.gov (United States)

    Kuzman, Tomislav; Kutija, Marija Barisić; Masnec, Sanja; Jandroković, Sonja; Mrazovac, Danijela; Jurisić, Darija; Skegro, Ivan; Kalauz, Miro; Kordić, Rajko

    2014-12-01

    Contact lens compliance is proven to be crucial for preventing lens wear-related complications because of the interdependence of the steps in lens care regime and their influence on lens system microbial contamination. Awareness of the patients' lens handling compliance as well as correct recognition of non-compliant behaviours is the basis for creating more targeted strategies for patient education. The aim of this study was to investigate compliance among soft contact lens (SCL) wearers in different aspects of lens care handling and wearing habits. In our research 50 asymptomatic lens wearers filled out a questionnaire containing demographic data, lens type, hygiene and wearing habits, lenses and lens care system replacement schedule and self-evaluation of contact lens handling hygiene. We established criteria of compliance according to available manufacturer's recommendations, prior literature and our clinical experience. Only 2 (4%) of patients were fully compliant SCL wearers. The most common non-compliant behaviours were insufficient lens solution soaking time (62%), followed by failure to daily exchange lens case solution and showering while wearing lenses. 44% of patients reported storing lenses in saline solution. Mean lens storage case replacement was 3.6 months, with up to 78% patients replacing lens case at least once in 3 months. Average grade in self evaluating level of compliance was very good (4 +/- 0.78) (from 1-poor level of hygiene to 5-great level of hygiene). Lens wearers who reported excessive daily lens wear and more than 10 years of lens wearing experience were also found to be less compliant with other lens system care procedures. (t = -2.99, df=47, p rate, self grading was relatively high. Therefore, these results indicate the need for patient education and encouragement of better lens wearing habits and all of the lens maintenance steps at each patient visit.

  4. Optofluidic lens actuated by laser-induced solutocapillary forces

    Science.gov (United States)

    Malyuk, A. Yu.; Ivanova, N. A.

    2017-06-01

    We demonstrate an adaptive liquid lens controlled by laser-induced solutocapillary forces. The liquid droplet serving as a lens is formed in a thin layer of binary liquid mixture by surface tension driven flows caused by the thermal action of laser irradiation. The shape of droplet, its aperture and the focal length are reversibly changed without hysteresis by varying the intensity of the laser beam. The focal length variation range of the droplet-lens lies in between infinity (a flat layer) to 15 mm (a curved interface). The droplet-lens is capable to adjust the in-plane lateral position in response to a displacement of the laser beam. The proposed laser controlled droplet-lens will enable to develop smart liquid optical devices, which can imitate the accommodation reflex and pupillary light reflex of the eye.

  5. Multiplexing schemes for an achromatic programmable diffractive lens

    Energy Technology Data Exchange (ETDEWEB)

    Millan, M S; Perez-Cabre, E; Oton, J [Technical University of Catalonia, Dep. Optics and Optometry, Terrassa-Barcelona, 08222 (Spain)], E-mail: millan@oo.upc.edu

    2008-11-01

    A multiplexed programmable diffractive lens, displayed on a pixelated liquid crystal device under broadband illumination, is proposed to compensate for the severe chromatic aberration that affects diffractive elements. The proposed lens is based on multiplexing a set of sublenses with a common focal length for different wavelengths. We consider different types of integration of the optical information (spatial only, temporal only and hybrid spatial-temporal) combined with a proper selection of the spectral bandwidth. The properties and limits of the achromatic programmable multiplexed lens are described. Experimental results are presented and discussed.

  6. Multiplexing schemes for an achromatic programmable diffractive lens

    International Nuclear Information System (INIS)

    Millan, M S; Perez-Cabre, E; Oton, J

    2008-01-01

    A multiplexed programmable diffractive lens, displayed on a pixelated liquid crystal device under broadband illumination, is proposed to compensate for the severe chromatic aberration that affects diffractive elements. The proposed lens is based on multiplexing a set of sublenses with a common focal length for different wavelengths. We consider different types of integration of the optical information (spatial only, temporal only and hybrid spatial-temporal) combined with a proper selection of the spectral bandwidth. The properties and limits of the achromatic programmable multiplexed lens are described. Experimental results are presented and discussed.

  7. Optical design of two-axes parabolic trough collector and two-section Fresnel lens for line-to-spot solar concentration.

    Science.gov (United States)

    Ramírez, Carlos; León, Noel; García, Héctor; Aguayo, Humberto

    2015-06-01

    Solar tracking concentrators are optical systems that collect the solar energy flux either in a line or spot using reflective or refractive surfaces. The main problem with these surfaces is their manufacturing complexity, especially at large scales. In this paper, a line-to-spot solar tracking concentrator is proposed. Its configuration allows for a low-cost solar concentrator system. It consists of a parabolic trough collector (PTC) and a two-section PMMA Fresnel lens (FL), both mounted on a two-axis solar tracker. The function of the PTC is to reflect the incoming solar radiation toward a line. Then, the FL, which is placed near the focus, transforms this line into a spot by refraction. It was found that the system can achieve a concentration ratio of 100x and concentrate an average solar irradiance of 518.857W/m2 with an average transmittance of 0.855, taking into account the effect of the chromatic aberration.

  8. Division Multiplexing of 10 Gbit/s Ethernet Signals Synchronized by All-Optical Signal Processing Based on a Time-Lens

    DEFF Research Database (Denmark)

    Areal, Janaina Laguardia

    This Thesis presents 3 years work of an optical circuit that performs both pulse compression and frame synchronization and retiming. Our design aims at directly multiplexing several 10G Ethernet data packets (frames) to a high-speed OTDM link. This scheme is optically trans-parent and does not re...... coupler, completing the OTDM signal generation. We demonstrate the effectiveness of the design by laboratory experi-ments and simulations with VPI and MatLab....... not require clock recovery, resulting in a potentially very efficient solution. The scheme uses a time-lens, implemented through a sinusoidally driven optical phase modulation, combined with a linear dispersion element. As time-lenses are also used for pulse compression, we de-sign the circuit also to perform...

  9. Characteristics of soft X-ray lens

    International Nuclear Information System (INIS)

    Qin Yi

    2007-12-01

    A soft X-lens was devised with waveguide X-ray optics of total external reflection (TER). The lens consists of a stack of 1 387 TER waveguides with inner diameter of 0.45 mm and outer diameter of 0.60 mm. With the help of plasma sources of soft X-ray radiation, high density of pure soft X-ray radiation (without plasma expansion fragments) with broad-band spectral range can be obtained at the focus of the lens. As laser-plasma is considered, the radiation density of 1.3 x 10 5 W/cm 2 is obtained, the transmission coefficient is 18.6%, the ratio of the density at the focus with and without the lens is 1000 and the radiation capture is 28.9 degree. The density of 0.5 TW/cm 2 can be obtained as far as Qiang-Guang I facility is considered. (authors)

  10. Cylindrically symmetric Fresnel lens for high concentration photovoltaic

    Science.gov (United States)

    Hung, Yu-Ting; Su, Guo-Dung

    2009-08-01

    High concentration photovoltaic (HCPV) utilizes point-focus cost-effective plastic Fresnel lens. And a millimeter-sized Ill-V compound multi-junction solar cell is placed underneath focusing optics which can achieve cell efficiency potential of up to 40.7 %. The advantage of HCPV makes less solar cell area and higher efficiency; however, the acceptance angle of HCPV is about +/-1°, which is very small and the mechanical tracking of the sun is necessary. In order to reduce the power consumption and the angle tracking error of tracking systems, a light collector model with larger acceptance angle is designed with ZEMAX®. In this model, the original radially symmetric Fresnel lens of HCPV is replaced by cylindrically symmetric Fresnel lens and a parabolic reflective surface. Light is collected in two dimensions separately. And a couple of lenses and a light pipe are added before the solar cell chip in order to collect more light when sun light deviates from incident angle of 00. An acceptance angle of +/-10° is achieved with GCR 400.

  11. The effect of the optical system on the electrical performance of III–V concentrator triple junction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, R.D., E-mail: S206029578@nmmu.ac.za; Dyk, E.E. van; Vorster, F.J.

    2016-01-01

    High Concentrated Photovoltaic (H-CPV) technologies utilize relatively inexpensive reflective and refractive optical components for concentration to achieve high energy yield. The electrical performance of H-CPV systems is, however, dependent on the properties and configuration of the optical components. The focus of this paper is to summarize the effect of the properties of the optical system on the electrical performance of a Concentrator Triple Junction (CTJ) InGaP/InGaAs/Ge cell. Utilizing carefully designed experiments that include spectral measurements and intensity profiles in the optical plane of the CTJ cell, the influence of photon absorption, Fresnel lens properties and chromatic aberration created by the optical system on the electrical performance of a CTJ cell is shown. From the results obtained, it is concluded that good characterization and understanding of the optical system’s properties may add to improved design of future multi-junction devices.

  12. A planar lens based on the electrowetting of two immiscible liquids

    International Nuclear Information System (INIS)

    Liu Chaoxuan; Park, Jihwan; Choi, Jin-Woo

    2008-01-01

    This paper reports the development and characterization of a planar liquid lens based on electrowetting. The working concept of electrowetting two immiscible liquids is demonstrated with measurement and characterization of contact angles with regard to externally applied electric voltages. Consequently, a planar liquid lens is designed and implemented based on this competitive electrowetting. A droplet of silicone oil confined in an aqueous solution (1% KCl) works as a liquid lens. Electrowetting then controls the shape of the confined silicone oil and the focal length of the liquid lens varies depending upon an applied dc voltage. A unique feature of this lens design is the double-ring planar electrodes beneath the hydrophobic substrate. While an outer ring electrode provides an initial boundary for the silicone oil droplet, an inner ring works as the actuation electrode for the lens. Further, the planar electrodes, instead of vertical or out-of-plane wall electrodes, facilitate the integration of liquid lenses into microfluidic systems. With the voltage applied in the range of 50–250 V, the confined silicone oil droplet changed its shape and the optical magnification of a 3 mm-diameter liquid lens was clearly demonstrated. Moreover, focal lengths of liquid lenses with diameters of 2 mm, 3 mm and 4 mm were characterized, respectively. The obtained results suggest that a larger lens diameter yields a longer focal length and a wider range of focal length change in response to voltage. The demonstrated liquid lens has a simple structure and is easy to fabricate

  13. Optical analysis of a compound quasi-microscope for planetary landers

    Science.gov (United States)

    Wall, S. D.; Burcher, E. E.; Huck, F. O.

    1974-01-01

    A quasi-microscope concept, consisting of facsimile camera augmented with an auxiliary lens as a magnifier, was introduced and analyzed. The performance achievable with this concept was primarily limited by a trade-off between resolution and object field; this approach leads to a limiting resolution of 20 microns when used with the Viking lander camera (which has an angular resolution of 0.04 deg). An optical system is analyzed which includes a field lens between camera and auxiliary lens to overcome this limitation. It is found that this system, referred to as a compound quasi-microscope, can provide improved resolution (to about 2 microns ) and a larger object field. However, this improvement is at the expense of increased complexity, special camera design requirements, and tighter tolerances on the distances between optical components.

  14. Objective Lens Optimized for Wavefront Delivery, Pupil Imaging, and Pupil Ghosting

    Science.gov (United States)

    Olzcak, Gene

    2009-01-01

    An interferometer objective lens (or diverger) may be used to transform a collimated beam into a diverging or converging beam. This innovation provides an objective lens that has diffraction-limited optical performance that is optimized at two sets of conjugates: imaging to the objective focus and imaging to the pupil. The lens thus provides for simultaneous delivery of a high-quality beam and excellent pupil resolution properties.

  15. Development of Optical Molecular Imaging System for the Acquisition of Bioluminescence Signals from Small Animals

    International Nuclear Information System (INIS)

    Lee, Byeong Il; Kim, Hyeon Sik; Jeong, Hye Jin; Lee, Hyung Jae; Moon, Seung Min; Kwon, Seung Young; Jeong, Shin Young; Bom, Hee Seung; Min, Jung Joon; Choi, Eun Seo

    2009-01-01

    Optical imaging is providing great advance and improvement in genetic and molecular imaging of animals and humans. Optical imaging system consists of optical imaging devices, which carry out major function for monitoring, tracing, and imaging in most of molecular in-vivo researches. In bio-luminescent imaging, small animals containing luciferase gene locally irradiate light, and emitted photons transmitted through skin of the small animals are imaged by using a high sensitive charged coupled device (CCD) camera. In this paper, we introduced optical imaging system for the image acquisition of bio-luminescent signals emitted from small animals. In the system, Nikon lens and four LED light sources were mounted at the inside of a dark box. A cooled CCD camera equipped with a control module was used. We tested the performance of the optical imaging system using effendorf tube and light emitting bacteria which injected intravenously into CT26 tumor bearing nude mouse. The performance of implemented optical imaging system for bio-luminescence imaging was demonstrated and the feasibility of the system in small animal imaging application was proved. We anticipate this system could be a useful tool for the molecular imaging of small animals adaptable for various experimental conditions in future

  16. The Impact of Lens Opacity on SD-OCT Retinal Nerve Fiber Layer and Bruch's Membrane Opening Measurements Using the Anatomical Positioning System (APS).

    Science.gov (United States)

    Mauschitz, Matthias M; Roth, Felix; Holz, Frank G; Breteler, Monique M B; Finger, Robert P

    2017-05-01

    To evaluate the impact of lens opacity on retinal nerve fiber layer thickness (RNFLT) and Bruch's membrane opening (BMO) measurements. Fifty-nine randomly selected patients without any other relevant ocular pathology undergoing elective routine cataract surgery in two specialized eye clinics were enrolled. RNFLT, BMO area, and BMO minimum rim width (BMO-MRW) were assessed with the Heidelberg Engineering Spectralis OCT using the anatomical positioning system (APS) prior to and 1 day after cataract surgery using a ring scan at different eccentricities of the disc (3.5, 4.1 and 4.7 mm). Lens opacity was quantified using densitometry based on Scheimpflug images (Oculus Pentacam AXL). RNFLT, BMO area, and BMO-MRW were virtually identical before and following removal of the cataractous lens. This held when assessed overall, within the six sectors for the 3.5-mm scan, or at any other eccentricity. Baseline RNFLT was not associated with lens opacity. Using the APS, RNFLT remained unchanged following cataract surgery, contrary to results reported by previous studies. Our results imply that the APS may have contributed to more precise spectral-domain optical coherence measurements, minimizing the influence of cataract on RNFLT and BMO assessments in our cohort.

  17. Lens system for SIMS analysis

    International Nuclear Information System (INIS)

    Martinez, G.; Sancho, M.; Garcia-Galan, J.C.

    1987-01-01

    A powerful version of the charge-density method is applied to the study of a combined objective and emission lens, suitable for highly localized analysis of a flat sample surface. This lens can extract secondary ions of equal or opposite polarity to that of the primary particles. A computer simulation of the ion trajectories for both modes is made. The behaviour for different values of the geometric parameters and polarizations is analyzed and useful data for design such as primary beam demagnification and secondary image position are given. (author) 4 refs

  18. The optical-mechanical design of DMD modulation imaging device

    Science.gov (United States)

    Li, Tianting; Xu, Xiping; Qiao, Yang; Li, Lei; Pan, Yue

    2014-09-01

    In order to avoid the phenomenon of some image information were lost, which is due to the jamming signals, such as incident laser, make the pixels dot on CCD saturated. In this article a device of optical-mechanical structure was designed, which utilized the DMD (Digital Micro mirror Device) to modulate the image. The DMD reflection imaging optical system adopts the telecentric light path. However, because the design is not only required to guarantee a 66° angle between the optical axis of the relay optics and the DMD, but also to ensure that the optical axis of the projection system keeps parallel with the perpendicular bisector of the micro-mirror which is in the "flat" state, so the TIR prism is introduced,and making the relay optics and the DMD satisfy the optical institution's requirements. In this paper, a mechanical structure of the imaging optical system was designed and at the meanwhile the lens assembly has been well connected and fixed and fine-tuned by detailed structural design, which included the tilt decentered lens, wedge flanges, prisms. By optimizing the design, the issues of mutual restraint between the inverting optical system and the projecting system were well resolved, and prevented the blocking of the two systems. In addition, the structure size of the whole DMD reflection imaging optical system was minimized; it reduced the energy loss and ensured the image quality.

  19. A study of optical design and optimization of laser optics

    Science.gov (United States)

    Tsai, C.-M.; Fang, Yi-Chin

    2013-09-01

    This paper propose a study of optical design of laser beam shaping optics with aspheric surface and application of genetic algorithm (GA) to find the optimal results. Nd: YAG 355 waveband laser flat-top optical system, this study employed the Light tools LDS (least damped square) and the GA of artificial intelligence optimization method to determine the optimal aspheric coefficient and obtain the optimal solution. This study applied the aspheric lens with GA for the flattening of laser beams using collimated laser beam light, aspheric lenses in order to achieve best results.

  20. Millimeter Wave Imaging System Using Monopole Antenna with Cylindrical Reflector and Silicon Lens

    Science.gov (United States)

    Mizuno, Maya; Fukunaga, Kaori; Suzuki, Masaki; Saito, Shingo; Fujii, Katsumi; Hosako, Iwao; Yamanaka, Yukio

    2011-04-01

    We built a reflection imaging system that uses a monopole antenna with a cylindrical reflector and silicon semi-spherical lens for millimeter waves to identify detachments of alabaster from support material such as wood and stone, which can be subject to painting deterioration. Based on the electric field property near the monopole antenna in the system and the lens effect, the system was able to clearly image a test sample made of 2-mm width aluminium tape, which was placed within a range of approximately 10 mm from the lens. In practical imaging testing using a detachment model, which consists of alabaster and wood plating, the result also showed the possibility of observing slight detachment of the alabaster from the wood more easily than an imaging with large numerical aperture.

  1. High-density near-field optical disc recording using phase change media and polycarbonate substrate

    Science.gov (United States)

    Shinoda, Masataka; Saito, Kimihiro; Ishimoto, Tsutomu; Kondo, Takao; Nakaoki, Ariyoshi; Furuki, Motohiro; Takeda, Minoru; Akiyama, Yuji; Shimouma, Takashi; Yamamoto, Masanobu

    2004-09-01

    We developed a high density near field optical recording disc system with a solid immersion lens and two laser sources. In order to realize the near field optical recording, we used a phase change recording media and a molded polycarbonate substrate. The near field optical pick-up consists of a solid immersion lens with numerical aperture of 1.84. The clear eye pattern of 90.2 GB capacity (160nm track pitch and 62 nm per bit) was observed. The jitter using a limit equalizer was 10.0 % without cross-talk. The bit error rate using an adaptive PRML with 8 taps was 3.7e-6 without cross-talk. We confirmed that the near field optical disc system is a promising technology for a next generation high density optical disc system.

  2. Computational imaging using lightweight diffractive-refractive optics

    KAUST Repository

    Peng, Yifan

    2015-11-23

    Diffractive optical elements (DOE) show great promise for imaging optics that are thinner and more lightweight than conventional refractive lenses while preserving their light efficiency. Unfortunately, severe spectral dispersion currently limits the use of DOEs in consumer-level lens design. In this article, we jointly design lightweight diffractive-refractive optics and post-processing algorithms to enable imaging under white light illumination. Using the Fresnel lens as a general platform, we show three phase-plate designs, including a super-thin stacked plate design, a diffractive-refractive-hybrid lens, and a phase coded-aperture lens. Combined with cross-channel deconvolution algorithm, both spherical and chromatic aberrations are corrected. Experimental results indicate that using our computational imaging approach, diffractive-refractive optics is an alternative candidate to build light efficient and thin optics for white light imaging.

  3. Computational imaging using lightweight diffractive-refractive optics

    KAUST Repository

    Peng, Yifan; Fu, Qiang; Amata, Hadi; Su, Shuochen; Heide, Felix; Heidrich, Wolfgang

    2015-01-01

    Diffractive optical elements (DOE) show great promise for imaging optics that are thinner and more lightweight than conventional refractive lenses while preserving their light efficiency. Unfortunately, severe spectral dispersion currently limits the use of DOEs in consumer-level lens design. In this article, we jointly design lightweight diffractive-refractive optics and post-processing algorithms to enable imaging under white light illumination. Using the Fresnel lens as a general platform, we show three phase-plate designs, including a super-thin stacked plate design, a diffractive-refractive-hybrid lens, and a phase coded-aperture lens. Combined with cross-channel deconvolution algorithm, both spherical and chromatic aberrations are corrected. Experimental results indicate that using our computational imaging approach, diffractive-refractive optics is an alternative candidate to build light efficient and thin optics for white light imaging.

  4. Beam manipulating by metal–anisotropic–metal plasmonic lens

    International Nuclear Information System (INIS)

    Bahramipanah, M; Abrishamian, M S; Mirtaheri, S A

    2012-01-01

    Embedding anisotropic media in the slit region of a plasmonic nano-optic lens is proposed as a new method of actively modulating the output beam. The focal length can be controlled easily by exposing the plasmonic nano-optic lens to a constant external electric field. The physical principle of this phenomenon is evaluated from the phase of surface plasmon polaritons (SPPs) in the slits and the electro-optical effect of liquid crystals. Our numerical simulations using the finite-difference time-domain (FDTD) technique reveal that a large tuning range of the focal length up to 545 nm at the first communication window can be achieved. The special feature of the proposed structure gives it an opportunity to be used as an efficient element in ultrahigh nano-scale integrated photonic circuits for miniaturization and tuning purposes. (paper)

  5. Effects of resonator input power on Kerr lens mode-locked lasers

    Indian Academy of Sciences (India)

    lasers. S KAZEMPOUR, A KESHAVARZ∗ and G HONARASA. Department of Physics, Faculty of Sciences, Shiraz University of Technology, Shiraz, Iran ... Keywords. Femtosecond pulses; Kerr lens sensitivity; Kerr lens mode-locked laser. ... The optical lengths of Kerr medium with thickness d and refractive index n under.

  6. Method to measure a relative transverse velocity of a source-lens-observer system using gravitational lensing of gravitational waves

    International Nuclear Information System (INIS)

    Itoh, Yousuke; Futamase, Toshifumi; Hattori, Makoto

    2009-01-01

    Gravitational waves propagate along null geodesics like light rays in the geometrical optics approximation, and they may have a chance to suffer from gravitational lensing by intervening objects, as is the case for electromagnetic waves. Long wavelengths of gravitational waves and compactness of possible sources may enable us to extract information in the interference among the lensed images. We point out that the interference term contains information of relative transverse velocity of the source-lens-observer system, which may be obtained by possible future space-borne gravitational wave detectors such as BBO/DECIGO.

  7. Adaptive Lens Inspired by Bio-Visual Systems

    National Research Council Canada - National Science Library

    Lo, Yu-Hwa

    2004-01-01

    ...: (a) We have identified and demonstrated the merits of PDMS elastomer for lens membranes. The PDMS-based fluidic lens process has been proven to be simple, controllable, and scalable to form lenses from 10 urn to several centimeters in diameter. (b...

  8. DISSECTING THE GRAVITATIONAL LENS B1608+656. I. LENS POTENTIAL RECONSTRUCTION

    NARCIS (Netherlands)

    Suyu, S. H.; Marshall, P. J.; Blandford, R. D.; Fassnacht, C. D.; Koopmans, L. V. E.; McKean, J. P.; Treu, T.

    2009-01-01

    Strong gravitational lensing is a powerful technique for probing galaxy mass distributions and for measuring cosmological parameters. Lens systems with extended source-intensity distributions are particularly useful for this purpose since they provide additional constraints on the lens potential (

  9. Hybrid catadioptric system for advanced optical cavity velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Frayer, Daniel K.

    2018-02-06

    A probe including reflector is disclosed to measure the velocity distribution of a moving surface along many lines of sight. Laser light, directed to the surface by the probe and then reflected back from the surface, is Doppler shifted by the moving surface, collected into probe, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to one or more lens groups and a reflector, such as a parabolic reflector having a mirrored interior surface.

  10. Creative optomechanical tolerancing in lens systems

    Science.gov (United States)

    Lee, Kim H.; Yoon, Youngshik; Maxwell, Jonathan

    1998-09-01

    The interface between optical design and fine-mechanical design is a creatively fertile stage in the design of an optical system. The optical designer learns `What the system is all about' and the fine-mechanical engineer is liberated creatively by finding out what the priorities are. On the other hand, optical tolerancing as a discipline, which is an attractive mix of optical physics at one end and hard-nosed mechanical pragmatism at the other, has a relatively fragmented literature. It is the purpose of this paper to (1) Point out some cultural contrasts between optical engineers, mechanical engineers and physicists in this context, (2) To present a new method of displaying the optical surface sensitivities so that one may identify datum surfaces in an intuitive way and (3) To summarize some useful formulae which provide a key to the mounting of optical components. Together these three aspects illustrate the scenery of this fertile terrain.

  11. Evaluation of modulation transfer function of optical lens system by support vector regression methodologies - A comparative study

    Science.gov (United States)

    Petković, Dalibor; Shamshirband, Shahaboddin; Saboohi, Hadi; Ang, Tan Fong; Anuar, Nor Badrul; Rahman, Zulkanain Abdul; Pavlović, Nenad T.

    2014-07-01

    The quantitative assessment of image quality is an important consideration in any type of imaging system. The modulation transfer function (MTF) is a graphical description of the sharpness and contrast of an imaging system or of its individual components. The MTF is also known and spatial frequency response. The MTF curve has different meanings according to the corresponding frequency. The MTF of an optical system specifies the contrast transmitted by the system as a function of image size, and is determined by the inherent optical properties of the system. In this study, the polynomial and radial basis function (RBF) are applied as the kernel function of Support Vector Regression (SVR) to estimate and predict estimate MTF value of the actual optical system according to experimental tests. Instead of minimizing the observed training error, SVR_poly and SVR_rbf attempt to minimize the generalization error bound so as to achieve generalized performance. The experimental results show that an improvement in predictive accuracy and capability of generalization can be achieved by the SVR_rbf approach in compare to SVR_poly soft computing methodology.

  12. Gabor lens focusing of a negative ion beam

    International Nuclear Information System (INIS)

    Palkovic, J.A.; Mills, F.E.; Schmidt, C.; Young, D.E.

    1989-05-01

    Gabor or plasma lenses have previously been used to focus intense beams of positive ions at energies from 10 keV to 5 MeV. It is the large electrostatic field of the non-neutral plasma in the Gabor lens which is responsible for the focusing. Focusing an ion beam with a given sign of charge in a Gabor lens requires a non-neutral plasma with the opposite sign of charge as the beam. A Gabor lens constructed at Fermilab has been used to focus a 30 keV proton beam with good optical quality. We discuss studies of the action of a Gabor lens on a beam of negative ions. A Gabor lens has been considered for matching an H/sup /minus// beam into an RFQ in the redesign of the low energy section of the Fermilab linac. 9 refs., 3 figs., 1 tab

  13. Aspheric lens based imaging receiver for MIMO visible light communication

    Science.gov (United States)

    Ju, Qiuqi; Liang, Zhongcheng; Liu, Xueming; Yang, Tingting; Wang, Jin

    2014-10-01

    Visible light communication (VLC) has been regarded as a promising solution in short-range intelligent communication system. Nowadays, the research is focused on integrating the multi-input multi-output (MIMO) technique in the VLC system, to achieve a larger transmission capacity and stronger transmission reliability. However, one important issue should be addressed due to the use of MIMO technology: the multipath inter-symbol interference. The multipath intersymbol interference comes from the reflection of the signal in the room and channel crosstalk between different channels. In this paper, we propose a novel optical system used in the MIMO VLC system to reduce multipath interference dramatically. Signals from different LEDs can be separated by using parabolic lens plated with reflecting film. This structure can reduce the reflection effect effectively as well. We present the simulation results to observe the distribution of optical power on the imaging plane for various receiving positions and low correlation between all channels. We can find that the optical power density becomes stronger than non-imaging system and the interference is sharply decreased, thus the SNR and BER are also optimized. Analysis about the optical system is given in this paper.

  14. A new quadruple gravitational lens system : CLASS B0128+437

    NARCIS (Netherlands)

    Phillips, PM; Norbury, MA; Koopmans, LVE; Browne, IWA; Jackson, NJ; Wilkinson, PN; Biggs, AD; Blandford, RD; de Bruyn, AG; Fassnacht, CD; Helbig, P; Mao, S; Marlow, DR; Myers, ST; Pearson, TJ; Readhead, ACS; Rusin, D; Xanthopoulos, E

    2000-01-01

    High-resolution MERLIN observations of a newly discovered four-image gravitational lens system, B0128+437, are presented. The system was found after a careful re-analysis of the entire CLASS data set. The MERLIN observations resolve four components in a characteristic quadruple-image configuration;

  15. Comparison of optical quality after implantable collamer lens implantation and wavefront-guided laser in situ keratomileusis.

    Science.gov (United States)

    Liu, Hong-Ting; Zhou, Zhou; Luo, Wu-Qiang; He, Wen-Jing; Agbedia, Owhofasa; Wang, Jiang-Xia; Huang, Jian-Zhong; Gao, Xin; Kong, Min; Li, Min; Li, Li

    2018-01-01

    To compare the optical quality after implantation of implantable collamer lens (ICL) and wavefront-guided laser in situ keratomileusis (WG-LASIK). The study included 40 eyes of 22 patients with myopia who accepted ICL implantation and 40 eyes of 20 patients with myopia who received WG-LASIK. Before surgery and three months after surgery, the objective scattering index (OSI), the values of modulation transfer function (MTF) cutoff frequency, Strehl ratio, and the Optical Quality Analysis System (OQAS) values (OVs) were accessed. The higher order aberrations (HOAs) data including coma, trefoil, spherical, 2 nd astigmatism and tetrafoil were also obtained. For patients with pupil size LASIK group, significant improvements in visual acuities were found postoperatively, with a significant reduction in spherical equivalent ( P LASIK group, the OSI significantly increased from 0.68±0.43 preoperatively to 0.91±0.53 postoperatively (Wilcoxon signed ranks test, P =0.000). None of the mean MTF cutoff frequency, Strehl ratio, OVs showed statistically significant changes in both ICL and WG-LASIK groups. In the ICL group, there were no statistical differences in the total HOAs for either 4 mm-pupil or 6 mm-pupil. In the WG-LASIK group, the HOA parameters increased significantly at 4 mm-pupil. The total ocular HOAs, coma, spherical and 2 nd astigmatism were 0.12±0.06, 0.06±0.03, 0.00±0.03, 0.02±0.01, respectively. After the operation, these values were increased into 0.16±0.07, 0.08±0.05, -0.04±0.04, 0.03±0.01 respectively (Wilcoxon signed ranks test, all P LASIK group. ICL implantation has a less disturbance to optical quality than WG-LASIK. The OQAS is a valuable complementary measurement to the wavefront aberrometers in evaluating the optical quality.

  16. Age-dependent Fourier model of the shape of the isolated ex vivo human crystalline lens.

    Science.gov (United States)

    Urs, Raksha; Ho, Arthur; Manns, Fabrice; Parel, Jean-Marie

    2010-06-01

    To develop an age-dependent mathematical model of the zero-order shape of the isolated ex vivo human crystalline lens, using one mathematical function, that can be subsequently used to facilitate the development of other models for specific purposes such as optical modeling and analytical and numerical modeling of the lens. Profiles of whole isolated human lenses (n=30) aged 20-69, were measured from shadow-photogrammetric images. The profiles were fit to a 10th-order Fourier series consisting of cosine functions in polar-co-ordinate system that included terms for tilt and decentration. The profiles were corrected using these terms and processed in two ways. In the first, each lens was fit to a 10th-order Fourier series to obtain thickness and diameter, while in the second, all lenses were simultaneously fit to a Fourier series equation that explicitly include linear terms for age to develop an age-dependent mathematical model for the whole lens shape. Thickness and diameter obtained from Fourier series fits exhibited high correlation with manual measurements made from shadow-photogrammetric images. The root-mean-squared-error of the age-dependent fit was 205 microm. The age-dependent equations provide a reliable lens model for ages 20-60 years. The contour of the whole human crystalline lens can be modeled with a Fourier series. Shape obtained from the age-dependent model described in this paper can be used to facilitate the development of other models for specific purposes such as optical modeling and analytical and numerical modeling of the lens. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  17. Eye lens dose correlations with personal dose equivalent and patient exposure in paediatric interventional cardiology performed with a fluoroscopic biplane system.

    Science.gov (United States)

    Alejo, L; Koren, C; Corredoira, E; Sánchez, F; Bayón, J; Serrada, A; Guibelalde, E

    2017-04-01

    To analyse the correlations between the eye lens dose estimates performed with dosimeters placed next to the eyes of paediatric interventional cardiologists working with a biplane system, the personal dose equivalent measured on the thorax and the patient dose. The eye lens dose was estimated in terms of H p (0.07) on a monthly basis, placing optically stimulated luminescence dosimeters (OSLDs) on goggles. The H p (0.07) personal dose equivalent was measured over aprons with whole-body OSLDs. Data on patient dose as recorded by the kerma-area product (P KA ) were collected using an automatic dose management system. The 2 paediatric cardiologists working in the facility were involved in the study, and 222 interventions in a 1-year period were evaluated. The ceiling-suspended screen was often disregarded during interventions. The annual eye lens doses estimated on goggles were 4.13±0.93 and 4.98±1.28mSv. Over the aprons, the doses obtained were 10.83±0.99 and 11.97±1.44mSv. The correlation between the goggles and the apron dose was R 2 =0.89, with a ratio of 0.38. The correlation with the patient dose was R 2 =0.40, with a ratio of 1.79μSvGy -1 cm -2 . The dose per procedure obtained over the aprons was 102±16μSv, and on goggles 40±9μSv. The eye lens dose normalized to P KA was 2.21±0.58μSvGy -1 cm -2 . Measurements of personal dose equivalent over the paediatric cardiologist's apron are useful to estimate eye lens dose levels if no radiation protection devices are typically used. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  18. Fabrication of polymer micro-lens array with pneumatically diaphragm-driven drop-on-demand inkjet technology.

    Science.gov (United States)

    Xie, Dan; Zhang, Honghai; Shu, Xiayun; Xiao, Junfeng

    2012-07-02

    The paper reports an effective method to fabricate micro-lens arrays with the ultraviolet-curable polymer, using an original pneumatically diaphragm-driven drop-on-demand inkjet system. An array of plano convex micro-lenses can be formed on the glass substrate due to surface tension and hydrophobic effect. The micro-lens arrays have uniform focusing function, smooth and real planar surface. The fabrication process showed good repeatability as well, fifty micro-lenses randomly selected form 9 × 9 miro-lens array with an average diameter of 333.28μm showed 1.1% variations. Also, the focal length, the surface roughness and optical property of the fabricated micro-lenses are measured, analyzed and proved satisfactory. The technique shows great potential for fabricating polymer micro-lens arrays with high flexibility, simple technological process and low production cost.

  19. Robust adaptive optics systems for vision science

    Science.gov (United States)

    Burns, S. A.; de Castro, A.; Sawides, L.; Luo, T.; Sapoznik, K.

    2018-02-01

    Adaptive Optics (AO) is of growing importance for understanding the impact of retinal and systemic diseases on the retina. While AO retinal imaging in healthy eyes is now routine, AO imaging in older eyes and eyes with optical changes to the anterior eye can be difficult and requires a control and an imaging system that is resilient when there is scattering and occlusion from the cornea and lens, as well as in the presence of irregular and small pupils. Our AO retinal imaging system combines evaluation of local image quality of the pupil, with spatially programmable detection. The wavefront control system uses a woofer tweeter approach, combining an electromagnetic mirror and a MEMS mirror and a single Shack Hartmann sensor. The SH sensor samples an 8 mm exit pupil and the subject is aligned to a region within this larger system pupil using a chin and forehead rest. A spot quality metric is calculated in real time for each lenslet. Individual lenslets that do not meet the quality metric are eliminated from the processing. Mirror shapes are smoothed outside the region of wavefront control when pupils are small. The system allows imaging even with smaller irregular pupils, however because the depth of field increases under these conditions, sectioning performance decreases. A retinal conjugate micromirror array selectively directs mid-range scatter to additional detectors. This improves detection of retinal capillaries even when the confocal image has poorer image quality that includes both photoreceptors and blood vessels.

  20. Perform light and optic experiments in Augmented Reality

    Science.gov (United States)

    Wozniak, Peter; Vauderwange, Oliver; Curticapean, Dan; Javahiraly, Nicolas; Israel, Kai

    2015-10-01

    In many scientific studies lens experiments are part of the curriculum. The conducted experiments are meant to give the students a basic understanding for the laws of optics and its applications. Most of the experiments need special hardware like e.g. an optical bench, light sources, apertures and different lens types. Therefore it is not possible for the students to conduct any of the experiments outside of the university's laboratory. Simple optical software simulators enabling the students to virtually perform lens experiments already exist, but are mostly desktop or web browser based. Augmented Reality (AR) is a special case of mediated and mixed reality concepts, where computers are used to add, subtract or modify one's perception of reality. As a result of the success and widespread availability of handheld mobile devices, like e.g. tablet computers and smartphones, mobile augmented reality applications are easy to use. Augmented reality can be easily used to visualize a simulated optical bench. The students can interactively modify properties like e.g. lens type, lens curvature, lens diameter, lens refractive index and the positions of the instruments in space. Light rays can be visualized and promote an additional understanding of the laws of optics. An AR application like this is ideally suited to prepare the actual laboratory sessions and/or recap the teaching content. The authors will present their experience with handheld augmented reality applications and their possibilities for light and optic experiments without the needs for specialized optical hardware.

  1. High convergence efficiency design of flat Fresnel lens with large aperture

    Science.gov (United States)

    Ke, Jieyao; Zhao, Changming; Guan, Zhe

    2018-01-01

    This paper designed a circle-shaped Fresnel lens with large aperture as part of the solar pumped laser design project. The Fresnel lens designed in this paper simulate in size 1000mm×1000mm, focus length 1200mm and polymethyl methacrylate (PMMA) material in order to conduct high convergence efficiency. In the light of design requirement of concentric ring with same width of 0.3mm, this paper proposed an optimized Fresnel lens design based on previous sphere design and conduct light tracing simulation in Matlab. This paper also analyzed the effect of light spot size, light intensity distribution, optical efficiency under four conditions, monochromatic parallel light, parallel spectrum light, divergent monochromatic light and sunlight. Design by 550nm wavelength and under the condition of Fresnel reflection, the results indicated that the designed lens could convergent sunlight in diffraction limit of 11.8mm with a 78.7% optical efficiency, better than the sphere cutting design results of 30.4%.

  2. Night Vision Goggles Objectives Lens Focusing Methodology

    National Research Council Canada - National Science Library

    Pinkus, Alan; Task, H. L

    2000-01-01

    ...: interpupillary distance, tilt, eye relief, height, eyepiece and objective lens focus. Currently, aircrew use a Hoffman 20/20 test unit to pre-focus their NVG objective lenses at optical infinity before boarding their aircraft...

  3. Optimization of ion-optics system for x-ray quasi-monochromatic source on the basis of electrostatic accelerator

    Directory of Open Access Journals (Sweden)

    S. O. Vershynskyi

    2010-06-01

    Full Text Available Ion-optics system with two doublets of electrostatic quadrupole lenses for X-ray quasimonochromatic source was selected. Two variants of lens excitation for stigmatic focusing with two and four independent power supplies are considered. It is shown that using of four independent power supplies leads to improvement of focused ion beam parameters at converter.

  4. The voltage optimization of a four-element lens used on a hemispherical spectrograph with virtual entry for highest energy resolution

    International Nuclear Information System (INIS)

    Sise, O.; Martínez, G.; Madesis, I.; Laoutaris, A.; Dimitriou, A.; Fernández-Martín, M.; Zouros, T.J.M.

    2016-01-01

    Highlights: • We investigate the voltage settings for the four-element injection lens of an HDA. • The two well-known approaches, BEM and FDM, in charged particle optics were used. • We tested optimal lens voltages from simulation on the actual experimental setup. • The measured FWHM were well modeled using realistic source parameters. • The results are helpful to experimenters. - Abstract: The methodology and results of a detailed four-element lens optimization analysis based on electron trajectory numerical simulations are presented for a hemispherical deflector analyzer (HDA), whose entry aperture size is determined by the injection lens itself and is therefore virtual. Trajectory calculations were performed using both the boundary-element method (BEM) and the finite-difference method (FDM) and results from these two different approaches were benchmarked against each other, to probe and confirm the accuracy of our results. Since the first and last electrode are held at fixed potentials, the two intermediate adjustable lens electrode voltages were varied over the entire available voltage space in a direct, systematic, brute-force approach, while minima in beam spot size on the 2-D position sensitive detector (PSD) at the exit of the HDA were investigated using a beam shaping approach. Lens voltages demonstrating improved energy resolution for the combined lens/HDA/PSD spectrograph system were sought with and without pre-retardation. The optimal voltages were then tested experimentally on the modeled HDA system using a hot-wire electron gun. The measured energy resolution was found to be in good overall agreement with our simulations, particularly at the highest resolution (∼0.05%) working conditions. These simulations also provide a detailed insight to the distinctive trajectory optics and positions of the first and second image planes, when the PSD has to be placed some distance away from the HDA exit plane, and is therefore not at the ideal optics

  5. The voltage optimization of a four-element lens used on a hemispherical spectrograph with virtual entry for highest energy resolution

    Energy Technology Data Exchange (ETDEWEB)

    Sise, O., E-mail: omersise@sdu.edu.tr [Department of Science Education, Faculty of Education, Suleyman Demirel University, 32260 Isparta (Turkey); Martínez, G. [Departamento de Física Aplicada III, Facultad de Física, UCM, 28040 Madrid (Spain); Madesis, I. [Department of Physics, University of Crete, P.O. Box 2208, GR, 71003 Heraklion (Greece); Tandem Accelerator Laboratory, INPP, NCSR Demokritos, GR, 15310 Ag Paraskevi (Greece); Laoutaris, A. [Tandem Accelerator Laboratory, INPP, NCSR Demokritos, GR, 15310 Ag Paraskevi (Greece); Department of Applied Physics, National Technical University of Athens, GR, 15780 Athens (Greece); Dimitriou, A. [Department of Physics, University of Crete, P.O. Box 2208, GR, 71003 Heraklion (Greece); Tandem Accelerator Laboratory, INPP, NCSR Demokritos, GR, 15310 Ag Paraskevi (Greece); Fernández-Martín, M. [Departamento de Física Aplicada III, Facultad de Física, UCM, 28040 Madrid (Spain); Zouros, T.J.M. [Department of Physics, University of Crete, P.O. Box 2208, GR, 71003 Heraklion (Greece); Tandem Accelerator Laboratory, INPP, NCSR Demokritos, GR, 15310 Ag Paraskevi (Greece)

    2016-08-15

    Highlights: • We investigate the voltage settings for the four-element injection lens of an HDA. • The two well-known approaches, BEM and FDM, in charged particle optics were used. • We tested optimal lens voltages from simulation on the actual experimental setup. • The measured FWHM were well modeled using realistic source parameters. • The results are helpful to experimenters. - Abstract: The methodology and results of a detailed four-element lens optimization analysis based on electron trajectory numerical simulations are presented for a hemispherical deflector analyzer (HDA), whose entry aperture size is determined by the injection lens itself and is therefore virtual. Trajectory calculations were performed using both the boundary-element method (BEM) and the finite-difference method (FDM) and results from these two different approaches were benchmarked against each other, to probe and confirm the accuracy of our results. Since the first and last electrode are held at fixed potentials, the two intermediate adjustable lens electrode voltages were varied over the entire available voltage space in a direct, systematic, brute-force approach, while minima in beam spot size on the 2-D position sensitive detector (PSD) at the exit of the HDA were investigated using a beam shaping approach. Lens voltages demonstrating improved energy resolution for the combined lens/HDA/PSD spectrograph system were sought with and without pre-retardation. The optimal voltages were then tested experimentally on the modeled HDA system using a hot-wire electron gun. The measured energy resolution was found to be in good overall agreement with our simulations, particularly at the highest resolution (∼0.05%) working conditions. These simulations also provide a detailed insight to the distinctive trajectory optics and positions of the first and second image planes, when the PSD has to be placed some distance away from the HDA exit plane, and is therefore not at the ideal optics

  6. The low-field permanent magnet electrostatic plasma lens

    International Nuclear Information System (INIS)

    Goncharov, A.; Gorshkov, V.; Maslov, V.; Zadorozhny, V.; Brown, I.

    2004-01-01

    We describe the status of ongoing research and development of the electrostatic plasma lens as used for the manipulation of high current broad beams of heavy ions of moderate energy. In some collaborative work at Lawrence Berkeley National Laboratory the lens was used to good effect for carrying out high dose ion implantation processing. In the process of this work a very narrow range of low magnetic field was found for which the ion-optical characteristics of the lens improved markedly. Subsequent theoretical analysis and computer modeling has led to an understanding of this phenomenon. These serendipitous results open up some attractive possibilities for the development of a new compact and low cost plasma lens based on permanent magnets rather than on current-driven field coils surrounding the lens volume. The development of this kind of lens, including both very low noise and minimal spherical aberration effects, may lead to a tool suitable for use in the injection beam lines of high current heavy ion linear accelerators. Here we briefly review the lens fundamentals, some characteristics of focusing heavy ion beams at low magnetic fields, and summarize recent theoretical and experimental developments, with emphasis on the relevance and suitability of the lens for accelerator injection application

  7. Comparative analysis of the nuclear lens opalescence by the Lens Opacities Classification System III with nuclear density values provided by Oculus Pentacam: a cross-section study using Pentacam Nucleus Staging software.

    Science.gov (United States)

    Magalhães, Fernanda Pedreira; Costa, Elaine Fiod; Cariello, Angelino Júlio; Rodrigues, Eduardo Buchele; Hofling-Lima, Ana Luisa

    2011-01-01

    To compare the clinical classification of cataract using the Lens Opacities Classification System (LOCS) III with the mean values of lens density provided by the Pentacam Scheimpflug System in nuclear cataracts. One hundred and one eyes from 101 patients with age-related nuclear cataract were submitted to clinical examination for lens grading score using LOCS III. According to LOCS III, nuclear opalescence was divided in six groups. Patients were evaluated by the Pentacam Scheimpflug System for the mean lens density using the Pentacam lens densitometry program (PLDP), the Pentacam Nucleus Staging (PNS) mean value and the PNS cataract grading score. A positive correlation between the mean values of lens density and LOCS III classification, considering groups 1 to 5, could be noticed with PLDP and PNS mean value. The mean values between the groups were similar using the PLDP and the PNS mean value. However, when the PNS cataract grading score was evaluated, there was low correspondence with LOCS III classification. Pentacam Scheimpflug device offers an objective measure of the lens nuclear density on nuclear cataracts. PLDP and the PNS mean value were both useful to evaluate age-related nuclear cataract up to LOCS III group 5.

  8. Signal-enhancement reflective pulse oximeter with Fresnel lens

    Science.gov (United States)

    Chung, Shuang-Chao; Sun, Ching-Cherng

    2016-09-01

    In this paper, a new reflective pulse oximeter is proposed and demonstrated with implanting a Fresnel lens, which enhances the reflected signal. An optical simulation model incorporated with human skin characteristics is presented to evaluate the capability of the Fresnel lens. In addition, the distance between the light emitting diode and the photodiode is optimized. Compared with the other reflective oximeters, the reflected signal light detected by the photodiode is enhanced to more than 140%.

  9. Development of a lens-coupled CMOS detector for an X-ray inspection system

    International Nuclear Information System (INIS)

    Kim, Ho Kyung; Ahn, Jung Keun; Cho, Gyuseong

    2005-01-01

    A digital X-ray imaging detector based on a complementary metal-oxide-semiconductor (CMOS) image sensor has been developed for X-ray non-destructive inspection applications. This is a cost-effective solution because of the availability of cheap commercial standard CMOS image sensors. The detector configuration adopts an indirect X-ray detection method by using scintillation material and lens assembly. As a feasibility test of the developed lens-coupled CMOS detector as an X-ray inspection system, we have acquired X-ray projection images under a variety of imaging conditions. The results show that the projected image is reasonably acceptable in typical non-destructive testing (NDT). However, the developed detector may not be appropriate for laminography due to a low light-collection efficiency of lens assembly. In this paper, construction of the lens-coupled CMOS detector and its specifications are described, and the experimental results are presented. Using the analysis of quantum accounting diagram, inefficiency of the lens-coupling method is discussed

  10. Optical Synchronization of a 10-G Ethernet Packet and Time-Division Multiplexing to a 50-Gb/s Signal Using an Optical Time Lens

    DEFF Research Database (Denmark)

    Hu, Hao; Laguardia Areal, Janaina; Palushani, Evarist

    2010-01-01

    A 10-G Ethernet packet with maximum packet size of 1518 bytes is synchronized to a master clock with 200-kHz frequency offset using a time lens. The input 10-Gb/s non-return-to-zero packet is at the same time converted into a return-to-zero (RZ) packet with a pulsewidth of 10 ps and then time......-division multiplexed with four 10-Gb/s optical time-division-multiplexing (OTDM) channels, thus constituting a 50-Gb/s OTDM serial signal. Error-free performances of the synchronized RZ packet and demultiplexed packet from the aggregated 50-Gb/s OTDM signal are achieved....

  11. Compact optical processor for Hough and frequency domain features

    Science.gov (United States)

    Ott, Peter

    1996-11-01

    Shape recognition is necessary in a broad band of applications such as traffic sign or work piece recognition. It requires not only neighborhood processing of the input image pixels but global interconnection of them. The Hough transform (HT) performs such a global operation and it is well suited in the preprocessing stage of a shape recognition system. Translation invariant features can be easily calculated form the Hough domain. We have implemented on the computer a neural network shape recognition system which contains a HT, a feature extraction, and a classification layer. The advantage of this approach is that the total system can be optimized with well-known learning techniques and that it can explore the parallelism of the algorithms. However, the HT is a time consuming operation. Parallel, optical processing is therefore advantageous. Several systems have been proposed, based on space multiplexing with arrays of holograms and CGH's or time multiplexing with acousto-optic processors or by image rotation with incoherent and coherent astigmatic optical processors. We took up the last mentioned approach because 2D array detectors are read out line by line, so a 2D detector can achieve the same speed and is easier to implement. Coherent processing can allow the implementation of tilers in the frequency domain. Features based on wedge/ring, Gabor, or wavelet filters have been proven to show good discrimination capabilities for texture and shape recognition. The astigmatic lens system which is derived form the mathematical formulation of the HT is long and contains a non-standard, astigmatic element. By methods of lens transformation s for coherent applications we map the original design to a shorter lens with a smaller number of well separated standard elements and with the same coherent system response. The final lens design still contains the frequency plane for filtering and ray-tracing shows diffraction limited performance. Image rotation can be done

  12. Characteristic of laser diode beam propagation through a collimating lens.

    Science.gov (United States)

    Xu, Qiang; Han, Yiping; Cui, Zhiwei

    2010-01-20

    A mathematical model of a laser diode beam propagating through a collimating lens is presented. Wave propagation beyond the paraxial approximation is studied. The phase delay of the laser diode wave in passing through the lens is analyzed in detail. The propagation optical field after the lens is obtained from the diffraction integral by the stationary phase method. The model is employed to predict the light intensity at various beam cross sections, and the computed intensity distributions are in a good agreement with the corresponding measurements.

  13. Optical switching properties of VO2 films driven by using WDM-aligned lasers

    International Nuclear Information System (INIS)

    Tsai, K.Y.; Wu, F.-H.; Shieh, H.-P.D.; Chin, T.-S.

    2006-01-01

    Vanadium dioxide (VO 2 ) film had been demonstrated a high speed IR shutter driven by total optical modulation. However, it usually required a higher power heating laser of high power and precise optical systems to cover the probe beam on the sample with a heating beam of larger area. A new optical system, simply composed of wavelength division multiplexing (WDM), fiber lens or convex lens system, and a glass sheet with VO 2 thin film on it, was easily assembled to utilize VO 2 film as an IR shutter, implying the possibility to highly miniaturize the VO 2 -based optical shutter. A permanent low-transmittance (PLT) region forms on the film within the probe beam, resulting in a decrease in average power of the probe beam. Another ring-type switching area (switching ring) forms around the PLT region, resulting in the transmittance switching of the probe beam synchronously with the heating signal. VO 2 films can be switched with the highest rate of a continuous square heating signal of 3 mW at 120 kHz. A heating pulse of 0.7 ns and 13 mW can be used to stimulate an IR pulse with fiber lens

  14. Conceptual Design Studies of the KSTAR Bay-Nm Cassette and Thomson Scattering Optics

    International Nuclear Information System (INIS)

    Feder, R.; Ellis, R.; Johnson, D.; Park, H.; Lee, H.G.

    2005-01-01

    A Multi-Channel Thomson Scattering System viewing the edge and core of the KSTAR plasma will be installed at the mid-plane port Bay-N. An engineering design study was undertaken at PPPL in collaboration with the Korea Basic Science Institute (KBSI) to determine the optimal optics and cassette design. Design criteria included environmental, mechanical and optical factors. All of the optical design options have common design features; the Thomson Scattering laser, an in-vacuum shutter, a quartz heat shield and primary vacuum window, a set of optical elements and a fiber optic bundle. Neutron radiation damage was a major factor in the choice of competing lens-based and mirror-based optical designs. Both the mirror based design and the lens design are constrained by physical limits of the Bay-N cassette and interference with the Bay-N micro-wave launcher. The cassette will contain the optics and a rail system for maintenance of the optics

  15. Contourlet domain multiband deblurring based on color correlation for fluid lens cameras.

    Science.gov (United States)

    Tzeng, Jack; Liu, Chun-Chen; Nguyen, Truong Q

    2010-10-01

    Due to the novel fluid optics, unique image processing challenges are presented by the fluidic lens camera system. Developed for surgical applications, unique properties, such as no moving parts while zooming and better miniaturization than traditional glass optics, are advantages of the fluid lens. Despite these abilities, sharp color planes and blurred color planes are created by the nonuniform reaction of the liquid lens to different color wavelengths. Severe axial color aberrations are caused by this reaction. In order to deblur color images without estimating a point spread function, a contourlet filter bank system is proposed. Information from sharp color planes is used by this multiband deblurring method to improve blurred color planes. Compared to traditional Lucy-Richardson and Wiener deconvolution algorithms, significantly improved sharpness and reduced ghosting artifacts are produced by a previous wavelet-based method. Directional filtering is used by the proposed contourlet-based system to adjust to the contours of the image. An image is produced by the proposed method which has a similar level of sharpness to the previous wavelet-based method and has fewer ghosting artifacts. Conditions for when this algorithm will reduce the mean squared error are analyzed. While improving the blue color plane by using information from the green color plane is the primary focus of this paper, these methods could be adjusted to improve the red color plane. Many multiband systems such as global mapping, infrared imaging, and computer assisted surgery are natural extensions of this work. This information sharing algorithm is beneficial to any image set with high edge correlation. Improved results in the areas of deblurring, noise reduction, and resolution enhancement can be produced by the proposed algorithm.

  16. Advanced optical system for scanning-spot photorefractive keratectomy (PRK)

    Science.gov (United States)

    Mrochen, Michael; Wullner, Christian; Semchishen, Vladimir A.; Seiler, Theo

    1999-06-01

    Purpose: The goal of this presentation is to discuss the use of the Light Shaping Beam Homogenizer in an optical system for scanning-spot PRK. Methods: The basic principle of the LSBH is the transformation of any incident intensity distribution by light scattering on an irregular microlens structure z = f(x,y). The relief of this microlens structure is determined by a defined statistical function, i.e. it is defined by the mean root-squared tilt σ of the surface relief. Therefore, the beam evolution after the LSBH and in the focal plane of an imaging lens was measured for various root-squared tilts. Beside this, an optical setup for scanning-spot PRK was assembled according to the theoretical and experimental results. Results: The divergence, homogeneity and the Gaussian radius of the intensity distribution in the treatment plane of the scanning-spot PRK laser system is mainly characterized by dependent on root-mean-square tilt σ of the LSBH, as it will be explained by the theoretical description of the LSBH. Conclusions: The LSBH represents a simple, low cost beam homogenizer with low energy losses, for scanning-spot excimer laser systems.

  17. Fabrication of MTF measurement system for a mobile phone lens using multi-square objects

    Science.gov (United States)

    Hong, Sung Mok; Jo, Jae Heung; Lee, Hoi Youn; Yang, Ho Soon; Lee, Yun Woo; Lee, In Won

    2007-12-01

    The mobile phone market grows rapidly and the performance estimation about camera module is required. Accordingly, we fabricate the MTF measurement system for a mobile phone lens having extremely small diameter and large f-number. The objective lens with the magnification of X20 for MTF measurement for high resolution lens and a detector of CCD that is pixel size of 7.4 um are adapted to the system. Also, the CCD is translated by using a linear motor to reduce measurement errors. The measurement lens is placed at the most suitable imaging point by a precise auto-focusing motor. The measuring equipment which we developed for off-axis MTF measurement of a mobile phone lens used the multi-square objects. The square objects of measuring equipment are arranged a unit in the on-axis and total 12 units (0.3 field: 4 units, 0.5 field: 4 units, 0.7 field: 4 units) in the off-axis. When the measurement is started, the linear motors of signal detection part are transferred from on-axis to off-axis. And a detected signals from the each square objects are used for MTF measurement. System driver and MTF measure are using application program that developed us. This software can be measure the on-axis and the off-axis sequentially. In addition to that it did optimization of motor transfer for measurement time shortening.

  18. A surgical navigation system for non-contact diffuse optical tomography and intraoperative cone-beam CT

    Science.gov (United States)

    Daly, Michael J.; Muhanna, Nidal; Chan, Harley; Wilson, Brian C.; Irish, Jonathan C.; Jaffray, David A.

    2014-02-01

    A freehand, non-contact diffuse optical tomography (DOT) system has been developed for multimodal imaging with intraoperative cone-beam CT (CBCT) during minimally-invasive cancer surgery. The DOT system is configured for near-infrared fluorescence imaging with indocyanine green (ICG) using a collimated 780 nm laser diode and a nearinfrared CCD camera (PCO Pixelfly USB). Depending on the intended surgical application, the camera is coupled to either a rigid 10 mm diameter endoscope (Karl Storz) or a 25 mm focal length lens (Edmund Optics). A prototype flatpanel CBCT C-Arm (Siemens Healthcare) acquires low-dose 3D images with sub-mm spatial resolution. A 3D mesh is extracted from CBCT for finite-element DOT implementation in NIRFAST (Dartmouth College), with the capability for soft/hard imaging priors (e.g., segmented lymph nodes). A stereoscopic optical camera (NDI Polaris) provides real-time 6D localization of reflective spheres mounted to the laser and camera. Camera calibration combined with tracking data is used to estimate intrinsic (focal length, principal point, non-linear distortion) and extrinsic (translation, rotation) lens parameters. Source/detector boundary data is computed from the tracked laser/camera positions using radiometry models. Target registration errors (TRE) between real and projected boundary points are ~1-2 mm for typical acquisition geometries. Pre-clinical studies using tissue phantoms are presented to characterize 3D imaging performance. This translational research system is under investigation for clinical applications in head-and-neck surgery including oral cavity tumour resection, lymph node mapping, and free-flap perforator assessment.

  19. Research progress on the measurement of human lens thickness in vivo

    Directory of Open Access Journals (Sweden)

    Yu-Huan Yang

    2017-05-01

    Full Text Available The precise measurement in lens thickness in vivo, provides great application value for intraocular accommodation and ametropia development mechanism research. And it has great clinical significance for the diagnosis and treatment of glaucoma and cataract. Currently, many ultrasonic methods and optical methods are used in measuring lens thickness. The measurement principles, advantages, disadvantages and the accuracy of the instruments are summarized in this paper. Among these methods, Orbscan II, Pentacam, Lenstar and AS-OCT can be used to measure lens thickness instead of A-scan. More important is the fact that UL-OCT can dynamically monitor the change of the lens thickness with intraocular accommodation. Choosing an instrument with higher measuring accuracy to examine the lens thickness, can provide more accurate and convincing lens thickness data for clinical and scientific research.

  20. Multiple-aperture optical design for micro-level cameras using 3D-printing method

    Science.gov (United States)

    Peng, Wei-Jei; Hsu, Wei-Yao; Cheng, Yuan-Chieh; Lin, Wen-Lung; Yu, Zong-Ru; Chou, Hsiao-Yu; Chen, Fong-Zhi; Fu, Chien-Chung; Wu, Chong-Syuan; Huang, Chao-Tsung

    2018-02-01

    The design of the ultra miniaturized camera using 3D-printing technology directly printed on to the complementary metal-oxide semiconductor (CMOS) imaging sensor is presented in this paper. The 3D printed micro-optics is manufactured using the femtosecond two-photon direct laser writing, and the figure error which could achieve submicron accuracy is suitable for the optical system. Because the size of the micro-level camera is approximately several hundreds of micrometers, the resolution is reduced much and highly limited by the Nyquist frequency of the pixel pitch. For improving the reduced resolution, one single-lens can be replaced by multiple-aperture lenses with dissimilar field of view (FOV), and then stitching sub-images with different FOV can achieve a high resolution within the central region of the image. The reason is that the angular resolution of the lens with smaller FOV is higher than that with larger FOV, and then the angular resolution of the central area can be several times than that of the outer area after stitching. For the same image circle, the image quality of the central area of the multi-lens system is significantly superior to that of a single-lens. The foveated image using stitching FOV breaks the limitation of the resolution for the ultra miniaturized imaging system, and then it can be applied such as biomedical endoscopy, optical sensing, and machine vision, et al. In this study, the ultra miniaturized camera with multi-aperture optics is designed and simulated for the optimum optical performance.

  1. High-Density Near-Field Optical Disc Recording

    Science.gov (United States)

    Shinoda, Masataka; Saito, Kimihiro; Ishimoto, Tsutomu; Kondo, Takao; Nakaoki, Ariyoshi; Ide, Naoki; Furuki, Motohiro; Takeda, Minoru; Akiyama, Yuji; Shimouma, Takashi; Yamamoto, Masanobu

    2005-05-01

    We developed a high-density near-field optical recording disc system using a solid immersion lens. The near-field optical pick-up consists of a solid immersion lens with a numerical aperture of 1.84. The laser wavelength for recording is 405 nm. In order to realize the near-field optical recording disc, we used a phase-change recording media and a molded polycarbonate substrate. A clear eye pattern of 112 GB capacity with 160 nm track pitch and 50 nm bit length was observed. The equivalent areal density is 80.6 Gbit/in2. The bottom bit error rate of 3 tracks-write was 4.5× 10-5. The readout power margin and the recording power margin were ± 30.4% and ± 11.2%, respectively.

  2. OSSIM wave-optics toolbox and its use to simulate AEOS

    Science.gov (United States)

    Smith, Carey A.; Forgham, James L.; Jones, Bruce W.; Jones, Kenneth D.

    2001-12-01

    OSSim (Optical System Simulation) is a simulation toolbox of optical and processing components. By using full wave-optics in the time-domain, OSSim simulates diffractive effects and control loop interactions missed by simpler analyses. OSSim also models the atmosphere, with user customizable turbulence strength, wind, and slew. This paper first presents 2 introductory examples: a simple 2-lens imaging system and a simple tilt-control system. Then it presents a simulation of the 3.67-meter AEOS (Advanced Electro-Optics System) telescope on Maui. The OSSim simulation agrees well with the AEOS experimental results.

  3. Fabrication of an eyeball-like spherical micro-lens array using extrusion for optical fiber coupling

    International Nuclear Information System (INIS)

    Shen, S C; Huang, J C; Pan, C T; Chao, C H; Liu, K H

    2009-01-01

    Batch fabrication of an eyeball-like spherical micro-lens array (ESMA) not only can reduce micro assembly cost, but also can replace conventional ball lenses or costly gradient refractive index without sacrificing performance. Compared to the conventional half-spherical micro-lenses, the ESMA is an eyeball-like spherical lens which can focus light in all directions, thus providing application flexibility for optical purposes. The current ESMA is made of photoresist SU-8 using the extrusion process instead of the traditional thermal reflow process. For the process of an ESMA, this research develops a new process at ambient temperature by spin-coating SU-8 on a surface of a silicon wafer which serves as an extrusion plate and extruding it through a nozzle to form an ESMA. This nozzle consists of a nozzle orifice and nozzle cavity. The nozzle orifice is defined and made of SU-8 photoresist using ultra-violet lithography, which exhibits good mechanical property. The fabrication process of a nozzle cavity employs bulk micromachining to fabricate the cavities. Next, viscous SU-8 spun on the extrusion plate is extruded through the nozzle orifice to form an ESMA. Based on the effect of surface tension, by varying the amount of SU-8 on the plate extruded through different nozzle orifices, various diameters of ESMA can be fabricated. In this paper, a 4 × 4 ESMA with a numerical aperture of about 0.38 and diameters ranging from 60 to 550 µm is fabricated. Optical measurements indicate a diameter variance within 3% and the maximum coupling efficiency is approximately 62% when the single mode fiber is placed at a distance of 10 µm from the ESMA. The research has proved that the extrusion fabrication process of an ESMA is capable of enhancing the coupling efficiency

  4. Optical design of the National Ignition Facility main laser and switchyard/target area beam transport systems

    Science.gov (United States)

    Miller, John L.; English, R. Edward, Jr.; Korniski, Ronald J.; Rodgers, J. Michael

    1999-07-01

    The optical design of the main laser and transport mirror sections of the National Ignition Facility are described. For the main laser the configuration, layout constraints, multiple beam arrangement, pinhole layout and beam paths, clear aperture budget, ray trace models, alignment constraints, lens designs, wavefront performance, and pupil aberrations are discussed. For the transport mirror system the layout, alignment controls and clear aperture budget are described.

  5. Comparative analysis of the nuclear lens opalescence by the Lens Opacities Classification System III with nuclear density values provided by Oculus Pentacam: a cross-section study using Pentacam Nucleus Staging software

    Directory of Open Access Journals (Sweden)

    Fernanda Pedreira Magalhães

    2011-04-01

    Full Text Available PURPOSE: To compare the clinical classification of cataract using the Lens Opacities Classification System (LOCS III with the mean values of lens density provided by the Pentacam Scheimpflug System in nuclear cataracts. METHODS: One hundred and one eyes from 101 patients with age-related nuclear cataract were submitted to clinical examination for lens grading score using LOCS III. According to LOCS III, nuclear opalescence was divided in six groups. Patients were evaluated by the Pentacam Scheimpflug System for the mean lens density using the Pentacam lens densitometry program (PLDP, the Pentacam Nucleus Staging (PNS mean value and the PNS cataract grading score. RESULTS: A positive correlation between the mean values of lens density and LOCS III classification, considering groups 1 to 5, could be noticed with PLDP and PNS mean value. The mean values between the groups were similar using the PLDP and the PNS mean value. However, when the PNS cataract grading score was evaluated, there was low correspondence with LOCS III classification. CONCLUSION: Pentacam Scheimpflug device offers an objective measure of the lens nuclear density on nuclear cataracts. PLDP and the PNS mean value were both useful to evaluate age-related nuclear cataract up to LOCS III group 5.

  6. The effect of optical system design for laser micro-hole drilling process

    Science.gov (United States)

    Ding, Chien-Fang; Lan, Yin-Te; Chien, Yu-Lun; Young, Hong-Tsu

    2017-08-01

    Lasers are a promising high accuracy tool to make small holes in composite or hard material. They offer advantages over the conventional machining process, which is time consuming and has scaling limitations. However, the major downfall in laser material processing is the relatively large heat affect zone or number of molten burrs it generates, even when using nanosecond lasers over high-cost ultrafast lasers. In this paper, we constructed a nanosecond laser processing system with a 532 nm wavelength laser source. In order to enhance precision and minimize the effect of heat generation with the laser drilling process, we investigated the geometric shape of optical elements and analyzed the images using the modulation transfer function (MTF) and encircled energy (EE) by using optical software Zemax. We discuss commercial spherical lenses, including plano-convex lenses, bi-convex lenses, plano-concave lenses, bi-concave lenses, best-form lenses, and meniscus lenses. Furthermore, we determined the best lens configuration by image evaluation, and then verified the results experimentally by carrying out the laser drilling process on multilayer flexible copper clad laminate (FCCL). The paper presents the drilling results obtained with different lens configurations and found the best configuration had a small heat affect zone and a clean edge along laser-drilled holes.

  7. Single lens to lens duplication: The missing link

    OpenAIRE

    Bhatt, Rupal; Jethani, Jitendra; Saluja, Praveen; Bharti, Vinay

    2008-01-01

    Congenital anomalies of the lens include a wide range from lens coloboma to primary aphakia and doubling of lens. There have been few case reports of double lens; the etiology suggested is metaplastic changes in the surface ectoderm that leads to formation of two lens vesicles and hence resulting in double lens. We report a case with bilobed lens, which raises the possibility of explaining the etiology of double lens.

  8. Photon nanojet lens: design, fabrication and characterization

    International Nuclear Information System (INIS)

    Xu, Chen; Zhang, Sichao; Shao, Jinhai; Lu, Bing-Rui; Chen, Yifang; Mehfuz, Reyad; Drakeley, Stacey; Huang, Fumin

    2016-01-01

    In this paper, a novel nanolens with super resolution, based on the photon nanojet effect through dielectric nanostructures in visible wavelengths, is proposed. The nanolens is made from plastic SU-8, consisting of parallel semi-cylinders in an array. This paper focuses on the lens designed by numerical simulation with the finite-difference time domain method and nanofabrication of the lens by grayscale electron beam lithography combined with a casting/bonding/lift-off transfer process. Monte Carlo simulation for injected charge distribution and development modeling was applied to define the resultant 3D profile in PMMA as the template for the lens shape. After the casting/bonding/lift-off process, the fabricated nanolens in SU-8 has the desired lens shape, very close to that of PMMA, indicating that the pattern transfer process developed in this work can be reliably applied not only for the fabrication of the lens but also for other 3D nanopatterns in general. The light distribution through the lens near its surface was initially characterized by a scanning near-field optical microscope, showing a well defined focusing image of designed grating lines. Such focusing function supports the great prospects of developing a novel nanolithography based on the photon nanojet effect. (paper)

  9. A New Method for Simulating Power Flow Density Focused by a Silicon Lens Antenna Irradiated with Linearly Polarized THz Wave

    Directory of Open Access Journals (Sweden)

    Catur Apriono

    2015-08-01

    Full Text Available A terahertz system uses dielectric lens antennas for focusing and collimating beams of terahertz wave radiation. Linearly polarized terahertz wave radiation has been widely applied in the terahertz system. Therefore, an accurate method for analyzing the power flow density in the dielectric lens antenna irradiated with the linearly polarized terahertz wave radiation is important to design the terahertz systems. In optics, ray-tracing method has been used to calculate the power flow density by a number density of rays. In this study, we propose a method of ray-tracing combined with Fresnel’s transmission, including transmittance and polarization of the terahertz wave radiation to calculate power flow density in a Silicon lens antenna. We compare power flow density calculated by the proposed method with the regular ray-tracing method. When the Silicon lens antenna is irradiated with linearly polarized terahertz wave radiation, the proposed method calculates the power flow density more accurately than the regular ray-tracing.

  10. High-Density Near-Field Readout over 50 GB Capacity Using Solid Immersion Lens with High Refractive Index

    Science.gov (United States)

    Shinoda, Masataka; Saito, Kimihiro; Kondo, Takao; Ishimoto, Tsutomu; Nakaoki, Ariyoshi

    2003-02-01

    We have investigated high-density near-field readout using a solid immersion lens with a high refractive index. By using a glass material with a high refractive index of 2.08, we developed an optical pick-up with the effective numerical aperture of 1.8. We could observe a clear eye pattern for a 50 GB capacity disc in 120 mm diameter. We confirmed that the near-field readout system is promising method of realizing a high-density optical disc system.

  11. Projection-type X-ray microscope based on a spherical compound refractive X-ray lens

    OpenAIRE

    Dudchik, Yu. I.; Gary, C. K.; Park, H.; Pantell, R. H.; Piestrup, M. A.

    2007-01-01

    New projection- type X-ray microscope with a compound refractive lens as the optical element is presented. The microscope consists of an X-ray source that is 1-2 mm in diameter, compound X-ray lens and X-ray camera that are placed in-line to satisfy the lens formula. The lens forms an image of the X-ray source at camera sensitive plate. An object is placed between the X-ray source and the lens as close as possible to the source, and the camera shows a shadow image of the object. Spatial resol...

  12. Coherent light scattering from a buried dipole in a high-aperture optical system

    International Nuclear Information System (INIS)

    Vamivakas, A N; Mueller, T; Atatuere, M; Yurt, A; Koeklue, F H; Uenlue, M S

    2011-01-01

    We develop a theoretical formulation to calculate the absolute and differential transmission of a focused laser beam through a high-aperture optical system. The focused field interacts with a point dipole that is buried in a high-index material, and is situated at the Gaussian focus of the focusing and collection two-lens system. The derived expressions account for the vectorial nature of the focused electromagnetic field and the inhomogeneous focal region environment. The results obtained are in agreement with recent resonant light-scattering experiments where the buried emitter is an indium arsenide semiconductor quantum dot in gallium arsenide.

  13. Ultra-compact SWIR telephoto lens design with SMS method

    OpenAIRE

    Wang, Lin; Benitez Gimenez, Pablo; Miñano Dominguez, Juan Carlos; Infante Herrero, Jose Manuel; Fuente, Marta de la; Biot Marí, Guillermo

    2011-01-01

    In this work, we propose two new optical structures, using the Simultaneous Multiple Surfaces (SMS) method, comprised of 2 reflecting surfaces and 2 refracting surfaces, 800mm focal length, f/8 (aperture diameter 100 mm) and 1.18 0 diagonal field of view in the SWIR band. The lens surfaces are rotational symmetric and calculated to have good control of non-paraxial rays. We have achieved designs with excellent performance, and with total system length of less than 60 mm.

  14. Effect of contact lens use on Computer Vision Syndrome.

    Science.gov (United States)

    Tauste, Ana; Ronda, Elena; Molina, María-José; Seguí, Mar

    2016-03-01

    To analyse the relationship between Computer Vision Syndrome (CVS) in computer workers and contact lens use, according to lens materials. Cross-sectional study. The study included 426 civil-service office workers, of whom 22% were contact lens wearers. Workers completed the Computer Vision Syndrome Questionnaire (CVS-Q) and provided information on their contact lenses and exposure to video display terminals (VDT) at work. CVS was defined as a CVS-Q score of 6 or more. The covariates were age and sex. Logistic regression was used to calculate the association (crude and adjusted for age and sex) between CVS and individual and work-related factors, and between CVS and contact lens type. Contact lens wearers are more likely to suffer CVS than non-lens wearers, with a prevalence of 65% vs 50%. Workers who wear contact lenses and are exposed to the computer for more than 6 h day(-1) are more likely to suffer CVS than non-lens wearers working at the computer for the same amount of time (aOR = 4.85; 95% CI, 1.25-18.80; p = 0.02). Regular contact lens use increases CVS after 6 h of computer work. © 2016 The Authors Ophthalmic & Physiological Optics © 2016 The College of Optometrists.

  15. Evaluation of visual quality of spherical and aspherical intraocular lenses by Optical Quality Analysis System

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2017-06-01

    Full Text Available AIM: To evaluate the impact of spherical and aspherical intraocular lenses on the postoperative visual quality of age-related cataract patients using Optical Quality Analysis System (OQAS. METHODS: Seventy-four eyes with age-related cataracts were randomly divided into spherical and aspherical lens implantation groups. Best-corrected visual acuity (BCVA was measured preoperatively, one day, one week, two weeks, one month and two months after surgery. A biometric systems analysis using the OQAS objective scattering index (OSI was performed. RESULTS: There were no significant differences in visual acuity (P>0.05 before and after spherical and aspheric lens implantation. There was a negative linear correction between the OSI value and BCVA (r=-0.634, P=0.000, and positive corrections between the OSI value and the lens LOCUS III value of nucleus color (NC, nucleus opacity (NO, cortex (C and posterior lens capsular (P (r=0.704, P=0.000; r=0.514, P=0.000; r=0.276, P=0.020; r=0.417, P=0.000, respectively. OSI values of spherical vs aspherical lenses were 11.5±3.6 vs 11.8±3.4, 4.1±0.9 vs 3.3±0.8, 3.5±0.9 vs 2.7±0.7, 3.3±0.8 vs 2.6±0.7, 3.2±0.7 vs 2.5±0.8, and 3.2±0.8 vs 2.5±0.8 before and 1d, 1, 2wk, 1 and 2mo after surgery, respectively. All time points varied significantly (P<0.01 between the two groups. CONCLUSION: Aspherical IOLs does not significantly affect visual acuity compared with spherical IOLs. The OSI value, was significantly lower in the aspherical lens group compared with the spherical lens. This study shows that objective visual quality of aspheric IOLs is better than that of the spherical lens by means of OQAS biological measurement method.

  16. Multiple wavelength multitimescale optical absorption system

    International Nuclear Information System (INIS)

    Lubis, R.; Allan, D.; Hodgson, B.W.; Swallow, A.J.

    1992-01-01

    A new workstation for pulse radiolysis studies has been developed for the Paterson Institute Linear Accelerator Laboratory. It is particularly suited to the study of materials available only in limited quantities. The analysing light beam is dispersed into a plane spectrum by a McPherson 270 monochromator and focused down to a line spectrum by a rod lens. The spectral intensity distribution is sampled by a linear array of optical fibres which conduct the light to photodiodes. A preamplifier unit amplifies and buffers the diode photocurrent signal which then passes to the main electronics unit incorporating further amplification stages, filters, backing-off of the background photocurrent, analog-to-digital conversion, data storage memory and a computer interface. All control of the electronic system is performed from a computer equipped with appropriate software. The system has 10 channels of spectral bandwidth 16 nm, a useful spectral response from 350 nm to 1 μm with a high signal-to-noise ratio, signal sampling rates from 20 MHz to 2 kHz and 8 kbyte of local memory for each channel. (author)

  17. Multiple wavelength multitimescale optical absorption system

    Science.gov (United States)

    Lubis, R.; Allan, D.; Hodgson, B. W.; Swallow, A. J.

    A new workstation for pulse radiolysis studies has been developed for the Paterson Institute Linear Accelerator Laboratory. It is particularly suited to the study of materials available only in limited quantities. The analysing light beam is dispersed into a plane spectrum by a McPherson 270 monochromator and focused down to a line spectrum by a rod lens. The spectral intensity distribution is sampled by a linear array of optical fibres which conduct the light to photodiodes. A preamplifier unit amplifies and buffers the diode photocurrent signal which then passes to the main electronics unit incorporating further amplification stages, filters, backing-off of the background photocurrent, analog-to-digital conversion, data storage memory and a computer interface. All control of the electronic system is performed from a computer equipped with appropriate software. The system has 10 channels of spectral bandwidth 16 nm, a useful spectral response from 350 nm to 1 μm with a high signal-to-noise ratio, signal sampling rates from 20 MHz to 2 kHz and 8 kbyte of local memory for each channel.

  18. Foveated optics

    Science.gov (United States)

    Bryant, Kyle R.

    2016-05-01

    Foveated imaging can deliver two different resolutions on a single focal plane, which might inexpensively allow more capability for military systems. The following design study results provide starting examples, lessons learned, and helpful setup equations and pointers to aid the lens designer in any foveated lens design effort. Our goal is to put robust sensor in a small package with no moving parts, but still be able to perform some of the functions of a sensor in a moving gimbal. All of the elegant solutions are out (for various reasons). This study is an attempt to see if lens designs can solve this problem and realize some gains in performance versus cost for airborne sensors. We determined a series of design concepts to simultaneously deliver wide field of view and high foveal resolution without scanning or gimbals. Separate sensors for each field of view are easy and relatively inexpensive, but lead to bulky detectors and electronics. Folding and beam-combining of separate optical channels reduces sensor footprint, but induces image inversions and reduced transmission. Entirely common optics provide good resolution, but cannot provide a significant magnification increase in the foveal region. Offsetting the foveal region from the wide field center may not be physically realizable, but may be required for some applications. The design study revealed good general guidance for foveated optics designs with a cold stop. Key lessons learned involve managing distortion, telecentric imagers, matching image inversions and numerical apertures between channels, reimaging lenses, and creating clean resolution zone splits near internal focal planes.

  19. Variable wide range of lens power and its improvement in a liquid-crystal lens using highly resistive films divided into two regions with different diameters

    Science.gov (United States)

    Kawamura, Marenori; Sato, Susumu

    2018-05-01

    The variable range of lens power of a liquid-crystal (LC) lens driven by two voltages is discussed on the basis of calculated and experimental results. The LC lens has two electrodes, which are a circularly hole-patterned electrode and a circular electrode, in addition to a common electrode, and highly resistive transparent films. The variable range of lens power increases with increasing driving voltage applied across the circularly hole-patterned electrode and the common electrode, and with decreasing diameter of highly resistive films. However, the optical-phase retardation profile tends to deviate from a parabolic curve in these cases. As a method to improve the trade-off properties, the highly resistive film is divided into two regions with different diameters, where the sheet resistance of an outer film is larger than that of an inner one. The improved LC lens has a lens power that varies in a wide range, and it exhibits a good parabolic phase retardation profile.

  20. Compensating additional optical power in the central zone of a multifocal contact lens forminimization of the shrinkage error of the shell mold in the injection molding process.

    Science.gov (United States)

    Vu, Lien T; Chen, Chao-Chang A; Lee, Chia-Cheng; Yu, Chia-Wei

    2018-04-20

    This study aims to develop a compensating method to minimize the shrinkage error of the shell mold (SM) in the injection molding (IM) process to obtain uniform optical power in the central optical zone of soft axial symmetric multifocal contact lenses (CL). The Z-shrinkage error along the Z axis or axial axis of the anterior SM corresponding to the anterior surface of a dry contact lens in the IM process can be minimized by optimizing IM process parameters and then by compensating for additional (Add) powers in the central zone of the original lens design. First, the shrinkage error is minimized by optimizing three levels of four IM parameters, including mold temperature, injection velocity, packing pressure, and cooling time in 18 IM simulations based on an orthogonal array L 18 (2 1 ×3 4 ). Then, based on the Z-shrinkage error from IM simulation, three new contact lens designs are obtained by increasing the Add power in the central zone of the original multifocal CL design to compensate for the optical power errors. Results obtained from IM process simulations and the optical simulations show that the new CL design with 0.1 D increasing in Add power has the closest shrinkage profile to the original anterior SM profile with percentage of reduction in absolute Z-shrinkage error of 55% and more uniform power in the central zone than in the other two cases. Moreover, actual experiments of IM of SM for casting soft multifocal CLs have been performed. The final product of wet CLs has been completed for the original design and the new design. Results of the optical performance have verified the improvement of the compensated design of CLs. The feasibility of this compensating method has been proven based on the measurement results of the produced soft multifocal CLs of the new design. Results of this study can be further applied to predict or compensate for the total optical power errors of the soft multifocal CLs.

  1. Growth and optical development of the ocular lens of the squid (Sepioteuthis lessoniana).

    Science.gov (United States)

    Sivak, J G; West, J A; Campbell, M C

    1994-09-01

    Lens focal properties (spherical aberration), diameter and relative anterior/posterior proportions were measured photographically for Japanese squid (Sepioteuthis lessoniana) at ages 4-6 weeks, 7-9 weeks and 7-8 months. The measures involved photographing the refractive effects of lenses in a physiological solution, with and without an index matching fluid (polyvinylpyrroloidone solution), on a parallel array of fine helium-neon laser beams. Spherical aberration was determined from measurement of back vertex distance. Similar measurements were made on lenses from the eyes of cuttlefish (Sepia officinalis). The cephalopod lens develops as hemispheric halves from separate ectodermal sources. The posterior component contributes, on average, about 60% of axial lens diameter in S. lessoniana of all ages and 55% in S. officinalis. However, these proportions vary widely in both species. All lenses of both species show that spherical aberration is neutralized, although small variations in back vertex distance (positive and negative spherical aberration) were measured. Preliminary measures indicate that the refractive index distribution within the cephalopod lens varies in a manner reminiscent of teleost lenses. Squid lenses from animals 7-9 weeks of age were optimally corrected for spherical aberration. Some squid of this age, from a separate tank, showed a high incidence of cataract development. In each case, lens opacification was caused by deterioration of the posterior lens component.

  2. Development of a dry actuation conducting polymer actuator for micro-optical zoom lenses

    Science.gov (United States)

    Kim, Baek-Chul; Kim, Hyunseok; Nguyen, H. C.; Cho, M. S.; Lee, Y.; Nam, Jae-Do; Choi, Hyouk Ryeol; Koo, J. C.; Jeong, H.-S.

    2008-03-01

    The objective of the present work is to demonstrate the efficiency and feasibility of NBR (Nitrile Butadiene Rubber) based conducting polymer actuator that is fabricated into a micro zoon lens driver. Unlike the traditional conducting polymer that normally operates in a liquid, the proposed actuator successfully provides fairly effective driving performance for the zoom lens system in a dry environment. And this paper is including the experiment results for an efficiency improvement. The result suggested by an experiment was efficient in micro optical zoom lens system. In addition, the developed design method of actuator was given consideration to design the system.

  3. Optical Synchronization Systems for Femtosecond X-Ray Sources

    CERN Document Server

    Wilcox, Russell; Staples, John W

    2005-01-01

    In femtosecond pump/probe experiments using short x-ray and optical pulses, precise synchronization must be maintained between widely separated lasers in a synchrotron or FEL facility. We are developing synchronization systems using optical signals for applications requiring different ranges of timing error. For the sub-100fs range we use an amplitude modulated CW laser at 1GHz to transmit RF phase information, and control the delay through a 100m fiber by observing the retroreflected signal. Initial results show 40fs peak-to-peak error above 10Hz, and 200fs long term drift, mainly due to amplitude sensitivity in the analog mixers. For the sub-10fs range we will lock two single-frequency lasers separated by several teraHertz to a master modelocked fiber laser, transmit the two frequencies over fiber, and lock two comb lines of a slave laser to these frequencies, thus synchronizing the two modelocked laser envelopes. For attosecond synchronization we propose a stabilized, free space link using bulk lens wavegu...

  4. SU-E-J-11: Measurement of Eye Lens Dose for Varian On-Board Imaging with Different CBCT Acquisition Techniques

    International Nuclear Information System (INIS)

    Deshpande, S; Dhote, D; Kumar, R; Thakur, K

    2015-01-01

    Purpose: To measure actual patient eye lens dose for different cone beam computed tomography (CBCT) acquisition protocol of Varian’s On Board Imagining (OBI) system using Optically Stimulated Luminescence (OSL) dosimeter and study the eye lens dose with patient geometry and distance of isocenter to the eye lens Methods: OSL dosimeter was used to measure eye lens dose of patient. OSL dosimeter was placed on patient forehead center during CBCT image acquisition to measure eye lens dose. For three different cone beam acquisition protocol (standard dose head, low dose head and high quality head) of Varian On-Board Imaging, eye lens doses were measured. Measured doses were correlated with patient geometry and distance between isocenter to eye lens. Results: Measured eye lens dose for standard dose head was in the range of 1.8 mGy to 3.2 mGy, for high quality head protocol dose was in range of 4.5mGy to 9.9 mGy whereas for low dose head was in the range of 0.3mGy to 0.7mGy. Dose to eye lens is depends upon position of isocenter. For posterioraly located tumor eye lens dose is less. Conclusion: From measured doses it can be concluded that by proper selection of imagining protocol and frequency of imaging, it is possible to restrict the eye lens dose below the new limit set by ICRP. However, undoubted advantages of imaging system should be counter balanced by careful consideration of imaging protocol especially for very intense imaging sequences for Adoptive Radiotherapy or IMRT

  5. Practical integrated design of a condenser-objective lens for transmission electron microscope

    International Nuclear Information System (INIS)

    Li Wenping; Wu Jian; Zhou Zhen; Gui Lijiang; Han Li

    2009-01-01

    A condenser-objective lens is designed through combination of separating and integrating to consider the effect of the front condenser field on its objective performance. A practical lens model including magnetic pole piece, magnetic circuit and coil windings is built to optimize its rear field. The front field can be integrated into the rear one by simply adjusting the position of the specimen and the excitation on the condenser-objective lens. Optical performance of the integrated lens is researched as both a condenser lens and an imaging one. The total aberrations at the specimen plane are 0.01nm under STEM operation mode and its spherical aberration coefficient is 1.5mm when being an imaging objective lens, which can meet for high resolution microanalysis and TEM imaging.

  6. Analytical calculation of geometric and chromatic aberrations in a bi-potential electrostatic and bell-shaped magnetic combined lens

    International Nuclear Information System (INIS)

    Ximen Jiye; Liu Zhixiong

    2000-01-01

    In the present paper, Gaussian optical property in the bi-potential electrostatic and the bell-shaped magnetic combined lens - a new theoretical model first proposed in electron optics - has been thoroughly studied. Meanwhile, based on electron optical canonical aberration theory, analytical formulas of third-order geometrical and first-order chromatic aberration coefficients and their computational results have first been derived for this bi-potential electrostatic and bell-shaped magnetic combined lens. It is to emphasized that this theoretical study can be used to estimate third-order geometric and first-order chromatic aberrations and to provide a theoretical criterion for numerical computation in a rotationally symmetric electromagnetic lens

  7. Developing the Regulatory Utility of the Exposome: Mapping Exposures for Risk Assessment through Lifestage Exposome Snapshots (LEnS).

    Science.gov (United States)

    Shaffer, Rachel M; Smith, Marissa N; Faustman, Elaine M

    2017-08-07

    Exposome-related efforts aim to document the totality of human exposures across the lifecourse. This field has advanced rapidly in recent years but lacks practical application to risk assessment, particularly for children's health. Our objective was to apply the exposome to children's health risk assessment by introducing the concept of Lifestage Exposome Snapshots (LEnS). Case studies are presented to illustrate the value of the framework. The LEnS framework encourages organization of exposome studies based on windows of susceptibility for particular target organ systems. Such analyses will provide information regarding cumulative impacts during specific critical periods of the life course. A logical extension of this framework is that regulatory standards should analyze exposure information by target organ, rather than for a single chemical only or multiple chemicals grouped solely by mechanism of action. The LEnS concept is a practical refinement to the exposome that accounts for total exposures during particular windows of susceptibility in target organ systems. Application of the LEnS framework in risk assessment and regulation will improve protection of children's health by enhancing protection of sensitive developing organ systems that are critical for lifelong health and well-being. https://doi.org/10.1289/EHP1250.

  8. Visualization of femtosecond laser pulse-induced microincisions inside crystalline lens tissue.

    Science.gov (United States)

    Stachs, Oliver; Schumacher, Silvia; Hovakimyan, Marine; Fromm, Michael; Heisterkamp, Alexander; Lubatschowski, Holger; Guthoff, Rudolf

    2009-11-01

    To evaluate a new method for visualizing femtosecond laser pulse-induced microincisions inside crystalline lens tissue. Laser Zentrum Hannover e.V., Hannover, Germany. Lenses removed from porcine eyes were modified ex vivo by femtosecond laser pulses (wavelength 1040 nm, pulse duration 306 femtoseconds, pulse energy 1.0 to 2.5 microJ, repetition rate 100 kHz) to create defined planes at which lens fibers separate. The femtosecond laser pulses were delivered by a 3-dimension (3-D) scanning unit and transmitted by focusing optics (numerical aperture 0.18) into the lens tissue. Lens fiber orientation and femtosecond laser-induced microincisions were examined using a confocal laser scanning microscope (CLSM) based on a Rostock Cornea Module attached to a Heidelberg Retina Tomograph II. Optical sections were analyzed in 3-D using Amira software (version 4.1.1). Normal lens fibers showed a parallel pattern with diameters between 3 microm and 9 microm, depending on scanning location. Microincision visualization showed different cutting effects depending on pulse energy of the femtosecond laser. The effects ranged from altered tissue-scattering properties with all fibers intact to definite fiber separation by a wide gap. Pulse energies that were too high or overlapped too tightly produced an incomplete cutting plane due to extensive microbubble generation. The 3-D CLSM method permitted visualization and analysis of femtosecond laser pulse-induced microincisions inside crystalline lens tissue. Thus, 3-D CLSM may help optimize femtosecond laser-based procedures in the treatment of presbyopia.

  9. Design of Magnetic Charged Particle Lens Using Analytical Potential Formula

    Science.gov (United States)

    Al-Batat, A. H.; Yaseen, M. J.; Abbas, S. R.; Al-Amshani, M. S.; Hasan, H. S.

    2018-05-01

    In the current research was to benefit from the potential of the two cylindrical electric lenses to be used in the product a mathematical model from which, one can determine the magnetic field distribution of the charged particle objective lens. With aid of simulink in matlab environment, some simulink models have been building to determine the distribution of the target function and their related axial functions along the optical axis of the charged particle lens. The present study showed that the physical parameters (i.e., the maximum value, Bmax, and the half width W of the field distribution) and the objective properties of the charged particle lens have been affected by varying the main geometrical parameter of the lens named the bore radius R.

  10. Beam optics on the Melbourne proton microprobe

    International Nuclear Information System (INIS)

    Jamieson, D.N.; Colman, R.A.; Allan, G.L.; Legge, G.J.F.

    1985-01-01

    This review paper summarises results of ion optics development work conducted on the Melbourne Proton Microprobe and the associated Pelletron accelerator. The properties of a field ionization ion source have been investigated with the aim of replacing the existing R.F. ion source in the accelerator in order to obtain a brighter beam for the microprobe. The electrostatic emitter lens in the terminal of the accelerator has also been investigated with the aim of improving the focus of the accelerated beam. Finally, the aberrations of the probe forming lens system have been studied and it is shown how some of these may be corrected with an octupole lens

  11. Bio-Inspired Wide-Angle Broad-Spectrum Cylindrical Lens Based on Reflections from Micro-Mirror Array on a Cylindrical Elastomeric Membrane

    Directory of Open Access Journals (Sweden)

    Chi-Chieh Huang

    2014-06-01

    Full Text Available We present a wide-angle, broad-spectrum cylindrical lens based on reflections from an array of three-dimensional, high-aspect-ratio micro-mirrors fabricated on a cylindrical elastomeric substrate, functionally inspired by natural reflecting superposition compound eyes. Our device can perform one-dimensional focusing and beam-shaping comparable to conventional refraction-based cylindrical lenses, while avoiding chromatic aberration. The focal length of our cylindrical lens is 1.035 mm, suitable for micro-optical systems. Moreover, it demonstrates a wide field of view of 152° without distortion, as well as modest spherical aberrations. Our work could be applied to diverse applications including laser diode collimation, barcode scanning, holography, digital projection display, microlens arrays, and optical microscopy.

  12. Photographic zoom fisheye lens design for DSLR cameras

    Science.gov (United States)

    Yan, Yufeng; Sasian, Jose

    2017-09-01

    Photographic fisheye lenses with fixed focal length for cameras with different sensor formats have been well developed for decades. However, photographic fisheye lenses with variable focal length are rare on the market due in part to the greater design difficulty. This paper presents a large aperture zoom fisheye lens for DSLR cameras that produces both circular and diagonal fisheye imaging for 35-mm sensors and diagonal fisheye imaging for APS-C sensors. The history and optical characteristics of fisheye lenses are briefly reviewed. Then, a 9.2- to 16.1-mm F/2.8 to F/3.5 zoom fisheye lens design is presented, including the design approach and aberration control. Image quality and tolerance performance analysis for this lens are also presented.

  13. Image dissector photocathode solar damage test program. [solar radiation shielding using a fast optical lens

    Science.gov (United States)

    Smith, R. A.

    1977-01-01

    Image dissector sensors of the same type which will be used in the NASA shuttle star tracker were used in a series of tests directed towards obtaining solar radiation/time damage criteria. Data were evaluated to determine the predicted level of operability of the star tracker if tube damage became a reality. During the test series a technique for reducing the solar damage effect was conceived and verified. The damage concepts are outlined and the test methods and data obtained which were used for verification of the technique's feasibility are presented. The ability to operate an image dissector sensor with the solar image focussed on the photocathode by a fast optical lens under certain conditions is feasible and the elimination of a mechanical protection device is possible.

  14. Focusing properties of a square electrostatic rainbow lens

    International Nuclear Information System (INIS)

    Telečki, I.; Petrović, S.; Beličev, P.; Rađenović, B.; Balvanović, R.; Bojović, B.; Nešković, N.

    2012-01-01

    This paper is devoted to the focusing properties of a square electrostatic rainbow lens, which is a novel ion beam optical element. We consider the transmission of parallel and non-parallel proton beams of the initial kinetic energy of 10 keV through this lens. The potential of the electrodes of the lens is chosen to be 2 kV. The electrostatic potential and components of the electric field in the region of the lens are calculated using a three-dimensional finite element computer code. We investigate the spatial and angular distributions of protons propagating through the lens and in the drift space after it. It is confirmed that the evolutions of these distributions are determined by the evolutions of the corresponding rainbow lines, generated using the theory of crystal rainbows. The beam is separated into two components. One beam component, appearing as a beam core, is generated dominantly by the focused protons. Its boundary line in the transverse position plane can be very well approximated by a hypotrochoid. The other beam component is generated dominantly by the defocused protons. We present the focusing coefficient of the lens, the confining coefficients of the lens for the focused and defocused protons, the density of the beam core, the vertical or horizontal emittance of the beam core, and the brightness of the beam core.

  15. Electrically switchable holographic liquid crystal/polymer Fresnel lens using a Michelson interferometer.

    Science.gov (United States)

    Jashnsaz, Hossein; Mohajerani, Ezeddin; Nemati, Hossein; Razavi, Seyed Hossein; Alidokht, Isa Ahmad

    2011-06-10

    A holographic technique for fabricating an electrically switchable liquid crystal/polymer composite Fresnel lens is reported. A Michelson interferometer is used to produce the required Fresnel pattern, by placing a convex lens into one path of the interferometer. Simplicity of the method and the possibility of fabricating different focal length lenses in a single arrangement are advantages of the method. The performance of the fabricated lens was demonstrated and its electro-optical properties were investigated for its primary focal length.

  16. Simulating and optimizing compound refractive lens-based X-ray microscopes

    DEFF Research Database (Denmark)

    Simons, Hugh; Ahl, Sonja Rosenlund; Poulsen, Henning Friis

    2017-01-01

    A comprehensive optical description of compound refractive lenses (CRLs) in condensing and full-field X-ray microscopy applications is presented. The formalism extends ray-transfer matrix analysis by accounting for X-ray attenuation by the lens material. Closed analytical expressions for critical......-lens limit. This limit may be satisfied by a range of CRL geometries, suggesting alternative approaches to improving the resolution and efficiency of CRLs and X-ray microscopes....

  17. New long-zoom lens for 4K super 35mm digital cameras

    Science.gov (United States)

    Thorpe, Laurence J.; Usui, Fumiaki; Kamata, Ryuhei

    2015-05-01

    The world of television production is beginning to adopt 4K Super 35 mm (S35) image capture for a widening range of program genres that seek both the unique imaging properties of that large image format and the protection of their program assets in a world anticipating future 4K services. Documentary and natural history production in particular are transitioning to this form of production. The nature of their shooting demands long zoom lenses. In their traditional world of 2/3-inch digital HDTV cameras they have a broad choice in portable lenses - with zoom ranges as high as 40:1. In the world of Super 35mm the longest zoom lens is limited to 12:1 offering a telephoto of 400mm. Canon was requested to consider a significantly longer focal range lens while severely curtailing its size and weight. Extensive computer simulation explored countless combinations of optical and optomechanical systems in a quest to ensure that all operational requests and full 4K performance could be met. The final lens design is anticipated to have applications beyond entertainment production, including a variety of security systems.

  18. TU-E-201-03: Eye Lens Dosimetry in Radiotherapy Using Contact Lens-Shaped Applicator

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. [Seoul National University Hospital (Korea, Republic of)

    2015-06-15

    awareness can lead to avoidance or even prevention. Learning Objectives: To understand recent changes in eye lens dose limits and thresholds for tissue reactions To understand different approaches to dose estimation for eye lens To learn about challenges in eye lens opacities among staff in interventional fluoroscopy Di Zhang, Toshiba America Medical Systems, Tustin, CA, USA Eye lens radiation dose from brain perfusion CT exams CT perfusion imaging requires repeatedly exposing one location of the head to monitor the uptake and washout of iodinated contrast. The accumulated radiation dose to the eye lens can be high, leading to concerns about potential radiation injury from these scans. CTDIvol assumes continuous z coverage and can overestimate eye lens dose in CT perfusion scans where the table do not increment. The radiation dose to the eye lens from clinical CT brain perfusion studies can be estimated using Monte Carlo simulation methods on voxelized patient models. MDCT scanners from four major manufacturers were simulated and the eye lens doses were estimated using the AAPM posted clinical protocols. They were also compared to CTDIvol values to evaluate the overestimation from CTDIvol. The efficacy of eye lens dose reduction techniques such as tilting the gantry and moving the scan location away from the eyelens were also investigated. Eye lens dose ranged from 81 mGy to 279 mGy, depending on the scanner and protocol used. It is between 59% and 63% of the CTDIvol values reported by the scanners. The eye lens dose is significantly reduced when the eye lenses were not directly irradiated. CTDIvol should not be interpreted as patient dose; this study has shown it to overestimate dose to the eye lens. These results may be used to provide more accurate estimates of actual dose to ensure that protocols are operated safely below thresholds. Tilting the gantry or moving the scanning region further away from the eyes are effective for reducing lens dose in clinical practice

  19. TU-E-201-03: Eye Lens Dosimetry in Radiotherapy Using Contact Lens-Shaped Applicator

    International Nuclear Information System (INIS)

    Park, J.

    2015-01-01

    awareness can lead to avoidance or even prevention. Learning Objectives: To understand recent changes in eye lens dose limits and thresholds for tissue reactions To understand different approaches to dose estimation for eye lens To learn about challenges in eye lens opacities among staff in interventional fluoroscopy Di Zhang, Toshiba America Medical Systems, Tustin, CA, USA Eye lens radiation dose from brain perfusion CT exams CT perfusion imaging requires repeatedly exposing one location of the head to monitor the uptake and washout of iodinated contrast. The accumulated radiation dose to the eye lens can be high, leading to concerns about potential radiation injury from these scans. CTDIvol assumes continuous z coverage and can overestimate eye lens dose in CT perfusion scans where the table do not increment. The radiation dose to the eye lens from clinical CT brain perfusion studies can be estimated using Monte Carlo simulation methods on voxelized patient models. MDCT scanners from four major manufacturers were simulated and the eye lens doses were estimated using the AAPM posted clinical protocols. They were also compared to CTDIvol values to evaluate the overestimation from CTDIvol. The efficacy of eye lens dose reduction techniques such as tilting the gantry and moving the scan location away from the eyelens were also investigated. Eye lens dose ranged from 81 mGy to 279 mGy, depending on the scanner and protocol used. It is between 59% and 63% of the CTDIvol values reported by the scanners. The eye lens dose is significantly reduced when the eye lenses were not directly irradiated. CTDIvol should not be interpreted as patient dose; this study has shown it to overestimate dose to the eye lens. These results may be used to provide more accurate estimates of actual dose to ensure that protocols are operated safely below thresholds. Tilting the gantry or moving the scanning region further away from the eyes are effective for reducing lens dose in clinical practice

  20. [Slit lamp optical coherence tomography study of anterior segment changes after phacoemulsification and foldable intraocular lens implantation].

    Science.gov (United States)

    Yan, Pi-song; Zhang, Zhen-ping; Lin, Hao-tian; Wu, Wen-jie; Bai, Ling

    2009-09-01

    To investigate quantitative changes of the anterior segment configuration after clear corneal incision phacoemulsification and foldable intraocular lens (IOL) implantation with slit-lamp-adapted optical coherence tomography (SL-OCT). In prospective consecutive case series, clear corneal incision phacoemulsification and foldable intraocular lens implantation were performed in 44 eyes of 40 patients. The changes of the anterior segment configuration were performed by SL-OCT before and 1 day, 1 week, 2 weeks and 1 month after surgery. SPSS 16.0 software was used to analyze statistical difference. For all patients, the central corneal thickness (CCT) and the incisional corneal thickness (ICT) increased significantly 1 day after surgery (CCT increased 99.59 microm, ICT increased 234.57 microm; P = 0.490). At 1 month, the CCT almost had returned to baseline, but the ICT had been thicker about 19.25 microm than baseline(P = 0.001). The measurements of ACD, AOD500, AOD750, TISA500, TISA750 also increased significantly 1 day after surgery. Although the ACD had no changes within 2 weeks (all P 0.05). The SL-OCT could impersonality and quantificationally evaluate the anterior segment changes induced by cataract surgery.

  1. Solutions on a high-speed wide-angle zoom lens with aspheric surfaces

    Science.gov (United States)

    Yamanashi, Takanori

    2012-10-01

    Recent development in CMOS and digital camera technology has accelerated the business and market share of digital cinematography. In terms of optical design, this technology has increased the need to carefully consider pixel pitch and characteristics of the imager. When the field angle at the wide end, zoom ratio, and F-number are specified, choosing an appropriate zoom lens type is crucial. In addition, appropriate power distributions and lens configurations are required. At points near the wide end of a zoom lens, it is known that an aspheric surface is an effective means to correct off-axis aberrations. On the other hand, optical designers have to focus on manufacturability of aspheric surfaces and perform required analysis with respect to the surface shape. Centration errors aside, it is also important to know the sensitivity to aspheric shape errors and their effect on image quality. In this paper, wide angle cine zoom lens design examples are introduced and their main characteristics are described. Moreover, technical challenges are pointed out and solutions are proposed.

  2. A compact combined ultrahigh vacuum scanning tunnelling microscope (UHV STM) and near-field optical microscope

    International Nuclear Information System (INIS)

    Woolley, R A J; Hayton, J A; Cavill, S; Ma, Jin; Beton, P H; Moriarty, P

    2008-01-01

    We have designed and constructed a hybrid scanning near-field optical microscope (SNOM)–scanning tunnelling microscope (STM) instrument which operates under ultrahigh vacuum (UHV) conditions. Indium tin oxide (ITO)-coated fibre-optic tips capable of high quality STM imaging and tunnelling spectroscopy are fabricated using a simple and reliable method which foregoes the electroless plating strategy previously employed by other groups. The fabrication process is reproducible, producing robust tips which may be exchanged under UHV conditions. We show that controlled contact with metal surfaces considerably enhances the STM imaging capabilities of fibre-optic tips. Light collection (from the cleaved back face of the ITO-coated fibre-optic tip) and optical alignment are facilitated by a simple two-lens arrangement where the in-vacuum collimation/collection lens may be adjusted using a slip-stick motor. A second in-air lens focuses the light (which emerges from the UHV system as a parallel beam) onto a cooled CCD spectrograph or photomultiplier tube. The application of the instrument to combined optical and electronic spectroscopy of Au and GaAs surfaces is discussed

  3. Measurement of the thickness of the lens with the use of all fiber low-coherence interferometer

    Science.gov (United States)

    Józwik, Michalina; Stepień, Karol; Lipiński, Stanisław; Budnicki, Dawid; Napierała, Marek; Nasiłowski, Tomasz

    2015-12-01

    In this paper we present experimental results of measurements of the lens thickness carried out using all fiber low coherence interferometer. A new interferometric device for measuring the thickness of the lens using optical fibers has been developed in response to market demand. It ensures fast, non-contact and accurate measurement. This work focuses above all on the conducting tests to determine the repeatability of the measurement and to verify the ability of using this method in industrial conditions. The system uses a Mach-Zehnder interferometer in which one of the arms is the reference part and the second arm containing the test element is the measurement part. The measurement rate and the easiness of placement of the test lens in the system give the possibility to automate the measurement process. We present the measurement results, which show that the use of low-coherence interferometry allows achieving high measurement accuracy and meeting other industrial needs.

  4. The gravitational lens system B1030+074. Discovery and follow-up.

    NARCIS (Netherlands)

    Xanthopoulos, E; Browne, IWA; King, LJ; Jackson, NJ; Marlow, DR; Wilkinson, PN; Koopmans, LVE; Patnaik, AR; Porcas, RW; Terzian, Y; Weedman, D; Khachikian, E

    1999-01-01

    We report the discovery of a new double image gravitational lens system B1030+074 which was found during the Jodrell Bank - VLA Astrometric Survey (JVAS). We have collected extensive radio data on the system using the VLA, MERLIN, the EVN and the VLBA as well as HST WFPC2 and NICMOS observations.

  5. Plasma Lens for Muon and Neutrino Beams

    International Nuclear Information System (INIS)

    Kahn, S.A.; Korenev, S.; Bishai, M.; Diwan, M.; Gallardo, J.C.; Hershcovitch, A.; Johnson, B.M.

    2008-01-01

    The plasma lens is examined as an alternate to focusing horns and solenoids for use in a neutrino or muon beam facility. The plasma lens concept is based on a combined high-energy lens/target configuration. The current is fed at electrodes located upstream and downstream from the target where pion capturing is needed. The current flows primarily in the plasma, which has a lower resistivity than the target. A second plasma lens section, with an additional current feed, follows the target to provide shaping of the plasma for optimum focusing. The plasma lens is immersed in an additional solenoid magnetic field to facilitate the plasma stability. The geometry of the plasma is shaped to provide optimal pion capture. Simulations of this plasma lens system have shown a 25% higher neutrino production than the horn system. Plasma lenses have the additional advantage of negligible pion absorption and scattering by the lens material and reduced neutrino contamination during anti-neutrino running. Results of particle simulations using plasma lens will be presented

  6. Acanthamoeba keratitis in Scotland: risk factors for contact lens wearers.

    Science.gov (United States)

    Seal, D V; Kirkness, C M; Bennett, H G; Peterson, M

    1999-01-01

    To investigate risk factors for Acanthamoeba keratitis amongst contact lens wearers in Scotland. Patients with Acanthamoeba keratitis in the Scottish study, all of whom wore contact lenses, were compared with 46 healthy asymptomatic contact lens-wearing controls. They were all visited at home for contact lens and environmental microbiological sampling. In addition, all 288 optical practices in the West of Scotland were polled for contact lens types and disinfecting solutions sold in 1995, and a sample, each of whom fitted more than 500 contact lenses per year, were polled for a second time. Independently, a poll was commissioned by the Eyecare Information Service in July/August 1995 to estimate the numbers of contact lens wearers in Scotland and the UK. Industry was polled for numbers of each contact lens disinfecting regimen sold in Scotland in 1995. West of Scotland, UK. All contact lens wearers among the 3 million population of the West of Scotland Health Board Areas. Risk factors for Acanthamoeba infection and recommendations for its prevention. When Acanthamoeba infection occurred, patients' home water systems were frequently (54%) found to be colonised by this amoeba. Patients more frequently washed their storage cases in tap water than controls (Pmethods (chlorine tablets or no disinfection). However further investigation showed that these methods were associated with an increased probability of rinsing the storage case in tap water, so that these two behaviours are confounded in the group studied. Failure to disinfect contact lenses, non-compliant use of chlorine tablets and/or introduction of tap water rinsing of storage cases were associated with increased risk of Acanthamoeba infection. New multipurpose solutions and hydrogen peroxide gave the lowest risk of Acanthamoeba infection, with no statistically significant difference between them. Ionic high-water content (FDA group 4) contact lenses were at increased risk of being associated with Acanthamoeba

  7. Lens Dk/t influences the clinical response in overnight orthokeratology.

    Science.gov (United States)

    Lum, Edward; Swarbrick, Helen A

    2011-04-01

    To investigate the influence of lens oxygen transmissibility (Dk/t) on the clinical response to overnight (ON) orthokeratology (OK) lens wear over 2 weeks. Eleven subjects (age, 20 to 39 years) were fitted with OK lenses (BE; Capricornia Contact Lens) in both eyes. Lenses in matched design/fitting but different materials (Boston EO and XO; nominal Dk/t: 26 and 46 ISO Fatt, respectively) were worn ON only in the two eyes over a 2-week period. Changes in logarithm of the minimum angle of resolution visual acuity, subjective refraction (spherical equivalent), corneal apical radius ro and asphericity Q (Medmont E300), and central stromal thickness (Holden-Payor optical pachometer) were measured. There were statistically significant differences in outcomes between the two lens materials (analysis of variance, p 0.05). An increase in lens Dk/t appears to increase the clinical effects of ON reverse-geometry lens wear over the medium term. This adds further support to the recommendation that high Dk materials should be used for ON OK not only to provide physiological advantages but also to optimize clinical outcomes.

  8. Plasma Lens for Muon and Neutrino Beams

    Science.gov (United States)

    Kahn, Stephen; Korenev, Sergey; Bishai, Mary; Diwan, Milind; Gallardo, Juan; Hershcovitch, Ady; Johnson, Brant

    2008-04-01

    The plasma lens is examined as an alternate to focusing horns and solenoids for use in a neutrino or muon beam facility. The plasma lens concept is based on a combined high-current lens/target configuration. The current is fed at electrodes located upstream and downstream from the target where pion capturing is needed. The current flows primarily in the plasma, which has a lower resistivity than the target. A second plasma lens section, with an additional current feed, follows the target to provide shaping of the plasma stability. The geometry of the plasma is shaped to provide optimal pion capture. Simulations of this plasma lens system have shown a 25% higher neutrino production than the horn system. A plasma lens has additional advantage: larger axial current than horns, minimal neutrino contamination during antineutrino running, and negligible pion absorption or scattering. Results from particle simulations using a plasma lens will be presented.

  9. Fabricating binary optics: An overview of binary optics process technology

    Science.gov (United States)

    Stern, Margaret B.

    1993-01-01

    A review of binary optics processing technology is presented. Pattern replication techniques have been optimized to generate high-quality efficient microoptics in visible and infrared materials. High resolution optical photolithography and precision alignment is used to fabricate maximally efficient fused silica diffractive microlenses at lambda = 633 nm. The degradation in optical efficiency of four-phase-level fused silica microlenses resulting from an intentional 0.35 micron translational error has been systematically measured as a function of lens speed (F/2 - F/60). Novel processes necessary for high sag refractive IR microoptics arrays, including deep anisotropic Si-etching, planarization of deep topography and multilayer resist techniques, are described. Initial results are presented for monolithic integration of photonic and microoptic systems.

  10. The effect of pipecol angles for the magnetic electron lens on the aberration coefficients

    International Nuclear Information System (INIS)

    Al-Khshab, A. M.; Al-Khshab, A. H.

    1997-01-01

    The symmetric mag etic objective lens of great importance for the electronic microscopes intended for hi g resolution. Such lens is determined, not only by its geometries structure and shape parameters, but also by the influence of the variation of the pole piece angles. the results show that the Objective lens having the pole piece angle of 55 a has a considerable effect on the electron optical Properties. When this pole piece is appropriately and highly saturated, the lens possesses low spherical and chromatic aberration coefficients. This hind of pole piece lens leads to more favourable design than other lenses. (authors). 14 refs., 7 figs.1 table

  11. Optimization of a multilayer Laue lens system for a hard x-ray nanoprobe

    International Nuclear Information System (INIS)

    Jiang, Hui; Wang, Hua; Mao, Chengwen; Li, Aiguo; He, Yan; Dong, Zhaohui; Zheng, Yi

    2014-01-01

    Detailed designs of a multilayer Laue lens system for a hard x-ray nanoprobe, including flat and wedged types, are presented, to realize nanoscale point focus and high diffraction efficiency simultaneously. The difficulty of movement and alignment for lens, aperture and sample are considered in the optimization process. Considering the practical requirements of future experiments, the features of the beamline and the structural imperfections, the working energy range, the beam vibration and structural errors are estimated and discussed. (paper)

  12. Transglutaminase involvement in UV-A damage to the eye lens

    International Nuclear Information System (INIS)

    Weinreb, Orly; Dovrat, A.

    1996-01-01

    Solar radiation is believed to be one of the major environmental factors involved in lens cataractogenesis. The purpose of the study was to investigate the mechanisms by which UV-A at 365 nm causes damage to the eye lens. Bovine lenses were placed in special culture cells for pre-incubation of 24 hr. The lenses were positioned so that the anterior surface faced the incident UV-A radiation source and were maintained in the cells during irradiation. After irradiation, lens optical quality was monitored throughout the culture period and lens epithelium, cortex and nuclear samples were taken for biochemical analysis. Transglutaminase activity in the lens was affected by the radiation. The activity of transglutaminase in lens epithelium cortex and nucleus increased as a result of the irradiation and then declined towards control levels during the culture period, as the lens recovered from the UV-A damage. Specific lens proteins αB and βB1 crystallins (the enzyme substrates) were analyzed by SDS polyacrylamid gel electrophoreses and immunoblotting with specific antibodies. Seventy-two hours after irradiation of 44.8 J cm -2 UV-A, αB crystallins were affected as was shown by the appearance of aggregation and degradation products. Some protein changes seem to be reversible. It appears that transglutaminase may be involved in the mechanism by which UV-A causes damage to the eye lens. (Author)

  13. Modern lens antennas for communications engineering

    CERN Document Server

    Thornton, John

    2012-01-01

    The aim of this book is to present the modern design principles and analysis of lens antennas. It gives graduates and RF/Microwave professionals the design insights in order to make full use of lens antennas.  Why do we want to write a book in lens antennas? Because this topic has not been thoroughly publicized, its importance is underestimated. As antennas play a key role in communication systems, recent development in wireless communications would indeed benefit from the characteristics of lens antennas: low profile, and low cost etc.  The major advantages of lens antennas are na

  14. Effect of multiple circular holes Fraunhofer diffraction for the infrared optical imaging

    Science.gov (United States)

    Lu, Chunlian; Lv, He; Cao, Yang; Cai, Zhisong; Tan, Xiaojun

    2014-11-01

    With the development of infrared optics, infrared optical imaging systems play an increasingly important role in modern optical imaging systems. Infrared optical imaging is used in industry, agriculture, medical, military and transportation. But in terms of infrared optical imaging systems which are exposed for a long time, some contaminations will affect the infrared optical imaging. When the contamination contaminate on the lens surface of the optical system, it would affect diffraction. The lens can be seen as complementary multiple circular holes screen happen Fraunhofer diffraction. According to Babinet principle, you can get the diffraction of the imaging system. Therefore, by studying the multiple circular holes Fraunhofer diffraction, conclusions can be drawn about the effect of infrared imaging. This paper mainly studies the effect of multiple circular holes Fraunhofer diffraction for the optical imaging. Firstly, we introduce the theory of Fraunhofer diffraction and Point Spread Function. Point Spread Function is a basic tool to evaluate the image quality of the optical system. Fraunhofer diffraction will affect Point Spread Function. Then, the results of multiple circular holes Fraunhofer diffraction are given for different hole size and hole spacing. We choose the hole size from 0.1mm to 1mm and hole spacing from 0.3mm to 0.8mm. The infrared wavebands of optical imaging are chosen from 1μm to 5μm. We use the MATLAB to simulate light intensity distribution of multiple circular holes Fraunhofer diffraction. Finally, three-dimensional diffraction maps of light intensity are given to contrast.

  15. A linear ion optics model for extraction from a plasma ion source

    International Nuclear Information System (INIS)

    Dietrich, J.

    1987-01-01

    A linear ion optics model for ion extraction from a plasma ion source is presented, based on the paraxial equations which account for lens effects, space charge and finite source ion temperature. This model is applied to three- and four-electrode extraction systems with circular apertures. The results are compared with experimental data and numerical calculations in the literature. It is shown that the improved calculations of space charge effects and lens effects allow better agreement to be obtained than in earlier linear optics models. A principal result is that the model presented here describes the dependence of the optimum perveance on the aspect ratio in a manner similar to the nonlinear optics theory. (orig.)

  16. Freeform micromachining of an infrared Alvarez lens

    Science.gov (United States)

    Smilie, Paul J.; Dutterer, Brian S.; Lineberger, Jennifer L.; Davies, Matthew A.; Suleski, Thomas J.

    2011-02-01

    In 1967, Luis Alvarez introduced a novel concept for a focusing lens whereby two transmitting elements with cubic polynomial surfaces yield a composite lens of variable focal length with small lateral shifts. Computer simulations have demonstrated the behavior of these devices, but fabricating the refractive cubic surfaces of the types needed with adequate precision and depth modulation has proven to be challenging using standard methods, and, to the authors' knowledge, Alvarez lens elements have not been previously machined in infrared materials. Recent developments in freeform diamond machining capability have enabled the fabrication of such devices. In this paper, we discuss the fabrication of freeform refractive Alvarez elements in germanium using diamond micro-milling on a five-axis Moore Nanotech® 350FG Freeform Generator. Machining approaches are discussed, and measurements of surface figure and finish are presented. Initial experimental tests of optical performance are also discussed.

  17. [Pigment dispersion and Artisan implants: crystalline lens rise as a safety criterion].

    Science.gov (United States)

    Baikoff, G; Bourgeon, G; Jodai, H Jitsuo; Fontaine, A; Vieira Lellis, F; Trinquet, L

    2005-06-01

    To validate the theoretical notion of a crystalline lens rise as a safety criterion for ARTISAN implants in order to prevent the development of pigment dispersion in the implanted eye. Crystalline lens rise is defined by the distance between the crystalline lens's anterior pole and the horizontal plane joining the opposite iridocorneal recesses. We analyzed the biometric measurements of 87 eyes with an Artisan implant. A comparative analysis of the crystalline lens rise was carried out on the nine eyes having developed pigment dispersion and 78 eyes with no problems. Among the modern anterior segment imaging devices (Artemis, Scheimpflug photography, optical coherence tomography, radiology exploration, magnetic resonance imaging, TDM), an anterior chamber optical coherence tomography (AC-OCT) prototype was used. This working hypothesis was confirmed by this study: the crystalline lens rise must be considered as a new safety criterion for implanting Artisan phakic lenses. Indeed, the higher the crystalline lens's rise, the greater the risk of developing pigment dispersion in the pupil area. This complication is more frequent in hyperopes than in myopes. We can consider that there is little or no risk of pigment dispersion if the rise is below 600 microm; however, at 600 microm or greater, there is a 67% rate of pupillary pigment dispersion. In certain cases, when the implant was loosely fixed, there was no traction on the iris root. This is a complication that can be avoided or delayed. The crystalline lens rise must be part of new safety criteria to be taken into consideration when inserting an Artisan implant. This notion must also be applied to other types of phakic implants. The distance remaining between the crystalline lens rise and a 600-micromm theoretical safety level allows one to calculate a safety time interval.

  18. Hydrogeology in the area of a freshwater lens in the Floridan aquifer system, northeast Seminole County, Florida

    Science.gov (United States)

    Phelps, G.G.; Rohrer, K.P.

    1987-01-01

    Northeast Seminole County, Florida, contains an isolated recharge area of the Floridan aquifer system that forms a freshwater lens completely surrounded by saline water. The freshwater lens covers an area of about 22 sq mi surrounding the town of Geneva, and generally is enclosed by the 25 ft land surface altitude contour. Thickness of the lens is about 350 ft in the center of the recharge area. The geohydrologic units in descending order consist of the post-Miocene sand and shell of the surficial aquifer; Miocene clay, sand, clay, and shell that form a leaky confining bed; and permeable Eocene limestones of the Floridan aquifer system. The freshwater lens is the result of local rainfall flushing ancient seawater from the Floridan aquifer system. Sufficient quantities of water for domestic and small public supply systems are available from the Floridan aquifer system in the Geneva area. The limiting factor for water supply in the area is the chemical quality of the water. Chloride concentrations range from recharge area to about 5,100 mg/L near the St. Johns River southeast of Geneva. Constituents analyzed included sulfate (range 1 to 800 mg/L), hardness (range 89 to 2,076 mg/L), and iron (range 34 to 6,600 mg/L). Because the freshwater lens results entirely from local recharge, the long-term sustained freshwater yield of the aquifer in the Geneva area depends on the local recharge rate. In 1982, recharge was about 13 inches (13.8 million gal/day). Average recharge for 1941 through 1970 was estimated to be about 11 inches (11.3 million gal/day). Freshwater that recharges the aquifer in the Geneva area is either pumped out or flows north and northeast to discharge near or in the St. Johns River. Average annual outflow from the lens is about 10 in/yr. No measurable change in the size or location of the freshwater lens has occurred since studies in the early 1950's. (Lantz-PTT)

  19. Laser based analysis using a passively Q-switched laser employing analysis electronics and a means for detecting atomic optical emission of the laser media

    Science.gov (United States)

    Woodruff, Steven D.; Mcintyre, Dustin L.

    2016-03-29

    A device for Laser based Analysis using a Passively Q-Switched Laser comprising an optical pumping source optically connected to a laser media. The laser media and a Q-switch are positioned between and optically connected to a high reflectivity mirror (HR) and an output coupler (OC) along an optical axis. The output coupler (OC) is optically connected to the output lens along the optical axis. A means for detecting atomic optical emission comprises a filter and a light detector. The optical filter is optically connected to the laser media and the optical detector. A control system is connected to the optical detector and the analysis electronics. The analysis electronics are optically connected to the output lens. The detection of the large scale laser output production triggers the control system to initiate the precise timing and data collection from the detector and analysis.

  20. Apoptosis generates mechanical forces that close the lens vesicle in the chick embryo

    Science.gov (United States)

    Oltean, Alina; Taber, Larry A.

    2018-03-01

    During the initial stages of eye development, optic vesicles grow laterally outward from both sides of the forebrain and come into contact with the surrounding surface ectoderm (SE). Within the region of contact, these layers then thicken locally to create placodes and invaginate to form the optic cup (primitive retina) and lens vesicle (LV), respectively. This paper examines the biophysical mechanisms involved in LV formation, which consists of three phases: (1) lens placode formation; (2) invagination to create the lens pit (LP); and (3) closure to form a complete ellipsoidally shaped LV. Previous studies have suggested that extracellular matrix deposited between the SE and optic vesicle causes the lens placode to form by locally constraining expansion of the SE as it grows, while actomyosin contraction causes this structure to invaginate. Here, using computational modeling and experiments on chick embryos, we confirm that these mechanisms for Phases 1 and 2 are physically plausible. Our results also suggest, however, that they are not sufficient to close the LP during Phase 3. We postulate that apoptosis provides an additional mechanism by removing cells near the LP opening, thereby decreasing its circumference and generating tension that closes the LP. This hypothesis is supported by staining that shows a ring of cell death located around the LP opening during closure. Inhibiting apoptosis in cultured embryos using caspase inhibitors significantly reduced LP closure, and results from a finite-element model indicate that closure driven by cell death is plausible. Taken together, our results suggest an important mechanical role for apoptosis in lens development.

  1. Optimized lens-sparing treatment of retinoblastoma with electron beams

    International Nuclear Information System (INIS)

    Steenbakkers, Roel J.H.M.; Altschuler, Martin D.; D'Angio, Giulio J.; Goldwein, Joel W.; Kassaee, Alireza

    1997-01-01

    Purpose: The ideal lens-sparing radiotherapy technique for retinoblastoma calls for 100% dose to the entire retina including the ora serrata and zero dose to the lens. Published techniques, most of which use photons, have not accomplished this ideal treatment. We describe here a technique that approaches this ideal configuration using electron beam therapy. Methods and Materials: Dose-modeling calculations were made using a computer program built around a proprietary algorithm. This program calculates 3D dose distribution for electrons and photons and uses the Cimmino feasibility method for the inverse problem of beam weighting to achieve the prescribed dose. The algorithm has been verified in the ocular region by measurements in a RANDO phantom. To search for an ideal lens-sparing beam setup, a stylized phantom of an 8-month-old infant was generated with built-in inhomogeneities, and a phantom of a 5-year-old child was generated from a patient CT series. Results: Of more than 100 different beam setups tested, two 9 MeV electron beams at gantry angles plus and minus 26 degrees from the optic nerve axis achieved the best distribution. Both fields have a lens block and an isocenter between the globe and origin of the optic nerve. When equal doses are given to both fields, the entire extent of the retina (including ora serrata) received 100%, while the lens received 10% or less. Conclusion: The two-oblique-electron-beam technique here described appears to meet most of the stringent dosimetry needed to treat retinoblastoma. It is suitable for a range of ages, from infancy to early childhood years

  2. Afocal viewport optics for underwater imaging

    Science.gov (United States)

    Slater, Dan

    2014-09-01

    A conventional camera can be adapted for underwater use by enclosing it in a sealed waterproof pressure housing with a viewport. The viewport, as an optical interface between water and air needs to consider both the camera and water optical characteristics while also providing a high pressure water seal. Limited hydrospace visibility drives a need for wide angle viewports. Practical optical interfaces between seawater and air vary from simple flat plate windows to complex water contact lenses. This paper first provides a brief overview of the physical and optical properties of the ocean environment along with suitable optical materials. This is followed by a discussion of the characteristics of various afocal underwater viewport types including flat windows, domes and the Ivanoff corrector lens, a derivative of a Galilean wide angle camera adapter. Several new and interesting optical designs derived from the Ivanoff corrector lens are presented including a pair of very compact afocal viewport lenses that are compatible with both in water and in air environments and an afocal underwater hyper-hemispherical fisheye lens.

  3. The effects of actomyosin disruptors on the mechanical integrity of the avian crystalline lens.

    Science.gov (United States)

    Won, Gah-Jone; Fudge, Douglas S; Choh, Vivian

    2015-01-01

    Actin and myosin within the crystalline lens maintain the structural integrity of lens fiber cells and form a hexagonal lattice cradling the posterior surface of the lens. The actomyosin network was pharmacologically disrupted to examine the effects on lenticular biomechanics and optical quality. One lens of 7-day-old White Leghorn chickens was treated with 10 µM of a disruptor and the other with 0.01% dimethyl sulfoxide (vehicle). Actin, myosin, and myosin light chain kinase (MLCK) disruptors were used. The stiffness and the optical quality of the control and treated lenses were measured. Western blotting and confocal imaging were used to confirm that treatment led to a disruption of the actomyosin network. The times for the lenses to recover stiffness to match the control values were also measured. Disruptor-treated lenses were significantly less stiff than their controls (p≤0.0274 for all disruptors). The disruptors led to changes in the relative protein amounts as well as the distributions of proteins within the lattice. However, the disruptors did not affect the clarity of the lenses (p≥0.4696 for all disruptors), nor did they affect spherical aberration (p = 0.02245). The effects of all three disruptors were reversible, with lenses recovering from treatment with actin, myosin, and MLCK disruptors after 4 h, 1 h, and 8 min, respectively. Cytoskeletal protein disruptors led to a decreased stiffness of the lens, and the effects were reversible. Optical quality was mostly unaffected, but the long-term consequences remain unclear. Our results raise the possibility that the mechanical properties of the avian lens may be actively regulated in vivo via adjustments to the actomyosin lattice.

  4. Experimental demonstration of conformal phased array antenna via transformation optics.

    Science.gov (United States)

    Lei, Juan; Yang, Juxing; Chen, Xi; Zhang, Zhiya; Fu, Guang; Hao, Yang

    2018-02-28

    Transformation Optics has been proven a versatile technique for designing novel electromagnetic devices and it has much wider applicability in many subject areas related to general wave equations. Among them, quasi-conformal transformation optics (QCTO) can be applied to minimize anisotropy of transformed media and has opened up the possibility to the design of broadband antennas with arbitrary geometries. In this work, a wide-angle scanning conformal phased array based on all-dielectric QCTO lens is designed and experimentally demonstrated. Excited by the same current distribution as such in a conventional planar array, the conformal system in presence of QCTO lens can preserve the same radiation characteristics of a planar array with wide-angle beam-scanning and low side lobe level (SLL). Laplace's equation subject to Dirichlet-Neumann boundary conditions is adopted to construct the mapping between the virtual and physical spaces. The isotropic lens with graded refractive index is realized by all-dielectric holey structure after an effective parameter approximation. The measurements of the fabricated system agree well with the simulated results, which demonstrate its excellent wide-angle beam scanning performance. Such demonstration paves the way to a robust but efficient array synthesis, as well as multi-beam and beam forming realization of conformal arrays via transformation optics.

  5. SHARP - III. First use of adaptive-optics imaging to constrain cosmology with gravitational lens time delays

    NARCIS (Netherlands)

    Chen, Geoff C. -F; Suyu, Sherry H.; Wong, Kenneth C.; Fassnacht, Christopher D.; Chiueh, Tzihong; Halkola, Aleksi; Hu, I. Shing; Auger, Matthew W.; Koopmans, Léon V. E.; Lagattuta, David J.; McKean, John P.; Vegetti, Simona

    2016-01-01

    Accurate and precise measurements of the Hubble constant are critical for testing our current standard cosmological model and revealing possibly new physics. With Hubble Space Telescope (HST) imaging, each strong gravitational lens system with measured time delays can allow one to determine the

  6. Off-axis holographic lens spectrum-splitting photovoltaic system for direct and diffuse solar energy conversion.

    Science.gov (United States)

    Vorndran, Shelby D; Chrysler, Benjamin; Wheelwright, Brian; Angel, Roger; Holman, Zachary; Kostuk, Raymond

    2016-09-20

    This paper describes a high-efficiency, spectrum-splitting photovoltaic module that uses an off-axis volume holographic lens to focus and disperse incident solar illumination to a rectangular shaped high-bandgap indium gallium phosphide cell surrounded by strips of silicon cells. The holographic lens design allows efficient collection of both direct and diffuse illumination to maximize energy yield. We modeled the volume diffraction characteristics using rigorous coupled-wave analysis, and simulated system performance using nonsequential ray tracing and PV cell data from the literature. Under AM 1.5 illumination conditions the simulated module obtained a 30.6% conversion efficiency. This efficiency is a 19.7% relative improvement compared to the more efficient cell in the system (silicon). The module was also simulated under a typical meteorological year of direct and diffuse irradiance in Tucson, Arizona, and Seattle, Washington. Compared to a flat panel silicon module, the holographic spectrum splitting module obtained a relative improvement in energy yield of 17.1% in Tucson and 14.0% in Seattle. An experimental proof-of-concept volume holographic lens was also fabricated in dichromated gelatin to verify the main characteristics of the system. The lens obtained an average first-order diffraction efficiency of 85.4% across the aperture at 532 nm.

  7. All-Optical Regeneration System for Optical Wavelength Division Multiplexed Communication Systems

    DEFF Research Database (Denmark)

    2014-01-01

    The invention relates to an all-optical regeneration system for regeneration of optical wavelength division multiplexed WDM data signals in an optical WDM communication system. The system comprises a WDM-to-Optical time domain multiplexing OTDM, WDM-to-OTDM, converter, capable of converting....... The system additionally comprises an OTDM-to-WDM converter for converting the output OTDM data signal to an output WDM data signal. An input of the all-optical regenerator unit is in optical communication with an output of the WDM-to-OTDM converter, and an output of the all-optical regenerator unit...... an input WDM data signal comprising multiple wavelength channels into an input OTDM data signal comprising multiple time multiplexed time channels. The system further comprises an all-optical regenerator unit being configured for regenerating the input OTDM data signal into an output OTDM data signal...

  8. Changes in spherical aberration after lens refilling with a silicone oil

    NARCIS (Netherlands)

    Wong, Kwok-Hoi; Koopmans, Steven A.; Terwee, Thom; Kooijman, Aart C.

    PURPOSE. It may be possible to restore accommodation to presbyopic human eyes by refilling the lens capsular bag with a soft polymer. In the present study, optical changes were measured that occurred in a pig eye model after the refilling of the capsular bag. METHODS. The optical power and spherical

  9. The Unique Optical Design of the CTI-II Survey Telescope

    Science.gov (United States)

    Ackermann, Mark R.; McGraw, J. T.; MacFarlane, M.

    2006-12-01

    The CCD/Transit Instrument with Innovative Instrumentation (CTI-II) is being developed for precision ground-based astrometric and photometric astronomical observations. The 1.8m telescope will be stationary, near-zenith pointing and will feature a CCD-mosaic array operated in time-delay and integrate (TDI) mode to image a continuous strip of the sky in five bands. The heart of the telescope is a Nasmyth-like bent-Cassegrain optical system optimized to produce near diffraction-limited images with near zero distortion over a circular1.42 deg field. The optical design includes an f/2.2 parabolic ULE primary with no central hole salvaged from the original CTI telescope and adds the requisite hyperbolic secondary, a folding flat and a highly innovative all-spherical, five lens corrector which includes three plano surfaces. The reflective and refractive portions of the design have been optimized as individual but interdependent systems so that the same reflective system can be used with slightly different refractive correctors. At present, two nearly identical corrector designs are being evaluated, one fabricated from BK-7 glass and the other of fused silica. The five lens corrector consists of an air-spaced triplet separated from follow-on air-spaced doublet. Either design produces 0.25 arcsecond images at 83% encircled energy with a maximum of 0.0005% distortion. The innovative five lens corrector design has been applied to other current and planned Cassegrain, RC and super RC optical systems requiring correctors. The basic five lens approach always results in improved performance compared to the original designs. In some cases, the improvement in image quality is small but includes substantial reductions in distortion. In other cases, the improvement in image quality is substantial. Because the CTI-II corrector is designed for a parabolic primary, it might be especially useful for liquid mirror telescopes. We describe and discuss the CTI-II optical design with respect

  10. The Role of Type IV Collagen in Developing Lens in Mouse Fetuses

    Directory of Open Access Journals (Sweden)

    Mehdi Jalali

    2009-09-01

    Full Text Available Objective(sExtracellular matrix (ECM and basement membrane (BM play important roles in many developmental processes during development and after birth. Among the components of the BM, collagen fibers specially type IV are the most important parts. The aim of this study was to determine the time when collagen type IV appears in the BM of lens structure during mouse embryonic development.Materials and MethodsIn this experimental study, 22 female Balb/C mice were randomly selected and were kept under normal condition, finding vaginal plug was assumed as day zero of pregnancy. From embryonic day 10 to 20, all specimens were sacrificed by cervical dislocation and their heads were fixed, serially sectioned and immunohistochemistry study for tracing collagen type IV in lens were carried out.ResultsOur data revealed that collagen type IV appeared at the early stage of gestation day 12 in BM of anterior epithelial lens cells and the amount of this protein gradually increased until days 15-17 in ECM and posterior capsule epithelium. After this period, severe reaction was not observed in any part of the lens.ConclusionThese findings establish the important role of collagen IV in developing optic cup and any changes during critical period of pregnancy may be result in severe visual system defect

  11. Thermo-optical Properties of Nanofluids

    International Nuclear Information System (INIS)

    Ortega, Maria Alejandra; Echevarria, Lorenzo; Rodriguez, Luis; Castillo, Jimmy; Fernandez, Alberto

    2008-01-01

    In this work, we report thermo-optical properties of nanofluids. Spherical gold nanoparticles obtained by laser ablation in condensed media were characterized using thermal lens spectroscopy in SDS-water solution pumping at 532 nm with a 10 ns pulsed laser-Nd-YAG system. Nanoparticles obtained by laser ablation were stabilized in the time by surfactants (Sodium Dodecyl-Sulfate or SDS) in different molar concentrations. The morphology and size of the gold nanoparticles were determined by transmission electron microscopy (TEM). The plasmonic resonance bands in gold nanoparticles are responsible of the light optical absorption of this wavelength. The position of the absorption maximum and width band in the UV-Visible spectra is given by the morphological characteristics of these systems. The thermo-optical constant such as thermal diffusion, thermal conductivity and dn/dT are functions of nanoparticles sizes and dielectric constant of the media. The theoretical model existents do not describe completely this relations because is not possible separate the contributions due to nanoparticles size, factor form and dielectric constant. The thermal lens signal obtained is also dependent of nanoparticles sizes. This methodology can be used in order to evaluate nanofluids and characterizing nanoparticles in different media. These results are expected to have an impact in bioimaging, biosensors and other technological applications such as cooler system

  12. Optical concentrators for Čerenkov light detector

    CERN Document Server

    Kramer, Daniel

    2005-01-01

    RICH1 (Ring Imaging Cherenkov) detector is an important part of COMPASS particle physics experiment in CERN. Its central area photon detection part is being upgraded from wire chambers with CsI layers to very fast UV extended Hamamatsu MAPMTs (Multi Anode Photo Multiplier Tubes) array. MAPMTs have approx. 3 times smaller active area than the covered region, thus optical concentrators transforming image from old system focal plane to the new photocathode were needed. System was expected to be efficient from 200 to 600nm with best performance at 300nm and with angular acceptance including all interesting physics processes. Several design types (including i.e. a hollow waveguide) were investigated and the “telescopic” two lens aspherical design concept was selected for its proven functionality in HERA-B experiment. Chosen material was UV grade fused silica. System consists of a field lens placed in the focal plane of the RICH mirrors and a condenser lens downstream. Designing procedure started with a high op...

  13. Implantable collamer lens and femtosecond laser for myopia: comparison using an adaptive optics visual simulator

    Directory of Open Access Journals (Sweden)

    Cari Pérez-Vives

    2014-04-01

    Full Text Available Purpose: To compare optical and visual quality of implantable collamer lens (ICL implantation and femtosecond laser in situ keratomileusis (F-LASIK for myopia. Methods: The CRX1 adaptive optics visual simulator (Imagine Eyes, Orsay, France was used to simulate the wavefront aberration pattern after the two surgical procedures for -3-diopter (D and -6-D myopia. Visual acuity at different contrasts and contrast sensitivities at 10, 20, and 25 cycles/degree (cpd were measured for 3-mm and 5-mm pupils. The modulation transfer function (MTF and point spread function (PSF were calculated for 5-mm pupils. Results: F-LASIK MTF was worse than ICL MTF, which was close to diffraction-limited MTF. ICL cases showed less spread out of PSF than F-LASIK cases. ICL cases showed better visual acuity values than F-LASIK cases for all pupils, contrasts, and myopic treatments (p0.05. For -6-D myopia, however, statistically significant differences in contrast sensitivities were found for both pupils for all evaluated spatial frequencies (p<0.05. Contrast sensitivities were better after ICL implantation than after F-LASIK. Conclusions: ICL implantation and F-LASIK provide good optical and visual quality, although the former provides better outcomes of MTF, PSF, visual acuity, and contrast sensitivity, especially for cases with large refractive errors and pupil sizes. These outcomes are related to the F-LASIK producing larger high-order aberrations.

  14. Technical assessment of Navitar Zoom 6000 optic and Sony HDC-X310 camera for MEMS presentations and training.

    Energy Technology Data Exchange (ETDEWEB)

    Diegert, Carl F.

    2006-02-01

    This report evaluates a newly-available, high-definition, video camera coupled with a zoom optical system for microscopic imaging of micro-electro-mechanical systems. We did this work to support configuration of three document-camera-like stations as part of an installation in a new Microsystems building at Sandia National Laboratories. The video display walls to be installed as part of these three presentation and training stations are of extraordinary resolution and quality. The new availability of a reasonably-priced, cinema-quality, high-definition video camera offers the prospect of filling these displays with full-motion imaging of Sandia's microscopic products at a quality substantially beyond the quality of typical video microscopes. Simple and robust operation of the microscope stations will allow the extraordinary-quality imaging to contribute to Sandia's day-to-day research and training operations. This report illustrates the disappointing image quality from a camera/lens system comprised of a Sony HDC-X310 high-definition video camera coupled to a Navitar Zoom 6000 lens. We determined that this Sony camera is capable of substantially more image quality than the Navitar optic can deliver. We identified an optical doubler lens from Navitar as the component of their optical system that accounts for a substantial part of the image quality problem. While work continues to incrementally improve performance of the Navitar system, we are also evaluating optical systems from other vendors to couple to this Sony camera.

  15. Generic distortion model for metrology under optical microscopes

    Science.gov (United States)

    Liu, Xingjian; Li, Zhongwei; Zhong, Kai; Chao, YuhJin; Miraldo, Pedro; Shi, Yusheng

    2018-04-01

    For metrology under optical microscopes, lens distortion is the dominant source of error. Previous distortion models and correction methods mostly rely on the assumption that parametric distortion models require a priori knowledge of the microscopes' lens systems. However, because of the numerous optical elements in a microscope, distortions can be hardly represented by a simple parametric model. In this paper, a generic distortion model considering both symmetric and asymmetric distortions is developed. Such a model is obtained by using radial basis functions (RBFs) to interpolate the radius and distortion values of symmetric distortions (image coordinates and distortion rays for asymmetric distortions). An accurate and easy to implement distortion correction method is presented. With the proposed approach, quantitative measurement with better accuracy can be achieved, such as in Digital Image Correlation for deformation measurement when used with an optical microscope. The proposed technique is verified by both synthetic and real data experiments.

  16. A Model of the Effect of Lens Development on Refraction in Schoolchildren.

    Science.gov (United States)

    He, Ji C

    2017-12-01

    The study provides a new theory on the mechanism underlying myopia development, and it could be useful in clinical practice to control myopia development in schoolchildren. To model the effect of the crystalline lens on refractive development in schoolchildren. The Zemax 13 was used to calculate Zernike aberrations and refractions across 50° horizontal visual fields. Optical effects of the anterior chamber depth, lens thickness, and radii of curvature of the lens surfaces on refractions were modeled. Refractive changes induced by lens development in emmetropic and myopic eyes, based on a previous longitudinal study from literature, were calculated. A lens thickness reduction with an anterior chamber depth deepening caused a hyperopic shift over the visual fields and even more at the periphery. Opposite effects were found when the lens was thinned without any change of the anterior chamber depth. While a flattening of the anterior lens surface produced hyperopic refractions overall, a posterior lens flattening caused a myopic shift at the periphery, but a hyperopic shift of the central refraction. In the myopic eye, lens development induced refractive change toward more hyperopic over the visual fields and more at the periphery. Lens thinning and lens axial movement participate in peripheral refractive development in schoolchildren, and lens development with a deeper anterior chamber depth and a flatter lens surface in the myopic eye could generate extra hyperopia over visual fields. The myopic lens development could be due to a backward movement of the lens, driven by a backward growth of the ciliary process, which might be a causative factor of myopia development.

  17. Tear film measurement by optical reflectometry technique

    Science.gov (United States)

    Lu, Hui; Wang, Michael R.; Wang, Jianhua; Shen, Meixiao

    2014-01-01

    Abstract. Evaluation of tear film is performed by an optical reflectometer system with alignment guided by a galvanometer scanner. The reflectometer system utilizes optical fibers to deliver illumination light to the tear film and collect the film reflectance as a function of wavelength. Film thickness is determined by best fitting the reflectance-wavelength curve. The spectral reflectance acquisition time is 15 ms, fast enough for detecting film thickness changes. Fast beam alignment of 1 s is achieved by the galvanometer scanner. The reflectometer was first used to evaluate artificial tear film on a model eye with and without a contact lens. The film thickness and thinning rate have been successfully quantified with the minimum measured thickness of about 0.3 μm. Tear films in human eyes, with and without a contact lens, have also been evaluated. A high-contrast spectral reflectance signal from the precontact lens tear film is clearly observed, and the thinning dynamics have been easily recorded from 3.69 to 1.31 μm with lipid layer thickness variation in the range of 41 to 67 nm. The accuracy of the measurement is better than ±0.58% of the film thickness at an estimated tear film refractive index error of ±0.001. The fiber-based reflectometer system is compact and easy to handle. PMID:24500519

  18. Motionless active depth from defocus system using smart optics for camera autofocus applications

    Science.gov (United States)

    Amin, M. Junaid; Riza, Nabeel A.

    2016-04-01

    This paper describes a motionless active Depth from Defocus (DFD) system design suited for long working range camera autofocus applications. The design consists of an active illumination module that projects a scene illuminating coherent conditioned optical radiation pattern which maintains its sharpness over multiple axial distances allowing an increased DFD working distance range. The imager module of the system responsible for the actual DFD operation deploys an electronically controlled variable focus lens (ECVFL) as a smart optic to enable a motionless imager design capable of effective DFD operation. An experimental demonstration is conducted in the laboratory which compares the effectiveness of the coherent conditioned radiation module versus a conventional incoherent active light source, and demonstrates the applicability of the presented motionless DFD imager design. The fast response and no-moving-parts features of the DFD imager design are especially suited for camera scenarios where mechanical motion of lenses to achieve autofocus action is challenging, for example, in the tiny camera housings in smartphones and tablets. Applications for the proposed system include autofocus in modern day digital cameras.

  19. Ultrahigh resolution radiation imaging system using an optical fiber structure scintillator plate.

    Science.gov (United States)

    Yamamoto, Seiichi; Kamada, Kei; Yoshikawa, Akira

    2018-02-16

    High resolution imaging of radiation is required for such radioisotope distribution measurements as alpha particle detection in nuclear facilities or high energy physics experiments. For this purpose, we developed an ultrahigh resolution radiation imaging system using an optical fiber structure scintillator plate. We used a ~1-μm diameter fiber structured GdAlO 3 :Ce (GAP) /α-Al 2 O 3 scintillator plate to reduce the light spread. The fiber structured scintillator plate was optically coupled to a tapered optical fiber plate to magnify the image and combined with a lens-based high sensitivity CCD camera. We observed the images of alpha particles with a spatial resolution of ~25 μm. For the beta particles, the images had various shapes, and the trajectories of the electrons were clearly observed in the images. For the gamma photons, the images also had various shapes, and the trajectories of the secondary electrons were observed in some of the images. These results show that combining an optical fiber structure scintillator plate with a tapered optical fiber plate and a high sensitivity CCD camera achieved ultrahigh resolution and is a promising method to observe the images of the interactions of radiation in a scintillator.

  20. New scanning technique for the optical vortex microscope.

    Science.gov (United States)

    Augustyniak, Ireneusz; Popiołek-Masajada, Agnieszka; Masajada, Jan; Drobczyński, Sławomir

    2012-04-01

    In the optical vortex microscopy the focused Gaussian beam with optical vortex scans a sample. An optical vortex can be introduced into a laser beam with the use of a special optical element--a vortex lens. When moving the vortex lens, the optical vortex changes its position inside the spot formed by a focused laser beam. This effect can be used as a new precise scanning technique. In this paper, we study the optical vortex behavior at the sample plane. We also estimate if the new scanning technique results in observable effects that could be used for a phase object detection.

  1. Practical UAV Optical Sensor Bench with Minimal Adjustability

    Science.gov (United States)

    Pilgrim, Jeffrey; Gonzales, Paula

    2013-01-01

    A multiple-pass optical platform eliminates essentially all optical alignment degrees of freedom, save one. A four-pass absorption spectrometer architecture is made rigid by firmly mounting dielectric-coated mirror prisms with no alignment capability to the platform. The laser diode beam is collimated by a small, custom-developed lens, which has only a rotational degree of freedom along the standard optical "z" axis. This degree is itself eliminated by adhesive after laser collimation. Only one degree of freedom is preserved by allowing the laser diode chip and mount subassembly to move relative to the collimating lens by using over-sized mounting holes. This allows full 360 deg motion of a few millimeters relative to the lens, which, due to the high numerical aperture of the lens, provides wide directional steering of the collimated laser beam.

  2. Design and development of a zoom lens objective for the fast breeder test reactor periscope

    International Nuclear Information System (INIS)

    Das, N.C.; Udupa, D.V.; Shukla, R.P.

    2003-10-01

    A three lens optically compensated zoom lens useful for the 5 meter long periscope in the Fast Breeder Test Reactor (FBTR) has been designed, fabricated and tested. The zoom lens fabricated using radiation resistant glasses has a zoom ratio of 2.5 with a focal length range of l00 mm to 250 mm. The zoom lens objective has been designed for viewing the objects kept at a distance in the range of 1.5 m to 3 m from the objective lens. It is found that the zoom lens objective can be used for resolving objects with a linear resolution of 0.2 mm inside the reactor when viewed with an eye piece of focal length 50 mm. (author)

  3. TU-E-201-01: Methods for Eye Lens Dosimetry and Studies On Lens Opacities with Interventionists

    Energy Technology Data Exchange (ETDEWEB)

    Rehani, M. [Massachusetts General Hospital (United States)

    2015-06-15

    awareness can lead to avoidance or even prevention. Learning Objectives: To understand recent changes in eye lens dose limits and thresholds for tissue reactions To understand different approaches to dose estimation for eye lens To learn about challenges in eye lens opacities among staff in interventional fluoroscopy Di Zhang, Toshiba America Medical Systems, Tustin, CA, USA Eye lens radiation dose from brain perfusion CT exams CT perfusion imaging requires repeatedly exposing one location of the head to monitor the uptake and washout of iodinated contrast. The accumulated radiation dose to the eye lens can be high, leading to concerns about potential radiation injury from these scans. CTDIvol assumes continuous z coverage and can overestimate eye lens dose in CT perfusion scans where the table do not increment. The radiation dose to the eye lens from clinical CT brain perfusion studies can be estimated using Monte Carlo simulation methods on voxelized patient models. MDCT scanners from four major manufacturers were simulated and the eye lens doses were estimated using the AAPM posted clinical protocols. They were also compared to CTDIvol values to evaluate the overestimation from CTDIvol. The efficacy of eye lens dose reduction techniques such as tilting the gantry and moving the scan location away from the eyelens were also investigated. Eye lens dose ranged from 81 mGy to 279 mGy, depending on the scanner and protocol used. It is between 59% and 63% of the CTDIvol values reported by the scanners. The eye lens dose is significantly reduced when the eye lenses were not directly irradiated. CTDIvol should not be interpreted as patient dose; this study has shown it to overestimate dose to the eye lens. These results may be used to provide more accurate estimates of actual dose to ensure that protocols are operated safely below thresholds. Tilting the gantry or moving the scanning region further away from the eyes are effective for reducing lens dose in clinical practice

  4. TU-E-201-01: Methods for Eye Lens Dosimetry and Studies On Lens Opacities with Interventionists

    International Nuclear Information System (INIS)

    Rehani, M.

    2015-01-01

    awareness can lead to avoidance or even prevention. Learning Objectives: To understand recent changes in eye lens dose limits and thresholds for tissue reactions To understand different approaches to dose estimation for eye lens To learn about challenges in eye lens opacities among staff in interventional fluoroscopy Di Zhang, Toshiba America Medical Systems, Tustin, CA, USA Eye lens radiation dose from brain perfusion CT exams CT perfusion imaging requires repeatedly exposing one location of the head to monitor the uptake and washout of iodinated contrast. The accumulated radiation dose to the eye lens can be high, leading to concerns about potential radiation injury from these scans. CTDIvol assumes continuous z coverage and can overestimate eye lens dose in CT perfusion scans where the table do not increment. The radiation dose to the eye lens from clinical CT brain perfusion studies can be estimated using Monte Carlo simulation methods on voxelized patient models. MDCT scanners from four major manufacturers were simulated and the eye lens doses were estimated using the AAPM posted clinical protocols. They were also compared to CTDIvol values to evaluate the overestimation from CTDIvol. The efficacy of eye lens dose reduction techniques such as tilting the gantry and moving the scan location away from the eyelens were also investigated. Eye lens dose ranged from 81 mGy to 279 mGy, depending on the scanner and protocol used. It is between 59% and 63% of the CTDIvol values reported by the scanners. The eye lens dose is significantly reduced when the eye lenses were not directly irradiated. CTDIvol should not be interpreted as patient dose; this study has shown it to overestimate dose to the eye lens. These results may be used to provide more accurate estimates of actual dose to ensure that protocols are operated safely below thresholds. Tilting the gantry or moving the scanning region further away from the eyes are effective for reducing lens dose in clinical practice

  5. Opto-mechatronics issues in solid immersion lens based near-field recording

    Science.gov (United States)

    Park, No-Cheol; Yoon, Yong-Joong; Lee, Yong-Hyun; Kim, Joong-Gon; Kim, Wan-Chin; Choi, Hyun; Lim, Seungho; Yang, Tae-Man; Choi, Moon-Ho; Yang, Hyunseok; Rhim, Yoon-Chul; Park, Young-Pil

    2007-06-01

    We analyzed the effects of an external shock on a collision problem in a solid immersion lens (SIL) based near-field recording (NFR) through a shock response analysis and proposed a possible solution to this problem with adopting a protector and safety mode. With this proposed method the collision between SIL and media can be avoided. We showed possible solution for contamination problem in SIL based NFR through a numerical air flow analysis. We also introduced possible solid immersion lens designs to increase the fabrication and assembly tolerances of an optical head with replicated lens. Potentially, these research results could advance NFR technology for commercial product.

  6. 'Yellow lens' eyes of a stomiatoid deep-sea fish, Malacosteus niger.

    Science.gov (United States)

    Somiya, H

    1982-07-22

    Bright yellow lenses were found in the eyes of the stomiatoid deep-sea fish, Malacosteus niger Ayres. The optical properties of the yellow lens and the retinal specializations in the eyes were examined. Absorption spectra of the yellow lens revealed two peaks at wavelengths 425 and 460 nm. The photoreceptors were all rods and were arranged in two superimposed layers. An astaxanthin-type retinal tapetum was observed in the pigment epithelium. Some chemical evidence is presented showing that the tapetal material is an astaxanthin ester. The ecological significance of the yellow lens is discussed in connection with that of Malacosteus' orbital light organ which has a reddish filter.

  7. Computerized videokeratoscopy contact lens software for RGP fitting in a bilateral postkeratoplasty patient: a clinical case report.

    Science.gov (United States)

    Szczotka, L B; Reinhart, W

    1995-01-01

    Computerized videokeratoscopy systems now allow interactive rigid gas permeable (RGP) fitting evaluation using fluorescein pattern simulations through updated software programs. We used Computed Anatomy's Topographic Modeling System-1 (TMS-1) Custom Design Contact Lens Program successfully to refit a symptomatic bilateral post-penetrating keratoplasty patient. No trial lenses were used. For each eye the base curve, optic zone size, and edge lift were chosen from the optimal fluorescein pattern designed and titrated on the TMS-1 unit. Lens powers were based on the patient's previous lenses and overrefraction. Dispensed lenses provided a clinically acceptable fit, good comfort, and maximal visual acuity, and no adjustments were necessary. Corneal videokeratoscopy can be successfully employed to titrate an RGP fit, even on irregular corneas.

  8. Optically sectioned imaging by oblique plane microscopy

    Science.gov (United States)

    Kumar, Sunil; Lin, Ziduo; Lyon, Alex R.; MacLeod, Ken T.; Dunsby, Chris

    2011-03-01

    Oblique Plane Microscopy (OPM) is a light sheet microscopy technique that combines oblique illumination with correction optics that tilt the focal plane of the collection system. OPM can be used to image conventionally mounted specimens on coverslips or tissue culture dishes and has low out-of-plane photobleaching and phototoxicity. No moving parts are required to achieve an optically sectioned image and so high speed optically sectioned imaging is possible. The first OPM results obtained using a high NA water immersion lens on a commercially available inverted microscope frame are presented, together with a measurement of the achievable optical resolution.

  9. Optical and nanomechanical study of anti-scratch layers on polycarbonate lenses

    Science.gov (United States)

    Charitidis, C.; Laskarakis, A.; Kassavetis, S.; Gravalidis, C.; Logothetidis, S.

    2004-07-01

    In recent years, as the optical-electronic industry developed, polymeric materials were gradually increasing in importance. Polycarbonate (PC) is a good candidate for eyewear applications due to its low weight and transparency. In the case of PC lenses, the deposition of anti-scratch (AS) coatings on the polymer surface is essential for the improvement of the mechanical behavior of the lens. In this work, we present a detailed investigation of the optical and nanomechanical properties of a PC based optical lens and coated by an AS coating as a protective overcoat. The study of the effect of the AS coating on the optical response of the PC lens has been performed by the use of Spectroscopic Ellipsometry (SE) in the IR spectral region, where the characteristic features corresponding to the different bonding configuration of the PC lens and the AS coating were studied. Also, the nanomechanical study of the PC lens, before and after the deposition of the AS coating, performed by nanoindentation measurements revealed the significant enhancement of the mechanical response of the AS/PC lens. More specifically, the AS/PC lens is characterized by enhanced values of hardness and elastic modulus. Finally, the use of AS coating has found to lead to a better scratch resistance and to the reduction of the coefficient of friction (μ) of the PC lens.

  10. Double lens device for tunable harmonic generation of laser beams in KBBF/RBBF crystals or other non-linear optic materials

    Science.gov (United States)

    Kaminski, Adam

    2017-08-22

    A method and apparatus to generate harmonically related laser wavelengths includes a pair of lenses at opposing faces of a non-linear optical material. The lenses are configured to promote incoming and outgoing beams to be normal to each outer lens surface over a range of acceptance angles of the incoming laser beam. This reduces reflection loss for higher efficiency operation. Additionally, the lenses allow a wider range of wavelengths for lasers for more universal application. Examples of the lenses include plano-cylindrical and plano-spherical form factors.

  11. THE BOSS EMISSION-LINE LENS SURVEY. IV. SMOOTH LENS MODELS FOR THE BELLS GALLERY SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Yiping [National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012 (China); Bolton, Adam S.; Montero-Dorta, Antonio D.; Cornachione, Matthew A.; Zheng, Zheng; Brownstein, Joel R. [Department of Physics and Astronomy, University of Utah, 115 South 1400 East, Salt Lake City, UT 84112 (United States); Mao, Shude [Physics Department and Tsinghua Centre for Astrophysics, Tsinghua University, Beijing 100084 (China); Kochanek, Christopher S. [Department of Astronomy and Center for Cosmology and Astroparticle Physics, Ohio State University, Columbus, OH 43210 (United States); Pérez-Fournon, Ismael; Marques-Chaves, Rui [Instituto de Astrofísica de Canarias, C/Vía Láctea, s/n, E-38205 San Cristóbal de La Laguna, Tenerife (Spain); Oguri, Masamune [Research Center for the Early Universe, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Ménard, Brice, E-mail: yiping.shu@nao.cas.cn [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2016-12-20

    We present Hubble Space Telescope F606W-band imaging observations of 21 galaxy-Ly α emitter lens candidates in the Baryon Oscillation Spectroscopic Survey Emission-Line Lens Survey (BELLS) for the GALaxy-Ly α EmitteR sYstems (BELLS GALLERY) survey. Seventeen systems are confirmed to be definite lenses with unambiguous evidence of multiple imaging. The lenses are primarily massive early-type galaxies (ETGs) at redshifts of approximately 0.55, while the lensed sources are Ly α emitters (LAEs) at redshifts from two to three. Although most of the lens systems are well fit by smooth lens models consisting of singular isothermal ellipsoids in an external shear field, a thorough exploration of dark substructures in the lens galaxies is required. The Einstein radii of the BELLS GALLERY lenses are, on average, 60% larger than those of the BELLS lenses because of the much higher source redshifts. This will allow for a detailed investigation of the radius evolution of the mass profile in ETGs. With the aid of the average ∼13× lensing magnification, the LAEs are frequently resolved into individual star-forming knots with a wide range of properties. They have characteristic sizes from less than 100 pc to several kiloparsecs, rest-frame far-UV apparent AB magnitudes from 29.6 to 24.2, and typical projected separations of 500 pc to 2 kpc.

  12. Novel compact panomorph lens based vision system for monitoring around a vehicle

    Science.gov (United States)

    Thibault, Simon

    2008-04-01

    Automotive applications are one of the largest vision-sensor market segments and one of the fastest growing ones. The trend to use increasingly more sensors in cars is driven both by legislation and consumer demands for higher safety and better driving experiences. Awareness of what directly surrounds a vehicle affects safe driving and manoeuvring of a vehicle. Consequently, panoramic 360° Field of View imaging can contributes most to the perception of the world around the driver than any other sensors. However, to obtain a complete vision around the car, several sensor systems are necessary. To solve this issue, a customized imaging system based on a panomorph lens will provide the maximum information for the drivers with a reduced number of sensors. A panomorph lens is a hemispheric wide angle anamorphic lens with enhanced resolution in predefined zone of interest. Because panomorph lenses are optimized to a custom angle-to-pixel relationship, vision systems provide ideal image coverage that reduces and optimizes the processing. We present various scenarios which may benefit from the use of a custom panoramic sensor. We also discuss the technical requirements of such vision system. Finally we demonstrate how the panomorph based visual sensor is probably one of the most promising ways to fuse many sensors in one. For example, a single panoramic sensor on the front of a vehicle could provide all necessary information for assistance in crash avoidance, lane tracking, early warning, park aids, road sign detection, and various video monitoring views.

  13. Life Science-Related Physics Laboratory on Geometrical Optics

    Science.gov (United States)

    Edwards, T. H.; And Others

    1975-01-01

    Describes a laboratory experiment on geometrical optics designed for life science majors in a noncalculus introductory physics course. The thin lens equation is used by the students to calculate the focal length of the lens necessary to correct a myopic condition in an optical bench simulation of a human eye. (Author/MLH)

  14. Three-dimensional motion-picture imaging of dynamic object by parallel-phase-shifting digital holographic microscopy using an inverted magnification optical system

    Science.gov (United States)

    Fukuda, Takahito; Shinomura, Masato; Xia, Peng; Awatsuji, Yasuhiro; Nishio, Kenzo; Matoba, Osamu

    2017-04-01

    We constructed a parallel-phase-shifting digital holographic microscopy (PPSDHM) system using an inverted magnification optical system, and succeeded in three-dimensional (3D) motion-picture imaging for 3D displacement of a microscopic object. In the PPSDHM system, the inverted and afocal magnification optical system consisted of a microscope objective (16.56 mm focal length and 0.25 numerical aperture) and a convex lens (300 mm focal length and 82 mm aperture diameter). A polarization-imaging camera was used to record multiple phase-shifted holograms with a single-shot exposure. We recorded an alum crystal, sinking down in aqueous solution of alum, by the constructed PPSDHM system at 60 frames/s for about 20 s and reconstructed high-quality 3D motion-picture image of the crystal. Then, we calculated amounts of displacement of the crystal from the amounts in the focus plane and the magnifications of the magnification optical system, and obtained the 3D trajectory of the crystal by that amounts.

  15. Fabrication of polycrystalline diamond refractive X-ray lens by femtosecond laser processing

    Energy Technology Data Exchange (ETDEWEB)

    Kononenko, T.V.; Ralchenko, V.G.; Ashkinazi, E.E.; Konov, V.I. [General Physics Institute of Russian Academy of Sciences, Moscow (Russian Federation); National Research Nuclear University ' ' MEPhI' ' , Moscow (Russian Federation); Polikarpov, M.; Ershov, P. [Immanuel Kant Baltic Federal University, Functional Nanomaterials, Kaliningrad (Russian Federation); Kuznetsov, S.; Yunkin, V. [Institute of Microelectronics Technology RAS, Chernogolovka, Moscow region (Russian Federation); Snigireva, I. [European Synchrotron Radiation Facility, Grenoble (France)

    2016-03-15

    X-ray planar compound refractive lenses were fabricated from a polycrystalline diamond plate grown by chemical vapor deposition, by precise through cutting with femtosecond laser pulses. The lens geometry and the surface morphology were investigated with optical and scanning electron microscopy, while the material structure modification was analyzed by Raman spectroscopy. The results of the preliminary lens test at 9.25-keV X-rays are presented. (orig.)

  16. Fabrication of polycrystalline diamond refractive X-ray lens by femtosecond laser processing

    International Nuclear Information System (INIS)

    Kononenko, T.V.; Ralchenko, V.G.; Ashkinazi, E.E.; Konov, V.I.; Polikarpov, M.; Ershov, P.; Kuznetsov, S.; Yunkin, V.; Snigireva, I.

    2016-01-01

    X-ray planar compound refractive lenses were fabricated from a polycrystalline diamond plate grown by chemical vapor deposition, by precise through cutting with femtosecond laser pulses. The lens geometry and the surface morphology were investigated with optical and scanning electron microscopy, while the material structure modification was analyzed by Raman spectroscopy. The results of the preliminary lens test at 9.25-keV X-rays are presented. (orig.)

  17. Printed freeform lens arrays on multi-core fibers for highly efficient coupling in astrophotonic systems.

    Science.gov (United States)

    Dietrich, Philipp-Immanuel; Harris, Robert J; Blaicher, Matthias; Corrigan, Mark K; Morris, Tim M; Freude, Wolfgang; Quirrenbach, Andreas; Koos, Christian

    2017-07-24

    Coupling of light into multi-core fibers (MCF) for spatially resolved spectroscopy is of great importance to astronomical instrumentation. To achieve high coupling efficiencies along with fill-fractions close to unity, micro-optical elements are required to concentrate the incoming light to the individual cores of the MCF. In this paper we demonstrate facet-attached lens arrays (LA) fabricated by two-photon polymerization. The LA provide close to 100% fill-fraction along with efficiencies of up to 73% (down to 1.4 dB loss) for coupling of light from free space into an MCF core. We show the viability of the concept for astrophotonic applications by integrating an MCF-LA assembly in an adaptive-optics test bed and by assessing its performance as a tip/tilt sensor.

  18. Which soft lens power is better for piggyback in keratoconus? Part II.

    Science.gov (United States)

    Romero-Jiménez, Miguel; Santodomingo-Rubido, Jacinto; González-Meijóme, Jose-Manuel; Flores-Rodriguez, Patricia; Villa-Collar, Cesar

    2015-02-01

    To evaluate how soft lens power affects rigid gas-permeable (RGP) lens power and visual acuity (VA) in piggyback fittings for keratoconus. Sixteen keratoconus subjects (30 eyes) were included in the study. Piggyback contact lens fittings combining Senofilcon-A soft lenses of -6.00, -3.00, +3.00 and +6.00 D with Rose K2 RGP contact lenses were performed. Corneal topography was taken on the naked eye and over each soft contact lens before fitting RGP lenses. Mean central keratometry, over-refraction, RGP back optic zone radius (BOZR) and estimated final power as well as VA were recorded and analyzed. In comparison to the naked eye, the mean central keratometry flattened with both negative lens powers (psoft lens power (p=1.0); and steepened with the +6.00 soft lens power (p=0.02). Rigid gas-permeable over-refraction did not change significantly between different soft lens powers (all p>0.05). RGP's BOZR decreased significantly with both positive in comparison with both negative soft lens powers (all ppowers separately (both p>0.05). Estimated RGP's final power increased significantly with positive in comparison with negative lens powers (all ppowers separately (both p>0.05). Visual acuity did not change significantly between the different soft lens powers assessed (all p>0.05). The use of negative-powered soft lenses in piggyback fitting reduces RGP lens power without impacting VA in keratoconus subjects. Copyright © 2014 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  19. A portable confocal hyperspectral microscope without any scan or tube lens and its application in fluorescence and Raman spectral imaging

    Science.gov (United States)

    Li, Jingwei; Cai, Fuhong; Dong, Yongjiang; Zhu, Zhenfeng; Sun, Xianhe; Zhang, Hequn; He, Sailing

    2017-06-01

    In this study, a portable confocal hyperspectral microscope is developed. In traditional confocal laser scanning microscopes, scan lens and tube lens are utilized to achieve a conjugate relationship between the galvanometer and the back focal plane of the objective, in order to achieve a better resolution. However, these lenses make it difficult to scale down the volume of the system. In our portable confocal hyperspectral microscope (PCHM), the objective is placed directly next to the galvomirror. Thus, scan lens and tube lens are not included in our system and the size of this system is greatly reduced. Furthermore, the resolution is also acceptable in many biomedical and food-safety applications. Through reducing the optical length of the system, the signal detection efficiency is enhanced. This is conducive to realizing both the fluorescence and Raman hyperspectral imaging. With a multimode fiber as a pinhole, an improved image contrast is also achieved. Fluorescent spectral images for HeLa cells/fingers and Raman spectral images of kumquat pericarp are present. The spectral resolution and spatial resolutions are about 0.4 nm and 2.19 μm, respectively. These results demonstrate that this portable hyperspectral microscope can be used in in-vivo fluorescence imaging and in situ Raman spectral imaging.

  20. Salvaging an Abused Lens or How a 4½ inch Brashear lens came unglued before I did!

    Science.gov (United States)

    Koester, Jack

    The author's newly-acquired Brashear telescope has a "fogged lens" that was stuck in its cell. After getting advice from several ATS members, the author visits Richard A. Buchroeder, the professional optical designer, who heats the mirror and cell in order to soften the binding substance by floating the cell in a pot filled with heated cooking oil. The process worked, and the two lenses were removed.

  1. Crystalline lens thickness determines the perceived chromatic difference in magnification.

    Science.gov (United States)

    Chen, Yun; Schaeffel, Frank

    2014-03-01

    Since the origin of the high interindividual variability of the chromatic difference in retinal image magnification (CDM) in the human eye is not well understood, optical parameters that might determine its magnitude were studied in 21 healthy subjects with ages ranging from 21 to 58 years. Two psychophysical procedures were used to quantify CDM. They produced highly correlated results. First, a red and a blue square, presented on a black screen, had to be matched in size by the subjects with their right eyes. Second, a filled red and blue square, flickering on top of each other at 2 Hz, had to be adjusted in perceived brightness and then in size to minimize the impression of flicker. CDM varied widely among subjects from 0.0% to 3.6%. Biometric ocular parameters were measured with low coherence interferometry and crystalline lens tilt and decentration with a custom-built Purkinjemeter. Correlations were studied between CDM and corneal power, anterior chamber depth, lens thickness, lens tilt and lens decentration, and vitreous chamber depths. Lens thickness was found significantly correlated with CDM and accounted for 64% of its variance. Vertical lens tilt and decentration were also significantly correlated. It was also found that CDM increased by 3.5% per year, and part of this change can be attributed to the age-related increase in lens thickness.

  2. Polarization Monitoring of the Lens System JVAS B0218+357

    Directory of Open Access Journals (Sweden)

    Andrew Biggs

    2017-10-01

    Full Text Available Monitoring of the lens system JVAS B0218+357 with the Fermi Gamma-ray Space Telescope measured a different time delay to that derived from radio observations. We have re-analysed three months of archival Very Large Array data to produce variability curves with an average sampling of one epoch per day in total flux, polarized flux and polarization position angle (PPA at 15, 8.4 and 5 GHz. The variability is particularly strong in polarized flux. Dense sampling and improved subtraction of the Einstein ring has allowed us to produce superior variability curves and a preliminary analysis has resulted in a time delay (11.5 days which agrees well with the γ -ray value. Both images of 0218+357 are subject to strong Faraday rotation and depolarization as a result of the radio waves passing through the interstellar medium of the spiral lens galaxy. Our data reveal frequency-dependent variations in the PPA that are different in each image and which must therefore result from variable Faraday rotation in the lens galaxy on timescales of a few days. Our analysis has revealed systematic errors in the polarization position angle measurements that strongly correlate with hour angle. Although we have been able to correct for these, we caution that all VLA polarization observations are potentially affected.

  3. Electro-optical system for the high speed reconstruction of computed tomography images

    International Nuclear Information System (INIS)

    Tresp, V.

    1989-01-01

    An electro-optical system for the high-speed reconstruction of computed tomography (CT) images has been built and studied. The system is capable of reconstructing high-contrast and high-resolution images at video rate (30 images per second), which is more than two orders of magnitude faster than the reconstruction rate achieved by special purpose digital computers used in commercial CT systems. The filtered back-projection algorithm which was implemented in the reconstruction system requires the filtering of all projections with a prescribed filter function. A space-integrating acousto-optical convolver, a surface acoustic wave filter and a digital finite-impulse response filter were used for this purpose and their performances were compared. The second part of the reconstruction, the back projection of the filtered projections, is computationally very expensive. An optical back projector has been built which maps the filtered projections onto the two-dimensional image space using an anamorphic lens system and a prism image rotator. The reconstructed image is viewed by a video camera, routed through a real-time image-enhancement system, and displayed on a TV monitor. The system reconstructs parallel-beam projection data, and in a modified version, is also capable of reconstructing fan-beam projection data. This extension is important since the latter are the kind of projection data actually acquired in high-speed X-ray CT scanners. The reconstruction system was tested by reconstructing precomputed projection data of phantom images. These were stored in a special purpose projection memory and transmitted to the reconstruction system as an electronic signal. In this way, a projection measurement system that acquires projections sequentially was simulated

  4. Oxygen transport through soft contact lens and cornea: Lens characterization and metabolic modeling

    Science.gov (United States)

    Chhabra, Mahendra

    The human cornea requires oxygen to sustain metabolic processes critical for its normal functioning. Any restriction to corneal oxygen supply from the external environment (e.g., by wearing a low oxygen-permeability contact lens) can lead to hypoxia, which may cause corneal edema (swelling), limbal hyperemia, neovascularization, and corneal acidosis. The need for adequate oxygen to the cornea is a major driving force for research and development of hypertransmissible soft contact lenses (SCLs). Currently, there is no standard technique for measuring oxygen permeability (Dk) of hypertransmissible silicone-hydrogel SCLs. In this work, an electrochemistry-based polarographic apparatus was designed, built, and operated to measure oxygen permeability in hypertransmissible SCLs. Unlike conventional methods where a range of lens thickness is needed for determining oxygen permeabilities of SCLs, this apparatus requires only a single lens thickness. The single-lens permeameter provides a reliable, efficient, and economic tool for measuring oxygen permeabilities of commercial hypertransmissible SCLs. The single-lens permeameter measures not only the product Dk, but, following modification, it measures separately diffusivity, D, and solubility, k, of oxygen in hypertransmissible SCLs. These properties are critical for designing better lens materials that ensure sufficient oxygen supply to the cornea. Metabolism of oxygen in the cornea is influenced by contact-lens-induced hypoxia, diseases such as diabetes, surgery, and drug treatment, Thus, estimation of the in-vivo corneal oxygen consumption rate is essential for gauging adequate oxygen supply to the cornea. Therefore, we have developed an unsteady-state reactive-diffusion model for the cornea-contact-lens system to determine in-vivo human corneal oxygen-consumption rate. Finally, a metabolic model was developed to determine the relation between contact-lens oxygen transmissibility (Dk/L) and corneal oxygen deficiency. A

  5. The impact of a preloaded intraocular lens delivery system on operating room efficiency in routine cataract surgery.

    Science.gov (United States)

    Jones, Jason J; Chu, Jeffrey; Graham, Jacob; Zaluski, Serge; Rocha, Guillermo

    2016-01-01

    The aim of this study was to evaluate the operational impact of using preloaded intraocular lens (IOL) delivery systems compared with manually loaded IOL delivery processes during routine cataract surgeries. Time and motion data, staff and surgery schedules, and cost accounting reports were collected across three sites located in the US, France, and Canada. Time and motion data were collected for manually loaded IOL processes and preloaded IOL delivery systems over four surgery days. Staff and surgery schedules and cost accounting reports were collected during the 2 months prior and after introduction of the preloaded IOL delivery system. The study included a total of 154 routine cataract surgeries across all three sites. Of these, 77 surgeries were performed using a preloaded IOL delivery system, and the remaining 77 surgeries were performed using a manual IOL delivery process. Across all three sites, use of the preloaded IOL delivery system significantly decreased mean total case time by 6.2%-12.0% (Psystem also decreased surgeon lens time, surgeon delays, and eliminated lens touches during IOL preparation. Compared to a manual IOL delivery process, use of a preloaded IOL delivery system for cataract surgery reduced total case time, total surgeon lens time, surgeon delays, and eliminated IOL touches. The time savings provided by the preloaded IOL delivery system provide an opportunity for sites to improve routine cataract surgery throughput without impacting surgeon or staff capacity.

  6. STUDY ON HIGH RESOLUTION MEMBRANE-BASED DIFFRACTIVE OPTICAL IMAGING ON GEOSTATIONARY ORBIT

    Directory of Open Access Journals (Sweden)

    J. Jiao

    2017-05-01

    Full Text Available Diffractive optical imaging technology provides a new way to realize high resolution earth observation on geostationary orbit. There are a lot of benefits to use the membrane-based diffractive optical element in ultra-large aperture optical imaging system, including loose tolerance, light weight, easy folding and unfolding, which make it easy to realize high resolution earth observation on geostationary orbit. The implementation of this technology also faces some challenges, including the configuration of the diffractive primary lens, the development of high diffraction efficiency membrane-based diffractive optical elements, and the correction of the chromatic aberration of the diffractive optical elements. Aiming at the configuration of the diffractive primary lens, the “6+1” petal-type unfold scheme is proposed, which consider the compression ratio, the blocking rate and the development complexity. For high diffraction efficiency membrane-based diffractive optical element, a self-collimating method is proposed. The diffraction efficiency is more than 90 % of the theoretical value. For the chromatic aberration correction problem, an optimization method based on schupmann is proposed to make the imaging spectral bandwidth in visible light band reach 100 nm. The above conclusions have reference significance for the development of ultra-large aperture diffractive optical imaging system.

  7. Study on High Resolution Membrane-Based Diffractive Optical Imaging on Geostationary Orbit

    Science.gov (United States)

    Jiao, J.; Wang, B.; Wang, C.; Zhang, Y.; Jin, J.; Liu, Z.; Su, Y.; Ruan, N.

    2017-05-01

    Diffractive optical imaging technology provides a new way to realize high resolution earth observation on geostationary orbit. There are a lot of benefits to use the membrane-based diffractive optical element in ultra-large aperture optical imaging system, including loose tolerance, light weight, easy folding and unfolding, which make it easy to realize high resolution earth observation on geostationary orbit. The implementation of this technology also faces some challenges, including the configuration of the diffractive primary lens, the development of high diffraction efficiency membrane-based diffractive optical elements, and the correction of the chromatic aberration of the diffractive optical elements. Aiming at the configuration of the diffractive primary lens, the "6+1" petal-type unfold scheme is proposed, which consider the compression ratio, the blocking rate and the development complexity. For high diffraction efficiency membrane-based diffractive optical element, a self-collimating method is proposed. The diffraction efficiency is more than 90 % of the theoretical value. For the chromatic aberration correction problem, an optimization method based on schupmann is proposed to make the imaging spectral bandwidth in visible light band reach 100 nm. The above conclusions have reference significance for the development of ultra-large aperture diffractive optical imaging system.

  8. Realization of a video-rate distributed aperture millimeter-wave imaging system using optical upconversion

    Science.gov (United States)

    Schuetz, Christopher; Martin, Richard; Dillon, Thomas; Yao, Peng; Mackrides, Daniel; Harrity, Charles; Zablocki, Alicia; Shreve, Kevin; Bonnett, James; Curt, Petersen; Prather, Dennis

    2013-05-01

    Passive imaging using millimeter waves (mmWs) has many advantages and applications in the defense and security markets. All terrestrial bodies emit mmW radiation and these wavelengths are able to penetrate smoke, fog/clouds/marine layers, and even clothing. One primary obstacle to imaging in this spectrum is that longer wavelengths require larger apertures to achieve the resolutions desired for many applications. Accordingly, lens-based focal plane systems and scanning systems tend to require large aperture optics, which increase the achievable size and weight of such systems to beyond what can be supported by many applications. To overcome this limitation, a distributed aperture detection scheme is used in which the effective aperture size can be increased without the associated volumetric increase in imager size. This distributed aperture system is realized through conversion of the received mmW energy into sidebands on an optical carrier. This conversion serves, in essence, to scale the mmW sparse aperture array signals onto a complementary optical array. The side bands are subsequently stripped from the optical carrier and recombined to provide a real time snapshot of the mmW signal. Using this technique, we have constructed a real-time, video-rate imager operating at 75 GHz. A distributed aperture consisting of 220 upconversion channels is used to realize 2.5k pixels with passive sensitivity. Details of the construction and operation of this imager as well as field testing results will be presented herein.

  9. Pigment dispersion syndrome associated with intraocular lens implantation: a new surgical technique

    Directory of Open Access Journals (Sweden)

    M Isabel Canut Jordana

    2010-11-01

    Full Text Available M Isabel Canut Jordana1, Daniel Pérez Formigó1, Rodrigo Abreu González2, Jeroni Nadal Reus11Barraquer Ophthalmology Centre, Barcelona, Spain; 2University Hospital of La Candelaria, Tenerife, SpainAims: We report the case of a myopic patient who, after intraocular lens transplant in the posterior chamber, suffered elevated intraocular pressure due to pigment dispersion, with recurrent episodes of blurred vision. The patient was treated with a new surgical technique that can avoid potential iridolenticular contact.Methods: Complete ophthalmologic examination and optical coherence tomography (OCT of the anterior segment were performed.Results: Contact between the pigmentary epithelium and the iris with an intraocular lens was revealed by utrasound biomicroscopy and OCT. In this case, Nd:YAG laser iridotomy and laser iridoplasty were not effective for iridolenticular separation and control of the pigment dispersion. We propose a new technique: stitches on the surface of the iris to obtain good iridolenticular separation and good intraocular pressure control.Conclusion: Stitches on the iris surface should be considered as optional therapy in pigmentary glaucoma secondary to intraocular lens implantation. This surgical technique can avoid potential iridolenticular contacts more definitively.Keywords: pigmentary glaucoma, intraocular lens, optical coherence tomography, laser

  10. Chitah: Strong-gravitational-lens hunter in imaging surveys

    Energy Technology Data Exchange (ETDEWEB)

    Chan, James H. H.; Suyu, Sherry H.; Chiueh, Tzihong; More, Anupreeta; Marshall, Philip J.; Coupon, Jean; Oguri, Masamune; Price, Paul

    2015-07-07

    Strong gravitationally lensed quasars provide powerful means to study galaxy evolution and cosmology. Current and upcoming imaging surveys will contain thousands of new lensed quasars, augmenting the existing sample by at least two orders of magnitude. To find such lens systems, we built a robot, Chitah, that hunts for lensed quasars by modeling the configuration of the multiple quasar images. Specifically, given an image of an object that might be a lensed quasar, Chitah first disentangles the light from the supposed lens galaxy and the light from the multiple quasar images based on color information. A simple rule is designed to categorize the given object as a potential four-image (quad) or two-image (double) lensed quasar system. The configuration of the identified quasar images is subsequently modeled to classify whether the object is a lensed quasar system. We test the performance of Chitah using simulated lens systems based on the Canada–France–Hawaii Telescope Legacy Survey. For bright quads with large image separations (with Einstein radius ${r}_{\\mathrm{ein}}\\gt 1\\buildrel{\\prime\\prime}\\over{.} 1$) simulated using Gaussian point-spread functions, a high true-positive rate (TPR) of $\\sim 90\\%$ and a low false-positive rate of $\\sim 3\\%$ show that this is a promising approach to search for new lens systems. We obtain high TPR for lens systems with ${r}_{\\mathrm{ein}}\\gtrsim 0\\buildrel{\\prime\\prime}\\over{.} 5$, so the performance of Chitah is set by the seeing. We further feed a known gravitational lens system, COSMOS 5921+0638, to Chitah, and demonstrate that Chitah is able to classify this real gravitational lens system successfully. Our newly built Chitah is omnivorous and can hunt in any ground-based imaging surveys.

  11. Electrostatic lens to focus an ion beam to uniform density

    International Nuclear Information System (INIS)

    Johnson, C.H.

    1977-01-01

    A focusing lens for an ion beam having a gaussian or similar density profile is described. The lens is constructed to provide an inner zero electrostatic field, and an outer electrostatic field such that ions entering this outer field are deflected by an amount that is a function of their distance from the edge of the inner field. The result is a beam that focuses to uniform density in a manner analogous to that of an optical ring lens. In one embodiment, a conically-shaped network of fine wires is enclosed within a cylindrical anode. The wire net together with the anode produces a voltage field that re-directs the outer particles of the beam while the axial particles pass undeflected through a zero field inside the wire net. The result is a focused beam having a uniform intensity over a given target area and at a given distance from the lens

  12. The objective lens of the electron microscope with correction of spherical and axial chromatic aberrations.

    Science.gov (United States)

    Bimurzaev, S B; Aldiyarov, N U; Yakushev, E M

    2017-10-01

    The paper describes the principle of operation of a relatively simple aberration corrector for the transmission electron microscope objective lens. The electron-optical system of the aberration corrector consists of the two main elements: an electrostatic mirror with rotational symmetry and a magnetic deflector formed by the round-shaped magnetic poles. The corrector operation is demonstrated by calculations on the example of correction of basic aberrations of the well-known objective lens with a bell-shaped distribution of the axial magnetic field. Two of the simplest versions of the corrector are considered: a corrector with a two-electrode electrostatic mirror and a corrector with a three-electrode electrostatic mirror. It is shown that using the two-electrode mirror one can eliminate either spherical or chromatic aberration of the objective lens, without changing the value of its linear magnification. Using a three-electrode mirror, it is possible to eliminate spherical and chromatic aberrations of the objective lens simultaneously, which is especially important in designing electron microscopes with extremely high resolution. © The Author 2017. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Compressing and focusing a short laser pulse by a thin plasma lens

    International Nuclear Information System (INIS)

    Ren, C.; Duda, B. J.; Hemker, R. G.; Mori, W. B.; Katsouleas, T.; Antonsen, T. M.; Mora, P.

    2001-01-01

    We consider the possibility of using a thin plasma slab as an optical element to both focus and compress an intense laser pulse. By thin we mean that the focal length is larger than the lens thickness. We derive analytic formulas for the spot size and pulse length evolution of a short laser pulse propagating through a thin uniform plasma lens. The formulas are compared to simulation results from two types of particle-in-cell code. The simulations give a greater final spot size and a shorter focal length than the analytic formulas. The difference arises from spherical aberrations in the lens which lead to the generation of higher-order vacuum Gaussian modes. The simulations also show that Raman side scattering can develop. A thin lens experiment could provide unequivocal evidence of relativistic self-focusing

  14. MEMS-based non-rotatory circumferential scanning optical probe for endoscopic optical coherence tomography

    Science.gov (United States)

    Xu, Yingshun; Singh, Janak; Siang, Teo Hui; Ramakrishna, Kotlanka; Premchandran, C. S.; Sheng, Chen Wei; Kuan, Chuah Tong; Chen, Nanguang; Olivo, Malini C.; Sheppard, Colin J. R.

    2007-07-01

    In this paper, we present a non-rotatory circumferential scanning optical probe integrated with a MEMS scanner for in vivo endoscopic optical coherence tomography (OCT). OCT is an emerging optical imaging technique that allows high resolution cross-sectional imaging of tissue microstructure. To extend its usage to endoscopic applications, a miniaturized optical probe based on Microelectromechanical Systems (MEMS) fabrication techniques is currently desired. A 3D electrothermally actuated micromirror realized using micromachining single crystal silicon (SCS) process highlights its very large angular deflection, about 45 degree, with low driving voltage for safety consideration. The micromirror is integrated with a GRIN lens into a waterproof package which is compatible with requirements for minimally invasive endoscopic procedures. To implement circumferential scanning substantially for diagnosis on certain pathological conditions, such as Barret's esophagus, the micromirror is mounted on 90 degree to optical axis of GRIN lens. 4 Bimorph actuators that are connected to the mirror on one end via supporting beams and springs are selected in this micromirror design. When actuators of the micromirror are driven by 4 channels of sinusoidal waveforms with 90 degree phase differences, beam focused by a GRIN is redirected out of the endoscope by 45 degree tilting mirror plate and achieve circumferential scanning pattern. This novel driving method making full use of very large angular deflection capability of our micromirror is totally different from previously developed or developing micromotor-like rotatory MEMS device for circumferential scanning.

  15. Lens Coupled Quantum Cascade Laser

    Science.gov (United States)

    Hu, Qing (Inventor); Lee, Alan Wei Min (Inventor)

    2013-01-01

    Terahertz quantum cascade (QC) devices are disclosed that can operate, e.g., in a range of about 1 THz to about 10 THz. In some embodiments, QC lasers are disclosed in which an optical element (e.g., a lens) is coupled to an output facet of the laser's active region to enhance coupling of the lasing radiation from the active region to an external environment. In other embodiments, terahertz amplifier and tunable terahertz QC lasers are disclosed.

  16. Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh–Sommerfeld method

    International Nuclear Information System (INIS)

    Ye, Huapeng; Qiu, Cheng-Wei; Huang, Kun; Yeo, Swee Ping; Teng, Jinghua; Luk’yanchuk, Boris

    2013-01-01

    This letter shows how a longitudinally polarized hotspot can be created by a planar ultra-thin lens that beats the diffraction limit. On the imaging plane, a subwavelength optical resolution 0.39λ with almost purely longitudinal electric component has been demonstrated in air ambient. This novel paradigm addresses simultaneously both longitudinal polarization and deep sub-diffraction imaging, by a planar lens composed of ultra-thin opaque concentric annuli. The vectorial Rayleigh–Sommerfeld (VRS) approach, offering the advantage of significant reduction in computation, has been developed for a particular optimization of a flat lens with full control of polarization. Empowered by the robustness of VRS in dealing with polarization states, the proposed roadmap may be universally and efficiently integrated with other optimization algorithms to design super-resolution imaging with controlled polarization states at any wavelength without luminescence of the object. The lens, which is empowered by the proposed method, opens an avenue for the first time toward a highly integrated imaging system with advanced functionalities in far-field super-imaging, tailored polarization states and flat ultra-thin geometry simultaneously. (letter)

  17. A Practical Guide to Experimental Geometrical Optics

    Science.gov (United States)

    Garbovskiy, Yuriy A.; Glushchenko, Anatoliy V.

    2017-12-01

    Preface; 1. Markets of optical materials, components, accessories, light sources and detectors; 2. Introduction to optical experiments: light producing, light managing, light detection and measuring; 3. Light detectors based on semiconductors: photoresistors, photodiodes in a photo-galvanic regime. Principles of operation and measurements; 4. Linear light detectors based on photodiodes; 5. Basic laws of geometrical optics: experimental verification; 6. Converging and diverging thin lenses; 7. Thick lenses; 8. Lens systems; 9. Simple optical instruments I: the eye and the magnifier, eyepieces and telescopes; 10. Simple optical instruments II: light illuminators and microscope; 11. Spherical mirrors; 12. Introduction to optical aberrations; 13. Elements of optical radiometry; 14. Cylindrical lenses and vials; 15. Methods of geometrical optics to measure refractive index; 16. Dispersion of light and prism spectroscope; 17. Elements of computer aided optical design; Index.

  18. Optical system design

    CERN Document Server

    Fischer, Robert F

    2008-01-01

    Honed for more than 20 years in an SPIE professional course taught by renowned optical systems designer Robert E. Fischer, Optical System Design, Second Edition brings you the latest cutting-edge design techniques and more than 400 detailed diagrams that clearly illustrate every major procedure in optical design. This thoroughly updated resource helps you work better and faster with computer-aided optical design techniques, diffractive optics, and the latest applications, including digital imaging, telecommunications, and machine vision. No need for complex, unnecessary mathematical derivations-instead, you get hundreds of examples that break the techniques down into understandable steps. For twenty-first century optical design without the mystery, the authoritative Optical Systems Design, Second Edition features: Computer-aided design use explained through sample problems Case studies of third-millennium applications in digital imaging, sensors, lasers, machine vision, and more New chapters on optomechanic...

  19. Frequency Invariant Beam Steering for Short-Pulse Systems with a Rotman Lens

    Directory of Open Access Journals (Sweden)

    Andreas Lambrecht

    2010-01-01

    Full Text Available A promising approach for beam steering of high-voltage transient signals for HPEM-systems (High Power Electro Magnetic is presented. The inherent capability of the Rotman lens to provide true time delays is used to develop a prototype beam steering device for an antielectronics HPEM system in the frequency range from 350 MHz to 5 GHz. Results of analytical calculations, simulations, and measurements from a hardware prototype are presented. The detailed mechanical setup of the Rotman lens is presented. Additionally the output pulses are investigated when inputting a Gaussian-like transient signal. Then time domain measures of quality (full width at half maximum, ringing, delay spread, maximum of transfer function are investigated for these output transients, and the simulation and measurement results are compared. A concluding analysis of the realizable time domain array pattern shows the radiated pulse form.

  20. Non-Linear Beam Transport System for the LENS 7 MeV Proton Beam

    CERN Document Server

    Jones, William P; Derenchuk, Vladimir Peter; Rinckel, Thomas; Solberg, Keith

    2005-01-01

    A beam transport system has been designed to carry a high-intensity low-emittance proton beam from the exit of the RFQ-DTL acceleration system of the Indiana University Low Energy Neutron System (LENS)* to the neutron production target. The goal of the design was to provide a beam of uniform density over a 3cm by 3cm area at the target. Two octupole magnets** are employed in the beam line to provide the necessary beam phase space manipulations to achieve this goal. First order calculations were done using TRANSPORT and second order calculations have been performed using TURTLE. Second order simulations have been done using both a Gaussian beam distribution and a particle set generated by calculations of beam transport through the RFQ-DTL using PARMILA. Comparison of the design characteristics with initial measurements from the LENS commissioning process will be made.

  1. Goldmann applanation tonometry over daily disposable contact lens: accuracy and safety of procedure.

    Science.gov (United States)

    Zeri, Fabrizio; Lupelli, Luigi; Formichella, Paolo; Masci, Carlo; Fletcher, Robert

    2007-09-01

    To study accuracy and safety, related to sensation (discomfort) and trauma, when using Goldmann applanation tonometry (GAT) on eyes wearing daily disposable soft contact lenses. The intra-ocular pressure (IOP) of 136 normal eyes of 68 subjects was measured by Goldmann tonometer. Measurements were made in one eye with a contact lens (hilafilcon A) without anaesthetic drops and then without the contact lens using one drop of 0.4% oxybuprocaine hydrochloride. Each contact lens used was identical as to back optic zone, back vertex power. Standard Goldmann procedure only was used for the fellow eye of each subject. Subjective sensation (discomfort) responses to both procedures were studied in a subgroup (66 eyes) using a scale of discomfort, from 1 (no sensation) to 5 (highest sensation). Epithelial staining after tonometry was evaluated for this subgroup. No significant differences were found for the IOP with and without contact lens (tcontact lens insertion, tonometry on contact lens and application of topical anaesthetic). Corneal epithelial staining following the standard tonometry procedure was significantly higher than following the procedure with a contact lens (pcontact lens is accurate, compared to the standard procedure and within the IOP's normal range studied here. Also using a contact lens results in less trauma whilst discomfort is similar.

  2. Video semaphore decoding for free-space optical communication

    Science.gov (United States)

    Last, Matthew; Fisher, Brian; Ezekwe, Chinwuba; Hubert, Sean M.; Patel, Sheetal; Hollar, Seth; Leibowitz, Brian S.; Pister, Kristofer S. J.

    2001-04-01

    Using teal-time image processing we have demonstrated a low bit-rate free-space optical communication system at a range of more than 20km with an average optical transmission power of less than 2mW. The transmitter is an autonomous one cubic inch microprocessor-controlled sensor node with a laser diode output. The receiver is a standard CCD camera with a 1-inch aperture lens, and both hardware and software implementations of the video semaphore decoding algorithm. With this system sensor data can be reliably transmitted 21 km form San Francisco to Berkeley.

  3. A comparative study with a 755 nm picosecond Alexandrite laser with a diffractive lens array and a 532 nm/1064 nm Nd:YAG with a holographic optic.

    Science.gov (United States)

    Tanghetti Md, Emil; Jennings, John

    2018-01-01

    This study was performed to better understand the cutaneous effects of using a fractional picosecond laser at 755 nm with a diffractive lens array and a picosecond Nd:YAG laser at 532 mn and 1064 nm with a holographic optic. We characterized the injuries created by these devices on skin clinically and histologically over 24 hours. With this information we modeled the effects of these devices on a cutaneous target. Eight patients, representing Fitzpatrick skin types I-VI, were treated on their backs with a picosecond Alexandrite laser with a diffractive lens array, as well as a picosecond Nd:YAG laser at 532 nm and 1064 nm with a holographic optic. Photographs were taken 15 minutes and 24 hours after treatments. Punch biopsies were obtained at 24 hours and examined histologically. Treatment with the picosecond Nd:YAG laser at both 532 nm and 1064 nm with the holographic optic revealed erythema and small scatted areas of petechial hemorrhage areas immediately and in many cases at 24 hours after treatment. The 755 nm picosecond Alexandrite laser with diffractive lens array produced erythema immediately after treatment, which largely dissipated 24 hours later. Histologies revealed intra-epidermal vacuoles with all three wavelengths. Fractional picosecond Nd:YAG laser at 532 nm and 1064 nm with the holographic optic showed focal areas of dermal and intra-epidermal hemorrhage with areas of vascular damage in some patients. This study demonstrates that both fractional picosecond devices produce vacuoles in the skin, which are most likely due to areas of laser induced optical breakdown (LIOB). In the patients (skin type II-IV) we observed scatter areas of hemorrhage in the skin, due to vascular damage with the 532 nm and 1064 nm, but not with 755 nm wavelengths. Lasers Surg. Med. 50:37-44, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Evolutionary optimization of compact dielectric lens for farfield sub-wavelength imaging

    DEFF Research Database (Denmark)

    Zhang, Jingjing

    2015-01-01

    The resolution of conventional optical lenses is limited by diffraction. For decades researchers have made various attempts to beat the diffraction limit and realize subwavelength imaging. Here we present the approach to design modified solid immersion lenses that deliver the subwavelength...... information of objects into the far field, yielding magnified images. The lens is composed of an isotropic dielectric core and anisotropic or isotropic dielectric matching layers. It is designed by combining a transformation optics forward design with an inverse design scheme, where an evolutionary...... optimization procedure is applied to find the material parameters for the matching layers. Notably, the total radius of the lens is only 2.5 wavelengths and the resolution can reach lambda/6. Compared to previous approaches based on the simple discretized approximation of a coordinate transformation design...

  5. Nonlinear optical systems

    CERN Document Server

    Lugiato, Luigi; Brambilla, Massimo

    2015-01-01

    Guiding graduate students and researchers through the complex world of laser physics and nonlinear optics, this book provides an in-depth exploration of the dynamics of lasers and other relevant optical systems, under the umbrella of a unitary spatio-temporal vision. Adopting a balanced approach, the book covers traditional as well as special topics in laser physics, quantum electronics and nonlinear optics, treating them from the viewpoint of nonlinear dynamical systems. These include laser emission, frequency generation, solitons, optically bistable systems, pulsations and chaos and optical pattern formation. It also provides a coherent and up-to-date treatment of the hierarchy of nonlinear optical models and of the rich variety of phenomena they describe, helping readers to understand the limits of validity of each model and the connections among the phenomena. It is ideal for graduate students and researchers in nonlinear optics, quantum electronics, laser physics and photonics.

  6. The Shrinkage Model And Expert System Of Plastic Lens Formation

    Science.gov (United States)

    Chang, Rong-Seng

    1988-06-01

    Shrinkage causes both the appearance & dimension defects of the injected plastic lens. We have built up a model of state equations with the help of finite element analysis program to estimate the volume change (shrinkage and swelling) under the combinations of injection variables such as pressure and temperature etc., then the personal computer expert system has been build up to make that knowledge conveniently available to the user in the model design, process planning, process operation and some other work. The domain knowledge is represented by a R-graph (Relationship-graph) model which states the relationships of variables & equations. This model could be compare with other models in the expert system. If the user has better model to solve the shrinkage problem, the program will evaluate it automatically and a learning file will be trigger by the expert system to teach the user to update their knowledge base and modify the old model by this better model. The Rubin's model and Gilmore's model have been input to the expert system. The conflict has been solved both from the user and the deeper knowledge base. A cube prism and the convex lens examples have been shown in this paper. This program is written by MULISP language in IBM PC-AT. The natural language provides English Explaination of know why and know how and the automatic English translation for the equation rules and the production rules.

  7. Magnifying lens for 800 MeV proton radiography

    International Nuclear Information System (INIS)

    Merrill, F. E.; Campos, E.; Espinoza, C.; Hogan, G.; Hollander, B.; Lopez, J.; Mariam, F. G.; Morley, D.; Morris, C. L.; Murray, M.; Saunders, A.; Schwartz, C.; Thompson, T. N.

    2011-01-01

    This article describes the design and performance of a magnifying magnetic-lens system designed, built, and commissioned at the Los Alamos National Laboratory (LANL) for 800 MeV flash proton radiography. The technique of flash proton radiography has been developed at LANL to study material properties under dynamic loading conditions through the analysis of time sequences of proton radiographs. The requirements of this growing experimental program have resulted in the need for improvements in spatial radiographic resolution. To meet these needs, a new magnetic lens system, consisting of four permanent magnet quadrupoles, has been developed. This new lens system was designed to reduce the second order chromatic aberrations, the dominant source of image blur in 800 MeV proton radiography, as well as magnifying the image to reduce the blur contribution from the detector and camera systems. The recently commissioned lens system performed as designed, providing nearly a factor of three improvement in radiographic resolution.

  8. Fabricating customized hydrogel contact lens

    Science.gov (United States)

    Childs, Andre; Li, Hao; Lewittes, Daniella M.; Dong, Biqin; Liu, Wenzhong; Shu, Xiao; Sun, Cheng; Zhang, Hao F.

    2016-10-01

    Contact lenses are increasingly used in laboratories for in vivo animal retinal imaging and pre-clinical studies. The lens shapes often need modification to optimally fit corneas of individual test subjects. However, the choices from commercially available contact lenses are rather limited. Here, we report a flexible method to fabricate customized hydrogel contact lenses. We showed that the fabricated hydrogel is highly transparent, with refractive indices ranging from 1.42 to 1.45 in the spectra range from 400 nm to 800 nm. The Young’s modulus (1.47 MPa) and hydrophobicity (with a sessile drop contact angle of 40.5°) have also been characterized experimentally. Retinal imaging using optical coherence tomography in rats wearing our customized contact lenses has the quality comparable to the control case without the contact lens. Our method could significantly reduce the cost and the lead time for fabricating soft contact lenses with customized shapes, and benefit the laboratorial-used contact lenses in pre-clinical studies.

  9. Non-invasive bleaching of the human lens by femtosecond laser photolysis

    DEFF Research Database (Denmark)

    Kessel, L.; Eskildsen, Lars; Poel, Mike van der

    2010-01-01

    . Reducing blindness from cataract requires solutions that can be applied outside operating theatres. Cataract is a protein conformational disease characterized by accumulation of light absorbing, fluorescent and scattering protein aggregates. The aim of the study was to investigate whether these compounds...... by a non-invasive procedure based on femtosecond laser photolysis. Cataract is a disease associated with old age. At the current technological stage, lens aging is delayed but with a treatment covering the entire lens volume complete optical rejuvenation is expected. Thus, femtosecond photolysis has...

  10. A study on the optical parts for a semiconductor laser module

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jun-Girl; Lee, Dong-Kil; Kim, Yang-Gyu; Lee, Kwang-Hoon; Park, Young-Sik [Korea Photonics Technology Institute, Gwangju (Korea, Republic of); Jang, Kwang-Ho [Hanvit Optoline, Gwangju (Korea, Republic of); Kang, Seung-Goo [COSET, Gwangju (Korea, Republic of)

    2014-11-15

    A semiconductor laser module consists of a LD (laser diode) chip that generates a laser beam, two cylindrical lenses to collimate the laser beam, a high-reflection mirror to produce a large output by collecting the laser beam, a collimator lens to guide the laser beam to an optical fiber and a protection filter to block reflected laser light that might damage the LD chip. The cylindrical lenses used in a semiconductor laser module are defined as FACs (fast axis collimators) and SACs (slow axis collimators) and are attached to the system module to control the shape of the laser beam. The FAC lens and the SAC lens are made of a glass material to protect the lenses from thermal deformation. In addition, they have aspheric shapes to improve optical performances. This paper presents a mold core grinding process for an asymmetrical aspheric lens and a GMP (glass molding press), what can be used to make aspheric cylindrical lenses for use as FACs or SACs, and a protection filter made by using IAD (ion-beam-assisted deposition). Finally, we developed the aspheric cylindrical lenses and the protection filter for a 10-W semiconductor laser module.

  11. A Correlation of Thin Lens Approximation to Thick Lens Design by Using Coddington Factors in Lens Design and Manufacturing

    OpenAIRE

    FARSAKOĞLU, Ö. Faruk

    2014-01-01

    The effect of Coddington factors on aberration functions has been analysed using thin lens approximation. Minimizing spherical aberrations of singlet lenses using Coddington factors in lens design depending on lens manufacturing is discussed. Notation of lens test plate pairs used in lens manufacturing is also presented in terms of Coddington shape factors.

  12. Development of the multiwavelength monolithic integrated fiber optics terminal

    Science.gov (United States)

    Chubb, C. R.; Bryan, D. A.; Powers, J. K.; Rice, R. R.; Nettle, V. H.; Dalke, E. A.; Reed, W. R.

    1982-01-01

    This paper describes the development of the Multiwavelength Monolithic Integrated Fiber Optic Terminal (MMIFOT) for the NASA Johnson Space Center. The program objective is to utilize guided wave optical technology to develop wavelength-multiplexing and -demultiplexing units, using a single mode optical fiber for transmission between terminals. Intensity modulated injection laser diodes, chirped diffraction gratings and thin film lenses are used to achieve the wavelength-multiplexing and -demultiplexing. The video and audio data transmission test of an integrated optical unit with a Luneburg collimation lens, waveguide diffraction grating and step index condensing lens is described.

  13. Optical Coherence Tomography Examination of the Anterior Segment in a Case of Corneal Perforation and Lens Trauma by Chestnut Burr

    Directory of Open Access Journals (Sweden)

    Takashi Ono

    2018-02-01

    Full Text Available Chestnut burrs, the thorny encapsulation of chestnut fruit, can sometimes cause corneal injuries and ulceration, with poor prognoses. We report a case of corneal perforation and damaged anterior lens capsule due to a chestnut burr, using anterior segment optical coherence tomography (AS-OCT. A 67-year-old woman with a chestnut burr injury in her right eye was referred to our hospital. Her right best-corrected visual acuity (BCVA was 0.8. Slit-lamp examination and AS-OCT showed perforation involving the endothelial layer at the center of the cornea. The iris and anterior lens capsule were damaged. Cell infiltration was observed around the wound. Bacterial examination showed gram-positive cocci but no fungi. The patient was diagnosed with a corneal perforation and bacterial keratitis. Levofloxacin 1.5% and cefmenoxime treatments were initiated and a soft contact lens was placed to seal the wound. On day 3, there was no improvement in the corneal cell infiltration, but AS-OCT suggested that the inner wound had closed. A culture test revealed the presence of Propionibacterium acnes, which was sensitive to both levofloxacin and cefmenoxime. Therefore, we continued the same antibiotic treatment. On day 26, the opacification and cell infiltration at the center of the cornea had improved. AS-OCT showed healing of the corneal wound with reduction in the central corneal thickness. Her BCVA improved to 1.0. AS-OCT was a valuable tool to noninvasively observe wound shape and detect the presence of any intracorneal foreign bodies.

  14. An OTDM-To-WDM Converter Using Optical Fourier Transformation

    OpenAIRE

    Khin Su Myat Min; Zaw Myo Lwin; Hla Myo Tun

    2015-01-01

    We demonstrate serial-to-parallel conversion of 40 Gbps optical time division multiplexed OTDM signal to 4x10 Gbps wavelength division-multiplexed WDM individual channels by using Optical Fourier Transformation OFT method. OFT is also called time lens technique and it is implemented by the combination of dispersive fiber and phase modulation. In this research electro-optic phase modulator EOM is used as time lens. As our investigations simulation results and bit error rate BER measurements ar...

  15. Optics design for J-TEXT ECE imaging with field curvature adjustment lens

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Y.; Zhao, Z.; Liu, W. D.; Xie, J., E-mail: jlxie@ustc.edu.cn [School of Physics, University of Science and Technology of China, Anhui 230026 (China); Hu, X.; Muscatello, C. M.; Domier, C. W.; Luhmann, N. C.; Chen, M.; Ren, X. [University of California at Davis, Davis, California 95616 (United States); Tobias, B. J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Zhuang, G.; Yang, Z. [College of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-11-15

    Significant progress has been made in the imaging and visualization of magnetohydrodynamic and microturbulence phenomena in magnetic fusion plasmas. Of particular importance has been microwave electron cyclotron emission imaging (ECEI) for imaging T{sub e} fluctuations. Key to the success of ECEI is a large Gaussian optics system constituting a major portion of the focusing of the microwave radiation from the plasma to the detector array. Both the spatial resolution and observation range are dependent upon the imaging optics system performance. In particular, it is critical that the field curvature on the image plane is reduced to decrease crosstalk between vertical channels. The receiver optics systems for two ECEI on the J-TEXT device have been designed to ameliorate these problems and provide good performance with additional field curvature adjustment lenses with a meniscus shape to correct the aberrations from several spherical surfaces.

  16. Comparison of optical quality after implantable collamer lens implantation and wavefront-guided laser in situ keratomileusis

    Directory of Open Access Journals (Sweden)

    Hong-Ting Liu

    2018-04-01

    Full Text Available AIM: To compare the optical quality after implantation of implantable collamer lens (ICL and wavefront-guided laser in situ keratomileusis (WG-LASIK. METHODS: The study included 40 eyes of 22 patients with myopia who accepted ICL implantation and 40 eyes of 20 patients with myopia who received WG-LASIK. Before surgery and three months after surgery, the objective scattering index (OSI, the values of modulation transfer function (MTF cutoff frequency, Strehl ratio, and the Optical Quality Analysis System (OQAS values (OVs were accessed. The higher order aberrations (HOAs data including coma, trefoil, spherical, 2nd astigmatism and tetrafoil were also obtained. For patients with pupil size <6 mm, HOAs data were analyzed for 4 mm-pupil diameter. For patients with pupil size ≥6 mm, HOAs data were calculated for 6 mm-pupil diameter. Visual acuity, refraction, pupil size and intraocular pressures were also recorded. RESULTS: In both ICL and WG-LASIK group, significant improvements in visual acuities were found postoperatively, with a significant reduction in spherical equivalent (P< 0.001. After the ICL implantation, the OSI decreased slightly from 2.34±1.92 to 2.24±1.18 with no statistical significance (P=0.62. While in WG-LASIK group, the OSI significantly increased from 0.68±0.43 preoperatively to 0.91±0.53 postoperatively (Wilcoxon signed ranks test, P=0.000. None of the mean MTF cutoff frequency, Strehl ratio, OVs showed statistically significant changes in both ICL and WG-LASIK groups. In the ICL group, there were no statistical differences in the total HOAs for either 4 mm-pupil or 6 mm-pupil. In the WG-LASIK group, the HOA parameters increased significantly at 4 mm-pupil. The total ocular HOAs, coma, spherical and 2nd astigmatism were 0.12±0.06, 0.06±0.03, 0.00±0.03, 0.02±0.01, respectively. After the operation, these values were increased into 0.16±0.07, 0.08±0.05, -0.04±0.04, 0.03±0.01 respectively (Wilcoxon signed ranks test

  17. Paraxial design of an optical element with variable focal length and fixed position of principal planes.

    Science.gov (United States)

    Mikš, Antonín; Novák, Pavel

    2018-05-10

    In this article, we analyze the problem of the paraxial design of an active optical element with variable focal length, which maintains the positions of its principal planes fixed during the change of its optical power. Such optical elements are important in the process of design of complex optical systems (e.g., zoom systems), where the fixed position of principal planes during the change of optical power is essential for the design process. The proposed solution is based on the generalized membrane tunable-focus fluidic lens with several membrane surfaces.

  18. Improved design of three-dimensional lens for low concentrator PV modules; Teishukogata taiyo denchiyo sanjigen lens no koseinoka ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Goma, S; Yoshioka, K; Saito, T [Tokyo Univ. of Agriculture and Technology, Tokyo (Japan)

    1997-11-25

    Attention is paid to reduction in area required for solar cells by solar concentration as a means of solving cost limits of solar cells and unstable supply of Si materials. Low concentration solar cells are effective from the aspects of utilization of scattered light and unnecessary ray tracing. The optical concentration ratio was calculated of three-dimensional lens having design values of various north/south and east/west direction allowable incidence half angles. The three-dimensional lens are designed by cutting a rectangular parallelepiped by the two-dimensional composite elliptical plane designed by various allowable incidence half angles from two directions of north/south and east/west. Using Perez`s sky solar radiation models and meteorological data HASP, calculated were the annual accumulated global radiation ratio on an inclined surface and the optical efficiency. Calculated were the solar cell area ratio and solar concentration area ratio of the concentration type to obtain solar radiation the same as that of the planar type. From the optimization calculation, it was found that lens are optimal which have design values of north/south and east/west direction allowable incidence half angles of 30-70deg. The solar cell area ratio is 57% and the solar concentration area ratio is 1.2 times. It was found that by making the module area 1.2 times, more than 40% of the solar cells used can be saved. 5 refs., 8 figs.

  19. Spectral analysis and comparison of mineral deposits forming in opacified intraocular lens and senile cataractous lens

    Science.gov (United States)

    Lin, Shan-Yang; Chen, Ko-Hwa; Lin, Chih-Cheng; Cheng, Wen-Ting; Li, Mei-Jane

    2010-10-01

    This preliminary report was attempted to compare the chemical components of mineral deposits on the surfaces of an opacified intraocular lens (IOL) and a calcified senile cataractous lens (SCL) by vibrational spectral diagnosis. An opacified intraocular lens (IOL) was obtained from a 65-year-old male patient who had a significant decrease in visual acuity 2-years after an ocular IOL implantation. Another SCL with grayish white calcified plaque on the subcapsular cortex was isolated from a 79-year-old male patient with complicated cataract after cataract surgery. Optical light microscope was used to observe both samples and gross pictures were taken. Fourier transform infrared (FT-IR) and Raman microspectroscopic techniques were employed to analyze the calcified deposits. The curve-fitting algorithm using the Gaussian function was also used to quantitatively estimate the chemical components in each deposit. The preliminary results of spectral diagnosis indicate that the opacified IOL mainly consisted of the poorly crystalline, immature non-stoichiometric hydroxyapatite (HA) with higher content of type B carbonated apatites. However, the calcified plaque deposited on the SCL was comprised of a mature crystalline stoichiometric HA having higher contents of type A and type B carbonate apatites. More case studies should be examined in future.

  20. Two mode optical fiber in space optics communication

    Science.gov (United States)

    Hampl, Martin

    2017-11-01

    In our contribution we propose to use of a two-mode optical fiber as a primary source in a transmitting optical head instead of the laser diode. The distribution of the optical intensity and the complex degree of the coherence on the output aperture of the lens that is irradiated by a step-index weakly guiding optical fiber is investigated. In our treatment we take into account weakly guided modes with polarization corrections to the propagation constant and unified theory of second order coherence and polarization of electromagnetic beams.